SIEMENS

SIMATIC

Microbox T Microbox 420-T betreiben

Betriebsanleitung

Produktübersicht	1
Grundlagen der PC-basierten Steuerung	2
Programmierung	3
Bedienung und Funktionen des Controllers	4
Einstellung des Betriebsverhaltens	5
WinLC T mit dem SIMATIC NET OPC-Server verbinden	6
Speicherkonzept	7
Kommunikation	8
Zyklus- und Reaktionszeiten	9
Referenzinformation	10
EGB-Richtlinien	Α
	B

Sicherheitshinweise

Dieses Handbuch enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Die Hinweise zu Ihrer persönlichen Sicherheit sind durch ein Warndreieck hervorgehoben, Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt.

Gefahr

bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Warnung

bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Vorsicht

mit Warndreieck bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Vorsicht

ohne Warndreieck bedeutet, dass Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Achtung

bedeutet, dass ein unerwünschtes Ergebnis oder Zustand eintreten kann, wenn der entsprechende Hinweis nicht beachtet wird.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

Qualifiziertes Personal

Das zugehörige Gerät/System darf nur in Verbindung mit dieser Dokumentation eingerichtet und betrieben werden. Inbetriebsetzung und Betrieb eines Gerätes/Systems dürfen nur von **qualifiziertem Personal** vorgenommen werden. Qualifiziertes Personal im Sinne der sicherheitstechnischen Hinweise dieser Dokumentation sind Personen, die die Berechtigung haben, Geräte, Systeme und Stromkreise gemäß den Standards der Sicherheitstechnik in Betrieb zu nehmen, zu erden und zu kennzeichnen.

Bestimmungsgemäßer Gebrauch

Beachten Sie Folgendes:

Warnung

Das Gerät darf nur für die im Katalog und in der technischen Beschreibung vorgesehenen Einsatzfälle und nur in Verbindung mit von Siemens empfohlenen bzw. zugelassenen Fremdgeräten und -komponenten verwendet werden. Der einwandfreie und sichere Betrieb des Produktes setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Instandhaltung voraus.

Marken

Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft, notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten.

Siemens AG Automation and Drives Postfach 48 48 90437 NÜRNBERG DEUTSCHLAND Dokumentbestell-Nr. A5E00495966-01 Ausgabe 06/2006 Copyright © Siemens AG 2006. Änderungen vorbehalten

Inhaltsverzeichnis

1	Produk	tübersicht	1-1
	1.1	Einleitung	1-1
	1.2	Systemarchitektur	1-3
	1.3	Funktionen von WinLC T	1-4
	1.4	Integrierte Technologie	1-5
2	Grundla	agen der PC-basierten Steuerung	2-1
	2.1	Übersicht	2-1
	2.2 2.2.1 2.2.2 2.2.3	Erklärung der Begriffe PC-Station Kommunikationsschnittstelle Index	
3	Program	mmierung	
	3.1	Verwenden von STEP 7 mit dem Controller	3-1
	3.2	Erstellen eines Projekts mit STEP 7	
	3.3	Konfigurieren der Betriebsparameter für den Controller	
	3.4	Von WinLC T unterstützte Codebausteine	
	3.5	S7-Kommunikationsfunktionen	3-9
	3.6	PROFIBUS DPV1	3-10
	3.7 3.7.1 3.7.2	Organisationsbausteine (OBs) Allgemeines zu OBs Alarm-OBs	3-11 3-11 3-13
	3.8	Systemfunktionen (SFCs)	3-16
	3.9	Systemfunktionsbausteine (SFBs)	3-20
	3.10	Technologiefunktionen	3-21
	3.11	Systemuhr und Betriebsstundenzähler	3-23
	3.12 3.12.1 3.12.2	STEP 7-Programme portieren STEP 7-Programm für WinAC RTX portieren STEP 7-Programm für CPU317T portieren	
	3.13	WinAC ODK auf der Microbox T einsetzen	
	3.14	Betrieb von WinLC T bei einer Windows-Fehlfunktion	
	3.15	Betrieb von WinLC T bei einer Fehlfunktion der Technologie	
	3.16	Neustart von WinLC T nach Fehlfunktion von WinLC T	3-31

4[g1]	Bedienung und Funktionen des Controllers		
	4.1	Übersicht	
	4.2	Bedienelemente des Controllers	4-3
	4.2.1	Controller Panel	
	4.2.2	Betriebsartenschalter	
	4.2.3	Schaltfläche MRES	
	4.3	Funktionen des Controllers	4-9
	4.3.1	Starten und Schließen des Controllers	
	4.3.2 4.3.3	Tuning Panel Diagnoseinformationen anzeigen	
	4.3.4	Archivieren und Wiederherstellen von STEP 7-Anwenderprogrammen	
	4.3.5	Optionen zum Einrichten	4-16
	4.3.5.1	Ubersicht	
	4.3.5.2	Aktivieren der Autostart-Funktion.	
	4.3.6	Optionen für den Zugriffsschutz	
	4.3.6.1	Einrichten der Optionen für den Zugriffsschutz	
	4.3.6.2 4.3.7	Andern des Passworts	
5	Einstellu	ing des Betriebsverhaltens	
	5.1	Technologie-Systemtakte optimieren	5-1
	5.2	Funktionen unter Windows XP Embedded	
	5.2.1	Überwachungsfunktionen	
•	5.Z.Z		
6			6-1
	6.1	Ubersicht	
	6.2	Schritt 1: Hinzufügen des OPC-Servers zur PC-Station	6-2
	6.3	Schritt 2: Hinzufügen des OPC-Servers zur Hardware-Konfiguration	6-4
	6.4	Schritt 3: Hinzufügen einer S7-Verbindung für den OPC-Server in NetPro	6-5
	6.5	Schritt 4: Laden der Konfiguration in den WinLC T Controller	6-9
	6.6	Schritt 5: Verbinden des Controllers mit dem OPC-Server	6-10
7	Speiche	rkonzept	7-1
	7.1	Speichern von Informationen zum Controller	7-1
	7.2	Laden von Speicherbereichen beim Anlauf	7-4
	7.3	Puffern von Daten mit SFCs	7-6
	7.4	Remanente Daten im SRAM	7-8
	7.5	Stromausfall	7-9
	7.6	Unterbrechungsfreie Stromversorgung	7-9
	7.7	Daten sichern	7-10
	7.8	Lieferzustand wieder herstellen (Restore)	7-10

8[g2]	Kommunikation		
	8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	Schnittstellen Übersicht Ethernet-Schnittstellen. PROFIBUS DP-Schnittstelle (X1) PROFIBUS DP(DRIVE)-Schnittstelle (X2). Peripherie-Schnittstelle (X11)	8-1 8-1 8-1 8-3 8-3 8-4 8-4
	8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6	Kommunikationsdienste Übersicht Kommunikationsdienste PG-Kommunikation OP-Kommunikation PG/OP-Kommunikation einstellen Routing für Test- und Diagnosefunktionen Datenkonsistenz	8-6 8-6 8-6 8-7 8-7 8-7 8-8 8-8 8-8
	8.3 8.3.1 8.3.2 8.3.3	Aufbau einer S7-Kommunikation Kommunikationsweg einer S7-Verbindung Belegung von S7-Verbindungen Verteilung und Verfügbarkeit von S7-Verbindungsressourcen	8-10 8-10 8-11 8-12
9	Zyklus- u	und Reaktionszeiten	
	9.1	Zeitmodell der WinLC T	9-1
10	Referenz	zinformation	10-1
	10.1	Technische Daten	10-1
	10.2 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7 10.2.8 10.2.9 10.2.10 10.2.11 10.2.12 10.2.13 10.2.14 10.2.15 10.2.16 10.2.17 10.2.18	Systemzustandsliste	10-9 10-11 10-11 10-11 10-12 10-12 10-12 10-12 10-13 10-13 10-14 10-15 10-15 10-16 10-17 10-17 10-17 10-18

A[g3]	EGB-Ricl	ntlinien	A-1
	A.1	EGB-Richtlinien	A-1
в	Liste der	Abkürzungen	B-1
	B.1	Abkürzungen	B-1
	Glossar		Glossar-1
	Index		Index-1

Tabellen

Tabelle 8-1	Verteilung der S7-Verbindungen	8-12
Tabelle 8-2	Verfügbarkeit der S7-Verbindungen	8-13

Produktübersicht

1.1 Einleitung

Einleitung

Die Microbox T besteht aus einem Industrie-PC-System Microbox mit eingebauter DP-PCI-104-Erweiterungsbaugruppe und einer darauf installierten PC-basierten Software-Steuerung mit integrierten Technologiefunktionen. Die Software-Steuerung wird in diesem Dokument auch als Controller bezeichnet.

Zweck der Betriebsanleitung

In dieser Betriebsanleitung erhalten Sie alle Informationen zu folgenden Themen:

- Verwendung von STEP 7 zur Programmierung
- Bedienung und Funktionen des Controllers
- Einstellung des Betriebsverhaltens
- Speicherkonzept
- Kommunikation mit angeschlossenen Geräten

Voraussetzungen

Diese Betriebsanleitung wendet sich an Ingenieure, Programmierer und Wartungspersonal mit allgemeinen Kenntnissen über Automatisierungssysteme.

Zum Verständnis der Betriebsanleitung sind außerdem folgende Kenntnisse nötig:

- Betriebssystem Windows XP Embedded
- Antriebstechnik
- Basissoftware STEP 7
 Lesen Sie dazu ggf. das Handbuch *Programmieren mit STEP 7 V5.3*.
- Technologiefunktionen Lesen Sie dazu ggf. das Handbuch *S7-Technology*.

Gültigkeitsbereich der Betriebsanleitung

Die Betriebsanleitung ist gültig für die auf der Microbox 420-T installierte Software WinLC T und beschreibt den Lieferzustand ab Version 1.0.

1.1 Einleitung

Konventionen

Innerhalb des Handbuches bzw. der Online-Hilfe werden für die Produktbezeichnung SIMATIC Microbox 420-T auch die Abkürzungen Microbox 420-T, Microbox T oder Gerät benutzt.

Einordnung in die Informationslandschaft

Informationen zur Hardware, zum Aufbau und zu den Anschlüssen der Microbox 420-T finden Sie im Gerätehandbuch *Microbox 420-T aufbauen*.

Informationen zur Inbetriebnahme der Microbox T finden Sie im *Getting Started Microbox 420-T in Betrieb nehmen.*

Informationen zur Basissoftware STEP 7 finden Sie im Handbuch *Programmieren mit STEP 7 V5.3*.

Informationen zur Programmierung und zu den Technologiefunktionen finden Sie im Handbuch *S7-Technology*.

Informationen zur Kommunikation über Industrial Ethernet finden Sie im Handbuch SIMATIC NET - Twisted Pair- und Fiber Optic Netze.

Eine Beschreibung der Kommunikationssoftware SOFTNET finden Sie im Handbuch *SIMATIC NET - Einführung SOFTNET für Industrial Ethernet.* Die Handbücher zu SIMATIC NET finden Sie als PDF-Dokumente auf der im Lieferumfang der Microbox T enthaltenen CD.

1.2 Systemarchitektur

Systemaufbau

Die Microbox T ist ein Hardware-/Softwarepaket, das aus folgenden Komponenten besteht:

- Industrie-PC-System Microbox
- PC-basierte Steuerung WinLC T mit integrierter Motion Control

PC-basierte Steuerung WinLC T

WinLC T ist eine programmierbare Software-Steuerung, welche eine ähnliche Funktionalität bietet wie eine SIMATIC S7-CPU mit integrierter Motion Control. Die Software ist auf dem Industrie-PC-System Microbox installiert und wird auf diesem ausgeführt. In diesem Dokument wird statt WinLC T auch der Begriff Controller für die Software-Steuerung verwendet.

Der Controller integriert Motion Control-Funktionen und Technologische Konfigurationen (Technologieobjekte, Achskonfigurationen, Tools).

WinLC T unterstützt mehrere Netze und stellt über die DP-Schnittstellen der Microbox T eine Verbindung zur dezentralen Peripherie her.

Zur Ansteuerung von Antriebssystemen stehen eine PROFIBUS DP(DRIVE)-Schnittstelle und digitale Ausgänge zur Verfügung.

Als Teil der Produktreihe der SIMATIC Automatisierungsprodukte kann WinLC T über PROFIBUS- oder Industrial Ethernet-Netze auch mit STEP 7 oder anderen SIMATIC Produkten kommunizieren, z. B. mit WinCC.

STEP 7 verwenden

Sie können dieselben Programmiersprachen, Programmstruktur und Programmieroberfläche (STEP 7) wie für S7-300/400-Zielsysteme nutzen, um Ihre Prozesssteuerung zu entwickeln. Programme, die für S7-Automatisierungssysteme geschrieben wurden, können auf PC-basierten Steuerungen genutzt werden und umgekehrt.

Konfiguration

Die Microbox T ist vorkonfiguriert. Sie können sofort mit der Bedienung des Controllers beginnen. Sie bedienen den Controller über das Controller Panel, das Ihnen an einem Monitor angezeigt wird.

Achtung

Hot Plug-fähige Peripheriegeräte (USB) dürfen **nicht** angeschlossen sein, während der Controller WinLC T in Betrieb ist. Monitor, Tastatur und Maus sind von dieser Einschränkung ausgenommen.

Wenn Sie z. B. einen USB-Speicher zum Speichern von Daten anschließen wollen, müssen Sie vorher den Controller WinLC T außer Betrieb setzen.

1.3 Funktionen von WinLC T

Kundenspezifische Software

Vorsicht

Um eine hohe Qualität und Funktionssicherheit des Gesamtsystems bieten zu können, wird die Motion Control-Komponente SIMOTION P konfiguriert und funktionsbereit ausgeliefert. Dazu unterliegen die verwendeten Systemkomponenten einem Zertifizierungsverfahren bei SIEMENS als Systemhersteller. In diesem Zertifizierungsverfahren wird die Einhaltung der Echtzeiteigenschaften der gesamten Konfiguration nachgewiesen und dokumentiert.

Für Änderungen oder Erweiterungen von PC-Komponenten (Hard- oder Software) durch Dritte kann keine verbindliche Aussage bezüglich der Einhaltung der Produkteigenschaften getroffen werden. Sie liegen allein in der Verantwortung des OEMs bzw. des Anwenders, der die Veränderungen vorgenommen hat.

Zertifizierung von Erweiterungen

Ein PC stellt grundsätzlich ein offenes System dar. Erweiterungen oder Veränderungen von Soft- und Hardware zum Erreichen einer bestimmten Funktionalität sind in manchen Fällen unumgänglich.

Bitte wenden Sie sich dazu an Ihren regionalen SIEMENS-Vertriebspartner.

1.3 Funktionen von WinLC T

Von WinLC T unterstützte SIMATIC-Funktionalität

WinLC T bietet die folgenden Funktionen:

- Umfasst eine große Anzahl an S7-Codebausteinen von SIMATIC-Steuerungen: Organisationsbausteine (OBs), Systemfunktionsbausteine (SFBs) und Systemfunktionen (SFCs)
- Nutzt S7-Kommunikationsdienste und bietet Kompatibilität mit STEP 7 für Aufgaben wie Programmierung, Test und Überwachung.
- WinLC T verfügt über ein Tuning Panel zur Anzeige und zum Einstellen des Betriebsverhaltens des Systems.
- Kann mit einem SIMATIC NET OPC-Server verbunden werden, wodurch OPC-Client-Anwendungen auf Prozessdaten zugreifen können.

1.4 Integrierte Technologie

Technologiefunktionen

In die Software-Steuerung WinLC T sind Technologiefunktionen zur Ansteuerung von Antriebssystemen integriert.

Eine genaue Auflistung finden Sie unter "Technologiefunktionen".

Auswertung von Technologie-Datenbausteinen

Über die Technologie-Datenbausteine liefert die integrierte Technologie von WinLC T aktuelle Informationen zum Zustand und zu Werten der Technologieobjekte. Um kurze Reaktionszeiten zu realisieren, können die Technologie-Datenbausteine im OB 65 ausgewertet werden.

Verweis

Weiterführende Informationen zu den unter WinLC T verwendbaren Technologiefunktionen und den Technologie-Datenbausteine finden Sie im Handbuch *S7-Technology*.

Produktübersicht

1.4 Integrierte Technologie

Grundlagen der PC-basierten Steuerung

2.1 Übersicht

Die Microbox T enthält die PC-basierte Steuerung WinLC T. Diese ist immer installiert und wird auf der Microbox T ausgeführt. Die PC-basierte Steuerung WinLC T wird in diesem Dokument auch als Controller bezeichnet.

Der Abschnitt "Grundlagen der PC-basierten Steuerung" erklärt Ihnen grundlegende Begriffe zum Verständnis der PC-basierten Steuerung WinLC T:

- PC-Station
- Kommunikationsschnittstelle
- Index

2.2 Erklärung der Begriffe

2.2 Erklärung der Begriffe

2.2.1 PC-Station

Beschreibung

Die PC-Station ist ein Software-basierter virtueller Baugruppenträger, der dazu dient, ein PC-basiertes Automatisierungssystem zu erstellen. Wie ein Hardware-Baugruppenträger eines auf einer S7-CPU basierten Automatisierungssystems bietet die PC-Station Platz für mehrere Komponenten, die für das PC-basierte Automatisierungssystem erforderlich sind.

Die PC-Station wird in STEP 7 HW Konfig und im Stationskonfigurator dargestellt:

💻 (0) P	C
1	▲
2	WinLC T
X1	DP
3	📱 Technologie 🚽
X2	DP(DRIVE)
X11	1/0 PC
4	H IE Allgemein
5	
6	
7	
10	

Bild 2-1 Darstellung in STEP 7 HW Konfig

Grundlagen der PC-basierten Steuerung
2.2 Erklärung der Begriffe

Sta	ation Co	nfiguration Editor	- [ONLINE]					×
6	omnoner	ts Diagnostics Co	ofiguration Info					
	omponor	···· [Diagnostics [Co						1
1	Station:	PCStation		Mode:	RUN	_P		
			-			D 101		- L
	Index	Name	Туре	Ring	Status	Run/Stop	Conn	4
	1	Street.	SCLOT.		888	A		
	2	WinLU I	WinLU I					
	3		I echnology			0		
	4	Aligement	ic General					
	6							
	7							
	8							
	9							
	10							
	11							
	12							
	13							
	14							
	15							
	16							-
	17							
	New diar	nostic entry arrived						-
								- 1
		Add 1	Edit	1 г	ìelete		Bing ON	
			6-5415-77				ring on	-
	Stat	ion Name	mport Station			Dis	able Station	
				1				
	OK							1
	UK						Help	

2.2 Erklärung der Begriffe

Wenn Sie mit der Microbox T arbeiten, sind folgende Komponenten in deren PC-Station vorhanden:

- Controller WinLC T Der Controller ist Bestandteil der Microbox T. Er wird mit STEP 7 projektiert.
- Technologie
 Die Technologie wird mit S7T Config parametriert.
- Kommunikationsschnittstellen
 Die Microbox T enthält zwei als DP-Interfaces konfigurierte PROFIBUS-Schnittstellen und zwei integrierte Ethernet-Schnittstellen, die für Industrial Ethernet verwendbar sind.
- I/O PC (Peripherie-Schnittstelle, digitale Ausgänge)
 Die Microbox T hat 8 digitale Ausgänge mit Schaltzeiten unter 1 ms.
- weitere Applikationen (optional)
- OPC-Server (optional)
- Stationmanager Der Stationmanager ist Bestandteil der Microbox T.

2.2.2 Kommunikationsschnittstelle

Beschreibung

Eine Kommunikationsschnittstelle ist ein CP, eine integrierte PROFIBUS-Schnittstelle oder eine Industrial Ethernet-Schnittstelle.

Folgende Kommunikationsschnittstellen sind für WinLC T auf der Microbox 420-T vorhanden:

• DP-Schnittstelle

WinLC T kann die DP-Schnittstelle sowohl für die Kommunikation mit STEP 7 oder anderen S7-Anwendungen als auch für die Kommunikation mit der dezentralen Peripherie über PROFIBUS DP nutzen.

• DP(DRIVE)-Schnittstelle

Die DP(DRIVE)-Schnittstelle dient zur Kommunikation mit Antriebssystemen.

• Ethernet-Schnittstellen

Die Microbox T enthält zwei integrierte Ethernet-Schnittstellen, die für Industrial Ethernet verwendbar sind. Diese können für die Kommunikation zwischen STEP 7 oder anderen S7-Anwendungen und dem Controller WinLC T genutzt werden.

2.2.3 Index

Beschreibung

Ein Index ist ein nummerierter Steckplatz im virtuellen Baugruppenträger der PC-Station. Wenn Sie mit der Microbox 420-T arbeiten, finden Sie folgende Konfiguration vor:

- Der Controller WinLC T belegt Index 2.
- Die integrierte Technologie belegt Index 3.
- IE Allgemein belegt Index 4.
- Der Stationmanager belegt Index 125.

Zusätzlich zu den bereits konfigurierten Steckplätzen können Sie eigene Applikationen (z. B. C-Programme oder Visual Basic-Programme) oder einen OPC-Server hinzufügen.

Grundlagen der PC-basierten Steuerung

2.2 Erklärung der Begriffe

3

Programmierung

3.1 Verwenden von STEP 7 mit dem Controller

Beschreibung

STEP 7 mit dem Optionspaket S7-Technology bietet Programmier- und Konfigurationswerkzeuge für die Arbeit mit WinLC T. Sie führen die folgenden Tätigkeiten in STEP 7 aus:

- Definieren der Controller-, DP-, DP(DRIVE)- und IE-Konfiguration mittels STEP 7 HW Konfig und Konfigurieren der Betriebsparameter und E/A-Adressen f
 ür den Controller
- Entwickeln eines STEP 7-Anwenderprogramms mit einer der STEP 7-Programmiersprachen
- Definieren der Antriebstechnik mit den Werkzeugen aus dem Optionspaket S7-Technology

Die Definition erfolgt mit dem Tool S7T Config. Die Daten der Technologie-Objekte werden in Datenbausteinen abgelegt und stehen dem STEP 7-Anwenderprogramm zur Verfügung.

Des weiteren enthält S7-Technology eine Bibliothek mit PLCopen-konformen Funktionsbausteinen zur Programmierung der eigentlichen Motion Control-Aufgaben. Diese FBs rufen Sie in Ihrem STEP 7-Anwenderprogramm auf.

• Laden der Konfiguration und des STEP 7-Anwenderprogramms in den Controller

Zur Erstellung des STEP 7-Anwenderprogramms (incl. der Motion Control-Aufgaben) stehen Ihnen die STEP 7-Sprachen KOP, FUP, AWL sowie alle Engineering Werkzeuge zur Verfügung, z. B. S7-SCL oder S7-GRAPH.

Weitere Informationen finden Sie in der STEP 7-Dokumentation und der Dokumentation zum Optionspaket S7-Technology.

Hinweis zum Initialisieren der integrierten Technologie durch Überladen der SDBs

Sie können die integrierte Technologie der Microbox 420-T **nicht** neu initialisieren, indem Sie unveränderte SDBs erneut auf die Microbox 420-T laden. Die Systemvariablen und Konfigurationsdaten behalten dabei ihren zuletzt gültigen Wert und werden **nicht** wie bei der CPU31xT auf den Ausgangswert zurückgesetzt.

Wenn Sie die integrierte Technologie der Microbox T auf die projektierten Werte zurücksetzen möchten, müssen Sie den Befehl MRES (Urlöschen) auf der Microbox T ausführen und anschließend das Projekt erneut laden.

3.1 Verwenden von STEP 7 mit dem Controller

Zugriff auf Adressbereiche der Microbox T

Die Microbox T besitzt für die Steuerung und für die integrierte Technologie einen gemeinsamen Adressbereich. Der Adressbereich kann mit Adressen an der DP-Schnittstelle (X1), der DP(DRIVE)-Schnittstelle (X2) und Adressen der integrierten Technologie belegt werden.

	-		Adressbereich der Steuerung Microbox T (integrierte Peripherie / DR-Schnittstelle (X1) / (X2))
	Prozessabbild		
	•	Adressen der integrierten Tech (integrierte Peripherie / DR/DR	nologie IVE)–Schnittstelle (X2))
Perip	oherieabbild		

	Adressen Microbox 420-T
Steuerung Microbox T	0 bis 2047
Prozessabbild (Standardeinstellung *)	0 bis 511
Integrierte Technologie	0 bis 2047
Peripherieabbild 0 bis 63	
* Größe des Prozessabbilds ist in HW Konfig einstellbar	

Zugriff über die Steuerung

Im Anwenderprogramm kann mit STEP 7-Befehlen grundsätzlich der gesamte Adressbereich der Micrfobox T adressiert werden. Die angesprochenen Adressen müssen jedoch in HW Konfig der DP-Schnittstelle (X1) zugeordnet sein.

Ein direkter Zugriff auf Adressen der integrierten Peripherie oder Adressen, die der DP(DRIVE)-Schnittstelle (X2) zugewiesen wurden, ist nicht möglich. Wird im Anwenderprogramm auf diese Adressen zugegriffen, so reagiert die Steuerung, als wären diese Adressen physikalisch nicht belegt.

Programmierung

3.1 Verwenden von STEP 7 mit dem Controller

Zugriff über Technologieobjekte

Legen Sie Adressen, auf die Sie über die Technologieobjekte zugreifen möchten, in den Adressbereich 64 bis 1023. Technologieobjekte können auf Adressen zugreifen, die in HW Konfig der DP(DRIVE)-Schnittstelle (X2) oder der integrierten Peripherie zugeordnet wurden.

Zugriff über die Technologiefunktionen "MC_ReadPeriphery" und "MC_WritePeriphery"

Verwenden Sie die Technologiefunktionen "MC_ReadPeriphery" und "MC_WritePeriphery", wenn Sie auf das Peripherieabbild der integrierten Technologie (Adressbereich 0 bis 63) zugreifen möchten.

Legen Sie die Adressen, auf die Sie mit den Technologiefunktionen "MC_ReadPeriphery" und "MC_WritePeriphery" zugreifen möchten, vollkommen in diesen Adressbereich. Die genannten Technologiefunktionen können auf Adressen außerhalb dieses Bereichs nicht zugreifen.

3.2 Erstellen eines Projekts mit STEP 7

Dem Peripherieabbild können Adressen der DP(DRIVE)-Schnittstelle (X2) oder der integrierten Peripherie zugeordnet werden.

Hinweis

Wird mit der Technologiefunktion "MC_ReadPeriphery" auf Adressbereiche oder Teilbereiche zugegriffen, die der DP-Schnittstelle (X1) zugeordnet wurden, so werden für diese Adressen ungültige Werte gelesen.

Wird mit der Technologiefunktion "MC_WritePeriphery" auf Adressbereiche oder Teilbereiche zugegriffen, die der DP-Schnittstelle (X1) zugeordnet wurden, so wird der Schreibvorgang für diese Adressen nicht durchgeführt.

3.2 Erstellen eines Projekts mit STEP 7

Einleitung

Sie konfigurieren das STEP 7-Projekt für eine PC-Station mit einer PC-basierten Steuerung in STEP 7 genauso, wie Sie auch eine S7-Hardware-Steuerung konfigurieren. Ausführliche Informationen hierzu finden Sie in der Hilfe und in der Dokumentation von STEP 7.

Anlegen von Projekt und PC-Station mit dem SIMATIC Manager

Zum Anlegen von Projekt und PC-Station gehen Sie folgendermaßen vor:

- 1. Wählen Sie im SIMATIC Manager den Menübefehl **Datei > Neu**, um ein neues Projekt anzulegen.
- 2. Vergeben Sie einen Namen für das neue Projekt.
- Wählen Sie den Menübefehl Neues Objekt einfügen > SIMATIC PC-Station, um eine PC-Station ins Projekt einzufügen.

Programmierung

3.2 Erstellen eines Projekts mit STEP 7

Konfigurieren der PC-Station in STEP 7 HW Konfig

Zum Konfigurieren der PC-basierten Steuerung und der dezentralen Peripherie für die PC-Station gehen Sie folgendermaßen vor:

- 1. Öffnen Sie den Ordner der PC-Station im Projekt und doppelklicken Sie auf das Symbol für die Konfiguration, um STEP 7 HW Konfig aufzurufen.
- 2. Navigieren Sie unter der SIMATIC PC-Station zum Controller WinLC T.

	: D X
S <u>u</u> chen:	nt ni
<u>P</u> rofil:	SIMATIC Technology-CPU
🕞 - 🧰 S	IMATIC Technology
÷	SIMATIC 300
	SIMATIC PC Station
E	⊡ Controller
	🖻 🚞 WinLC T
	🖻 🚞 6ES7 675-3AG30-0PA0
	····· 🚺 V4.2/3.2
<u></u> ⊕ *	PROFIBUS-DP
📗 🖻 🖷 🧕	PROFIBUS-DP(DRIVE)

 Ziehen Sie den Controller auf den Steckplatz mit Index 2. WinLC T ist in Index 2 konfiguriert. Die Technologie ist dann automatisch auf Steckplatz 3 und IE Allgemein auf Steckplatz 4 konfiguriert.

💻 (0) P	C
1	▲
2	WinLC T
X1 -	DP
3	📱 Technologie 🚽
X2	DP(DRIVE)
X11	🚺 1/0 PC
4	H IE Allgemein
5	
6	
7	
1.0	

Die Technologie auf Steckplatz 3 und IE Allgemein auf Steckplatz 4 können nicht separat entfernt werden. Sie können allerdings die Objekteigenschaften ändern und die Taktsynchronisation durchführen.

3.2 Erstellen eines Projekts mit STEP 7

Weitere Optionen in der Hardware-Konfiguration

Die folgenden Tätigkeiten sind optional und richten sich nach Ihrer spezifischen Anwendung:

- 1. Fügen Sie alle HMI-Geräte ein, z.B. Runtime ProTool oder Runtime WinCC flexible.
- 2. Parametrieren Sie die Module WinLC T, Technologie, IE Allgemein und deren Interfaces.
- 3. Konfigurieren Sie WinLC T für die S7-Kommunikation:
 - Wählen Sie im SIMATIC Manager den Namen des Controllers.
 - Doppelklicken Sie im rechten Teilfenster auf das Symbol für Verbindungen.
 - Konfigurieren Sie das Netz mit NetPro.
- 4. Konfigurieren Sie die zu verwendenden Antriebe in HW Konfig.

Nachdem Sie WinLC T konfiguriert haben, können Sie im SIMATIC Manager Ihr STEP 7-Anwenderprogramm entwickeln und laden.

Vorsicht

Wenn Sie ein STEP 7-Anwenderprogramm laden, das für den Speicher des Computers zu groß ist, stürzt der Computer möglicherweise ab oder der Betrieb von WinLC T wird instabil. Dadurch kann es zu Sachschaden und/oder Verletzungen kommen.

Auch wenn STEP 7 und WinLC T die Anzahl der Bausteine und die Größe des STEP 7-Anwenderprogramms nicht begrenzen, hat die Microbox T einen Grenzwert, der sich nach dem verfügbaren Speicher auf der Compact Flash-Karte und dem RAM-Speicher richtet. Der Grenzwert für die Größe des STEP 7-Anwenderprogramms und die Anzahl der Bausteine für Ihre Microbox T kann nur ermittelt werden, wenn Sie ein konfiguriertes System auf die Anforderungen Ihrer Steuerungsanwendung testen.

Nachdem Sie Ihr Programm in den Controller geladen haben, können Sie den Controller starten und mit STEP 7 die Prozessvariablen beobachten und ändern.

Programmierung

3.3 Konfigurieren der Betriebsparameter für den Controller

Einleitung

In STEP 7 mit dem Optionspaket S7 Technology stehen Ihnen HW Konfig und S7T Config zum Einrichten der Betriebsparameter des Controllers zur Verfügung. Diese Konfiguration wird in den SDBs des Systemdaten-Containers gespeichert.

Nachdem Sie die Systemdaten geladen haben, nutzt der Controller die eingerichteten Parameter:

- Beim Starten des Controllers
- Beim Übergang in den Betriebszustand RUN (wenn Sie die Hardware-Konfiguration online geändert haben, während sich der Controller im Betriebszustand STOP befand)
- Während des Betriebs steuert die Antriebskonfiguration das Verhalten der technologischen Objekte.

Zum Konfigurieren der Betriebsparameter in STEP 7 HW Konfig klicken Sie mit der rechten Maustaste auf den Eintrag des Controllers im Stationsfenster und wählen "Objekteigenschaften". Im Dialogfeld "Eigenschaften" richten Sie die Betriebsparameter ein.

Zum Konfigurieren der technologischen Objekte verwenden Sie das Werkzeug S7T Config. Näheres hierzu entnehmen Sie der Dokumentation zum Optionspaket S7 Technology.

Zugreifen auf Betriebsparameter

Zum Einrichten dieser Betriebsparameter in STEP 7 öffnen Sie den SIMATIC Manager und gehen folgendermaßen vor:

- 1. Wählen Sie im SIMATIC Manager die PC-Station.
- 2. Doppelklicken Sie das Symbol für die Konfiguration, um HW Konfig zu öffnen.
- 3. Klicken Sie im Stationsfenster mit der rechten Maustaste auf das Modul oder Submodul, dessen Eigenschaften Sie ändern wollen, und wählen Sie "Objekteigenschaften".
- 4. Öffnen Sie das Register mit dem Namen des Parameters, den Sie einrichten möchten (z.B. Weckalarm), und geben Sie die entsprechenden Werte ein.
- 5. Bestätigen Sie Ihre Konfiguration mit "OK".

Weitere Informationen zum Konfigurieren der Controller-Eigenschaften und der Betriebsparameter finden Sie in der STEP 7-Dokumentation.

3.4 Von WinLC T unterstützte Codebausteine

3.4 Von WinLC T unterstützte Codebausteine

Unterstützte Bausteine

Wie alle S7-Steuerungen verfügt WinLC T über verschiedene Arten von Codebausteinen zum Bearbeiten des Anwenderprogramms: Organisationsbausteine (OBs), Systemfunktionen (SFCs) und Systemfunktionsbausteine (SFBs).

Organisationsbaustein (OB)	Systemfunktion (SFC)	Systemfunktionsbaustein (SFB)
OB 1	SFC 0 bis SFC 6	SFB 0 bis SFB 5
OB 10	SFC 9 und SFC 10	SFB 8 und SFB 9
OB 20	SFC 11 bis SFC 15	SFB 12 bis SFB 15
OB 30 bis OB 38	SFC 17 bis SFC 24	SFB 22 und SFB 23
OB 40	SFC 26 bis SFC 34	SFB 31 bis SFB 36
OB 52 bis OB 57	SFC 36 bis SFC 44	SFB 52 bis SFB 54
OB 65	SFC 46 und SFC 47	SFB 65001 und SFB 65002
OB 80, OB 82 bis OB 86 und	SFC 49 bis SFC 52	
OB 88	SFC 54 bis SFC 59	
OB 100	SFC 62 und SFC 64	
OB 121 und OB 122	SFC 78 bis SFC 80	
	SFC 82 bis SFC 84	
	SFC 85 und SFC 87	

Weitere S7-Bausteine

Neben diesen Systembausteinen können Sie auch die folgenden S7-Bausteine zum Erstellen Ihres STEP 7-Anwenderprogramms verwenden:

- Funktionen (FC): WinLC T unterstützt bis zu 65.536 FCs (FC 0 bis FC 65535). Jede Funktion kann maximal 65.570 Bytes umfassen.
- Funktionsbausteine (FBs): WinLC T unterstützt bis zu 65.536 FBs (FB 0 bis FB 65535). Jeder Funktionsbaustein kann maximal 65.570 Bytes umfassen.
- Datenbausteine (DBs): WinLC T unterstützt bis zu 65.535 DBs (DB 1 bis DB 65535). (DB 0 ist reserviert.) Jeder Datenbaustein kann maximal 65.534 Bytes umfassen.

Die Anzahl und Größe der FCs, FBs und DBs ist durch den zur Verfügung stehenden Systemspeicher begrenzt. Ausführliche Informationen zu den von WinLC T unterstützten Operationen finden Sie in den folgenden Abschnitten:

- Technische Daten
- Organisationsbausteine (OBs)
- Systemfunktionen (SFCs)
- Systemfunktionsbausteine (SFBs)

Siehe auch

Technische Daten (Seite 10-1)

3.5 S7-Kommunikationsfunktionen

Übersicht

Wie bei anderen S7-Automatisierungssystemen ist bei WinLC T die S7-Kommunikation zwischen Controllern im Netz möglich. Bei den Controllern kann es sich um Hardware- oder Software-Controller handeln.

SFB oder SFC	Name	Beschreibung
SFB 8 SFB 9	USEND URCV	Datenaustausch mittels SFBs zum Senden und zum Empfangen.
SFB 12 SFB 13	BSEND BRCV	Austausch von Datenblöcken mit variabler Länge zwischen einem SFB zum Senden und einem SFB zum Empfangen.
SFB 14 SFB 15	GET PUT	Daten aus einem entfernten Gerät lesen. Daten in ein entferntes Gerät schreiben.
SFB 22 SFB 23	STATUS USTATUS	Spezifische Abfrage des Zustandes eines entfernten Geräts. Empfang von Statusmeldungen von einem entfernten Gerät.
SFC 62	CONTROL	Abfrage des Zustandes einer Verbindung.

Weitere Informationen zur S7-Kommunikation finden Sie in der STEP 7-Dokumentation.

3.6 PROFIBUS DPV1

Beschreibung

DPV1-Erweiterungen für PROFIBUS DP ermöglichen die erweiterte Kommunikation, die von komplexen Slave-Geräten benötigt wird. Diese erweiterte Kommunikation umfasst azyklischen Datenaustausch, Alarm- und Statusmeldungen und die Übertragung von komplexen Datentypen.

WinLC T unterstützt die folgende DPV1-Funktionalität:

- DP-Norm und DPV1
- Alarm- und Status-OBs für die Bearbeitung von DPV1-definierten Ereignissen einschließlich:
 - OB 40 (Prozessalarm)
 - OB 55 (Statusalarm)
 - OB 56 (Aktualisierungsalarm)
 - OB 57 (herstellerspezifischer Alarm)
 - OB 82 (Diagnosealarm)
 - OB 83 (Alarm Baugruppe ziehen/stecken)
- Funktionsbausteine zum Lesen und Schreiben von Datensätzen:
 - SFB 52 (RDREC), Datensatz lesen
 - SFB 53 (WRREC), Datensatz schreiben
 - Ausführung von SFB 54 (RALRM), Alarmdaten lesen, im Kontext zum Auslösealarm
- Stations- und Schnittstellenadresse
- Puffern von Alarmen, die im DP-Modus CLEAR empfangen wurden

Programmierung 3.7 Organisationsbausteine (OBs)

3.7 Organisationsbausteine (OBs)

3.7.1 Allgemeines zu OBs

Unterstützte Organisationsbausteine

Organisationsbausteine (OBs) sind die Schnittstelle zwischen dem Betriebssystem der Steuerung und dem STEP 7-Anwenderprogramm. Mit OBs können Sie bestimmte Komponenten des STEP 7-Anwenderprogramms bei Eintreten der folgenden Ereignisse ausführen:

- Bei Start und Neustart des Controllers.
- Beim zyklischen Bearbeiten oder in bestimmten Abständen.
- Zu bestimmten Zeitpunkten oder an bestimmten Tagen.
- Nach Ablauf eines bestimmten Zeitraums.
- Bei Auftreten von Fehlern.
- Bei Auftreten eines Prozessalarms.

Die Programmlogik in einem OB darf max. 65.570 Bytes umfassen.

Organisationsbausteine werden nach der ihnen zugeordneten Priorität bearbeitet.

In der folgenden Tabelle werden die OBs aufgeführt, die von WinLC T unterstützt werden:

ОВ	Beschreibung	Prioritätsklasse
OB 1	Freier Zyklus	1 (niedrigste)
OB 10	Uhrzeitalarm	0, 2 bis 24
OB 20	Verzögerungsalarm	0, 2 bis 24
OB 30 bis OB 38	Weckalarme	0, 2 bis 24
OB 40	Prozessalarm	0, 2 bis 24
OB 52 bis OB 54	ODK-Alarm	15
OB 55	Statusalarm	0, 2 bis 24
OB 56	Update-Alarm	0, 2 bis 24
OB 57	Herstellerspezifischer Alarm	0, 2 bis 24
OB 65	Tasksynchroner Alarm	25
OB 80	Zeitfehler	26
OB 82	Diagnosealarm	24 bis 26 (oder 28)* Defaulteinstellung: 25
OB 83	Ziehen/Stecken-Alarm	24 bis 26 (oder 28)* Defaulteinstellung: 25
OB 84	CPU-Hardwarefehler	24 bis 26 (oder 28)* Defaulteinstellung: 25
OB 85	Programmablauffehler	24 bis 26 (oder 28)* Defaulteinstellung: 25
OB 86	Baugruppenträgerausfall	24 bis 26 (oder 28)* Defaulteinstellung: 25

3.7 Organisationsbausteine (OBs)

ОВ	Beschreibung	Prioritätsklasse	
OB 88	Prozessalarm (Stoppvermeidung)	28	
OB 100	Neustart (Warmstart)	27	
OB 121	Programmierfehler	Prioritätsklasse des	
DB 122 Peripheriezugriffsfehler fehlerverursachenden OB			
* Prioritätsklasse 28 in der Betriebsart ANLAUF, vom Anwender einstellbare Prioritätsklasse (von 24 bis 26) in der Betriebsart RUN			

OBs für den freien Zyklus des Programms und für den Warmstart

Die folgende Tabelle zeigt die OBs für den freien Zyklus des Programms und Warmstart. WinLC T verfügt über OB 1 (freier Zyklus) für die fortlaufende Bearbeitung des STEP 7-Anwenderprogramms. Beim Wechsel vom Betriebszustand STOP in den Betriebszustand RUN führt WinLC T den OB 100 (Warmstart) aus. Wurde OB 100 erfolgreich bearbeitet, führt WinLC T den OB 1 aus.

Organisationsbaustein (OB)		Startereignis (in hex)	Prioritätsklasse
Freier Zyklus	OB 1	1101, 1103, 1104	1
Warmstart	OB 100	1381, 1382	27

Hinweise zu Zeitauflösung und Jitter

Alle Zeittakte, die Sie in HW Konfig für Organisationsbausteine einstellen (z. B. für die OBs 30...38), werden automatisch auf das nächste ganzzahlige Vielfache der DP(DRIVE)-Zykluszeit am PROFIBUS DP aufgerundet. Hierdurch kann es bei der Ausführung der OBs zu einem Jitter von bis zu zwei Zyklen kommen.

Die konfigurierte Mindestzykluszeit kann also um diese zwei Zyklen über- oder unterschritten werden.

3.7.2 Alarm-OBs

Unterstützte Alarm-OBs

WinLC T verfügt über verschiedene OBs, die die Bearbeitung von OB 1 unterbrechen. Die folgende Tabelle führt die von WinLC T unterstützten Alarm-OBs auf. Diese Alarme treten je nach Art und Konfiguration des OB auf.

Die Prioritätsklasse legt fest, ob der Controller die Bearbeitung des STEP 7-Anwenderprogramms (bzw. anderer OBs) unterbricht und den Alarm-OB ausführt. Sie können die Prioritätsklasse der Alarm-OBs ändern (**Ausnahme**: OB 65).

Alarm		Startereignis (in hex)	Voreingestellte Prioritätsklasse
Uhrzeitalarm	OB 10	1111	2
Verzögerungsalarm Bereich: 1 ms bis 60000 ms	OB 20	1121	3
Weckalarme Bereich: 2 ms bis 60000 ms Empfohlen: > 10 ms	OB 30 OB 31 OB 32 OB 33 OB 34 OB 35 OB 36 OB 37 OB 38	1131 1132 1133 1134 1135 1136 1137 1138 1139	7 8 9 10 11 12 13 14 15
Prozessalarm	OB 40	1141	16
Statusalarm	OB 55	1155	2
Aktualisierungsalarm	OB 56	1156	2
Herstellerspezifischer Alarm	OB 57	1157	2
Tasksynchroner OB	OB 65	116A	25
Fehler-OBs	OB 80-88 OB 121/122	Die Fehler-OBs sind unte OBs" (s.u.) detailliert bes	er "Unterstützte Fehler- schrieben.

Haben Sie WinLC T so konfiguriert, dass ein bestimmter Alarm-OB ausgeführt werden soll, doch dieser OB wurde nicht geladen, dann reagiert WinLC T folgendermaßen:

- Fehlt OB 10, OB 20, OB 40, OB 55, OB 56 oder OB 57 und OB 85 wurde nicht geladen, wechselt WinLC T den Betriebszustand (von RUN in STOP).
- WinLC T bleibt im Betriebszustand RUN, wenn ein Weckalarm-OB (OB 32 bis OB 36) oder der tasksynchrone OB (OB 65) fehlt.
 Wenn diese OBs nicht zum jeweiligen Zeitpunkt ausgeführt werden können und OB 80 nicht geladen wurde, wechselt WinLC T vom Betriebszustand RUN in den Betriebszustand STOP.

3.7 Organisationsbausteine (OBs)

Auswertung von Technologie-Datenbausteinen

Über die Technologie-Datenbausteine liefert die integrierte Technologie von WinLC T aktuelle Informationen zum Zustand und zu Werten der Technologieobjekte. Um besonders kurze Reaktionszeiten zu realisieren, können die Technologie-Datenbausteine im OB 65 ausgewertet werden.

Hinweise zu Weckalarm-OBs

Je nach dem mittels Betriebsparametern für den Weckalarm parametrierten Intervall startet WinLC T die Ausführung des Weckalarm-OB zum entsprechenden Zeitpunkt. Das optimale Zeitintervall für Ihre Anwendung richtet sich nach der Verarbeitungsgeschwindigkeit Ihres Computers und nach der Ausführungszeit des zyklischen OB. Für die Microbox T empfehlen wir eine minimale Zykluszeit für Weckalarme von 2 ms bzw. gleich dem DP-Takt.

Jitter kann gelegentlich das Startereignis für einen zyklischen OB übersteuern, wodurch WinLC T möglicherweise in den Betriebszustand STOP wechselt. Beachten Sie dazu die Hinweise zu Zeitauflösung und Jitter im Abschnitt "Allgemeines zu OBs". Sonstige Faktoren, die sich auf die Ausführung des OB auswirken, umfassen folgende Situationen:

- Die Bearbeitung des Programms im OB benötigt länger als das zulässige Intervall. Wenn die Ausführung des Programms das Startereignis des zyklischen OB ständig übersteuert, geht WinLC T möglicherweise in den Betriebszustand STOP (sofern OB 80 nicht geladen ist).
- STEP 7 führt eine Aufgabe oder Funktion aus, die den Controller daran hindert, den zyklischen OB zur vorgesehenen Zeit auszuführen.

Wenn Sie einen Weckalarm-OB (OB 30 bis OB 38) so einrichten, dass er in bestimmten Abständen ausgeführt werden soll, müssen Sie sicherstellen, dass das Programm innerhalb dieser Zeit ausgeführt werden kann und dass auch Ihr STEP 7-Anwenderprogramm den OB innerhalb der zugeordneten Zeit bearbeiten kann.

Unterstützte Fehler-OBs

WinLC T verfügt über eine Reihe Fehler-OBs. Einige dieser Fehler-OBs haben die eingerichtete (vom Anwender zugeordnete) Prioritätsklasse, während andere OBs (OB 121 und OB 122) die Prioritätsklasse des Bausteins übernehmen, in dem der Fehler auftritt.

Die lokalen Variablen für OB 121 und OB 122 enthalten die folgenden Informationen, die vom STEP 7- Anwenderprogramm dazu verwendet werden können, auf den Fehler zu reagieren:

- Die Bausteinart (Byte 4) und die Nummer (Bytes 8 und 9) des fehlerverursachenden Bausteins.
- Die Adresse innerhalb des Bausteins (Bytes 10 und 11), in dem der Fehler aufgetreten ist.

Fehler		Startereignis (in hex)	Voreingestellte Prioritätsklasse
Zeitfehler	OB 80	3501, 3502, 3505, 3507	26
Diagnosealarm	OB 82	3842, 3942	26
Ziehen/Stecken-Alarm	OB 83	3861, 3863, 3864, 3865, 3961	26
CPU-Hardwarefehler (Windows-Fehlfunktion)	OB 84	3585	26 (oder 28)
 Programmablauffehler: Das Startereignis tritt für einen OB auf, der nicht geladen ist. WinLC T versucht, während des E/A- Zyklus auf eine Baugruppe oder einen DP-Slave zuzugreifen, die/der defekt oder nicht angeschlossen ist. 	OB 85	35A1, 35A2, 39B1, 39B2	26
Baugruppenträgerausfall (dezentrale Peripherie): Ein Teilnehmer im PROFIBUS DP-Netz ist ausgefallen oder wurde wiederhergestellt.	OB 86	38C4, 38C5, 38C7, 38C8, 39C4, 39C5	26 (oder 28)
Prozessalarm: Die Ausführung eines Programmbausteins wurde abgebrochen.	OB 88	3571, 3572, 3573, 3575, 3576, 3578, 357A	28
Programmierfehler (Beispiel: Das Anwenderprogramm versucht, eine Zeit anzusprechen, die nicht vorhanden ist.)	OB 121	2521, 2522, 2523, 2524, 2525, 2526, 2527, 2528, 2529, 2530, 2531, 2532, 2533, 2534, 2535, 253A, 253C, 253E	Gleiche Prioritätsklasse wie der fehlerverursachende OB.
Peripheriezugriffsfehler (Beispiel: Das Anwenderprogramm versucht, auf eine defekte oder nicht angeschlossene Baugruppe zuzugreifen.)	OB 122	2942, 2943	

Tritt das Startereignis für einen bestimmten Fehler-OB auf, der nicht geladen wurde, wechselt WinLC T den Betriebszustand (von RUN in STOP).

Ausführliche Informationen zu den OBs finden Sie in der Online-Hilfe von STEP 7 oder im Referenzhandbuch *Systemsoftware für S7-300/400 System- und Standardfunktionen*.

3.8 Systemfunktionen (SFCs)

3.8 Systemfunktionen (SFCs)

Unterstützte Systemfunktionen

WinLC T umfasst SFCs, bei denen es sich um Systemfunktionen handelt, die verschiedene Aufgaben ausführen. Das STEP 7-Anwenderprogramm ruft die SFC auf und übergibt die erforderlichen Parameter. Daraufhin führt die SFC die Aufgabe aus und gibt das Ergebnis aus. In der folgenden Tabelle werden die SFCs aufgeführt, die von WinLC T unterstützt werden.

SFC	Name	Beschreibung
SFC 0	SET_CLK	Stellt die Systemuhr ein.
SFC 1	READ_CLK	Liest die Systemuhr.
SFC 2	SET_RTM	Setzt den Betriebsstundenzähler.
SFC 3	CTRL_RTM	Startet oder stoppt den Betriebsstundenzähler.
SFC 4	READ_RTM	Liest den Betriebsstundenzähler.
SFC 5	GADR_LGC	Ermittelt die logische Adresse eines Kanals.
SFC 6	RD_SINFO	Liest die Startinformationen eines OB.
SFC 9	EN_MSG	Aktiviert bausteinbezogene und symbolbezogene Meldungen sowie Gruppenzustandsmeldungen.
SFC 10	DIS_MSG	Deaktiviert bausteinbezogene und symbolbezogene Meldungen sowie Gruppenzustandsmeldungen.
SFC 11	DPSYNC_FR	Synchronisiert Gruppen von DP-Slaves.
SFC 12	D_ACT_DP	Deaktiviert und aktiviert DP-Slaves.
SFC 13	DP_NRM	Liest die Diagnosedaten eines DP-Slave.
		Getestete DP-Konfiguration: ein Slave ET 200M mit einer Baugruppe mit 8 Ein- und 8 Ausgängen und einer Baugruppe mit 16 Ausgängen.
SFC 14	DPRD_DAT	Liest die konsistenten Daten eines DP-Slave.
SFC 15	DPWR_DAT	Schreibt die konsistenten Daten in einen DP-Slave.
SFC 17	ALARM_SQ	Erzeugt eine quittierbare bausteinbezogene Meldung.
SFC 18	ALARM_S	Generiert eine permanent quittierbare bausteinbezogene Meldung.
SFC 19	ALARM_SC	Fragt den Quittierungszustand der letzten Meldung ab (SFC 17 oder SFC 18).
SFC 20	BLKMOV	Kopiert Variablen.
SFC 21	FILL	Initialisiert einen Speicherbereich. 1 Wort 50 Wörter 100 Wörter
SFC 22	CREAT_DB	Erstellt einen remanenten Datenbaustein im Arbeitsspeicher.
		Die aktuellen Werte des DB werden nach einem Warmstart gespeichert.
SFC 23	DEL_DB	Löscht einen Datenbaustein.
		WinLC T lässt zu, dass eine Anwendung einen nicht ablaufrelevanten Datenbaustein löscht.

Programmierung

3.8 Systemfunktionen (SFCs)

SFC	Name	Beschreibung
SFC 24	TEST_DB	Liefert Informationen zu einem Datenbaustein.
		In WinLC T kann SFC 24 die DB-Länge ausgeben und
		Schutzmerker für nicht ablaufrelevante Datenbausteine
		schreiben. Trotzdem wird der Feniercode 80B2 für nicht ablaufrelevante Datenbausteine ausgegeben
SFC 26	UPDAT PI	Aktualisiert das Prozessabbild der Eingänge.
SFC 27	UPDAT_PO	Aktualisiert das Prozessabbild der Ausgänge.
SFC 28	SET TINT	Stellt den Uhrzeitalarm (OB 10).
SFC 29	CAN TINT	Storniert den Uhrzeitalarm (OB 10).
SFC 30	ACT_TINT	Aktiviert den Uhrzeitalarm (OB 10).
SFC 31	QRY_TINT	Ruft den Uhrzeitalarm (OB 10) ab.
SFC 32	SRT_DINT	Startet den Verzögerungsalarm (OB 20).
SFC 33	CAN_DINT	Storniert den Verzögerungsalarm (OB 20).
SFC 34	QRY_DINT	Ruft den Verzögerungsalarm (OB 20) ab.
SFC 36	MSK_FLT	Maskiert synchrone Fehler.
SFC 37	DMSK_FLT	Demaskiert synchrone Fehler.
SFC 38	READ_ERR	Liest das Fehlerregister.
SFC 39	DIS_IRT	Sperrt die Bearbeitung neuer Alarmereignisse.
SFC 40	EN_IRT	Gibt die Bearbeitung neuer Alarmereignisse frei.
SFC 41	DIS_AIRT	Verzögert Alarme mit höherer Priorität und asynchrone Fehler.
SFC 42	EN_AIRT	Gibt die Bearbeitung neuer Alarmereignisse mit höherer Priorität als der aktuelle OB frei.
SFC 43	RE_TRIGR	Löst die Zykluszeitüberwachung neu aus.
SFC 44	REPL_VAL	Überträgt einen Ersatzwert in AKKU1 (Akkumulator 1).
SFC 46	STP	Wechselt in den Betriebszustand STOP.
SFC 47	WAIT	Verzögert die Ausführung des STEP 7-Anwenderprogramms um die angegebene Anzahl Mikrosekunden, gerundet auf die nächste Millisekunde.
SFC 49	LGC_GADR	Ermittelt den Steckplatz, der zu einer logischen Adresse gehört.
SFC 50	RG_LGADR	Ermittelt alle logischen Adressen einer Baugruppe.
SFC 51	RDSYSST	Liest einen Teil oder die gesamte Systemzustandsliste.
SFC 52	WR_USMSG	Schreibt ein anwenderdefiniertes Diagnoseereignis in den Diagnosepuffer.
SFC 54	RD_DPARM	Liest den definierten Parameter.
SFC 55	WR_PARM	Schreibt die dynamischen Parameter.
SFC 56	WR_DPARM	Schreibt die voreingestellten Parameter.
SFC 57	PARM_MOD	Ordnet die Parameter einer Baugruppe zu.
SFC 58	WR_REC	Schreibt einen Datensatz.
SFC 59	RD_REC	Liest einen Datensatz.
SFC 62	CONTROL	Prüft den Zustand der Verbindung einer SFB-Instanz.
SFC 64	TIME_TCK	Liest die Systemzeit.
SFC 78	OB_RT	Meldet OB-Laufzeit-Informationen mit einer Auflösung bis zur nächsten Mikrosekunde.
SFC 79	SET	Stellt einen Ausgangsbereich ein.

3.8 Systemfunktionen (SFCs)

SFC	Name	Beschreibung
SFC 80	RESET	Setzt einen Ausgangsbereich zurück.
SFC 82	CREA_DBL	Erstellt einen Datenbaustein im Ladespeicher.
SFC 83	READ_DBL	Kopiert Daten aus einem Baustein im Ladespeicher.
SFC 84	WRIT_DBL	Schreibt in einen Baustein im Ladespeicher, so dass die Dateien sofort gespeichert werden.
		Bausteine im Ladespeicher, die für die Wiederherstellung nach einem nicht ordnungsgemäßen Abbruch verwendet werden, können während der Ausführung des Programms aktualisiert werden. Verwenden Sie SFC 84 nur für größere Segmente einer Datenbank, nicht für häufige Variablenverarbeitung.
SFC 85	CREA_DB	Erstellt einen DB, entweder remanent oder nicht remanent, je nach Eingangsparameter:
		 Bei einem remanenten DB werden die aktuellen Werte des DB nach einem Warmstart (OB 100) gespeichert.
		• Bei einem nicht remanenten DB werden die aktuellen Werte des DB nach einem Warmstart (OB 100) nicht gespeichert.
SFC 87	C_DIAG	Ermittelt den aktuellen Zustand aller S7-Verbindungen.

Ausführliche Informationen zu den SFCs finden Sie in der Online-Hilfe von STEP 7 oder im Referenzhandbuch *Systemsoftware für S7-300/400 System- und Standardfunktionen.*

Hinweis

Einige SFCs erfordern besondere Beachtung hinsichtlich der Möglichkeit einer Windows-Fehlfunktion. Weitere Informationen hierzu finden Sie unter "Auswirkungen von SFC 22, SFC 23, SFC 82, SFC 83, SFC 84 oder SFC 85" im Abschnitt "Betrieb von WinLC T bei einer Windows-Fehlfunktion".

Gleichzeitige Ausführung von asynchronen SFCs

In WinLC T ist die Anzahl der asynchronen OBs, die gleichzeitig laufen dürfen, entsprechend folgender Regeln eingeschränkt:

- In WinLC T dürfen maximal 5 Instanzen der asynchronen Systemfunktion SFC 51 (Index B1, B3) laufen.
- In WinLC T dürfen maximal 20 asynchrone SFCs der folgenden SFCs laufen: SFC 13, SFC 55, SFC 56, SFC 57, SFC 58 und SFC 59.
- In WinLC T dürfen maximal 32 asynchrone SFCs in beliebiger Kombination der folgenden SFCs laufen: SFC 82, SFC 83 und SFC 84.
SFCs, die Abweichungen im Zyklus hervorrufen können

Die folgenden SFCs können Abweichungen im Zyklus hervorrufen ("Jitter"):

- SFC 22 (CREAT_DB)
- SFC 23 (DEL_DB)
- SFC 52 (WR_USMG)
- SFC 85 (CREA_DB)

Hinweise für SFC 82, SFC 83 und SFC 84

Im Gegensatz zur S7-300 unterstützt WinLC T eine synchrone Schnittstelle für SFC 82, SFC 83 und SFC 84 in ANLAUF. WinLC T lässt sowohl den ersten Aufruf (mit REQ = 1) und den zweiten Aufruf (mit REQ = 0) in der Betriebsart ANLAUF zu, so dass die Bearbeitung in ANLAUF beendet werden kann.

Die normalen STEP 7-Fehlercodes gelten für SFC 82, SFC 83 und SFC 84. Außerdem wird der Fehlercode 80C3 ausgegeben. Diese SFCs geben den Fehlercode 80C3 aus, wenn WinLC T den Grenzwert von 32 nicht bearbeiteten SFC 82-, SFC 83- und SFC 84-Aufträgen überschreitet.

3.9 Systemfunktionsbausteine (SFBs)

3.9 Systemfunktionsbausteine (SFBs)

Unterstützte Systemfunktionsbausteine

Systemfunktionsbausteine sind Codebausteine (ähnlich wie SFCs), die grundlegende Aufgaben ausführen, wenn sie vom STEP 7-Anwenderprogramm aufgerufen werden. Sie benötigen einen Datenbaustein (DB), um einen SFB aufzurufen.

In der folgenden Tabelle werden die SFBs aufgeführt, die von WinLC T unterstützt werden.

SFB	Name	Beschreibung
SFB 0	CTU	Zählt vorwärts.
SFB 1	CTD	Zählt rückwärts.
SFB 2	CTUD	Zählt vorwärts/rückwärts.
SFB 3	TP	Erzeugt einen Impuls.
SFB 4	TON	Erzeugt eine Einschaltverzögerung.
SFB 5	TOF	Erzeugt eine Ausschaltverzögerung.
SFB 8	USEND	Sendet ein Datenpaket mit CPU-spezifischer Länge (zwei Richtungen), unkoordiniert mit empfangendem Partner.
SFB 9	URCV	Empfängt ein Datenpaket mit CPU-spezifischer Länge (zwei Richtungen) asynchron.
SFB 12	BSEND	Sendet einen segmentierten Datenbaustein mit max. 64 KB (zwei Richtungen).
SFB 13	BRCV	Empfängt einen segmentierten Datenbaustein mit max. 64 KB (zwei Richtungen).
SFB 14	GET	Liest Daten mit max. CPU-spezifischer Länge (eine Richtung) von einer entfernten CPU.
SFB 15	PUT	Schreibt Daten mit max. CPU-spezifischer Länge (eine Richtung) in eine entfernte CPU.
SFB 22	STATUS	Fragt den Status eines entfernten Geräts ab.
SFB 23	USTATUS	Empfängt den Status eines entfernten Geräts.
SFB 31	NOTIFY8P	Generiert bausteinbezogene Meldungen ohne Quittierungsanzeige für 8 Signale.
SFB 32	DRUM	Implementiert eine Schrittkette.
SFB 33	ALARM	Generiert bausteinbezogene Meldungen mit Quittierungsanzeige.
SFB 34	ALARM_8	Generiert bausteinbezogene Meldungen ohne Werte für 8 Signale.
SFB 35	ALARM_8P	Generiert bausteinbezogene Meldungen mit Werten für 8 Signale.
SFB 36	NOTIFY	Generiert bausteinbezogene Meldungen ohne Quittierungsanzeige.
SFB 52	RDREC	Liest einen Datensatz.
SFB 53	WRREC	Schreibt einen Datensatz.
SFB 54	RALRM	Empfängt Alarmdaten für einen DP-Slave.
SFB 65001	CREA_COM	(WinAC ODK CCX)
SFB 65002	EXEC_COM	(WinAC ODK CCX)

Ausführliche Informationen zu den SFBs finden Sie in der Online-Hilfe von STEP 7 oder im Referenzhandbuch *Systemsoftware für S7-300/400 System- und Standardfunktionen*. Wenn Sie dieses Handbuch auf einem PC aufrufen möchten, auf dem STEP 7 installiert ist, wählen Sie den Menübefehl **Start > Simatic > Dokumentation > Deutsch** und doppelklicken auf "STEP 7 - System- und Standardfunktionen für S7-300 und S7-400".

3.10 Technologiefunktionen

Unterstützte Technologiefunktionen

In die Software-Steuerung WinLC T sind Technologiefunktionen zur Ansteuerung von Antriebssystemen integriert.

In der folgenden Tabelle werden die Funktionsbausteine aufgeführt, die von WinLC T unterstützt werden:

FB	Name	Beschreibung
FB 401	MC_Power	Achse freigeben/sperren
FB 402	MC_Reset	Fehler/Alarme quittieren
FB 403	MC_Home	Achse referenzieren/setzen
FB 404	MC_Stop	Achse anhalten und neue Fahraufträge verhindern
FB 405	MC_Halt	Normalhalt
FB 406	MC_ReadSysParameter	Parameter lesen
FB 407	MC_WriteParameter	Parameter ändern
FB 409	MC_ChangeDataset	Datensatz umschalten
FB 410	MC_MoveAbsolute	Absolutes Positionieren
FB 411	MC_MoveRelative	Relatives Positionieren
FB 412	MC_MoveAdditive	Relatives Positionieren zu aktueller Zielposition
FB 413	MC_MoveSuperImposed	Überlagerndes Positionieren
FB 414	MC_MoveVelocity	Fahren mit Drehzahlvorgabe
FB 415	MC_MoveToEndPos	Fahren auf Festanschlag/Klemmen
FB 420	MC_GearIn	Getriebegleichlauf starten
FB 421	MC_CamIn	Kurvengleichlauf starten
FB 422	MC_GearOut	Getriebegleichlauf beenden
FB 423	MC_CamOut	Kurvengleichlauf beenden
FB 424	MC_Phasing	Phasenverschiebung zwischen Leitachse und Folgeachse ändern
FB 430	MC_CamSwitch	Wegnocken/Schaltnocken
FB 431	MC_CamSwitchTime	Zeitnocken
FB 432	MC_ExternalEncoder	Externe Geber
FB 433	MC_MeasuringInput	Messtaster
FB 434	MC_CamClear	Kurve löschen
FB 435	MC_CamSectorAdd	Kurvenabschnitt hinzufügen
FB 436	MC_CamInterpolate	Kurve interpolieren
FB 437	MC_SetTorqueLimit	Drehmomentenbegrenzung aktivieren/deaktivieren
FB 438	MC_GetCamPoint	Punkte aus Kurvenscheibe lesen
FB 439	MC_SetCharacteristic	Ventilkennlinie aktivieren
FB 440	MC_GearInSuperImposed	Überlagernden Getriebegleichlauf starten
FB 441	MC_CamInSuperImposed	Überlagernden Kurvengleichlauf starten
FB 442	MC_GearOutSuperImposed	Überlagernden Getriebegleichlauf beenden
FB 443	MC_CamOutSuperImposed	Überlagernden Kurvengleichlauf beenden

3.10 Technologiefunktionen

FB	Name	Beschreibung
FB 444	MC_PhasingSuperImposed	Überlagernden Phasenverschiebung ändern
FB 450	MC_ReadPeriphery	Technologieperipherie lesen
FB 451	MC_WritePeriphery	Technologieperipherie schreiben
FB 453	MC_ReadRecord	Datensatz lesen
FB 454	MC_WriteRecord	Datensatz schreiben
FB 455	MC_ReadDriveParameter	Antriebsparameter lesen
FB 456	MC_WriteDriveParameter	Antriebsparameter schreiben

Verweis

Weiterführende Informationen zu den unter WinLC T verwendbaren Technologiefunktionen und den Technologie-Datenbausteine finden Sie im Handbuch *S7-Technology*.

Programmierung

3.11 Systemuhr und Betriebsstundenzähler

3.11 Systemuhr und Betriebsstundenzähler

Unterstützte SFCs

Wie eine S7-Hardware-Steuerung verfügt WinLC T über eine Systemuhr auf Basis der Hardware- Uhr des Computers.

Sie ändern und lesen die Systemuhr mit den folgenden SFCs. Ausführliche Informationen zu diesen Funktionen finden Sie in der Online-Hilfe von STEP 7 oder im Referenzhandbuch *Systemsoftware für S7-300/400 System- und Standardfunktionen*.

SFC	Name	Beschreibung
SFC 0	SET_CLK	Mit dieser SFC stellen Sie die Uhrzeit und das Datum der Systemuhr ein. Die Uhr beginnt dann, mit der eingestellten Uhrzeit und dem angegebenen Datum zu laufen. Format: DT#1995-01-15-10:30:30
SFC 1	READ_CLK	Mit dieser SFC können Sie das aktuelle Datum und die aktuelle Uhrzeit der Systemuhr des Controllers auslesen.
SFC 64	TIME_TCK	Mit dieser SFC können Sie die Systemzeit des Controllers ablesen. Die Systemzeit ist ein "Zeitzähler", der zyklisch von 0 bis maximal 2147483647 ms zählt. Tritt ein Überlauf auf, wird die Systemzeit erneut gezählt, wobei wieder bei 0 begonnen wird.
		Die Auflösung beträgt 1 ms.
		Die Systemzeit kann nur von den Betriebszuständen des Controllers beeinflusst werden.

3.12 STEP 7-Programme portieren

3.12 STEP 7-Programme portieren

3.12.1 STEP 7-Programm für WinAC RTX portieren

Einleitung

Sie können ein STEP 7-Programm, das für WinAC RTX geschrieben wurde, auf der Microbox T in WinLC T ausführen. Dabei gelten allerdings einige Einschränkungen.

Von WinLC T unterstützte Codebausteine

WinLC T unterstützt dieselben Codebausteine zum Bearbeiten eines Anwenderprogramms wie WinAC RTX V4.2, mit folgenden Ausnahmen:

- OB 61, OB 62, OB 63 und OB 64 werden von WinLC T nicht unterstützt.
- Kein Kaltstart: WinLC T unterstützt nicht den OB 102.
- SFC 103, SFC 112, SFC 113, SFC 114, SFC 126 und SFC 127 werden von WinLC T nicht unterstützt.

Einschränkungen

Beachten Sie die folgenden Einschränkungen:

- Die Programmausführung auf der Microbox T kann ein anderes Ablaufverhalten haben als die Programmausführung unter WinAC RTX auf einem PC.
- Die maximale Größe des Adressbereichs der WinLC T beträgt 2 KByte.

3.12.2 STEP 7-Programm für CPU317T portieren

Einleitung

Sie können ein STEP 7-Programm, das für eine CPU317T geschrieben wurde, auf der Microbox T ausführen.

Einschränkungen

Beachten Sie die folgenden Einschränkungen:

- Die Programmausführung auf der Microbox T kann ein anderes Ablaufverhalten haben als die Programmausführung auf der CPU317T.
- Die maximale Größe des Adressbereichs der WinLC T beträgt 2 KByte.
- Im Gegensatz zu einer SIMATIC CPU-300 ist die Größe des Prozessabbildes einstellbar. Bei der Portierung muss diese Größe wie bei der CPU317T eingestellt werden.
- Im Gegensatz zur CPU317T haben die an die DP- und die DP(DRIVE)-Schnittstelle angeschlossenen Geräte einen gemeinsamen Adressbereich. Hieraus resultierende Adresskonflikte müssen im Rahmen der Portierung gelöst werden.

3.13 WinAC ODK auf der Microbox T einsetzen

3.13 WinAC ODK auf der Microbox T einsetzen

Schnittstellen von WinAC ODK unter WinLC T

Hinweis

WinAC ODK ist nicht Bestandteil von WinLC T. Es kann als Optionspaket erworben werden.

Mit den Schnittstellen von WinAC Open Development Kit (ODK) können Sie folgende anwenderspezifische Anwendungen in Ihre Steuerungsaufgaben implementieren:

- Custom Code Extension (CCX): Ermöglicht es Ihrem Steuerungsprogramm, anwenderspezifische DLLs direkt aus dem Steuerungsprogramm, das von der SPS ausgeführt wird, aufzurufen.
- Shared Memory Extension (SMX): Ermöglicht einen sehr schnellen und effizienten Datenaustausch zwischen der SPS und einer Anwendung durch direkten Zugriff auf einen angegebenen PE/PA-Bereich (über Dualport-RAM).
- Controller Management Interface (CMI): Ermöglicht es Ihnen, die Funktionalität des WinLC Controller Panel in eine anwenderspezifische Anwendung einzubetten.

Einschränkungen

Wenn Sie WinAC ODK mit WinLC T nutzen, müssen Sie folgende Einschränkungen beachten:

 Mit der Schnittstelle Custom Code Extension (CCX) können Sie nur Anwendungen implementieren, die unter Windows ablaufen.

WinLC T unterstützt nicht die Implementierung von Echtzeitanwendungen mit dieser Schnittstelle.

 Für die Schnittstelle Controller Management Interface (CMI) wurden in WinLC T Modifikationen vorgenommen.

Folgende Features oder Attribute werden von WinLC T **nicht** unterstützt (nach Gruppen geordnet):

Gruppe	Feature	Attribut
Operations of the PLC	LED	BatteryFault, Force
	FMR	-
Start or Shut down PLC	PLCPower	Value
Configure Options for PLC	AutoLoad	Value, KeySwitch, TargetFile, Buffer, BufferSize
	Security	

Programmierung

3.13 WinAC ODK auf der Microbox T einsetzen

Gruppe	Feature	Attribut
Tune Performance of WinLC Controller	Priority	Value, LowerLimit, UpperLimit, Normal, Critical
	MinCycleTime	Value, LowerLimit, UpperLimit
	MinSleepTime	Value, LowerLimit, UpperLimit
	OBExecution	WakeInterval, SleepInterval, DefaultWakeInterval, DefaultSleepInterval, UpperLimit, LowerLimit
	Timing	ExecTimeMin, ExecTimeMax, ExecTimeAverage, ExecTimeLast, SleepIntervalCounter
	Usage	PC, PLC, CPUCount, CPU_

Folgende Features oder Attribute wurden hinzugefügt (nach Gruppen geordnet):

Gruppe	Feature	Attribut
Start or Shut down PLC	Personality	Slot, Rack, Owner, Company, SerialNumber, ASname, AKZ, OKZ
Tune Performance of WinLC Controller	UsageT	Technology, OB, Windows, Idle, DPCycle, ServoCycle, IPOCycle, TODBCycle, MaxOBLoad, MaxOBLoadMax, MaxOBLoadMin

Beschreibung der neu hinzugefügten Attribute

Attribut	Datentyp	Тур	Wert	Beschreibung
Gruppe "Start or Sh	ut down PLC	', Feature "Pers	sonality"	
Slot	String	Read	*	Slotnummer
Rack	String	Read	*	Racknummer
Owner	String	Read	*	Angaben zum Eigentümer
Company	String	Read	*	Firmenname
SerialNumber	String	Read	*	Seriennummer
ASname	String	Read	*	Name der Arbeitsstation
AKZ	String	Read	*	Anlagenkennzeichen
OKZ	String	Read	*	Ortskennzeichen

Programmierung

3.13 WinAC ODK auf der Microbox T einsetzen

Attribut	Datentyp	Тур	Wert	Beschreibung
Gruppe "Tune Perf	ormance of W	inLC Controlle	r", Feature "L	JsageT"
Technology	Integer	Read	0100	Aktuell von der integrierten Technologie beanspruchte Ressourcen der CPU in Prozent
ОВ	Integer	Read	0100	Aktuell vom Steuerungsteil beanspruchte Ressourcen der CPU in Prozent Hinweis : Entspricht der Angabe "S7 PLC" im Tuning Panel.
Windows	Integer	Read	0100	Aktuell von Windows beanspruchte Ressourcen der CPU in Prozent
Idle	Integer	Read	0100	Aktuell verfügbare Ressourcen der CPU in Prozent
DPCycle	Integer	Read	-	DP-Zyklus der DP(DRIVE)- Schnittstelle in µs Hinweis : Im Tuning Panel wird dieser Wert in ms angezeigt.
ServoCycle	Integer	Read	-	Lageregler-Takt in µs Hinweis : Im Tuning Panel wird dieser Wert in ms angezeigt.
IPOCycle	Integer	Read	-	Interpolator-Takt in µs Hinweis : Im Tuning Panel wird dieser Wert in ms angezeigt.
TODBCycle	Integer	Read	-	Aktualisierungstakt der Technologie- DBs in µs Hinweis : Im Tuning Panel wird dieser Wert in ms angezeigt.
MaxOBLoad	Integer	Read/Write	1050	Maximal zulässiger Prozentsatz des Steuerungsanteils an der CPU- Auslastung Hinweis : Entspricht der Angabe im Feld "Max. S7 PLC Load" im Tuning Panel.
MaxOBLoadMax	Integer	Read	50	Maximal möglicher Prozentsatz des Steuerungsanteils an der CPU-Aus- lastung
MaxOBLoadMin	Integer	Read	10	Minimaler Prozentsatz des Steuerungsanteils an der CPU-Aus- lastung
* Die aktuellen Werte des Features "Personality" werden beim Aufruf des Menübefehls Hilfe > Info angezeigt.				

3.14 Betrieb von WinLC T bei einer Windows-Fehlfunktion

3.14 Betrieb von WinLC T bei einer Windows-Fehlfunktion

Beschreibung

WinLC T unterstützt OB 84 (CPU-Hardwarefehler), mit dem Sie das ordnungsgemäße Herunterfahren Ihres Prozesses bewirken können, falls eine Windows-Fehlfunktion auftritt, während WinLC T in Betrieb ist. Dann tritt eine der folgenden Situationen auf:

- Befindet sich WinLC T im Betriebszustand RUN und das Anwenderprogramm enthält OB 84, startet WinLC T den OB 84 und bleibt im Betriebszustand RUN, bis der Controller in den Betriebszustand STOP versetzt wird. Windows beendet das Herunterfahren des Systems erst, nachdem WinLC T in den Betriebszustand STOP wechselt, entweder durch Aufruf der SFC 46 oder durch Wechsel in den Betriebszustand STOP.
- Befindet sich WinLC T im Betriebszustand RUN und das Anwenderprogramm enthält keinen OB 84, wechselt WinLC T in den Betriebszustand STOP und Windows beendet danach das Herunterfahren des Systems.
- Befindet sich WinLC T im Betriebszustand STOP, wird Windows vollständig geschlossen.

Der Betrieb von WinLC T bei einer Windows-Fehlfunktion kann von SFC 22, SFC 82, SFC 83, SFC 84 oder SFC 85 beeinflusst werden.

Sie können Windows und WinLC T für automatischen Neustart nach einer Windows-Fehlfunktion konfigurieren.

Einschränkungen

Die folgenden Einschränkungen gelten, wenn Windows herunterfährt:

- Das Controller Panel von WinLC T ist nicht verfügbar.
- Einige Systemfunktionen sind deaktiviert, einschließlich SFC 22, SFC 82, SFC 83, SFC 84 und SFC 85.
- Bausteinoperationen misslingen und geben einen Fehlercode aus.
- Die Kommunikation mit Windows-Anwendungen ist nicht verfügbar.
- Alarmmeldungen können evtl. nicht gesendet werden.
- PG/OP-Kommunikation über die Ethernet-Schnittstelle funktioniert nicht mehr.
- WinAC ODK kann nicht mehr genutzt werden.
- Die Verbindung zur integrierten Technologie ist unterbrochen. Damit ist auch keine Diagnose der integrierten Technologie möglich.

Auswirkungen von SFC 22, SFC 23, SFC 82, SFC 83, SFC 84 oder SFC 85 auf WinLC T

Wenn eine Windows-Fehlfunktion auftritt, während sich WinLC T im Betriebszustand RUN befindet, versucht WinLC T, im Betriebszustand RUN zu bleiben und startet OB 84. Der Betrieb von WinLC T während einer Windows-Fehlfunktion kann jedoch von SFC 22, SFC 23, SFC 82, SFC 83, SFC 84 oder SFC 85 nachteilig beeinflusst werden.

In den meisten Fällen geben SFC 22, SFC 23, SFC 82, SFC 83, SFC 84 und SFC 85 bei einer Windows-Fehlfunktion den Fehlercode 8092 aus. Anwendungen, die nach einer Windows-Fehlfunktion weiterlaufen müssen, können auf diesen Fehlercode abfragen. Wenn jedoch eine dieser SFCs zur Zeit der Fehlfunktion von Windows aufgerufen wurde, kann die SFC den Fehlercode 8092 nicht ausgeben und WinLC T kann OB 84 nicht starten.

Warnung

Bestimmte SFCs können, wenn sie zum Zeitpunkt der Fehlfunktion aktiv sind verursachen, dass WinLC T nicht mehr reagiert:

- Wenn sich SFC 22, SFC 23 oder SFC 85 zur Zeit der Fehlfunktion in einem Aufruf einer Windows-Funktion befindet, kann die SFC nicht vom SFC-Aufruf zurückkehren und WinLC T kann die Steuerung des Prozesses nicht aufrecht halten. In diesem Fall deaktiviert die E/A-Zeitüberwachung die Eingänge und Ausgänge.
- Wenn sich SFC 82, SFC 83 oder SFC 84 zur Zeit der Fehlfunktion in einem Aufruf einer Windows-Funktion befindet, versucht WinLC T im Betriebszustand RUN zu bleiben (und die Steuerung des Prozesses fortzuführen), doch Hintergrundfunktionen, einschließlich einiger Kommunikationsfunktionen, können abstürzen. Wenn Sie WinLC T in den Betriebszustand STOP versetzen, ganz gleich ob programmgesteuert oder über Benutzereingriff über ein entferntes System, kann dies den Schließvorgang des Computers beeinflussen.

Eine Windows-Fehlfunktion, die zum Absturz des Controllers oder der Hintergrundfunktionen führt, kann zu Schäden an den Prozessgeräten oder zu Verletzungen des Personals führen. Dies können Sie durch entsprechende Vorsichtsmaßnahmen beim Entwickeln Ihres STEP 7-Anwenderprogramms verhindern.

Wenn Ihre Prozessanwendung eine Windows-Fehlfunktion überleben muss, rufen Sie diese SFCs (SFC 22, SFC 23, SFC 82, SFC 83, SFC 84 oder SFC 85) nur während der Initialisierung (bei der Ausführung von OB 100) oder in unkritischen Teilen des Steuerungsprozesses auf.

3.15 Betrieb von WinLC T bei einer Fehlfunktion der Technologie

Automatischer Neustart von WinLC T nach einer Windows-Fehlfunktion

Ist Windows so eingerichtet, dass es nach einer Windows-Fehlfunktion automatisch wieder anläuft, wird WinLC T automatisch neu gestartet, wenn es für den Anlauf nach PC-Start eingerichtet ist. (Sie können Windows entsprechend einrichten, indem Sie mit **Start > Control Panel > System** das Dialogfeld "System Properties" öffnen. Im Abschnitt "Start and Recovery" des Registers "Advanced" klicken Sie auf "Settings", um das Dialogfeld "Startup and Recovery" zu öffnen. Im Abschnitt "System Failure" können Sie hier die Option "Automatically restart" aktivieren. Standardmäßig ist diese Option aktiviert.)

Wenn WinLC T neu gestartet wird, arbeitet es mit dem zuletzt geladenen Programm und führt OB 100 aus, sofern dieser vorhanden ist. WinLC T startet den OB 100 mit Ereignis 1382 (hex). Die aktuelle/letzte Anlaufart wird im Diagnosepuffer als "Automatischer Neustart (Warmstart) nach ungepuffertem NETZ-EIN (mit systemseitigen Urlöschen)" angegeben.

Sie können OB 100 so programmieren, dass er auf Ereignis 1382 reagiert. Ausführliche Informationen finden Sie in der Online-Hilfe zu STEP 7 oder im Referenzhandbuch *Systemsoftware für S7-300/400 System- und Standardfunktionen*.

3.15 Betrieb von WinLC T bei einer Fehlfunktion der Technologie

Verhalten von WinLC T

Bei einer Fehlfunktion der Technologie kann das Controller Panel nicht mehr zur Bedienung von WinLC T genutzt werden.

Die durch die Fehlfunktion erzeugten Fehlermeldungen werden in die Eventlog-Datei geschrieben.

Vorsicht

Wenn das EWF (Enhanced Write Filter) aktiv ist, wird die Eventlog-Datei beim Ausschalten der Microbox T gelöscht.

Die unter Windows laufenden Anwendungen werden bei einer Fehlfunktion der Technologie weiter ausgeführt.

Reaktion auf eine Fehlfunktion der Technologie

Um die Fehlerquelle zu finden, gehen Sie wie folgt vor:

- 1. Lesen Sie die Fehlermeldungen in der Eventlog-Datei.
- 2. Sehen Sie sich die Diagnoseinformationen im Diagnosepuffer der Technologie mit S7T Config an.

3.16 Neustart von WinLC T nach Fehlfunktion von WinLC T

3.16 Neustart von WinLC T nach Fehlfunktion von WinLC T

Fehlfunktion von WinLC T

Das Überladen von WinLC T durch ein Anwenderprogramm kann zu einer Fehlfunktion von WinLC T führen. Wenn der Controller für den automatischen Start bei Anlauf registriert und die Autostart-Funktion aktiviert ist, kann WinLC T nicht mehr außer Betrieb gesetzt werden, da WinLC T beim Booten der Microbox T automatisch anläuft und sofort in den Betriebszustand RUN geht.

Um WinLC T trotzdem außer Betrieb zu setzen, können Sie die Microbox T ausschalten und im interaktiven Modus neu starten.

Microbox T nach Fehlfunktion neu starten

- 1. Schalten Sie die Spannungsversorgung der Microbox T aus.
- 2. Schalten Sie die Spannungsversorgung wieder ein.
- Wählen Sie die Boot-Option "Boot only in Windows Mode without starting WinAC T", um die Microbox T im interaktiven Modus zu starten. Sie haben ungefähr drei Sekunden Zeit, um diese Option zu wählen. Wenn Sie die Option nicht innerhalb dieser Zeit wählen, startet die Microbox T im normalen Modus.
- 4. Das Dialogfeld "WinLC T Modify Startup Settings" wird geöffnet.

Win	LC T Modify Startup Settings	×
	Ändern der Start-Optionen	
	Derzeit geladene WinAC T Konfiguration löschen?	
	WinACT nicht mehr automatisch nach dem Booten starten?	
	Start-Modus "AutoStart CPU" deaktivieren?	
	OK Abbrechen	

3.16 Neustart von WinLC T nach Fehlfunktion von WinLC T

- Ändern Sie die Start-Optionen gemäß Ihren Wünschen. Sie können die Registrierung des Controllers für automatischen Start bei Anlauf zurücksetzen und die Autostart-Funktion deaktivieren.
- 2. Bestätigen Sie die Änderungen mit "OK".

Ergebnis

Die Microbox T startet mit den von Ihnen veränderten Einstellungen.

Bedienung und Funktionen des Controllers

4.1 Übersicht

Aufbau des Panel

Die Oberfläche der Software-Steuerung WinLC T (Controller) besteht im wesentlichen aus drei Komponenten:

- Controller Panel zum Bedienen des Controllers
- Tuning Panel zum Anzeigen und Einstellen des Betriebsverhaltens des Controllers
- Diagnosepuffer zur Anzeige von Diagnoseinformationen

Das Tuning Panel und der Diagnosepuffer werden vom Controller Panel aus aufgerufen.

Hinweis

Im Folgenden ist das Panel nach der Sprachumschaltung auf "deutsch" dargestellt.

4.1 Übersicht

4.2.1 Controller Panel

Einleitung

Sie verwenden das Controller Panel, um den Controller zu bedienen. Es dient dazu, den Controller zu starten oder zu schließen und andere Controller-Funktionen auszuführen.

Das Controller Panel wird Ihnen an einem direkt an die Microbox T angeschlossenen Monitor angezeigt und über Maus oder Tastatur bedient.

Aufbau

Das Controller Panel sieht aus wie die Vorderseite einer SIMATIC S7-CPU.

Bild 4-1 Controller Panel

Das Controller Panel enthält die folgenden Elemente zum Arbeiten mit dem Controller:

- Betriebsartenschalter zum Einstellen des Betriebszustandes des Controllers
- Statusanzeigen für den Controller
- Schaltfläche MRES zum Urlöschen
- Menüs mit Controller-Funktion Über die Menüs können auch das Tuning Panel und der Diagnosepuffer aufgerufen werden.

Symbol für WinLC T in der Windows-Taskleiste

Das Symbol wird in der Windows-Taskleiste angezeigt, wenn der Controller in Betrieb ist. Wenn der Controller in Betrieb und das Controller Panel geschlossen ist, können Sie durch Doppelklick auf dieses Symbol das Controller Panel öffnen.

Abhängig vom Betriebszustand des Controllers wird das Symbol mit einem farbigen Rand dargestellt:

- Ein grüner Rand zeigt an, dass der Controller im Betriebszustand RUN ist.
- Ein gelber Rand zeigt an, dass der Controller im Betriebszustand STOP ist.
- · Ein roter Rand zeigt an, dass der Controller in einem Fehlerzustand ist.

4.2.2 Betriebsartenschalter

Beschreibung

Mit dem Betriebsartenschalter im Controller Panel stellen Sie den Betriebszustand des Controllers ein:

- RUN: Der Controller bearbeitet das STEP 7-Anwenderprogramm.
- STOP: Der Controller bearbeitet das STEP 7-Anwenderprogramm nicht. Der Ausgang am PROFIBUS DP ist auf einen "sicheren" Zustand gesetzt. Die integrierten Ausgänge für Technologie und die dezentrale Peripherie am PROFIBUS DP (DRIVE) sind unter Umständen noch aktiv.

Alternativ können Sie den entsprechenden Befehl im Menü **CPU** wählen, um entweder den Betriebszustand RUN oder den Betriebszustand STOP einzustellen.

Hinweis

Die Einstellungen RUN und STOP des Betriebsartenschalters zeigen den gewählten Betriebszustand an. Dieser kann vom tatsächlichen Betriebszustand abweichen, z. B. wenn der Betriebszustand mit STEP 7 gewechselt wurde.

Zulässige und verbotene Funktionen in jedem Betriebszustand

Je nach Betriebszustand sind bestimmte Controllerfunktionen zulässig oder verboten. Dies ist in der folgenden Tabelle dargestellt:

Betriebszustand	Beschreibung
RUN	Zulässig:
	Laden eines Programms in den Controller
	Laden von einzelnen Bausteinen in den Controller
	Ändern von Programmvariablen in STEP 7 und Ändern des Betriebszustandes des Controllers
	 Urlöschen über das Controller Panel oder über STEP 7 Der Controller geht automatisch in den Betriebszustand STOP, wenn Sie den Speicher im Controller Panel urlöschen. Wenn Sie den Speicher in STEP 7 urlöschen wollen, müssen Sie den Controller zunächst in den Betriebszustand STOP versetzen.
	Nicht zulässig:
	Archivieren und Wiederherstellen eines STEP 7-Anwenderprogramms
STOP	Zulässig:
	Laden eines Programms aus dem Controller in Ihr Programmiergerät
	Laden eines Programms oder einzelner Bausteine in den Controller
	Ändern von Programmvariablen mit STEP 7
	Urlöschen über das Controller Panel oder über STEP 7
	Archivieren und Wiederherstellen eines STEP 7-Anwenderprogramms
	Nicht zulässig:
	Wechseln des Betriebszustandes mit STEP 7, wenn der Betriebsartenschalter STOP aktiviert ist

4.2.3 Statusanzeigen

Beschreibung

Die Statusanzeigen auf dem Controller Panel zeigen den aktuellen Betriebszustand an. Diese Anzeigen entsprechen den LED-Anzeigen auf einer S7-Hardware-SPS.

Sie können die Statusanzeigen zur Fehlersuche verwenden, den Zustand des Controllers jedoch nicht durch Anklicken der Statusanzeigen ändern.

Wenn das Anwenderprogramm einen im STEP 7-Programm-Editor eingerichteten Haltepunkt erreicht, schalten sich die Statusanzeigen für RUN und STOP ein, solange der Haltepunkt aktiv ist: Die Statusanzeige für den Betriebszustand RUN blinkt und die Anzeige für den Betriebszustand STOP ist eingeschaltet.

Bei einem Wechsel vom Betriebszustand STOP in den Betriebszustand RUN blinkt die Anzeige für RUN und die Anzeige für STOP ist eingeschaltet. Wird die Anzeige für STOP ausgeschaltet, sind die Ausgänge aktiviert.

Bei einem Wechsel vom Betriebszustand RUN in den Betriebszustand STOP blinkt die Anzeige für STOP und die Anzeige für RUN leuchtet, während der Absteuervorgang aktiv ist.

In der folgenden Tabelle sind die einzelnen Statusanzeigen des Controller Panel beschrieben:

Anzeige	Beschreibung
ON	Spannungsversorgung. Leuchtet (dauerhaft) auf, wenn Sie den Controller starten. Wird ausgeschaltet, wenn Sie den Controller schließen.
BATF	Für den Controller immer ausgeschaltet.
INTF	Diese Anzeige leuchtet auf, wenn im Controller eine Fehlerbedingung aufgetreten ist, z. B. Programmierfehler, Arithmetik-Fehler, Zeitfehler oder Zählerfehler.
	Bearbeitet das Anwenderprogramm den Fehler durch Ausführung von OB 80, OB 121 oder OB 122, wird die Anzeige INTF nach 3 Sekunden ausgeschaltet, sofern es keine nachfolgende Fehlerbedingung gibt.
EXTF	Diese Anzeige leuchtet auf, wenn außerhalb des Controllers eine Fehlerbedingung aufgetreten ist, z. B. Hardware-Fehler, Parameterfehler, Kommunikationsfehler oder E/A-Fehler.
	Bearbeitet das Anwenderprogramm den Fehler durch Ausführung von OB 122, wird die Anzeige EXTF nach 3 Sekunden ausgeschaltet, sofern es keine nachfolgende Fehlerbedingung gibt.
BUSF1 BUSF2	Diese Anzeige leuchtet auf (blinkend), um eine Fehlerbedingung in der Kommunikation mit der dezentralen Peripherie anzuzeigen.
	BUSF1 bezieht sich auf die DP-Schnittstelle. BUSF2 bezieht sich auf die DP(DRIVE)-Schnittstelle.
FRCE	WinLC T unterstützt kein Forcen.
RUN STOP	Leuchtet dem Betriebszustand entsprechend (RUN oder STOP) auf. Die Anzeigen RUN und STOP zeigen den tatsächlichen Betriebszustand des Controllers an.
	Wenn RUN blinkt und STOP ständig leuchtet, hat das Anwenderprogramm einen Haltepunkt erreicht. RUN blinkt mit einer Frequenz von 0,5 Hz.

Anzeigen beim Hochlauf

Beim Hochlauf des Controllers leuchten alle Statusanzeigen außer BATF und FRCE (immer ausgeschaltet) kurz auf.

Blinkende Anzeigen

Blinkmuster der Anzeigen RUN und STOP liefern weitere Informationen zum Controller oder dem STEP 7-Anwenderprogramm:

Anzeige		Beschreibung
RUN	STOP	
Blinken, 2 Hz	Blinken, 2 Hz	Der Controller ist defekt. Alle Statusanzeigen blinken.
Blinken, 0,5 Hz	Ein	Das STEP 7-Anwenderprogramm hat an einem Haltepunkt angehalten.
Blinken, 2 Hz	Ein	Ein Warmstart ist in Bearbeitung. Die Anzeige RUN blinkt solange, bis der Wiederanlauf beendet ist. Die für den Wiederanlauf benötigte Zeit richtet sich nach der Zeit, die der Anlauf-OB für die Ausführung benötigt.

Anzeige		Beschreibung
RUN	STOP	
Aus	Blinken, 0,5 Hz	Der Controller muss urgelöscht werden.
Aus	Blinken, 2 Hz	Es wird ein Urlöschen (MRES) durchgeführt.
Ein	Blinken, 2 Hz	Der Controller befindet sich im Zustand "Absteuern".
Blinken, 0,5 Hz	Blinken, 2 Hz	Das STEP 7-Anwenderprogramm hat an einem Haltepunkt angehalten. Die integrierte Technologie befindet sich im Zustand "Absteuern".

Absteuern

Während des Absteuerns passiert Folgendes:

- 1. Der Steuerungsteil des Controllers ist bereits im Betriebszustand STOP. Die Ausgänge der dezentralen Peripherie an DP werden deaktiviert. Die Anzeige STOP blinkt mit 2 Hz. Die Anzeige RUN leuchtet.
- 2. Die Ausgänge für die integrierte Technologie und die dezentrale Peripherie am DP(DRIVE) sind noch aktiv.
- 3. Die integrierte Technologie fährt die Antriebe am DP(DRIVE) kontrolliert herunter.
- Anschließend geht auch die integrierte Technologie in STOP. Die Ausgänge f
 ür die integrierte Technologie und die dezentrale Peripherie am DP(DRIVE) werden deaktiviert. Die Anzeige STOP leuchtet.

Die maximale Dauer des Absteuerns ist abhängig von Ihrer Projektierung in S7T Config.

Warnung

Die dezentrale Peripherie an DP(DRIVE) kann während des "Absteuerns" vom Anwenderprogramm aus nicht beeinflusst werden. Die Ausgänge, die mit MC_WritePeripherie gesteuert werden können, behalten ihren letzten Aktualwert bei.

Maßnahme, wenn die Anzeige für STOP langsam blinkt

Wenn die Anzeige STOP langsam blinkt, müssen Sie den Controller mit dem Befehl MRES urlöschen.

Maßnahme, wenn alle Statusanzeigen blinken

Wenn alle Statusanzeigen gleichzeitig blinken, befindet sich der Controller im Fehlerzustand und hat eine Fehlerbedingung erkannt, die nicht durch Urlöschen des Speichers mit dem Menübefehl MRES behoben werden kann. Um diesen Zustand zu beheben, müssen Sie folgende Schritte ausführen:

- 1. Schließen Sie den Controller.
- 2. Starten Sie den Controller neu. Die Anzeige für STOP blinkt und die Anzeige für RUN ist ausgeschaltet.
- 3. Urlöschen Sie den Speicher mit dem Befehl MRES.
- 4. Laden Sie das Anwenderprogramm und die Systemkonfiguration mit STEP 7 oder stellen Sie ein archiviertes Anwenderprogramm wieder her.

Wenn sich das Problem durch Schließen oder Neustarten des Controllers nicht beheben lässt, müssen Sie evtl. Ihre Microbox T neu starten.

4.2.4 Schaltfläche MRES

Befehl MRES (Urlöschen)

Der Befehl MRES (Urlöschen) setzt den Controller auf die Voreinstellungen zurück. Wählen Sie dazu im Controller Panel die Schaltfläche MRES. Alternativ können Sie den Menübefehl **CPU > MRES** wählen.

Der Befehl MRES versetzt den Controller bei Bedarf in den Betriebszustand STOP und führt dann die folgenden Aufgaben aus:

- Das gesamte STEP 7-Anwenderprogramm (OBs, DBs, FCs, FBs) und die Systemdaten (die Konfiguration) werden sowohl im Arbeitsspeicher als auch im Ladespeicher gelöscht.
- Die Speicherbereiche (E, A, M, T und Z) werden auf 0 zurückgesetzt.
- Die voreingestellte Systemkonfiguration, z. B. die Größe der Bereiche im Prozessabbild und die Größe des Diagnosepuffers, wird neu geladen.
- Alle aktiven Kommunikationsaufträge, z. B. TIS, und die offene Kommunikation werden gelöscht. Außerdem werden alle Online-Verbindungen getrennt, z. B. STEP 7, WinCC, PROFIBUS oder S7-Kommunikation.

Die Netzadresse und die eingestellte Baudrate des IE-Moduls sowie der Inhalt des Diagnosepuffers bleiben beim Urlöschen erhalten.

Die Anzeige STOP blinkt während des Urlöschens. Nachdem der Speicher zurückgesetzt wurde, wird für den Diagnosepuffer wieder die voreingestellte Größe eingestellt. Die Speicherbereiche der Eingänge (E) und Ausgänge (A) werden auch auf die voreingestellten Größen zurückgesetzt. Nach dem Urlöschen müssen Sie für diese Werte wieder Ihre spezifischen Werte einrichten.

Üblicherweise führen Sie den Befehl MRES aus, bevor Sie ein neues Programm in die Steuerung laden. Sie müssen das Urlöschen ausführen, wenn die Anzeige STOP im Controller Panel langsam blinkt und Sie dadurch auf eine der folgenden Bedingungen aufmerksam gemacht werden:

- Im Arbeitsspeicher wurden Fehler entdeckt, z. B. überschreitet die Größe des Anwenderprogramms den Arbeitsspeicher.
- Als Reaktion auf einen Fehlerzustand wurde der Controller aus- und wieder eingeschaltet.

4.3 Funktionen des Controllers

4.3.1 Starten und Schließen des Controllers

Einstellungen

Die folgenden Einstellungen beeinflussen das Starten oder Schließen des Controllers:

- Aktivieren der Autostart-Funktion
- Einrichten des Controllers für Start bei PC-Anlauf

WinLC T starten

Wenn das Controller Panel nicht geöffnet ist, gehen Sie auf eine der folgenden Arten vor, um das Controller Panel und WinLC T zu starten:

- Wählen Sie den Menübefehl Start > All Programs > Simatic > PC Based Control. Wählen Sie dann den Namen Ihres WinLC T Controllers. Nachdem Sie das Anwenderprogramm in WinLC T geladen haben, entspricht der Name im Menü dem Namen in STEP 7.
- Doppelklicken Sie auf dem Desktop auf das Symbol von WinLC T:

Ist das Controller Panel geöffnet, doch WinLC T außer Betrieb, wählen Sie den Menübefehl **CPU > Controller starten**.

WinLC T außer Betrieb setzen

Wählen Sie den Menübefehl **CPU > Controller schließen**, um den Controller außer Betrieb zu setzen. Dieser Befehl schließt das Controller Panel nicht. Er ist im Controller Panel nur verfügbar, wenn der Controller in Betrieb ist. Nachdem Sie den Controller außer Betrieb gesetzt haben, können Sie die Optionen immer noch ändern.

Controller Panel schließen

Mit dem Menübefehl Datei > Beenden schließen Sie das Controller Panel.

Vorsicht

Beim Schließen des Controller Panel wird der Controller nicht außer Betrieb gesetzt ("geschlossen"). Der Zustand der Schalter und Statusanzeigen wird im Controller gespeichert.

4.3.2 Tuning Panel

Beschreibung

Das Tuning Panel dient zum Überprüfen des Betriebsverhaltens von WinLC T. Dazu zeigt Ihnen das Tuning Panel das aktuelle Betriebsverhalten des Controllers und ermöglicht Ihnen die Einstellung des maximalen Anteils der S7-Steuerung an der CPU-Auslastung. Das Tuning Panel gliedert sich in zwei Bereiche:

- Zykluszeit [ms]
- WinLC T Timing

SIEMENS S	Cycle Time [ms]	
DN BATF PU INTF	0%6 0 0 20 40 60	Technology: 11 DP: 3 S7 FC: 25 Servo: 3 Windows: 27 IPO: 9 Idle: 37 TO-DB: 18
BUSF1 BUSF2 FRCE RUN STOP	0 6000 Min: 0 Max: 3 Last: 0 Avg: 0 Clear	Max. S7 PLC Load [%]: 25 Set

Hinweis

Weil das Tuning Panel eine zusätzliche Belastung der Ressourcen der Microbox T darstellt, sollten Sie das Tuning Panel während des normalen Betriebs von WinLC T schließen.

Tuning Panel öffnen und schließen

Zum Öffnen und Schließen des Tuning Panel wählen Sie den Menübefehl CPU > Tuning Panel....

Zykluszeit [ms]

Dieser Bereich stellt ein Histogramm der Ausführungszeiten des Zyklus in einem Bereich von 60 ms dar. Dieses Histogramm zeigt die kürzeste und die längste Zykluszeit sowie den Prozentsatz der Zyklen an, die in verschiedene Bereiche der Zykluszeit fallen. Zum Löschen der Verlaufsdaten und Starten eines neuen Histogramms wählen Sie die Schaltfläche "Löschen", wenn sich die Microbox T im Betriebszustand RUN befindet. Die Anzeige der Zykluszeit wird zurückgesetzt. Wenn sich die Microbox T im Betriebszustand STOP befindet, können die Verlaufsdaten nicht gelöscht werden.

WinLC T Timing

Dieser Bereich bietet die folgenden Informationen und Einstellung zum Timing von WinLC T:

• CPU Load [%]

Der Controller WinLC T ist eine Software-Steuerung mit integrierter Motion Control. Sowohl der Steuerungsteil als auch die Motion Control beanspruchen Ressourcen auf der CPU. Zusätzlich benötigt das installierte Betriebssystem Windows XP Embedded Ressourcen. Die hier angezeigten Werte geben an, wie viel Prozent der Gesamtrechenleistung der CPU die einzelnen Bereiche aktuell beanspruchen (prozentualer Anteil an der CPU-Auslastung):

Technology

Die integrierte Technologie benötigt Ressourcen für die Steuerung, Auswertung und Überwachung aller Hardwarekomponenten am DP(DRIVE), die zur Lösung der Motion Control-Aufgaben benötigt werden.

– S7 PLC

Hier werden die vom Steuerungsteil von WinLC T aktuell beanspruchten Ressourcen angezeigt.

Sie können einstellen, wie hoch der Anteil des Steuerungsteils an der CPU-Auslastung maximal sein darf.

Windows

Hier werden die vom installierten Betriebssystem Windows XP Embedded aktuell beanspruchten Ressourcen angezeigt.

– Idle

Hier werden die noch verfügbaren Ressourcen der CPU (als prozentualer Anteil an der Gesamtrechenleistung) angezeigt.

Die Balkengrafik stellt die gleiche Information grafisch dar.

• T-Cycle Config [ms]

Die hier angezeigten Werte geben die mit S7T Config konfigurierten Zyklen und Takte der integrierten Technologie an:

– DP: DP(DRIVE)-Zyklus

Der äquidistante DP-Zyklus der DP(DRIVE)-Schnittstelle bildet den Grundtakt der Technologie-Systemtakte.

- Servo: Lageregler-Takt

In diesem Takt wird u. a. die Lageregelung der Achsen berechnet.

4.3 Funktionen des Controllers

- IPO: Interpolator-Takt

Im "Interpolator-Takt" wird die Bewegungsführung der Achsen berechnet.

- TO-DB: Aktualisierungstakt Technologie-DBs

Der "Aktualisierungstakt Technologie-DBs" legt fest, in welchen Zeitabständen die integrierte Technologie die Technologie-Datenbausteine aktualisieren soll.

• Max. S7 PLC Load [%]

Der Steuerungsteil der Software-Steuerung WinLC T muss sich die Ressourcen auf der CPU mit der Motion Control und dem Betriebssystem teilen. Mit diesem Wert definieren Sie, wie viel Prozent der Gesamtrechenleistung der CPU der Steuerungsteil (ohne Technologie-Funktionalität) maximal beanspruchen darf (maximal zulässiger Prozentsatz des Steuerungsteils an der CPU-Auslastung).

Der voreingestellte Wert beträgt 25 %. Der minimale Wert beträgt 10 % und der maximale Wert 50 %.

Um den eingestellten Wert zu ändern, überschreiben Sie den angezeigten Wert und klicken die Schaltfläche "Set". Dazu muss der Controller im Betriebszustand STOP sein. Der von Ihnen eingestellte Wert wird beim nächsten Betriebszustandswechsel von STOP in RUN übernommen.

Warnung

Eine Änderung des Wertes kann zu einer Überlastung der integrierten Technologie führen. Im Überlastfall geht der Controller in den Betriebszustand STOP und kann **nicht** durch ein erneutes Ändern des Wertes wieder in den Betriebszustand RUN gesetzt werden. In diesem Fall müssen Sie Ihr Projekt erneut laden.

Warnung

Abweichungen in der Ausführungszeit oder in der Reaktionszeit des Anwenderprogramms können möglicherweise zu einer Situation führen, in der die gesteuerten Geräte bzw. der gesteuerte Prozess nicht vorhersehbares Verhalten aufweisen, was zu Körperverletzung und Sachschaden führen kann.

Wenn der Controller nicht genügend Ruhezeit zur Verfügung stellt, in der andere Anwendungen ausgeführt werden können, kann dies zu einer Fehlfunktion der Microbox T führen oder dazu, dass der Controller und andere Anwendungen unerwartet reagieren. Außerdem kann die Ausführung des Anwenderprogramms nicht deterministisches Verhalten (Jitter) aufweisen, so dass Ausführungszeiten abweichen und Startereignisse verzögert werden können.

Sorgen Sie immer für eine NOT-AUS-Schaltung. Stellen Sie außerdem immer die Ruhezeit ein und verwalten Sie das Betriebsverhalten des Controllers, so dass Ihr Anwenderprogramm konsistent ausgeführt wird.

4.3.3 Diagnoseinformationen anzeigen

Diagnosepuffer

Mit dem Menübefehl CPU > Diagnosepuffer... zeigen Sie den SIMATIC Diagnosepuffer an.

Im Diagnosepuffer können Sie sich Diagnoseinformationen des Systems ansehen, ohne die Programmiersoftware SIMATIC STEP 7 aufrufen zu müssen. Der Diagnosepuffer besteht aus einem oberen Teilfenster, in dem eine Ereignisliste angezeigt wird, und aus einem unteren Teilfenster, in dem spezifische Einzelheiten zu den Ereignissen angezeigt werden.

Wi	nLC T						
Datei	CPU Hi	lfe					
SIE	MENS						×
PS			Nr.	Zeit	Datum	Ereignis	-
10			1	10:51:31:262	21.11.05	Integrierte Technologie: Es ist keine Hardware-Konfiguration geladen	
	ON		2	10:51:31:260	21.11.05	Betriebszustandsübergang von ANLAUF nach RUN	
	BATE		3	10:51:31:259	21.11.05	Manuelle Neustart (Warmstart)-Anforderung	
			4	10:51:31:161	21.11.05	Betriebszustandsübergang von STOP nach ANLAUF	
CPU			5	10:51:31:161	21.11.05	Neue Anlaufinformation im Betriebszustand STOP	
1.00	IN LTOP		6	10:16:19:156	21.11.05	Neue Anlaufinformation im Betriebszustand STOP	
	INTE	HUN O	1	10:16:19:155	21.11.05	STUP durch Stopschalter-Bedienung	_
	EXIF	STOP C	8	10:06:24:333	21.11.05	Integrierte Technologie: Es ist keine Hardware-Konfiguration geladen	
	BUSF1		3	10:06:24:323	21.11.05	Bettiebszustanosubergang von ANLAUF nach KUN Manuelle Neuetart (U/armetart) Anferderung	
	BUSF2		11	10:06:24:320	21.11.05	Manuelle Neustait (warmstait) Anrorderung Betriebszustandsi ibergang von STOP nach ANI AUE	-1
	FRICE	Lunco	1	10.00.24.237	21.11.05		
	RUN	MHES	Details	zum Ereignis: 1 vo	on 16	Ereignis-ID: 16# F360	
	STOP		Integri	erte Technologie: E	s ist keine Har	dware-Konfiguration geladen	-
			Komm	endes Ereignis			
			al.				Ľ.
							<u> </u>
			Format	: 💽 Text C He	×	Hilfe zum Erei <u>c</u>	Inis
			Abby			1.176-	
			AKtu			Hille	

Bild 4-3 Diagnosepuffer

Der Diagnosepuffer ist als Ringpuffer implementiert, der einzelne Ereigniseinträge enthält. Die Ereignisse werden in absteigender Reihenfolge nach der Zeit angezeigt, wobei sich das jüngste Ereignis an oberster Stelle befindet. Ist der Ringpuffer voll, wird der älteste Eintrag durch ein neues Ereignis überschrieben.

Der Diagnosepuffer zeigt die folgenden Informationen an:

- Ereignisliste (oberes Teilfenster): Diese Liste zeigt alle Ereignisse an, die sich im Diagnosepuffer befinden. Zu jedem Ereignis werden folgende Informationen angezeigt:
 - Die Nummer des Eintrags
 - Das Datum und die Uhrzeit des Diagnoseereignisses
 - Eine kurze Beschreibung des Ereignisses

4.3 Funktionen des Controllers

- Ereignis-ID (zwischen dem oberen und dem unteren Teilfenster): Zeigt die ID-Nummer eines bestimmten Ereignisses an.
- Angaben zum Ereignis (unteres Teilfenster): Zeigt Einzelheiten zum Ereignis in Textoder Hexadezimalformat an.

Wenn Sie Textformat eingestellt haben, werden folgende Einzelheiten zum markierten Ereignis im unteren Teilfenster angezeigt:

- Eine kurze Beschreibung
- Je nach Ereignis noch weitere Informationen, z. B. die Adresse der Operation, die das Ereignis ausgelöst hat, und der Betriebszustandswechsel, der vom Ereignis verursacht wurde
- Der Zustand des Ereignisses (kommend oder gehend)

Kann ein einzelner Textparameter nicht identifiziert werden, zeigt der Diagnosepuffer die Zeichenkette "###" an. Ist für neue Baugruppen oder neue Ereignisse kein Text vorhanden, werden Ereignisnummern und Parameter in Hexadezimalwerten angezeigt.

Wenn Sie Hexadezimalformat eingestellt haben, werden die Hexadezimalwerte zum markierten Ereignis im unteren Teilfenster angezeigt.

Sortieren von Ereignissen (oberes Teilfenster)

Sie können die im oberen Teilfenster aufgeführten Ereignisse sortieren, indem Sie auf den gewünschten Spaltenkopf klicken:

- Nummer (festgelegt durch Zeit und Datum)
- Ereignisbeschreibung

Wählen des Formats (unteres Teilfenster)

Sie können die Diagnoseinformationen im unteren Teilfenster im Text- oder Hexadezimalformat anzeigen. Im Hexadezimalformat werden die Hexadezimalwerte der 20 Bytes des markierten Ereignisses angezeigt. Zum Auswählen des Formats:

- Klicken Sie auf "Text", um die Einzelheiten zu den Ereignissen im Textformat anzuzeigen.
- Klicken Sie auf "Hex", um die Hexadezimalwerte des Ereignisses anzuzeigen.

Speichern des Diagnosepuffers

Zum Speichern einer Textdatei, die die Liste der Ereignisse sowie die Einzelheiten zu den Ereignissen enthält, wählen Sie die Schaltfläche "Speichern". Die Textdatei enthält die Informationen entweder im Text- oder im Hexadezimalformat.

4.3.4 Archivieren und Wiederherstellen von STEP 7-Anwenderprogrammen

Archivdatei

Mit dem Befehl zum Archivieren können Sie die Konfiguration und das STEP 7-Anwenderprogramm in einer Archivdatei (*.wld) speichern. Mit Hilfe der Archivdatei können Sie die Konfiguration und das STEP 7-Anwenderprogramm für den Controller schnell wiederherstellen.

Sie können ein STEP 7-Anwenderprogramm nur archivieren oder wiederherstellen, wenn der Betriebsartenschalter auf STOP steht und sich der Controller im Betriebszustand STOP befindet. Wenn der Controller im Betriebszustand RUN ist oder geschlossen wurde, können Sie kein STEP 7-Anwenderprogramm archivieren oder wiederherstellen.

Die Archivdatei funktioniert wie eine steckbare Memory Card einer S7-CPU. Der Unterschied ist jedoch, dass der Controller die Archivdatei nach Urlöschen (MRES) nicht automatisch wiederherstellt. Sie müssen die Archivdatei manuell wiederherstellen.

Archivdatei anlegen

Eine Archivdatei speichert das aktuelle STEP 7-Anwenderprogramm, die aktuelle Systemkonfiguration und die aktuellen Werte der DBs. Die Archivdatei speichert **nicht** die Konfiguration der PC-Station.

Zum Erstellen einer Archivdatei wählen Sie den Menübefehl **Datei > Archivieren von CPU**. Dieser Befehl ruft das Dialogfeld "Speichern unter" auf, indem Sie der Datei einen Namen zuweisen können. Der Controller erstellt dann die Archivdatei mit der Erweiterung *.wld.

Sie können eine Archivdatei auch im SIMATIC Manager von STEP 7 erstellen. Wählen Sie den Menübefehl **Datei > Memory Card Datei > Neu**.

Archivdatei wiederherstellen

Wenn Sie eine Archivdatei wiederherstellen, laden Sie das STEP 7-Anwenderprogramm und die Konfiguration für den Controller neu. Sie können nur Archivdaten mit der Erweiterung *.wld wiederherstellen.

Bevor Sie eine Archivdatei wiederherstellen können, müssen Sie den Controller in den Betriebszustand STOP versetzen. Gehen Sie folgendermaßen vor, um eine archivierte Konfiguration und ein archiviertes STEP 7-Anwenderprogramm zu laden:

- 1. Klicken Sie auf die Schaltfläche "STOP", um den Controller in den Betriebszustand STOP zu versetzen.
- 2. Wählen Sie den Menübefehl Datei > Laden auf CPU.
- Wählen Sie die Archivdatei, die Sie wiederherstellen möchten, und bestätigen Sie mit "OK".

4.3.5 Optionen zum Einrichten

4.3.5.1 Übersicht

Optionen zum Einrichten

Wählen Sie den Menübefehl **CPU > Extras > Optionen...**, um das Dialogfeld "Optionen" aufzurufen. In den Registern des Dialogfeldes "Optionen" können Sie folgende Einstellungen für das Controller Panel vornehmen:

• Allgemein

Wählen Sie **Immer im Vordergrund**, um das Controller Panel immer vor allen anderen geöffneten Fenstern anzuzeigen.

Optionen	X
Allgemein Sprache AutoStart	
Anzeigemöglichkeiten	
OK Cancel Apply H	Help

Sprache

Das Feld "Sprache" zeigt die aktuell eingestellte Sprache für die Anzeige des Controller Panel an.

In der Auswahlliste werden alle für das Controller Panel installierten Sprachen angezeigt. Wählen Sie eine neue Sprache aus, wenn Sie das Controller Panel in einer anderen Sprache anzeigen möchten.

• AutoStart

Mit der Option **Autostart CPU** stellen Sie die Autostart-Funktion ein. Durch die Autostart-Funktion legen Sie den Betriebszustand fest, in den der Controller nach dem Start geschaltet wird. Näheres finden Sie in "Aktivieren der Autostart-Funktion".

4.3.5.2 Auswählen der Sprache

Sie können die Sprache, in der Menüs und Online-Hilfe des Controller Panel angezeigt werden, ändern.

Vorgehensweise

Zum Ändern der Sprache gehen Sie folgendermaßen vor:

- 1. Wählen Sie den Menübefehl **CPU > Extras > Optionen...**, um das Dialogfeld "Optionen" aufzurufen.
- 2. Öffnen Sie im Dialogfeld "Optionen" das Register "Sprache".
- 3. Wählen Sie die Sprache für das Controller Panel.
- 4. Klicken Sie auf die Schaltfläche "Apply", um die Sprache zu ändern.
- 5. Klicken Sie auf "OK", um das Dialogfeld "Optionen" zu schließen.

Ergebnis

Das Controller Panel stellt die gewählte Sprache ein.

4.3.5.3 Aktivieren der Autostart-Funktion

Beschreibung

Das Controller Panel bietet eine Autostart-Funktion, die den Controller in demselben Betriebszustand anlaufen lässt, in dem er sich befand, bevor er außer Betrieb gesetzt wurde. Wenn die Autostart-Funktion aktiviert ist:

- Wenn sich der Controller im Betriebzustand RUN befand, bevor er außer Betrieb gesetzt wurde, läuft der Controller im Betriebszustand RUN an.
- Wenn sich der Controller im Betriebszustand STOP befand, bevor er außer Betrieb gesetzt wurde, läuft der Controller im Betriebszustand STOP an.

Wenn die Autostart-Funktion **nicht** aktiviert ist, läuft der Controller immer im Betriebszustand STOP an.

Damit der Controller beim Anlauf der Microbox T automatisch gestartet wird, müssen Sie den Controller für den Start bei Anlauf der Microbox T registrieren. Wie Sie diese Einstellung vornehmen, finden Sie unter "Anlaufoptionen für den Controller".

4.3 Funktionen des Controllers

Vorgehensweise

Um die Autostart-Funktion zu aktivieren, gehen Sie folgendermaßen vor:

- Wählen Sie den Menübefehl CPU > Extras > Optionen..., um das Dialogfeld "Optionen" aufzurufen.
- 2. Öffnen Sie im Dialogfeld "Optionen" das Register "AutoStart".
- 3. Wählen Sie als Anlaufart die Option "Autostart CPU".

Optionen	×
Allgemein Sprache AutoStart	
Anlaufart	
OK Cancel Apply Help	

4. Wählen Sie "Apply", um die Autostart-Funktion zu aktivieren, und schließen Sie das Dialogfeld "Optionen" mit "OK".

4.3.6 Optionen für den Zugriffsschutz

4.3.6.1 Einrichten der Optionen für den Zugriffsschutz

Beschreibung

Mit dem Menübefehl **CPU > Extras > Zugriffsschutz** ändern Sie die Optionen für den Zugriffsschutz. Das Controller Panel zeigt das Dialogfeld "Zugriffsberechtigung" an. In diesem Dialogfeld müssen Sie Ihr Passwort eingeben, damit Sie Änderungen an den Einstellungen für den Zugriffsschutz des Controllers vornehmen können.

Hinweis

Das voreingestellte Passwort ist ein leeres Feld ohne Zeichen. Zum Eingeben des Passworts drücken Sie die Eingabetaste.

Schutzstufe

Im Dialogfeld "Zugriffsschutz" können Sie Schutzstufen für das Passwort einrichten, die den Zugriff auf den Controller einschränken. Folgende Zugriffseinschränkungen sind möglich:

Passwort

Wenn Sie ein Passwort wählen, ist es für bestimmte Funktionen im Controller Panel erforderlich, ein Passwort einzutragen, z. B. zum Einstellen des Betriebszustandes, zum Archivieren und Wiederherstellen von Anwenderprogrammen und zum Öffnen des Tuning Panel.

• Bestätigung

Wenn Sie "Bestätigung" wählen, muss der Anwender beim Wechseln des Betriebszustandes eine Bestätigung quittieren.

Ohne

Wenn Sie "Ohne" wählen, sind weder Bestätigung noch Passwort erforderlich.

Hinweis

Wenn Sie ein Passwort einrichten und als Option für die Schutzstufe "Ohne" wählen (das Passwort wird dadurch deaktiviert), müssen Sie trotzdem noch das eingerichtete Passwort eintragen, um wieder das Dialogfeld "Zugriffsschutz" aufrufen zu können.

Warnung

Wenn Sie den Controller ohne Bestätigung und ohne Passwortschutz betreiben, erhöht sich das Risiko, dass der Betriebszustand des Controllers unbeabsichtigt verändert wird. Dies kann unvorhersehbares Verhalten des Prozesses oder der Maschinen hervorrufen, was zu Tod, schwerer Körperverletzung und/oder Sachschaden führen kann.

Gehen Sie vorsichtig vor und stellen Sie sicher, dass Sie den Betriebszustand nicht ändern. Gewähren Sie nur autorisierten Personen Zugriff auf Maschinen und Prozesse. Installieren Sie einen physikalischen NOT-AUS-Schaltkreis für die Maschine und den Prozess.

Gültigkeit des Passworts

Sie können für das Abfrageintervall für das Passwort einen beliebigen Wert zwischen 0 und maximal 23 Stunden, 59 Minuten eintragen. Nachdem Sie Ihr Passwort eingetragen haben, werden Sie erst nach Ablauf des Intervalls erneut aufgefordert, das Passwort einzutragen. Die Voreinstellung 0 bedeutet, dass Sie das Passwort für jede passwortgeschützte Funktion eintragen müssen.

Das Schließen und Starten des Controllers wirkt sich nicht auf den Ablauf des Abfrageintervalls für das Passwort aus. Bei jedem Schließen wird das Abfrageintervall jedoch zurückgesetzt. Beim nächsten Starten des Controller Panel müssen Sie das Passwort eingeben, wenn Sie eine passwortgeschützte Funktion aufrufen.

4.3.6.2 Ändern des Passworts

Wählen Sie im Dialogfeld "Zugriffsberechtigung" die Schaltfläche "Passwort ändern", um das Dialogfeld "Passwort ändern" aufzurufen. In diesem Dialogfeld können Sie dann das aktuelle Passwort ändern.

Hinweis

Das voreingestellte Passwort ist ein leeres Feld ohne Zeichen. Zum Eingeben des Passworts drücken Sie die Eingabetaste.

Vorgehensweise

Um das Passwort zu ändern, gehen Sie folgendermaßen vor:

- 1. Tragen Sie im Feld "Altes Passwort" das alte Passwort ein.
- 2. Tragen Sie im Feld "Neues Passwort" das neue Passwort ein (maximale Länge 12 Zeichen).
- 3. Tragen Sie im Feld "Neues Passwort bestätigen" noch einmal das neue Passwort ein.
- 4. Bestätigen Sie alle in diesem Dialogfeld vorgenommenen Änderungen mit "OK" oder verwerfen Sie alle vorgenommenen Änderungen mit "Abbrechen".

Wenn Sie anschließend die Optionen für den Zugriffsschutz bearbeiten möchten, müssen Sie im Dialogfeld "Zugriffsberechtigung" das Passwort eintragen.

4.3.7 Anlaufoptionen für den Controller

Starten des Controllers bei Anlauf

Standardmäßig müssen Sie den Controller manuell starten, nachdem die Microbox T angelaufen ist. Sie können den Controller jedoch dafür registrieren, dass er beim Anlauf automatisch gestartet wird.

Hinweis

Wenn Sie den Controller so einrichten möchten, dass er in demselben Betriebszustand (STOP oder RUN) anläuft, in dem er sich vor dem Schließen befand, wählen Sie die Autostart-Funktion.

Registrieren des Controllers für Start bei Anlauf

Zum Registrieren eines Controllers für den automatischen Start gehen Sie folgendermaßen vor:

- Setzen Sie den Controller mit dem Menübefehl CPU > Controller schließen außer Betrieb.
- 2. Wählen Sie den Menübefehl CPU > Controller für Start bei PC-Anlauf registrieren.

WinLC T wird nun automatisch gestartet, wenn Sie Ihre Microbox T starten.

Aufheben der Registrierung des Controllers für Start bei Anlauf

Zum Aufheben der Registrierung eines Controllers für den automatischen Start gehen Sie folgendermaßen vor:

- 1. Schließen Sie den Controller.
- 2. Wählen Sie den Menübefehl CPU > Registrierung des Controllers für Start bei PC-Anlauf aufheben.

WinLC T wird nun **nicht** während der Anlaufsequenz gestartet. Zum Starten von WinLC T müssen Sie den Controller manuell starten.

Anlaufart

Die Anlaufart für den Controller stellen Sie in STEP 7 ein. WinLC T unterstützt nur die Anlaufart "Warmstart" (OB 100).

Die eingestellte Anlaufart wird in der Konfiguration (in den Systemdaten) des Controllers gespeichert, die Sie mit dem Steuerungsprogramm laden.
Warmstart

Der Controller führt OB 100 aus, bevor der freie Zyklus (OB 1) gestartet wird. Ein Warmstart löscht die Eingänge der dezentralen Peripherie (PE) und versetzt die Ausgänge der dezentralen Peripherie (PA) in einen vordefinierten sicheren Zustand (Voreinstellung ist 0). Ein Warmstart speichert den aktuellen Wert der remanenten Speicherbereiche von Merkern (M), Zeiten (T), Zählern (Z) und Datenbausteinen (DBs).

Wenn Sie im Panel (mit der linken Maustaste) auf die Schaltfläche RUN klicken, um vom Betriebszustand STOP in den Betriebszustand RUN zu wechseln, führt WinLC T einen Warmstart aus.

Bedienung und Funktionen des Controllers

4.3 Funktionen des Controllers

5

Einstellung des Betriebsverhaltens

5.1 Technologie-Systemtakte optimieren

Ausführen des Anwenderprogramms

Nachdem Sie mit STEP 7 Ihr Anwenderprogramm erstellt und in den Controller geladen haben, beginnt der Controller die Ausführung des Anwenderprogramms, sobald Sie den Controller in RUN versetzen. Wie jedes andere S7-Automatisierungssystem führt der Controller Ihr STEP 7-Anwenderprogramm zyklisch aus.

Betriebsverhalten

Während der Ausführung des STEP 7-Anwenderprogramms kann es sein, dass in WinLC T eine Abweichung in der Ausführungszeit oder der Reaktionszeit des Prozesses auftritt, wodurch sich die Zykluszeiten ändern und nicht deterministisches Verhalten ("Jitter") auftritt.

Um das Betriebsverhalten von WinLC T einzustellen, optimieren Sie die Technologie-Systemtakte. Diese Takte stellen Sie in S7T Config ein.

Weiterführende Informationen zu den Systemtakten finden Sie im Abschnitt "Zeitmodell der Microbox T" im Handbuch *S7-Technology.*

Detaillierte Angaben zur Einstellung der Technologie-Systemtakte finden Sie im Abschnitt "Technologie-Systemtakte einstellen" im selben Handbuch.

Tuning Panel

Die Werte für die Zykluszeiten und die Ausführungszeiten werden Ihnen im Tuning Panel angezeigt. Hier stellen Sie auch den maximalen Anteil der Steuerung an der CPU-Auslastung des Controllers ein. 5.2 Funktionen unter Windows XP Embedded

5.2 Funktionen unter Windows XP Embedded

5.2.1 Überwachungsfunktionen

Folgende Einzelfunktionen sind implementiert:

- Temperaturüberwachung
- Watchdog

Meldungen der Überwachungsmodule können an Applikationen weitergegeben werden.

Für Windows XP Embedded steht dazu auf den Geräten die SOM-Software (Safecard On Motherboard) zur Verfügung.

Safecard on Motherboard (SOM)

Diese Applikation dient der Überwachung der Hardware der Microbox T (Temperatur und Watchdog). Hier werden Ihnen die aktuellen Temperaturen und die Grenzwerte angezeigt.

Vorsicht

Die Applikation dient auf der Microbox T ausschließlich zu Diagnosezwecken. Nehmen Sie keine Einstellungen an der Applikation vor!

Reaktion bei Erreichen der maximalen Temperatur

Wenn die maximale Temperatur erreicht wird, geht die Microbox T in den Betriebszustand STOP. Sie können die Microbox T danach erst wieder in den Betriebszustand RUN setzen, wenn die Temperaturschwelle unterschritten ist und Sie den Controller außer Betrieb gesetzt und erneut gestartet haben.

5.2.2 Enhanced Write Filter (EWF)

Aufgabe und Funktion

Das EWF (Enhanced Write Filter) ist eine Funktion, die unter dem Betriebssystem Windows XP Embedded zur Verfügung steht.

Es stellt ein vom Anwender konfigurierbares Schreibfilter dar, das bei Bedarf Änderungen der Compact Flash-Karte verhindern kann. Dadurch kann das System nach einem Spannungsausfall immer in einem eindeutig definierten, arbeitsfähigen Zustand gehalten werden.

Mit dem EWF lassen sich auch die Schreibzugriffe auf Compact Flash-Karten minimieren. Das ist wichtig, weil die Anzahl der Schreibzyklen auf Compact Flash-Karten technisch bedingt begrenzt ist. Wir empfehlen Ihnen daher, das EWF einzuschalten.

Hinweis

Das EWF ist auf der Microbox T standardmäßig ausgeschaltet, damit Sie Ihre Konfiguration auf die Compact Flash-Karte laden können.

Schalten Sie das EWF ein, nachdem Sie Ihre Konfiguration geladen haben, um die Schreibzugriffe auf die Compact Flash-Karte zu minimieren.

Das Ein-/Ausschalten des EWF wird erst nach einem Neustart der Microbox T wirksam.

Das EWF ist auf der Partition D: der Compact Flash-Karte ausgeschaltet. Auf dieser Partition wird die WinAC T-Projektdatei (WAF-Datei) abgespeichert. Diese Datei ist nach einem Reboot oder einem Betriebssystemabsturz noch vorhanden.

5.2 Funktionen unter Windows XP Embedded

EWF einstellen

Zum Einstellen sowie zum Ein-/Ausschalten des EWF können Sie das Programm EWFMGR.EXE nutzen. Der Aufruf des Programms erfolgt über den Command Prompt. Folgende Funktionen stehen zur Verfügung:

Funktion	Kommando
Schreibschutz für Laufwerk C: einschalten	ewfmgr c: -enable
Schreibschutz für Laufwerk C: ausschalten (geänderte Daten werden übernommen)	ewfmgr c: -commitanddisable
Schreibschutz für Laufwerk C: ausschalten (geänderte Daten gehen verloren)	ewfmgr c: -disable
Geänderte Daten auf Laufwerk C: übernehmen	ewfmgr c: -commit
Information über das EWF-Laufwerk anzeigen	ewfmgr c:
Hilfe anzeigen	ewfmgr c: /h

Hinweis

Die Funktion "disable" kann unter Windows XP Embedded SP 1 nicht ausgeführt werden. Benutzen Sie unter Windows XP Embedded SP1 stattdessen die Funktion "commitanddisable", um das EWF auszuschalten.

Nachdem Sie das EWF ausgeschaltet haben, müssen Sie die PC-Station im Komponenten Konfigurator aktivieren (Schaltfläche "Enable Station").

Besonderheiten beim Einsatz des Enhanced Write Filters (EWF)

• Wenn das EWF aktiv ist, dann gehen bei Spannungsausfall die Änderungen auf Laufwerk C: verloren.

Wenn Sie die Daten vor Verlust bei Spannungsausfall schützen wollen, dann empfehlen wir den Einsatz einer USV.

 Sie können die Daten im EWF-RAM-Overlay vor dem Abschalten der Microbox T auf der Compact Flash-Karte sichern. Geben Sie dazu auf dem Command Prompt folgenden Befehl ein:

ewfmgr c: -commit

WinLC T mit dem SIMATIC NET OPC-Server verbinden

6.1 Übersicht

Werkzeuge

WinLC T kann mit Hilfe des SIMATIC NET OPC-Servers Daten über ein Netzwerk lesen und schreiben. Mit den folgenden Werkzeugen richten Sie die OPC-Verbindung für WinLC T ein:

- OPC Scout für die Konfiguration der Verbindung zum SIMATIC NET OPC-Server
- STEP 7 (HW-Konfig und NetPro) für die Konfiguration des Controllers
- Station Configurator für die Konfiguration der PC-Station

Der wichtigste, häufig übersehene Schritt ist die Konfiguration der S7-Verbindung für den OPC-Server in NetPro. Nach dem Hinzufügen der Verbindung für den OPC-Server müssen Sie die Verbindungsart "S7-Verbindung" einstellen und eine lokale ID für die Verbindung eingeben.

Übersicht über die Schritte

6.2 Schritt 1: Hinzufügen des OPC-Servers zur PC-Station

Vorgehensweise

Sie richten den OPC-Server auf der Microbox T ein.

Um den OPC-Server für einen Index der PC-Station einzurichten, gehen Sie wie folgt vor:

- 1. Öffnen Sie den Station Configurator und wählen Sie einen Index im Station Configurator.
- 2. Klicken Sie mit der rechten Maustaste, um die Option "Add" anzuzeigen. Klicken Sie auf die Schaltfläche "Add...". Das Dialogfeld "Add Component" wird aufgerufen.
- 3. Wählen Sie im aufklappbaren Listenfeld den Komponententyp "OPC Server".

Add Component	×
Туре:	OPC Server
Index:	1
Name:	OPC Server
Parameter assig.:	<u></u>
<u>0</u> K	<u>C</u> ancel <u>H</u> elp

4. Klicken Sie die Schaltfläche "OK", um den OPC-Server in die Stationskonfiguration aufzunehmen. Im Station Configurator wird der OPC-Server im gewählten Index angezeigt.

6.2 Schritt 1: Hinzufügen des OPC-Servers zur PC-Station

5. Speichern Sie die Konfiguration der PC-Station mit "OK".

Station Co	nfiguration Editor -	[ONLINE]					×
Componer	nts Diagnostics Con	figuration Info					
Station:	PCStation		Mode:	RUN	_P		
Index	Name	Туре	Ring	Status	Run/Stop	Conn	
1	0PC Server	OPC Server		X	×		
2	📗 WinLC T	WinLC T			0		
3	Technologie	Technology					
4	IE Allgemein	IE General			0		
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							-
1 17	I						-
New dia	gnostic entry arrived!						
	Add	Edit	[)elete		Ring ON	
							- 1
Stat	ion Name Im	port Station			Dis	able Station	
	1						
OK						Help	

WinLC T mit dem SIMATIC NET OPC-Server verbinden 6.3 Schritt 2: Hinzufügen des OPC-Servers zur Hardware-Konfiguration

6.3 Schritt 2: Hinzufügen des OPC-Servers zur Hardware-Konfiguration

Einleitung

Sie richten WinLC T mit STEP 7 auf Ihrem PC für den OPC-Server ein.

Um WinLC T für den OPC-Server einzurichten, müssen Sie folgendes tun:

- Legen Sie ein STEP 7-Projekt für eine PC-Station mit WinLC T an.
- Fügen Sie den OPC-Server in die Hardware-Konfiguration ein.
- Konfigurieren Sie den OPC-Server.

Vorgehensweise

- 1. Öffnen Sie STEP 7 und legen Sie ein Projekt an.
- Fügen Sie eine SIMATIC PC-Station mit dem gleichen Namen wie im Komponenten Konfigurator ein. Doppelklicken Sie auf das Konfigurationssymbol der PC-Station, um HW-Konfig zu öffnen.
- 3. Fügen Sie den WinLC T Controller in den gleichen Index ein wie im Station Configurator.
- 4. Öffnen Sie im Katalog den Ordner "Benutzer Applikation".
- 5. Öffnen Sie den Ordner "OPC-Server" und wählen Sie die Komponente "SW V6.3".
- 6. Ziehen Sie die Komponente mit der Maus in den gleichen Index, den Sie im Station Configurator eingerichtet haben.
- 7. Doppelklicken Sie auf den Eintrag des OPC-Servers (Index 1), um das Dialogfeld "Eigenschaften" aufzurufen.
- 8. Optional: Öffnen Sie das Register "S7" und wählen Sie die Option "Aktivieren" (unter "Zugriffsschutz").
- Wenn Sie zum Konfigurieren der Verbindungen in OPC Scout STEP 7-Symbole verwenden möchten, wählen Sie im Feld "Symbole verwenden" die Option "Alle" (oder "Gewählte", um bestimmte Einträge der Symboltabelle anzugeben).
- 10. Klicken Sie auf "OK", um das Dialogfeld "Eigenschaften" zu schließen.
- 11.Wählen Sie die Schaltfläche "Speichern und Übersetzen", um die Hardware-Konfiguration für die PC-Station zu erstellen.

Ergebnis

Nachdem Sie die Konfiguration im STEP 7-Projekt übersetzt haben, können Sie HW-Konfig schließen und in den SIMATIC Manager zurückkehren.

6.4 Schritt 3: Hinzufügen einer S7-Verbindung für den OPC-Server in NetPro

6.4 Schritt 3: Hinzufügen einer S7-Verbindung für den OPC-Server in NetPro

Einleitung

Sie fügen den OPC-Server mit STEP 7 auf Ihrem PC zur Konfiguration von WinLC T hinzu. Um den OPC-Server zur Konfiguration von WinLC T hinzuzufügen, müssen Sie Folgendes tun:

- Fügen Sie eine Verbindung für den OPC-Server zur WinLC T-Konfiguration hinzu.
- Richten Sie die Verbindung des OPC-Servers als S7-Verbindung ein.
- Weisen Sie der Verbindung des OPC-Servers eine lokale ID zu.

Vorgehensweise

1. Suchen Sie im SIMATIC Manager den OPC-Server und doppelklicken Sie auf das Symbol "Verbindungen", um NetPro aufzurufen.

2. Wählen Sie den OPC-Server in der PC-Station.

器 Net	Pro - [N	licrobo	oxT (Netz)) C:\Pro	gram Fi	les\\:	s7proj∖Mici	opox]			
Ne	tz Bea	rbeiten	Einfügen	Zielsyster	m Ansia	ht Ext	ras Fenstei	Hilfe		1	
B		6	h C	1		3 <u>6</u> 3		N?			
								1			_
											1000
		SIMA	TIC PC	-Station	(1)						
		OPC N	MinLC	Techno DP							
		Server			ein	em					
		·	:								
			2	<u>_</u> 4	23						
4											► ►
Partner		Ту	'n								Aktiv
4		1	1								F
Bereit							PC Ada	pter(MPI)	X 514	Y 127	Änd //

6.4 Schritt 3: Hinzufügen einer S7-Verbindung für den OPC-Server in NetPro

 Klicken Sie mit der rechten Maustaste auf den OPC-Server, um das Kontextmenü aufzurufen. Wählen Sie die Option "Neue Verbindung einfügen", um das Dialogfeld "Neue Verbindung einfügen" aufzurufen.

and the second se	ng einfügen	
- Verbindungsp	partner	
Ima Ima Ima Ima Ima Ima Ima	ktuellen Projekt MicroboxT SIMATIC PC-Station(1) (unspezifiziert) Alle Broadcast-Teilnehmer Alle Multicast-Teilnehmer nbekanntem Projekt	
Projekt:	MicroboxT	₹≤
Projekt: Station:	MicroboxT SIMATIC PC-Station(1)	₹ <u>≺</u>
Projekt: Station: Applikation:	MicroboxT SIMATIC PC-Station(1) WinLC T	₹ <u>≺</u>
Projekt: Station: Applikation: Verbindung-	MicroboxT SIMATIC PC-Station(1) WinLC T	₹ <u>≺</u>
Projekt: Station: Applikation: Verbindung- Typ:	MicroboxT SIMATIC PC-Station(1) WinLC T S7-Verbindung	₹ <u>≺</u>

4. Stellen Sie als Verbindungstyp "S7-Verbindung" ein und wählen Sie "OK", um die S7-Verbindung für den OPC-Server hinzuzufügen. Das Dialogfeld "Eigenschaften" für die S7-Verbindung wird automatisch aufgerufen. 6.4 Schritt 3: Hinzufügen einer S7-Verbindung für den OPC-Server in NetPro

- 5. Geben Sie die lokale ID für die S7-Verbindung ein.
- 6. Wählen Sie "OK", um die S7-Verbindung in NetPro aufzunehmen.
- 7. Wählen Sie die Schaltfläche "Speichern und Übersetzen", um Ihre Änderungen im STEP 7-Projekt zu speichern und zu übersetzen.

NetPro - [Micro	oboxT (Netz) C:\Program Files\\s7proj\Microbox]	
Netz Bearbeit	ten Einfügen Zielsystem Ansicht Extras Fenster Hilfe	
) he mm # Ø # De ! M	
	1	_
	VATIC PC-Station(1) VINLC DP Techno DP(DRI IE Allgern ein 2 2 2 2	
Partner	Тур	Aktiv
SIMATIC PC-Stati	S7-Verbindung	ja
		-
•		•
Bereit	PC Adapter(MPI) X 515 Y 152	Änd /

Ergebnis

Nachdem Sie die S7-Verbindung für den OPC-Server im STEP 7-Projekt übersetzt haben, können Sie NetPro schließen und in den SIMATIC Manager zurückkehren.

6.5 Schritt 4: Laden der Konfiguration in den WinLC T Controller

Einleitung

Sie laden die Konfiguration mit STEP 7 auf Ihrem PC in den Controller.

Um die Konfiguration in den Controller zu laden, müssen Sie folgendes tun:

- Starten Sie den Controller.
- Laden Sie die Konfiguration.

Voraussetzung

Zum Laden der Konfiguration muss der Controller in Betrieb sein. Zum Starten des Controllers wählen Sie den Menübefehl **Start > SIMATIC > PC Based Control > WinLC T** oder doppelklicken Sie auf das Symbol für WinLC T auf dem Desktop.

Vorgehensweise

Nachdem Sie den Controller gestartet haben, können Sie die Konfiguration laden:

- 1. Wählen Sie im SIMATIC Manager das Symbol der PC-Station.
- 2. Wählen Sie den Menübefehl **Zielsystem > Laden** oder wählen Sie in der Funktionsleiste die Schaltfläche "Laden".

WinLC T mit dem SIMATIC NET OPC-Server verbinden 6.6 Schritt 5: Verbinden des Controllers mit dem OPC-Server

6.6 Schritt 5: Verbinden des Controllers mit dem OPC-Server

Einleitung

Sie verbinden WinLC T auf der Microbox T mit dem OPC-Server.

Um WinLC T mit dem OPC-Server zu verbinden, müssen Sie folgendes tun:

- Erstellen Sie ein OPC-Projekt.
- Fügen Sie die Verbindung zum SIMATIC NET OPC-Server hinzu.
- Definieren Sie die Objekte, auf die über den OPC-Server zugegriffen werden soll.

OPC-Projekt erstellen

Wählen Sie den Menübefehl Start > All Programs > SIMATIC > SIMATIC NET > OPC SCOUT, um ein neues Projekt im OPC Scout zu erstellen.

Eine Verbindung (Gruppe) für den OPC-Server hinzufügen

- 1. Öffnen Sie unter "Servers and groups" des Projekts das Verzeichnis der lokalen Server.
- 2. Doppelklicken Sie auf das Element "OPC.SimaticNET", um eine Verbindung (bzw. Gruppe) für den SIMATIC NET OPC-Server hinzuzufügen.

👰 OPC Scout - New Project1							×
<u>File V</u> iew Server <u>?</u>							
Servers and groups	Items inc	I. status information					
⊡-∰ Server(s)		Item Names	Value	Format	Туре	Access	Qı
🗐 🗐 🛄 Local Server(s)	1						
OPC.SimaticNET OPC.SimaticNET.DP OPC.SimaticNET.PD ProfiDrive.ProfilServer Remote Server(s) Add Remote Servers(s)							
				No.	No.		_/_

3. Geben Sie im Dialogfeld "Add Group" den Gruppennamen für die Verbindung ein.

🚰 Add Group	X
Group Properties:	
Enter a ' <u>G</u> roup Name':	
Gruppe1	
Create <u>n</u> ew group active	
Requested <u>u</u> pdate rate in ms	500 💌
□ <u>E</u> xtended <u>O</u> K	<u>Cancel</u> <u>Apply</u>

4. Fügen Sie die Gruppe mit "OK" zum OPC-Server hinzu. OPC Scout fügt die Verbindung zum OPC-Server hinzu.

🔄 OPC Scout - New Project1						_ [×
<u>File View Server ?</u>							
🖻 🖪 🌆 🎦							
Servers and groups	Items inc	I. status information					
⊡ 🙀 Server(s)		Item Names	Value	Format	Туре	Access	Qı
En Local Server(s)	1						
OPC. SimaticNET Gruppe1 New group] OPC.SimaticNET.DP OPC.SimaticNET.PD OPC.SimaticNET.PD ProfiDrive.ProfilServer Remote Server(s) Add Remote Servers(s)							
Successfully connected to: 'OPC.SimaticNET				No.	No.		

Objekte konfigurieren, auf die zugegriffen werden soll (mittels absoluter Adressierung)

Hinweis

In dieser Vorgehensweise wird beschrieben, wie Sie bei der Konfiguration des OPC-Servers die absolute Adressierung verwenden. Sie können auch die STEP 7-Symboltabelle nutzen, um die Verbindung zum OPC-Server herzustellen.

Gehen Sie folgendermaßen vor, um den OPC-Server so zu konfigurieren, dass er über absolute Adressen auf die Daten im Controller zugreift:

1. Doppelklicken Sie auf die Verbindung des OPC-Servers, um den OPC Navigator zu öffnen.

🔯 OPC-Navigator				×
Nodes	Leaves	Item Nam	Bas	The listed Item(s) will be added to
🖃 🎬 Connections				
🗎 🛱 DX	I			
🗄 🛗 \DP2:	I			
🗄 🛗 🖊 NDP:	I			
🗄 👘 KFDL:				
🗄 🛗 \FMS:			>	
🕀 🙀 APNIO:				1
🗄 🙀 \S7:			1	1
🕀 🙀 \SNMP:			<u> </u>	J I
🕀 🙀 \SR:				
🗄 🙀 \SYM:				
	I			
	I			
	I			
	I			Filter OK Cancel
	•			
Connections is selected				4/8/2006 4:16 PM

🔆 OPC-Navigator				X
Nodes	Leaves	Item Names		The listed Item(s) will be added to Group:
🔁 🙀 DX				
庄 💏 \DP2:				
庄 💏 NDP:				
🗄 🖓 NFDL:				
🗄 👘 🙀 NFMS:				
🗄 🖓 NPNIO:				
🚊 🚔 \S7:			>	
🗄 🙀 @LOCALSERVER				
🖻 📥 S7-Verbindung_1				
庄 🦊 objects				
🕀 💏 blocks				
🗄 💏 scan				
🛨 💏 aliases				
庄 💏 \SNMP:				
🗄 🚔 🔥 SR:				
🗄 🚔 \SYM:				
	1	► I		
S7-Verbindung_1 is selected				4/8/2006 7:51 PM //

2. Fügen Sie dem Ordner "\S7" ein Objekt hinzu, auf das zugegriffen werden soll.

3. Zum Einrichten des Zugriffs auf M0.0 erweitern Sie den Ordner "objects" und den Ordner "M" (für den Speicherbereich der Merker).

PC-Navigator				X
Nodes	Leaves	Item Names		The listed Item(s) will be added to Group:
🗎 🕀 🔥 \DP2:				
⊡ • 🙀 \DP:				
I → I → I → I → I → I → I → I → I → I →				
⊕ ∰ NFMS:				
⊕∰ \PNIO:				
⊡ · 🔄 S7-Verbindung_1			2	
			<u> </u>	
New Definit				
±				
				<u>F</u> ilter <u>O</u> K <u>C</u> ancel
M is selected				4/8/2006 7:52 PM //

- 4. Doppelklicken Sie auf das Symbol "New Definition", um das Dialogfeld "Define New Item" aufzurufen.
- 5. Zum Definieren einer Verbindung für M0.0 wählen Sie unter "Datatype" im aufklappbaren Listenfeld "X" (für Bit) und geben die Byte-Adresse (0) und die Bit-Nummer (0) ein.

Define Ne	w Item E_S7			×
<u>D</u> ataty	pe	Adress	Bjt No.	No. <u>V</u> alues
×	- 0		0	
		0 to 16383	0 to 7	1 to 131072
Itemalias:	M0_0			
		<u>0</u> K	<u>C</u> ancel	Apply

6. Wählen Sie "OK", um ein Objekt für M0.0 zu definieren.

🔯 OPC-Navigator					×
Nodes	Leaves	Item Names		The listed Item(s) will b	e added to
	MO_0	S7:[S7-Verbindung_1]M0_0			
En (PA) \DP:	Ø MX0.0	S7:[S7-Verbindung_1]MX0.0			
Terren Anno:					
🕀 💏 @LOCALSERVER					
🖻 🔄 S7-Verbindung_1			>		
INew Definit			<u> </u>		
📄 🕀 Pl 🚽					
±(PM) L					
T → → → → → → → → → → → → → → → → → → →				(
			<u> </u>	ter <u>O</u> K	<u>C</u> ancel
			1		
[New Definition] is selected				4/8/2006	7:55 PM

- Wählen Sie den Eintrag M0.0,1 und klicken Sie auf den Pfeil "Hinzufügen", um die folgende Syntax hinzuzufügen, die eine Verbindung für M0.0 definiert: S7:[S7-Verbindung_1]M0.0,1
- 8. Wählen Sie den Eintrag und klicken Sie auf "OK", um die Verbindung für M0.0 in die Gruppe aufzunehmen.

🚰 OPC-Navigator				×		
Nodes	Leaves	Item Names	The listed Item(s) will be added to			
	О МО_О	S7:[S7-Verbindung_1]M0_0	S7:[S7-Verbindung_1]M0_0			
	О МХ0.0	S7:[S7-Verbindung_1]MX0.0				
□						
🗄 🛗 @LOCALSERVER						
⊡						
🖻 🚔 objects						
			≤			
AB I						
⊡ # PQ						
🕀 🕀 T						
😟 👘 DB 📃			Filter OK Cancel			
	•					
[New Definition] is selected 4/8/2006 7:59 PM						

Ergebnis

Nachdem Sie das Objekt in die Gruppe aufgenommen haben, werden im OPC Scout der Name und andere Parameter für das Objekt angezeigt. Nun können Sie alle vom SIMATIC NET OPC-Server unterstützten Methoden verwenden.

WinLC T mit dem SIMATIC NET OPC-Server verbinden

6.6 Schritt 5: Verbinden des Controllers mit dem OPC-Server

🚰 OPC Scout - C:\Documents and Settings\Administrator.MICROBOX\- Neues Projekt1.opp								
<u>File View Server Group Item ?</u>								
🖻 🖬 🎒 🚂 🕺 🐺 🕅	+-	_						
Servers and groups	Items in	cl. status information						
⊡- 💑 Server(s)		Item Names	Value	Format	Туре	Access	Quality	
🚊 🗐 Local Server(s)	1	S7:[S7-Verbindung_1]M0_0	False	Original	bool	RW	good	
🖻 😼 OPC.SimaticNET	2							
CICOUPI (New group) OPC.SimaticNET.DP OPC.SimaticNET.PD ProfiDrive.ProfilServer Remote Server(s) Add Remote Servers(s)								
l Densfe) av se se sefulliv a dela d					M	1		
Literu(s) successionly added					NU.			

Objekte konfigurieren, auf die zugegriffen werden soll (mittels STEP 7-Symboltabelle)

Wenn Sie für das STEP 7-Programm, das Sie ins Zielsystem geladen haben, eine Symboltabelle angelegt haben, können Sie die Symbole nutzen, um den OPC-Server mit den Daten im Controller zu verbinden.

- 1. Doppelklicken Sie auf die Verbindung des OPC-Servers, um den OPC Navigator zu öffnen.
- 2. Suchen Sie den Ordner des Controllers, um die Symbole anzuzeigen, die in den Controller geladen wurden.

Marigator					X
Nodes	Leaves	Item Names		The listed Item(s) will be added to Group: test	
□ ● OP2: □ ● ● □ ● ● □ ● ● ● ● ●	 Pumpe1 Pumpe2 Pumpe3 Ventil1 Ventil2 	PCStation.V PCStation.V PCStation.V PCStation.V PCStation.V	<u></u> ≥		
WinLC T is selected	4	Þ		Eilter <u>Q</u> K <u>C</u> an 4/8/2006 8:37 P	cel

left operation and the second					×
Nodes	Leaves	Item Names		The listed Item(s) will be added to Group: test	
□- ♣ Connections □- ♣ DP2: □- ♣ \DP2: □- ♣ \PD1: □- ♣ \FDL: □- ♣ \FMS: □- ♣ \PNIO: □- ♣ \SNMP: □- ♣ \SNMP: □- ♣ \SR: □- ♣ \SYM: □- ♣ SIMATIC PC-Station(1) □ ♣ WinLC T	 Pumpe1 Pumpe2 Pumpe3 Ventil1 Ventil2 	PCStation.V PCStation.V PCStation.V PCStation.V PCStation.V	> 4	PCStation.WinLC.Pumpe1	
		Þ		<u> </u>	cel
WinLC T is selected 4/8/2006 8:37 PM					

3. Nachdem Sie die Symbole der Daten, mit denen der OPC-Server verbunden werden soll, gewählt haben, klicken Sie auf die Schaltfläche "Hinzufügen".

4. Bestätigen Sie mit "OK", um das Symbol in die Gruppe aufzunehmen.

Ergebnis

Nachdem Sie das Objekt in die Gruppe aufgenommen haben, zeigt OPC Scout den Namen des Symbols und andere Parameter für das STEP 7-Symbol an.

🔄 OPE Scout - New Project 1							
File View Server Group Item ?							
🖻 🖬 🎒 🌆 🗺 🐺 🕅	+-	5					
Servers and groups	Items inc	l. status information					
🖃 📲 Server(s)		Item Names	Value	Format	Туре	Access	
E 🔜 Local Server(s)	1	PCStation.WinLC.Pumpe1	False	Original	bool	RW	
🖻 😻 OPC.SimaticNET	2						
Lest [New group] OPC.SimaticNET.DP OPC.SimaticNET.PD ProfiDrive.ProfilServer Remote Server(s) Add Remote Servers(s)	-						
Item(s) successfully added			[No.	1	<u>·</u>	

7

Speicherkonzept

7.1 Speichern von Informationen zum Controller

Gespeicherte Informationen

WinLC T speichert die folgenden Betriebsdaten auf Ihrer Microbox T:

- Der Ladespeicher enthält die Systemdaten (Konfiguration des Controllers) und die Initialwerte der Bausteine im STEP 7-Anwenderprogramm.
- Der Ladespeicher enthält den Zustand des Controllers. Dies umfasst den letzten Wechsel des Betriebszustandes (STOP, RUN, oder ANLAUF) des Controllers und die Einstellung des Betriebartenschalters (STOP oder RUN).
- Beim Schließen des Controllers erstellt WinLC T den ausgeschalteten Zustand des Controllers. Der ausgeschaltete Zustand umfasst den Inhalt des Diagnosepuffers, die aktuellen Werte der remanenten Speicherbereiche des Controllers (z. B. Zeiten, Zähler und Merker) und die aktuellen Werte der remanenten Datenbausteine.

WinLC T aktualisiert diese Bereiche während des Betriebs und nutzt diese Informationen beim Anlauf des Controllers.

Ladespeicher

Wenn Sie das STEP 7-Anwenderprogramm laden, speichert WinLC T die Programmbausteine und Systemdaten im Ladespeicher. Diese Bausteine umfassen die Initialwerte für die Prozessvariablen, die vom STEP 7-Anwenderprogramm verwendet werden.

Mit SFC 82 (CREA_DBL) können Sie während der Ausführung des STEP 7-Anwenderprogramms neue Bausteine im Ladespeicher erstellen. Sie können die Bausteine mit SFC 84 (WRIT_DBL) ändern. Die von SFC 82 erstellten Bausteine werden im Ladespeicher gespeichert, während die SFC 82 läuft.

Hinweis

Datenbausteine (DBs), die von SFC 22 (CREAT_DB) und SFC 85 (CREA_DB) erstellt wurden, werden nicht im Ladespeicher gespeichert. Diese DBs werden nur im Arbeitsspeicher gespeichert.

Speicherkonzept

7.1 Speichern von Informationen zum Controller

Arbeitsspeicher

Der Arbeitsspeicher dient zur Abarbeitung des Codes sowie zur Bearbeitung der Daten des STEP 7-Anwenderprogramms. Die Programmbearbeitung erfolgt ausschließlich im Bereich von Arbeitsspeicher und Systemspeicher.

Hinweis

Beachten Sie bitte, dass der Arbeitsspeicher (RAM) der Microbox T von SPS-, Motion- und Windowsapplikationen gemeinsam genutzt wird. Es besteht die Möglichkeit eines Speicherengpasses, der zur Instabilität der Microbox T führen kann. In diesen besonderen Fällen sollten Sie Ihre SPS-, Motion- und Windowsapplikationen an den Speicher anpassen bzw. optimieren.

Systemspeicher

Der Systemspeicher enthält folgende Daten:

- Die Operandenbereiche Merker, Zeiten und Zähler
- Die Prozessabbilder der Ein- und Ausgänge
- Die Lokaldaten

Speicherbereiche für den Zugriff auf die Eingänge und Ausgänge

Wenn Sie die dezentrale Peripherie in STEP 7 konfigurieren, weisen Sie jeder E/A-Baugruppe einen Bereich im PE- oder PA-Speicher zu. Sie weisen außerdem eine Diagnoseadresse für die E/A-Baugruppen im PE-Speicher zu. Die Größe der Speicherbereiche PE und PA wird durch die Konfiguration der dezentralen Peripherie festgelegt, doch die maximale Größe des Speichers für die dezentrale Peripherie beträgt 2 KByte.

Hinweis zum Speicher der integrierten Technologie

Für den Speicherverbrauch in der integrierten Technologie empfiehlt Siemens eine maximale Speicherauslastung von 80 %.

Remanente Daten

Wenn Sie WinLC T in STEP 7 einrichten, können Sie die Bereiche der remanenten Daten für Zeiten (T), Zähler (Z), Merker (M) und Datenbausteine (DBs) definieren.

WinLC T speichert die remanenten Speicherbereiche, den Diagnosepuffer und die aktuellen Werte der remanenten Datenbausteine sowie Daten der integrierten Technologie im batteriegepufferten RAM. Wurde der ausgeschaltete Zustand gespeichert und der Controller führt einen Warmstart durch (OB 100), stellt WinLC T die remanenten Speicherbereiche wieder her.

7.1 Speichern von Informationen zum Controller

Zustand des Controllers

WinLC T speichert den aktuellen Betriebszustand des Controllers und aktualisiert den Zustand bei den folgenden Ereignissen:

- Immer wenn der Controller den Betriebszustand ändert (RUN in STOP, STOP in ANLAUF oder ANLAUF in RUN), aktualisiert WinLC T den Zustand des Controllers, um den letzten Wechsel kenntlich zu machen.
- Immer wenn der Betriebsartenschalter auf dem Controller Panel verändert wird (STOP oder RUN), aktualisiert WinLC T den Zustand des Betriebsartenschalters, um den letzten Wechsel kenntlich zu machen.

Ausgeschalteter Zustand

Unter normalen Bedingungen speichert WinLC T den aktuellen Zustand des Controllers und die remanenten Daten, wenn Sie den Controller herunterfahren. WinLC T speichert die folgenden Informationen aus dem Arbeitsspeicher:

- Die Werte für die remanenten Daten in den S7-Speicherbereichen (z. B. T, Z, M und DB)
- Diagnosepuffer

Der ausgeschaltete Zustand wird gespeichert, wenn WinLC T außer Betrieb gesetzt wird. Nachdem WinLC T angelaufen ist, wird der ausgeschaltete Zustand in WinLC T geladen und dann gelöscht (um Probleme bei nicht ordnungsgemäßer Beendigung des Controllers zu vermeiden). 7.2 Laden von Speicherbereichen beim Anlauf

7.2 Laden von Speicherbereichen beim Anlauf

Prinzip

Beim Anlauf ermittelt WinLC T, ob der Controller korrekt heruntergefahren wurde. Die folgenden Aufgaben werden ausgeführt:

- Die geladenen Bausteine des STEP 7-Anwenderprogramms werden aus dem Ladespeicher geladen.
- Wenn der ausgeschaltete Zustand gefunden wird (wodurch angezeigt wird, dass der Controller ordnungsgemäß heruntergefahren wurde), wird der Arbeitsspeicher mit dem ausgeschalteten Zustand aktualisiert und die Werte, die gespeichert wurden, als der Controller heruntergefahren wurde, werden in die remanenten Daten geladen.
- Bei Verlust der remanenten Daten wird der Arbeitsspeicher mittels Ladespeicher wieder auf den Anfangszustand zurückgesetzt (wie aus STEP 7 geladen).
- Der Zustand des Controllers wird entsprechend dem gespeicherten Betriebszustand und der Autostart-Konfiguration wiederhergestellt und die Einstellung des Betriebsartenschalters im Controller Panel wird zurückgesetzt.

Wenn WinLC T ein Element im Ladespeicher, den Zustand des Controllers oder den ausgeschalteten Zustand nicht lesen kann, startet WinLC T einen nicht konfigurierten (leeren) Controller.

Laden von Speicher nach erfolgreichem Schließen des Controllers

Wurde der ausgeschaltete Zustand erfolgreich gespeichert, als der Controller heruntergefahren wurde, stellt WinLC T die Betriebsdaten des Controllers wieder her:

- WinLC T l\u00e4dt die im ausgeschalteten Zustand gespeicherten Daten beim Anlauf neu. Dies umfasst die remanenten S7-Speicherbereiche, die aktuellen Werte der remanenten Datenbausteine und den Inhalt des Diagnosepuffers.
- Je nach den Autostart-Einstellungen stellt WinLC T für den Zustand des Controllers den Betriebszustand STOP oder RUN ein. Bei einer Windows-Fehlfunktion stellt WinLC T den Zustand des Controllers vor der Windows-Fehlfunktion wieder her. Der Controller hat zwar einen "normalen" Übergang von RUN in STOP durchgeführt, doch WinLC T kann den Zustand des Controllers nicht während einer Windows-Fehlfunktion speichern.

Hinweis

Wurde der Controller für Autostart konfiguriert, erzeugt WinLC T ein Anlaufereignis, das die Anlaufart angibt: gepuffert oder ungepuffert. Sie können OB 100 programmieren, um dieses Startereignis zu lesen. Für einen ungepufferten Anlauf wird die Variable OB100_STOP an Adresse LW6 auf W#16#4309 gesetzt.

• WinLC T stellt für den Betriebsartenschalter den Zustand des Controllers ein, der zuletzt gespeichert wurde.

Probleme beim Starten des Controllers

Wenn WinLC T ein Element des remanenten Speichers (Ladespeicher, Zustand des Controllers oder ausgeschalteter Zustand) nicht lesen kann (oder ein Fehler auftritt), startet WinLC T einen nicht konfigurierten (leeren) Controller. In diesem Fall wird der Controller in den Betriebszustand STOP versetzt und die Schaltfläche für den Betriebszustand wird auf STOP gesetzt und die Systemdaten sowie das Anwenderprogramm werden gelöscht.

Mögliche Ursachen für dieses Problem umfassen Hardware-Fehler in Ihrer Microbox T oder einen Teilbaustein im Ladespeicher, der durch einen Fehler entstanden ist, als WinLC T einen Baustein in den Ladespeicher geschrieben hat.

Um diesen Fehlerzustand zu eliminieren, müssen Sie Ihr Anwenderprogramm und die Systemdaten aus STEP 7 erneut laden.

Hinweis

Der Betriebsartenschalter des Controllers wird auf STOP gesetzt. Sie können das Anwenderprogramm und die Systemdaten von einem entfernten Computer laden, doch Sie können mit diesem entfernten Computer nicht den Betriebszustand RUN für den Controller einstellen. Sie müssen am lokalen Computer für WinLC T den Betriebsartenschalter auf RUN setzen, damit der Controller in den Betriebszustand RUN versetzt wird.

Starten des Controllers nach einer Windows-Fehlfunktion

Wenn sich der Controller beim Schließen im Betriebszustand RUN befand und für Autostart konfiguriert ist, läuft WinLC T im Betriebszustand RUN an. Wenn OB 84 (CPU-Hardwarefehler) auf eine Windows-Fehlfunktion reagiert und den Controller vor dem Schließen in den Betriebszustand STOP versetzt hat, startet WinLC T im Betriebszustand RUN, weil WinLC T die Einstellung des Zustandes des Controllers **nicht** während des durch die Windows-Fehlfunktion verursachten Schließvorgangs auf der Compact Flash-Karte speichern kann.

Wenn Sie nicht möchten, dass der Controller nach einer Windows-Fehlfunktion im Betriebszustand RUN anläuft, müssen Sie Code in den Anlauf-OB (OB 100) einfügen, damit erkannt wird, dass WinLC T ohne Speichern des ausgeschalteten Zustandes beendet wurde und damit der Controller bei einem Neustart in den Betriebszustand STOP versetzt wird. 7.3 Puffern von Daten mit SFCs

7.3 Puffern von Daten mit SFCs

Prinzip

Mit SFC 82 (CREA_DBL), SFC 83 (READ_DBL) und SFC 84 (WRIT_DBL) können Sie bei signifikanten Ereignissen im Prozess Daten speichern. Sie möchten z. B., wenn Sie ein Rezept ändern, die Rezeptwerte im Ladespeicher ablegen, ohne neue Bausteine für das Anwenderprogramm in die CPU zu laden.

SFC 82 und SFC 84 ändern die Daten für das Anwenderprogramm, das im Ladespeicher abgelegt ist. Wenn Sie die Bausteine im Ladespeicher ablegen, müssen Sie sicherstellen, dass diese Bausteine verfügbar sind, auch wenn WinLC T den Zustand beim Herunterfahren des Controllers nicht speichern kann.

Hinweis

Wenn Sie SFC 22, SFC 23, SFC 82, SFC 83, SFC 84 oder SFC 85 nutzen, müssen Sie die Möglichkeit einer Windows-Fehlfunktion berücksichtigen.

Bei der Ausführung im STEP 7-Anwenderprogramm erstellen und aktualisieren SFC 82 (CREA_DBL), SFC 83 (READ_DBL) und SFC 84 (WRIT_DBL) Bausteine, die als Teil Ihres STEP 7-Anwenderprogramms im Ladespeicher abgelegt werden.

SFC 82, SFC 83 und SFC 84 sind asynchrone SFCs, die im Hintergrund laufen.

Hinweis

Wenn Sie SFC 82, SFC 83 oder SFC 84 aus dem Anlauf-OB (OB 100) aufrufen, führt WinLC T diese SFCs synchron aus. Dies ist ein Unterschied zum Betrieb eines Hardware-Automatisierungssystems.

Hinweis

Verwenden Sie keine Abfrageschleifen, die auf die Fertigstellung einer asynchronen SFC warten. Dies gilt insbesondere für SFC 82, SFC 83 und SFC 84.

Die asynchronen SFCs werden im Hintergrund ausgeführt. Wenn Schleifen im Anwenderprogramm enthalten sind, wird die Ausführung des OB, der die Abfrageschleife ausführt, bis zum Ende der SFC verlängert. Dies kann zu Jitter führen.

Vorsicht

Wenn das Anwenderprogramm SFC 82, SFC 83 oder SFC 84 aufruft, liest oder schreibt die SFC Daten auf der Compact Flash-Karte. Wenn Sie diese SFCs in jedem Zyklus (z. B. aus OB 1) oder aus einem zyklischen OB aufrufen, der schnell ausgeführt wird, kann das konstante Lesen und Schreiben auf der Compact Flash-Karte dazu führen, dass die Karte zerstört wird oder dass es zu Jitter kommt.

Sie sollten SFC 82, SFC 83 oder SFC 84 nur aufrufen, um ein bedeutendes Prozessereignis, z. B. ein geändertes Rezept zu erfassen.

7.4 Remanente Daten im SRAM

7.4 Remanente Daten im SRAM

Speicherverbrauch im SRAM

WinLC T speichert die remanenten Daten im SRAM der Microbox T. Dieser SRAM ist nullspannungsfest (NVRAM).

Die Größe des SRAM richtet sich nach der Auslastung der Spannungsversorgung durch andere Geräte:

Speichergröße	Zusätzliche Auslastung der Spannungsversorgung
30 KByte	Summe der USB-Geräte, maximal 6 W

Der verfügbare SRAM muss von folgenden Arten von Informationen gemeinsam genutzt werden:

Element	Speicherverbrauch	Standard
Anlaufinformationen des Systems	1 KByte	1 KByte
Diagnosepuffer	Anzahl Einträge * 20 Byte	2400 Byte (120 Einträge)
Merkerspeicher (M)	Anzahl der Merkerbytes	16 Byte (MB0 - MB15)
S7-Zeiten	Anzahl der Zeiten * 2 Byte	0 Byte (Standardmäßig ist keine Zeit remanent)
S7-Zähler	Anzahl der Zähler * 2 Byte	16 Byte (Z0 - Z15)
Mit STEP 7 konfigurierte oder mittels SFC 85 mit ATTRIB = 0x00 erstellte remanente DBs	Anzahl der KB in remanenten DBs	Konfiguration des Anwenderprogramms
Overhead für mittels SFC 85 erstellte DBs	Anzahl der DBs * 45 Byte	0 Byte

Anzeige remanenter Daten für Datenbausteine

Standardmäßig konfiguriert STEP 7 alle Datenbausteine als remanent. Im Dialogfeld "Eigenschaften" sind für einen remanenten Datenbaustein alle drei Kontrollkästchen **nicht** aktiviert:

- DB ist schreibgeschützt in der AS
- Non-Retain
- Unlinked

Wenn Sie eines dieser Kontrollkästchen aktivieren, wirken sich die SRAM-Einschränkungen nicht auf die DBs aus.

Mit SFC 85 erstellte Datenbausteine

Ein mit SFC 85 erstellter Datenbaustein ist remanent, wenn der Parameter ATTRIB = 0x00 ist. Diese Datenbausteine benötigen Speicher für den Overhead und für die remanenten Daten. Bei Datenbausteinen, die mit SFC 85 mit dem Parameter ATTRIB ungleich 0x00 erstellt wurden, benötigt der Datenbaustein nur Speicher für den Overhead.

7.5 Stromausfall

Remanente Daten

Bei einem Stromausfall werden die remanenten Daten im batteriegepufferten RAM gesichert. Mit dem nächsten Hochfahren der Microbox T stehen die gepufferten Daten wieder zur Verfügung. Die Microbox T ist sofort wieder betriebsbereit.

Windows-Applikationen

Durch Ausschalten der Microbox T im laufenden Betrieb und bei ausgeschaltetem Schreibschutz kann es zur Beschädigung der Windows-Installation kommen.

Weiterhin kann die Datenkonsistenz von Windows-Applikationen bei Spannungsausfall nicht gewährleistet werden.

In diesen Fällen empfehlen wir dringend den Einsatz einer USV-Anlage.

Vorsicht

Die Datenkonsistenz nach einem Netzausfall kann nur garantiert werden, wenn die Versorgungsspannung der Microbox T mindestens 24 V beträgt.

7.6 Unterbrechungsfreie Stromversorgung

Hinweis

Mit einer Unterbrechungsfreien Stromversorgung (USV) können Sie Ihre Microbox T mit Notstrom versorgen. Das USV-System kann sicherstellen, dass das System richtig herunterfährt und bei Stromausfall den ausgeschalteten Zustand speichert.

Weitere Informationen finden Sie in der Herstellerdokumentation zu Ihrem USV-System.

Microsoft Windows bietet ein Dialogfeld zum Einrichten der USV für Ihren Computer:

- 1. Wählen Sie den Menübefehl **Start > Settings > Control Panel**, um die Systemsteuerung anzuzeigen.
- 2. Wählen Sie "Performance and Maintenance".
- 3. Doppelklicken Sie auf das Symbol "Power Options", um das Dialogfeld "Power Options Properties" aufzurufen.
- 4. Öffnen Sie das Register "UPS" und richten Sie die Parameter für Ihr USV-System ein.
- 5. Wählen Sie "Apply" oder "OK", um die USV-Eigenschaften einzustellen.

7.7 Daten sichern

7.7 Daten sichern

Datensicherung unter Windows XP Embedded

Zur Datensicherung unter Windows XP Embedded erstellen Sie ein Image der Installation. Wir empfehlen dazu das Softwaretool " Image & Partition Creator V1.1". Dieses Tool ermöglicht die einfache Sicherung und schnelle Wiederherstellung kompletter Inhalte der Compact Flash-Karte sowie einzelner Partitionen (Images).

Die Software ist über das Siemens A&D Online-Bestellsystem bestellbar (Bestellnummer 6ES7-6AA02-0YX0). Genauere Informationen zum Image Creator entnehmen Sie der zugehörigen Produktinformation.

7.8 Lieferzustand wieder herstellen (Restore)

Restore

Mit Hilfe der Restore CD (liegt der Microbox T bei) ist eine Wiederherstellung der Original-Liefersoftware möglich. Die CD enthält die dafür notwendigen Images und die Hilfsmittel zum Übertragen des Lieferzustandes auf die Compact Flash-Karte der Microbox T. Sie haben folgende Möglichkeiten zur Wiederherstellung:

- Wiederherstellung der gesamten Compact Flash-Karte mit Laufwerk C: (System) und Laufwerk D:.
- Nur die Wiederherstellung von Laufwerk C:. Dadurch können eventuelle Anwenderdateien auf Laufwerk D: erhalten werden.

Vorsicht

Bei der Option "Nur Systempartitionen wiederherstellen" werden sämtliche Dateien auf Ihrem Laufwerk C: (System) gelöscht. Alle Daten, Benutzereinstellungen sowie vorhandene Autorisierungen und License Keys auf Laufwerk C: gehen dabei verloren. Das Laufwerk C: auf der Compact Flash-Karte wird vollständig gelöscht und mit der Original-Liefersoftware beschrieben.

Bei der Option "Festplatte komplett wiederherstellen" gehen **alle** Daten, Benutzereinstellungen sowie vorhandene Autorisierungen bzw. License Keys auf der gesamten Compact Flash-Karte verloren. Auch auf Laufwerk D: installierte Programme werden gelöscht.

Hinweis

Stellen Sie sicher, dass beim Hochlauf das richtige Boot-Laufwerk ausgewählt ist. Sie wählen das Boot-Laufwerk im Boot-Menü des BIOS-Setup.
7.8 Lieferzustand wieder herstellen (Restore)

Verweis

Auf der Restore CD wird eine Textdatei ("LIESMICH.txt") mitgeliefert, in der das Vorgehen zur Wiederherstellung des Lieferzustandes detailliert beschrieben ist. Gehen Sie daher nach der Beschreibung in dieser Datei vor.

7.8 Lieferzustand wieder herstellen (Restore)

8

Kommunikation

8.1 Schnittstellen

8.1.1 Übersicht

Übersicht

Die Microbox T hat vier Schnittstellen zur Kommunikation mit anderen Geräten:

- Ethernet-Schnittstelle zur Kommunikation mit PG, OP
- PROFIBUS DP-Schnittstelle (X1) zur Kommunikation mit PG, OP, Dezentraler Peripherie
- PROFIBUS DP(DRIVE)-Schnittstelle (X2) zur Kommunikation mit Antriebssystemen
- Peripherie-Schnittstelle (X11) mit acht digitalen Ausgängen zur Ansteuerung von Ausgangssignalen, z. B. Nockenschaltsignalen

8.1.2 Ethernet-Schnittstellen

Ethernet-Subnetz

Industrial Ethernet ist ein Kommunikationsnetz mit einer Übertragungsgeschwindigkeit von 10/100 MBit/s. Die in der Microbox T verwendeten Ethernet-Schnittstellen unterstützen den IEEE-Standard 802.3.

Eigenschaften der Ethernet-Schnittstelle

Sie können die Ethernet-Schnittstelle nutzen, um über ein PG/PC mit STEP 7 und SIMATIC NET OPC zu kommunizieren. Sie können die Ethernet-Schnittstelle jedoch nicht zur Kommunikation von WinLC T mit der dezentralen Peripherie nutzen.

Die Ethernet-Schnittstelle unterstützt folgende Protokolle/Kommunikationsarten:

- Industrial Ethernet
 - PG/OP-Kommunikation
 - S7-Kommunikation
 - S7-Routing

8.1 Schnittstellen

Zur Kommunikation über Industrial Ethernet wird die Kommunikationssoftware SOFTNET-PG benutzt.

Hinweis

Um die volle Ethernet-Funktionalität der Microbox T nutzen zu können, müssen Sie die Gesamtstation aus dem SIMATIC Manager in den Controller laden, da auch Daten für den Stationmanager geladen werden müssen. Diese Daten sind **nicht** in den SDBs für die CPU enthalten. Es reicht daher **nicht** aus, wenn Sie nur den Bausteinordner laden.

Hinweis

Die S7-Kommunikation kann mit der Kommunikationssoftware SOFTNET-PG **nicht** genutzt werden. Um die S7-Kommunikation nutzen zu können, muss eine SOFTNET-S7-Lizenz auf das System übertragen werden.

Verweis

Eine detaillierte Beschreibung der Ethernet-Schnittstellen finden Sie im Handbuch *SIMATIC NET - Twisted Pair- und Fiber Optic Netze*.

Eine Beschreibung der Kommunikationssoftware SOFTNET finden Sie im Handbuch *SIMATIC NET - Einführung SOFTNET für Industrial Ethernet.*

Siehe auch

PG/OP-Kommunikation einstellen (Seite 8-7)

8.1.3 PROFIBUS DP-Schnittstelle (X1)

Verfügbarkeit

Die Microbox T besitzt eine PROFIBUS DP-Schnittstelle (X1). PROFIBUS DP ist ein internationaler, offener Feldbusstandard, der in der europäischen Feldbusnorm EN 50170 Teil 2 festgeschrieben ist.

Die DP-Schnittstelle verfügt über die DPV1-Funktionalität.

Folgende Protokolle/Kommunikationsarten werden unterstützt:

- PROFIBUS
 - PG/OP-Komunikation
 - S7-Kommunikation
 - S7-Routing
 - DP

Einschränkungen

Es gelten folgende Einschränkungen

- Beachten Sie beim Aufbau eines DP-Netzes, dass die Microbox T die Systemfunktion "Taktsynchronität" nicht unterstützt.
- Im Gegensatz zu Hardware-Automatisierungssystemen kann bei PC-basierten Steuerungen eine Ladeoperation (L) oder eine Transferoperation (T) nicht auf Bytes aus mehreren Baugruppen zugreifen. Stellen wir uns z. B. eine Konfiguration mit zwei Ausgabebaugruppen vor, jede Baugruppe mit fünf Bytes. Baugruppe 1 wird von 10 bis 14 adressiert und Baugruppe 2 wird von 15 bis 19 adressiert. OB 1 enthält die folgenden Operationen:

L⁵ T PAW 14

In diesem Beispiel wird OB 122 aufgerufen, weil versucht wurde, auf Bytes verschiedener Baugruppen zuzugreifen. Eine Wortoperation an Adresse 14 versucht, auf die Adressen 14 und 15 zuzugreifen, was verhindert wird, weil die Adressen nicht zu einer Baugruppe gehören.

Siehe auch

PROFIBUS DPV1 (Seite 3-10)

PG/OP-Kommunikation einstellen (Seite 8-7)

8.1 Schnittstellen

8.1.4 PROFIBUS DP(DRIVE)-Schnittstelle (X2)

Eigenschaften

Die PROFIBUS DP(DRIVE)-Schnittstelle dient zum Anschluss von Antriebssystemen. Sie können Antriebssysteme nach PROFIdrive V3.0 anschließen.

Die PROFIBUS DP(DRIVE)-Schnittstelle ist als Master konfigurierbar und ermöglicht eine Übertragungsrate bis zu 12 Mbit/s (die Übertragungsrate sollte immer auf 12 Mbit/s eingestellt sein).

Die DP(DRIVE)-Schnittstelle wird von der integrierten Technologie taktsynchron (und damit auch äquidistant) angesteuert. Die integrierte Technologie lässt nur einen äquidistanten Buszyklus im Bereich von 1 ms bis 8 ms zu.

Der Controller verschickt an der PROFIBUS DP(DRIVE)-Schnittstelle ihre eingestellten Busparameter (z. B. die Baudrate). Das Verschicken der Busparameter ist in der Projektierung abschaltbar.

Über die Funktion "Routing" können Sie auf die Antriebsparameter der Slaves am DP(DRIVE)-Strang zur Inbetriebnahme und Diagnose zugreifen. An PROFIBUS DP(DRIVE) ist aus dem *STEP 7*-Anwenderprogramm keine Diagnose möglich.

Einschränkung

Wenn Sie in STEP 7 in den Eigenschaften der Microbox T "Anlauf bei Sollausbau ungleich Istausbau" abgewählt haben, läuft die Microbox T auch dann an, wenn die am DP(DRIVE) projektierten Teilnehmer fehlen.

Anschließbare Geräte

Sie können an PROFIBUS DP(DRIVE) Antriebe anschließen, z. B.:

- MICROMASTER 420/430/440 und COMBIMASTER 411
- SIMODRIVE 611 universal
- SIMODRIVE POSMO CD/SI/CA
- MASTERDRIVES MC/VC
- SINAMICS S120/150 und G130/150
- ADI4 (Analoge Antriebsschnittstelle)

Außerdem können Sie z. B. folgende Geräte anschließen:

- ET 200M mit IM 153-2 und SM 322 für zusätzliche Nockenausgabe
- ET 200S mit IM151-1

Sie finden die Komponenten, die von der Microbox T unterstützt werden, im Hardwarekatalog von *HW Konfig* im Profil "SIMATIC Technology-CPU".

Nicht anschließbare Geräte

Betreiben Sie kein PG, PC, OP, TD, ... an PROFIBUS DP(DRIVE).

Grund: Wenn Sie ein PG; PC, OP, TD, ... an DP(DRIVE) anschließen, dann verändern sich die Eigenschaften an DP(DRIVE), wie z. B. Äquidistanz, und es kann passieren, dass Antriebe dann nicht mehr synchron laufen.

8.1.5 Peripherie-Schnittstelle (X11)

Integrierte Ausgänge für Technologie

Die Peripherie-Schnittstelle bietet 8 potentialgetrennte digitale Ausgänge. Diese integrierten Ausgänge für Technologie können Sie für technologische Objekte benutzen, die Sie über *S7T Config* (Bestandteil des Optionspakets *S7-Technology*) konfigurieren.

Die Digitalausgänge sind für schnelle Nockenschaltfunktionen vorgesehen und können im STEP 7-Anwenderprogramm mit Technologiefunktionen genutzt werden.

Sie verwenden die integrierten Ausgänge für Anwendungen, bei denen es auf schnelle technologische Verarbeitung ankommt.

8.2 Kommunikationsdienste

8.2.1 Übersicht Kommunikationsdienste

Auswahl des Kommunikationsdienstes

Abhängig von Ihrer gewünschten Funktionalität müssen Sie sich für einen Kommunikationsdienst entscheiden. Die Wahl des von Ihnen gewählten Kommunikationsdienstes hat Einfluss auf:

- Die Funktionalität, die zur Verfügung stehen soll
- Die Notwendigkeit einer S7-Verbindung
- Den Zeitpunkt des Verbindungsaufbaus

Die Anwenderschnittstelle kann sehr unterschiedlich sein (SFC, SFB, ...) und ist auch von der eingesetzten Hardware abhängig.

8.2.2 PG-Kommunikation

Eigenschaften

Mit der PG-Kommunikation realisieren Sie den Datenaustausch zwischen Engineering Stationen (z. B. PG, PC) und WinLC T. Der Dienst ist über PROFIBUS- und Industrial Ethernet-Subnetze möglich. Der Übergang zwischen Subnetzen wird ebenfalls unterstützt.

Mit der PG-Kommunikation stellen wir Ihnen Funktionen zur Verfügung, die Sie zum Laden von Programmen und Konfigurationsdaten, Durchführen von Tests und Auswerten von Diagnoseinformationen benötigen. Diese Funktionen sind in WinLC T integriert.

WinLC T kann gleichzeitig mehrere Online-Verbindungen zu einem oder auch verschiedenen PGs halten.

Verweis

Weiterführende Informationen

- zu SFCs finden Sie in der *Operationsliste*, eine ausführliche Beschreibung in der *Online-Hilfe zu STEP 7* oder im Referenzhandbuch *System- und Standardfunktionen*.
- zur Kommunikation finden Sie im Handbuch Kommunikation mit SIMATIC.

8.2.3 OP-Kommunikation

Eigenschaften

Mit der OP-Kommunikation realisieren Sie den Datenaustausch zwischen Operator Stationen (z. B. OP, TD) und WinLC T. Der Dienst ist über PROFIBUS- und Industrial Ethernet-Subnetze möglich.

Mit der OP-Kommunikation stellen wir Ihnen Funktionen zur Verfügung, die Sie zum Bedienen und Beobachten benötigen. Diese Funktionen sind in WinLC T integriert.

WinLC T kann gleichzeitig mehrere Verbindungen zu einem oder mehreren OPs halten.

Verweis

Weiterführende Informationen

- zu SFCs finden Sie in der *Operationsliste*, eine ausführliche Beschreibung in der *Online-Hilfe zu STEP 7* oder im Referenzhandbuch *System- und Standardfunktionen*.
- zur Kommunikation finden Sie im Handbuch Kommunikation mit SIMATIC.

8.2.4 PG/OP-Kommunikation einstellen

Einleitung

Der Controller kann auf eine der folgenden Arten mit STEP 7 verbunden werden:

- Über die DP-Kommunikationsschnittstelle mit STEP 7 auf einem anderen Computer
- Über die IE-Kommunikationsschnittstelle mit STEP 7 auf einem anderen Computer

Zum Konfigurieren der Kommunikation zwischen dem Controller und STEP 7 auf einem anderen Computer oder Programmiergerät stellen Sie für die PG/PC-Schnittstelle als Zugangspunkt die spezifische Kommunikationsschnittstelle und die Art der Kommunikation ein.

Kommunikation über DP-Schnittstelle einstellen

Für die Kommunikation über die integrierte DP-Schnittstelle wird die Kommunikationsart PROFIBUS unterstützt.

Wenn Sie die Kommunikation über die DP-Schnittstelle wählen, sind keine weiteren Einstellungen auf der Microbox T notwendig. Nutzen Sie die Defaulteinstellungen der DP-Schnittstelle:

- Adresse: 2
- Übertragungsgeschwindigkeit: 1,5 Mbit/s

8.2 Kommunikationsdienste

Kommunikation über Ethernet-Schnittstelle einstellen

Für die Kommunikation über die Ethernet-Schnittstelle wird die Kommunikationsart Industrial Ethernet unterstützt.

Die IP-Adress-Vergabe kann statisch oder dynamisch erfolgen.

Zur statischen Adressvergabe müssen Sie Folgendes beachten:

- Für die Ethernet-Schnittstelle wird die "Local Area Connection 2" benutzt.
- Die IP-Adresse für "Local Area Connection 2" ist 192.186.0.1.
- Die Subnetzmaske ist 255.255.255.0.

Passen Sie die IP-Adressen an, falls nötig. Öffnen Sie dazu mit dem Befehl **Start > Control Panel > Network Connections > Local Area Connection 2** das Dialogfeld "Local Area Connection 2 Status" und klicken Sie "Properties", um das Dialogfeld "Local Area Connection 2 Properties" zu öffnen.

Zur dynamischen Adressvergabe erstellen Sie eine DHCP-Verbindung.

Hinweis

Verwenden Sie eine DHCP-Verbindung nur, wenn der DHCP-Server zu einer bestimmten MAC-Adresse immer die gleiche IP-Adresse liefert.

8.2.5 Routing für Test- und Diagnosefunktionen

Verweis

Weiterführende Informationen

- zu Routing finden Sie im Handbuch *Programmieren mit STEP 7* oder direkt in der Onlinehilfe von *STEP 7*.
- zur Konfiguration mit *STEP* 7 finden Sie im Handbuch *Hardware konfigurieren und Verbindungen projektieren mit STEP* 7.
- grundlegender Art finden Sie im Handbuch Kommunikation mit SIMATIC.
- zum TeleService-Adapter finden Sie im Internet unter http://www.ad.siemens.de/support. Im Eingabefeld "Suche" können Sie sich dort unter dem Suchbegriff A5E00078070 die Dokumentation downloaden.
- zu SFCs finden Sie in der *Operationsliste*, eine ausführliche Beschreibung in der *Online-Hilfe zu STEP 7* oder im Referenzhandbuch *System- und Standardfunktionen*.
- zur Kommunikation finden Sie im Handbuch Kommunikation mit SIMATIC.

8.2.6 Datenkonsistenz

Definition: Datenkonsistenz

Ein Datenbereich ist konsistent, wenn er vom Betriebssystem als zusammengehöriger Block gelesen/geschrieben werden kann. Die Daten, die zwischen Geräten zusammen übertragen werden, sollen aus einem Verarbeitungszyklus stammen und somit zusammengehören, d. h. konsistent sein.

Bei PUT/GET-Funktionen

Bei S7-Kommunikationsfunktionen, z. B. PUT/GET bzw. Schreiben/Lesen über OP-Kommunikation, die keinen Baustein im Anwenderprogramm der CPU (als Server) erfordern, muss bereits bei der Programmierung die Größe der Datenkonsistenz berücksichtigt werden.

Die PUT/GET-Funktionen der S7-Kommunikation bzw. Lesen/Schreiben von Variablen über die OP-Kommunikation werden im Zykluskontrollpunkt der CPU abgearbeitet.

8.3 Aufbau einer S7-Kommunikation

8.3.1 Kommunikationsweg einer S7-Verbindung

Kommunikationsweg

Wenn S7-Baugruppen untereinander kommunizieren, so wird zwischen den Baugruppen eine sogenannte S7-Verbindung aufgebaut. Diese Verbindung stellt den Kommunikationsweg dar.

S7-Verbindungsressourcen

Jede Kommunikationsverbindung benötigt auf der CPU S7-Verbindungsressourcen; und zwar für die Dauer des Bestehens genau dieser Verbindung.

Deshalb wird auf jeder S7-CPU eine bestimmte Anzahl von S7-Verbindungsressourcen zur Verfügung gestellt, die von verschiedenen Kommunikationsdiensten (PG-/OP-Kommunikation oder S7-Kommunikation) belegt werden.

Verbindungspunkte

Die S7-Verbindung von kommunikationsfähigen Baugruppen baut sich zwischen Verbindungspunkten auf. Die S7-Verbindung besitzt dabei immer zwei Verbindungspunkte: den aktiven und den passiven Verbindungspunkt:

- Der aktive Verbindungspunkt ist der Baugruppe zugeordnet, welche die S7-Verbindung aufbaut.
- Der passive Verbindungspunkt ist der Baugruppe zugeordnet, welche die S7-Verbindung annimmt.

Jede kommunikationsfähige Baugruppe kann dabei Verbindungspunkt einer S7-Verbindung sein. Am Verbindungspunkt belegt dann die aufgebaute Kommunikationsverbindung immer **eine** S7-Verbindung der betreffenden Baugruppe.

Durchgangspunkt

Wenn Sie die Funktionalität Routing nutzen, so wird die S7-Verbindung zwischen zwei kommunikationsfähigen Baugruppen über mehrere Subnetze aufgebaut. Diese Subnetze sind über einen Netzübergang miteinander verbunden. Die Baugruppe, die diesen Netzübergang realisiert, wird als Router bezeichnet. Der Router ist somit der Durchgangspunkt einer S7-Verbindung.

8.3.2 Belegung von S7-Verbindungen

Belegung von S7-Verbindungen

Die S7-Verbindungen auf einer kommunikationsfähigen Baugruppe können auf unterschiedliche Weise belegt werden:

- Reservierung während der Projektierung
- Belegen von Verbindungen bei Inbetriebnahmen, Test und Diagnose
- Belegen von Verbindungen f
 ür B&B-Dienste

Reservierung während der Projektierung

- Wird in *STEP 7* bei der Hardwarekonfiguration eine CPU gesteckt, so werden automatisch auf dieser CPU je eine S7-Verbindung für PG- und OP-Kommunikation reserviert.
- Für PG- und OP-Kommunikation sowie S7-Basiskommunikation kann in *STEP 7* eine Reservierung der S7-Verbindungen erfolgen.

Belegen von Verbindungen bei Inbetriebnahme, Test und Diagnose

Durch eine Online-Funktion auf der Engineering Station (PG/PC mit *STEP 7*) werden S7-Verbindungen für die PG-Kommunikation belegt:

- Ist bei der Hardwarekonfiguration in der CPU eine S7-Verbindung f
 ür PG-Kommunikation reserviert worden, so wird diese der Engineering Station zugeordnet, also nur noch belegt.
- Sind alle reservierten S7-Verbindungen f
 ür PG-Kommunikation bereits belegt und noch nichtreservierte S7-Verbindungen frei, so teilt das Betriebssystem eine noch freie Verbindung zu. Ist keine Verbindung mehr frei, so kann die Engineering Station nicht online mit der CPU kommunizieren.

Belegen von Verbindungen für B&B-Dienste

Durch eine Online-Funktion auf der B&B-Station (OP/TD/... mit *ProTool*) werden S7-Verbindungen für die OP-Kommunikation belegt:

- Ist bei der Hardwarekonfiguration in der CPU eine S7-Verbindung für OP-Kommunikation reserviert worden, so wird diese der B&B-Station zugeordnet, also nur noch belegt.
- Sind alle reservierten S7-Verbindungen f
 ür OP-Kommunikation bereits belegt und noch nichtreservierte S7-Verbindungen frei, so teilt das Betriebssystem eine noch freie Verbindung zu. Ist keine Verbindung mehr frei, so kann die B&B-Station nicht online mit der CPU kommunizieren.

Zeitliche Reihenfolge beim Belegen von S7-Verbindungen

Bei der Projektierung mit *STEP 7* werden Parametrier-Bausteine generiert, die im Hochlauf der Baugruppe gelesen werden. Dadurch werden vom Betriebssystem der Baugruppe die entsprechenden S7-Verbindungen reserviert beziehungsweise belegt. Das bedeutet zum Beispiel, dass auf eine reservierte S7-Verbindung für PG-Kommunikation keine Operator Station zugreifen kann.

Besitzt die Baugruppe (CPU) nun noch S7-Verbindungen, die nicht reserviert wurden, so können diese frei verwendet werden. Dabei erfolgt die Belegung dieser S7-Verbindungen in der Reihenfolge der Anforderungen.

Beispiel

Bei nur noch einer freien S7-Verbindung auf der CPU können Sie ein PG an den Bus hängen. Das PG kann dann mit der CPU kommunizieren. Die S7-Verbindung wird allerdings immer nur dann belegt, wenn das PG mit der CPU kommuniziert.

Hängen Sie genau dann ein OP an den Bus, wenn das PG gerade nicht kommuniziert, baut das OP eine Verbindung zur CPU auf. Da ein OP im Vergleich zum PG aber ständig seine Kommunikationsverbindung hält, können Sie nachfolgend keine Verbindung mehr über das PG aufbauen.

8.3.3 Verteilung und Verfügbarkeit von S7-Verbindungsressourcen

Verteilung der S7-Verbindungen

Die Verteilung der S7-Verbindungen der CPUs können Sie folgender Tabelle entnehmen:

Kommunikationsdienst	Verteilung
PG-Kommunikation OP-Kommunikation	Um die Belegung der S7-Verbindungen nicht nur von der zeitlichen Reihenfolge der Anmeldung verschiedener Kommunikationsdienste abhängen zu lassen, besteht für diese Dienste die Möglichkeit, S7-Verbindungen zu reservieren.
	Für die PG- und OP-Kommunikation wird jeweils mindestens eine S7-Verbindung als Vorbelegung reserviert.
	In der nachfolgenden Tabelle und in den technischen Daten der CPUs finden Sie die einstellbaren S7-Verbindungen sowie die Voreinstellungen für jede CPU. Eine "Neuverteilung" der S7-Verbindungen stellen Sie in <i>STEP</i> 7 bei der Parametrierung der CPU ein.
S7-Kommunikation	Hierfür werden die noch zur Verfügung stehenden
Sonstige Kommunikationsverbindungen	S7-Verbindungen belegt, welche nicht speziell für einen Dienst (PG-/OP-Kommunikation, S7-Basiskommunikation) reserviert wurden.
Routing von PG-Funktionen	Die CPU stellt Ihnen maximal 62 Verbindungen für Routing von PG-Funktionen zur Verfügung.
	Diese Verbindungen sind zusätzlich zu den S7-Verbindungen vorhanden.

Tabelle 8-1	Verteilung der S7-Verbindungen
-------------	--------------------------------

Verfügbarkeit der S7-Verbindungen

Die folgende Tabelle zeigt die verfügbaren S7-Verbindungen.

Tabelle 8-2	Verfügbarkeit der S	7-Verbindungen
	vonagbanton don o	i vorbinaangon

Gesamtzahl S7-Verbindungen	reserviert für		Freie S7-Verbindungen
	PG-Kommunikation	OP-Kommunikation	
64	1 bis 63, Default 1	1 bis 63, Default 1	Alle nicht reservierten S7-Verbindungen werden als freie Verbindungen angezeigt.

Verweis

Weiterführende Informationen

- zu SFCs finden Sie in der *Operationsliste*, eine ausführliche Beschreibung in der *Online-Hilfe zu STEP 7* oder im Referenzhandbuch *System- und Standardfunktionen*.
- zur Kommunikation finden Sie im Handbuch Kommunikation mit SIMATIC.

Kommunikation

8.3 Aufbau einer S7-Kommunikation

9

Zyklus- und Reaktionszeiten

9.1 Zeitmodell der WinLC T

Zeitmodell

Die integrierte Technologie arbeitet ihre Aufgaben in einzelnen Bearbeitungstakten ab. Diese Takte der integrierten Technologie wirken sich auf die Auftragsbearbeitung der Technologieobjekte für WinLC T aus. Sie müssen daher das Zeitmodell von WinLC T bei der Programmierung Ihres Anwenderprogramms berücksichtigen.

Hinweis zur Mindestzykluszeit

Die Mindestzykluszeit ist auf 0 ms voreingestellt. Um die Rechenleistung der Microbox T besser auszunutzen, sollten Sie die Mindestzykluszeit jedoch auf einen Wert \neq 0 ms einstellen.

Verweis

Detaillierte Informationen zum Zeitmodell von WinLC T finden Sie in der Online-Hilfe zu S7-Technology und im Handbuch *S7-Technology* im Abschnitt "Zeitmodell der WinLC T (Microbox T)".

Weiterführende Angaben zur Einstellung der Technologie-Systemtakte finden Sie im Abschnitt "Technologie-Systemtakte einstellen" im selben Handbuch oder in der genannten Online-Hilfe.

Zyklus- und Reaktionszeiten

9.1 Zeitmodell der WinLC T

10

Referenzinformation

10.1 Technische Daten

Allgemeine Technische Daten WinLC T auf Microbox 420-T

Al	gemeine Technische Daten		
Bestellnummer		6ES7 675-3AG30-0PA0	
Er	Erzeugnisstand		
Fir	mware-Erzeugnisstand (integrierte Technologie)	V3.2	
Fir	mware-Erzeugnisstand (CPU)	V4.2	
Βε	austeine		
DE	Зѕ		
•	Anzahl	64k - 1 (von DB1 bis DB65535)	
•	Größe	64 KByte	
FE	ls		
•	Anzahl	64k (von FB0 bis FB65535)	
•	Größe	64 KByte	
FC	ـــــــــــــــــــــــــــــــــــــ		
•	Anzahl	64k (von FC0 bis FC65535)	
•	Größe	64 KByte	
OF	Зѕ		
•	Anzahl	30	
•	Größe	64 KByte	
•	Anzahl der Freien Zyklus-OBs	1	
•	Anzahl der Uhrzeitalarm-OBs	1	
•	Anzahl der Verzögerungsalarm-OBs	1	
•	Anzahl der Weckalarme	9	
•	Anzahl der Prozessalarm-OBs	1	
•	Anzahl der Anlauf-OBs	1	
•	Anzahl der Asynchron-Fehler-OBs	7	
•	Anzahl der Synchron-Fehler-OBs	2	
•	Anzahl der Diagnosealarme	1	
•	Schachtelungstiefe		
	 je Prioritätsklasse 	24	
	 zusätzliche Schachtelungstiefe innerhalb eines Fehler-OBs 	2	

All	gemeine Technische Daten	
Bit	operationen min	0.004 us
Festounktarithmetik min		0.003 us
GI		0.004 us
70	iten/Zähler und deren Remanenz	0,001 µ0
	-Zähler	
•	Anzahl	512
•	Remanenz	einstellbar
•	Remanenz untere Grenze	70
•	Remanenz, obere Grenze	7511
•	Remanenz voreingestellt	78
•	Zählbereich	einstellhar
•	Zählbereich untere Grenze	0
•	Zählbereich obere Grenze	999
		555
•	Art	SEB
•	Anzahl	3
\$7		5
•	Anzahl	512
•	Remanenz	einstellhar
•	Remanenz untere Grenze	
•	Remanenz, ohere Grenze	T511
•	Remanenz, voreingestellt	
•	Zeithereich	oinstellher
•	Zeitbereich untere Grenze	
•	Zeitbereich, uhtere Grenze	10 ms
		0390 \$
	Art	CED
•		2 2
•		3
		20 KBute
	amanenter Datenbereich, gesamt	
Zähler, Merker), max.		
Me	erker	16384 Byte
٠	Remanenz	einstellbar
•	Remanenz voreingestellt	Von MB 0 bis MB 15
٠	Taktmerker	1 Merkerbyte
Da	tenbausteine	
•	Anzahl	64k - 1 (von DB1 bis DB65535)
•	Größe	64 KByte
•	Remanenz	einstellbar
•	Remanenz voreingestellt	ia

Allgemeine Technische Daten		
Lokaldaten		
• Einstellbar	Max. 16 KByte	
Voreingestellt	256 Byte	
Je Prioritätsklasse	Min. 20 Byte	
Adressbereiche (Ein-/Ausgänge)		
Peripherieadressbereich, gesamt	2048 Byte	
Eingänge	2000 Byte	
Ausgänge	2048 Byte	
Prozessabbild E/A		
Eingänge	2048 Byte	
Ausgänge	2048 Byte	
Eingänge, einstellbar	2048 Byte	
Ausgänge, einstellbar	2048 Byte	
Eingänge, voreingestellt	512 Byte	
Ausgänge, voreingestellt	512 Byte	
Teilprozessabbilder	Max. 15	
Digitale Kanäle	65536/65536	
Integrierte Kanäle (DI)	0	
Integrierte Kanäle (DO)e	8	
Eingänge	16000	
Ausgänge	16384	
Eingänge/Ausgänge davon zentral	0	
Analoge Kanäle	4096/4096	
Integrierte Kanäle (AI)	0	
Integrierte Kanäle (AO)e	0	
Eingänge	1000	
Ausgänge	1024	
Eingänge/Ausgänge davon zentral	0	
Adressiervolumen		
• Eingänge	2048 Byte	
Ausgänge	2048 Byte	
Adressraum je Modul	Max. 244 Byte	
Adressbereiche (Ein-/Ausgänge) der integrierten Technologie		
Peripherieadressbereich gesamt	Max. 2048 Byte/2048 Byte	
	(trei adressierbar)	
Peripherieabbild DP(DRIVE)	64/64	
Ausbau		
Anschließbare Programmiergeräte/PC	ja	
Anzahl DP-Master, integriert	2	

Allgemeine Technische Daten		
Uhr	Hardwareuhr (Echtzeituhr), gepuffert	
Betriebsstundenzähler		
Anzahl	8	
Nummer	0 bis 7	
Wertebereich	32767 h	
Granularität	1h	
remanent	ja	
Uhrzeitsynchronisation	1-	
unterstützt	nein	
auf MPI, Master	nein	
auf MPI, Slave	nein	
im AS, Master	nein	
im AS, Slave	nein	
am Ethernet über NTP	nein	
S7-Meldefunktionen		
Anzahl anmeldbarer Stationen für Meldefunktionen, max.	32	
Prozessdiagnosemeldungen	ja	
Gleichzeitig aktive Alarm-S-Bausteine, max.	200	
Test- Inbetriebnahmefunktionen		
Status/Steuern Variable	ja	
Variablen	E/A/M/DB/Z/T	
Überwachungsfunktionen		
Forcen	nein	
Status Baustein	ja	
Einzelschritt	ја	
Anzahl Haltepunkte	20	
Diagnosepuffer	ja	
Anzahl der Einträge	Max. 120	
Einstellbar	ja	
Voreingestellt	120	
Kommunikationsfunktionen		
PG/OP-Kommunikation	Ja, automatisch	
Routing	Ja, automatisch	
Globaldatenkommunikation	Nein	
S7-Kommunikation		
Als Server	Ja	
Als Client	Ja	
Nutzdaten pro Auftrag	Max. 64 KByte (bsend/breceive)	
Nutzdaten pro Auftrag, davon konsistent	Max. 64 KByte (bsend/breceive)	
S5-kompatible Kommunikation	Nein	
Standardkommunikation (FMS)	Nein	

All	gemeine Technische Daten	
Offene IE-Kommunikation		
•	TCP/IP	Nein
•	ISO-on-TCP	Nein
•	UDP	Nein
An	zahl Verbindungen	•
•	gesamt	64
•	verwendbar für PG-Kommunikation	63
•	für PG-Kommunikation reserviert	1
•	für PG-Kommunikation einstellbar	Nein
•	verwendbar für OP-Kommunikation	63
•	für OP-Kommunikation reserviert	1
•	für OP-Kommunikation einstellbar	Nein
٠	verwendbar für S7-Basiskommunikation	0
٠	verwendbar für S7-Kommunikation	62
٠	verwendbar für Routing	62
1.	Schnittstelle PROFIBUS DP	•
Fu	nktionalität	
•	MPI	Ja
•	DP-Master	Ja
•	DP-Slave	Nein
•	Punkt-zu-Punkt-Kopplung	Nein
DF	P-Master	•
An	zahl Verbindungen	Max. 14
Die	enste	
٠	PG/OP-Kommunikation	Ja
•	Routing	Ja
•	Globaldatenkommunikation	Nein
٠	S7-Kommunikation	Ja
•	S7-Kommunikation, als Client	Ja
•	S7-Kommunikation, als Server	Ja
•	Äquidistanz-Unterstützung	Nein
•	SYNC/FREEZE	Ja
•	Aktivieren/Deaktivieren von DP-Slaves	Ja
•	Direkter Datenaustausch (Querverkehr)	Ja
٠	DPV1	Ja
Üb	pertragungsgeschwindigkeit	Max. 12 MBit/s
An	zahl DP-Slaves	Max. 32
Nutzdaten pro DP-Slave		
٠	Nutzdaten pro DP-Slave	Max. 244 Byte
•	Eingänge	Max. 244 Byte
•	Ausgänge	Max. 244 Byte

Allgemeine Technische Daten		
2. Schnittstelle PROFIBUS DP(DRIVE)		
Übertragungsgeschwindigkeit		Ja
Anzahl Verbindungsressourcen		0
Funktionalität		
• MPI		Nein
DP-Master		Ja, DP (DRIVE)
DP-Slave		Nein
Punkt-zu-Punkt-Kopplung		Nein
PROFINET CBA		Nein
PROFINET IO-Controllert		Nein
DP-Master		
Anzahl Verbindungen		0
Dienste		
PG/OP-Kommunikation		Nein
Routing		Ja, z. B. auf Antriebe
Globaldatenkommunikation		Nein
S7-Kommunikation		Nein
S7-Kommunikation, als Clien	nt	Nein
S7-Kommunikation, als Server	er	Nein
Äquidistanz-Unterstützung		Ja
SYNC/FREEZE		Nein
Aktivieren/Deaktivieren von [DP-Slaves	Nein
Direkter Datenaustausch (Qu	uerverkehr)	Nein
DPV1		Ja
Übertragungsgeschwindigkeit		Max. 12 MBit/s
Anzahl DP-Slaves		Max. 32
Nutzdaten pro DP-Slave		
Nutzdaten pro DP-Slave		Max. 244 Byte
Eingänge		Max. 244 Byte
Ausgänge		Max. 244 Byte
CPU Programmierung		
Projektierungssoftware		STEP 7
Programmiersprache		
STEP 7		ab V 5.3 SP 3 und Optionspaket S7- Technology
• KOP		ја
• FUP		ja
• AWL		ja
• SCL		ja
CFC		ja
• GRAPH		ja
HiGraph®		ja

Allgemeine Technische Daten	
Software-Bibliotheken	
Prozessdiagnose	ja
Software-Regler	ja
Operationsvorrat	Siehe Kap. "Programmierung"
Klammerebenen	8
Anwenderprogrammschutz/Passwortschutz	ja
Systemfunktionen (SFC)	Siehe Kap. " Systemfunktionen (SFCs)"
Systemfunktionsbausteine (SFB)	Siehe Kap. " Systemfunktionsbausteine (SFBs)"
Zykluszeitüberwachung	
untere Grenze	1 ms
obere Grenze	6000 ms
• einstellbar	ја
voreingestellt	6000 ms

Technologiedaten

Те	chnologiedaten WinLC T auf Microbox 420-T		
Те	Technologieobjekte		
•	Gesamt	64 (Achsen, Kurvenscheiben, Nocken, Messtaster, Externe Geber)	
٠	Achsen	32 Achsen (virtuelle oder reale Achsen)	
•	Nocken	32 Nocken	
		8 Nocken können als "schnelle Nocken" an den integrierten Ausgängen der Technologie- CPU ausgegeben werden. Weitere 24 Nocken können über dezentrale Peripherie (z. B. an der ET 200M, bzw. ET 200S) realisiert werden. Am TM15 und TM17 High Feature können diese als "schnelle Nocken" realisiert werden.	
•	Kurvenscheiben	32 Kurvenscheiben	
•	Messtaster	16 Messtaster	
٠	Externe Geber	16 Externe Geber	

Technologiedaten WinLC T auf Microbox 420-T	
Technologiefunktionen	
 Maximale Anzahl gleichzeitig aktiver Aufträge 	210
 Maximale Anzahl gleichzeitig belegter Auftragsdatenfächer 	 100 Folgende Technologiefunktionen belegen (solange sie aktiv sind) jeweils ein Auftragsdatenfach: "MC_ReadPeriphery" "MC_WritePeriphery" "MC_ReadRecord" "MC_WriteRecord" "MC_WriteRecord" "MC_ReadDriveParameter" "MC_WriteDriveParameter" "MC_CamSectorAdd"

Siehe auch

Systemfunktionen (SFCs) (Seite 3-16) Systemfunktionsbausteine (SFBs) (Seite 3-20) Von WinLC T unterstützte Codebausteine (Seite 3-8)

10.2 Systemzustandsliste

10.2.1 Lesen der SZL mit SFC51

Beschreibung

STEP 7 speichert schreibgeschützte Informationen zum Controller in der Systemzustandsliste (SZL), bei der es sich um einen Satz von Teillisten handelt.

Mit der SFC 51 (RDSYSST) greifen Sie auf Einträge in der SZL zu. Sie geben die Eingangsparameter SSL_ID und den Index an, um auf die Datensätze in der Teilliste zuzugreifen. Die SFC 51 gibt einen Kopf aus zwei Wörtern und eine Teilliste bzw. einen Teil einer Teilliste aus. Der Kopf liefert die folgenden Informationen zur Teilliste:

- Das erste Wort definiert die Länge (in Bytes) eines Datensatzes der Teilliste.
- Das zweite Wort definiert die Anzahl der Datensätze in der Teilliste.

Die geforderten Informationen folgen auf den Kopf. Die Größe der Teilliste in Bytes ist die Datensatzlänge multipliziert mit der Anzahl der Datensätze.

Hinweis

Die SZL-ID und die Indexwerte werden als Hexadezimalzahlen dargestellt.

Ausführliche Informationen zur Systemzustandsliste finden Sie in der Online-Hilfe von STEP 7 oder im Referenzhandbuch *Systemsoftware für S7-300/400 System- und Standardfunktionen*.

WinLC T unterstützt die folgenden SZL-Einträge:

- Baugruppenkennung: 011, 0111, 0F11
- CPU-Eigenschaften: 0012, 0112, 0F12
- Speicherbereiche: 0013
- Systembereiche: 0014, 0F14
- Bausteinarten: 0015, 0115, 0F15
- LED-Zustand lokale Baugruppe: 0019, 0F19
- Komponentenkennung: 001C, 011C, 0F1C
- Alarmzustand: 0222
- Prozessabbildpartitionen: 0025, 0125, 0225, 0F25
- Kommunikationszustand: 0132. 0232
- LED-Zustand: 0174
- DP-Mastersystem: 0090, 0190, 0F90
- Baugruppenzustand: 0A91, 0C91, 0D91, 0F91

10.2 Systemzustandsliste

- Baugruppenträger- und Stationszustand: 0092, 0192, 0292, 0692
- Erweiterter DP-Master: 0195, 0F95
- Diagnosepuffer: 00A0, 01A0, 0FA0
- Baugruppendiagnose: 00B1, 00B3, 00B4

10.2.2 SZL_ID 0x11 (Baugruppenkennung)

0111 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0111	Baugruppenspezifische Informationen	0001: Bestellnummer, Baugruppentyp und Version 0007: Firmware-Version

10.2.3 SZL_ID 0x12 (CPU-Eigenschaften)

0012, 0112, 0F12 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0012	Alle Eigenschaften einer Baugruppe	MC7-Prozessoreinheit, Zeitsystem, Systemreaktion und MC7-Sprachbeschreibung
0112	Eine spezifische Gruppe	0000: MC7-Prozessor
	Eigenschaften	0100: Zeitsystem
		0200: Systemreaktion
		0300: MC7-Sprachbeschreibung
0F12	Nur Kopfinformationen	

10.2.4 SZL_ID 0x13 (Speicherbereiche)

0113 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0113	0113 Spezifischer Speicherbereich	0001: Anwenderspeicher
		0002: Ladespeicher integriert
		0003: Ladespeicher gesteckt
		0004: Maximal steckbarer Ladespeicher
	0005: Backup-Speicher	
		0006: Punkt-zu-Punkt-Speicher (Schattenspeicher)

10.2.5 SZL_ID 0x14 (Systembereiche)

0014, 0F14 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0014	Alle Systemspeicherberei che einer Baugruppe	Größe und andere Parameter eines jeden Bereichs im Systemspeicher
0F14	Nur Kopfinformationen	

10.2.6 SZL_ID 0x15 (Bausteintypen)

0015 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0015	Alle Bausteintypen einer Baugruppe	Maximale Anzahl und Größe eines jeden Bausteintyps

10.2.7 SZL_ID 0x19 (LED-Zustand lokale Baugruppe)

0019, 0F19 (hexadezimal)

Hinweis

SZL_ID 0x19 unterstützt lokale, nicht redundante CPUs. Sie können die SZL_ID 0x19 nur dann mit einer redundanten H-CPU verwenden, wenn sich die H-CPU in einem nicht redundanten Betriebszustand befindet. Verwenden Sie die SZL_ID 0x74, um auf Informationen redundanter H-CPUs zuzugreifen.

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0019	Alle LEDs der lokalen Baugruppe	Zustand aller LEDs
0F19	Nur Kopfinformationen	

10.2.8 SZL_ID 0x1C (Komponentenkennung)

001C, 011C, 0F1C (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
001C	Alle Informationen einer Komponente	Steuerungsname, Baugruppenname, Baugruppenvariable, Copyright, Seriennummer, Projekt-ID, Baugruppentyp und Herstellerinformationen
011C	Spezifisches	0001: Name der Steuerung
	Element der	0002: Name der Baugruppe
	Komponente	0003: Baugruppenvariable
		0004: Copyright-Eintrag
		0005: Seriennummer
		0007: Baugruppentyp
		0009: Hersteller- und Profilkennung
		000B: Ortskennzeichen (OKZ) einer Baugruppe
0F1C	Nur Kopfinformationen	

10.2.9 SZL_ID 0x22 (Alarmzustand)

0222 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0222	Startereignis für einen spezifischen OB	OB-Nummer: Startereignis und Uhrzeit des angeforderten OB

10.2 Systemzustandsliste

10.2.10 SZL_ID 0x25 (Prozessabbildpartitionen)

0025, 0125, 0225, 0F25 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0025	Alle Prozessabbildpartit ionen	Prozessabbildpartitionen aller OBs, die in die Baugruppe geladen wurden
0125	Prozessabbildpartit ion eines spezifischen OB	Partitionsnummer: für die Partition konfigurierter OB
0225	OBs, die einer spezifischen Prozessabbildpartit ion zugewiesen sind	OB-Nummer: Partition, die dem OB zugewiesen ist
0F25	Nur Kopfinformationen	

10.2.11 SZL_ID 0x32 (Kommunikationszustand)

0132, 0232 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0132	Spezifischer	0001: Anzahl und Art der Verbindungen
	Parametersatz	0002: Konfigurierte Verbindungen
		0003: Bedienerschnittstelle
		0004: Schutzstufe und Position Betriebsartenschalter
		0005: Diagnose
		0006: Punkt-zu-Punkt-Zustandsdaten
		0008: Zeitsystem
		000A: Baudrate
0232	Parameter eines redundanten Systems (H-CPU)	0004: Schutzstufe und Position Betriebsartenschalter

10.2.12 SZL_ID 0x74 (LED-Zustand)

0174 (hexadezimal)

Hinweis

Mit der SZL_ID 0x74 greifen Sie auf Informationen zu den LEDs aller Baugruppen zu, einschließlich redundanter H-CPUs. Siehe auch SZL_ID 0x19.

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0174	Spezifische LED	0002: INTF (Interner Fehler)
		0003: EXTF (Externer Fehler)
		0004: RUN (Run)
		0005: STOP (Stop)
		0006: FRCE (Force)
		0008: BATF (Batterieausfall)
		000B: BUSF1 (Störung Interface 1)
		000C: BUSF2 (Störung Interface 2)
		0012: BUSF3 (Störung Interface 3)
		0013: BUSF4 (Störung Interface 4)

10.2.13 SZL_ID 0x90 (DP-Mastersystem)

0090, 0190, 0F90 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0090	Alle im Netz konfigurierten und in die Baugruppe geladenen DP-Master	DP-Masterkennung, Adresse und Attribute aller DP-Master
0190	Spezifischer DP-Master	DP-Masterkennung: Adresse und Attribute
0F90	Nur Kopfinformationen	

10.2 Systemzustandsliste

10.2.14 SZL_ID 0x91 (Baugruppenzustand)

0591, 0991, 0C91, 0D91, 0E91 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0591	Baugruppenstatusinformatione n aller Interfaces der Hostbaugruppe	Irrelevant
0991	Baugruppenstatusinformatione n aller Interfaces der Hostbaugruppe im angegebenen Baugruppenträger	Baugruppenträger oder ID des DP-Master-Systems
0C91	Spezifische Baugruppe, angegeben durch die logische Basisadresse	Logische Basisadresse: Funktionen und Parameter der angegebenen Baugruppe
0D91	Spezifische Station, angegeben durch Baugruppenträger/Station, durch DP-Master-Kennung oder durch DP-Master- Kennung mit Stationsnummer	Stationskennung: Funktionen und Parameter aller Baugruppen der angegebenen Station
0E91	Baugruppenstatusinformatione n aller zugewiesenen Baugruppen	Irrelevant

10.2.15 SZL_ID 0x92 (Baugruppenträger- und Stationszustand)

0092, 0192, 0292, 0692 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0092 Erwarteter Zustand der Stationen eines DP-Master	0: lokaler DP-Master	
	eines DP-Master	DP-Masterkennung: spezifischer DP-Master
0192 Konfiguration und Aktivierungszustand der Stationen eines DP-Master	0: lokaler DP-Master	
	Aktivierungszustand der Stationen eines DP-Master	DP-Masterkennung: spezifischer DP-Master
0292 Tatsäch Statione	Tatsächlicher Zustand der	0: lokaler DP-Master
	Stationen eines DP-Master	DP-Masterkennung: spezifischer DP-Master
0692	OK-Zustand der Stationen eines DP-Master	0: lokaler DP-Master
		DP-Masterkennung: spezifischer DP-Master

10.2.16 SZL_ID 0x95 (Erweitertes DP-Mastersystem)

0195, 0F95 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
0195	Spezifischer DP-Master	DP-Masterkennung: Eigenschaften der Stationen des angegebenen DP-Master (z.B. DP-Modus, äquidistanter Modus und Zyklus, Taktsynchronisierung und Übertragungsgeschwindigkeit)
0F95	Nur Kopfinformationen	

10.2.17 SZL_ID 0xA0 (Diagnosepuffer)

00A0, 01A0, 0FA0 (hexadezimal)

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
00A0	Alle Einträge im Diagnosepuffer	Ereignisinformationen für alle im Diagnosepuffer aufgeführten Ereignisse
01A0	Jüngste Einträge im Diagnosepuffer	Nummer: Ereignisinformationen der angegebenen Anzahl von Einträgen im Diagnosepuffer
0FA0	Nur Kopfinformationen	

10.2.18 SZL_ID 00B1, 00B3 und 00B4 (Baugruppendiagnose)

00B1, 00B2, 00B4 (hexadezimal)

Hinweis

Die Informationen richten sich nach dem jeweiligen Baugruppentyp.

SZL_ID	Teilliste	Index und Inhalt des Datensatzes
00B1	Diagnoseinformationen (4 Bytes) einer spezifischen Baugruppe, angegeben durch die logische Basisadresse	Logische Basisadresse: Erste 4 Bytes der Diagnoseinformationen
00B3	Alle Diagnoseinformationen einer spezifischen Baugruppe, angegeben durch die logische Basisadresse	Logische Basisadresse: Vollständige Diagnoseinformationen
00B4	Spezifischer DP-Slave, angegeben durch die konfigurierte Diagnoseadresse	Diagnoseadresse: Standard-Diagnoseinformationen einer DP-Station
A

EGB-Richtlinien

A.1 EGB-Richtlinien

Was bedeutet EGB?

Alle elektronischen Baugruppen sind mit hochintegrierten Bausteinen oder Bauelementen bestückt. Diese elektronischen Bauteile sind technologisch bedingt sehr empfindlich gegen Überspannungen und damit auch gegen Entladungen statischer Elektrizität.

Für diese elektrostatisch gefährdeten Bauteile/Baugruppen hat sich die Kurzbezeichnung EGB eingebürgert. Daneben finden Sie die international gebräuchliche Bezeichnung ESD für electrostatic sensitive device.

Elektrostatisch gefährdete Baugruppen werden gekennzeichnet mit dem folgenden Symbol:

Vorsicht

Elektrostatisch gefährdete Baugruppen können durch Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Diese Spannungen treten bereits auf, wenn Sie ein Bauelement oder elektrische Anschlüsse einer Baugruppe berühren, ohne elektrostatisch entladen zu sein. Der Schaden, der an einer Baugruppe aufgrund einer Überspannung eintritt, kann meist nicht sofort erkannt werden, sondern macht sich erst nach längerer Betriebszeit bemerkbar.

A.1 EGB-Richtlinien

Aufladung

Jede Person, die nicht leitend mit dem elektrischen Potential ihrer Umgebung verbunden ist, kann elektrostatisch aufgeladen sein.

Im folgenden Bild sehen Sie die Maximalwerte der elektrostatischen Spannungen, auf die eine Bedienungsperson aufgeladen werden kann, wenn Sie mit den im Bild angegebenen Materialien in Kontakt kommt. Diese Werte entsprechen den Angaben der IEC 801-2.

Bild A-1 Elektrostatische Spannungen, die auf eine Person aufgeladen werden können

Grundsätzliche Schutzmaßnahmen gegen Entladungen statischer Elektrizität

Auf gute Erdung achten:

Achten Sie beim Umgang mit elektrostatisch gefährdeten Baugruppen auf gute Erdung von Mensch, Arbeitsplatz und Verpackung. Auf diese Weise vermeiden Sie statische Aufladung.

• Direkte Berührung vermeiden:

Berühren Sie elektrostatisch gefährdete Baugruppen grundsätzlich nur dann, wenn dies unvermeidbar ist (z. B. bei Wartungsarbeiten). Fassen Sie die Baugruppen so an, dass Sie weder Baustein-Pins noch Leiterbahnen berühren. Auf diese Weise kann die Energie der Entladungen empfindliche Bauteile nicht erreichen und schädigen.

Wenn Sie an einer Baugruppe Messungen durchführen müssen, dann entladen Sie Ihren Körper vor den durchzuführenden Tätigkeiten. Berühren Sie dazu geerdete metallische Gegenstände. Verwenden Sie nur geerdete Messgeräte.

B

Liste der Abkürzungen

B.1 Abkürzungen

Abkürzungsverzeichnis

Abkürzung	Begriff	Erklärung
AS	Automatisierungssystem	
BIOS	Basic Input Output System	Grundlegendes Eingabe- /Ausgabesystem. Ein Satz von wichtigen Softwareroutinen, die nach dem Start des Computers einen Hardwaretest durchführen, das Betriebssystem laden und Routinen für den Datentransfer zwischen den Hardwarekomponenten zur Verfügung stellen.
CE	Communauté Européenne	CE-Zeichen
CF	Compact Flash-Karte	
CLK	Clock-Impuls	Taktsignal für Steuerungen
СОМ	Communications Port	Bezeichnung für die serielle Schnittstelle.
СР	Communication Processor	Kommunikationsrechner
CPU	Central Processing Unit	Zentraleinheit. Herzstück des Computers, das für die Durchführung des Datenverarbeitungsprozesses zuständig ist. Die jeweils benötigten Daten und Programme erhält der Prozessor vom Arbeitsspeicher.
DP	Dezentrale Peripherie	
DOS	Disc Operating System	Betriebssystem ohne grafische Benutzeroberfläche
EGB	Elektrostatisch gefährdete Bauteile	
EN	Europa Norm	
EPROM/EEPROM	Eraseable Programmable Read-Only Memory/Electrically Eraseable Programmable Read-Only Memory	Steckbares Modul mit EPROM-/EEPROM-Bausteinen. In ihm können z. Bsp. S5-/S7-Anwender- programme permanent gespeichert werden. Dieses programmierte Modul wird dann in vorbereitete Einbauplätze der PCs/Automatisierungsgeräte/ Automatisierungssysteme gesteckt.
	I Ennanced Write Filter	

Liste der Abkürzungen

B.1 Abkürzungen

Abkürzung	Begriff	Erklärung
HMI	Human Machine Interface	Benutzerschnittstelle
НТТР	Hypertext Transfer Protocol	Protokoll zur Datenübertragung im Internet
HW	Hardware	
I/O	Input/Output	Daten Ein-/Ausgabe bei Computern
IEC	International Electronical Commission	
IP	Ingress Protection	Schutzart
ISA	Industrial Standard Architecture	Bus für Erweiterungsbaugruppe. Von IBM 1981 eingeführtes Bussystem für den PC, das den Datenfluss zwischen dem Prozessor und den Schnittstellen sowie Steckkarten regelt.
LED	Light Emmitting Diode	Leuchtdiode
MS-DOS	Microsoft Disc Operating System	Ein Standard-Betriebssystem für Personalcomputer. Es ist ein Ein- Benutzer-System.
PC	Personal Computer	
PCI	Peripheral Component Interconnect	Schneller Erweiterungsbus
PCMCIA	Personal Computer Memory Card International Association	Vereinigung von ca. 450 Mitgliedsfirmen der Computerbranche mit dem Hauptziel, weltweit Standards für die Miniaturisierung und flexible Nutzung von PC-Erweiterungskarten festzulegen und dem Markt damit eine Basistechnologie zur Verfügung zu stellen.
PG	Programmiergerät	Programmiergerät in spezieller industrietauglicher und kompakter Ausführung. Ein PG ist komplett ausgestattet für die Programmierung der SIMATIC-Automatisierungs- systeme.
SID	Security Identifier	Datenstruktur zur eindeutigen Identifizierung eines Geräts in einem Netzwerk
SOM	Safecard On Motherboard (SOM)	Safecard On Motherboard besteht aus Überwachungsbausteinen auf der Grundplatine, einem Treiber und dem SOM-Programm. Hiermit werden Funktionen zur Überwachung von verschiedenen Temperaturen und dem Programmablauf (Watchdog) zur Verfügung gestellt.
SW	Software	
WD	Watchdog	Programmierüberwachung mit Fehlererkennung und -meldung.
www	World Wide Web	
ZKP (BeSy)	Zykluskontrollpunkt des Betriebssystems	

Glossar

Anlaufart

Die Anlaufart legt fest, welcher OB ausgeführt wird, wenn der Controller vom Betriebszustand STOP in den Betriebszustand RUN wechselt. Mit dem Anlauf-OB können Sie Ihr STEP 7-Anwenderprogramm und die Variablen initialisieren. WinLC T unterstützt nur die Anlaufart Warmstart (OB 100).

Anwenderprogramm

Das Anwenderprogramm enthält alle Anweisungen und Deklarationen sowie Daten für die Signalverarbeitung, durch die eine Anlage oder ein Prozess gesteuert werden kann. Es ist einer programmierbaren Baugruppe zugeordnet und kann in kleinere Einheiten (Bausteine) strukturiert werden.

Applikation

Eine Applikation ist ein direkt auf dem Betriebssystem MS-DOS/Windows aufsetzendes Programm. Applikationen auf dem PC/PG sind z.B. STEP 7, STEP 7-Micro/WIN.

Arbeitsspeicher

Der Arbeitsspeicher ist ein RAM-Speicher, auf den der Prozessor während der Programmbearbeitung des Anwenderprogramms zugreift.

Ausführungslast

Prozentsatz der CPU-Zeit, der vom Controller genutzt wird.

Ausführungszeit

Die Ausführungszeit ist die tatsächliche Zeit, die der Controller benötigt, um alle Befehle des STEP 7-Anwenderprogramms einmal zu bearbeiten. Dies umfasst auch die Bearbeitung des OB 1 und das Aktualisieren der Ein- und Ausgänge.

Backup

Ein Duplikat eines Programms, eines Datenträgers oder eines Datenbestandes, das entweder zu Archivierungszwecken oder als Schutz vor dem Verlust unersetzbarer Daten angelegt wird, falls die Arbeitskopie beschädigt oder zerstört wird. Einige Anwendungen erzeugen automatisch Sicherungskopien von Datendateien und verwalten dabei sowohl die aktuelle Version als auch die Vorgängerversion auf der Festplatte.

Baud

Maßeinheit für die Schrittgeschwindigkeit bei Signalübertragungen. Sie gibt die Anzahl der übertragenen Signalzustände pro Sekunde an. Treten nur zwei Zustände auf, entspricht ein Baud einer Übertragungsrate von 1 Bit/s.

Betriebssystem

Zusammenfassende Bezeichnung für alle Funktionen, welche die Ausführung der Benutzerprogramme, die Verteilung der Betriebsmittel auf die einzelnen Benutzerprogramme und die Aufrechterhaltung der Betriebsart in Zusammenarbeit mit der Hardware steuern und überwachen (z.B. Windows XP Embedded).

Cache

Pufferspeicher, in dem häufig angeforderte Daten zum Zwecke einer hohen Zugriffsgeschwindigkeit zwischengespeichert (gepuffert) werden.

CE-Kennzeichnung

Communauté Européene (Warensiegel der Europäischen Union)

CP

Kommunikationsprozessor: Bei der Microbox T eine integrierte Industrial Ethernet-Schnittstelle.

Datenkonsistenz

Ein Datenbereich ist konsistent, wenn er vom Betriebssystem als zusammengehöriger Block gelesen/geschrieben werden kann. Die Daten, die zwischen Geräten zusammen übertragen werden, sollen aus einem Verarbeitungszyklus stammen und somit zusammengehören, d. h. konsistent sein.

DP-Schnittstelle

Ein Siemens CP oder eine im Siemens PC integrierte PROFIBUS-Schnittstelle für die PROFIBUS DP-Kommunikation.

EGB-Richtlinie

Richtlinie für den Umgang mit elektrostatisch gefährdeten Bauteilen.

Ethernet

Lokales Netzwerk (Bus-Struktur) für Text- und Datenkommunikation mit einer Datenübertragungsrate von 10/100/1000 Mbit/s.

Freier Zyklus

Der freie Zyklus besteht aus den grundlegenden Aufgaben für Prioritätsklasse 1: Schreiben der Ausgänge, Lesen der Eingänge, Ausführen des OB 1 und Beenden der Ruhezeitanforderung vor dem Starten des nächsten freien Zyklus. Der Controller führt diese Aufgaben mit der niedrigsten internen Prioritätsstufe für die Ausführung der OBs aus. (In diesem Zusammenhang bezieht sich die Prioritätsstufe auf OB-Prioritätsklassen und nicht auf die Prioritätsstufe des Betriebssystems.)

Index

Nummerierter Steckplatz in der PC-Station oder im virtuellen Baugruppenträger, der ein PC-basiertes Automatisierungssystem darstellt. Der Controller belegt einen Index. Andere Komponenten können andere Index-Steckplätze belegen.

Industrial Ethernet

Physikalische Kommunikationsschicht für die Kommunikation mit STEP 7, S7-CPUs, PGs, OPs und S7-Anwendungen.

Jitter

Differenz zwischen der tasächlichen Zykluszeit und der konfigurierten Mindestzykluszeit.

Kaltstart

Ein Startvorgang, der mit dem Einschalten des Computers beginnt. Typischerweise führt das System bei einem Kaltstart zunächst einige grundlegende Hardwareüberprüfungen aus und lädt anschließend das Betriebssystem von der Festplatte in den Arbeitsspeicher -> booten

Kommunikationsschnittstelle

In der Microbox T integrierte PROFIBUS-Schnittstelle oder Industrial Ethernet-Schnittstelle, die WinLC T für die Kommunikation nutzt.

Komponenten-Konfigurator

Werkzeug, aufrufbar aus der Task-Leiste, zum Konfigurieren der PC-Station: In WinLC RTX umfasst dies die WinLC-Eigenschaften, die Zuweisungen der Interfaces und die Diagnose für einige DP-Schnittstellen.

Maximale Ausführungslast

Maximaler Prozentsatz der CPU-Auslastung für den Controller. Die Ausführungsüberwachung berechnet mit Hilfe dieses Werts und der maximalen Ausführungszeit die erzwungene Ruhezeit.

Neustart

Der Neustart eines bereits im Betrieb befindlichen Computers, der ohne Abschalten der Stromversorgung durchgeführt wird (Ctrl + Alt + Del).

Organisationsbaustein (OB)

Schnittstelle zwischen dem Betriebssystem und dem STEP 7-Anwenderprogramm. Die Organisationsbausteine werden vom Betriebssystem aufgerufen und steuern die zyklische und alarmgesteuerte Programmausführung, das Anlaufverhalten des Controllers und die Fehlerbearbeitung.

Passwort

Eine eindeutige Zeichenfolge, die vom Benutzer als Identifikationscode eingegeben wird.

PCMCIA

Personal Computer Memory Card International Association. Vereinigung von ca. 450 Mitgliedsfirmen der Computerbranche mit dem Hauptziel weltweit Standards für die Miniaturisierung und flexible Nutzung von PC-Erweiterungskarten festzulegen und dem Markt damit eine Basistechnologie zur Verfügung zu stellen.

PC-Station

Darstellung eines software-basierten virtuellen Baugruppenträgers, der ein PC-basiertes Automatisierungssystem definiert.

PG/OP-Kommunikation

Kommunikation zwischen WinLC T und anderen S7-Anwendungen wie Programmiergeräten, Bedienpanels und S7-Automatisierungssystemen. WinLC RTX unterstützt PROFIBUS und Industrial Ethernet für die PG/OP-Kommunikation.

Priorität

Die Priorität einer Anwendung legt die Reihenfolge fest, in der das Betriebssystem eine Anwendung in Beziehung zu anderen Anwendungen, die auf dem Computer bearbeitet werden, ausführt oder unterbricht. Eine Anwendung mit einer höheren Priorität unterbricht die Ausführung einer Anwendung mit niedrigerer Priorität. Nachdem die Anwendung mit der höheren Priorität beendet ist, nimmt die Anwendung mit der niedrigeren Priorität die Bearbeitung wieder auf. Je höher die Nummer, desto höher die Prioritätsklasse.

Prioritätsklasse

Die Prioritätsklasse legt die Reihenfolge fest, in der der Controller die einzelnen Abschnitte des STEP 7-Anwenderprogramms ausführt. Organisationsbausteine (OBs) werden in Prioritätsklassen unterteilt. OBs mit höheren Prioritäten unterbrechen OBs mit niedrigeren Prioritäten. Der freie Zyklus (OB 1) hat die niedrigste Priorität. In STEP 7 können Sie die Prioritätsklasse für einen OB ändern. Je höher die Nummer, desto höher die Prioritätsklasse.

PROFIBUS

Process **Fi**eld **Bus** (Standard-Bussystem für Prozessanwendungen). Physikalische Kommunikationsschicht für die PROFIBUS DP-Kommunikation mit Ein- und Ausgängen oder für die S7-Kommunikation mit STEP 7, S7-CPUs und S7-Anwendungen.

PROFIBUS DP

Protokoll für die Kommunikation mit der dezentralen Peripherie im Netzwerk.

Recovery CD

enthält die DOS-Tools zum Einrichten von Festplatten und das Windows-Betriebssystem.

Remanenz

Remanent ist ein Speicherbereich, dessen Inhalt auch nach Netzausfall und nach einem Übergang von STOP nach RUN erhalten bleibt. Der nichtremanente Bereich der Merker, Zeiten und Zähler ist nach Netzausfall und nach einem STOP-RUN-Übergang rückgesetzt.

Remanent können sein:

- Merker
- S7-Zeiten
- S7-Zähler
- Datenbereiche

S7-Kommunikation

Kommunikation mittels S7-Kommunikationsfunktionen zwischen Hardware- und Software-Steuerungen im Netzwerk.

S7-Routing

Kommunikation zwischen S7-Automatisierungssystemen, S7-Anwendungen oder PC-Stationen in verschiedenen Subnetzen über einen oder mehrere Netzwerkknoten, die als Router fungieren. Die Konfiguration wird in NetPro vorgenommen.

Schnittstelle

Verbindung zwischen einzelnen Hardware-Elementen wie Automatisierungsgerät, PCs, Programmiergerät, Drucker oder Bildschirm durch physikalische Steckverbindungen (Kabel).

STEP 7

Programmiersoftware zur Erstellung von Anwenderprogrammen für SIMATIC S7-Steuerungen.

STEP 7-Anwenderprogramm

Anwendungsprogramm, das mit STEP 7 erstellt und zur Ausführung in den Controller geladen wird. Es umfasst alle Organisationsbausteine (z.B. OB 1 oder OB 35) und die anderen Codebausteine, die aufgerufen werden, einschließlich Funktionen (FCs), Systemfunktionen (SFCs), Funktionsbausteine (FBs) und Systemfunktionsbausteine (SFBs).

Systemfunktion (SFC)

Vorprogrammierte Funktion, die als Teil des Betriebssystems des Controllers integriert ist und nicht als Teil des STEP 7-Anwenderprogramms geladen wird. Sie können eine SFC in Ihrem STEP 7-Anwenderprogramm aufrufen. Wie eine Funktion (FC) ist eine SFC ein Baustein "ohne Speicher".

Systemfunktionsbaustein (SFB)

Funktionsbaustein, der als Teil des Betriebssystems des Controllers integriert ist und nicht als Teil des STEP 7-Anwenderprogramms geladen wird. Wie ein Funktionsbaustein (FB) ist ein SFB ein Baustein "mit Speicher". Sie müssen für den SFB auch einen Instanz-Datenbaustein (DB) erstellen. Der Instanz-DB wird dann als Teil des STEP 7-Anwenderprogramms in den Controller geladen.

Uhrzeitsynchronisation

Fähigkeit zur Übertragung einer Standardsystemzeit von einer einzelnen Quelle an alle Geräte im System, so dass deren Uhren entsprechend der Standardzeit eingestellt werden können.

Warmstart

Unter einem Warmstart versteht man einen Wiederanlauf nach einem Programmabbruch. Das Betriebssystem wird neu geladen und gestartet. Mit dem Hotkey CTRL+ ALT+ DEL wird ein Warmstart durchgeführt.

Windows

Microsoft Windows ist eine grafische Benutzeroberfläche mit Multitasking-Eigenschaften. Windows stellt eine standardisierte Schnittstelle auf der Basis von Menüs und Bildschirmfenstern dar und erlaubt die Bedienung über ein Zeigegerät wie beispielsweise eine Maus.

Windows-Fehlfunktion

Abbruch des Windows-Betriebssystems, wonach der schwere Fehler auf blauem Hintergrund auf dem Bildschirm angezeigt wird. Eine solche Windows-Fehlfunktion wird auch "Blue Screen" genannt.

Zyklus

Der Zyklus umfasst das Schreiben der Ausgänge, das Lesen der Eingänge, die Ausführung des OB 1 und allen anderen OBs und das Erfüllen der Ruhezeitanforderung.

Zykluszeit

Zeit, die benötigt wird, um den gesamten Zyklus auszuführen. Die Zykluszeit umfasst die Ausführung des OB 1 und die Mindestruhezeit.

Index

A

Abkürzungen, B-1 ADI4 analoge Antriebsschnittstelle, 8-4 Alarm-OBs von WinLC T unterstützt, 3-13 Alarmzustand, 10-13 Allgemeine technische Daten, 10-1 Analoge Antriebsschnittstelle ADI4, 8-4 Anlauf des Controllers, 7-4 Anschließbare Geräte, 8-4 Antriebsschnittstelle analog, 8-4 Anwenderprogramme archivieren, 4-15 Arbeitsspeicher, 7-2 Archivdatei, 4-15 Archivdatei wiederherstellen, 4-15 asynchrone SFCs, 3-18 Aufbau S7-Kommunikation, 8-10 Autostart-Funktion, 4-17

В

Baugruppendiagnose, 10-18 Baugruppenkennung, 10-11 Baugruppenträger- und Stationszustand, 10-16 Bausteintypen, 10-12 Bearbeitungsablauf Datenbaustein, 1-5 Belegung S7-Verbindung, 8-11 Betriebsartenschalter, 4-4 Betriebsparameter, 3-7 Betriebsstundenzähler, 3-23 Betriebszustand, 4-4

С

Codebausteine von WinLC T unterstützt, 3-8 COMBIMASTER, 8-4 Controller Bedienung, 4-1 Funktionen, 4-1 Controller außer Betrieb setzen, 4-9 Controller Panel, 4-3 Optionen zum Einrichten, 4-16 Spracheinstellung, 4-17 Zugriffsschutz, 4-19 Controller Panel schließen, 4-9 Controller starten, 4-9 CPU Load, 4-11 CPU-Eigenschaften, 10-11

D

Daten puffern, 7-6 Daten sichern, 7-10 Datenkonsistenz, 8-9 Diagnose, 8-4 SOM (Safecard On Motherboard), 5-2 Diagnoseinformationen, 4-13 Diagnosepuffer, 4-13, 10-17 DP-Mastersystem, 10-15 DP-Schnittstelle, 8-3 DPV1-Funktionalität, 3-10 Durchgangspunkt, 8-10

Ε

EGB-Richtlinien, A-1 Einleitung, 1-2 Elektrostatisch gefährdete Bauelemente, A-1 Enhanced Write Filter, 5-4 Erweitertes DP-Mastersystem, 10-17 Erweiterungen, 1-4 ET 200M, 8-4 Ethernet-Schnittstellen, 8-1 EWF (Enhanced Write Filter), 5-4

F

Fehler-OBs von WinLC T unterstützt, 3-14 Fehlfunktion der Motion Control Betrieb von WinLC T, 3-30

G

Geräte anschließbar, 8-4 nicht anschließbar, 8-4

Н

Hardware in STEP 7 konfigurieren, 3-4 Hardwarekatalog, 8-4

I

Index, 2-5 Initialisieren der integrierten Technologie, 3-1 Integrierte Technologie, 1-5

J

Jitter, 3-12

Κ

Kommunikation, 8-1 Datenkonsistenz, 8-9 Kommunikationsdienste, 8-6 OP-Kommunikation, 8-7 PG-Kommunikation, 8-6 Kommunikationsschnittstelle, 2-4 Kommunikationsweg S7-Verbindung, 8-10 Kommunikationszustand, 10-14 Komponentenkennung, 10-13 Konfiguration der Microbox 420-T, 1-3 Kundenspezifische Software, 1-4

L

Laden von Speicher, 7-4 Ladespeicher, 7-1 LED-Zustand, 10-15 LED-Zustand lokale Baugruppe, 10-12 Lieferzustand wieder herstellen, 7-10

Μ

MASTERDRIVES, 8-4 Max. S7 PLC Load, 4-12 Mindestzykluszeit, 9-1 Motion Control Fehlfunktion, 3-30 MRES, 4-8

Ν

Nicht anschließbare Geräte, 8-4

0

OBs für freien Zyklus, 3-12 für Warmstart, 3-12 von WinLC T unterstützt, 3-11 OPC-Server, 6-1 Konfiguration in den Controller laden, 6-9 mit Controller verbinden, 6-10 zur Hardware-Konfiguration hinzufügen, 6-4 zur Konfiguration von WinLC T hinzufügen, 6-4 zur PC-Station hinzufügen, 6-2 OP-Kommunikation, 8-7 Organisationsbausteine (OBs) für freien Zyklus, 3-12 für Warmstart, 3-12 von WinLC T unterstützt, 3-11

Ρ

Panel, 4-1 Passwort ändern, 4-21 Gültigkeit, 4-20 PC-basierte Steuerung, 1-3 PC-Station, 2-2 konfigurieren in HW Konfig, 3-5 Peripherie-Schnittstelle, 8-5 PG/OP-Kommunikation einstellen, 8-7 PG-Kommunikation, 8-6 Portieren STEP 7-Programm für CPU317T, 3-24 Step 7-Programm für WinAC RTX, 3-24 PROFIBUS DP(DRIVE), 8-4 PROFIBUS DPV1, 3-10 PROFIdrive, 8-4 Prozessabbildpartitionen, 10-14

Prozessalarm Reaktionszeit, 8-9 Puffern von Daten, 7-6 PUT/GET-Funktion, 8-9

R

remanente Daten, 7-2 Reservierung S7-Verbindung, 8-11 Restore, 7-10 Richtlinien EGB-Richtlinien, A-1 RUN verbotene Funktionen, 4-5 zulässige Funktionen, 4-5

S

S7-Bausteine, 3-8 S7-Kommunikation Aufbau, 8-10 S7-Kommunikationsfunktionen, 3-9 S7-Verbindung Belegung, 8-11 Kommunikationsweg, 8-10 Reservierung, 8-11 Verfügbarkeit, 8-13 Verteilung, 8-12 S7-Verbindungen zeitliche Reihenfolge beim Belegen, 8-12 Safecard on Motherboard (SOM), 5-2 Schnittstellen, 8-1 DP, 8-3 DP(DRIVE), 8-4 Ethernet, 8-1 Peripherie, 8-5 SFBs von WinLC T unterstützt, 3-20 SFC 82, 3-19 SFC 83, 3-19 SFC 84, 3-19 SFCs Abweichungen im Zyklus, 3-19 asynchron, 3-18 Betriebsstundenzähler, 3-23 Systemuhr, 3-23 von WinLC T unterstützt, 3-16 Sichern von Daten, 7-10 SIMATIC-Funktionalität von WinLC T unterstützt, 1-4

SIMODRIVE 611 universal, 8-4 SIMODRIVE POSMO, 8-4 SINAMICS, 8-4 SOM, 5-2 Speicher laden, 7-4 Speicherbereiche, 10-11 Speicherbereiche für Ein- und Ausgänge, 7-2 Spracheinstellung, 4-17 Statusanzeige BATF, 4-6 BUSF1. 4-6 BUSF2, 4-6 EXTF, 4-6 FRCE, 4-6 INTF, 4-6 ON, 4-6 RUN, 4-6 STOP, 4-6 Statusanzeigen, 4-5 beim Hochlauf, 4-6 blinkend, 4-6 STEP 7 Hardware konfigurieren, 3-4 STEP 7 verwenden, 3-1 STOP zulässige Funktionen, 4-5 Stromausfall remanente Daten, 7-9 Windows-Applikationen, 7-9 Systemaufbau, 1-3 Systembereiche, 10-12 Systemfunktionen (SFCs) von WinLC T unterstützt, 3-16 Systemfunktionsbausteine (SFBs) von WinLC T unterstützt, 3-20 Systemspeicher, 7-2 Systemtakte Technologie, 5-1 Systemuhr, 3-23 Systemzustandsliste (SZL), 10-9 SZL lesen, 10-9

Т

T-Cycle Config, 4-11 Technische Daten, 10-1 CPU 315T-2 DP, 10-8 Technische Daten WinLC T auf Microbox 420-T, 10-1 Technologie-Datenbaustein Bearbeitungsablauf, 1-5 Technologie-Datenbausteine, 3-14 Technologiefunktionen, 10-8 von WinLC T unterstützt, 3-21 Technologieobjekte, 10-7 Technologie-Systemtakte, 5-1 Tuning Panel, 4-10

U

Überwachungsfunktionen, 5-2 Unterbrechungsfreie Stromversorgung (USV), 7-9 Urlöschen, 4-8 USV, 7-9

V

Verbindungspunkt, 8-10 Verfügbarkeit S7-Verbindung, 8-13 Verteilung S7-Verbindung, 8-12

W

Weckalarm-OBs, 3-14 WinAC ODK Schnittstellen unter WinLC T, 3-25 Windows-Fehlfunktion Betrieb von WinLC T, 3-28 Controller starten, 7-5 Neustart von WinLC T, 3-30 Windows-Taskleiste Symbol für WinLC T, 4-4 WinLC T Symbol in Windows-Taskleiste, 4-4 WinLC T außer Betrieb setzen, 4-9 WinLC T starten, 4-9 WinLC T Timing, 4-11

Х

X1, 8-3 X11, 8-5 X2, 8-4

Ζ

Zeitauflösung, 3-12 Zeitmodell, 9-1 Zugriffsschutz, 4-19 Zykluszeit Histogramm, 4-11