

PID control

SIMATIC

S7-1200, S7-1500
PID control

Function Manual

12/2014
A5E35300227-AA

Preface

Documentation guide
 1

Principles for control
 2

Configuring a software
controller

 3

Using PID_Compact
 4

Using PID_3Step
 5

Using PID_Temp
 6

Using PID basic functions
 7

Instructions
 8

Service & Support
 A

 Siemens AG
Division Digital Factory
Postfach 48 48
90026 NÜRNBERG
GERMANY

A5E35300227-AA
Ⓟ 11/2014 Subject to change

Copyright © Siemens AG 2014.
All rights reserved

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

 DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

 CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

 NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

 WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

PID control
Function Manual, 12/2014, A5E35300227-AA 3

Preface

Purpose of the documentation
This documentation will support you in configuring and programming control tasks with the
S7-1200 and S7-1500 automation systems.

Basic knowledge required
The following knowledge is required in order to understand the documentation:

● General knowledge of automation technology

● Knowledge of the industrial automation system SIMATIC

● Experience of working with STEP 7 (TIA Portal)

Validity of the documentation
This documentation applies to the use of SW controllers on the CPUs of automation systems
S7-1200 and S7-1500 together with STEP 7 (TIA Portal). Additional SW controllers that are
not covered in this documentation are available for the use of S7-300 and S7-400 with
STEP 7 (TIA Portal). Section Overview of software controller (Page 39) gives a complete
overview of all SW controllers in STEP 7 (TIA Portal) and their possible applications.

Conventions
Please observe notes marked as follows:

 Note

The notes contain important information on the product described in the documentation, on
the handling of the product or on part of the documentation to which particular attention
should be paid.

Additional assistance
● Information on the offers of our Technical Support are available in the appendix

Service & Support (Page 493).

● The range of technical documentation for the individual SIMATIC products and
automation systems is available on the Internet (http://www.siemens.com/simatic-tech-
doku-portal).

● The online catalog and the ordering system are available on the Internet
(http://mall.automation.siemens.com).

http://www.siemens.com/simatic-tech-doku-portal
http://www.siemens.com/simatic-tech-doku-portal
http://mall.automation.siemens.com/

Preface

 PID control
4 Function Manual, 12/2014, A5E35300227-AA

PID control
Function Manual, 12/2014, A5E35300227-AA 5

Table of contents

 Preface .. 3

1 Documentation guide ... 13

2 Principles for control .. 15

2.1 Controlled system and actuators .. 15

2.2 Controlled systems ... 17

2.3 Characteristic values of the control section .. 19

2.4 Pulse controller ... 22

2.5 Response to setpoint changes and disturbances ... 26

2.6 Control Response at Different Feedback Structures .. 28

2.7 Selection of the controller structure for specified controlled systems 36

2.8 PID parameter settings ... 38

3 Configuring a software controller ... 39

3.1 Overview of software controller .. 39

3.2 Steps for the configuration of a software controller .. 41

3.3 Add technology objects ... 42

3.4 Configure technology objects ... 43

3.5 Call instruction in the user program .. 45

3.6 Downloading technology objects to device ... 46

3.7 Commissioning software controller ... 47

3.8 Save optimized PID parameter in the project ... 48

3.9 Comparing values ... 49
3.9.1 Comparison display and boundary conditions .. 49
3.9.2 Comparing values ... 50

3.10 Parameter view ... 52
3.10.1 Introduction to the parameter view ... 52
3.10.2 Structure of the parameter view .. 55
3.10.2.1 Toolbar .. 55
3.10.2.2 Navigation ... 56
3.10.2.3 Parameter table .. 57
3.10.3 Opening the parameter view ... 59
3.10.4 Default setting of the parameter view ... 60

Table of contents

 PID control
6 Function Manual, 12/2014, A5E35300227-AA

3.10.5 Working with the parameter view ... 62
3.10.5.1 Overview .. 62
3.10.5.2 Filtering the parameter table .. 63
3.10.5.3 Sorting the parameter table ... 64
3.10.5.4 Transferring parameter data to other editors ... 64
3.10.5.5 Indicating errors ... 65
3.10.5.6 Editing start values in the project ... 66
3.10.5.7 Status of configuration (offline) .. 68
3.10.5.8 Monitoring values online in the parameter view ... 69
3.10.5.9 Create snapshot of monitor values .. 70
3.10.5.10 Modifying values .. 71
3.10.5.11 Comparing values .. 73
3.10.5.12 Applying values from the online program as start values .. 75
3.10.5.13 Initializing setpoints in the online program ... 76

3.11 Display instance DB of a technology object. .. 77

4 Using PID_Compact .. 79

4.1 Technology object PID_Compact... 79

4.2 PID_Compact V2.. 80
4.2.1 Configuring PID_Compact V2 .. 80
4.2.1.1 Basic settings ... 80
4.2.1.2 Process value settings ... 84
4.2.1.3 Advanced settings .. 85
4.2.2 Commissioning PID_Compact V2 .. 93
4.2.2.1 Pretuning .. 93
4.2.2.2 Fine tuning ... 95
4.2.2.3 "Manual" mode ... 97

4.3 PID_Compact V1.. 98
4.3.1 Configuring PID_Compact V1 .. 98
4.3.1.1 Basic settings ... 98
4.3.1.2 Process value settings ... 102
4.3.1.3 Advanced settings .. 103
4.3.2 Commissioning PID_Compact V1 .. 110
4.3.2.1 Commissioning ... 110
4.3.2.2 Pretuning .. 111
4.3.2.3 Fine tuning ... 113
4.3.2.4 "Manual" mode ... 115

 Table of contents

PID control
Function Manual, 12/2014, A5E35300227-AA 7

5 Using PID_3Step ... 117

5.1 Technology object PID_3Step .. 117

5.2 PID_3Step V2 ... 118
5.2.1 Configuring PID_3Step V2 .. 118
5.2.1.1 Basic settings .. 118
5.2.1.2 Process value settings .. 123
5.2.1.3 Actuator settings ... 124
5.2.1.4 Advanced settings ... 127
5.2.2 Commissioning PID_3Step V2 .. 131
5.2.2.1 Pretuning ... 131
5.2.2.2 Fine tuning .. 133
5.2.2.3 Commissioning with manual PID parameters ... 135
5.2.2.4 Measuring the motor transition time ... 136

5.3 PID_3Step V1 ... 139
5.3.1 Configuring PID_3Step V1 .. 139
5.3.1.1 Basic settings .. 139
5.3.1.2 Process value settings .. 144
5.3.1.3 Actuator settings ... 145
5.3.1.4 Advanced settings ... 148
5.3.2 Commissioning PID_3Step V1 .. 152
5.3.2.1 Commissioning ... 152
5.3.2.2 Pretuning ... 153
5.3.2.3 Fine tuning .. 154
5.3.2.4 Commissioning with manual PID parameters ... 155
5.3.2.5 Measuring the motor transition time ... 156

6 Using PID_Temp .. 159

6.1 Technology object PID_Temp ... 159

6.2 Configuring PID_Temp ... 160
6.2.1 Basic settings .. 160
6.2.1.1 Introduction ... 160
6.2.1.2 Controller type ... 161
6.2.1.3 Setpoint ... 161
6.2.1.4 Process value ... 162
6.2.1.5 Heating and cooling output value ... 162
6.2.1.6 Cascade .. 165
6.2.2 Process value settings .. 166
6.2.2.1 Process value limits .. 166
6.2.2.2 Scale process value .. 166
6.2.3 Output settings .. 167
6.2.3.1 Basic settings output ... 167
6.2.3.2 Output value limits and output value scaling .. 170
6.2.4 Advanced settings ... 174
6.2.4.1 Process value monitoring ... 174
6.2.4.2 PWM limits .. 175
6.2.4.3 PID parameters ... 177

Table of contents

 PID control
8 Function Manual, 12/2014, A5E35300227-AA

6.3 Commissioning PID_Temp .. 184
6.3.1 Commissioning ... 184
6.3.2 Pretuning .. 185
6.3.3 Fine tuning ... 188
6.3.4 "Manual" mode ... 192
6.3.5 Substitute setpoint ... 193
6.3.6 Cascade commissioning .. 193

6.4 Cascade control with PID_Temp .. 194
6.4.1 Introduction .. 194
6.4.2 Program creation ... 196
6.4.3 Configuration .. 198
6.4.4 Commissioning ... 200
6.4.5 Substitute setpoint ... 201
6.4.6 Operating modes and fault response ... 201

6.5 Multi-zone controlling with PID_Temp ... 202

7 Using PID basic functions .. 205

7.1 CONT_C ... 205
7.1.1 Technology object CONT_C .. 205
7.1.2 Configure controller difference CONT_C ... 206
7.1.3 Configure the controller algorithm CONT_C .. 207
7.1.4 Configure the output value CONT_C ... 208
7.1.5 Programming a pulse controller ... 209
7.1.6 Commissioning CONT_C ... 210

7.2 CONT_S ... 211
7.2.1 Technology object CONT_S .. 211
7.2.2 Configure controller difference CONT_S ... 212
7.2.3 Configuring control algorithm CONT_S ... 212
7.2.4 Configure manipulated value CONT_S .. 213
7.2.5 Commissioning CONT_S ... 213

7.3 TCONT_CP .. 214
7.3.1 Technology object TCONT_CP .. 214
7.3.2 Configure TCONT_CP ... 215
7.3.2.1 Controller difference ... 215
7.3.2.2 Controlling algorithm .. 216
7.3.2.3 Manipulated value continual controller .. 218
7.3.2.4 Manipulated value pulse controller .. 219
7.3.3 Commissioning TCONT_CP .. 222
7.3.3.1 Optimization of TCONT_CP ... 222
7.3.3.2 Requirements for an optimization .. 225
7.3.3.3 Possibilities for optimization ... 227
7.3.3.4 Tuning result .. 230
7.3.3.5 Parallel tuning of controller channels ... 231
7.3.3.6 Fault descriptions and corrective measures .. 232
7.3.3.7 Performing pretuning ... 235
7.3.3.8 Performing fine tuning .. 236
7.3.3.9 Cancelling pretuning or fine tuning .. 236
7.3.3.10 Manual fine-tuning in control mode .. 237
7.3.3.11 Performing fine tuning manually .. 238

 Table of contents

PID control
Function Manual, 12/2014, A5E35300227-AA 9

7.4 TCONT_S ... 239
7.4.1 Technology object TCONT_S ... 239
7.4.2 Configure controller difference TCONT_S .. 240
7.4.3 Configure controller algorithm TCONT_S ... 241
7.4.4 Configure manipulated value TCONT_S .. 241
7.4.5 Commissioning TCONT_S .. 242

8 Instructions .. 243

8.1 PID_Compact .. 243
8.1.1 New features of PID_Compact ... 243
8.1.2 Compatibility with CPU and FW .. 246
8.1.3 CPU processing time and memory requirement PID_Compact V2.x 247
8.1.4 PID_Compact V2 .. 248
8.1.4.1 Description of PID_Compact V2 ... 248
8.1.4.2 PID_Compact V2 mode of operation .. 251
8.1.4.3 Input parameters of PID_Compact V2 .. 254
8.1.4.4 Output parameters of PID_Compact V2 ... 255
8.1.4.5 In/out parameters of PID_Compact V2 ... 256
8.1.4.6 Static tags of PID_Compact V2 .. 257
8.1.4.7 Changing the PID_Compact V2 interface ... 265
8.1.4.8 Parameters State and Mode V2 ... 267
8.1.4.9 Parameter ErrorBits V2 ... 271
8.1.4.10 Tag ActivateRecoverMode V2 .. 273
8.1.4.11 Tag Warning V2 .. 275
8.1.5 PID_Compact V1 .. 276
8.1.5.1 Description of PID_Compact V1 ... 276
8.1.5.2 Input parameters of PID_Compact V1 .. 280
8.1.5.3 Output parameters of PID_Compact V1 ... 281
8.1.5.4 Static tags of PID_Compact V1 .. 282
8.1.5.5 Parameters State and sRet.i_Mode V1 .. 287
8.1.5.6 Parameter Error V1 ... 291
8.1.5.7 Parameter Reset V1 ... 292
8.1.5.8 Tag sd_warning V1 ... 294
8.1.5.9 Tag i_Event_SUT V1 ... 294
8.1.5.10 Tag i_Event_TIR V1 .. 295

8.2 PID_3Step ... 296
8.2.1 New features of PID_3Step .. 296
8.2.2 Compatibility with CPU and FW .. 298
8.2.3 CPU processing time and memory requirement PID_3Step V2.x .. 298
8.2.4 PID_3Step V2 ... 300
8.2.4.1 Description of PID_3Step V2 .. 300
8.2.4.2 Mode of operation of PID_3Step V2 ... 306
8.2.4.3 Changing the PID_3Step V2 interface .. 309
8.2.4.4 Input parameters of PID_3Step V2 ... 310
8.2.4.5 Output parameters of PID_3Step V2 .. 312
8.2.4.6 In-out parameters of PID_3Step V2 .. 313
8.2.4.7 Static tags of PID_3Step V2 ... 314
8.2.4.8 Parameters State and Mode V2 ... 324
8.2.4.9 Parameter ErrorBits V2 ... 329
8.2.4.10 Tag ActivateRecoverMode V2 .. 332
8.2.4.11 Tag Warning V2 .. 334

Table of contents

 PID control
10 Function Manual, 12/2014, A5E35300227-AA

8.2.5 PID_3Step V1 ... 335
8.2.5.1 Description PID_3Step V1 ... 335
8.2.5.2 Operating principle PID_3Step V1 ... 341
8.2.5.3 PID_3Step V1 input parameters .. 344
8.2.5.4 PID_3Step V1 output parameters .. 346
8.2.5.5 PID_3Step V1 static tags ... 348
8.2.5.6 Parameter State and Retain.Mode V1 ... 356
8.2.5.7 Parameter ErrorBits V1 .. 364
8.2.5.8 Parameter Reset V1 .. 365
8.2.5.9 Tag ActivateRecoverMode V1 ... 366
8.2.5.10 Tag Warning V1 ... 368
8.2.5.11 Tag SUT.State V1 .. 369
8.2.5.12 Tag TIR.State V1 ... 369

8.3 PID_Temp .. 370
8.3.1 Compatibility with CPU and FW ... 370
8.3.2 CPU processing time and memory requirement PID_Temp V1 .. 370
8.3.3 PID_Temp .. 371
8.3.3.1 Description of PID_Temp ... 371
8.3.3.2 Functional description of PID_Temp .. 376
8.3.3.3 Input parameters of PID_Temp .. 382
8.3.3.4 Output parameters of PID_Temp ... 384
8.3.3.5 PID_Temp in/out parameters ... 386
8.3.3.6 PID_Temp static tags ... 388
8.3.3.7 PID_Temp state and mode parameters ... 416
8.3.3.8 PID_Temp ErrorBits parameter .. 424
8.3.3.9 PID_Temp ActivateRecoverMode tag .. 427
8.3.3.10 PID_Temp Warning tag .. 430
8.3.3.11 PwmPeriode tag ... 431

8.4 PID basic functions .. 433
8.4.1 CONT_C ... 433
8.4.1.1 Description CONT_C ... 433
8.4.1.2 How CONT_C works .. 434
8.4.1.3 CONT_C block diagram ... 436
8.4.1.4 Input parameter CONT_C .. 437
8.4.1.5 Output parameters CONT_C ... 438
8.4.2 CONT_S ... 439
8.4.2.1 Description CONT_S .. 439
8.4.2.2 Mode of operation CONT_S ... 440
8.4.2.3 Block diagram CONT_S ... 441
8.4.2.4 Input parameters CONT_S .. 442
8.4.2.5 Output parameters CONT_S .. 443
8.4.3 PULSEGEN .. 444
8.4.3.1 Description PULSEGEN .. 444
8.4.3.2 Mode of operation PULSEGEN ... 445
8.4.3.3 Mode of operation PULSEGEN ... 448
8.4.3.4 Three-step control .. 449
8.4.3.5 Two-step control... 452
8.4.3.6 Input parameters PULSEGEN ... 453
8.4.3.7 Output parameter PULSEGEN .. 454

 Table of contents

PID control
Function Manual, 12/2014, A5E35300227-AA 11

8.4.4 TCONT_CP ... 455
8.4.4.1 Description TCONT_CP .. 455
8.4.4.2 Mode of operation TCONT_CP ... 456
8.4.4.3 Operating principle of the pulse generator ... 465
8.4.4.4 Block diagram TCONT_CP ... 468
8.4.4.5 Input parameters TCONT_CP .. 470
8.4.4.6 Output parameters TCONT_CP .. 471
8.4.4.7 In/out parameters TCONT_CP ... 472
8.4.4.8 Static variables TCONT_CP ... 473
8.4.4.9 Parameter STATUS_H ... 478
8.4.4.10 Parameters STATUS_D .. 479
8.4.5 TCONT_S ... 480
8.4.5.1 Description TCONT_S .. 480
8.4.5.2 Mode of operation TCONT_S ... 481
8.4.5.3 Block diagram TCONT_S ... 485
8.4.5.4 Input paramters TCONT_S ... 487
8.4.5.5 Output parameters TCONT_S .. 488
8.4.5.6 In/out parameters TCONT_S .. 488
8.4.5.7 Static variables TCONT_S .. 489
8.4.6 Integrated system functions .. 491
8.4.6.1 CONT_C_SF ... 491
8.4.6.2 CONT_S_SF ... 491
8.4.6.3 PULSEGEN_SF .. 492

A Service & Support .. 493

 Index .. 497

Table of contents

 PID control
12 Function Manual, 12/2014, A5E35300227-AA

PID control
Function Manual, 12/2014, A5E35300227-AA 13

 Documentation guide 1

Introduction
This modular documentation of the SIMATIC products covers diverse topics concerning your
automation system.

The complete documentation for the S7-1200 and S7-1500 systems consists of the
respective system manuals, function manuals and device manuals.

Furthermore, the information system of the TIA Portal (online help) offers you assistance in
configuring and programming your automation system.

Overview of the documentation on the topic of PID control
The table below includes additional documentation which supplements this description on
the topic of PID control.

Table 1- 1 Documentation on the topic of PID control

Topic Documentation Most important contents
STEP 7
(TIA Portal)

STEP 7 online help Configuring and programming
with the engineering software

System descrip-
tion

System manual
S7-1500 Automation System
(http://support.automation.siemens.com/WW/
view/en/59191792)

• Application planning
• Installation
• Wiring
• Commissioning

System manual
S7 -1200 Programmable controller
(http://support.automation.siemens.com/WW/
view/en/91696622)

• Application planning
• Installation
• Wiring
• Commissioning
• Programming concepts
• Communication
• Technical specifications

System manual
ET 200SP Distributed I/O system
(http://support.automation.siemens.com/WW/
view/en/58649293)

• Application planning
• Installation
• Connecting
• Commissioning

http://support.automation.siemens.com/WW/view/en/59191792
http://support.automation.siemens.com/WW/view/en/59191792
http://support.automation.siemens.com/WW/view/en/91696622
http://support.automation.siemens.com/WW/view/en/91696622
http://support.automation.siemens.com/WW/view/en/58649293
http://support.automation.siemens.com/WW/view/en/58649293

Documentation guide

 PID control
14 Function Manual, 12/2014, A5E35300227-AA

SIMATIC manuals
All current manuals for the SIMATIC products are available for download free of charge from
the Internet (http://www.siemens.com/automation/service&support).

My Documentation Manager
The My Documentation Manager is used to combine entire manuals or only parts of these to
your own manual.
You can export the manual as PDF file or in a format that can be edited later.

You can find My Documentation Manager on the Internet
(http://support.automation.siemens.com/WW/view/en/38715968).

Applikations & Tools
Applications & Tools supports you with various tools and examples for solving your
automation tasks. Solutions are shown in interplay with multiple components in the system -
separated from the focus in individual products.

You can find Applications & Tools on the Internet
(http://support.automation.siemens.com/WW/view/en/20208582).

CAx Download Manager
The CAx Download Manager is used to access the current product data for your CAx or CAe
systems.

You configure your own download package with a few clicks.

In doing so you can select:

● Product images, 2D dimension drawings, 3D models, internal circuit diagrams, EPLAN
macro files

● Manuals, characteristics, operating manuals, certificates

● Product master data

You can find the CAx Download Manager on the Internet
(http://support.automation.siemens.com/WW/view/en/42455541).

http://www.siemens.com/automation/service&support
http://support.automation.siemens.com/WW/view/en/38715968
http://support.automation.siemens.com/WW/view/en/20208582
http://support.automation.siemens.com/WW/view/en/42455541

PID control
Function Manual, 12/2014, A5E35300227-AA 15

 Principles for control 2
2.1 Controlled system and actuators

Controlled system
Room temperature control by means of a heating system is a simple example of a controlled
system. A sensor measures the room temperature and transfers the value to a controller.
The controller compares the current room temperature with a setpoint and calculates an
output value (manipulated variable) for heating control.

A properly set PID controller reaches this setpoint as quickly as possible and then holds it a
constant value. After a change in the output value, the process value often changes only with
a time delay. The controller has to compensate for this response.

Actuators
The actuator is an element of the controlled system and is influenced by the controller. Its
function modifies mass and energy flows.

The table below provides an overview of actuator applications.

Application Actuator
Liquid and gaseous mass flow Valve, shutter, gate valve
Solid mass flow, e.g., bulk material Articulated baffle, conveyor, vibrator channel
Flow of electrical power Switching contact, contactor, relay, thyristor

Variable resistor, variable transformer, transistor

Principles for control
2.1 Controlled system and actuators

 PID control
16 Function Manual, 12/2014, A5E35300227-AA

Actuators are distinguished as follows:

● Proportional actuators with constant actuating signal

These elements set degrees of opening, angular positions or positions in proportion to
the output value. The output value has an analog effect on the process within the control
range.

Actuators in this group include spring-loaded pneumatic drives, as well as motorized
drives with position feedback for which a position control system is formed.

An continuous controller, such as PID_Compact, generates the output value.

● Proportional actuators with pulse-width modulated signal

These actuators are used to generate the output of pulses with a length proportional to
the output value within the sampling time intervals. The actuator - e.g. a heating resistor
or cooling apparatus - is switched on in isochronous mode for durations that differ
depending on the output value.

The actuating signal can assume unipolar "On" or "Off" states, or represent bipolar states
such as "open/close", "forward/backward", "accelerate/brake".

The output value is generated by a two-step controller such as PID_Compact with pulse-
width modulation.

● Actuators with integral action and three-step actuating signal

Actuators are frequently operated by motors with an on period that is proportional to the
actuator travel of the choke element. This includes elements such as valves, shutters,
and gate valves. In spite of their different design, all of these actuators follow the effect of
an integral action at the input of the controlled system.

A step controller, such as PID_3Step. generates the output value.

 Principles for control
 2.2 Controlled systems

PID control
Function Manual, 12/2014, A5E35300227-AA 17

2.2 Controlled systems
The properties of a controlled system can hardly be influenced as these are determined by
the technical requirements of the process and machinery. Acceptable control results can
only be achieved by selecting a suitable controller type for the specific controlled system and
adapting the controller to the time response of the controlled system. Therefore, it is is
indispensable for the configuration of the proportional, integral and derivative actions of the
controller to have precise knowledge of the type and parameters of the controlled system.

Controlled system types
Controlled systems are classified based on their time response to step changes of the output
value.

We distinguish between the following controlled systems:

● Self-regulating controlled systems

– Proportional-action controlled systems

– PT1 controlled systems

– PT2 controlled systems

● Non-self-regulating controlled systems

● Controlled systems with and without dead time

Self-regulating controlled systems
Proportional-action controlled systems

In proportional-action controlled systems, the process value follows the output value almost
immediately. The ratio between the process value and output value is defined by the
proportional Gain of the controlled system.

Examples:

● Gate valve in a piping system

● Voltage dividers

● Step-down function in hydraulic systems

PT1 controlled systems

In a PT1 controlled system, the process value initially changes in proportion to the change of
the output value. The rate of change of the process value is reduced as a function of the time
until the end value is reached, i.e., it is delayed.

Examples:

● Spring damping system

● Charge of RC elements

● Water container that is heated with steam.

The time constants are often identical for heating and cooling processes, or for charging and
discharge characteristics. With different time constants, controlling is clearly more complex.

Principles for control
2.2 Controlled systems

 PID control
18 Function Manual, 12/2014, A5E35300227-AA

PT2 controlled systems

In a PT2 controlled system, the process value does not immediately follow a step change of
the output value, i.e., it increases in proportion to the positive rate of rise and then
approaches the setpoint at a decreasing rate of rise. The controlled system shows a
proportional response characteristic with second order delay element.

Examples:

● Pressure control

● Flow rate control

● Temperature control

Non-self-regulating controlled systems
Non-self-regulating controlled systems have an integral response. The process value
approaches an infinite maximum value.

Example:

● Liquid flow into a container

Controlled systems with dead time
A dead time always represents the runtime or transport time that has to expire before a
change to the system input can be measured at the system output.

In controlled systems with dead time, the process value change is delayed by the amount of
the dead time.

Example:

● Conveyor

 Principles for control
 2.3 Characteristic values of the control section

PID control
Function Manual, 12/2014, A5E35300227-AA 19

2.3 Characteristic values of the control section

Determining the time response from the step response
Time response of the controlled system can be determined based on the time characteristic
of process value x following a step change of output value y. Most controlled systems are
self-regulating controlled systems.

The time response can be determined by approximation using the variables Delay time Tu,
Recovery time Tg and Maximum value Xmax. The variables are determined by applying
tangents to the maximum value and the inflection point of the step response. In many
situations, it is not possible to record the response characteristic up to the maximum value
because the process value cannot exceed specific values. In this case, the rate of rise vmax is
used to identify the controlled system (vmax = Δx/Δt).

Principles for control
2.3 Characteristic values of the control section

 PID control
20 Function Manual, 12/2014, A5E35300227-AA

The controllability of the controlled system can be estimated based on the ratio Tu/Tg, or Tu ×
vmax/Xmax . Rule:

Process type Tu / Tg Suitability of the controlled system for controlling

I < 0,1 can be controlled well
II 0.1 to 0.3 can still be controlled
III > 0,3 difficult to control

Influence of the dead time on the controllability of a controlled system
A controlled system with dead time and recovery reacts as follows to a jump of the output
value.

Tt Dead time
Tu Delay time
Tg Recovery time
y Output value
x Process value

The controllability of a self-regulating controlled system with dead time is determined by the
ratio of Tt to Tg. Tt must be small compared to Tg. Rule:

Tt/Tg ≤ 1

 Principles for control
 2.3 Characteristic values of the control section

PID control
Function Manual, 12/2014, A5E35300227-AA 21

Response rate of controlled systems
Controlled systems can be judged on the basis of the following values:

Tu < 0.5 min, Tg < 5 min = fast controlled system

Tu > 0.5 min, Tg > 5 min = slow controlled system

Parameters of certain controlled systems

Physical
quantity

Controlled system Delay time Tu Recovery time Tg Rate of rise vmax

Temperature Small electrically heated furnace 0.5 to 1 min 5 to 15 min Up to 60 K/min.
Large electrically heated annealing fur-
nace

1 to 5 min 10 to 20 min Up to 20 K/min.

Large gas-heated annealing furnace 0.2 to 5 min 3 to 60 min 1 to 30 K/min
Distillation tower 1 to 7 min 40 to 60 min 0.1 to 0.5° C/s
Autoclaves (2.5 m3) 0.5 to 0.7 min 10 to 20 min Not specified
High-pressure autoclaves 12 to 15 min 200 to 300 min Not specified
Steam superheater 30 s to 2.5 min 1 to 4 min 2°C/s
Injection molding machines 0.5 to 3 min 3 to 30 min 5 to 20 K/min
Extruders 1 to 6 min 5 to 60 min
Packaging machines 0.5 to 4 min 3 to 40 min 2 to 35 K/min
Room heating 1 to 5 min 10 to 60 min 1° C/min

Flow rate Pipeline with gas 0 to 5 s 0.2 to 10 s Not relevant
Pipeline with liquid None None

Pressure Gas pipeline None 0.1 s Not relevant
Drum boiler with gas or oil firing None 150 s Not relevant
Drum boiler with impact grinding mills 1 to 2 min 2 to 5 min Not relevant

Vessel level Drum boiler 0.6 to 1 min Not specified 0.1 to 0.3 cm/s
Speed Small electric drive None 0.2 to 10 s Not relevant

Large electric drive None 5 to 40 s Not relevant
Steam turbine None Not specified 50 min–1

Voltage Small generators None 1 to 5 s Not relevant
Large generators None 5 to 10 s Not relevant

Principles for control
2.4 Pulse controller

 PID control
22 Function Manual, 12/2014, A5E35300227-AA

2.4 Pulse controller

Two-step controllers without feedback
Two-step controllers have the state "ON" and "OFF" as the switching function. This
corresponds to 100% or 0% output. This behavior generates a sustained oscillation of
process value x around setpoint w.

The amplitude and duration of the oscillation increase in proportion to the ratio between the
delay time Tu and recovery time Tg of the controlled system. These controllers are used
mainly for simple temperature control systems (such as electrically directly heated furnaces)
or as limit-value signaling units.

The following diagram shows the characteristic of a two-step controller

① ON
② OFF
Yh Control range
w Setpoint

 Principles for control
 2.4 Pulse controller

PID control
Function Manual, 12/2014, A5E35300227-AA 23

The following diagram shows the control function of a two-step controller

① Response characteristic without controller
② Response characteristic with two-step controller
Tu Delay time
Tg Recovery time
XSd Switching difference

Principles for control
2.4 Pulse controller

 PID control
24 Function Manual, 12/2014, A5E35300227-AA

Two-step controllers with feedback
The behavior of two-step controllers in the case of controlled systems with larger delay
times, such as furnaces where the functional space is separated from the heating, can be
improved by the use of electronic feedback.

The feedback is used to increase the switching frequency of the controller, which reduces
the amplitude of the process value. In addition, the control-action results can be improved
substantially in dynamic operation. The limit for the switching frequency is set by the output
level. It should not exceed 1 to 5 switches per minute at mechanical actuators, such as
relays and contactors. In the case of voltage and current outputs with downstream thyristor
or Triac controllers high switching frequencies can be selected that exceed the limit
frequency of the controlled system by far.

Since the switching pulses can no longer be determined at the output of the controlled
system, results comparable with those of continuous controllers are obtained.

The output value is generated by pulse-width modulation of the output value of a continuous
controller.

Two-step controllers with feedback are used for temperature control in furnaces, at
processing machines in the plastics, textile, paper, rubber and foodstuff industries as well as
for heating and cooling devices.

 Principles for control
 2.4 Pulse controller

PID control
Function Manual, 12/2014, A5E35300227-AA 25

Three-step controllers
Three-step controllers are used for heating / cooling. These controllers have two switching
points as their output. The control-action results are optimized through electronic feedback
structures. Fields of applications for such controllers are heating, low-temperature, climatic
chambers and tool heating units for plastic-processing machines.

The following diagram shows the characteristic of a three-step controller

y Output value, e.g.

y11 = 100% heating
y12 = 0% heating
y21 = 0% cooling
y22 = 100% cooling

x Physical quantity of the process value, e.g., temperature in° C
w Setpoint
xSh Distance between Switching Point 1 and Switching Point 2

Principles for control
2.5 Response to setpoint changes and disturbances

 PID control
26 Function Manual, 12/2014, A5E35300227-AA

2.5 Response to setpoint changes and disturbances

Response to setpoint changes
The process value should follow a setpoint change as quickly as possible. The response to
setpoint changes is improved by minimizing fluctuation of the process value and the time
required to reach the new setpoint.

x Process value
w Setpoint

 Principles for control
 2.5 Response to setpoint changes and disturbances

PID control
Function Manual, 12/2014, A5E35300227-AA 27

Response to disturbances
The setpoint is influenced by disturbance variables. The controller has to eliminate the
resulting control deviations in the shortest time possible. The response to disturbances is
improved by minimizing fluctuation of the process value and the time required to reach the
new setpoint.

x Process value
w Setpoint

① Influencing a disturbance variable

Disturbance variables are corrected by a controller with integral action. A persistent
disturbance variable does not reduce control quality because the control deviation is
relatively constant. Dynamic disturbance variables have a more significant impact on control
quality because of control deviation fluctuation. The control deviation is eliminated again only
by means of the slow acting integral action.

A measurable disturbance variable can be included in the controlled system. This inclusion
would significantly accelerated the response of the controller.

Principles for control
2.6 Control Response at Different Feedback Structures

 PID control
28 Function Manual, 12/2014, A5E35300227-AA

2.6 Control Response at Different Feedback Structures

Control behavior of controllers
A precise adaptation of the controller to the time response of the controlled system is
decisive for the controller's precise settling to the setpoint and optimum response to
disturbance variables.

The feedback circuit can have a proportional action (P), proportional-derivative action (PD),
proportional-integral action (PI), or proportional-integral-derivative action (PID).

If step functions are to be triggered by control deviations, the step responses of the
controllers differ depending on their type.

 Principles for control
 2.6 Control Response at Different Feedback Structures

PID control
Function Manual, 12/2014, A5E35300227-AA 29

Step response of a proportional action controller

① Control deviation
② Output value of a continuous controller
③ Output value of a pulse controller

Equation for proportional action controller

Output value and control deviation are directly proportional, meaning:

Output value = proportional gain × control deviation

y = GAIN × x

Principles for control
2.6 Control Response at Different Feedback Structures

 PID control
30 Function Manual, 12/2014, A5E35300227-AA

Step response of a PD-action controller

① Control deviation
② Output value of a continuous controller
③ Output value of a pulse controller
TM_LAG Delay of the Derivative action

 Principles for control
 2.6 Control Response at Different Feedback Structures

PID control
Function Manual, 12/2014, A5E35300227-AA 31

Equation for PD-action controller

The following applies for the step response of the PD-action controller in the time range:

t = time interval since the step of the control deviation

The derivative action generates a output value as a function of the rate of change of the
process value. A derivative action by itself is not suitable for controlling because the output
value only follows a step of the process value. As long as the process value remains
constant, the output value will no longer change.

The response to disturbances of the derivative action is improved in combination with a
proportional action. Disturbances are not corrected completely. The good dynamic response
is advantageous. A well attenuated, non-oscillating response is achieved during approach
and setpoint change.

A controller with derivative action is not appropriate if a controlled system has pulsing
measured quantities, for example, in the case of pressure or flow control systems.

Principles for control
2.6 Control Response at Different Feedback Structures

 PID control
32 Function Manual, 12/2014, A5E35300227-AA

Step response of a PI-action controller

① Control deviation
② Output value of a continuous controller
③ Output value of a pulse controller

An integral action in the controller adds the control deviation as a function of the time. This
means that the controller corrects the system until the control deviation is eliminated. A
sustained control deviation is generated at controllers with proportional action only. This
effect can be eliminated by means of an integral action in the controller.

In practical experience, a combination of the proportional, integral and derivative actions is
ideal, depending on the requirements placed on the control response. The time response of
the individual components can be described by the controller parameters proportional gain
GAIN, integral action time TI (integral action), and derivative action time TD (derivative
action).

 Principles for control
 2.6 Control Response at Different Feedback Structures

PID control
Function Manual, 12/2014, A5E35300227-AA 33

Equation for PI-action controller

The following applies for the step response of the PI-action controller in the time range:

t = time interval since the step of the control deviation

Principles for control
2.6 Control Response at Different Feedback Structures

 PID control
34 Function Manual, 12/2014, A5E35300227-AA

Step response of a PID controller

① Control deviation
② Output value of a continuous controller
③ Output value of a pulse controller
TM_LAG Delay of the Derivative action
Ti Integral action time

 Principles for control
 2.6 Control Response at Different Feedback Structures

PID control
Function Manual, 12/2014, A5E35300227-AA 35

Equation for PID controller

The following applies for the step response of the PID controller in the time range:

t = time interval since the step of the control deviation

Response of a controlled system with different controller structures
Most of the controller systems occurring in process engineering can be controlled by means
of a controller with PI-action response. In the case of slow controlled system with a large
dead time, for example temperature control systems, the control result can be improved by
means of a controller with PID action.

① No controller
② PID controller
③ PD-action controller
w Setpoint
x Process value

Controllers with PI and PID action have the advantage that the process value does not have
any deviation from the setpoint value after settling. The process value oscillates over the
setpoint during approach.

Principles for control
2.7 Selection of the controller structure for specified controlled systems

 PID control
36 Function Manual, 12/2014, A5E35300227-AA

2.7 Selection of the controller structure for specified controlled systems

Selection of the Suitable Controller Structures
To achieve optimum control results, select a controller structure that is suitable for the
controlled system and that you can adapt to the controlled system within specific limits.

The table below provides an overview of suitable combinations of a controller structure and
controlled system.

Controlled system Controller structure

P PD PI PID

With dead time only Unsuitable Unsuitable Suitable Unsuitable

PT1 with dead time Unsuitable Unsuitable Well suited Well suited

PT2 with dead time Unsuitable Suited conditionally Well suited Well suited

Higher order Unsuitable Unsuitable Suited conditionally Well suited

Not self-regulating Well suited Well suited Well suited Well suited

The table below provides an overview of suitable combinations of a controller structure and
physical quantity.

Physical quantity Controller structure

P PD PI PID

Sustained control deviation No sustained control deviation
Temperature For low perfor-

mance require-
ments and
proportional action
controlled systems
with Tu/Tg < 0,1

Well suited The most suitable controller structures
for high performance requirements
(except for specially adapted special
controllers)

Pressure Suitable, if the
delay time is in-
considerable

Unsuitable The most suitable controller structures
for high performance requirements
(except for specially adapted special
controllers)

Flow rate Unsuitable, be-
cause required
GAIN range is
usually too large

Unsuitable Suitable, but inte-
gral action control-
ler alone often
better

Hardly required

 Principles for control
 2.7 Selection of the controller structure for specified controlled systems

PID control
Function Manual, 12/2014, A5E35300227-AA 37

Principles for control
2.8 PID parameter settings

 PID control
38 Function Manual, 12/2014, A5E35300227-AA

2.8 PID parameter settings

Rule of Thumb for the Parameter Setting

Controller structure Setting
P GAIN ≈ vmax × Tu [° C]
PI GAIN ≈ 1.2 × vmax × Tu [° C]

TI ≈ 4 × Tu [min]
PD GAIN ≈ 0.83 × vmax × Tu [° C]

TD ≈ 0.25 × vmax × Tu [min]
TM_LAG ≈ 0.5 × TD[min]

PID GAIN ≈ 0.83 × vmax × Tu [° C]
TI ≈ 2 × Tu [min]
TD ≈ 0.4 × Tu [min]
TM_LAG ≈ 0.5 × TD[min]

PD/PID GAIN ≈ 0.4 × vmax × Tu [° C]
TI ≈ 2 × Tu [min]
TD ≈ 0.4 × Tu [min]
TM_LAG ≈ 0.5 × TD[min]

Instead of vmax = ∆x / ∆t , you can use Xmax / Tg.

In the case of controllers with PID structure the setting of the integral action time and
differential-action time is usually coupled with each other.

The ratio TI / TD lies between 4 and 5 and is optimal for most controlled systems.

Non-observance of the differential-action time TD is uncritical at PD controllers.

In the case of PI and PID controllers, control oscillations occur if the integral action time TI
has been select by more than half too small.

An integral action time that is too large slows down the settling times of disturbances. One
cannot expect that the control loops operate "optimally" after the first parameter settings.
Experience shows that adjusting is always necessary, when a system exists that is "difficult
to control" with Tu / Tg > 0.3.

PID control
Function Manual, 12/2014, A5E35300227-AA 39

 Configuring a software controller 3
3.1 Overview of software controller

For the configuration of a software controller, you need an instruction with the control
algorithm and a technology object. The technology object for a software controller
corresponds with the instance DB of the instruction. The configuration of the controller is
saved in the technology object. In contrast to the instance DBs of other instructions,
technology objects are not stored for the program resources, but rather under CPU >
Technology objects.

Technology objects and instructions

CPU Library Instruction Technology ob-

ject
Description

S7-1200 Compact PID PID_Compact
V1.X

PID_Compact
V1.X

Universal PID controller with integrated
tuning

S7-1200 PID_3Step V1.X PID_3Step V1.X PID controller with integrated tuning for
valves

S7-1500
S7-1200 V4.x

PID_Compact
V2.X

PID_Compact
V2.X

Universal PID controller with integrated
tuning

S7-1500
S7-1200 V4.x

PID_3Step V2.X PID_3Step V2.X PID controller with integrated tuning for
valves

S7-1500 ≥ V1.7
S7-1200 ≥ V4.1

PID_Temp V1.0 PID_Temp V1.0 Universal PID temperature controller with
integrated tuning

S7-1500/300/400 PID basic
functions

CONT_C CONT_C Continuous controller
S7-1500/300/400 CONT_S CONT_S Step controller for actuators with integrating

behavior
S7-1500/300/400 PULSEGEN - Pulse generator for actuators with propor-

tional behavior
S7-1500/300/400 TCONT_CP TCONT_CP Continuous temperature controller with pulse

generator
S7-1500/300/400 TCONT_S TCONT_S Temperature controller for actuators with

integrating behavior
S7-300/400 PID Self Tuner TUN_EC TUN_EC Optimization of a continuous controller
S7-300/400 TUN_ES TUN_ES Optimization of a step controller

Configuring a software controller
3.1 Overview of software controller

 PID control
40 Function Manual, 12/2014, A5E35300227-AA

CPU Library Instruction Technology ob-
ject

Description

S7-300/400 Standard PID
Control (PID
Professional
optional pack-
age)

PID_CP PID_CP Continuous controller with pulse generator
S7-300/400 PID_ES PID_ES Step controller for actuators with integrating

behavior
S7-300/400 LP_SCHED - Distribute controller calls

S7-300/400 Modular PID
Control (PID
Professional
optional pack-
age)

A_DEAD_B - Filter interfering signal from control deviation
S7-300/400 CRP_IN - Scale analog input signal
S7-300/400 CRP_OUT - Scale analog output signal
S7-300/400 DEAD_T - Delay output of input signal
S7-300/400 DEADBAND - Suppress small fluctuations to the process

value
S7-300/400 DIF - Differentiate input signals over time
S7-300/400 ERR_MON Monitor control deviation
S7-300/400 INTEG - Integrate input signals over time
S7-300/400 LAG1ST - First-order delay element
S7-300/400 LAG2ND - Second-order delay element
S7-300/400 LIMALARM - Report limit values
S7-300/400 LIMITER - Limiting the manipulated variable
S7-300/400 LMNGEN_C - Determine manipulated variable for continu-

ous controller
S7-300/400 LMNGEN_S - Determine manipulated variable for step

controller
S7-300/400 NONLIN - Linearize encoder signal
S7-300/400 NORM - Scale process value physically
S7-300/400 OVERRIDE - Switch manipulated variable from 2 PID

controllers to 1 actuator
S7-300/400 PARA_CTL - Switch parameter sets
S7-300/400 PID - PID algorithm
S7-300/400 PUSLEGEN_M - Generate pulse for proportional actuators
S7-300/400 RMP_SOAK - Specify setpoint according to ramp / soak
S7-300/400 ROC_LIM - Limit rate of change
S7-300/400 SCALE_M - Scale process value
S7-300/400 SP_GEN - Specify setpoint manually
S7-300/400 SPLT_RAN - Split manipulated variable range
S7-300/400 SWITCH - Switch analog values
S7-300/400 LP_SCHED_M - Distribute controller calls

 Configuring a software controller
 3.2 Steps for the configuration of a software controller

PID control
Function Manual, 12/2014, A5E35300227-AA 41

3.2 Steps for the configuration of a software controller
All SW-controllers are configured according to the same scheme:

Step Description
1 Add technology object (Page 42)
2 Configure technology object (Page 43)
3 Call instruction in the user program (Page 45)
4 Download technology object to device (Page 46)
5 Commission software controller (Page 47)
6 Save optimized PID parameters in the project (Page 48)
7 Comparing values (Page 50)
8 Display instances of a technology object (Page 77)

Configuring a software controller
3.3 Add technology objects

 PID control
42 Function Manual, 12/2014, A5E35300227-AA

3.3 Add technology objects

Add technology object in the project navigator
When a technology object is added, an instance DB is created for the instruction of this
technology object. The configuration of the technology object is stored in this instance DB.

Requirement
A project with a CPU has been created.

Procedure
To add a technology object, proceed as follows:

1. Open the CPU folder in the project tree.

2. Open the "Technology objects" folder.

3. Double-click "Add new object".
The "Add new object" dialog box opens.

4. Click on the "PID" button.
All available PID-controllers for this CPU are displayed.

5. Select the instruction for the technology object, for example, PID_Compact.

6. Enter an individual name for the technology object in the "Name" input field.

7. Select the "Manual" option if you want to change the suggested data block number of the
instance DB.

8. Click "Further information" if you want to add own information to the technology object.

9. Confirm with "OK".

Result
The new technology object has been created and stored in the project tree in the
"Technology objects" folder. The technology object is used if the instruction for this
technology object is called in a cyclic interrupt OB.

 Note

You can select the "Add new and open" check box at the bottom of the dialog box. This
opens the configuration of the technology object after adding has been completed.

 Configuring a software controller
 3.4 Configure technology objects

PID control
Function Manual, 12/2014, A5E35300227-AA 43

3.4 Configure technology objects
The properties of a technology object on a S7-1200 CPU can be configured in two ways.

● In the Inspector window of the programming editor

● In the configuration editor

The properties of a technology object on a S7-300/400 CPU can only be configured in the
configuration editor.

Inspector window of the programming editor
In the Inspector window of the programming editor you can only configure the parameters
required for operation.

The offline values of the parameters are also shown in online mode. You can only change
the online values in the commissioning window.

To open the Inspector window of the technology object, follow these steps:

1. Open the "Program blocks" folder in the project tree.

2. Double click the block (cyclic interrupt OB) in which you open the instruction of the SW-
controller.
The block is opened in the work area.

3. Click on the instruction of the SW-controller.

4. In the Inspector window, select the "Properties" and "Configuration" tabs consecutively.

Configuration window
For each technology object, there is a specific configuration window in which you can
configure all properties.

To open the configuration window of the technology object, follow these steps:

1. Open the "Technology objects" folder in the project tree.

2. Open the technology object in the project tree.

3. Double-click the "Configuration" object.

Configuring a software controller
3.4 Configure technology objects

 PID control
44 Function Manual, 12/2014, A5E35300227-AA

Symbols
Icons in the area navigation of the configuration and in the Inspector window show additional
details about the completeness of the configuration:

The configuration contains default values and is complete.
The configuration exclusively contains default values. With these default values the use of the technology object is
possible without further changes.

The configuration contains values defined by the user and is complete
All input fields of the configuration contain valid values and at least one default setting was changed.

The configuration is incomplete or faulty
At least one input field or a collapsible list contains no or one invalid value. The corresponding field or the drop-down
list box has a red background. When clicked the roll-out error message indicates the cause of the error.

The properties of a technology object are described in detail in the chapter for the technology
object.

 Configuring a software controller
 3.5 Call instruction in the user program

PID control
Function Manual, 12/2014, A5E35300227-AA 45

3.5 Call instruction in the user program
The instruction of the software controller must be called in a cyclic interrupt OB. The
sampling time of the software controller is determined by the interval between the calls in the
cyclic interrupt OB.

Requirement
The cyclic interrupt OB is created and the cycle time of the cyclic interrupt OB is correctly
configured.

Procedure
Proceed as follows to call the instruction in the user program:

1. Open the CPU folder in the project tree.

2. Open the "Program blocks" folder.

3. Double-click the cyclic interrupt OB.
The block is opened in the work area.

4. Open the "Technology" group in the "Instructions" window and the "PID Control" folder.
The folder contains all instructions for software controllers that can be configured on the
CPU.

5. Select the instruction and drag it to your cyclic interrupt OB.
The "Call options" dialog box opens.

6. Select a technology object or type the name for a new technology object from the "Name"
list.

Result
If the technology object does not exist yet, it is added. The instruction is added in the cyclic
interrupt OB. The technology object is assigned to this call of the instruction.

Configuring a software controller
3.6 Downloading technology objects to device

 PID control
46 Function Manual, 12/2014, A5E35300227-AA

3.6 Downloading technology objects to device
A new or modified configuration of the technology object must be downloaded to the CPU for
the online mode. The following characteristics apply when downloading retentive data:

● Software (changes only)

– S7-1200, S7-1500:
Retentive data is retained.

– S7-300/400:
Retentive data is updated immediately. CPU does not change to Stop.

● Download PLC program to device and reset

– S7-1200, S7-1500:
Retentive data is updated at the next change from Stop to RUN. The PLC program
can only be downloaded completely.

– S7-300/400:
Retentive data is updated at the next change from Stop to RUN.

Downloading retentive data to an S7-1200 or S7-1500 CPU

 Note

The download and reset of the PLC program during ongoing system operation can result in
serious damages or injuries in the case of malfunctions or program errors.

Make sure that dangerous states cannot occur before you download and reset the PLC
program.

Proceed as follows to download the retentive data:

1. Select the entry of the CPU in the project tree.

2. Select the command "Download and reset PLC program" from the "Online" menu.

– If you have not established an online connection yet, the "Extended download" dialog
opens. In this case, set all required parameters for the connection and click
"Download".

– If the online connection has been defined, the project data is compiled, if necessary,
and the dialog "Load preview" opens. This dialog displays messages and
recommends actions necessary for download.

3. Check the messages.

As soon as download is possible, the "Download" button becomes active.

4. Click on "Download".

The complete PLC program is downloaded and the "Load results" dialog opens. This
dialog displays the status and the actions after the download.

5. If the modules are to restart immediately after the download, select the check box "Start
all".

6. Close the dialog "Download results" with "Finish".

 Configuring a software controller
 3.7 Commissioning software controller

PID control
Function Manual, 12/2014, A5E35300227-AA 47

Result
The complete PLC program is downloaded to the device. Blocks that only exist online in the
device are deleted. By downloading all affected blocks and by deleting any blocks in the
device that are not required, you avoid inconsistencies between the blocks in the user
program.

The messages under "Info > General" in the Inspector window indicate whether the
download was successful.

3.7 Commissioning software controller

Procedure
To open the "Commissioning" work area of the technology object, follow these steps:

1. Open the "Technology objects" folder in the project tree.

2. Open the technology object in the project tree.

3. Double-click the "Commissioning" object.

The commissioning functions are specific for each controller and are described there.

Configuring a software controller
3.8 Save optimized PID parameter in the project

 PID control
48 Function Manual, 12/2014, A5E35300227-AA

3.8 Save optimized PID parameter in the project
The software controller is optimized in the CPU. Through this, the values in the instance-DB
on the CPU no longer agree with those in the project.

To update the PID parameter in the project with the optimized PID parameters, proceed as
follows:

Requirement
● An online connection to the CPU is established and the CPU is in "RUN" mode.

● The functions of the commissioning window have been enabled by means of the "Start"
button.

Procedure
1. Open the CPU folder in the project tree.

2. Open the "Technology objects" folder.

3. Open a technology object.

4. Double click on "Commissioning".

5. Click on the icon "Upload PID parameters".

6. Save the project.

Result
The currently active PID parameters are stored in the project data. When reloading the
project data in the CPU, the optimized parameters are used.

 Configuring a software controller
 3.9 Comparing values

PID control
Function Manual, 12/2014, A5E35300227-AA 49

3.9 Comparing values

3.9.1 Comparison display and boundary conditions
The "Compare values" function provides the following options:

● Comparison of configured start values of the project with the start values in the CPU and
the actual values

● Direct editing of actual values and the start values of the project

● Immediate detection and display of input errors with suggested corrections

● Backup of actual values in the project

● Transfer of start values of the project to the CPU as actual values

Icons and operator controls
The following icons and operator controls are available:

Icon Function

Start value PLC matches the configured Start value project

Start value PLC does not match the configured Start value project

The comparison of the Start value PLC with the configured Start value project cannot
be performed

At least one of the two comparison values has a process-related or syntax error.

Transfers actual values to the offline project

Transfers updated start values in the project to the CPU (initialize setting values)

Opens the "Compare values" dialog

Boundary conditions
The "Compare values" function is available for S7-1200 and S7-1500 without limitations.

The following limitation applies to S7-300 and S7-400:

In monitoring mode, an S7-300/S7-400 cannot transfer the start values to the CPU. These
values cannot be displayed online with "Compare values".

The actual values of the technology object are displayed and can be changed directly.

Configuring a software controller
3.9 Comparing values

 PID control
50 Function Manual, 12/2014, A5E35300227-AA

3.9.2 Comparing values
The procedure is shown in the following using "PID Parameters" as an example.

Requirements
● A project with a software controller is configured.

● The project is downloaded to the CPU.

● The configuration dialog is open in the project navigator.

Procedure
1. Open the desired software controller in the project navigation.

2. Double-click the "Configuration" object.

3. Navigate within the configuration window to the "PID Parameters" dialog.

4. Click the icon to activate monitoring mode.

The icons and operator controls (Page 49) of the "Compare values" function are shown
behind the parameters.

5. Click the desired parameter in the input box and change the parameter values manually
by entering them directly.

– If the background of the input box is gray, this value is a read-only value and cannot
be changed.

– To change the values in the "PID Parameters" dialog, enable manual entry by
selecting the "Enable manual entry" check box beforehand.

6. Click the icon to open the dialog for the start values.

This dialog indicates two values of the parameter:

– Start value in CPU: The start value in the CPU is shown in the top part.

– Start value in the project: The configured start value in the project is shown in the
bottom part.

7. Enter the desired value in the input box for the project.

 Configuring a software controller
 3.9 Comparing values

PID control
Function Manual, 12/2014, A5E35300227-AA 51

Error detection
The input of incorrect values is detected. Corrections are suggested in this case.

If you enter a value with incorrect syntax, a rollout containing the corresponding error
message opens below the parameter. The incorrect value is not applied.

If you enter a value that is incorrect for the process, a dialog opens containing the error
message and a suggested correction:

● Click "No" to accept this suggested correction and correct your input.

● Click "OK" to apply the incorrect value.

 NOTICE

Malfunctions of the controller

Values incorrect for the process can result in controller malfunctions.

Backing up actual values
Click the icon to transfer the actual controller values to the start values of your configured
project.

Transferring project values to the CPU
Click the icon to transfer the configured values of your project to the CPU.

 CAUTION

Prevent personal injury and property damage!

Downloading and resetting of the user program while the plant is operating may result in
significant property damage and severe personal injuries in the event of malfunctions or
program errors.

Make sure that dangerous states cannot occur before you download and reset the user
program.

Configuring a software controller
3.10 Parameter view

 PID control
52 Function Manual, 12/2014, A5E35300227-AA

3.10 Parameter view

3.10.1 Introduction to the parameter view
The Parameter view provides you with a general overview of all relevant parameters of a
technology object. You obtain an overview of the parameter settings and can easily change
them in offline and online mode.

① "Parameter view" tab

② Toolbar (Page 55)

③ Navigation (Page 56)

④ Parameter table (Page 57)

 Configuring a software controller
 3.10 Parameter view

PID control
Function Manual, 12/2014, A5E35300227-AA 53

Function scope
The following functions are available for analyzing the parameters of the technology objects
and for enabling targeted monitoring and modification.

Display functions:

● Display of parameter values in offline and online mode

● Display of status information of the parameters

● Display of value deviations and option for direct correction

● Display of configuration errors

● Display of value changes as a result of parameter dependencies

● Display of all memory values of a parameter: Start value PLC, Start value project, Monitor
value

● Display of the parameter comparison of the memory values of a parameter

Operator control functions:

● Navigation for quickly changing between the parameters and parameter structures.

● Text filter for faster searches for particular parameters.

● Sorting function for customizing the order of parameters and parameter groups to
requirements.

● Memory function for backing up structural settings of the Parameter view.

● Monitoring and modifying of parameter values online.

● Function for saving a snapshot of parameter values of the CPU in order to capture
momentary situations and to respond to them.

● Function for applying a snapshot of parameter values as start values.

● Download of modified start values to the CPU.

● Comparison functions for comparing parameter values with one another.

Configuring a software controller
3.10 Parameter view

 PID control
54 Function Manual, 12/2014, A5E35300227-AA

Validity
The Parameter view described here is available for the following technology objects:

● PID_Compact

● PID_3Step

● PID_Temp

● CONT_C (S7-1500 only)

● CONT_S (S7-1500 only)

● TCONT_CP (S7-1500 only)

● TCONT_S (S7-1500 only)

● TO_Axis_PTO (S7-1200 Motion Control)

● TO_Positioning_Axis (S7-1200 Motion Control)

● TO_CommandTable_PTO (S7-1200 Motion Control)

● TO_CommandTable (S7-1200 Motion Control)

 Configuring a software controller
 3.10 Parameter view

PID control
Function Manual, 12/2014, A5E35300227-AA 55

3.10.2 Structure of the parameter view

3.10.2.1 Toolbar
The following functions can be selected in the toolbar of the parameter view.

Icon Function Explanation

Monitor all Starts the monitoring of visible parameters in the active Parameter

view (online mode).

Create snapshot of
monitor values and
accept setpoints of this
snapshot as start values

Applies the current monitor values to the “Snapshot” column and
updates the start values in the project.
Only in online mode for PID_Compact and PID_3Step.

Initialize setpoints Transfers the start values updated in the project to the CPU.

Only in online mode for PID_Compact and PID_3Step.

 Create snapshot of
monitor values

Applies the current monitor values to the “Snapshot” column.
Only in online mode.

Modify all selected pa-
rameters immediately
and once

This command is executed once and as quickly as possible without
reference to any particular point in the user program.
Only in online mode.

 Select navigation struc-
ture

Toggles between functional navigation and data navigation.

Text filter... After entry of a character string: Display of all parameters containing

the specified string in one of the currently visible columns.

 Selection of compare
values

Selection of parameter values that are to be compared with one
another in online mode (Start value project, Start value PLC, Snap-
shot)
Only in online mode.

 Save window settings Saves your display settings for the Parameter view (e.g., selected
navigation structure, activated table columns, etc.)

Configuring a software controller
3.10 Parameter view

 PID control
56 Function Manual, 12/2014, A5E35300227-AA

3.10.2.2 Navigation
Within the "Parameter view" tab, the following alternative navigation structures can be
selected.

Navigation Explanation
Functional navi-
gation

In the functional navigation, the structure of the parameters is
based on the structure in the configuration dialog ("Functional
view" tab), commissioning dialog, and diagnostics dialog.
The last group "Other parameters" contains all other parameters
of the technology object.

Data navigation

In the data navigation, the structure of the parameters is based on
the structure in the instance DB / technology DB.
The last group "Other parameters" contains the parameters that
are not contained in the instance DB / technology DB.

You can use the "Select navigation structure" drop-down list to toggle the navigation
structure.

 Configuring a software controller
 3.10 Parameter view

PID control
Function Manual, 12/2014, A5E35300227-AA 57

3.10.2.3 Parameter table
The table below shows the meaning of the individual columns of the parameter table. You
can show or hide the columns as required.

● Column "Offline" = X: Column is visible in offline mode.

● Column "Online" = X: Column is visible in online mode (online connection to the CPU).

Column Explanation Offline Online
Name in functional
view

Name of the parameter in the functional view.
The display field is empty for parameters that are not configured via the tech-
nology object.

X X

Full name in DB Complete path of the parameter in the instance DB / technology DB.
The display field is empty for parameters that are not contained in the instance
DB / technology DB.

X X

Name in DB Name of the parameter in the instance DB / technology DB.
If the parameter is part of a structure or UDT, the prefix ". ./" is added.
The display field is empty for parameters that are not contained in the instance
DB / technology DB.

X X

Status of configura-
tion

Display of the completeness of the configuration using status symbols.
see Status of configuration (offline) (Page 68)

X

Compare result Result of the "Compare values" function.

This column is shown if there is an online connection and the "Monitor all"
button is selected.

 X

Start value project Configured start value in the project.
Error indication if entered values have a syntax or process-related error.

X X

Default value Value that is pre-assigned to the parameter.
The display field is empty for parameters that are not contained in the instance
DB / technology DB.

X X

Snapshot Snapshot of the current values in the CPU (monitor values).
Error indication if values have a process-related error.

X X

Start value PLC Start value in the CPU.

This column is shown if there is an online connection and the "Monitor all"
button is selected.
Error indication if values have a process-related error.

 X

Monitor value Current value in the CPU.

This column is shown if there is an online connection and the "Monitor all"
button is selected.
Error indication if values have a process-related error.

 X

Modify value Value that is to be used to change the monitor valuet.

This column is shown if there is an online connection and the "Monitor all"
button is selected.
Error indication if entered values have a syntax or process-related error.

 X

Configuring a software controller
3.10 Parameter view

 PID control
58 Function Manual, 12/2014, A5E35300227-AA

Column Explanation Offline Online
Selection for trans-
mission

Selection of the Modify values that are to be transmitted using the "Modify all
selected parameters immediately and once" button.
This column is displayed together with the "Modify value" column.

 X

Minimum value Minimum process-related value of the parameter.
If the minimum value is dependent on other parameters, it is defined:
• Offline: By the Start value project.
• Online: By the Monitor values.

X X

Maximum value Maximum process-related value of the parameter.
If the maximum value is dependent on other parameters, it is defined:
• Offline: By the Start value project.
• Online: By the Monitor values.

X X

Setpoint Designates the parameter as a setpoint. These parameters can be initialized
online.

X X

Data type Data type of the parameter.
The display field is empty for parameters that are not contained in the instance
DB / technology DB.

X X

Retain Designates the value as a retentive value.
The values of retentive parameters are retained even after the voltage supply
is switched off.

X X

Accessible from HMI Indicates whether the HMI can access this parameter during runtime. X X
Visible in HMI Indicates whether the parameter is visible in the selection list of the HMI by

default.
X X

Comment Brief description of the parameter. X X

See also
Comparing values (Page 49)

 Configuring a software controller
 3.10 Parameter view

PID control
Function Manual, 12/2014, A5E35300227-AA 59

3.10.3 Opening the parameter view

Requirement
The technology object has been added in the project tree, i.e., the associated instance DB /
technology DB of the instruction has been created.

Procedure
1. Open the "Technology objects" folder in the project tree.

2. Open the technology object in the project tree.

3. Double-click the "Configuration" object.

4. Select the "Parameter view" tab in the top right corner.

Result
The Parameter view opens. Each displayed parameter is represented by one row in the
parameter table.

The displayable parameter properties (table columns) vary depending on whether you are
working with the Parameter view in offline or online mode.

In addition, you can selectively display and hide individual table columns.

See also
Default setting of the parameter view (Page 60)

Configuring a software controller
3.10 Parameter view

 PID control
60 Function Manual, 12/2014, A5E35300227-AA

3.10.4 Default setting of the parameter view

Default settings
To enable you to work efficiently with the Parameter view, you can customize the parameter
display and save your settings.

The following customizations are possible and can be saved:

● Show and hide columns

● Change column width

● Change order of the columns

● Toggle navigation

● Select parameter group in the navigation

● Selection of compare values

Show and hide columns
To show or hide columns in the parameter table, follow these steps:

1. Position the cursor in the header of the parameter table.

2. Select the "Show/Hide" command in the shortcut menu.
The selection of available columns is displayed.

3. To show a column, select the check box for the column.

4. To hide a column, clear the check box for the column.

or

1. Position the cursor in the header of the parameter table.

2. Select the "Show all columns" command in the shortcut menu if all columns of the offline
or online mode are to be displayed.

Some columns can only be displayed in online mode: see Parameter table (Page 57).

 Configuring a software controller
 3.10 Parameter view

PID control
Function Manual, 12/2014, A5E35300227-AA 61

Change column width
To customize the width of a column so that all texts in the rows can be read, follow these
steps:

1. Position the cursor in the header of the parameter table to the right of the column to be
customized until the shape of the cursor changes to a cross.

2. Then double-click this location.

or

1. Open the shortcut menu on the header of the parameter table.

2. Click

– "Optimize column width" or

– "Optimize width of all columns".

If the column width setting is too narrow, the complete content of individual fields are shown
if you hover the cursor briefly over the relevant field.

Change order of the columns
The columns of the parameter table can be arranged in any way.

To change the order of the columns, follow these steps:

1. Click on the column header and use a drag-and-drop operation to move it to the desired
location.

When you release the mouse button, the column is anchored to the new position.

Toggle navigation
To toggle the display form of the parameters, follow these steps:

1. Select the desired navigation in the “Select navigation structure” drop-down list.

– Data navigation

– Functional navigation

See also Navigation (Page 56).

Select parameter group in the navigation
Within the selected navigation, you choose between the “All parameters” display or the
display of a subordinate parameter group of your choice.

1. Click the desired parameter group in the navigation.

The parameter table only displays the parameters of the parameter group.

Configuring a software controller
3.10 Parameter view

 PID control
62 Function Manual, 12/2014, A5E35300227-AA

Selection of compare values (online)
To set the compare values for the “Compare values” function, follow these steps:

1. Select the desired compare values in the “Selection of compare values” drop-down list.

– Start value project / Start value PLC

– Start value project / Snapshot

– Start value PLC / Snapshot

The “Start value project / Start value PLC” option is set by default.

Saving the default setting of the Parameter view
To save the above customizations of the Parameter view, follow these steps:

1. Customize the Parameter view according to your requirements.

2. Click the “Save window settings” button at the top right of the Parameter view.

3.10.5 Working with the parameter view

3.10.5.1 Overview
The following table provides an overview of the functions of the Parameter view in online and
offline mode described in the following.

● Column "Offline" = X: This function is possible in offline mode.

● Column "Online" = X: This function is possible in online mode.

Function/action Offline Online
Filtering the parameter table (Page 63) X X
Sorting the parameter table (Page 64) X X
Transferring parameter data to other editors (Page 64) X X
Indicating errors (Page 65) X X
Editing start values in the project (Page 66) X X
Status of configuration (offline) (Page 68) X
Monitoring values online in the parameter view (Page 69) X
Create snapshot of monitor values (Page 70) X
Modifying values (Page 71) X
Comparing values (Page 73) X
Applying values from the online program as start values (Page 75) X
Initializing setpoints in the online program (Page 76) X

 Configuring a software controller
 3.10 Parameter view

PID control
Function Manual, 12/2014, A5E35300227-AA 63

3.10.5.2 Filtering the parameter table
You can filter the parameters in the parameter table in the following ways:

● With the text filter

● With the subgroups of the navigation

Both filter methods can be used simultaneously.

With the text filter
Texts that are visible in the parameter table can be filtered. This means only texts in
displayed parameter rows and columns can be filtered.

1. Enter the desired character string for filtering in the “Text filter...” input box.

The parameter table displays only the parameters containing the character string.

The text filtering is reset.

● When another parameter group is selected in the navigation.

● When navigation is changed from data navigation to functional navigation, or vice versa.

With the subgroups of the navigation
1. Click the desired parameter group in the navigation, e.g., "Static".

The parameter table only shows the static parameters. You can select further subgroups
for some groups of the navigation.

2. Click “All parameters” in the navigation if all parameters are to be shown again.

Configuring a software controller
3.10 Parameter view

 PID control
64 Function Manual, 12/2014, A5E35300227-AA

3.10.5.3 Sorting the parameter table
The values of the parameters are arranged in rows. The parameter table can be sorted by
any displayed column.

● In columns containing numerical values, sorting is based on the magnitude of the
numerical value.

● In text columns, sorting is alphabetical.

Sorting by column
1. Position the cursor in the header cell of the desired column.

The background of this cell turns blue.

2. Click the column header.

Result
The entire parameter table is sorted by the selected column. A triangle with tip facing up
appears in the column header.

Clicking the column header again changes the sorting as follows:

● Symbol “▲”: Parameter table is sorted in ascending order.

● Symbol “▼”: Parameter table is sorted in descending order.

● No symbol: The sorting is removed again. The parameter table assumes the default
display.

The “../“ prefix in the “Name in DB” column is ignored when sorting.

3.10.5.4 Transferring parameter data to other editors
After selecting an entire parameter row of the parameter table, you can use the following:

● Drag-and-drop

● <Ctrl+C>/<Ctrl+V>

● Copy/Paste via shortcut menu

Transfer parameters to the following editors of the TIA Portal:

● Program editor

● Watch table

● Signal table for trace function

The parameter is inserted with its full name: See information in “Full name in DB” column.

 Configuring a software controller
 3.10 Parameter view

PID control
Function Manual, 12/2014, A5E35300227-AA 65

3.10.5.5 Indicating errors

Error indication
Parameter assignment errors that result in compilation errors (e.g., limit violation) are
indicated in the Parameter view.

Every time a value is input in the Parameter view, a check is made for process-related and
syntax errors and the result is indicated.

Bad values are indicated by:

● Red error symbol in the "Status of configuration" (offline mode) or "Compare result"
(online mode, depending on the selected comparison type) columns

and/or

● Table field with red background

If you click the bad field, a roll-out error message appears with information of the
permissible value range or the required syntax (format)

Compilation error
From the error message of the compiler, you can directly open the Parameter view
(functional navigation) containing the parameter causing the error in situations where the
parameter is not displayed in the configuration dialog.

Configuring a software controller
3.10 Parameter view

 PID control
66 Function Manual, 12/2014, A5E35300227-AA

3.10.5.6 Editing start values in the project
With the Parameter view, you can edit the start values in the project in offline mode and
online mode.

● You make value changes in the “Start value project” column of the parameter table.

● In the “Status of configuration” column of the parameter table, the progress of the
configuration is indicated by the familiar status symbols from the configuration dialog of
the technology object.

Boundary conditions
● If other parameters depend on the parameter whose start value was changed, the start

value of the dependent parameters are also adapted.

● If a parameter of a technology object is not editable, it is also not editable in the
parameter view. The ability to edit a parameter can also depend on the values of other
parameters.

Defining new start values
To define start values for parameters in the Parameter view, follow these steps:

1. Open the Parameter view of the technology object.

2. Enter the desired start values in the "Start value project" column. The value must match
the data type of the parameter and must not exceed the value range of the parameter.
The limits of the value range can be seen in the “Maximum value” and “Minimum value”
columns.

The "Status of configuration" column indicates the progress of the configuration with colored
symbols.

See also Status of configuration (offline) (Page 68)

Following adaptation of the start values and downloading of the technology object to the
CPU, the parameters take the defined value at startup if they are not declared as retentive
(“Retain” column).

 Configuring a software controller
 3.10 Parameter view

PID control
Function Manual, 12/2014, A5E35300227-AA 67

Error indication
When a start value is input, a check is made for process-related and syntax errors and the
result is indicated.

Bad start values are indicated by:

● Red error symbol in the "Status of configuration" (offline mode) or "Compare result"
(online mode, depending on the selected comparison type) columns

and/or

● Red background in the “Start value project” field
If you click on the bad field, a roll-out error message appears with information of the
permissible value range or the necessary syntax (format)

Correcting bad start values
1. Correct bad start values using information from the roll-out error message.

Red error symbol, red field background, and roll-out error message are no longer
displayed.

The project cannot be successfully compiled unless the start values are error-free.

Configuring a software controller
3.10 Parameter view

 PID control
68 Function Manual, 12/2014, A5E35300227-AA

3.10.5.7 Status of configuration (offline)
The status of the configuration is indicated by icons:

● In the “Status of configuration” column in the parameter table

● In the navigation structure of the functional navigation and data navigation

Symbol in “Status of configuration” column

Symbol Meaning

The start value of the parameter corresponds to the default value and is valid. A start value has not yet
been defined by the user.

The start value of the parameter contains a value defined by the user. The start value is different than the
default value. The start value is error-free and valid.

The start value of the parameter is invalid (syntax or process-related error).
The input box has a red background. When clicked, the roll-out error message indicates the cause of the
error.

Only for S7-1200 Motion Control:
The start value of the parameter is valid but contains warnings.
The input box has a yellow background.

Symbol in the navigation
The symbols in the navigation indicate the progress of the configuration in the same way as
in the configuration dialog of the technology object.

See also
Configure technology objects (Page 43)

 Configuring a software controller
 3.10 Parameter view

PID control
Function Manual, 12/2014, A5E35300227-AA 69

3.10.5.8 Monitoring values online in the parameter view
You can monitor the values currently taken by the parameters of the technology object in the
CPU (monitor values) directly in the Parameter view.

Requirements
● There is an online connection.

● The technology object is downloaded to the CPU.

● The program execution is active (CPU in "RUN").

● The Parameter view of the technology object is open.

Procedure

1. Start the monitoring by clicking .

As soon as the Parameter view is online, the following columns are additionally
displayed:

– Compare result

– Start value PLC

– Monitor value

– Modify value

– Selection for transmission

The "Monitor value" column shows the current parameter values on the CPU.

Meaning of the additional columns: see Parameter table (Page 57)

2. Stop the monitoring by clicking again.

Display
All columns that are only available online have an orange background:

● Values in light-orange cells can be changed.

● Values in cells with a dark orange background cannot be changed.

Configuring a software controller
3.10 Parameter view

 PID control
70 Function Manual, 12/2014, A5E35300227-AA

3.10.5.9 Create snapshot of monitor values
You can back up the current values of the technology object on the CPU (monitor values)
and display them in the Parameter view.

Requirements
● There is an online connection.

● The technology object is downloaded to the CPU.

● The program execution is active (CPU in "RUN").

● The Parameter view of the technology object is open.

● The “Monitor all” button is selected.

Procedure
To show the current parameter values, follow these steps:

1. In the Parameter view, click the “Create snapshot of monitor values" icon .

Result
The current monitor values are transferred once to the "Snapshot" column of the parameter
table.

You can analyze the values "frozen" in this way while the monitor values continue to be
updated in the "Monitor values" column.

 Configuring a software controller
 3.10 Parameter view

PID control
Function Manual, 12/2014, A5E35300227-AA 71

3.10.5.10 Modifying values
With the Parameter view, you can modify values of the technology object in the CPU.

You can assign values to the parameter once (Modify value) and modify them immediately.
The modify request is executed as quickly as possible without reference to any particular
point in the user program.

 DANGER

Danger when modifying:

Changing the parameter values while the plant is operating may result in severe damage to
property and personal injury in the event of malfunctions or program errors.

Make sure that dangerous states cannot occur before you use the "Modify" function.

Requirements
● There is an online connection.

● The technology object is downloaded to the CPU.

● The program execution is active (CPU in "RUN").

● The Parameter view of the technology object is open.

● The “Monitor all” button is selected.

● The parameter can be modified (associated field in the "Modify value" column has a light-
orange background).

Procedure
To modify parameters immediately, follow these steps:

1. Enter the desired modify values in the “Modify values” column of the parameter table.

2. Check whether the check box for modifying is selected in the "Select for transmission"
column.

The modify values and associated check boxes of dependent parameters are
automatically adapted at the same time.

3. Click the “Modify all selected parameters immediately and once” icon .

The selected parameters are modified once and immediately with the specified values and
can be monitored in the "Modify values" column. The check boxes for modifying in the
"Selection for transmission" column are automatically cleared after the modify request is
complete.

Configuring a software controller
3.10 Parameter view

 PID control
72 Function Manual, 12/2014, A5E35300227-AA

Error indication
When a start value is input, a check is made immediately for process-related and syntax
errors and the result is indicated.

Bad start values are indicated by:

● Red background in the “Modify value” field

and

● If you click the bad field, a roll-out error message appears with information of the
permissible value range or the necessary syntax (format)

Bad modify values
● Modify values with process-related errors can be transmitted.

● Modify values with syntax errors cannot be transmitted.

 Configuring a software controller
 3.10 Parameter view

PID control
Function Manual, 12/2014, A5E35300227-AA 73

3.10.5.11 Comparing values
You can use comparison functions to compare the following memory values of a parameter:

● Start value project

● Start value PLC

● Snapshot

Requirements
● There is an online connection.

● The technology object is downloaded to the CPU.

● The program execution is active (CPU in "RUN").

● The Parameter view of the technology object is open.

● The “Monitor all” button is selected.

Procedure
To compare the start values on the various target systems, follow these steps:

1. Click the "Selection of compare values" icon .

A selection list containing the comparison options opens:

– Start value project - Start value PLC (default setting)

– Start value project - Snapshot

– Start value PLC - Snapshot

2. Select the desired comparison option.

The selected comparison option is executed as follows:

– A scales symbol appears in the header cells of the two columns selected for
comparison.

– Symbols are used in the "Compare result" column to indicate the result of the
comparison of the selected columns.

Configuring a software controller
3.10 Parameter view

 PID control
74 Function Manual, 12/2014, A5E35300227-AA

Symbol in "Compare result" column

Symbol Meaning

The compare values are equal and error-free.

The compare values are not equal and error-free.

At least one of the two compare values has a process-related or syntax error.

The comparison cannot be performed. At least one of the two compare values is not available (e.g., snap-
shot).

Symbol in the navigation
The symbols are shown in the same way in the navigation if the comparison result applies to
at least one of the parameters below the displayed navigation structure.

 Configuring a software controller
 3.10 Parameter view

PID control
Function Manual, 12/2014, A5E35300227-AA 75

3.10.5.12 Applying values from the online program as start values
In order to apply optimized values from the CPU to the project as start values, you create a
snapshot of the monitor values. Values of the snapshot marked as a "Setpoint" are then
applied to the project as start values.

Requirements
● The technology object is of type "PID_Compact" or "PID_3Step".

● There is an online connection.

● The technology object is downloaded to the CPU.

● The program execution is active (CPU in "RUN").

● The Parameter view of the technology object is open.

● The “Monitor all” button is selected.

Procedure
To apply optimized values from the CPU, follow these steps:

1. Click the "Create snapshot of monitor values and accept setpoints of this snapshot as
start values" icon .

Result
The current monitor values are applied to the "Snapshot" column and their setpoints are
copied to the "Start value project" column as new start values.

 Note
Applying values of individual parameters

You can also apply the values of individual parameters that are not marked as a setpoint
from the "Snapshot" column to the "Start values project" column. To do so, copy the values
and insert them into the "Start value project" column using the "Copy" and "Paste"
commands in the shortcut menu.

Configuring a software controller
3.10 Parameter view

 PID control
76 Function Manual, 12/2014, A5E35300227-AA

3.10.5.13 Initializing setpoints in the online program
You can initialize all parameters that are marked as a "Setpoint" in the Parameter view with
new values in the CPU in one step. In so doing, the start values are downloaded from the
project to the CPU. The CPU remains in "RUN" mode.

To avoid data loss on the CPU during a cold restart or warm restart, you must also download
the technology object to the CPU.

 DANGER

Danger when changing parameter values

Changing the parameter values while the plant is operating may result in severe damage to
property and personal injury in the event of malfunctions or program errors.

Make sure that dangerous states cannot occur before you reinitialize the setpoints.

Requirements
● The technology object is of type "PID_Compact" or "PID_3Step".

● There is an online connection.

● The technology object is downloaded to the CPU.

● The program execution is active (CPU in "RUN").

● The Parameter view of the technology object is open.

● The “Monitor all” button is selected.

● The parameters marked as a "Setpoint" have a "Start value project" that is free of
process-related and syntax errors

Procedure
To initialize all setpoints, follow these steps:

1. Enter the desired values in the "Start value project" column.

Ensure that the start values are free of process-related and syntax errors.

2. Click the "Initialize setpoints" icon .

Result
The setpoints in the CPU are initialized with the start values from the project.

 Configuring a software controller
 3.11 Display instance DB of a technology object.

PID control
Function Manual, 12/2014, A5E35300227-AA 77

3.11 Display instance DB of a technology object.
An instance DB, in which the parameter and static variables are saved, is created for each
technology object.

Procedure
To display the instance DB of a technology object, proceed as follows:

1. Open the CPU folder in the project tree.

2. Open the "Technology objects" folder.

3. Highlight a technology object.

4. Select the command "Open DB editor" in the shortcut menu.

Configuring a software controller
3.11 Display instance DB of a technology object.

 PID control
78 Function Manual, 12/2014, A5E35300227-AA

PID control
Function Manual, 12/2014, A5E35300227-AA 79

 Using PID_Compact 4
4.1 Technology object PID_Compact

The technology object PID_Compact provides a continuous PID controller with integrated
optimization. You can alternatively configure a pulse controller. Both manual and automatic
mode are possible.

PID-Compact continuously acquires the measured process value within a control loop and
compares it with the required setpoint. From the resulting control deviation, the instruction
PID_Compact calculates an output value by which the process value is adapted as quickly
and stable as possible to the setpoint. The output value for the PID controller consists of
three actions:

● P action

The proportional action of the output value increases in proportion to the control
deviation.

● I action

The integral action of the output value increases until the control deviation has been
balanced.

● D action

The derivative action increases with the rate of change of control deviation. The process
value is corrected to the setpoint as quickly as possible. The derivative action will be
reduced again if the rate of change of control deviation drops.

The instruction PID_Compact calculates the proportional, integral and derivative parameters
for your controlled system during pretuning. Fine tuning can be used to tune the parameters
further. You do not need to manually determine the parameters.

Additional information
● Overview of software controller (Page 39)

● Add technology objects (Page 42)

● Configure technology objects (Page 43)

● Configuring PID_Compact V2 (Page 80)

● Configuring PID_Compact V1 (Page 98)

Using PID_Compact
4.2 PID_Compact V2

 PID control
80 Function Manual, 12/2014, A5E35300227-AA

4.2 PID_Compact V2

4.2.1 Configuring PID_Compact V2

4.2.1.1 Basic settings

Introduction
Configure the following properties of the "PID_Compact" technology object under "Basic
settings" in the Inspector window or in the configuration window:

● Physical quantity

● Control logic

● Start-up behavior after reset

● Setpoint (only in the Inspector window)

● Process value (only in the Inspector window)

● Output value (only in the Inspector window)

Setpoint, process value and output value
You can only configure the setpoint, process value and output value in the Inspector window
of the programming editor. Select the source for each value:

● Instance DB

The value saved in the instance DB is used.

Value must be updated in the instance DB by the user program.

There should be no value at the instruction.

Change via HMI possible.

● Instruction

The value connected to the instruction is used.
The value is written to the instance DB each time the instruction is called.

No change via HMI possible.

 Using PID_Compact
 4.2 PID_Compact V2

PID control
Function Manual, 12/2014, A5E35300227-AA 81

Controller type

Physical quantity
Select the physical quantity and unit of measurement for setpoint, process value, and
disturbance variable in the "Controller type" group. Setpoint, process value, and disturbance
variable is displayed in this unit of measurement.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic.

PID_Compact does not work with negative proportional gain. Select the check box "Invert
control logic" to reduce the process value with a higher output value.

Examples

● Opening the drain valve will reduce the level of a container's contents.

● Increasing cooling will reduce the temperature.

Startup characteristics
1. To switch to "Inactive" mode after CPU restart, clear the "Activate Mode after CPU

restart" check box.

To switch to the operating mode saved in the Mode parameter after CPU restart, select
the "Activate Mode after CPU restart" check box.

2. In the "Set Mode to" drop-down list, select the mode that is to be enabled after a
complete download to the device.

After a complete download to the device, PID_Compact starts in the selected operating
mode. With each additional restart, PID_Compact starts in the mode that was last saved
in Mode.

Example

You have selected the "Activate Mode after CPU restart" check box and the entry
"Pretuning" in the "Set Mode to" list. After a complete download to the device, PID_Compact
starts in the "Pretuning" mode. If pretuning is still active, PID_Compact starts in "Pretuning"
mode again after restart of the CPU. If pretuning was successfully completed and automatic
mode is active, PID_Compact starts in "Automatic mode" after restart of the CPU.

Using PID_Compact
4.2 PID_Compact V2

 PID control
82 Function Manual, 12/2014, A5E35300227-AA

Setpoint

Procedure
Proceed as follows to define a fixed setpoint:

1. Select "Instance DB".

2. Enter a setpoint, e.g. 80° C.

3. Delete any entry in the instruction.

Proceed as follows to define a variable setpoint:

1. Select "Instruction".

2. Enter the name of the REAL variable in which the setpoint is saved.

Program-controlled assignment of various values to the REAL variable is possible, for
example for the time controlled change of the setpoint.

Process value
PID_Compact will scale the value of the analog input to the physical quantity if you use the
analog input value directly.

You will need to write a program for processing if you wish first to process the analog input
value. The process value is, for example, not directly proportional to the value at the analog
input. The processed process value must be in floating point format.

Procedure
Proceed as follows to use the analog input value without processing:

1. Select the entry "Input_PER" in the drop-down list "Input".

2. Select "Instruction" as source.

3. Enter the address of the analog input.

Proceed as follows to use the processed process value in floating point format:

1. Select the entry "Input" in the drop-down list "Input".

2. Select "Instruction" as source.

3. Enter the name of the variable in which the processed process value is saved.

 Using PID_Compact
 4.2 PID_Compact V2

PID control
Function Manual, 12/2014, A5E35300227-AA 83

Output value
PID_Compact offers three output values. Your actuator will determine which output value
you use.

● Output_PER

The actuator is triggered via an analog output and controlled with a continuous signal,
e.g. 0...10V, 4...20mA.

● Output

The output value needs to be processed by the user program, for example because of
nonlinear actuator response.

● Output_PWM

The actuator is controlled via a digital output. Pulse width modulation creates minimum
ON and minimum OFF times.

Procedure
Proceed as follows to use the analog output value:

1. Select the entry "Output_PER (analog)" in the drop-down list "Output".

2. Select "Instruction".

3. Enter the address of the analog output.

Proceed as follows to process the output value using the user program:

1. Select the entry "Output" in the drop-down list "Output".

2. Select "Instance DB".

The calculated output value is saved in the instance data block.

3. For the preparation of the output value, use the output parameter Output.

4. Transfer the processed output value to the actuator via a digital or analog CPU output.

Proceed as follows to use the digital output value:

1. Select the entry "Output_PWM" in the drop-down list "Output".

2. Select "Instruction".

3. Enter the address of the digital output.

Using PID_Compact
4.2 PID_Compact V2

 PID control
84 Function Manual, 12/2014, A5E35300227-AA

4.2.1.2 Process value settings

Scaling the process value
If you have configured the use of Input_PER in the basic setting, you must convert the value
of the analog input to the physical quantity of the process value. The current configuration is
displayed in the Input_PER display.

Input_PER will be scaled using a low and high value pair if the process value is directly
proportional to the value of the analog input.

Procedure
To scale the process value, follow these steps:

1. Enter the low pair of values in the "Scaled low process value" and "Low" input fields.

2. Enter the high pair of values in the "Scaled high process value" and "High" input boxes.

Default settings for the value pairs are stored in the hardware configuration. To use the value
pairs from the hardware configuration, follow these steps:

1. Select the PID_Compact instruction in the programming editor.

2. Interconnect Input_PER with an analog input in the basic settings.

3. Click the "Automatic setting" button in the process value settings.

The existing values will be overwritten with the values from the hardware configuration.

Process value limits
You must specify an appropriate absolute high limit and low limit for the process value as
limit values for your controlled system. As soon as the process value violates these limits, an
error occurs (ErrorBits = 0001h). Tuning is canceled when the process value limits are
violated. You can configure how PID_Compact reacts to an error in automatic mode in the
output value settings.

 Using PID_Compact
 4.2 PID_Compact V2

PID control
Function Manual, 12/2014, A5E35300227-AA 85

4.2.1.3 Advanced settings

Monitoring process value
Configure a warning high and low limit for the process value in the "Process value
monitoring" configuration window. If one of the warning limits is exceeded or undershot
during operation, a warning will be displayed at the PID_Compact instruction:

● At the InputWarning_H output parameter if the warning high limit has been exceeded

● At the InputWarning_L output parameter if the warning low limit has been undershot

The warning limits must be within the process value high and low limits.

The process value high and low limits will be used if you do not enter values.

Example
Process value high limit = 98 °C; warning high limit = 90 °C

Warning low limit = 10 °C; process value low limit = 0 °C

PID_Compact will respond as follows:

Process value InputWarn-

ing_H
InputWarn-
ing_L

Error-
Bits

Operating mode

> 98 °C TRUE FALSE 0001h Inactive or
Substitute output value with error
monitoring

≤ 98 °C and > 90 °C TRUE FALSE 0000h Automatic mode
≤ 90 °C and ≥ 10 °C FALSE FALSE 0000h Automatic mode
< 10 °C and ≥ 0 °C FALSE TRUE 0000h Automatic mode
< 0 °C FALSE TRUE 0001h Inactive or

Substitute output value with error
monitoring

In the output value settings, you can specify the reaction of PID_Compact when the process
value high limit or low limit is violated.

See also
Parameters State and Mode V2 (Page 267)

Using PID_Compact
4.2 PID_Compact V2

 PID control
86 Function Manual, 12/2014, A5E35300227-AA

PWM limits
The value at the output parameter Output is transformed into a pulse sequence that is output
at output parameter Output_PWM by means of a pulse width modulation. Output is
calculated in the PID algorithm sampling time, Output_PWM is output in the PID_Compact
sampling time.

The PID algorithm sampling time is determined during pretuning or fine tuning. If manually
setting the PID parameters, you will also need to configure the PID algorithm sampling time.
The PID_Compact sampling time is equivalent to the cycle time of the calling OB.

The pulse duration is proportional to the value at Output and is always an integer multiple of
the PID_Compact sampling time.

① PID_Compact sampling time
② PID algorithm sampling time
③ Pulse duration
④ Break time

The "Minimum ON time" and the "Minimum OFF time" are rounded to an integer multiple of
the PID_Compact sampling time.

A pulse or a break is never shorter than the minimum ON or OFF time. The inaccuracies this
causes are added up and compensated in the next cycle.

 Using PID_Compact
 4.2 PID_Compact V2

PID control
Function Manual, 12/2014, A5E35300227-AA 87

Example

PID_Compact sampling time = 100 ms

PID algorithm sampling time = 1000 ms

Minimum ON time = 200 ms

Output is a constant 15%. The smallest pulse that PID_Compact can output is 20%. In the
first cycle, no pulse is output. In the second cycle, the pulse not output in the first cycle is
added to the pulse of the second cycle.

① PID_Compact sampling time
② PID algorithm sampling time
⑤ Minimum ON time

In order to minimize operation frequency and conserve the actuator, extend the minimum ON
and OFF times.

If you are using "Output" or "Output_PER", you must configure the value 0.0 for the minimum
ON and OFF times.

 Note

The minimum ON and OFF times only affect the output parameter Output_PWM and are not
used for any pulse generators integrated in the CPU.

Using PID_Compact
4.2 PID_Compact V2

 PID control
88 Function Manual, 12/2014, A5E35300227-AA

Output value

Output value limits
In the "Output value limits" configuration window, configure the absolute limits of your output
value in percent. Absolute output value limits are not violated in neither manual mode nor
automatic mode. If an output value outside the limits is specified in manual mode, the
effective value is limited in the CPU to the configured limits.

The output value limits must match the control logic.

The valid output value limit values depend on the Output used.

Output -100.0 to 100.0%
Output_PER -100.0 to 100.0%
Output_PWM 0.0 to 100.0%

Reaction to error

 NOTICE

Your system may be damaged.

If you output "Current value while error pending " or "Substitute output value while error
pending" in the event of an error, PID_Compact remains in automatic mode. This may
cause a violation of the process value limits and damage your system.

It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

PID_Compact is preset so that the controller stays active in most cases in the event of an
error. If errors occur frequently in controller mode, this default reaction has a negative effect
on the control response. In this case, check the Errorbits parameter and eliminate the cause
of the error.

PID_Compact generates a programmable output value in response to an error:

● Zero (inactive)

PID_Compact outputs 0.0 as output value for all errors and switches to "Inactive" mode.
The controller is only reactivated by a falling edge at Reset or a rising edge at
ModeActivate.

 Using PID_Compact
 4.2 PID_Compact V2

PID control
Function Manual, 12/2014, A5E35300227-AA 89

● Current value while error is pending

If the following errors occur in automatic mode, PID_Compact returns to automatic mode
as soon as the errors are no longer pending.

If one or more of the following errors occur, PID_Compact stays in
automatic mode:

– 0001h: The "Input" parameter is outside the process value limits.

– 0800h: Sampling time error

– 40000h: Invalid value at Disturbance parameter.

If one or more of the following errors occur in automatic mode, PID_Compact switches to
"Substitute output value with error monitoring" mode and outputs the last valid output
value:

– 0002h: Invalid value at Input_PER parameter.

– 0200h: Invalid value at Input parameter.

– 0400h: Calculation of output value failed.

– 1000h: Invalid value at Setpoint parameter.

If an error occurs in manual mode, PID_Compact continues using the manual value as
the output value. If the manual value is invalid, the substitute output value is used. If the
manual value and substitute output value are invalid, the output value low limit is used.

If the following error occurs during a pretuning or fine tuning, PID_Compact remains in
active mode:

– 0020h: Pretuning is not permitted during fine tuning.

When any other error occurs, PID_Compact cancels the tuning and switches to the mode
from which tuning was started.

As soon as no errors are pending, PID_Compact returns to automatic mode.

● Substitute output value while error is pending

PID_Compact outputs the substitute output value.

If the following error occurs, PID_Compact stays in "Substitute output value with error
monitoring" mode and outputs the output value low limit:

– 20000h: Invalid value at SubstituteOutput tag.

For all other errors, PID_Compact reacts as described for "Current value while error is
pending".

See also
Parameters State and Mode V2 (Page 267)

Using PID_Compact
4.2 PID_Compact V2

 PID control
90 Function Manual, 12/2014, A5E35300227-AA

PID parameters
The PID parameters are displayed in the "PID Parameters" configuration window. The PID
parameters will be adapted to your controlled system during controller tuning. You do not
need to enter the PID parameters manually.

The PID algorithm operates according to the following equation:

Symbol Description
y Output value of the PID algorithm
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integral action time
a Derivative delay coefficient (derivative delay T1 = a × TD)
TD Derivative action time
c Derivative action weighting

The diagram below illustrates the integration of the parameters into the PID algorithm:

All PID parameters are retentive. If you enter the PID parameters manually, you must
completely download PID_Compact.

Downloading technology objects to device (Page 46)

 Using PID_Compact
 4.2 PID_Compact V2

PID control
Function Manual, 12/2014, A5E35300227-AA 91

Proportional gain
The value specifies the proportional gain of the controller. PID_Compact does not work with
a negative proportional gain. Control logic is inverted under Basic settings > Controller type.

Integral action time
The integral action time determines the time behavior of the integral action. The integral
action is deactivated with integral action time = 0.0.

Derivative action time
The derivative action time determines the time behavior of the derivative action. Derivative
action is deactivated with derivative action time = 0.0.

Derivative delay coefficient
The derivative delay coefficient delays the effect of the derivative action.

Derivative delay = derivative action time × derivative delay coefficient

● 0.0: Derivative action is effective for one cycle only and therefore almost not effective.

● 0.5: This value has proved useful in practice for controlled systems with one dominant
time constant.

● > 1.0: The greater the coefficient, the longer the effect of the derivative action is delayed.

Proportional action weighting
The proportional action may weaken with changes to the setpoint.

Values from 0.0 to 1.0 are applicable.

● 1.0: Proportional action for setpoint change is fully effective

● 0.0: Proportional action for setpoint change is not effective

The proportional action is always fully effective when the process value is changed.

Derivative action weighting
The derivative action may weaken with changes to the setpoint.

Values from 0.0 to 1.0 are applicable.

● 1.0: Derivative action is fully effective upon setpoint change

● 0.0: Derivative action is not effective upon setpoint change

The derivative action is always fully effective when the process value is changed.

Using PID_Compact
4.2 PID_Compact V2

 PID control
92 Function Manual, 12/2014, A5E35300227-AA

PID algorithm sampling time
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value. It
is calculated during tuning and rounded to a multiple of the cycle time. All other functions of
PID_Compact are executed at every call.

If you use Output_PWM, the accuracy of the output signal is determined by the ratio of the
PID algorithm sampling time to the cycle time of the OB. The PID algorithm sampling time
corresponds to the time period of the pulse width modulation. The cycle time should be at
least 10 times the PID algorithm sampling time.

Rule for tuning
Select whether PI or PID parameters are to be calculated in the "Controller structure" drop-
down list.

● PID

Calculates PID parameters during pretuning and fine tuning.

● PI

Calculates PI parameters during pretuning and fine tuning.

● User-defined

The drop-down list displays "User-defined" if you have configured different controller
structures for pretuning and fine tuning via a user program.

 Using PID_Compact
 4.2 PID_Compact V2

PID control
Function Manual, 12/2014, A5E35300227-AA 93

4.2.2 Commissioning PID_Compact V2

4.2.2.1 Pretuning
The pretuning determines the process response to a jump change of the output value and
searches for the point of inflection. The PID parameters are calculated from the maximum
rate of rise and dead time of the controlled system. You obtain the best PID parameters
when you perform pretuning and fine tuning.

The more stable the process value is, the easier it is to calculate the PID parameters and the
more precise the result will be. Noise on the process value can be tolerated as long as the
rate of rise of the process value is significantly higher compared to the noise. This is most
likely the case in operating modes "Inactive" and "manual mode". The PID parameters are
backed up before being recalculated.

Requirement
● The "PID_Compact" instruction is called in a cyclic interrupt OB.

● ManualEnable = FALSE

● Reset = FALSE

● PID_Compact is in one of the following modes: "Inactive", "Manual mode", or "Automatic
mode".

● The setpoint and the process value lie within the configured limits (see "Process value
monitoring" configuration).

● The difference between setpoint and process value is greater than 30% of the difference
between process value high limit and process value low limit.

● The distance between the setpoint and the process value is > 50% of the setpoint.

Using PID_Compact
4.2 PID_Compact V2

 PID control
94 Function Manual, 12/2014, A5E35300227-AA

Procedure
To perform pretuning, follow these steps:

1. Double-click the "PID_Compact > Commissioning" entry in the project tree.

2. Select the entry "Pretuning" in the "Tuning mode" drop-down list.

3. Click the "Start" icon.

– An online connection will be established.

– Value recording is started.

– Pretuning is started.

– The "Status" field displays the current steps and any errors that may have occurred.
The progress bar indicates the progress of the current step.

 Note

Click the "Stop" icon when the progress bar has reached 100% and it can be assumed
the controller tuning function is blocked. Check the configuration of the technology
object and, if necessary, restart controller tuning.

Result
If pretuning was performed without an error message, the PID parameters have been tuned.
PID_Compact switches to automatic mode and uses the tuned parameters. The tuned PID
parameters will be retained during power OFF and a restart of the CPU.

If pretuning is not possible, PID_Compact responds with the configured reaction to errors.

See also
Parameters State and Mode V2 (Page 267)

 Using PID_Compact
 4.2 PID_Compact V2

PID control
Function Manual, 12/2014, A5E35300227-AA 95

4.2.2.2 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID
parameters are tuned for the operating point from the amplitude and frequency of this
oscillation. All PID parameters are recalculated from the results. PID parameters from fine
tuning usually have better master control and disturbance characteristics than PID
parameters from pretuning. You obtain the best PID parameters when you perform pretuning
and fine tuning.

PID_Compact automatically attempts to generate an oscillation greater than the noise of the
process value. Fine tuning is only minimally influenced by the stability of the process value.
The PID parameters are backed up before being recalculated.

Requirement
● The PID_Compact instruction is called in a cyclic interrupt OB.

● ManualEnable = FALSE

● Reset = FALSE

● The setpoint and the process value lie within the configured limits.

● The control loop has stabilized at the operating point. The operating point is reached
when the process value corresponds to the setpoint.

● No disturbances are expected.

● PID_Compact is in one of the following operating modes: Inactive, automatic mode, or
manual mode.

Process depends on initial situation
Fine tuning can be started from the following operating modes: "Inactive", "automatic mode",
or "manual mode". Fine tuning proceeds as follows when started from:

● Automatic mode

Start fine tuning from automatic mode if you wish to improve the existing PID parameters
through tuning.

PID_Compact controls the system using the existing PID parameters until the control loop
has stabilized and the requirements for fine tuning have been met. Only then will fine
tuning start.

● Inactive or manual mode

If the requirements for pretuning are met, pretuning is started. The determined PID
parameters will be used for control until the control loop has stabilized and the
requirements for fine tuning have been met. Only then will fine tuning start. If pretuning is
not possible, PID_Compact responds with the configured reaction to errors.

An attempt is made to reach the setpoint with the minimum or maximum output value if
the process value for pretuning is already too near the setpoint. This can produce
increased overshoot.

Using PID_Compact
4.2 PID_Compact V2

 PID control
96 Function Manual, 12/2014, A5E35300227-AA

Procedure
To perform fine tuning, follow these steps:

1. Select the entry "Fine tuning" in the "Tuning mode" drop-down list.

2. Click the "Start" icon.

– An online connection will be established.

– Value recording is started.

– The process of fine tuning is started.

– The "Status" field displays the current steps and any errors that may have occurred.
The progress bar indicates the progress of the current step.

 Note

Click the "Stop" icon in the "Tuning mode" group when the progress bar has reached
100% and it is to be assumed that tuning is blocked. Check the configuration of the
technology object and, if necessary, restart controller tuning.

Result
If no errors occurred during fine tuning, the PID parameters have been tuned. PID_Compact
switches to automatic mode and uses the tuned parameters. The tuned PID parameters will
be retained during power OFF and a restart of the CPU.

If errors occurred during "fine tuning", PID_Compact responds with the configured response
to errors.

See also
Parameters State and Mode V2 (Page 267)

 Using PID_Compact
 4.2 PID_Compact V2

PID control
Function Manual, 12/2014, A5E35300227-AA 97

4.2.2.3 "Manual" mode
The following section describes how you can use the "manual mode" operating mode in the
commissioning window of the "PID_Compact" technology object. Manual mode is also
possible when an error is pending.

Requirement
● The "PID_Compact" instruction is called in a cyclic interrupt OB.

● An online connection to the CPU has been established and the CPU is in the "RUN"
mode.

Procedure
Use "Manual mode" in the commissioning window if you want to test the controlled system
by specifying a manual value. To define a manual value, follow these steps:

1. Click the "Start" icon.

2. Select the "Manual mode" check box in the "Online status of controller" area.

PID_Compact operates in manual mode. The most recent current output value remains in
effect.

3. Enter the manual value in the "Output" field as a % value.

4. Click the icon.

Result
The manual value is written to the CPU and immediately goes into effect.

Clear the "Manual mode" check box if the output value is to be specified again by the PID
controller. The switchover to automatic mode is bumpless.

See also
Parameters State and Mode V2 (Page 267)

Using PID_Compact
4.3 PID_Compact V1

 PID control
98 Function Manual, 12/2014, A5E35300227-AA

4.3 PID_Compact V1

4.3.1 Configuring PID_Compact V1

4.3.1.1 Basic settings

Introduction
Configure the following properties of the "PID_Compact" technology object under "Basic
settings" in the Inspector window or in the configuration window:

● Physical quantity

● Control logic

● Start-up behavior after reset

● Setpoint (only in the Inspector window)

● Process value (only in the Inspector window)

● Output value (only in the Inspector window)

Setpoint, process value and output value
You can only configure the setpoint, process value and output value in the Inspector window
of the programming editor. Select the source for each value:

● Instance DB

The value saved in the instance DB is used.

Value must be updated in the instance DB by the user program.

There should be no value at the instruction.

Change via HMI possible.

● Instruction

The value connected to the instruction is used.
The value is written to the instance DB each time the instruction is called.

No change via HMI possible.

 Using PID_Compact
 4.3 PID_Compact V1

PID control
Function Manual, 12/2014, A5E35300227-AA 99

Controller type

Physical quantity
Select the unit of measurement and physical quantity for the setpoint and process value in
the "Controller type" group. The setpoint and process value will be displayed in this unit.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic.

PID_Compact does not work with negative proportional gain. Select the check box "Invert
control logic" to reduce the process value with a higher output value.

Examples

● Opening the drain valve will reduce the level of a container's contents.

● Increasing cooling will reduce the temperature.

Start-up behavior after reset
To change straight to the last active mode after restarting the CPU, select the "Enable last
mode after CPU restart" check box.

PID_Compact will remain in "Inactive" mode if the check box is cleared.

Setpoint

Procedure
Proceed as follows to define a fixed setpoint:

1. Select "Instance DB".

2. Enter a setpoint, e.g. 80° C.

3. Delete any entry in the instruction.

Proceed as follows to define a variable setpoint:

1. Select "Instruction".

2. Enter the name of the REAL variable in which the setpoint is saved.

Program-controlled assignment of various values to the REAL variable is possible, for
example for the time controlled change of the setpoint.

Using PID_Compact
4.3 PID_Compact V1

 PID control
100 Function Manual, 12/2014, A5E35300227-AA

Process value
PID_Compact will scale the value of the analog input to the physical quantity if you use the
analog input value directly.

You will need to write a program for processing if you wish first to process the analog input
value. The process value is, for example, not directly proportional to the value at the analog
input. The processed process value must be in floating point format.

Procedure
Proceed as follows to use the analog input value without processing:

1. Select the entry "Input_PER" in the drop-down list "Input".

2. Select "Instruction" as source.

3. Enter the address of the analog input.

Proceed as follows to use the processed process value in floating point format:

1. Select the entry "Input" in the drop-down list "Input".

2. Select "Instruction" as source.

3. Enter the name of the variable in which the processed process value is saved.

Output value
PID_Compact offers three output values. Your actuator will determine which output value
you use.

● Output_PER

The actuator is triggered via an analog output and controlled with a continuous signal,
e.g. 0...10V, 4...20mA.

● Output

The output value needs to be processed by the user program, for example because of
nonlinear actuator response.

● Output_PWM

The actuator is controlled via a digital output. Pulse width modulation creates minimum
ON and minimum OFF times.

 Using PID_Compact
 4.3 PID_Compact V1

PID control
Function Manual, 12/2014, A5E35300227-AA 101

Procedure
Proceed as follows to use the analog output value:

1. Select the entry "Output_PER (analog)" in the drop-down list "Output".

2. Select "Instruction".

3. Enter the address of the analog output.

Proceed as follows to process the output value using the user program:

1. Select the entry "Output" in the drop-down list "Output".

2. Select "Instance DB".

The calculated output value is saved in the instance data block.

3. For the preparation of the output value, use the output parameter Output.

4. Transfer the processed output value to the actuator via a digital or analog CPU output.

Proceed as follows to use the digital output value:

1. Select the entry "Output_PWM" in the drop-down list "Output".

2. Select "Instruction".

3. Enter the address of the digital output.

Using PID_Compact
4.3 PID_Compact V1

 PID control
102 Function Manual, 12/2014, A5E35300227-AA

4.3.1.2 Process value settings
Configure the scaling of your process value and specify the process value absolute limits In
the "Process value settings" configuration window.

Scaling the process value
If you have configured the use of Input_PER in the basic settings, you will need to convert
the value of the analog input into the physical quantity of the process value. The current
configuration will be displayed in the Input_PER display.

Input_PER will be scaled using a low and high value pair if the process value is directly
proportional to the value of the analog input.

1. Enter the low pair of values in the "Scaled low process value" and "Low" input fields.

2. Enter the high pair of values in the "Scaled high process value" and "High" input boxes.

Default settings for the value pairs are saved in the hardware configuration. Proceed as
follows to use the value pairs from the hardware configuration:

1. Select the instruction PID_Compact in the programming editor.

2. Connect Input_PER with an analog input in the basic settings.

3. Click on the "Automatic setting" button in the process value settings.

The existing values will be overwritten with the values from the hardware configuration.

Monitoring process value
Specify the absolute high and low limit of the process value. As soon as these limits are
violated during operation, the controller switches off and the output value is set to 0%. You
must enter reasonable limits for your controlled system. Reasonable limits are important
during optimization to obtain optimal PID parameters.

The default for the "High limit process value" is 120 %. At the I/O input, the process value
can be a maximum of 18% higher than the standard range (overrange). An error is no longer
reported for a violation of the "High limit process value". Only a wire-break and a short-circuit
are recognized and the PID_Compact switches to "Inactive" mode.

 WARNING

If you set very high process value limits (for example -3.4*1038...+3.4*1038), process value
monitoring will be disabled. Your system may then be damaged if an error occurs.

See also
Monitoring process value (Page 103)

PWM limits (Page 104)

Output value limits (Page 106)

PID parameters (Page 107)

 Using PID_Compact
 4.3 PID_Compact V1

PID control
Function Manual, 12/2014, A5E35300227-AA 103

4.3.1.3 Advanced settings

Monitoring process value
Configure a warning high and low limit for the process value in the "Process value
monitoring" configuration window. If one of the warning limits is exceeded or undershot
during operation, a warning will be displayed at the PID_Compact instruction:

● At the InputWarning_H output parameter if the warning high limit has been exceeded

● At the InputWarning_L output parameter if the warning low limit has been undershot

The warning limits must be within the process value high and low limits.

The process value high and low limits will be used if you do not enter values.

Example
Process value high limit = 98° C; warning high limit = 90° C

Warning low limit = 10° C; process value low limit = 0° C

PID_Compact will respond as follows:

Process value InputWarning_H InputWarning_L Operating mode
> 98° C TRUE FALSE Inactive
≤ 98° C and > 90° C TRUE FALSE Automatic mode
≤ 90° C and ≥ 10° C FALSE FALSE Automatic mode
< 10° C and ≥ 0° C FALSE TRUE Automatic mode
< 0° C FALSE TRUE Inactive

See also
Process value settings (Page 102)

PWM limits (Page 104)

Output value limits (Page 106)

PID parameters (Page 107)

Using PID_Compact
4.3 PID_Compact V1

 PID control
104 Function Manual, 12/2014, A5E35300227-AA

PWM limits
The value at the output parameter Output is transformed into a pulse sequence that is output
at output parameter Output_PWM by means of a pulse width modulation. Output is
calculated in the PID algorithm sampling time, Output_PWM is output in the PID_Compact
sampling time.

The PID algorithm sampling time is determined during pretuning or fine tuning. If manually
setting the PID parameters, you will also need to configure the PID algorithm sampling time.
The PID_Compact sampling time is equivalent to the cycle time of the calling OB.

The pulse duration is proportional to the value at Output and is always an integer multiple of
the PID_Compact sampling time.

① PID_Compact sampling time
② PID algorithm sampling time
③ Pulse duration
④ Break time

The "Minimum ON time" and the "Minimum OFF time" are rounded to an integer multiple of
the PID_Compact sampling time.

A pulse or a break is never shorter than the minimum ON or OFF time. The inaccuracies this
causes are added up and compensated in the next cycle.

 Using PID_Compact
 4.3 PID_Compact V1

PID control
Function Manual, 12/2014, A5E35300227-AA 105

Example

PID_Compact sampling time = 100 ms

PID algorithm sampling time = 1000 ms

Minimum ON time = 200 ms

Output is a constant 15%. The smallest pulse that PID_Compact can output is 20%. In the
first cycle, no pulse is output. In the second cycle, the pulse not output in the first cycle is
added to the pulse of the second cycle.

① PID_Compact sampling time
② PID algorithm sampling time
⑤ Minimum ON time

In order to minimize operation frequency and conserve the actuator, extend the minimum ON
and OFF times.

If you are using "Output" or "Output_PER", you must configure the value 0.0 for the minimum
ON and OFF times.

 Note

The minimum ON and OFF times only affect the output parameter Output_PWM and are not
used for any pulse generators integrated in the CPU.

Using PID_Compact
4.3 PID_Compact V1

 PID control
106 Function Manual, 12/2014, A5E35300227-AA

See also
Process value settings (Page 102)

Monitoring process value (Page 103)

Output value limits (Page 106)

PID parameters (Page 107)

Output value limits
In the "Output value limits" configuration window, configure the absolute limits of your output
value in percent. Absolute output value limits are not violated in neither manual mode nor in
automatic mode. If a output value outside the limits is specified in manual mode, the effective
value is limited in the CPU to the configured limits.

The valid output value limit values depend on the Output used.

Output -100.0 to 100.0
Output_PER -100.0 to 100.0
Output_PWM 0.0 to 100.0

PID_Compact sets the output value to 0.0 if an error occurs. 0.0 must therefore always be
within the output value limits. You will need to add an offset to Output and Output_PER in the
user program if you want an output value low limit of greater than 0.0.

See also
Process value settings (Page 102)

Monitoring process value (Page 103)

PWM limits (Page 104)

PID parameters (Page 107)

 Using PID_Compact
 4.3 PID_Compact V1

PID control
Function Manual, 12/2014, A5E35300227-AA 107

PID parameters
The PID parameters are displayed in the "PID Parameters" configuration window. The PID
parameters will be adapted to your controlled system during controller tuning. You do not
need to enter the PID parameters manually.

The PID algorithm operates according to the following equation:

Symbol Description
y Output value of the PID algorithm
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integral action time
a Derivative delay coefficient (derivative delay T1 = a × TD)
TD Derivative action time
c Derivative action weighting

The diagram below illustrates the integration of the parameters into the PID algorithm:

All PID parameters are retentive. If you enter the PID parameters manually, you must
completely download PID_Compact.

Using PID_Compact
4.3 PID_Compact V1

 PID control
108 Function Manual, 12/2014, A5E35300227-AA

Proportional gain
The value specifies the proportional gain of the controller. PID_Compact does not work with
a negative proportional gain. Control logic is inverted under Basic settings > Controller type.

Integral action time
The integral action time determines the time behavior of the integral action. The integral
action is deactivated with integral action time = 0.0.

Derivative action time
The derivative action time determines the time behavior of the derivative action. Derivative
action is deactivated with derivative action time = 0.0.

Derivative delay coefficient
The derivative delay coefficient delays the effect of the derivative action.

Derivative delay = derivative action time × derivative delay coefficient

● 0.0: Derivative action is effective for one cycle only and therefore almost not effective.

● 0.5: This value has proved useful in practice for controlled systems with one dominant
time constant.

● > 1.0: The greater the coefficient, the longer the effect of the derivative action is delayed.

Proportional action weighting
The proportional action may weaken with changes to the setpoint.

Values from 0.0 to 1.0 are applicable.

● 1.0: Proportional action for setpoint change is fully effective

● 0.0: Proportional action for setpoint change is not effective

The proportional action is always fully effective when the process value is changed.

Derivative action weighting
The derivative action may weaken with changes to the setpoint.

Values from 0.0 to 1.0 are applicable.

● 1.0: Derivative action is fully effective upon setpoint change

● 0.0: Derivative action is not effective upon setpoint change

The derivative action is always fully effective when the process value is changed.

 Using PID_Compact
 4.3 PID_Compact V1

PID control
Function Manual, 12/2014, A5E35300227-AA 109

PID algorithm sampling time
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value. It
is calculated during tuning and rounded to a multiple of the cycle time. All other functions of
PID_Compact are executed at every call.

If you use Output_PWM, the accuracy of the output signal is determined by the ratio of the
PID algorithm sampling time to the cycle time of the OB. The PID algorithm sampling time
corresponds to the time period of the pulse width modulation. The cycle time should be at
least 10 times the PID algorithm sampling time.

Rule for tuning
Select whether PI or PID parameters are to be calculated in the "Controller structure" drop-
down list.

● PID

Calculates PID parameters during pretuning and fine tuning.

● PI

Calculates PI parameters during pretuning and fine tuning.

● User-defined

The drop-down list displays "User-defined" if you have configured different controller
structures for pretuning and fine tuning via a user program.

See also
Downloading technology objects to device (Page 46)

Using PID_Compact
4.3 PID_Compact V1

 PID control
110 Function Manual, 12/2014, A5E35300227-AA

4.3.2 Commissioning PID_Compact V1

4.3.2.1 Commissioning
The commissioning window helps you commission the PID controller. You can monitor the
values for the setpoint, process value and output value along the time axis in the trend view.
The following functions are supported in the commissioning window:

● Controller pretuning

● Controller fine tuning

Use fine tuning for fine adjustments to the PID parameters.

● Monitoring the current closed-loop control in the trend view

● Testing the controlled system by specifying a manual output value

All functions require an online connection to the CPU to have been established.

Basic handling
● Select the desired sampling time in the "Sampling time" drop-down list.

All values in the commissioning window are updated in the selected update time.

● Click the "Start" icon in the measuring group if you want to use the commissioning
functions.

Value recording is started. The current values for the setpoint, process value and output
value are entered in the trend view. Operation of the commissioning window is enabled.

● Click the "Stop" icon if you want to end the commissioning functions.

The values recorded in the trend view can continue to be analyzed.

Closing the commissioning window will terminate recording in the trend view and delete the
recorded values.

See also
Pretuning (Page 111)

Fine tuning (Page 113)

"Manual" mode (Page 115)

 Using PID_Compact
 4.3 PID_Compact V1

PID control
Function Manual, 12/2014, A5E35300227-AA 111

4.3.2.2 Pretuning
The pretuning determines the process response to a jump change of the output value and
searches for the point of inflection. The tuned PID parameters are calculated as a function of
the maximum slope and dead time of the controlled system.

The more stable the process value is, the easier it is to calculate the PID parameters and the
more precise the result will be. Noise on the process value can be tolerated as long as the
rate of rise of the process value is significantly higher compared to the noise. The PID
parameters are backed up before being recalculated.

Requirement
● The "PID_Compact" instruction is called in a cyclic interrupt OB.

● ManualEnable = FALSE

● PID_Compact is in "inactive" or "manual" mode.

● The setpoint may not be changed during controller tuning. PID_Compact will otherwise be
deactivated.

● The setpoint and the process value lie within the configured limits (see "Process value
monitoring" configuration).

● The difference between setpoint and process value is greater than 30% of the difference
between process value high limit and process value low limit.

● The distance between the setpoint and the process value is > 50% of the setpoint.

Procedure
To perform pretuning, follow these steps:

1. Double-click the "PID_Compact > Commissioning" entry in the project tree.

2. Select the entry "Pretuning" in the "Tuning mode" drop-down list.

3. Click the "Start" icon.

– An online connection will be established.

– Value recording is started.

– Pretuning is started.

– The "Status" field displays the current steps and any errors that may have occurred.
The progress bar indicates the progress of the current step.

 Note

Click the "Stop" icon when the progress bar has reached 100% and it is to be
assumed the controller tuning function is blocked. Check the configuration of the
technology object and, if necessary, restart controller tuning.

Using PID_Compact
4.3 PID_Compact V1

 PID control
112 Function Manual, 12/2014, A5E35300227-AA

Result
If pretuning was performed without an error message, the PID parameters have been tuned.
PID_Compact switches to automatic mode and uses the tuned parameters. The tuned PID
parameters will be retained during power OFF and a restart of the CPU.

If pretuning is not possible, PID_Compact will change to "Inactive" mode.

See also
Parameters State and sRet.i_Mode V1 (Page 287)

Commissioning (Page 110)

Fine tuning (Page 113)

"Manual" mode (Page 115)

 Using PID_Compact
 4.3 PID_Compact V1

PID control
Function Manual, 12/2014, A5E35300227-AA 113

4.3.2.3 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID
parameters are optimized for the operating point from the amplitude and frequency of this
oscillation. All PID parameters are recalculated on the basis of the findings. PID parameters
from fine tuning usually have better master control and disturbance behavior than PID
parameters from pretuning.

PID_Compact automatically attempts to generate an oscillation greater than the noise of the
process value. Fine tuning is only minimally influenced by the stability of the process value.
The PID parameters are backed up before being recalculated.

Requirement
● The PID_Compact instruction is called in a cyclic interrupt OB.

● ManualEnable = FALSE

● The setpoint and the process value lie within the configured limits (see "Process value
monitoring" configuration).

● The control loop has stabilized at the operating point. The operating point is reached
when the process value corresponds to the setpoint.

● No disturbances are expected.

● The setpoint may not be changed during controller tuning.

● PID_Compact is in inactive mode, automatic mode or manual mode.

Process depends on initial situation
Fine tuning can be started in "inactive", "automatic" or "manual" mode. Fine tuning proceeds
as follows when started in:

● Automatic mode

Start fine tuning in automatic mode if you wish to improve the existing PID parameters
using controller tuning.

PID_Comact will regulate using the existing PID parameters until the control loop has
stabilized and the requirements for fine tuning have been met. Only then will fine tuning
start.

● Inactive or manual mode

If the requirements for pretuning are met, pretuning is started. The PID parameters
established will be used for adjustment until the control loop has stabilized and the
requirements for fine tuning have been met. Only then will fine tuning start. If pretuning is
not possible, PID_Compact will change to "Inactive" mode.

An attempt is made to reach the setpoint with a minimum or maximum output value if the
process value for pretuning is already too near the setpoint. This can produce increased
overshoot.

Using PID_Compact
4.3 PID_Compact V1

 PID control
114 Function Manual, 12/2014, A5E35300227-AA

Procedure
Proceed as follows to carry out "fine tuning":

1. Select the entry "Fine tuning" in the "Tuning mode" drop-down list.

2. Click the "Start" icon.

– An online connection will be established.

– Value recording is started.

– The process of fine tuning is started.

– The "Status" field displays the current steps and any errors that may have occurred.
The progress bar indicates the progress of the current step.

 Note

Click the "Stop" icon in the "Tuning mode" group when the progress bar has reached
100% and it is to be assumed the controller tuning function is blocked. Check the
configuration of the technology object and, if necessary, restart controller tuning.

Result
The PID parameters will have been optimized if fine tuning has been executed without
errors. PID_Compact changes to automatic mode and uses the optimized parameters. The
optimized PID parameters will be retained during power OFF and a restart of the CPU.

If errors occurred during "fine tuning", PID_Compact will change to "inactive" mode.

See also
Parameters State and sRet.i_Mode V1 (Page 287)

Commissioning (Page 110)

Pretuning (Page 111)

"Manual" mode (Page 115)

 Using PID_Compact
 4.3 PID_Compact V1

PID control
Function Manual, 12/2014, A5E35300227-AA 115

4.3.2.4 "Manual" mode
The following section describes how you can use the "Manual" operating mode in the
commissioning window of the "PID Compact" technology object.

Requirement
● The "PID_Compact" instruction is called in a cyclic interrupt OB.

● An online connection to the CPU has been established and the CPU is in the "RUN"
mode.

● The functions of the commissioning window have been enabled via the "Start" icon.

Procedure
Use "Manual mode" in the commissioning window if you want to test the process by
specifying a manual value. To define a manual value, proceed as follows:

1. Select the check box "Manual mode" in the "Online status of the controller" area.

PID_Compact operates in manual mode. The most recent current output value remains in
effect.

2. Enter the manual value in the "Output" field as a % value.

3. Click the control icon .

Result
The manual value is written to the CPU and immediately goes into effect.

 Note

PID_Compact continues to monitor the process value. If the process value limits are
exceeded, PID_Compact is deactivated.

Clear the "Manual mode" check box if the output value is to be specified again by the PID
controller. The change to automatic mode is bumpless.

See also
Parameters State and sRet.i_Mode V1 (Page 287)

Commissioning (Page 110)

Pretuning (Page 111)

Fine tuning (Page 113)

Using PID_Compact
4.3 PID_Compact V1

 PID control
116 Function Manual, 12/2014, A5E35300227-AA

PID control
Function Manual, 12/2014, A5E35300227-AA 117

 Using PID_3Step 5
5.1 Technology object PID_3Step

The technology object PID_3Step provides a PID controller with tuning for valves or
actuators with integral response.

You can configure the following controllers:

● Three-point step controller with position feedback

● Three-point step controller without position feedback

● Valve controller with analog output value

PID_3Step continuously acquires the measured process value within a control loop and
compares it with the setpoint. From the resulting control deviation, PID_3Step calculates an
output value through which the process value reaches the setpoint as quickly and steadily as
possible. The output value for the PID controller consists of three actions:

● P action

The proportional action of the output value increases in proportion to the control
deviation.

● I action

The integral action of the output value increases until the control deviation has been
balanced.

● D action

The derivative action increases with the rate of change of control deviation. The process
value is corrected to the setpoint as quickly as possible. The derivative action will be
reduced again if the rate of change of control deviation drops.

The instruction PID_3Step calculates the proportional, integral and derivative parameters for
your controlled system during pretuning. Fine tuning can be used to tune the parameters
further. You do not need to manually determine the parameters.

Additional information
● Overview of software controller (Page 39)

● Add technology objects (Page 42)

● Configure technology objects (Page 43)

● Configuring PID_3Step V2 (Page 118)

● Configuring PID_3Step V1 (Page 139)

Using PID_3Step
5.2 PID_3Step V2

 PID control
118 Function Manual, 12/2014, A5E35300227-AA

5.2 PID_3Step V2

5.2.1 Configuring PID_3Step V2

5.2.1.1 Basic settings

Introduction
Configure the following properties of the "PID_3Step" technology object under "Basic
settings" in the Inspector window or in the configuration window:

● Physical quantity

● Control logic

● Start-up behavior after reset

● Setpoint (only in the Inspector window)

● Process value (only in the Inspector window)

● Output value (only in the Inspector window)

● Position feedback (only in the Inspector window)

Setpoint, process value, output value and position feedback
You can only configure the setpoint, process value, output value and position feedback in the
Inspector window of the programming editor. Select the source for each value:

● Instance DB

The value saved in the instance DB is used.

Value must be updated in the instance DB by the user program.

There should be no value at the instruction.

Change via HMI possible.

● Instruction

The value connected to the instruction is used.
The value is written to the instance DB each time the instruction is called.

No change via HMI possible.

 Using PID_3Step
 5.2 PID_3Step V2

PID control
Function Manual, 12/2014, A5E35300227-AA 119

Controller type

Physical quantity
Select the physical quantity and unit of measurement for setpoint, process value, and
disturbance variable in the "Controller type" group. Setpoint, process value, and disturbance
variable is displayed in this unit of measurement.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic.

PID_3Step does not work with negative proportional gain. Select the check box "Invert
control logic" to reduce the process value with a higher output value.

Examples

● Opening the drain valve will reduce the level of a container's contents.

● Increasing cooling will reduce the temperature.

Startup characteristics
1. To switch to "Inactive" mode after CPU restart, clear the "Activate Mode after CPU

restart" check box.

To switch to the operating mode saved in the Mode parameter after CPU restart, select
the "Activate Mode after CPU restart" check box.

2. In the "Set Mode to" drop-down list, select the mode that is to be enabled after a
complete download to the device.

After a complete download to the device, PID_3Step starts in the selected operating
mode. With each additional restart, PID_3Step starts in the mode that was last saved in
Mode.

Example

You have selected the "Activate Mode after CPU restart" check box and the entry
"Pretuning" in the "Set Mode to" list. After a complete download to the device, PID_3Step
starts in the "Pretuning" mode. If pretuning is still active, PID_3Step starts in "Pretuning"
mode again after restart of the CPU. If pretuning was successfully completed and automatic
mode is active, PID_3Step starts in "Automatic mode" after restart of the CPU.

Using PID_3Step
5.2 PID_3Step V2

 PID control
120 Function Manual, 12/2014, A5E35300227-AA

Setpoint

Procedure
Proceed as follows to define a fixed setpoint:

1. Select "Instance DB".

2. Enter a setpoint, e.g. 80° C.

3. Delete any entry in the instruction.

Proceed as follows to define a variable setpoint:

1. Select "Instruction".

2. Enter the name of the REAL variable in which the setpoint is saved.

Program-controlled assignment of various values to the REAL variable is possible, for
example for the time controlled change of the setpoint.

Process value
PID_3Step will scale the value of the analog input to the physical quantity if you use the
analog input value directly.

You will need to write a program for processing if you wish first to process the analog input
value. The process value is, for example, not directly proportional to the value at the analog
input. The processed process value must be in floating point format.

Procedure
Proceed as follows to use the analog input value without processing:

1. Select the entry "Input_PER" in the drop-down list "Input".

2. Select "Instruction" as source.

3. Enter the address of the analog input.

Proceed as follows to use the processed process value in floating point format:

1. Select the entry "Input" in the drop-down list "Input".

2. Select "Instruction" as source.

3. Enter the name of the variable in which the processed process value is saved.

Position feedback
Position feedback configuration depends upon the actuator used.

● Actuator without position feedback

● Actuator with digital endstop signals

● Actuator with analog position feedback

● Actuator with analog position feedback and endstop signals

 Using PID_3Step
 5.2 PID_3Step V2

PID control
Function Manual, 12/2014, A5E35300227-AA 121

Actuator without position feedback
Proceed as follows to configure PID_3Step for an actuator without position feedback:

1. Select the entry "No Feedback" in the drop-down list "Feedback".

Actuator with digital endstop signals
Proceed as follows to configure PID_3Step for an actuator with endstop signals:

1. Select the entry "No Feedback" in the drop-down list "Feedback".

2. Activate the "Actuator endstop signals" check box.

3. Select "Instruction" as source for Actuator_H and Actuator_L.

4. Enter the addresses of the digital inputs for Actuator_H and Actuator_L.

Actuator with analog position feedback
Proceed as follows to configure PID_3Step for an actuator with analog position feedback:

1. Select the entry "Feedback" or "Feedback_PER" in the drop-down list "Feedback".

– Use the analog input value for Feedback_PER. Configure Feedback_PER scaling in
the actuator settings.

– Process the analog input value for Feedback using your user program.

2. Select "Instruction" as source.

3. Enter the address of the analog input or the variable of your user program.

Actuator with analog position feedback and endstop signals
Proceed as follows to configure PID_3Step for an actuator with analog position feedback and
endstop signals:

1. Select the entry "Feedback" or "Feedback_PER" in the drop-down list "Feedback".

2. Select "Instruction" as source.

3. Enter the address of the analog input or the variable of your user program.

4. Activate the "Actuator endstop signals" check box.

5. Select "Instruction" as source for Actuator_H and Actuator_L.

6. Enter the addresses of the digital inputs for Actuator_H and Actuator_L.

Using PID_3Step
5.2 PID_3Step V2

 PID control
122 Function Manual, 12/2014, A5E35300227-AA

Output value
PID_3Step offers an analog output value (Output_PER) and digital output values
(Output_UP, Output_DN). Your actuator will determine which output value you use.

● Output_PER

The actuator is triggered via an analog output and controlled with a continuous signal,
e.g. 0...10V, 4...20mA.

● Output_UP, Output_DN

The actuator is controlled via two digital outputs.

Procedure
Proceed as follows to use the analog output value:

1. Select the entry "Output (analog)" in the drop-down list "Output".

2. Select "Instruction".

3. Enter the address of the analog output.

Proceed as follows to use the digital output value:

1. Select the entry "Output (digital)" in the drop-down list "Output".

2. Select "Instruction" for Output_UP and Output_DN.

3. Enter the addresses of the digital outputs.

Proceed as follows to process the output value using the user program:

1. Select the entry corresponding to the actuator in the drop-down list "Output".

2. Select "Instruction".

3. Enter the name of the variable you are using to process the output value.

4. Transfer the processed output value to the actuator by means of an analog or digital CPU
output.

 Using PID_3Step
 5.2 PID_3Step V2

PID control
Function Manual, 12/2014, A5E35300227-AA 123

5.2.1.2 Process value settings

Scaling the process value
If you have configured the use of Input_PER in the basic setting, you must convert the value
of the analog input to the physical quantity of the process value. The current configuration is
displayed in the Input_PER display.

Input_PER will be scaled using a low and high value pair if the process value is directly
proportional to the value of the analog input.

Procedure
To scale the process value, follow these steps:

1. Enter the low pair of values in the "Scaled low process value" and "Low" text boxs.

2. Enter the high pair of values in the "Scaled high process value" and "High" input boxes.

Default settings for the value pairs are stored in the hardware configuration. To use the value
pairs from the hardware configuration, follow these steps:

1. Select the PID_3Step instruction in the programming editor.

2. Interconnect Input_PER with an analog input in the basic settings.

3. Click the "Automatic setting" button in the process value settings.

The existing values will be overwritten with the values from the hardware configuration.

Process value limits
You must specify an appropriate absolute high limit and low limit for the process value as
limit values for your controlled system. As soon as the process value violates these limits, an
error occurs (ErrorBits = 0001h). Tuning is canceled when the process value limits are
violated. You can specify how PID_3Step responds to errors in automatic mode in the
actuator settings.

Using PID_3Step
5.2 PID_3Step V2

 PID control
124 Function Manual, 12/2014, A5E35300227-AA

5.2.1.3 Actuator settings

Actuator

Actuator-specific times
Configure the motor transition time and the minimum ON and OFF times to prevent damage
to the actuator. You can find the specifications in the actuator data sheet.

The motor transition time is the time in seconds the motor requires to move the actuator from
the closed to the opened state. You can measure the motor transition time during
commissioning.

The motor transition time is retentive. If you enter the motor transition time manually, you
must completely download PID_3Step.

Downloading technology objects to device (Page 46)

If you are using "Output_UP" or "Output_DN", you can reduce the switching frequency with
the minimum on and minimum OFF time.

The on or off times calculated are totaled in automatic mode and only become effective
when the sum is greater than or equal to the minimum on or OFF time.

Manual_UP = TRUE or Manual_DN = TRUE in manual mode operates the actuator for at
least the minimum ON or OFF time.

Reaction to error
PID_3Step is preset so that the controller stays active in most cases in the event of an error.
If errors occur frequently in controller mode, this default reaction has a negative effect on the
control response. In this case, check the Errorbits parameter and eliminate the cause of the
error.

 NOTICE

Your system may be damaged.

If you output "Current value while error pending" or "Substitute output value while error
pending" in the event of an error, PID_3Step remains in automatic mode even if the
process value limits are violated. This may damage your system.

It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

 Using PID_3Step
 5.2 PID_3Step V2

PID control
Function Manual, 12/2014, A5E35300227-AA 125

PID_3Step generates a programmable output value in response to an error:

● Current value

PID_3Step is switched off and no longer modifies the actuator position.

● Current value for error while error is pending

The controller functions of PID_3Step are switched off and the position of the actuator is
no longer changed.

If the following errors occur in automatic mode, PID_3Step returns to automatic mode as
soon as the errors are no longer pending.

– 0002h: Invalid value at Input_PER parameter.

– 0200h: Invalid value at Input parameter.

– 0400h: Calculation of output value failed.

– 1000h: Invalid value at Setpoint parameter.

– 2000h: Invalid value at Feedback_PER parameter.

– 4000h: Invalid value at Feedback parameter.

– 8000h: Error during digital position feedback.

– 20000h: Invalid value at SavePosition tag.

If one or more of the following errors occur, PID_3Step stays in
automatic mode:

– 0001h: The Input parameter is outside the process value limits.

– 0800h: Sampling time error

– 40000h: Invalid value at Disturbance parameter.

PID_3Step remains in manual mode if an error occurs in manual mode.

If an error occurs during tuning or transition time measurement, PID_3Step switches to
the mode in which tuning or transition time measurement was started. Only in the event
of the following error is tuning not aborted:

– 0020h: Pretuning is not permitted during fine tuning.

● Substitute output value

PID_3Step moves the actuator to the substitute output value and then switches off.

● Substitute output value while error is pending

PID_3Step moves the actuator to the substitute output value. When the substitute output
value is reached, PID_3Step reacts as it does with "Current value for while error is
pending".

Enter the substitute output value in "%".

Only substitute output values 0% and 100% can be approached precisely in the case of
actuators without analog position feedback. A substitute output value not equal to 0% or
100% is approached via an internally simulated position feedback. This procedure does not,
however, allow the exact approach of substitute output value.

All substitute output values can be approached precisely with actuators with analog position
feedback.

Using PID_3Step
5.2 PID_3Step V2

 PID control
126 Function Manual, 12/2014, A5E35300227-AA

Scaling position feedback

Scaling position feedback
If you have configured the use of Feedback_PER in the basic settings, you will need to
convert the value of the analog input into %. The current configuration will be displayed in
the "Feedback" display.

Feedback_PER is scaled using a low and high value pair.

1. Enter the low pair of values in the "Low endstop" and "Low" input boxes.

2. Enter the high pair of values in the "High endstop" and "High" input boxes.

"Low endstop" must be less than "High endstop"; "Low" must be less than "High".

The valid values for "High endstop" and "Low endstop" depend upon:

● No Feedback, Feedback, Feedback_PER

● Output (analog), Output (digital)

Output Feedback Low endstop High endstop
Output (digital) No Feedback Cannot be set (0.0%) Cannot be set (100.0%)
Output (digital) Feedback -100.0% or 0.0% 0.0% or +100.0%
Output (digital) Feedback_PER -100.0% or 0.0% 0.0% or +100.0%
Output (analog) No Feedback Cannot be set (0.0%) Cannot be set (100.0%)
Output (analog) Feedback -100.0% or 0.0% 0.0% or +100.0%
Output (analog) Feedback_PER -100.0% or 0.0% 0.0% or +100.0%

Output value limits

Limiting the output value
You can exceed or undershoot the output value limits during the transition time
measurement and with mode = 10. The output value is limited to these values in all other
modes.

Enter the absolute output value limits in the "Output value high limit" and "Output value low
limit" input boxes. The output value limits must be within "Low endstop" and "High endstop".

If no Feedback is available and Output (digital) is set, you cannot limit the output value.
Output_UP and Output_DN are then reset upon Actuator_H = TRUE or Actuator_L = TRUE.
If no endstop signals are available, Output_UP and Output_DN are reset after a travel time of
150% of the motor actuating time.

 Using PID_3Step
 5.2 PID_3Step V2

PID control
Function Manual, 12/2014, A5E35300227-AA 127

5.2.1.4 Advanced settings

Monitoring process value
Configure a warning high and low limit for the process value in the "Process value
monitoring" configuration window. If one of the warning limits is exceeded or undershot
during operation, a warning will be displayed at the PID_3Step instruction:

● At the InputWarning_H output parameter if the warning high limit has been exceeded

● At the InputWarning_L output parameter if the warning low limit has been undershot

The warning limits must be within the process value high and low limits.

The process value high and low limits will be used if you do not enter values.

Example
Process value high limit = 98° C; warning high limit = 90° C

Warning low limit = 10° C; process value low limit = 0° C

PID_3Step will respond as follows:

Process value InputWarn-

ing_H
InputWarn-
ing_L

Error-
Bits

Operating mode

> 98° C TRUE FALSE 0001h As configured
≤ 98° C and > 90° C TRUE FALSE 0000h Automatic mode
≤ 90° C and ≥ 10° C FALSE FALSE 0000h Automatic mode
< 10° C and ≥ 0° C FALSE TRUE 0000h Automatic mode
< 0° C FALSE TRUE 0001h As configured

In the actuator settings, you can configure the response of PID_3Step when the process
value high limit or low limit is violated.

Using PID_3Step
5.2 PID_3Step V2

 PID control
128 Function Manual, 12/2014, A5E35300227-AA

PID parameters
The PID parameters are displayed in the "PID Parameters" configuration window. The PID
parameters will be adapted to your controlled system during controller tuning. You do not
need to enter the PID parameters manually.

The PID algorithm operates according to the following equation:

Symbol Description
Δy Output value of the PID algorithm
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integral action time
a Derivative delay coefficient (derivative delay T1 = a × TD)
TD Derivative action time
c Derivative action weighting

The diagram below illustrates the integration of the parameters into the PID algorithm:

All PID parameters are retentive. If you enter the PID parameters manually, you must
completely download PID_3Step.

Downloading technology objects to device (Page 46)

 Using PID_3Step
 5.2 PID_3Step V2

PID control
Function Manual, 12/2014, A5E35300227-AA 129

Proportional gain
The value specifies the proportional gain of the controller. PID_3Step does not work with a
negative proportional gain. Control logic is inverted under Basic settings > Controller type.

Integral action time
The integral action time determines the time behavior of the integral action. The integral
action is deactivated with integral action time = 0.0.

Derivative action time
The derivative action time determines the time behavior of the derivative action. Derivative
action is deactivated with derivative action time = 0.0.

Derivative delay coefficient
The derivative delay coefficient delays the effect of the derivative action.

Derivative delay = derivative action time × derivative delay coefficient

● 0.0: Derivative action is effective for one cycle only and therefore almost not effective.

● 0.5: This value has proved useful in practice for controlled systems with one dominant
time constant.

● > 1.0: The greater the coefficient, the longer the effect of the derivative action is delayed.

Proportional action weighting
The proportional action may weaken with changes to the setpoint.

Values from 0.0 to 1.0 are applicable.

● 1.0: Proportional action for setpoint change is fully effective

● 0.0: Proportional action for setpoint change is not effective

The proportional action is always fully effective when the process value is changed.

Derivative action weighting
The derivative action may weaken with changes to the setpoint.

Values from 0.0 to 1.0 are applicable.

● 1.0: Derivative action is fully effective upon setpoint change

● 0.0: Derivative action is not effective upon setpoint change

The derivative action is always fully effective when the process value is changed.

Using PID_3Step
5.2 PID_3Step V2

 PID control
130 Function Manual, 12/2014, A5E35300227-AA

PID algorithm sampling time
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value. It
is calculated during tuning and rounded to a multiple of the PID_3Step sampling time. All
other functions of PID_3Step are executed at every call.

Deadband width
The deadband suppresses the noise component in the steady controller state. The
deadband width specifies the size of the deadband. The deadband is off if the deadband
width is 0.0.

 Using PID_3Step
 5.2 PID_3Step V2

PID control
Function Manual, 12/2014, A5E35300227-AA 131

5.2.2 Commissioning PID_3Step V2

5.2.2.1 Pretuning
The pretuning determines the process response to a pulse of the output value and searches
for the point of inflection. The tuned PID parameters are calculated as a function of the
maximum slope and dead time of the controlled system. You obtain the best PID parameters
when you perform pretuning and fine tuning.

The more stable the process value is, the easier it is to calculate the PID parameters and the
more precise the result will be. Noise on the process value can be tolerated as long as the
rate of rise of the process value is significantly higher compared to the noise. This is most
likely the case in operating modes "Inactive" and "manual mode". The PID parameters are
backed up before being recalculated.

The setpoint is frozen during pretuning.

Requirement
● The PID_3Step instruction is called in a cyclic interrupt OB.

● ManualEnable = FALSE

● Reset = FALSE

● The motor transition time has been configured or measured.

● PID_3Step is in one of the following modes: "Inactive", "Manual mode", or "Automatic
mode".

● The setpoint and the process value lie within the configured limits (see "Process value
settings" configuration).

Using PID_3Step
5.2 PID_3Step V2

 PID control
132 Function Manual, 12/2014, A5E35300227-AA

Procedure
To perform pretuning, follow these steps:

1. Double-click the "PID_3Step > Commissioning" entry in the project tree.

2. Select the entry "Pretuning" in the "Tuning mode" drop-down list in the working area
"Tuning".

3. Click the "Start" icon.

– An online connection will be established.

– Value recording is started.

– Pretuning is started.

– The "Status" field displays the current steps and any errors that may have occurred.
The progress bar indicates the progress of the current step.

 Note

Click the "Stop" icon when the progress bar has reached 100% and it is to be
assumed the controller tuning function is blocked. Check the configuration of the
technology object and, if necessary, restart controller tuning.

Result
If pretuning was performed without an error message, the PID parameters have been tuned.
PID_3Step switches to automatic mode and uses the tuned parameters. The tuned PID
parameters will be retained during power OFF and a restart of the CPU.

If pretuning is not possible, PID_3Step responds with the configured reaction to errors.

 Using PID_3Step
 5.2 PID_3Step V2

PID control
Function Manual, 12/2014, A5E35300227-AA 133

5.2.2.2 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID
parameters are tuned for the operating point from the amplitude and frequency of this
oscillation. All PID parameters are recalculated from the results. PID parameters from fine
tuning usually have better master control and disturbance characteristics than PID
parameters from pretuning. You obtain the best PID parameters when you perform pretuning
and fine tuning.

PID_3Step automatically attempts to generate an oscillation greater than the noise of the
process value. Fine tuning is only minimally influenced by the stability of the process value.
The PID parameters are backed up before being recalculated.

The setpoint is frozen during fine tuning.

Requirement
● The PID_3Step instruction is called in a cyclic interrupt OB.

● ManualEnable = FALSE

● Reset = FALSE

● The motor transition time has been configured or measured.

● The setpoint and the process value lie within the configured limits (see "Process value
settings" configuration).

● The control loop has stabilized at the operating point. The operating point is reached
when the process value corresponds to the setpoint.

● No disturbances are expected.

● PID_3Step is in inactive mode, automatic mode or manual mode.

Process depends on initial situation
Fine tuning proceeds as follows when started from:

● Automatic mode

Start fine tuning from automatic mode if you wish to improve the existing PID parameters
through tuning.

PID_3Step controls the system using the existing PID parameters until the control loop
has stabilized and the requirements for fine tuning have been met. Only then will fine
tuning start.

● Inactive or manual mode

Pretuning is always started first. The determined PID parameters will be used for control
until the control loop has stabilized and the requirements for fine tuning have been met.
Only then will fine tuning start.

Using PID_3Step
5.2 PID_3Step V2

 PID control
134 Function Manual, 12/2014, A5E35300227-AA

Procedure
To perform fine tuning, follow these steps:

1. Select the entry "Fine tuning" in the "Tuning mode" drop-down list.

2. Click the "Start" icon.

– An online connection will be established.

– Value recording is started.

– The process of fine tuning is started.

– The "Status" field displays the current steps and any errors that may have occurred.
The progress bar indicates the progress of the current step.

 Note

Click the "Stop" icon in the "Tuning mode" group when the progress bar has reached
100% and it is to be assumed the controller tuning function is blocked. Check the
configuration of the technology object and, if necessary, restart controller tuning.

Result
If no errors occurred during fine tuning, the PID parameters have been tuned. PID_3Step
switches to automatic mode and uses the tuned parameters. The tuned PID parameters will
be retained during power OFF and a restart of the CPU.

If errors occurred during fine tuning, PID_3Step responds with the configured response to
errors.

 Using PID_3Step
 5.2 PID_3Step V2

PID control
Function Manual, 12/2014, A5E35300227-AA 135

5.2.2.3 Commissioning with manual PID parameters

Requirement
● The PID_3Step instruction is called in a cyclic interrupt OB.

● ManualEnable = FALSE

● Reset = FALSE

● The motor transition time has been configured or measured.

● PID_3Step is in "inactive" mode.

● The setpoint and the process value lie within the configured limits (see "Process value
settings" configuration).

Procedure
Proceed as follows to commission PID_3Step with manual PID parameters:

1. Double-click on "PID_3Step > Configuration" in the project tree.

2. Click on "Advanced settings > PID Parameters" in the configuration window.

3. Select the check box "Enable direct input".

4. Enter the PID parameters.

5. Double-click the "PID_3Step > Commissioning" entry in the project tree.

6. Establish an online connection to the CPU.

7. Load the PID parameters to the CPU.

8. Click the "Start PID_3Step" icon.

Result
PID_3Step changes to automatic mode and controls using the current PID parameters.

See also
PID parameters (Page 128)

Using PID_3Step
5.2 PID_3Step V2

 PID control
136 Function Manual, 12/2014, A5E35300227-AA

5.2.2.4 Measuring the motor transition time

Introduction
PID_3Step requires the motor transition time to be as accurate as possible for good
controller results. The data in the actuator documentation contains average values for this
type of actuator. The value for the specific actuator used may differ.

You can measure the motor transition time during commissioning if you are using actuators
with position feedback or endstop signals. The output value limits are not taken into
consideration during the motor transition time measurement. The actuator can travel to the
high or the low endstop.

The motor transition time cannot be measured if neither position feedback nor endstop
signals are available.

Actuators with analog position feedback
Proceed as follows to measure motor transition time with position feedback:

Requirement

● Feedback or Feedback_PER has been selected in the basic settings and the signal has
been connected.

● An online connection to the CPU has been established.

1. Select the "Use position feedback" check box.

2. Enter the position to which the actuator is to be moved in the "Target position" input field.

The current position feedback (starting position) will be displayed. The difference
between "Target position" and "Position feedback" must be at least 50% of the valid
output value range.

3. Click the "Start" icon.

 Using PID_3Step
 5.2 PID_3Step V2

PID control
Function Manual, 12/2014, A5E35300227-AA 137

Result
The actuator is moved from the starting position to the target position. Time measurement
starts immediately and ends when the actuator reaches the target position. The motor
transition time is calculated according to the following equation:

Motor transition time = (output value high limit – output value low limit) × Measuring time /
AMOUNT (target position – starting position).

The progress and status of transition time measurement are displayed. The transition time
measured is saved in the instance data block on the CPU and displayed in the "Measured
transition time" field. When the transition time measurement is ended and
ActivateRecoverMode = TRUE, PID_3Step switches to the operating mode from which the
transition time measurement was started. If the transition time measurement is ended and
ActivateRecoverMode = FALSE, PID_3Step changes to "Inactive" mode.

 Note

Click on the icon "Upload measured transition time" to load the motor transition time
measured to the project.

Actuators with endstop signals
Proceed as follows to measure the transition time of actuators with endstop signals:

Requirement

● The "Endstop signals" check box in the basic settings has been selected and Actuator_H
and Actuator_L are connected.

● An online connection to the CPU has been established.

Proceed as follows to measure motor transition time with endstop signals:

1. Select the "Use actuator endstop signals" check box.

2. Select the direction in which the actuator is to be moved.

– Open - Close - Open

The actuator is moved first to the high endstop, then to the low endstop and then back
to the high endstop.

– Close - Open - Close

The actuator is moved first to the low endstop, then to the high endstop and then back
to the low endstop.

3. Click the "Start" icon.

Using PID_3Step
5.2 PID_3Step V2

 PID control
138 Function Manual, 12/2014, A5E35300227-AA

Result
The actuator is moved in the selected direction. Time measurement will start once the
actuator has reached the first endstop and will end when the actuator reaches this endstop
for the second time. The motor transition time is equal to the time measured divided by two.

The progress and status of transition time measurement are displayed. The transition time
measured is saved in the instance data block on the CPU and displayed in the "Measured
transition time" field. When the transition time measurement is ended and
ActivateRecoverMode = TRUE, PID_3Step switches to the operating mode from which the
transition time measurement was started. If the transition time measurement is ended and
ActivateRecoverMode = FALSE, PID_3Step changes to "Inactive" mode.

Cancelling transition time measurement
PID_3Step switches to "Inactive" mode if you cancel transition time measurement by
pressing the Stop button.

 Using PID_3Step
 5.3 PID_3Step V1

PID control
Function Manual, 12/2014, A5E35300227-AA 139

5.3 PID_3Step V1

5.3.1 Configuring PID_3Step V1

5.3.1.1 Basic settings

Introduction
Configure the following properties of the "PID_3Step" technology object under "Basic
settings" in the Inspector window or in the configuration window:

● Physical quantity

● Control logic

● Start-up behavior after reset

● Setpoint (only in the Inspector window)

● Process value (only in the Inspector window)

● Output value (only in the Inspector window)

● Position feedback (only in the Inspector window)

Setpoint, process value, output value and position feedback
You can only configure the setpoint, process value, output value and position feedback in the
Inspector window of the programming editor. Select the source for each value:

● Instance DB

The value saved in the instance DB is used.

Value must be updated in the instance DB by the user program.

There should be no value at the instruction.

Change via HMI possible.

● Instruction

The value connected to the instruction is used.
The value is written to the instance DB each time the instruction is called.

No change via HMI possible.

Using PID_3Step
5.3 PID_3Step V1

 PID control
140 Function Manual, 12/2014, A5E35300227-AA

Controller type

Physical quantity
Select the unit of measurement and physical quantity for the setpoint and process value in
the "Controller type" group. The setpoint and process value will be displayed in this unit.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic.

PID_3Step does not work with negative proportional gain. Select the check box "Invert
control logic" to reduce the process value with a higher output value.

Examples

● Opening the drain valve will reduce the level of a container's contents.

● Increasing cooling will reduce the temperature.

Start-up behavior after reset
To change straight to the last active mode after restarting the CPU, select the "Enable last
mode after CPU restart" check box.

PID_3Step will remain in "Inactive" mode if the check box is cleared.

Setpoint

Procedure
Proceed as follows to define a fixed setpoint:

1. Select "Instance DB".

2. Enter a setpoint, e.g. 80° C.

3. Delete any entry in the instruction.

Proceed as follows to define a variable setpoint:

1. Select "Instruction".

2. Enter the name of the REAL variable in which the setpoint is saved.

Program-controlled assignment of various values to the REAL variable is possible, for
example for the time controlled change of the setpoint.

 Using PID_3Step
 5.3 PID_3Step V1

PID control
Function Manual, 12/2014, A5E35300227-AA 141

Process value
PID_3Step will scale the value of the analog input to the physical quantity if you use the
analog input value directly.

You will need to write a program for processing if you wish first to process the analog input
value. The process value is, for example, not directly proportional to the value at the analog
input. The processed process value must be in floating point format.

Procedure
Proceed as follows to use the analog input value without processing:

1. Select the entry "Input_PER" in the drop-down list "Input".

2. Select "Instruction" as source.

3. Enter the address of the analog input.

Proceed as follows to use the processed process value in floating point format:

1. Select the entry "Input" in the drop-down list "Input".

2. Select "Instruction" as source.

3. Enter the name of the variable in which the processed process value is saved.

Position feedback
Position feedback configuration depends upon the actuator used.

● Actuator without position feedback

● Actuator with digital endstop signals

● Actuator with analog position feedback

● Actuator with analog position feedback and endstop signals

Actuator without position feedback
Proceed as follows to configure PID_3Step for an actuator without position feedback:

1. Select the entry "No Feedback" in the drop-down list "Feedback".

Actuator with digital endstop signals
Proceed as follows to configure PID_3Step for an actuator with endstop signals:

1. Select the entry "No Feedback" in the drop-down list "Feedback".

2. Activate the "Actuator endstop signals" check box.

3. Select "Instruction" as source for Actuator_H and Actuator_L.

4. Enter the addresses of the digital inputs for Actuator_H and Actuator_L.

Using PID_3Step
5.3 PID_3Step V1

 PID control
142 Function Manual, 12/2014, A5E35300227-AA

Actuator with analog position feedback
Proceed as follows to configure PID_3Step for an actuator with analog position feedback:

1. Select the entry "Feedback" or "Feedback_PER" in the drop-down list "Feedback".

– Use the analog input value for Feedback_PER. Configure Feedback_PER scaling in
the actuator settings.

– Process the analog input value for Feedback using your user program.

2. Select "Instruction" as source.

3. Enter the address of the analog input or the variable of your user program.

Actuator with analog position feedback and endstop signals
Proceed as follows to configure PID_3Step for an actuator with analog position feedback and
endstop signals:

1. Select the entry "Feedback" or "Feedback_PER" in the drop-down list "Feedback".

2. Select "Instruction" as source.

3. Enter the address of the analog input or the variable of your user program.

4. Activate the "Actuator endstop signals" check box.

5. Select "Instruction" as source for Actuator_H and Actuator_L.

6. Enter the addresses of the digital inputs for Actuator_H and Actuator_L.

Output value
PID_3Step offers an analog output value (Output_PER) and digital output values
(Output_UP, Output_DN). Your actuator will determine which output value you use.

● Output_PER

The actuator is triggered via an analog output and controlled with a continuous signal,
e.g. 0...10V, 4...20mA.

● Output_UP, Output_DN

The actuator is controlled via two digital outputs.

 Using PID_3Step
 5.3 PID_3Step V1

PID control
Function Manual, 12/2014, A5E35300227-AA 143

Procedure
Proceed as follows to use the analog output value:

1. Select the entry "Output (analog)" in the drop-down list "Output".

2. Select "Instruction".

3. Enter the address of the analog output.

Proceed as follows to use the digital output value:

1. Select the entry "Output (digital)" in the drop-down list "Output".

2. Select "Instruction" for Output_UP and Output_DN.

3. Enter the addresses of the digital outputs.

Proceed as follows to process the output value using the user program:

1. Select the entry corresponding to the actuator in the drop-down list "Output".

2. Select "Instruction".

3. Enter the name of the variable you are using to process the output value.

4. Transfer the processed output value to the actuator by means of an analog or digital CPU
output.

Using PID_3Step
5.3 PID_3Step V1

 PID control
144 Function Manual, 12/2014, A5E35300227-AA

5.3.1.2 Process value settings
Configure the scaling of your process value and specify the process value absolute limits In
the "Process value settings" configuration window.

Scaling the process value
If you have configured the use of Input_PER in the basic settings, you will need to convert
the value of the analog input into the physical quantity of the process value. The current
configuration will be displayed in the Input_PER display.

Input_PER will be scaled using a low and high value pair if the process value is directly
proportional to the value of the analog input.

1. Enter the low pair of values in the "Scaled low process value" and "Low" input fields.

2. Enter the high pair of values in the "Scaled high process value" and "High" input boxes.

Default settings for the value pairs are saved in the hardware configuration. Proceed as
follows to use the value pairs from the hardware configuration:

1. Select the instruction PID_3Step in the programming editor.

2. Connect Input_PER to an analog input in the basic settings.

3. Click on the "Automatic setting" button in the process value settings.

The existing values will be overwritten with the values from the hardware configuration.

Monitoring process value
Specify the absolute high and low limit of the process value. You must enter reasonable
limits for your controlled system. Reasonable limits are important during optimization to
obtain optimal PID parameters. The default for the "High limit process value" is 120 %. At the
I/O input, the process value can be a maximum of 18% higher than the standard range
(overrange). This setting ensures that an error is no longer signaled due to a violation of the
"Process value high limit". Only a wire-break and a short-circuit are recognized and
PID_3Step reacts according to the configured reaction to error.

 NOTICE

Your system may be damaged.

If you set very high process value limits (for example -3.4*1038...+3.4*1038), process value
monitoring will be disabled. Your system may then be damaged if an error occurs. You
need to configure useful process value limits for your controlled system.

 Using PID_3Step
 5.3 PID_3Step V1

PID control
Function Manual, 12/2014, A5E35300227-AA 145

5.3.1.3 Actuator settings

Actuator-specific times
Configure the motor transition time and the minimum ON and OFF times to prevent damage
to the actuator. You can find the specifications in the actuator data sheet.

The motor transition time is the time in seconds the motor requires to move the actuator from
the closed to the opened state. The maximum time that the actuator is moved in one
direction is 110% of the motor transition time. You can measure the motor transition time
during commissioning.

If you are using "Output_UP" or "Output_DN", you can reduce the switching frequency with
the minimum on and minimum OFF time.

The on or off times calculated are totaled in automatic mode and only become effective
when the sum is greater than or equal to the minimum on or OFF time.

A rising edge at Manual_UP or Manual_DN in manual mode will operate the actuator for at
least the minimum on or OFF time.

Reaction to error
PID_3Step is preset so that the controller stays active in most cases in the event of an error.
If errors occur frequently in controller mode, this default reaction has a negative effect on the
control response. In this case, check the Errorbits parameter and eliminate the cause of the
error.

PID_3Step generates a programmable output value in response to an error:

● Current value

PID_3Step is switched off and no longer modifies the actuator position.

● Current value for error while error is pending

The controller functions of PID_3Step are switched off and the position of the actuator is
no longer changed.

If the following errors occur in automatic mode, PID_3Step returns to automatic mode as
soon as the errors are no longer pending.

– 0002h: Invalid value at Input_PER parameter.

– 0200h: Invalid value at Input parameter.

– 0800h: Sampling time error

– 1000h: Invalid value at Setpoint parameter.

– 2000h: Invalid value at Feedback_PER parameter.

– 4000h: Invalid value at Feedback parameter.

– 8000h: Error during digital position feedback.

If one of these error occurs in manual mode, PID_3Step remains in manual mode.

If an error occurs during the tuning or transition time measurement, PID_3Step is
switched off.

Using PID_3Step
5.3 PID_3Step V1

 PID control
146 Function Manual, 12/2014, A5E35300227-AA

● Substitute output value

PID_3Step moves the actuator to the substitute output value and then switches off.

● Substitute output value while error is pending

PID_3Step moves the actuator to the substitute output value. When the substitute output
value is reached, PID_3Step reacts as it does with "Current value for while error is
pending".

Enter the substitute output value in "%".

Only substitute output values 0% and 100% can be approached precisely in the case of
actuators without analog position feedback. The actuator is moved in one direction at 110%
of the motor transition time to ensure the high or low endstop is reached. There endstop
signals take priority. A substitute output value not equal to 0% or 100% is approached via an
internally simulated position feedback. This procedure does not, however, allow the exact
approach of substitute output value.

All substitute output values can be approached precisely with actuators with analog position
feedback.

Scaling position feedback
If you have configured the use of Feedback_PER in the basic settings, you will need to
convert the value of the analog input into %. The current configuration will be displayed in
the "Feedback" display.

Feedback_PER is scaled using a low and high value pair.

1. Enter the low pair of values in the "Low endstop" and "Low" input boxes.

2. Enter the high pair of values in the "High endstop" and "High" input boxes.

"Low endstop" must be less than "High endstop"; "Low" must be less than "High".

The valid values for "High endstop" and "Low endstop" depend upon:

● No Feedback, Feedback, Feedback_PER

● Output (analog), Output (digital)

Output Feedback Low endstop High endstop
Output (digital) No Feedback Cannot be set (0.0%) Cannot be set (100.0%)
Output (digital) Feedback -100.0% or 0.0% 0.0% or +100.0%
Output (digital) Feedback_PER -100.0% or 0.0% 0.0% or +100.0%
Output (analog) No Feedback Cannot be set (0.0%) Cannot be set (100.0%)
Output (analog) Feedback -100.0% or 0.0% 0.0% or +100.0%
Output (analog) Feedback_PER -100.0% or 0.0% 0.0% or +100.0%

 Using PID_3Step
 5.3 PID_3Step V1

PID control
Function Manual, 12/2014, A5E35300227-AA 147

Limiting the output value
You can only exceed or undershoot the output value limits during the transition time
measurement. The output value is limited to these values in all other modes.

Enter the absolute output value limits in the "Output value high limit" and "Output value low
limit" input boxes. The output value limits must be within "Low endstop" and "High endstop".

If no Feedback is available and Output (digital) is set, you cannot limit the output value. The
digital outputs are reset with Actuator_H = TRUE or Actuator_L = TRUE, or after a travel time
amounting to 110% of the motor transition time.

Using PID_3Step
5.3 PID_3Step V1

 PID control
148 Function Manual, 12/2014, A5E35300227-AA

5.3.1.4 Advanced settings

Monitoring process value
Configure a warning high and low limit for the process value in the "Process value
monitoring" configuration window. If one of the warning limits is exceeded or undershot
during operation, a warning will be displayed at the PID_3Step instruction:

● At the InputWarning_H output parameter if the warning high limit has been exceeded

● At the InputWarning_L output parameter if the warning low limit has been undershot

The warning limits must be within the process value high and low limits.

The process value high and low limits will be used if you do not enter values.

Example
Process value high limit = 98° C; warning high limit = 90° C

Warning low limit = 10° C; process value low limit = 0° C

PID_3Step will respond as follows:

Process value InputWarning_H InputWarning_L Operating mode
> 98° C TRUE FALSE Inactive
≤ 98° C and > 90° C TRUE FALSE Automatic mode
≤ 90° C and ≥ 10° C FALSE FALSE Automatic mode
< 10° C and ≥ 0° C FALSE TRUE Automatic mode
< 0° C FALSE TRUE Inactive

 Using PID_3Step
 5.3 PID_3Step V1

PID control
Function Manual, 12/2014, A5E35300227-AA 149

PID parameters
The PID parameters are displayed in the "PID Parameters" configuration window. The PID
parameters will be adapted to your controlled system during controller tuning. You do not
need to enter the PID parameters manually.

The PID algorithm operates according to the following equation:

Symbol Description
Δy Output value of the PID algorithm
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integral action time
a Derivative delay coefficient (derivative delay T1 = a × TD)
TD Derivative action time
c Derivative action weighting

The diagram below illustrates the integration of the parameters into the PID algorithm:

All PID parameters are retentive. If you enter the PID parameters manually, you must
completely download PID_3Step.

Using PID_3Step
5.3 PID_3Step V1

 PID control
150 Function Manual, 12/2014, A5E35300227-AA

Proportional gain
The value specifies the proportional gain of the controller. PID_3Step does not work with a
negative proportional gain. Control logic is inverted under Basic settings > Controller type.

Integral action time
The integral action time determines the time behavior of the integral action. The integral
action is deactivated with integral action time = 0.0.

Derivative action time
The derivative action time determines the time behavior of the derivative action. Derivative
action is deactivated with derivative action time = 0.0.

Derivative delay coefficient
The derivative delay coefficient delays the effect of the derivative action.

Derivative delay = derivative action time × derivative delay coefficient

● 0.0: Derivative action is effective for one cycle only and therefore almost not effective.

● 0.5: This value has proved useful in practice for controlled systems with one dominant
time constant.

● > 1.0: The greater the coefficient, the longer the effect of the derivative action is delayed.

Proportional action weighting
The proportional action may weaken with changes to the setpoint.

Values from 0.0 to 1.0 are applicable.

● 1.0: Proportional action for setpoint change is fully effective

● 0.0: Proportional action for setpoint change is not effective

The proportional action is always fully effective when the process value is changed.

Derivative action weighting
The derivative action may weaken with changes to the setpoint.

Values from 0.0 to 1.0 are applicable.

● 1.0: Derivative action is fully effective upon setpoint change

● 0.0: Derivative action is not effective upon setpoint change

The derivative action is always fully effective when the process value is changed.

 Using PID_3Step
 5.3 PID_3Step V1

PID control
Function Manual, 12/2014, A5E35300227-AA 151

PID algorithm sampling time
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value. It
is calculated during tuning and rounded to a multiple of the PID_3Step sampling time. All
other functions of PID_3Step are executed at every call.

Deadband width
The deadband suppresses the noise component in the steady controller state. The
deadband width specifies the size of the deadband. The deadband is off if the deadband
width is 0.0.

See also
Downloading technology objects to device (Page 46)

Using PID_3Step
5.3 PID_3Step V1

 PID control
152 Function Manual, 12/2014, A5E35300227-AA

5.3.2 Commissioning PID_3Step V1

5.3.2.1 Commissioning
You can monitor the setpoint, process value and output value over time in the "Tuning"
working area. The following commissioning functions are supported in the curve plotter:

● Controller pretuning

● Controller fine tuning

● Monitoring the current closed-loop control in the trend view

All functions require an online connection to the CPU to have been established.

Basic handling
● Select the desired sampling time in the "Sampling time" drop-down list.

All values in the tuning working area are updated in the selected update time.

● Click the "Start" icon in the measuring group if you want to use the commissioning
functions.

Value recording is started. The current values for the setpoint, process value and output
value are entered in the trend view. Operation of the commissioning window is enabled.

● Click the "Stop" icon if you want to end the commissioning functions.

The values recorded in the trend view can continue to be analyzed.

● Closing the commissioning window will terminate recording in the trend view and delete
the recorded values.

 Using PID_3Step
 5.3 PID_3Step V1

PID control
Function Manual, 12/2014, A5E35300227-AA 153

5.3.2.2 Pretuning
The pretuning determines the process response to a pulse of the output value and searches
for the point of inflection. The tuned PID parameters are calculated as a function of the
maximum slope and dead time of the controlled system.

The more stable the process value is, the easier it is to calculate the PID parameters and the
more precise the result will be. Noise on the process value can be tolerated as long as the
rate of rise of the process value is significantly higher compared to the noise. The PID
parameters are backed up before being recalculated.

The setpoint is frozen during pretuning.

Requirement
● The PID_3Step instruction is called in a cyclic interrupt OB.

● ManualEnable = FALSE

● PID_3Step is in "inactive" or "manual" mode.

● The setpoint and the process value lie within the configured limits (see "Process value
settings" configuration).

Procedure
To perform pretuning, follow these steps:

1. Double-click the "PID_3Step > Commissioning" entry in the project tree.

2. Select the entry "Pretuning" in the "Tuning mode" drop-down list in the working area
"Tuning".

3. Click the "Start" icon.

– An online connection will be established.

– Value recording is started.

– Pretuning is started.

– The "Status" field displays the current steps and any errors that may have occurred.
The progress bar indicates the progress of the current step.

 Note

Click the "Stop" icon when the progress bar has reached 100% and it is to be
assumed the controller tuning function is blocked. Check the configuration of the
technology object and, if necessary, restart controller tuning.

Result
If pretuning was performed without an error message, the PID parameters have been tuned.
PID_3Step switches to automatic mode and uses the tuned parameters. The tuned PID
parameters will be retained during power OFF and a restart of the CPU.

If pretuning is not possible, PID_3Step changes to "Inactive" mode.

Using PID_3Step
5.3 PID_3Step V1

 PID control
154 Function Manual, 12/2014, A5E35300227-AA

5.3.2.3 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID
parameters are optimized for the operating point from the amplitude and frequency of this
oscillation. All PID parameters are recalculated on the basis of the findings. PID parameters
from fine tuning usually have better master control and disturbance behavior than PID
parameters from pretuning.

PID_3Step automatically attempts to generate an oscillation greater than the noise of the
process value. Fine tuning is only minimally influenced by the stability of the process value.
The PID parameters are backed up before being recalculated.

The setpoint is frozen during fine tuning.

Requirement
● The PID_3Step instruction is called in a cyclic interrupt OB.

● ManualEnable = FALSE

● The motor transition time has been configured or measured.

● The setpoint and the process value lie within the configured limits (see "Process value
settings" configuration).

● The control loop has stabilized at the operating point. The operating point is reached
when the process value corresponds to the setpoint.

● No disturbances are expected.

● PID_3Step is in inactive mode, automatic mode or manual mode.

Process depends on initial situation
Fine tuning proceeds as follows when started in:

● Automatic mode

Start fine tuning in automatic mode if you wish to improve the existing PID parameters
using controller tuning.

PID_3Step will regulate using the existing PID parameters until the control loop has
stabilized and the requirements for fine tuning have been met. Only then will fine tuning
start.

● Inactive or manual mode

Pretuning is always started first. The PID parameters established will be used for
adjustment until the control loop has stabilized and the requirements for fine tuning have
been met. Only then will fine tuning start.

 Using PID_3Step
 5.3 PID_3Step V1

PID control
Function Manual, 12/2014, A5E35300227-AA 155

Procedure
Proceed as follows to carry out "fine tuning":

1. Select the entry "Fine tuning" in the "Tuning mode" drop-down list.

2. Click the "Start" icon.

– An online connection will be established.

– Value recording is started.

– The process of fine tuning is started.

– The "Status" field displays the current steps and any errors that may have occurred.
The progress bar indicates the progress of the current step.

 Note

Click the "Stop" icon in the "Tuning mode" group when the progress bar has reached
100% and it is to be assumed the controller tuning function is blocked. Check the
configuration of the technology object and, if necessary, restart controller tuning.

Result
The PID parameters will have been optimized if fine tuning has been executed without
errors. PID_3Step changes to automatic mode and uses the optimized parameters. The
optimized PID parameters will be retained during power OFF and a restart of the CPU.

If errors occurred during fine tuning, PID_3Step will change to "inactive" mode.

5.3.2.4 Commissioning with manual PID parameters

Procedure
Proceed as follows to commission PID_3Step with manual PID parameters:

1. Double-click on "PID_3Step > Configuration" in the project tree.

2. Click on "Advanced settings > PID Parameters" in the configuration window.

3. Select the check box "Enable direct input".

4. Enter the PID parameters.

5. Double-click on "PID_3Step > Commissioning" in the project tree.

6. Establish an online connection to the CPU.

7. Load the PID parameters to the CPU.

8. Click on the "Activate controller" icon.

Result
PID_3Step changes to automatic mode and controls using the current PID parameters.

Using PID_3Step
5.3 PID_3Step V1

 PID control
156 Function Manual, 12/2014, A5E35300227-AA

5.3.2.5 Measuring the motor transition time

Introduction
PID_3Step requires the motor transition time to be as accurate as possible for good
controller results. The data in the actuator documentation contains average values for this
type of actuator. The value for the specific actuator used may differ.

You can measure the motor transition time during commissioning if you are using actuators
with position feedback or endstop signals. The output value limits are not taken into
consideration during the motor transition time measurement. The actuator can travel to the
high or the low endstop.

The motor transition time cannot be measured if neither position feedback nor endstop
signals are available.

Actuators with analog position feedback
Proceed as follows to measure motor transition time with position feedback:

Requirement

● Feedback or Feedback_PER has been selected in the basic settings and the signal has
been connected.

● An online connection to the CPU has been established.

1. Select the "Use position feedback" check box.

2. Enter the position to which the actuator is to be moved in the "Target position" input field.

The current position feedback (starting position) will be displayed. The difference
between "Target position" and "Position feedback" must be at least 50% of the valid
output value range.

3. Click the "Start transition time measurement" icon.

Result
The actuator is moved from the starting position to the target position. Time measurement
starts immediately and ends when the actuator reaches the target position. The motor
transition time is calculated according to the following equation:

Motor transition time = (output value high limit – output value low limit) × Measuring time /
AMOUNT (target position – starting position).

The progress and status of transition time measurement are displayed. The transition time
measured is saved in the instance data block on the CPU and displayed in the "Measured
transition time" field. PID_3Step will change to "Inactive" mode once transition time
measurement is complete.

 Note

Click on the icon "Upload measured transition time" to load the motor transition time
measured to the project.

 Using PID_3Step
 5.3 PID_3Step V1

PID control
Function Manual, 12/2014, A5E35300227-AA 157

Actuators with endstop signals
Proceed as follows to measure the transition time of actuators with endstop signals:

Requirement

● The "Endstop signals" check box in the basic settings has been selected and Actuator_H
and Actuator_L are connected.

● An online connection to the CPU has been established.

Proceed as follows to measure motor transition time with endstop signals:

1. Select the "Use actuator endstop signals" check box.

2. Select the direction in which the actuator is to be moved.

– Open - Close - Open

The actuator is moved first to the high endstop, then to the low endstop and then back
to the high endstop.

– Close - Open - Close

The actuator is moved first to the low endstop, then to the high endstop and then back
to the low endstop.

3. Click the "Start transition time measurement" icon.

Result
The actuator is moved in the selected direction. Time measurement will start once the
actuator has reached the first endstop and will end when the actuator reaches this endstop
for the second time. The motor transition time is equal to the time measured divided by two.

The progress and status of transition time measurement are displayed. The transition time
measured is saved in the instance data block on the CPU and displayed in the "Measured
transition time" field. PID_3Step will change to "Inactive" mode once transition time
measurement is complete.

Cancelling transition time measurement
PID_3Step will change to "Inactive" mode immediately if you cancel transition time
measurement. The actuator will stop being moved. You can reactive PID-3Step in the curve
plotter.

Using PID_3Step
5.3 PID_3Step V1

 PID control
158 Function Manual, 12/2014, A5E35300227-AA

PID control
Function Manual, 12/2014, A5E35300227-AA 159

 Using PID_Temp 6
6.1 Technology object PID_Temp

The PID_Temp technology object provides a continuous PID controller with integrated
tuning. PID_Temp is especially designed for temperature control and is suited for heating or
heating/cooling applications. Two outputs are available for this purpose, one each for heating
and cooling. PID_Temp can also be used for other control tasks. PID_Temp is cascadable
and can be used in manual or automatic mode.

PID_Temp continuously acquires the measured process value within a control loop and
compares it with the set setpoint. From the resulting control deviations, the instruction
PID_Temp calculates the output value for heating and/or cooling which is used to adjust the
process value to the setpoint. The output values for the PID controller consist of three
actions:

● Proportional action

The proportional action of the output value increases in proportion to the control
deviation.

● Integral action

The integral action of the output value increases until the control deviation has been
balanced.

● Derivative action

The derivative action increases with the rate of change of control deviation. The process
value is corrected to the setpoint as quickly as possible. The derivative action will be
reduced again if the rate of change of control deviation drops.

The instruction PID_Temp calculates the proportional, integral and derivative parameters for
your controlled system during "pretuning". "Fine tuning" can be used to tune the parameters
further. You do not need to manually determine the parameters.

Either a fixed cooling factor or two PID parameter sets can be used for heating-and-cooling
applications.

Additional information
● Overview of software controller (Page 39)

● Add technology objects (Page 42)

● Configure technology objects (Page 43)

● Configuring PID_Temp (Page 160)

Using PID_Temp
6.2 Configuring PID_Temp

 PID control
160 Function Manual, 12/2014, A5E35300227-AA

6.2 Configuring PID_Temp

6.2.1 Basic settings

6.2.1.1 Introduction
Configure the following properties of the "PID_Temp" technology object under "Basic
settings" in the Inspector window or in the configuration window:

● Physical quantity

● Start-up behavior after reset

● Source and input of the setpoint (only in the Inspector window)

● Selection of the process value

● Source and input of the process value (only in the Inspector window)

● Selection of the heating output value

● Source and input of the heating output value (only in the Inspector window)

● Activation and selection of the cooling output value

● Source and input of the cooling output value (only in the Inspector window)

● Activation of PID_Temp as master or slave of a cascade

● Number of slaves

● Selection of the master (only in the Inspector window)

Setpoint, process value, heating output value and cooling output value
You can select the source and enter values or tags for the setpoint, process value, heating
output value and cooling output value in the Inspector window of the programming editor.

Select the source for each value:

● Instance DB:

The value saved in the instance DB is used. The value must be updated by the user
program in the instance DB. There should be no value at the instruction. Can be changed
using HMI.

● Instruction:

The value connected to the instruction is used. The value is written to the instance DB
each time the instruction is called. Cannot be changed using HMI.

 Using PID_Temp
 6.2 Configuring PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 161

6.2.1.2 Controller type

Physical quantity
Select the unit of measurement and physical quantity for the setpoint and the process value
in the "Controller type" group. The setpoint and the process value are displayed in this unit.

Startup characteristics
1. To switch to "Inactive"mode after CPU restart, clear the "Activate Mode after CPU

restart"check box.

To switch to the operating mode saved in the Mode parameter after CPU restart, select
the "Activate Mode after CPU restart" check box.

2. In the "Set Mode to" drop-down list, select the mode that is to be enabled after a
complete download to the device.

After a complete "Download to device", PID_Temp starts in the selected operating mode.
With each additional restart, PID_Temp starts in the mode that was last saved in Mode.

When selecting pretuning or fine tuning, you also have to set or reset the
Heat.EnableTuning and Cool.EnableTuning tags in order to choose between tuning for
heating and tuning for cooling.

Example:

You have selected the "Activate Mode after CPU restart" check box and the "Pretuning"
entry in the "Set Mode to" list. After a complete "Download to device", PID_Temp starts in the
"Pretuning" mode. If pretuning is still active, PID_Temp starts in "Pretuning" mode again after
restart of the CPU (heating/cooling depends on the tags Heat.EnableTuning and
Cool.EnableCooling). If pretuning was successfully completed and automatic mode is active,
PID_Temp starts in "Automatic mode" after restart of the CPU.

6.2.1.3 Setpoint

Procedure
Proceed as follows to define a fixed setpoint:

1. Select "Instance DB".

2. Enter a setpoint, e.g. 80° C.

3. Delete any entry in the instruction.

Proceed as follows to define a variable setpoint:

1. Select "Instruction".

2. Enter the name of the REAL tag in which the setpoint is saved.

Program-controlled assignment of various values to the REAL tag is possible, for
example for the time-controlled change of the setpoint.

Using PID_Temp
6.2 Configuring PID_Temp

 PID control
162 Function Manual, 12/2014, A5E35300227-AA

6.2.1.4 Process value
PID_Temp will scale the value of the analog input to the physical quantity if you use the
analog input value directly.

You will need to write a program for processing if you wish first to process the analog input
value. The process value is, for example, not directly proportional to the value at the analog
input. The processed process value must be in floating point format.

Procedure
Proceed as follows to use the analog input value without processing:

1. Select the entry "Input_PER" in the drop-down list "Input".

2. Select "Instruction" as source.

3. Enter the address of the analog input.

Proceed as follows to use the processed process value in floating point format:

1. Select the entry "Input" in the drop-down list "Input".

2. Select "Instruction" as source.

3. Enter the name of the variable in which the processed process value is saved.

6.2.1.5 Heating and cooling output value
The PID_Temp instruction provides a PID controller with integrated tuning for temperature
processes. PID_Temp is suitable for heating or heating-and-cooling applications.

PID_Temp provides the following output values. Your actuator will determine which output
value you use.

● OutputHeat

Heating output value (floating-point format): The output value for heating needs to be
processed by the user program, for example, because of non-linear actuator response.

● OutputHeat_PER

Analog heating output value: The actuator for heating is triggered via an analog output
and controlled with a continuous signal, e.g. 0...10 V, 4...20 mA.

● OutputHeat_PWM

Pulse-width modulated heating output value: The actuator for heating is controlled via a
digital output. Pulse width modulation creates variable ON and OFF times.

● OutputCool

Cooling output value (floating-point format): The output value for cooling needs to be
processed by the user program, for example because of non-linear actuator response.

 Using PID_Temp
 6.2 Configuring PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 163

● OutputCool_PER

Analog cooling output value: The actuator for cooling is triggered via an analog output
and controlled with a continuous signal, e.g. 0...10 V, 4...20 mA.

● OutputCool_PWM

Pulse-width modulated cooling output value: The actuator for cooling is controlled via a
digital output. Pulse width modulation creates variable ON and OFF times.

The cooling output is only available if it was activated via the "Activate cooling" check box.

● If the check box is cleared, the output value of the PID algorithm (PidOutputSum) is
scaled and output at the outputs for heating.

● If the check box is selected, positive output values of the PID algorithm (PidOutputSum)
are scaled and output at the outputs for heating. Negative output values of the PID
algorithm are scaled and output at the outputs for cooling. You can choose between two
methods for output value calculation at the output settings.

 Note
Note:
• The OutputHeat_PWM, OutputHeat_PER, OutputCool_PWM, OutputCool_PER outputs

are only calculated if you select these correspondingly from the drop-down list.
• The OutputHeat output is always calculated.
• The OutputCool output is calculated if the check box for cooling is selected.
• The "Activate cooling" check box is only available if the controller is not configured as a

master in a cascade.

Procedure
Proceed as follows to use the analog output value:

1. Select the entry "OutputHeat_PER" or "OutputCool_PER" in the drop-down list
"OutputHeat" or "OutputCool".

2. Select "Instruction".

3. Enter the address of the analog output.

Proceed as follows to use the pulse-width modulated output value:

1. Select the entry "OutputHeat_PWM" or "OutputCool_PWM" in the drop-down list
"OutputHeat" or "OutputCool".

2. Select "Instruction".

3. Enter the address of the digital output.

Using PID_Temp
6.2 Configuring PID_Temp

 PID control
164 Function Manual, 12/2014, A5E35300227-AA

Proceed as follows to process the output value using the user program:

1. Select the entry "OutputHeat" or "OutputCool" in the drop-down list "OutputHeat" or
"OutpuCool".

2. Select "Instruction".

3. Enter the name of the variable you are using to process the output value.

4. Transfer the processed output value to the actuator by means of an analog or digital CPU
output.

 Using PID_Temp
 6.2 Configuring PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 165

6.2.1.6 Cascade
If a PID_Temp instance receives its setpoint from a higher-level master controller and
outputs its output value in turn to a subordinate slave controller, this PID_Temp instance is
both a master controller and a slave controller simultaneously. Both configurations listed
below then have to be carried out for such a PID_Temp instance. This is the case, for
example, for the middle PID_Temp instance in a cascade control system with three
concatenated measured variables and three PID_Temp instances.

Configuring a controller as master in a cascade
A master controller specifies the setpoint of a slave controller through its output.

In order to use PID_Temp as master in a cascade, you have to deactivate the cooling in the
basic settings. In order to configure this PID_Temp instance as a master controller in a
cascade, activate the "Controller is master" check box. The selection of the output value for
heating is set automatically to OutputHeat.

OutputHeat_PWM and OutputHeat_PER cannot be used at a master in a cascade.

Subsequently specify the number of directly subordinate slave controllers that receive their
setpoint from this master controller.

If no own scaling function is used when assigning the OutputHeat parameter of the master to
the Setpoint parameter of the slave, it may be necessary to adapt the output value limits and
the output scaling of the master to the setpoint/process value range of the slave. This can be
done in the output settings of the master in the "OutputHeat / OutputCool" section.

Configuring a controller as a slave in a cascade
A slave controller receives its setpoint (Setpoint parameter) from the output of its master
controller (OutputHeat parameter).

In order to configure this PID_Temp instance as a slave controller in a cascade, activate the
"Controller is slave" check box in the basic settings.

Subsequently select the PID_Temp instance that is to be used as the master controller for
this slave controller in the Inspector window of the programming editor. The Master and
Setpoint parameters of the slave controller are interconnected with the selected master
controller through this selection (the existing interconnections at these parameters are
overwritten). This interconnection allows the exchange of information and the setpoint
specification between master and slave. If required, the interconnection can be changed
subsequently at the Setpoint parameter of the slave controller in order, for example, to insert
an additional filter. The interconnection at the parameter master may not be changed
subsequently.

The "Controller is master" check box has to be selected and the number of slaves has to be
configured correctly at the selected master controller. The master controller has to be called
before the slave controller in the same cyclic interrupt OB.

Additional information
Additional information about program creation, configuration and commissioning when
PID_Temp is used in cascade control systems is available under Cascade control with
PID_Temp (Page 194).

Using PID_Temp
6.2 Configuring PID_Temp

 PID control
166 Function Manual, 12/2014, A5E35300227-AA

6.2.2 Process value settings

6.2.2.1 Process value limits
You must specify an appropriate absolute high limit and low limit for the process value as
limit values for your controlled system. As soon as the process value violates these limits, an
error occurs (ErrorBits = 0001h). Tuning is canceled when the process value limits are
violated. You can specify how PID_Temp responds to errors in automatic mode in the output
settings.

6.2.2.2 Scale process value
If you have configured the use of Input_PER in the basic settings, you will need to convert
the value of the analog input into the physical quantity of the process value. The current
configuration is displayed in the Input_PER display.

Input_PER is scaled using a low and high value pair if the process value is directly
proportional to the value of the analog input.

Procedure
To scale the process value, follow these steps:

1. Enter the low pair of values in the "Scaled low process value" and "Low" input fields.

2. Enter the high pair of values in the "Scaled high process value" and "High" input fields.

Default settings for the value pairs are saved in the hardware configuration. Proceed as
follows to use the value pairs from the hardware configuration:

1. Select the instruction PID_Temp in the programming editor.

2. Interconnect Input_PER with an analog input in the basic settings.

3. Click on the "Automatic setting" button in the process value settings.

The existing values are overwritten with the values from the hardware configuration.

 Using PID_Temp
 6.2 Configuring PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 167

6.2.3 Output settings

6.2.3.1 Basic settings output

Method for heating and cooling
If cooling is activated in the basic settings, two methods are available for calculating the PID
output value:

● PID parameter changeover (Config.AdvancedCooling = TRUE):

Output value calculation for cooling is carried out by means of a separate PID parameter
set. The PID algorithm decides on the basis of the calculated output value and the control
deviation whether the PID parameters are used for heating or cooling. This method is
suitable if the heating and cooling actuators have different time responses and different
gains.

Pretuning and fine tuning for cooling are only available if this method is selected.

● Cooling factor (Config.AdvancedCooling = FALSE):

Output value calculation for cooling is effected with the PID parameters for heating under
consideration of the configurable cooling factor Config.CoolFactor. This method is
suitable if the heating and cooling actuators have a similar time response but different
gains. If this method is selected, pretuning and fine tuning for cooling as well as the PID
parameter set for cooling are not available. Only the tunings for heating can be carried
out.

Cooling factor
If the cooling factor is selected as the method for heating/cooling, this factor is used in the
calculation of the output value for cooling. This allows different gains of heating and cooling
actuators to be used.

The cooling factor is not set automatically or adjusted during tuning. You have to configure
the correct cooling factor manually by using the ratio "Heating actuator gain/Cooling actuator
gain".

Example: Cooling factor = 2.0 means that the heating actuator gain is twice as high as the
cooling actuator gain.

The cooling factor is only effective and can only be changed if "Cooling factor" is selected as
the method for heating/cooling.

Using PID_Temp
6.2 Configuring PID_Temp

 PID control
168 Function Manual, 12/2014, A5E35300227-AA

Reaction to error

 NOTICE

Your system may be damaged.

If you output "Current value while error is pending " or "Substitute output value while error is
pending" in the event of an error, PID_Temp remains in automatic mode or in manual
mode. This may cause a violation of the process value limits and damage your system.

It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

PID_Temp is preset so that the controller stays active in most cases in the event of an error.

If errors occur frequently in controller mode, this default reaction has a negative effect on the
control response. In this case, check the ErrorBits parameter and eliminate the cause of the
error.

PID_Temp generates a programmable output value in response to an error:

● Zero (inactive)

At all errors, PID_Temp switches to the "Inactive" operating mode and outputs the
following:

– 0.0 as PID output value (PidOutputSum)

– 0.0 as output value for heating (OutputHeat) and output value for cooling (OutputCool)

– 0 as analog output value for heating (OutputHeat_PER) and analog output value for
cooling (OutputCool_PER)

– FALSE as PWM output value for heating (OutputHeat_PWM) and PWM output value
for cooling (OutputCool_PWM)

This is independent of the configured output value limits and the scaling. The controller is
only reactivated by a falling edge at Reset or a rising edge at ModeActivate.

 Using PID_Temp
 6.2 Configuring PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 169

● Current value while error is pending

The error response depends on the error occurring and the operating mode.

If one or more of the following errors occur in automatic mode, PID_Temp stays in
automatic mode:

– 0000001h: The Input parameter is outside the process value limits.

– 0000800h: Sampling time error

– 0040000h: Invalid value at Disturbance parameter.

– 8000000h: Error during the calculation of the PID parameters.

If one or more of the following errors occur in automatic mode, PID_Temp switches to
"Substitute output value with error monitoring" mode and outputs the last valid PID output
value (PidOutputSum):

– 0000002h: Invalid value at Input_PER parameter.

– 0000200h: Invalid value at Input parameter.

– 0000400h: Calculation of output value failed.

– 0001000h: Invalid value at Setpoint or SubstituteSetpoint parameter.

The values at the outputs for heating and cooling resulting from the PID output value are
produced by the configured output scaling.

As soon as the errors are no longer pending, PID_Temp switches back to automatic
mode.

If an error occurs during manual mode, PID_Temp remains in manual mode and
continues to use the manual value as the PID output value.

If the manual value is invalid, the configured substitute output value is used.

If the manual value and substitute output value are invalid, the low limit of the PID output
value for heating (Config.Output.Heat.PidLowerLimit) is used.

If the following error occurs during pretuning or fine tuning, PID_Temp remains in active
mode:

– 0000020h: Pretuning is not permitted during fine tuning.

When any other error occurs, PID_Temp cancels the tuning and switches to the mode
from which tuning was started.

Using PID_Temp
6.2 Configuring PID_Temp

 PID control
170 Function Manual, 12/2014, A5E35300227-AA

● Substitute output value while error is pending

PID_Temp behaves as described at "Current value while error is pending", but outputs
the configured substitute output value (SubstituteOutput) as a PID output value
(PidOutputSum) in "Substitute output value with error monitoring" operating mode.

The values at the outputs for heating and cooling resulting from the PID output value are
produced by the configured output scaling.

In the case of controllers with activated cooling output (Config.ActivateCooling = TRUE),
enter:

– A positive substitute output value to output the value at the outputs for heating.

– A negative substitute output value to output the value at the outputs for cooling.

If the following error occurs, PID_Temp stays in "Substitute output value with error
monitoring" mode and outputs the low limit of the PID output value for heating
(Config.Output.Heat.PidLowerLimit):

– 0020000h: Invalid value at SubstituteOutput tag.

6.2.3.2 Output value limits and output value scaling
Depending on the operating mode, the PID output value (PidOutputSum) is calculated
automatically by the PID algorithm or by the manual value (ManualValue) or the configured
substitute output value (SubstituteOutput).

The PID output value is limited depending on the configuration:

● If the cooling is deactivated in the basic settings (Config.ActivateCooling = FALSE), the
value is limited to the high limit of the PID output value (heating)
(Config.Output.Heat.PidUpperLimit) and the low limit of the PID output value (heating)
(Config.Output.Heat.PidLowerLimit).

You can configure both limits at the horizontal axis of the scaling characteristic line in the
"OutputHeat / OutputCool" section. These are displayed in the "OutputHeat_PWM /
OutputCool_PWM" and "OutputHeat_PER / OutputCool_PER" sections, but cannot be
changed.

● If the cooling is activated in the basic settings (Config.ActivateCooling = TRUE), the value
is limited to the high limit of the PID output value (Config.Output.Heat.PidUpperLimit) and
the low limit of the PID output value (cooling) (Config.Output.Cool.PidLowerLimit).

You can configure both limits at the horizontal axis of the scaling characteristic line in the
"OutputHeat / OutputCool" section. These are displayed in the "OutputHeat_PWM /
OutputCool_PWM" and "OutputHeat_PER / OutputCool_PER" sections, but cannot be
changed.

The low limit of the PID output value (heating) (Config.Output.Heat.PidLowerLimit) and
the high limit of the PID output value (cooling) (Config.Output.Cool.PidUpperLimit) cannot
be changed and have to be assigned the value 0.0.

 Using PID_Temp
 6.2 Configuring PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 171

The PID output value is scaled and output at the outputs for heating and cooling. Scaling can
be specified separately for each output and is specified across 2 value pairs each, consisting
of a limit value of the PID output value and a scaling value:

Output Value pair Parameter
OutputHeat Value pair 1 High limit of PID output value (heating)

Config.Output.Heat.PidUpperLimit,
Scaled upper output value (heating) Con-
fig.Output.Heat.UpperScaling

Value pair 2 Low limit of PID output value (heating)
Config.Output.Heat.PidLowerLimit,
Scaled lower output value (heating) Con-
fig.Output.Heat.LowerScaling

OutputHeat_PWM Value pair 1 High limit of PID output value (heating)
Config.Output.Heat.PidUpperLimit,
Scaled upper PWM output value (heating)
Config.Output.Heat.PwmUpperScaling

Value pair 2 Low limit of PID output value (heating)
Config.Output.Heat.PidLowerLimit,
Scaled lower PWM output value (heating)
Config.Output.Heat.PwmLowerScaling

OutputHeat_PER Value pair 1 High limit of PID output value (heating)
Config.Output.Heat.PidUpperLimit,
Scaled upper analog output value (heating)
Config.Output.Heat.PerUpperScaling

Value pair 2 Low limit of PID output value (heating)
Config.Output.Heat.PidLowerLimit,
Scaled lower analog output value (heating)
Config.Output.Heat.PerLowerScaling

OutputCool Value pair 1 Low limit of PID output value (cooling)
Config.Output.Cool.PidLowerLimit,
Scaled upper output value (cooling)
Config.Output.Cool.UpperScaling

Value pair 2 High limit of PID output value (cooling)
Config.Output.Cool.PidUpperLimit,
Scaled lower output value (cooling)
Config.Output.Cool.LowerScaling

OutputCool_PWM Value pair 1 Low limit of PID output value (cooling)
Config.Output.Cool.PidLowerLimit,
Scaled upper PWM output value (cooling)
Config.Output.Cool.PwmUpperScaling

Value pair 2 High limit of PID output value (cooling)
Config.Output.Cool.PidUpperLimit,
Scaled lower output value (cooling)
Config.Output.Cool.PwmLowerScaling

Using PID_Temp
6.2 Configuring PID_Temp

 PID control
172 Function Manual, 12/2014, A5E35300227-AA

Output Value pair Parameter
OutputCool_PER Value pair 1 Low limit of PID output value (cooling)

Config.Output.Cool.PidLowerLimit,
Scaled upper analog output value (cooling)
Config.Output.Cool.PerUpperScaling

Value pair 2 High limit of PID output value (cooling)
Config.Output.Cool.PidUpperLimit,
Scaled low analog output value (cooling)
Config.Output.Cool.PerLowerScaling

 The low limit of PID output value (heating) (Config.Output.Heat.PidLowerLimit) has to have the value
0.0, if the cooling is activated (Config.ActivateCooling = TRUE).

The high limit of PID output value (cooling) Config.Output.Cool.PidUpperLimit) must always have the
value 0.0.

Example:

Output scaling when the OutputHeat output is used (cooling deactivated. The low limit of PID
output value (heating) (Config.Output.Heat.PidLowerLimit) may be unequal to 0.0):

Example:

Output scaling when the OutputHeat_PWM and OutputCool_PER outputs are used (cooling
activated. The low limit of PID output value (heating) (Config.Output.Heat.PidLowerLimit)
must be 0.0):

With the exception of the "Inactive" operating mode, the value at an output always lies
between its scaled upper output value and the scaled lower output value, for example for
OutputHeat always between the scaled upper output value (heating)

 Using PID_Temp
 6.2 Configuring PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 173

(Config.Output.Heat.UpperScaling) and the scaled lower output value (heating)
(Config.Output.Heat.LowerScaling).

If you want to limit the value at the associated output, you therefore have to adapt these
scaling values as well.

You can configure the scaling values of an output at the vertical axes of the scaling
characteristic line. Each output has two separate scaling values. These can only be changed
for OutputHeat_PWM, OutputCool_PWM, OutputHeat_PER and OutputCool_PER if the
corresponding output is selected in the basic settings. The cooling has to be activated
additionally in the basic settings at all the outputs for cooling.

The trend view in the commissioning dialog box only records the values of OutputHeat and
OutputCool, irrespective of the selected output in the basic settings. Therefore, if necessary,
adapt the scaling values for OutputHeat/OutputCool if you use OutputHeat_PWM, or
OutputHeat_PER or OutputCool_PWM if you use OutputCool_PER and want to use the
trend view in the commissioning dialog.

Using PID_Temp
6.2 Configuring PID_Temp

 PID control
174 Function Manual, 12/2014, A5E35300227-AA

6.2.4 Advanced settings

6.2.4.1 Process value monitoring
Configure a warning high and low limit for the process value in the "Process value
monitoring" configuration window. If one of the warning limits is exceeded or undershot
during operation, a warning is displayed at the PID_Temp instruction:

● At the InputWarning_H output parameter if the warning high limit has been exceeded

● At the InputWarning_L output parameter if the warning low limit has been undershot

The warning limits must be within the process value high and low limits.

The process value high and low limits are used if you do not enter values.

Example
Process value high limit = 98° C; warning high limit = 90° C

Warning low limit = 10° C; process value low limit = 0° C

PID_Temp will respond as follows:

Process value InputWarning_H InputWarning_L ErrorBits
> 98 °C TRUE FALSE 0001h
≤ 98° C and > 90° C TRUE FALSE 0000h
≤ 90° C and ≥ 10° C FALSE FALSE 0000h
< 10° C and ≥ 0° C FALSE TRUE 0000h
< 0° C FALSE TRUE 0001h

You can configure the response of PID_Temp when the process value high limit or low limit
is violated in the output settings.

 Using PID_Temp
 6.2 Configuring PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 175

6.2.4.2 PWM limits
The PID output value PidOutputSum is scaled and transformed via a pulse width modulation
into a pulse train that is output at the output parameter OutputHeat_PWM or
OutputCool_PWM. The "Sampling time of PID algorithm" represents the time between two
calculations of the PID output value. The sampling time is used as time period of the pulse
width modulation.

During heating, the PID output value is always calculated in the "Sampling time of PID
algorithm for heating".

Calculation of the PID output value during cooling depends on the type of cooling selected in
"Basic settings Output":

● If the cooling factor is used, the "Sampling time of PID algorithm for heating" applies.

● If the PID parameter changeover is used, the "Sampling time of PID algorithm for cooling"
applies.

OutputHeat_PWM and OutputCool_PWM are output in the sampling time PID_Temp
(corresponds to the cycle time of the calling OB).

The PID algorithm sampling time for heating or cooling is determined during pretuning or fine
tuning. If you set the PID parameters manually, you will also need to configure the PID
algorithm sampling time for heating or cooling. The PID_Temp sampling time is equivalent to
the cycle time of the calling OB.

The pulse duration is proportional to the PID output value and is always an integer multiple
of the PID_Temp sampling time.

Example for OutputHeat_PWM

① PID_Temp sampling time
② PID algorithm sampling time for heating
③ Pulse duration
④ Break time

Using PID_Temp
6.2 Configuring PID_Temp

 PID control
176 Function Manual, 12/2014, A5E35300227-AA

The "Minimum ON time" and the "Minimum OFF time" can be set separately for heating and
cooling, rounded to an integer multiple of the PID_Temp sampling time.

A pulse or a break is never shorter than the minimum ON or OFF time. The inaccuracies this
causes are added up and compensated in the next cycle.

Example for OutputHeat_PWM

PID_Temp sampling time = 100 ms

PID algorithm sampling time = 1000 ms

Minimum ON time = 200 ms

The PID output value PidOutputSum amounts to 15% constantly. The smallest pulse that
PID_Temp can output corresponds to 20%. In the first cycle, no pulse is output. In the
second cycle, the pulse not output in the first cycle is added to the pulse of the second cycle.

① PID_Temp sampling time
② PID algorithm sampling time for heating
⑤ Minimum ON time

In order to minimize operation frequency and conserve the actuator, extend the minimum ON
and OFF times.

If you have selected OutputHeat/OutputCool or OutputHeat_PER/OutputCool_PER as the
output in the basic settings, the minimum ON time and the minimum OFF time are not
evaluated and cannot be changed.

 Using PID_Temp
 6.2 Configuring PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 177

If the "Sampling time of PID algorithm" (Retain.CtrlParams.Heat.Cycle or
Retain.CtrlParams.Cool.Cycle) and thus the period duration of the pulse width modulation is
very high when OutputHeat_PWM or OutputCool_PWM is used, you can specify a deviating
shorter period duration at the parameters Config.Output.Heat.PwmPeriode or
Config.Output.Cool.PwmPeriode in order to improve smoothness of the process value (see
also PwmPeriode tag (Page 431)).

 Note

The minimum ON and OFF times only affect the output parameters OutputHeat_PWM or
OutputCool_PWM and are not used for any pulse generators integrated in the CPU.

6.2.4.3 PID parameters
The PID parameters are displayed in the "PID Parameters" configuration window.

If cooling is activated in the basic settings and PID parameter changeover is selected as the
method for heating/cooling in the output settings, two parameter sets are available: One for
heating and one for cooling.

In this case, the PID algorithm decides on the basis of the calculated output value and the
control deviation whether the PID parameters for heating or cooling are used.

If cooling is deactivated or the cooling factor is selected as the method for heating/cooling,
the parameter set for heating is always used.

During tuning, the PID parameters are adapted to the controlled system with the exception of
the deadband width that has to be configured manually.

PID_Temp is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions.

The PID algorithm operates according to the following equation (control zone and deadband
deactivated):

Symbol Description Associated parameters of the PID_Temp instruc-

tion
y Output value of the PID algorithm -
Kp Proportional gain Retain.CtrlParams.Heat.Gain

Retain.CtrlParams.Cool.Gain
CoolFactor

s Laplace operator -
b Proportional action weighting Retain.CtrlParams.Heat.PWeighting

Retain.CtrlParams.Cool.PWeighting
w Setpoint CurrentSetpoint
x Process value ScaledInput

Using PID_Temp
6.2 Configuring PID_Temp

 PID control
178 Function Manual, 12/2014, A5E35300227-AA

Symbol Description Associated parameters of the PID_Temp instruc-
tion

TI Integral action time Retain.CtrlParams.Heat.Ti
Retain.CtrlParams.Cool.Ti

TD Derivative action time Retain.CtrlParams.Heat.Td
Retain.CtrlParams.Cool.Td

a Coefficient for derivative-action delay
(Derivative delay T1 = a × TD)

Retain.CtrlParams.Heat.TdFiltRatio
Retain.CtrlParams.Cool.TdFiltRatio

c Derivative action weighting Retain.CtrlParams.Heat.DWeighting
Retain.CtrlParams.Cool.DWeighting

DeadZone Deadband width Retain.CtrlParams.Heat.DeadZone
Retain.CtrlParams.Cool.DeadZone

ControlZone Control zone width Retain.CtrlParams.Heat.ControlZone
Retain.CtrlParams.Cool.ControlZone

The diagram below illustrates the integration of the parameters into the PID algorithm:

All PID parameters are retentive. If you enter the PID parameters manually, you must
completely download PID_Temp (Downloading technology objects to device (Page 46)).

 Using PID_Temp
 6.2 Configuring PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 179

PID_Temp block diagram
The following block diagram shows how the PID algorithm is integrated in the PID_Temp.

Using PID_Temp
6.2 Configuring PID_Temp

 PID control
180 Function Manual, 12/2014, A5E35300227-AA

Proportional gain
The value specifies the proportional gain of the controller. PID_Temp does not operate with a
negative proportional gain and only supports the normal control direction, meaning that an
increase in the process value is achieved by an increase in the PID output value
(PidOutputSum).

Integral action time
The integral action time determines the time behavior of the integral action. The integral
action is deactivated with integral action time = 0.0.

Derivative action time
The derivative action time determines the time behavior of the derivative action. Derivative
action is deactivated with derivative action time = 0.0.

Derivative delay coefficient
The derivative delay coefficient delays the effect of the derivative action.

Derivative delay = derivative action time × derivative delay coefficient

● 0.0: Derivative action is effective for one cycle only and therefore almost not effective.

● 0.5: This value has proved useful in practice for controlled systems with one dominant
time constant.

● > 1.0: The greater the coefficient, the longer the effect of the derivative action is delayed.

Proportional action weighting
The proportional action may weaken with changes to the setpoint.

Values from 0.0 to 1.0 are applicable.

● 1.0: Proportional action for setpoint change is fully effective

● 0.0: Proportional action for setpoint change is not effective

The proportional action is always fully effective when the process value is changed.

Derivative action weighting
The derivative action may weaken with changes to the setpoint.

Values from 0.0 to 1.0 are applicable.

● 1.0: Derivative action is fully effective upon setpoint change

● 0.0: Derivative action is not effective upon setpoint change

The derivative action is always fully effective when the process value is changed.

 Using PID_Temp
 6.2 Configuring PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 181

PID algorithm sampling time
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of "PID algorithm" represents the time between two calculations of the PID output value.
It is calculated during tuning and rounded to a multiple of the PID_Temp sampling time (cycle
time of the cyclic interrupt OB). All other functions of PID_Temp are executed at every call.

If you use OutputHeat_PWM or OutputCool_PWM, the sampling time of the PID algorithm is
used as the period duration of the pulse width modulation. The accuracy of the output signal
is determined by the ratio of the PID algorithm sampling time to the cycle time of the OB. The
cycle time should be a maximum of one tenth of the PID algorithm sampling time.

The sampling time of the PID algorithm that is used as the period duration of the pulse width
modulation at OutputCool_PWM depends on the method for heating/cooling selected in
"Basic settings Output":

● If the cooling factor is used, the "sampling time of the PID algorithm for heating" also
applies to OutputCool_PWM.

● If the PID parameter changeover is used, the "sampling time PID algorithm for cooling"
applies as the period duration for OutputCool_PWM.

If the sampling time of the PID algorithm and thus the period duration of the pulse width
modulation is very high when OutputHeat_PWM or OutputCool_PWM is used, you can
specify a deviating shorter period duration at the parameters
Config.Output.Heat.PwmPeriode or Config.Output.Cool.PwmPeriode in order to improve
smoothness of the process value.

Deadband width
If the process value is affected by noise, the noise can also have an effect on the output
value. The output value may fluctuate considerably when controller gain is high and the
derivative action is activated. If the process value lies within the deadband around the
setpoint, the control deviation is suppressed so that the PID algorithm does not react and
unnecessary fluctuations of the output value are reduced.

The deadband width for heating is not set automatically during tuning. You have to correctly
configure the deadband width manually. The deadband is deactivated by setting the
deadband width = 0.0.

If cooling is activated in the basic settings and PID parameter changeover is selected as the
method for heating/cooling in the output settings, the deadband lies between "Setpoint -
deadband width (heating)" and "Setpoint + deadband width (cooling)".

Using PID_Temp
6.2 Configuring PID_Temp

 PID control
182 Function Manual, 12/2014, A5E35300227-AA

If cooling is deactivated in the basic settings or the cooling factor is used, the deadband lies
symmetrically between "Setpoint - deadband width (heating)" and "Setpoint + deadband
width (heating)".

Deadband with deactivated cooling or cooling factor (left) or activated cooling and PID
parameter changeover (right). The x / horizontal axis displays the control deviation = setpoint
- process value. The y / vertical axis shows the output signal of the deadband that is passed
to the PID algorithm.

Control zone width
If the process value exits the control zone around the setpoint, the minimum or maximum
output value is output. This means that the process value reaches the setpoint faster.

If the process value lies within the control zone around the setpoint, the output value is
calculated by the PID algorithm.

The control zone width for heating or cooling is only set automatically during the pretuning, if
"PID (temperature)" is selected as the controller structure for cooling or heating.

The control zone is deactivated by setting the control zone width = 3.402822e+38.

If cooling is deactivated in the basic settings or the cooling factor is used, the control zone
lies symmetrically between "Setpoint - control zone width (heating)" and "Setpoint + control
zone width (heating)".

If cooling is activated in the basic settings and PID parameter changeover is selected as the
method for heating/cooling in the output settings, the control zone lies between "Setpoint -
control zone width (heating)" and "Setpoint + control zone width (cooling)".

 Using PID_Temp
 6.2 Configuring PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 183

Control zone with deactivated cooling or cooling factor.

Control zone with activated cooling and PID parameter changeover.

Rule for tuning
Select whether PI or PID parameters are to be calculated in the "Controller structure" drop-
down list. You can specify the rules for tuning for heating and for tuning for cooling
separately.

● PID (temperature)

Calculates PID parameters during pretuning and fine tuning.

Pretuning is designed for temperature processes and results in a slower and rather
asymptotic control response with smaller overshoots than with the "PID" option. Fine
tuning is identical to the "PID" option.

The control zone width is determined automatically during pretuning only if this option is
selected.

● PID

Calculates PID parameters during pretuning and fine tuning.

● PI

Calculates PI parameters during pretuning and fine tuning.

● User-defined

The drop-down list displays "User-defined" if you have configured different controller
structures for pretuning and fine tuning via a user program or the parameter view.

Using PID_Temp
6.3 Commissioning PID_Temp

 PID control
184 Function Manual, 12/2014, A5E35300227-AA

6.3 Commissioning PID_Temp

6.3.1 Commissioning
The commissioning window helps you commission the PID controller. You can monitor the
values for the setpoint, process value and the output values for heating and cooling along
the time axis in the trend view. The following functions are supported in the commissioning
window:

● Controller pretuning

● Controller fine tuning

Use fine tuning for fine adjustments to the PID parameters.

● Monitoring the current closed-loop control in the trend view

● Testing the controlled system by specifying a manual PID output value and a substitute
setpoint

● Saving the actual values of the PID parameters to an offline project.

All functions require an online connection to the CPU.

The online connection to the CPU is established, if it does not exist already, and operation of
the commissioning window is enabled by means of the "Monitor all" or "Start" buttons of
the trend view.

Operation of the trend view
● Select the desired sampling time in the "Sampling time" drop-down list.

All the values of the trend view are updated in the selected sampling time.

● Click the "Start" icon in the Measurement group if you want to use the trend view.

Value recording is started. The current values for the setpoint, process value and output
values for heating and cooling are entered in the trend view.

● Click the "Stop" icon if you want to end the trend view.

The values recorded in the trend view can continue to be analyzed.

Closing the commissioning window will terminate recording in the trend view and delete the
recorded values.

 Using PID_Temp
 6.3 Commissioning PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 185

6.3.2 Pretuning
The pretuning determines the process response to a jump change of the output value and
searches for the point of inflection. The tuned PID parameters are calculated as a function of
the maximum slope and dead time of the controlled system. You obtain the best PID
parameters when you perform pretuning and fine tuning.

The more stable the process value is, the easier it is to calculate the PID parameters and the
more precise the result will be. Noise on the process value can be tolerated as long as the
rate of rise of the process value is significantly higher compared to the noise. This is most
likely the case in operating modes "Inactive" and "manual mode". The PID parameters are
backed up before being recalculated.

PID_Temp offers different pretuning types depending on the configuration:

● Pretuning heating

A jump is output at the output value heating, the PID parameters for heating are
calculated and then the setpoint is used as the control variable in automatic mode.

● Pretuning heating and cooling

A jump is output at the output value heating.

As soon as the process value is near the setpoint, a jump to the output value cooling is
output.

The PID parameters for heating (Retain.CtrlParams.Heat structure) and cooling
(Retain.CtrlParams.Cool structure) are calculated and then the setpoint is used as the
control variable in automatic mode.

● Pretuning cooling

A jump is output at the output value cooling.

The PID parameters for cooling are calculated and then the setpoint is used as the
control variable in automatic mode.

If you want to tune the PID parameters for heating and cooling, you can expect improved
control response by carrying out "Pretuning heating" and subsequently "Pretuning cooling"
than by carrying out "Pretuning heating and cooling". However, carrying out pretuning in two
steps takes more time.

General requirements
● The PID_Temp instruction is called in a cyclic interrupt OB.

● ManualEnable = FALSE

● Reset = FALSE

● PID_Temp is in one of the following modes: "Inactive", "Manual mode", or "Automatic
mode".

● The setpoint and the process value lie within the configured limits (see Process value
monitoring (Page 174) configuration).

Using PID_Temp
6.3 Commissioning PID_Temp

 PID control
186 Function Manual, 12/2014, A5E35300227-AA

Requirements for pretuning heating
● The difference between setpoint and process value is greater than 30% of the difference

between process value high limit and process value low limit.

● The distance between the setpoint and the process value is greater than 50% of the
setpoint.

● The setpoint is greater than the process value.

Requirements for pretuning heating and cooling
● The cooling output in the "Basic settings" is activated (Config.ActivateCooling = TRUE).

● The PID parameter changeover in the "Basic settings of output value" is activated
(Config.AdvancedCooling = TRUE).

● The difference between setpoint and process value is greater than 30% of the difference
between process value high limit and process value low limit.

● The distance between the setpoint and the process value is greater than 50% of the
setpoint.

● The setpoint is greater than the process value.

Requirements for pretuning cooling
● The cooling output in the "Basic settings" is activated (Config.ActivateCooling = TRUE).

● The PID parameter changeover in the "Basic settings of output value" is activated
(Config.AdvancedCooling = TRUE).

● "Pretuning heating" or "Pretuning heating and cooling" has been carried out successfully
(PIDSelfTune.SUT.ProcParHeatOk = TRUE). The same setpoint should be used for all
tunings.

● The difference between setpoint and process value is smaller than 5% of the difference
between process value high limit and process value low limit.

 Using PID_Temp
 6.3 Commissioning PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 187

Procedure
To perform pretuning, follow these steps:

1. Double-click the "PID_Temp > Commissioning" entry in the project tree.

2. Activate the "Monitor all" button or start the trend view.

An online connection will be established.

3. Select the desired pretuning entry from the "Tuning mode" drop-down list.

4. Click the "Start" icon.

– Pretuning is started.

– The "Status" field displays the current steps and any errors that may have occurred.
The progress bar indicates the progress of the current step.

 Note

Click the "Stop" icon when the progress bar ("Progress" tag) has not changed for a
long period and it is to be assumed that the tuning function is blocked. Check the
configuration of the technology object and, if necessary, restart controller tuning.

Result
If pretuning was performed without an error message, the PID parameters have been tuned.
PID_Temp switches to automatic mode and uses the tuned parameters. The tuned PID
parameters will be retained during power OFF and a restart of the CPU.

If pretuning is not possible, PID_Temp responds with the configured reaction to errors.

Using PID_Temp
6.3 Commissioning PID_Temp

 PID control
188 Function Manual, 12/2014, A5E35300227-AA

6.3.3 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID
parameters are tuned for the operating point from the amplitude and frequency of this
oscillation. The PID parameters are recalculated from the results. PID parameters from fine
tuning usually have better master control and disturbance characteristics than PID
parameters from pretuning. You obtain the best PID parameters when you perform pretuning
and fine tuning.

PID_Temp automatically attempts to generate an oscillation greater than the noise of the
process value. Fine tuning is only minimally influenced by the stability of the process value.
The PID parameters are backed up before being recalculated.

PID_Temp offers different fine tuning types depending on the configuration:

● Fine tuning heating:

PID_Temp generates an oscillation of the process value with periodic changes at the
output value heating and calculates the PID parameters for heating.

● Fine tuning cooling:

PID_Temp generates an oscillation of the process value with periodic changes at the
output value cooling and calculates the PID parameters for cooling.

Temporary tuning offset for heating/cooling controllers
If PID_Temp is used as a heating/cooling controller (Config.ActivateCooling = TRUE), the
PID output value (PidOutputSum) at the setpoint has to fulfill the following requirements so
that process value oscillation can be generated and fine tuning can be carried out
successfully:

● Positive PID output value for fine tuning heating

● Negative PID output value for fine tuning cooling

If this condition is not fulfilled, you can specify a temporary offset for fine tuning that is output
at the opposing output.

● Offset for cooling output (PIDSelfTune.TIR.OutputOffsetCool) at fine tuning heating.

Before starting tuning, enter a negative tuning offset cooling that is smaller than the PID
output value (PidOutputSum) at the setpoint in the stationary state.

● Offset for heating output (PIDSelfTune.TIR.OutputOffsetHeat) at fine tuning cooling

Before starting tuning, enter a positive tuning offset heating that is greater than the PID
output value (PidOutputSum) at the setpoint in the stationary state.

The defined offset is balanced by the PID algorithm so that the process value remains at the
setpoint. The height of the offset allows the PID output value to be adapted correspondingly
so that it fulfills the requirement mentioned above.

In order to avoid greater overshoots of the process value at specification of the offset, this
can also be increased in several steps.

If PID_Temp exits the fine tuning mode, the tuning offset is reset.

 Using PID_Temp
 6.3 Commissioning PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 189

Example: Specification of an offset for fine tuning cooling
● Without offset

– Setpoint = Process value (ScaledInput) = 80 °C

– PID output value (PidOutputSum) = 30.0

– Output value heating (OutputHeat) = 30.0

– Output value cooling (OutputCool) = 0.0

Oscillation of the process value around the setpoint cannot be generated with the
cooling output alone. Fine tuning would fail here.

● With offset for heating output (PIDSelfTune.TIR.OutputOffsetHeat) = 80.0

– Setpoint = Process value (ScaledInput) = 80 °C

– PID output value (PidOutputSum) = -50.0

– Output value heating (OutputHeat) = 80.0

– Output value cooling (OutputCool) = -50.0

Thanks to the specification of an offset for the heating output, the cooling output can
now generate oscillation of the process value around the setpoint. Fine tuning can
now be carried out successfully.

General requirements
● The PID_Temp instruction is called in a cyclic interrupt OB.

● ManualEnable = FALSE

● Reset = FALSE

● The setpoint and the process value lie within the configured limits (see "Process value
settings" configuration).

● The control loop has stabilized at the operating point. The operating point is reached
when the process value corresponds to the setpoint.

● No disturbances are expected.

● PID_Temp is in inactive mode, automatic mode or manual mode.

Requirements for fine tuning heating
● Heat.EnableTuning = TRUE

● Cool.EnableTuning = FALSE

● If PID_Temp is configured as a heating-and-cooling controller (Config.ActivateCooling =
TRUE), the heating output has to be active at the operating point where tuning is to be
carried out.

PidOutputSum > 0.0 (see tuning offset)

Using PID_Temp
6.3 Commissioning PID_Temp

 PID control
190 Function Manual, 12/2014, A5E35300227-AA

Requirements for fine tuning cooling
● Heat.EnableTuning = FALSE

● Cool.EnableTuning = TRUE

● The cooling output is activated (Config.ActivateCooling = TRUE).

● The PID parameter changeover is activated (Config.AdvancedCooling = TRUE).

● The cooling output has to be active at the operating point where tuning is to be carried
out.

PidOutputSum < 0.0 (see tuning offset)

Process depends on initial situation
Fine tuning can be started from the following operating modes: "Inactive", "automatic mode",
or "manual mode".

Fine tuning proceeds as follows when started from:

● Automatic mode with PIDSelfTune.TIR.RunIn = FALSE (default)

Start fine tuning from automatic mode if you wish to improve the existing PID parameters
through tuning.

PID_Temp controls the system using the existing PID parameters until the control loop
has stabilized and the requirements for fine tuning have been met. Only then will fine
tuning start.

● Inactive, manual mode or automatic mode with PIDSelfTune.TIR.RunIn = TRUE

An attempt is made to reach the setpoint with the minimum or maximum output value
(two-point control):

– With minimum or maximum output value heating at fine tuning heating.

– With minimum or maximum output value cooling at fine tuning cooling.

This can produce increased overshoot. When the setpoint is reached, fine tuning is
started.

If the setpoint cannot be reached, PID_Temp does not abort tuning automatically.

 Using PID_Temp
 6.3 Commissioning PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 191

Procedure
To perform fine tuning, follow these steps:

1. Double-click the "PID_Temp > Commissioning" entry in the project tree.

2. Activate the "Monitor all" button or start the trend view.

An online connection will be established.

3. Select the desired fine tuning entry from the "Tuning mode" drop-down list.

4. If required (see tuning offset), specify a tuning offset and wait until the stationary state is
reached again.

5. Click the "Start" icon.

– The process of fine tuning is started.

– The "Status" field displays the current steps and any errors that may have occurred.

The progress bar indicates the progress of the current step.

 Note

Click the "Stop" icon in the "Tuning mode" group if the progress bar ("Progress" tag) has
not changed for a long period and it is to be assumed that the tuning function is blocked.
Check the configuration of the technology object and, if necessary, restart controller
tuning.

In the following phases in particular, tuning is not aborted automatically if the setpoint
cannot be reached.
• "Attempting to reach setpoint for heating with two-point control."
• "Attempting to reach setpoint for cooling with two-point control."

Result
If no errors occurred during fine tuning, the PID parameters have been tuned. PID_Temp
switches to automatic mode and uses the tuned parameters. The tuned PID parameters will
be retained during power OFF and a restart of the CPU.

If errors occurred during fine tuning, PID_Temp responds with the configured response to
errors.

Using PID_Temp
6.3 Commissioning PID_Temp

 PID control
192 Function Manual, 12/2014, A5E35300227-AA

6.3.4 "Manual" mode
The following section describes how you can use "Manual mode" in the commissioning
window of the "PID_Temp" technology object.

Manual mode is also possible when an error is pending.

Requirement
● The "PID_Temp" instruction is called in a cyclic interrupt OB.

● An online connection to the CPU has been established.

● The CPU is in "RUN" mode.

Procedure
If you want to test the controlled system by specifying a manual value, use "Manual mode" in
the commissioning window.

To define a manual value, follow these steps:

1. Double-click the "PID_Temp > Commissioning" entry in the project tree.

2. Activate the "Monitor all" button or start the trend view.

An online connection will be established.

3. Select the "Manual mode" check box in the "Online status of controller" area.

PID_Temp operates in manual mode. The most recent current output value remains in
effect.

4. Enter the manual value in the editable field as a % value.

If cooling is activated in the basic settings, enter the manual value as follows:

– Enter a positive manual value to output the value at the outputs for heating.

– Enter a negative manual value to output the value at the outputs for cooling.

5. Click the icon.

Result
The manual value is written to the CPU and immediately goes into effect.

Clear the "Manual mode" check box if the output value is to be specified again by the PID
controller.

The switchover to automatic mode is bumpless.

 Using PID_Temp
 6.3 Commissioning PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 193

6.3.5 Substitute setpoint
The following section describes how you can use the substitute setpoint in the
commissioning window of the "PID_Temp" technology object.

Requirement
● The "PID_Temp" instruction is called in a cyclic interrupt OB.

● An online connection to the CPU has been established.

● The CPU is in "RUN" mode.

Procedure
If you want to use a different value as the setpoint than that specified at the "Setpoint"
parameter (for example to tune a slave in a cascade), use the substitute setpoint in the
commissioning window.

Proceed as follows to specify a substitute setpoint:

1. Double-click the "PID_Temp > Commissioning" entry in the project tree.

2. Activate the "Monitor all" button or start the trend view.

An online connection will be established.

3. Select the "Subst.Setpoint" check box in the "Online status of controller" section.

The substitute setpoint (SubstituteSetpoint tag) is initialized with the most recently
updated setpoint and now used.

4. Enter the substitute setpoint in the editable field.

5. Click the icon.

Result
The substitute setpoint is written to the CPU and immediately goes into effect.

Clear the "Subst.Setpoint" check box if the value at the "Setpoint" parameter is to be used
again as setpoint.

The switchover is not bumpless.

6.3.6 Cascade commissioning
Information about cascade commissioning with PID_Temp is available under Commissioning
(Page 200).

Using PID_Temp
6.4 Cascade control with PID_Temp

 PID control
194 Function Manual, 12/2014, A5E35300227-AA

6.4 Cascade control with PID_Temp

6.4.1 Introduction
In cascade control, several control loops are nested within each other. In the process, slaves
receive their setpoint (Setpoint) from the output value (OutputHeat) of the respective higher-
level master.

A prerequisite for establishing a cascade control system is that the controlled system can be
divided into subsystems, each with its own measured variable.

Setpoint specification for the controlled variable is carried out at the outmost master.

The output value of the innermost slave is applied to the actuator and thus acts on the
controlled system.

The following major advantages result from the use of a cascade control system in
comparison with a single-loop control system:

● Thanks to the additional subordinate control loops, disturbances which occur there are
corrected quickly. Their influence on the controlled variable is reduced considerably. The
disturbance behavior is thus improved.

● The subordinate control loops act in linearizing form. The negative effects of such non-
linearities on the controlled variable are thus moderated.

PID_Temp offers the following functionality especially for use in cascade control systems:

● Specification of a substitute setpoint

● Exchange of status information between master and slave (for example, current operating
mode)

● Different Anti-Wind-Up modes (response of the master to limitation of its slave)

 Using PID_Temp
 6.4 Cascade control with PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 195

Example
The following block diagram shows a cascade control system with PID_Temp using the
simplified example of a chocolate melting unit:

The PID_Temp_1 master compares the process value of the chocolate temperature
(TempChocolate) with the setpoint specification by the user at the Setpoint parameter. Its
output value OutputHeat forms the setpoint of the slave PID_Temp_2.

PID_Temp_2 attempts to regulate the process value of the water-bath temperature
(TempWater) to this setpoint. The output value of PID_Temp_2 acts directly on the actuator
of the controlled system (heating of the water bath) and thus influences the water-bath
temperature. The water-bath temperature in turn has an effect on the chocolate temperature.

See also
Program creation (Page 196)

Using PID_Temp
6.4 Cascade control with PID_Temp

 PID control
196 Function Manual, 12/2014, A5E35300227-AA

6.4.2 Program creation
Observe the following points during program creation:

● Number of PID_Temp instances

The number of different PID_Temp instances called up in a cyclic interrupt OB has to
agree with the number of concatenated measured variables in the process.

There are two concatenated measured variables in the example: TempChocolate and
TempWater. Therefore two PID_Temp instances are required.

● Call sequence

A master has to be called before its slaves in the same cyclic interrupt OB.

The outermost master at which the user setpoint is specified is called first.

The slave whose setpoint is specified by the outermost master is called next, etc.

The innermost slave that acts on the actuator of the process with its output value is called
last.

In the example, PID_Temp_1 is called before PID_Temp_2.

● Interconnection of the measured variables

The outermost master is interconnected with the outermost measured variable that is to
be regulated to the user setpoint.

The innermost slave is interconnected with the innermost measured variable that is
influenced directly by the actuator.

Interconnection of the measured variables with PID_Temp is carried out with the
parameters Input or Input_PER.

In the example, the outermost measured variable TempChocolate is interconnected with
PID_Temp_1 and the innermost measured variable TempWater with PID_Temp_2.

 Using PID_Temp
 6.4 Cascade control with PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 197

● Interconnection of the output value of the master to the setpoint of the slave

The output value (OutputHeat) of a master has to be assigned to the setpoint (Setpoint)
of its slave.

This interconnection can be carried out in the programming editor or automatically in the
Inspector window of the slave in the basic settings via the selection of the master.

If required, you can insert your own filter or scaling functions, for example in order to
adapt the output value range of the master to the setpoint/process value range of the
slave.

In the example, OutputHeat of PID_Temp_1 is assigned to Setpoint of PID_Temp_2.

● Interconnection of the interface for information exchange between master and slave

The "Slave" parameter of a master has to be assigned to the "Master" parameter of all its
directly subordinate slaves (which receive their setpoint from this master). The
assignment should be carried out via the interface of the Slave in order to allow the
interconnection of a master with several slaves and the display of the interconnection in
the Inspector window of the slave in the basic settings.

This interconnection can be carried out in the programming editor or automatically in the
Inspector window of the slave in the basic settings via the selection of the master.

The Anti-Wind-Up functionality and the evaluation of the slave operating modes at the
master can only function correctly if this interconnection is carried out.

In the example, the "Slave" parameter of PID_Temp_1 is assigned to the "Master"
parameter of PID_Temp_2.

Program code of the example using SCL (without assignment of the output value of the slave
to the actuator):

"PID_Temp_1"(Input:="TempChocolate");

"PID_Temp_2"(Input:="TempWater", Master := "PID_Temp_1".Slave, Setpoint :=

"PID_Temp_1".OutputHeat);

See also
PID_Temp ActivateRecoverMode tag (Page 427)

Using PID_Temp
6.4 Cascade control with PID_Temp

 PID control
198 Function Manual, 12/2014, A5E35300227-AA

6.4.3 Configuration
You can carry out the configuration via your user program, the configuration editor or the
Inspector window of the PID_Temp call.

When using PID_Temp in a cascade control system, ensure the correct configuration of the
settings specified below.

If a PID_Temp instance receives its setpoint from a superior master controller and outputs its
output value in turn to a subordinate slave controller, this PID_Temp instance is both a
master controller and a slave controller simultaneously. Both configurations listed below
have to be carried out for such a PID_Temp instance. This is the case, for example, for the
middle PID_Temp instance in a cascade control system with three concatenated measured
variables and three PID_Temp instances.

Configuration of a master

Setting in the configuration editor or
Inspector window

DB parameter Explanation

Basic settings → Cascade:
Activate "Controller is master" check
box

Config.Cascade.IsMaster =
TRUE

Activates this controller as a master in a cas-
cade

Basic settings → Cascade:
Number of slaves

Config.Cascade.CountSlaves Number of directly subordinate slaves that
receive their setpoint directly from this master

Basic settings → Input/output parame-
ters:
Selection of the output value (heating)
= OutputHeat

Config.Output.Heat.Select = 0 The master only uses the output parameter
OutputHeat.
OutputHeat_PWM and OutputHeat_PER are
deactivated.

Basic settings → Input/output parame-
ters:
Clear "Activate cooling" check box

Config.ActivateCooling =
FALSE

The cooling has to be deactivated at a master.

 Using PID_Temp
 6.4 Cascade control with PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 199

Setting in the configuration editor or
Inspector window

DB parameter Explanation

Output settings → Output limits and
scaling → OutputHeat / OutputCool:
Low limit of PID output value (heating),
High limit of PID output value (heating),
Scaled lower output value (heating),
Scaled upper output value (heating)

Con-
fig.Output.Heat.PidLowerLimit,
Con-
fig.Output.Heat.PidUpperLimit,
Con-
fig.Output.Heat.LowerScaling,
Con-
fig.Output.Heat.UpperScaling

If no own scaling function is used when assign-
ing OutputHeat of the master to Setpoint of the
slave, it may be necessary to adapt the output
value limits and the output scaling of the master
to the setpoint/process value range of the
slave.

This tag is not available in the Inspector
window or in the function view of the
configuration editor.
You can change it via the parameter
view of the configuration editor.

Con-
fig.Cascade.AntiWindUpMode

The Anti-Wind-Up mode determines how the
integral action of this master is treated if directly
subordinate slaves reach their output value
limits.
Options are:
• AntiWindUpMode = 0:

The AntiWindUp functionality is deactivated.
The master does not react to the limitation
of its slaves.

• AntiWindUpMode = 1 (default):

The integral action of the master is reduced
in the relationship "Slaves in limita-
tion/Number of slaves". This reduces the ef-
fects of the limitation on the control
behavior.

• AntiWindUpMode = 2:

The integral action of the master is held as
soon as a slave is in limitation.

Configuration of a slave

Setting in the configuration editor or
Inspector window

DB parameter Explanation

Basic settings → Cascade:
Select the "Controller is slave" check
box

Config.Cascade.IsSlave =
TRUE

Activates this controller as a slave in a cascade

Using PID_Temp
6.4 Cascade control with PID_Temp

 PID control
200 Function Manual, 12/2014, A5E35300227-AA

6.4.4 Commissioning
After compiling and loading of the program, you can start commissioning of the cascade
control system.

Begin with the innermost slave at commissioning (implementation of tuning or change to
automatic mode with existing PID parameters) and continue outwards until the outermost
master has been reached.

In the above example, commissioning starts with PID_Temp_2 and is continued with
PID_Temp_1.

Tuning the slave
Tuning of PID_Temp requires a constant setpoint. Therefore, activate the substitute setpoint
of a slave (SubstituteSetpoint and SubstituteSetpointOn tags) to tune the slave or set the
associated master to manual mode by using a corresponding manual value. This ensures
that the setpoint of the slave remains constant during tuning.

Tuning the master
In order for a master to influence the process or to carry out tuning, all the downstream
slaves have to be in automatic mode and their substitute setpoint has to be deactivated. A
master evaluates these conditions through the interface for information exchange between
master and slave (Master parameter and Slave parameter) and displays the current state at
the AllSlaveAutomaticState and NoSlaveSubstituteSetpoint tags. Corresponding status
messages are output in the commissioning editor.

Status message in the commissioning
editor of the master

DB parameter of the master Correction

One or more slaves are not in automat-
ic mode.

AllSlaveAutomaticState =
FALSE,
NoSlaveSubstituteSetpoint =
TRUE

First, carry out commissioning of all down-
stream slaves.
Ensure that the following conditions are fulfilled
before carrying out tuning or activating manual
mode or automatic mode of the master:
• All downstream slaves are in automatic

mode (state = 3).
• All downstream slaves have deactivated the

substitute setpoint (SubstituteSetpointOn =
FALSE).

One or more slaves have activated the
substitute setpoint.

AllSlaveAutomaticState =
TRUE,
NoSlaveSubstituteSetpoint =
FALSE

One or more slaves are not in automat-
ic mode and have activated the substi-
tute setpoint.

AllSlaveAutomaticState =
FALSE,
NoSlaveSubstituteSetpoint =
FALSE

If pretuning or fine tuning is started for a master, PID_Temp aborts tuning in the following
cases and displays an error with ErrorBits = DW#16#0200000:

● One or more slaves are not in automatic mode (AllSlaveAutomaticState = FALSE)

● One or more slaves have activated the substitute setpoint (NoSlaveSubstituteSetpoint =
FALSE).

The subsequent operating mode changeover depends on ActivateRecoverMode.

 Using PID_Temp
 6.4 Cascade control with PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 201

6.4.5 Substitute setpoint
In order to specify a setpoint, PID_Temp offers a substitute setpoint at the SubstituteSetpoint
tags in addition to the Setpoint parameter. This can be activated by setting
SubstituteSetpointOn = TRUE or by selecting the corresponding check box in the
commissioning editor.

The substitute setpoint allows you to specify the setpoint temporarily directly at the slave, for
example during commissioning or tuning.

In this case, the interconnection of the output value of the master with the setpoint of the
slave that is required for normal operation of the cascade control system does not have to be
changed in the program

In order for a master to influence the process or to carry out tuning, the substitute setpoint
has to be deactivated at all downstream slaves.

You can monitor the currently effective setpoint as it is used by the PID algorithm for
calculation at the CurrentSetpoint tags.

6.4.6 Operating modes and fault response
The master or slave of a PID_Temp instance does not change the operating mode of this
PID_Temp instance.

If a fault occurs at one of its slaves, the master remains in its current operating mode.

If a fault occurs at its master, the slave remains in its current operating mode. However,
further operation of the slave then depends on the fault and the configured fault response of
the master since the output value of the master is used as the setpoint of the slave:

● If ActivateRecoverMode = TRUE is configured at the master. and the fault does not
prevent the calculation of OutputHeat, the fault does not have any effect on the slave.

● If ActivateRecoverMode = TRUE is configured at the master and the fault prevents the
calculation of OutputHeat, the master outputs the last output value or the configured
substitute output value SubstituteOutput, depending on SetSubstituteOutput. This is then
used by the slave as the setpoint.

PID_Temp is preconfigured so that the substitute output value 0.0 is output in this case
(ActivateRecoverMode = TRUE, SetSubstituteOutput = TRUE, SubstituteOutput = 0.0).
Configure a suitable substitute output value for your application or activate the use of the
last valid PID output value (SetSubstituteOutput = FALSE).

● If ActivateRecoverMode = FALSE is configured at the master, the master changes to the
"Inactive" mode when a fault occurs and outputs OutputHeat = 0.0. The slave then uses
0.0 as the setpoint.

The fault response is located in the output settings in the configuration editor.

Using PID_Temp
6.5 Multi-zone controlling with PID_Temp

 PID control
202 Function Manual, 12/2014, A5E35300227-AA

6.5 Multi-zone controlling with PID_Temp

Introduction
In a multi-zone control system, several sections, so-called zones, of a plant are controlled
simultaneously to different temperatures. A multi-zone control system is characterized by the
mutual influence of the temperature zones through thermal coupling, i.e. the process value of
one zone can influence the process value of a different zone through thermal coupling. The
strength that this influence has depends on the structure of the plant and the selected
operating points of the zones.

Example: Extrusion plant as it is used, for example, in plastics processing.

The substance mixture that passes through the extruder has to be controlled to different
temperatures for optimal processing. For example, different temperatures can be required at
the filling point of the extruder than at the outlet nozzle. The individual temperature zones
mutually influence each other through thermal coupling.

When PID_Temp is used in multi-zone control systems, each temperature zone is controlled
by a separate PID_Temp instance.

Observe the following explanations if you want to use the PID_Temp in a multi-zone control
system.

Separate pretuning for heating and cooling
Initial commissioning of a plant as a rule begins with the carrying out of pretuning in order to
carry out initial setting of the PID parameters and control to the operating point. The
pretuning for multi-zone control systems is often carried out simultaneously for all zones.

PID_Temp offers the possibility of carrying out pretuning for heating and cooling in one step
(Mode = 1, Heat.EnableTuning = TRUE, Cool.EnableTuning = TRUE) for controllers with
activated cooling and PID parameter changeover as the method for heating/cooling
(Config.ActivateCooling = TRUE, Config.AdvancedCooling = TRUE).

However, it is advisable not to use this tuning for simultaneous pretuning of several
PID_Temp instances in a multi-zone control system. Instead, first carry out the pretuning for
heating (Mode = 1, Heat.EnableTuning = TRUE, Cool.EnableTuning = FALSE) and the
pretuning for cooling (Mode = 1, Heat.EnableTuning = FALSE, Cool.EnableTuning = TRUE)
separately.

Pretuning for cooling should not be started until all zones have completed pretuning for
heating and have reached their operating points.

This reduces mutual influencing through thermal coupling between the zones during tuning.

Adapting the delay time
If PID_Temp is used in a multi-zone control system with strong thermal couplings between
the zones, you should ensure that the adaption of the delay time is deactivated for pretuning
with PIDSelfTune.SUT.AdaptDelayTime = 0. Otherwise, the determination of the delay time
can be incorrect if the cooling of a zone is prevented by the thermal influence of other zones
during the adapting of the delay time (heating is deactivated in this phase).

 Using PID_Temp
 6.5 Multi-zone controlling with PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 203

Temporary deactivation of cooling
PID_Temp offers the possibility of deactivating cooling temporarily in automatic mode for
controllers with active cooling (Config.ActivateCooling = TRUE) by setting DisableCooling =
TRUE.

This ensures that this controller does not cool in automatic mode during commissioning while
the controllers of other zones have not yet completed tuning of heating. The tuning could
otherwise be influenced negatively by the thermal coupling between the zones.

Procedure
You can proceed as follows during the commissioning of multi-zone control systems with
relevant thermal couplings:

1. Set DisableCooling = TRUE for all controllers with activated cooling.

2. Set PIDSelfTune.SUT.AdaptDelayTime = 0 for all controllers.

3. Specify the desired setpoints (Setpoint parameter) and start pretuning for heating (Mode
= 1, Heat.EnableTuning = TRUE, Cool.EnableTuning = FALSE) simultaneously for all
controllers.

4. Wait until all the controllers have completed pretuning for heating.

5. Set DisableCooling = FALSE for all controllers with activated cooling.

6. Wait until the process values of all the zones are steady and close to the respective
setpoint.

If the setpoint cannot be reached permanently for a zone, the heating or cooling actuator
is too weak.

7. Start pretuning for cooling (Mode = 1, Heat.EnableTuning = FALSE, Cool.EnableTuning =
TRUE) for all controllers with activated cooling.

 Note
Limit violation of the process value

If the cooling is deactivated in automatic mode with DisableCooling = TRUE, this can cause
the process value to exceed the setpoint and the process value limits while DisableCooling =
TRUE. Observe the process values and intervene, if appropriate, if you use DisableCooling.

 Note
Multi-zone control systems

For multi-zone control systems, the thermal couplings between the zones can result in
increased overshoots, permanent or temporary violation of limits and permanent or
temporary control deviations during commissioning or operation. Observe the process values
and be ready to intervene. Depending on the system, it can be necessary to deviate from the
procedure described above.

Using PID_Temp
6.5 Multi-zone controlling with PID_Temp

 PID control
204 Function Manual, 12/2014, A5E35300227-AA

Synchronization of several fine tuning processes
If fine tuning is started from automatic mode with PIDSelfTune.TIR.RunIn = FALSE,
PID_Temp tries to reach the setpoint with PID controlling and the current PID parameters.
The actual tuning does not start until the setpoint is reached. The time required to reach the
setpoint can be different for the individual zones of a multi-zone control system.

If you want to carry out fine tuning for several zones simultaneously, PID_Temp offers the
possibility to synchronize these by waiting with the further tuning steps after the setpoint has
been reached.

Procedure
This ensures that all the controllers have reached their setpoint when the actual tuning steps
start. This reduces mutual influencing through thermal coupling between the zones during
tuning.

Proceed as follows for controllers for whose zones you want to carry out fine tuning
simultaneously:

1. Set PIDSelfTune.TIR.WaitForControlIn = TRUE for all controllers.

These controllers have to be in automatic mode with PIDSelfTune.TIR.RunIn = FALSE.

2. Specify the desired setpoints (Setpoint parameters) and start fine tuning for all controllers.

3. Wait until PIDSelfTune.TIR.ControlInReady = TRUE at all controllers.

4. Set PIDSelfTune.TIR.FinishControlIn = TRUE for all controllers.

All controllers then start the actual tuning simultaneously.

PID control
Function Manual, 12/2014, A5E35300227-AA 205

 Using PID basic functions 7
7.1 CONT_C

7.1.1 Technology object CONT_C
The technology object CONT_C provides a continual PID-controller for automatic and
manual mode. It corresponds to the instance data block of the instruction CONT_C. You can
configure a pulse controller using the PULSEGEN instruction.

The proportional, integral (INT) and differential components (DIF) are switched parallel to
each other and can be turned on and off individually. With this, P-, I, PI-, PD- and PID-
controller can be set.

S7-1500
All parameters and tags of the technology object are retentive and can only be changed
during download to the device if you completely download CONT_C.

See also
Overview of software controller (Page 39)

Add technology objects (Page 42)

Configure technology objects (Page 43)

CONT_C (Page 433)

Downloading technology objects to device (Page 46)

Using PID basic functions
7.1 CONT_C

 PID control
206 Function Manual, 12/2014, A5E35300227-AA

7.1.2 Configure controller difference CONT_C

Use process value periphery
To use the process value in the periphery format at the PV_PER input parameter, follow
these steps:

1. Select the "Enable I/O" check box.

2. If the process value is available as a physical size, enter the factor and offset for the
scaling in percent.
The process value is then determined according to the following formula:
PV = PV_PER × PV_FAC + PV_OFF

Use internal process values
To use the process value in the floating-point format at the PV_IN input parameter, follow
these steps:

1. Clear the "Enable I/O" check box.

Control deviation
Set a dead zone range under the following requirement:

● The process value signal is noisy.

● The controller gain is high.

● The derivative action is activated.

The noise component of the process value causes strong deviations of the output value in
this case. The dead zone suppresses the noise component in the steady controller state.
The dead zone range specifies the size of the dead zone. With a dead zone range of 0.0, the
dead zone is turned off.

See also
How CONT_C works (Page 434)

 Using PID basic functions
 7.1 CONT_C

PID control
Function Manual, 12/2014, A5E35300227-AA 207

7.1.3 Configure the controller algorithm CONT_C

General
To determine which components of the control algorithm are activated, proceed as follows:

1. Select an entry from the "Controller structure" list.
 You can only specify required parameters for the selected controller structure.

Proportional action
1. If the controller structure contains a proportional action, enter the "proportional gain".

Integral action
1. If the controller structure contains an integral action, enter the integral action time.

2. To give the integral action an initialization value, select the check box "Initialize integral
action" and enter the initialization value.

3. In order to permanently set the integral action to this initialization value, select the
"Integral action hold" check box.

Derivative action
1. If the controller structure contains a derivative action, enter the derivative action time, the

derivative action weighting and the delay time.

See also
How CONT_C works (Page 434)

Using PID basic functions
7.1 CONT_C

 PID control
208 Function Manual, 12/2014, A5E35300227-AA

7.1.4 Configure the output value CONT_C

General
You can set CONT_C in the manual or automatic mode.

1. To set a manual manipulated value, activate the option "Activate manual mode" option
check box.
You can specify a manual manipulated value on the input parameter MAN.

Manipulated value limits
The manipulated value is limited at the top and bottom so that it can only accept valid values.
You cannot turn off the limitation. Exceeding the limits is displayed through the output
parameters QLMN_HLM and QLMN_LLM.

1. Enter a value for the high and low manipulated value limits.
If the manipulated value is a physical size, the units for the high and low manipulated
value limits must match.

Scaling
The manipulated value can be scaled for output as a floating point and periphery value
through a factor and an offset according to the following formula.

Scaled manipulated value = manipulated value x factor + offset

Default is a factor of 1.0 and an offset of 0.0.

1. Enter a value for the factor and offset.

See also
How CONT_C works (Page 434)

 Using PID basic functions
 7.1 CONT_C

PID control
Function Manual, 12/2014, A5E35300227-AA 209

7.1.5 Programming a pulse controller
With the continuous controller CONT_C and the pulse shaper PULSEGEN, you can
implement a fixed setpoint controller with a switching output for proportional actuators. The
following figure shows the signal flow of the control loop.

The continuous controller CONT_C forms the output value LMN that is converted by the
pulse shaper PULSEGEN into pulse/break signals QPOS_P or QNEG_P.

See also
PULSEGEN (Page 444)

Using PID basic functions
7.1 CONT_C

 PID control
210 Function Manual, 12/2014, A5E35300227-AA

7.1.6 Commissioning CONT_C

Requirements
● The instruction and the technology object are loaded on the CPU.

Procedure
In order to manually determine the optimal PID parameter, proceed as follows:

1. Click the "Start" icon.

If there is no online connection, this will be established. The current values for the
setpoint, process value and output value are recorded.

2. Enter new PID parameters in the "P", "I", "D" and "Delay time" fields.

3. Click on the icon "Send parameter to CPU" in the "Tuning" group.

4. Select the "Change setpoint" check box in the "Current values" group.

5. Enter a new setpoint and click in the "Current Values" group on the icon .

6. Clear the "Manual mode" check box.

The controller works with the new PID parameters and controls the new setpoint.

7. Check the quality of the PID parameter to check the curve points.

8. Repeat steps 2 to 6 until you are satisfied with the controller results.

 Using PID basic functions
 7.2 CONT_S

PID control
Function Manual, 12/2014, A5E35300227-AA 211

7.2 CONT_S

7.2.1 Technology object CONT_S
The technology object CONT_S provides a step controller for actuators with integrating
behavior and is used to control technical temperature processes with binary output value
output signals. The technology object corresponds to the instance data block of the CONT_S
instruction. The operating principle is based on the PI control algorithm of the sampling
controller. The step controller operates without a position feedback signal. Both manual and
automatic mode are possible.

S7-1500
All parameters and tags of the technology object are retentive and can only be changed
during download to the device if you completely download CONT_S.

See also
Overview of software controller (Page 39)

Add technology objects (Page 42)

Configure technology objects (Page 43)

CONT_S (Page 439)

Downloading technology objects to device (Page 46)

Using PID basic functions
7.2 CONT_S

 PID control
212 Function Manual, 12/2014, A5E35300227-AA

7.2.2 Configure controller difference CONT_S

Use process value periphery
To use the process value in the periphery format at the PV_PER input parameter, follow
these steps:

1. Select the "Enable I/O" check box.

2. If the process value is available as a physical quantity, enter the factor and offset for the
scaling in percent.
The process value is then determined according to the following formula:
PV = PV_PER × PV_FAC + PV_OFF

Use internal process values
To use the process value in the floating-point format at the PV_IN input parameter, follow
these steps:

1. Clear the "Enable I/O" check box.

Control deviation
Set a deadband range under the following requirement:

● The process value signal is noisy.

● The controller gain is high.

● The derivative action is activated.

The noise component of the process value causes strong deviations of the manipulated
variable in this case. The deadband suppresses the noise component in the steady controller
state. The deadband range specifies the size of the deadband. With a deadband range of
0.0, the deadband is turned off.

See also
Mode of operation CONT_S (Page 440)

7.2.3 Configuring control algorithm CONT_S

PID algorithm
1. Enter the "proportional amplification" for the P-component.

2. Enter the integration time for the time behavior of the I-component.
With an integration time of 0.0, the I-component is switched off.

See also
Mode of operation CONT_S (Page 440)

 Using PID basic functions
 7.2 CONT_S

PID control
Function Manual, 12/2014, A5E35300227-AA 213

7.2.4 Configure manipulated value CONT_S

General
You can set CONT_S in the manual or automatic mode.

1. To set a manual manipulated value, activate the "Activate manual mode" option check
box.
Enter a manual manipulated value for the input parameters LMNUP and LMNDN.

Pulse generator
1. Enter the minimum impulse duration and minimum pause duration.

The values must be greater than or equal to the cycle time for the input parameter
CYCLE. The frequency of operation is reduced through this.

2. Enter the motor setting time.
The value must be greater than or equal to the cycle time of the input parameter CYCLE.

See also
Mode of operation CONT_S (Page 440)

7.2.5 Commissioning CONT_S

Requirements
● The instruction and the technology object have been loaded to the CPU.

Procedure
To manually determine the optimal PID parameters, proceed as follows:

1. Click the "Start" icon.

If there is no online connection, this will be established. The current values for the
setpoint, process value and output value are recorded.

2. In the fields "P" and "I", enter a new proportional value and a new integration time.

3. Click on the icon "Send parameter to CPU" in the "Tuning" group.

4. Select the "Change setpoint" check box in the "Current values" group.

5. Enter a new setpoint and click in the "Current Values" group on the icon .

6. Clear the "Manual mode" check box.

The controller works with the new parameters and controls the new setpoint.

7. Check the quality of the PID parameter to check the curve points.

8. Repeat steps 2 to 6 until you are satisfied with the controller results.

Using PID basic functions
7.3 TCONT_CP

 PID control
214 Function Manual, 12/2014, A5E35300227-AA

7.3 TCONT_CP

7.3.1 Technology object TCONT_CP
The technology object TCONT_CP provides a continual temperature controller with pulse
generator. It corresponds to the instance data block of the instruction TCONT_CP. The
operation is based on the PID control algorithm of the sampling controller. Both manual and
automatic mode are possible.

The instruction TCONT_CP calculates the proportional, integral and derivative parameters
for your controlled system during pretuning. "Fine tuning" can be used to tune the
parameters further. You can also enter the PID parameters manually.

S7-1500
All parameters and tags of the technology object are retentive and can only be changed
during download to the device if you completely download TCONT_CP.

See also
Overview of software controller (Page 39)

Add technology objects (Page 42)

Configure technology objects (Page 43)

TCONT_CP (Page 455)

Downloading technology objects to device (Page 46)

 Using PID basic functions
 7.3 TCONT_CP

PID control
Function Manual, 12/2014, A5E35300227-AA 215

7.3.2 Configure TCONT_CP

7.3.2.1 Controller difference

Use process value periphery
To use the input parameter PV_PER, proceed as follows:

1. Select the entry "Periphery" from the "Source" list.

2. Select the "sensor type".
Depending on the sensor type, the process value is scaled according to different
formulas.

– Standard
Thermoelements; PT100/NI100

PV = 0.1 × PV_PER × PV_FAC + PV_OFFS

– Cooling;
PT100/NI100

PV = 0.01 × PV_PER × PV_FAC + PV_OFFS

– Current/voltage

PV = 100/27648 × PV_PER × PV_FAC + PV_OFFS

3. Enter the factor and offset for the scaling of the process value periphery.

Use internal process values
To use the input parameter PV_IN, proceed as follows:

1. Select the entry "Internal" from the "Source" list.

Control deviation
Set a deadband range under the following requirement:

● The process value signal is noisy.

● The controller gain is high.

● The derivative action is activated.

The noise component of the process value causes strong deviations of the manipulated
variable in this case. The deadband suppresses the noise component in the steady controller
state. The deadband range specifies the size of the deadband. With a deadband range of
0.0, the deadband is turned off.

See also
Mode of operation TCONT_CP (Page 456)

Using PID basic functions
7.3 TCONT_CP

 PID control
216 Function Manual, 12/2014, A5E35300227-AA

7.3.2.2 Controlling algorithm

General
1. Enter the "Sampling time PID algorithm".

A controller sampling time should not exceed 10 % of the determined integratl action time
of the controller (TI).

2. If the controller structure contains a proportional action, enter the "proportional gain".
A negative proportional gain inverts the rule meaning.

Proportional action
For changes of the setpoint, it may lead to overshooting of the proportional action. Through
the weighting of the proportional action, you can select how strongly the proportional action
should react when setpoint changes are made. The weakening of the proportional action is
reached through a compensation of the integral action.

1. To weaken the proportional action for setpoint changes, enter a "Proportional action
weighting".

– 1.0: Proportional action for setpoint change is fully effective

– 0.0: Proportional action for setpoint change is not effective

Integral action
With a limitation of the manipulated value, the integral action is stopped. With a control
deviation that moves the integral action in the direction of an internal setting range, the
integral action is released again.

1. If the controller structure contains an integral action, enter the "integral action time".
With an integral action time of 0.0, the integral action is switched off.

2. To give the integral action an initialization value, select the "Initialize integral action"
check box and enter the "Initialization value".
Upon restart or COM_RST = TRUE, the integral action is set to this value.

Derivative action
1. If the controller structure contains a derivative action, enter the derivative action time (TD)

and the coefficients DT1 (D_F).
With switched derivative action, the following equation should be maintained:
TD = 0.5 × CYCLE× D_F.
The delay time is calculated from this according to the formula:
delay time = TD/D_F

Set PD-controller with operating point
1. Enter the integral action time 0.0.

2. Activate the "Initialize integral action" check box.

3. Enter the operating point as the initialization value.

 Using PID basic functions
 7.3 TCONT_CP

PID control
Function Manual, 12/2014, A5E35300227-AA 217

Set P-controller with operating point
1. Set a PD-controller with an operating point.

2. Enter the derivative action time 0.0.
The derivative action is disabled.

Control zone
The control zone limits the value range of the control deviation. If the control deviation is
outside of this value range, the manipulated value limits are used.

With an occurrence in the control zone, the derivative action leads to a very quick reduction
of the manipulated variable. Thus, the control zone only makes sense for switched on
derivative actions. Without control zone, only the reducing proportional action would reduce
the manipulated value. The control zone leads to a quick oscillation without over/under
shooting if the emitted minimum or maximum manipulated values are removed from the
manipulated value required for the new operating point.

1. Activate the "Activate" check box in the "control zone" group.

2. Enter a setpoint value in the "Width" input field from which the process value may deviate
above or below.

See also
Mode of operation TCONT_CP (Page 456)

Using PID basic functions
7.3 TCONT_CP

 PID control
218 Function Manual, 12/2014, A5E35300227-AA

7.3.2.3 Manipulated value continual controller

Manipulated value limits
The manipulated value is limited at the top and bottom so that it can only accept valid values.
You cannot turn off the limitation. Exceeding the limits is displayed through the output
parameters QLMN_HLM and QLMN_LLM.

1. Enter a value for the high and low manipulated value limits.

Scaling
The manipulated value can be scaled for output as a floating point and periphery value
through a factor and an offset according to the following formula.

Scaled manipulated value = manipulated value x factor + offset

Default is a factor of 1.0 and an offset of 0.0.

1. Enter a value for the factor and offset.

Pulse generator
The pulse generator must be turned on for a continual controller.

1. Disable the "Activate" option check box in the "Pulse generator" group.

See also
Mode of operation TCONT_CP (Page 456)

 Using PID basic functions
 7.3 TCONT_CP

PID control
Function Manual, 12/2014, A5E35300227-AA 219

7.3.2.4 Manipulated value pulse controller

Pulse generator
The analog manipulated value (LmnN) can be emitted through pulse-duration modulation on
the output parameter QPULSE as an impulse sequence.

To use the pulse generator, proceed as follows:

1. Activate the "Activate" option check box in the "pulse generator" group.

2. Enter the "sampling time pulse generator", the "minimum impulse/break duration" and the
"period duration".

The following graphics clarify the connection between the "sampling pulse generator"
(CYCLE_P), the "minimum impulse/break duration" (P_B_TM) and the "period duration"
(PER_TM):

Using PID basic functions
7.3 TCONT_CP

 PID control
220 Function Manual, 12/2014, A5E35300227-AA

Sampling time pulse generator
The sampling time pulse generator must agree with the time tact of the cyclic interrupt OB
being called. The duration of the created impulse is always a whole number factor of this
value. For an adequately precise manipulated value resolution, the following relationship
should apply:
CYCLE_P ≤ PER_TM/50

Minimum impulse/break duration
Through the minimum impulse/break duration, short on or off times on the actuator are
avoided. An impulse smaller than P_B_TM is suppressed.

Recommended are values P_B_TM ≤ 0.1 × PER_TM.

Period duration
The period duration should not exceed 20% of the determined integration time of the
controller (TI):
PER_TM ≤ TI/5

 Using PID basic functions
 7.3 TCONT_CP

PID control
Function Manual, 12/2014, A5E35300227-AA 221

Example for the effect of the parameter CYCLE_P, CYCLE and PER_TM:
Period duration PER_TM = 10 s

Sampling time PID-algorithm CYCLE = 1 s

Sampling time pulse generator CYCLE_P = 100 ms.

Every second, a new manipulated value, every 100 ms the comparison of the manipulated
value occurs with the previously emitted impulse length and break length.

● If an impulse is emitted, there are 2 possibilities:

– The calculated manipulated value is larger than the previous impulse length/PER_TM.
Then the impulse is extended.

– The calculated manipulated value is less than or equal to the previous impulse
length/PER_TM. Then no impulse signal will be emitted.

● If no impulse is emitted, there are also 2 possibilities:

– The value (100 % - calculated manipulated value) is greater than the previous break
length / PER_TM. Then the break is extended.

– The value (100 % - calculated manipulated value) is less than or equal to the previous
break length / PER_TM. Then an impulse signal will be emitted.

See also
Mode of operation TCONT_CP (Page 456)

Operating principle of the pulse generator (Page 465)

Using PID basic functions
7.3 TCONT_CP

 PID control
222 Function Manual, 12/2014, A5E35300227-AA

7.3.3 Commissioning TCONT_CP

7.3.3.1 Optimization of TCONT_CP

Application possibilities
The controller optimization for heating or cooling processes from process type I is applicable.
But you can use the block for processes with higher levels like process type II or III.

The PI/PID parameters are automatically determined and set. The controller draft is
designed for an optimal disruption behavior The "precise" parameters resulting from this lead
to overshooting of 10% to 40% of the jump height for setpoint jump heights.

Phases of controller optimization
For the controller optimization, individual phases are run through, which you can read on the
parameter PHASE .

PHASE = 0
No tuning is running. TCONT_CP works in automatic or manual mode.

During PHASE = 0, you can make sure that the controlled system fulfills the requirements for
an optimization.

At the end of the optimization, TCONT_CP changes back into PHASE = 0.

PHASE = 1
TCONT_CP is prepared for optimization. PHASE = 1 may only be started if the requirements
for an optimization are fulfilled.

During PHASE = 1, the following values are determined:

● Process value noise NOISE_PV

● Initial slope PVDT0

● Average of the manipulated variable

● Sampling time PID algorithm CYCLE

● Sampling time pulse generator CYCLE_P

 Using PID basic functions
 7.3 TCONT_CP

PID control
Function Manual, 12/2014, A5E35300227-AA 223

PHASE = 2
In phase 2, the process value attempts to detect the point of inflection with a constant
manipulated variable. This method prevents the point of inflection from being found too early
as a result of process variable noise.

With the pulse controller, the process variable is averaged over N pulse cycles and then
made available to the controller stage. There is a further averaging of the process variable in
the controller stage: Initially, this averaging is inactive; in other words, averaging always
takes place over 1 cycle. As long as the noise exceeds a certain level, the number of cycles
is doubled.

The period and amplitude of the noise are calculated. The search for the point of inflection is
canceled and phase 2 is exited only when the gradient is always smaller than the maximum
rise during the estimated period. TU and T_P_INF are, however, calculated at the actual
point of inflection.

Tuning, however, is only ended when the following two conditions are met:

1. The process value is more than 2*NOISE_PV away from the point of inflection.

2. The process value has exceeded the point of inflection by 20%.

 Note

When exciting the process using a setpoint step change, tuning is ended at the latest
when the process value exceeds 75% of the setpoint step change (SP_INT-PV0) (see
below).

PHASE = 3, 4, 5
The phases 3, 4 and 5 last 1 cycle each.

In Phase 3, the valid PI/PID parameters are saved before the optimization and the process
parameter is calculated.

In Phase 4, the new PI/PID parameters are calculated.

In Phase 5, the new manipulated variable is calculated and the controlled system is given.

PHASE = 7
The process type is inspected in Phase 7, because TCONT_CP always changes to
automatic mode after optimization. The automatic mode starts with LMN = LMN0 +
0.75*TUN_DLMN as a manipulated variable. The testing of the process type occurs in the
automatic mode with the recently recalculated controller parameters and ends at the latest
0.35*TA (equilibrium time) after the point of inflection. If the process order deviates strongly
from the estimated value, the controller parameters are newly calculated and STATUS_D is
counted up by 1, otherwise, the controller parameters remain unchanged.

Then the optimization mode is complete and TCONT_CP is back in PHASE = 0. At the
STATUS_H parameter, you can identify whether the tuning was successfully completed.

Using PID basic functions
7.3 TCONT_CP

 PID control
224 Function Manual, 12/2014, A5E35300227-AA

Premature cancellation of the optimization
In Phase 1, 2 or 3, you can cancel the optimization by resetting TUN_ON = FALSE without
calculating new parameters. The controller starts in the automatic mode with LMN = LMN0 +
TUN_DLMN. If the controller was in manual mode before the tuning, the old manual
manipulated variable is output.

If the tuning is canceled in Phase 4, 5 or 7 with TUN_ON = FALSE, the determined
controlled parameters are contained until then.

 Using PID basic functions
 7.3 TCONT_CP

PID control
Function Manual, 12/2014, A5E35300227-AA 225

7.3.3.2 Requirements for an optimization

Transient response
The process must have a stable, asymptotic transient response with time lag.

The process value must settle to steady state after a step change of the manipulated
variable. This therefore excludes processes that already show an oscillating response
without control, as well as processes with no recovery (integrator in the control system).

 WARNING

This may result in death, severe injury or considerable property damage.

During an tuning, the parameter MAN_ON is ineffective. Through this, the output value or
process value may take on undesired - even extreme - values.

The output value is defined through the tuning. To cancel the tuning, you first have to set
TUN_ON = FALSE. This makes MAN_ON effective again.

Guaranteeing a stationary initial state (phase 0)
With lower-frequency oscillations of the process value, for example, due to incorrect
controller parameters, the controller must be put in manual mode before the tuning is started
and wait for the oscillation to stop. Alternatively, you could switch to a "soft" set PI controller
(small loop gain large integration time).

Now you have to wait until the stationary state is reached, this means, until the process
value and output value have a steady state. It is also permissible to have an asymptotic
transient oscillation or slow drifting of the process value (stationary state, see the following
image). The output value must be constant or fluctuate by a constant average.

 Note

Avoid changing the manipulated variable shortly before starting the tuning. A change of the
manipulated variable can occur in an unintended manner through the establishment of the
test conditions (for example, closing an oven door)! If this does happen, you have to at least
wait until the process value has an asymptotic transient oscillation in a stationary state again.
Better controller parameters can be reached if you wait until the transient effect has
completely subsided.

Using PID basic functions
7.3 TCONT_CP

 PID control
226 Function Manual, 12/2014, A5E35300227-AA

In the following image, the transient oscillation is illustrated in the stationary state:

Linearity and operating range
The process response must be linear across the operating range. Non-linear response
occurs, for example, when an aggregation state changes. Tuning must take place in a linear
part of the operating range.

This means, during tuning and normal control operation non-linear effects within the
operating range must be insignificant. It is, however possible to retune the process when the
operating point changes, providing tuning is repeated in the close vicinity of the new
operating point and non-linearity does not occur during tuning.

If a specific static non-linearity (e.g., valve characteristics) is known, it is always advisable to
compensate this with a polyline to linearize the process response.

Disturbance in temperature processes
Disturbances such as the transfer of heat to neighboring zones must not affect the overall
temperature process too much. For example, when optimizing the zones of an extruder, all
zones must be heated simultaneously.

 Using PID basic functions
 7.3 TCONT_CP

PID control
Function Manual, 12/2014, A5E35300227-AA 227

7.3.3.3 Possibilities for optimization
The following possibilities for tuning exist:

● Pretuning

● Fine tuning

● Manual fine-tuning in control mode

Pretuning
During this tuning, the working point is approached from the cold state through a setpoint
jump.

With TUN_ON = TRUE, you can establish the tuning readiness. The controller switches from
PHASE = 0 to PHASE = 1.

The tuning manipulated variable (LMN0 + TUN_DLMN) is activated by a setpoint change
(transition phase 1 -> 2). The setpoint is not effective until the inflection point has been
reached (automatic mode is not enabled until this point is reached).

The user is responsible for defining the output excitation delta (TUN_DLMN) according to the
permitted process value change. The sign of TUN_DLMN must be set depending on the
intended process value change (take into account the direction in which the control is
operating).

The setpoint step change and TUN_DLMN must be suitably matched. If the value of
TUN_DLMN is too high, there is a risk that the point of inflection will not be found before 75%
of the setpoint step change is reached.

TUN_DLMN must nonetheless be high enough to ensure that the process value reaches at
least 22 % of the setpoint step change. Otherwise, the process will remain in tuning mode
(phase 2).

Using PID basic functions
7.3 TCONT_CP

 PID control
228 Function Manual, 12/2014, A5E35300227-AA

Remedy: Reduce the setpoint value during the inflection point search.

 Note

If processes are extremely sluggish, it is advisable during tuning to specify a target setpoint
that is somewhat lower than the desired operating point and to monitor the status bits and
PV closely (risk of overshooting).

Tuning only in the linear range:

The signals of certain processes (e.g., zinc or magnesium smelters) will pass a non-linear
area at the approach of the operating range (change in the state of aggregation).

By selecting a suitable setpoint step change, tuning can be limited to the linear range. When
the process value has passed 75% of the setpoint step change (SP_INT-PV0), tuning is
ended.

At the same time, TUN_DLMN should be reduced to the extent that the point of inflection is
guaranteed to be found before 75% of the setpoint step change is reached.

Fine tuning
During this tuning, the process with a constant setpoint is activated through a output value
jump.

 Using PID basic functions
 7.3 TCONT_CP

PID control
Function Manual, 12/2014, A5E35300227-AA 229

The tuning manipulated variable (LMN0 + TUN_DLMN) is activated by setting the start bit
TUN_ST (transition from phase 1 -> 2). When you modify the setpoint value, the new value
will not take effect until the point of inflection has been reached (automatic mode will not be
enabled until this point has been reached).

The user is responsible for defining the output excitation delta (TUN_DLMN) according to the
permitted process value change. The sign of TUN_DLMN must be set depending on the
intended process value change (take into account the direction in which the control is
operating).

 NOTICE

Safety off at 75% is not available when you excite the process via TUN_ST. Tuning is
ended when the point of inflection is reached. However, in noisy processes the point of
inflection may be significantly exceeded.

Manual fine-tuning in control mode
The following measures can be employed to achieve an overshoot-free setpoint response:

● Adapting the control zone

● Optimize command action

● Attenuation of control parameters

● Modifying control parameters

Using PID basic functions
7.3 TCONT_CP

 PID control
230 Function Manual, 12/2014, A5E35300227-AA

7.3.3.4 Tuning result
The left cipher of STATUS_H displays the tuning status

STATUS_H Result
0 Default, i.e., new controller parameters have not (yet) been found.
10000 Suitable control parameters found.
2xxxx Control parameters have been found via estimated values; check the control

response or check the STATUS_H diagnostic message and repeat controller
tuning.

3xxxx An operator error has occurred; check the STATUS_H diagnostic message and
repeat controller tuning.

The CYCLE and CYCLE_P sampling times were already checked in phase 1.

The following controller parameters are updated on TCONT_CP:

● P (proportional GAIN)

● I (integration time TI)

● D (derivative time TD)

● Weighting of the proportional action PFAC_SP

● Coefficient DT1 (D_F)

● Control zone on/off CONZ_ON

● Control zone width CON_ZONE

The control zone is only activated if the process type is suitable (process type I and II) and a
PID controller is used (CONZ_ON = TRUE).

Depending on PID_ON, control is implemented either with a PI or a PID controller. The old
controller parameters are saved and can be retrieved with UNDO_PAR. A PI parameter
record and a PID parameter record are saved additionally in the PI_CON and PID_CON
structures. Using LOAD_PID and making a suitable setting for PID_ON, it is also possible to
switch later between the tuned PI or PID parameters.

 Using PID basic functions
 7.3 TCONT_CP

PID control
Function Manual, 12/2014, A5E35300227-AA 231

7.3.3.5 Parallel tuning of controller channels

Adjacent zones (strong heat coupling)
If two or more controllers are controlling the temperature, on a plate, for example (in other
words, there are two heaters and two measured process values with strong heat coupling),
proceed as follows:

1. OR the two outputs QTUN_RUN.

2. Interconnect each TUN_KEEP input with the output of the OR element.

3. Start both controllers by specifying a setpoint step change at the same time or by setting
TUN_ST at the same time.

The following schematic illustrates the parallel tuning of controller channels.

Advantage:

Both controllers output LMN0 + TUN_DLMN until both controllers have left phase 2. This
prevents the controller that completes tuning first from falsifying the tuning result of the other
controller due to the change in its manipulated variable.

 NOTICE

Reaching 75% of the setpoint step change causes an exiting of phase 2 and resetting of
output QTUN_RUN. However, automatic mode does not start until TUN_KEEP is also 0.

Adjacent zones (weak heat coupling)
In general terms, tuning should be carried out to reflect the way in which the controller will
operate subsequently. If zones are operated together during production such that the
temperature differences between the zones remain the same, the temperature of the
adjacent zones ought to be increased accordingly during tuning.

Differences in temperature at the beginning of the tuning are irrelevant since they will be
compensated by the initial heating (-> initial rise = 0).

Using PID basic functions
7.3 TCONT_CP

 PID control
232 Function Manual, 12/2014, A5E35300227-AA

7.3.3.6 Fault descriptions and corrective measures

Compensating operator errors

Operator error STATUS and action Comment
TUN_ON and setpoint step
change or TUN_ST are set sim-
ultaneously

Transition to phase 1; how-
ever, tuning is not started.
• SP_INT = SPold or
• TUN_ST = FALSE

The setpoint change is canceled.
This prevents the controller from
settling to the new setpoint value
and from leaving the stationary
operating point unnecessarily.

Effective TUN_DLMN < 5% (end
of phase 1)

STATUS_H = 30002
• Transition to phase 0
• TUN_ON = FALSE
• SP = SPold

Tuning is canceled.
The setpoint change is canceled.
This prevents the controller from
settling to the new setpoint value
and from leaving the stationary
operating point unnecessarily.

Point of inflection not reached (only if excited by setpoint step change)
At the latest, tuning is ended when the process value has passed 75% of the setpoint step
change (SP_INT-PV0). This is signaled by "inflection point not reached" in STATUS_H
(2xx2x).

The currently valid setpoint always applies. By reducing the setpoint, it is possible to achieve
an earlier end of the tuning function.

In typical temperature processes, cancelation of tuning at 75% of the setpoint step change is
normally adequate to prevent overshoot. However, caution is advised, particularly in
processes with a greater delay (TU/TA > 0.1, process type III). If manipulated variable
excitation is too strong compared to the setpoint step change, the process value can
overshoot heavily (up to a factor of 3).

In higher-order processes, if the point of inflection is still a long way off after reaching 75% of
the setpoint step change, there will be significant overshoot. In addition, the controller
parameters are too stringent. In this case, you should reduce the controller parameters or
repeat the attempt.

 Using PID basic functions
 7.3 TCONT_CP

PID control
Function Manual, 12/2014, A5E35300227-AA 233

The following schematic illustrates the overshoot of the process variable when the excitation
is too strong (process type III):

In typical temperature processes, cancelation shortly before reaching the point of inflection is
not critical in terms of the controller parameters.

If you repeat the attempt, reduce TUN_DLMN or increase the setpoint step change.

Principle: The value of the manipulated variable used for tuning must be suitable for the
setpoint step change.

Error estimating the delay time or order
The delay time (STATUS_H = 2x1xx or 2x3xx) or order (STATUS_H = 21xxx or 22xxx) were
not acquired correctly. Operation continues with an estimate that can lead to non-optimum
controller parameters.

Repeat the tuning procedure and ensure that disturbances do not occur at the process
value.

 Note

The special case of a PT1-only process is also indicated by STATUS_H = 2x1xx (TU <=
3*CYCLE). In this case, it is not necessary to repeat the attempt. Reduce the controller
parameters if the control oscillates.

Using PID basic functions
7.3 TCONT_CP

 PID control
234 Function Manual, 12/2014, A5E35300227-AA

Quality of measuring signals (measurement noise, low-frequency interference)
The results of tuning can be distorted by measurement noise or by low-frequency
interference. Note the following:

● If you encounter measurement noise, set the sampling frequency higher rather than
lower. During one noise period, the process value should be sampled at least twice. In
pulse mode, integrated mean value filtering can be helpful. This assumes, however, that
the process variable PV is transferred to the instruction in the fast pulse cycle. The
degree of noise should not exceed 5% of the useful signal change.

● High-frequency interference cannot be filtered out by TCONT_CP. This should be filtered
earlier in the measuring sensor to prevent the aliasing effect.

The following schematic illustrates the aliasing effect when the sampling time is too long:

● With low-frequency interference, it is relatively easy to ensure an adequately high

sampling rate. However, the TCONT_CP must then generate a uniform measuring signal
by having a large interval in the mean value filtering. Mean value filtering must extend
over at least two noise periods. Internally in the block, this soon results in higher sampling
times such that the accuracy of the tuning is adversely affected. Adequate accuracy is
guaranteed with at least 40 noise periods up to the point of inflection.

Possible remedy when repeating the attempt:

Increase TUN_DLMN.

 Using PID basic functions
 7.3 TCONT_CP

PID control
Function Manual, 12/2014, A5E35300227-AA 235

Overshoot
Overshoot can occur in the following situations:

Situation Cause Remedy
End of tuning • Excitation by a too high manipulated

value change compared with the set-
point step change (see above).

• PI controller activated by
PID_ON = FALSE.

• Increase the setpoint step change
or reduce the manipulated value
step change.

• If the process permits a PID control-
ler, start tuning with PID_ON
= TRUE.

Tuning in phase
7

Initially, less aggressive controller pa-
rameters were determined (process type
III); these can lead to an overshoot in
phase 7.

-

Control mode PI controller with PFAC_SP = 1.0 for
process type I.

If the process permits a PID controller,
start tuning with PID_ON = TRUE.

7.3.3.7 Performing pretuning

Requirements
● The instruction and the technology object are loaded on the CPU.

Procedure
To manually determine the optimum PID parameters for initial commissioning, follow these
steps:

1. Click the "Start" icon.

If there is no online connection, this will be established. The current values for the
setpoint, process value and output value are recorded.

2. Select "Pretuning" from the "Mode" drop-down list.

TCONT_CP is ready for tuning.

3. In the "Output value jump" field, specify how much the output value should be increased.

4. Enter a setpoint in the "Setpoint" field. The output value jump only takes effect when
another setpoint is entered.

5. Click the "Start tuning" icon.

The pretuning starts. The status of the tuning is displayed.

Using PID basic functions
7.3 TCONT_CP

 PID control
236 Function Manual, 12/2014, A5E35300227-AA

7.3.3.8 Performing fine tuning

Requirements
● The instruction and the technology object are loaded on the CPU.

Procedure
To determine the optimal PID parameters at the operating point, follow these steps:

1. Click the "Start" icon.

If there is no online connection, this will be established. The current values for the
setpoint, process value and output value are recorded.

2. Select "Fine tuning" from the "Mode" drop-down list.

TCONT_CP is ready for tuning.

3. In the "Output value jump" field, specify how much the output value should be increased.

4. Click the "Start tuning" icon.

Fine tuning starts. The status of the tuning is displayed.

7.3.3.9 Cancelling pretuning or fine tuning
To cancel pretuning or fine tuning, click on the icon, "Stop tuning".

If the PID parameters have not yet been calculated and stored, TCONT_CP starts in
automatic mode LMN = LMN0 + TUN_DLMN. If the controller was in manual mode before
the tuning, the old manual manipulated variable is output.

If the calculated PID parameters have already been saved, TCONT_CP starts in automatic
mode and works with the previously determined PID parameters.

 Using PID basic functions
 7.3 TCONT_CP

PID control
Function Manual, 12/2014, A5E35300227-AA 237

7.3.3.10 Manual fine-tuning in control mode
The following measures can be employed to achieve an overshoot-free setpoint response:

Adapting the control zone
During tuning, "TCONT_CP" determines a control zone CON_ZONE and activated if the
process type is suitable (process type I and II) and a PID controller is used
(CONZ_ON = TRUE). In control mode, you can modify the control zone or switch it off
completely (with CONZ_ON = FALSE).

 Note

Activating the control zone with higher-order processes (process type III) does not normally
provide any benefit since the control zone is then larger than the control range that can be
achieved with a 100% manipulated variable. There is also no advantage in activating the
control zone for PI controllers.

Before you switch on the control zone manually, make sure that the control zone is not too
narrow. If the control zone is set too narrow, oscillations occur in the manipulated variable
and the process value.

Continuous attenuation of the control response with PFAC_SP
The control response can be attenuated with the PFAC_SP parameter. This parameter
specifies the percentage of proportional component that is effective for setpoint step
changes.

Regardless of the process type, PFAC_SP is set to a default value of 0.8 by the tuning
function; you can later modify this value if required. To limit overshoot during setpoint step
changes (with otherwise correct controller parameters) to approximately 2%, the following
values are adequate for PFAC_SP:

 Process type I Process type II Process type III
 Typical temperature pro-

cess
Intermediate range Higher-order temperature process

PI 0.8 0.82 0.8
PID 0.6 0.75 0.96

Adjust the default factor (0.8) in the following situations, in particular:

● Process type I with PID (0.8 →0.6): Setpoint step changes within the control zone still lead
to approximately 18% overshoot with PFAC_SP = 0.8.

● Process type III with PID (0.8 →0.96): Setpoint step changes with PFAC_SP = 0.8 are
attenuated too strongly. This leads to a significantly slower response time.

Using PID basic functions
7.3 TCONT_CP

 PID control
238 Function Manual, 12/2014, A5E35300227-AA

Attenuation of control parameters
When a closed-loop control circuit oscillates or if overshoot occurs after setpoint step
changes, you can reduce the controller GAIN (e.g., to 80% of the original value) and
increase integral time TI (e.g., to 150% of the original value). If the analog output value of the
continuous controller is converted to binary actuating signals by a pulse shaper, quantization
noise may cause minor permanent oscillation. You can eliminate this by increasing the
controller deadband DEADB_W.

Modifying control parameters
Proceed as follows to modify control parameters:

1. Save the current parameters with SAVE_PAR.

2. Modify the parameters.

3. Test the control response.

If the new parameter settings are worse than the old ones, retrieve the old parameters with
UNDO_PAR.

7.3.3.11 Performing fine tuning manually

Requirements
● The instruction and the technology object have been loaded to the CPU.

Procedure
To manually determine the optimal PID parameters, proceed as follows:

1. Click the "Start" icon.

If there is no online connection, this will be established. The current values for the
setpoint, process value and output value are recorded.

2. Select "Manual" from the "Mode" drop-down list.

3. Enter the new PID parameters.

4. Click on the icon "Send parameter to CPU" in the "Tuning" group.

5. Select the "Change setpoint" check box in the "Current values" group.

6. Enter a new setpoint and click in the "Current Values" group on the icon .

7. Clear the "Manual mode" check box.

The controller works with the new PID parameters and controls the new setpoint.

8. Check the quality of the PID parameter to check the curve points.

9. Repeat steps 3 to 8 until you are satisfied with the controller results.

 Using PID basic functions
 7.4 TCONT_S

PID control
Function Manual, 12/2014, A5E35300227-AA 239

7.4 TCONT_S

7.4.1 Technology object TCONT_S
The technology object TCONT_S provides a step controller for actuators with integrating
behavior and is used to control technical temperature processes with binary output value
output signals. The technology object corresponds to the instance data block of the
TCONT_S instruction. The operating principle is based on the PI control algorithm of the
sampling controller. The step controller operates without a position feedback signal. Both
manual and automatic mode are possible.

S7-1500
All parameters and tags of the technology object are retentive and can only be changed
during download to the device if you completely download TCONT_S.

See also
Overview of software controller (Page 39)

Add technology objects (Page 42)

Configure technology objects (Page 43)

TCONT_S (Page 480)

Downloading technology objects to device (Page 46)

Using PID basic functions
7.4 TCONT_S

 PID control
240 Function Manual, 12/2014, A5E35300227-AA

7.4.2 Configure controller difference TCONT_S

Use process value periphery
To use the input parameter PV_PER, proceed as follows:

1. Select the entry "Periphery" from the "Source" list.

2. Select the "sensor type".
Depending on the sensor type, the process value is scaled according to different
formulas.

– Standard
Thermoelements; PT100/NI100

PV = 0.1 × PV_PER × PV_FAC + PV_OFFS

– Cooling;
PT100/NI100

PV = 0.01 × PV_PER × PV_FAC + PV_OFFS

– Current/voltage

PV = 100/27648 × PV_PER × PV_FAC + PV_OFFS

3. Enter the factor and offset for the scaling of the process value periphery.

Use internal process values
To use the input parameter PV_IN, proceed as follows:

1. Select the entry "Internal" from the "Source" list.

Control deviation
Set a dead zone range under the following requirement:

● The process value signal is noisy.

● The controller gain is high.

● The derivative action is activated.

The noise component of the process value causes strong deviations of the output value in
this case. The dead zone suppresses the noise component in the steady controller state.
The dead zone range specifies the size of the dead zone. With a dead zone range of 0.0, the
dead zone is turned off.

See also
Mode of operation TCONT_S (Page 481)

 Using PID basic functions
 7.4 TCONT_S

PID control
Function Manual, 12/2014, A5E35300227-AA 241

7.4.3 Configure controller algorithm TCONT_S

General
1. Enter the "Sampling time PID algorithm".

A controller sampling time should not exceed 10 % of the determined integral action time
of the controller (TI).

2. If the controller structure contains a proportional action, enter the "proportional gain".
A negative proportional gain inverts the rule meaning.

Proportional action
For changes of the setpoint, it may lead to overshooting of the proportional action. Through
the weighting of the proportional action, you can select how strongly the proportional action
should react when setpoint changes are made. The weakening of the proportional action is
reached through a compensation of the integral action.

1. To weaken the proportional action for setpoint changes, enter a "Proportional action
weighting".

– 1.0: Proportional action for setpoint change is fully effective

– 0.0: Proportional action for setpoint change is not effective

Integral action
1. If the controller structure contains an integral action, enter the "integral action time".

With an integral action time of 0.0, the integral action is switched off.

See also
Mode of operation TCONT_S (Page 481)

7.4.4 Configure manipulated value TCONT_S

Pulse generator
1. Enter the minimum impulse duration and minimum pause duration.

The values must be greater than or equal to the cycle time for the input parameter
CYCLE. The frequency of operation is reduced through this.

2. Enter the motor setting time.
The value must be greater than or equal to the cycle time of the input parameter CYCLE.

See also
Mode of operation TCONT_S (Page 481)

Using PID basic functions
7.4 TCONT_S

 PID control
242 Function Manual, 12/2014, A5E35300227-AA

7.4.5 Commissioning TCONT_S

Requirements
● The instruction and the technology object have been loaded to the CPU.

Procedure
To manually determine the optimal PID parameters, proceed as follows:

1. Click the "Start" icon.

If there is no online connection, this will be established. The current values for the
setpoint, process value and output value are recorded.

2. Enter new PID parameters in the "P", "I" and weighting proportional action fields.

3. Click on the icon "Send parameter to CPU" in the "Tuning" group.

4. Select the "Change setpoint" check box in the "Current values" group.

5. Enter a new setpoint and click in the "Current Values" group on the icon .

6. Clear the "Manual mode" check box.

The controller works with the new parameters and controls the new setpoint.

7. Check the quality of the PID parameter to check the curve points.

8. Repeat steps 2 to 6 until you are satisfied with the controller results.

PID control
Function Manual, 12/2014, A5E35300227-AA 243

 Instructions 8
8.1 PID_Compact

8.1.1 New features of PID_Compact

PID_Compact V2.2
● Use with S7-1200

As of PID_Compact V2.2, the instruction with V2 functionality can also be used on S7-
1200 with firmware version 4.0 or higher.

PID_Compact V2.0
● Reaction to error

The reaction to error has been completely overhauled. PID_Compact now reacts in a
more fault-tolerant manner in the default setting. This reaction is set when copying
PID_Compact V1.X from an S7-1200 CPU to an S7-1500 CPU.

 NOTICE

Your system may be damaged.

If you use the default setting, PID_Compact remains in automatic mode when the
process value limits are exceeded. This may damage your system.

It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

The Error parameter indicates if an error is pending. When the error is no longer pending,
Error = FALSE. The ErrorBits parameter shows which errors have occurred. Use
ErrorAck to acknowledge the errors and warnings without restarting the controller or
clearing the integral action. Switching operating modes no longer clears errors that are no
longer pending.

You can configure the reaction to error with SetSubstituteOutput and
ActivateRecoverMode.

● Substitute output value

You can configure a substitute output value that is to be output if an error occurs.

● Switching the operating mode

You specify the operating mode at the Mode in/out parameter and use a rising edge at
ModeActivate to start the operating mode. The sRet.i_Mode tag has been omitted.

Instructions
8.1 PID_Compact

 PID control
244 Function Manual, 12/2014, A5E35300227-AA

● Multi-instance capability

You can call up PID_Compact as multi-instance DB. No technology object is created in
this case and no parameter assignment interface or commissioning interface is available.
You must assign parameters for PID_Compact directly in the multi-instance DB and
commission it via a watch table.

● Startup characteristics

The operating mode specified at the Mode parameter is also started on a falling edge at
Reset and during a CPU cold restart, if RunModeByStartup = TRUE.

● ENO characteristics

ENO is set depending on the operating mode.

If State = 0, then ENO = FALSE.

If State ≠ 0, then ENO = TRUE.

● Setpoint value specification during tuning

You configure the permitted fluctuation of the setpoint during tuning at the
CancelTuningLevel tag.

● Value range for output value limits

The value 0.0 no longer has to fall within the output value limits.

● Pre-assigning the integral action

Using the tags IntegralResetMode and OverwriteInitialOutputValue, you can determine
the pre-assignment of the integral action when switching from "Inactive" operating mode
to "Automatic mode".

● Switching a disturbance variable on

You can switch a disturbance variable on at the Disturbance parameter.

● Default value of PID parameters

The following default settings have been changed:

– Proportional action weighting (PWeighting) from 0.0 to 1.0

– Derivative action weighting (DWeighting) from 0.0 to 1.0

– Coefficient for derivative delay (TdFiltRatio) from 0.0 to 0.2

● Renaming tags

The static tags have been given new names that are compatible with PID_3Step.

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 245

PID_Compact V1.2
● Manual mode on CPU startup

If ManualEnable = TRUE when the CPU starts, PID_Compact starts in manual mode. A
rising edge at ManualEnable is not necessary.

● Pretuning

If the CPU is switched off during pretuning, pretuning starts again when the CPU is
switched back on.

PID_Compact V1.1
● Manual mode on CPU startup

When the CPU starts up, PID_Compact only switches to manual mode with a rising edge
at ManualEnable. Without rising edge, PID_Compact starts in the last operating mode in
which ManualEnable was FALSE.

● Reaction to reset

A rising edge at Reset resets the errors and warnings and clears the integral action. A
falling edge at Reset triggers a switchover to the most recently active operating mode.

● Default of process value high limit

The default value of r_Pv_Hlm has been changed to 120.0.

● Monitoring the sampling time

– An error is no longer output when the current sampling time is >= 1.5 x current mean
value or when the current sampling time is <= 0.5 x current mean value. The sampling
time may deviate much more in automatic mode.

– PID_Compact is compatible with FW, V2.0 or higher.

● Access to tags

The following tags can now be used in the user program.

– i_Event_SUT

– i_Event_TIR

– r_Ctrl_Ioutv

● Troubleshooting

PID_Compact now outputs the correct pulses when the shortest ON time is not equal to
the shortest OFF time.

Instructions
8.1 PID_Compact

 PID control
246 Function Manual, 12/2014, A5E35300227-AA

8.1.2 Compatibility with CPU and FW
The following table shows which version of PID_Compact can be used on which CPU.

CPU FW PID_Compact
S7-1200 ≥ V4.x V2.2

V1.2
S7-1200 ≥ V3.X V1.2

V1.1
S7-1200 ≥ V2.X V1.2

V1.1
S7-1200 ≥ V1.X V1.0
S7-1500 ≥ V1.5 V2.2

V2.1
V2.0

S7-1500 ≥ V1.1 V2.1
V2.0

S7-1500 ≥ V1.0 V2.0

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 247

8.1.3 CPU processing time and memory requirement PID_Compact V2.x

CPU processing time
Typical CPU processing times of the PID_Compact technology object as of Version V2.0,
depending on CPU type.

CPU Typ. CPU processing time PID_Compact V2.x
CPU 1211C ≥ V4.0 300 µs
CPU 1215C ≥ V4.0 300 µs
CPU 1217C ≥ V4.0 300 µs
CPU 1505S ≥ V1.0 45 µs
CPU 1510SP-1 PN ≥ V1.6 85 µs
CPU 1511-1 PN ≥ V1.5 85 µs
CPU 1512SP-1 PN ≥ V1.6 85 µs
CPU 1516-3 PN/DP ≥ V1.5 50 µs
CPU 1518-4 PN/DP ≥ V1.5 4 µs

Memory requirement
Memory requirement of an instance DB of the PID_Compact technology object as of Version
V2.0.

 Memory requirement of the instance DB of

PID_Compact V2.x
Load memory requirement Approx. 12000 bytes
Total work memory requirement 788 bytes
Retentive work memory requirement 44 bytes

Instructions
8.1 PID_Compact

 PID control
248 Function Manual, 12/2014, A5E35300227-AA

8.1.4 PID_Compact V2

8.1.4.1 Description of PID_Compact V2

Description
The PID_Compact instruction provides a PID controller with integrated tuning for actuators
with proportional action.

The following operating modes are possible:

● Inactive

● Pretuning

● Fine tuning

● Automatic mode

● Manual mode

● Substitute output value with error monitoring

For a more detailed description of the operating modes, see the State parameter.

PID algorithm
PID_Compact is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions. The PID algorithm operates according to the following equation:

Symbol Description
y Output value of the PID algorithm
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integral action time
TD Derivative action time
a Derivative delay coefficient (derivative delay T1 = a × TD)
c Derivative action weighting

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 249

Block diagram of PID_Compact

Block diagram of PIDT1 with anti-windup

Instructions
8.1 PID_Compact

 PID control
250 Function Manual, 12/2014, A5E35300227-AA

Call
PID_Compact is called in the constant time scale of a cycle interrupt OB.

If you call PID_Compact as a multi-instance DB, no technology object is created. No
parameter assignment interface or commissioning interface is available. You must assign
parameters for PID_Compact directly in the multi-instance DB and commission it via a watch
table.

Download to device
The actual values of retentive variables are only updated when you download PID_Compact
completely.

Downloading technology objects to device (Page 46)

Startup
When the CPU starts up, PID_Compact starts in the operating mode that is saved in the
Mode in/out parameter. To switch to "Inactive" operating mode during startup, set
RunModeByStartup = FALSE.

Reaction to error
In automatic mode and during commissioning, the reaction to error depends on the
SetSubstituteOutput and ActivateRecoverMode variables. In manual mode, the reaction is
independent of SetSubstituteOutput and ActivateRecoverMode. If ActivateRecoverMode =
TRUE, the reaction additionally depends on the error that occurred.

SetSubstitute-
Output

Acti-
vateRecov-
erMode

Configuration editor
> output value
> Set Output to

Reaction

Not relevant FALSE Zero (inactive) Switch to "Inactive" mode (State = 0)
The value 0.0 0 is transferred to the actuator.

FALSE TRUE Current output value while error is
pending

Switch to "Substitute output value with error moni-
toring" mode (State = 5)
The current output value is transferred to the
actuator while the error is pending.

TRUE TRUE Substitute output value while error
is pending

Switch to "Substitute output value with error moni-
toring" mode (State = 5)
The value at SubstituteOutput is transferred to the
actuator while the error is pending.

In manual mode, PID_Compact uses ManualValue as output value, unless ManualValue is
invalid. If ManualValue is invalid, SubstituteOutput is used. If ManualValue and
SubstituteOutput are invalid, Config.OutputLowerLimit is used.

The Error parameter indicates if an error is pending. When the error is no longer pending,
Error = FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is
reset by a rising edge at Reset or ErrorAck.

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 251

8.1.4.2 PID_Compact V2 mode of operation

Monitoring process value limits
You specify the high limit and low limit of the process value in the Config.InputUpperLimit
and Config.InputLowerLimit tags. If the process value is outside these limits, an error occurs
(ErrorBits = 0001h).

You specify a high and low warning limit of the process value in the
Config.InputUpperWarning and Config.InputLowerWarning tags. If the process value is
outside these warning limits, a warning occurs (Warning = 0040h), and the InputWarning_H
or InputWarning_L output parameter changes to TRUE.

Limiting the setpoint
You specify a high limit and low limit of the setpoint in the Config.SetpointUpperLimit and
Config.SetpointLowerLimit tags. PID_Compact automatically limits the setpoint to the
process value limits. You can limit the setpoint to a smaller range. PID_Compact checks
whether this range falls within the process value limits. If the setpoint is outside these limits,
the high or low limit is used as the setpoint, and output parameter SetpointLimit_H or
SetpointLimit_L is set to TRUE.

The setpoint is limited in all operating modes.

Limiting the output value
You specify a high limit and low limit of the output value in the Config.OutputUpperLimit and
Config.OutputLowerLimit tags. Output, ManualValue, and SubstituteOutput are limited to
these values. The output value limits must match the control logic.

The valid output value limit values depend on the Output used.

Output -100.0 to 100.0%
Output_PER -100.0 to 100.0%
Output_PWM 0.0 to 100.0%

Rule:

OutputUpperLimit > OutputLowerLimit

Substitute output value
In the event of an error, PID_Compact can output a substitute output value that you define at
the tag SubstituteOutput. The substitute output value must be within the output value limits.

Instructions
8.1 PID_Compact

 PID control
252 Function Manual, 12/2014, A5E35300227-AA

Monitoring signal validity
The values of the following parameters are monitored for validity when used:

● Setpoint

● Input

● Input_PER

● Disturbance

● ManualValue

● SubstituteOutput

● Output

● Output_PER

● Output_PWM

Monitoring of the sampling time PID_Compact
Ideally, the sampling time is equivalent to the cycle time of the calling OB. The PID_Compact
instruction measures the time interval between two calls. This is the current sampling time.
On every switchover of operating mode and during the initial startup, the mean value is
formed from the first 10 sampling times. Too great a difference between the current sampling
time and this mean value triggers an error (Error = 0800h).

The error occurs during tuning if:

● New mean value >= 1.1 x old mean value

● New mean value <= 0.9 x old mean value

The error occurs in automatic mode if:

● New mean value >= 1.5 x old mean value

● New mean value <= 0.5 x old mean value

If you deactivate the sampling time monitoring (CycleTime.EnMonitoring = FALSE), you can
also call PID_Compact in OB1. You must then accept a lower control quality due to the
deviating sampling time.

Sampling time of the PID algorithm
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value. It
is calculated during tuning and rounded to a multiple of the cycle time. All other functions of
PID_Compact are executed at every call.

If you use Output_PWM, the accuracy of the output signal is determined by the ratio of the
PID algorithm sampling time to the cycle time of the OB. The cycle time should be at least 10
times the PID algorithm sampling time.

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 253

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic. For cooling and discharge control
systems, it may be necessary to invert the control logic. PID_Compact does not work with
negative proportional gain. If InvertControl = TRUE, an increasing control deviation causes a
reduction in the output value. The control logic is also taken into account during pretuning
and fine tuning.

Instructions
8.1 PID_Compact

 PID control
254 Function Manual, 12/2014, A5E35300227-AA

8.1.4.3 Input parameters of PID_Compact V2

Parameter Data type Default Description
Setpoint REAL 0.0 Setpoint of the PID controller in automatic mode
Input REAL 0.0 A tag of the user program is used as the source of the

process value.
If you are using the Input parameter, then Con-
fig.InputPerOn = FALSE must be set.

Input_PER INT 0 An analog input is used as the source of the process
value.
If you are using the Input_PER parameter, then Con-
fig.InputPerOn = TRUE must be set.

Disturbance REAL 0.0 Disturbance variable or precontrol value
ManualEnable BOOL FALSE • A FALSE -> TRUE edge activates "manual mode",

while State = 4, Mode remain unchanged.

As long as ManualEnable = TRUE, you cannot
change the operating mode via a rising edge at
ModeActivate or use the commissioning dialog.

• A TRUE -> FALSE edge activates the operating
mode that is specified by Mode.

We recommend that you change the operating mode
using ModeActivate only.

ManualValue REAL 0.0 Manual value
This value is used as the output value in manual
mode.
Values from Config.OutputLowerLimit to Con-
fig.OutputUpperLimit are permitted.

ErrorAck BOOL FALSE • FALSE -> TRUE edge

ErrorBits and Warning are reset.
Reset BOOL FALSE Restarts the controller.

• FALSE -> TRUE edge
– Switch to "Inactive" mode
– ErrorBits and Warnings are reset.
– Integral action is cleared

(PID parameters are retained)
• As long as Reset = TRUE, PID_Compact remains

in "Inactive" mode (State = 0).
• TRUE -> FALSE edge

PID_Compact switches to the operating mode that
is saved in the Mode parameter.

ModeActivate BOOL FALSE • FALSE -> TRUE edge

PID_Compact switches to the operating mode that
is saved in the Mode parameter.

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 255

8.1.4.4 Output parameters of PID_Compact V2

Parameter Data type Default Description
ScaledInput REAL 0.0 Scaled process value
The "Output", "Output_PER", and "Output_PWM" outputs can be used concurrently.
Output REAL 0.0 Output value in REAL format
Output_PER INT 0 Analog output value
Output_PWM BOOL FALSE Pulse-width-modulated output value

The output value is formed by by variable On and Off
times.

SetpointLimit_H BOOL FALSE If SetpointLimit_H = TRUE, the absolute setpoint high limit
is reached (Setpoint ≥ Config.SetpointUpperLimit).
The setpoint is limited to Config.SetpointUpperLimit .

SetpointLimit_L BOOL FALSE If SetpointLimit_L = TRUE, the absolute setpoint low limit
has been reached (Setpoint ≤ Config.SetpointLowerLimit).
The setpoint is limited to Config.SetpointLowerLimit .

InputWarning_H BOOL FALSE If InputWarning_H = TRUE, the process value has reached
or exceeded the warning high limit.

InputWarning_L BOOL FALSE If InputWarning_L = TRUE, the process value has reached
or fallen below the warning low limit.

State INT 0 The State parameter (Page 267) shows the current operat-
ing mode of the PID controller. You can change the operat-
ing mode using the input parameter Mode and a rising
edge at ModeActivate.
• State = 0: Inactive
• State = 1: Pretuning
• State = 2: Fine tuning
• State = 3: Automatic mode
• State = 4: Manual mode
• State = 5: Substitute output value with error monitoring

Error BOOL FALSE If Error = TRUE, at least one error message is pending in
this cycle.

ErrorBits DWORD DW#16#0 The ErrorBits parameter (Page 271) shows which error
messages are pending. ErrorBits is retentive and is reset
upon a rising edge at Reset or ErrorAck.

Instructions
8.1 PID_Compact

 PID control
256 Function Manual, 12/2014, A5E35300227-AA

8.1.4.5 In/out parameters of PID_Compact V2

Parameter Data type Default Description
Mode INT 4 At Mode, specify the operating mode to

which PID_Compact is to switch. Options
are:
• Mode = 0: Inactive
• Mode = 1: Pretuning
• Mode = 2: Fine tuning
• Mode = 3: Automatic mode
• Mode = 4: Manual mode
The operating mode is activated by:
• Rising edge at ModeActivate
• Falling edge at Reset
• Falling edge at ManualEnable
• Cold restart of CPU if RunModeBy-

Startup = TRUE
Mode is retentive.
A detailed description of the operating
modes can be found in Parameters State
and Mode V2 (Page 267).

See also
Parameters State and Mode V2 (Page 267)

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 257

8.1.4.6 Static tags of PID_Compact V2
You must not change variables that are not listed. These are used for internal purposes only.

Tag Data type Default Description
IntegralResetMode INT 1 The tag IntegralResetMode determines how

PIDCtrl.IntegralSum is pre-assigned when switching
from "Inactive" operating mode to "Automatic mode".
This setting only works for one cycle.
Options are:
• IntegralResetMode = 0: Smoothing

The value of IntegralSum is pre-assigned so that
the switchover is bumpless.

• IntegralResetMode = 1: Deleting

The value of IntegralSum is deleted. Any control
deviation will cause a jump change of the output
value.

• IntegralResetMode = 2: Holding

The value of IntegralSum is not changed. You can
define a new value using the user program.

• IntegralResetMode = 3: Pre-assigning

The value of IntegralSum is automatically pre-
assigned so that Output is calculated with refer-
ence to the value OverwriteInitialOutputValue. This
setting is useful, for example, for an override con-
troller.

OverwriteInitialOutputValue REAL 0.0 If IntegralResetMode = 3, the value of IntegralSum is
automatically pre-assigned so that Output = Over-
writeInitialOutputValue in the next cycle.

RunModeByStartup BOOL TRUE Activate operating mode at Mode parameter after CPU
restart
If RunModeByStartup = TRUE, PID_Compact starts in
the operating mode saved in the Mode parameter after
CPU startup.
If RunModeByStartup = FALSE, PID_Compact re-
mains in "Inactive" mode after CPU startup.

LoadBackUp BOOL FALSE If LoadBackUp = TRUE, the last set of PID parameters
is reloaded. The set was saved prior to the last tuning.
LoadBackUp is automatically set back to FALSE.

PhysicalUnit INT 0 Unit of measurement of the process value and set-
point, e.g., ºC, or ºF.

PhysicalQuantity INT 0 Physical quantity of the process value and setpoint,
e.g., temperature.

ActivateRecoverMode BOOL TRUE The Tag ActivateRecoverMode V2 (Page 273) deter-
mines the reaction to error.

Instructions
8.1 PID_Compact

 PID control
258 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Warning DWORD 0 Tag Warning V2 (Page 275) shows the warnings since

Reset = TRUE or ErrorAck =TRUE. Warning is reten-
tive.

Progress REAL 0.0 Progress of tuning as a percentage (0.0 - 100.0)
CurrentSetpoint REAL 0.0 CurrentSetpoint always displays the current setpoint.

This value is frozen during tuning.
CancelTuningLevel REAL 10.0 Permissible fluctuation of setpoint during tuning. Tun-

ing is not canceled until:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel

SubstituteOutput REAL 0.0 Substitute output value
When the following conditions are met, the substitute
output value is used:
• An error has occurred in automatic mode.
• SetSubstituteOutput = TRUE
• ActivateRecoverMode = TRUE

SetSubstituteOutput BOOL TRUE If SetSubstituteOutput = TRUE and ActivateRecover-
Mode = TRUE, the substitute output value configured
is output as long as an error is pending.
If SetSubstituteOutput = FALSE and ActivateRecov-
erMode = TRUE, the actuator remains at the current
output value as long as an error is pending.
If ActivateRecoverMode = FALSE, SetSubstituteOut-
put is not effective.
If SubstituteOutput is invalid (ErrorBits = 20000h), the
substitute output value cannot be output.

Config.InputPerOn BOOL TRUE If InputPerOn = TRUE, the Input_PER parameter is
used. If InputPerOn = FALSE, the Input parameter is
used.

Config.InvertControl BOOL FALSE Invert control logic
If InvertControl = TRUE, an increasing control devia-
tion causes a reduction in the output value.

Config.InputUpperLimit REAL 120.0 High limit of the process value
Input and Input_PER are monitored to ensure adher-
ence to this limit.
At the I/O input, the process value can be a maximum
of 18% higher than the standard range (overrange).
This pre-assignment ensures that an error is no longer
signaled due to a violation of the "Process value high
limit". Only a wire-break and a short-circuit are recog-
nized and PID_Compact reacts according to the con-
figured reaction to error.
InputUpperLimit > InputLowerLimit

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 259

Tag Data type Default Description
Config.InputLowerLimit REAL 0.0 Low limit of the process value

Input and Input_PER are monitored to ensure adher-
ence to this limit.
InputLowerLimit < InputUpperLimit

Config.InputUpperWarning REAL 3.402822e+38 Warning high limit of the process value
If you set InputUpperWarning outside the process
value limits, the configured absolute process value
high limit is used as the warning high limit.
If you configure InputUpperWarning within the process
value limits, this value is used as the warning high
limit.
InputUpperWarning > InputLowerWarning
InputUpperWarning ≤ InputUpperLimit

Config.InputLowerWarning REAL -
3.402822e+38

Warning low limit of the process value
If you set InputLowerWarning outside the process
value limits, the configured absolute process value low
limit is used as the warning low limit.
If you configure InputLowerWarning within the process
value limits, this value is used as the warning low limit.
InputLowerWarning < InputUpperWarning
InputLowerWarning ≥ InputLowerLimit

Config.OutputUpperLimit REAL 100.0 High limit of output value
For details, see OutputLowerLimit
OutputUpperLimit > OutputLowerLimit

Config.OutputLowerLimit REAL 0.0 Low limit of output value
For Output and Output_PER, the range of values from
-100.0 to +100.0, including zero, is valid. At -100.0,
Output_PER = -27648; at +100.0, Output_PER =
27648.
For Output_PWM, the value range 0.0 to +100.0 ap-
plies.
The output value limits must match the control logic.
OutputLowerLimit < OutputUpperLimit

Config.SetpointUpperLimit REAL 3.402822e+38 High limit of setpoint
If you configure SetpointUpperLimit outside the pro-
cess value limits, the configured absolute process
value high limit is used as the setpoint high limit.
If you configure SetpointUpperLimit within the process
value limits, this value is used as the setpoint high
limit.

Config.SetpointLowerLimit REAL -
3.402822e+38

Low limit of the setpoint
If you set SetpointLowerLimit outside the process
value limits, the configured process value absolute low
limit is used as the setpoint low limit.
If you set SetpointLowerLimit within the process value
limits, this value is used as the setpoint low limit.

Instructions
8.1 PID_Compact

 PID control
260 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Config.MinimumOnTime REAL 0.0 The minimum ON time of the pulse width modulation in

seconds is rounded to
MinimumOnTime = n×CycleTime.Value

Config.MinimumOffTime REAL 0.0 The minimum OFF time of the pulse width modulation
in seconds is rounded to
MinimumOffTime = n×CycleTime.Value

Config.InputScaling.UpperPointIn REAL 27648.0 Scaling Input_PER high
Input_PER is converted to percent based on the two
value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn.

Config.InputScaling.LowerPointIn REAL 0.0 Scaling Input_PER low
Input_PER is converted to percent based on the two
value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn.

Config.InputScaling.UpperPointOut REAL 100.0 Scaled high process value
Input_PER is converted to percent based on the two
value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn.

Config.InputScaling.LowerPointOut REAL 0.0 Scaled low process value
Input_PER is converted to percent based on the two
value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn.

CycleTime.StartEstimation BOOL TRUE If CycleTime.StartEstimation = TRUE, the automatic
determination of the cycle time is started. Cy-
cleTime.StartEstimation = FALSE once measurement
is complete.

CycleTime.EnEstimation BOOL TRUE If CycleTime.EnEstimation = TRUE, the PID_Compact
sampling time is calculated.
If CycleTime.EnEstimation = FALSE, the
PID_Compact sampling time is not calculated and you
need to correct the configuration of CycleTime.Value
manually.

CycleTime.EnMonitoring BOOL TRUE If CycleTime.EnMonitoring = FALSE, the
PID_Compact sampling time is not monitored. If it is
not possible to execute PID_Compact within the sam-
pling time, no error (ErrorBits=0800h) is output and
PID_Compact does not switch to "Inactive" mode.

CycleTime.Value REAL 0.1 PID_Compact sampling time in seconds
CycleTime.Value is determined automatically and is
usually equivalent to the cycle time of the calling OB.

CtrlParamsBackUp.Gain REAL 1.0 Saved proportional gain
You can reload values from the CtrlParamsBackUp
structure with LoadBackUp = TRUE.

CtrlParamsBackUp.Ti REAL 20.0 Saved integral action time [s]
CtrlParamsBackUp.Td REAL 0.0 Saved derivative action time [s]
CtrlParamsBackUp.TdFiltRatio REAL 0.2 Saved derivative delay coefficient
CtrlParamsBackUp.PWeighting REAL 1.0 Saved proportional action weighting factor
CtrlParamsBackUp.DWeighting REAL 1.0 Saved derivative action weighting factor

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 261

Tag Data type Default Description
CtrlParamsBackUp.Cycle REAL 1.0 Saved sampling time of PID algorithm
PIDSelfTune.SUT.CalculateParams BOOL FALSE The properties of the controlled system are saved

during tuning. If SUT.CalculateParams = TRUE, the
parameters for pretuning are recalculated according to
these properties. This enables you to change the pa-
rameter calculation method without having to repeat
controller tuning.
SUT.CalculateParams is set to FALSE after the calcu-
lation.

PIDSelfTune.SUT.TuneRule INT 0 Methods used to calculate parameters during pretun-
ing:
• SUT.TuneRule = 0: PID according to Chien,

Hrones and Reswick
• SUT.TuneRule = 1: PI according to Chien, Hrones

and Reswick

PIDSelfTune.SUT.State INT 0 The SUT.State tag indicates the current phase of pre-
tuning:
• State = 0: Initialize pretuning
• State = 100: Calculate standard deviation
• State = 200: Determine point of inflection
• State = 9900: Pretuning successful
• State = 1: Pretuning not successful

PIDSelfTune.TIR.RunIn BOOL FALSE With the RunIn tag, you can specify that fine tuning
can also be performed without pretuning.
• RunIn = FALSE

Pretuning is started when fine tuning is started
from inactive or manual mode. If the requirements
for pretuning are not met, PID_Compact reacts as
when RunIn = TRUE.

If fine tuning is started from automatic mode, the
system uses the existing PID parameters to control
to the setpoint.

Only then will fine tuning start. If pretuning is not
possible, PID_Compact switches to the mode from
which tuning was started.

• RunIn = TRUE

The pretuning is skipped. PID_Compact tries to
reach the setpoint with minimum or maximum out-
put value. This can produce increased overshoot.
Fine tuning then starts automatically.

RunIn is set to FALSE after fine tuning.

Instructions
8.1 PID_Compact

 PID control
262 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
PIDSelfTune.TIR.CalculateParams BOOL FALSE The properties of the controlled system are saved

during tuning. If TIR.CalculateParams = TRUE, the
parameters for fine tuning are recalculated according
to these properties. This enables you to change the
parameter calculation method without having to repeat
controller tuning.
TIR.CalculateParams is set to FALSE after the calcu-
lation.

PIDSelfTune.TIR.TuneRule INT 0 Methods used to calculate parameters during fine
tuning:
• TIR.TuneRule = 0: PID automatic
• TIR.TuneRule = 1: PID rapid
• TIR.TuneRule = 2: PID slow
• TIR.TuneRule = 3: Ziegler-Nichols PID
• TIR.TuneRule = 4: Ziegler-Nichols PI
• TIR.TuneRule = 5: Ziegler-Nichols P

PIDSelfTune.TIR.State INT 0 The TIR.State tag indicates the current phase of fine
tuning:
• State = -100 Fine tuning is not possible. Pretuning

will be performed first.
• State = 0: Initialize fine tuning
• State = 200: Calculate standard deviation
• State = 300: Attempt to reach the setpoint
• State = 400: Attempt to reach the setpoint with

existing PID parameters
(if pretuning was successful)

• State = 500: Determine oscillation and calculate
parameters

• State = 9900: Fine tuning successful
• State = 1: Fine tuning not successful

PIDCtrl.IntegralSum REAL 0.0 Current integral action
Retain.CtrlParams.Gain REAL 1.0 Active proportional gain

To invert the control logic, use the Config.InvertControl
tag. Negative values at Gain also invert the control
logic. We recommend you use only InvertControl to set
the control logic. The control logic is also inverted if
InvertControl = TRUE and Gain < 0.0.
Gain is retentive.

Retain.CtrlParams.Ti REAL 20.0 • CtrlParams.Ti > 0.0: Active integral action time
• CtrlParams.Ti = 0.0: Integral action is deactivated
Ti is retentive.

Retain.CtrlParams.Td REAL 0.0 • CtrlParams.Td > 0.0: Active derivative action time
• CtrlParams.Td = 0.0: Derivative action is deac-

tivated
Td is retentive.

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 263

Tag Data type Default Description
Retain.CtrlParams.TdFiltRatio REAL 0.2 Active derivative delay coefficient

The derivative delay coefficient delays the effect of the
derivative action.
Derivative delay = derivative action time × derivative
delay coefficient
• 0.0: Derivative action is effective for one cycle only

and therefore almost not effective.
• 0.5: This value has proved useful in practice for

controlled systems with one dominant time con-
stant.

• > 1.0: The greater the coefficient, the longer the
effect of the derivative action is delayed.

TdFiltRatio is retentive.
Retain.CtrlParams.PWeighting REAL 1.0 Active proportional action weighting

The proportional action may weaken with changes to
the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully

effective
• 0.0: Proportional action for setpoint change is not

effective
The proportional action is always fully effective when
the process value is changed.
PWeighting is retentive.

Retain.CtrlParams.DWeighting REAL 1.0 Active derivative action weighting
The derivative action may weaken with changes to the
setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint

change
• 0.0: Derivative action is not effective upon setpoint

change
The derivative action is always fully effective when the
process value is changed.
DWeighting is retentive.

Retain.CtrlParams.Cycle REAL 1.0 Active sampling time of the PID algorithm
CtrlParams.Cycle is calculated during tuning and
rounded to an integer multiple of CycleTime.Value.
Cycle is retentive.

 Note

Change the tags listed in this table in "Inactive" mode to prevent malfunction of the PID
controller.

Instructions
8.1 PID_Compact

 PID control
264 Function Manual, 12/2014, A5E35300227-AA

See also
Tag ActivateRecoverMode V2 (Page 273)

Tag Warning V2 (Page 275)

Downloading technology objects to device (Page 46)

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 265

8.1.4.7 Changing the PID_Compact V2 interface
The following table shows what has changed in the PID_Compact instruction interface.

PID_Compact V1 PID_Compact V2 Change
Input_PER Input_PER Data type from Word to Int
 Disturbance New
 ErrorAck New
 ModeActivate New
Output_PER Output_PER Data type from Word to Int
Error ErrorBits Renamed
 Error New
 Mode New
sb_RunModeByStartup RunModeByStartup Function
 IntegralResetMode
 OverwriteInitialOutputValue New
 SetSubstituteOutput New
 CancelTuningLevel New
 SubstituteOutput New

The following table shows which variables have been renamed.

PID_Compact V1.x PID_Compact V2
sb_GetCycleTime CycleTime.StartEstimation
sb_EnCyclEstimation CycleTime.EnEstimation
sb_EnCyclMonitoring CycleTime.EnMonitoring
sb_RunModeByStartup RunModeByStartup
si_Unit PhysicalUnit
si_Type PhysicalQuantity
sd_Warning Warning
sBackUp.r_Gain CtrlParamsBackUp.Gain
sBackUp.r_Ti CtrlParamsBackUp.Ti
sBackUp.r_Td CtrlParamsBackUp.Td
sBackUp.r_A CtrlParamsBackUp.TdFiltRatio
sBackUp.r_B CtrlParamsBackUp.PWeighting
sBackUp.r_C CtrlParamsBackUp.DWeighting
sBackUp.r_Cycle CtrlParamsBackUp.Cycle
sPid_Calc.r_Cycle CycleTime.Value
sPid_Calc.b_RunIn PIDSelfTune.TIR.RunIn
sPid_Calc.b_CalcParamSUT PIDSelfTune.SUT.CalculateParams
sPid_Calc.b_CalcParamTIR PIDSelfTune.TIR.CalculateParams
sPid_Calc.i_CtrlTypeSUT PIDSelfTune.SUT.TuneRule
sPid_Calc.i_CtrlTypeTIR PIDSelfTune.TIR.TuneRule

Instructions
8.1 PID_Compact

 PID control
266 Function Manual, 12/2014, A5E35300227-AA

PID_Compact V1.x PID_Compact V2
sPid_Calc.r_Progress Progress
sPid_Cmpt.r_Sp_Hlm Config.SetpointUpperLimit
sPid_Cmpt.r_Sp_Llm Config.SetpointLowerLimit
sPid_Cmpt.r_Pv_Norm_IN_1 Config.InputScaling.LowerPointIn
sPid_Cmpt.r_Pv_Norm_IN_2 Config.InputScaling.UpperPointIn
sPid_Cmpt.r_Pv_Norm_OUT_1 Config.InputScaling.LowerPointOut
sPid_Cmpt.r_Pv_Norm_OUT_2 Config.InputScaling.UpperPointOut
sPid_Cmpt.r_Lmn_Hlm Config.OutputUpperLimit
sPid_Cmpt.r_Lmn_Llm Config.OutputLowerLimit
sPid_Cmpt.b_Input_PER_On Config.InputPerOn
sPid_Cmpt.b_LoadBackUp LoadBackUp
sPid_Cmpt.b_InvCtrl Config.InvertControl
sPid_Cmpt.r_Lmn_Pwm_PPTm Config.MinimumOnTime
sPid_Cmpt.r_Lmn_Pwm_PBTm Config.MinimumOffTime
sPid_Cmpt.r_Pv_Hlm Config.InputUpperLimit
sPid_Cmpt.r_Pv_Llm Config.InputLowerLimit
sPid_Cmpt.r_Pv_HWrn Config.InputUpperWarning
sPid_Cmpt.r_Pv_LWrn Config.InputLowerWarning
sParamCalc.i_Event_SUT PIDSelfTune.SUT.State
sParamCalc.i_Event_TIR PIDSelfTune.TIR.State
sRet.i_Mode sRet.i_Mode has been omitted. The operating

mode is changed using Mode and ModeActivate.
sRet.r_Ctrl_Gain Retain.CtrlParams.Gain
sRet.r_Ctrl_Ti Retain.CtrlParams.Ti
sRet.r_Ctrl_Td Retain.CtrlParams.Td
sRet.r_Ctrl_A Retain.CtrlParams.TdFiltRatio
sRet.r_Ctrl_B Retain.CtrlParams.PWeighting
sRet.r_Ctrl_C Retain.CtrlParams.DWeighting
sRet.r_Ctrl_Cycle Retain.CtrlParams.Cycle

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 267

8.1.4.8 Parameters State and Mode V2

Correlation of the parameters
The State parameter shows the current operating mode of the PID controller. You cannot
change the State parameter.

With a rising edge at ModeActivate, PID_Compact switches to the operating mode saved in
the Mode in-out parameter.

When the CPU is switched on or switches from Stop to RUN mode, PID_Compact starts in
the operating mode that is saved in the Mode parameter. To leave PID_Compact in
"Inactive" mode, set RunModeByStartup = FALSE.

Meaning of values

State / Mode Description of operating mode
0 Inactive

In "Inactive" operating mode, the output value 0.0 is always output, regardless of Config.OutputUpperLimit
and Config.OutputLowerLimit. Pulse width modulation is off.

1 Pretuning
The pretuning determines the process response to a jump change of the output value and searches for the
point of inflection. The PID parameters are calculated from the maximum rate of rise and dead time of the
controlled system. You obtain the best PID parameters when you perform pretuning and fine tuning.
Pretuning requirements:
• Inactive (State = 0), manual mode (State = 4), or automatic mode (State = 3)
• ManualEnable = FALSE
• Reset = FALSE
• The process value must not be too close to the setpoint.

|Setpoint - Input| > 0.3 * | Config.InputUpperLimit - Config.InputLowerLimit| and

|Setpoint - Input| > 0.5 * |Setpoint|
• The setpoint and the process value lie within the configured limits.
The more stable the process value is, the easier it is to calculate the PID parameters and the more precise
the result will be. Noise on the process value can be tolerated as long as the rate of rise of the process
value is significantly higher compared to the noise.
The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel
Before the PID parameters are recalculated, they are backed up and can be reactivated with LoadBackUp.
The controller switches to automatic mode following successful pretuning. If pretuning is unsuccessful, the
switchover of the operating mode is dependent on ActivateRecoverMode.
The phase of pretuning is indicated with PIDSelfTune.SUT.State.

Instructions
8.1 PID_Compact

 PID control
268 Function Manual, 12/2014, A5E35300227-AA

State / Mode Description of operating mode
2 Fine tuning

Fine tuning generates a constant, limited oscillation of the process value. The PID parameters are recalcu-
lated based on the amplitude and frequency of this oscillation. PID parameters from fine tuning usually have
better master control and disturbance characteristics than PID parameters from pretuning. You obtain the
best PID parameters when you perform pretuning and fine tuning.
PID_Compact automatically attempts to generate an oscillation greater than the noise of the process value.
Fine tuning is only minimally influenced by the stability of the process value.
The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel
Before the PID parameters are recalculated, they are backed up and can be reactivated with LoadBackUp.
Requirements for fine tuning:
• No disturbances are expected.
• The setpoint and the process value lie within the configured limits.
• ManualEnable = FALSE
• Reset = FALSE
• Automatic (State = 3), inactive (State = 0) or manual (State = 4) mode
Fine tuning proceeds as follows when started from:
• Automatic mode (State = 3)

Start fine tuning from automatic mode if you wish to improve the existing PID parameters through tuning.

PID_Compact controls the system using the existing PID parameters until the control loop has stabilized
and the requirements for fine tuning have been met. Only then will fine tuning start.

• Inactive (State = 0) or manual mode (State = 4)

If the requirements for pretuning are met, pretuning is started. The determined PID parameters will be
used for control until the control loop has stabilized and the requirements for fine tuning have been met.

If the process value for pretuning is already too near the setpoint or PIDSelfTune.TIR.RunIn = TRUE, an
attempt is made to reach the setpoint with the minimum or maximum output value. This can produce in-
creased overshoot.

Only then will fine tuning start.
The controller switches to automatic mode following successful fine tuning. If fine tuning is unsuccessful,
the switchover of the operating mode is dependent on ActivateRecoverMode.
The "Fine tuning" phase is indicated with PIDSelfTune.TIR.State.

3 Automatic mode
In automatic mode, PID_Compact corrects the controlled system in accordance with the parameters speci-
fied.
The controller switches to automatic mode if one the following requirements is fulfilled:
• Pretuning successfully completed
• Fine tuning successfully completed
• Changing of the Mode in-out parameter to the value 3 and a rising edge at ModeActivate.
The switchover from automatic mode to manual mode is only bumpless if carried out in the commissioning
editor.
The ActivateRecoverMode tag is taken into consideration in automatic mode.

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 269

State / Mode Description of operating mode
4 Manual mode

In manual mode, you specify a manual output value in the ManualValue parameter.
You can also activate this operating mode using ManualEnable = TRUE. We recommend that you change
the operating mode using Mode and ModeActivate only.
The switchover from manual mode to automatic mode is bumpless. Manual mode is also possible when an
error is pending.

5 Substitute output value with error monitoring
The control algorithm is deactivated. The SetSubstituteOutput tag determines which output value is output
in this operating mode.
• SetSubstituteOutput = FALSE: Last valid output value
• SetSubstituteOutput = TRUE: Substitute output value
You cannot activate this operating mode using Mode = 5.
In the event of an error, it is activated instead of "Inactive" operating mode if all the following conditions are
met:
• Automatic mode (Mode = 3)
• ActivateRecoverMode = TRUE
• One or more errors have occurred in which ActivateRecoverMode is effective.
As soon as the errors are no longer pending, PID_Compact switches back to automatic mode.

ENO characteristics
If State = 0, then ENO = FALSE.

If State ≠ 0, then ENO = TRUE.

Automatic switchover of operating mode during commissioning
Automatic mode is activated following successful pretuning or fine tuning. The following table
shows how Mode and State change during successful pretuning.

Cycle no. Mode State Action
0 4 4 Set Mode = 1
1 1 4 Set ModeActivate = TRUE
1 4 1 Value of State is saved in Mode parameter

Pretuning is started
n 4 1 Pretuning successfully completed
n 3 3 Automatic mode is started

Instructions
8.1 PID_Compact

 PID control
270 Function Manual, 12/2014, A5E35300227-AA

PID_Compact automatically switches the operating mode in the event of an error. The
following table shows how Mode and State change during pretuning with errors.

Cycle no. Mode State Action
0 4 4 Set Mode = 1
1 1 4 Set ModeActivate = TRUE
1 4 1 Value of State is saved in Mode parameter

Pretuning is started
n 4 1 Pretuning canceled
n 4 4 Manual mode is started

If ActivateRecoverMode = TRUE, the operating mode that is saved in the Mode parameter is
activated. At the start of pretuning or fine tuning, PID_Compact has saved the value of State
in the Mode in/out parameter. PID_Compact therefore switches to the operating mode from
which tuning was started.

If ActivateRecoverMode = FALSE, the system switches to "Inactive" operating mode.

See also
Output parameters of PID_Compact V2 (Page 255)

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 271

8.1.4.9 Parameter ErrorBits V2
If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 0003h, for example, indicates that the errors
0001h and 0002h are pending simultaneously.

In manual mode, PID_Compact uses ManualValue as output value. The exception is
Errorbits = 10000h.

ErrorBits
 (DW#16#...)

Description

0000 There is no error.
0001 The "Input" parameter is outside the process value limits.

• Input > Config.InputUpperLimit or
• Input < Config.InputLowerLimit
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Compact remains in automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Compact switches to the operating mode that is saved in the Mode parameter.

0002 Invalid value at "Input_PER" parameter. Check whether an error is pending at the analog input.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Compact outputs the configured substitute output value. As soon as the error is no longer pending,
PID_Compact switches back to automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Compact switches to the operating mode that is saved in the Mode parameter.

0004 Error during fine tuning. Oscillation of the process value could not be maintained.
If ActivateRecoverMode = TRUE before the error occurred, PID_Compact cancels the tuning and
switches to the operating mode that is saved in the Mode parameter.

0008 Error at start of pretuning. The process value is too close to the setpoint. Start fine tuning.
If ActivateRecoverMode = TRUE before the error occurred, PID_Compact cancels the tuning and
switches to the operating mode that is saved in the Mode parameter.

0010 The setpoint was changed during tuning.
You can set the permitted fluctuation of the setpoint at the CancelTuningLevel tag.
If ActivateRecoverMode = TRUE before the error occurred, PID_Compact cancels the tuning and
switches to the operating mode that is saved in the Mode parameter.

0020 Pretuning is not permitted during fine tuning.
If ActivateRecoverMode = TRUE before the error occurred, PID_Compact remains in fine tuning mode.

0080 Error during pretuning. Incorrect configuration of output value limits.
Check whether the limits of the output value are configured correctly and match the control logic.
If ActivateRecoverMode = TRUE before the error occurred, PID_Compact cancels the tuning and
switches to the operating mode that is saved in the Mode parameter.

0100 Error during fine tuning resulted in invalid parameters.
If ActivateRecoverMode = TRUE before the error occurred, PID_Compact cancels the tuning and
switches to the operating mode that is saved in the Mode parameter.

Instructions
8.1 PID_Compact

 PID control
272 Function Manual, 12/2014, A5E35300227-AA

ErrorBits
 (DW#16#...)

Description

0200 Invalid value at "Input" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Compact outputs the configured substitute output value. As soon as the error is no longer pending,
PID_Compact switches back to automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Compact switches to the operating mode that is saved in the Mode parameter.

0400 Calculation of output value failed. Check the PID parameters.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Compact outputs the configured substitute output value. As soon as the error is no longer pending,
PID_Compact switches back to automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Compact switches to the operating mode that is saved in the Mode parameter.

0800 Sampling time error: PID_Compact is not called within the sampling time of the cyclic interrupt OB.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Compact remains in automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Compact switches to the operating mode that is saved in the Mode parameter.

1000 Invalid value at "Setpoint" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE,
PID_Compact outputs the configured substitute output value. As soon as the error is no longer pending,
PID_Compact switches back to automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Compact switches to the operating mode that is saved in the Mode parameter.

10000 Invalid value at ManualValue parameter. Value has an invalid number format.
If ActivateRecoverMode = TRUE before an error occurred, PID_Compact uses SubstituteOutput as the
output value. As soon as you specify a valid value in ManualValue, PID_Compact uses it as the output
value.

20000 Invalid value at SubstituteOutput tag. Value has an invalid number format.
PID_Compact uses the output value low limit as the output value.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is
no longer pending, PID_Compact switches back to automatic mode.

40000 Invalid value at Disturbance parameter. Value has an invalid number format.
If automatic mode was active and ActivateRecoverMode = TRUE before the error occurred, Disturbance
is set to zero. PID_Compact remains in automatic mode.
If pretuning or fine tuning mode was active and ActivateRecoverMode = TRUE before the error oc-
curred, PID_Compact switches to the operating mode saved in the Mode parameter. If Disturbance in
the current phase has no effect on the output value, tuning is not be canceled.

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 273

8.1.4.10 Tag ActivateRecoverMode V2
The ActivateRecoverMode tag determines the reaction to error. The Error parameter
indicates if an error is pending. When the error is no longer pending, Error = FALSE. The
ErrorBits parameter shows which errors have occurred.

Automatic mode

 NOTICE

Your system may be damaged.

If ActivateRecoverMode = TRUE, PID_Compact remains in automatic mode even if there is
an error and the process limit values are exceeded. This may damage your system.

It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

ActivateRecov-
erMode

Description

FALSE PID_Compact automatically switches to "Inactive" mode in the event of an error. The controller is only
activated by a falling edge at Reset or a rising edge at ModeActivate.

TRUE If errors occur frequently in automatic mode, this setting has a negative effect on the control response,
because PID_Compact switches between the calculated output value and the substitute output value at
each error. In this case, check the ErrorBits parameter and eliminate the cause of the error.
If one or more of the following errors occur, PID_Compact stays in automatic mode:
• 0001h: The "Input" parameter is outside the process value limits.
• 0800h: Sampling time error
• 40000h: Invalid value at parameter Disturbance.
If one or more of the following errors occur, PID_Compact switches to "Substitute output value with error
monitoring" mode:
• 0002h: Invalid value at Input_PER parameter.
• 0200h: Invalid value at Input parameter.
• 0400h: Calculation of output value failed.
• 1000h: Invalid value at Setpoint parameter.
If the following error occurs, PID_Compact switches to "Substitute output value with error monitoring"
mode and moves the actuator to Config.OutputLowerLimit:
• 20000h: Invalid value at SubstituteOutput tag. Value has an invalid number format.
This characteristics are independent of SetSubstituteOutput.
As soon as the errors are no longer pending, PID_Compact switches back to automatic mode.

Instructions
8.1 PID_Compact

 PID control
274 Function Manual, 12/2014, A5E35300227-AA

Pretuning and fine tuning

ActivateRecov-
erMode

Description

FALSE PID_Compact automatically switches to "Inactive" mode in the event of an error. The controller is only
activated by a falling edge at Reset or a rising edge at ModeActivate.

TRUE If the following error occurs, PID_Compact remains in the active mode:
• 0020h: Pretuning is not permitted during fine tuning.
The following errors are ignored:
• 10000h: Invalid value at ManualValue parameter.
• 20000h: Invalid value at SubstituteOutput tag.
When any other error occurs, PID_Compact cancels the tuning and switches to the mode from which
tuning was started.

Manual mode
ActivateRecoverMode is not effective in manual mode.

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 275

8.1.4.11 Tag Warning V2
If several warnings are pending simultaneously, the values of the Warning tag are displayed
with binary addition. The display of warning 0003h, for example, indicates that the warnings
0001h and 0002h are pending simultaneously.

Warning
(DW#16#....)

Description

0000 No warning pending.
0001 The point of inflection was not found during pretuning.
0004 The setpoint was limited to the configured limits.
0008 Not all the necessary controlled system properties were defined for the selected method of calculation.

Instead, the PID parameters were calculated using the TIR.TuneRule = 3 method.
0010 The operating mode could not be changed because Reset = TRUE or ManualEnable = TRUE.
0020 The cycle time of the calling OB limits the sampling time of the PID algorithm.

Improve results by using shorter OB cycle times.
0040 The process value exceeded one of its warning limits.
0080 Invalid value at Mode. The operating mode is not switched.
0100 The manual value was limited to the limits of the controller output.
0200 The specified rule for tuning is not supported. No PID parameters are calculated.
1000 The substitute output value cannot be reached because it is outside the output value limits.

The following warnings are deleted as soon as the cause is eliminated:

● 0001h

● 0004h

● 0008h

● 0040h

● 0100h

All other warnings are cleared with a rising edge at Reset or ErrorAck.

Instructions
8.1 PID_Compact

 PID control
276 Function Manual, 12/2014, A5E35300227-AA

8.1.5 PID_Compact V1

8.1.5.1 Description of PID_Compact V1

Description
The PID_Compact instruction provides a PID controller with integrated tuning for automatic
and manual mode.

Call
PID_Compact is called in the constant interval of the cycle time of the calling OB (preferably
in a cyclic interrupt OB).

Download to device
The actual values of retentive tags are only updated when you download PID_Compact
completely.

Downloading technology objects to device (Page 46)

Startup
At the startup of the CPU, PID_Compact starts in the operating mode that was last active. To
retain PID_ Compact in "Inactive" mode, set sb_RunModeByStartup = FALSE.

Monitoring of the sampling time PID_Compact
Ideally, the sampling time is equivalent to the cycle time of the calling OB. The PID_Compact
instruction measures the time interval between two calls. This is the current sampling time.
On every switchover of operating mode and during the initial startup, the mean value is
formed from the first 10 sampling times. If the current sampling time deviates too much from
this mean value, Error = 0800 hex occurs and PID_Compact switches to "Inactive" mode.

PID_Compact, Version 1.1 or higher is set to "Inactive" mode during controller tuning under
the following conditions:

● New mean value >= 1.1 x old mean value

● New mean value <= 0.9 x old mean value

In automatic mode, PID_Compact, Version 1.1 or higher, is set to "Inactive" mode under the
following conditions:

● New mean value >= 1.5 x old mean value

● New mean value <= 0.5 x old mean value

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 277

During controller tuning and in automatic mode, PID_Compact 1.0 is set to "Inactive"
operating mode under the following conditions:

● New mean value >= 1.1 x old mean value

● New mean value <= 0.9 x old mean value

● Current sampling time >= 1.5 x current mean value

● Current sampling time <= 0.5 x current mean value

Sampling time of the PID algorithm
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value. It
is calculated during tuning and rounded to a multiple of the cycle time. All other functions of
PID_Compact are executed at every call.

PID algorithm
PID_Compact is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions. The following equation is used to calculate the output value.

Symbol Description
y Output value
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integral action time
a Derivative delay coefficient (T1 = a × TD)
 Derivative action time
c Derivative action weighting

Instructions
8.1 PID_Compact

 PID control
278 Function Manual, 12/2014, A5E35300227-AA

Block diagram of PID_Compact

Block diagram of PIDT1 with anti-windup

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 279

Reaction to error
If errors occur, they are output in parameter Error, and PID_Compact changes to "Inactive"
mode. Reset the errors using the Reset parameter.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic. For cooling and discharge control
systems, it may be necessary to invert the control logic. PID_Compact does not work with
negative proportional gain. If InvertControl = TRUE, an increasing control deviation causes a
reduction in the output value. The control logic is also taken into account during pretuning
and fine tuning.

See also
Controller type (Page 99)

Instructions
8.1 PID_Compact

 PID control
280 Function Manual, 12/2014, A5E35300227-AA

8.1.5.2 Input parameters of PID_Compact V1

Parameter Data type Default Description
Setpoint REAL 0.0 Setpoint of the PID controller in automatic mode
Input REAL 0.0 A variable of the user program is used as source for the process val-

ue.
If you are using parameter Input, then
sPid_Cmpt.b_Input_PER_On = FALSE must be set.

Input_PER WORD W#16#0 Analog input as the source of the process value
If you are using parameter Input_PER, then
sPid_Cmpt.b_Input_PER_On = TRUE must be set.

ManualEnable BOOL FALSE • A FALSE -> TRUE edge selects "Manual mode", while State = 4,
sRet.i_Mode remains unchanged.

• A TRUE -> FALSE edge selects the most recently active operating
mode, State =sRet.i_Mode

A change of sRet.i_Mode will not take effect during ManualEnable =
TRUE. The change of sRet.i_Mode will only be considered upon a
TRUE -> FALSE edge at ManualEnable .
PID_Compact V1.2 und PID_Compact V1.0
If at start of the CPU ManualEnable = TRUE, PID_Compact starts in
manual mode. A rising edge (FALSE > TRUE) at ManualEnable is not
necessary.
PID_Compact V1.1
At the start of the CPU, PID_Compact only switches to manual mode
with a rising edge (FALSE->TRUE) at ManualEnable . Without rising
edge, PID_Compact starts in the last operating mode in which Manu-
alEnable was FALSE.

ManualValue REAL 0.0 Manual value
This value is used as the output value in manual mode.

Reset BOOL FALSE The Reset parameter (Page 292) restarts the controller.

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 281

8.1.5.3 Output parameters of PID_Compact V1

Parameter Data type Default Description
ScaledInput REAL 0.0 Output of the scaled process value
Outputs "Output", "Output_PER", and "Output_PWM" can be used concurrently.
Output REAL 0.0 Output value in REAL format
Output_PER WORD W#16#0 Analog output value
Output_PWM BOOL FALSE Pulse-width-modulated output value

The output value is formed by minimum On and Off times.
SetpointLimit_H BOOL FALSE If SetpointLimit_H = TRUE, the setpoint absolute high limit is

reached. The setpoint in the CPU is limited to the configured setpoint
absolute high limit. The configured process value absolute high limit
is the default for the setpoint high limit.
If you set sPid_Cmpt.r_Sp_Hlm to a value within the process value
limits, this value is used as the setpoint high limit.

SetpointLimit_L BOOL FALSE If SetpointLimit_L = TRUE, the setpoint absolute low limit has been
reached. In the CPU, the setpoint is limited to the configured setpoint
absolute low limit. The configured process value absolute low limit is
the default setting for the setpoint low limit.
If you set sPid_Cmpt.r_Sp_Llm to a value within the process value
limits, this value is used as the setpoint low limit.

InputWarning_H BOOL FALSE If InputWarning_H = TRUE, the process value has reached or ex-
ceeded the warning high limit.

InputWarning_L BOOL FALSE If InputWarning_L = TRUE, the process value has reached or fallen
below the warning low limit.

State INT 0 The State parameter (Page 287) shows the current operating mode
of the PID controller. To change the operating mode, use variable
sRet.i_Mode.
• State = 0: Inactive
• State = 1: pretuning
• State = 2: fine tuning
• State = 3: Automatic mode
• State = 4: Manual mode

Error DWORD W#16#0 The Error parameter (Page 291) indicates the error messages.
Error = 0000: No error pending.

Instructions
8.1 PID_Compact

 PID control
282 Function Manual, 12/2014, A5E35300227-AA

8.1.5.4 Static tags of PID_Compact V1
You must not change tags that are not listed. These are used for internal purposes only.

Tag Data type Default Description
sb_GetCycleTime BOOL TRUE If sb_GetCycleTime = TRUE, the automatic deter-

mination of the cycle time is started. Cy-
cleTime.StartEstimation = FALSE once
measurement is complete.

sb_EnCyclEstimation BOOL TRUE If sb_EnCyclEstimation = TRUE, the sampling time
PID_Compact is calculated.

sb_EnCyclMonitoring BOOL TRUE If sb_EnCyclMonitoring = FALSE, the sampling
time PID_Compact is not monitored. If it is not
possible to execute PID_Compact within the sam-
pling time, an 0800 error is not output and
PID_Compact does not change to "Inactive" mode.

sb_RunModeByStartup BOOL TRUE Activate Mode after CPU restart
If sb_RunModeByStartup = FALSE, the controller
will remain inactive after a CPU startup.
After a CPU startup and if sb_RunModeByStartup =
TRUE, the controller will return to the most recently
active operating mode.

si_Unit INT 0 Unit of measurement of the process value and
setpoint, e.g., ºC, or ºF.

si_Type INT 0 Physical quantity of the process value and setpoint,
e.g., temperature.

sd_Warning DWORD DW#16#0 Variable sd_warning (Page 294) displays the warn-
ings generated since the reset, or since the last
change of the operating mode.

sBackUp.r_Gain REAL 1.0 Saved proportional gain
You can reload values from the sBackUp structure
with sPid_Cmpt.b_LoadBackUp = TRUE.

sBackUp.r_Ti REAL 20.0 Saved integral action time [s]
sBackUp.r_Td REAL 0.0 Saved derivative action time [s]
sBackUp.r_A REAL 0.0 Saved derivative delay coefficient
sBackUp.r_B REAL 0.0 Saved proportional action weighting factor
sBackUp.r_C REAL 0.0 Saved derivative action weighting factor
sBackUp.r_Cycle REAL 1.0 Saved sampling time of PID algorithm
sPid_Calc.r_Cycle REAL 0.1 Sampling time of the PID_Compact instruction

r_Cycle is determined automatically and usually
equivalent to the cycle time of the calling OB.

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 283

Tag Data type Default Description
sPid_Calc.b_RunIn BOOL FALSE • b_RunIn = FALSE

Pretuning is started when fine tuning is started
from inactive or manual mode. If the require-
ments for pretuning are not met, PID_Compact
reacts like b_RunIn = TRUE.

If fine tuning is started from automatic mode,
the system uses the existing PID parameters to
control to the setpoint.

Only then will fine tuning start. If pretuning is
not possible, PID_Compact will change to "Inac-
tive" mode.

• b_RunIn = TRUE

The pretuning is skipped. PID_3Compact tries
to reach the setpoint with minimum or maximum
output value. This can produce increased over-
shoot. Fine tuning then starts automatically.

b_RunIn is set to FALSE after fine tuning.
sPid_Calc.b_CalcParamSUT BOOL FALSE The parameters for pretuning will be recalculated if

b_CalcParamSUT = TRUE. This enables you to
change the parameter calculation method without
having to repeat controller tuning.
b_CalcParamSUT will be set to FALSE after calcu-
lation.

sPid_Calc.b_CalcParamTIR BOOL FALSE The parameters for fine tuning will be recalculated
if b_CalcParamTIR = TRUE. This enables you to
change the parameter calculation method without
having to repeat controller tuning.
b_CalcParamTIR will be set to FALSE after calcu-
lation.

sPid_Calc.i_CtrlTypeSUT INT 0 Methods used to calculate parameters during pre-
tuning:
• i_CtrlTypeSUT = 0: PID according to Chien,

Hrones and Reswick
• i_CtrlTypeSUT = 1: PI according to Chien,

Hrones and Reswick

sPid_Calc.i_CtrlTypeTIR INT 0 Methods used to calculate parameters during fine
tuning:
• i_CtrlTypeTIR = 0: PID automatic
• i_CtrlTypeTIR = 1: PID rapid
• i_CtrlTypeTIR = 2: PID slow
• i_CtrlTypeTIR = 3: Ziegler-Nichols PID
• i_CtrlTypeTIR = 4: Ziegler-Nichols PI
• i_CtrlTypeTIR = 5: Ziegler-Nichols P

sPid_Calc.r_Progress REAL 0.0 Progress of tuning as a percentage (0.0 - 100.0)

Instructions
8.1 PID_Compact

 PID control
284 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
sPid_Cmpt.r_Sp_Hlm REAL +3.402822e+38 High limit of setpoint

If you set sPid_Cmpt.r_Sp_Hlm outside the process
value limits, the configured process value absolute
high limit is used as the setpoint high limit.
If you set sPid_Cmpt.r_Sp_Hlm within the process
value limits, this value is used as the setpoint high
limit.

sPid_Cmpt.r_Sp_Llm REAL -3.402822e+38 Low limit of the setpoint
If you set sPid_Cmpt.r_Sp_Llm outside the process
value limits, the configured process value absolute
low limit is used as the setpoint low limit.
If you set sPid_Cmpt.r_Sp_Llm within the process
value limits, this value is used as the setpoint low
limit.

sPid_Cmpt.r_Pv_Norm_IN_1 REAL 0.0 Scaling Input_PER low
Input_PER is converted to percent based on the
two value pairs r_Pv_Norm_OUT_1,
r_Pv_Norm_IN_1 and r_Pv_Norm_OUT_2,
r_Pv_Norm_IN_2 from the sPid_Cmpt structure.

sPid_Cmpt.r_Pv_Norm_IN_2 REAL 27648.0 Scaling Input_PER high
Input_PER is converted to percent based on the
two value pairs r_Pv_Norm_OUT_1,
r_Pv_Norm_IN_1 and r_Pv_Norm_OUT_2,
r_Pv_Norm_IN_2 from the sPid_Cmpt structure.

sPid_Cmpt.r_Pv_Norm_OUT_1 REAL 0.0 Scaled low process value
Input_PER is converted to percent based on the
two value pairs r_Pv_Norm_OUT_1,
r_Pv_Norm_IN_1 and r_Pv_Norm_OUT_2,
r_Pv_Norm_IN_2 from the sPid_Cmpt structure.

sPid_Cmpt.r_Pv_Norm_OUT_2 REAL 100.0 Scaled high process value
Input_PER is converted to percent based on the
two value pairs r_Pv_Norm_OUT_1,
r_Pv_Norm_IN_1 and r_Pv_Norm_OUT_2,
r_Pv_Norm_IN_2 from the sPid_Cmpt structure.

sPid_Cmpt.r_Lmn_Hlm REAL 100.0 Output value high limit for output parameter "Out-
put"

sPid_Cmpt.r_Lmn_Llm REAL 0.0 Low output value limit for output parameter "Out-
put"

sPid_Cmpt.b_Input_PER_On BOOL TRUE If b_Input_PER_On = TRUE, then parameter In-
put_PER is used. If b_Input_PER_On = FALSE,
then parameter Input is used.

sPid_Cmpt.b_LoadBackUp BOOL FALSE Activate the back-up parameter set. If an optimiza-
tion has failed, you can reactivate the previous PID
parameters by setting this bit.

sPid_Cmpt.b_InvCtrl BOOL FALSE Invert control logic
With b_InvCtrl = TRUE, a rising control deviation
reduces the output value.

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 285

Tag Data type Default Description
sPid_Cmpt.r_Lmn_Pwm_PPTm REAL 0.0 The minimum ON time of the pulse width modula-

tion in seconds is rounded to
r_Lmn_Pwm_PPTm = r_Cycle or
r_Lmn_Pwm_PPTm = n*r_Cycle

sPid_Cmpt.r_Lmn_Pwm_PBTm REAL 0.0 The minimum OFF time of the pulse width modula-
tion in seconds is rounded to
r_Lmn_Pwm_PBTm = r_Cycle or
r_Lmn_Pwm_PBTm = n*r_Cycle

sPid_Cmpt.r_Pv_Hlm REAL 120.0 High limit of the process value
At the I/O input, the process value can be a maxi-
mum of 18% higher than the standard range (over-
range). An error is no longer reported for a violation
of the "Process value high limit". Only a wire-break
and a short-circuit are recognized and the
PID_Compact switches to "Inactive" mode.
r_Pv_Hlm > r_Pv_Llm

sPid_Cmpt.r_Pv_Llm REAL 0.0 Low limit of the process value
r_Pv_Llm < r_Pv_Hlm

sPid_Cmpt.r_Pv_HWrn REAL +3.402822e+38 Warning high limit of the process value
If you set r_Pv_HWrn outside the process value
limits, the configured process value absolute high
limit is used as the warning high limit.
If you set r_Pv_HWrn within the process value
limits, this value is used as the warning high limit.
r_Pv_HWrn > r_Pv_LWrn
r_Pv_HWrn ≤ r_Pv_Hlm

sPid_Cmpt.r_Pv_LWrn REAL -3.402822e+38 Warning low limit of the process value
If you set r_Pv_LWrn outside the process value
limits, the configured process value absolute low
limit is used as the warning low limit.
If you set r_Pv_LWrn within the process value lim-
its, this value is used as the warning low limit.
r_Pv_LWrn < r_Pv_HWrn
r_Pv_LWrn ≥ r_Pv_LWrn

sParamCalc.i_Event_SUT INT 0 Variable i_Event_SUT (Page 294) indicates the
current phase of "pretuning":

sParamCalc.i_Event_TIR INT 0 Variable i_Event_TIR (Page 295) indicates the
current phase of "fine tuning":

sRet.i_Mode INT 0 The operating mode is changed edge-triggered.
The following operating mode is enabled on a
change to
• i_Mode = 0: "Inactive" (controller stop)
• i_Mode = 1: "Pretuning" mode
• i_Mode = 2: "Fine tuning" mode
• i_Mode = 3: "Automatic mode"
• i_Mode = 4: "Manual mode"
i_Mode is retentive.

Instructions
8.1 PID_Compact

 PID control
286 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
sRet.r_Ctrl_Gain REAL 1.0 Active proportional gain

Gain is retentive.
sRet.r_Ctrl_Ti REAL 20.0 • r_Ctrl_Ti > 0.0: active integral action time

• r_Ctrl_Ti = 0.0: Integral action is disabled
r_Ctrl_Ti is retentive.

sRet.r_Ctrl_Td REAL 0.0 • r_Ctrl_Td > 0.0: Active derivative action time
• r_Ctrl_Td = 0.0: Derivative action is disabled
r_Ctrl_Td is retentive.

sRet.r_Ctrl_A REAL 0.0 Active derivative delay coefficient
r_Ctrl_A is retentive.

sRet.r_Ctrl_B REAL 0.0 Active proportional action weighting
r_Ctrl_B is retentive.

sRet.r_Ctrl_C REAL 0.0 Active derivative action weighting
r_Ctrl_C is retentive.

sRet.r_Ctrl_Cycle REAL 1.0 Active sampling time of the PID algorithm
r_Ctrl_Cycle is calculated during controller tuning
and rounded to an integer multiple of r_Cycle.
r_Ctrl_Cycle is retentive.

 Note

Change the tags listed in this table in "Inactive" mode to prevent malfunction of the PID
controller. The "Inactive" mode is forced by setting variable "sRet.i_Mode" to "0".

See also
Downloading technology objects to device (Page 46)

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 287

8.1.5.5 Parameters State and sRet.i_Mode V1

Correlation of the parameters
The State parameter indicates the current operating mode of the PID controller. You cannot
modify the State parameter.

You need to modify the sRet.i_Mode tag to change the operating mode. This also applies
when the value for the new operating mode is already in sRet.i_Mode. First set sRet.i_Mode
= 0 and then sRet.i_Mode = 3. Provided the current operating mode of the controller
supports this change, State is set to the value of sRet.i_Mode.

When PID_Compact automatically switches the operating mode, the following applies: State
!= sRet.i_Mode.

Examples:

● Successful pretuning
State = 3 and sRet.i_Mode = 1

● Error
State = 0 and sRet.i_Mode remains at the same value, e.g sRet.i_Mode = 3

● ManualEnalbe = TRUE
State = 4 and sRet.i_Mode remain at the previous value, for example, sRet.i_Mode = 3

 Note

You wish to repeat successful fine tuning without exiting automatic mode with i_Mode = 0.

Setting sRet.i_Mode to an invalid value such as 9999 for one cycle has no effect on
State. Set Mode = 2 in the next cycle. You can generate a change to sRet.i_Mode without
first switching to "inactive" mode.

Instructions
8.1 PID_Compact

 PID control
288 Function Manual, 12/2014, A5E35300227-AA

Meaning of values

State /
sRet.i_Mode

Description of the operating mode

0 Inactive
The controller is switched off.
The controller was in "inactive" mode before pretuning was performed.
The PID controller will change to "inactive" mode when running if an error occurs or if the "Deactivate con-
troller" icon is clicked in the commissioning window.

1 Pretuning
The pretuning determines the process response to a jump of the output value and searches for the point of
inflection. The optimized PID parameters are calculated as a function of the maximum rate of rise and dead
time of the controlled system.
Pretuning requirements:
• The controller is in inactive mode or manual mode
• ManualEnable = FALSE
• The process value must not be too close to the setpoint.

|Setpoint - Input| > 0.3 * |sPid_Cmpt.r_Pv_Hlm - sPid_Cmpt.r_Pv_Llm| and

|Setpoint - Input| > 0.5 * |Setpoint|
• The setpoint may not be changed during pretuning.
The higher the stability of the process value, the easier it is to calculate the PID parameters and increase
precision of the result. Noise on the process value can be tolerated as long as the rate of rise of the process
value is significantly higher compared to the noise.
PID parameters are backed up before they are recalculated and can be reactivated with
sPid_Cmpt.b_LoadBackUp.
There is a change to automatic mode following successful pretuning and to "inactive" mode following un-
successful pretuning.
The phase of pretuning is indicated with Tag i_Event_SUT V1 (Page 294).

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 289

State /
sRet.i_Mode

Description of the operating mode

2 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID parameters are opti-
mized based on the amplitude and frequency of this oscillation. The differences between the process re-
sponse during pretuning and fine tuning are analyzed. All PID parameters are recalculated on the basis of
the findings. PID parameters from fine tuning usually have better master control and disturbance behavior
than PID parameters from pretuning.
PID_Compact automatically attempts to generate an oscillation greater than the noise of the process value.
Fine tuning is only minimally influenced by the stability of the process value.
PID parameters are backed up before they are recalculated and can be reactivated with
sPid_Cmpt.b_LoadBackUp.
Requirements for fine tuning:
• No disturbances are expected.
• The setpoint and the process value lie within the configured limits.
• The setpoint may not be changed during fine tuning.
• ManualEnable = FALSE
• Automatic (State = 3), inactive (State = 0) or manual (State = 4) mode
Fine tuning proceeds as follows when started in:
• Automatic mode (State = 3)

Start fine tuning in automatic mode if you wish to improve the existing PID parameters using controller
tuning.

PID_Comact will regulate using the existing PID parameters until the control loop has stabilized and the
requirements for fine tuning have been met. Only then will fine tuning start.

• Inactive (State = 0) or manual (State = 4) mode

If the requirements for pretuning are met, pretuning is started. The PID parameters established will be
used for adjustment until the control loop has stabilized and the requirements for fine tuning have been
met. Only then will fine tuning start. If pretuning is not possible, PID_Compact will change to "Inactive"
mode.

An attempt is made to reach the setpoint with a minimum or maximum output value if the process value
for pretuning is already too near the setpoint or sPid_Calc.b_RunIn = TRUE. This can produce in-
creased overshoot.

The controller will change to "automatic mode" after successfully completed "fine tuning" and to "inactive"
mode if "fine tuning" has not been successfully completed.
The "Fine tuning" phase is indicated with Tag i_Event_TIR V1 (Page 295).

Instructions
8.1 PID_Compact

 PID control
290 Function Manual, 12/2014, A5E35300227-AA

State /
sRet.i_Mode

Description of the operating mode

3 Automatic mode
In automatic mode, PID_Compact corrects the controlled system in accordance with the parameters speci-
fied.
The controller changes to automatic mode if one the following conditions is fulfilled:
• Pretuning successfully completed
• Fine tuning successfully completed
• Change of variable sRet.i_Mode to the value 3.
After CPU startup or change from Stop to RUN mode, PID_Compact will start in the most recently active
operating mode. To retain PID_Compact in "Inactive" mode, set sb_RunModeByStartup = FALSE.

4 Manual mode
In manual mode, you specify a manual output value in the ManualValue parameter.
This operating mode is enabled if sRet.i_Mode = 4, or at the rising edge on ManualEnable. If ManualEnable
changes to TRUE, only State will change. sRet.i_Mode will retain its current value. PID_Compact will return
to the previous operating mode upon a falling edge at ManualEnable.
The change to automatic mode is bumpless.

See also
Output parameters of PID_Compact V1 (Page 281)

Pretuning (Page 111)

Fine tuning (Page 113)

"Manual" mode (Page 115)

Tag i_Event_SUT V1 (Page 294)

Tag i_Event_TIR V1 (Page 295)

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 291

8.1.5.6 Parameter Error V1
If several errors are pending simultaneously, the values of the error codes are displayed with
binary addition. The display of error code 0003, for example, indicates that the errors 0001
and 0002 are pending simultaneously.

Error
 (DW#16#...)

Description

0000 There is no error.
0001 The "Input" parameter is outside the process value limits.

• Input > sPid_Cmpt.r_Pv_Hlm or
• Input < sPid_Cmpt.r_Pv_Llm
You cannot move the actuator again until you eliminate the error.

0002 Invalid value at "Input_PER" parameter. Check whether an error is pending at the analog input.
0004 Error during fine tuning. Oscillation of the process value could not be maintained.
0008 Error at start of pretuning. The process value is too close to the setpoint. Start fine tuning.
0010 The setpoint was changed during tuning.
0020 Pretuning is not permitted in automatic mode or during fine tuning.
0080 Incorrect configuration of output value limits.

Check whether the limits of the output value are configured correctly and match the control logic.
0100 Error during tuning resulted in invalid parameters.
0200 Invalid value at "Input" parameter: Value has an invalid number format.
0400 Calculation of output value failed. Check the PID parameters.
0800 Sampling time error: PID_Compact is not called within the sampling time of the cyclic interrupt OB.
1000 Invalid value at "Setpoint" parameter: Value has an invalid number format.

See also
Output parameters of PID_Compact V1 (Page 281)

Instructions
8.1 PID_Compact

 PID control
292 Function Manual, 12/2014, A5E35300227-AA

8.1.5.7 Parameter Reset V1
The response to Reset = TRUE depends on the version of the PID_Compact instruction.

Reset response PID_Compact V.1.1 or higher
A rising edge at Reset resets the errors and warnings and clears the integral action. A falling
edge at Reset triggers a change to the most recently active operating mode.

① Activation
② Error
③ Reset

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 293

Reset response PID_Compact V.1.0
A rising edge at Reset resets the errors and warnings and clears the integral action. The
controller is not reactivated until the next edge at i_Mode.

① Activation
② Error
③ Reset

Instructions
8.1 PID_Compact

 PID control
294 Function Manual, 12/2014, A5E35300227-AA

8.1.5.8 Tag sd_warning V1
If several warnings are pending, the values of variable sd_warning are displayed by means
of binary addition. The display of warning 0003, for example, indicates that the warnings
0001 and 0002 are also pending.

sd_warning
(DW#16#....)

Description

0000 No warning pending.
0001 The point of inflection was not found during pretuning.
0002 Oscillation increased during fine tuning.
0004 The setpoint was outside the set limits.
0008 Not all the necessary controlled system properties were defined for the selected method of calculation.

The PID parameters were instead calculated using the "i_CtrlTypeTIR = 3" method.
0010 The operating mode could not be changed because ManualEnable = TRUE.
0020 The cycle time of the calling OB limits the sampling time of the PID algorithm.

Improve results by using shorter OB cycle times.
0040 The process value exceeded one of its warning limits.

The following warnings are deleted as soon as the cause is dealt with:

● 0004

● 0020

● 0040

All other warnings are cleared with a rising edge at Reset.

8.1.5.9 Tag i_Event_SUT V1

i_Event_SUT Name Description

0 SUT_INIT Initialize pretuning
100 SUT_STDABW Calculate the standard deviation
200 SUT_GET_POI Find the point of inflection

9900 SUT_IO Pretuning successful
1 SUT_NIO Pretuning not successful

See also
Static tags of PID_Compact V1 (Page 282)

Parameters State and sRet.i_Mode V1 (Page 287)

 Instructions
 8.1 PID_Compact

PID control
Function Manual, 12/2014, A5E35300227-AA 295

8.1.5.10 Tag i_Event_TIR V1

i_Event_TIR Name Description

-100 TIR_FIRST_SUT Fine tuning is not possible. Pretuning will be executed first.
0 TIR_INIT Initialize fine tuning

200 TIR_STDABW Calculate the standard deviation
300 TIR_RUN_IN Attempt to reach the setpoint
400 TIR_CTRLN Attempt to reach the setpoint with the existing PID parameters

(if pretuning has been successful)
500 TIR_OSZIL Determine oscillation and calculate parameters

9900 TIR_IO Fine tuning successful
1 TIR_NIO Fine tuning not successful

See also
Static tags of PID_Compact V1 (Page 282)

Parameters State and sRet.i_Mode V1 (Page 287)

Instructions
8.2 PID_3Step

 PID control
296 Function Manual, 12/2014, A5E35300227-AA

8.2 PID_3Step

8.2.1 New features of PID_3Step

PID_3Step V2.2
● Use with S7-1200

As of PID_3Step V2.2, the instruction with V2 functionality can also be used on S7-1200
with firmware version 4.0 or higher.

PID_3Step V2.0
● Reaction to error

The reaction to ActivateRecoverMode = TRUE has been completely overhauled.
PID_3Step reacts in a more fault tolerant manner in the default setting.

 NOTICE

Your system may be damaged.

If you use the default setting, PID_3Step remains in automatic mode even if the process
value limits are exceeded. This may damage your system.

It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

You use the ErrorAck input parameter to acknowledge the errors and warnings without
restarting the controller or clearing the integral action.

Switching operating modes does not acknowledge errors that are no longer pending.

● Switching the operating mode

You specify the operating mode at the Mode in/out parameter and use a rising edge at
ModeActivate to start the operating mode. The Retain.Mode tag has been omitted.

The transition time measurement can no longer be started with GetTransitTime.Start, but
only with Mode = 6 and a rising edge at ModeActivate.

● Multi-instance capability

You can call up PID_3Step as multi-instance DB. No technology object is created in this
case and no parameter assignment interface or commissioning interface is available. You
must assign parameters for PID_3Step directly in the multi-instance DB and commission
it via a watch table.

● Startup characteristics

The operating mode specified at the Mode parameter is also started on a falling edge at
Reset and during a CPU cold restart, if RunModeByStartup = TRUE.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 297

● ENO characteristics

ENO is set depending on the operating mode.

If State = 0, then ENO = FALSE.

If State ≠ 0, then ENO = TRUE.

● Manual mode

The Manual_UP and Manual_DN input parameters no longer function as edge-triggered
parameters. Edge-triggered manual mode continues to be possible using the
ManualUpInternal and ManualDnInternal tags.

In "Manual mode without endstop signals" (Mode = 10), the endstop signals Actuator_H
and Actuator_L are ignored even though they are activated.

● Default value of PID parameters

The following default settings have been changed:

– Proportional action weighting (PWeighting) from 0.0 to 1.0

– Derivative action weighting (DWeighting) from 0.0 to 1.0

– Coefficient for derivative delay (TdFiltRatio) from 0.0 to 0.2

● Limiting of motor transition time

You configure the maximum percentage of the motor transition time that the actuator will
travel in one direction in the Config.VirtualActuatorLimit tag.

● Setpoint value specification during tuning

You configure the permitted fluctuation of the setpoint during tuning at the
CancelTuningLevel tag.

● Switching a disturbance variable on

You can switch a disturbance variable on at the Disturbance parameter.

● Troubleshooting

If the endstop signals are not activated (ActuatorEndStopOn = FALSE), ScaledFeedback
is determined without Actuator_H or Actuator_L.

PID_3Step V1.1
● Manual mode on CPU startup

If ManualEnable = TRUE when the CPU starts, PID_3Step starts in manual mode. A
rising edge at ManualEnable is not necessary.

● Reaction to error

The ActivateRecoverMode tag is no longer effective in manual mode.

● Troubleshooting

The Progress tag is reset following successful tuning or transition time measurement.

Instructions
8.2 PID_3Step

 PID control
298 Function Manual, 12/2014, A5E35300227-AA

8.2.2 Compatibility with CPU and FW
The following table shows which version of PID_3Step can be used on which CPU.

CPU FW PID_3Step
S7-1200 ≥ V4.X V2.2

V1.1
S7-1200 ≥ V3.X V1.1

V1.0
S7-1200 ≥ V2.X V1.1

V1.0
S7-1200 ≥ V1.X -
S7-1500 ≥ V1.5 V2.2

V2.1
V2.0

S7-1500 ≥ V1.1 V2.1
V2.0

S7-1500 ≥ V1.0 V2.0

8.2.3 CPU processing time and memory requirement PID_3Step V2.x

CPU processing time
Typical CPU processing times of the PID_3Step technology object as of Version V2.0,
depending on CPU type.

CPU Typ. CPU processing time PID_3Step V2.x
CPU 1211C ≥ V4.0 410 µs
CPU 1215C ≥ V4.0 410 µs
CPU 1217C ≥ V4.0 410 µs
CPU 1505S ≥ V1.0 50 µs
CPU 1510SP-1 PN ≥ V1.6 120 µs
CPU 1511-1 PN ≥ V1.5 120 µs
CPU 1512SP-1 PN ≥ V1.6 120 µs
CPU 1516-3 PN/DP ≥ V1.5 65 µs
CPU 1518-4 PN/DP ≥ V1.5 5 µs

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 299

Memory requirement
Memory requirement of an instance DB of the PID_3Step technology object as of Version
V2.0.

 Memory requirement of the instance DB of

PID_3Step V2.x
Load memory requirement Approx. 15000 bytes
Total work memory requirement 1040 bytes
Retentive work memory requirement 60 bytes

Instructions
8.2 PID_3Step

 PID control
300 Function Manual, 12/2014, A5E35300227-AA

8.2.4 PID_3Step V2

8.2.4.1 Description of PID_3Step V2

Description
You use the PID_3Step instruction to configure a PID controller with self tuning for valves or
actuators with integrating behavior.

The following operating modes are possible:

● Inactive

● Pretuning

● Fine tuning

● Automatic mode

● Manual mode

● Approach substitute output value

● Transition time measurement

● Error monitoring

● Approach substitute output value with error monitoring

● Manual mode without endstop signals

For a more detailed description of the operating modes, see the State parameter.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 301

PID algorithm
PID_3Step is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions. The PID algorithm operates according to the following equation:

Symbol Description
Δy Output value of the PID algorithm
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integral action time
TD Derivative action time
a Derivative delay coefficient (derivative delay T1 = a × TD)
c Derivative action weighting

Instructions
8.2 PID_3Step

 PID control
302 Function Manual, 12/2014, A5E35300227-AA

Block diagram without position feedback

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 303

Block diagram with position feedback

Instructions
8.2 PID_3Step

 PID control
304 Function Manual, 12/2014, A5E35300227-AA

Block diagram of PIDT1 with anti-windup

Call
PID_3Step is called in the constant time scale of a cycle interrupt OB.

If you call PID_3Step as a multi-instance DB, no technology object is created. No parameter
assignment interface or commissioning interface is available. You must assign parameters
for PID_3Step directly in the multi-instance DB and commission it via a watch table.

Download to device
The actual values of retentive tags are only updated when you download PID_3Step
completely.

Downloading technology objects to device (Page 46)

Startup
When the CPU starts up, PID_3Step starts in the operating mode that is saved in the Mode
in/out parameter. To leave PID_3Step in "Inactive" mode, set RunModeByStartup = FALSE.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 305

Reaction to error
In automatic mode and during commissioning, the reaction to error depends on the
ErrorBehaviour and ActivateRecoverMode tags. In manual mode, the reaction is
independent of ErrorBehaviour and ActivateRecoverMode. If ActivateRecoverMode = TRUE,
the reaction additionally depends on the error that occurred.

ErrorBe-
haviour

Acti-
vateRecover-
Mode

Configuration editor
> actuator setting
> Set Output to

Reaction

FALSE FALSE Current output value Switch to "Inactive" mode (State = 0)
The actuator remains in the current
position.

FALSE TRUE Current output value while
error is pending

Switch to "Error monitoring" mode
(State = 7)
The actuator remains in the current
position while the error is pending.

TRUE FALSE Substitute output value Switch to "Approach substitute output
value" mode (State = 5)
The actuator moves to the configured
substitute output value.
Switch to "Inactive" mode (State = 0)
The actuator remains in the current
position.

TRUE TRUE Substitute output value while
error is pending

Switch to "Approach substitute output
value with error monitoring" mode
(State = 8)
The actuator moves to the configured
substitute output value.
Switch to "Error monitoring" mode
(State = 7)

In manual mode, PID_3Step uses ManualValue as output value, unless the following errors
occur:

● 2000h: Invalid value at Feedback_PER parameter.

● 4000h: Invalid value at Feedback parameter.

● 8000h: Error during digital position feedback.

You can only change the position of the actuator with Manual_UP and Manual_DN, not with
ManualValue.

The Error parameter indicates whether an error has occurred in this cycle. The ErrorBits
parameter shows which errors have occurred. ErrorBits is reset by a rising edge at Reset or
ErrorAck.

See also
Parameters State and Mode V2 (Page 324)

Parameter ErrorBits V2 (Page 329)

Configuring PID_3Step V2 (Page 118)

Instructions
8.2 PID_3Step

 PID control
306 Function Manual, 12/2014, A5E35300227-AA

8.2.4.2 Mode of operation of PID_3Step V2

Monitoring process value limits
You specify the high limit and low limit of the process value in the Config.InputUpperLimit
and Config.InputLowerLimit variables. If the process value is outside these limits, an error
occurs (ErrorBits = 0001h).

You specify a high and low warning limit of the process value in the
Config.InputUpperWarning and Config.InputLowerWarning variables. If the process value is
outside these warning limits, a warning occurs (Warning = 0040h), and the InputWarning_H
or InputWarning_L output parameter changes to TRUE.

Limiting the setpoint
You specify a high limit and low limit of the setpoint in the Config.SetpointUpperLimit and
Config.SetpointLowerLimit variables. PID_3Step automatically limits the setpoint to the
process value limits. You can limit the setpoint to a smaller range. PID_3Step checks
whether this range falls within the process value limits. If the setpoint is outside these limits,
the high or low limit is used as the setpoint, and output parameter SetpointLimit_H or
SetpointLimit_L is set to TRUE.

The setpoint is limited in all operating modes.

Limiting the output value
You specify a high limit and low limit of the output value in the Config.OutputUpperLimit and
Config.OutputLowerLimit variables. The output value limits must be within "Low endstop"
and "High endstop".

● High endstop: Config.FeedbackScaling.UpperPointOut

● Low endstop: Config.FeedbackScaling.LowerPointOut

Rule:

UpperPointOut ≥ OutputUpperLimit > OutputLowerLimit ≥ LowerPointOut

The valid values for "High endstop" and "Low endstop" depend upon:

● FeedbackOn

● FeedbackPerOn

● OutputPerOn

OutputPerOn FeedbackOn FeedbackPerOn LowerPointOut UpperPointOut
FALSE FALSE FALSE Cannot be set (0.0%) Cannot be set (100.0%)
FALSE TRUE FALSE -100.0% or 0.0% 0.0% or +100.0%
FALSE TRUE TRUE -100.0% or 0.0% 0.0% or +100.0%
TRUE FALSE FALSE Cannot be set (0.0%) Cannot be set (100.0%)
TRUE TRUE FALSE -100.0% or 0.0% 0.0% or +100.0%
TRUE TRUE TRUE -100.0% or 0.0% 0.0% or +100.0%

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 307

If OutputPerOn = FALSE and FeedbackOn = FALSE, you cannot limit the output value.
Output_UP and Output_DN are then reset at Actuator_H = TRUE or Actuator_L = TRUE. If
endstop signals are also not present, Output_UP and Output_DN are reset after a travel time
of Config.VirtualActuatorLimit × Retain.TransitTime/100.

The output value is 27648 at 100% and -27648 at -100%. PID_3Step must be able to close
the valve completely.

Substitute output value
If an error has occurred, PID_3Step can output a substitute output value and move the
actuator to a safe position that is specified in the SavePosition tag. The substitute output
value must be within the output value limits.

Monitoring signal validity
The values of the following parameters are monitored for validity when used:

● Setpoint

● Input

● Input_PER

● Input_PER

● Feedback

● Feedback_PER

● Disturbance

● ManualValue

● SavePosition

● Output_PER

Instructions
8.2 PID_3Step

 PID control
308 Function Manual, 12/2014, A5E35300227-AA

Monitoring the PID_3Step sampling time
Ideally, the sampling time is equivalent to the cycle time of the calling OB. The PID_3Step
instruction measures the time interval between two calls. This is the current sampling time.
On every switchover of operating mode and during the initial startup, the mean value is
formed from the first 10 sampling times. Too great a difference between the current sampling
time and this mean value triggers an error (ErrorBits = 0800h).

The error occurs during tuning if:

● New mean value >= 1.1 x old mean value

● New mean value <= 0.9 x old mean value

The error occurs in automatic mode if:

● New mean value >= 1.5 x old mean value

● New mean value <= 0.5 x old mean value

If you deactivate the sampling time monitoring (CycleTime.EnMonitoring = FALSE), you can
also call PID_3Step in OB1. You must then accept a lower control quality due to the
deviating sampling time.

Sampling time of the PID algorithm
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value. It
is calculated during tuning and rounded to a multiple of the cycle time. All other functions of
PID_3Step are executed at every call.

Measuring the motor transition time
The motor transition time is the time in seconds the motor requires to move the actuator from
the closed to the opened state. The actuator is moved in one direction for a maximum time of
Config.VirtualActuatorLimit × Retain.TransitTime/100. PID_3Step requires the motor
transition time to be as accurate as possible for good controller results. The data in the
actuator documentation contains average values for this type of actuator. The value for the
specific actuator used may differ. You can measure the motor transition time during
commissioning. The output value limits are not taken into consideration during the motor
transition time measurement. The actuator can travel to the high or the low endstop.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic. For cooling and discharge control
systems, it may be necessary to invert the control logic. PID_3Step does not work with
negative proportional gain. If InvertControl = TRUE, an increasing control deviation causes a
reduction in the output value. The control logic is also taken into account during pretuning
and fine tuning.

See also
Configuring PID_3Step V1 (Page 139)

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 309

8.2.4.3 Changing the PID_3Step V2 interface
The following table shows what has changed in the PID_3Step instruction interface.

PID_3Step V1 PID_3Step V2 Change
Input_PER Input_PER Data type from Word to Int
Feedback_PER Feedback_PER Data type from Word to Int
 Disturbance New
Manual_UP Manual_UP Function
Manual_DN Manual_DN Function
 ErrorAck New
 ModeActivate New
Output_PER Output_PER Data type from Word to Int
 ManualUPInternal New
 ManualDNInternal New
 CancelTuningLevel New
 VirtualActuatorLImit New
Config.Loadbackup Loadbackup Renamed
Config.TransitTime Retain.TransitTime Renamed and retentivity added
GetTransitTime.Start Replaced by Mode and ModeActivate
SUT.CalculateSUTPara
ms

SUT.CalculateParams Renamed

SUT.TuneRuleSUT SUT.TuneRule Renamed
TIR.CalculateTIRParams TIR.CalculateParams Renamed
TIR.TuneRuleTIR TIR.TuneRule Renamed
Retain.Mode Mode Function

Declaration of static for in-out parameters

Instructions
8.2 PID_3Step

 PID control
310 Function Manual, 12/2014, A5E35300227-AA

8.2.4.4 Input parameters of PID_3Step V2

Parameter Data type Default Description
Setpoint REAL 0.0 Setpoint of the PID controller in automatic mode
Input REAL 0.0 A tag of the user program is used as the source of the process

value.
If you are using the Input parameter, then Con-
fig.InputPerOn = FALSE must be set.

Input_PER INT 0 An analog input is used as the source of the process value.
If you are using the Input_PER parameter, then Con-
fig.InputPerOn = TRUE must be set.

Actuator_H BOOL FALSE Digital position feedback of the valve for the high endstop
If Actuator_H = TRUE, the valve is at the high endstop and is
no longer moved towards this direction.

Actuator_L BOOL FALSE Digital position feedback of the valve for the low endstop
If Actuator_L = TRUE, the valve is at the low endstop and is
no longer moved towards this direction.

Feedback REAL 0.0 Position feedback of the valve
If you are using the Feedback parameter, then Con-
fig.FeedbackPerOn = FALSE must be set.

Feedback_PER INT 0 Analog position feedback of a valve
If you are using the Feedback_PER parameter, then Con-
fig.FeedbackPerOn = TRUE must be set.
Feedback_PER is scaled based on the tags:
• Config.FeedbackScaling.LowerPointIn
• Config.FeedbackScaling.UpperPointIn
• Config.FeedbackScaling.LowerPointOut
• Config.FeedbackScaling.UpperPointOut

Disturbance REAL 0.0 Disturbance tag or precontrol value
ManualEnable BOOL FALSE • A FALSE -> TRUE edge activates "manual mode", while

State = 4, Mode remain unchanged.

As long as ManualEnable = TRUE, you cannot change the
operating mode via a rising edge at ModeActivate or use
the commissioning dialog.

• A TRUE -> FALSE edge activates the operating mode that
is specified by Mode.

We recommend that you change the operating mode using
ModeActivate only.

ManualValue REAL 0.0 In manual mode, the absolute position of the valve is speci-
fied. ManualValue is only evaluated if you are using Out-
put_PER, or if position feedback is available.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 311

Parameter Data type Default Description
Manual_UP BOOL FALSE • Manual_UP = TRUE

The valve is opened even if you are using Output_PER or
a position feedback. The valve is no longer moved if the
high endstop has been reached.

See also Config.VirtualActuatorLimit
• Manual_UP = FALSE

If you are using Output_PER or a position feedback, the
valve is moved to ManualValue. Otherwise, the valve is no
longer moved.

If Manual_UP and Manual_DN are set to TRUE simultaneous-
ly, the valve is not moved.

Manual_DN BOOL FALSE • Manual_DN = TRUE

The valve is closed even if you are using Output_PER or a
position feedback. The valve is no longer moved if the low
endstop has been reached.

See also Config.VirtualActuatorLimit
• Manual_DN = FALSE

If you are using Output_PER or a position feedback, the
valve is moved to ManualValue. Otherwise, the valve is no
longer moved.

ErrorAck BOOL FALSE • FALSE -> TRUE edge

ErrorBits and Warning are reset.
Reset BOOL FALSE Restarts the controller.

• FALSE -> TRUE edge
– Switch to "Inactive" mode
– ErrorBits and Warning are reset.
– Integral action is cleared

(PID parameters are retained)
• As long as Reset = TRUE, PID_3Step remains in "Inac-

tive" mode (State = 0).
• TRUE -> FALSE edge

PID_3Step switches to the operating mode that is saved in
the Mode parameter.

ModeActivate BOOL FALSE • FALSE -> TRUE edge

PID_3Step switches to the operating mode that is saved in
the Mode parameter.

Instructions
8.2 PID_3Step

 PID control
312 Function Manual, 12/2014, A5E35300227-AA

8.2.4.5 Output parameters of PID_3Step V2

Parameter Data type Default Description
ScaledInput REAL 0.0 Scaled process value
ScaledFeedback REAL 0.0 Scaled position feedback

For an actuator without position feedback, the position of the
actuator indicated by ScaledFeedback is very imprecise.
ScaledFeedback may only be used for rough estimation of
the current position in this case.

Output_UP BOOL FALSE Digital output value for opening the valve
If Config.OutputPerOn = FALSE, the Output_UP parameter is
used.

Output_DN BOOL FALSE Digital output value for closing the valve
If Config.OutputPerOn = FALSE, the Output_DN parameter
is used.

Output_PER INT 0 Analog output value
If Config.OutputPerOn = TRUE, Output_PER is used.

SetpointLimit_H BOOL FALSE If SetpointLimit_H = TRUE, the absolute setpoint high limit is
reached (Setpoint ≥ Config.SetpointUpperLimit).
The setpoint is limited to Config.SetpointUpperLimit .

SetpointLimit_L BOOL FALSE If SetpointLimit_L = TRUE, the absolute setpoint low limit has
been reached (Setpoint ≤ Config.SetpointLowerLimit).
The setpoint is limited to Config.SetpointLowerLimit .

InputWarning_H BOOL FALSE If InputWarning_H = TRUE, the process value has reached
or exceeded the warning high limit.

InputWarning_L BOOL FALSE If InputWarning_L = TRUE, the process value has reached or
fallen below the warning low limit.

State INT 0 The State parameter (Page 324) shows the current operating
mode of the PID controller. You can change the operating
mode using the input parameter Mode and a rising edge at
ModeActivate.
• State = 0: Inactive
• State = 1: Pretuning
• State = 2: Fine tuning
• State = 3: Automatic mode
• State = 4: Manual mode
• State = 5: Approach substitute output value
• State = 6: Transition time measurement
• State = 7: Error monitoring
• State = 8: Approach substitute output value with error

monitoring
• State = 10: Manual mode without end stop signals

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 313

Parameter Data type Default Description
Error BOOL FALSE If Error = TRUE, at least one error message is pending in this

cycle.
ErrorBits DWORD DW#16#0 The ErrorBits parameter (Page 329) shows which error mes-

sages are pending. ErrorBits is retentive and is reset upon a
rising edge at Reset or ErrorAck.

See also
Parameters State and Mode V2 (Page 324)

Parameter ErrorBits V2 (Page 329)

8.2.4.6 In-out parameters of PID_3Step V2

Parameter Data type Default Description
Mode INT 4 At the Mode parameter, you specify the operating mode to

which PID_3Step is to switch. Options are:
• Mode = 0: Inactive
• Mode = 1: Pretuning
• Mode = 2: Fine tuning
• Mode = 3: Automatic mode
• Mode = 4: Manual mode
• Mode = 6: Transition time measurement
• Mode = 10: Manual mode without endstop signals
The operating mode is activated by:
• Rising edge at ModeActivate
• Falling edge at Reset
• Falling edge at ManualEnable
• Cold restart of CPU if RunModeByStartup = TRUE
Mode is retentive.
A detailed description of the operating modes can be found in
Parameters State and Mode V2 (Page 324).

Instructions
8.2 PID_3Step

 PID control
314 Function Manual, 12/2014, A5E35300227-AA

8.2.4.7 Static tags of PID_3Step V2
You must not change tags that are not listed. These are used for internal purposes only.

Tag Data type Default Description
ManualUpInternal BOOL FALSE In manual mode, each rising edge opens the valve by 5%

of the total control range or for the duration of the mini-
mum motor transition time. ManualUpInternal is only eval-
uated if you are not using Output_PER or a position
feedback. This tag is used in the commissioning dialog.

ManualDnInternal BOOL FALSE In manual mode, every rising edge closes the valve by 5%
of the total control range or for the duration of the mini-
mum motor transition time. ManualDnInternal is only eval-
uated if you are not using Output_PER or position
feedback. This tag is used in the commissioning dialog.

ActivateRecoverMode BOOL TRUE The ActivateRecoverMode V2 (Page 332) tag determines
the reaction to error.

RunModeByStartup BOOL TRUE Activate operating mode at Mode parameter after CPU
restart
If RunModeByStartup = TRUE, PID_3Step starts in the
operating mode saved in the Mode parameter after CPU
startup.
If RunModeByStartup = FALSE, PID_3Step remains in
"Inactive" mode after CPU startup.

LoadBackUp BOOL FALSE If LoadBackUp = TRUE, the last set of PID parameters is
reloaded. The set was saved prior to the last tuning.
LoadBackUp is automatically set back to FALSE.

PhysicalUnit INT 0 Unit of measurement of the process value and setpoint,
e.g., ºC, or ºF.

PhysicalQuantity INT 0 Physical quantity of the process value and setpoint, e.g.,
temperature

ErrorBehaviour BOOL FALSE If ErrorBehaviour = FALSE and an error has occurred, the
valve stays at its current position and the controller
switches directly to "Inactive" or "Error monitoring" mode.
If ErrorBehaviour = TRUE and an error occurs, the actua-
tor moves to the substitute output value and only then
switches to "Inactive" or "Error monitoring" mode.
If the following errors occur, you can no longer move the
valve to a configured substitute output value.
• 2000h: Invalid value at Feedback_PER parameter.
• 4000h: Invalid value at Feedback parameter.
• 8000h: Error during digital position feedback.
• 20000h: Invalid value at SavePosition tag.

Warning DWORD DW#16#0 The Warning tag (Page 324) shows the warnings since
Reset = TRUE or ErrorAck =TRUE. Warning is retentive.
Cyclic warnings (for example, process value warning) are
shown until the cause of the warning is removed. They are
automatically deleted once their cause has gone. Non-
cyclic warnings (for example, point of inflection not found)
remain and are deleted like errors.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 315

Tag Data type Default Description
SavePosition REAL 0.0 Substitute output value

If ErrorBehaviour = TRUE, the actuator is moved to a
position that is safe for the plant when an error occurs. As
soon as the substitute output value has been reached,
PID_3Step switches the operating mode according to
ActivateRecoverMode.

CurrentSetpoint REAL 0.0 Currently active setpoint. This value is frozen at the start
of tuning.

CancelTuningLevel REAL 10.0 Permissible fluctuation of setpoint during tuning. Tuning is
not canceled until:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel

Progress REAL 0.0 Progress of tuning as a percentage (0.0 - 100.0)
Config.InputPerOn BOOL TRUE If InputPerOn = TRUE, the Input_PER parameter is used.

If InputPerOn = FALSE, the Input parameter is used.
Config.OutputPerOn BOOL FALSE If OutputPerOn = TRUE, the Output_PER parameter is

used. If OutputPerOn = FALSE, the Ouput_UP and Out-
put_DN parameters are used.

Config.InvertControl BOOL FALSE Invert control logic
If InvertControl = TRUE, an increasing control deviation
causes a reduction in the output value.

Config.FeedbackOn BOOL FALSE If FeedbackOn = FALSE, a position feedback is simulated.
Position feedback is generally activated when Feed-
backOn = TRUE.

Config.FeedbackPerOn BOOL FALSE FeedbackPerOn is only effective when Feed-
backOn = TRUE.
If FeedbackPerOn = TRUE, the analog input is used for
the position feedback (Feedback_PER parameter).
If FeedbackPerOn = FALSE, the Feedback parameter is
used for the position feedback.

Config.ActuatorEndStopOn BOOL FALSE If ActuatorEndStopOn = TRUE, the digital position feed-
back Actuator_L and Actuator_H are taken into considera-
tion.

Config.InputUpperLimit REAL 120.0 High limit of the process value
Input and Input_PER are monitored to ensure adherence
to this limit.
At the I/O input, the process value can be a maximum of
18% higher than the standard range (overrange). An error
is no longer signaled due to a violation of the "Process
value high limit". Only a wire-break and a short-circuit are
recognized and PID_3Step reacts according to the config-
ured reaction to error.
InputUpperLimit > InputLowerLimit

Config.InputLowerLimit REAL 0.0 Low limit of the process value
InputLowerLimit < InputUpperLimit

Instructions
8.2 PID_3Step

 PID control
316 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Config.InputUpperWarning REAL +3.402822e+38 Warning high limit of the process value

If you set InputUpperWarning outside the process value
limits, the configured absolute process value high limit is
used as the warning high limit.
If you configure InputUpperWarning within the process
value limits, this value is used as the warning high limit.
InputUpperWarning > InputLowerWarning
InputUpperWarning ≤ InputUpperLimit

Config.InputLowerWarning REAL -3.402822e+38 Warning low limit of the process value
If you set InputLowerWarning outside the process value
limits, the configured absolute process value low limit is
used as the warning low limit.
If you configure InputLowerWarning within the process
value limits, this value is used as the warning low limit.
InputLowerWarning < InputUpperWarning
InputLowerWarning ≥ InputLowerLimit

Config.OutputUpperLimit REAL 100.0 High limit of output value
For details, see OutputLowerLimit

Config.OutputLowerLimit REAL 0.0 Low limit of output value
If OutputPerOn = TRUE or FeedbackOn = TRUE, the
range of values from -100% to +100%, including zero, is
valid. At -100%, Output = -27648; at +100% Out-
put = 27648
If OutputPerOn = FALSE, the range of values from 0% to
100% is valid. The valve is completely closed at 0% and
completely opened at 100%.

Config.SetpointUpperLimit REAL +3.402822e+38 High limit of setpoint
If you set SetpointUpperLimit outside the process value
limits, the configured absolute process value high limit is
preassigned as the setpoint high limit.
If you configure SetpointUpperLimit within the process
value limits, this value is used as the setpoint high limit.

Config.SetpointLowerLimit REAL - 3.402822e+38 Low limit of the setpoint
If you set SetpointLowerLimit outside the process value
limits, the configured absolute process value low limit is
preassigned as the setpoint low limit.
If you set SetpointLowerLimit within the process value
limits, this value is used as the setpoint low limit.

Config.MinimumOnTime REAL 0.0 Minimum ON time
Minimum time in seconds for which the servo drive must
be switched on.

Config.MinimumOffTime REAL 0.0 Minimum OFF time
Minimum time in seconds for which the servo drive must
be switched off.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 317

Tag Data type Default Description
Config.VirtualActuatorLimit REAL 150.0 If all the following conditions have been satisfied, the ac-

tuator is moved in one direction for the maximum period of
VirtualActuatorLimit × Retain.TransitTime/100 and the
warning 2000h is output:
• Config.OutputPerOn = FALSE
• Config.ActuatorEndStopOn = FALSE
• Config.FeedbackOn = FALSE
If Config.OutputPerOn = FALSE and Con-
fig.ActuatorEndStopOn = TRUE or Config.FeedbackOn =
TRUE, only the warning 2000h is output.
If Config.OutputPerOn = TRUE, VirtualActuatorLimit is not
taken into consideration.

Con-
fig.InputScaling.UpperPointIn

REAL 27648.0 Scaling Input_PER high
Input_PER is converted to a percentage based on the two
value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the InputScaling structure.

Con-
fig.InputScaling.LowerPointIn

REAL 0.0 Scaling Input_PER low
Input_PER is converted to a percentage based on the two
value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the InputScaling structure.

Con-
fig.InputScaling.UpperPointOu
t

REAL 100.0 Scaled high process value
Input_PER is converted to a percentage based on the two
value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the InputScaling structure.

Con-
fig.InputScaling.LowerPointOu
t

REAL 0.0 Scaled low process value
Input_PER is converted to a percentage based on the two
value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the InputScaling structure.

Con-
fig.FeedbackScaling.UpperPoi
ntIn

REAL 27648.0 Scaling Feedback_PER high
Feedback_PER is converted to a percentage based on the
two value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the FeedbackScaling structure.

Con-
fig.FeedbackScaling.LowerPoi
ntIn

REAL 0.0 Scaling Feedback_PER low
Feedback_PER is converted to a percentage based on the
two value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the FeedbackScaling structure.

Con-
fig.FeedbackScaling.UpperPoi
ntOut

REAL 100.0 High endstop
Feedback_PER is converted to a percentage based on the
two value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the FeedbackScaling structure.

Con-
fig.FeedbackScaling.LowerPoi
ntOut

REAL 0.0 Low endstop
Feedback_PER is converted to a percentage based on the
two value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the FeedbackScaling structure.

Instructions
8.2 PID_3Step

 PID control
318 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
GetTransitTime.InvertDirection BOOL FALSE If InvertDirection = FALSE, the valve is fully opened,

closed, and then reopened in order to determine the valve
transition time.
If InvertDirection = TRUE, the valve is fully closed,
opened, and then closed again.

GetTransit-
Time.SelectFeedback

BOOL FALSE If SelectFeedback = TRUE, then Feedback_PER, or
Feedback is taken into consideration in the transition time
measurement.
If SelectFeedback = FALSE, then Actuator_H and Actua-
tor_L are taken into consideration in the transition time
measurement.

GetTransitTime.State INT 0 Current phase of the transition time measurement
• State = 0: Inactive
• State = 1: Open valve completely
• State = 2: Close valve completely
• State = 3: Move valve to target position (NewOutput)
• State = 4: Transition time measurement successfully

completed
• State = 5: Transition time measurement canceled

GetTransitTime.NewOutput REAL 0.0 Target position for transition time measurement with posi-
tion feedback
The target position must be between "High endstop" and
"Low endstop". The difference between NewOutput and
ScaledFeedback must be at least 50% of the permissible
control range.

CycleTime.StartEstimation BOOL TRUE If StartEstimation = TRUE, the measurement of the
PID_3Step sampling time is started. Cy-
cleTime.StartEstimation = FALSE once measurement is
complete.

CycleTime.EnEstimation BOOL TRUE If EnEstimation = TRUE, the PID_3Step sampling time is
calculated.
If CycleTime.EnEstimation = FALSE, the PID_3Step sam-
pling time is not calculated and you need to correct the
configuration of CycleTime.Value manually.

CycleTime.EnMonitoring BOOL TRUE If EnMonitoring = TRUE, the PID_3Step sampling time is
monitored. If it is not possible to execute PID_3Step within
the sampling time, the error 0800h is output and the oper-
ating mode is switched. ActivateRecoverMode and Er-
rorBehaviour determine which operating mode is switched
to.
If EnMonitoring = FALSE, the PID_3Step sampling time is
not monitored, the error 0800h is not output, and the oper-
ating mode is not switched.

CycleTime.Value REAL 0.1 PID_3Step sampling time in seconds
CycleTime.Value is determined automatically and is usual-
ly equivalent to the cycle time of the calling OB.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 319

Tag Data type Default Description
CtrlParamsBackUp.SetByUser BOOL FALSE Saved value of Retain.CtrlParams.SetByUser

You can reload values from the CtrlParamsBackUp struc-
ture with LoadBackUp = TRUE.

CtrlParamsBackUp.Gain REAL 1.0 Saved proportional gain
CtrlParamsBackUp.Ti REAL 20.0 Saved integral action time in seconds
CtrlParamsBackUp.Td REAL 0.0 Saved derivative action time in seconds
CtrlParamsBackUp.TdFiltRatio REAL 0.2 Saved derivative delay coefficient
CtrlParamsBack-
Up.PWeighting

REAL 1.0 Saved proportional action weighting

CtrlParamsBack-
Up.DWeighting

REAL 1.0 Saved derivative action weighting

CtrlParamsBackUp.Cycle REAL 1.0 Saved sampling time of PID algorithm in seconds
CtrlParamsBack-
Up.InputDeadBand

REAL 0.0 Saved deadband width of the control deviation

PIDSelf-
Tune.SUT.CalculateParams

BOOL FALSE The properties of the controlled system are saved during
tuning. If CalculateParams = TRUE, the PID parameters
are recalculated on the basis of these properties. The PID
parameters are calculated using the method set in
TuneRule. CalculateParams is set to FALSE following
calculation.

PIDSelfTune.SUT.TuneRule INT 1 Methods used to calculate parameters during pretuning:
• SUT.TuneRule = 0: PID rapid I
• SUT.TuneRule = 1: PID slow I
• SUT.TuneRule = 2: Chien, Hrones and Reswick PID
• SUT.TuneRule = 3: Chien, Hrones, Reswick PI
• SUT.TuneRule = 4: PID rapid II
• SUT.TuneRule = 5: PID slow II

PIDSelfTune.SUT.State INT 0 The SUT.State tag indicates the current phase of pretun-
ing:
• State = 0: Initialize pretuning
• State = 50: Determine start position without position

feedback
• State = 100: Calculate standard deviation
• State = 200: Determine point of inflection
• State = 300: Determine rise time
• State = 9900: Pretuning successful
• State = 1: Pretuning not successful

Instructions
8.2 PID_3Step

 PID control
320 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
PIDSelfTune.TIR.RunIn BOOL FALSE With the RunIn tag, you can specify that fine tuning can

also be performed without pretuning.
• RunIn = FALSE

Pretuning is started when fine tuning is started from in-
active or manual mode.

If fine tuning is started from automatic mode, the sys-
tem uses the existing PID parameters to control to the
setpoint.

Only then will fine tuning start. If pretuning is not pos-
sible, PID_3Step switches to the mode from which tun-
ing was started.

• RunIn = TRUE

The pretuning is skipped. PID_3Step attempts to reach
the setpoint with the minimum or maximum output val-
ue. This can produce increased overshoot. Only then
will fine tuning start.

RunIn is set to FALSE after fine tuning.
PIDSelf-
Tune.TIR.CalculateParams

BOOL FALSE The properties of the controlled system are saved during
tuning. If CalculateParams = TRUE, the PID parameters
are recalculated on the basis of these properties. The PID
parameters are calculated using the method set in
TuneRule. CalculateParams is set to FALSE following
calculation.

PIDSelfTune.TIR.TuneRule INT 0 Methods used to calculate parameters during fine tuning:
• TIR.TuneRule = 0: PID automatic
• TIR.TuneRule = 1: PID rapid
• TIR.TuneRule = 2: PID slow
• TIR.TuneRule = 3: Ziegler-Nichols PID
• TIR.TuneRule = 4: Ziegler-Nichols PI
• TIR.TuneRule = 5: Ziegler-Nichols P

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 321

Tag Data type Default Description
PIDSelfTune.TIR.State INT 0 The TIR.State tag indicates the current phase of fine tun-

ing:
• State = -100 Fine tuning is not possible. Pretuning will

be performed first.
• State = 0: Initialize fine tuning
• State = 200: Calculate standard deviation
• State = 300: Attempt to reach the setpoint with the

maximum or minimum output value
• State = 400: Attempt to reach the setpoint with existing

PID parameters
(if pretuning was successful)

• State = 500: Determine oscillation and calculate pa-
rameters

• State = 9900: Fine tuning successful
• State = 1: Fine tuning not successful

Retain.TransitTime REAL 30.0 Motor transition time in seconds
Time in seconds the actuating drive requires to move the
valve from the closed to the opened state.
TransitTime is retentive.

Retain.CtrlParams.SetByUser BOOL FALSE If SetByUser = FALSE, the PID parameters are deter-
mined automatically and PID_3Step operates with a dead-
band at the output value. The deadband width is
calculated during tuning on the basis of the standard devi-
ation of the output value and saved in Re-
tain.CtrlParams.OutputDeadBand.
If SetByUser = TRUE, the PID parameters are entered
manually and PID_3 Step operates without a deadband at
the output value. Retain.CtrlParams.OutputDeadBand =
0.0
SetByUser is retentive.

Retain.CtrlParams.Gain REAL 1.0 Active proportional gain
To invert the control logic, use the Config.InvertControl
tag. Negative values at Gain also invert the control logic.
We recommend you use only InvertControl to set the con-
trol logic. The control logic is also inverted if InvertControl
= TRUE and Gain < 0.0.
Gain is retentive.

Retain.CtrlParams.Ti REAL 20.0 • Ti > 0.0: Active integral action time in seconds
• Ti = 0.0: Integral action is deactivated
Ti is retentive.

Retain.CtrlParams.Td REAL 0.0 • Td > 0.0: Active derivative action time in seconds
• Td = 0.0: Derivative action is deactivated
Td is retentive.

Instructions
8.2 PID_3Step

 PID control
322 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Retain.CtrlParams.TdFiltRatio REAL 0.2 Active derivative delay coefficient

The derivative delay coefficient delays the effect of the
derivative action.
Derivative delay = derivative action time × derivative delay
coefficient
• 0.0: Derivative action is effective for one cycle only and

therefore almost not effective.
• 0.5: This value has proved useful in practice for con-

trolled systems with one dominant time constant.
• > 1.0: The greater the coefficient, the longer the effect

of the derivative action is delayed.
TdFiltRatio is retentive.

Retain.CtrlParams.PWeighting REAL 1.0 Active proportional action weighting
The proportional action may weaken with changes to the
setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully

effective
• 0.0: Proportional action for setpoint change is not ef-

fective
The proportional action is always fully effective when the
process value is changed.
PWeighting is retentive.

Retain.CtrlParams.DWeighting REAL 1.0 Active derivative action weighting
The derivative action may weaken with changes to the
setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint

change
• 0.0: Derivative action is not effective upon setpoint

change
The derivative action is always fully effective when the
process value is changed.
DWeighting is retentive.

Retain.CtrlParams.Cycle REAL 1.0 Active sampling time of PID algorithm in seconds, rounded
to an integer multiple of the cycle time of the calling OB.
Cycle is retentive.

Re-
tain.CtrlParams.InputDeadBan
d

REAL 0.0 Deadband width of the control deviation
InputDeadBand is retentive.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 323

 Note

Change the tags listed in this table in "Inactive" mode to prevent malfunction of the PID
controller.

See also
Parameters State and Mode V2 (Page 324)

Tag ActivateRecoverMode V2 (Page 332)

Downloading technology objects to device (Page 46)

Instructions
8.2 PID_3Step

 PID control
324 Function Manual, 12/2014, A5E35300227-AA

8.2.4.8 Parameters State and Mode V2

Correlation of the parameters
The State parameter shows the current operating mode of the PID controller. You cannot
change the State parameter.

With a rising edge at ModeActivate, PID_3Step switches to the operating mode saved in the
Mode in-out parameter.

When the CPU is switched on or switches from Stop to RUN mode, PID_3Step starts in the
operating mode that is saved in the Mode parameter. To leave PID_3Step in "Inactive"
mode, set RunModeByStartup = FALSE.

Meaning of values

State Description of operating mode
0 Inactive

The controller is switched off and no longer changes the valve position.
1 Pretuning

The pretuning determines the process response to a pulse of the output value and searches for the point of
inflection. The PID parameters are calculated from the maximum rate of rise and dead time of the controlled
system. You obtain the best PID parameters when you perform pretuning and fine tuning.
Pretuning requirements:
• The motor transition time has been configured or measured.
• Inactive (State = 0), manual mode (State = 4), or automatic mode (State = 3)
• ManualEnable = FALSE
• Reset = FALSE
• The setpoint and the process value lie within the configured limits.
The more stable the process value is, the easier it is to calculate the PID parameters and the more precise
the result will be. Noise on the process value can be tolerated as long as the rate of rise of the process
value is significantly higher as compared to the noise. This is most likely the case in operating modes "Inac-
tive" and "manual mode".
The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel
Before the PID parameters are recalculated, they are backed up and can be reactivated with LoadBackUp.
The controller switches to automatic mode following successful pretuning. If pretuning is unsuccessful, the
switchover of operating mode is dependent on ActivateRecoverMode and ErrorBehaviour.
The pretuning phase is indicated with the SUT.State tag.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 325

State Description of operating mode
2 Fine tuning

Fine tuning generates a constant, limited oscillation of the process value. The PID parameters are recalcu-
lated based on the amplitude and frequency of this oscillation. PID parameters from fine tuning usually have
better master control and disturbance characteristics than PID parameters from pretuning. You obtain the
best PID parameters when you perform pretuning and fine tuning.
PID_3Step automatically attempts to generate an oscillation greater than the noise of the process value.
Fine tuning is only minimally influenced by the stability of the process value.
The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel
The PID parameters are backed up before fine tuning. They can be reactivated with LoadBackUp.
Requirements for fine tuning:
• The motor transition time has been configured or measured.
• The setpoint and the process value lie within the configured limits.
• ManualEnable = FALSE
• Reset = FALSE
• Automatic (State = 3), inactive (State = 0) or manual (State = 4) mode
Fine tuning proceeds as follows when started from:
• Automatic mode (State = 3)

Start fine tuning from automatic mode if you wish to improve the existing PID parameters through tuning.

PID_3Step controls the system using the existing PID parameters until the control loop has stabilized
and the requirements for fine tuning have been met. Only then will fine tuning start.

• Inactive (State = 0) or manual mode (State = 4)

If the requirements for pretuning are met, pretuning is started. The determined PID parameters will be
used for control until the control loop has stabilized and the requirements for fine tuning have been met.

If PIDSelfTune.TIR.RunIn = TRUE, pretuning is skipped and an attempt is made to reach the setpoint
with the minimum or maximum output value. This can produce increased overshoot. Fine tuning then
starts automatically.

The controller switches to automatic mode following successful fine tuning. If fine tuning is unsuccessful,
the switchover of operating mode is dependent on ActivateRecoverMode and ErrorBehaviour.
The fine tuning phase is indicated with the TIR.State tag.

3 Automatic mode
In automatic mode, PID_3Step controls the controlled system in accordance with the parameters specified.
The controller switches to automatic mode if one the following requirements is fulfilled:
• Pretuning successfully completed
• Fine tuning successfully completed
• Changing of the Mode in-out parameter to the value 3 and a rising edge at ModeActivate.
The switchover from automatic mode to manual mode is only bumpless if carried out in the commissioning
editor.
The ActivateRecoverMode tag is taken into consideration in automatic mode.

Instructions
8.2 PID_3Step

 PID control
326 Function Manual, 12/2014, A5E35300227-AA

State Description of operating mode
4 Manual mode

In manual mode, you specify manual output values in the Manual_UP and Manual_DN parameters or Man-
ualValue parameter. Whether or not the actuator can be moved to the output value in the event of an error
is described in the ErrorBits parameter.
You can also activate this operating mode using ManualEnable = TRUE. We recommend that you change
the operating mode using Mode and ModeActivate only.
The switchover from manual mode to automatic mode is bumpless. Manual mode is also possible when an
error is pending.

5 Approach substitute output value
This operating mode is activated in the event of an error, if Errorbehaviour = TRUE and ActivateRecover-
Mode = FALSE..
PID_3Step moves the actuator to the substitute output value and then switches to "Inactive" mode.

6 Transition time measurement
The time that the motor needs to completely open the valve from the closed condition is determined.
This operating mode is activated when Mode = 6 and ModeActivate = TRUE is set.
If endstop signals are used to measure the transition time, the valve will be opened completely from its
current position, closed completely, and opened completely again. If GetTransit-
Time.InvertDirection = TRUE, this behavior is inverted.
If position feedback is used to measure the transition time, the actuator will be moved from its current posi-
tion to a target position.
The output value limits are not taken into consideration during the transition time measurement. The actua-
tor can travel to the high or the low endstop.

7 Error monitoring
The control algorithm is switched off and no longer changes the valve position.
This operating mode is activated instead of "Inactive" mode in the event of an error.
All the following conditions must be met:
• Automatic mode (Mode = 3)
• Errorbehaviour = FALSE
• ActivateRecoverMode = TRUE
• One or more errors have occurred in which ActivateRecoverMode (Page 332) is effective.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.

8 Approach substitute output value with error monitoring
This operating mode is activated instead of "approach substitute output value" mode when an error occurs.
PID_3Step moves the actuator to the substitute output value and then switches to "error monitoring" mode.
All the following conditions must be met:
• Automatic mode (Mode = 3)
• Errorbehaviour = TRUE
• ActivateRecoverMode = TRUE
• One or more errors have occurred in which ActivateRecoverMode (Page 332) is effective.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.

10 Manual mode without endstop signals
The endstop signals are not taken into consideration, even though Config.ActuatorEndStopOn = TRUE.
The output value limits are not taken into consideration. Otherwise, PID_3Step behaves the same as in
manual mode.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 327

ENO characteristics
If State = 0, then ENO = FALSE.

If State ≠ 0, then ENO = TRUE.

Automatic switchover of operating mode during commissioning
Automatic mode is activated following successful pretuning or fine tuning. The following table
shows how Mode and State change during successful pretuning.

Cycle no. Mode State Action
0 4 4 Set Mode = 1
1 1 4 Set ModeActivate = TRUE
1 4 1 Value of State is saved in Mode parameter

Pretuning is started
n 4 1 Pretuning successfully completed
n 3 3 Automatic mode is started

PID_3Step automatically switches the operating mode in the event of an error. The following
table shows how Mode and State change during pretuning with errors.

Cycle no. Mode State Action
0 4 4 Set Mode = 1
1 1 4 Set ModeActivate = TRUE
1 4 1 Value of State is saved in Mode parameter

Pretuning is started
n 4 1 Pretuning canceled
n 4 4 Manual mode is started

If ActivateRecoverMode = TRUE, the operating mode that is saved in the Mode parameter is
activated. At the start of transition time measurement, pretuning, or fine tuning, PID_3Step
saved the value of State in the Mode in/out parameter. PID_3Step therefore switches to the
operating mode from which transition time measurement or tuning was started.

If ActivateRecoverMode = FALSE, "Inactive" or "Approach substitute output value" mode is
activated.

Automatic switchover of operating mode after transition time measurement
If ActivateRecoverMode = TRUE, the operating mode that is saved in the Mode parameter is
activated after successful transition time measurement.

If ActivateRecoverMode = FALSE, the system switches to "Inactive" operating mode after
successful transition time measurement.

Instructions
8.2 PID_3Step

 PID control
328 Function Manual, 12/2014, A5E35300227-AA

Automatic switchover of operating mode in automatic mode
PID_3Step automatically switches the operating mode in the event of an error. The following
diagram illustrates the influence of ErrorBehaviour and ActivateRecoverMode on this
switchover of operating mode.

Automatic switchover of operating mode in the event of an error

Automatic switchover of operating mode once the current operation has been completed.

 Automatic switchover of operating mode when error is no longer pending.

See also
Tag ActivateRecoverMode V2 (Page 332)

Parameter ErrorBits V2 (Page 329)

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 329

8.2.4.9 Parameter ErrorBits V2
If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 0003h, for example, indicates that the errors
0001h and 0002h are pending simultaneously.

If there is a position feedback, PID_3Step uses ManualValue as output value in manual
mode. The exception is Errorbits = 10000h.

ErrorBits
 (DW#16#...)

Description

0000 There is no error.
0001 The "Input" parameter is outside the process value limits.

• Input > Config.InputUpperLimit or
• Input < Config.InputLowerLimit
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_3Step
remains in automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

0002 Invalid value at "Input_PER" parameter. Check whether an error is pending at the analog input.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_3Step
switches to "Approach substitute output value with error monitoring" or "Error monitoring" mode. As
soon as the error is no longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

0004 Error during fine tuning. Oscillation of the process value could not be maintained.
If ActivateRecoverMode = TRUE before the error occurred, PID_3Step cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0010 The setpoint was changed during tuning.
You can set the permitted fluctuation of the setpoint at the CancelTuningLevel tag.
If ActivateRecoverMode = TRUE before the error occurred, PID_3Step cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0020 Pretuning is not permitted during fine tuning.
If ActivateRecoverMode = TRUE before the error occurred, PID_3Step remains in fine tuning mode.

0080 Error during pretuning. Incorrect configuration of output value limits.
Check whether the limits of the output value are configured correctly and match the control logic.
If ActivateRecoverMode = TRUE before the error occurred, PID_3Step cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0100 Error during fine tuning resulted in invalid parameters.
If ActivateRecoverMode = TRUE before the error occurred, PID_3Step cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

Instructions
8.2 PID_3Step

 PID control
330 Function Manual, 12/2014, A5E35300227-AA

ErrorBits
 (DW#16#...)

Description

0200 Invalid value at "Input" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_3Step
switches to "Approach substitute output value with error monitoring" or "Error monitoring" mode. As
soon as the error is no longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

0400 Calculation of output value failed. Check the PID parameters.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_3Step
switches to "Approach substitute output value with error monitoring" or "Error monitoring" mode. As
soon as the error is no longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

0800 Sampling time error: PID_3Step is not called within the sampling time of the cyclic interrupt OB.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_3Step
remains in automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

1000 Invalid value at "Setpoint" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_3Step
switches to "Approach substitute output value with error monitoring" or "Error monitoring" mode. As
soon as the error is no longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

2000 Invalid value at Feedback_PER parameter.
Check whether an error is pending at the analog input.
The actuator cannot be moved to the substitute output value and remains in its current position. In man-
ual mode, you can change the position of the actuator only with Manual_UP and Manual_DN, and not
with ManualValue.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is
no longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

4000 Invalid value at Feedback parameter. Value has an invalid number format.
The actuator cannot be moved to the substitute output value and remains in its current position. In man-
ual mode, you can change the position of the actuator only with Manual_UP and Manual_DN, and not
with ManualValue.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is
no longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 331

ErrorBits
 (DW#16#...)

Description

8000 Error during digital position feedback. Actuator_H = TRUE and Actuator_L = TRUE.
The actuator cannot be moved to the substitute output value and remains in its current position. Manual
mode is not possible in this state.
In order to move the actuator from this state, you must deactivate the "Actuator endstop" (Con-
fig.ActuatorEndStopOn = FALSE) or switch to manual mode without endstop signals (Mode = 10).
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is
no longer pending, PID_3Step switches back to automatic mode.
If pretuning, fine tuning, or transition time measurement mode and ActivateRecoverMode = TRUE were
active before the error occurred, PID_3Step switches to the operating mode that is saved in the Mode
parameter.

10000 Invalid value at ManualValue parameter. Value has an invalid number format.
The actuator cannot be moved to the manual value and remains in its current position.
Specify a valid value in ManualValue or move the actuator in manual mode with Manual_UP and Manu-
al_DN.

20000 Invalid value at SavePosition tag. Value has an invalid number format.
The actuator cannot be moved to the substitute output value and remains in its current position.

40000 Invalid value at Disturbance parameter. Value has an invalid number format.
If automatic mode was active and ActivateRecoverMode = TRUE before the error occurred, Disturbance
is set to zero. PID_3Step remains in automatic mode.
If pretuning or fine tuning mode was active and ActivateRecoverMode = TRUE before the error oc-
curred, PID_3Step switches to the operating mode saved in the Mode parameter. If Disturbance in the
current phase has no effect on the output value, tuning is not be canceled.
The error has no effect during transition time measurement.

Instructions
8.2 PID_3Step

 PID control
332 Function Manual, 12/2014, A5E35300227-AA

8.2.4.10 Tag ActivateRecoverMode V2
The ActivateRecoverMode tag determines the reaction to error. The Error parameter
indicates if an error is pending. When the error is no longer pending, Error = FALSE. The
ErrorBits parameter shows which errors have occurred.

 NOTICE

Your system may be damaged.

If ActivateRecoverMode = TRUE, PID_3Step remains in automatic mode even if the
process limit values are exceeded. This may damage your system.

It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

Automatic mode

ActivateRecov-
erMode

Description

FALSE In the event of an error, PID_3Step switches to "Inactive" or "Approach substitute output value" mode.
The controller is only activated by a falling edge at Reset or a rising edge at ModeActivate.

TRUE If errors occur frequently in automatic mode, this setting has a negative effect on the control response,
because PID_3Step switches between the calculated output value and the substitute output value at
each error. In this case, check the ErrorBits parameter and eliminate the cause of the error.
If one or more of the following errors occur, PID_3Step stays in automatic mode:
• 0001h: The "Input" parameter is outside the process value limits.
• 0800h: Sampling time error
• 40000h: Invalid value at Disturbance parameter.
If one or more of the following errors occur, PID_3Step switches to "Approach substitute output value
with error monitoring" or "Error monitoring" mode:
• 0002h: Invalid value at Input_PER parameter.
• 0200h: Invalid value at Input parameter.
• 0400h: Calculation of output value failed.
• 1000h: Invalid value at Setpoint parameter.
If one or more of the following errors occur, PID_3Step can no longer move the actuator:
• 2000h: Invalid value at Feedback_PER parameter.
• 4000h: Invalid value at Feedback parameter.
• 8000h: Error during digital position feedback.
• 20000h: Invalid value at SavePosition tag. Value has an invalid number format.
The characteristics are independent of ErrorBehaviour.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 333

Pretuning, fine tuning, and transition time measurement

ActivateRecov-
erMode

Description

FALSE In the event of an error, PID_3Step switches to "Inactive" or "Approach substitute output value" mode.
The controller is only activated by a falling edge at Reset or a rising edge at ModeActivate.
The controller changes to "Inactive" mode after successful transition time measurement.

TRUE If the following error occurs, PID_3Step remains in the active mode:
• 0020h: Pretuning is not permitted during fine tuning.
The following errors are ignored:
• 10000h: Invalid value at ManualValue parameter.
• 20000h: Invalid value at SavePosition tag.
When any other error occurs, PID_3Step cancels the tuning and switches to the mode from which tun-
ing was started.

Manual mode
ActivateRecoverMode is not effective in manual mode.

See also
Static tags of PID_3Step V2 (Page 314)

Parameters State and Mode V2 (Page 324)

Instructions
8.2 PID_3Step

 PID control
334 Function Manual, 12/2014, A5E35300227-AA

8.2.4.11 Tag Warning V2
If several warnings are pending simultaneously, their values are displayed with binary
addition. The display of warning 0005h, for example, indicates that the warnings 0001h and
0004h are pending simultaneously.

Warning
 (DW#16#...)

Description

0000 No warning pending.
0001 The point of inflection was not found during pretuning.
0004 The setpoint was limited to the configured limits.
0008 Not all the necessary controlled system properties were defined for the selected method of calculation.

Instead, the PID parameters were calculated using the TIR.TuneRule = 3 method.
0010 The operating mode could not be changed because Reset = TRUE or ManualEnable = TRUE.
0020 The cycle time of the calling OB limits the sampling time of the PID algorithm.

Improve results by using shorter OB cycle times.
0040 The process value exceeded one of its warning limits.
0080 Invalid value at Mode. The operating mode is not switched.
0100 The manual value was limited to the limits of the controller output.
0200 The specified rule for tuning is not supported. No PID parameters are calculated.
0400 The transition time cannot be measured because the actuator settings do not match the selected meas-

uring method.
0800 The difference between the current position and the new output value is too small for transition time

measurement. This can produce incorrect results. The difference between the current output value and
new output value must be at least 50% of the entire control range.

1000 The substitute output value cannot be reached because it is outside the output value limits.
2000 The actuator was moved in one direction for longer than Config.VirtualActuatorLimit × Re-

tain.TransitTime. Check whether the actuator has reached an endstop signal.

The following warnings are deleted as soon as the cause is eliminated:

● 0001h

● 0004h

● 0008h

● 0040h

● 0100h

● 2000h

All other warnings are cleared with a rising edge at Reset or ErrorAck.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 335

8.2.5 PID_3Step V1

8.2.5.1 Description PID_3Step V1

Description
You use the PID_3Step instruction to configure a PID controller with self tuning for valves or
actuators with integrating behavior.

The following operating modes are possible:

● Inactive

● Pretuning

● Fine tuning

● Automatic mode

● Manual mode

● Approach substitute output value

● Transition time measurement

● Approach substitute output value with error monitoring

● Error monitoring

For a more detailed description of the operating modes, see the State parameter.

Instructions
8.2 PID_3Step

 PID control
336 Function Manual, 12/2014, A5E35300227-AA

PID algorithm
PID_3Step is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions. The following equation is used to calculate the output value.

Symbol Description
y Output value
Kp Proportional gain
s Laplace operator
b Proportional action weighting
w Setpoint
x Process value
TI Integral action time
a Derivative delay coefficient (T1 = a × TD)
TD Derivative action time
c Derivative action weighting

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 337

Block diagram without position feedback

Instructions
8.2 PID_3Step

 PID control
338 Function Manual, 12/2014, A5E35300227-AA

Block diagram with position feedback

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 339

Block diagram of PIDT1 with anti-windup

Call
PID_3Step is called in a constant time interval of the cycle time of the calling OB (preferably
in a cyclic interrupt OB).

Download to device
The actual values of retentive tags are only updated when you download PID_3Step
completely.

Downloading technology objects to device (Page 46)

Startup
At the startup of the CPU, PID_3Step starts in the operating mode that was last active. To
leave PID_3Step in "Inactive" mode, set RunModeByStartup = FALSE.

Instructions
8.2 PID_3Step

 PID control
340 Function Manual, 12/2014, A5E35300227-AA

Reaction to error
If errors occur, these are output in the Error parameter. You configure the reaction of
PID_3Step using the ErrorBehaviour and ActivateRecoverMode tags.

ErrorBe-
haviour

Acti-
vateRecover-
Mode

Actuator setting configuration
Set Output to

Reaction

0 FALSE Current output value Switch to "Inactive" mode (Mode = 0)
0 TRUE Current output value while

error is pending
Switch to "Error monitoring" mode
(Mode = 7)

1 FALSE Substitute output value Switch to "Approach substitute output
value" mode (Mode = 5)
Switch to "Inactive" mode (Mode = 0)

1 TRUE Substitute output value while
error is pending

Switch to "Approach substitute output
value with error monitoring" mode
(Mode = 8)
Switch to "Error monitoring" mode
(Mode = 7)

The ErrorBits parameter shows which errors have occurred.

See also
Parameter State and Retain.Mode V1 (Page 356)

Parameter ErrorBits V1 (Page 364)

Configuring PID_3Step V1 (Page 139)

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 341

8.2.5.2 Operating principle PID_3Step V1

Monitoring process value limits
You specify the high limit and low limit of the process value in the Config.InputUpperLimit
and Config.InputLowerLimit tags. If the process value is outside these limits, an error occurs
(ErrorBits = 0001hex).

You specify a high and low warning limit of the process value in the
Config.InputUpperWarning and Config.InputLowerWarning tags. If the process value is
outside these warning limits, a warning occurs (Warnings = 0040hex), and the
InputWarning_H or InputWarning_L output parameter changes to TRUE.

Limiting the setpoint
You specify a high limit and low limit of the setpoint in the Config.SetpointUpperLimit and
Config.SetpointLowerLimit tags. PID_3Step automatically limits the setpoint to the process
value limits. You can limit the setpoint to a smaller range. PID_3Step checks whether this
range falls within the process value limits. If the setpoint is outside these limits, the high or
low limit is used as the setpoint, and output parameter SetpointLimit_H or SetpointLimit_L is
set to TRUE.

The setpoint is limited in all operating modes.

Limiting the output value
You specify a high limit and low limit of the output value in the Config.OutputUpperLimit and
Config.OutputLowerLimit tags. The output value limits must be within "Low endstop" and
"High endstop".

● High endstop: Config.FeedbackScaling.UpperPointOut

● Low endstop: Config.FeedbackScaling.LowerPointOut

Rule:

UpperPointOut ≥ OutputUpperLimit > OutputLowerLimit ≥ LowerPointOut

The valid values for "High endstop" and "Low endstop" depend upon:

● FeedbackOn

● FeedbackPerOn

● OutputPerOn

OutputPerOn FeedbackOn FeedbackPerOn LowerPointOut UpperPointOut
FALSE FALSE FALSE Cannot be set (0.0%) Cannot be set (100.0%)
FALSE TRUE FALSE -100.0% or 0.0% 0.0% or +100.0%
FALSE TRUE TRUE -100.0% or 0.0% 0.0% or +100.0%
TRUE FALSE FALSE Cannot be set (100.0%) Cannot be set (100.0%)
TRUE TRUE FALSE -100.0% or 0.0% 0.0% or +100.0%
TRUE TRUE TRUE -100.0% or 0.0% 0.0% or +100.0%

Instructions
8.2 PID_3Step

 PID control
342 Function Manual, 12/2014, A5E35300227-AA

If OutputPerOn = FALSE and FeedbackOn = FALSE, you cannot limit the output value. The
digital outputs are reset with Actuator_H = TRUE or Actuator_L = TRUE, or after a travel time
amounting to 110% of the motor transition time.

The output value is 27648 at 100% and -27648 at -100%. PID_3Step must be able to close
the valve completely. Therefore, zero must be included in the output value limits.

Substitute output value
If an error has occurred, PID_3Step can output a substitute output value and move the
actuator to a safe position that is specified in the SavePosition tag. The substitute output
value must be within the output value limits.

Monitoring signal validity
The values of the following parameters are monitored for validity:

● Setpoint

● Input

● Input_PER

● Feedback

● Feedback_PER

● Output

Monitoring the PID_3Step sampling time
Ideally, the sampling time is equivalent to the cycle time of the calling OB. The PID_3Step
instruction measures the time interval between two calls. This is the current sampling time.
On every switchover of operating mode and during the initial startup, the mean value is
formed from the first 10 sampling times. Too great a difference between the current sampling
time and this mean value triggers an error (ErrorBits = 0800 hex).

PID_3Step is set to "Inactive" mode during tuning under the following conditions:

● New mean value >= 1.1 x old mean value

● New mean value <= 0.9 x old mean value

In automatic mode, PID_3Step is set to "Inactive" mode under the following conditions:

● New mean value >= 1.5 x old mean value

● New mean value <= 0.5 x old mean value

Sampling time of the PID algorithm
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value. It
is calculated during tuning and rounded to a multiple of the cycle time. All other functions of
PID_3Step are executed at every call.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 343

Measuring the motor transition time
The motor transition time is the time in seconds the motor requires to move the actuator from
the closed to the opened state. The maximum time that the actuator is moved in one
direction is 110% of the motor transition time. PID_3Step requires the motor transition time to
be as accurate as possible for good controller results. The data in the actuator
documentation contains average values for this type of actuator. The value for the specific
actuator used may differ. You can measure the motor transition time during commissioning.
The output value limits are not taken into consideration during the motor transition time
measurement. The actuator can travel to the high or the low endstop.

Control logic
An increase of the output value is generally intended to cause an increase in the process
value. This is referred to as a normal control logic. For cooling and discharge control
systems, it may be necessary to invert the control logic. PID_3Step does not work with
negative proportional gain. If InvertControl = TRUE, an increasing control deviation causes a
reduction in the output value. The control logic is also taken into account during pretuning
and fine tuning.

See also
Configuring PID_3Step V1 (Page 139)

Instructions
8.2 PID_3Step

 PID control
344 Function Manual, 12/2014, A5E35300227-AA

8.2.5.3 PID_3Step V1 input parameters

Parameters Data type Default Description
Setpoint REAL 0.0 Setpoint of the PID controller in automatic mode
Input REAL 0.0 A variable of the user program is used as source for the pro-

cess value.
If you are using parameter Input, then Con-
fig.InputPerOn = FALSE must be set.

Input_PER WORD W#16#0 An analog input is used as source for the process value.
If you are using parameter Input_PER, then Con-
fig.InputPerOn = TRUE must be set.

Actuator_H BOOL FALSE Digital position feedback of the valve for the high endstop
If Actuator_H = TRUE, the valve is at the high endstop and is
no longer moved towards this direction.

Actuator_L BOOL FALSE Digital position feedback of the valve for the low endstop
If Actuator_L = TRUE, the valve is at the low endstop and is
no longer moved towards this direction.

Feedback REAL 0.0 Position feedback of the valve
If you are using parameter Feedback, then Con-
fig.FeedbackPerOn = FALSE must be set.

Feedback_PER WORD W#16#0 Analog feedback of the valve position
If you are using parameter Feedback_PER, then Con-
fig.FeedbackPerOn = TRUE must be set.
Feedback_PER is scaled based on the variables:
• Config.FeedbackScaling.LowerPointIn
• Config.FeedbackScaling.UpperPointIn
• Config.FeedbackScaling.LowerPointOut
• Config.FeedbackScaling.UpperPointOut

ManualEnable BOOL FALSE • A FALSE -> TRUE edge selects "Manual mode", while
State = 4, Retain.Mode remains unchanged.

• A TRUE -> FALSE edge selects the most recently active
operating mode

A change of Retain.Mode will not take effect during ManualE-
nable = TRUE. The change of Retain.Mode will only be con-
sidered upon a TRUE -> FALSE edge at ManualEnable .
PID_3Step V1.1If at start of the CPU ManualEnable = TRUE,
PID_3Step starts in manual mode. A rising edge
(FALSE > TRUE) at ManualEnable is not necessary.
PID_3Step V1.0
At the start of the CPU, PID_3Step only switches to manual
mode with a rising edge (FALSE->TRUE) at ManualEnable .
Without rising edge, PID_3Step starts in the last operating
mode in which ManualEnable was FALSE.

ManualValue REAL 0.0 In manual mode, you specify the absolute position of the
valve. ManualValue will only be evaluated if you are using
OutputPer, or if position feedback is available.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 345

Parameters Data type Default Description
Manual_UP BOOL FALSE In manual mode, every rising edge opens the valve by 5% of

the total control range, or for the duration of the minimum
motor transition time. Manual_UP is evaluated only if you are
not using Output_PER and there is no position feedback
available.

Manual_DN BOOL FALSE In manual mode, every rising edge closes the valve by 5% of
the total control range, or for the duration of the minimum
motor transition time. Manual_DN is evaluated only if you are
not using Output_PER and there is no position feedback
available.

Reset BOOL FALSE Restarts the controller.
• FALSE -> TRUE edge

– Change to "Inactive" mode
– Intermediate controller values are reset

(PID parameters are retained)
• TRUE -> FALSE edge

Change in most recent active mode

Instructions
8.2 PID_3Step

 PID control
346 Function Manual, 12/2014, A5E35300227-AA

8.2.5.4 PID_3Step V1 output parameters

Parameter Data type Default Description
ScaledInput REAL 0.0 Scaled process value
ScaledFeedback REAL 0.0 Scaled position feedback

For an actuator without position feedback, the position of the
actuator indicated by ScaledFeedback is very imprecise.
ScaledFeedback may only be used for rough estimation of the
current position in this case.

Output_UP BOOL FALSE Digital output value for opening the valve
If Config.OutputPerOn = FALSE, the Output_UP parameter is
used.

Output_DN BOOL FALSE Digital output value for closing the valve
If Config.OutputPerOn = FALSE, the Output_DN parameter is
used.

Output_PER WORD W#16#0 Analog output value
If Config.OutputPerOn = TRUE, Output_PER is used.

SetpointLimit_H BOOL FALSE If SetpointLimit_H = TRUE, the absolute setpoint high limit is
reached. In the CPU, the setpoint is limited to the configured
absolute setpoint high limit. The configured absolute process
value high limit is the default for the setpoint high limit.
If you configure Config.SetpointUpperLimit to a value within
the process value limits, this value is used as the setpoint high
limit.

SetpointLimit_L BOOL FALSE If SetpointLimit_L = TRUE, the absolute setpoint low limit has
been reached. In the CPU, the setpoint is limited to the con-
figured absolute setpoint low limit. The configured absolute
process value low limit is the default setting for the setpoint
low limit.
If you configure Config.SetpointLowerLimit to a value within
the process value limits, this value is used as the setpoint low
limit.

InputWarning_H BOOL FALSE If InputWarning_H = TRUE, the process value has reached or
exceeded the warning high limit.

InputWarning_L BOOL FALSE If InputWarning_L = TRUE, the process value has reached or
fallen below the warning low limit.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 347

Parameter Data type Default Description
State INT 0 The State parameter (Page 356) shows the current operating

mode of the PID controller. You change the operating mode
with the Retain.Mode tag.
• State = 0: Inactive
• State = 1: Pretuning
• State = 2: Fine tuning
• State = 3: Automatic mode
• State = 4: Manual mode
• State = 5: Approach substitute output value
• State = 6: Transition time measurement
• State = 7: Error monitoring
• State = 8: Approach substitute output value with error

monitoring

Error BOOL FALSE If Error = TRUE, at least one error message is pending.
ErrorBits DWORD DW#16#0 The ErrorBits parameter (Page 364) indicates the error mes-

sages.

See also
Parameter State and Retain.Mode V1 (Page 356)

Parameter ErrorBits V1 (Page 364)

Instructions
8.2 PID_3Step

 PID control
348 Function Manual, 12/2014, A5E35300227-AA

8.2.5.5 PID_3Step V1 static tags
You must not change tags that are not listed. These are used for internal purposes only.

Tag Data type Default Description
ActivateRecoverMode BOOL TRUE The ActivateRecoverMode tag (Page 366) determines the

reaction to error.
RunModeByStartup BOOL TRUE Activate Mode after CPU restart

If RunModeByStartup = TRUE, the controller returns to the
last active operating mode after a CPU restart.
If RunModeByStartup = FALSE, the controller remains inac-
tive after a CPU restart.

PhysicalUnit INT 0 Unit of measurement of the process value and setpoint, e.g.,
ºC, or ºF.

PhysicalQuantity INT 0 Physical quantity of the process value and setpoint, e.g.,
temperature.

ErrorBehaviour INT 0 If ErrorBehaviour = 0 and an error has occurred, the valve
stays at its current position and the controller switches di-
rectly to "Inactive" or "Error monitoring" mode.
If ErrorBehaviour = 1 and an error occurs, the actuator
moves to the substitute output value and only then switches
to "Inactive" or "Error monitoring" mode.
If the following errors occur, you can no longer move the
valve to a configured substitute output value.
• 2000h: Invalid value at Feedback_PER parameter.
• 4000h: Invalid value at Feedback parameter.
• 8000h: Error during digital position feedback.

Warning DWORD DW#16#0 The Warning tag (Page 356) displays the warnings generat-
ed since a Reset or since the last switchover of operating
mode.
Cyclic warnings (for example, process value warning) are
shown until the cause of the warning is removed. They are
automatically deleted once their cause has gone. Non-cyclic
warnings (for example, point of inflection not found) remain
and are deleted like errors.

SavePosition REAL 0.0 Substitute output value
If ErrorBehaviour = 1 and an error occurs, the actuator
moves to a safe position for the plant and only then switches
to "Inactive" mode.

CurrentSetpoint REAL 0.0 Currently active setpoint. This value is frozen at the start of
tuning.

Progress REAL 0.0 Progress of tuning as a percentage (0.0 - 100.0)
Config.InputPerOn BOOL TRUE If InputPerOn = TRUE, the Input_PER parameter is used. If

InputPerOn = FALSE, the Input parameter is used.
Config.OutputPerOn BOOL FALSE If OutputPerOn = TRUE, the Output_PER parameter is

used. If OutputPerOn = FALSE, the Ouput_UP and Out-
put_DN parameters are used.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 349

Tag Data type Default Description
Config.LoadBackUp BOOL FALSE If LoadBackUp = TRUE, the last set of PID parameters is

reloaded. This set was saved prior to the last tuning opera-
tion. LoadBackUp is automatically reset to FALSE.

Config.InvertControl BOOL FALSE Invert control logic
If InvertControl = TRUE, an increasing control deviation
causes a reduction in the output value.

Config.FeedbackOn BOOL FALSE If FeedbackOn = FALSE, a position feedback is simulated.
Position feedback is generally activated when Feed-
backOn = TRUE.

Config.FeedbackPerOn BOOL FALSE FeedbackPerOn is only effective when Feed-
backOn = TRUE.
If FeedbackPerOn = TRUE, the analog input is used for the
position feedback (Feedback_PER parameter).
If FeedbackPerOn = FALSE, the Feedback parameter is
used for the position feedback.

Config.ActuatorEndStopOn BOOL FALSE If ActuatorEndStopOn = TRUE, the digital position feedback
Actuator_L and Actuator_H are taken into consideration.

Config.InputUpperLimit REAL 120.0 High limit of the process value
At the I/O input, the process value can be a maximum of
18% higher than the standard range (overrange). An error is
no longer signaled due to a violation of the "Process value
high limit". Only a wire-break and a short-circuit are recog-
nized and PID_3Step reacts according to the configured
reaction to error.
InputUpperLimit > InputLowerLimit

Config.InputLowerLimit REAL 0.0 Low limit of the process value
InputLowerLimit < InputUpperLimit

Config.InputUpperWarning REAL +3.402822e+38 Warning high limit of the process value
If you set InputUpperWarning outside the process value
limits, the configured absolute process value high limit is
used as the warning high limit.
If you configure InputUpperWarning within the process value
limits, this value is used as the warning high limit.
InputUpperWarning > InputLowerWarning
InputUpperWarning ≤ InputUpperLimit

Config.InputLowerWarning REAL -3.402822e+38 Warning low limit of the process value
If you set InputLowerWarning outside the process value
limits, the configured absolute process value low limit is
used as the warning low limit.
If you configure InputLowerWarning within the process value
limits, this value is used as the warning low limit.
InputLowerWarning < InputUpperWarning
InputLowerWarning ≥ InputLowerLimit

Config.OutputUpperLimit REAL 100.0 High limit of output value
For details, see OutputLowerLimit

Instructions
8.2 PID_3Step

 PID control
350 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Config.OutputLowerLimit REAL 0.0 Low limit of output value

If OutputPerOn = TRUE or FeedbackOn = TRUE, the range
of values from -100% to +100%, including zero, is valid. At -
100%, Output = -27648; at +100%, Output = 27648
If OutputPerOn = FALSE, the range of values from 0% to
100% is valid. The valve is completely closed at 0% and
completely opened at 100%.

Config.SetpointUpperLimit REAL +3.402822e+38 High limit of setpoint
If you set SetpointUpperLimit outside the process value
limits, the configured absolute process value high limit is
preassigned as the setpoint high limit.
If you configure SetpointUpperLimit within the process value
limits, this value is used as the setpoint high limit.

Config.SetpointLowerLimit REAL - 3.402822e+38 Low limit of the setpoint
If you set SetpointLowerLimit outside the process value
limits, the configured absolute process value low limit is
preassigned as the setpoint low limit.
If you set SetpointLowerLimit within the process value limits,
this value is used as the setpoint low limit.

Config.MinimumOnTime REAL 0.0 Minimum ON time
Minimum time in seconds for which the servo drive must be
switched on.

Config.MinimumOffTime REAL 0.0 Minimum OFF time
Minimum time in seconds for which the servo drive must be
switched off.

Config.TransitTime REAL 30.0 Motor transition time
Time in seconds the actuating drive requires to move the
valve from the closed to the opened state.

Con-
fig.InputScaling.UpperPointIn

REAL 27648.0 Scaling Input_PER high
Input_PER is converted to a percentage based on the two
value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the InputScaling structure.

Con-
fig.InputScaling.LowerPointIn

REAL 0.0 Scaling Input_PER low
Input_PER is converted to a percentage based on the two
value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the InputScaling structure.

Con-
fig.InputScaling.UpperPointOu
t

REAL 100.0 Scaled high process value
Input_PER is converted to a percentage based on the two
value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the InputScaling structure.

Con-
fig.InputScaling.LowerPointOu
t

REAL 0.0 Scaled low process value
Input_PER is converted to a percentage based on the two
value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the InputScaling structure.

Con-
fig.FeedbackScaling.UpperPoi
ntIn

REAL 27648.0 Scaling Feedback_PER high
Feedback_PER is converted to a percentage based on the
two value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the FeedbackScaling structure.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 351

Tag Data type Default Description
Con-
fig.FeedbackScaling.LowerPoi
ntIn

REAL 0.0 Scaling Feedback_PER low
Feedback_PER is converted to a percentage based on the
two value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the FeedbackScaling structure.

Con-
fig.FeedbackScaling.UpperPoi
ntOut

REAL 100.0 High endstop
Feedback_PER is converted to a percentage based on the
two value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the FeedbackScaling structure.

Con-
fig.FeedbackScaling.LowerPoi
ntOut

REAL 0.0 Low endstop
Feedback_PER is converted to a percentage based on the
two value pairs UpperPointOut, UpperPointIn and Lower-
PointOut, LowerPointIn of the FeedbackScaling structure.

GetTransitTime.InvertDirection BOOL FALSE If InvertDirection = FALSE, the valve is fully opened, closed,
and then reopened in order to determine the valve transition
time.
If InvertDirection = TRUE, the valve is fully closed, opened,
and then closed again.

GetTransit-
Time.SelectFeedback

BOOL FALSE If SelectFeedback = TRUE, then Feedback_PER, or Feed-
back is taken into consideration in the transition time meas-
urement.
If SelectFeedback = FALSE, then Actuator_H and Actua-
tor_L are taken into consideration in the transition time
measurement.

GetTransitTime.Start BOOL FALSE If Start = TRUE, the transition time measurement is started.
GetTransitTime.State INT 0 Current phase of the transition time measurement

• State = 0: Inactive
• State = 1: Open valve completely
• State = 2: Close valve completely
• State = 3: Move valve to target position (NewOutput)
• State = 4: Transition time measurement successfully

completed
• State = 5: Transition time measurement canceled

GetTransitTime.NewOutput REAL 0.0 Target position for transition time measurement with position
feedback
The target position must be between "High endstop" and
"Low endstop". The difference between NewOutput and
ScaledFeedback must be at least 50% of the permissible
control range.

CycleTime.StartEstimation BOOL TRUE If StartEstimation = TRUE, the measurement of the
PID_3Step sampling time is started. Cy-
cleTime.StartEstimation = FALSE once measurement is
complete.

CycleTime.EnEstimation BOOL TRUE If EnEstimation = TRUE, the PID_3Step sampling time is
calculated.

Instructions
8.2 PID_3Step

 PID control
352 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
CycleTime.EnMonitoring BOOL TRUE If EnMonitoring = TRUE, the PID_3Step sampling time is

monitored. If it is not possible to execute PID_3Step within
the sampling time, the error 0800h is output and the operat-
ing mode is switched. ActivateRecoverMode and ErrorBe-
haviour determine which operating mode is switched to.
If EnMonitoring = FALSE, the PID_3Step sampling time is
not monitored, the error 0800h is not output, and the operat-
ing mode is not switched.

CycleTime.Value REAL 0.1 PID_3Step sampling time in seconds
CycleTime.Value is determined automatically and is usually
equivalent to the cycle time of the calling OB.

CtrlParamsBackUp.SetByUser BOOL FALSE Saved value of Retain.CtrlParams.SetByUser.
You can reload values from the CtrlParamsBackUp struc-
ture with Config.LoadBackUp = TRUE.

CtrlParamsBackUp.Gain REAL 1.0 Saved proportional gain
CtrlParamsBackUp.Ti REAL 20.0 Saved integral action time
CtrlParamsBackUp.Td REAL 0.0 Saved derivative action time
CtrlParamsBackUp.TdFiltRatio REAL 0.0 Saved derivative delay coefficient
CtrlParamsBack-
Up.PWeighting

REAL 0.0 Saved proportional action weighting

CtrlParamsBack-
Up.DWeighting

REAL 0.0 Saved derivative action weighting

CtrlParamsBackUp.Cycle REAL 1.0 Saved sampling time of PID algorithm
CtrlParamsBack-
Up.InputDeadBand

REAL 0.0 Saved dead band width of the control deviation

PIDSelf-
Tune.SUT.CalculateSUTPara
ms

BOOL FALSE The properties of the controlled system are saved during
tuning. If CalculateSUTParams = TRUE, the PID parame-
ters are recalculated on the basis of these properties. The
PID parameters are calculated using the method set in
TuneRuleSUT. CalculateSUTParams is set to FALSE fol-
lowing calculation.

PIDSelf-
Tune.SUT.TuneRuleSUT

INT 1 Methods used to calculate parameters during pretuning:
• TuneRuleSUT = 0: PID rapid I
• TuneRuleSUT = 1: PID slow I
• TuneRuleSUT = 2: Chien, Hrones and Reswick PID
• TuneRuleSUT = 3TuneRuleSUT = 3: Chien, Hrones,

Reswick PI
• TuneRuleSUT = 4: PID rapid II
• TuneRuleSUT = 5: PID slow II

PIDSelfTune.SUT.State INT 0 The SUT.State tag indicates the current phase of pretuning:

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 353

Tag Data type Default Description
PIDSelfTune.TIR.RunIn BOOL FALSE • RunIn = FALSE

Pretuning is started when fine tuning is started from in-
active or manual mode.

If fine tuning is started from automatic mode, the system
uses the existing PID parameters to control to the set-
point.

Only then will fine tuning start. If pretuning is not possi-
ble, PID_3Step switches to "Inactive" mode.

• RunIn = TRUE

The pretuning is skipped. PID_3Step attempts to reach
the setpoint with the minimum or maximum output value.
This can produce increased overshoot. Only then will fi-
ne tuning start.

RunIn is set to FALSE after fine tuning.
PIDSelf-
Tune.TIR.CalculateTIRParam
s

BOOL FALSE The properties of the controlled system are saved during
tuning. If CalculateTIRParams = TRUE, the PID parameters
are recalculated on the basis of these properties. The PID
parameters are calculated using the method set in TuneRu-
leTIR. CalculateTIRParams is set to FALSE following calcu-
lation.

PIDSelf-
Tune.TIR.TuneRuleTIR

INT 0 Methods used to calculate parameters during fine tuning:
• TuneRuleTIR = 0: PID automatic
• TuneRuleTIR = 1: PID rapid
• TuneRuleTIR = 2: PID slow
• TuneRuleTIR = 3: Ziegler-Nichols PID
• TuneRuleTIR = 4: Ziegler-Nichols PI
• TuneRuleTIR = 5: Ziegler-Nichols P

PIDSelfTune.TIR.State INT 0 The TIR.State tag indicates the current phase of "fine tun-
ing":

Instructions
8.2 PID_3Step

 PID control
354 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Retain.Mode INT 0 A change to the value of Retain.Mode initiates a switch to

another operating mode.
The following operating mode is enabled upon a change of
Mode to:
• Mode = 0: Inactive
• Mode = 1: Pretuning
• Mode = 2: Fine tuning
• Mode = 3: Automatic mode
• Mode = 4: Manual mode
• Mode = 5: Approach substitute output value
• Mode = 6: Transition time measurement
• Mode = 7Mode = 7: Error monitoring
• Mode = 8: Approach substitute output value with error

monitoring
Mode is retentive.

Retain.CtrlParams.SetByUser BOOL FALSE If SetByUser = FALSE, the PID parameters are determined
automatically and PID_3Step operates with a dead band at
the output value. The dead band width is calculated during
tuning on the basis of the standard deviation of the output
value and saved in Retain.CtrlParams.OutputDeadBand.
If SetByUser = TRUE, the PID parameters are entered
manually and PID_3 Step operates without a dead band at
the output value. Retain.CtrlParams.OutputDeadBand = 0.0
SetByUser is retentive.

Retain.CtrlParams.Gain REAL 1.0 Active proportional gain
Gain is retentive.

Retain.CtrlParams.Ti REAL 20.0 • Ti > 0.0: Active integral action time
• Ti = 0.0: Integral action is deactivated
Ti is retentive.

Retain.CtrlParams.Td REAL 0.0 • Td > 0.0: Active derivative action time
• Td = 0.0: Derivative action is deactivated
Td is retentive.

Retain.CtrlParams.TdFiltRatio REAL 0.0 Active derivative delay coefficient
TdFiltRatio is retentive.

Retain.CtrlParams.PWeighting REAL 0.0 Active proportional action weighting
PWeighting is retentive.

Retain.CtrlParams.DWeighting REAL 0.0 Active derivative action weighting
DWeighting is retentive.

Retain.CtrlParams.Cycle REAL 1.0 Active sampling time of PID algorithm in seconds, rounded
to an integer multiple of the cycle time of the calling OB.
Cycle is retentive.

Re-
tain.CtrlParams.InputDeadBan
d

REAL 0.0 Dead band width of the control deviation
InputDeadBand is retentive.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 355

 Note

Change the tags listed in this table in "Inactive" mode to prevent malfunction of the PID
controller. "Inactive" mode is forced by setting the "Retain.Mode" tag to "0".

See also
Parameter State and Retain.Mode V1 (Page 356)

Tag ActivateRecoverMode V1 (Page 366)

Downloading technology objects to device (Page 46)

Instructions
8.2 PID_3Step

 PID control
356 Function Manual, 12/2014, A5E35300227-AA

8.2.5.6 Parameter State and Retain.Mode V1

Correlation of the parameters
The State parameter shows the current operating mode of the PID controller. You cannot
change the State parameter.

To switch from one operating mode to another, you must change the Retain.Mode tag. This
also applies when the value for the new operating mode is already in Retain.Mode. For
example, set Retain.Mode = 0 first and then Retain.Mode = 3. Provided the current operating
mode of the controller permits this switchover, State will be set to the value of Retain.Mode.

When PID_3Step automatically switches from one operating mode to another, the following
applies: State != Retain.Mode.

Examples:

● After successful pretuning
State = 3 and Retain.Mode = 1

● In the event of an error
State = 0 and Retain.Mode remain at the previous value, for example, Retain.Mode = 3

● ManualEnalbe = TRUE
State = 4 and Retain.Mode remain at the previous value, e.g., Retain.Mode = 3

 Note

You want, for example, to repeat successful fine tuning without exiting automatic mode
with Mode = 0.

Setting Retain.Mode to an invalid value such as 9999 for one cycle has no effect on
State. Set Mode = 2 in the next cycle. In this way, you can generate a change to
Retain.Mode without first switching to "Inactive" mode.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 357

Meaning of values

State / Re-
tain.Mode

Description

0 Inactive
The controller is switched off and no longer changes the valve position.

1 Pretuning
The pretuning determines the process response to a pulse of the output value and searches for the point of
inflection. The optimized PID parameters are calculated as a function of the maximum rate of rise and dead
time of the controlled system.
Pretuning requirements:
• State = 0 or State = 4
• ManualEnable = FALSE
• The motor transition time has been configured or measured.
• The setpoint and the process value lie within the configured limits.
The more stable the process value is, the easier it is to calculate the PID parameters and the more precise
the result will be. Noise on the process value can be tolerated as long as the rate of rise of the process
value is significantly higher as compared to the noise.
Before the PID parameters are recalculated, they are backed up and can be reactivated with Con-
fig.LoadBackUp. The setpoint is frozen in the CurrentSetpoint tag.
The controller switches to automatic mode following successful pretuning and to "Inactive" mode following
unsuccessful pretuning.
The pretuning phase is indicated with the SUT.State tag.

Instructions
8.2 PID_3Step

 PID control
358 Function Manual, 12/2014, A5E35300227-AA

State / Re-
tain.Mode

Description

2 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID parameters are tuned
based on the amplitude and frequency of this oscillation. The differences between the process response
during pretuning and fine tuning are analyzed. All PID parameters are recalculated from the results. PID
parameters from fine tuning usually have better master control and disturbance characteristics than PID
parameters from pretuning.
PID_3Step automatically attempts to generate an oscillation greater than the noise of the process value.
Fine tuning is only minimally influenced by the stability of the process value.
The PID parameters are backed up before fine tuning. They can be reactivated with Config.LoadBackUp.
The setpoint is frozen in the CurrentSetpoint tag.
Requirements for fine tuning:
• The motor transition time has been configured or measured.
• The setpoint and the process value lie within the configured limits.
• ManualEnable = FALSE
• Automatic (State = 3), inactive (State = 0) or manual (State = 4) mode
Fine tuning proceeds as follows when started from:
• Automatic mode (State = 3)

Start fine tuning from automatic mode if you wish to improve the existing PID parameters through tuning.

PID_3Step controls the system using the existing PID parameters until the control loop has stabilized
and the requirements for fine tuning have been met. Only then will fine tuning start.

• Inactive (State = 0) or manual mode (State = 4)

Pretuning is always started first. The determined PID parameters will be used for control until the control
loop has stabilized and the requirements for fine tuning have been met.

If PIDSelfTune.TIR.RunIn = TRUE, pretuning is skipped and an attempt is made to reach the setpoint
with the minimum or maximum output value. This can produce increased overshoot. Fine tuning then
starts automatically.

The controller switches to automatic mode following successful fine tuning. If fine tuning was not successful,
the controller switches to "Inactive" mode.
The fine tuning phase is indicated with the TIR.State tag.

3 Automatic mode
In automatic mode, PID_3Step controls the controlled system in accordance with the parameters specified.
The controller switches to automatic mode if one the following requirements is fulfilled:
• Pretuning successfully completed
• Fine tuning successfully completed
• Changing the Retain.Mode tag to the value 3.
When the CPU is switched on or switches from Stop to RUN mode, PID_3Step starts in the most recently
active operating mode. To leave PID_3Step in "Inactive" mode, set RunModeByStartup = FALSE.
The ActivateRecoverMode tag is taken into consideration in automatic mode.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 359

State / Re-
tain.Mode

Description

4 Manual mode
In manual mode, you specify manual output values in the Manual_UP and Manual_DN parameters or Man-
ualValue parameter. Whether or not the actuator can be moved to the output value in the event of an error
is described in the ErrorBits parameter.
This operating mode is enabled if Retain.Mode = 4, or on a rising edge at ManualEnable.
If ManualEnable changes to TRUE, only State changes. Retain.Mode retains its current value. On a falling
edge at ManualEnable, PID_3Step returns to the previous operating mode.
The switchover to automatic mode is bumpless.
PID_3Step V1.1
Manual mode is always possible in the event of an error.
PID_3Step V1.0
Manual mode is dependent on the ActivateRecoverMode tag in the event of an error.

5 Approach substitute output value
This operating mode is activated in the event of an error or when Reset = TRUE if Errorbehaviour = 1 and
ActivateRecoverMode = FALSE..
PID_3Step moves the actuator to the substitute output value and then switches to "Inactive" mode.

6 Transition time measurement
The time that the motor needs to completely open the valve from the closed condition is determined.
This operating mode is activated when GetTransitTime.Start = TRUE is set.
If endstop signals are used to measure the transition time, the valve will be opened completely from its
current position, closed completely, and opened completely again. If GetTransit-
Time.InvertDirection = TRUE, this behavior is inverted.
If position feedback is used to measure the transition time, the actuator will be moved from its current posi-
tion to a target position.
The output value limits are not taken into consideration during the transition time measurement. The actua-
tor can travel to the high or the low endstop.

Instructions
8.2 PID_3Step

 PID control
360 Function Manual, 12/2014, A5E35300227-AA

State / Re-
tain.Mode

Description

7 Error monitoring
The control algorithm is switched off and no longer changes the valve position.
This operating mode is activated instead of "Inactive" mode in the event of an error.
All the following conditions must be met:
• Mode = 3 (automatic mode)
• Errorbehaviour = 0
• ActivateRecoverMode = TRUE
• One or more errors have occurred in which ActivateRecoverMode (Page 366) is effective.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.

8 Approach substitute output value with error monitoring
This operating mode is activated instead of "Approach substitute output value" mode in the event of an
error. PID_3Step moves the actuator to the substitute output value and then switches to "Error monitoring"
mode.
All the following conditions must be met:
• Mode = 3 (automatic mode)
• Errorbehaviour = 1
• ActivateRecoverMode = TRUE
• One or more errors have occurred in which ActivateRecoverMode (Page 366) is effective.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 361

Automatic switchover of operating mode during commissioning
PID_3Step automatically switches the operating mode in the event of an error. The following
diagram illustrates the influence of ErrorBehaviour on the switchover of operating mode from
transition time measurement, pretuning, and fine tuning modes.

Automatic switchover of operating mode in the event of an error

 Automatic switchover of operating mode once the current operation has been completed.

Instructions
8.2 PID_3Step

 PID control
362 Function Manual, 12/2014, A5E35300227-AA

Automatic switchover of operating mode in automatic mode (PID_3Step V1.1)
PID_3Step automatically switches the operating mode in the event of an error. The following
diagram illustrates the influence of ErrorBehaviour and ActivateRecoverMode on this
switchover of operating mode.

Automatic switchover of operating mode in the event of an error

 Automatic switchover of operating mode once the current operation has been completed.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 363

Automatic switchover of operating mode in automatic and manual modes (PID_3Step V1.0)
PID_3Step automatically switches the operating mode in the event of an error. The following
diagram illustrates the influence of ErrorBehaviour and ActivateRecoverMode on this
switchover of operating mode.

Automatic switchover of operating mode in the event of an error

Automatic switchover of operating mode once the current operation has been completed.

 Automatic switchover of operating mode when error is no longer pending.

See also
Tag ActivateRecoverMode V1 (Page 366)

Parameter ErrorBits V1 (Page 364)

Instructions
8.2 PID_3Step

 PID control
364 Function Manual, 12/2014, A5E35300227-AA

8.2.5.7 Parameter ErrorBits V1
If several errors are pending simultaneously, the values of the error codes are displayed with
binary addition. The display of error code 0003, for example, indicates that the errors 0001
and 0002 are pending simultaneously.

ErrorBits
 (DW#16#...)

Description

0000 There is no error.
0001 The "Input" parameter is outside the process value limits.

• Input > Config.InputUpperLimit or
• Input < Config.InputLowerLimit
If ActivateRecoverMode = TRUE and ErrorBehaviour = 1, the actuator moves to the substitute output
value. If ActivateRecoverMode = TRUE and ErrorBehaviour = 0, the actuator stops in its current posi-
tion. If ActivateRecoverMode = FALSE, the actuator stops in its current position.
PID_3Step V1.1
You can move the actuator in manual mode.
PID_3Step V1.0
Manual mode is not possible in this state. You cannot move the actuator again until you eliminate the
error.

0002 Invalid value at "Input_PER" parameter. Check whether an error is pending at the analog input.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is
no longer pending, PID_3Step switches back to automatic mode.

0004 Error during fine tuning. Oscillation of the process value could not be maintained.
0020 Pretuning is not permitted in automatic mode or during fine tuning.
0080 Error during pretuning. Incorrect configuration of output value limits.

Check whether the limits of the output value are configured correctly and match the control logic.
0100 Error during fine tuning resulted in invalid parameters.
0200 Invalid value at "Input" parameter: Value has an invalid number format.

If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is
no longer pending, PID_3Step switches back to automatic mode.

0400 Calculation of output value failed. Check the PID parameters.
0800 Sampling time error: PID_3Step is not called within the sampling time of the cyclic interrupt OB.

If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is
no longer pending, PID_3Step switches back to automatic mode.

1000 Invalid value at "Setpoint" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is
no longer pending, PID_3Step switches back to automatic mode.

2000 Invalid value at Feedback_PER parameter.
Check whether an error is pending at the analog input.
The actuator cannot be moved to the substitute output value and remains in its current position. Manual
mode is not possible in this state. You must deactivate position feedback (Config. FeedbackOn =
FALSE) to move the actuator from this state.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is
no longer pending, PID_3Step switches back to automatic mode.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 365

ErrorBits
 (DW#16#...)

Description

4000 Invalid value at Feedback parameter. Value has an invalid number format.
The actuator cannot be moved to the substitute output value and remains in its current position. Manual
mode is not possible in this state. You must deactivate position feedback (Config. FeedbackOn =
FALSE) to move the actuator from this state.
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is
no longer pending, PID_3Step switches back to automatic mode.

8000 Error during digital position feedback. Actuator_H = TRUE and Actuator_L = TRUE.
The actuator cannot be moved to the substitute output value and remains in its current position. Manual
mode is not possible in this state.
In order to move the actuator from this state, you must deactivate the "Actuator endstop" (Con-
fig.ActuatorEndStopOn = FALSE).
If automatic mode was active before the error occurred, ActivateRecoverMode = TRUE, and the error is
no longer pending, PID_3Step switches back to automatic mode.

8.2.5.8 Parameter Reset V1
A rising edge at Reset resets the errors and warnings and clears the integral action. A falling
edge at Reset triggers a change to the most recently active operating mode.

① Activation
② Error
③ Reset

Instructions
8.2 PID_3Step

 PID control
366 Function Manual, 12/2014, A5E35300227-AA

8.2.5.9 Tag ActivateRecoverMode V1
The effect of the ActivateRecoverMode variable depends on the version of the PID_3Step.

Behavior in version 1.1
The ActivateRecoverMode variable determines the behavior in the event of an error in
automatic mode. ActivateRecoverMode is not effective during pretuning, fine tuning and
transition time measurement.

ActivateRecov-
erMode

Description

FALSE In the event of an error, PID_3Step switches to "Inactive" or "Approach substitute output value" operat-
ing mode. The controller is activated by a reset or a change in Retain.Mode.

TRUE If errors occur frequently in automatic mode, this setting has a negative effect on the control response.
In this case, check the ErrorBits parameter and eliminate the cause of the error.
If one or more errors occur, PID_3Step switches to "Approach substitute output value with error monitor-
ing" or "Error monitoring" mode:
• 0002h: Invalid value at parameter Input_PER.
• 0200h: Invalid value at parameter Input.
• 0800h: Sampling time error
• 1000h: Invalid value at parameter Setpoint.
• 2000h: Invalid value at parameter Feedback_PER.
• 4000h: Invalid value at parameter Feedback.
• 8000h: Error in digital position feedback.
With errors 2000h, 4000h and 8000h, PID_3Step cannot approach the configured substitute output
value.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 367

Behavior in version 1.0
The ActivateRecoverMode variable determines the behavior in the event of an error in
automatic and manual mode. ActivateRecoverMode is not effective during pretuning, fine
tuning and transition time measurement.

ActivateRecov-
erMode

Description

FALSE In the event of an error, PID_3Step switches to "Inactive" or "Approach substitute output value" operat-
ing mode. The controller is activated by a reset or a change in Retain.Mode.

TRUE Errors in automatic mode
If errors occur frequently in automatic mode, this setting has a negative effect on the control response.
In this case, check the ErrorBits parameter and eliminate the cause of the error.
If one or more errors occur, PID_3Step switches to "Approach substitute output value with error monitor-
ing" or "Error monitoring" mode:
• 0002h: Invalid value at parameter Input_PER.
• 0200h: Invalid value at parameter Input.
• 0800h: Sampling time error
• 1000h: Invalid value at parameter Setpoint.
• 2000h: Invalid value at parameter Feedback_PER.
• 4000h: Invalid value at parameter Feedback.
• 8000h: Error in digital position feedback.
With errors 2000h, 4000h and 8000h, PID_3Step cannot approach the configured substitute output
value.
As soon as the errors are no longer pending, PID_3Step switches back to automatic mode.
Errors in manual mode
If one or more of the following errors occur, PID_3Step stays in manual mode:
• 0002h: Invalid value at parameter Input_PER.
• 0200h: Invalid value at parameter Input.
• 0800h: Sampling time error
• 1000h: Invalid value at parameter Setpoint.
• 2000h: Invalid value at parameter Feedback_PER.
• 4000h: Invalid value at parameter Feedback.
• 8000h: Error in digital position feedback.
With errors 2000h, 4000h and 8000h, you cannot move the valve to a suitable position.

See also
PID_3Step V1 static tags (Page 348)

Parameter State and Retain.Mode V1 (Page 356)

Instructions
8.2 PID_3Step

 PID control
368 Function Manual, 12/2014, A5E35300227-AA

8.2.5.10 Tag Warning V1
If several warnings are pending simultaneously, their values are displayed with binary
addition. The display of warning 0003, for example, indicates that the warnings 0001 and
0002 are pending simultaneously.

Warning
 (DW#16#...)

Description

0000 No warning pending.
0001 The point of inflection was not found during pretuning.
0002 Oscillation increased during fine tuning.
0004 The setpoint was limited to the configured limits.
0008 Not all the necessary controlled system properties were defined for the selected method of calculation.

The PID parameters were instead calculated using the TuneRuleTIR = 3 method.
0010 The operating mode could not be changed because ManualEnable = TRUE.
0020 The cycle time of the calling OB limits the sampling time of the PID algorithm.

Improve results by using shorter OB cycle times.
0040 The process value exceeded one of its warning limits.
0080 Invalid value at Retain.Mode. The operating mode is not switched.
0100 The manual value was limited to the limits of the controller output.
0200 The rule used for tuning produces an incorrect result, or is not supported.
0400 Method selected for transition time measurement not suitable for actuator.

The transition time cannot be measured because the actuator settings do not match the selected meas-
uring method.

0800 The difference between the current position and the new output value is too small for transition time
measurement. This can produce incorrect results. The difference between the current output value and
new output value must be at least 50% of the entire control range.

1000 The substitute output value cannot be reached because it is outside the output value limits.

The following warnings are deleted as soon as the cause is eliminated:

● 0004

● 0020

● 0040

● 0100

All other warnings are cleared with a rising edge at Reset.

 Instructions
 8.2 PID_3Step

PID control
Function Manual, 12/2014, A5E35300227-AA 369

8.2.5.11 Tag SUT.State V1

SUT.Stat
e

Name Description

0 SUT_INIT Initialize pretuning
50 SUT_TPDN Determine start position without position feedback

100 SUT_STDABW Calculate the standard deviation
200 SUT_GET_POI Find the point of inflection
300 SUT_GET_RISETM Determine the rise time

9900 SUT_IO Pretuning successful
1 SUT_NIO Pretuning not successful

8.2.5.12 Tag TIR.State V1

TIR.State Name Description

-100 TIR_FIRST_SUT Fine tuning is not possible. Pretuning will be executed first.
0 TIR_INIT Initialize fine tuning

200 TIR_STDABW Calculate the standard deviation
300 TIR_RUN_IN Attempt to reach the setpoint with the maximum or minimum output value
400 TIR_CTRLN Attempt to reach the setpoint with the existing PID parameters

(if pretuning has been successful)
500 TIR_OSZIL Determine oscillation and calculate parameters

9900 TIR_IO Fine tuning successful
1 TIR_NIO Fine tuning not successful

Instructions
8.3 PID_Temp

 PID control
370 Function Manual, 12/2014, A5E35300227-AA

8.3 PID_Temp

8.3.1 Compatibility with CPU and FW
The following table shows which version of PID_Temp can be used on which CPU.

CPU FW PID_Temp
S7-1200 ≥ V4.1 V1.0
S7-1500 ≥ V1.7 V1.0

8.3.2 CPU processing time and memory requirement PID_Temp V1

CPU processing time
Typical CPU processing times of the PID_Temp technology object as of Version 1.0,
depending on CPU type.

CPU Typ. CPU processing time PID_Temp V1
CPU 1211C ≥ V4.1 580 µs
CPU 1215C ≥ V4.1 580 µs
CPU 1217C ≥ V4.1 580 µs
CPU 1505S ≥ V1.0 50 µs
CPU 1510SP-1 PN ≥ V1.7 130 µs
CPU 1511-1 PN ≥ V1.7 130 µs
CPU 1512SP-1 PN ≥ V1.7 130 µs
CPU 1516-3 PN/DP ≥ V1.7 75 µs
CPU 1518-4 PN/DP ≥ V1.7 6 µs

Memory requirement
Memory requirement of an instance DB of the PID_Temp technology object as of Version
V1.0.

 Memory requirement of the instance DB

of PID_Temp V1
Load memory requirement Approx. 17000 bytes
Total work memory requirement 1280 bytes
Retentive work memory requirement 100 bytes

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 371

8.3.3 PID_Temp

8.3.3.1 Description of PID_Temp

Description
The PID_Temp instruction provides a PID controller with integrated tuning for temperature
processes. PID_Temp can be used for pure heating or heating/cooling applications.

The following operating modes are possible:

● Inactive

● Pretuning

● Fine tuning

● Automatic mode

● Manual mode

● Substitute output value with error monitoring

For a more detailed description of the operating modes, see the State parameter.

PID algorithm
PID_Temp is a PIDT1 controller with anti-windup and weighting of the proportional and
derivative actions. The PID algorithm operates according to the following equation (control
zone and deadband deactivated):

The table below shows the meaning of the icons used in the equation and in the subsequent
figures.

Icon Description Associated parameters of the

PID_Temp instruction
y Output value of the PID algorithm -
Kp Proportional gain Retain.CtrlParams.Heat.Gain

Retain.CtrlParams.Cool.Gain
CoolFactor

s Laplace operator -
b Proportional action weighting Retain.CtrlParams.Heat.PWeighting

Retain.CtrlParams.Cool.PWeighting
w Setpoint CurrentSetpoint
x Process value ScaledInput
TI Integral action time Retain.CtrlParams.Heat.Ti

Retain.CtrlParams.Cool.Ti

Instructions
8.3 PID_Temp

 PID control
372 Function Manual, 12/2014, A5E35300227-AA

Icon Description Associated parameters of the
PID_Temp instruction

TD Derivative action time Retain.CtrlParams.Heat.Td
Retain.CtrlParams.Cool.Td

a Derivative delay coefficient (derivative
delay T1 = a × TD)

Retain.CtrlParams.Heat.TdFiltRatio
Retain.CtrlParams.Cool.TdFiltRatio

c Derivative action weighting Retain.CtrlParams.Heat.DWeighting
Retain.CtrlParams.Cool.DWeighting

DeadZone Deadband width Retain.CtrlParams.Heat.DeadZone
Retain.CtrlParams.Cool.DeadZone

ControlZone Control zone width Retain.CtrlParams.Heat.ControlZone
Retain.CtrlParams.Cool.ControlZone

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 373

PID_Temp block diagram

Instructions
8.3 PID_Temp

 PID control
374 Function Manual, 12/2014, A5E35300227-AA

Block diagram of PIDT1 with anti-windup

Call
PID_Temp is called in the constant time scale of a cyclic interrupt OB.

If you call PID_Temp as a multi-instance DB, no technology object is created. No parameter
assignment interface or commissioning interface is available. You must assign parameters
for PID_Temp directly in the multi-instance DB and commission it via a watch table.

Download to device
The process values of retentive variables are only updated when you download PID_Temp
completely.

Download technology object to device (Page 46)

Startup
When the CPU starts up, PID_Temp starts in the operating mode that is saved in the Mode
in/out parameter. To switch to "Inactive" operating mode during startup, set
RunModeByStartup = FALSE.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 375

Reaction to error
The behavior in the case of an error is determined by the tags SetSubstituteOutput and
ActivateRecoverMode. If ActivateRecoverMode = TRUE, the behavior also depends on the
error that occurred.

SetSubstitute-
Output

Acti-
vateRecov-
erMode

Configuration editor
> Basic settings of output
> Set PidOutputSum to

Reaction

Not relevant FALSE Zero (Inactive) Switch to "Inactive" (State = 0) mode
The output value of the PID algorithm and all
outputs for heating and cooling are set to 0. The
scaling of the outputs for heating and cooling is
not active.

FALSE TRUE Current value for error while error is
pending

Switch to "Substitute output value with error moni-
toring" mode (State = 5)
The current output value is transferred to the
actuator while the error is pending.

TRUE TRUE Substitute output value while error
is pending

Switch to "Substitute output value with error moni-
toring" mode (State = 5)
The value at SubstituteOutput is transferred to the
actuator while the error is pending.

In manual mode, PID_Temp uses ManualValue as output value, unless ManualValue is
invalid.

● If ManualValue is invalid, SubstituteOutput is used.

● If ManualValue and SubstituteOutput are invalid, Config.Output.Heat.PidLowerLimit is
used.

The Error parameter indicates if an error is pending. When the error is no longer pending,
Error = FALSE. The ErrorBits parameter shows which errors have occurred. ErrorBits is
reset by a rising edge at Reset or ErrorAck.

Instructions
8.3 PID_Temp

 PID control
376 Function Manual, 12/2014, A5E35300227-AA

8.3.3.2 Functional description of PID_Temp

Monitoring process value limits
You specify the high limit and low limit of the process value in the Config.InputUpperLimit
and Config.InputLowerLimit tags. If the process value is outside these limits, an error occurs
(ErrorBits = 0000001h).

You specify a high and low warning limit of the process value in the
Config.InputUpperWarning and Config.InputLowerWarning tags. If the process value is
outside these warning limits, a warning occurs (Warning = 0000040h), and the
InputWarning_H or InputWarning_L output parameter changes to TRUE.

Limiting the setpoint
You specify a high limit and low limit of the setpoint in the Config.SetpointUpperLimit and
Config.SetpointLowerLimit tags. PID_Temp automatically limits the setpoint to the process
value limits. You can limit the setpoint to a smaller area. PID_Temp checks whether this area
is within the process value limits. If the setpoint is outside these limits, the high or low limit is
used as the setpoint, and output parameter SetpointLimit_H or SetpointLimit_L is set to
TRUE.

The setpoint is limited in all operating modes.

Substitute setpoint
You can specify a substitute setpoint at the SubstituteSetpoint tag and activate it with
SubstituteSetpointOn = TRUE. In this way, you can temporarily specify the setpoint directly,
for example for a slave controller in a cascade, without having to change the user program.
The limits set for the setpoint also apply to the substitute setpoint.

Heating and cooling
With the default setting, PID_Temp only uses the outputs for heating (OutputHeat,
OutputHeat_PWM, OutputHeat_PER). The output value of the PID algorithm
(PidOutputSum) is scaled and output at the outputs for heating. You specify with
Config.Output.Heat.Select if OutputHeat_PWM or OutputHeat_PER is calculated.
OutputHeat is always calculated.

With Config.ActivateCooling = TRUE, you can also activate the outputs for cooling
(OutputCool, OutputCool_PWM, OutputCool_PER). Positive output values of the PID
algorithm (PidOutputSum) are scaled and output at the outputs for heating. Negative output
values of the PID algorithm are scaled and output at the outputs for cooling. You specify with
Config.Output.Cool.Select if OutputCool_PWM or OutputCool_PER is calculated. OutputCool
is always calculated.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 377

Two methods are available to calculate the PID output value with activated cooling:

● Cooling factor (Config.AdvancedCooling = FALSE):

The output value calculation for cooling takes place with the PID parameters for heating,
taking into consideration the configurable cooling factor Config.CoolFactor. This method
is suitable if the heating and cooling actuator have similar time responses but different
gains. When you select this method, pretuning and fine tuning for cooling as well as the
PID parameter set for cooling are not available. You can only execute the tuning for
heating.

● PID parameter switching (Config.AdvancedCooling = TRUE):

The output value calculation for cooling takes place by means of a separate PID
parameter set. Based on the calculated output value and the control deviation, the PID
algorithm decides whether the PID parameter for heating or cooling is used. This method
is suitable if the heating and cooling actuator have different time responses and different
gains. Pretuning and fine tuning for cooling are only available when you select this
method.

Output value limits and scaling
Depending on the operating mode, the PID output value (PidOutputSum) is calculated
automatically by the PID algorithm or defined by the manual value (ManualValue) or the
configured substitute output value (SubstituteOutput).

The PID output value is limited according to the configuration:

● If cooling is deactivated (Config.ActivateCooling = FALSE),
Config.Output.Heat.PidUpperLimit is the high limit and Config.Output.Heat.PidLowerLimit
the low limit.

● If cooling is activated (Config.ActivateCooling = TRUE),
Config.Output.Heat.PidUpperLimit is the high limit and Config.Output.Cool.PidLowerLimit
the low limit.

The PID output value is scaled and output at the outputs for heating and cooling. Scaling can
be defined separately for each output and is specified in the structures Config.Output.Heat or
Config.Output.Cool with 2 value pairs each:

Output Value pair Parameter
OutputHeat Value pair 1 High limit PID output value (heating)

Config.Output.Heat.PidUpperLimit,
Scaled high output value (heating) Con-
fig.Output.Heat.UpperScaling

Value pair 2 Low limit PID output value (heating)
Config.Output.Heat.PidLowerLimit,
Scaled low output value (heating) Con-
fig.Output.Heat.LowerScaling

OutputHeat_PWM Value pair 1 High limit PID output value (heating)
Config.Output.Heat.PidUpperLimit,
Scaled high PWM output value (heating)
Config.Output.Heat.PwmUpperScaling

Instructions
8.3 PID_Temp

 PID control
378 Function Manual, 12/2014, A5E35300227-AA

Output Value pair Parameter
Value pair 2 Low limit PID output value (heating)

Config.Output.Heat.PidLowerLimit,
Scaled low PWM output value (heating)
Config.Output.Heat.PwmLowerScaling

OutputHeat_PER Value pair 1 High limit PID output value (heating)
Config.Output.Heat.PidUpperLimit,
Scaled high analog output value (heating)
Config.Output.Heat.PerUpperScaling

Value pair 2 Low limit PID output value (heating)
Config.Output.Heat.PidLowerLimit,
Scaled low analog output value (heating)
Config.Output.Heat.PerLowerScaling

OutputCool Value pair 1 Low limit PID output value (cooling)
Config.Output.Cool.PidLowerLimit,
Scaled high output value (cooling)
Config.Output.Cool.UpperScaling

Value pair 2 High limit PID output value (cooling)
Config.Output.Cool.PidUpperLimit,
Scaled low output value (cooling)
Config.Output.Cool.LowerScaling

OutputCool_PWM Value pair 1 Low limit PID output value (cooling)
Config.Output.Cool.PidLowerLimit,
Scaled high PWM output value (cooling)
Config.Output.Cool.PwmUpperScaling

Value pair 2 High limit PID output value (cooling)
Config.Output.Cool.PidUpperLimit,
Scaled low PWM output value (cooling)
Config.Output.Cool.PwmLowerScaling

OutputCool_PER Value pair 1 Low limit PID output value (cooling)
Config.Output.Cool.PidLowerLimit,
Scaled high analog output value (cooling)
Config.Output.Cool.PerUpperScaling

Value pair 2 High limit PID output value (cooling)
Config.Output.Cool.PidUpperLimit,
Scaled low analog output value (cooling)
Config.Output.Cool.PerLowerScaling

 If cooling is activated (Config.ActivateCooling = TRUE), Config.Output.Heat.PidLowerLimit must have
the value 0.0.

Config.Output.Cool.PidUpperLimit must always have the value 0.0.

Example:

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 379

Output scaling when using output OutputHeat (cooling deactivated;
Config.Output.Heat.PidLowerLimit may be unequal to 0.0):

Example:

Output scaling when using output OutputHeat_PWM and OutputCool_PER (cooling
activated; Config.Output.Heat.PidLowerLimit must be 0.0):

With the exception of the "Inactive" operating mode, the value at an output is always located
between its scaled high output value and scaled low output value, for example, for
OutputHeat always between Config.Output.Heat.UpperScaling and
Config.Output.Heat.LowerScaling.

If you want to limit the value at the associated output, you must also adjust these scaling
values.

Cascading
PID_Temp supports you when you use cascade control (see: Program creation (Page 196)).

Substitute output value
In the event of an error, PID_Temp can output a substitute output value that you define at the
SubstituteOutput tag. The substitute output value must be within the limits for the PID output
value. The values at the outputs for heating and cooling resulting from the substitute output
value are the result of the configured output scaling.

Instructions
8.3 PID_Temp

 PID control
380 Function Manual, 12/2014, A5E35300227-AA

Monitoring signal validity
The values of the following parameters are monitored for validity when used:

● Setpoint

● SubstituteSetpoint

● Input

● Input_PER

● Disturbance

● ManualValue

● SubstituteOutput

● PID parameters in the structures Retain.CtrlParams.Heat and Retain.CtrlParams.Cool.

Monitoring the sampling time PID_Temp
Ideally, the sampling time is equivalent to the cycle time of the cyclic interrupt OB. The
PID_Temp instruction measures the time interval between two calls. This is the current
sampling time. On every switchover of operating mode and during the initial startup, the
mean value is formed from the first 10 sampling times. Too great a difference between the
current sampling time and this mean value triggers an error (Error = 0000800h).

The error occurs during tuning if:

● New mean value >= 1.1 x old mean value

● New mean value <= 0.9 x old mean value

The error occurs in automatic mode if:

● New mean value >= 1.5 x old mean value

● New mean value <= 0.5 x old mean value

If you deactivate the sampling time monitoring (CycleTime.EnMonitoring = FALSE), you can
also call PID_Temp in OB1. You must then accept a lower control quality due to the
deviating sampling time.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 381

Sampling time of the PID algorithm
The controlled system needs a certain amount of time to respond to changes in the output
value. It is therefore not advisable to calculate the output value in every cycle. The sampling
time of the PID algorithm represents the time between two calculations of the output value. It
is calculated during tuning and rounded to a multiple of the cycle time of the cyclic interrupt
OB (sampling time PID_Temp). All other functions of the PID_Temp are executed at every
call.

If cooling and PID parameter switching are activated, PID_Temp uses a separate sampling
time of the PID algorithm for heating and cooling. In all other configurations, only the
sampling time of the PID algorithm for heating is used.

If you use OutputHeat_PWM or OutputCool_PWM, the sampling time of the PID algorithm is
used as time period of the pulse width modulation. The accuracy of the output signal is
determined by the ratio of the PID algorithm sampling time to the cycle time of the OB. The
cycle time should be no more than a tenth of the PID algorithm sampling time.

If the PID algorithm sampling time and thus the time period of the pulse width modulation is
very high when you use OutputHeat_PWM or OutputCool_PWM, you can define a deviating
shorter time period at the Config.Output.Heat.PwmPeriode or
Config.Output.Cool.PwmPeriode parameters to improve the smoothness of the process
value.

Control logic
PID_Temp can be used for heating or heating/cooling applications and always works with
normal control logic.

An increase of the PID output value (PidOutputSum) is intended to increase the process
value. The values at the outputs for heating and cooling resulting from the PID output value
are the result of the configured output scaling.

An inverted control logic or negative proportional gain are not supported.

If you only need an output value for your application in which an increase is to reduce the
process value (for example, discharge control), you can use PID_Compact with inverted
control logic.

Instructions
8.3 PID_Temp

 PID control
382 Function Manual, 12/2014, A5E35300227-AA

8.3.3.3 Input parameters of PID_Temp

Parameter Data type Default Description
Setpoint REAL 0.0 Setpoint of the PID controller in automatic mode

Valid range of values:
Config.SetpointUpperLimit ≥ Setpoint ≥ Config.SetpointLowerLimit
Config.InputUpperLimit ≥ Setpoint ≥ Config.InputLowerLimit

Input REAL 0.0 A tag of the user program is used as the source of the process value.
If you are using the Input parameter, Config.InputPerOn = FALSE must be
set.

Input_PER INT 0 An analog input is used as the source of the process value.
If you are using the Input_PER parameter, Config.InputPerOn = TRUE must
be set.

Disturbance REAL 0.0 Disturbance variable or precontrol value
ManualEna-
ble

BOOL FALSE • A FALSE -> TRUE edge activates "Manual mode", State = 4, Mode re-
mains unchanged.

As long as ManualEnable = TRUE, you cannot change the operating
mode via a rising edge at ModeActivate or use the commissioning dialog.

• A TRUE -> FALSE edge activates the operating mode that is specified by
Mode.

We recommend that you change the operating mode using Mode and
ModeActivate only.

ManualValue REAL 0.0 Manual value
This value is used in manual mode as PID output value (PidOutputSum).
The values at the outputs for heating and cooling resulting from this manual
value are the result of the configured output scaling (structures Con-
fig.Output.Heat and Config.Output.Cool).
For controllers with activated cooling output (Config.ActivateCooling =
TRUE), define:
• a positive manual value to output the value at the outputs for heating
• a negative manual value to output the value at the outputs for cooling
The permitted value range is determined by the configuration.
• Cooling output deactivated (Config.ActivateCooling = FALSE):

Config.Output.Heat.PidUpperLimit ≥ ManualValue ≥ Con-
fig.Output.Heat.PidLowerLimit

• Cooling output activated (Config.ActivateCooling = TRUE):

Config.Output.Heat.PidUpperLimit ≥ ManualValue ≥ Con-
fig.Output.Cool.PidLowerLimit

ErrorAck BOOL FALSE • FALSE -> TRUE edge

ErrorBits and Warning are reset.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 383

Parameter Data type Default Description
Reset BOOL FALSE Restarts the controller.

• FALSE -> TRUE edge
– Switch to "Inactive" mode
– ErrorBits and Warning are reset.
– Integral action is cleared

(PID parameters are retained)
• As long as Reset = TRUE,

– PID_Tempremains in "Inactive" mode (State = 0).
– you cannot change the operating mode with Mode and ModeActivate

or ManualEnable
– you cannot use the commissioning dialog.

• TRUE -> FALSE edge

PID_Temp switches to the operating mode that is saved in the Mode pa-
rameter.

ModeActi-
vate

BOOL FALSE • FALSE -> TRUE edge

PID_Temp switches to the operating mode that is saved at the Mode in-
put.

Instructions
8.3 PID_Temp

 PID control
384 Function Manual, 12/2014, A5E35300227-AA

8.3.3.4 Output parameters of PID_Temp

Parameter Data type Default Description
ScaledInput REAL 0.0 Scaled process value
OutputHeat REAL 0.0 Output value (heating) in REAL format

The PID output value (PidOutputSum) is scaled with the two value pairs
Config.Output.Heat.PidUpperLimit, Config.Output.Heat.UpperScaling and
Config.Output.Heat.PidLowerLimit, Config.Output.Heat.LowerScaling and
output in REAL format at OutputHeat.
OutputHeat is always calculated.

OutputCool REAL 0.0 Output value (cooling) in REAL format
The PID output value (PidOutputSum) is scaled with the two value pairs
Config.Output.Cool.PidUpperLimit, Config.Output.Cool.LowerScaling and
Config.Output.Cool.PidLowerLimit, Config.Output.Cool.UpperScaling and
output in REAL format at OutputCool.
OutputCool is only calculated if the cooling output is activated (Con-
fig.ActivateCooling = TRUE).

Out-
putHeat_PER

INT 0 Analog output value (heating)
The PID output value (PidOutputSum) is scaled with the two value pairs
Config.Output.Heat.PidUpperLimit, Config.Output.Heat.PerUpperScaling and
Config.Output.Heat.PidLowerLimit, Config.Output.Heat.PerLowerScaling and
output as analog value at OutputHeat_PER.
OutputHeat_PER is only calculated if Config.Output.Heat.Select = 2.

Out-
putCool_PER

INT 0 Analog output value (cooling)
The PID output value (PidOutputSum) is scaled with the two value pairs
Config.Output.Cool.PidUpperLimit, Config.Output.Cool.PerLowerScaling and
Config.Output.Cool.PidLowerLimit, Config.Output.Cool.PerUpperScaling and
output as analog value at OutputCool_PER.
OutputCool_PER is only calculated if the cooling output is activated (Con-
fig.ActivateCooling = TRUE) and Config.Output.Cool.Select = 2.

Out-
putHeat_PWM

BOOL FALSE Pulse-width modulated output value (heating)
The PID output value (PidOutputSum) is scaled with the two value pairs
Config.Output.Heat.PidUpperLimit, Config.Output.Heat.PwmUpperScaling
and Config.Output.Heat.PidLowerLimit, Con-
fig.Output.Heat.PwmLowerScaling and output as pulse-width modulated
value (variable switch on and switch off times) at OutputHeat_PWM.
OutputHeat_PWM is only calculated if Config.Output.Heat.Select = 1.

Out-
putCool_PWM

BOOL FALSE Pulse-width modulated output value (cooling)
The PID output value (PidOutputSum) is scaled with the two value pairs
Config.Output.Cool.PidUpperLimit, Config.Output.Cool.PwmLowerScaling
and Config.Output.Cool.PidLowerLimit, Con-
fig.Output.Cool.PwmUpperScaling and output as pulse-width modulated
value (variable switch on and switch off times) at OutputCool_PWM.
OutputCool_PWM is only calculated if the cooling output is activated (Con-
fig.ActivateCooling = TRUE) and Config.Output.Cool.Select = 1.

SetpointLim-
it_H

BOOL FALSE If SetpointLimit_H = TRUE, the absolute setpoint high limit is reached (Set-
point ≥ Config.SetpointUpperLimit) or Setpoint ≥ Config.InputUpperLimit.
The setpoint high limit is the minimum of Config.SetpointUpperLimit and
Config.InputUpperLimit.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 385

Parameter Data type Default Description
SetpointLimit_L BOOL FALSE If SetpointLimit_L = TRUE, the absolute setpoint low limit is reached (Set-

point ≤ Config.SetpointLowerLimit) or Setpoint ≤ Config.InputLowerLimit.
The setpoint low limit is the maximum of Config.SetpointLowerLimit and Con-
fig.InputLowerLimit.

InputWarn-
ing_H

BOOL FALSE If InputWarning_H = TRUE, the process value has reached or exceeded the
warning high limit (ScaledInput ≥ Config.InputUpperWarning).

InputWarn-
ing_L

BOOL FALSE If InputWarning_L = TRUE, the process value has reached or fallen below the
warning low limit (ScaledInput ≤ Config.InputLowerWarning).

State INT 0 The PID_Temp state and mode parameters (Page 416) shows the current
operating mode of the PID controller. You can change the operating mode
using the input parameter Mode and a rising edge at ModeActivate. For pre-
tuning and fine tuning, you specify with Heat.EnableTuning and
Cool.EnableTuning whether tuning takes place for heating or cooling.
• State = 0: Inactive
• State = 1: Pretuning
• State = 2: Fine tuning
• State = 3: Automatic mode
• State = 4: Manual mode
• State = 5: Substitute output value with error monitoring

Error BOOL FALSE If Error = TRUE, at least one error message is pending in this cycle.
ErrorBits DWORD DW#16#0 The PID_Temp ErrorBits parameter (Page 424) shows the pending error

messages.
ErrorBits is retentive and is reset with a rising edge at Reset or ErrorAck.

Instructions
8.3 PID_Temp

 PID control
386 Function Manual, 12/2014, A5E35300227-AA

8.3.3.5 PID_Temp in/out parameters

Parameter Data type Default Description
Mode INT 4 At Mode, specify the operating mode to which PID_Temp is to switch. Options

are:
• Mode = 0: Inactive
• Mode = 1: Pretuning
• Mode = 2: Fine tuning
• Mode = 3: Automatic mode
• Mode = 4: Manual mode
The operating mode is activated by:
• Rising edge at ModeActivate
• Falling edge at Reset
• Falling edge at ManualEnable
• Cold restart of CPU if RunModeByStartup = TRUE
For pretuning and fine tuning, you specify with Heat.EnableTuning and
Cool.EnableTuning whether tuning takes place for heating or cooling.
Mode is retentive.
A detailed description of the operating modes can be found in State and Mode
parameters (Page 416).

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 387

Parameter Data type Default Description
Master DWORD DW#16#0 Interface for cascade control

If this PID_Temp instance is used as slave controller in a cascade (Con-
fig.Cascade.IsSlave = TRUE), assign the Master parameter at the instruction
call with the Slave parameter of the master controller.
Example:
Call of a slave controller "PID_Temp_2" with master controller "PID_Temp_1" in
SCL:
--
"PID_Temp_2"(Master := "PID_Temp_1".Slave, Setpoint :=
"PID_Temp_1".OutputHeat);
--
You use this interface to exchange slave controller information about operating
mode, limit and substitute setpoint with your master controller. Keep in mind that
the call of the master controller has to take place before the call of the slave
controller in the same cyclic interrupt OB.
Assignment:
• Bits 0 to 15: Unassigned
• Bits 16 to 23 – Limit counter:

A slave controller whose output value is limited increments this counter. De-
pending on the configured number of slaves (Config.Cascade.CountSlaves)
and of the anti-windup mode (Config.Cascade.AntiWindUpMode), the mas-
ter controller reacts accordingly.

• Bit 24 – Automatic mode of the slave controllers:

TRUE, if all slave controllers are in automatic mode
• Bit 25 – Substitute setpoint of the slave controllers:

TRUE, if a slave controller has activated the substitute setpoint (Substi-
tuteSetpointOn = TRUE)

Slave DWORD DW#16#0 Interface for cascade control
You use this interface to exchange slave controller information about operating
mode, limit and substitute setpoint with your master controller.
See description of Master parameter

See also
PID_Temp state and mode parameters (Page 416)

Program creation (Page 196)

Cascade control with PID_Temp (Page 194)

Instructions
8.3 PID_Temp

 PID control
388 Function Manual, 12/2014, A5E35300227-AA

8.3.3.6 PID_Temp static tags
You must not change tags that are not listed. These are used for internal purposes only.

Tag Data type Default Description
IntegralRe-
setMode

Int 1 The IntegralResetMode tag determines the default setting of the integral
action
PIDCtrl.IOutputOld when you change the operating mode from
"Inactive" to "Automatic mode".
This setting only works for one cycle.
• IntegralResetMode = 0: Smoothing

The value is assigned in such a way that the switchover is bumpless.
• IntegralResetMode = 1: Deleting

The value is cleared. Any control deviation will cause a jump change of
the output value.

• IntegralResetMode = 2: Holding

The value is not changed. You can define a new value using the user
program.

• IntegralResetMode = 3: Pre-assigning

The value is automatically pre-assigned as if PidOutputSum = Over-
writeInitialOutputValue in the last cycle.

This setting is useful, for example, for an override controller.
OverwriteI-
nitialOut-
putValue

REAL 0.0 If IntegralResetMode = 3, the value of PIDCtrl.IOutputOld is pre-assigned as
if "PidOutputSum" = "OverwriteInitialOutputValue" in the last cycle.

RunMode-
ByStartup

BOOL TRUE Activate operating mode at Mode parameter after CPU restart
• If RunModeByStartup = TRUE, PID_Temp starts in the operating mode

saved in the Mode parameter after CPU startup.
• If RunModeByStartup = FALSE, PID_Temp remains in "Inactive" mode

after CPU startup.

LoadBack-
Up

BOOL FALSE If LoadBackUp = TRUE, the last set of PID parameters is reloaded from the
CtrlParamsBackUp structure. The set was saved prior to the last tuning.
LoadBackUp is automatically set back to FALSE. The acceptance is bump-
less.

SetSubsti-
tuteOutput

BOOL TRUE Selection of the output value while an error is pending (State = 5):
• If SetSubstituteOutput = TRUE and ActivateRecoverMode = TRUE, the

configured substitute output value SubstituteOutput is output as PID out-
put value as long as an error is pending.

• If SetSubstituteOutput = FALSE and ActivateRecoverMode = TRUE, the
actuator remains at the current PID output value as long as an error is
pending.

• If ActivateRecoverMode = FALSE, SetSubstituteOutput is not effective.
• If SubstituteOutput is invalid (ErrorBits = 0020000h), the substitute out-

put value cannot be output. In this case, the low limit of the PID output
value for heating (Config.Output.Heat.PidLowerLimit) is used as PID
output value.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 389

Tag Data type Default Description
PhysicalUnit INT 0 Unit of measurement of the process value and setpoint, e.g., ºC, or ºF.

This parameter is used for display in the editors and does not influence the
control algorithm.

Physi-
calQuantity

INT 0 Physical quantity of the process value and setpoint, e.g., temperature.
This parameter is used for display in the editors and does not influence the
control algorithm.

Acti-
vateRecov-
erMode

BOOL TRUE The ActivateRecoverMode tag determines the reaction to error.

Warning DWORD 0 The Warning tag shows the warnings since Reset = TRUE or ErrorAck
=TRUE. Warning is retentive.

Progress REAL 0.0 Progress of current tuning phase as a percentage (0.0 - 100.0)
CurrentSet-
point

REAL 0.0 CurrentSetpoint always displays the currently effective setpoint. This value
is frozen during tuning.

CancelTun-
ingLevel

REAL 10.0 Permissible fluctuation of setpoint during tuning. Tuning is not canceled
until:
• Setpoint > CurrentSetpoint + CancelTuningLevel
or
• Setpoint < CurrentSetpoint - CancelTuningLevel

Substitute-
Output

REAL 0.0 The substitute output value is used as PID output value as long as the fol-
lowing conditions are met:
• One or more errors are pending in automatic mode for which Acti-

vateRecoverMode is in effect
• SetSubstituteOutput = TRUE
• ActivateRecoverMode = TRUE
The values at the outputs for heating and cooling resulting from the substi-
tute output value are the result of the configured output scaling (structures
Config.Output.Heat and Config.Output.Cool).
For controllers with activated cooling output (Config.ActivateCooling =
TRUE), define:
• a positive substitute output value to output the value at the outputs for

heating
• a negative substitute output value to output the value at the outputs for

cooling
The permitted value range is determined by the configuration.
• Cooling output deactivated (Config.ActivateCooling = FALSE):

Config.Output.Heat.PidUpperLimit ≥ SubstituteOutput ≥ Con-
fig.Output.Heat.PidLowerLimit

• Cooling output activated (Config.ActivateCooling = TRUE):

Config.Output.Heat.PidUpperLimit ≥ SubstituteOutput ≥ Con-
fig.Output.Cool.PidLowerLimit

Instructions
8.3 PID_Temp

 PID control
390 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
PidOut-
putSum

REAL 0.0 PID output value
PidOutputSum displays the output value of the PID algorithm. Depending on
the operating mode, it is either calculated automatically or defined by the
manual value or the configured substitute output value.
The values at the outputs for heating and cooling resulting from the PID
output value are the result of the configured output scaling (structures Con-
fig.Output.Heat and Config.Output.Cool).
The PidOutputSum is limited as defined in the configuration.
• Cooling output deactivated (Config.ActivateCooling = FALSE):

Config.Output.Heat.PidUpperLimit ≥ PidOutputSum ≥ Con-
fig.Output.Heat.PidLowerLimit

• Cooling output activated (ConfigActivateCooling = TRUE):

Config.Output.Heat.PidUpperLimit ≥ PidOutputSum ≥ Con-
fig.Output.Cool.PidLowerLimit

PidOutput-
OffsetHeat

REAL 0.0 Offset of the PID output value heating
PidOutputOffsetHeat is added to the value that results from PidOutputSum
for the heating branch. Enter a positive value for PidOutputOffsetHeat to
receive a positive offset at the outputs for heating.
The resulting values at the outputs for heating are the result of the config-
ured output scaling (Config.Output.Heat structure).
This offset can be used for actuators which need a fixed minimum value, for
example, fans with minimum speed.

PidOutput-
OffsetCool

REAL 0.0 Offset of the PID output value cooling
PidOutputOffsetCool is added to the value that results from PidOutputSum
for the cooling branch. Enter a negative value for PidOutputOffsetCool to
receive a positive offset at the outputs for cooling.
The resulting values at the outputs for cooling are the result of the config-
ured output scaling (Config.Output.Cool structure).
This offset can be used for actuators which need a fixed minimum value, for
example, fans with minimum speed.

Substi-
tuteSetpoin-
tOn

BOOL FALSE Activates the substitute setpoint as controller setpoint.
• FALSE = the Setpoint parameter is used.
• TRUE = the SubstituteSetpoint parameter is used as setpoint
SubstituteSetpointOn can be used to specify the setpoint of a slave control-
ler in a cascade directly without having to change the user program.

Substi-
tuteSetpoint

REAL 0.0 Substitute setpoint
If SubstituteSetpointOn = TRUE, the SubstituteSetpoint parameter is used
as setpoint.
Valid range of values:
Config.SetpointUpperLimit ≥ SubstituteSet-
point ≥ Config.SetpointLowerLimit, Config.InputUpperLimit ≥ SubstituteSet-
point ≥ Config.InputLowerLimit

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 391

Tag Data type Default Description
Disable-
Cooling

BOOL FALSE DisableCooling = TRUE deactivates the cooling branch for heating/cooling
controllers (Config.ActivateCooling = TRUE) in Automatic mode by setting
PidOutputSum to 0.0 as low limit.
PidOutputOffsetCool and the output scaling for the cooling outputs remain
active.
DisableCooling can be used for tuning of multi-zone applications to tempo-
rarily deactivate the cooling branch as long as all controllers have not com-
pleted their tuning yet.
This parameter is set/reset by the user manually and is not automatically
reset by the PID_Temp instruction.

All-
SlaveAuto-
maticState

BOOL FALSE If this PID_Temp instance is used as master controller in a cascade (Con-
fig.Cascade.IsMaster = TRUE), AllSlaveAutomaticState = TRUE indicates
that all slave controllers are in automatic mode.
Tuning, manual mode or automatic mode of the master controller can only
be executed accurately if all slave controllers are in automatic mode.
AllSlaveAutomaticState is only determined if you interconnect the master
controller and slave controller with the master and slave parameters.
For details, see the Master parameter.

NoSlave-
Substi-
tuteSetpoint

BOOL FALSE If this PID_Temp instance is used as master controller in a cascade (Con-
fig.Cascade.IsMaster = TRUE), NoSlaveSubstituteSetpoint = TRUE indi-
cates that no slave controller has activated its substitute setpoint.
Tuning, manual mode or automatic mode of the master controller can only
be executed accurately if no slave controller has activated its substitute
setpoint.
NoSlaveSubstituteSetpoint is only determined if you interconnect the master
controller and slave controller with the master and slave parameters.
For details, see the Master parameter.

Heat.Enable
Tuning

BOOL TRUE Enabling of tuning for heating
Heat.EnableTuning must be set for the following tunings (at the same time
or prior to the start with Mode and ModeActivate):
• Pretuning heating
• Pretuning heating and cooling
• Fine tuning heating
This parameter is not automatically reset by the PID_Temp instruction.

Cool.Enable
Tuning

BOOL FALSE Enabling of tuning for cooling
Cool.EnableTuning must be set for the following tunings (simultaneously
with or prior to the start with Mode and ModeActivate):
• Pretuning cooling
• Pretuning heating and cooling
• Fine tuning cooling
Only effective if the cooling output and PID parameter switching are activat-
ed ("Config.ActivateCooling" = TRUE and "Config.AdvancedCooling" =
TRUE).
This parameter is not automatically reset by the PID_Temp instruction.

Con-
fig.InputPer
On

BOOL TRUE If InputPerOn = TRUE, the Input_PER parameter is used for detecting the
process value. If InputPerOn = FALSE, the Input parameter is used.

Instructions
8.3 PID_Temp

 PID control
392 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Con-
fig.InputUpp
erLimit

REAL 120.0 High limit of the process value
Input and Input_PER are monitored to ensure adherence to this limit. If the
limit is exceeded, an error is output and the reaction is determined by Acti-
vateRecoverMode.
At the I/O input, the process value can be a maximum of 18% higher than
the nominal range (overrange). This means the limit cannot be exceeded
when you use an I/O input with the pre-setting for high limit and process
value scaling.
When pretuning is started, the difference between high and low limit of the
process value is checked to determine whether the distance between set-
point and process value meets the necessary requirements.
InputUpperLimit > InputLowerLimit

Con-
fig.InputLow
erLimit

REAL 0.0 Low limit of the process value
Input and Input_PER are monitored to ensure adherence to this limit. If the
limit is undershot, an error is output and the reaction is determined by Acti-
vateRecoverMode.
InputLowerLimit < InputUpperLimit

Con-
fig.InputUpp
erWarning

REAL 3.402822e+38 Warning high limit of the process value
Input and Input_PER are monitored to ensure adherence to this limit. If the
limit is exceeded, a warning is output at the Warning parameter.
• If you set InputUpperWarning outside the process value limits, the con-

figured absolute process value high limit is used as the warning high lim-
it.

• If you configure InputUpperWarning within the process value limits, this
value is used as the warning high limit.

InputUpperWarning > InputLowerWarning
Con-
fig.InputLow
erWarning

REAL -3.402822e+38 Warning low limit of the process value
Input and Input_PER are monitored to ensure adherence to this limit. If the
limit is undershot, a warning is output at the Warning parameter.
• If you set InputLowerWarning outside the process value limits, the con-

figured absolute process value low limit is used as the warning low limit.
• If you configure InputLowerWarning within the process value limits, this

value is used as the warning low limit.
InputLowerWarning < InputUpperWarning

Con-
fig.Setpoint
UpperLimit

REAL 3.402822e+38 High limit of setpoint
Setpoint and SubstituteSetpoint are monitored to ensure adherence to this
limit. If the limit is exceeded, a warning is output at the Warning parameter.
• If you configure SetpointUpperLimit outside the process value limits, the

configured absolute process value high limit is used as the setpoint high
limit.

• If you configure SetpointUpperLimit within the process value limits, this
value is used as the setpoint high limit.

SetpointUpperLimit > SetpointLowerLimit

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 393

Tag Data type Default Description
Con-
fig.SetpointL
owerLimit

REAL -3.402822e+38 Low limit of the setpoint
Setpoint and SubstituteSetpoint are monitored to ensure adherence to this
limit. If the limit is undershot, a warning is output at the Warning parameter.
• If you set SetpointLowerLimit outside the process value limits, the con-

figured process value absolute low limit is used as the setpoint low limit.
• If you configure SetpointLowerLimit within the process value limits, this

value is used as the setpoint low limit.
SetpointLowerLimit < SetpointUpperLimit

Con-
fig.Activate
Cooling

BOOL FALSE Activate cooling output
• Config.ActivateCooling = FALSE

Only the outputs for heating are used.
• Config.ActivateCooling = TRUE

The outputs for heating and cooling are used.
If you are using the cooling output, the controller must not be configured as
master controller (Config.Cascade.IsMaster must be FALSE) .

Con-
fig.Advance
dCooling

BOOL TRUE Method for heating/cooling
• Cooling factor (Config.AdvancedCooling = FALSE)

The output value calculation for cooling takes place with the PID param-
eters for heating (Retain.CtrlParams.Heat structure) taking into consid-
eration the configurable cooling factor Config.CoolFactor.

This method is suitable if the heating and cooling actuator have similar
time responses but different gains.

Pretuning and fine tuning for cooling are not available when you select
this method. You can only execute the tuning for heating.

• PID parameter switching (Config.AdvancedCooling = TRUE)

The output value calculation for cooling takes place by means of a sepa-
rate PID parameter set (Retain.CtrlParams.Cool structure).

This method is suitable if the heating and cooling actuator have different
time responses and different gains.

Pretuning and fine tuning for cooling are only available when you select
this method (Mode = 1 or 2, Cool.EnableTuning = TRUE).

Config.AdvancedCooling is only calculated if the cooling output is activated
(Config.ActivateCooling = TRUE).

Instructions
8.3 PID_Temp

 PID control
394 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Con-
fig.CoolFact
or

REAL 1.0 Cooling factor
If Config.AdvancedCooling = FALSE, Config.CoolFactor is considered as
factor in the calculation of the output value for cooling. Different gains of the
heating and cooling actuator can be considered in this way.
Config.CoolFactor is not set automatically or adjusted during tuning. You
must correctly configure Config.CoolFactor manually with the ratio "heating
actuator gain/cooling actuator gain".
Example: Config.CoolFactor = 2.0 means that the gain of the heating actua-
tor is twice as high as the gain of the cooling actuator.
Config.CoolFactor is only effective if the cooling output is activated (Con-
fig.ActivateCooling = TRUE) and cooling factor is selected as method for
heating/cooling (Config.AdvancedCooling = FALSE).
Config.CoolFactor > 0.0

Con-
fig.InputScal
ing.UpperPo
intIn

REAL 27648.0 Scaling Input_PER high
Input_PER is scaled based on the two value pairs UpperPointOut, Upper-
PointIn and LowerPointOut, LowerPointIn.
Only effective if Input_PER is used for process value detection (Con-
fig.InputPerOn = TRUE).
UpperPointIn > LowerPointIn

Con-
fig.InputScal
ing.LowerPo
intIn

REAL 0.0 Scaling Input_PER low
Input_PER is scaled based on the two value pairs UpperPointOut, Upper-
PointIn and LowerPointOut, LowerPointIn.
Only effective if Input_PER is used for process value detection (Con-
fig.InputPerOn = TRUE).
LowerPointIn < UpperPointIn

Con-
fig.InputScal
ing.UpperPo
intOut

REAL 100.0 Scaled high process value
Input_PER is scaled based on the two value pairs UpperPointOut, Upper-
PointIn and LowerPointOut, LowerPointIn.
Only effective if Input_PER is used for process value detection (Con-
fig.InputPerOn = TRUE).
UpperPointOut > LowerPointOut

Con-
fig.InputScal
ing.LowerPo
intOut

REAL 0.0 Scaled low process value
Input_PER is scaled based on the two value pairs UpperPointOut, Upper-
PointIn and LowerPointOut, LowerPointIn.
Only effective if Input_PER is used for process value detection (Con-
fig.InputPerOn = TRUE).
LowerPointOut < UpperPointOut

Con-
fig.Output.H
eat.Select

INT 1 Selecting the output value for heating
Config.Output.Heat.Select specifies which outputs are used for heating:
• Heat.Select = 0 - OutputHeat is used
• Heat.Select = 1 - OutputHeat and OutputHeat_PWM are used
• Heat.Select = 2 -OutputHeat and OutputHeat_PER are used
Outputs that are not used are not calculated and remain at their default
value.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 395

Tag Data type Default Description
Con-
fig.Output.H
eat.PwmPer
iode

REAL 0.0 Time period of the pulse width modulation (PWM) for heating (Out-
putHeat_PWM output) in seconds:
• Heat.PwmPeriode = 0.0

The sampling time of the PID algorithm for heating (Re-
tain.CtrlParams.Heat.Cycle) is used as time period of the PWM.

• Heat.PwmPeriode > 0.0

The value is rounded off to an integer multiple of the PID_Temp sam-
pling time (CycleTime.Value) and used as time period of the PWM.

This setting can be used to improve the smoothing of the process value
with a long sampling time of the PID algorithm.

The value must meet the following conditions:
– Heat.PwmPeriode ≤ Retain.CtrlParams.Heat.Cycle,
– Heat.PwmPeriode > Config.Output.Heat.MinimumOnTime
– Heat.PwmPeriode > Config.Output.Heat.MinimumOffTime

Con-
fig.Output.H
eat.PidUppe
rLimit

REAL 100.0 High limit of the PID output value for heating
The PID output value (PidOutputSum) is limited to the high limit.
Heat.PidUpperLimit forms a value pair together with the following parame-
ters for scaling of the PID output value (PidOutputSum) to the outputs for
heating:
• Heat.UpperScaling for OutputHeat
• Heat.PwmUpperScaling for OutputHeat_PWM
• Heat.PerUpperScaling for OutputHeat_PER
If you want to limit the value at the associated output, you must also adjust
these scaling values.
Heat.PidUpperLimit > Heat.PidLowerLimit

Con-
fig.Output.H
eat.PidLowe
rLimit

REAL 0.0 Low limit of the PID output value for heating
For controllers with deactivated cooling output (Config.ActivateCooling =
FALSE), the PID output value (PidOutputSum) is limited to this low limit.
For controllers with activated cooling output (Config.ActivateCooling =
TRUE), the value must be 0.0.
Heat.PidLowerLimit forms a value pair together with the following parame-
ters for scaling of the PID output value (PidOutputSum) to the outputs for
heating:
• Heat.LowerScaling for OutputHeat
• Heat.PwmLowerScaling for OutputHeat_PWM
• Heat.PerLowerScaling for OutputHeat_PER
If you want to limit the value at the associated output, you must also adjust
these scaling values.
The permitted value range is determined by the configuration.
• Cooling output deactivated (Config.ActivateCooling = FALSE):

Heat.PidLowerLimit < Heat.PidUpperLimit
• Cooling output activated (Config.ActivateCooling = TRUE):

Heat.PidLowerLimit = 0.0

Instructions
8.3 PID_Temp

 PID control
396 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Con-
fig.Output.H
eat.UpperSc
aling

REAL 100.0 Scaled high output value for heating
Heat.UpperScaling and Heat.PidUpperLimit form a value pair for scaling of
the PID output value (PidOutputSum) to the output value for heating (Out-
putHeat).
The OutputHeat value is always located between Heat.UpperScaling and
Heat.LowerScaling.
Heat.UpperScaling ≠ Heat.LowerScaling

Con-
fig.Output.H
eat.LowerSc
aling

REAL 0.0 Scaled low output value for heating
Heat.LowerScaling and Heat.PidLowerLimit form a value pair for scaling of
the PID output value (PidOutputSum) to the output value for heating (Out-
putHeat).
The OutputHeat value is always located between Heat.UpperScaling and
Heat.LowerScaling.
Heat.UpperScaling ≠ Heat.LowerScaling

Con-
fig.Output.H
eat.PwmUp
perScaling

REAL 100.0 Scaled high PWM output value for heating
Heat.PwmUpperScaling and Heat.PidUpperLimit form a value pair for scal-
ing of the PID output value (PidOutputSum) to the pulse-width modulated
output value for heating (OutputHeat_PWM).
The OutputHeat_PWM value is always located between
Heat.PwmUpperScaling and Heat.PWMLowerScaling.
Heat.PwmUpperScaling is only effective if OutputHeat_PWM is selected as
output for heating (Heat.Select = 1)
100.0 ≥ Heat.PwmUpperScaling ≥ 0.0
Heat.PwmUpperScaling ≠ Heat.PwmLowerScaling

Con-
fig.Output.H
eat.PwmLo
werScaling

REAL 0.0 Scaled low PWM output value for heating
Heat.PwmLowerScaling and Heat.PidLowerLimit form a value pair for scal-
ing of the PID output value (PidOutputSum) to the pulse-width modulated
output value for heating (OutputHeat_PWM).
The OutputHeat_PWM value is always located between
Heat.PwmUpperScaling and Heat.PwmLowerScaling.
Heat.PwmLowerScaling is only effective if OutputHeat_PWM is selected as
output for heating (Heat.Select = 1)
100.0 ≥ Heat.PwmLowerScaling ≥ 0.0
Heat.PwmUpperScaling ≠ Heat.PwmLowerScaling

Con-
fig.Output.H
eat.PerUpp
erScaling

REAL 27648.0 Scaled high analog output value for heating
Heat.PerUpperScaling and Heat.PidUpperLimit form a value pair for scaling
of the PID output value (PidOutputSum) to the analog output value for heat-
ing (OutputHeat_PER).
The OutputHeat_PER value is always located between
Heat.PerUpperScaling and Heat.PerLowerScaling.
Heat.PerUpperScaling is only effective if OutputHeat_PER is selected as
output for heating (Heat.Select = 2)
32511.0 ≥ Heat.PerUpperScaling ≥ -32512.0
Heat.PerUpperScaling ≠ Heat.PerLowerScaling

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 397

Tag Data type Default Description
Con-
fig.Output.H
eat.PerLow
erScaling

REAL 0.0 Scaled low analog output value for heating
Heat.PerLowerScaling and Heat.PidLowerLimit form a value pair for scaling
of the PID output value (PidOutputSum) to the analog output value for heat-
ing (OutputHeat_PER).
The OutputHeat_PER value is always located between
Heat.PerUpperScaling and Heat.PerLowerScaling.
Heat.PerLowerScaling is only effective if OutputHeat_PER is selected as
output for heating (Heat.Select = 2)
32511.0 ≥ Heat.PerLowerScaling ≥ -32512.0
Heat.PerUpperScaling ≠ Heat.PerLowerScaling

Con-
fig.Output.H
eat.Minimu
mOnTime

REAL 0.0 Minimum on time of the pulse width modulation for heating (Out-
putHeat_PWM output)
A PWM pulse is never shorter than this value.
The value is rounded off to:
Heat.MinimumOnTime = n × CycleTime.Value
Heat.MinimumOnTime is only effective if the output for heating Out-
putHeat_PWM is selected (Heat.Select = 1)".
100000.0 ≥ Heat.MinimumOnTime ≥ 0.0

Con-
fig.Output.H
eat.Minimu
mOffTime

REAL 0.0 Minimum off time of the pulse width modulation for heating (Out-
putHeat_PWM output)
A PWM pause is never shorter than this value.
The value is rounded off to:
Heat.MinimumOffTime = n × CycleTime.Value
Heat.MinimumOffTime is only effective if the output for heating Out-
putHeat_PWM is selected (Heat.Select = 1)".
100000.0 ≥ Heat.MinimumOffTime ≥ 0.0

Con-
fig.Output.C
ool.Select

INT 1 Selecting the output value for cooling
Config.Output.Cool.Select specifies which outputs are used for cooling:
• Cool.Select = 0 - OutputCool is used
• Cool.Select = 1 -OutputCool and OutputCool_PWM are used
• Cool.Select = 2 - OutputCool and OutputCool_PER are used
Outputs that are not used are not calculated and remain at their default
value.
Only effective if the cooling output is activated (Config.ActivateCooling =
TRUE).

Instructions
8.3 PID_Temp

 PID control
398 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Con-
fig.Output.C
ool.PwmPer
iode

REAL 0.0 Time period of the pulse width modulation for cooling (OutputCool_PWM
output) in seconds:
• Cool.PwmPeriode = 0.0 and Config.AdvancedCooling = FALSE:

sampling time of the PID algorithm for heating

(Retain.CtrlParams.Heat.Cycle) is used as time period of the PWM.
• Cool.PwmPeriode = 0.0 and Config.AdvancedCooling = TRUE:

The sampling time of the PID algorithm for cooling (Re-
tain.CtrlParams.Cool.Cycle) is used as time period of the PWM.

• Cool.PwmPeriode > 0.0:

The value is rounded off to an integer multiple of the PID_Temp sam-
pling time (CycleTime.Value) and used as time period of the PWM.

This setting can be used to improve the smoothing of the process value
with a long sampling time of the PID algorithm.

The value must meet the following conditions:
– Cool.PwmPeriode ≤ Retain.CtrlParams.Cool.Cycle or Re-

tain.CtrlParams.Heat.Cycle
– Cool.PwmPeriode > Config.Output.Cool.MinimumOnTime
– Cool.PwmPeriode > Config.Output.Cool.MinimumOffTime

Only effective if the cooling output is activated (Config.ActivateCooling =
TRUE).

Con-
fig.Output.C
ool.PidUppe
rLimit

REAL 0.0 High limit of the PID output value for cooling
The value must be 0.0.
Cool.PidUpperLimit forms a value pair together with the following parame-
ters for scaling of the PID output value (PidOutputSum) to the outputs for
cooling:
• Cool.LowerScaling for OutputCool
• Cool.PwmLowerScaling for OutputCool_PWM
• Cool.PerLowerScaling for OutputCool_PER
If you want to limit the value at the associated output, you must also adjust
these scaling values.
Only effective if the cooling output is activated (Config.ActivateCooling =
TRUE).
Cool.PidUpperLimit = 0.0

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 399

Tag Data type Default Description
Con-
fig.Output.C
ool.PidLowe
rLimit

REAL -100.0 Low limit of the PID output value for cooling
For controllers with activated cooling output (Config.ActivateCooling =
TRUE), the PID output value (PidOutputSum) is limited to this low limit.
Cool.PidLowerLimit forms a value pair together with the following parame-
ters for scaling of the PID output value (PidOutputSum) to the outputs for
cooling:
• Cool.UpperScaling for OutputCool
• Cool.PwmUpperScaling for OutputCool_PWM
• Cool.PerUpperScaling for OutputCool_PER
If you want to limit the value at the associated output, you must also adjust
these scaling values.
Only effective if the cooling output is activated (Config.ActivateCooling =
TRUE).
Cool.PidLowerLimit < Cool.PidUpperLimit

Con-
fig.Output.C
ool.UpperSc
aling

REAL 100.0 Scaled high output value for cooling
Cool.UpperScaling and Cool.PidLowerLimit form a value pair for scaling of
the PID output value (PidOutputSum) to the output value for cooling (Out-
putCool).
The OutputCool value is always located between Cool.UpperScaling and
Cool.LowerScaling.
Only effective if the cooling output is activated (Config.ActivateCooling =
TRUE).
Cool.UpperScaling ≠ Cool.LowerScaling

Con-
fig.Output.C
ool.LowerSc
aling

REAL 0.0 Scaled low output value for cooling
Cool.LowerScaling and Cool.PidUpperLimit form a value pair for scaling of
the PID output value (PidOutputSum) to the output value for cooling (Out-
putCool).
The OutputCool value is always located between Cool.UpperScaling and
Cool.LowerScaling.
Only effective if the cooling output is activated (Config.ActivateCooling =
TRUE).
Cool.UpperScaling ≠ Cool.LowerScaling

Con-
fig.Output.C
ool.PwmUp
perScaling

REAL 100.0 Scaled high PWM output value for cooling
Cool.PwmUpperScaling and Cool.PidLowerLimit form a value pair for scal-
ing of the PID output value (PidOutputSum) to the pulse-width modulated
output value for cooling (OutputCool_PWM).
The OutputCool_PWM value is always located between
Cool.PwmUpperScaling and Cool.PwmLowerScaling.
Cool.PwmUpperScaling is only effective if the cooling output is activated
(Config.ActivateCooling = TRUE) and OutputCool_PWM is selected as out-
put for cooling (Cool.Select = 1).
100.0 ≥ Cool.PwmUpperScaling ≥ 0.0
Cool.PwmUpperScaling ≠ Cool.PwmLowerScaling

Instructions
8.3 PID_Temp

 PID control
400 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Con-
fig.Output.C
ool.PwmLo
werScaling

REAL 0.0 Scaled low PWM output value for cooling
Cool.PwmLowerScaling and Cool.PidUpperLimit form a value pair for scal-
ing of the PID output value (PidOutputSum) to the pulse-width modulated
output value for cooling (OutputCool_PWM).
The OutputCool_PWM value is always located between
Cool.PwmUpperScaling and CoolPwm.LowerScaling.
Cool.PwmLowerScaling is only effective if the cooling output is activated
(Config.ActivateCooling = TRUE) and OutputCool_PWM is selected as out-
put for cooling (Cool.Select = 1).
100.0 ≥ Cool.PwmLowerScaling ≥ 0.0
Cool.PwmUpperScaling ≠ Cool.PwmLowerScaling

Con-
fig.Output.C
ool.PerUppe
rScaling

REAL 27648.0 Scaled high analog output value for cooling
Cool.PerUpperScaling and Cool.PidLowerLimit form a value pair for scaling
of the PID output value (PidOutputSum) to the analog output value for cool-
ing (OutputCool_PER).
The OutputCool_PER value is always located between
Cool.PerUpperScaling and Cool.PerLowerScaling.
Cool.PerUpperScaling is only effective if the cooling output is activated
(Config.ActivateCooling = TRUE) and OutputCool_PER is selected as out-
put for cooling (Cool.Select = 2).
32511.0 ≥ Cool.PerUpperScaling ≥ -32512.0
Cool.PerUpperScaling ≠ Cool.PerLowerScaling

Con-
fig.Output.C
ool.PerLowe
rScaling

REAL 0.0 Scaled low analog output value for cooling
Cool.PerLowerScaling and Cool.PidUpperLimit form a value pair for scaling
of the PID output value (PidOutputSum) to the analog output value for cool-
ing (OutputCool_PER).
The OutputCool_PER value is always located between
Cool.PerUpperScaling and Cool.PerLowerScaling.
Cool.PerLowerScaling is only effective if the cooling output is activated
(Config.ActivateCooling = TRUE) and OutputCool_PER is selected as out-
put for cooling (Cool.Select = 2).
32511.0 ≥ Cool.PerLowerScaling ≥ -32512.0
Cool.PerUpperScaling ≠ Cool.PerLowerScaling

Con-
fig.Output.C
ool.Minimu
mOnTime

REAL 0.0 Minimum on time of the pulse width modulation for cooling (Out-
putCool_PWM output)
A PWM pulse is never shorter than this value.
The value is rounded off to:
Cool.MinimumOnTime = n × CycleTime.Value
Cool.MinimumOnTime is only effective if the output for cooling Out-
putCool_PWM is selected (Cool.Select = 1).
Only effective if the cooling output is activated (Config.ActivateCooling =
TRUE).
100000.0 ≥ Cool.MinimumOnTime ≥ 0.0

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 401

Tag Data type Default Description
Con-
fig.Output.C
ool.Minimu
mOffTime

REAL 0.0 Minimum off time of the pulse width modulation for cooling (Out-
putCool_PWM output)
A PWM pause is never shorter than this value.
The value is rounded off to:
Cool.MinimumOffTime = n × CycleTime.Value
Cool.MinimumOffTime is only effective if the output for cooling Out-
putCool_PWM is selected (Cool.Select = 1).
Only effective if the cooling output is activated (Config.ActivateCooling =
TRUE).
100000.0 ≥ Cool.MinimumOffTime ≥ 0.0

If you are using PID_Temp in a cascade, the master controller and slave controller exchange information via the master
and slave parameters.
You need to make the interconnection. For details, see the Master parameter.
Con-
fig.Cascade.
IsMaster

BOOL FALSE The controller is master in a cascade and provides the slave setpoint.
Set IsMaster = TRUE if you are using this PID_Temp instance as master
controller in a cascade.
A master controller defines the setpoint of a slave controller with its output.
A PID_Temp instance can be master controller and slave controller at the
same time.
If the controller is used as master controller, the cooling output must be
deactivated (Config.ActivateCooling = FALSE).

Con-
fig.Cascade.
IsSlave

BOOL FALSE The controller is slave in a cascade and provides the master setpoint.
Set IsSlave = TRUE if you are using this PID_Temp instance as slave con-
troller in a cascade.
A slave controller receives its setpoint (Setpoint parameter) from the output
of its master controller (OutputHeat parameter). A PID_Temp instance can
be master controller and slave controller at the same time.

Con-
fig.Cascade.
AntiWindUp
WindUp-
Mode

INT 1 Anti-windup behavior in the cascade
Options are:
• Anti-windup = 0

The AntiWindUp functionality is deactivated. The master controller does
not respond to the limit of its slave controllers.

• Anti-windup = 1

The integral action of the master controller is reduced in the ratio "Slaves
in limit" to "Number of slaves" ("CountSlaves" parameter). This means
the effects of the limit are reduced to the control response.

• Anti-windup = 2

The integral action of the master controller is held as soon as a slave
controller is in the limit.

Only effective if the controller is configured as master controller (Con-
fig.Cascade.IsMaster = TRUE).

Instructions
8.3 PID_Temp

 PID control
402 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Con-
fig.Cascade.
CountSlave
s

INT 1 Number of subordinate slaves
Here you enter the number of directly subordinate slave controllers which
receive their setpoint from this master controller.
Only effective if the controller is configured as master controller (Con-
fig.Cascade.IsMaster = TRUE).
255 ≥ CountSlaves ≥ 1

Cy-
cleTime.Sta
rtEstimation

BOOL TRUE If CycleTime.EnEstimation = TRUE, CycleTime.StartEstimation = TRUE
starts automatic determination of the PID_Temp sampling time (cycle time of
the calling OB).
CycleTime.StartEstimation = FALSE is set once measurement is complete.

Cy-
cleTime.En
Estimation

BOOL TRUE If CycleTime.EnEstimation = TRUE, the PID_Temp sampling time is deter-
mined automatically.
If CycleTime.EnEstimation = FALSE, the sampling time PID_Temp is not
determined automatically and must be configured correctly manually with
CycleTime.Value.

Cy-
cleTime.En
Monitoring

BOOL TRUE If CycleTime.EnMonitoring = FALSE, the PID_Temp sampling time is not
monitored. If PID_Temp cannot be executed within the sampling time, no
error (ErrorBits=0000800h) is output and PID_Temp does not respond as
configured with ActivateRecoverMode.

Cy-
cleTime.Val
ue

REAL 0.1 PID_Temp sampling time (cycle time of the calling OB) in seconds
CycleTime.Value is determined automatically and is usually equivalent to
the cycle time of the calling OB.

You can reload values from the CtrlParamsBackUp structure with LoadBackUp = TRUE.
CtrlParams-
Params-
BackUp.Set
ByUser

BOOL FALSE Saved value of Retain.CtrlParams.SetByUser

CtrlParams-
Params-
BackUp.He
at.Gain

REAL 1.0 Saved proportional gain for heating

CtrlParams-
Params-
BackUp.He
at.Ti

REAL 20.0 Saved integral action time for heating in seconds

CtrlParams-
Params-
BackUp.He
at.Td

REAL 0.0 Saved derivative action time for heating in seconds

CtrlParams-
Params-
BackUp.He
at.TdFiltRati
o

REAL 0.2 Saved derivative delay coefficient for heating

CtrlParams-
Params-
BackUp.He
at.PWeighti
ng

REAL 1.0 Saved weighting of the proportional action for heating

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 403

Tag Data type Default Description
CtrlParams-
Params-
BackUp.He
at.DWeighti
ng

REAL 1.0 Saved weighting of the derivative action for heating

CtrlParams-
Params-
BackUp.He
at.Cycle

REAL 1.0 Saved sampling time of the PID algorithm for heating in seconds

CtrlParams-
Params-
BackUp.He
at.ControlZo
ne

REAL 3.402822e+38 Saved control zone width for heating

CtrlParams-
Params-
BackUp.He
at.DeadZon
e

REAL 0.0 Saved deadband width for heating

CtrlParams-
Params-
BackUp.Co
ol.Gain

REAL 1.0 Saved proportional gain for cooling

CtrlParams-
Params-
BackUp.Co
ol.Ti

REAL 20.0 Saved integral action time for cooling in seconds

CtrlParams-
Params-
BackUp.Co
ol.Td

REAL 0.0 Saved derivative action time for cooling in seconds

CtrlParams-
Params-
BackUp.Co
ol.TdFiltRati
o

REAL 0.2 Saved derivative delay coefficient for cooling

CtrlParams-
Params-
BackUp.Co
ol.PWeighti
ng

REAL 1.0 Saved proportional action weighting factor for cooling

CtrlParams-
Params-
BackUp.Co
ol.DWeighti
ng

REAL 1.0 Saved derivative action weighting factor for cooling

CtrlParams-
Params-
BackUp.Co
ol.Cycle

REAL 1.0 Saved sampling time of the PID algorithm for cooling in seconds

Instructions
8.3 PID_Temp

 PID control
404 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
CtrlParams-
Params-
BackUp.Co
ol.ControlZo
ne

REAL 3.402822e+38 Saved control zone width for cooling

CtrlParams-
Params-
BackUp.Co
ol.DeadZon
e

REAL 0.0 Saved deadband width for cooling

PIDSelf-
Tune.SUT.C
alculate-
ParamsHeat

BOOL FALSE The properties of the heating branch of the controlled system are saved
during pretuning for heating. If SUT.CalculateParamsHeat = TRUE, the PID
parameters for heating are recalculated on the basis of these properties
(Retain.CtrlParams.Heat structure). This enables you to change the parame-
ter calculation method (PIDSelfTune.SUT.TuneRuleHeat parameter) without
having to repeat the tuning.
SUT.CalculateParamsHeat is set to FALSE after the calculation.
Only possible if the pretuning was successful (SUT.ProcParHeatOk =
TRUE).

PIDSelf-
Tune.SUT.C
alculate-
ParamsCool

BOOL FALSE The properties of the cooling branch of the controlled system are saved
during tuning for cooling. If SUT.CalculateParamsCool = TRUE, the PID
parameters for cooling are recalculated on the basis of these properties
(Retain.CtrlParams.Cool structure). This enables you to change the parame-
ter calculation method (PIDSelfTune.SUT.TuneRuleCool parameter) without
having to repeat the tuning.
SUT.CalculateParamsCool is set to FALSE after the calculation.
Only possible if the pretuning was successful (SUT.ProcParCoolOk =
TRUE).
Only effective if Config.ActivateCooling = TRUE and Con-
fig.AdvancedCooling = TRUE.

PIDSelf-
Tune.SUT.T
uneRule-
Heat

INT 2 Method for PID parameter calculation with pretuning for heating
Options are:
• SUT.TuneRuleHeat = 0: PID to CHR
• SUT.TuneRuleHeat = 1: PI to CHR
• SUT.TuneRuleHeat = 2: PID for temperature processes to CHR (results

in a longer and rather asymptomatic control response with fewer over-
shoots than SUT.TuneRuleHeat = 0)

(CHR = Chien, Hrones and Reswick)
Only with SUT.TuneRuleHeat = 2 is the control zone Re-
tain.CtrlParams.Heat.ControlZone automatically set during pretuning for
heating.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 405

Tag Data type Default Description
PIDSelf-
Tune.SUT.T
uneRu-
leCool

INT 2 Method for PID parameter calculation with pretuning for cooling
Options are:
• SUT.TuneRuleCool = 0: PID to CHR
• SUT.TuneRuleCool = 1: PI to CHR
• SUT.TuneRuleCool = 2: PID for temperature processes to CHR (results

in a longer and rather asymptomatic control response with fewer over-
shoots than SUT.TuneRuleCool = 0)

(CHR = Chien, Hrones and Reswick)
Only with SUT.TuneRuleCool = 2 is the control zone Re-
tain.CtrlParams.Cool.ControlZone automatically set during pretuning for
cooling.
SUT.TuneRuleCool is only effective if the cooling output and PID parameter
switching are activated (Config.ActivateCooling = TRUE, Con-
fig.AdvancedCooling = TRUE).

PIDSelf-
Tune.SUT.S
tate

INT 0 The SUT.State tag indicates the current phase of pretuning:
• State = 0: Initialize pretuning
• State = 100: Calculate standard deviation for heating
• State = 200: Calculate standard deviation for cooling
• State = 300: Determine point of inflection for heating
• State = 400: Determine point of inflection for cooling
• State = 500: Set heating to setpoint after reaching point of inflection
• State = 600: Set cooling to setpoint after reaching point of inflection
• State = 700: Compare efficiency of the heating actuator and cooling

actuator
• State = 800: Heating and cooling activated
• State = 900: Cooling activated
• State = 1000: Determine delay time after switching off heating
• State = 9900: Pretuning successful
• State = 1: Pretuning not successful

PIDSelf-
Tune.SUT.P
rocParHea-
tOk

BOOL FALSE TRUE: The calculation of the process parameters for pretuning heating was
successful.
This tag is set during tuning.
It must be TRUE for calculation of the PID parameters for heating.

PIDSelf-
Tune.SUT.P
rocParCoo-
lOk

BOOL FALSE TRUE: The calculation of the process parameters for pretuning cooling was
successful.
This tag is set during tuning.
It must be TRUE for calculation of the PID parameters for cooling.

Instructions
8.3 PID_Temp

 PID control
406 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
PIDSelf-
Tune.SUT.A
daptDelay-
Time

INT 0 The AdaptDelayTime tag determines the adaptation of the delay time for
heating at the operating point (for "Pretuning heating" and "Pretuning heat-
ing and cooling").
Options are:
• SUT.AdaptDelayTime = 0:

No adaptation of delay time. The SUT.State = 1000 phase is skipped.
This option results in a shorter tuning time than with
SUT.AdaptDelayTime = 1.

• SUT.AdaptDelayTime = 1:

Adaptation of the delay time to the setpoint in SUT.State = 1000 phase
by switching off heating temporarily.

This option results in a longer tuning time than with
SUT.AdaptDelayTime = 0. It can improve the control response if the pro-
cess behavior depends significantly on the operating point (non-
linearity). This option should not be used for multi-zone applications with
strong thermal connections.

PIDSelf-
Tune.SUT.C
oolingMode

INT 0 The CoolingMode tag determines the manipulated variable output to deter-
mine the cooling parameters (for pretuning heating and cooling).
Options are:
• SUT.CoolingMode = 0:

Switch off heating and switch on cooling after reaching the setpoint.

The SUT.State = 700 phase is skipped.

Phase SUT.State = 500 is followed by phase SUT.State = 900.

This option can improve the control response if the gain of the cooling
actuator is low compared to the gain of the heating actuator. It results in
a shorter tuning time than with SUT.CoolingMode = 1 or 2.

• SUT.CoolingMode = 1:

Switch on cooling in addition to heating after reaching the setpoint.

The SUT.State = 700 phase is skipped.

Phase SUT.State = 500 is followed by phase SUT.State = 800.

This option can improve the control response if the gain of the cooling
actuator is high compared to the gain of the heating actuator.

• SUT.CoolingMode = 2:

After heating up to the setpoint, a decision is automatically made in
phase SUT.State = 700 as to whether heating is switched off. Phase
SUT.State = 500 is followed by phase SUT.State = 700 and then
SUT.State = 800 or SUT.State = 900.

This option requires more time than options 0 and 1.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 407

Tag Data type Default Description
PIDSelf-
Tune.TIR.R
unIn

BOOL FALSE Use the RunIn tag to specify the sequence of fine tuning during start from
automatic mode.
• RunIn = FALSE

If fine tuning is started from automatic mode, the system uses the exist-
ing PID parameters to control to the setpoint (TIR.State = 500 or 600).
Only then will fine tuning start.

• RunIn = TRUE

PID_Temp tries to reach the setpoint with minimum or maximum output
value (TIR.State = 300 or 400). This can produce increased overshoot.
Fine tuning then starts automatically.

RunIn is set to FALSE after fine tuning.
During start of fine tuning from Inactive or Manual mode, PID_Temp reacts
as described under RunIn = TRUE.

PIDSelf-
Tune.TIR.C
alculate-
ParamsHeat

BOOL FALSE The properties of the heating branch of the controlled system are saved
during fine tuning for heating. If TIR.CalculateParamsHeat= TRUE, the PID
parameters for heating are recalculated on the basis of these properties
(Retain.CtrlParams.Heat structure). This enables you to change the parame-
ter calculation method (PIDSelfTune.TIR.TuneRuleHeat parameter) without
having to repeat the tuning.
TIR.CalculateParamsHeat is set to FALSE after the calculation.
Only possible if fine tuning heating was successful beforehand
(TIR.ProcParHeatOk = TRUE).

PIDSelf-
Tune.TIR.C
alculate-
ParamsCool

BOOL FALSE The properties of the cooling branch of the controlled system are saved
during fine tuning for cooling. If TIR.CalculateParamsCool= TRUE, the PID
parameters for cooling are recalculated on the basis of these properties
(Retain.CtrlParams.Cool structure). This enables you to change the parame-
ter calculation method (PIDSelfTune.TIR.TuneRuleCool parameter) without
having to repeat the tuning.
TIR.CalculateParamsCool is set to FALSE after the calculation.
Only possible if fine tuning cooling was successful beforehand
(TIR.ProcParCoolOk = TRUE).
Only effective if Config.ActivateCooling = TRUE and Con-
fig.AdvancedCooling = TRUE

Instructions
8.3 PID_Temp

 PID control
408 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
PIDSelf-
Tune.TIR.T
uneRule-
Heat

INT 0 Method for parameter calculation during fine tuning for heating
Options are:
• TIR.TuneRuleHeat = 0: PID automatic
• TIR.TuneRuleHeat = 1: PID fast (faster control response with higher

amplitudes of the output value than with TIR.TuneRuleHeat = 2)
• TIR.TuneRuleHeat = 2: PID slow (slower control response with lower

amplitudes of the output value than with TIR.TuneRuleHeat = 1)
• TIR.TuneRuleHeat = 3: ZN PID
• TIR.TuneRuleHeat = 4: ZN PI
• TIR.TuneRuleHeat = 5: ZN P
(ZN=Ziegler-Nichols)
To be able to repeat the calculation of the PID parameters for heating with
TIR.CalculateParamsHeat and TIR.TuneRuleHeat = 0, 1 or 2, the previous
fine tuning also has to have been executed with TIR.TuneRuleHeat = 0, 1 or
2. If this is not the case, TIR.TuneRuleHeat = 3 is used.
The recalculation of the PID parameters for heating with
TIR.CalculateParamsHeat and TIR.TuneRuleHeat = 3, 4 or 5 is always
possible.

PIDSelf-
Tune.TIR.T
uneRu-
leCool

INT 0 Method for parameter calculation during fine tuning for cooling
Options are:
• TIR.TuneRuleCool = 0: PID automatic
• TIR.TuneRuleCool = 1: PID fast (faster control response with higher

amplitudes of the output value than with TIR.TuneRuleCool = 2)
• TIR.TuneRuleCool = 2: PID slow (slower control response with lower

amplitudes of the output value than with TIR.TuneRuleCool = 1)
• TIR.TuneRuleCool = 3: ZN PID
• TIR.TuneRuleCool = 4: ZN PI
• TIR.TuneRuleCool = 5: ZN P
(ZN=Ziegler-Nichols)
To be able to repeat the calculation of the PID parameters for cooling with
TIR.CalculateParamsCool and TIR.TuneRuleCool = 0, 1 or 2, the previous
fine tuning also has to have been executed with TIR.TuneRuleCool = 0, 1 or
2. If this is not the case, TIR.TuneRuleCool = 3 is used.
The recalculation of the PID parameters for cooling with
TIR.CalculateParamsCool and TIR.TuneRuleCool = 3, 4 or 5 is always pos-
sible.
Only effective if the cooling output and PID parameter switching are activat-
ed (ConfigActivateCooling = TRUE and Config.AdvancedCooling = TRUE).

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 409

Tag Data type Default Description
PIDSelf-
Tune.TIR.St
ate

INT 0 The TIR.State tag indicates the current phase of "fine tuning":
• State = 0: Initialize fine tuning
• State = 100: Calculate standard deviation for heating
• State = 200: Calculate standard deviation for cooling
• State = 300: Attempting to reach setpoint for heating with two-step con-

trol
• State = 400: Attempting to reach setpoint for cooling with two-step con-

trol
• State = 500: Attempting to reach setpoint for heating with PID control
• State = 600: Attempting to reach setpoint for cooling with PID control
• State = 700: Calculate standard deviation for heating
• State = 800: Calculate standard deviation for cooling
• State = 900: Determine oscillation and calculate parameters for heating
• State = 1000: Determine oscillation and calculate parameters for cooling
• State = 9900: Fine tuning successful
• State = 1: Fine tuning not successful

PIDSelf-
Tune.TIR.Pr
ocParHea-
tOk

BOOL FALSE TRUE: The calculation of the process parameters for fine tuning heating was
successful.
This tag is set during tuning.
It must be met for calculation of the PID parameters for heating.

PIDSelf-
Tune.TIR.Pr
ocParCoo-
lOk

BOOL FALSE TRUE: The calculation of the process parameters for fine tuning cooling was
successful.
This tag is set during tuning.
It must be met for calculation of the PID parameters for cooling.

PIDSelf-
Tune.TIR.O
utput-
OffsetHeat

REAL 0.0 Tuning offset heating of the PID output value
TIR.OutputOffsetHeat is added to the value that results from PidOutputSum
for the heating branch.
To receive a positive offset at the outputs for heating, define a positive value
for TIR.OutputOffsetHeat.
The resulting values at the outputs for heating are the result of the config-
ured output scaling (Struktur Config.Output.Heat).
This tuning offset can be used in controllers with activated cooling output
and PID parameter switching (Config.ActivateCooling = TRUE, Con-
fig.AdvancedCooling = TRUE) for fine tuning cooling. If the outputs for cool-
ing are not active at the setpoint that is to be tuned (PidOutputSum > 0.0),
fine tuning cooling is not possible. In this case, define a positive tuning offset
heating which is greater than the PID output value (PidOutputSum) at the
setpoint in the steady state before you start tuning. This step increases the
values at the outputs for heating and activates the outputs for cooling (Pi-
dOutputSum < 0.0). Fine tuning cooling is now possible.
When fine tuning is complete, TIR.OutputOffsetHeat is reset to 0.0.
Major changes at TIR.OutputOffsetHeat in one step can result in temporary
overshoots.
Config.Output.Heat.PidUpperLimit ≥ PIDSelfTune.TIR.OutputOffsetHeat ≥
Config.Output.Heat.PidLowerLimit

Instructions
8.3 PID_Temp

 PID control
410 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
PIDSelf-
Tune.TIR.O
utput-
OffsetCool

REAL 0.0 Tuning offset cooling of the PID output value
TIR.OutputOffsetCool is added to the value that results from PidOutputSum
for the cooling branch.
To receive a positive offset at the outputs for cooling, define a negative
value for TIR.OutputOffsetCool.
The resulting values at the outputs for cooling are the result of the config-
ured output scaling (Struktur Config.Output.Coool).
This tuning offset can be used in controllers with activated cooling output
(Config.ActivateCooling = TRUE) for fine tuning heating. If the outputs for
heating are not active at the setpoint that is to be tuned (PidOutputSum <
0.0), fine tuning heating is not possible. In this case, define a negative tuning
offset cooling which is less than the PID output value (PidOutputSum) at the
setpoint in the steady state before you start tuning. This step increases the
values at the outputs for cooling and activates the outputs for heating (Pi-
dOutputSum > 0.0). Fine tuning heating is now possible.
When fine tuning is complete, TIR.OutputOffsetCool is reset to 0.0.
Major changes at TIR.OutputOffsetCool in one step can result in temporary
overshoots.
Config.Output.Cool.PidUpperLimit ≥ PIDSelfTune.TIR.OutputOffsetCool ≥
Config.Output.Cool.PidLowerLimit

PIDSelf-
Tune.TIR.W
aitForCon-
trolIn

BOOL FALSE Waiting with fine tuning after reaching the setpoint
If TIR.WaitForControlIn = TRUE, fine tuning waits in between reaching the
setpoint (TIR.State = 500 or 600) and calculation of the standard deviation
(TIR.State = 700 or 800) until a FALSE -> TRUE edge is given at
TIR.FinishControlIn.
TIR.WaitForControlIn can be used for simultaneous fine tuning of several
controllers in multi-zone applications to synchronize tuning of the individual
zones. It ensures that all zones have reached their setpoints before the
actual tuning starts. The influence of thermal connections between the
zones on tuning can be reduced in this way.
TIR.WaitForControlIn is only effective if fine tuning is started from automatic
mode with PIDSelfTune.TIR.RunIn = FALSE.

PIDSelf-
Tune.TIR.C
on-
trolInReady

BOOL FALSE If TIR.WaitForControlIn = TRUE, PID_Temp sets TIR.ControlInReady =
TRUE as soon as the setpoint has been reached and waits with additional
tuning steps until a FALSE -> TRUE edge is given at TIR.FinishControlIn.

PIDSelf-
Tune.TIR.Fi
nishCon-
trolIn

BOOL FALSE If TIR.ControlInReady = TRUE, a FALSE -> TRUE edge at
TIR.FinishControlIn stops the wait and fine tuning resumes.

PIDCtr.IOut
putOld

REAL 0.0 Integral action in last cycle

Re-
tain.CtrlPara
ms.SetByUs
er

BOOL FALSE If the PID parameters are entered manually in the configuration editor, Set-
ByUser = TRUE.
This parameter is used for display in the editors and does not influence the
control algorithm.
SetByUser is retentive.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 411

Tag Data type Default Description
Re-
tain.CtrlPara
ms.Heat.Gai
n

REAL 1.0 Active proportional gain for heating
Heat.Gain is retentive.
Heat.Gain ≥ 0.0

Re-
tain..CtrlPar
ams.Heat.Ti

REAL 20.0 Active integral action time for heating in seconds
The integral action for heating is switched off with Heat.CtrlParams.Ti = 0.0.
Heat.Ti is retentive.
100000.0 ≥ Heat.Ti ≥ 0.0

Re-
tain.CtrlPara
ms.Heat.Td

REAL 0.0 Active derivative action time for heating in seconds
The derivative action for heating is switched off with Heat.CtrlParams.Td =
0.0.
Heat.Td is retentive.
100000.0 ≥ Heat.Td ≥ 0.0

Re-
tain.CtrlPara
ms.Heat.Td
FiltRatio

REAL 0.2 Active derivative delay coefficient for heating
The derivative delay coefficient delays the effect of the derivative action.
Derivative delay = derivative action time × derivative delay coefficient
• 0.0: Derivative action is effective for one cycle only and therefore almost

not effective.
• 0.5: This value has proved useful in practice for controlled systems with

one dominant time constant.
• > 1.0: The greater the coefficient, the longer the effect of the derivative

action is delayed.
Heat.TdFiltRatio is retentive.
Heat.TdFiltRatio ≥ 0.0

Re-
tain.CtrlPara
ms.Heat.P
Weighting

REAL 1.0 Active weighting of the proportional action for heating
The proportional action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully effective
• 0.0: Proportional action for setpoint change is not effective
The proportional action is always fully effective when the process value is
changed.
Heat.PWeighting is retentive.
1.0 ≥ Heat.PWeighting ≥ 0.0

Re-
tain.CtrlPara
ms.Heat.D
Weighting

REAL 1.0 Active weighting of the derivative action for heating
The derivative action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint change
• 0.0: Derivative action is not effective upon setpoint change
The derivative action is always fully effective when the process value is
changed.
Heat.DWeighting is retentive.
1.0 ≥ Heat.DWeighting ≥ 0.0

Instructions
8.3 PID_Temp

 PID control
412 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Re-
tain.CtrlPara
ms.Heat.Cy
cle

REAL 1.0 Active sampling time of the PID algorithm for heating in seconds
CtrlParams.Heat.Cycle is calculated during tuning and rounded to an integer
multiple of CycleTime.Value.
If Config.Output.Heat.PwmPeriode = 0.0, Heat.Cycle is used as time period
of the pulse width modulation for heating.
If Config.Output.Cool.PwmPeriode = 0.0 and Config.AdvancedCooling =
FALSE, Heat.Cycle is used as time period of the pulse width modulation for
cooling.
Heat.Cycle is retentive.
100000.0 ≥ Heat.Cycle > 0.0

Re-
tain.CtrlPara
ms.Heat.Co
ntrolZone

REAL 3.402822e+38 Active control zone width for heating
The control zone for heating is switched off with Heat.ControlZone =
3.402822e+38.
Heat.ControlZone is only set automatically during pretuning heating or pre-
tuning heating and cooling if PIDSelfTune.SUT.TuneRuleHeat = 2 is select-
ed as method of the parameter calculation.
For controllers with deactivated cooling output (Config.ActivateCooling =
FALSE) or controllers with activated cooling output and cooling factor (Con-
fig.AdvancedCooling = FALSE), the control zone is symmetrically located
between Setpoint – Heat.ControlZone and Setpoint + Heat.ControlZone.
For controllers with activated cooling output and PID parameter switching
(Config.ActivateCooling = TRUE, Config.AdvancedCooling = TRUE), the
control zone is located between Setpoint – Heat.ControlZone and Setpoint +
Cool.ControlZone.
Heat.ControlZone is retentive.
Heat.ControlZone > 0.0

Re-
tain.CtrlPara
ms.Heat.De
adZone

REAL 0.0 Active deadband width for heating (see PID parameters (Page 177))
The deadband for heating is switched off with Heat.DeadZone = 0.0.
Heat.DeadZone is not set automatically or adjusted during tuning. You must
correctly configure Heat.DeadZone manually.
For controllers with deactivated cooling output (Config.ActivateCooling =
FALSE) or controllers with activated cooling output and cooling factor (Con-
fig.AdvancedCooling = FALSE), the deadband is symmetrically located
between Setpoint – Heat.DeadZone and Setpoint + Heat.DeadZone.
For controllers with activated cooling output and PID parameter switching
(Config.ActivateCooling = TRUE, Config.AdvancedCooling = TRUE), the
deadband is located between Setpoint – Heat.DeadZone and Setpoint +
Cool.DeadZone.
Heat.DeadZone is retentive.
Heat.DeadZone ≥ 0.0

Re-
tain.CtrlPara
ms.Cool.Gai
n

REAL 1.0 Active proportional gain for cooling
Cool.Gain is retentive.
Only effective if the cooling output and PID parameter switching are activat-
ed (Config.ActivateCooling = TRUE and Config.AdvancedCooling = TRUE).
Cool.Gain ≥ 0.0

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 413

Tag Data type Default Description
Re-
tain.CtrlPara
ms.Cool.Ti

REAL 20.0 Active integral action time for cooling in seconds
The integral action for cooling is switched off with Cool.CtrlParams.Ti = 0.0.
Cool.Ti is retentive.
Only effective if the cooling output and PID parameter switching are activat-
ed (Config.ActivateCooling = TRUE and Config.AdvancedCooling = TRUE).
100000.0 ≥ Cool.Ti ≥ 0.0

Re-
tain.CtrlPara
ms.Cool.Td

REAL 0.0 Active derivative action time for cooling in seconds
The derivative action for cooling is switched off with Cool.CtrlParams.Td =
0.0.
Cool.Td is retentive.
Only effective if the cooling output and PID parameter switching are activat-
ed (Config.ActivateCooling = TRUE and Config.AdvancedCooling = TRUE).
100000.0 ≥ Cool.Td ≥ 0.0

Re-
tain.CtrlPara
ms.Cool.Td
FiltRatio

REAL 0.2 Active derivative delay coefficient for cooling
The derivative delay coefficient delays the effect of the derivative action.
Derivative delay = derivative action time × derivative delay coefficient
• 0.0: Derivative action is effective for one cycle only and therefore almost

not effective.
• 0.5: This value has proved useful in practice for controlled systems with

one dominant time constant.
• > 1.0: The greater the coefficient, the longer the effect of the derivative

action is delayed.
Cool.TdFiltRatio is retentive.
Only effective if the cooling output and PID parameter switching are activat-
ed (Config.ActivateCooling = TRUE and Config.AdvancedCooling = TRUE).
Cool.TdFiltRatio ≥ 0.0

Re-
tain.CtrlPara
ms.Cool.PW
eighting

REAL 1.0 Active weighting of the proportional action for cooling
The proportional action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Proportional action for setpoint change is fully effective
• 0.0: Proportional action for setpoint change is not effective
The proportional action is always fully effective when the process value is
changed.
Cool.PWeighting is retentive.
Only effective if the cooling output and PID parameter switching are activat-
ed (Config.ActivateCooling = TRUE and Config.AdvancedCooling = TRUE).
1.0 ≥ Cool.PWeighting ≥ 0.0

Instructions
8.3 PID_Temp

 PID control
414 Function Manual, 12/2014, A5E35300227-AA

Tag Data type Default Description
Re-
tain.CtrlPara
ms.Cool.D
Weighting

REAL 1.0 Active weighting of the derivative action for cooling
The derivative action may weaken with changes to the setpoint.
Values from 0.0 to 1.0 are applicable.
• 1.0: Derivative action is fully effective upon setpoint change
• 0.0: Derivative action is not effective upon setpoint change
The derivative action is always fully effective when the process value is
changed.
Cool.DWeighting is retentive.
Only effective if the cooling output and PID parameter switching are activat-
ed (Config.ActivateCooling = TRUE and Config.AdvancedCooling = TRUE).
1.0 ≥ Cool.DWeighting ≥ 0.0

Re-
tain.CtrlPara
ms.Cool.Cy
cle

REAL 1.0 Active sampling time of the PID algorithm for cooling in seconds
CtrlParams.Cool.Cycle is calculated during tuning and rounded off to an
integer multiple of CycleTime..
If Config.Output.Cool.PwmPeriode = 0.0 and Config.AdvancedCooling =
TRUE, Cool.Cycle is used as time period of the pulse width modulation for
cooling.
If Config.Output.Cool.PwmPeriode = 0.0 and Config.AdvancedCooling =
FALSE, Heat.Cycle is used as time period of the pulse width modulation for
cooling.
Cool.Cycle is retentive.
Only effective if the cooling output and PID parameter switching are activat-
ed (Config.ActivateCooling = TRUE and Config.AdvancedCooling = TRUE).
100000.0 ≥ Cool.Cycle > 0.0

Re-
tain.CtrlPara
ms.Cool.Co
ntrolZone

REAL 3.402822e+38 Active control zone width for cooling
The control zone for cooling is switched off with Cool.ControlZone =
3.402822e+38.
Cool.ControlZone is only set automatically during pretuning cooling or pre-
tuning heating and cooling if PIDSelfTune.SUT.TuneRuleCool = 2 is select-
ed as method of the parameter calculation.
Cool.ControlZone is retentive.
Only effective if the cooling output and PID parameter switching are activat-
ed (Config.ActivateCooling = TRUE and Config.AdvancedCooling = TRUE).
Cool.ControlZone > 0.0

Re-
tain.CtrlPara
ms.Cool.De
adZone

REAL 0.0 Active deadband width for cooling (see PID parameters (Page 177))
The deadband for cooling is switched off with Cool.DeadZone = 0.0.
Cool.DeadZone is not set automatically or adjusted during tuning. You must
correctly configure Cool.DeadZone manually.
Cool.DeadZone is retentive.
Only effective if the cooling output and PID parameter switching are activat-
ed (Config.ActivateCooling = TRUE and Config.AdvancedCooling = TRUE).
Cool.DeadZone ≥ 0.0

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 415

 Note

Change the tags listed in this table in "Inactive" mode to prevent malfunction of the PID
controller.

See also
PID_Temp ActivateRecoverMode tag (Page 427)

PID_Temp Warning tag (Page 430)

Multi-zone controlling with PID_Temp (Page 202)

Instructions
8.3 PID_Temp

 PID control
416 Function Manual, 12/2014, A5E35300227-AA

8.3.3.7 PID_Temp state and mode parameters

Correlation of the parameters
The State parameter shows the current operating mode of the PID controller. You cannot
change the State parameter.

With a rising edge at ModeActivate, PID_Temp switches to the operating mode saved in the
Mode in-out parameter.

Heat.EnableTuning and Cool.EnableTuning specify for pretuning and fine tuning, if tuning
takes place for heating or cooling.

If the CPU is switched on or switches from Stop to RUN mode, PID_Temp starts in the
operating mode that is saved in the Mode parameter. To leave PID_Temp in "Inactive"
mode, set RunModeByStartup = FALSE.

Meaning of values

State / Mode Description of operating mode
0 Inactive

The following output values are output in "Inactive" mode:
• 0.0 as PID output value (PidOutputSum)
• 0.0 as output value for heating (OutputHeat) and output value for cooling (OutputCool)
• 0 as analog output value for heating (OutputHeat_PER) and analog output value for cooling (Out-

putCool_PER)
• FALSE as PWM output value for heating (OutputHeat_PWM) and PWM output value for cooling (Out-

putCool_PWM)
This does not depend on the configured output value limits and scaling in the structures Config.Output.Heat
and Config.Output.Cool.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 417

State / Mode Description of operating mode
1 Pretuning

The pretuning determines the process response to a jump change of the output value and searches for the
point of inflection. The PID parameters are calculated from the maximum rate of rise and dead time of the
controlled system. You obtain the best PID parameters when you perform pretuning and fine tuning.
PID_Temp offers different pretuning types, depending on the configuration:
• Pretuning heating:

A jump change is output at the output value heating, the PID parameters for heating are calculated (Re-
tain.CtrlParams.Heat structure), and control to the setpoint then takes place in automatic mode.

If the process behavior strongly depends on the operating point, an adaptation of the delay time can be
activated at the setpoint with PIDSelfTune.SUT.AdaptDelayTime.

• Pretuning heating and cooling:

A jump change is output at the output value heating. As soon as the process value is close to the set-
point, a jump change is output at the output value cooling. The PID parameters for heating (Re-
tain.CtrlParams.Heat structure) and cooling (Retain.CtrlParams.Cool structure) are calculated. Then,
control to the setpoint takes place in automatic mode.

If the process behavior strongly depends on the operating point, an adaptation of the delay time can be
activated at the setpoint with PIDSelfTune.SUT.AdaptDelayTime.

Depending on the effect of the cooling actuator compared to the heating actuator, the quality of tuning
can be influenced by whether or not the heating and cooling outputs are operated simultaneously during
tuning. You can specify this with PIDSelfTune.SUT.CoolingMode.

• Pretuning cooling:

A jump change is output at the output value cooling and the PID parameters for cooling are calculated
(Struktur Retain.CtrlParams.Cool). Then, control to the setpoint takes place in automatic mode.

If you want to tune the PID parameters for heating and cooling, you can expect a better control response
with "pretuning heating" followed by "pretuning cooling" rather than with "pretuning heating and cooling".
However, pretuning in two steps takes longer.

General requirements for pretuning:
• The PID_Temp instruction is called in a cyclic interrupt OB.
• Inactive (State = 0), manual mode (State = 4), or automatic mode (State = 3)
• ManualEnable = FALSE
• Reset = FALSE
• The setpoint and the process value lie within the configured limits.

Instructions
8.3 PID_Temp

 PID control
418 Function Manual, 12/2014, A5E35300227-AA

State / Mode Description of operating mode
1 Requirements for pretuning heating:

• Heat.EnableTuning = TRUE
• Cool.EnableTuning = FALSE
• The process value must not be too close to the setpoint.

|Setpoint - Input| > 0.3 * |Config.InputUpperLimit - Config.InputLowerLimit| and

|Setpoint - Input| > 0.5 * |Setpoint|
• The setpoint is greater than the process value.

Setpoint > Input

Requirements for pretuning heating and cooling:
• Heat.EnableTuning = TRUE·
• Cool.EnableTuning = TRUE
• The cooling output is activated (Config.ActivateCooling = TRUE).
• The PID parameter switching is activated (Config.AdvancedCooling = TRUE).
• The process value must not be too close to the setpoint.

|Setpoint - Input| > 0.3 * |Config.InputUpperLimit - Config.InputLowerLimit| and

|Setpoint - Input| > 0.5 * |Setpoint|
• The setpoint is greater than the process value.

Setpoint > Input

Requirements for pretuning cooling:
• Heat.EnableTuning = FALSE·
• Cool.EnableTuning = TRUE·
• The cooling output is activated (Config.ActivateCooling = TRUE).
• The PID parameter switching is activated (Config.AdvancedCooling = TRUE).
• A "pretuning heating" or "pretuning heating and cooling" has been successful (PIDSelf-

Tune.SUT.ProcParHeatOk = TRUE), if possible at the same setpoint.
• The process value must be close to the setpoint.

|Setpoint - Input| < 0.05 * |Config.InputUpperLimit - Config.InputLowerLimit|

The more stable the process value is, the easier it is to calculate the PID parameters and the more precise
the result will be. Noise on the process value can be tolerated as long as the rate of rise of the process
value is significantly higher compared to the noise. This is most likely the case in operating modes "Inac-
tive" or "Manual mode".

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 419

State / Mode Description of operating mode
1 The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when:

• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel

The method for calculation of the PID parameters can be specified separately for heating and cooling with
PIDSelfTune.SUT.TuneRuleHeat and PIDSelfTune.SUT.TuneRuleCool.
Before the PID parameters are recalculated, they are backed up in the CtrlParamsBackUp structure and
can be reactivated with LoadBackUp.
After successful pretuning, the switch is made to automatic mode.
After unsuccessful pretuning, the switch to the mode is determined by ActivateRecoverMode.
The phase of pretuning is indicated with PIDSelfTune.SUT.State.

2 Fine tuning
Fine tuning generates a constant, limited oscillation of the process value. The PID parameters are tuned for
the operating point from the amplitude and frequency of this oscillation. PID parameters from fine tuning
usually have better master control and disturbance characteristics than PID parameters from pretuning. You
obtain the best PID parameters when you perform pretuning and fine tuning.
PID_Temp automatically attempts to generate an oscillation greater than the noise of the process value.
Fine tuning is only minimally influenced by the stability of the process value.
PID_Temp offers different fine tuning types, depending on the configuration:
• Fine tuning heating:

PID_Temp generates an oscillation of the process value with periodic changes at the output value heat-
ing and calculates the PID parameters for heating (Struktur Retain.CtrlParams.Heat).

• Fine tuning cooling:

PID_Temp generates an oscillation of the process value with periodic changes at the output value cool-
ing and calculates the PID parameters for cooling (Struktur Retain.CtrlParams.Cool).

Temporary tuning offset for heating/cooling controllers
If PID_Temp is used as heating/cooling controller (Config.ActivateCooling = TRUE), the PID output value
(PidOutputSum) at the setpoint must meet the following requirements for a process value oscillation to be
generated and fine tuning to be successful:
• Positive PID output value for fine tuning heating
• Negative PID output value for fine tuning cooling
If this requirement is not met, you can define a temporary offset for fine tuning which is output at the output
with the opposite effect:
• Offset for cooling output (PIDSelfTune.TIR.OutputOffsetCool) with fine tuning heating.

Define a negative tuning offset cooling which is less than the PID output value (PidOutputSum) at the
setpoint in the steady state before you start tuning.

• Offset for heating output (PIDSelfTune.TIR.OutputOffsetHeat) with fine tuning cooling.

Define a positive tuning offset heating which is greater than the PID output value (PidOutputSum) at the
setpoint in the steady state before you start tuning.

The defined offset is balanced by the PID algorithm so that the process value remains at the setpoint. This
means the size of the offset can be adapted accordingly with the PID output value so that it meets the re-
quirements listed above.

Instructions
8.3 PID_Temp

 PID control
420 Function Manual, 12/2014, A5E35300227-AA

State / Mode Description of operating mode
2 To avoid larger overshoots of the process value when defining the offset, it can also be increased in several

steps.
If PID_Temp exits the fine tuning mode, the tuning offset is reset.
Example for definition of an offset for fine tuning cooling:
• Without offset:

– Setpoint = Process value (ScaledInput) = 80°C
– PID output value (PidOutputSum) = 30.0
– Output value heating (OutputHeat) = 30.0
– Output value cooling (OutputCool) = 0.0

An oscillation of the process value around the setpoint cannot be created with the cooling output
alone.

Fine tuning would fail here.
• With definition of an offset for heating output (PIDSelfTune.TIR.OutputOffsetHeat) = 80.0

– Setpoint = process value (ScaledInput) = 80°C
– PID output value (PidOutputSum) = -50.0
– Output value heating (OutputHeat) = 80.0
– Output value cooling (OutputCool) = -50.0

By defining an offset for the heating output, the cooling output can now create an oscillation of the
process value around the setpoint.

This means fine tuning can take place successfully.

General requirements for fine tuning:
• The PID_Temp instruction is called in a cyclic interrupt OB.
• No disturbances are expected.
• The setpoint and the process value lie within the configured limits.
• The control loop has stabilized at the operating point. The operating point is reached when the process

value corresponds to the setpoint.
• ManualEnable = FALSE
• Reset = FALSE
• Automatic (State = 3), inactive (State = 0) or manual (State = 4) mode

Requirements for fine tuning heating:
• Heat.EnableTuning = TRUE
• Cool.EnableTuning = FALSE
• If PID_Temp is configured as heating/cooling controller (Config.ActivateCooling = TRUE), the heating

output must be active at the operating point at which tuning is to take place (PidOutputSum > 0.0 (see
tuning offset)).

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 421

State / Mode Description of operating mode
2 Requirements for fine tuning cooling:

• Heat.EnableTuning = FALSE
• Cool.EnableTuning = TRUE
• The cooling output is activated (Config.ActivateCooling = TRUE).
• The PID parameter switching is activated (Config.AdvancedCooling = TRUE)
• The cooling output must be active at the operating point at which tuning is to take place (PidOutputSum

< 0.0 (see tuning offset)).

The course of fine tuning is determined by the mode from which it is started:
• Automatic mode (State = 3) with PIDSelfTune.TIR.RunIn = FALSE (default)

Start fine tuning from automatic mode if you wish to improve the existing PID parameters through tuning.

PID_Temp controls the system using the existing PID parameters until the control loop has stabilized
and the requirements for fine tuning have been met. Only then will fine tuning start.

• Inactive (State = 0), manual mode (State = 4), or automatic mode (State = 3) with PIDSelf-
Tune.TIR.RunIn = TRUE

Attempts are made to reach the setpoint with the minimum or maximum output value:
– with minimum or maximum output value heating for fine tuning heating
– with minimum or maximum output value cooling for fine tuning cooling.

This can produce increased overshoot. Fine tuning starts when the setpoint is reached.

If the setpoint cannot be reached, PID_Temp does not automatically abort tuning.

The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when:
• Setpoint > CurrentSetpoint + CancelTuningLevel

or
• Setpoint < CurrentSetpoint - CancelTuningLevel
The method for calculation of the PID parameters can be specified separately for heating and cooling with
PIDSelfTune.TIR.TuneRuleHeat and PIDSelfTune.TIR.TuneRuleCool.
Before the PID parameters are recalculated, they are backed up in the CtrlParamsBackUp structure and
can be reactivated with LoadBackUp.
The controller changes to automatic mode after successful fine tuning.
After unsuccessful fine tuning, the switch to the mode is determined by ActivateRecoverMode.
The "Fine tuning" phase is indicated with PIDSelfTune.TIR.State.

3 Automatic mode
In automatic mode, PID_Temp corrects the controlled system in accordance with the parameters specified.
The controller switches to automatic mode if one the following requirements is met:
• Pretuning successfully completed
• Fine tuning successfully completed
• Changing of the Mode in-out parameter to the value 3 and a rising edge at ModeActivate.
The switchover from automatic mode to manual mode is only bumpless if carried out in the commissioning
editor.
The ActivateRecoverMode tag is taken into consideration in automatic mode.

Instructions
8.3 PID_Temp

 PID control
422 Function Manual, 12/2014, A5E35300227-AA

State / Mode Description of operating mode
4 Manual mode

In manual mode, you specify a manual PID output value in the ManualValue parameter. The values at the
outputs for heating and cooling resulting from this manual value are the result of the configured output scal-
ing.
You can also activate this operating mode using ManualEnable = TRUE. We recommend that you change
the operating mode using Mode and ModeActivate only.
The switchover from manual mode to automatic mode is bumpless.
The ActivateRecoverMode tag is taken into consideration in manual mode.

5 Substitute output value with error monitoring
The control algorithm is deactivated. The SetSubstituteOutput tag determines which PID output value (Pi-
dOutputSum) is output in this operating mode.
• SetSubstituteOutput = FALSE: Last valid PID output value
• SetSubstituteOutput = TRUE: Substitute output value (SubstituteOutput)
You cannot activate this operating mode using Mode = 5.
In the event of an error, it is activated instead of "Inactive" operating mode if all the following conditions are
met:
• Automatic mode (State = 3)
• ActivateRecoverMode = TRUE
• One or more errors have occurred in which ActivateRecoverMode is effective.
As soon as the errors are no longer pending, PID_Temp switches back to automatic mode.

ENO characteristics
If State = 0, then ENO = FALSE.

If State ≠ 0, then ENO = TRUE.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 423

Automatic switchover of operating mode during commissioning
Automatic mode is activated following successful pretuning or fine tuning. The following table
shows how Mode and State change during successful pretuning.

Cycle no. Mode State Action
0 4 4 Set Mode = 1
1 1 4 Set ModeActivate = TRUE
1 4 1 Value of State is saved in Mode parameter

Pretuning is started
n 4 1 Pretuning successfully completed
n 3 3 Automatic mode is started

PID_Temp automatically switches the operating mode in the event of an error.

The following table shows how Mode and State change during pretuning with errors.

Cycle no. Mode State Action
0 4 4 Set Mode = 1
1 1 4 Set ModeActivate = TRUE
1 4 1 Value of State is saved in Mode parameter

Pretuning is started
n 4 1 Pretuning canceled
n 4 4 Manual mode is started

If ActivateRecoverMode = TRUE, the operating mode that is saved in the Mode parameter is
activated. When you start pretuning or fine tuning, PID_Temp has saved the value of State in
the Mode in-out parameter. This means PID_Temp switches to the mode from which tuning
was started.

If ActivateRecoverMode = FALSE, the system switches to "Inactive" operating mode.

See also
Output parameters of PID_Temp (Page 384)

PID_Temp in/out parameters (Page 386)

Instructions
8.3 PID_Temp

 PID control
424 Function Manual, 12/2014, A5E35300227-AA

8.3.3.8 PID_Temp ErrorBits parameter
If several errors are pending simultaneously, the values of the ErrorBits are displayed with
binary addition. The display of ErrorBits = 0000003h, for example, indicates that the errors
0000001h and 0000002h are pending simultaneously.

ErrorBits
 (DW#16#...)

Description

0000000 There is no error.
0000001 The "Input" parameter is outside the process value limits.

• Input > Config.InputUpperLimit or
• Input < Config.InputLowerLimit
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in automatic mode.
If manual mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in manual mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Temp switches to the operating mode that is saved in the Mode parameter.

0000002 Invalid value at "Input_PER" parameter. Check whether an error is pending at the analog input.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
outputs the configured substitute output value. As soon as the error is no longer pending, PID_Temp
switches back to automatic mode.
If manual mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in manual mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Temp switches to the operating mode that is saved in the Mode parameter.

0000004 Error during fine tuning. Oscillation of the process value could not be maintained.
If PID_Temp is used as heating-cooling controller (Config.ActivateCooling = TRUE), the PID output
value (PidOutputSum) at the setpoint must be positive for fine tuning heating and negative
• for fine tuning cooling to be able
• to generate actual value oscillation
If this requirement is not met, use the tuning offsets (PIDSelfTune.TIR.OutputOffsetCool and PIDSelf-
Tune.TIR.OutputOffsetHeat tags), see Fine tuning (Page 188).
If ActivateRecoverMode was = TRUE before the error occurred, PID_Temp cancels the tuning and
switches to the operating mode that is saved in the Mode parameter.

0000008 Error at start of pretuning. The process value is too close to the setpoint or greater than the setpoint.
Start fine tuning.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0000010 The setpoint was changed during tuning.
You can set the permitted fluctuation of the setpoint at the CancelTuningLevel tag.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0000020 Pretuning is not permitted during fine tuning.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp remains in fine tuning mode.

0000040 Error during pretuning. Cooling could not reduce the process value.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 425

ErrorBits
 (DW#16#...)

Description

0000100 Error during fine tuning resulted in invalid parameters.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0000200 Invalid value at "Input" parameter: Value has an invalid number format.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
outputs the configured substitute output value. As soon as the error is no longer pending, PID_Temp
switches back to automatic mode.
If manual mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in manual mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Temp switches to the operating mode that is saved in the Mode parameter.

0000400 Calculation of output value failed. Check the PID parameters.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
outputs the configured substitute output value. As soon as the error is no longer pending, PID_Temp
switches back to automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Temp switches to the operating mode that is saved in the Mode parameter.

0000800 Sampling time error: PID_Temp is not called within the sampling time of the cyclic interrupt OB.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in automatic mode.
If manual mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in manual mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Temp switches to the operating mode that is saved in the Mode parameter.

0001000 Invalid value at "Setpoint" parameter or "SubstituteSetpoint": Value has an invalid number format.
If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
outputs the configured substitute output value. As soon as the error is no longer pending, PID_Temp
switches back to automatic mode.
If manual mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp
remains in manual mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Temp switches to the operating mode that is saved in the Mode parameter.

0010000 Invalid value at ManualValue parameter. Value has an invalid number format.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp remains in manual mode and
uses SubstituteOutput as PID output value. As soon as you specify a valid value in ManualValue,
PID_Temp uses it as the PID output value.

0020000 Invalid value at SubstituteOutput tag. Value has an invalid number format.
PID_Temp remains in the "Substitute output value with error monitoring" mode or manual mode and
uses the low limit of the PID output value for heating (Config.Output.Heat.PidLowerLimit) as PID output
value.
As soon as you specify a valid value in SubstituteOutput, PID_Temp uses it as the PID output value.

0040000 Invalid value at Disturbance parameter. Value has an invalid number format.
If automatic mode was active and ActivateRecoverMode = TRUE before the error occurred, Disturbance
is set to zero. PID_Temp remains in automatic mode.
If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =
TRUE, PID_Temp switches to the operating mode that is saved in the Mode parameter. If Disturbance
in the current phase has no effect on the output value, tuning is not be canceled.

Instructions
8.3 PID_Temp

 PID control
426 Function Manual, 12/2014, A5E35300227-AA

ErrorBits
 (DW#16#...)

Description

0200000 Error in Master in the cascade: Slaves are not in automatic mode or have activated substitute setpoint
and prevent tuning of the master.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0400000 Fine tuning heating is not permitted while cooling is active.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

0800000 The process value must be close to the setpoint to start pretuning cooling.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

1000000 Error at start of tuning: Heat.EnableTuning and Cool.EnableTuning are not set or do not match the con-
figuration.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

2000000 Pretuning cooling requires successful pretuning heating.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

4000000 Error at start of fine tuning: Heat.EnableTuning and Cool.EnableTuning must not be set simultaneously.
If ActivateRecoverMode = TRUE before the error occurred, PID_Temp cancels the tuning and switches
to the operating mode that is saved in the Mode parameter.

8000000 Error during calculation of the PID parameters resulted in invalid parameters.
The invalid parameters are discarded and the original PID parameters are retained unchanged.
We can distinguish between the following cases:
• If automatic mode was active before the error occurred and ActivateRecoverMode = TRUE,

PID_Temp remains in automatic mode.
• If manual mode was active before the error occurred and ActivateRecoverMode = TRUE, PID_Temp

remains in manual mode.
• If pretuning or fine tuning mode was active before the error occurred and ActivateRecoverMode =

TRUE, PID_Temp switches to the operating mode that is saved in the Mode parameter.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 427

8.3.3.9 PID_Temp ActivateRecoverMode tag
The ActivateRecoverMode tag determines the reaction to error. The Error parameter
indicates if an error is pending. When the error is no longer pending, Error = FALSE. The
ErrorBits parameter shows which errors have occurred.

Automatic mode and manual mode

 NOTICE

Your system may be damaged.

If ActivateRecoverMode = TRUE, PID_Temp remains in automatic mode or in manual
mode even if there is an error and the process limit values are exceeded.

This may damage your system.

It is essential to configure how your controlled system reacts in the event of an error to
protect your system from damage.

Instructions
8.3 PID_Temp

 PID control
428 Function Manual, 12/2014, A5E35300227-AA

ActivateRecov-
erMode

Description

FALSE PID_Temp switches to "Inactive" mode in the event of an error. The controller is only activated by a
falling edge at Reset or a rising edge at ModeActivate.

TRUE Automatic mode
If errors occur frequently in automatic mode, this setting has a negative effect on the control response,
because PID_Temp switches between the calculated PID output value and the substitute output value
at each error. In this case, check the ErrorBits parameter and eliminate the cause of the error.
If one or several of the following errors occur and automatic mode was active before the error occurred,
PID_Temp remains in automatic mode:
• 0000001h: The "Input" parameter is outside the process value limits.
• 0000800h: Sampling time error
• 0040000h: Invalid value at Disturbance parameter.
• 8000000h: Error during calculation of the PID parameters

If one or several of the following errors occur and automatic mode was active before the error occurred,
PID_Temp switches to "Substitute output value with error monitoring" mode:
• 0000002h: Invalid value at Input_PER parameter.
• 0000200h: Invalid value at Input parameter.
• 0000400h: Calculation of output value failed.
• 0001000h: Invalid value at Setpoint parameter or SubstituteSetpoint.

As soon as the errors are no longer pending, PID_Temp switches back to automatic mode.
If the following error occurs in "Substitute output value with error monitoring" mode, PID_Temp sets the
PID output value to Config.Output.Heat.PidLowerLimit as long as this error is pending:
• 0020000h: Invalid value at SubstituteOutput tag. Value has an invalid number format.

This behavior is independent of SetSubstituteOutput.
Manual mode
If one or several errors occur and manual mode was active before the error occurred, PID_Temp re-
mains in manual mode.
If the following error occurs in manual mode, as long as this error is pending, PID_Temp sets the PID
output value to SubstituteOutput:
• 0010000h: Invalid value at ManualValue parameter. Value has an invalid number format.
If the error 0010000h is pending in manual mode and the following error occurs, PID_Temp sets the PID
output value to Config.Output.Heat.PidLowerLimit as long as this error is pending:
• 0020000h: Invalid value at SubstituteOutput tag. Value has an invalid number format.
This behavior is independent of SetSubstituteOutput.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 429

Pretuning and fine tuning

ActivateRecov-
erMode

Description

FALSE PID_Temp switches to "Inactive" mode in the event of an error. The controller is only activated by a
falling edge at Reset or a rising edge at ModeActivate.

TRUE If the following error occurs, PID_Temp remains in the active mode:
• 0000020h: Pretuning is not permitted during fine tuning.
The following errors are ignored:
• 0010000h: Invalid value at ManualValue parameter.
• 0020000h: Invalid value at SubstituteOutput tag.
When any other error occurs, PID_Temp cancels the tuning and switches to the mode from which tuning
was started.

Instructions
8.3 PID_Temp

 PID control
430 Function Manual, 12/2014, A5E35300227-AA

8.3.3.10 PID_Temp Warning tag
If several warnings are pending simultaneously, the values of the Warning tag are displayed
with binary addition. If the warning 0000003h is displayed, for example, the warnings
0000001h and 0000002h are pending simultaneously.

Warning
(DW#16#....)

Description

0000000 No warning pending.
0000001 The point of inflection was not found during pretuning.
0000004 The setpoint was limited to the configured limits.
0000008 Not all the necessary controlled system properties were defined for the selected method of calculation.

Instead, the PID parameters were calculated using the TIR.TuneRuleHeat method or
TIR.TuneRuleCool = 3.

0000010 The operating mode could not be changed because Reset = TRUE or ManualEnable = TRUE.
0000020 The cycle time of the calling OB limits the sampling time of the PID algorithm.

Improve results by using shorter OB cycle times.
0000040 The process value exceeded one of its warning limits.
0000080 Invalid value at Mode. The operating mode is not switched.
0000100 The manual value was limited to the limits of the PID output value.
0000200 The specified rule for tuning is not supported. No PID parameters are calculated.
0001000 The substitute output value cannot be reached because it is outside the output value limits.
0004000 The specified number of the output value for heating and/or cooling is not supported.

Only the output OutputHeat or OutputCool is used.
0008000 Invalid value at PIDSelfTune.SUT.AdaptDelayTime. The default value 0 is used.
0010000 Invalid value at PIDSelfTune.SUT.CoolingMode. The default value 0 is used.
0020000 The activation of cooling (Config.ActivateCooling tag) is not supported by the controller that is used as

master (Config.Cascade.IsMaster tag). PID_Temp works as heating controller.
Set the Config.ActivateCooling tag to FALSE.

0040000 Invalid value at Retain.CtrlParams.Heat.Gain, Retain.CtrlParams.Cool.Gain or Config.CoolFactor.
PID_Temp supports only positive values for proportional gain (heating and cooling) and cooling factor.
Automatic mode remains active with PID output value 0.0. The integral component is stopped.

The following warnings are deleted as soon as the cause has been remedied or you repeat
the action with valid parameters:

● 0000001h

● 0000004h

● 0000008h

● 0000040h

● 0000100h

All other warnings are cleared with a rising edge at Reset or ErrorAck.

 Instructions
 8.3 PID_Temp

PID control
Function Manual, 12/2014, A5E35300227-AA 431

8.3.3.11 PwmPeriode tag
If the PID algorithm sampling time (Retain.CtrlParams.Heat.Cycle or
Retain.CtrlParams.Heat.Cycle) and thus the time period of the pulse width modulation is very
high when you use OutputHeat_PWM or OutputCool_PWM, you can define a deviating
shorter time period at the Config.Output.Heat.PwmPeriode or
Config.Output.Cool.PwmPeriode parameters to improve the smoothness of the process
value.

Time period of the pulse width modulation at OutputHeat_PWM
Time period of the PWM at output OutputHeat_PWM depending on
Config.Output.Heat.PwmPeriode:

● Heat.PwmPeriode = 0.0 (default)

The sampling time of the PID algorithm for heating (Retain.CtrlParams.Heat.Cycle) is
used as time period of the PWM.

● Heat.PwmPeriode > 0.0

The value is rounded off to an integer multiple of the PID_Temp sampling time
(CycleTime.Value) and used as time period of the PWM.

The value must meet the following conditions:

– Heat.PwmPeriode ≤ Retain.CtrlParams.Heat.Cycle

– Heat.PwmPeriode > Config.Output.Heat.MinimumOnTime

– Heat.PwmPeriode > Config.Output.Heat.MinimumOffTime

Time period of the pulse width modulation at OutputCool_PWM
Time period of the PWM at output OutputCool_PWM depending on
Config.Output.Cool.PwmPeriode and the method for heating/cooling:

● Cool.PwmPeriode = 0.0 and cooling factor (Config.AdvancedCooling = FALSE):

The sampling time of the PID algorithm for heating (Retain.CtrlParams.Heat.Cycle) is
used as time period of the PWM.

● Cool.PwmPeriode = 0.0 and PID parameter switching (Config.AdvancedCooling =
TRUE):

The sampling time of the PID algorithm for cooling (Retain.CtrlParams.Cool.Cycle) is
used as time period of the PWM.

● Cool.PwmPeriode > 0.0:

The value is rounded off to an integer multiple of the PID_Temp sampling time
(CycleTime.Value) and used as time period of the PWM.

The value must meet the following conditions:

– Cool.PwmPeriode ≤ Retain.CtrlParams.Cool.Cycle or Retain.CtrlParams.Heat.Cycle

– Cool.PwmPeriode > Config.Output.Cool.MinimumOnTime

– Cool.PwmPeriode > Config.Output.Cool.MinimumOffTime

Instructions
8.3 PID_Temp

 PID control
432 Function Manual, 12/2014, A5E35300227-AA

Config.Output.Cool.PwmPeriode is only effective if the cooling output is activated
(Config.ActivateCooling =TRUE).

When you use PwmPeriode, the accuracy of the PWM output signal is determined by the
relationship of PwmPeriode to the PID_Temp sampling time (cycle time of the OB).
PwmPeriode should be at least 10 times the PID_Temp sampling time.

If the sampling time of the PID algorithm is not an integer multiple of PwmPeriode, each last
period of the PWM within the sampling time of the PID algorithm is extended accordingly.

Example for OutputHeat_PWM

① PID_Temp sampling time = 100.0 ms (cycle time of the calling cyclic interrupt OB, CycleTime.Value tag)
② PID algorithm sampling time = 2000.0 ms (Retain.CtrlParams.Heat.Cycle tag)
③ Time period of the PWM for heating = 600.0 ms (Config.Output.Heat.PwmPeriode tag)

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 433

8.4 PID basic functions

8.4.1 CONT_C

8.4.1.1 Description CONT_C
The CONT_C instruction is used on SIMATIC S7 automation systems to control technical
processes with continuous input and output variables. You can assign parameters to enable
or disable sub-functions of the PID controller and adapt it to the process. In addition to the
functions in the setpoint and process value branches, the instruction implements a complete
PID controller with continuous output value output and the option of manually influencing the
value of the output value.

Application
You can use the controller as a PID fixed setpoint controller, or in multi-loop control systems,
also as a cascade, blending or ratio controller. The functions of the controller are based on
the PID control algorithm of the sampling controller with an analog signal, if necessary
extended by including a pulse shaper stage to generate pulse-width modulated output
signals for two or three step controllers with proportional actuators.

Call
The CONT_C instruction has an initialization routine that is run through when input
parameter COM_RST = TRUE is set. During initialization, the integral action is set to the
initialization value I_ITVAL. All the signal outputs are set to zero. COM_RST = FALSE has to
be set after the initialization routine has been completed.

The calculation of the values in the control blocks is only correct if the block is called at
regular intervals. You should therefore call the control blocks in a cyclic interrupt OB (OB 30
to OB 38). Enter the sampling time in the CYCLE parameter.

If you call the instruction CONT_C as a multiple instance DB, no technology object is
created. No parameter assignment interface or commissioning interface is available. You
must assign parameters for CONT_C directly in the multiple instance DB and commission it
via a watch table.

Error information
The error message word RET_VAL is not evaluated by the block.

Instructions
8.4 PID basic functions

 PID control
434 Function Manual, 12/2014, A5E35300227-AA

8.4.1.2 How CONT_C works

Setpoint branch
The setpoint is entered in floating-point format at the SP_INT input.

Process value branch
The process value can be input in I/O or floating-point format. The function CRP_IN converts
the I/O value PV_PER to a floating-point format -100 to +100 % in accordance with the
following rule:

Output of CRP_IN = PV_PER * 100 / 27648

The PV_NORM function scales the output of CRP_IN according to the following rule:

Output of PV_NORM = (output of CRP_IN) *PV_FAC + PV_OFF

PV_FAC has a default of 1 and PV_OFF a default of 0.

Forming the error signal
The difference between the setpoint and process value is the error signal. To suppress a
minor sustained oscillation due to manipulated variable quantization (e.g. with a pulse width
modulation with PULSEGEN), the error signal is applied to a dead band (DEADBAND). With
DEADB_W = 0, the dead band is switched off.

PID Algorithm
The PID algorithm operates as a position algorithm. The proportional, integral (INT), and
differential (DIF) actions are connected in parallel and can be activated or deactivated
individually. This allows P, PI, PD, and PID controllers to be configured. Pure I controllers
are also possible.

Manual value processing
It is possible to switch over between manual and automatic mode. In manual mode, the
manipulated variable is corrected to a manually selected value.

The integral action (INT) is set internally to LMN - LMN_P - DISV and the derivative action
(DIF) is set to 0 and synchronized internally. Changeover to automatic mode is therefore
bumpless.

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 435

Manipulated value processing
You can use the LMNLIMIT function to limit the manipulated value to selected values. Alarm
bits indicate when a limit is exceeded by the input variable.

The LMN_NORM function normalizes the output of LMNLIMIT according to the following
rule:

LMN = (output of LMNLIMIT) * LMN_FAC + LMN_OFF

LMN_FAC has a default of 1 and LMN_OFF a default of 0.

The manipulated value is also available in I/O format. The CRP_OUT function converts the
LMN floating-point value to a I/O value according to the following rule:

LMN_PER = LMN * 27648 / 100

Feedforward control
A disturbance variable can be added at the DISV input.

Instructions
8.4 PID basic functions

 PID control
436 Function Manual, 12/2014, A5E35300227-AA

8.4.1.3 CONT_C block diagram

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 437

8.4.1.4 Input parameter CONT_C

Parameters Data
type

Default Description

COM_RST BOOL FALSE  The instruction has an initialization routine that is  processed when the "Restart" input is
set.

MAN_ON BOOL TRUE If the input "Enable manual mode" is set then the control loop is interrupted. A manual
value  is set as the manipulated value.

PVPER_ON BOOL FALSE If the process value is to be read in from the I/Os, the PV_PER input must be intercon-
nected with the I/Os and the "Enable process value I/Os" input must be set.

P_SEL BOOL TRUE The PID actions can be switched on and off individually in the PID algorithm. P-action is
on when the "Enable P-action" input is set.

I_SEL BOOL TRUE The PID actions can be switched on and off individually in the PID algorithm. I action is
on when the input  "I-action on" is set.

INT_HOLD BOOL FALSE The output of the integral action can be frozen. For this the input "I-action hold" must be
set.

I_ITL_ON BOOL FALSE The output of the integral action can be set at the I_ITLVAL input. For this the input "Set
I-action" must be set.

D_SEL BOOL FALSE The PID actions can be switched on and off individually in the PID algorithm. D-action is
on when the  input "Enable D-action" is set.

CYCLE TIME T#1s The time between block calls must be constant. The "Sampling time" input specifies the
 time between block calls.
CYCLE >= 1ms

SP_INT REAL 0.0 The input "Internal setpoint" is used to specify a setpoint.
Permissible are values from -100 to 100 % or a physical variable 1).

PV_IN REAL 0.0 At the "Process value input" you can assign parameters to a commissioning value or
you can interconnect an external process value in floating-point format.
Permissible are values from -100 to 100 % or a physical variable 1).

PV_PER WORD W#16#
0000

The process value in I/O format is interconnected with the controller at the "Process
value I/0" input.

MAN REAL 0.0 The "Manual value" input is used to set a  manual value using the operator interface
 functions.
Permissible are values from -100 to 100 % or a physical variable 2).

GAIN REAL 2.0 The "Proportional gain" input specifies controller amplification.
TI TIME T#20s  The "Integration time" input determines the time  response of the integral action.

TI >= CYCLE
TD TIME T#10s  The "Derivative action time" input determines the time  response of the derivative action.

TD >= CYCLE
TM_LAG TIME T#2s Time lag of the D-action

The algorithm of the D-action contains a delay for which parameters can be assigned at
the input "Time lag of the D-action".
TM_LAG >= CYCLE/2

DEADB_W REAL 0.0 A dead band is applied to the system deviation. The "Dead band width" input deter-
mines the size of the dead band.
DEADB_W >= 0.0 (%) or a physical variable 1)

Instructions
8.4 PID basic functions

 PID control
438 Function Manual, 12/2014, A5E35300227-AA

Parameters Data
type

Default Description

LMN_HLM REAL 100.0 The manipulated value is always restricted to a high limit and low limit. The "High limit of
manipulated value" input specifies the high limit.
Permissible are real values starting at LMN_LLM or a physical variable 2).

LMN_LLM REAL 0.0 The manipulated value is always restricted to a high limit and low limit. The "Low limit of
manipulated value" input specifies the low limit.
Permissible are real values up to LMN_HLM or a physical variable 2).

PV_FAC REAL 1.0 The "Process value factor" input is multiplied by the process value. The input is used to
scale the process value range.

PV_OFF REAL 0.0 The input "Process value offset" is added to the process value. The input is used to
scale the process value range.

LMN_FAC REAL 1.0 The "Manipulated value factor" input is multiplied with the manipulated value. The input
is used to scale the manipulated value range.

LMN_OFF REAL 0.0 The input "Manipulated value offset" is added to the process value. The input is used to
scale the manipulated value range.

I_ITLVAL REAL 0.0 The output of the integral action can be set at the I_ITL_ON input. The initialization value
is  applied to the input "Initialization value of  the I-action."
Permissible are values of -100.0 to 100.0 (%) or a physical variable 2).

DISV REAL 0.0 For feedforward control, the disturbance variable is interconnected to the "Disturbance
variable" input.
Permissible are values of -100.0 to 100.0 (%) or a physical variable 2).

1) Parameters in the setpoint and process value branches with the same unit

2) Parameters in the manipulated value branch with the same unit

8.4.1.5 Output parameters CONT_C

Parameter Data
type

Default Description

LMN REAL 0.0 The effective "Manipulated value" is output in  floating point format at the "Manipulated
 value" output.

LMN_PER WORD W#16#
0000

The manipulated value in I/O format is interconnected on the input "Manipulated value
I/O" with the controller.

QLMN_HLM BOOL FALSE The manipulated value is always restricted to a high limit and low limit. The output "High
 limit of manipulated value reached"  indicates that the high limit has been  reached.

QLMN_LLM BOOL FALSE The manipulated value is always restricted to a high limit and low limit. The output "Low
 limit of manipulated value reached"  indicates that the low limit has been  reached.

LMN_P REAL 0.0 The "P-action" output contains the proportional action of the manipulated variable.
LMN_I REAL 0.0 The "I-action" output contains the integral action of the manipulated variable.
LMN_D REAL 0.0 The "D-action" output contains the derivative action of the manipulated variable.
PV REAL 0.0 The effective process value is output at the "Process value" output.
ER REAL 0.0 The effective system deviation is output at the "Error signal" output.

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 439

8.4.2 CONT_S

8.4.2.1 Description CONT_S
The CONT_S instruction is used on SIMATIC S7 automation systems to control technical
processes with binary output value output signals for actuators with integrating behavior.
During parameter assignment, you can activate or deactivate sub-functions of the PI step
controller to adapt the controller to the controlled system. In addition to the functions in the
process value branch, the instruction implements a complete proportional-plus-integral-
action controller with binary output value output and the option of manually influencing the
value of the output value. The step controller operates without a position feedback signal.

Application
You can use the controller as a PI fixed setpoint controller or in secondary control loops in
cascade, blending or ratio controllers, however you cannot use it as the primary controller.
The functions of the controller are based on the PI control algorithm of the sampling
controller supplemented by the functions for generating the binary output signal from the
analog actuating signal.

Call
The CONT_S instruction has an initialization routine that is run through when input
parameter COM_RST = TRUE is set. All the signal outputs are set to zero. COM_RST =
FALSE has to be set after the initialization routine has been completed.

The calculation of the values in the control blocks is only correct if the block is called at
regular intervals. You should therefore call the control blocks in a cyclic interrupt OB (OB 30
to OB 38). Enter the sampling time in the CYCLE parameter.

If you call the instruction CONT_S as a multiple instance DB, no technology object is
created. No parameter assignment interface or commissioning interface is available. You
must assign parameters for CONT_S directly in the multiple instance DB and commission it
via a watch table.

Error information
The error message word RET_VAL is not evaluated by the block.

Instructions
8.4 PID basic functions

 PID control
440 Function Manual, 12/2014, A5E35300227-AA

8.4.2.2 Mode of operation CONT_S

Setpoint branch
The setpoint is entered in floating-point format at the SP_INT input.

Process value branch
The process value can be input in I/O or floating-point format. The function CRP_IN converts
the I/O value PV_PER to a floating-point format -100 to +100 % in accordance with the
following rule:

Output of CRP_IN = PV_PER * 100 / 27648

The PV_NORM function normalizes the output of CRP_IN according to the following rule:

Output of PV_NORM = (output of CRP_IN) * PV_FAC + PV_OFF

PV_FAC has a default of 1 and PV_OFF a default of 0.

Forming the error signal
The difference between the setpoint and process value is the error signal. To suppress a
small constant oscillation due to the manipulated variable quantization (for example, due to a
limited resolution of the manipulated value by the control valve), a dead band is applied to
the error signal (DEADBAND). With DEADB_W = 0, the dead band is switched off.

PI step algorithm
The instruction operates without position feedback. The I-action of the PI algorithm and the
assumed position feedback signal are calculated in one integral action (INT) and compared
with the remaining P-action as a feedback value. The difference is applied to a three-step
element (THREE_ST) and a pulse shaper (PULSEOUT) that generates the pulses for the
control valve. The switching frequency of the controller can be reduced by adapting the
response threshold of the three-step element.

Feedforward control
A disturbance variable can be added at the DISV input.

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 441

8.4.2.3 Block diagram CONT_S

Instructions
8.4 PID basic functions

 PID control
442 Function Manual, 12/2014, A5E35300227-AA

8.4.2.4 Input parameters CONT_S

Parameters Data
type

Default Description

COM_RST BOOL FALSE  The block has an initialization routine that is  processed when the "Restart" input is set.
LMNR_HS BOOL FALSE The signal "Control valve at high endstop" is interconnected at the input "High endstop

signal of position feedback". LMNR_HS=TRUE means: The  control valve is at high
endstop.

LMNR_LS BOOL FALSE The signal "Control valve at low endstop" is interconnected on the input "Low endstop
signal of position feedback". LMNR_LS=TRUE means The  control valve is at low end-
stop.

LMNS_ON BOOL FALSE Manipulated value signal processing is switched to manual mode at the "Enable manual
mode of manipulated signal".

LMNUP BOOL FALSE The output signal QLMNUP is operated in manual mode of the manipulated value sig-
nals at the input "Manipulated value signal up".

LMNDN BOOL FALSE The output signal QLMNDN is operated in manual mode of the manipulated value sig-
nals at the input "Manipulated value signal down"

PVPER_ON BOOL FALSE If the process value is to be read from the I/O then the input PV_PER must be intercon-
nected with the I/O and the input "Enable process value I/O" must be set.

CYCLE TIME T#1s The time between block calls must be constant. The "Sampling time" input specifies the
 time between block calls.
CYCLE >= 1ms

SP_INT REAL 0.0 The input "Internal setpoint" is used to specify a setpoint.
Permissible are values from -100 to 100 % or a physical variable 1).

PV_IN REAL 0.0 At the "Process value input" you can assign parameters to a commissioning value or
you can interconnect an external process value in floating-point format.
Permissible are values from -100 to 100 % or a physical variable 1).

PV_PER WORD W#16#
0000

The process value in I/O format is interconnected with the controller at the "Process
value I/O" input.

GAIN REAL 2.0 The "Proportional gain" input specifies controller amplification.
TI TIME T#20s  The "Integration time" input determines the time  response of the integral action.

TI >= CYCLE
DEADB_W REAL 1.0 A dead band is applied to the system deviation. The "Dead band width" input deter-

mines the size of the dead band.
Permissible are values from 0 to 100 % or a physical variable 1).

PV_FAC REAL 1.0 The "Process value factor" input is multiplied by the process value. The input is used to
scale the process value range.

PV_OFF REAL 0.0 The input "Process value offset" is added to the process value. The input is used to
scale the process value range.

PULSE_TM TIME T#3s You can assign a minimum pulse time at the parameter "Minimum pulse time".
PULSE_TM >= CYCLE

BREAK_TM TIME T#3s You can assign a minimum break time at the parameter "Minimum break time".
BREAK_TM >= CYCLE

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 443

Parameters Data
type

Default Description

MTR_TM TIME T#30s  The time required by the actuator to move from  limit stop to limit stop is entered at the
"Motor  actuating time" parameter.
MTR_TM >= CYCLE

DISV REAL 0.0 For feedforward control, the disturbance variable is interconnected to the "Disturbance
variable" input.
Permissible are values from -100 to 100 % or a physical variable 2).

1) Parameters in setpoint and process value branches with identical unit
2) Parameters in the manipulated value branch with same unit

8.4.2.5 Output parameters CONT_S

Parameters Data
type

Default Description

QLMNUP BOOL FALSE If the output "Manipulated value signal up" is set then the control valve should be
open.

QLMNDN BOOL FALSE If the output "Manipulated value signal down" is set then the control valve should
be closed.

PV REAL 0.0 The effective process value is output at the "Process value" output.
ER REAL 0.0 The effective system deviation is output at the "Error signal" output.

Instructions
8.4 PID basic functions

 PID control
444 Function Manual, 12/2014, A5E35300227-AA

8.4.3 PULSEGEN

8.4.3.1 Description PULSEGEN
The instruction PULSEGEN serves as the structure of a PID controller with impulse output
for proportional actuators. PULSEGEN transforms the input value INV (= LMN of the PID
controller) through modulation of the impulse width in an impulse sequence with a constant
period duration, which corresponds with the cycle time with which the input value is updated.

Application
You can use the PULSEGEN instruction to configure two- or three-step PID controllers with
pulse width modulation. The function is normally used in conjunction with the continuous
controller CONT_C.

Call
The PULSEGEN instruction has an initialization routine that is run through when input
parameter COM_RST = TRUE is set. All the signal outputs are set to zero. COM_RST =
FALSE has to be set after the initialization routine has been completed.

The calculation of the values in the control blocks is only correct if the block is called at
regular intervals. You should therefore call the control blocks in a cyclic interrupt OB (OB 30
to OB 38). Enter the sampling time in the CYCLE parameter.

Responses in the event of an error
The error message word RET_VAL is not evaluated by the block.

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 445

8.4.3.2 Mode of operation PULSEGEN

Impulse width modulation
The duration of a pulse per period duration is proportional to the input variable. The cycle
assigned via PER_TM is not identical to the processing cycle of the PULSEGEN instruction.
Rather, a PER_TM cycle is made up of several processing cycles of the PULSEGEN
instruction, whereby the number of PULSEGEN calls per PER_TM cycle determines the
accuracy of the pulse width.

An input variable of 30% and 10 PULSEGEN calls per PER_TM mean the following:

● "One" at the QPOS_P output for the first three calls of PULSEGEN (30% of 10 calls)

● "Zero" at the QPOS_P output for seven further calls of PULSEGEN (70% of 10 calls)

Instructions
8.4 PID basic functions

 PID control
446 Function Manual, 12/2014, A5E35300227-AA

Block diagram

Accuracy of the manipulated value
With a "Sampling ratio" of 1:10 (CONT_C calls to PULSEGEN calls) the accuracy of the
manipulated value in this example is restricted to 10%, in other words, set input values INV
can only be simulated by a pulse duration at the QPOS_P output in steps of 10 %.

The accuracy is increased as the number of PULSEGEN calls per CONT_C call is
increased.

If PULSEGEN is called, for example, 100 times more often than CONT_C, a resolution of 1
% of the manipulated value range is achieved.

 Note

The reduction ratio of the call frequency must be programmed by the user.

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 447

Automatic synchronization
It is possible to automatically synchronize the pulse output with the instruction that updates
the input variable INV (e.g. CONT_C). This ensures that a change in the input variable is
output as quickly as possible as a pulse.

The pulse shaper evaluates the input value INV at intervals corresponding to the period
duration PER_TM and converts the value into a pulse signal of corresponding length.

Since, however, INV is usually calculated in a slower cyclic interrupt class, the pulse shaper
should start the conversion of the discrete value into a pulse signal as soon as possible after
the updating of INV.

To allow this, the block can synchronize the start of the period using the following procedure:

If INV changes and if the block call is not in the first or last two call cycles of a period, a
synchronization is performed. The pulse duration is recalculated and in the next cycle is
output with a new period.

The automatic synchronization is switched off, if SYN_ON = FALSE.

 Note

The start of a new period and subsequent synchronization usually leads to a certain
imprecision when the old value of INV (i.e. of LMN) is mapped to the pulse signal.

Instructions
8.4 PID basic functions

 PID control
448 Function Manual, 12/2014, A5E35300227-AA

8.4.3.3 Mode of operation PULSEGEN

Modes
Depending on the parameters assigned to the pulse shaper, PID controllers with a three-step
output or with a bipolar or unipolar two-step output can be configured. The following table
illustrates the setting of the switch combinations for the possible modes.

Mode MAN_ON STEP3_ON ST2BI_ON
Three-step control FALSE TRUE Any
Two-step control with bi-polar
Manipulating range (-100 % to 100 %)

FALSE FALSE TRUE

Two-step control with unipolar
Manipulating range (0 % to 100 %)

FALSE FALSE FALSE

Manual mode TRUE Any Any

Manual mode in two/three-step control
In the manual mode (MAN_ON = TRUE), the binary outputs of the three-step or two-step
controller can be set using the signals POS_P_ON and NEG_P_ON regardless of INV.

Control POS_P_ON NEG_P_ON QPOS_P QNEG_P
Three-step control FALSE FALSE FALSE FALSE

TRUE FALSE TRUE FALSE
FALSE TRUE FALSE TRUE
TRUE TRUE FALSE FALSE

Two-step control FALSE Any FALSE TRUE
TRUE Any TRUE FALSE

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 449

8.4.3.4 Three-step control

Three-step control
In "Three-step control" mode, it is possible to generate three statuses of the actuating signal.
For this, the status values of the binary output signals QPOS_P and QNEG_P are assigned
to the respective operating statuses of the actuator. The table shows the example of a
temperature control:

Output signals Heat Off Cool
QPOS_P TRUE FALSE FALSE
QNEG_P FALSE FALSE TRUE

The pulse duration is calculated from the input variable via a characteristic curve. The form
of the characteristic curve is defined by the minimum pulse duration or minimum interval and
the ratio factor. The normal value for the ratio factor is 1.

The "doglegs" in the curves are caused by the minimum pulse duration or minimum interval.

Minimum pulse duration or minimum interval

A correctly assigned minimum pulse duration or minimum interval P_B_TM can prevent short
on/off times, which reduce the working life of switching elements and actuators. Small
absolute values of input variable LMN that would otherwise generate a pulse duration shorter
than P_B_TM are suppressed. Large input values that would generate a pulse duration
longer than PER_TM - P_B_TM are set to 100% or -100%.

The duration of positive or negative pulses is calculated by multiplying the input variable (in
%) by the period duration:

Pulse duration = INV / 100 * PER_TM

Instructions
8.4 PID basic functions

 PID control
450 Function Manual, 12/2014, A5E35300227-AA

The following figure shows a symmetrical characteristic curve of the three-step controller
(ratio factor = 1).

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 451

Asymmetrical three-step control
Using the ratio factor RATIOFAC, the ratio of the duration of positive to negative pulses can
be changed. In a thermal process, for example, this would allow different system time
constants for heating and cooling.

Ratio factor < 1

The pulse duration at the negative pulse output, calculated by multiplying the input variable
by the period duration, is multiplied by the ratio factor.

Positive pulse duration = INV /100 * PER_TM

Negative pulse duration = INV / 100 * PER_TM * RATIOFAC

The following figure shows the asymmetrical characteristic curve of the three-step controller
(ratio factor = 0.5):

Ratio factor > 1

The pulse duration at the positive pulse output, calculated by multiplying the input variable by
the period duration, is divided by the ratio factor.

Positive pulse duration = INV / 100 * PER_TM / RATIOFAC

Negative pulse duration = INV / 100 * PER_TM

Instructions
8.4 PID basic functions

 PID control
452 Function Manual, 12/2014, A5E35300227-AA

8.4.3.5 Two-step control
In two-step control, only the positive pulse output QPOS_P of PULSEGEN is connected to
the on/off actuator. Depending on the manipulated value range used, the two-step controller
has a bipolar or a unipolar manipulated value range.

Two-step control with bipolar manipulated variable range  (-100% to 100%)

Two-step control with unipolar manipulated variable range  (0% to 100%)

The negated output signal is available at QNEG_P if the connection of the two-step controller
in the control loop requires a logically inverted binary signal for the actuating pulses.

Pulse Actuator On Actuator Off
QPOS_P TRUE FALSE
QNEG_P FALSE TRUE

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 453

8.4.3.6 Input parameters PULSEGEN
The values of the input parameters are not limited in the block. There is no parameter check.

Parameters Data
type

Default Description

INV REAL 0.0 At the input parameter "Input variable" an analog manipulated variable is connected.
Values from -100 to 100 % are permitted.

PER_TM TIME T#1s At the parameter "Period duration" the constant period duration of the pulse width mod-
ulation is entered. This corresponds to the  sampling time of the controller. The ratio
 between the sampling time of the pulse  shaper and the sampling time of the  controller
determines the accuracy of the  pulse width modulation.
PER_TM >=20*CYCLE

P_B_TM TIME T#50
ms

You can assign a minimum pulse/break time at the parameter "Minimum pulse/break
time".
P_B_TM >= CYCLE

RATIOFAC REAL 1.0 Using the "Ratio factor" input parameter the ratio of the duration of positive to negative
pulses can be changed. In a thermal  process, this would, for example, allow  different
time constants for heating and  cooling to be compensated (for example, in  a process
with electrical heating and water  cooling).
Values from 0.1 to 10.0 are permitted.

STEP3_ON BOOL TRUE At the input parameter "Enable three-step control" the appropriate mode is activated. In
three-step control  both output signals are active.

ST2BI_ON BOOL FALSE At the input parameter "Enable two-step control for bipolar manipulated value range"
you can select from the modes "Two-step control for bipolar manipulated value range"
and "Two-step control for unipolar manipulated value range". STEP3_ON = FALSE is
required.

MAN_ON BOOL FALSE Setting the input parameter "Enable manual mode" allows the output signals to be set
manually.

POS_P_ON BOOL FALSE For manual mode three-step control, the output signal QPOS_P can be operated on the
input parameter "Positive pulse on". In  manual mode with two-step control, QNEG_P is
always set inversely to  QPOS_P.

NEG_P_ON BOOL FALSE For manual mode three-step control, the output signal QNEG_P can be operated on the
input parameter "Negative pulse on". In  manual mode with two-step control, QNEG_P is
always set inversely to  QPOS_P.

SYN_ON BOOL TRUE By setting the input parameter  "Enable synchronization", it is possible to  synchronize
the pulse output automatically with the block  that updates the input variable INV. This
ensures that a change in the input variable is output as quickly as possible as a pulse.

COM_RST BOOL FALSE  The block has an initialization routine that is  processed when the input "Restart" is set.
CYCLE TIME T#10m

s
The time between block calls must be constant. The "Sampling time" input specifies the
 time between block calls.
CYCLE >= 1ms

Instructions
8.4 PID basic functions

 PID control
454 Function Manual, 12/2014, A5E35300227-AA

8.4.3.7 Output parameter PULSEGEN

Parameters Data type Default Description
QPOS_P BOOL FALSE The output parameter "Output signal positive pulse" is set if a

pulse will be output. In three-step control, this is  always the
positive pulse. In two-step control, the QNEG_P  is always set
inversely to QPOS_P.

QNEG_P BOOL FALSE The output parameter "Output signal negative pulse" is set if a
pulse will be output. In three-step control, this is  always the
negative pulse. In two-step control, QNEG_P  is always set
inversely to QPOS_P.

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 455

8.4.4 TCONT_CP

8.4.4.1 Description TCONT_CP
The instruction TCONT_CP is used to control temperature processes with continuous or
pulsed control signals. The controller functionality is based on the PID control algorithm with
additional functions for temperature processes. To improve the control response with
temperature processes, the block includes a control zone and reduction of the proportional
component if there is a setpoint step change.

The instruction can set the PI/PID parameters itself using the controller optimization function.

Application
The controller controls one actuator; in other words, with one controller you can either heat
or cool but not both. If you use the block for cooling, GAIN must be assigned a negative
value. This inversion of the controller means that if the temperature rises, for example, the
manipulated variable LMN and with it the cooling action is increased.

Call
The instruction TCONT_CP must be called equidistant. To achieve this, use a cyclic interrupt
priority class (for example, OB35 for an S7-300).

The TCONT_CP instruction has an initialization routine that is run through when input
parameter COM_RST = TRUE is set. During initialization, the integral action is set to the
initialization value I_ITVAL. All the signal outputs are set to zero. Following execution of the
initialization routine, the block sets COM_RST back to FALSE. If you require initialization
when the CPU restarts, call the block in OB100 with COM_RST = TRUE.

If you call the instruction TCONT_CP as a multiple instance DB, no technology object is
created. No parameter assignment interface or commissioning interface is available. You
must assign parameters for TCONT_CP directly in the multiple instance DB and commission
it via a watch table.

See also
Operating principle of the pulse generator (Page 465)

Block diagram TCONT_CP (Page 468)

Instructions
8.4 PID basic functions

 PID control
456 Function Manual, 12/2014, A5E35300227-AA

8.4.4.2 Mode of operation TCONT_CP

Setpoint branch
The setpoint is entered at input SP_INT in floating-point format as a physical value or
percentage. The setpoint and process value used to form the control deviation must have the
same unit.

Process value options (PVPER_ON)
Depending on PVPER_ON, the process value can be read in, in the I/O or floating-point
format.

PVPER_ON Process Value Input
TRUE The process value is read in via the analog I/Os

(PIW xxx) at input PV_PER.
FALSE The process value is acquired in floating-point

format at input PV_IN.

Process value format conversion CRP_IN (PER_MODE)
The CRP_IN function converts the I/O value PV_PER to floating-point format depending on
the PER_MODE switch according to the following rules:

PER_MODE Output of CRP_IN Analog Input Type Unit
0 PV_PER * 0.1 Thermoelements;

PT100/NI100; standard
°C;°F

1 PV_PER * 0.01 PT100/NI100; climate; °C;°F
2 PV_PER * 100/27648 Voltage/current %

Process value scaling PV_NORM (PF_FAC, PV_OFFS)
The PV_NORM function calculates the output of CRP_IN according to the following rule:

"Output of PV_NORM" = "Output of CRP_IN)" * PV_FAC + PV_OFFS

It can be used for the following purposes:

● Process value adjustment with PV_FAC as process value factor and PV_OFFS as
process value offset.

● Scaling of temperature to percentage

You want to enter the setpoint as a percentage and must now convert the measured
temperature value to a percentage.

● Scaling of percentage to temperature

You want to enter the setpoint in the physical temperature unit and must now convert the
measured voltage/current value to a temperature.

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 457

Calculation of the parameters:

● PV_FAC = range of PV_NORM/range of CRP_IN;

● PV_OFFS = LL (PV_NORM) - PV_FAC * LL(CRP_IN);

where LL: Low limit

The scaling is switched off with the default values (PV_FAC = 1.0 and PV_OFFS = 0.0). The
effective process value is output at the PV output.

 Note

With pulse control, the process value must be transferred to the block in the fast pulse call
(reason: mean value filtering). Otherwise, the control quality can deteriorate.

Example of Process Value Scaling
If you want to enter the setpoint as a percentage, and you have a temperature range of -20
to 85 °C applied to , CRP_IN you must normalize the temperature range as a percentage.

The diagram below shows an example of adapting the temperature range -20 to 85 °C to an
internal scale of 0 to 100 %:

Forming the control deviation
The difference between the setpoint and process value is the control deviation before the
dead band.

The setpoint and process value must exist in the same unit.

Instructions
8.4 PID basic functions

 PID control
458 Function Manual, 12/2014, A5E35300227-AA

Dead band (DEADB_W)
To suppress a minor sustained oscillation due to the manipulated variable quantization (for
example, in pulse width modulation with PULSEGEN) a dead band is applied to the
(DEADBAND) control deviation. With DEADB_W = 0.0, the dead band is disabled. The
effective control deviation is indicated by the ER parameter.

PID Algorithm
The following figure shows the block diagram of the PID algorithm.

 Parameter configuration interface
 Instruction call interface

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 459

PID Algorithm (GAIN, TI, TD, D_F)
The PID algorithm operates as a position algorithm. The proportional, integral (INT), and
derivative (DIF) actions are connected in parallel and can be activated or deactivated
individually. This allows P, PI, PD, and PID controllers to be configured.

Controller tuning supports PI and PID controllers. Controller inversion is implemented using
a negative GAIN (cooling controller).

If you set TI and TD to 0.0, you obtain a pure P controller at the operating point.

The step response in the time range is:

Where:

LMN_Sum(t) the manipulated variable in the controller's automatic mode

ER (0) is the step height of the normalized control deviation

GAIN is the controller gain

TI is the integration time

TD is the derivative action time

D_F is the derivative factor

Instructions
8.4 PID basic functions

 PID control
460 Function Manual, 12/2014, A5E35300227-AA

Integral action (TI, I_ITL_ON, I_ITLVAL)
In manual mode, it is corrected as follows: LMN_I = LMN - LMN_P - DISV.

If the output value is limited, the integral action is halted. If the control deviation moves the
integral action back in the direction of the output range, the integral action is enabled again.

The integral action is also modified by the following measures:

● The integral action of the controller is deactivated by TI = 0.0

● Weakening of the proportional action when setpoint changes occur

● Control zone

● The output value limits can be modified online

Weakening of the proportional action when setpoint changes occur (PFAC_SP)
To prevent overshoot, you can weaken the proportional action using the parameter
"Proportional factor for setpoint changes" (PFAC_SP). Using PFAC_SP, you can select
continuously between 0.0 and 1.0 to decide the effect of the proportional action when the
setpoint changes:

● PFAC_SP = 1.0: Proportional action has full effect if the setpoint changes

● PFAC_SP = 0.0: Proportional action has no effect if the setpoint changes

The weakening of the proportional action is achieved by compensating the integral action.

Derivative action (TD, D_F)
● The derivative action of the controller is deactivated by TD = 0.0

● If the derivative action is active, the following relationship should apply:

TD = 0.5 * CYCLE * D_F

Parameter Settings of a P or PD Controller with Operating Point
In the user interface, deactivate the integral action (TI = 0.0) and possibly also the derivative
action (TD = 0.0). Then make the following parameter settings:

● I_ITL_ON = TRUE

● I_ITLVAL = operating point;

Feedforward control (DISV)
A disturbance variable can be added at the DISV input.

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 461

Calculating the output value
The diagram below is the block diagram of the output value calculation:

 Parameter configuration interface
 Instruction call interface
 Parameter configuration interface, call interface

Instructions
8.4 PID basic functions

 PID control
462 Function Manual, 12/2014, A5E35300227-AA

Control zone (CONZ_ON, CON_ZONE)
If CONZ_ON = TRUE, the controller operates with a control zone. This means that the
controller operates according to the following algorithm:

● If process value PV exceeds the setpoint SP_INT by more than CON_ZONE, the value
LMN_LLM is output as the manipulated variable.

● If the process value PV falls below setpoint SP_INT by more than CON_ZONE,
LMN_HLM is output.

● If the process value PV is within the control zone (CON_ZONE), the output value takes its
value from the PID algorithm LMN_Sum.

 Note

Changing the manipulated variable from LMN_LLM or LMN_HLM to LMN_Sum occurs
under compliance of a hysteresis of 20% of the control zone.

 Note

Before enabling the control zone manually, make sure that the control zone band is not
too narrow. If the control zone band is too small, oscillations will occur in the manipulated
variable and process value.

Advantage of the Control Zone
When the process value enters the control zone, the D-action causes an extremely fast
reduction of the manipulated variable. This means that the control zone is only useful when
the D-action is activated. Without a control zone, only the reducing P-action would
essentially reduce the manipulated variable. The control zone leads to faster settling without
overshoot or undershoot if the output minimum or maximum manipulated variable is a long
way from the manipulated variable required for the new operating point.

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 463

Manual value processing (MAN_ON, MAN)
You can change over between manual and automatic mode. In manual mode, the
manipulated variable is corrected to a manually selected value.

The integral action (INT) is set internally to LMN - LMN_P - DISV and the derivative action
(DIF) is set to 0 and synchronized internally. Changeover to automatic mode is therefore
bumpless.

 Note

The MAN_ON parameter has no effect during tuning.

Output value limit LMNLIMIT (LMN_HLM, LMN_LLM)
The LMNLIMIT function is used to limit the output value to the limits LMN_HLM and
LMN_LLM. If these limits are reached, this is indicated by the message bits QLMN_HLM and
QLMN_LLM.

If the output value is limited, the integral action is halted. If the control deviation moves the
integral action back in the direction of the output range, the integral action is enabled again.

Changing the Manipulated Value Limits Online
If the range of the output value is reduced and the new unlimited value of the output value is
outside the limits, the integral action and therefore the output value shifts.

The output value is reduced by the same amount as the output value limit changed. If the
output value was unlimited prior to the change, it is set exactly to the new limit (described
here for the high output value limit).

Scaling of output value LMN_NORM (LMN_FAC, LMN_OFFS)
The LMN_NORM function normalizes the output value according to the following rule:

LMN = LmnN * LMN_FAC + LMN_OFFS

It can be used for the following purposes:

● Output value scaling with LMN_FAC as output value factor and LMN_OFFS as output
value offset.

The output value is also available in I/O format. The CRP_OUT function converts the LMN
floating-point value to an I/O value according to the following rule:

LMN_PER = LMN * 27648/100

The scaling is switched off with the default values (LMN_FAC = 1.0 and LMN_OFFS = 0.0).
The effective output value is sent to output LMN.

Instructions
8.4 PID basic functions

 PID control
464 Function Manual, 12/2014, A5E35300227-AA

Save controller parameters SAVE_PAR
 If you classify the current controller parameters as utilizable, you can save these before a
manual change in structure parameters provided specifically for this in the instance DB of the
instruction TCONT_CP. If you optimize the controller, the saved parameters are overwritten
by the values that were valid prior to tuning.

PFAC_SP, GAIN, TI, TD, D_F, CONZ_ON and CONZONE are written to the structure
PAR_SAVE.

Reloading Saved Controller Parameters UNDO_PAR
The last controller parameter settings you saved can be activated for the controller again
using this function (in manual mode only).

Change between PI and PID parameters LOAD_PID (PID_ON)
Following tuning, the PI and PID parameters are stored in the PI_CON and PID_CON
structures. Depending on PID_ON, you can use LOAD_PID in manual mode to write the PI
or PID parameters to the effective controller parameters.

PID parameters PID_ON = TRUE PI parameters PID_ON = FALSE

• GAIN = PID_CON.GAIN
• TI = PID_CON.TI
• TD = PID_CON.TD

• GAIN = PI_CON.GAIN
• TI = PI_CON.TI

 Note

The controller parameters are only written back to the controller with UNDO_PAR or
LOAD_PID, if the controller gain is not equal to 0:

With LOAD_PID, the parameters are only copied if the corresponding GAIN <> 0 is (either
the PI or PID parameters). This strategy takes into account the situation that no tuning has
yet been made or that PID parameters are missing. If PID_ON = TRUE and
PID.GAIN = FALSE, PID_ON is set to FALSE and the PI parameter is copied.
• D_F, PFAC_SP are preset by the the tuning. These can then be modified by the user.

LOAD_PID does not change these parameters.
• With LOAD_PID, the control zone is always recalculated

(CON_ZONE = 250/GAIN), even if CONZ_ON = FALSE.

See also
Operating principle of the pulse generator (Page 465)

Block diagram TCONT_CP (Page 468)

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 465

8.4.4.3 Operating principle of the pulse generator
The function PULSEGEN transforms the analog manipulated value LmnN through pulse
width module into an impulse sequence with the period duration PER_TM. PULSEGEN is
switched on with PULSE_ON = TRUE and is processed in the cycle CYCLE_P.

A manipulated value of LmnN = 30% and 10 PULSEGEN calls per PER_TM therefore
means:

● TRUE at output QPULSE for the first three PULSEGEN calls
(30% of 10 calls)

● FALSE at output QPULSE for seven further PULSEGEN calls
(70% of 10 calls)

The duration of a pulse per pulse repetition period is proportional to the manipulated variable
and is calculated as follows:

Pulse duration = PER_TM * LmnN /100

By suppressing the minimum pulse or break time, the characteristic curve of the conversion
develops "knees" in the start and end regions.

Instructions
8.4 PID basic functions

 PID control
466 Function Manual, 12/2014, A5E35300227-AA

The following diagram illustrates two-step control with a unipolar manipulated variable range
(0% to 100%):

Minimum pulse or minimum break time (P_B_TM)
Short on or off times hinder the lifespan of actuators and fine controlling units. These can be
avoided by setting a minimum pulse duration or minimum break time P_B_TM.

Small absolute values at the input variable LmnN that could otherwise generate a pulse
duration shorter than P_B_TM are suppressed.

Large input values that would generate a pulse duration greater than
PER_TM - P_B_TM are set to 100%. This reduces the dynamics of pulse generation.

Set values of P_B_TM ≤ 0,1 * PER_TM are recommended for the minimum pulse duration
and the minimum break duration.

The "knees" in the curves in the diagram above are caused by the minimum pulse or
minimum break times.

The following schematic illustrates the switching response of the pulse output:

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 467

Accuracy of pulse generation
The smaller the pulse generator CYCLE_P is compared to the period duration PER_TM, the
more precise the pulse width modulation is. To achieve sufficiently accurate control, the
following relationship should apply:

CYCLE_P ≤ PER_TM/50

The manipulated value is transformed with a resolution of ≤ 2 % into an impulse.

 Note

When calling the controller in the pulse shaper cycle, you must note the following:

Calling the controller in the pulse shaper cycle will cause the process value to be averaged.
As a result, at output PV, different values may be at input PV_IN and PV_PER. If you want to
track the setpoint value, you must save the process value at input parameter PV_IN at the
call times for complete controller processing (QC_ACT = TRUE). For pulse shaper calls
occurring between these times, you must supply the input parameters PV_IN and SP_INT
with the saved process value.

See also
Description TCONT_CP (Page 455)

Mode of operation TCONT_CP (Page 456)

Block diagram TCONT_CP (Page 468)

Input parameters TCONT_CP (Page 470)

Output parameters TCONT_CP (Page 471)

In/out parameters TCONT_CP (Page 472)

Static variables TCONT_CP (Page 473)

Parameter STATUS_H (Page 478)

Parameters STATUS_D (Page 479)

Instructions
8.4 PID basic functions

 PID control
468 Function Manual, 12/2014, A5E35300227-AA

8.4.4.4 Block diagram TCONT_CP

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 469

See also
Description TCONT_CP (Page 455)

Mode of operation TCONT_CP (Page 456)

Operating principle of the pulse generator (Page 465)

Input parameters TCONT_CP (Page 470)

Output parameters TCONT_CP (Page 471)

In/out parameters TCONT_CP (Page 472)

Static variables TCONT_CP (Page 473)

Parameter STATUS_H (Page 478)

Parameters STATUS_D (Page 479)

Instructions
8.4 PID basic functions

 PID control
470 Function Manual, 12/2014, A5E35300227-AA

8.4.4.5 Input parameters TCONT_CP

Parameters Ad-
dress

Data
type

Default Description

PV_IN 0.0 REAL 0.0 At the "Process value input" you can assign parameters to a commissioning
value or you can interconnect an external process value in floating-point for-
mat. The valid values depend on the sensors used.

PV_PER 4.0 INT 0 The process value in I/O format is interconnected with the controller at the
"Process value I/O" input.

DISV 6.0 REAL 0.0 For feedforward control, the disturbance variable is interconnected to the
"Disturbance variable" input.

INT_HPOS 10.0 BOOL FALSE The output of the integral action can be held in the positive direction. For this,
the input INT_HPOS must be set to TRUE. In a cascade control, INT_HPOS
of the primary controller is connected to QLMN_HLM of the secondary control-
ler.

INT_HNEG 10.1 BOOL FALSE The output of the integral action can be held in the negative direction. For this,
the input INT_HNEG must be set to TRUE. In a cascade control, INT_HNEG
of the primary controller is connected to QLMN_LLM of the secondary control-
ler.

SELECT 12.0 INT 0 If the pulse shaper is on, there are several ways of calling the PID algorithm
and pulse shaper:
• SELECT = 0: The controller is called in a fast cyclic interrupt priority class

and the PID algorithm and pulse shaper are processed.
• SELECT = 1: The controller is called in OB1 and only the PID algorithm is

processed.
• SELECT = 2: The controller is called in a fast cyclic interrupt priority class

and only the pulse shaper is processed.
• SELECT = 3: The controller is called a slow cyclic interrupt priority class

and only the PID algorithm is processed.

See also
Operating principle of the pulse generator (Page 465)

Block diagram TCONT_CP (Page 468)

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 471

8.4.4.6 Output parameters TCONT_CP

Parameter Ad-
dress

Data
type

Default Description

PV 14.0 REAL 0.0 The effective process value is output at the "Process value" output.
The valid values depend on the sensors used.

LMN 18.0 REAL 0.0 The effective "Manipulated value" is output in  floating point format at the "Ma-
nipulated  value" output.

LMN_PER 22.0 INT 0 The manipulated value in I/O format is interconnected with the controller on the
output "Manipulated value I/O".

QPULSE 24.0 BOOL FALSE The manipulated value is pulse-width-modulated at the QPULSE output.
QLMN_HLM 24.1 BOOL FALSE The manipulated value is always restricted to a high limit and low limit. The

output QLMN_HLM signals that the high limit has been reached.
QLMN_LLM 24.2 BOOL FALSE The manipulated value is always restricted to a high limit and low limit. The

output QLMN_LLM signals that the low limit has been reached.
QC_ACT 24.3 BOOL TRUE This parameter indicates whether continuous control component will be pro-

cessed the next time the block is called (relevant only when SELECT has the
value 0 or 1).

See also
Operating principle of the pulse generator (Page 465)

Block diagram TCONT_CP (Page 468)

Parameter STATUS_H (Page 478)

Parameters STATUS_D (Page 479)

Instructions
8.4 PID basic functions

 PID control
472 Function Manual, 12/2014, A5E35300227-AA

8.4.4.7 In/out parameters TCONT_CP

Parameters Ad-
dress

Data
type

Default Description

CYCLE 26.0 REAL 0.1 s Sets the sampling time for the PID algorithm. In phase 1, the tuner calculates
the sampling time and enters it in CYCLE.
CYCLE > 0.001 s

CYCLE_P 30.0 REAL 0.02 s At this input, you set the sampling time for the pulse shaper action. In phase 1,
the TCONT_CP instruction calculates the sampling time and enters it in
CYCLE_P.
CYCLE_P > 0.001 s

SP_INT 34.0 REAL 0.0 The input "Internal setpoint" is used to specify a setpoint.
The valid values depend on the sensors used.

MAN 38.0 REAL 0.0 The "Manual value" input is used to set a manual value. In automatic mode, it
tracks the manipulated value.

COM_RST 42.0 BOOL FALSE The block has an initialization routine that is processed when the COM_RST
input is set.

MAN_ON 42.1 BOOL TRUE If the input "Enable manual mode" is set then the control loop is interrupted. The
manual value MAN is set as manipulated value.

See also
Operating principle of the pulse generator (Page 465)

Block diagram TCONT_CP (Page 468)

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 473

8.4.4.8 Static variables TCONT_CP

Parameters Address Data
type

De-
fault

Description

DEADB_W 44.0 REAL

0.0 A deadband is applied to the control deviation. The "Deadband width" input
determines the size of the deadband.
The valid values depend on the sensors used.

I_ITLVAL 48.0 REAL 0.0 The output of the integrator can be set at the I_ITL_ON input. The initialization
value is applied to the "Initialization value of the I-action" input. During a restart
COM_RST = TRUE, the I-action is set to the initialization value.
Values from -100 to 100 % are permitted.

LMN_HLM 52.0 REAL 100.0 The output value is always restricted to a high limit and low limit. The "Manipu-
lated value high limit" input specifies the high limit.
LMN_HLM > LMN_LLM

LMN_LLM 56.0 REAL 0.0 The output value is always restricted to a high limit and low limit. The "Manipu-
lated value low limit" input specifies the low limit.
LMN_LLM < LMN_HLM

PV_FAC 60.0 REAL 1.0 The "Process value factor" input is multiplied by the "Process value I/O". The
input is used to scale the process value range.

PV_OFFS 64.0 REAL 0.0 The "Process value offset" input is added to the "Process value I/O". The input is
used to scale the process value range.

LMN_FAC 68.0 REAL 1.0 The "Output value factor" input is multiplied with the output value. The input is
used to scale the output value range.

LMN_OFFS 72.0 REAL 0.0 The "Output value offset" input is added to the output value. The input is used to
scale the output value range.

PER_TM 76.0 REAL 1.0 s The period duration of the pulse width modulation is entered at the PER_TM
parameter. The relationship of the period duration to the sampling time of the
pulse shaper determines the accuracy of the pulse width modulation.
PER_TM ≥ CYCLE

P_B_TM 80.0 REAL 0.02 s You can assign a minimum pulse or break time at the parameter "Minimum
pulse/break time". P_B_TM is internally limited to > CYCLE_P.

TUN_DLMN 84.0 REAL 20.0 Process excitation for controller tuning results from a output value step change
at TUN_DLMN.
Values from -100 to 100 % are permitted.

Instructions
8.4 PID basic functions

 PID control
474 Function Manual, 12/2014, A5E35300227-AA

Parameters Address Data
type

De-
fault

Description

PER_MODE 88.0 INT 0 You can use this switch to enter the type of I/O module. The process value at
input PV_PER is then scaled as follows at the PV output.
• PER_MODE = 0: Thermoelements; PT100/NI100; standard

PV_PER * 0.1

Unit: °C, °F
• PER_MODE = 1: PT100/NI100; climate

PV_PER * 0.01

Unit: °C, °F
• PER_MODE = 2: Current/voltage

PV_PER * 100/27648

Unit: %
PVPER_ON 90.0 BOOL FALS

E
If the process value is to be read in from the I/Os, the PV_PER input must be
interconnected with the I/Os and the "Enable process value I/Os" input must be
set.

I_ITL_ON 90.1 BOOL FALS
E

The output of the integrator can be set at the I_ITLVAL input. The "Set I-action"
input must be set for this.

PULSE_ON 90.2 BOOL FALS
E

If PULSE_ON = TRUE is set, the pulse shaper is activated.

TUN_KEEP 90.3 BOOL FALS
E

The mode changes to automatic only when TUN_KEEP changes to FALSE.

ER 92.0 REAL 0.0 The effective control deviation is output at the "Control deviation" output.
The valid values depend on the sensors used.

LMN_P 96.0 REAL 0.0 The "P-action" output contains the proportional action of the manipulated tag.
LMN_I 100.0 REAL 0.0 The "integral action" output contains the integral action of the manipulated tag.
LMN_D 104.0 REAL 0.0 The "D-action" output contains the derivative action of the manipulated tag.
PHASE 108.0 INT 0 The current phase of controller tuning is indicated at the PHASE output.

• PHASE = 0: No tuning mode; automatic or manual mode
• PHASE = 1: Ready to start tuning; check parameters, wait for excitation,

measure the sampling times
• PHASE = 2: Actual tuning: Searching for point of inflection with constant

output value. Entering the sampling time in instance DB.
• PHASE = 3: Calculating process parameters. Saving valid controller parame-

ters prior to tuning.
• PHASE = 4: Controller design
• PHASE = 5: Following up the controller to the new manipulated tag
• PHASE = 7: Validating the process type

STATUS_H 110.0 INT 0 STATUS_H indicates the diagnostic value via the search for the point of inflec-
tion during the heating process.

STATUS_D 112.0 INT 0 STATUS_D indicates the diagnostic value via the controller design during the
heating process.

QTUN_RUN 114.0 BOOL 0 The tuning manipulated tag has been applied, tuning has started and is still in
phase 2 (searching for point of inflection).

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 475

Parameters Address Data
type

De-
fault

Description

PI_CON 116.0 STRU
CT

 PI controller parameters

GAIN +0.0 REAL 0.0 PI controller gain
%/phys. unit

TI +4.0 REAL 0.0 s PI integration time [s]
PID_CON 124.0 STRU

CT
 PID controller parameters

GAIN +0.0 REAL 0.0 PID controller gain
TI +4.0 REAL 0.0s PID integration time [s]
TD +8.0 REAL 0.0s PID derivative action time [s]
PAR_SAVE 136.0 STRU

CT
 The PID parameters are saved in this structure.

PFAC_SP +0.0 REAL 1.0 Proportional factor for setpoint changes
Values from 0.0 to 1.0 are permitted.

GAIN +4.0 REAL 0.0 Controller gain
%/phys. unit

TI +8.0 REAL 40.0 s Integration time [s]
TD +12.0 REAL 10.0 s Derivative action time (s)
D_F +16.0 REAL 5.0 Derivative factor

Values from 5.0 to 10.0 are permitted.
CON_ZONE +20.0 REAL 100.0 Control zone band

If the control deviation is greater than the control zone band, the high output
value limit is output as output value. If the control deviation is less than the
negative control zone band, the low output value limit is output as the output
value.
CON_ZONE ≥ 0.0

CONZ_ON +24.0 BOOL FALS
E

Enable control zone

PFAC_SP 162.0 REAL 1.0 PFAC_SP specifies the effective P-action when there is a setpoint change. This
is set between 0 and 1.
• 1: P-action has full effect if the setpoint changes.
• 0: P-action has no effect if the setpoint changes.
Values from 0.0 to 1.0 are permitted.

GAIN 166.0 REAL 2.0 The "Proportional gain" input specifies controller amplification. The direction of
control can be reversed by giving GAIN a negative sign.
%/phys. unit

TI 170.0 REAL 40.0 s The "Integration time" (integral-action time) input defines the integrator's time
response.

TD 174.0 REAL 10.0 s The "Derivative-action time" (rate time) input decides the time response of the
differentiator.

D_F 178.0 REAL 5.0 The derivative factor decides the lag of the D-action.
D_F = derivative-action time/"Lag of the D-action"
Values from 5.0 to 10.0 are permitted.

Instructions
8.4 PID basic functions

 PID control
476 Function Manual, 12/2014, A5E35300227-AA

Parameters Address Data
type

De-
fault

Description

CON_ZONE 182.0 REAL 100.0 If the control deviation is greater than the control zone band, the high output
value limit is output as output value.
If the control deviation is less than the negative control zone band, the low out-
put value limit is output as the output value.
The valid values depend on the sensors used.

CONZ_ON 186.0 BOOL FALS
E

You can use CONZ_ON =TRUE to enable the control zone.

TUN_ON 186.1 BOOL FALS
E

If TUN_ON=TRUE, the output value is averaged until the output value excitation
TUN_DLMN is enabled either by a setpoint step-change or by TUN_ST=TRUE.

TUN_ST 186.2 BOOL FALS
E

If the setpoint is to remain constant during controller tuning at the operating
point, a output value step-change by the amount of TUN_DLMN is activated by
TUN_ST=1.

UNDO_PAR 186.3 BOOL FALS
E

Loads the controller parametersPFAC_SP, GAIN, TI, TD, D_FCONZ_ON and
CON_ZONE from the data structure PAR_SAVE (only in manual mode).

SAVE_PAR 186.4 BOOL FALS
E

Saves the controller parameters PFAC_SP, GAIN, TI, TD, D_F, CONZ_ON and
CON_ZONE in the data structure PAR_SAVE.

LOAD_PID 186.5 BOOL FALS
E

Loads the controller parametersGAIN, TI,TD depending on PID_ON from the
data structure PI_CON or PID_CON (only in manual mode)

PID_ON 186.6 BOOL TRUE At the PID_ON input, you can specify whether or not the tuned controller will
operate as a PI or PID controller.
• PID controller: PID_ON = TRUE
• PI controller: PID_ON = FALSE
With certain process types it is nevertheless possible that only a PI controller will
be designed despite PID_ON = TRUE.

GAIN_P 188.0 REAL 0.0 Identified process gain. In the case of process type I, GAIN_P tends to be esti-
mated too low.

TU 192.0 REAL 0.0 Identified time lag of the process.
TU ≥ 3*CYCLE

TA 196.0 REAL 0.0 Identified recovery time of the process. In the case of process type I, TA tends to
be estimated too low.

KIG 200.0 REAL 0.0 Maximum process value rise at manipulated tag excitation from 0 to 100 % [1/s]
GAIN_P = 0.01 * KIG * TA

N_PTN 204.0 REAL 0.0 The parameter specifies the order of the process. "Non-integer values" are also
possible.
Values from 1.01 to 10.0 are permitted.

TM_LAG_P 208.0 REAL 0.0 Time constants of a PTN model (practical values only for N_PTN >= 2).
T_P_INF 212.0 REAL 0.0 Time from process excitation until the point of inflection.
P_INF 216.0 REAL 0.0 Process value change from process excitation until the point of inflection.

The valid values depend on the sensors used.
LMN0 220.0 REAL 0.0 Output value at the start of tuning

Detected in phase 1 (mean value).
Values from 0 to 100 % are permitted.

PV0 224.0 REAL 0.0 Process value at the start of tuning
PVDT0 228.0 REAL 0.0 Process value slew rate at start of tuning [1/s]

Sign adapted.

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 477

Parameters Address Data
type

De-
fault

Description

PVDT 232.0 REAL 0.0 Current process value slew rate [1/s]
Sign adapted.

PVDT_MAX 236.0 REAL 0.0 Max. change in the process value per second [1/s]
Maximum derivative of the process value at the point of inflection (sign adapted,
always > 0); is used to calculate TU and KIG.

NOI_PVDT 240.0 REAL 0.0 Noise action in PVDT_MAX in %
The higher the noise action, the less accurate (less aggressive) the control pa-
rameters.

NOISE_PV 244.0 REAL 0.0 Absolute noise in process value
Difference between maximum and minimum process value in phase 1.

FIL_CYC 248.0 INT 1 Number of cycles of the mean value filter
The process value is determined through FIL_CYC cycles. FIL_CYC is in-
creased from 1 to a max. of 1024 if needed.

POI_CMAX 250.0 INT 2 Maximum number of cycles after point of inflection
This time is used to find another (i.e. better) inflection point for measuring noise.
The tuning is completed only after this time.

POI_CYCL 252.0 INT 0 Number of cycles after inflection point

See also
Operating principle of the pulse generator (Page 465)

Block diagram TCONT_CP (Page 468)

Instructions
8.4 PID basic functions

 PID control
478 Function Manual, 12/2014, A5E35300227-AA

8.4.4.9 Parameter STATUS_H

STATUS_H Description Remedy
0 Default, or no/no new controller

parameters

10000 Tuning completed + suitable control-
ler parameters found

2xxxx Tuning completed + controller pa-
rameters uncertain

2xx2x Point of inflection not reached (only
if excited via setpoint step-change)

If the controller oscillates, weaken the control-
ler parameters, or repeat the test with a smaller
manipulated value difference TUN_DLMN.

2x1xx Estimation error (TU < 3*CYCLE) Reduce CYCLE and repeat attempt.
Special case for PT1-only process: Do not
repeat test, if necessary reduce controller pa-
rameters.

2x3xx Estimation error TU too high Repeat test under better conditions.
21xxx Estimation error N_PTN < 1 Repeat test under better conditions.
22xxx Estimation error N_PTN > 10 Repeat test under better conditions.
3xxxx Tuning canceled in phase 1 owing to

faulty parameter assignment:

30002 Effective manipulated value differen-
tial < 5%

Correct manipulated value differential
TUN_DLMN.

30005 The sampling times CYCLE and
CYCLE_P differ by more than 5% of
the measured values.

Compare CYCLE and CYCLE_P with the cycle
time of the cyclic interrupt priority class and
note any loop scheduler.
Check CPU load. An excessively loaded CPU
can result in prolonged sampling times that are
inconsistent with CYCLE or CYCLE_P.

 Note

If you cancel tuning in phase 1 or 2, STATUS_H = 0 is set. However, STATUS_D still
displays the status of the last controller calculation.

The higher the value of STATUS_D, the higher the order of the control process, the greater
the TU/TA ratio and the gentler the controller parameters will be.

See also
Operating principle of the pulse generator (Page 465)

Block diagram TCONT_CP (Page 468)

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 479

8.4.4.10 Parameters STATUS_D

STATUS_D Description
0 No controller parameters were calculated.
110 N_PTN <= 1.5 Process type I fast
121 N_PTN > 1.5 Process type I
200 N_PTN > 1.9 Process type II (transition range)
310 N_PTN >= 2.1 Process type III fast
320 N_PTN > 2.6 Process type III
111, 122, 201, 311, 321 Parameters have been corrected from phase 7.

 Note

The higher the value of STATUS_D, the higher the order of the control process, the greater
the TU/TA ratio and the gentler the controller parameters will be.

See also
Operating principle of the pulse generator (Page 465)

Block diagram TCONT_CP (Page 468)

Instructions
8.4 PID basic functions

 PID control
480 Function Manual, 12/2014, A5E35300227-AA

8.4.5 TCONT_S

8.4.5.1 Description TCONT_S
The TCONT_S instruction is used on SIMATIC S7 automation systems to control technical
temperature processes with binary manipulated value output signals for actuators with
integrating behavior. The functionality is based on the PI control algorithm of the sampling
controller. The step controller operates without a position feedback signal.

Application
You can also use the controller in a cascade control as a secondary position controller. You
specify the actuator position via the setpoint input SP_INT. In this case, you must set the
process value input and the parameter TI (integration time) to zero. An application might be,
for example, temperature control with heating power control using pulse-break activation and
cooling control using a butterfly valve. To close the valve completely, the manipulated
variable (ER*GAIN) should be negative.

Call
The instruction TCONT_S must be called equidistant. To achieve this, use a cyclic interrupt
priority class (for example, OB35 for an S7-300). The sampling time is specified at the
CYCLE parameter.

If you call the instruction TCONT_S as a multiple instance DB, no technology object is
created. No parameter assignment interface or commissioning interface is available. You
must assign parameters for TCONT_S directly in the multiple instance DB and commission it
via a watch table.

CYCLE sampling time
The CYCLE sampling time match the time difference between two calls (cycle time of the
cyclic interrupt OB taking into account the reduction ratios).

The controller sampling time should not exceed 10% of the calculated integration time of the
controller (TI). Generally, you must set the sampling time to a much lower value to achieve
the required accuracy of the step controller.

Required accuracy G MTR_TM CYCLE = MTR_TM*G Comment
0.5 % 10 s 0.05 s The sampling time is determined by the

required accuracy of the step controller.

Start-up
The TCONT_S instruction has an initialization routine that is run through when input
parameter COM_RST = TRUE is set. Following execution of the initialization routine, the
block sets COM_RST back to FALSE. All outputs are set to their initial values. If you require
initialization when the CPU restarts, call the block in OB100 with COM_RST = TRUE.

See also
Block diagram TCONT_S (Page 485)

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 481

8.4.5.2 Mode of operation TCONT_S

Setpoint branch
The setpoint is entered at input SP_INT in floating-point format as a physical value or
percentage. The setpoint and process value used to form the control deviation must have the
same unit.

Process value options (PVPER_ON)
Depending on PVPER_ON, the process value can be read in, in the I/O or floating-point
format.

PVPER_ON Process Value Input
TRUE The process value is read in via the analog I/Os

(PIW xxx) at input PV_PER.
FALSE The process value is acquired in floating-point

format at input PV_IN.

Process value format conversion CRP_IN (PER_MODE)
The CRP_IN function converts the I/O value PV_PER to floating-point format depending on
the PER_MODE switch according to the following rules:

PER_MODE Output of CRP_IN Analog Input Type Unit
0 PV_PER * 0.1 Thermoelements;

PT100/NI100; standard
°C;°F

1 PV_PER * 0.01 PT100/NI100; climate; °C;°F
2 PV_PER * 100/27648 Voltage/current %

Process value scaling PV_NORM (PF_FAC, PV_OFFS)
The PV_NORM function calculates the output of CRP_IN according to the following rule:

"Output of PV_NORM" = "Output of CRP_IN)" * PV_FAC + PV_OFFS

It can be used for the following purposes:

● Process value adjustment with PV_FAC as process value factor and PV_OFFS as
process value offset.

● Normalization of temperature to percentage

You want to enter the setpoint as a percentage and must now convert the measured
temperature value to a percentage.

● Normalization of percentage to temperature

You want to enter the setpoint in the physical temperature unit and must now convert the
measured voltage/current value to a temperature.

Instructions
8.4 PID basic functions

 PID control
482 Function Manual, 12/2014, A5E35300227-AA

Calculation of the parameters:

● PV_FAC = range of PV_NORM/range of CRP_IN;

● PV_OFFS = LL (PV_NORM) - PV_FAC * LL(CRP_IN);

where LL: low limit

The normalization is switched off with the default values (PV_FAC = 1.0 and
PV_OFFS = 0.0). The effective process value is output at the PV output.

Example of Process Value Normalization
If you want to enter the setpoint as a percentage, and you have a temperature range of -20
to 85 °C applied to , CRP_IN you must normalize the temperature range as a percentage.

The following diagram shows an example of adapting the temperature range -20 to 85 °C to
an internal scale of 0 to 100 %:

Forming the control deviation
The difference between the setpoint and process value is the control deviation before the
dead band.

The setpoint and process value must exist in the same unit.

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 483

Dead band (DEADB_W)
To suppress a minor sustained oscillation due to the manipulated variable quantization (for
example, in pulse width modulation with PULSEGEN) a dead band is applied to the
(DEADBAND) control deviation. With DEADB_W = 0.0, the dead band is switched off.

PI step controller algorithm
The instruction TCONT_S operates without position feedback. The I-action of the PI
algorithm and the assumed position feedback signal are calculated in an integrator (INT) and
compared as a feedback value with the remaining P-action. The difference is applied to a
three-step element (THREE_ST) and a pulse shaper (PULSEOUT) that generates the pulses
for the control valve. Adapting the response threshold of the three-step element reduces the
switching frequency of the controller.

Weakening of the P-action when setpoint changes occur
To prevent overshoot, you can weaken the P-action using the "Proportional factor for
setpoint changes" parameter (PFAC_SP). Using PFAC_SP, you can now select continuously
between 0.0 and 1.0 to decide the effect of the P-action when the setpoint changes:

● PFAC_SP = 1.0: P-action has full effect if the setpoint changes

● PFAC_SP = 0.0: P-action has no effect if the setpoint changes

As in the case of the continuous controller, a value of PFAC_SP < 1.0 can reduce the
overshoot if the motor run time MTR_TM is small compared with the recovery time TA and
the ratio is TU/TA < 0.2. If MTR_TM reaches 20% of TA, only a slight improvement can still
be achieved.

Feedforward control
A disturbance variable can be added at the DISV input.

Instructions
8.4 PID basic functions

 PID control
484 Function Manual, 12/2014, A5E35300227-AA

Manual value processing (LMNS_ON, LMNUP, LMNDN)
With LMNS_ON, you can change between manual and automatic mode. In manual mode,
the actuator is halted and the integral action (INT) is set to 0 internally. Using LMNUP and
LMNDN, the actuator can be adjusted to OPEN and CLOSED. Switching over to automatic
mode therefore involves a bump. As a result of the GAIN, the existing control deviation leads
to a step change in the internal manipulated variable. The integral component of the
actuator, however, results in a ramp-shaped excitation of the process.

See also
Block diagram TCONT_S (Page 485)

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 485

8.4.5.3 Block diagram TCONT_S

 Parameter configuration interface
 Instruction call interface
 Parameter configuration interface, call interface

Instructions
8.4 PID basic functions

 PID control
486 Function Manual, 12/2014, A5E35300227-AA

See also
Description TCONT_S (Page 480)

Mode of operation TCONT_S (Page 481)

Input paramters TCONT_S (Page 487)

Output parameters TCONT_S (Page 488)

In/out parameters TCONT_S (Page 488)

Static variables TCONT_S (Page 489)

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 487

8.4.5.4 Input paramters TCONT_S

Parameters Ad-
dress

Data
type

Default Description

CYCLE 0.0 REAL 0.1 s At this input, you enter the sampling time for the controller.
CYCLE ≥ 0.001

SP_INT 4.0 REAL 0.0 The input "Internal setpoint" is used to specify a setpoint.
The valid values depend on the sensors used.

PV_IN 8.0 REAL 0.0 At the "Process variable input" you can assign parameters
to a commissioning value or you can interconnect an ex-
ternal process value in floating-point format.
The valid values depend on the sensors used.

PV_PER 12.0 INT 0 The process value in I/O format is interconnected with the
controller at the "Process value I/O" input.

DISV 14.0 REAL 0.0 For feedforward control, the disturbance variable is inter-
connected to the "Disturbance variable" input.

LMNR_HS 18.0 BOOL FALSE The signal "Control valve at high endstop" is interconnect-
ed on the input "High endstop signal of position feedback".
• LMNR_HS=TRUE: The  control valve is at high end-

stop.

LMNR_LS 18.1 BOOL FALSE The signal "Control valve at low endstop" is interconnect-
ed on the input "Low endstop signal of position feedback".
• LMNR_LS=TRUE:

The  control valve is at low endstop.

LMNS_ON 18.2 BOOL TRUE Manipulated value signal processing is switched to manual
mode at the "Enable manual mode of manipulated signal".

LMNUP 18.3 BOOL FALSE In manual mode of manipulated signals, the output pa-
rameter QLMNUP is operated at the input parameter "Ma-
nipulated signal up".

LMNDN 18.4 BOOL FALSE In manual mode of the manipulated signals, the output
parameter QLMNDN is operated at the input parameter
"Manipulated signal down".

See also
Block diagram TCONT_S (Page 485)

Instructions
8.4 PID basic functions

 PID control
488 Function Manual, 12/2014, A5E35300227-AA

8.4.5.5 Output parameters TCONT_S

Parameters Ad-
dress

Data
type

Default Description

QLMNUP 20.0 BOOL FALSE If the output "Manipulated value signal up" is set then the
control valve should be open.

QLMNDN 20.1 BOOL FALSE If the output "Manipulated value signal down" is set then
the control valve should be closed.

PV 22.0 REAL 0.0 The effective process value is output at the "Process val-
ue" output.

ER 26.0 REAL 0.0 The effective system deviation is output at the "Error sig-
nal" output.

See also
Block diagram TCONT_S (Page 485)

8.4.5.6 In/out parameters TCONT_S

Parameters Ad-
dress

Data
type

Default Description

COM_RST 30.0 BOOL FALSE The block has an initialization routine that is processed
when the COM_RST input is set.

See also
Block diagram TCONT_S (Page 485)

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 489

8.4.5.7 Static variables TCONT_S

Parameters Ad-
dress

Data
type

Default Description

PV_FAC 32.0 REAL 1.0 The "Process value factor" input is multiplied by the process value. The input is
used to scale the process value range.

PV_OFFS 36.0 REAL 0.0 The input "Process value offset" is added to the process value. The input is
used to scale the process value range.
The valid values depend on the sensors used.

DEADB_W 40.0 REAL 0.0 A deadband is applied to the control deviation. The "Deadband width" input
determines the size of the deadband.
DEADB_W ≥ 0.0

PFAC_SP 44.4 REAL 1.0 PFAC_SP specifies the effective P-action when there is a setpoint change.
• 1: P-action has full effect if the setpoint changes.
• 0: P-action has no effect if the setpoint changes.
Values from 0.0 to 1.0 are permitted.

GAIN 48.0 REAL 2.0 The "Proportional gain" input specifies controller amplification. The direction of
control can be reversed by giving GAIN a negative sign.
%/phys. unit

TI 52.0 REAL 40.0 s The "Integration time" (integral-action time) input defines the integrator's time
response.

MTR_TM 56.0 REAL 30 s The runtime from endstop to endstop of the control valve is entered at the "Mo-
tor actuating time" parameter.
MTR_TM ≥ CYCLE

PULSE_TM 60.0 REAL 0.0 s A minimum pulse time can be configured at the "Minimum pulse time" parame-
ter.

BREAK_TM 64.0 REAL 0.0 s You can assign a minimum break time at the parameter "Minimum break time".
PER_MODE 68.0 INT 0 You can use this switch to enter the type of I/O module. The process value at

input PV_PER is then scaled as follows at the PV output.
• PER_MODE = 0: Thermoelements; PT100/NI100; standard

PV_PER * 0.1

Unit: °C, °F
• PER_MODE = 1: PT100/NI100; climate

PV_PER * 0.01

Unit: °C, °F
• PER_MODE = 2: Current/voltage

PV_PER * 100/27648

Unit: %
PVPER_ON 70.0 BOOL FALSE If the process value is to be read in from the I/Os, the PV_PER input must be

interconnected with the I/Os and the "Enable process value I/Os" input must be
set.

Instructions
8.4 PID basic functions

 PID control
490 Function Manual, 12/2014, A5E35300227-AA

See also
Block diagram TCONT_S (Page 485)

 Instructions
 8.4 PID basic functions

PID control
Function Manual, 12/2014, A5E35300227-AA 491

8.4.6 Integrated system functions

8.4.6.1 CONT_C_SF

CONT_C_SF
The instruction CONT_C_SF is integrated in the S7-300 compact CPUs. The instruction
must not be transmitted to the S7-300 CPU during loading. The scope of function
corresponds with the instruction CONT_C.

See also
Description CONT_C (Page 433)

How CONT_C works (Page 434)

CONT_C block diagram (Page 436)

Input parameter CONT_C (Page 437)

Output parameters CONT_C (Page 438)

8.4.6.2 CONT_S_SF

CONT_S_SF
The instruction CONT_S_SF is integrated in the S7-300 compact CPUs. The instruction must
not be transmitted to the S7-300 CPU during loading. The scope of function corresponds
with the instruction CONT_S.

See also
Description CONT_S (Page 439)

Mode of operation CONT_S (Page 440)

Block diagram CONT_S (Page 441)

Input parameters CONT_S (Page 442)

Output parameters CONT_S (Page 443)

Instructions
8.4 PID basic functions

 PID control
492 Function Manual, 12/2014, A5E35300227-AA

8.4.6.3 PULSEGEN_SF

PULSEGEN_SF
The instruction PULSEGEN_SF is integrated in the S7-300 compact CPUs. The instruction
must not be transmitted to the S7-300 CPU during loading. The scope of function
corresponds with the instruction PULSEGEN.

See also
Description PULSEGEN (Page 444)

Mode of operation PULSEGEN (Page 445)

Mode of operation PULSEGEN (Page 448)

Three-step control (Page 449)

Two-step control (Page 452)

Input parameters PULSEGEN (Page 453)

Output parameter PULSEGEN (Page 454)

PID control
Function Manual, 12/2014, A5E35300227-AA 493

 Service & Support A

Unmatched complete service for the entire life cycle
For machine manufacturers, solution providers and plant operators: The service offering
from Siemens Industry Automation and Drive Technologies includes comprehensive services
for a wide range of different users in all sectors of the manufacturing and process industry.

To accompany our products and systems, we offer integrated and structured services that
provide valuable support in every phase of the life cycle of your machine or plant – from
planning and implementation through commissioning as far as maintenance and
modernization.

Our Service & Support accompanies you worldwide in all matters concerning automation and
drive technology from Siemens. We provide direct on-site support in more than 100 countries
through all phases of the life cycle of your machines and plants.

You have an experienced team of specialists at your side to provide active support and
bundled know-how. Regular training courses and intensive contact among our employees –
even across continents – ensure reliable service in the most diverse areas.

Online Support
The comprehensive online information platform supports you in all aspects of our Service &
Support at any time and from any location in the world.

You can find Online Support at the following address on the Internet.

Service & Support

 PID control
494 Function Manual, 12/2014, A5E35300227-AA

Technical Consulting
Support in planning and designing your project: From detailed actual-state analysis,
definition of the goal and consultation on product and system questions right through to the
creation of the automation solution.

Technical Support
Expert advice on technical questions with a wide range of demand-optimized services for all
our products and systems.

You can find Technical Support at the following address on the Internet.

Training
Extend your competitive edge – through practical know-how directly from the manufacturer.

You can find the training courses at the following address on the Internet.

Engineering Support
Support during project engineering and development with services fine-tuned to your
requirements, from configuration through to implementation of an automation project.

Field Service
Our Field Service offers you services for commissioning and maintenance – to ensure that
your machines and plants are always available.

Spare parts
In every sector worldwide, plants and systems are required to operate with constantly
increasing reliability. We will provide you with the support you need to prevent a standstill
from occurring in the first place: with a worldwide network and optimum logistics chains.

Repairs
Downtimes cause problems in the plant as well as unnecessary costs. We can help you to
reduce both to a minimum – with our worldwide repair facilities.

Optimization
During the service life of machines and plants, there is often a great potential for increasing
productivity or reducing costs.

To help you achieve this potential, we are offering a complete range of optimization services.

 Service & Support

PID control
Function Manual, 12/2014, A5E35300227-AA 495

Modernization
You can also rely on our support when it comes to modernization – with comprehensive
services from the planning phase all the way to commissioning.

Service programs
Our service programs are select service packages for an automation and drives system or
product group. The individual services are coordinated with each other to ensure smooth
coverage of the entire life cycle and support optimum use of your products and systems.

The services of a service program can be flexibly adapted at any time and used separately.

Examples of service programs:

● Service contracts

● Plant IT Security Services

● Life Cycle Services for Drive Engineering

● SIMATIC PCS 7 Life Cycle Services

● SINUMERIK Manufacturing Excellence

● SIMATIC Remote Support Services

Benefits at a glance:

● Reduced downtimes for increased productivity

● Optimized maintenance costs due to a tailored scope of services

● Costs that can be calculated and therefore planned

● Service reliability due to guaranteed response times and spare part delivery times

● Customer service personnel will be supported and relieved of additional tasks

● Comprehensive service from a single source, fewer interfaces and greater expertise

Contact
At your service locally, around the globe: your partner for consultation, sales, training,
service, support, spare parts... for the entire range of products from Industry Automation and
Drive Technologies.

You can find your personal contact in our contacts database on the Internet.

Service & Support

 PID control
496 Function Manual, 12/2014, A5E35300227-AA

PID control
Function Manual, 12/2014, A5E35300227-AA 497

 Index

C
CONT_C

Block diagram, 436
Input parameters, 437
Mode of operation, 434
Output parameters, 438

CONT_S
Block diagram, 441
Input parameters, 442
Instruction, 439
Mode of operation, 440
Output parameters, 443

P
PID_3Step

In/out parameters, 313
Input parameters, 310, 344
Instruction, 300, 335
Output parameters, 312, 346
Static tags, 348

PID_Compact
In/out parameters, 256
Input parameters, 254, 280
Instruction, 276
Output parameters, 255, 281
Static tags, 257, 282

PID_Temp
ActivateRecoverMode tag, 427
Cascade, 386
Cascading, 194
ErrorBits parameter, 424
Functional description, 376
In/out parameters, 386
Input parameters, 382
Mode, 386
Multi-zone applications, 202
Output parameters, 384
PID_Temp state and mode parameters, 416
PwmPeriode, 431
Static tags, 388
Tag Warning, 430

PULSEGEN
Input parameters, 453
Output parameters, 454

PULSEGEN
Instruction, 444
Mode of operation, 445

S
Software controller

Configuring, 39
Symbol

For value comparison, 49

T
TCONT_CP

In/out parameters, 472
Input parameters, 470
Instruction, 455
Mode of operation, 456
Output parameters, 471
Static tags, 473

TCONT_S
In/out parameters, 488
Input parameters, 487
Instruction, 480
Operating principle, 481
Output parameters, 488
Static tags, 489

Technology objects
CONT_C, 205
CONT_S, 211
PID_3Step, 117
PID_Compact, 79
PID_Temp, 159
TCONT_CP, 214
TCONT_S, 239

V
Values

Comparing, 49

Index

 PID control
498 Function Manual, 12/2014, A5E35300227-AA

	PID control
	Legal information
	Preface
	Table of contents
	1 Documentation guide
	2 Principles for control
	2.1 Controlled system and actuators
	2.2 Controlled systems
	2.3 Characteristic values of the control section
	2.4 Pulse controller
	2.5 Response to setpoint changes and disturbances
	2.6 Control Response at Different Feedback Structures
	2.7 Selection of the controller structure for specified controlled systems
	2.8 PID parameter settings

	3 Configuring a software controller
	3.1 Overview of software controller
	3.2 Steps for the configuration of a software controller
	3.3 Add technology objects
	3.4 Configure technology objects
	3.5 Call instruction in the user program
	3.6 Downloading technology objects to device
	3.7 Commissioning software controller
	3.8 Save optimized PID parameter in the project
	3.9 Comparing values
	3.9.1 Comparison display and boundary conditions
	3.9.2 Comparing values

	3.10 Parameter view
	3.10.1 Introduction to the parameter view
	3.10.2 Structure of the parameter view
	3.10.2.1 Toolbar
	3.10.2.2 Navigation
	3.10.2.3 Parameter table

	3.10.3 Opening the parameter view
	3.10.4 Default setting of the parameter view
	3.10.5 Working with the parameter view
	3.10.5.1 Overview
	3.10.5.2 Filtering the parameter table
	3.10.5.3 Sorting the parameter table
	3.10.5.4 Transferring parameter data to other editors
	3.10.5.5 Indicating errors
	3.10.5.6 Editing start values in the project
	3.10.5.7 Status of configuration (offline)
	3.10.5.8 Monitoring values online in the parameter view
	3.10.5.9 Create snapshot of monitor values
	3.10.5.10 Modifying values
	3.10.5.11 Comparing values
	3.10.5.12 Applying values from the online program as start values
	3.10.5.13 Initializing setpoints in the online program

	3.11 Display instance DB of a technology object.

	4 Using PID_Compact
	4.1 Technology object PID_Compact
	4.2 PID_Compact V2
	4.2.1 Configuring PID_Compact V2
	4.2.1.1 Basic settings
	4.2.1.2 Process value settings
	4.2.1.3 Advanced settings

	4.2.2 Commissioning PID_Compact V2
	4.2.2.1 Pretuning
	4.2.2.2 Fine tuning
	4.2.2.3 "Manual" mode

	4.3 PID_Compact V1
	4.3.1 Configuring PID_Compact V1
	4.3.1.1 Basic settings
	4.3.1.2 Process value settings
	4.3.1.3 Advanced settings

	4.3.2 Commissioning PID_Compact V1
	4.3.2.1 Commissioning
	4.3.2.2 Pretuning
	4.3.2.3 Fine tuning
	4.3.2.4 "Manual" mode

	5 Using PID_3Step
	5.1 Technology object PID_3Step
	5.2 PID_3Step V2
	5.2.1 Configuring PID_3Step V2
	5.2.1.1 Basic settings
	5.2.1.2 Process value settings
	5.2.1.3 Actuator settings
	5.2.1.4 Advanced settings

	5.2.2 Commissioning PID_3Step V2
	5.2.2.1 Pretuning
	5.2.2.2 Fine tuning
	5.2.2.3 Commissioning with manual PID parameters
	5.2.2.4 Measuring the motor transition time

	5.3 PID_3Step V1
	5.3.1 Configuring PID_3Step V1
	5.3.1.1 Basic settings
	5.3.1.2 Process value settings
	5.3.1.3 Actuator settings
	5.3.1.4 Advanced settings

	5.3.2 Commissioning PID_3Step V1
	5.3.2.1 Commissioning
	5.3.2.2 Pretuning
	5.3.2.3 Fine tuning
	5.3.2.4 Commissioning with manual PID parameters
	5.3.2.5 Measuring the motor transition time

	6 Using PID_Temp
	6.1 Technology object PID_Temp
	6.2 Configuring PID_Temp
	6.2.1 Basic settings
	6.2.1.1 Introduction
	6.2.1.2 Controller type
	6.2.1.3 Setpoint
	6.2.1.4 Process value
	6.2.1.5 Heating and cooling output value
	6.2.1.6 Cascade

	6.2.2 Process value settings
	6.2.2.1 Process value limits
	6.2.2.2 Scale process value

	6.2.3 Output settings
	6.2.3.1 Basic settings output
	6.2.3.2 Output value limits and output value scaling

	6.2.4 Advanced settings
	6.2.4.1 Process value monitoring
	6.2.4.2 PWM limits
	6.2.4.3 PID parameters

	6.3 Commissioning PID_Temp
	6.3.1 Commissioning
	6.3.2 Pretuning
	6.3.3 Fine tuning
	6.3.4 "Manual" mode
	6.3.5 Substitute setpoint
	6.3.6 Cascade commissioning

	6.4 Cascade control with PID_Temp
	6.4.1 Introduction
	6.4.2 Program creation
	6.4.3 Configuration
	6.4.4 Commissioning
	6.4.5 Substitute setpoint
	6.4.6 Operating modes and fault response

	6.5 Multi-zone controlling with PID_Temp

	7 Using PID basic functions
	7.1 CONT_C
	7.1.1 Technology object CONT_C
	7.1.2 Configure controller difference CONT_C
	7.1.3 Configure the controller algorithm CONT_C
	7.1.4 Configure the output value CONT_C
	7.1.5 Programming a pulse controller
	7.1.6 Commissioning CONT_C

	7.2 CONT_S
	7.2.1 Technology object CONT_S
	7.2.2 Configure controller difference CONT_S
	7.2.3 Configuring control algorithm CONT_S
	7.2.4 Configure manipulated value CONT_S
	7.2.5 Commissioning CONT_S

	7.3 TCONT_CP
	7.3.1 Technology object TCONT_CP
	7.3.2 Configure TCONT_CP
	7.3.2.1 Controller difference
	7.3.2.2 Controlling algorithm
	7.3.2.3 Manipulated value continual controller
	7.3.2.4 Manipulated value pulse controller

	7.3.3 Commissioning TCONT_CP
	7.3.3.1 Optimization of TCONT_CP
	7.3.3.2 Requirements for an optimization
	7.3.3.3 Possibilities for optimization
	7.3.3.4 Tuning result
	7.3.3.5 Parallel tuning of controller channels
	7.3.3.6 Fault descriptions and corrective measures
	7.3.3.7 Performing pretuning
	7.3.3.8 Performing fine tuning
	7.3.3.9 Cancelling pretuning or fine tuning
	7.3.3.10 Manual fine-tuning in control mode
	7.3.3.11 Performing fine tuning manually

	7.4 TCONT_S
	7.4.1 Technology object TCONT_S
	7.4.2 Configure controller difference TCONT_S
	7.4.3 Configure controller algorithm TCONT_S
	7.4.4 Configure manipulated value TCONT_S
	7.4.5 Commissioning TCONT_S

	8 Instructions
	8.1 PID_Compact
	8.1.1 New features of PID_Compact
	8.1.2 Compatibility with CPU and FW
	8.1.3 CPU processing time and memory requirement PID_Compact V2.x
	8.1.4 PID_Compact V2
	8.1.4.1 Description of PID_Compact V2
	8.1.4.2 PID_Compact V2 mode of operation
	8.1.4.3 Input parameters of PID_Compact V2
	8.1.4.4 Output parameters of PID_Compact V2
	8.1.4.5 In/out parameters of PID_Compact V2
	8.1.4.6 Static tags of PID_Compact V2
	8.1.4.7 Changing the PID_Compact V2 interface
	8.1.4.8 Parameters State and Mode V2
	8.1.4.9 Parameter ErrorBits V2
	8.1.4.10 Tag ActivateRecoverMode V2
	8.1.4.11 Tag Warning V2

	8.1.5 PID_Compact V1
	8.1.5.1 Description of PID_Compact V1
	8.1.5.2 Input parameters of PID_Compact V1
	8.1.5.3 Output parameters of PID_Compact V1
	8.1.5.4 Static tags of PID_Compact V1
	8.1.5.5 Parameters State and sRet.i_Mode V1
	8.1.5.6 Parameter Error V1
	8.1.5.7 Parameter Reset V1
	8.1.5.8 Tag sd_warning V1
	8.1.5.9 Tag i_Event_SUT V1
	8.1.5.10 Tag i_Event_TIR V1

	8.2 PID_3Step
	8.2.1 New features of PID_3Step
	8.2.2 Compatibility with CPU and FW
	8.2.3 CPU processing time and memory requirement PID_3Step V2.x
	8.2.4 PID_3Step V2
	8.2.4.1 Description of PID_3Step V2
	8.2.4.2 Mode of operation of PID_3Step V2
	8.2.4.3 Changing the PID_3Step V2 interface
	8.2.4.4 Input parameters of PID_3Step V2
	8.2.4.5 Output parameters of PID_3Step V2
	8.2.4.6 In-out parameters of PID_3Step V2
	8.2.4.7 Static tags of PID_3Step V2
	8.2.4.8 Parameters State and Mode V2
	8.2.4.9 Parameter ErrorBits V2
	8.2.4.10 Tag ActivateRecoverMode V2
	8.2.4.11 Tag Warning V2

	8.2.5 PID_3Step V1
	8.2.5.1 Description PID_3Step V1
	8.2.5.2 Operating principle PID_3Step V1
	8.2.5.3 PID_3Step V1 input parameters
	8.2.5.4 PID_3Step V1 output parameters
	8.2.5.5 PID_3Step V1 static tags
	8.2.5.6 Parameter State and Retain.Mode V1
	8.2.5.7 Parameter ErrorBits V1
	8.2.5.8 Parameter Reset V1
	8.2.5.9 Tag ActivateRecoverMode V1
	8.2.5.10 Tag Warning V1
	8.2.5.11 Tag SUT.State V1
	8.2.5.12 Tag TIR.State V1

	8.3 PID_Temp
	8.3.1 Compatibility with CPU and FW
	8.3.2 CPU processing time and memory requirement PID_Temp V1
	8.3.3 PID_Temp
	8.3.3.1 Description of PID_Temp
	8.3.3.2 Functional description of PID_Temp
	8.3.3.3 Input parameters of PID_Temp
	8.3.3.4 Output parameters of PID_Temp
	8.3.3.5 PID_Temp in/out parameters
	8.3.3.6 PID_Temp static tags
	8.3.3.7 PID_Temp state and mode parameters
	8.3.3.8 PID_Temp ErrorBits parameter
	8.3.3.9 PID_Temp ActivateRecoverMode tag
	8.3.3.10 PID_Temp Warning tag
	8.3.3.11 PwmPeriode tag

	8.4 PID basic functions
	8.4.1 CONT_C
	8.4.1.1 Description CONT_C
	8.4.1.2 How CONT_C works
	8.4.1.3 CONT_C block diagram
	8.4.1.4 Input parameter CONT_C
	8.4.1.5 Output parameters CONT_C

	8.4.2 CONT_S
	8.4.2.1 Description CONT_S
	8.4.2.2 Mode of operation CONT_S
	8.4.2.3 Block diagram CONT_S
	8.4.2.4 Input parameters CONT_S
	8.4.2.5 Output parameters CONT_S

	8.4.3 PULSEGEN
	8.4.3.1 Description PULSEGEN
	8.4.3.2 Mode of operation PULSEGEN
	8.4.3.3 Mode of operation PULSEGEN
	8.4.3.4 Three-step control
	8.4.3.5 Two-step control
	8.4.3.6 Input parameters PULSEGEN
	8.4.3.7 Output parameter PULSEGEN

	8.4.4 TCONT_CP
	8.4.4.1 Description TCONT_CP
	8.4.4.2 Mode of operation TCONT_CP
	8.4.4.3 Operating principle of the pulse generator
	8.4.4.4 Block diagram TCONT_CP
	8.4.4.5 Input parameters TCONT_CP
	8.4.4.6 Output parameters TCONT_CP
	8.4.4.7 In/out parameters TCONT_CP
	8.4.4.8 Static variables TCONT_CP
	8.4.4.9 Parameter STATUS_H
	8.4.4.10 Parameters STATUS_D

	8.4.5 TCONT_S
	8.4.5.1 Description TCONT_S
	8.4.5.2 Mode of operation TCONT_S
	8.4.5.3 Block diagram TCONT_S
	8.4.5.4 Input paramters TCONT_S
	8.4.5.5 Output parameters TCONT_S
	8.4.5.6 In/out parameters TCONT_S
	8.4.5.7 Static variables TCONT_S

	8.4.6 Integrated system functions
	8.4.6.1 CONT_C_SF
	8.4.6.2 CONT_S_SF
	8.4.6.3 PULSEGEN_SF

	A Service & Support
	Index
	C
	P
	S
	T
	V

