SIEMENS	導入	1
	操作	2
SINUMERIK 840D sl	ShopMill による プログラミング	3
ShopMill	G コードによるプログラミング	4
操作/プログラミング	シミュレーション	5
	データ管理	6
	金型製造	7
	アラームとメッセージ	8
	例	9
適用	付録	Α
<i>コントロール</i> SINUMERIK 840D sl/840DE sl <i>ソフトウェア パージョン</i> SINUMERIK 840D sl/840DE sl 用 NCU システムソフトウェア 1.5 ShopMill 装備 7.5	索引	В

SINUMERIK® 資料

発行履歴

下記の版が現行版までに発行されています。

「備考」欄には、これまでに発行された版に付けられた文字が示されています。

「備考」欄に示されたステータスの意味:

A.... 新しい文書

B.... 新しい注文番号をもつ変更のないリプリント

C.... 新しい発行状態の改定バージョン

発行	注文番号	備考
10/1997	6FC5298-2AD10-0AP0	А
11/1998	6FC5298-2AD10-0AP1	С
03/1999	6FC5298-5AD10-0AP0	С
08/2000	6FC5298-5AD10-0AP1	С
12/2001	6FC5298-6AD10-0AP0	С
11/2002	6FC5298-6AD10-0AP1	С
11/2003	6FC5298-6AD10-0AP2	С
10/2004	6FC5298-6AD10-0AP3	С
08/2005	6FC5298-4AP10-0AA0	С
11/2006	6FC5398-4AP10-1TA0	С
01/2008	6FC5398-4AP10-2TA0	С

マーク

SIMATIC[®]、SIMATIC HMI[®]、SIMATIC NET[®]、SIROTEC[®]、SINUMERIK[®]、SIMODRIVE[®] は、シーメンス 株式会社の登録商標です。この文書内のその他の商標は、第三者によりその目的のために所有者の権利を侵害 する可能性もある商標でありえます。

 その他の情報は、以下のホームページから入手できます:
 この資料に書かれていない機能を制御盤で作動できることがあります。新納品およびサービスの 場合、この機能について請求する権利はありません。

 この資料の作成は、Word 2003 及び Designer V 7.1.で作成されました。 この資料、利用、内容通知の転送及び複写は、明文で権利を与えられない限り許可されません。 とな反行為には、損害賠償の義務が課せられます。(特に特許委任あるいはGM予登録の めの全権留保)
 この出版物の内容において、記載されたハード及びソフトウェアが合致するか点検されています。 しかしながら相違点も考えられるので、当社は完全なる一致について保証しません。この印刷物 内均指示は定期的に点検され、修正が必要な場合は、後続版に取り込まれます。改良につい でに提案には感謝いたします。

 ⑤ Siemens AG 2008
 でのismen AG 2008

6FC5398-4AP10 - 2TA0

シーメンス株式会社

前書き	F	
	SINUMERIK 文書	SINUMERIK 文書は、3 つに分けられています: ・ 一般文書 ・ ユーザー文書 ・ メーカ-/サービス資料
		毎月アップデートされた出版物の一覧を各言語でご覧になれます。 <u>http://www.siemens.com/motioncontrol</u> メニューポイント「サポート」→「技術資料」→「出版物一覧」の順に追って下さい。
		DOConCD、DOConWEB のインターネット版がご覧になれます。 <u>http://www.automation.siemens.com/doconweb</u>
		トレーニングおよびよくある質問に関しての情報がご覧になれます。 <u>http://www.siemens.com/motioncontrol</u> およびメニューポイントの「サポート」
	ターゲットグループ	この文書は、SINUMERIK 840D/810D 装備の立型マシニングセンターあるいは 汎用型フライス盤のユーザー向けです。
	有用	本出版物によりオペレーター制御および操作命令に習熟できるようになります。 故障の際に正しく反応し、適切な措置を取ることができるようになります。
	標準範囲	この文書では、ShopMill操作画面の機能について説明されています。機械メー カが補足あるいは変更した場合、機械メーカはこれを記録します。
		コントローラでは、本書で説明されていない機能を使用できる場合があります。し かし、新規提供時やサービスの場合、この機能に対する請求権はありません。
		同じくこの文書には、見通し上の問題から、あらゆる商品タイプの詳細情報が全 て含まれているわけではありません。また考えられる据付、操作および維持補修 のあらゆるケースが考慮されているわけではありません。

前書き

01/2008

技術サポート	ご質問の際は以下のホットラインまでお問い合わせ下さい:
	ヨーロッパおよびアフリカ
	電話: +49 180 5050-222
	ファックス:+49 180 5050-223
	インターネット: <u>http://www.siemens.com/automation/support-request</u>
	アメリカ
	電話: +1 423 262 2522
	ファックス:+1 423 262 2200
	Eメール: mailto:techsupport.sea@siemens.com
	アジアおよび太平洋地域
	電話: +86 1064 719 990
	ファックス:+86 1064 747 474
	Eメール: mailto:adsupport.asia@siemens.com
	テクノロジーホットライン
	電話: +49 (0) 2166 5506-115
	ホットラインは平日の8時から17時までお受けしています。
	技術的な助言のための国別の電話番号は、インターネット上で調べることができ
	ます: <u>http://www.siemens.com/automation/service&support</u>
手引書に関する質問	文書についてのご質問(示唆、修正)の際には、以下の番号/アドレスまでファック
	スまたは電子メールを送ってください:
	ファックス: +49 (0) 9131 98-63315
	Eメール: mailto:motioncontrol.docu@siemens.com
	ファックス番号は出版物巻末の返信シートを参照して下さい。
ホームページアドレス	http://www.siemens.com/sinumerik
欧州共同体 適合宣言	EMV ガイドラインに対する欧州共同体の適合宣言がご覧になれます。
	• インターネット
	<u>http://www.ad.siemens.de/csinfo</u> 製品注文番号 15257461
	A&D MC der Siemens AG の支社

尒

尒

孙

安全注意事項

この手引書には、個人の安全および物的損傷を避けるために注意しなければな らない指示が含まれています。個人の安全のための指示には、三角形の警告マ ークがついており、物的損傷に関する指示にはこのマークはついていません。危険 のレベルに応じて、低いものから順に警告指示が出ます。

危険

これは、適切な予防措置を講じない場合、死亡あるいは重度の人的損害が発 生**する**ことを意味しています。

警告

これは、適切な予防措置を講じない場合、死亡あるいは重度の人的損害が発 生する**可能性がある**ことを意味しています。

注意

この三角形の警告マークのある注意事項は、適切な予防措置を講じない場合、 軽度の人的損害が発生する可能性があることを意味しています。

注意

この警告指示(警告マークなし)は、適切な予防措置を講じない場合、物的損害が発生する可能性があることを意味しています。

注意

これは、しかるべき指示を遵守しない場合、望まない結果または望まない状態が 発生する可能性があることを意味しています。

複数の危険レベルが発生する場合、常に各最高レベルの警告指示が用いられ ます。警告指示内で三角形の警告マークにより人的損害が警告されている場 合、同じ警告指示内でさらに物的損害の警告が付け加えられます。

有資格者

付属の機器/装置は、この資料に従ってのみ設置および操作が許されます。機器 /装置の稼動および操作は、**有資格者**のみが行ってください。この資料中の安全 技術指示の意味での有資格者とは、機器、装置および電気回路を安全技術 の標準規格に従って始動、接地、記録する権利をもつ人物のことです。

⚠	規定通りの使用	次のことに注意して下さい: 警告 この機器は、カタログおよび技術説明書内で指定されたもの、シーメンス社推奨 のもの、または認可された機器とともに使用できます。製品の完璧で安全な操作 には、適切な輸送、保管、据付、取付および丁寧な操作、維持補修が前提に なります。
	資料の構成	この資料では、以下のピクトグラムにより記された情報ブロックが利用されます。
		機能
=?		バックグラウンド情報
.		操作手順
Ó		パラメータの説明
FI		追加の注意事項
		ソフトウェア-オプション
		記述された機能はソフトウェア・オプションです。つまり、該当機能は対応するオプ ションを取得した場合にのみコントローラで利用できます。
	機械メーカ	特定の環境で、機械メーカーによる追加または変更があった場合、以下のような 指示が行われます。
		これについては機械メーカーの情報に注意してください。
	参考文献	さらに詳しい参考文献がある場合、以下のように記載されます。 参考文献:

用語の説明	本文書で使われる	基本的な用語の意	味は以下の通りです。
	プログラム プログラムは、機械 対する一連の命令	での特定のワークの うです。	製作に影響を与える、CNC コントローラに
	輪郭 輪郭とは、一つは「 他方、これは個々 ともあります。	フークの周囲輪郭を の要素からワークの車	指します。 倫郭を定義するプログラムの一部を指すこ
	サイクル 例えば長方形ポケ れた加エプロセスな (サイクルは一部で	マットをフライス加工す を繰り返して実行する 機能(関数)と言われ	るサイクルは、ShopMill により予め設定さ るためのサブプログラムです。 いることもあります)
測定単位	この資料では、パラ による適切な単位	ラメータの単位が常に は以下の表から引用	メートル法で表示されています。インチ法 月できます。
	メートル法	インチ法	
	mm	in	
	mm/歯	in/歯	
	mm/分	in/分	
	mm/回転	in/回転	

ft/分

m/分

メモ用

目次

導入		1-17
1.1	ShopMill	1-18
1.1.1	運転順序	
1.2	ワークステーション	
1.2.1	座標系	
1.2.2	操作盤	
1.2.3	操作盤キー	
1.2.4	機械制御パネル	1-25
1.2.5	機械制御パネルの各要素	1-25
1.2.6	Mini-操作手動器	
1.3	操作画面	1-31
1.3.1	概要	
1.3.2	ソフトキーおよびボタンによる操作	1-34
1.3.3	プログラム・アスペクト	
1.3.4	パラメータの入力	
1.4	基礎	
1.4.1	平面表示	1-44
1.4.2	極座標	
1.4.3	絶対寸法	
1.4.4	インクレメンタル寸法	
1.4.5	計算機機能	
操作		2-47
2.1	電源のオン/オフ	2-49
2.2	基準点への移動	
2.2.1	統合型安全性での操作者による認証	2-51
2.3	軸の表示	2-52
2.4	運転モード	2-53
2.5	機械の設定	
2.5.1	測定単位(ミリメータ/インチ)の切替	2-54
2.5.2	座標系 (MKS/WKS) の切替	2-55
2.6	新しいポジション値の設定	
2.7	ワーク原点の測定	
2.7.1	エッジの測定	
2.7.2	コーナーの測定	2-67
2.7.3	ポケットおよび穿孔の測定	2-69

 $(\mathbf{0})$

2.7.4	ジャーナルの測定	2-75
2.7.5	平面の調整	2-82
2.7.6	原点測定後の修正	2-84
2.7.7	電子式計測プローブのキャリブレート	2-85
2.8	工具測定	2-87
2.8.1	工具の手動測定	2-87
2.8.2	不動点の調整	2-90
2.8.3	計測プローブによる工具測定	2-91
2.8.4	計測プローブの調整	2-93
2.9	手動動作	2-94
2.9.1	工具を選択し、主軸に交換して入れる	2-94
2.9.2	新しい工具をリストに記入し、主軸に交換して入れる	2-95
2.9.3	新しい工具のリストへの記入及びマガジンへのロード	2-96
2.9.4	手動による主軸の開始、停止および位置決め	2-96
2.9.5	軸の移動	2-99
2.9.6	軸の位置決め	2-101
2.9.7	旋回	2-101
2.9.8	正面削り	2-104
2.9.9	手動操作のための設定	2-105
2.10	MDA-作動	2-107
2.11	自動作動	2-108
2.11.1	「T、F、S」、「G 機能」と「補助機能」の表示間の切換え	2-109
2.11.2	加工処理のためのプログラムの選択	2-110
2.11.3	プログラム開始/停止/中止	2-111
2.11.4	プログラム中断	2-112
2.11.5	特定のプログラム箇所での処理の開始	2-113
2.11.6	プログラムスタートへの干渉	2-118
2.11.7	上書き保存	2-120
2.11.8	プログラムテスト	2-121
2.11.9	加工前の同時描写	2-122
2.11.10	加工中の同時描写	2-124
2.12	プログラムのスタートアップ	2-125
2.12.1	シングルブロック	2-125
2.12.2	現在のプログラム・ブロックの表示	2-126
2.12.3	プログラムの修正	2-127
2.13	作動時間	2-128
2.14	自動運転のための設定	2-130
2.14 2.14.1	自動運転のための設定 テストラン送りの確定	2-130

	2.15	工具と工具修正	2-132
	2.15.1	工具の新設	2-139
	2.15.2	工具あたり複数のバイトの作成	2-141
	2.15.3	工具名の変更	2-142
	2.15.4	姉妹工具のセットアップ	2-142
	2.15.5	手工具	2-142
	2.15.6	工具修正	2-143
	2.15.7	工具用の追加機能	2-146
	2.15.8	工具磨耗データの入力	2-147
	2.15.9	工具監視の起動	2-148
	2.15.10	マガジンリスト	2-150
	2.15.11	工具の消去	2-151
	2.15.12	工具タイプの変更	2-151
	2.15.13	マガジンへの工具のロードおよびアンロード	2-152
	2.15.14	工具の置換	2-154
	2.15.15	マガジンの位置決め	2-156
	2.15.16	工具の分類	2-156
	2.16	原点オフセット	2-157
	2.16.1	原点オフセットの決定	2-159
	2.16.2	原点オフセットリスト	2-160
	2.16.3	作動範囲で原点オフセットを選択/選択解除	2-162
	2.17	CNC-ISO-作動への切り替え	2-163
	2.18	ShopMill Open (PCU 50.3)	2-164
	2.19	リモート診断	2-164
S	hopMill	によるプログラミング	3-165
	3.1	プログラミングのための基礎	3-167
	3.2	プログラム構成	3-170
	3.3	作業ステッププログラム	3-171
	3.3.1	プログラムのセットアップ; 未加工材の定義	3-171
	3.3.2	新しいブロックのプログラミング	3-175
	3.3.3	プログラムブロックの変更	3-178
	3.3.4	プログラムエディタ	3-179
	3.3.5	個数の指定	3-182
	3.4	工具、修正値と主軸回転数のプログラミング	3-183
	3.5	輪郭のフライス加工	3-184
	3.5.1	輪郭の表示	3-187
	3.5.1 3.5.2	輪郭の表示 新しい輪郭の作成	3-187 3-189

 $(\mathbf{1})$

3.5.3	輪郭要素の作成	3-191
3.5.4	輪郭の変更	3-197
3.5.5	自由な輪郭プログラムのためのプログラミングコマンド	3-199
3.5.6	パス・フライス加工	3-203
3.5.7	輪郭ポケットの事前穴あけ	3-206
3.5.8	輪郭ポケットのフライス加工	3-209
3.5.9	余材の輪郭ポケットの一掃	3-211
3.5.10	輪郭ポケットの仕上げ削り	3-213
3.5.11	輪郭ポケットの面取り	3-216
3.5.12	輪郭ジャーナルのフライス加工 (粗削り)	3-217
3.5.13	余材の輪郭ジャーナルの一掃	3-218
3.5.14	輪郭ジャーナルの仕上げ削り	3-220
3.5.15	輪郭ジャーナルの面取り	3-221
3.6	直線または円形のパス移動	
3.6.1	直線	3-222
3.6.2	周知の中心点をもつ円	3-224
3.6.3	周知の半径をもつ円	3-225
3.6.4	らせん	3-226
3.6.5	極座標	3-227
3.6.6	直線極	3-228
3.6.7	円極	3-229
3.6.8	極座標のプログラミング例	3-230
3.7	穴あけ	
3.7.1	センタリング	3-231
3.7.2	穴あけとリーマ仕上げ	3-232
3.7.3	深ボーリング	3-233
3.7.4	旋盤によるくり抜き	3-235
3.7.5	タップ立て	3-236
3.7.6	ネジ切りフライス加工	3-238
3.7.7	穿孔ネジ切りフライス加工	3-242
3.7.8	任意の地点および位置構図での位置決め	3-244
3.7.9	任意の地点	3-245
3.7.10	直線の位置構図	3-249
3.7.11	グリッドの位置構図	3-250
3.7.12	フレームの位置構図	3-252
3.7.13	完全円の位置構図	3-253
3.7.14	部分円の位置構図	3-255
3.7.15	位置のフェードイン/フェードアウト	3-257
3.7.16	障害	3-258
3.7.17	位置の反復	3-260
0740		
3.7.18	穴あけ用のプログラミング例	

	3.8
	3.8.1
	3.8.2
	3.8.3
ナル	3.8.4
	3.8.5
	3.8.6
	3.8.7
	3.8.8
位置構図の利用3-289	3.8.9
	3.8.10
	3.9
	3.9.1
	3.9.2
D調整3-300	3.9.3
	3.10
の呼び出し3-301	3.10.1
ックの反復	3.10.2
凋整の変更	3.10.3
の呼び出し3-305	3.10.4
Ξ義3-306	3.10.5
ーの変換3-309	3.10.6
	3.10.7
	3.10.8
プログラムの G コード挿入	3.11
ング 4-323	G ⊐− ド(こ。
ラムの作成	4.1
ういの加工処理 4-327	42
	4.0
ý 4-329	4.3
4-333	4.4
\$	4.5
5-335	シミュレーシ
	5.1
・ションでのプログラムの開始/中断5-337	5.2
写	5.3
E 5.040	54

	5.5	断面の拡大	5-341
	5.6	立体描写	5-342
	5.6.1	断面の位置の変更	5-343
	5.6.2	ワークの切断	5-344
	5.7	金型製造のためのクイック表示の開始/中断	5-345
	5.8	クイック表示での描写	5-346
	5.9	ワークグラフィックの調整およびシフト	5-347
	5.10	間隔の測定	5-348
	5.11	検索機能	5-349
	5.12	パーツプログラムブロックの加工	5-350
	5.12.1	G ブロックの選択	5-350
	5.12.2	G コードプログラムの加工処理	5-351
デ	ータ管理		6-353
デ	ータ管理 6.1	ShopMillによるプログラム管理	6-353 6-354
デ	一夕管理 6.1 6.2	ShopMill によるプログラム管理 NCU (HMI Embedded sl)での ShopMill によるプログラム管理	6-353 6-354 6-355
デ	一夕管理 6.1 6.2 6.2.1	ShopMill によるプログラム管理 NCU (HMI Embedded sI)での ShopMill によるプログラム管理 プログラムを開く	6-353 6-354 6-355 6-357
デ	一夕管理 6.1 6.2 6.2.1 6.2.2	ShopMill によるプログラム管理 NCU (HMI Embedded sl)での ShopMill によるプログラム管理 プログラムを開く プログラムの加工処理	6-353 6-354 6-355 6-357 6-358
デ	一夕管理 6.1 6.2 6.2.1 6.2.2 6.2.3	ShopMillによるプログラム管理 NCU (HMI Embedded sl)での ShopMillによるプログラム管理 プログラムを開く プログラムの加工処理 複合固定	6-353 6-354 6-355 6-357 6-358 6-358
デ	一夕管理 6.1 6.2 6.2.1 6.2.2 6.2.3 6.2.3	ShopMill によるプログラム管理 NCU (HMI Embedded sl)での ShopMill によるプログラム管理 プログラムを開く プログラムの加工処理 複合固定 ネットワーク・ドライブの G コードプログラム処理	6-353 6-354 6-355 6-357 6-358 6-358 6-358
デ	一夕管理 6.1 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	ShopMill によるプログラム管理 NCU (HMI Embedded sl)での ShopMill によるプログラム管理 プログラムを開く プログラムの加工処理 複合固定 ネットワーク・ドライブの G コードプログラム処理 ディレクトリ/プログラムの新設	6-353 6-354 6-355 6-357 6-358 6-358 6-361 6-362
デ	一夕管理 6.1 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6	ShopMill によるプログラム管理 NCU (HMI Embedded sl)での ShopMill によるプログラム管理 プログラムを開く プログラムの加工処理 複合固定 ネットワーク・ドライブの G コードプログラム処理 ディレクトリ/プログラムの新設 複数のプログラムのマーキング	6-353 6-354 6-355 6-358 6-358 6-361 6-362 6-363
デ	一夕管理 6.1 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7	ShopMill によるプログラム管理 NCU (HMI Embedded sl)での ShopMill によるプログラム管理 プログラムを開く プログラムの加工処理 複合固定 ネットワーク・ドライブの G コードプログラム処理 ディレクトリ/プログラムの新設 複数のプログラムのマーキング ディレクトリ/プログラムのコピー/リネーム	6-353 6-354 6-355 6-357 6-358 6-358 6-361 6-362 6-363 6-364
デ	一夕管理 6.1 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8	ShopMill によるプログラム管理 NCU (HMI Embedded sl)での ShopMill によるプログラム管理 プログラムを開く プログラムの加工処理 複合固定	6-353 6-354 6-355 6-358 6-358 6-361 6-362 6-363 6-364 6-365
デ	一夕管理 6.1 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9	ShopMill によるプログラム管理 NCU (HMI Embedded sl)での ShopMill によるプログラム管理 プログラムを開く プログラムの加工処理 複合固定	6-353 6-354 6-355 6-358 6-358 6-361 6-362 6-363 6-364 6-365 6-365

ハードディスクまたはフロッピーディスク/ネットワーク・ドライブからの G コードプログラムの処理.6-376

複数のプログラムのマーキング......6-379 ディレクトリ/プログラムのコピー/リネーム/シフト......6-380

ディレクトリ/プログラムの削除6-382

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6 6.3.7

6.3.8

6.3.9

6.3.10

金型製造		7-385
7.1	前提条件	7-386
7.2	機械の取付	7-388
7.2.1	工具 測定	7-388
7.3	プログラムの作成	
7.3.1	プログラムの作成	
7.3.2	工具のプログラミング	
7.3.3	「ハイスピード設定」サイクルのプログラミング	
7.3.4	サブプログラムの呼び出し	7-390
7.4	プログラムの処理	
7.4.1	プログラム処理の選択	
7.4.2	特定のプログラム箇所での処理の開始	7-394
7.5	例	7-395
アラームとメ	ッセージ	8-399
8.1	メッセージ	
8.2	<u> </u>	
8.3	ユーザーデータ	
8.4	バージョン表示	
例		9-405
9.1	例 1:矩形-/円ポケットと円グルービングによる加工	
9.2	例 2:輪郭のシフトとミラーリング	
9.3	例 3:シリンダーカバーの変換	
9.4	例 4:グルーブ側面修正	
9.5	例 5:旋回	
付録		A-433
А	略語	A-434
В	索引	I-437

01/2008

メモ用

導入

1.1	Snopivilii
1.1.1	運転順序1-19
1.2	ワークステーション
1.2.1	座標系1-21
1.2.2	操作盤1-22
1.2.3	操作盤キー1-23
1.2.4	機械制御パネル1-25
1.2.5	機械制御パネルの各要素1-25
1.2.6	Mini-操作手動器1-29
1.3	操作画面1-31
1.3.1	概要1-31
1.3.2	ソフトキーおよびボタンによる操作1-34
1.3.3	プログラム・アスペクト
1.3.4	パラメータの入力1-42
1.4	基礎1-44
1.4.1	平面表示1-44
1.4.2	極座標
1.4.3	絶対寸法1-45
1.4.4	インクレメンタル寸法1-45
1.4.5	計算機機能1-46

1.1 ShopMill

		ShopTurnは、機械の快適な操作およびワークの容易なプログラミングを可能に する、フライス機械のための操作/プログラミング・ソフトウェアです。
		以下にソフトウェアの特徴を記載します。
	機械の取付	特殊な計測サイクルによって、工具およびワークの計測が容易になります。
	プログラムの作成	 3つのプログラムのバリエーションが選択できます。 CAD/CAM-システムより取込む金型製造用のGコードプログラム 機械に直接作成するGコードプログラム プログラミングの際には、全テクノロジーサイクルが利用できます。 機械に直接作成する作業プロセスのプログラム(ソフトウェア・オプション) ワークのプログラミングは、グラフィック支援で、Cプログラムの知識が不要なた めに苦労なしで行うことができます。 ShopMillは見通しのいい工作図でプログラムを示し、個々のサイクルおよび 輪郭要素をダイナミックなグラフィックスで表示します。
		 プログラムのバージョンに関わらず、以下の機能によりプログラミングおよび加工が 簡単になります。 高性能輪郭計算機により任意の輪郭が入力できます。 材料算の認識が可能な輪郭ポケットサイクルによって、不要な処理を省略 することができます(ソフトウェアオプション)。 機械キネマティクスに依存せず、旋回サイクルにより多角面加工や傾斜面で の加工が可能です。
	プログラムの処理	プログラムの実行プロセスをディスプレイに立体的に表示させることができます。 このようにして、容易にプログラミングの結果をチェックしたり、機械でのワークの加 エを快適に追跡することができます(ソフトウェア・オプション)。
		作業プロセスのプログラムの加工処理には、書き込みおよび読み込みの権利が 必要です。
Ť		作業プロセスのプログラムの処理は、ソフトウェア-オプションです。

 工具の管理
 ShopMillはご使用の工具データを保存します。このとき、ソフトウェアは、マガジンに存在しない工具のデータを管理することもできます。

 プログラムの管理
 類似のプログラムは新たに作成する必要はなく、コピーと修正だけで容易に作成することができます。

 ShopMillにより、工具の順序が最適化され、同様または異なる(ソフトウェア・オプション)ワークの複数着脱が実現します。
 ネットワーク接続とフロッピー・ディスク・ドライブにより、外部プログラムにアクセスすることが可能です(ソフトウェア・オプション)。

1.1.1 運転順序

本マニュアルでは、以下の2つの典型的な作業状況を区別しています。

- ワークを自動的に加工するためにプログラムを作成したい場合。
- ワークの加工のためのプログラムを最初に作成する場合。

プログラムの処理 プログラムを実行する前に、まず機械のセットアップを行う必要があります。このため に、ShopMillによってサポートされる以下の手順を実行しなければなりません。 (「操作」の章を参照):

- 機械の基準点を始動する (インクリメンタル・パス計測システムのときのみ)
- 工具を計測する
- ワーク原点を確定する
- 場合によっては、他の原点オフセットを入力する
 機械を完全にセットアップしたら、プログラムを選択し、自動的に実行させることができます(「自動運転」の章を参照)。

1	^{導入} 1.2 ワークステーション	01/2008
	プログラムの作成	新しいプログラムを作成する場合、作業プロセスまたは G コードプログラムのいず れを作成するかを選択することができます(「ShopMill によるプログラム」もしくは 「G コードによるプログラム」を参照)。 作業プロセスのプログラムの作成にあたっては、ShopMill はすべての関連パラメー タを入力するように要求します。プログラムの進行はそれぞれ線図で表示されま す。さらに、プログラミング時には加工段階の各パラメータを説明するヘルプ・イメー ジによってサポートされます。 もちろん、G コード命令も作業プロセスのプログラムに挿入することができます。 これとは逆に、G コード・プログラムはすべての G コード・プログラムで作成する必 要があります。
1.2	ワークステーション	
		ShopMill ワークステーションには、CNC/ポジショニング・コントローラ付きのフライ
		ス機械以外に、操作パネルおよび機械制御パネルも含まれます。

制御盤込みのフライス盤		操作	パネル	
	制御盤込みのフライス盤	機械制	御盤	

ワークステーションの略図

7ライス盤 ShopMillを立型および汎用型フライス盤に最高 10 本の軸(回転軸および主軸 を含む)を付けて装備できます。10 本軸のうち、同時に 3 本のリニア、2 本の回 転軸および 1 本の主軸を表示させることができます。 作業プロセスのおよび G コードプログラムは、2D-から 2½D-加工にまで調整され

1F 果クロビスのあよび G コードクロウクムは、2D-から 2/2D-加工によて調整され ており、3D-加工用には CAD/CAM-システムの G コードプログラムを利用して下 さい。

コントロール ShopMill は、NCU (HMI Embedded sl) および PCU 50.3 (HMI Advanced)のバージョンの ShopMill により、CNC コントロール SINUMERIK 840D sl で作動します。

機械制御盤 機械制御パネルによって、フライス盤を操作することができます。

導入 1.2 ワークステーション

1.2.1 座標系

フライス盤でのワークの加工では、原則的に直角座標系を前提にします。これは、機械軸に平行な座標軸 X, Y, Zから成り立っています。

座標系および機械零位の位置は機種に依存します。

座標系、機械零位およびワーク原点の位置(例)

軸方向は、いわゆる「右-手-ルール」 (DIN 66217 準拠)に導かれます。 機械の前に立ち、右手の中指を主主軸の進行方向に指差します。その後の表 示:

- 親指の方向 +X
- 人差し指の方向 +Y
- 中指の方向 +Z

右-手-ルール

1.2.2 操作盤

	PCUs 用に、選択で以下の操作盤の一つを投入できます:
	OP 010 OP 010C OP 010S OP 012 OP 015 OP 015A OP 015AT TP 015AT
	操作パネル OP 010 に基づき、制御装置および加工機械の操作に利用できる コンポーネントが、実例を使って描写されます。
	ボタンについては、次の章で説明します。
操作パネル OP 010	

1.2 ワークステーション

- 1 10 インチ・ディスプレイ
- 2 ディスプレイ・ボタン
- 3 水平ソフトキー・バー
- 4 垂直ソフトキー・バー
- 5 アルファベット/数字ブロック
 - 修正-/制御キー及び入力キー付きカーソルブロック
- 6 USB-インターフェース

1.2.3 操作盤キー

Alarm Cancel このシンボルの付いたアラームを消去します。

Channel ShopMillに重要ではありません。

Help 工作図とプログラミング・グラフィック間及びプログラミング・グラフィック装備のパラメ ータ・マスクとヘルプ図付きパラメータ・マスク間

Next Window ShopMill に重要ではありません。

Page Up もしくは Page Down ディレクトリまたは工作図で上下にスクロールします。

Cursor

各種の欄の間または行間を移動します。 右向きカーソルでディレクトリまたはプログラムを開きます。 左向きカーソルで上位のディレクトリ・レベルに移動します。

Select

複数の規定の選択肢から選択を行います。 キーはソフトキー「代替」に相当します。

End

カーソルをパラメータ・マスクにある直前の入力欄に移動します。

Backspace

- 入力欄内の値をクリアします。
- 挿入モードで、カーソルの直前にある文字をクリアします。

Tab

ShopMillに重要ではありません。

Shift

キーに2文字が割り当てられているとき、Shiftキーを押すと、キーに刻印された 上の文字が出力されます。

Ctrl

工作図およびGコード・エディタで、以下のキーの組み合わせで移動します。

- Ctrl + Pos1:最初の位置に移動します。
- Ctrl + End:最後の位置に移動します。

Alt

ShopMillに重要ではありません。

Del - OP 031 ではなく

- パラメータ欄内の値をクリアします。
- 挿入モードでは、カーソルの位置する文字をクリアします。

Insert

挿入モードまたは電卓に切り換えます。

Input

- 入力欄での値の入力を終了します。
- ディレクトリあるいはプログラムを開きます。

Alarm - OP 010と OP 010C のみ 操作範囲「メッセージ/アラーム」を呼び出します。 このキーはソフトキー「アラームリスト」に相当します。

Program - OP 010と OP 010C のみ 操作範囲「プログラム」を選択します。 キーはソフトキー「プログラム編集」に相当します。

Offset - OP 010と OP 010C のみ 操作範囲「工具/原点オフセット」を呼び出します。 このキーはソフトキー「工具原点」に相当します。Nullp.".

Program Manager - OP 010と OP 010C のみ 操作範囲「プログラム・マネージャー」を呼び出します。 このキーはソフトキー「Program」に相当します。

1.2.4 機械制御パネル

フライス盤には、Siemensの機械制御パネルまたは機械メーカーの専用機械制 御パネルが装備されていることがあります。

機械制御パネルを介して、軸移動やワーク加工の開始など、旋盤機械に対する 操作を行うことができます。

その時点で有効な機能には、機械制御パネル上の対応キーの LED が点灯しています。

1.2.5 機械制御パネルの各要素

緊急停止キー

人的な危険性や機械またはワークの物的な危険性が生じた場合などの緊急時 に、このキーを押します。

すべての駆動部が最大限の制動トルクで停止します。

緊急停止キーの操作によるその他の反応については、機械メーカーの情報をご 参照ください。

Reset (リセット)

- 現在のプログラムの処理を中止します。
 CNC コントローラは機械との同期を維持します。基本位置に移行し、新たな プログラム実行に備えています。
- アラームを取り消します。
- Jog

機械モード「手動」を選択します。

Teach In

ShopMillに重要ではありません。

MDA

運転モード MDA を選択します。

Auto

機械モード「Auto」を選択します。

Single Block

プログラムを1行ごとに実行します(単一行)。

Repos 再位置決め、輪郭を再始動します。

Ref Point 基準点を始動します。

Inc Var (可変インクリメンタル・フィード) 可変増分でインクリメンタル・フィードを行います。

Inc (インクリメンタル・フィード) 下記の指定の増分でインクリメンタル・フィードを行います。 1, ..., 10000 インクリメント

インクリメント値の評価は機械データ 11330 に依存します。

これについては、機械メーカーの情報に注意してください。

Cycle Start

Cycle Start プログラムの実行を開始します。

Cycle Stop プログラムの実行を停止します。

軸ボタン

軸選択

方向キー

軸を負あるいは正の方向に移動します。

Rapid

軸を早送り(最速)で移動させます。

WCS MCS

工具座標系 (WKS) と機械座標系 (MKS) との間で切り換えます。

W Feed Stop

送り/早送り補正

プログラミングされた送りまたは早送りを増減させます。 プログラミングされた送りまたは早送りは 100%に相当し、0%から 120%の範囲 で調整できます。ただし、早送りは最高 100%までです。 新たに設定された送りは絶対値お にびパーセント値としてディスプレイの送り状況

道λ

1.2 ワークステーション

新たに設定された送りは絶対値およびパーセント値としてディスプレイの送り状況 表示に示されます。

Feed Stop

実行中のプログラムの処理を中止し、軸駆動を停止させます。

Feed Start

現在行でプログラムの実行を継続し、送りをプログラムで指定された値まで高めます。

主軸補正

プログラミングされた主軸回転数を増減させます。 プログラミングされた主軸回転数は 100% に相当し、50 から 120% までの範囲 で調整できます。新たに設定された主軸回転数は、絶対値およびパーセント値と してディスプレイの主軸状況表示に示されます。

Spindle Dec.- 機械制御パネル OP032S のみ

プログラミングされた主軸回転数を減少させます。 Spindle Inc. – 機械制御パネル OP032S のみ プログラミングされた主軸回転数を増加させます。 100%– 機械制御パネル OP032S のみ プログラムされた主軸回転速度を再び調整

Spindle Stop 主軸を停止させます。 Spindle Start 主軸を始動させます。 Spindle Left - 機械制御盤 OP032S のみ 主軸開始(回転方向左) Spindle Right - 機械制御盤 OP032S のみ

主軸開始(回転方向右)

 \bigcirc

 $\left(\widehat{} \right)$

 $\langle \Sigma \rangle$

<u></u>

コードスイッチ コードスイッチを介して、各種のアクセス権を設定することができます。コードスイッ チには4つの位置があり、これは保護段階4から7に相当します。 機械データを介して、各種の保護段階のプログラム、データおよび機能へのアクセ スは制限されます。 これについては機械メーカーの情報に注意してください。 コードスイッチには、指定された位置に引き出すことができる、以下の3色のキー が含まれます。 位置0 最も低い キーなし トークン信号 保護段階7 位置1 キー1 黒色 保護段階6 より高い トークン信号 位置 2 キー1緑色 保護段階5 位置3 最も高い キー1赤色 トークン信号 保護段階4

アクセス権を切り換えるためにキー位置を変更しても、これはユーザー・インタフェ ースにすぐには反映されません。まず何らかの動作を行う必要があります (例:ディ レクトリを開閉する)。

PLC が停止状態にあると(機械制御盤の LED が点滅)、ShopMill は、起動の際にコードスイッチの位置を読み取ります。

その他の保護段階0から3については、機械メーカーによってパスワードが設定されている場合があります。設定されたキーワードでは、ShopMillはコードスイッチ 位置を査定しません。

これについては機械メーカーの情報に注意してください。

1.2.6 Mini-操作手動器

- A 緊急停止キー、2 チャネル
- B 同意キー、2 チャネル
- C 5軸及び中立位置用の軸選択スイッチ
- D 機能キー F1, F2, F3
- E 移動キー方向+,-
- F 移動キー又は手動ハンドルによる高速移動用 早送りキー
- G 手動ハンドル
- H 金属部分への固定のための付着マグネット
- I 接続管 1,5 m ...3.5 m

操作要素

非常停止ポタン

非常停止ボタンは、緊急事態時に押す必要があります。

- 1. 人間が危険状態にある時
- 2. 機械あるいは加工品が損傷される危険がある時

同意キー

同意キーは 2-位置キーとして作られています。 作動移動を解除するために、 押す 必要があります。

^{導入} <u>1.2 ワークステーション</u>

01/2008

軸選択スイッチ

軸選択スイッチにより、5 軸まで選択できます。

機能キー

機能キーにより、機械特殊機能が解除できます。

移動キー

移動キー +, - により、軸選択スイッチにより選択された軸への走行移動が解除できます。

手動ハンドル

手動ハンドルにより、軸選択スイッチにより選択された軸への走行移動が解除できます。手動ハンドルは、100I/Uで2つの軌道シグナルを出します。

早送りキー

早送りキーにより、軸選択スイッチにより選択された軸の走行移動速度を上げる ことができます。早送りキーは、+ / - キーの移動コマンドと手動ハンドルで効果が あります。

^{導入} 1.3 操作画面

1.3 操作画面

1.3.1 概要

画面の各部

ユーザー・インタフェース

- 1 現在作動中のモード/操作範囲、サブ操作モード
- 2 アラームおよびメッセージ行
- 3 プログラム名
- 4 プログラム・パス
- 5 チャンネル状態およびプログラム・オーバライド
- 6 チャンネル・ドライブ・メッセージ
- 7 軸の位置表示
- 8 以下の表示
 - アクティブな工具 T
 - 現在の送りF
 - Spindel S
 - パーセンテージでの主軸のフル稼働率
- 9 作動中の原点オフセットおよび回転の表示
- 10 ワーク・ウィンドウ
- 11 追加説明のためのダイアローグ行
- 12 水平ソフトキー・バー
- 13 垂直ソフトキー・バー
- 14 ソフトキー・ボタン
- 15 ディスプレイ・ボタン

|--|

サブ操作モード	REF: REPOS: INC1INC10000: INC_VAR:	基準点への到達 後退位置付け 固定インクリメント バリエーションのあるインクリメント
チャネル状態	レゼット シアクティブ シアケティブ 中断	
プログラム影響	SKP: Gコード行のマ DRY: テスト送り !ROV:送りオーバライ SBL1:個別行 (機械 SBL2:ShopMillでの SBL3:ファイン個別行 M01: プログラムされた DRF: DRF-オフセット PRT: プログラムテス	?スキング ドのみ (送りおよび早送りオーバライドではない) に対する機能を起動する各行後で停止) ?選択は不可能です(ブロック毎に停止) ・ (サイクル内でも各行後に停止) と停止
チャンネル・ドライブ・メッセージ	 ・ ・ ・	要です。 「要です。 の停止時間が表示されます。秒単位または主軸の回転で
	表示されます。	
軸の位置表示	位置表示での実値表 の位置がワーク原点に	そ示は、ENS 座標系に関連しています。現在有効な工具 こ相対して表示されます。
	軸表示のためのシンポ ┽キチーリニア軸 固定 【】回転軸 固定	ドル
送り状態	₩ ^{送りは起動され}	ていません

^{導入} **1.3 操作画面** 主軸状態

主軸は起動されていません

主軸は停止状態です

■ 主軸は右回りに回転しています

1 主軸は左に回転

主軸のパーセンテージでのフル稼働率の表示は、100%になることがあります。 これについては機械メーカーの情報に注意してください。. シンボルの色には、次の意味があります。 赤:機械は停止状態です 緑:機械は動作中です 黄色:操作待ちです 灰色:その他

Machine

作動中の運転モード(手動、MDA またはオート)を呼び出します。

戻り ShopMillに重要ではありません。

拡張 水平ソフトキー・バーを変更します。

メニュー選択

基本メニューを呼び出します:

プログラム・パス (4) の代わりに、機械メーカーが定義したシンボルが表示されるこ とがあります。この場合、プログラム・パスはプログラム名 (3) に示されます。 これについては機械メーカーの情報に注意してください。

1.3.2 ソフトキーおよびボタンによる操作

MENU SELECT ShopMillの操作画面は、8つの水平及び8つの垂直ソフトキーを持つ異なる面から成り立ちます。ソフトキーは、ソフトキーの隣にあるボタンによって操作します。 ソフトキーによって、新しいマスクが表示されます。

ShopMill は 3 つのモード (機械手動、MDA および機械自動) と、4 つの操作 範囲 (プログラム・マネージャ、プログラム・メッセージ/アラームおよび工具/原点 オフセット) を区別しています。

これに加え、操作パネル上のボタンによっても操作範囲を呼び出すことができます。

運転モードは、いつでも機械制御パネル上のボタンによって直接呼び出すことができます。

基本メニューのソフトキー「機械」を押すと、現在作動中のモードのマスクが表示 されます。

他の運転モードまたは他の操作範囲を選択すると、水平ならびに垂直ソフトキ ー・バーが同時に切り換わります。

運転モード 機械 手動

運転モード内または操作範囲内で水平ソフトキーを押すと、垂直ソフトキー・バー だけが切り換わります。

運転モード 機械 手動

手動運転モード内の機能
プログラム

オフ

テスト

操作画面上のダイアローグ行の右にシンボル D が表示されている場合、操作 範囲内で水平ソフトキー・バーを変更することができます。このためにボタン「拡 張」を押します。ボタン「拡張」をもう一度押すと、元の水平ソフトキー・バーが再 び表示されます。 **戻**る 運転モードまたは操作範囲内でソフトキー「戻る」によって下位のマスクに再び移 動することができます。 ソフトキー「中断」によって、入力した値を確定せずにマスクを終了し、上位のマ 大 スクに戻ることができます。 必要なすべてのパラメータをパラメータ・マスクに入力すると、ソフトキー「確定」に ✓ 確定 よってマスクを終了し、保存することができます。 ソフトキー「OK」によって、プログラムの名前変更または削除などの操作を素早く DK 行うことができます。 一部の機能をソフトキーによって起動すると、ソフトキーは黒に反転表示されま プログラムテスト オン す。

機能を終了するためには、もう一度ソフトキーを押します。ソフトキーは灰色の状態に戻ります。ソフトキーのバックが再びグレーになります。

_{導入} <u>1.3 操作画面</u>

1.3.3 プログラム・アスペクト

プログラム・マネージャ

作業プロセスのプログラムをさまざまなアスペクトで示すことができます。

プログラム・マネージャでは、すべてのプログラムを管理します。その他、ここでワーク 加工のためのプログラムを選択することができます。

ディ	ィレクトリ					
	名前	タイプ ロー	-ド サイズ	日付/時間		to T bu IB
ľ	CMM_MDA	MPF	X 15	04.08.2004	07:41	加工処理
ľ	CMM_SINGLE	MPF	X 51	04.08.2004	10:26	
ß	INPUT_DATA_MM	MPF	X 445	11.08.2004	16:53	新規
B	LOAD1	MPF	x ø	04.08.2004	07:41	
Ð	OSTORE1	MPF	x Ø	05.08.2004	10:50	リネーム
Đ	STARTUP_LOG	MPF	X 21	12.08.2004	08:02	
						マーキング
						⊐ピー
						挿入
						切り取り
空きれ	容量	ハードディスク	: 4.0 G/ነገት	NC: 21	164868	その他
			SB ント			

*プログラム・マネージ*ャ

プログラム・マネージャはソフトキー「プログラム」またはキー「Program Manager」で選択します。

ディレクトリ内では、ボタン「上向きカーソル」および「下向きカーソル」によって移動します。

ボタン「右向きカーソル」によってディレクトリを開きます。

ボタン「左向きカーソル」によって、上位のディレクトリに戻ります。

ボタン「右向きカーソル」または「Input」によって、プログラムの工作図を開きます。

工作図

工作図によって、プログラムの個々の処理段階に関する一覧が得られます。

プロ	げラ	4			
SHO	PMIL	L			丁目
Р	N5	SHOPMILL		\Box	
<u> - X</u>	N10	縦グルーブ	∇	T=12 F0.1/Z S600U Z1=5ink W10 L22	
Ф-	N15	001: ピッチ完全円		Z0=0 X0=70 Y0=70 R32 N6	直線
Sĭ	N2Ø	円グルーブ	∇	T=フライス機6 F300/min S400U X0=70 Y0=70	
Õ	N25	円ポケット	V	T=14 F0.2/Z S100U X0=70 Y0=70 Z0=0 ø30	日 中心点
<u> </u>	N30	矩形ポケット	V	T=フライス機16 F0.2/Z S400U X0=130 Y0=133	1.0 %
END	N35	プログラム終了			<u>ب</u>
					半径
					SIL
					らせん
					極線
					機械機能
				i>	
V	直	^泉 占 穴あけ 占	フライン 加工	A 輪郭 フライス加工 各種 シミュレー ション	▶□_加工処理
2			//		

工作図

(i) HELP 工作図では、ボタン「上向きカーソル」および「下向きカーソル」によってプログラ ム行間を移動します。

ボタン「Help」によって、工作図とプログラミング・グラフィックス間で切り換えること ができます。

プログラミング・グラフィックス

プログラミング・グラフィックは、ワークを監視するダイナミックな線グラフィックを表示します。工作図にマークされたプログラム行はプログラミング・グラフィックスに色付きで 強調されます。

プログラミング・グラフィックス

ボタン「右向きカーソル」によって、エ作図でプログラム行を開くことができます。そ れぞれ対応するパラメータ・マスクがプログラミング・グラフィックス付きで表示されま す。 パラメータ・マスクのプログラミング・グラフィックスは現在の処理段階の輪郭を線図 プログラミング・グラフィックス 付きのパラメータ・マスク としてパラメータとともに示しています。 プログラム SHOPMILL 工具名 縦グルーブ Р ث т 12 D1 0.100 mm/歯 600 U/min F 工具 s SJ 中心 Δ O 加工処理: 縦グルーブ 10 位置構図 Ő END й 10.000 22.000 0.000 ° ₩ L αØ Z1 DXY DZ 5.000 ink 0.500 mm 0.500 -10 UXY 0.100 mm 0.100 沈降 FZ 中心 × 中断 Ľ∍x -10 'n 10 0.100 mm/歯 ✓ 確定 i >· 直線 上 穴あけ 上 2512 上 75代和 ■ ▶ 加工処理 シミュレ-V 各種 プログラミング・グラフィックス付きのパラメータ・マスク

í

HELP

パラメータ・マスク内で、カーソル・ボタンを使って入力欄間を移動することができます。

ボタン「Help」によって、プログラミング・グラフィックスとヘルプ・イメージとの間で切り 換えることができます。

赤の矢印 = 工具が早送りで移動中

緑の矢印 = 工具が加工送り中

1.3.4 パラメータの入力

機械のセットアップ時およびプログラミング時には、背景が白のフィールドに各種パ ラメータを入力する必要があります。

入力欄がグレーのパラメータは、ShopMill により自動的に算出されます。

1.4 基礎

1.4.1 平面表示

それぞれ二つの座標軸が、一面に固定されています。三番目の座標軸(工具軸) が、この平面に垂直に立っており、工具の送達方向を決定します(例えば 2½ D-加工用)。

プログラミングの際には、工具修正値が 正しく清算されるように、どの平面を加 工するか制御装置に知らせる必要があ ります。同様に平面は、円プログラミング 用に、また極座標で重要です。

加工平面は以下のように決められています:

平面	工具軸
X/Y	Z
Z/X	Y
Y/Z	Х

1.4.2 極座標

加工図面が直角に記入されている時には、直角座標系が適しています。円弧あ るいは角表示のワークでは、極座標で位置を決定する方が有意義です。これ は、直線あるいは円をプログラミングする時に可能です(「簡単な軌道移動のプロ グラミング」の章を参照)。

極座標の原点は、「極」にあります。

例:

点 P1とP2は、極に関して以下のよう に表示されます。 P1:半径 =100 + 角度 =30° P2:半径 = 60 + 角度 =75°

1.4.3 絶対寸法

絶対寸法では、全ての位置表示は常にその時に有効な原点に関連しています。 これは、工具移動を考慮して

絶対寸法の表示が

工具が移動すべき位置を表していることを意味しています。

例:

絶対寸法内の点 P1 から P3 までの 位置表示が、原点に関係しています。 P1 :X20 Y35 P2 :X50 Y60 P3 :X70 Y20

1.4.4 インクレメンタル寸法

寸法が原点ではなく、その他のワーク点に関連する加工表示では、インクレメンタ ル寸法の入力が可能です(連鎖寸法)。

インクレメンタル寸法の表示では、位置表示は、事前にプログラムされた地点に 関連しています。

例:

連鎖寸法内の点 P1 から P3 までの位 置表示: P1:X20 Y35 ;(原点に関連) P2:X30 Y20 ;(P1 に関連) P3:X20 Y-35 ;(P2 に関連)

01/2008

1.4.5 計算機機能

前提条件

機能

カーソルがパラメータ欄にあります。

「Insert」キーで

又は

イコール・キーで

電卓モードに切り替えます。

このキーを押し、引き続き基本の計算記号 (+, -, *, /)を入力した後、 入力値が、前の数値により清算されます。

例:

工具用に、工具摩耗が+0.1の長さLで計算 されます。

- カーソルを、適切なパラメータ欄に置きます。
- イコールキーでパラメータ欄を開きます
- そこにある数値に、新たな摩耗値を足します、
 例 0.5 + 0.1
- 「Input」で計算プロセスを完了します。
 結果: 0.6

操作

2.1	電源のオン/オフ	2-49
2.2	基準点への移動	2-49
2.2.1	統合型安全性での操作者による認証	2-51
2.3	軸の表示	2-52
2.4	運転モード	2-53
2.5	機械の設定	
2.5.1	測定単位(ミリメータ/インチ)の切替	2-54
2.5.2	座標系 (MKS/WKS) の切替	2-55
2.6	新しいポジション値の設定	2-56
2.7	ワーク原点の測定	
2.7.1	エッジの測定	2-62
2.7.2	コーナーの測定	2-67
2.7.3	ポケットおよび穿孔の測定	2-69
2.7.4	ジャーナルの測定	2-75
2.7.5	平面の調整	2-82
2.7.6	原点測定後の修正	2-84
2.7.7	電子式計測プローブのキャリブレート	2-85
2.8	工具測定	2-87
2.8.1	工具の手動測定	2-87
2.8.2	不動点の調整	2-90
2.8.3	計測プローブによる工具測定	2-91
2.8.4	計測プローブの調整	2-93
2.9	手動動作	2-94
2.9.1	工具を選択し、主軸に交換して入れる	2-94
2.9.2	新しい工具をリストに記入し、主軸に交換して入れる	2-95
2.9.3	新しい工具のリストへの記入及びマガジンへのロード	2-96
2.9.4	手動による主軸の開始、停止および位置決め	
2.9.5	軸の移動	2-99
2.9.6	軸の位置決め	2-101
2.9.7	旋回	2-101
2.9.8	正面削り	2-104
2.9.9	手動操作のための設定	2-105
2.10	MDA-作動	2-107
2.11	自動作動	2-108
2.11.1	「T、F、S」、「G 機能」と「補助機能」の表示間の切換え	2-109
2.11.2	加工処理のためのプログラムの選択	2-110
2.11.3	プログラム開始/停止/中止	2-111
2.11.4	プログラム中断	2-112
2.11.5	特定のプログラム箇所での処理の開始	2-113

2.11.6	プログラムスタートへの干渉	2-118
2.11.7	上書き保存	2-120
2.11.8	プログラムテスト	2-121
2.11.9	加工前の同時描写	2-122
2.11.10	加工中の同時描写	2-124
2 12	プログラムのスタートアップ	2-125
2.12.1	シーン・ニー・シック シングルブロック	2-125
2.12.2	現在のプログラム・ブロックの表示	2-126
2.12.3	プログラムの修正	2-127
2 13	作動時間	2-128
2.10	[上刻时][]	2-120
2.14	目 朝 連 転 の た め の 設 定	2-130
2.14.1	テストラン送りの確定	2-130
2.14.2	リークカウンタのハラメータ化	2-131
2.15	工具と工具修正	2-132
2.15.1	工具の新設	2-139
2.15.2	工具あたり複数のバイトの作成	2-141
2.15.3	工具名の変更	2-142
2.15.4	姉妹工具のセットアップ	2-142
2.15.5	手工具	2-142
2.15.6	工具修正	2-143
2.15.7	工具用の追加機能	2-146
2.15.8	工具磨耗データの入力	2-147
2.15.9	工具監視の起動	2-148
2.15.10	マガジンリスト	2-150
2.15.11	工具の消去	2-151
2.15.12	エ具タイプの変更	2-151
2.15.13	マガジンへの工具のロードおよびアンロード	2-152
2.15.14	エ具の置換	2-154
2.15.15	マガジンの位置決め	2-156
2.15.16	工具の分類	2-156
2.16	原点オフセット	2-157
2.16.1	原点オフセットの決定	2-159
2.16.2	原点オフセットリスト	2-160
2.16.3	作動範囲で原点オフセットを選択/選択解除	2-162
2.17	CNC-ISO-作動への切り替え	2-163
2.18	ShopMill Open (PCU 50.3)	2-164
2 10		2 164
2.13		2-104

2.1 電源のオン/オフ

全装置の制御装置のスイッチオン/オフは	、様々な方法で可能です:
---------------------	--------------

これについては機械メーカーの情報に注意してください。

作動後に、基本メニュー「機械手動」が表示されます。

⑦ 手動							
∥ Reset							G機能
WKS	位置	[nn]		T,F,S	_		
Х	-4.00	90		T 751ス機		D1	補助機能
Y	0.00	90		F		⊠↓Z	0.04###
7	a aa	10			0.000 0.000	100% mm/U	全G機能
е А С	0. 0.	900 900		S	0.000 0.000	100% I	作動時間
_				0%	100%	200%	
	_	_	_	_	_	_	
							実値 MKS
						\sum	
🐺 т, ѕ, м	オプセット 設定	ワーク 原点	工具測定	旋回	位置	正面削り	

基本図「機械手動」

2.2 基準点への移動

制御装置と機械は、作動後に「Ref」機能で同期化できます。 基準点移動は、様々な方法で可能です:

これについては機械メーカーの情報に注意してください。

- 基準点移動は、機械軸用にのみ可能です。実値表示は、作動後には軸の 実際位置とは一致しません。
- 基準点移動は、機械にアブソリュート測定システムがない時には必要です。

警告

軸が安全な位置にない場合、軸を適切に位置付けする必要があります。その際、必ず直接機械上で軸移動するように注意して下さい! 軸が指示されていない間は、実値表示を無視してください! ソフトウェア-終了スイッチは無効です!

2.2 基準点への移動

01/2008

操作

軸が指示される順序は、工具メーカによりあらかじめ設定されています。

決められた基準点に全軸が到達すると、「Cycle-Start」による「機械自動」の開始が可能になります。

2.2.1 統合型安全性での操作者による認証

操作 2.4 運転モード

01/2008

2.5 機械の設定

2.5.1 測定単位(ミリメータ/インチ)の切替

この機能で、加工表示の縮尺記入に応じて、メートル法とインチ法を切換えることができます。

測定システムの切換えは、必須の指図が自動的に新しい測定システムに切り替わるあらゆる機械で可能です。例えば、

- 位置
- 工具補正
- 原点オフセット
- ▶ 「Jog」運転モードで拡張横型ソフトキーバーに切り換えます。
- >> ソフトキー「ShopM 設定」を押します。
- >> ソフトキー「Inch」を押し、インチに切り替えます。

ソフトキー「Inch」が作動します。

>> ソフトキー「Inch」を押し、メートルに切り替えます。

ソフトキー「Inch」が作動解除されます。

ソフトキー「Inch」を押すと、ウィンドウが現れ、切換えを実行すべきか質問します。

DK

ソフトキー「OK」を押すと、測定システムが適切に合わせられます。

2.5.2 座標系 (MKS/WKS) の切替

機械座標システム(MKS)は、機械の本来のシステムです。ワーク座標系(WKS) と対照的に、工具修正、原点オフセット、スケーリングなどを考慮しません。

機械座標システムとワーク座標系間を以下の要領で切り替えます:

▶ 機械操作パネル上のボタン「WCS MCS」を押します。

-または-

▶ 運転モード「Jog」または「Auto」を選択します。

>> ソフトキー「実値 MKS」を押し、MKS を切り替えます。

ソフトキー「実値 MKS」が作動します。

> ソフトキー「実値 MKS」を押し、MKS から WKS へ切り替えます。

ソフトキー「実値 MKS」が作動解除されます。

2.6 新しいポジション値の設定

「原点オフセット設定」機能で、それぞれの軸に新しいポジション値を実値表示に 入力できます。

機械座標系 MKS のポジション値とワーク座標系 WKS の新しいポジション値間 の相違は、機械データに依存し、現在作動中の原点オフセットまたは基本オフセットへ保存されます。

これについては機械メーカーの情報に注意してください。

数値が有効な原点オフセットに保存されると、数値は大まかなオフセットに預けら れ、精密オフセット内の現存数値は消去されます。

軸のポジション・ウィンドウの下に、その都度作動中の原点オフセットが表示されます。

▶ 機械軸を希望の位置まで移動させます(例えばワーク表面)。

🏾 手!	動								
∥ Res	et								X=0
₩KS	_	位置	Emr	1	_	T,F,S	_	_	
X		-4.	000			T 75128	幾	D1	Y=0
U		•	000					ä↓z	
Y		0.	000			F	11.00	100%	Z=0
Ζ		0.	000			c	11.00	mm/min	
A			0.000 0.000			3	0.000 0.000	I 100%	A=0
			01000			0%	100%	200%	
									C=0
									削除
									X=Y=Z=0
	_	_	_	_	_	_	_	D	(戻る
Τ	.S.M #20	原点 オフセット	1 0 <u>7</u> -2	물 그	통 🎤		位置		
de2 .		設定	▶ ■ 原点	」 봅↓ 別	IE KI	100 Ja			

▶ 運転モード「機械手動」で、メニュー「原点オフセットの設定」を選択します。

メニュー 基本・オフセット

2	01/2008	操作
		2.6 新しいボジション値の設定 44
	ポジション値の設定	入力ボタンにより、新しいポジション値を入力してください。 カーソルキーでポジション間を切り替えることができます。
		▶ ボタン「Input」を押して、入力を確定します。
		-または- > ソフトキー「X=0」、「Y=0」および「Z=0」を押して、ポジション値を 0 にセットし ます。
	オフセットのリセット	
	消去	▶ ソフトキー「消去」を押します。
		オフセットが、再び取り消されます。
-		原点オフセット (NPV1 等)は、基本オフセット上に設定されます。

2.7 ワーク原点の測定

ワークプログラミングの際の基準点は、常にワーク原点です。ワーク原点の決定 は、次のワーク要素で行われます。

- エッジ
- コーナー
- ポケット/穴あけ
- ジャーナル
- 平面

=?

ワーク原点は、手動または自動で測定できます。

りワークに移動し、早送りで再び開始地点に戻ります。

これについては機械メーカーの情報に注意してください。

点の順序に注意しなければなりません。

場合は、逆の測定順序でのみ可能です。

原点の手動測定では、工具を手動でワークに移動させる必要があります。半径 と長さが決まっているエッジキー、計測プローブあるいはダイヤルゲージを利用でき ます。選択で、確定した半径と長さを持つ任意の工具を指定できます。 測定に使用した工具は、3Dキータイプであってはいけません。

自動測定には、3Dキーまたは単ーキータイプの電子式計測プローブのみを使用 してください。電子式計測プローブは、事前に内径測定する必要があります。 自動測定の場合には、計測プローブを手動で事前に位置決めしてください。 「Cycle Start」キーで開始した後、計測プローブは、自動的に測定送り速度によ

半径と長さが決まっているエッジキー、計測プローブあるいはダイヤルゲージを利用 できます。この際、測定送り速度もまた、機械データにより決められています。

希望の測定結果を得るためには、通常、ヘルプ画像に表示されている、測定地

測定地点は、撤回可能で、引き続き繰り返して測定することができます。これ は、その都度作動していると表示されるソフトキー (測定値)を押すことにより可能 になります。手動測定の場合、任意の順序でのリセットが可能で、自動測定の

自動測定

手動測定

П

01/2008

2

_{操作} 2.7 ワーク原点の測定

2

測定のみ	ワーク原点を「ただ測定のみ」したい場合、座標系を変更することなく測定値が表 示されます。				
原点オフセット	通常、測定したワーク原点を原点オフセットに保存してください。ShopMillによ り、回転およびオフセットを測定できます。必要な場合は、初めににワークの歪曲 を測定してワークを調整し、その後、オフセットの測定により原点を決定します。				
調整	調整は、座標系の回転または回転軸を使ったワークの回転により行います。機 械に回転軸が二つあり、「旋回」機能がセットアップされている場合、傾斜面も調 整することができます。				
原点	オフセットの測定値は、概算オフセットに保管され、相応の精密オフセットが削除 されます。現在有効でない原点オフセットに、原点が保存されると、作動ウィンド ウが映し出され、これにより原点オフセットを直接作動することができます。				
回転軸	 機械で回転軸が利用できる場合、回転軸を測定プロセスおよびセットアッププロセスに加えることができます。原点オフセットにワーク原点を保存するならば、次の場合に、回転軸を位置決めする必要がある可能性があります。 ワークを座標系に平行に調整するため(例えば「エッジ」の調整の場合)、原点オフセットの修正には、回転軸を位置決めする必要があります。 原点オフセットの修正は、ワーク座標系の回転に影響します。この結果、例えば「平面」の調整の場合のように、工具は平面に垂直に調整されることとなります。 				
	回転軸の位置決めの場合、1、2の作動ウィンドウによってサポートされます(「原 点測定後の修正」の章参照)。				
	パラメータ 「角度補正」のための「回転軸 A,B,C」の選択は、回転軸が機械にセ ットアップされている場合のみ可能です。さらに機械データにより、ジオメトリ軸に割 当てなければなりません。				
	これについては機械メーカーの情報に注意してください。				

作業順序	 ワーク原点測定するためには、常に工具を加工面に垂直に立てなくてはなりません(例えば「平面の調整」により)。いくつかの測定方法では、ワークを前もって座標系に平行に調整する必要があります(エッジの設定、2つのエッジの間隔、矩形ポケット、長方形ジャーナル)。 この前提条件を満たすために、複数のステップで測定することが必要である場合があります。 1.「平面の調整」(工具を平面に垂直に調整するため) 2.「エッジの調整」(ワークを座標系に平行に調整するため) 3.「エッジの設定」、「2つのエッジの間隔」、「矩形ポケット」または「長方形ジャー
	ナル」 (原点を確定するため) または 1. 「平面の調整」 (工具を平面に垂直に調整するため) 2. 「コーナー」、「穿孔」または「ジャーナル」 (工具を座標系に平行に調整し、原 点を確定するため)
事前の位置決め	「エッジの調整」により測定する前に、回転軸をあらかじめ位置決めしたい場合、 ワークがだいたい座標系に平行になるように回転軸を動かしてください。「原点オフ セットの設定」により、回転軸の角度をゼロに設定してください。「エッジの調整」に よる測定は、回転軸オフセット用の数値に修正され、もしくは座標の回転の際に 考慮され、ワークのエッジを精密に調整します。
	ワークを「平面の調整」により測定する前に位置決めしたい場合、「手動 旋回」で 希望の角度を設定できます。「ゼロ面の設定」により、結果として生じる回転を、 現在有効な原点オフセットに取り込みます。「平面の調整」による測定は、座標 回転のための数値を修正し、ワークを精密に調整します。
	機械に「旋回」機能がセットアップされている場合は、測定前に、場合によって旋 回をゼロにすることをお薦めします。このようにして、回転軸の位置が、現在有効 な座標系と合っていること確かめます。
例	次に2つの典型的な例が出され、ワークの測定および調整のための「ワーク測 定」と「手動 旋回」の調和および使用が具体的に説明されます。

例 傾約	例 1: 傾斜面での2つの穿孔のあるシリンダー・ヘッドでの後処理	
1.	ワークの固定	
2.	T,S,M 計測プローブを交換して入れ、希望の原点オフセットを有効にします。	
3.	ワークの事前位置決め 傾斜面がおおよそ工具軸に対して垂直になるまで、回転軸を手動で回しま す。	
4.	手動 旋回 「直接」旋回を選択し、「回転軸のティーチング」および「Cycle Start」を押し ます。	
5.	手動 旋回 結果として生じる回転を原点オフセットに保存するために、「ゼロ面の設定」を 利用します。	
6.	ワーク 測定 ワークの調整を修正するために、「平面の調整」を利用します。	
7.	ワークの測定 XY 面の回転およびオフセットを定義するために、「2 個の穿孔」を利用しま す。	
8.	ワーク 測定 Z でのオフセットを定義するために、「エッジ設定 Z」を利用します。	
9.	AUTO で、後処理のための部分プログラムを開始します。 プログラムを旋回ゼロで開始します。	
例 旋 た な す 。	例 2: 旋回した状態でのワークの測定プローブが、障害エッジ (例えば固定具により)の ためにワークの X 方向に移動できなくても、ワークは X 方向に接触されなければ なりません。旋回機能により、X 方向の測定は、Z 方向の測定と交換可能で す。	

- 1. ワークの固定
- 2. T,S,M

計測プローブを交換して入れ、希望の原点オフセットを有効にします。

- 手動 旋回
 「直接」旋回の場合は、希望の回転軸の位置を、「軸ごとの」場合は、希望の回転を入力し(例 Y=-90)、「Cycle Start」を押します。
- ワーク 測定 「エッジ 設定 Z」を利用します。Z で測定されたオフセットは、換算され、X 値 として希望の原点オフセットに記入されます。
- た回 手動
 座標系を再び元の位置に回転するには、旋回をゼロにします。

2.7.1 エッジの測定

エッジでの測定の場合は、次のことが可能です。

- エッジの設定 ワークが、作業台で座標系に対して平行です。1つの軸 (X, Y, Z)で、基準 点を測定します。
- エッジの調整 ワークが、任意の位置にあります。つまり作業台で座標系に対して平行では ありません。ワークエッジでの2地点の測定により、座標系に対する角度を 算出します。
- 2つのエッジの間隔
 ワークが、作業台で座標系に対して平行です。1つの軸(X,Y または Z)での
 2つの平行するワークエッジ間の間隔を測定し、中間を算出します。

- ⇒ 原点オフセット X = 53
- 11. 測定プロセス (ステップ 6 から 10)を場合によっては他の両方の軸に繰り返し 行ってください。

01/2008

操作

2.7 ワーク原点の測定

自動測定プロセスがスタートします。ワークエッジの位置が、測定されます。 ワークエッジの位置が算出され、表示されます。

01/2008

「原点オフセット」を選択した場合、ワークエッジの規定値が、新たな原点として保 存されます。工具半径が、自動的に考慮されます。

- 5. プロセス (ステップ3から4)を場合によっては他の両方の軸に繰り返し行ってく
- 1. スクラッチ用の任意の工具を、主軸に交換して入れます。
- 2. モード「Jog」でソフトキー「原点 ワーク」を選択します。
- ウィンドウ「エッジ」が、新たな垂直ソフトキーにより開きます。
- 4. ソフトキー「エッジ調整」を押してください。
- 5. 「測定のみ」をしたいのか、またはどの原点オフセットに原点を保存したいのかを 決めてください (「エッジの手動設定」の説明通りに、ステップ 5)。
- 6. 「測定軸」で、ワークに近づかせたい場所にある、希望の軸を選択してくださ
- 7.「基準軸」で、測定する角度に関係する、希望の軸を選択してください。
- 8.「角度補正」で、記入「座標回転」を選択してください。
- ▶ 「角度補正」で、記入「回転軸 A.B.C」を選択してください。
- 9. ワークエッジと基準軸間の規定角度を指示してください。
- 12. 工具を新たに位置決めし、2 地点を測定するための測定プロセス(ステップ 6 から 11)を繰り返し、ソフトキー「P2 保存」を押してください。

13.ソフトキー「原点オフセットの設定」もしくは「算出」を押してください。

ワークエッジと基準軸間の角度が算出され、表示されます。 「原点オフセットの設定」では、ワークエッジは規定角度に相当します。算出された 回転は、原点オフセットに保存されます。

. ,	エッジの自動調整	1. 3D キータイプの工具を主軸に交換して入れます。
	\bigcirc	 2. 測定の準備をしてください (「エッジの手動調整」の説明通りに、ステップ 2 から 9まで)。 3. 工具を測定したいワークエッジの近くに移動させます。 4. 「Cycle Start」キーを押して下さい。
	Cycle Start	自動測定プロセスがスタートします。測定地点1が測定され、保存されます。 ソフトキー「P1 保存」が作動します。
		5.2 地点を測定するため、プロセス(ステップ3および4)を繰り返してください。
		測定地点 2 が測定され、保存されます。 ソフトキー「P2 保存」が作動します。
	原点オフセット 算出	6. ソフトキー「原点オフセットの設定」もしくは「算出」を押してください。
	<u>-</u> 4/214-	ワークエッジと基準軸間の角度が算出され、表示されます。 「原点オフセット設定」では、ワークエッジは規定角度に相当します。算出された回 転は、原点オフセットに保存されます。
. ,	2 つのエッジ間の距離の手動 測定	1. スクラッチ用の任意の工具を、主軸に交換して入れます。
	WW ひ Joq	2. モード「Jog」でソフトキー「原点 ワーク」を選択します。
		3. ソフトキー「エッジ」を押してください。
		ウィンドウ「エッジ」が、新たな垂直ソフトキーにより開きます。
	•	4. ソフトキー「2 つのエッジ間の距離」を押します。
		5. 「測定のみ」をしたいのか、またはどの原点オフセットに原点を保存したいのかを 決めてください (「エッジの手動設定」の説明通りに、ステップ 5)。
	代替	6. 「測定方向 P1」で、測定方向(+ または -)および初めにワークに近づかせたい 場所の測定軸を選択してください
		7. 「測定方向 P2」で、第 2 測定地点のための測定方向(+ または -)を選択してください。
		「測定方向 P1」に選択された軸が、表示されます。
		8. 両方のワークエッジ間の中間線の規定値を指示してください。
		9. 工具を初めの測定地点に移動させます。
	P1 保存	10.ソフトキー「P1 保存」を押してください。
	P2 保存	11.工具を新たに位置決めし、第2測定地点に移動し、第2地点を保存してく ださい。

	原点オフセット の設定 -または-	12.ソフトキー「原点オフセットの設定」もしくは「算出」を押してください。
		両方のワークエッジ間の距離と中間線が算出され、表示されます。
		「原点オフセット設定」では、中間線は規定地点に相当します。
		算出されたオフセットは、原点オフセットに保存されます。
.	2 つのエッジ間の距離の自動 測定	1. 3D キータイプの工具をスピンドルに交替します。
		 測定の準備をしてください (「2 つのエッジ間の距離の手動測定」の説明通り ステップ 2 から 8 まで)
		3. 工具を測定したいワークエッジの近くに移動させます。
	\bigcirc	4.「Cycle Start」キーを押して下さい。
	Cycle Start	ー 自動測定プロセスがスタートします。測定地点1が測定され、保存されます。ソ フトキー「P1 保存」が作動します。
		5.2 地点を測定するため、プロセス(ステップ 3 および 4)を繰り返してください。 測定地点 2 が測定され、保存されます。ソフトキー「P2 保存」が作動します。
	原点オフセット の設定 -または-	6. ソフトキー「原点オフセットの設定」もしくは「算出」を押してください。
		両方のワークエッジ間の距離と中間線が算出され、表示されます。
		「原点オフセットの設定」では、中間線は規定地点に相当します。
		算出されたオフセットは、原点オフセットに保存されます。

01/2008

2 ^{操作} 2.7

ワーク原点の測定

2.7.2 コーナーの測定

	00 00
B	
. ,**	直角/任意のコーナーの手動 測定
	200
	代替

ワークを90°の角度および任意の角度で測定することができます。

- 直角コーナーの測定 ワークのコーナーは 90°で、任意に作業台上にあります。3 地点の測定から、 作業面(X/Y面)のコーナー地点とワーク(P1とP2を通る線)の基準エッジと 基準軸(常に作業面の第1軸)間の角度αを算出します。
 - 任意のコーナーの測定 ワークのコーナーは任意で(直角ではない)、任意に作業台上にあります。4 地点の測定から、作業面(X/Y面)のコーナー地点とワーク(P1とP2を通る 線)の基準エッジと基準軸(常に作業面の第1軸)とコーナーの角度間βの角 度αを算出します。

ヘルプ画像に表示された座標系は、常に現在設定されているワーク座標系に関 係します。旋回した場合、または他の形でワーク座標系を変更した場合は、この ことに注意してください。

1. スクラッチ用の任意の工具を、主軸に交換して入れます。

- 2. モード「Jog」でソフトキー「原点 ワーク」を選択します。
- 3. ソフトキー「コーナー」を押してください。
- ウィンドウ「コーナー」が、新たな垂直ソフトキーにより開きます。
- 4. 直角のコーナーを測定したい場合は、ソフトキー「直角コーナー」を押してくださ い。

-または-

- ▶ コーナーを90°以外の角度で測定したい場合は、ソフトキー「任意のコーナ」 ー」を押してください。
- 5. 「測定のみ」をしたいのか、またはどの原点オフセットに原点を保存したいのかを 決めてください (「エッジの手動測定」の説明通りに、ステップ 5)。
- 6. 「コーナー」で、測定したい希望のコーナー(例えば外コーナー)とその位置(例 えば位置 1)を選んでください。
- 7. 測定したいワークコーナー (X0, Y0)の規定値を指示して下さい。
- 8. ヘルプ図により、工具を初めの測定地点 P1 に移動させます。

操作

2.7.3 ポケットおよび穿孔の測定

	矩形ポケットおよび複数の穿孔を測定し、引き続きワークを調整することができま す。
	 矩形ポケットの測定 矩形ポケットは、座標系に対し直角に調整します。ポケット内の4地点を測 定することにより、ポケットの長さ、幅、中心点を算出します。 1 個の穿孔の測定 ワークは、任意に作業台にあり、1 個の穿孔があります。4 地点から、穿孔の 直径および中心点を算出します。 2 個の穿孔の測定 ワークは、任意に作業台にあり、2 個の穿孔があります。2 個の穿孔内で、 各 4 地点が自動的に測定され、そこから穿孔の中心点が算出されます。2 つの中間点の間の接続線と基準軸から、角度αが算出され、第 1 穿孔の 中心点に相当する新しい原点が決定されます。 3 個の穿孔の測定 ワークは、任意に作業台にあり、3 個の穿孔があります。3 個の穿孔内で、 各 4 地点が自動的に測定され、そこから穿孔の中心点が算出されます。3 つの中心点を通る円があてがわれます。そこから円の中心点と円の直径が 算出されます。角度修正の選択の場合、さらに基本回転αを算出すること ができます。 4 個の穿孔の測定 ワークは、任意に作業台にあり、4 個の穿孔があります。4 個の穿孔内で、 各 4 地点が自動的に測定され、そこから穿孔の中心点が算出されます。対 角線上の2つの穿孔中心点が結ばれます。そこから両方の線の交点が算 出されます。角度修正の選択の場合、さらに基本回転αを算出することが できます。
1	2、3、4の穿孔は、自動でのみ測定できます。

01/2008

P2 保存

原点オフセット

穿孔の自動測定

Cycle Start

の設定

P4 保存

-または-

算出

地点が測定され、保存されます。 9. 測定地点 P2、P3 および P4を測定し、保存するために、ステップ 8と9を繰り返してください。

操作

2.7 ワーク原点の測定

10.ソフトキー「原点オフセットの設定」もしくは「算出」を押してください。

穿孔の直径および中心点が算出され、表示されます。 中心点の規定値が、「原点オフセットの設定」の場合、新しい原点として保存されます。工具半径が、自動的に計算に入れられます。

- 1. 3D キータイプの工具を主軸に交換して入れます。
- 2. 工具を穿孔のおおよそ中心に移動させます。
- 測定の準備をしてください (「穿孔の手動測定」の説明通りに、ステップ2から 6まで)。
- ダ 穿 孔」におおよその直径を入れてください。
 それにより早送り速度で移動する範囲が制限されます。直径を入力しないと、スタート地点から測定送り速度で移動します。
- 「精査角度」に角度を入力してください。
 精査角度により、プローブの移動方向を、任意の角度で回転させることができます。
- 6. 「Cycle Start」キーを押して下さい。

工具が自動的に、穿孔-内壁の4地点を連続して探りながら進みます。測定が 済んだ後、ソフトキー「POの保存完了」が作動します。

穿孔の直径および中心点が算出され、表示されます。 「原点オフセット」を選択した場合、中心点の規定値が、新たな原点として保存されます。工具半径が、自動的に計算に入れられます。

「原点オフセットの設定」では、初めの穿孔の中心点は、規定地点に相当しま す。算出された回転は、原点オフセットに保存されます。

01/2008

操作
操作 2.7 ワーク原点の測定

01/2008

操作

操作

2.7.4 ジャーナルの測定

۰¢۰

長方形ジャーナルおよび複数の円ジャーナルを、測定および調整することができます。

- 長方形ジャーナルの測定
 長方形ジャーナルは、座標系に対し直角に調整します。ジャーナルの4地
 点を測定することにより、ジャーナルの長さ、幅、中心点を算出します。
- 1個の円ジャーナルの測定
 ワークは、任意に作業台にあり、1個のジャーナルがあります。4地点から、ジャーナルの直径および中心点を算出します。
- 2個の円ジャーナルの測定
 ワークは、任意に作業台にあり、2個のジャーナルがあります。両方のジャーナルで、各4地点が自動的に測定され、そこからジャーナルの中心点が算出されます。2つの中間点の間の接続線と基準軸から、角度αが算出され、第1ジャーナルの中心点に相当する新しい原点が決定されます。
- 3 個の円ジャーナルの測定
 ワークは、任意に作業台にあり、3 個のジャーナルがあります。3 個のジャーナルで、各 4 地点が自動的に測定され、そこからジャーナルの中心点が算出されます。3 つの中心点を通る円があてがわれ、円の中心点と円の直径が算出されます。
 角度修正の選択の場合、さらに基本回転 α を算出することができます。

4個の円ジャーナルの測定

ワークは、任意に作業台にあり、4個のジャーナルがあります。4個のジャーナ ルで、各4地点が自動的に測定され、そこからジャーナルの中心点が算出 されます。それぞれ2つのジャーナルの中心点が対角線上に結ばれ、両方の 線の交点が算出されます。角度修正の選択の場合、さらに基本回転αを 算出することができます。

2、3、4の円ジャーナルは、自動でのみ測定できます。

- 1. スクラッチ用の任意の工具を、主軸に交換して入れます。
- 2. 運転モード「Jog」でソフトキー「原点 ワーク」を選択します。
- 3. ソフトキー「ジャーナル」を押してください。
- 4. ソフトキー「1 円ジャーナル」を押してください。
- 5. 「測定のみ」をしたいのか、またはどの原点オフセットに原点を保存したいのかを 決めてください (「エッジの手動測定」の説明通りに、ステップ 5)。

操作

2.7 ワーク原点の測定

- 6.「DZ」に位置決め値を入力し、測定深さを決めます。
- 7. ジャーナル中心点 P0 の規定値 (X0/Y0) を指示してください。
- 8. 工具を初めの測定地点とジャーナルの外壁に移動させます。
- 9. ソフトキー「P1 保存」を押してください。
- 10.測定地点 P2、P3 および P4を測定し、保存するために、ステップ 8と9を繰り返してください。

11.ソフトキー「原点オフセットの設定」もしくは「算出」を押してください。

ジャーナルの直径および中心点が算出され、表示されます。 中心点の規定値が、「原点オフセットの設定」の場合、新しい原点として保存されます。工具半径が、自動的に計算に入れられます。

- 1. 3D キータイプの工具をスピンドルに交替します。
 - 2. 工具をジャーナルのおおよその中心へ動かします。
 - 3. 測定の準備をしてください (「円ジャーナルの手動測定」の説明通りに、ステッ プ2から7まで)。
 - ダジャーナル」におおよその直径を入れてください。
 それにより早送り速度で移動する範囲を制限してください。直径を入力しないと、スタート地点から測定送り速度で移動します。
 - 5. 「精査角度」に角度を入力してください(ステップ5、「穿孔の自動測定」参照)。
 - 6.「Cycle Start」キーを押して下さい。

工具が自動的に、ジャーナル-外壁の4地点を連続して探りながら進みます。測定が済んだ後、ソフトキー「POの保存完了」が作動します。

ジャーナルの直径および中心点が算出され、表示されます。

「原点オフセット」を選択した場合、中心点の規定値が、新たな原点として保存されます。工具半径が、自動的に計算に入れられます。

01/2008

Joa

°O

P1 保存

P2 保存

原点オフセット

の設定

円ジャーナルの手動測定

10原点・

P4 保存

-または-

算出

01/2008

,	4 個の円ジャーナルの自動 測定	1. 3D キータイプの工具を主軸に交換して入れます。
		2. 工具を初めのジャーナルのおおよその中心へ動かします。
		3. 運転モード「Jog」でソフトキー「原点 ワーク」を選択します。
	\$	4. ソフトキー「ジャーナル」を押してください。
	0.0	▶ ソフトキー「4 円ジャーナル」を押してください。
		5. 「測定のみ」をしたいのか、またはどの原点オフセットに原点を保存したいのかを 決めてください (「エッジの手動測定」の説明通りに、ステップ 5)。
		6.「Ø ジャーナル」におおよそのジャーナルの直径を入れてください(ステップ 4、 「円ジャーナルの自動測定」参照)。
		7.「DZ」に位置決め値を入力し、測定深さを決めます。
	代替	8. 座標の回転により調整する場合には、「角度修正」で「はい」を選択します。
		-または-
	代替	▶ 「角度補正」で、記入「いいえ」を選択します。
		9. 規定角度を入力してください。 ここで入力した角度は、作業面(X/Y-面)の第1軸に関係します。「角度修 正」に「はい」を選択した場合のみ、入力欄が現れます。
		10.規定値 X0 および Y0 を入力してください。 これらは、ジャーナル中心点間の接続線の交点を決定します。
	\bigcirc	11.「Cycle Start」キーを押して下さい。
	Cycle Start	工具が自動的に、初めのジャーナルの外壁の4地点を連続して探りながら進み ます。測定が完了した後、ジャーナルの中心が算出され、ソフトキー「P1 の保存 完了」が作動します。
	Cycle Start	12.引き続き工具を、二番目と三番目と四番目のジャーナルのおおよその中心点 に動かし、「Cycle Start」ボタンを押してください。
		工具が自動的に、ジャーナルの外壁の4地点を連続して探りながら進みます。 測定が完了した後、測定地点 P2とP3とP4が保存され、ソフトキー「P2の保 存完了」、「P3の保存完了」、「P4の保存完了」が作動します。
	原点オフセット の設定 -または- 算出	13.ソフトキー「原点オフセットの設定」もしくは「算出」を押してください。

2

ジャーナルの中心点が対角線上に結ばれ、両方の接続線の交点が算出され、 表示されます。「座標回転」に「はい」を選択した場合、さらに角度 α が算出さ れ、表示されます。

「原点オフセットの設定」では、交点は規定地点に相当します。算出された回転 は、原点オフセットに保存されます。 2.7.5 平面の調整

角度 αとβが算出され、表示されます。

「原点オフセットの設定」では、角度オフセットが原点オフセットに保存されます。

2.7.6 原点測定後の修正

測定したワーク原点を原点オフセットに保存したいならば、次の場合に座標系ま たは軸位置の変更が必要になります。

- 原点オフセットの修正は、ワーク座標系の回転に影響します。この結果、工具は平面に垂直に調整されることとなります。
- 原点オフセットの修正には、ワークを座標系に平行に調整するために、回転 軸の位置決めが必要です。

座標系および軸位置を合わせるために、作動ウィンドウによりサポートされます。

測定の際に作動していなかった原点オフセットに、ワーク原点を保存したとします。

ソフトキー「原点オフセットの設定」を押した後、作動ウィンドウが開き、「原点オフ セット xxx を今作動させますか?」と質問されます。

▶ 修正した原点オフセットを作動させるには、ソフトキー「OK」を押します。

工具の調整および退避

原点オフセットの作動

原点オフセット の設定

DK

し代替

し代替

Cycle Start

ワーク座標系の回転により、平面に対する工具の調整が必要です。 作動ウィンドウに、「計測プローブを平面に垂直に立てますか?」という質問が表示 されます。

平面に旋回させたい場合は、「はい」を選んでください。

質問「旋回による位置決め!退避させますか?」が、表示されます。 希望の退避方法を選択してください。

▶ 「Cycle Start」キーを押して下さい。

軸を退避させた後に、旋回サイクルにより、工具が新たに調整されます。 これで新たに測定ができます。

回転軸の位置決めおよび 送りの入力	ワーク原点を測定した後には、回転軸を新たに位置決めする必要があります。
	作動ウィンドウに、「調整するために、回転軸 X を位置決めしますか?」という質問 が表示されます。
代替	▶ 回転軸を位置決めしなければならない場合は、「はい」を選んでください。
早送り	送りの入力欄とソフトキー「早送り」が表示されます。 ▶ 早送りでの送りを入力するには、ソフトキー「早送り」を押してください。
	-または- ▶ 希望の送りを入力欄「F」に入力してください。
\bigcirc	➤ 「Cycle Start」キーを押して下さい。
Cycle Start	回転軸が新たに位置決めされます。

2.7.7 電子式計測プローブのキャリブレート

半径の測定

\$

Jog

調整キー >

電子計測プローブを主軸に交換して入れる際は、大抵の場合固定公差が生じ ます。これは、測定の際のエラーにつながる場合もあります。

更に主軸中心(トリガー地点)に関する計測プローブの変速点を算出する必要が あります。

そのため電子計測プローブをキャリブレートする必要があります。半径の測定に続いて、穴開けの際に面の長さの測定も行われます。穴開け時には、ワーク内の穿 れあるいは調整リングも利用できます。測定プローブの半径は、工具リスト内に設 定されていなければなりません。

- 1. 3D キータイプの工具を、主軸に交換して入れてください (単一キーは、3D キ ータイプとしても管理されます)。
- 2. 工具を穿孔内に移動させ、穿孔のおおよその中心に位置付けします。
- 3. 運転モード「Jog」でソフトキー「原点 ワーク」を選択します。
- 4. ソフトキー「調整キー」と「半径」を押します。
- 5. 穿孔の直径を入力します。

原点・

半径

01/2008

操作 2.7 ワーク原点の測定

Cycle Start

長さ測定

6. 「Cycle Start」キーを押して下さい。

内径測定がスタートします。はじめに穿孔の正確な中心点が算出されます。引き 続き穿孔の内壁の4箇所のスイッチ地点に移動開始します。

- 1. 3D キータイプの工具を、主軸に交換して入れてください (単一キーは、3D キ ータイプとしても管理されます)。
- 2. 計測プローブを面上に位置付けします。
- 3. 運転モード「Jog」でソフトキー「原点 ワーク」を選択します。
- 4. ソフトキー「調整キー」と「長さ」を押します。
- 5. 面、例えばワークあるいは機械テーブルの面の基準点 Z0を入力します。
- 6. 「Cycle Start」キーを押して下さい。

内径測定がスタートします。計測プローブの長さが算出され、工具リストに記入さ れます。

M M Jog	● Ø原点・ ● ワーク
調整キー >	長さ
Cycle Start	

2.8 工具測定

プログラムの処理では、さまざまな工具・ジオメトリを考慮する必要があります。こ れはいわゆる工具補正データとして工具リストに預けられます。工具の呼び出し 時には、コントローラは工具補正データを考慮します。 工具補正データ、つまり長さおよび半径ならびに直径を手動か自動(計測プロー

工具補正データ、つまり長さおよび半径ならびに直径を手動か自動(計測プロー ブを使って)決定できます。

2.8.1 工具の手動測定

手動計測では、工具長さと半径もしくは直径を算出するために、周知の基準点 へ手動で工具を動かします。ツールホルダ基準点の周知の位置およびツール寸 法から、ShopMillは工具補正を算出します。

工具長さを測定する場合、ワークあるいは機械座標の不動点、例えば機械測定計や間隔ゲージとともに不動点を基準点として利用できます。

ワークの位置を測定中に明示します。不動点の位置は、それとは反対に測定前 に指示する必要があります(不動点の調整の章を参照)。

半径/直径を決める場合には、常にワークは基準点として利用されます。 機械データの設定に応じて、工具の半径および直径を測定できます。 これについては機械メーカーの情報に注意してください。

長さ測定 ワーク 基準点

- > 測定工具を主軸に交換して入れてください。
- ▶ 「Jog」運転モードでソフトキー「測定 工具」を選択します。
- ▶ ソフトキー「長さ手動」を押します。
- ▶ 工具の切断番号 D およびデュプロ番号 DP を選択します。

▶ 基準点「ワーク」を選択してください。

- ▶ Z-方向にワークを移動させて、回転主軸によりスクラッチします(「機械軸の作 業工程」参照)。
- ▶ ワーク・エッジの目標位置 Z0を入力します。

> ソフトキー「長さの設定」を押します。

工具長は自動的に計算され、工具リストに登録されます。

工具長さをワークではなく測定計によって決めたい時には、原点オフセットを選択 してはいけません。または基本原点は0でなければなりません。

- ▶ 測定工具を主軸に交換して入れてください。
- ▶ 「Jog」運転モードでソフトキー「測定 工具」を選択します。
- ▶ ソフトキー「長さ手動」を押します。
- ▶ 工具の切断番号 D およびデュプロ番号 DP を選択します。
- ▶ 基準点「不動点」を選択してください。

測定エッジでの工具長さの測定

ワークエッジでの工具長さの測定

長さの設定

長さ測定 基準点 不動点

M M Jog	■) 測定・工具
長さ・手動 >	

2.8.2 不動点の調整

Jog 調整・

不動点

調整

>

測定·工具

例えば不動点として、機械測定計を利用できます。測定計を、機械の加工室の 機械テーブルに取り付けてください。間隔にはゼロを入力してください。

しかし機械の任意の不動点を、間隔ゲージとともに利用することもできます。その 場合、ミニパレットの厚さを「DZ」として入力します。

不動点の調整には、周知の長さ(つまり工具長さは工具リストに記入されている 必要があります)を持つ工具あるいは直接主軸を利用してください。

不動点の位置は、機械メーカにより既に決められてることがあります。 これについては機械メーカーの情報に注意してください。

工具もしくは主軸を固定点に動かします。

▶ 「Jog」運転モードでソフトキー「測定 工具」を選択します。

▶ ソフトキー「調整 不動点」を押します。

▶ 補正値「DZ」を指示します。

間隔ゲージを利用する場合は、ここに利用するミニパレットの厚さを入力してください。

▶ ソフトキー「調整」を押します。

機械原点と不動点間の間隔が算出され、機械データに保存されます。

機械原点と不動点間の間

_{操作} 2.8 工具測定

2.8.3 計測プローブによる工具測定

自動測定の際には測定プローブ(テーブルスキャンシステム)により工具の長さ、半 径および直径を算出します。ツールホルダ基準点の周知の位置および計測プロ ーブから、ShopMillは工具補正データを算出します。

工具を自動で測定する前に大体の工具ジオメトリデータ(長さ、半径および直径) を工具リストに登録し、計測プローブをキャリブレートする必要があります。

機械データの設定に応じて、工具の半径および直径を測定できます。

これについては機械メーカーの情報に注意してください。

測定の際には側面および長さ充填Vを考慮できます。工具の最長箇所が工具 の外にあるか、横幅が工具の下にある場合は、この差異を調整装置に保存でき ます。

側面調整

長さ調整

長さの測定の際に、工具直径が計測プローブの直径より大きい場合、自動的に 回転主軸により、逆の回転方向で測定されます。工具は、計測プローブ上方の 中心ではなく、工具の外縁により、計測プローブの中心点上に移動します。

▶ 測定工具を主軸に交換して入れてください。

計測プローブが衝突することなく移動できるように、工具を計測プローブの近くに位置付けします。

半径/直径の測定

- ▷ 「Jog」運転モードでソフトキー「測定 工具」を選択します。
- ▶ ソフトキー「半径自動」または「直径自動」を押してください。
- ▶ 工具の切断番号 D およびデュプロ番号 DP を選択します。
- ▶ 必要な場合、長さ調整∨を登録します。
- ▶ 「Cycle Start」キーを押して下さい。

自動測定プロセスがスタートします。測定プロセスは、逆の回転で回転する主軸 により行われます。

工具半径または直径は自動的に計算され、工具リストに登録されます。 測定プロセスが正確にどのように作動するかは、機械メーカの設定に依存します。 これについては機械メーカーの情報に注意してください。

操作

2.8

工具測定

2.8.4 計測プローブの調整

工具を自動調整したい時には、事前に機械デーブル上の計測プローブの位置を 機械原点に関連して算出する必要があります。

機械的な工具計測プローブは、典型的な立方体型あるいはシリンダー盤の形で す。計測プローブを機械運転室(機械テーブル上)に取り付け、比較的加工軸の 方向に調整します。

計測プローブの調整には、フライス型の内径測定工具を利用してください。工具の長さ、半径/直径を事前に工具リストに登録しておいて下さい。

- 内径測定工具を、計測プローブの測定面のおおよその中心に移動させます。
- ▶ 「Jog」運転モードでソフトキー「測定 工具」を選択します。
- ▶ ソフトキー「調整計測プローブ」を押します。
- > 長さのみか、長さと直径を調整するか選択します。

Cycle Start

長さと直径を調整します

➤ 「Cycle Start」キーを押して下さい。

内径測定プロセスが自動的に測定送り速度でスタートします。 機械原点と計測スキャナ間の距離寸法が算出され、内部データに保存されま す。

2.9 手動動作

運転モード「機械手動」は、プログラム実行のために機械を設置したか、または機 械で簡単な移動を行いたい場合に利用します。

手動操作で可能なこと:

- 1. 制御装置の測定システムを機械と同期化する(基準点移動)、
- 2. 機械の調整、つまり予め設定されている機械制御盤のキーやハンド・ホイール を手動で作動させる、
- 3. プログラムを中断している間は、機械制御盤に組み込まれたキー及びハンド・ ホイールを使って手動による移動が作動します。

2.9.1 工具を選択し、主軸に交換して入れる

工具は、交換して主軸に入ります。

2.9.2 新しい工具をリストに記入し、主軸に交換して入れる

2.9.3 新しい工具のリストへの記入及びマガジンへのロード

- > 主軸回転速度用の入力欄に希望の数値を入力します。
- ▶ ボタン「Cycle Start」押します。

主軸が既に作動している場合、新しい回転速度が受け入れられます。主軸が停止している場合、数値は規定値として取り込まれます。しかし主軸は停止したままです。

Cycle Start

2 <u>2.9 手動動作</u>

この機能により、主軸を特定の角度位置付けできます。例えば工具交替の際。

- 主軸が停止している時には、最短距離で位置決めされます。
- 主軸が回転している時には、その時の回転方向を保持し、位置決めされま ٠ す。

主軸補正スイッチで、希望の主軸回転数を設定してください。 最終的に有効な数値の 50 から 120%を選択できます。

- または - (操作パネル OP032S の場合):

▶ ボタン「主軸 Dec.」もしくは「主軸 Inc.」を押します。

プログラムした主軸回転数 (100%に相応)が、高く、もしくは低くなります。

▶ ボタン「100%」を押します。

主軸回転数が、再びプログラムされた主軸回転数にセットされます。

2.9.5 軸の移動

軸は手動操作ではインクリメント・ボタンおよび軸ボタンまたはハンド・ホイールで移動させることができます。 キーボードによる移動では、希望する軸がプログラムされたセットアップ送りで規定のステップで移動します。

インクレメンタル・キーを押し、手動作動で「軸キー」を押し、選択した軸を固定さ

キーボードを使った移動

歩幅の設定

- ボタン [1]、[10]、…、[10000] を押し、軸を固定ステップ(インクリメント)で移動させます。
 ボタン上の数値はマイクロメータまたはマイクロインチ単位での移動量を示しています。
 例: 100 μm のステップを希望する場合
 - (= 0.1 mm) ボタン「100」を押してください。

- -または-
- ▶ 「Jog」運転モードで拡張横型ソフトキーバーに切り換えます。
- >> ソフトキー「ShopM 設定」を押します。

れた歩幅で適切な方向へ移動させます。

軸自体は、プログラムされた送り速度で移動します。

設定メニューが開きます。

2	^{操作} 2.9 手動動作	01/2008
		 入力欄「可変インクリメント」に希望の歩幅を入力します。 例: 500 μm の歩幅を希望する場合 (= 0.5 mm) 500 を入力します。
		▶ ボタン「Inc Var」を押します。
		軸は、決められた歩幅分だけ移動します。
	調整送り速度の設定	▶ 「調整送り」の欄に、希望の送りを入力してください。
		軸は、調整モードで決められた送りで移動します。
		最大送り制限速度は、機械データに設定されています。
	軸の移動	
	Χ	▶ 作動軸を選択し、
	- +	▶ ボタン「-」もしくは「+」を押します。
		押すたびに、選択した軸が設定された歩幅分移動します。
		送り及び早送り修正スイッチが有効になります。
f		選択により、一つまたは幾つかの軸を移動できます(PLC プログラムに依存)
7		 制御盤のスイッチを入れた後は、基準点にまだ突き当たっていないので、軸を 機械の制限範囲まで移動できます。その際、緊急-終了スイッチを作動することができます。
		 ソフトウェア-終了スイッチと加工フィールド制限は、まだ無効です! 送りを設定する必要があります。
	ハンド・ホイールによる軸移動	ハンド・ホイールの選択や作動方法については機械メーカの指示に注意して下さ い。

2.9.6 軸の位置決め

早送り

Cycle Start

操作方法「Jog」では、軸を特定の位置に移動させ、簡単な加エプロセスで実現 できます。

- ➤ モード「Jog」でソフトキー「位置」を選択します。
- ▶ 「カーソル上」および「カーソル下」を使って、移動する軸を選択してください。
- ▶ 作動軸を選択し、目的位置を入力します。
- ▶ 「F」の欄に、希望の送りを入力してください。

-または-

- ▶ 軸を早送りで動かす時は、ソフトキー「早送り」を押してください。
- 「F」欄に、早送りが表示されます。
- ボタン「Cycle Start」押します。
 軸は指定された目標位置まで移動します。

軸は指定された目標位置まで移動します。

2.9.7 旋回

手動旋回は、ワークの調整、測定、加工を傾斜面により著しく簡単にする機能 を利用できるようにします。

傾斜位置の作成または修正したい場合、ジオメトリ軸 (X, Y, Z) 周りのワーク座 標系の希望の回転が、自動的に旋回軸 (A, B, C) の適切な位置に換算されま す。

手動旋回の場合、選択により直接機械の旋回軸をプログラムし、この旋回軸の 位置に合う座標系を作成させることもできます。

旋回面が作動している場合、機能「ワーク原点」が有効で、機能「工具測定」は 有効ではありません。

リセット状態、またパワーオン後は、旋回座標がそのまま残ります。つまり、例えば Z+-方向の後退により、傾斜穴から出発することができます。

これについては機械メーカーの情報に注意してください。

退澼

以下に、旋回の際の重要なパラメータが説明されています: 軸の旋回前に、工具を安全な退避地点に移動できます。どの退避方法が利用 できるかは、旋回データの開始の際にパラメータ「退避位置」に決められています。 これについては機械メーカーの情報に注意してください。 2

\wedge		警告
		旋回の際に、エ具とワーク間に衝突がおきないように、退避位置を選ぶ必要があ ります。
	旋回方法	 旋回は、軸により、あるいは直接行うことが可能です。 軸による旋回は、ワーク(X, Y, Z)の座標系に関係します。座標軸の順番 は、自由に選択できます。回転は、選択した順序で作用します。ShopMill は、そこから回転軸(A, B, C)の回転を算出します。 直接千回の場合、回転軸の希望の位置が指示されます。ShopMillは、そ こから適切で新しい座標系を算出します。工具軸が、Z方向に調整されま す。X および Y 軸の結果として生じる方向を、軸の移動から算出できます。
E		様々な旋回の変形態でのそれぞれの正の回転方向を、解説図に取り出すことが できます。
	方向	2本の回転軸を備えた旋回システムでは、一定面に、二つの異なった方法で到 達することが可能です。「方向」パラメータでは、二つの異なる位置の間を選択で きます。+/-は、回転軸の大きめあるいは低めの数値に相当します。これは運転 室への影響をもたらします。 両位置間でどの回転軸が選択されるかは、旋回データブロックの運転開始の際 に「方向」パラメータで確定されます。
		これについては機械メーカーの情報に注意してください。
	工具先端の固定保持	位置の一つに、機械的な理由から到達できないと、「方向」パラメータ内での調整 に依存して、自動的に代わりの位置が選択されます。 衝突を避けるために、5 軸変換(ソフトウェアオプション)の補助により、旋回の際に 工具先端の位置を保持することができます。この機能は、パラメータ「追走 工具」 で「旋回」の調整の際に起動されなければなりません。
		これについては機械メーカーの情報に注意してください。
	ゼロ面	「旋回 手動」機能は、加工だけでなく、調整にも利用でき、固定の際にワークの 回転を調整することができます(基本回転)。
		ワークの調整の際に、現在旋回した面を基準面として利用したい場合は、この面 をゼロ面として定義しなければなりません。
		「ゼロ面の設定」により、現在の旋回面が、作動中の原点オフセットにゼロ面とし て保存されます。その際回転が、現在の原点オフセットに上書きされます。 「ゼロ面の削除」により、作動中のゼロ面が原点オフセットから削除されます。その 際回転が、現在の原点オフセットでゼロに設定されます。 全座標系は、「ゼロ面の設定」および「ゼロ面の削除」の際に変更します。
		ワークを測定するには、「平面の調整」とともに手動旋回機能を利用できます。

2

→		۶	モード「Jog」でソフトキー「旋回」を選択します。
		۶	パラメータの希望する値を入力します。
	\bigcirc	۶	「Cycle Start」キーを押して下さい。
	Cycle Start	サ1	〈クル「旋回」がスタートします。
	基本位置		基本状態に再び戻りたい時、つまり数値をOにセットしたい時は、ソフトキー 「基本位置」を押してください。 座標系を再び元の位置に旋回させたい場合に、利用してください。
	ゼロ面の 設定		現在の旋回面を新たなゼロ面として設定したい場合は、ソフトキー「ゼロ面の 設定」を押してください。
	ゼロ面の 削除		現在の旋回面を削除したい場合は、ソフトキー「ゼロ面の削除」を押してくだ さい。
	回転軸の ティーチング	۶	直接旋回の際に、回転軸の現在の位置を取り込みたい場合は、ソフトキー 「回転軸のティーチング」を押してください。

パラメータ	説明		単位
ТС	旋回データブロックの名前		
10		⊧ ≠	
	0.旋回ハットを取り味さ、旋回ナータフロックを選び解除しる	ку _о	
	人力なし、調金された旋回ナータンロックの変更はめりません	1	
退避	いいえ:旋回前に、工具は戻りません。		
	Z:工具軸は、旋回前に退避地点へ移動します。		
	Z, X, Y:加工軸は、旋回前に退避地点へ移動します。		
	工具 最高:工具が、工具方向にソフトウェアリミットスイッチョ	まで戻ります。	
	工具 inc:工具が、工具方向に入力された数値分だけ戻り)ます。	
旋回面	旋回 新規:新たな旋回面を確定します		
	旋回 付加的:旋回面を、最後の旋回面の上にのせます。		
旋回方法	軸式:座標系を軸により旋回します。		
	直接:回転軸を、直接位置決めします。		
х	軸角度(軸による旋回)	軸の順番は、	度
Y	軸角度(軸による旋回)	「代替」により、任意に	度
Z	軸角度(軸による旋回)	交換できます。	度
A	軸角度(直接旋回)		度
В	軸角度(直接旋回)		度
方向	2つの選択肢をもつ優先回転方向		
	+:旋回ヘッド/テーブルのスケール上の軸の大きい方の角度		
	-:旋回ヘッド/テーブルのスケール上の軸の小さい方の角度		
工具先端の固定	追走:工具先端の地点は、旋回中は保持されます。		
保持	追走なし:工具先端の地点は、旋回中に変更します。		

_{操作} 2.9 手動動作

2.9.8 正面削り

DK

このサイクルで任意のワークを正面削りすることができます。その際常に、直角面が書こうされます。

サイクルの詳細については、「プログラミング - 正面削り」の章を参照してください。

- ▶ モード「Jog」でソフトキー「正面削り」を選択します。
- ▶ ワークの側面制限を指示するには、相応のソフトキーを押してください。
- カーソルを「加工」に置き、「Select」ボタンで加工方法(例えば粗削り)を選択してください。
- ▶ カーソルを「方向」に置き、加工方向を選択してください。
- ▶ その他全てのパラメータを入力マスクに入力してください。

正面削りについての指示に注意して下さい。 章「プログラミング-正面削り」

> 入力を確認するには、ソフトキー「OK」を押してください。

手動範囲のプログラム面に戻ります。

🏾 手動							
∥ Reset							
₩KS	位置	[mm]	_	T,F,S	-	_	
Х	0.0	00		T フライス機		D1	
Ŷ	0.0	00		-		ğ↓Z	
7	0.0	00 00	ľ	F	$1.000 \\ 1.000$	100% mm/歯	
Δ Α Γ	0.0 0	.000 .000	:	S	0.000 0.000	I 100%	
			i	0%	100%	200%	
広 正面削) \(\no\)	T= 正面削り目	F1/Z V2	2m X8=44	Y0=25 ;	ZØ=0	
		•=正面的功夫			10-20		中断
🠺 т,s,м	120 原点 オンセットの 設定		製定 🧞 旋		位置	正面削り	

プログラム面での正面削りの例

キー「Cycle Start」でサイクル「正面削り」を選択します。

「Repos」機能は、正面削りの最中には利用できません。

2.9.9 手動操作のための設定

工具軸の選択

▶ 運転モード「Jog」でソフトキー「T, S, M…」を選択します。

▶ 「測定単位」欄に、希望の測定単位を指示します。

寸法単位は、ボタン「サイクル開始」をもう一度押したときに有効になります。

機械に旋回可能な加工主軸が装備されている場合、メニュー「T、S、M、」内 で、「工具軸」の加工欄で加工面を選択できます。

このパラメータは、手動範囲の全面に関係します。つまり表示されたパラメータはフ ライス加工または測定の際にそれに応じて合わされます。さらにワークと工具の測

% 🛃 Т,Ѕ,М Joa SELECT

定の際には、平面の調整に応じて工具修正が考慮されます。 ▶ 運転モード「Jog」でソフトキー「T, S, M...」を選択します。

▶ 「工具軸」欄に、希望の軸を指示します。

工具軸は、ボタン「サイクル開始」をもう一度押したときに有効になります。 加工主軸を旋回するには、機械メーカの指示に従って下さい。

後退面

安全間隔

調整送り速度

可変インクリメント

~ 戻る

- ▶ 運転モード「Jog」でソフトキー「拡張」を選んで、ソフトキーバーを拡張しま す。
- >> ソフトキー「ShopM 設定」を押します。

メニュー「ShopMill 設定」が開きます。

- ▶ 「後退面」欄に、正面削りの際に手動運転で早送りで到達すべき、ワーク上 方の希望の後退位置を指示します。
- ▶ 「安全間隔」欄に、早送りで到達すべき希望の位置を指示します。 安全間隔は、工具先端とワーク表面間の距離です。安全間隔に達した 後、プログラムされたサイクルの加工送りで正面削りが行われます。

▶ 「調整送り速度」欄に、手動運転で軸が移動する送りを入力してください。

- ▶ 手動運転で軸を固定ではなく可変インクリメントにより動かしたい場合は、 「可変インクリメント」欄に希望のインクリメントを入力してください。
- ▶ ソフトキー「戻る」を押してください。

メニューウィンドウ「ShopMill 設定」が閉じます。 数値が変更されるまで設定は有効です。 プログラム用にこの設定はその都度プログラム先頭で行われます。

2.10 MDA-作動

操作方法「MDA」 (Manual Data Automatic) では、プログラムをブロック毎に Gコードで作成し、進行させることができます。さらに操作キーにより、制御盤の 個々のプログラムブロックの形で希望の移動を入力できます。

プログラム面「MDA」では、位置-、送り-、主軸-、工具値と MDA プログラムの内 容が表示されます。

MDA							
∥ Reset							G機能
₩KS	位置	[mm]		T,F,S	_		
Х	0.0	000		T フライス機		D1	補助機能
Y	0.0	200		e l		⊠†Z	
7	0	200		r i	0.000 0.000	100% mm/min	全G機能
с С	0.0	0.000 0.000		S	0.000 0.000	I 100% I	作動時間
				0%	100%	200%	1124
MDA Fuel coooking		_	_	_	-		MDA プログラム削除
M32¶							
==eof==							
							実値MKS
	_	_	_	_	_		

- ➤ ボタン「MDA」を押します。
- ▶ ワークウィンドウに、希望のGコードを入力して下さい。

「Cycle Start」キーを押した後に、制御盤は入力されたブロックを遂行します。

MDA 作動で作成されたプログラムは完全に遂行後、自動的に消去され、あるい はソフトキー「MDA プログラム削除」により取り除くことができます。

2.11 自動作動

加工処理の前提条件

操作方法「機械自動」で、加エプログラムを遂行し、現在進行中の加工をオンラ インでスクリーン上に見ることができます。

- 制御盤の測定システムが既に機械と同期化されています(基準点へ移動開始)。
- 付属する加エプログラムが既に作成されています。
- 必要な修正値がテスト、または入力されています。例えば原点オフセット又は 工具修正。
- 必要な安全閉鎖機能が作動中です。

Μ	自動	b									
10 F	leset				/	_N_MF	PF_DIR				C機能
					C	:MM_MC	DA				CIRCHE
W	KS	位	置	Ľ٣	m]			T,F,S			
X	(0.0	00			I1	▼ フライス機		D1	補助機能
	-						- 1			ä↓z	
ר ק	,		0.0	00 00			F	-	0.000 0.000	100% mm/min	全G機能
2			0.0	00				5	0.000		
A C			0 0	.000 .000				-	0.000	I 100%	作動時間
							ē		100%	200%	
Р	N5	SHOPMILL									基本ブロック
8 .	N10	縦グルーブ		∇	T=12 F0	1.1/Z	S600U	Z1=5ink	W10 L22	2	
φ-	N15	001: ピッチ	完全円		Z0=0 X0)=70 Y	Y0=70 R	832 NG			
Sĭ	N20	円グルーブ		V	T= フライス	幾6 F	F300/mi	in S400U	X0=70 Y	Y0=70	
Õ	N25	円ポケット		∇	T=14 FØ	.2/Z	S100U	X0=70 Y0	=70 Z0=	=0 ø30	
Ő	N30	矩形ポケット		V	T= フライス	機16	FØ.2/2	. s400U X	0=130 '	YØ=133	美1個MIKS
END	N35	プログラム終了	•								
		_									
			:書き 呆存			レフラム 作用	■検	ック 索	1	同時描写	2 プログラム 修正

必要な安全閉鎖機能が作動中です。

旧バージョンの ShopMill で作成した作業ステッププログラムを現在の作業プロセ スバージョンで遂行することができます。旧バージョンの ShopMill プログラムが現 在のバージョンで遂行されると、現在の作業プロセスバージョンによるプログラムとし て通用します。

さらに以下の事項について注意すると、バージョン 6.3 の作業プロセスプログラムを ShopMill 6.2 で処理することもできます。

- 縦方向グルーブ用に ShopMill 6.3 で加工方法「縁の仕上げ削り」がプログラ ムされていると、ShopMill 6.2 内のパラメータが「粗削り」と取替えられます。
- ShopMill 6.3 でプログラムされた機能「深穴ボーリング」と「円グルーブ」は、
 ShopMill 6.2 の機能パラメータをもう一度点検し確認すると実行可能になります。

バージョン 6.3 の ShopMill プログラムの処理後は、プログラムはバージョン 6.2 の プログラムとして通用します。

2

2.11.1「T、F、S」、「G 機能」と「補助機能」の表示間の切換え

		ワークの加工中に、例えば切削半径修正が作動しているか、あるいはどの測定 単位を利用しているか知りたい時は、G 機能又は補助機能の表示を切り換えま す。
=?	G 機能	「G 機能」には異なる 16 の G グループが表示されます。 G グループ内には、その 都度ちょうど NC 内で作動中の G 機能が映し出されます。
		「全ての G 機能」では、全 G グループが全付属 G 機能とともに一覧になっていま す。
	補助機能	補助機能には、機械メーカにより確定されているパラメータを PLC にゆだね、機 械メーカにより決められた効果を引き出す M 及び H 機能が数えられます。
		これについては機械メーカーの情報に注意してください。
		最大 5 つの M 機能と3 つの H 機能が表示されます。
1		ステップチェーンプログラムの処理時にも、ShopMill 機能は内部的に G コードに 変換されるため、NC でアクティブな G 機能を表示させることができます。
\rightarrow	G 機能	▶ 「Jog」あるいは「機械自動」操作方法でソフトキー「G 機能」を押します。
_ }		パラメータ T、F、S の代わりに、加工時に作動中の G 機能が G-グループ内に表示されます。
		ソフトキー「G-機能」をもう一度押すと、再び状態表示「T、F、S」が現れます。
		-または-
	全G機能	> ソフトキー「全 G 機能」を押してください。
		パラメータ T、F、S の代わりに全 G-グループが G-機能とともに一覧にされます。 ソフトキー「全ての G-機能」をもう一度押すと、再び状態表示「T、F、S」が現れ ます。
		-または-
	補助機能	▶ ソフトキー「補助機能」を押してください。
		パラメータ T、F、S の代わりに、加工時に作動中の補助機能が映し出されます。 ソフトキー「補助機能」をもう一度押すと、再び状態表示「T、F、S」が現れます。

2.11.2 加工処理のためのプログラムの選択

2

2.11.3 プログラム開始/停止/中止

		ここでは、操作方法「機械自動」にロードされたプログラムの開始/停止/中止方法 が説明されています。				
		操作方法「機械 自動」にプログラムがロードされ、「自動運転」操作方法は機械 制御盤で作動するならば、操作方法「機械自動」で任意の操作方法でなくて も、プログラムを開始できます。 このスタート機能は、機械データ内で有効にする必要があります。				
	前提条件	アラームがでていません。 プログラムが選択されています。 送り-リリースがでています。 主軸-リリースがでています。				
.	加工開始					
	\bigcirc	▶ ボタン「Cycle Start」押します。				
	Cycle Start	プラグラムを初めからスタートし、初めから又はマークされたプログラムブロックかか 実行します。				
	加工の停止					
	Cvcle Stop	▶ ボタン「サイクル停止」を押します。				
	<u> </u>	加工がすぐに停止し、各プログラム・ブロックは最後までは処理されません。次に 開始するときには、停止した場所から加工が続けられます。				
	加工の中断					
	Poset	▶ ボタン「リセット」を押します。				
	Reset	プログラムの処理が中止されます。つぎのスタート時には処理は最初から行われま す。				
	操作範囲からの加工開始	プログラムがモード「自動」でロードされ、モード「自動」が機械制御パネルで起動 されます。				
	\bigcirc	▶ ボタン「Cycle Start」押します。				
	Cycle Start	プログラムがスタートし、最初から処理されます。事前に選択された操作範囲の 表面が引き続き見えます。				

2.11.4 プログラム中断

警告

早送りオーバーレイ・キーが作動しています。 調整されていない Repos-オフセットが、自動化への切り替えの際に、引き続き 「Cycle Start」キーにより、プログラム送りとリニア補間により調整されます。

尒

2.11.5 特定のプログラム箇所での処理の開始

プログラムの一定部分のみを機械で実行したい時には、プログラムは初めから強 制的に実行されるのではなく、一定のプログラムブロックあるいはテキストから加工 を開始できます。

処理を開始したいプログラム箇所が「目標」として印されます。 ShopMillは、異なる3種の目標タイプを区別します。

- ShopMill-サイクル
- その他の ShopMill-ブロックおよび G コードブロック
- 任意のテキスト

「その他の ShopMill-ブロックおよび G コードブロック」の目標タイプにおいても、3 種の異なる方法を指示できます。

- カーソルをターゲットブロック上に置きます これはプログラムを見やすくする簡単な方法です。
- 中断箇所を選択します 前に処理が中断した場所で、処理が続行します。これは特に、複数のプログ ラム・レベルのある大きいプログラムの場合快適に利用できます。
- 目標を直接指示します
 この方法は、目標の正確なデータ(プログラムレベル、プログラム名など)が分かっている時のみ可能です。

目標に応じて、ShopMillはプログラム処理のための正確な始点を計算します。 「ShopMill-サイクル」と「任意のテキスト」の目標タイプでは、常にブロックの終了 地点で算出が行われます。その他全ての ShopMill ブロックおよび G-コードブロッ クの開始地点の算出の際には、4 つのバリエーションから選択することができます。

1. 終了地点上の算出:

ブロック検索走行中に ShopMill は、プログラムの実行の際の算出と同様の 算出をします。プログラムは、終了地点又は目的のブロックの次のプログラム 地点から実行されます。

2. **算出なし**

ブロック検索中に ShopMill は算出しません。つまり算出は飛び越され目的ブロックにいきます。制御装置内部のパラメータは、ブロック検索走行前と同様の値に設定されています。

例外なく G-コードから成り立っている変数はプログラムの際のみに利用可能 です。

3. **外部 – 算出なし**

この変数は算出と同じように終了地点で生じます。しかし EXTCALL で呼び 出されたサブプログラムは算出の際には飛び越されます。同じく外部ドライブ (フロッピーディスク/ネットワーク)により完全に処理される G コードプログラムの 際には、算出が目的ブロックまで飛び越されます。 このように算出を速めることが可能です。

注意

算出されていないプログラム部分に含まれるモーダル機能は、処理されるべきプロ グラム部分用には考慮されません。つまり別形「算出なし」と「外部-算出なし」の 際には、加工用に必要な全ての情報を含む目的ブロックの開始点を選択する必 要があります。

ターゲットの直接入力「検索インジケータ」面で、ターゲットタイプ「その他の ShopMill-ブロックまたは G コードブロック」に目標を直接指示します。

> マスクには、各プログラム・レベルに行があります。プログラムに実際あるレベル数 は、プログラムの組込み深さに応じます。第一レベルは、常にメインプログラムに相 当し、その他全てのレベルは、サブプログラムに相当します。

> どのプログラム・レベルに目標があるかに応じて、マスクの相当する行に目標を入 カする必要があります。例えば目標が直接メインプログラムから呼び出されるサブ プログラムにある場合、目標を第2プログラム・レベルに記入しなければなりませ ん。

> 目標を常に明確に指示しなければなりません。つまり例えば、メインプログラムのサ ブプログラムが二つの異なる場所で呼び出される時、追加で第一プログラム・レベ ル(メインプログラム)に目標を指示しなければなりません。

「検索インジケータ」マスクのパラメータには次の意味があります。

プログラムレベルの番号

- プログラム: サブプログラムは、NCK-ワーキングメモリ内にあります。 プログラム名 例:サブプログラム1 サブプログラムは、NCK-ワーキングメモリ内にありません。 パス+プログラム名 例:c:\unterpr1 または \\r1638\shopmill\unterpr1 (メインプログラム名が自動で記入されます) ファイル語尾 Ext: P: 実行カウンタ(プログラムのパーツが幾度も 実行する場合、処理を続行する場所に実行番号を 指示します) ShopMill によりパラメータが割当てられます 行: タイプ: . . このレベルの検索ターゲットは考慮されません N番号 ブロック番号
 - 記号 ジャンプ記号
 - テキスト 文字列
 - サブ

プログラム サブプログラム呼び出し

行 行番号

検索ターゲット:処理を開始すべきプログラム箇所

その他の ShopMill-ブロック および G コードブロックの 呼び出し

2.11 自動作動

カーソルをターゲットのブロックに置きます

> プログラムを「機械自動」運転モードにロードして下さい(「実行プログラムの選 択」の章を参照)。

新しいスタート地点に到達します。その後、算出変数に応じて、始点あるいは目

プログラムの処理が「Reset」ボタンで中断されたことが前提です。(ShopMillは自

▶ ソフトキー「ブロック検索」と「検索インジケータ」を押してください。

ShopMillは、保存された中断箇所をターゲットとして挿入します。

新しいスタート地点に到達します。その後、算出変数に応じて、始点あるいは目

NC

ブロック

於検索

検索

インジケータ

目標の直接指示

- プログラムを「機械自動」運転モードにロードして下さい(「実行プログラムの選 \triangleright 択」の章を参照)。
- ソフトキー「ブロック検索」と「検索インジケータ」を押してください。 \geq
- 希望するターゲットを入力します。 \geq
- 算出変数を選択して下さい。

▶ ボタン「Cycle Start」押します。

ShopMill が必須の全ての事前設定を実行します。

「Cycle Start」ボタンをもう一度押して下さい。

新しいスタート地点に到達します。その後、算出変数に応じて、始点あるいは目 標ブロックの終了地点から加工されます。

「Reset」ボタンで検索を中断できます。

- プログラムを「機械自動」運転モードにロードして下さい(「実行プログラムの選
- ソフトキー「ブロック検索」と「検索」を押してください。
- ▶ 検索するテキストを入力して下さい。
- 検索がプログラム開始あるいは現在のカーソル位置で始めるかどうか選択し
- ▶ ソフトキー「検索」を押してください。

検索したテキストが出てくるプログラムブロックがマークされます。

- 検索を続けたい場合には、ソフトキー「広げて検索」を押してください。
- ソフトキー「中断」と「検索開始」を押してください。

複数のテクノロジ・ブロックとリンクしたプログラムブロックで、「検索進行」ウィン ドウ内で希望のテクノロジ・ブロックを選択し、ソフトキー「確定」を押します。 各プログラムブロックでは、試問表示は現れません。

^{操作} 2.11 自動作動

- 結合したプログラムブロックで、希望の開始位置の番号を入力し、ソフトキー 「確定」を押します。 各プログラムブロックでは、試問表示は現れません。
- ▶ ボタン「Cycle Start」押します。

ShopMill が必須の全ての事前設定を実行します。

▶ 「Cycle Start」ボタンをもう一度押して下さい。

新しいスタート地点に到達します。その後、ワークが目標ブロックの初めから加工 処理されます。

「Reset」ボタンで検索を中断できます。

2.11.6 プログラムスタートへの干渉

プログラム 作用 プログラム 停止 Cycle Start ワークの加工中に、結果をその間時々点検したい時には、加工を特別に表示さ せた場所で停止させることができます(プログラミングされた停止)。ShopMill-プロ グラム内では、「後退面」位置で停止します。

これとは逆に G コードでプログラミングされた一部の加工ステップをプログラム実行時には行わない場合、このブロックを個別にマークします(G コード・ブロックのフェードアウト)ShopMill ブロックでは、これは不可能です。

さらに処理中にDRF-オフセットをハンドホイールで許可することができます。機能は、機械メーカにより調整されなければなりません。

これについては機械メーカーの情報に注意してください。

- プログラムを「機械自動」運転モードにロードして下さい(「実行プログラムの選択」の章を参照)。
- ▶ ソフトキー「プログラム作用」を押します。
- > ソフトキー「プログラム停止」を押してください。ください。
- ▶ ボタン「Cycle Start」押します。

プログラムの実行がスタートします。プログラムのプロセスが、プログラム停止が決め られた全てのブロックで停止します(「追加機能」の章を参照)。

______ 2.11 自動作動

2

	\bigcirc	▶ その都度、新たに「Cycle Start」キーを押して下さい。
	Cycle Start	プログラムの加工が続行されます。
	プログラム 停止	加工がプログラム停止なしに続行されるべき場合には反対に、Gコードでプログラミングされた複数の加工歩幅をどのプログラムでも実行させたい場合は、このブロックを別々にマークして下さい(Gコードブロックを写し出しません)。(ソフトキーが再び選択解除されます)
	G-Code-ブロックのフェード	
	アウト	
		プログラムを「機械自動」運転モードにロードして下さい(「実行プログラムの選択」の章を参照)。
	NC プログラム 作用	▶ ソフトキー「プログラム作用」をを押します。
	フェードアウト	▶ ソフトキー「フェードアウト」を押してください。
	\bigcirc	▶ ボタン「Cycle Start」押します。
	Cycle Start	プログラムの実行がスタートします。記号「/」 (斜線) がブロック番号前で始まる G コードブロックは実行されません。
	フェードアウト	印を付けた G コード-ブロックが次の加工で再び実行されるべき時には、新た にソフトキー「フェードアウト」を押してください。(ソフトキーが再び選択解除さ れます)
	DRF-Offset を可能にします	モード「機械自動」でプログラムをロードします(「加工の開始/停止」の章を 参照)。
	■ プログラム 作用	▶ ソフトキー「プログラム作用」をを押します。
	 DRF オフセット	>> ソフトキー「DRFOffset」を押します。
		▶ ボタン「Cycle Start」押します。
	Cycle Start	プログラムの実行がスタートします。ハンドホイールによるオフセットは、直接処理に 作用します。
	DRF オフセット	ハンドホイール・オフセットを処理中にもう許可したくない場合は、新たにソフト キー「DRF オフセット」を押します。(ソフトキーが再び選択解除されます)

2.11.7 上書き保存

入力されたブロックが加工処理されます。「上書き保存」ウィンドウ内でブロックの 加工処理を追跡できます。

入力したブロックが加工処理された後に、新たにブロックを付け加えることができま す。

▶ 「戻る」ボタンを押して、「上書き保存」を終了します。

ウィンドウが閉じます。

ここで運転モードを切り替えることができます。

「Cycle Start」を新たに押すと、上書き保存前に選択されたプログラムが続行します。

2.11.8 プログラムテスト

	機械で始めてプログラムを実行するときに、ワークの誤った加工を避けたいならば、 機械軸を動かさずにプログラムをテストしてください。
=?	ShopMillが、テストの際にプログラムを以下の許可されていない干渉について点 検します。 ・ ジオメトリ的に許可されていない干渉 ・ 指示の欠落 ・ 実行不可能なプログラム連結とジャンプ ・ 加エスペースの侵害
	プログラムが操作方法「機械自動」にロードされていると、シンタックスエラーを ShopMillは自動的に認識します。
	プログラムテスト中に ShopMill が補助機能(M 及び H-機能)を実行するかどうか は、機械メーカの設定によります。
	これについては機械メーカーの情報に注意してください。
	プログラムテスト中は、以下の機能を利用できます:

- プログラムを「機械自動」運転モードにロードして下さい(「実行プログラムの選択」の章を参照)。
- ▶ ソフトキー「プログラム作用」を押します。
- ▶ ソフトキー「プログラム・テスト」を押してください。
- ➤ ボタン「Cycle Start」押します。

機械軸を作動することなくプログラムがテストされます。

プログラム実行後にテスト状態のスイッチを再び切りたい時には、新たにソフト キー「プログラム・テスト」を押して下さい。(ソフトキーが再び選択解除されま す)

2.11.9 加工前の同時描写

	自動作動では、「プログラム・テスト」機能により、機械軸を作動せずにプログラム を加工前にグラフィックで描写することができます。 同時描写は、ソフトウェアのオプションです。
	グラフィック表示は、シリンダー型の工具によって加工されるワークの描写です。
状態表示	 グラフィックでの状態表示は以下の情報を含みます。 現在の軸-座標 現在加工中のブロック 加工時間(時間/分/秒) 加工時間は、機械で加工中(工具交換を含む)時にプログラムが必要とする おおよその時間を示します。中断の際には、時間が停止します。
プログラム・ た用 テスト送り プログラム・ テスト	 「機械 自動」運転モードでプログラムを選択してください。 ソフトキー「プログラムと「プログラム・テスト」を押します。 追加でソフトキー「テスト送り」を作動してください。 プログラムされた送り速度は、機械データにより決められた試運転速度と交換されます。
同時描写	☆ > 。 > ソフトキー「同時描写」を押します。

2

	Cycle Start	▶ 「Cycle Start」を押して、プログラムを開始してください。
5		「Cycle Stop」、「シングルブロック」、「送り補正」などのプログラム制御のための機 能が、さらに利用できます。
	プログラム図	≻ ソフトキー「プログラム図」を押します。
		グラフィック表示「同時描写」から自動運転のプログラム図に切り替わります。グラ フィックデータの記録が、背景で進行します。 以下のソフトキーを押すと、グラフィック表示に戻ります。
	平面図	▶ ソフトキー「平面図」を押します。
		-または-
		▶ ソフトキー「3 面での描写」を押します。
		-または-
		▶ ソフトキー「3D 描写(ソリッド・モデル)」を押します。
	図の削除	プログラム図から再びグラフィック表示に戻ることができます。 ▶ ソフトキー「図の削除」を押します。
		これまでの加工のグラフィック描写が削除されます。加工の記録が再び続けられま す。
		機能と操作についてのその他の指示は、章「シミュレーション」にあります。

2.11.10 加工中の同時描写

Γ

2

2.12 プログラムのスタートアップ

2.12.1 シングルブロック

標準設定	作動中の機能では、機能を機械で作動すべきブロックで、実行が中断されます (計算ブロックは停止しません)。 ここで標準設定として通用するのは、 ・ ドリル加工では、全加工プロセスが、また、 ・ ポケットフライス加工では、平面加工が、 ーつのブロックにまとめられます。
ソフトキーによる呼び出し	詳細シングル・ プロック
「シングルブロック精細」作動	作動中の機能「シングルブロック精細」により、個々のドリル送達とポケットフライス 加工移動が、独自のブロックで実行されます。さらに個々の輪郭要素に応じて加 工は停止します。
ソフトキーによる呼び出し	詳細シングル・ ブロック
機械制御盤を通すシングル プロック	
Single Block	キー「Single Block」を運転モード「機械自動」で作動します。 プログラムをブロッ ク毎に実行することが可能です。 シングルブロックが作動すると、機械制御盤上の 付属 LED のランプがつきます。
	 シングルブロックの加工が有効であると、 (中断状態で)チャネル作動通知の列に、テキスト「停止:シングルブロックでの ブロック終了」の表示が出されます。 プログラムの現在のブロックは、「Cycle Start」キーを押して初めて実行され、 ブロック加工後に、加工プロセスが停止し、 続くブロックは、「Cycle Start」キーを新たに押した後に加工されます。
シングルブロックの選択解除	
Single Block	「Single Block」キーを新たに押すと、機能の選択を解除できます。

2.12.2 現在のプログラム・ブロックの表示

Cycle Start

「基本ブロック」ウィンドウに今作動中のプログラムブロックに正確な軸位置、G機能等が表示されます。

2.12.3 プログラムの修正

2.13 作動時間

		いつでも重要な機械の作動時間を見通すことができるように、ShopMill には次 の作動時間を表示するステータスウィンドウが付いています。
	プログラム	「Cycle-Start」ボタンを押すと、プログラム作動時間の測定が始まり、NC-Stop または NC-Resetを押すと終了します。 新しいプログラムを開始すると、時間が改めて測定され始めます。
A		休止時間中、プログラムテストによるプログラム作動中あるいは試運転の送り中 では、測定が続行します。NC-Stop または送り補正 = 0 の場合、時間の測定 は停止します。
	D-F	プログラムのプログレス表示に基づき、呼び出したプログラムの何パーセントが既に ロードされたか追跡します。 EXTCALL コマンドでプログラムまたはサブプログラムを呼び出した際、またはハー ドディスクのプログラムを処理する場合にのみディスプレイが現れます。
	ワーク	現在のリピートおよびプログラムしたリピート数(例:ワーク:15/100)が、作業ステッ プおよび G コードプログラムの際に表示されます。この数は、作業ステッププログラ ムで表れますが、プログラムしたリピート N 数が 1 以上の場合にのみ限定されま す(「個数の指定」章参照)。 プログラムしたリピート数 100000 以上から、スペース上現在のプログラムリピート 数のみが表示されます(例:ワーク:15)。 現在のプログラムリピート数に関する情報がない場合、2 線でのみ表示されます (例:ワーク:/100)。 プログラムの開始後、リピート数はカウンタに 0 と表示されます。
E		ワークを数えるには、ワークの実際数および規定数をデフォルト設定で指示します (「個数のパラメータ化」の章参照)。
	時間	現在の時間が表示されます。
	日付	現在の日付が表示されます。
	機械	機械作動時間は、最後に制御装置を起動してから経過した時間を示していま す。
	加工処理	加工時間は、制御装置を最後に起動してから処理された全プログラムの作動時 間全体を示しています。
	フル稼働率	システムは、測定した加工処理時間および現在の機械の作動時間から実際の 機械のフル稼働率を計算します。 加工処理時間と機械作動時間の比率が、パーセンテージで表示されます。 どの作動時間が表示されるかは、機械データの設定に応じて変わります。
		これについては機械メーカーの情報に注意してください。

▶ 運転モード「Jog」または運転モード「Auto」を選択します。

▶ ソフトキー「作動時間」を押します。

T,F,S-ディスプレイウィンドウが、「作動時間」ウィンドウに変更されます。 もう一度ソフトキー「作動時間」を押すと、T,F,S-ディスプレイウィンドウに戻りま す。

2.14 自動運転のための設定

自動運転をするためには、次の機能のデフォルト設定を定義します。

- プログラムスタートおよび自動化
 プログラムをグラフィック描写するために、テストランの送り速度を指定できます。
- ワークカウンタ
 Gコードプログラムの際にワークをカウントするために、必要数および作成されたワーク全てを表示するカウンタを使用できます。

2.14.1 テストラン送りの確定

ワーク加工前に、機械軸を動かさずにプログラムをテストして下さい。早期にプログ ラミングに欠陥を見つけられるように、同時描写機能を利用できます。このために 指定のテストラン送りを利用できます(「ワーク加工前の同時描写」の章を参照)。 操作中に送り速度を変更することができます。

- ▶ 「Auto」運転モードで拡張横型ソフトキーバーに切り換えます。
- >> ソフトキー「ShopM 設定」を押します。
- ▶ 「テストラン送り」に希望のテストラン速度を入力します。

2.14.2 ワークカウンタのパラメータ化

「ShopMill 設定」により、カウンタ作動および接地に影響を与えることができます。 必要な表示および現在処理中のワークの表示が、機械作動中にウィンドウ内に 表示されます(「作動時間」の章参照)。

- ▶ 「Auto」運転モードで拡張横型ソフトキーバーに切り換えます。
- >> ソフトキー「ShopM 設定」を押します。

▶ 「ワーク 規定」欄に必要なワーク数を入力します。

「ワーク 実際」欄には、プログラム開始から作成された現在のワークが表示されます。

決められた数に達した後、現在のワーク表示が自動的に再びゼロにセットされます。

カウンタの選択は、機械データの設定に応じます。

これについては機械メーカーの情報に注意してください。

ワークカウンタに関する規定および実際数は、プログラム作動中も変更できます。

2.15 工具と工具修正

ShopMillでは、工具を管理することができます。さらに以下のリストが利用可能です。

- ・ エ具リスト
- 工具磨耗リスト
- マガジンリスト

エ具リスト又は工具摩耗リストに、工具、修正データ、磨耗監視データを記入し て下さい。マガジンリストでは、どのマガジンスペースが閉鎖されているか、または閉 鎖されていないかが認識できます。

工具リストは、その時その時の要求に応じて以下の様に構成できます。

- 工具交換機の構成
 - ダブルグリップなしの主軸
 - あるいはダブルグリップ付きの主軸
- 少なくとも一つの工具マガジン
- 工具マガジンに属さない工具

工具管理にどのような機能があるかは、機械メーカの説明を読んで下さい。 場合によって様々なリストが機械メーカにより適合されることが可能です。

工具リストには、工具データブロックとして NCK に保存されている全ての工具とその修正データが、工具がマガジンスペースに配列されているかどうかは無関係に表示されます。制御盤がシンタックスエラーをプログラム内に認識すると、プログラムの加工が停止し、シンタックスエラーはアラーム列に表示されます。工具タイプが、ジオメトリおよびテクノロジー・工具データに割り当てられます。工具には、投入工具の様々な修正データにより、割り当てができる多様な見本があります。

ツール・タイプに応じて、異なる工具修正データが必要です。

エ具リスト

=?

2

フライス機

直角エンドミル

操作 2.15 工具と工具修正

3D ボタン

工具は、工具リストを介して、マガジンにロード、もしくはマガジンからアンロードでき ます。ロードの際には、工具は保存場所からマガジンスペースに移されます。アンロ ードの際には工具はマガジンから取り除かれ、保管場所に戻されます。 工具マガジンのロード、アンロードは、機械データにより確定されています。

これについては機械メーカーの情報に注意してください。

工具	•										
エ具リ	スト										0
場所	タイプ	工具名	DP	1. バイト				₽	⇒	⇒	代替
				長さ	ø		Ν		1	2	
₽	ę.	エッジキー	1	112.000	10.000			2			工具·測定
>											
< C											工具消去
1	Ø	ドリル_10	1	114.560	10.000	118.0		2	x		
2	衋	フライス機_8	1	106.980	8.000		2	2			<u>ארע די</u>
з	Ø	ドリル_15	1	119.251	15.000	118.0		2	x		, <u>, , , , , , , , , , , , , , , , , , </u>
4	Ø	ドリル_20	1	116.067	20.000	118.0		2	х		
5	₫	フライス機_25	1	121.912	25.000		4	2	x		詳細
6	U	心取機	1	130.440	12.000	90.0		2			
7	₫	フライス機_20	1	118.462	20.000		3	2	x		切断
8	\Box	フライス機_円錐形_12	1	124.354	12.000		2	2			
9	Ŷ	3d_+-	1	134.842	5.000			2			分類
10	V	鋳造型フライス_円錐形_10	1	120.062	10.000		2	2	х		
11	₫	フライス機_30	2	133.870	30.000		5	2			
										\sum	
	.具リス	ト 💋 工具磨耗		म्म् रगंध	ル 🗣 オ	原点 フセット	R	パラ	R V-	-9	

バリエーションのあるスペースを持つ工具リストの例

「工具」の操作範囲の基本図に、現在の工具リストが以下の情報と共に映し出 されます:

場所

スペース番号

これらについての記号/シンボルがあります:

- 主軸スペース
- グリップ1及びグリップ2用のスペース(ダブルグリップ装備の主軸を導入する時のみ)
- マガジンスペース番号
 マガジンが一個以上ある場合は、初めにスペース番号が、その後マガジン番号がマガジンに表示されます。

例: 10/1 = マガジン1内のスペース番号10
 5/2 = マガジン2内のスペース番号5

 エ具リスト内でマガジンに分類されていない工具は、スペース番号なしに保管 場所にあります。

それにより、実際マガジンにない工具も管理できます。

2	2.15 工具と工具修正	2
	タイプ	工具タイプ 工具タイプに応じて(シンボルとして表示)一定の工具修正データのみがリリースさ れます。
	工具名	工具の確認は、工具名とデュプロ番号によって可能です。名前をテキストあるい は番号で入力できます(章 「工具名の変更」を参照)。
	DP	姉妹工具(代用工具)のデュプロ番号
	工具補正データ	
	(D-Nr.)バイト	工具のそれぞれ選択されたブレードのための工具補正データ(D-No.)
	長さ	工具長さ この数値を、「工具測定」機能により算出できます(「工具の手動測定」の章を参 照)。工具を外部で計測する場合、ここで計測された値を登録することができま す。
	半径または Ø	工具の半径または直径 フライスおよびドリル・ツールでは直径も指定することができます。半径から直径へ の変換は機械データに基づいて行われます。
	角度	ドリルでの工具先端の角度 穴あけの際に、工具先端までではなく、シャフトまで入り込みたい場合は、コントロ ーラがドリル先端の角度を考慮します。
	Н	H 欄は、ISO-Dialects がセットアップされている場合のみ現れます。ISO- Dialect プログラムの各 H 番号は、工具補正データに分類されなければなりませ ん。
	N ピッチ	フライスでの歯数 機械がインチシステムに設定されている場合、タップ立てのネジのピッチの単位は mm/回転, インチ/回転, ねじ山/" あるいは MODUL です。
	工具固有の機能	
	⊢	主軸回転方向
	1	スイッチ入/切可能なクーラント材供給 1 および 2(例: 内部及び外部冷却)
	工具詳細 機能 14	「工具」の操作範囲の基本図に、現在の工具リストが以下の情報と共に映し出 されます:
		これについては機械メーカーの情報に注意してください。
		ソフトキー「Details」により 3D-工具用に追加でパラメータ、円形半径又は角度 が円錐形のフライス工具用に表示されます。 正面削りには、「詳細」に追加で外部半径および工具角度が、直角エンドミルに
		は、追加で長さと磨耗長さが表示されます。

操作

2.15 工具と工具修正

操作

工具摩耗リストでは、工具ジオメトリ(長さ及び半径/直径)を、摩耗により変更し 工具磨耗リスト たジオメトリに適応させることができます。 同様に以下の工具監視が決められています。 効率的な使用時間(有効寿命) 工具交替数の監視(個数) • 磨耗の監視 工具状態の追加表示(工具禁止、工具固定場所、工具特大) 工具 工具磨耗 警告闘(場所 タイプ 工具名 DP 1. バイト ∆I長さ ۵ø 耐久期間 T C 警告閾値 ₽ 豊 エッジキー 1 0.000 0.000 > ¢ 1 ₿ ドリル_10 0.000 0.000 1 2 **過 フライス機8** 1 0.000 0.000 T 25.0 30.0 G З ₿ ドリル_15 1 0.150 0.050 4 8 ドリル_20 1 0.000 0.000 5 歯 フライス機 25 1 0.000 0.000 0.000 6 し 心取機 1 0.000 切断 - フライス機20 0.000 0.000 7 1 0.000 8 1 0.000 □ フライス機_円錐形_12 G. 0.000 0.000 9 1 8 3d_+-分類 () 鋳造型フライス円錐形_10 0.000 0.000 10 1 11 あ フライス機 30 2 0.000 0.000 Σ エ具リスト 🖌 工具磨料 日日 マガジン ◆ 原点 R パラメータ バリエーションのあるスペースを持つ工具摩耗の例 工具マガジン マガジンリストでは、工具スペースは工具によりリストアップされます。さらに、マガジ ンスペースが閉鎖されているか(スペース閉鎖)、工具にどのような特徴(工具状 態)があるか表示されます。 固定/変動 スペース割当て 全ての工具に、変動あるいは固定のスペースがマガジン内で割当てられているか どうかは機械データにより確定されています。 変動のスペース保留では、工具は工具交換後に、マガジン内の次に空いている

スペースに運ばれます。マガジンでは、固定のスペース割当により、工具が元の場所に戻されます。

工具マガジン内のスペース保留については機械メーカの指示に注意してください。

操作 2.15 工具と工具修正

エ具とマガジンスペースの グラフィック描写

追加で工具の一覧用に、工具とマガジンスペースをダイナミックなグラフィック描写 で表示することができます。その際、工具はリストの順序に従って正しい比率で表 示されます。 グラフィック表示は、「Help」キーで表示、非表示できます。

01/2008

グラフィック描写は、機械メーカにより調整されなければなりません。

これについては機械メーカーの情報に注意してください。

工具とマガジンスペースのグラフィック描写

グラフィック描写には以下のことが当てはまります:

- 小型フライス機と3D-工具は底フライスとして、大型は平フライスとして表示 されます。
- 工具が表示するには長すぎる時には、最大で可能な長さが映し出されます。
- 工具の超過サイズは左右がカットされます。
- マガジン内にない工具は工具ホルダーなしに描写されます。
- 遮断された工具およびマガジンスペースは以下のように記されます。

遮断工具:

遮断マガジンスペース:

¥

工具の描写には選択された各バイトのデータが利用されます。
 工具にバイトが存在しないならば、初めのバイトのデータが利用されます。

2.15.1 工具の新設

工具および対応する補正データを工具リストに直接登録するか、または、工具管 理外にある工具データを読み込むことができます(「工具/原点データの保存/ 読み込み」の章を参照)。

新しい工具を直接工具リストに入力したい時には、ShopMillが一連の適用工 具タイプを提供します。工具タイプが、どのジオメトリ表示が必要で、どのように清 算されるべきか決定します。以下の機能的な工具タイプが提供されています:

FUIL
心取機
フライス機
3D_+
正面削り具
アングルヘッド
エッジキー
タップ立て
鋳造型フライス円柱形
フライス・ボールヘッド
フライスコーナー半径
フライス円錐
フライス 円錐 コーナー半径
4番番型フライス 円錐形

可能な工具タイフ

- ▶ 新しい工具を主軸に取りつけてください。
- > 「Menu Select」で運転モードを切替え、「工具 原点」を押してください。

工具リストが開きます。

- 主軸に工具が割り当てられている、工具リスト内の場所にカーソルを置きます。リスト内のスペースは空いていなければなりません。
- ▶ ソフトキー「新しい工具」を押します。
- 相当するソフトキーにより、工具タイプを選択してください。 ソフトキー「その他」によって、追加の工具タイプを利用できます。

新しい工具が適用され、それは自動的に選択した工具タイプの名称をもちます。

- ▶ 明確な工具名を付けます。
- ▶ 工具の補正データを入力します。

正面削り具、直角エンドミル、3D-工具用に、工具リスト内のジオメトリ表示に追 加で、その他のパラメータを指図する必要があります。 > ソフトキー「詳細」を押し、追加のパラメーターを入力してください。 詳細 ソフトキー「詳細」は、工具が選択され、追加指示用に預けられる必要のあ る場合にのみ作動します。 直角エンドミルの追加 直角エンドミルでは、機械データにより基本長さと工具方向付けのための追加パ パラメータ ラメータを表示させてください。 これについては機械メーカーの情報に注意してください。

直角エンドミルの詳細図内の軸名称は、現在の平面設定としての G17 に関係 します。

名前	追加のパラメータ
直角エンドミル	ジオメトリ長さ (長さ X, 長さ Y, 長さ Z)
	磨耗 (∆長さ X, ∆長さ Y, ∆長さ Z)
	基本長さ (長さ X, 長さ Y, 長さ Z)
	工具方向 (+X, -X, +Y, -Y, +Z, -Z もしくは
	ベクトル X, ベクトル Y, ベクトル Z)
正面削り具	外部直径、工具角度

3D-工具

タイプ	名前	追加のパラメータ
110	円柱形の鋳造型フライス	-
111	球形ヘッドフライス	円形半径
121	角円形化機能付き底フライス	円形半径
155	円錐型鈍フライス	円錐型工具用の角度
156	角円形型機能付き円錐型フライス	円錐型工具用円形半径、角度
157	円錐鋳造型フライス	円錐型工具用の角度

操作 2.15 工具と工具修正

01/2008

2

2.15.2 工具あたり複数のバイトの作成

		複数のバイトをもつ工具では、各バイトは固有の補正データ・ブロックをもちます。 各工具について最大 9 のバイトまで作成することができます。
f		バイトの欠落は許されません。 つまり1 個の工具に3 個のバイトが必要で、バイト 1 から3 でなければなりません。
=?		ISO-プログラム(例えば ISO-Dialect 1)では、H 番号を設置する必要がありま す。これは、一定の工具修正ブロックに相当します。
_		複数のバイトをもつ工具をまず上記のように工具・リストで割り当て、第 1 バイト の補正データを登録します。
	バイト 新しいバイト	▶ つぎにソフトキー「バイト」および「新しいバイト」を押します。
		第 1 バイトの入力欄の代わりに、工具・リストに第 2 バイトの補正データ入力欄 が表示されます。
		▶ 第2バイト用の修正データを入力します。
		▶ 複数のバイト補正データを作成したい場合には、このプロセスを繰り返します。
	バイトの消去	➢ バイトの補正データを消去したい場合、ソフトキー「バイトの消去」を押します。
		最大のバイト番号をもつバイトのデータだけを消去することができます。
	D-No. + D-No	ソフトキー 「D-No. +」 または 「D-No.–」により、バイト用の修正データを次に大き い、またはは小さい切削番号を表示させることができます。

2.15.3 工具名の変更

2.15.4 姉妹工具のセットアップ

姉妹工具は、既に現存する工具のように同時加工用に投入できる工具です(例 えば工具破損後の投入)。

姉妹工具としての工具のセットアップは、比べうる工具と同じ名前が入力される必要があります。

「Input」キーにより名前を確認し、姉妹工具の Duplo 番号が、自動的に 1 分だけ増します。

姉妹工具の交替の順序は、Duplo 番号 DP により決定されます。

2.15.5 手工具

手工具は、加工中に必要とされ、工具マガジンではなく、工具リスト内に現存す る工具です。この手工具は、手動で主軸内に交替できます。

「手工具」機能は、機械メーカにより調整されなければなりません。

これについては機械メーカーの情報に注意してください。

2.15.6 工具修正

工具修正の目的は?

制御装置による 移動パスの修正 エ具データを、「エ具リスト」と「エ具摩耗」の表に別個に入力して下さい。 プログラム内で、必要な工具のみを呼び出します。 制御装置は、プログラム加工中に必要な修正データを工具表から取り出し、 様々な工具用に個人的に工具行路を修正します。

操作 2.15 工具と工具修正

工具修正の種類は?

工具の修正メモリに含まれるもの

- エ具タイプ
 タイプが、どの工具表示が必要で、どのように清算されるか決定します。(例えばドリル、心取機、フライス)
- 全サイズ:長さ、半径、角度(ドリル) これらはいくつかの要素から成り立ちます。(ジオメトリ、摩耗)制御装置がこの 要素を実現されるサイズ(例えば全長さ、全半径)に清算します。それぞれの 全寸法が、修正メモリの作動の際に効果を現します。

工具長さの補正

この数値により、投入された工具間の長さの差異が調整されます。 工具長さは、工具ホルダ基準点と工具先端間の距離です。測定長さは、工具リ ストに入力されます。

ここから、また摩耗値から制御装置が送達方向への移動行路を算出します。

輪郭と工具が同一ではありません。フライスまたはバイト半径中心点が、輪郭に

操作

01/2008

工具半径の修正

以下の工具では、シミュレーションとプログラムグラフィックの描写用の修正値が利 用されます:

- ドリル: 角度と半径/直径
 - 心取機: 半径/直径

2.15.7 工具用の追加機能

	工具リスト内では、それぞれの工具タイプ(ます。	こその他の機能が分類	させることができ
歯数 N	このパラメータに、歯数を表示して下さい。 ス-工具の場合のみ考慮できます。制御調 調節される場合、内部で送りFを算出し	パラメータ N は工具に 長置は、プログラム内で 。ます。	依存し、フライ 送りが mm/歯で
∐	パラメータ「主軸」で、ソフトキー「代替」に。 右)切ります。	り主軸方向のスイッチ	を入れたり(左/
	主軸は時計回りに回転します。		ノフトキーによる 選択
	主軸は反時計回りに回転します。	\mathcal{L}	()代替
	主軸が再び停止します。	×	
т	パラメータ「加工油剤 1」と「加工油剤 2」(部及び外部冷却ができます。	こより工具にクーラント(供給、例えば内
	クーラントのスイッチを入れる: 〇〇	ソフトキーによ	る選択
	クーラントのスイッチを切る:	(代書	
工具固有の機能	工具に属する4つの機械独自の機能が より、この工具独自の機能を入/切できま クーラント供給あるいは工具破損監視など	是供されています。ソフ す。工具独自の機能に ビがあります	トキー「代替」に こは、例えば第 3
	これについては機械メーカーの情報に注意	してください。	

操作

2.15.8 工具磨耗データの入力

長期間にわたって使用されてきた工具は磨耗することがあります。この磨耗は計 測し、工具磨耗リストに登録することができます。ShopMillはこのデータをツール 長または半径補正の計算時に考慮します。このようにして、ワークの加工で一定 した精度を維持することができます。

磨耗値を入力すると、ShopMill はその数値がインクリメントおよび絶対の上限値 を超えないかチェックします。インクリメントの上限は、前の磨耗値と新しい磨耗値 間の相違を指定します。絶対の上限は、入力できる最大の全数値を指示しま す。

上限は機械データに規定されています。

これについては機械メーカーの情報に注意してください。

▶ 操作範囲「工具原点」でソフトキー「工具磨耗」を選択します。

工具												
工具磨	耗								警台	占閾値		
場所	タイプ	工具名	DP	1. バイト								
				∆I長さ	∆ø	Т С	警告閾値	耐久期間				
₽	Å	エッジキー	1	0.000	0.000							
>												
¢												
1	Ø	ドリル_10	1	0.000	0.000							
2	₫	フライス機_8	1	0.000	0.000	т	25.0	30.0	G			
3	Ø	ドリル_15	1	0.150	0.050							
4	Ø	ドリル_20	1	0.000	0.000							
5	₫	フライス機_25	1	0.000	0.000							
6	U	心取機	1	0.000	0.000							
7	₫	フライス機_20	1	0.000	0.000						1	切断
8	\Box	フライス機_円錐形_12	1	0.000	0.000				G			
9	Ŷ	3d_+-	1	0.000	0.000							分類
10	V	鋳造型フライス_円錐形_10	1	0.000	0.000							
11		フライス機_30	2	0.000	0.000							
				_						\triangleright		
1 I	.具リス	ト 2 工具磨耗		র বুরু বয়	iジン 🔶 :	原オプ	記 R	R パラメータ				

バリエーションのあるスペースを持つ工具摩耗の例

- ▶ 磨耗データを登録したい工具上にカーソルを置きます。
- 長さについての差分値 (Δ 長さ X、Δ 長さ Z)および半径/直径(Δ半径/Δ
 Ø)を対応する欄に入力します。

記入された磨耗値は、半径に加算され、工具長さから差し引かれます。つまり半 径では正の差分値は、寸法(後の仕上げ削りのためなどの)に相当します。

01/2008

2.15.9 工具監視の起動

		ツールの使用期間を ShopMill で自動的に監視し、一定したか高品質を保証す ることができます。
		その他、もう使用したくない工具をロックしたり、または工具を過大なものとしてマー クし、またはマガジンスペースに割当てることができます。
=?		工具監視は機械データによって起動することができます。
_		これについては機械メーカーの情報に注意してください。
	耐久期間(T)	耐久期間 T (時間) によって、工具の使用期間を分単位の加工送りで監視しま す。残りの有効寿命が= 0 であると、工具はロックされます。工具は次の交換の 際にはもう投入されません。現存する場合は、姉妹工具に交替します(代用工 具)。 耐久期間の監視は選択された工具・バイトに基づきます。
	個敛 (C)	一方個数 C (Count)については、工具交換数が王軸内に含まれます。ここで も、残り数が値 0 に達すると、工具の使用がロックされます。
	磨耗 (W)	磨耗(Wear)により、磨耗リストの磨耗パラメータの最大数値、∆ 長さ X, ∆ 長さ Z あるいは ∆ 半径および∆ ∅ が点検されます。 磨耗パラメータの一つが磨耗 W の数値に達すると、ここでも工具はロックされます。
		磨耗の監視は、機械メーカにより調整されなければなりません。
		これについては機械メーカーの情報に注意してください。
	警告閾値	警告閾値は、最初の警告が発せられたときの耐久期間、個数および磨耗を知ら せます。
		磨耗したために警告を出す数値は、最高磨耗値と入力された警告閾値の差異 から計算されます。
	ロック済み (G)	ワークの加工に使用したくない場合、個々のツールを手動でロックすることもできま す。
	過大 (U)	特大の工具では、隣接するマガジン・スペース (左右の隣接スペース)が、それぞ れ半分まで割り当てられます。つまり、次の工具をその隣のマガジン・スペースで使 用することができます。(そこにまた過大な工具があるかもしれません。)
	固定スペースのコード化(P)	工具を固定スペースに割当てることが可能です。つまり工具は、現在のマガジンス ペースにのみセットできます。交換して戻す場合は、工具が前の前のマガジンスペ ースに入ります。

,	工具使用の監視		
	↓ ◆ 原点 工具磨耗	۶	操作範囲「工具原点」でソフトキー「工具磨耗」を選択します。
		\triangleright	監視したい工具にカーソルを置きます。
			欄「T/C」で監視したいパラメータを指定して下さい。(T = 耐久期間, C = 個数、W = 磨耗)
		\triangleright	耐久期間、個数、磨耗の事前警告の制限を入力して下さい。
			計画された工具の投入期間、加エワークの計画数、あるいは最大許容磨 耗値を入力して下さい。
		耐久	、期間、個数あるいは磨耗に達するとツールはロックされます。
	工具状態の入力		
	↓ エ具・ 二具磨耗	\blacktriangleright	操作範囲「工具原点」でソフトキー「工具磨耗」を選択します。
		\triangleright	工具にカーソルを置きます。
		>	エ具での加工をロックしたい場合、最後の欄の最初のフィールドでオプション 「G」を選択します。
		-また	:lt-
			エ具を特大としてマークしたい場合、最後の欄の2番目の欄でオプション 「U」を選択します。
		-また	:lt-
		>	エ具をマガジンスペースに固定で割当てたい場合、最後の欄の3番目の欄 でオプション「P」を選択します。
		設定	された工具の特性が、すぐに作動します。

操作 2.15 工具と工具修正

2

操作 2.15 工具と工具修正

2.15.10 マガジンリスト

マガジンリストには、全てのマガジンスペースがリストアップされています。マガジンスペースが空いているか、ロックされているか、または工具が割り当てられているか表示されます。

その他、「工具状態」欄では、工具がロックされているか(G)、または、特大である か(U)、固定スペースが決められているかどうかを読み取ることができます。 工具状態はツール磨耗リストで変更することができます(「工具監視を起動」の章 を参照)。

マガジン・スペースが故障であるか、または特大工具が隣のスペースの半分以上 を必要とする場合、工具を固定場所にコードかするために、マガジン・スペースをロ ックすることができます。ロックされたマガジン・スペースに工具・データを割り当てる ことはできません。

マガジン

▶ 操作範囲「工具 原点」でソフトキー「マガジン」を押します。

工具									
マガジン	,						マガジンスペース	遮断	0
場所	タイプ	工具名	D	Pスペース	工具状態			f	皆
				遮断					
₽	ę.	エッジキー		1					
>									
¢									
1	Ø	ドリル_10		1					
2	≝	フライス機_8		1					
3	Ø	ドリル_15		1					
4	Ø	ドリル_20		1					
5	趟	フライス機_25		1					
6	U	心取機		1					
7	₫	ドリル_20		1					
8	\Box	フライス_円錐形_12		1	6				
9	Ŷ	3d_+-		1					
10	V	鋳造型フライス、円錐形)	1					
11	<u>₿</u>	フライス機_30		2					
								Σ	
1 I	具リス	ト 🚪 工具磨耗		म म्	マガジン 💽	原点 オフセット	R パラメータ		

バリエーションのある保留ができるマガジンの例

2.15 工具と工具修正

操作

2.15.11 工具の消去

工具は工具リスト内で消去できます。

▲ ▼

▶ 希望の工具をカーソルキーで選択してください。

- ▶ ソフトキー「工具の消去」を押します。
- ▶ 「消去」を押して下さい。

選択した工具の工具データが消去されます。工具があるマガジンスペースが開放 されます。

2.15.12 工具タイプの変更

エ具リストでは、エ具タイプを他のエ具タイプに変更できます。

- カーソルキーで希望の工具を選択し、カーソルを入力欄「タイプ」においてください。
- ▶ 希望の工具タイプが現れるまで、ソフトキー「代替」を押して下さい。

新しい工具タイプ用の入力欄が表示されます。

操作 2.15 工具と工具修正

2.15.13 マガジンへの工具のロードおよびアンロード

	現在必要としないマガジン内の工具を取り出して交換することができます。 ShopMillは、工具データを保存し、その後自動的にマガジン外の工具リスト内に 保存します。工具を後に改めて使用したい場合、対応するマガジン・スペースに 工具および工具・データを単にロードするだけです。このようにして、同じ工具デー タの反復入力を避けることができます。
=?	マガジン・スペースへの工具データのロードまたはアンロードは、機械データで起動 する必要があります。
	これについては機械メーカーの情報に注意してくたさい。
	ロードの際に ShopMill は、自動的に工具をロードできる空スペースを提案しま す。 ShopMill がまず初めにどのマガジンで空スペースを探すかは、機械データによ り規定されています。
	これについては機械メーカーの情報に注意してください。
	さらにロードの際には、どのマガジンで ShopMill が初めに検索するか直接空マガ ジンスペースを指定あるいは決定することもできます。
	機械のマガジンが利用可能な時は、ロードの際に、マガジン番号ではなく、常に 希望する場所番号を指定します。
	また工具を直接主軸に交換して出し入れすることも可能です。
	ロードおよびアンロードは、機械データにより遮断できます。
	これについては機械メーカーの情報に注意してください。
エ具のマガジンへのロード	

ロード

- ▶ 操作範囲「工具 原点」でソフトキー「工具リスト」を選択します。
- カーソルをマガジンにロードしたい工具の上に置きます(マガジン番号による並び替えで、工具リストの最後にあります)。
- ▶ ソフトキー「ロード」を押します。

ウィンドウ「空きスペース」が表示されます。「スペース」欄に、最初の空いたマガジン・スペースの番号が割り当てられます。

操作

▶ 工具を提案された場所にロードしたいときは、ソフトキー「OK」を押します。

-または-

▶ 希望するスペース番号を入力し、ソフトキー「OK」を押してください。 -または-

工具を主軸に交換して入れたいときは、ソフトキー「主軸」と「OK」を押して下さい。

工具が指示されたマガジンスペースにロードされます。

工具を「ロード」機能により、常に直接主軸にロードすることができます。 これについては機械メーカーの情報に注意してください。

マガジン内の空スペースの検索

エ具リスト

および工具のロード

♥ 工具・ 原点

DK

DK

ロード

▶ 操作範囲「工具原点」でソフトキー「工具リスト」を選択	えします。
------------------------------	-------

- マガジンにロードしたい工具上にカーソルを置きます。
- ▶ ソフトキー「ロード」を押します。

ウィンドウ「空きスペース」が表示されます。「スペース」欄に最初の空いたマガジン・ スペースの番号が割り当てられます。

特定のマガジン内で空スペースを検索したい時には、マガジン番号とスペース 番号に「0」を入力します。

-または-

- 全てのマガジン内で空スペースを検索したい時には、マガジン番号とスペース 番号に「0」を入力します。
- >> ソフトキー「OK」を押してください。

空スペースが提案されます。

- ➤ ソフトキー「OK」を押してください。
- 工具が指示されたマガジンスペースにロードされます。

大

操作範囲「工具原点」でソフトキー「マガジン」を選択します。

> ソフトキー「全てアンロード」と「アンロード」を押して下さい。

マガジンから全工具がアンロードされます。

全工具のアンロードの際には、計測プローブ (3D キーおよびエッジキー)を除外で きます。

これについては機械メーカーの情報に注意してください。

ソフトキー「中断」でアンロードプロセスをいつでも中止できます。現在の工具もア ンロードされると、プロセスは中断します。 マガジンリストを終了すると、同様にアンロードプロセスが中断します。

2.15.14 工具の置換

工具をマガジン内あるいは複数のマガジン間で移動させることができます。つまり 別の場所へロードするためには、工具をマガジンからアンロードする必要はありませ h.

ShopMillは、自動的に工具を移動できる空スペースを提案します。ShopMill がまず初めにどのマガジンで空スペースを探すかは、機械データにより規定されて います。

これについては機械メーカーの情報に注意してください。

さらに、どのマガジンで ShopMill が初めに検索するか直接空マガジンスペースを 指定あるいは決定することもできます。

機械のマガジンが利用可能な時は、マガジン番号ではなく、常に希望する場所 番号を指定します。

工具リストに主軸、主軸の場所が表示されるときには、工具を直接主軸に出し 入れして交換することが出来ます。

これについては機械メーカーの情報に注意してください。

操作 2.15 工具と工具修正 2.15 工具と工具修正

空スペースの指定	
● 二具・ 原点 マガジン	▶ 操作範囲「工具原点」でソフトキー「マガジン」を選択します。
	 ▶ 他のマガジンスペースにセットしたい工具上にカーソルを置きます。
置換	▶ ソフトキー「置換」を押します。
	ウィンドウ「空スペース」が表示されます。「スペース」欄に最初の空いたマガジン・ス ペースの番号が割り当てられます。
~	▶ 工具を提案された場所にセットしたいときは、ソフトキー「OK」を押します。
DK	-または-
1	▶ 希望するスペース番号を入力し、ソフトキー「OK」を押してください。
OK	-または-
主軸 DK	>> 工具を主軸に交換して入れたいときは、ソフトキー「主軸」と「OK」を押して下 さい。
	工具が指示されたマガジンスペースにセットされます。
空スペースの検索 「 「 「 「 「 「 「 「 「 「 「 「 「	▶ 操作範囲「工具原点」でソフトキー「マガジン」を選択します。
	 ▶ 他のマガジンスペースにセットしたい工具上にカーソルを置きます。
置換	▶ ソフトキー「置換」を押します。
	ウィンドウ「空スペース」が表示されます。「スペース」欄に最初の空いたマガジン・ス ペースの番号が割り当てられます。
	> 特定のマガジン内で空スペースを検索したい時には、マガジン番号とスペース 番号に「0」を入力します。
	-または-
	全てのマガジン内で空スペースを検索したい時には、マガジン番号とスペース 番号に「0」を入力します。
1	>> ソフトキー「OK」を押してください。
DK	空スペースが提案されます。
1	>> ソフトキー「OK」を押してください。
OK	工具が指示されたマガジンスペースにセットされます。

01/2008

2.15.15 マガジンの位置決め

マガジンスペースの位置決め マガジンスペースの位置決め マガジンスペースの位置決め ・ レード場所に位置決めしたいマガジンスペースに、カーソルを置きます。 位置決め ・ ソフトキー「位置決め」を押します。 マガジンスペースが、ロード場所に位置決めされます。

2.15.16 工具の分類

工具

工具・

₽原点

-または-

大型または複数のマガジンを使って作業する場合、工具をさまざまな基準で並び 換えて表示すると便利です。このようにして、特定の工具をリスト中で速やかに見 つけることができます。

工具を工具あるいは工具摩耗リストに、マガジン割当、工具名(アルファベット)、 工具タイプまたは T 番号に応じて分類できます。マガジン割当てに応じた分類で は、マガジンの空きスペースも同時に表示されます。

操作範囲「工具 原点」でソフトキー「工具リスト」または「工具オフセット」を 押します。

「工具リスト」もしくは「工具磨耗リスト」が開きます。

▶ ソフトキー「分類」を押します。

新しい垂直ソフトキーバーが開きます。

> ソフトキーで、工具の並び換えの基準を選択します。

工具が新たに並び換えて表示されます。

エ具リスト

工具磨耗

2.16 原点オフセット

軸座標の現在値表示は、基準点移動後、機械座標系(MKS)の機械原点 (M)に基づきます。これとは逆に、ワーク加工のためのプログラムはワーク座標系 (WKS)のワーク原点に基づきます。

機械原点およびワーク原点は同じである必要はありません。ワークの種類および 装着法に応じて、機械原点とワーク原点との距離はさまざまです。この原点オフ セットはプログラム処理時に考慮され、さまざまなオフセットから構成されます。 ShopMillでは、位置の実値表示は ENS 座標系に関係します。現在有効な 工具の位置がワーク原点に相対して表示されます。

オフセットの加算は以下のようにして行います。

原点オフセット

機械原点がワーク原点と同一でない場合、ワーク原点の位置が保存ざれている オフセットが存在しなければなりません(基本オフセットまたは原点オフセット)。

基本オフセット

基本オフセットは、常に有効な原点オフセットです。基本オフセットを定義しない 場合、これはゼロです。基本オフセットを、「ワーク原点」により決定します(参照「ワ ーク原点の測定」)または「原点オフセットの設定」(参照「新しいポジション値の設 定」)。

2	_{操作} <u>2.16 原点オフセット</u>	01/2008
2 操作 2.16 原点オフセット 原点オフセット 摩標- 変換 全移動	原点オフセット	原点オフセット(G54からG57、G505からG599)は概算および精細なオフセット から成り立っています。原点オフセットを任意の作業プロセスのプログラム(概算お よび精細オフセットが付け加えられます)から呼び出しすることができます。 概算オフセットでは例えばワークの原点を保存することができます。精細オフセット では新しいワークの固定の際に以前のワーク原点と新しいワーク原点間に生じる 誤差を調整することができます。
		精細オフセットは、機械メーカにより調整されなければなりません。
		これについては機械メーカーの情報に注意してください。
		どのように原点オフセットを確定し、呼び出すかは、「原点オフセットの決定」の章と 「原点オフセットの呼び出し」の章を参照して下さい。
	座標- 変換	座標変換を、常に特定の作業プロセスのプログラム用にプログラミングしてくださ い。以下に従って決定されます: ・ オフセット ・ 回転 ・ スケーリング ・ ミラーリング (「座標変換の決定」の章を参照)
	全移動	総合オフセットはすべてのオフセットおよび座標変換の合計から生じます。

© Siemens AG 2008 All rights reserved. SINUMERIK 840D sl 操作/プログラミング ShopMill (BASsl) - 発行 2008 年 1 月

操作

2.16.1 原点オフセットの決定

2.16.2 原点オフセットリスト

個々の原点オフセットおよび全移動は、全て原点オフセットリストに表示されま す。作動中の原点オフセットは、背景がグレーで表示されます。その他の機械及 びワーク座標システムで作動中の軸位置は、原点オフセットリスト内でリストアップ されています。

工具							
原点オフセッ WKS V	<i>י</i> ۲	0 000	MKS	/1	9	ベース(G500)	
Ŷ		0.000	'mm / 	/1	0.	.000 "	原点 ワーク
Z	x	0.000 ×	mm Z	21 × 0	0. X 0	.000 mm	その他の軸
ベース	-4.000	0.000	0.000	0.000	0.000	0.000	盾占オフセット
原点 オフセット 1	100.000	58.225	0.000 0.000	0.000	0.000	0.000	削除
原点 オフセット 2	300.000 0.000	100.000	0.000 0.000	0.000	0.000	0.000	ቲッኑ X
原点 オフセット 3 一	4.000 0.000	0 . 000 0 . 000	70.000 0.000	0.000	0.000	0.000	セットY
プログラム 寸法 ミラーリング	0.000 1.000	0.000 1.000	0.000 1.000	0.000	0.000	0.000	セットス
合計	0.000	0.000	0.000	0.000	0.000	0.000	全てを セット
「工具リス	ト 💋 工具磨耗	ŧ	ま	● 原点 オフセッ		-9	

原点オフセットリスト

基本オフセット

ベース

基本オフセットの座標が表示されます。 これをリスト内で変更できます。

原点オフセット

NPV1 ...NPV3

座標システム、場合によっては軸の周りで回転した個々の原点オフセット(1 行 概 算オフセット、2 行 精細オフセット)と角度の座標が表示されます。このデータをリ スト内で変更できます(「原点オフセットの決定」章を参照)。 精細オフセットは、機械メーカにより調整されなければなりません。 これについては機械メーカーの情報に注意してください。

その他の原点オフセットは、「Page Down」キーで映し出すことができます。

2.16.3 作動範囲で原点オフセットを選択/選択解除

作動中の原点オフセットの選択が解除されます。

2.17 CNC-ISO-作動への切り替え

ソフトキー「CNC ISO」を押して、SINUMERIK 840D/840Di/840 D sl の ShopMill-及び CNC-ISO-操作画面間を切り替えることができます。

これに関して機械メーカの指図に注意してください。

ソフトキー「CNC ISO」が作動中なら、CNC-ISO -操作画面の以下の基本メニ ューが表示されます。

機械	CHAN1	3	log \WKS	.DIR\SHOPM 9.MPF	ILL.WPD		32 1712628
// チャネル	Reset		プログラム	中断			自動
				ROV			
							_
WKS	位置	Repos オン	7セット	機械主軸		S1 🗊	MDA
x	0.000	m	0.000	実際	0.000	U/min	
Ŷ	0.000	mm	0.000	規定	0.000	U/min	JOG
z	0.000	mm	0.000	位置	0.000	grd	
A	0.000	grd	0.000		85.000	к	REPOS
с	0.000	grd	0.000	出力		3%	_
				送り	nn/nin		REF
				実際	0.000	105.0 %	_
				規定	0.000		
				I,			
				ドリル_2 あらかじめ設定さ 、ドリル 2	れた工具:	D1 4	
					040	'	
				Ger	046		ジングル プロック
機械	パラメータ	プログラム	サービス	診断	IBN	ShopMill	

CNC-ISO ユーザー・インタフェース

ShopMill

ソフトキー「ShopMill」を押すと、再び ShopMill-操作画面に戻ります。

CNC-ISO 操作画面にいる場合は、SINUMERIK 840D/840Di/840D sl の利 用文書に注意してください。

操作

ソフトウェア ShopMill は、ShopMill Open での PCU 50.3 (HMI Advanced) 用です。

ShopMill Open には、HMI-Advanced 操作範囲「サービス」、「診断」、「運転 開始」および「パラメータ」(工具管理および原点オフセットなし)が、拡張水平ソフ トキーバーに直接あります。

			₩ 75- 4 IJスト	し や 工具原点		
サービス	診断	使用開始	パラメータ			

統合型 HMI-Advanced ユーザー・インタフェースについては、以下を参照してくだ さい。:

参考文献: /BAD/, 操作マニュアル HMI Advanced SINUMERIK 840D/840Di/840D sl

その他、基本メニュー・バーまたは拡張メニュー・バーの一部のソフトキーは機械メ ーカーによって異なる操作範囲に割り当てられています。

これについては機械メーカーの情報に注意してください。

2.19 リモート診断

リモート診断

リモート診断を、診断操作範囲で CNC-ISO 操作画面で作動して下さい。

リモート診断の機能は、ソフトウェアのオプションです。

リモート診断の詳細については、以下を参照してください。 参考文献: /FB/、拡張機能の機能説明、F3

3

ShopMill によるプログラミング

3.1	プログラミングのための基礎	3-167
3.2	プログラム構成	3-170
3.3	作業ステッププログラム	3-171
3.3.1	プログラムのセットアップ; 未加工材の定義	3-171
3.3.2	新しいブロックのプログラミング	3-175
3.3.3	プログラムブロックの変更	3-178
3.3.4	プログラムエディタ	3-179
3.3.5	個数の指定	3-182
3.4	工具、修正値と主軸回転数のプログラミング	3-183
3.5	輪郭のフライス加工	3-184
3.5.1	輪郭の表示	3-187
3.5.2	新しい輪郭の作成	3-189
3.5.3	輪郭要素の作成	3-191
3.5.4	輪郭の変更	3-197
3.5.5	自由な輪郭プログラムのためのプログラミングコマンド	3-199
3.5.6	パス・フライス加工	3-203
3.5.7	輪郭ポケットの事前穴あけ	3-206
3.5.8	輪郭ポケットのフライス加工	3-209
3.5.9	余材の輪郭ポケットの一掃	3-211
3.5.10	輪郭ポケットの仕上げ削り	3-213
3.5.11	輪郭ポケットの面取り	3-216
3.5.12	輪郭ジャーナルのフライス加工 (粗削り)	3-217
3.5.13	余材の輪郭ジャーナルの一掃	3-218
3.5.14	輪郭ジャーナルの仕上げ削り	3-220
3.5.15	輪郭ジャーナルの面取り	3-221
3.6	直線または円形のパス移動	3-222
3.6.1	直線	3-222
3.6.2	周知の中心点をもつ円	3-224
3.6.3	周知の半径をもつ円	3-225
3.6.4	らせん	3-226
3.6.5	極座標	3-227
3.6.6	直線極	3-228
3.6.7	円極	3-229
3.6.8	極座標のプログラミング例	3-230
3.7	穴あけ	3-231
3.7.1	センタリング	3-231
3.7.2	穴あけとリーマ仕上げ	3-232
3.7.3	深ボーリング	3-233

3

3.7.4	旋盤によるくり抜き	35
3.7.5	タップ立て3-23	36
3.7.6	ネジ切りフライス加工	38
3.7.7	穿孔ネジ切りフライス加工3-24	12
3.7.8	任意の地点および位置構図での位置決め3-24	14
3.7.9	任意の地点	15
3.7.10	直線の位置構図3-24	19
3.7.11	グリッドの位置構図3-25	50
3.7.12	フレームの位置構図3-25	52
3.7.13	完全円の位置構図	53
3.7.14	部分円の位置構図3-25	55
3.7.15	位置のフェードイン/フェードアウト3-25	57
3.7.16	障害3-25	58
3.7.17	位置の反復3-26	30
3.7.18	穴あけ用のプログラミング例3-26	51
3.8	フライス加工	33
3.8.1	正面削り3-26	33
3.8.2	矩形ポケット3-26	6
3.8.3	円ポケット	70
3.8.4	長方形ジャーナル	73
3.8.5	円ジャーナル	76
3.8.6	縦グルーブ	78
3.8.7	円グルーブ	31
3.8.8	ネジ溝(開放)3-28	34
3.8.9	フライスの際の位置構図の利用3-28	39
3.8.10	彫り込み3-29	92
3.9	測定3-29	9 7
3.9.1	ワーク測定3-29	97
3.9.2	工具測定3-29	99
3.9.3	計測プローブの調整3-30)0
3.10	様々な機能3-30)1
3.10.1	サブプログラムの呼び出し3-30)1
3.10.2	プログラムブロックの反復3-30)3
3.10.3	プログラミング調整の変更3-30)5
3.10.4	原点オフセットの呼び出し3-30)5
3.10.5	座標変換の定義)6
3.10.6	シリンダーカバーの変換3-30)9
3.10.7	旋回3-31	12
3.10.8	追加機能3-31	8
3.11	作業プロセスプログラムのGコード挿入3-31	19

3

重要!	工作機械のプログラムの作成の際に、以下の基本事項に注意して下さい。
軸	フライス盤では、さらに 3 本の主軸が X、Y、Z で記されます。標準装備の場合、 軸 Z が工具軸です。
寸法表示 メートル あるいはインチ	制御装置は、メートルとインチの寸法表示で作動できます。基本設定に応じて、 制御装置は全てのジオメトリ値をメートル、またはインチの寸法表示で解釈しま す。 基本設定に関係なく、プログラム・ヘッド(未加工部分の決定)では寸法表示がメ ートルあるいはインチで調整できます。 この章では、全ての寸法表示はメートルになっています。
絶対寸法入力	絶対寸法入力の際には、寸法表示は、全移動の座標システムの原点に関連し ます。
增分寸法入力	増分(インクレメンタル)寸法入力では、プログラムされたパス情報の数値は、移 動パスに相当します。符号は、移動方向を示します。
工具 T	鉋屑を出す加工の際にも、工具のプログラミングが必要です。ShopMill 加工サ イクルでは、既にどのパラメータ面にも工具選択が組み込まれています。例外:簡 単な直線及び円のプログラミングには、事前に工具が選択されていなければなり ません。 工具選択は、直線/円では自立的に管理されます(モーダル)。つまり幾つかの加 エステップが、同じ工具で次々と続き、第一直線/円で、工具がプログラミングされ る必要があります。
工具長さの修正	工具長さの修正は、工具が交換されるとすぐに作動します。複数のバイトを備え た工具には、それぞれ異なった工具修正ブロックを分類することができます。 主軸工具の工具修正値は、プログラム(Reset)の実行後にも作動中です。

エ具半径修正は、軌道フライス加工を例外にサイクルの際に自動的に算入されます。機能「軌道フライス加工」と「直線」では、選択により半径修正をつけて、あるいはなしで加工できます。機能「直線」では工具半径修正が、自動的に管理されます(モーダル)。つまり自動的には再びスイッチが切れません。

主軸回転速度(S)は、分毎に主軸回転数を出します。左/右回転の調整は、 ShopMillの工具リスト内で可能です。

プログラミング:

ShopMillでは、新しい工具に交換されると、主軸回転速度の入力ができます。 主軸回転速度の代わりに、切削測度(V)が m/min で入力できます。

主軸開始/主軸停止:

工具を交換した後に直接主軸を開始できます。リセット、プログラム終了あるいは 工具交換の際に、主軸を停止できます。

切削測度

主軸回転速度

ShopMill によるプログラミング

3.1 プログラミングのための基礎

ワークのバイト角を加工する円周速度切削速度 (V) が m/min で表示されます。

切削速度

早送り移動
 プログラム行路が、できるだけ高い速度で、ワークを加工することなく直線状を移動します。早送りはブロック毎に有効です。つまり次のブロックに再び早送りで移動するべき時には、送り(F)では再び「早送り」を記入する必要があります。
 送りと早送りがプログラミングされていないと、自動的に最後にプログラミングされた
 送り値(加工-送り)で移動します。

送り移動工具は、プログラミングされた送りFで直線上あるいは円上をプログラミングされた(加工送り)終了地点まで移動し、ワークを加工します。加工送り(F)は、mm/分、mm/回転
または mm/歯で入力できます。フライスサイクルでは、送りは mm/分から mm/回
転への切り替えの際にも、方向回転の際にも自動的に換算されます。

フライスサイクルでは、粗削りの際の送りはフライス中心点に関係しています。仕 上げ削りの際にも、内部曲線のある輪郭を例外として送りはバイトに関連してい ます(フライスとワーク間の接点)。

送り mm/歯

フライスは、多切削ツールです。したがって切削角が最高の条件で切削すること を保障する数値が必要です。歯毎の送りは、フライスが歯の噛合いの際に進む 直線の行路に相当します。歯毎の送りは、二つの相前後する切削角の入り込み により生じるテーブル送りの行路と同様です。

<u>送りmm/歯</u>

加工送りには自動管理機能があります(モーダル)。つまり新しい加工技術で再び 最後にプログラミングされた送りで移動するべき時には、送りの入力は必要ありま せん。その間に早送りがプログラムされた時にもこれが通用します。

3.2 プログラム構成

プログラムは、三つの部分に分けられます プログラムヘッド、プログラムブロック、プログラムエンド これらのセクションは 1 つの工作図を構成しています。

プログラム構成

プログラムヘッド

プログラムヘッドには、全プログラムに有効な未加工材とパラメータの測定が含まれます。例

- mm または inch による測定単位
- 工具軸 X、Y または Z
- 後退面、安全間隔、加工回転向き

プログラムブロック 加工部分を維持するには、様々な加工方法、移動、機械コマンドなどをプログラ ミングしなければなりません。このプログラミングは、プログラムブロックで実行されま す。

連結 加工

制御装置が技術ブロックと位置ブロックを自動的に連結します。このブロックは、 長方形の括弧で、加エシンボルの横に直接、連結の初めから終わりまで印され ます。

ך 🛲	N10	センタリング	
a 8	N15	深ボーリング	
# 7≇£2 -	N20	ネジ山ボーリング	
₽┘	N25	001: ピッチ完全円	

ブロック N10 ... N25 が連結されています

3.3 作業ステッププログラム

_

機械に直接作成する作業ステッププログラムにはソフトウェア・オプションが必要です。

3.3.1 プログラムのセットアップ; 未加工材の定義

新しいプログラムを、「プログラムマネージャー」の範囲内に設置できます。

未加工材を入力するための

パラメータ

- ワーク原点が保存される原点オフセット(NPV)原点オフセットをソフトキー「原 点オフセット」で行います。原点オフセットを指示したくないときは、エ具リスト 内で選択あるいはパラメータの事前設定も消去できます。
- プログラムの寸法単位の確定 [mm あるいは inch]
- ワーク角頂点1(X0、Y0、Z0):
 ワークピース角頂点1は、未加工材測定の基準点です。絶対的に記入する 必要があります。
- ワーク角頂点2あるいは寸法

(X1、Y1、Z1 または L、W、H):

ワーク角頂点2は、ワーク角頂点1と向かい合わせにあります。絶対的に記 入する必要があります。寸法は、未加工材の長さ、幅、高さです。

ワーク角頂点1と2

ワーク角頂点1と寸法

- 工具軸:調整された軸では、工具長さが清算されます。
- 後面(RP)と安全距離(SC)

ワーク上方の平面

加工の際に、工具は、早送りで工具交換地点から後退面まで移動し、続い て安全距離へと移動します。この高さで加工送りが切り替わります。加工が 完了すると、工具は加工送りでワークから安全距離の高さまで移動します。 安全距離から後退面まで、そしてさらに工具交換地点まで早送りで移動しま す。

後退面は、完全に記入されます。

安全距離は、増分(インクレメンタル)で入力されます(符号なし)。

01/2008

後面(RP)と安全距離(SC)

様々なワーク高さでの安全距離

・ 加工回転方向:

ポケット、縦グルーブあるいはジャーナルの加工の際に、ShopMillは加工回 転方向(同期作動あるいは逆作動)と工具リスト内の主軸回転方向を考慮 します。ポケットは、時計周りあるいは反時計回りに加工されます。

同期作動あるいは逆作動でのポケットは、主軸方向右に加工します。

軌道フライス加工では、プログラムされた輪郭方向が加工方向を決定します。

1月

・ 位置構図での後退:

最大限に能率化された後退移動による加工の際には、工具は輪郭に沿り、 安全間隔(SC)の加工送りでワーク上を移動します。RPの後退では工具は 加工後に後退面に戻り、新しい位置に送達します。それにより、工具の取り 出しと送達の際のワーク障害物との衝突を、例えばポケット内のドリル加工あ るいは様々な面と位置でのグルービング加工の際に防げます。

最適化された後退

パラメータの保存

入力したパラメータは保存されます。続いて工作図が表示されます。

プログラム終了

ShopMillは、自動的にプログラムの終了を決定します。

3.3.2 新しいブロックのプログラミング

プログラムブロックの作成 未加工材が決定されると、個々のプログラムブロックで加工、送り、位置がプログ ラミングされます。その際に、「解説図」により個々の加工進行が補助されます。 プログラム用には、容量の大きい保存スペースが用意されています。 必要とされる容量に応じて、制限のあるブロック数のみをプログラムできます。 NCU (HMI Emdedded sl)の ShopMill • 「直線」機能で最高 1000 ブロックを、あるいは「ポケットフライス加工」機能で 最高 600 ブロックをプログラミングできます。 PCU 50.3 (HMI Advanced) 「直線」機能で最高 3500 ブロックを、あるいは「ポケットフライス加工」機能で 最高 2100 ブロックをプログラミングできます。 複数の固定の場合は、プログラムは、許容数をわずかに超えるプログラムブロック を明示できます。ブロック数が多すぎるというメッセージが出た場合、サブプログラム 内の同じ工具による加工を統合してください。こうしてプログラムを開き、加工処 理することができます。 新しいプログラムブロックは、常にマーキングされたブロックの後に挿入されます。プ 注意 ログラムヘッドの前とプログラムエンドの後では、ブロックはプログラムできません。 パラメータ-入力欄 送り: 送り(F)で数値がプログラムされていないと(空欄)、最後にプログラムされた送りが 取り込まれます。 入力欄を空欄にする: DEL-キー(あるいは Backspace-キー)により入力欄を空欄にできます。つまりプロ グラムされた数値は消去されます。 埋められた、及び空欄のパラメータ入力欄:

すでに埋められた欄には常に記入されています。欄が空欄になると、ソフトキー 「確定」はもはや表示されません!

ソフトキー「代替」とトグル-キー:

カーソルが切り替え機能により入力欄上にあると、自動的にソフトキー「代替」が 垂直ソフトキー枠上に表示されます(ソフトキー「代替」の章「操作およびプログラミ ングの際の重要なソフトキー」を参照。

粗削り/仕上げ削り:

どのサイクルも、粗削りあるいは仕上げ削りがプログラミングされています。初めに 粗削りされ、続いて仕上げ削りをするならば、サイクルが2回呼び出されます。プ ログラムされた数値は、もう一度呼び出すと保存されます。 幾つかのサイクルでは粗削りと仕上げ削りも**完全加工**として提供されます。つまり

サイクルは一度だけ呼び出す必要があります。

サイクルに移動開始

• ShopMill によりプログラミングされたサイクルの作動開始

工具は後退面(RP)の上部にあります:
 工具の位置付けは、送り速度で X/Y 面で、その後後退面(RP)の Z 方向に実行されます。

後退面の上部サイクルへの作動開始

- または工具は後退面(RP)の下部にあります:

ShopMill によるプログラミング 3.3.1 プログラムのセットアップ: 未加工材の定義

3

工具の位置付けは、送り速度で初めに後退面(RP)のZ方向に、その後 X/Y 面で実行されます。

後退面の下部サイクルへの作動開始

- 工具軸は早送り速度で安全間隔(SC)上を移動します。
- その後サイクル加工が、プログラムされた加工送りにより実行されます。
- 加工後に工具は、加工送りにより X/Y 面のサイクル中心まで、引き続きエ 具軸によりワークから安全間隔まで移動します。
- その後、工具軸は後退面まで早送りで戻ります。
- 後退面が、工具交換地点に早送りで到達します。

01/2008

プログラムされた ShopMill 内のパラメータを、あとから最適化したり、新たな状況 に適応させたりできます。例えば送り速度を上げたり、位置を移動させたいとき。 その際全てのパラメータを、全プログラムブロック内で直接、付属のパラメータ面を 変更できます。

▶ ソフトキー「プログラム」を押してください。

ディレクトリー覧が表示されます。

- プログラムを開きたいディレクトリ上にカーソルを置きます。
- ▶ 「カーソル右」または「Input」キーを押してください。

全てのプログラムがディレクトリ内に表示されます。

- ▶ 変更したいプログラムを選択してください。
- > 「カーソル右」または「Input」キーを押してください。

プログラムの加工計画が表示されます。

- カーソルを工作図内の希望の目的プログラムブロック上に位置付けしてください。
- ▶ 「カーソル右」キーを押して下さい。

選択したプログラムブロックのパラメータ面が映し出されます。

- ▶ 変更を入力して下さい。
- ▶ ソフトキー「確定」または「カーソル左」を押してください。

変更がプログラム内に取り込まれました。

3.3.4 プログラムエディタ

=?

プログラムブロックの順序をプログラム内で変更し、プログラムブロックを消去あるい はプログラムブロックをあるプログラムからその他にコピーしたい時には、プログラムエ ディタを使用して下さい。

プログラムエディタでは、以下の機能が利用できます:

• マーキング

幾つかのプログラムブロックを、後に例えば切り取ったり、コピーしたりできるよう に同時にマーキングできます。

- コピー/挿入 プログラム内で、あるいは異なるプログラム間でプログラムブロックをコピーしたり 挿入したりできます。
- 切り取り プログラムブロックを切り取ったり、消去できます。プログラムブロックは、ブロック をその他の位置に再び挿入できるように中間メモリ内に保存されます。
- 検索

プログラム内では、プログラム番号に応じて任意の記号順序で検索できます。

- 書き換え プログラムエディタでは、例えば輪郭を事前にコピーしていると輪郭を書き換え できます。
- 通し番号

新しいあるいはコピーしたプログラムブロックを、二つの現存する間に挿入する と、ShopMillが自動的に新しいブロック番号が与えられます。このブロック番 号は、次に続くブロック番号より大きくできます。機能「通し番号」で、プログラ ムブロックを再び上昇して通し番号をつけることができます。

 プログラムエディタを開く	▶ プログラムを選択してください。
	> 「拡張」ボタンを押して下さい。 垂直ソフトキー枠では、プログラムエディタのソフトキーが映し出されます。
プログラムブロックのマーキング	カーソルを工作図内のマーキングしたい初めのあるいは最後のブロック上に置きます。
マーキング	▶ ソフトキー「マーキング」を押してください。
	カーソルキーで、マーキングしたいその他全てのプログラムブロックを選択してください。
	プログラムブロックがマーキングされます。
プログラムブロックのコピー	▶ 工作図内の希望のプログラムブロックをマーキングしてください。
	▶ ソフトキー「コピー」を押してください。
	プログラムブロックが、中間メモリにコピーされます。
プログラムブロックの切り取り	▶ 工作図内の希望のプログラムブロックをマーキングしてください。
切り取り	▶ ソフトキー「切り取り」を押してください。
	プログラムブロックが工作図から取り除かれ、中間メモリに保存されます。
プログラムセットの挿入	▶ 工作図の希望のプログラムブロックをコピーあるいは切り取ります。
	 プログラムブロックが後に挿入されるべきプログラムブロック上にカーソルを置き ます。
挿入	▶ ソフトキー「挿入」を押してください。
	プログラムブロックは、プログラムの工作図内に挿入されます。
01/2008

検索	
検索 >	▶ ソフトキー「検索」を押してください。
	▶ ブロック番号あるいはテキストを入力して下さい。
	▶ 検索がプログラム開始あるいは現在のカーソル位置で始めるかどうか選択して下さい。
検索	▶ ソフトキー「検索」を押してください。
	ShopMIII がプログラムを徹底して検索します。 見つかった概念が、カーソルでマー キングされます。
広げて検索	▶ 検索を続けたい場合には、ソフトキー「広げて検索」を押してください。
輪郭の書き換え	▶ カーソルを工作図内の輪郭上に置いてください。
リネーム	▶ ソフトキー「リネーム」を押してください。
	▶ 輪郭に新しい名前を入力して下さい。
	>> ソフトキー「OK」を押してください。
DK	輪郭の名前が変更され、工作図内に表示されます。
プログラムブロックの連番	
新規連番	▶ ソフトキー「新規連番」を押します。
	プログラム・ブロックが昇順で番号付けされます。
プログラムエディタの終了	
	▶ ソフトキー「戻る」を押し、プログラム・エディタを終了します。

3.3.5 個数の指定

同じワークを特定の個数製作したい場合、プログラム・エンドの位置に希望する個数を入力することができます。プログラムを後でスタートさせる場合、プログラムの処理は指定された回数だけ繰り返されます。

- ▶ 複数のワークを加工する場合、ブロック「プログラム・エンド」を開きます。
- ▶ 加工したいワークの数を入力します。
- ▶ ソフトキー「確定」を押します。

プログラムを後でスタートさせる場合、プログラムの処理は指定された回数だけ繰り返されます。

プログラムの処理を無限に繰り返す場合、ソフトキー「無限」を押します。 「リセット」を使って、プログラム実行を中断することができます。

3.4 工具、修正値と主軸回転数のプログラミング 一般 サイクルのプログラミングの際には工具が、面に含まれます。直線コースあるいは円 弧のプログラミングの際に、事前に工具を選択しなければなりません。 直線 ÈЩ 工具 ソフトキーで呼び出します エ具のプログラミング(T) パラメータ欄「T」の選択 ShopMillは、工具を記入する様々な機能を提供してい ます: 1. 機能: 工具の名前あるいは番号をキーにより入力します。 2. 機能: 範囲キー「工具、オフセット」を押します。 工具を矢印キーで選択し、ソフトキー プログラムへ で作動します。 工具がパラメータ欄に取り込まれます。 バイト (D) プログラムされたどんな工具にも、どの切削修正値 D で移動するか選択あるいは 入力できます。修正は工具リスト内に保存されます。 様々な工具(フラット・シンカ、ステッピング・ドリル付きのフラット・シンカー)では、正 しい切削番号 D がプログラムされる必要があります。そうでないと衝突の危険性 が生じます(ドリル加工の際のプログラミング例)と「工具と工具修正」の章を参 照)。 主軸回転速度 (S) または ShopMillでは、主軸回転速度(S)あるいは切削測度(V)がプログラミングできま す。切り替えは、「代替」キーで実行できます。フライスサイクルでは、自動的に主 切削速度 (V) 軸回転速度が切削速度に換算され、反対になります。 主軸回転速度と切削測度は、新しい工具がプログラムされる間は作動したま まです。 主軸回転速度は、回転/分でプログラミングされます。 切削速度は、m/分でプログラミングされます。 工具の回転方向は、工具リスト内で調節できます。 測量 (DR) このパラメーター入力欄では、測量が工具半径に基づいてプログラムできます。輪 郭の加工の際には、それにより精密な測量が作動しません(「工具と工具修正」 の章を参照)。 パラメータ DR は、ShopMill サイクル(穴あけ、フライス加工、輪郭フライス加工) がプログラムされている限り作用します。 例 任意の輪郭上には、0.5mmの精密な量目が維持されます。DRは、0.5mmで プログラムされなければなりません。 DR=0では、プログラムされた輪郭は精密な量目なしにフライス加工されます。

3.5	輪郭のフライス加工	
		単純または複雑な輪郭をフライス加工したい場合、機能「輪郭フライス加工」を 利用します。開いた輪郭または閉じた輪郭(ポケット、島、ジャーナル)を定義し、 パス・フライスまたはフライス・サイクルで加工することができます。
=?		輪郭は個々の輪郭要素からなり、少なくとも2から最大 250 個の要素が定義さ れた輪郭を構成しています。輪郭要素、傾斜角、半径または正接移行をプログ ラムすることができます。
		ー体型の輪郭演算機は、ジオメトリの関係を考慮しながら、各輪郭要素の交点 を計算し、これにより計測が不十分な要素を入力することができます。
		輪郭フライス加工では、まず輪郭のジオメトリをプログラムし、続いてテクノロジーを プログラムする必要があります。 任意の輪郭をパス・フライス加工で処理するか、または島付きまたは島なしのポケ ットまたはジャーナルを一掃することができます。
	任意の輪郭	任意の開いた輪郭または閉じた輪郭の加工を、次のようにプログラムすることがで きます。
		 輪郭を入力する 各種輪郭要素から連続して輪郭をまとめます。 パス・フライス加工(粗削り) 輪郭はさまざまな到達/離脱を考慮して加工されます。 パス・フライス加工(仕上げ削り) 粗削りでは、仕上げ削り寸法をプログラムした場合、輪郭が再度加工されます。 4. パス・フライス加工(面取り)
	ポケットまたは島の輪郭	角が破損している場合は、特殊工具でワークの面取りをしてください。 ポケットまたは島の輪郭は閉じていなければなりません。つまり、輪郭の始点と終 点が同一です。内部に1つまたは複数の島をもつポケットもフライス加工すること ができます。島も部分的に、ポケットの外側にあったり、重なっていることが可能で す。ShopMillは最初に指定された輪郭をポケット輪郭として解釈し、他のすべて は島として解釈します。
		島をもつ輪郭ポケットの加工はたとえば以下のようにプログラムします。
		 ポケットの輪郭を入力する 輪郭ポケットを各種輪郭要素からまとめます。 島の輪郭を入力する 島の輪郭を輪郭ポケットの後で入力します。 輪郭ポケットの予備穴をセンタリングする 輪郭ポケットの予備穴を作りたい場合、ドリルが滑って位置ずれしないように、 まず予備穴をセンタリングします。

- 4. 輪郭ポケットの予備穴を開ける
 輪郭ポケットの一掃時に垂直に沈降し、前歯をもつフライス機が利用できない場合、ポケットの予備穴を開けることができます。
- 島付き輪郭ポケットを一掃する(粗削り)
 さまざまな沈降方針を考慮して島付きの輪郭ポケットを一掃します。
- 残留材料を一掃する (粗削り)
 ShopMill はポケットの一掃時に自動的に残ったままの残留材料を認識します。ポケット全体を再度加工しないで、適切な工具を使ってこれを一掃します。
- 高付き輪郭ポケットを仕上げ加工する(縁/基部の粗削り) 粗削りで縁/基部の仕上げ削り寸法をプログラムした場合、ポケットの縁/基部 が再度加工されます。

輪郭フライス加工に関与するすべての加工段階が工作図内にカギカッコでまとめ られています。

フライ	ス加工		
Ρ	N5	フライス加工	
\sim	N10	輪郭ポケット	
\sim	N15	輪郭島	
- 19/10 -	N20	センタリンク	
18 77/72 -	N25	事前穴あけ	
Ø.	N3Ø	ポケット・フライス加工	▽
<u>,</u>	N35	ポケット・余材	▽
Ø.	N40	ポケット・フライス加工	
END		プログラム終了	

例:輪郭ポケットの一掃

ジャーナルの輪郭

ジャーナルの輪郭は閉じていなければなりません。つまり、輪郭の始点と終点が同 ーです。重なり合うこと可能な複数のジャーナルを定義することができます。 ShopMill は最初に指定された輪郭を未加工部の輪郭として解釈し、他のすべ てはジャーナルとして解釈します。

ジャーナル輪郭の加工を、例えば次のようにプログラムして下さい。

- 未加工部の輪郭の入力 その範囲外に材質がない場合、未加工部分の輪郭は、範囲を確定します。 つまりそこに早送りで移動します。未加工部分の輪郭とジャーナルの輪郭の 間で、材質が取り除かれます。
- ジャーナルの輪郭を入力する
 ジャーナルの輪郭を未加工部輪郭の後に入力します。
- 4. 輪郭ジャーナルの一掃(粗削り)
 輪郭ジャーナルが一掃されます。

- 残りの材料を一掃する(粗仕上げ)
 ShopMillは、ジャーナルの研削時に残った材料を自動的に認識します。適切な工具を使って、ジャーナル全体を再度加工することなく、これを一掃することができます。
- 5. 輪郭ジャーナルのフライス加工 (縁/基部の仕上げ削り) 粗削りでは、仕上げ削り寸法をプログラムした場合、ジャーナルの縁/基部が 再度加工されます。

3.5.1 輪郭の表示

🖪 シンボルでの表示

ShopMillは、輪郭を工作図でプログラム・ブロックとして表します。このブロックを 開くと、個々の輪郭要素がシンボルでリストアップされ、線図で示されます。

輪郭の個々の輪郭要素は入力された順番でグラフィック・ウィンドウの横にシンボ ルで表示されます。

輪郭要素	シンボル	意味
スタート地点	\oplus	輪郭の始点
上向の直線	Ť	90°グリッドの直線
下向きの直線	Ļ	90°グリッドの直線
左向き直線	←	90°グリッドの直線
右向き直線	\rightarrow	90°グリッドの直線
任意の直線	~	任意の傾斜をもつ直線
右向きの円弧 右	\sim	П
左向きの円弧 左	$\widehat{}$	円
極	Ł	対角線上の直線または極座標の 円
輪郭終了	END	輪郭記述の終わり

R

シンボルのさまざまな色はその状態に関する情報を表しています。

前景	背景	意味
-	赤	カーソルが、新しい要素上にある
黒	赤	カーソルが、現在の要素上にある
黒	白	通常の要素
赤	白	要素は現在考慮されていません。
		(要素は、カーソルで選択した後に考慮され
		ます)

グラフィック表示

輪郭要素の連続入力に同期して、グラフィック・ウィンドウに輪郭プログラムの進行 状況が線図で示されます。

輪郭フライス時の輪郭のグラフィック表示

このとき、生成された輪郭要素は各種の線種および色で表すことができます。

- 黒: プログラミングされた輪郭
- オレンジ: 現在の輪郭要素
- 緑の縞線: 代わりの要素
- 青い点 部分的に決められた要素

座標系のスケーリングは輪郭全体の変化に適合化します。

座標系の位置はグラフィック・ウィンドウに表示されます。

3.5.2 新しい輪郭の作成

		フライス加工したいすべての輪郭について、固有の輪郭を作成する必要がありま す。
-2		輪郭は、プログラムの終了時に保存されます。
		新しい輪郭を作成するときは、まず始点を決定する必要があります。ShopMill は、輪郭終点を自動的に定義します。
		工具軸を変更すると、ShopMillは自動的に付属のスタート地点軸を変更します。
		始点については、任意の追加命令(最大 40 文字)を G コードの形で入力する ことができます。
	補足命令	追加の G コードコマンドにより任意の送りと M コマンドをプログラムできます。 追加 命令が生成された輪郭の G コードとぶつからないように注意してください。 そのため グループ 1 (G0, G1, G2, G3)の G コードコマンド、 面座標、 独自のブロックを必 要とする G コードコマンドを利用しないでください。
8		すでにあるものと似たような輪郭を作成したいなら、前の輪郭をコピーし、名前を 変えて、選択した輪郭要素だけを変えることができます。 それに対して、同一の輪郭をプログラムのその他の場所にもう一度利用したい時 は、コピーの名前を変えてはいけません。輪郭の変更は、自動的に同じ名前の輪 郭に受け継がれます。
_ →	■ 輪郭 ○つうイス加工	▶ ソフトキー「輪郭フライス加工」および「新しい輪郭」を押します。
	新しい輪郭>	➤ 新しい輪郭の名前を入力します。 輪郭名は、明確でなければなりません。
	1	> ソフトキー「OK」を押してください。
	UK	輪郭の始点の入力面が表示されます。デカルト座標または極座標を指示できま す。
	デカルトの始点	▶ 輪郭の始点を入力します。
		▶ 希望するなら、Gコードの形で追加命令を入力します。
	確定	▶ ソフトキー「確定」を押します。
		▶ 個々の輪郭要素を入力します(「輪郭要素の作成」の章を参照)。

₿	パラメータ	説明	単位
	工具軸	工具軸として Z を選択すると、始点/極は X / Y にあります。	
		工具軸としてXを選択すると、始点/極はY/Zにあります。	
		工具軸としてYを選択すると、始点/極はX/Zにあります。	
		座標は、輪郭要素でも変化します。	
		デカルト座標:	
	х	X 方向の始点 (abs)	mm
	Y	Y 方向の始点(abs)	mm
		極:	
	х	X 方向の極始点 (abs)	mm
	Y	Y 方向の極始点 (abs)	mm
	L1	極と輪郭の始点間の間隔 (abs)	mm
	φ1	極と輪郭の始点間の極角度 (abs)	度
	追加命令	追加のGコードコマンドについては上記を参照してください。	

3.5.3 輪郭要素の作成

新しい輪郭を作成し、始点を決定したら、輪郭を構成する個々の輪郭要素を 定義します。

以下の輪郭要素を輪郭の定義に使用できます。

- 直線 水平型
- 直線 垂直型
- 直線 対角線上
- 円/円弧

各輪郭要素について、専用のパラメータ・マスクに入力します。水平あるいは垂直 直線の座標をデカルト方式で入力します。対角線上の直線、円/円弧の輪郭要 素では、デカルト座標と極座標間を選択できます。極座標を入力したい場合 は、前もって極を定義しなければなりません。すでに始点に極を定義した場合、こ の極にも極座標を関係付けることが可能です。つまりこの場合、その他の極を定 義する必要はありません。

シリンダーカバー変換
 シリンダー上の輪郭(例えばグルーブ)では、長さ用の角度がよく指示されています。「シリンダーカバー変換」機能が、ソフトキー「代替」により作動している場合は、シリンダー上で輪郭の長さ(シリンダーカバー面の円周方向)を角度指示により決定できます。つまりX、Y、I、Jのかわりに、Xa、Ya、Ia、Jaを入力します。(「シリンダーカバー変換」の章も参照)

これについては機械メーカーの情報に注意してください。

パラメータ入力 パラメータの入力にあたっては、このパラメータを説明するヘルプがサポートされています。

ー部の欄に値を入力しないと、ShopMillはこの値が未指定で、他のパラメータからの計算を試みようとします。

不可欠なものとして複数のパラメータを入力した輪郭では、矛盾が生じることがあります。このような場合、ShopMillが計算できるように、入力するパラメータの数を少なくします。

加工方向 パス・フライス加工では、輪郭は必ずプログラムされた方向に処理されます。時計 回りまたは反時計回りの輪郭のプログラムによって、輪郭が同期または逆方向で 加工されるかどうかを規定することができます(以下の表を参照)。

外輪郭		
希望の回転方向	主軸回転方向 右	主軸回転方向 左
同期作動	時計回りのプログラミング	反時計回りのプログラミング, 右フライス機半径
	左フライス機半径補正	補正
逆作動	反時計回りのプログラミング, 右フライス機半径	時計回りのプログラミング
	補正	左フライス機半径補正

内部輪郭		
希望の回転方向	主軸回転方向 右	主軸回転方向 左
同期作動	反時計回りのプログラミング、フライス半径修正	時計回りのプログラミング、
	左	フライス半径修正 右
逆作動	時計回りのプログラミング、	反時計回りのプログラミング、フライス半径修正
	フライス半径修正 右	左

輪郭移行要素 2 つの輪郭要素の間で移行要素として半径または傾斜角を選択することができます。移行要素は輪郭要素の終点では必ず挿入されます。輪郭以降要素の選択は各輪郭要素のパラメータ・マスクで行います。

接する2つの要素の交点が存在し、これが入力値から計算することができる場合、つねに輪郭移行要素を使用することができます。そうでない場合、輪郭要素の直線/円を使用する必要があります。

つまり輪郭が閉じている場合には、輪郭の最後から最初の移行要素をプログラム できます。始点は、移行要素のプログラミング後に輪郭の外側にあります。

追加命令 各輪郭要素について、追加命令をGコードの形で入力することができます。 追加命令(最大 40 文字)は拡張パラメータ・マスクで入力します(ソフトキー「す べてのパラメータ」)。

1		追加の G コードコマンドにより任意の送りと M コマンドをプログラムできます。 追加 命令が生成された輪郭の G コードとぶつからないように注意してください。 そのため グループ 1 (G0, G1, G2, G3)の G コードコマンド、 面座標、 独自のブロックを必 要とする G コードコマンドを利用しないでください。
	その他の機能	 輪郭のプログラミングでは、以下の拡張機能が利用できます。 先行要素への正接 先行要素への移行は正接としてプログラムすることができます。 ダイアログ選択 入力済みのパラメータに2つの異なる輪郭の可能性がある場合、いずれかを 選択する必要があります。 輪郭を閉じる 現在位置から始点までの直線を使って輪郭を閉じることができます。
→	輪郭要素の入力	
		 ソフトキーを使って輪郭要素を選択します。 ワーク図面から得られるすべてのデータを入力面に入力します(例:直線の長さ、終点位置、継続要素への移行、傾斜角など)。
	確定	 ソフトキー「確定」を押します。 輪郭要素が輪郭に追加されます。 輪郭が完全になるまで、このプロセスを繰り返します。
	確定	> ソフトキー「確定」を押します。 プログラムされた輪郭が工作図に転送されます。
f	すべての パラメータ	追加命令を入力するためなど、個々の輪郭要素で他のパラメータを表示させた い場合、ソフトキー「すべてのパラメータ」を押します。
	極の定義	輪郭要素の対角線上の直線、円/円弧を極座標に入力したい場合、あらかじめ 極を定義しなければなりません。
	その他をしていたのである。その他をしていた。	 ソフトキー「その他」と「極」を押して下さい。 局の座標を入力します。
	確定	ソフトキー「確定」を押します。 極が定義されています。ここで輪郭要素の対角線上の直線、円/円弧の入力面で、「デカルト」および「極」を選択できます。

<u>3.5 輪郭のフライス加工</u>	3
先行への接線	輪郭要素のデータ入力中に、先行要素への遷移を接線としてプログラムすること ができます。
先行への 接線	▶ ソフトキー「先行への接線」を押します。
]女帅水	先行要素 α2 への角度が 0°に設定されます。パラメータの入力欄には、選択 「接線」が表示されます。
ダイアログ選択	輪郭要素のデータ入力中に、2つの異なる輪郭が生じます。そこから1つを選ば なくてはなりません。
ダイアログ 選択	▶ ソフトキー「ダイアログ選択」を押し、二つの輪郭を切り替えます。
	グラフィック・ウィンドウでは、選択された輪郭は黒い線で、また、代替の輪郭は緑 色の破線で表示されます。
ダイアログ 確定	▶ ソフトキー「ダイアログ確定」を押し、選択を転送します。
輪郭を閉じる	輪郭は常に閉じていなければなりません。開始地点から開始地点まで、全ての 輪郭要素を作成したくない場合は、輪郭を現在地点から開始地点まで閉じるこ とができます。
その他 開じる	▶ ソフトキー「その他」と「輪郭を閉じる」を押して下さい。
wo1k1	ShopMill は現在位置から始点までの直線を作成します。
	3.5 輪郭のフライス加工 先行への接線 先行への 接線 ダイアログ選択 ダイアログ 選択 ダイアログ 音形を閉じる その他 その他

J

パラメータ	輪郭要素「直線」の記述	単位
	│ │ デカルト座標:	
x	X 方向の終点 (abs または inc)	mm
~	増分(インクリメンタル)寸法:符号が評価されます。	
Y	Y 方向の終点 (abs または inc)	mm
	インクリメンタル寸法:符号が評価されます。	
1	直線の長さ	mm
- α1	X軸に対する開始角度	度
α2	 先行要素に対する角度	度
	接線移行: α2=0	
	極:	
L1	abs:極と終点間の間隔	mm
	inc:最後の地点と終点間の距離	mm
	インクリメンタル寸法:符号が評価されます。	
φ1	abs:極と終点間の極角度	度
	inc:最後の地点と終点間の極角度	度
	インクリメンタル寸法:符号が評価されます。	
L	直線の長さ	mm
α1	X 軸に対する開始角度	度
α2	先行要素に対する角度	度
	接線移行: α2=0	
移行要素への	FS:つぎの輪郭要素に対する移行要素としての傾斜角	mm
移行	R:つぎの輪郭要素に対する移行要素としての半径	mm
追加命令	追加の G コードコマンドについては上記を参照してください。	

₿	パラメータ	輪郭要素「円」の記述	単位
	回転方向		
	R	円の半径	mm
		デカルト座標:	
	х	X 方向の終点 (abs または inc)	mm
		インクリメンタル寸法:符号が評価されます。	
	Y	Y 方向の終点 (abs または inc)	mm
		インクリメンタル寸法:符号が評価されます。	
	1	X 方向の円中心 (abs または inc)	mm
		インクリメンタル寸法:符号が評価されます。	
	J	Y 方向の円中心 (abs または inc)	mm
		インクリメンタル寸法:符号が評価されます。	±
	α1	X 軸に対する開始角度	皮
	α2	先行要素に対する角度	皮
		接線移行: α2=0	#
	β1	X軸に対する最終角	度
	β 2	円の開口角度	度
		極:	
	L1	abs:極と終点間の間隔	mm
		inc:最後の地点と終点間の距離	mm
		インクリメンタル寸法:符号が評価されます。	
	m1	abs:極と終点間の極角度	度
	Ψ.	 inc:最後の地点と終点間の極角度	度
		インクリメンタル寸法:符号が評価されます。	
	L2	abs:極と終点間の間隔	mm
		 inc:最後の地点と円中心点間の距離	mm
		 インクリメンタル寸法:符号が評価されます。	
	" ?	 abs:極と終点間の極角度	度
	ψΖ	 inc:最後の地点と円中心点間の極角度	度
		 インクリメンタル寸法:符号が評価されます。	
	g1	× 軸に対する開始角度	度
	a2	先行要素に対する角度	
	uz	接線移行: α2=0	度
	ß1	× 軸に対する最終角	
	B2	円の開口角度	度
	P ~		度
	移行要素への	FS:つぎの輪郭要素に対する移行要素としての傾斜角	mm
	移行	R:つぎの輪郭要素に対する移行要素としての半径	mm
	追加命令	追加のGコードコマンドについては上記を参照してください。	

▶ ソフトキー「確定」を押します。

希望する輪郭要素が輪郭に追加されます。

- > 工作図で輪郭を選択します。
- ▶ 「カーソル右」キーを押して下さい。

個々の輪郭要素がリストアップされます。

- ▶ 修正したい輪郭要素にカーソルを置きます。
- ▶ 「カーソル右」キーを押して下さい。

対応する入力マスクが開き、プログラミング・グラフィックで選択した要素が拡大表示されます。

- ▶ 希望する変更を入力します。
- ▶ ソフトキー「確定」を押します。

輪郭要素の現在値が取り込まれ、プログラムグラフィックに変更がすぐに表示されます。

確定

✓ 確定

輪郭要素の変更

3	ShopMill によるプログラミング 35 輪郭のフライフ加工	01/2008
	ダイアログ選択の変更	輪郭要素のデータ入力中に、二つの異なる輪郭を選ぶことができ、間違った輪郭 を選択した場合は、後から変更することができます。ある明確な輪郭が他のパラメ ータをもつ場合、ダイアログ選択は表示されません。
		▶ 輪郭要素の入力面を開いてください。
	選択の変更	▶ ソフトキー「選択の変更」を押します。
		選択可能な輪郭が二つ、再び表示されます。
	ダイアログ	▶ ソフトキー「ダイアログ選択」を押し、二つの輪郭を切り替えます。
	ダイアログ	▶ ソフトキー「ダイアログ確定」を押します。
	確定	選択したものが確定されます。
	輪郭の挿入	▶ 工作図で輪郭を選択します。
		▶ 「カーソル右」キーを押して下さい。
		個々の輪郭要素がリストアップされます。
		▶ 新しい要素を挿入したい輪郭要素にカーソルを置きます。
		▶ ソフトキーによって新しい輪郭要素を選択します。
	+ + +	▶ パラメータを入力マスクに入力します。
		▶ ソフトキー「確定」を押します。
	VIE AC.	輪郭要素が輪郭に転送されます。つぎの輪郭要素が新しい輪郭状態に応じて
		更新されます。
5		要素が輪郭に挿入されると、グラフィックス・ウィンドウの隣にある最初の続く要素 のシンボルがカーソルで選択した場合に、残りの輪郭要素が始めて考慮されま す。
		場合によっては、挿入された要素の終点は以下の要素の始点には適合化されま せん。このケースでは、ShopMillはエラーメッセージ「ジオメトリ値が矛盾」が表示 されます。矛盾を解消したい場合、パラメータ値を入力せずに傾斜を挿入しま す。
	輪郭要素の消去	▶ 工作図で輪郭を選択します。
		\sim $[+-) + -5 + -5 + -5 + -5 + -5 + -5 + -5 +$
		➤ 「リ ノルロ」イーで押しし下さい。 (周 カ の 絵 郭 亜 表 が) フトマップ さわ ます
		◎ マッキボチャ女 ホルワストワッフ ビイルより 。
		ア 府広してい、「開発安系にカーブルを置きます。

3.5.5 自由な輪郭プログラムのためのプログラミングコマンド

要素	入力	備考
\frown	回転方向左、R=9.5、I=0 abs.、ダイアログ選択、移行要素への移行 R=2	
\sim	α1=-30 度	解説図の角度に注意!
(\uparrow)	回転方向右、先行への接線.、 R=2、J=4.65 abs.	
\frown	回転方向左、先行への接線., R=3.2、l=11.5 abs., J=0 abs., ダイアログの選択、ダイアログ選択	
\frown	回転方向右、先行への接線. R=2, J=-4.65 abs., ダイアログ選択	
\sim	先行への接線 Y=–14.8 abs., α1=–158 度	解説図の角度に注意!
\longleftrightarrow	全てのパラメータ、L=5、ダイアログ選択	
\$	Y=5.7 abs.	
$\leftarrow \bullet \rightarrow$	X=0 abs.	

輪郭の製図

要素	入力	備考
\$	Y=-104 abs.	
\frown	回転方向右、R=79、I=0 abs., ダイアログ選択、	
4 4	全てのパラメータ、β2=30 度	
(回転方向右、先行への接線.、	
4 4	R=7.5、全てのパラメータ、β2=180 度	
	回転方向左、R=64、X=-6 絶対、I=0 絶対、	
4 4	ダイアログ選択、ダイアログ選択	
	移行要素への移行:R=5	
Ť	全てのパラメータ、α1=90 度、	解説図の角度に注意!
Ŧ	移行要素への移行:R=5	
\frown	回転方向右、R=25、X=0 abs., Y=0 abs.I=0 abs., ダイアログ選択、ダ	
+ +	イアログ選択	

3

スタート地点: X=5.67 abs., Y=0 abs. 輪郭が反時計周りにプログラミングされています。

輪郭の製図

要素	入力	備考
\longleftrightarrow	全てのパラメータ、α1=180 度	解説図の角度に注意!
4.4.4	X=-43.972 インクレメンタル、全てのパラメータ	「絶対」及び「インクレメンタル」での座標 X
	X=–137,257 abs., α1=–125 度	解説図の角度に注意!
\sim	X=43.972 インクレメンタル	「絶対」及び「インクレメンタル」での座標 X
\sim	α1=–55 度	解説図の角度に注意!
\longleftrightarrow	X=5.67 絶対	
\frown	回転方向右、R=72、X=5.67 abs., Y=0 abs.、ダイアログの選 択	

3.5.6 パス・フライス加工

輪郭

フライス加工

フライス加工

到達/離脱モート

輪郭左あるいは右の軌道

パスフライス

加エ>

「軌道フライス加工」機能により、任意のプログラム輪郭に沿ってフライス加工がで きます。機能がフライス半径修正と同時に作動します。加工は、任意の方向に、 つまりプログラムした輪郭方向またはその反対に処理できます。 輪郭が閉じている必要はありません。以下の加工が可能です。

- 内部あるいは外部加工(輪郭左あるいは右)
- 中心点軌道上の加工

反対方向への加工には、最高 170 の輪郭要素から輪郭を構成できます。(斜 面角/半径込み)

自由に入力できる G コードの特徴 (送り値を除く)は、輪郭方向とは逆のパス・フ ライス加工の際には注意されません。

> ソフトキー「輪郭フライス加工」および「パス・フライス加工」を押します。

プログラムされた輪郭は、フライス半径により右あるいは左に加工できます。その際 ユーザーは、様々な到達、離脱モードおよび到達、離脱計画を選択できます。

輪郭を、4分の1の円、半円あるいは一直線上に到達又は離脱させることができます。

- 4 分の 1 の円あるいは半円では、フライス中心点の軌道半径が指示されてい る必要があります。
- 直線では、フライス外部角から輪郭スタート地点までの距離又は輪郭地点が 指示されていなければなりません。

混合プログラミング、例えば4分の1の円への到達、半円での離脱も可能です。

直線、4 分の 1 の円、半円での輪郭の到達及び離脱; (L1=到達長さ、L2=離脱長さ、R1=到達 半径、R2=離脱半径)

ShopMill によるプログラミング 3.5 輪郭のフライス加工

到達/離脱計画 ユーザーは、平面の到達/離脱と立体の到達/離脱間を選択できます:

- 平面の到達: 初めに Z 方向の深さへ、引き続き XY 平面へ 到達します。
- ・ 立体的到達: 深さと平面に同時に到達します。
- 離脱は反対の順序で起こります。
 混合プログラミング、例えば平面への到達、立体的な離脱が可能です。

中心軌道上の軌道フライス加工 プログラミングされた輪郭は、半径修正(半径の修正なしに)でスイッチが入っ ていると、中心軌道上でも加工できます。ここでは、到達および離脱は直線上あ るいは垂直で可能です。垂直の到達および離脱は、例えば輪郭が閉じている場 合に使用されます。

₿	パラメータ	説明		単位
	T, D, F, S, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して	下さい。	
	半径修正	輪郭の左を加工		
		輪郭の右を加工		
		中心軌道上の加工		
	加工法	▽ 荒削り		
		────────────────────────────────────		
		面取り		
	加工方向	前方:プログラムされた輪郭方向に加工されます		
		後方:プログラムされた輪郭方向とは逆に加工されます		
	Z0	基準面(abs.あるいは inc)		
	Z1	最終深さ(abs.あるいは inc) (面取り以外)		mm
	DZ	位置決め深さ (面取り以外)		mm
	FS	斜角面の幅 (面取りの場合のみ) inc		mm
	ZFS	工具先端の挿入深度 (面取り時のみ)、abs あるいは ir	C	mm
	UZ	床 仕上げ寸法 (面取り以外)		mm

UXY	縁の精密削り寸法(中心軌道上での加工の際には行われません)(面取り以外)	Mm
到達モード	1/4 円:渦巻き部 (輪郭の左右のパス・フライスのみ)	
	半円:渦巻き部 (輪郭の左右のパス・フライスのみ)	
	直線:空間内の傾斜	
	垂直:パスに対し垂直 (中心パス上でのパス・フライス加工の場合のみ)	
到達計画	↓ 平面	
	▶ 空間的 (垂直の到達モードの場合のみ)	
R1 あるいは L1	到達半径 輪郭左右の軌道フライス加工の際のみ	mm
離脱モード	1/4 円:渦巻き部 (輪郭の左右のパス・フライスのみ)	
	半円:渦巻き部 (輪郭の左右のパス・フライスのみ)	
	直線:空間内の傾斜	
	垂直:パスに対し垂直 (中心パス上でのパス・フライス加工の場合のみ)	
離脱計画	<u>→</u> ↑ _{平面}	
	空間的 (垂直の到達モードの場合のみ)	
R2 あるいは L2	離脱半径 輪郭左右の軌道フライス加工の際のみ、離脱長さ	mm
引上モード	複数の深部位置決めが必要な時は、各位置決め(輪郭の終了から開始への移行の際)間でエ	
	具が後退する後退高さを指示します。	
	Z0 + 安全間隔	
	安全間隔の周囲	
	後退面上	
	後退なし	

選択したグルーブ側面補正および、1/4 円または半円での到達または離脱のあるシリンダーカバー変換で は、到達/離脱半径が、「プログラムされた軌道-工具半径に対するオフセットより大きくなければなりません。

3.5.7 輪郭ポケットの事前穴あけ

輪郭ポケットの穴あけの際にフライスが中心に潜らないときは、事前に穴開けする 必要があります。

必要とされる準備的な穴開けの数及び位置は、特別な実状、例えば輪郭の種類、工具、平面の送達、精密な測量に依存します。

準備的穴あけサイクルは、センタリング・サイクルと本来の事前穴あけサイクルから 成り立っています。輪郭ポケット内の穴開け位置は、既に輪郭ポケット算出の際 に算定されます。それにより特殊な穴あけプログラムが作成され、準備的穴あけ サイクルに(センタリングと準備的穴あけ)に呼び出されます。

準備的穴開けとえぐり開けの連結例(センタリングと準備的穴開け)

幾つかのポケットをフライス加工し、不必要な工具交換を避けたいときは、初めに 全てのポケットを事前に穴開けし、引き続きえぐり開けすると有益です。この場 合、センタリング/事前穴開けの際に、ソフトキー「すべてのパラメータ」を押した時に 追加で現れるパラメータを埋める必要があります。これは、クリアリング・ステップの パラメータにかなってなければなりません。プログラミングの際は、以下の手順で進 みます:

- 1. 輪郭ポケット 1
- 2. センタリング
- 3. 輪郭ポケット2
- 4. センタリング
- 5. 輪郭ポケット 1
- 6. 事前穴あけ
- 7. 輪郭ポケット 2
- 8. 事前穴あけ
- 9. 輪郭ポケット 1
- 10.クリア
- 11.輪郭ポケット 2
- 12.クリア

輪郭ポケットのセンタリング

₿	パラメータ	説明	単位
	T, F, S	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
	TR	センタリング用の基本工具	
	Z0	ワーク高さ(絶対)	mm
	Z1	Z0 に関連した深さ (inc)	mm
	DXY	最大送達面	mm
		選択で、平面送達は %でも、比例> 平面送達(mm)で切削フライス直径(mm)を指示できま す。	%
	UXY	平面の精密測量	mm
	引上モード	新たな送達の前の引上モード 加工の際に、幾つかの液浸地点が必要ならば、後退高さがプログラミングできます: ・ 後退面上 ・ Z0 + 安全間隔 次の液浸への移行の際に、工具はこの方向に戻ります。ポケット範囲に Z0 より大きい要素がない ときには、引上モード Z0+として安全距離がプログラミングできます。	mm mm

事前穴あけ

> ソフトキー「輪郭フライス加工」、「事前穴あけ」および「事前穴あけ」を押しま

す。

パラメータ	説明	単位
T, F, S	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
TR	準備的穴あけのための基本工具	
Z0	ワーク高さ(絶対)	mm
Z1	Z0 に関連した深さ (inc)	mm
DXY	最大送達面 選択で、平面送達は %でも、比例> 平面送達(mm)で切削フライス直径(mm)を指示できま す。	mm %
UXY	平面の精密測量	mm
UZ	深さの精密測量	mm
引上モード	 新たな送達の前の引上モード 加工の際に、幾つかの液浸地点が必要ならば、後退高さがプログラミングできます: 後退面上 Z0 + 安全間隔 次の液浸への移行の際に、工具はこの方向に戻ります。ポケット範囲に Z0 より大きい要素がないときには、引上モード Z0+として安全距離がプログラミングできます。 	mm mm

輪郭ポケットの事前穴開け

3

3.5.8 輪郭ポケットのフライス加工

プログラムされた輪郭とえぐり開けのための入力面から、ShopMillは、ポケットを 島により輪郭に平行して内部から外部にえぐり開けるプログラムを作成します。方 向は、プログラムヘッドで確定された加工方向(逆作動または同期作動)により決 定されます。

島も部分的に、ポケットの外側にあったり、重なっていることが可能です。 揺れ動きながら沈降する場合に、傾斜路にある工具が沈降地点のフライス直径 より短く離れていると、「傾斜路が短すぎます」というメッセージが現れます。この場 合、伏角を小さくしてください。

> ソフトキー「輪郭フライス加工」および「ポケットのフライス加工」を押します。

ポケット

フライス加工>

輪郭

フライス加工

えぐり広げの解説図

パラメータ	説明	単位
T, F, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
加工法	▽ _{粗削り}	
Z0	ワーク高さ(絶対)	mm
Z1	Z0 に関係付けられた深さ (abs または inc)	mm
DXY	X/Y 面での最大送達	mm
	選択で、平面送達は %でも、比例→ 平面送達(mm)で切削フライス直径(mm)を指示できま	%
	す。	
DZ	Max. 最大の送達深さ(abs あるいは inc)	mm
UXY	平面の精密測量	mm
ZU	深さの精密測量	mm
スタート地点	スタート地点は、自動的に決定されるか、手動で入力できます。	
Х	スタート地点 X (絶対)、手動でのみ	mm
Y	スタート地点 Y (絶対)、手動でのみ	mm
沈降	振り子振動: 液浸が、振り子振動してプログラム角度(EW)により実行されます。	
	らせん: 液浸が、プログラムされた半径(ER)とプログラムされた傾斜(EP)により	
	らせん状に実行されます。	
	中心: この液浸計画では、中心を切削するフライスが必要です。	
	プログラムされた送り(FZ)で液浸します。	
EW	沈降角度(振子振動でのみ)	度
FZ	送り FZ(中心でのみ)	mm/分
EP	沈降度 (らせんでのみ)	mm/回転
	らせんのピッチは、ジオメトリに基づきわずかでも大丈夫です。	
ER	沈降半径 (らせん状の場合のみ)	mm
	半径は、材質が残ったままになるので、フライス半径より大きくてはいけません。さらにポケットが傷っ	
	かないように注意してください。	
引上モード	加工の際に幾つかの液浸地点が必要なときは、後退高さをプログラムする必要があります。	
	• 後退面上	
	• Z0 + 安全間隔(SC)	mm mm
	次の液浸への移行の際に、工具はこの方向に戻ります。	
	ポケット範囲に Z0 より大きい要素がないと、引上モード	
	Z0 + 安全間隔(SC)として、プログラムできます。	
	パラメータ 「, F, V 加工法 20 21 DXY DZ JXY ZU スタート地点 X Y 読降 EW FZ EP 高1上モード	パラメータ 説明 T, F, V 「工具、修正値と主軸回転数のブログラミング」の章を参照して下さい。 加工法 ✓ 20 ワーク高さ(絶対) 21 Z0 に関係付けられた深さ (abs または inc) DXY X/Y 面での最大送達 選択で、平面送達は %でも、比例→ 平面送達(mm)で切削フライス直径(mm)を指示できま す。 D2 Max. 最大の送達深さ(abs あるいは inc) JXY 平面の精密測量 ZU 深さの精密測量 ZU 深さの精密測量 ZU 深さの精密測量 ZU 深さの構整測量 Zu スタート地点 X (絶対)、手動でのみ Y スタート地点 Y (絶対)、手動でのみ X スタート地点 Y (絶対)、手動でのみ 支払り 「気がうえるれた送り(FZ)で減速数です。 ・ フログラムされた送り(FZ)で減速した) St酸合い 流浸む 「カン(ションとねった)、ジョン(FZ)で減速しま) ・ フログラムとれた送り(FZ)で液浸します。 EP 沈降食(伝子振動でのみ) FEZ 送り FZ(中心でのみ) Stレキン(ジョンジョン(ジョンジョン(ジョンジョン)) <

スタート地点は、手動入力の際にポケットの外部にあることも可能です。これは、 例えば、側面が開いているポケットのえぐり開けの際にも有意義です。加工は、そ の後液浸なしに、直線移動でポケットの開いた面で開始します。

3.5.9 余材の輪郭ポケットの一掃

ポケット(島付/島なしで)をえぐり広げた後に、余材が残っていると、ShopMill はこ れを自動的に認識します。適切な工具により、再度全ポケットを加工することな く、この余材を取り除くことができます。つまり不必要な行路を省きます。 精密測量により残った材質は、余材ではありません。

余材の算出は、えぐり広げの際に利用されたフライスを基礎として行われます。

幾つかのポケットをフライス加工し、不必要な工具交換を避けたいときは、初めに 全てのポケットをえぐり開けし、引き続き余材を取り除くと有益です。この場合、余 材を片付ける際に、ソフトキー「すべてのパラメータ」を押した時に追加で現れるパ ラメータ、基本工具 TRを指示する必要があります。プログラミングの際は、以下 の手順で進みます:

- 1. 輪郭ポケット1
- 2. クリア
- 3. 輪郭ポケット2
- 4. クリア
- 5. 輪郭ポケット1
- 6. 残留材料の一掃
- 7. 輪郭ポケット 2
- 8. 残留材料の一掃

「余材」機能は、ソフトウェアのオプションです。

x

*	第二輪郭 プライス加工 ポケット 余材 >	> y7>+-
	〔〕 ⊢℡ℙ」 キーにより解説図が 呼び出し可能	

余材の解説図

UXY

パラメータ	説明	単位
T, F, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
加工法	▽ 粗削り	
TR	余材用の基本工具	
Z0	ワーク高さ(絶対)	mm
Z1	Z0 に関係付けられた深さ (abs または inc)	mm
DXY	最大送達面	mm
	選択で、平面送達は %でも、比例> 平面送達(mm)で切削フライス直径(mm)を指示できま	%
	र्ड .	
DZ	最大送達深さ	mm
UXY	平面の精密測量	mm
UZ	深さの精密測量	mm

引上モード	加工の際に幾つかの液浸地点が必要なときは、後退高さをプログラムできます。	
	• 後退面上	
	• Z0 + 安全間隔(SC)	mm
	次の液浸への移行の際に、工具はこの方向に戻ります。	mm
	ポケット範囲に Z0 より大きい要素がないと、引上モード	
	Z0 + 安全間隔(SC)として、プログラムできます。	

3.5.10 輪郭ポケットの仕上げ削り

解説図「島によるポケットの精密削り」

₿	パラメータ	底面の仕上げ削り用の説明	単位
	T, F, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
	加工法	床仕上げ削り	
	Z0	ワーク高さ(絶対)	mm
	Z1	Z0 に関係付けられた深さ (abs または inc)	mm
	DXY	最大送達面	mm
		選択で、平面送達は %でも、比例> 平面送達(mm)で切削フライス直径(mm)を指示できま す。	%
	UXY	 平面の精密測量	mm
	UZ		mm
	スタート地点	 スタート地点は、自動的に決定されるか、手動で入力できます。	
		手動入力では、スタート地点がポケットの外側にもあることが可能で、それにより初めにポケットへの	
		加工が実施され、例えば側面の開いたポケットが液浸なしに加工されます。	
	х	座標 スタート地点 (絶対)、手動でのみ	mm
	Y	座標 スタート地点 (絶対)、手動でのみ	mm
	沈降	振り子振動:液侵は、プログラム角度(EW)とともに実行できます。	
		らせん: 液浸が、プログラムされた半径(ER)とプログラムされた傾斜(EP)により	
		らせん状に実行されます。	
		中心: この液浸計画では、中心を切削するフライスが必要です。プログラムされた送り(FZ)	
		で液浸します。	
	EW	沈降角度(振子振動でのみ)	度
	EP	沈降度 (らせんでのみ)	mm/回転
		らせんのピッチは、ジオメトリに基づきわずかでも大丈夫です。	
	ER	沈降半径 (らせん状の場合のみ)	mm
		半径は、材質が残ったままになるので、フライス半径より大きくてはいけません。さらにポケットが傷つ	
		かないように注意してください。	
	FZ	送り FZ(中心でのみ)	mm/分
	引上モード	加工の際に幾つかの液浸地点が必要なときは、後退高さをプログラムできます。	
		• 後退面上	
		• Z0 + 安全間隔(SC)	mm
		次の液浸への移行の際に、工具はこの方向に戻ります。	mm
		ポケット範囲に Z0 より大きい要素がないと、引上モード	
		Z0 + 安全間隔(SC)として、プログラムできます。	
	h		

パラメータ	縁の仕上げ削り用の説明	単位
T, F, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
加工法	──── 縁の仕上げ削り	
Z0	ワーク高さ(絶対)	mm
Z1	Z0 に関係付けられた深さ (abs または inc)	mm
DZ	最大送達深さ	mm
UXY	平面の精密測量	mm
引上モード	加工の際に幾つかの液浸地点が必要なときは、後退高さをプログラムできます。	
	• 後退面上	mm
	• Z0 + 安全間隔(SC)	mm
	次の液浸への移行の際に、工具はこの方向に戻ります。	
	ポケット範囲に Z0 より大きい要素がないと、引上モード	
	Z0 + 安全間隔(SC) として、プログラムできます。	
	注意:「縁の仕上げ削り」の代わりの機能として、「軌道フライス加工」機能を幾つかの最適化機能	
	(到達および離脱計画または到達および離脱モード)に基づいて利用することができます。	

3.5.11 輪郭ポケットの面取り

斜角面の一面をフライス加工したい場合で、仕上げ削り際に、内部の各を丸み 付けせずにプログラムした場合、面取りの際に、輪郭での丸みとして、仕上げ具の 半径を指示しなければなりません。

0	パラメータ	面取りの説明	単位
	T, F, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
	加工法	面取り	
	Z0	ワーク高さ(絶対)	mm
	FS	斜角面の幅 (面取りの場合のみ) inc	mm
	ZFS	工具先端の挿入深度 (面取り時のみ)、abs または inc	mm
3.5.12 輪郭ジャーナルのフライス加工 (粗削り)

01/2008

	任意のジャーナルをフライス加工したい場合、「ジャーナルのフライス加工」機能を 利用します。
=?	ジャーナルをフライス加工する前に、まず未加工部分の輪郭を、その後一つあるい は複数のジャーナルの輪郭を入力します。その範囲外に材質がない場合、未加 工部分の輪郭は、範囲を確定します。つまりそこに早送りで移動します。未加工 部分の輪郭とジャーナルの輪郭の間で、材質が取り除かれます。
	フライス加工の際に、加工方法(粗削り、仕上げ削り)を選択することができま す。粗削りを行い、つぎに仕上げ削りを行う場合、加工サイクルを2回呼び出す 必要があります(第1ブロック=粗削り、第2ブロック=仕上げ削り)。プログラム されたパラメータは2回目の呼び出しでも保持されます。仕上げ削りについては、 「輪郭ジャーナルの仕上げ削り」の章を参照してください。
離脱/到達	 ジャーナル用の二つ目の輪郭ではなく、未加工部分のみをプログラミングすると、 未加工部分の輪郭を正面削りすることが出来ます。 1. 工具は早送りで後退レベルの高さで始点に達し、安全距離で位置決めしま す。始点は ShopMill により算出されます。 2. 工具は初めに加工深さに送達し、その後側面から 1/4 円のジャーナルの輪 郭に、加工送りにより到達します。 3. ジャーナルは輪郭に平行して外部から内部へ除去されます。方向は、加工方 向(逆方向および順方向)により決定されます(「新しいプログラムのセットアッ ブ」の章を参照) 4. ジャーナルが平面で除去されると、工具は半円で輪郭を離れ、つぎの加工深 さで位置決めが行われます。 5. ジャーナルは再び 1/4 円内で到達され、輪郭に平行して外部から内部へ除 去されます。 6. ステップ4 および 5 は、プログラムしたジャーナル深さに達するまで繰り返されま す。 7. 工具は早送りで安全距離に後退します。
輪郭 ジャーナル フライス加工> フライス加工>	▶ ソフトキー「輪郭フライス加工」および「ジャーナルのフライス加工」を押します。

▶ 加工法「粗削り」を選択します。

Ì	パラメータ	荒削りの説明	単位
_	T, D, F, S, V	「プログラム・ブロックの作成」の章を参照。	
	加工法	│ ▽ _{粗削り}	
	Z0	Z 方向の基準点 (abs)	mm
	Z1	Z0 に関係付けられた深さ (abs または inc)	mm
	DXY	XY レベルでの最大位置決め	mm
		%単位のレベル位置決め:フライス直径(mm)に対するレベル位置決め(mm)の比率	%
		深さでの最大位置付け (Z 方向)	mm
	DZ	平面での仕上げ削り寸法	mm
	UZ	深さでの仕上げ削り寸法	mm
	引上モード	加工のために複数の到達点が必要である場合、工具をつぎの到達点への移行時に後退させる	
		後退高さを指定します。	
		• 後退面上	
		● Z0 + 安全間隔	
		加工範囲に Z0 より大きいジャーナルや他の要素がないときには、引上モード Z0+として安全距離がプログラミングできます。	

3.5.13 余材の輪郭ジャーナルの一掃

9. 余材 ジャーナル 1 一掃 10. 輪郭 未加工部分 2 11. 輪郭 ジャーナル 2 12. 余材 ジャーナル 2 一掃

「余材」機能は、ソフトウェアのオプションです。

輪郭 ジャーナル フライス加工 余材 > 全ての パラメータ

▶ その他のパラメータを入力したい場合、ソフトキー「すべてのパラメータ」を押し ます。

_	_
_	
=	_
=	=.
-	_
_	_

パラメータ	説明	単位
T, D, F, S, V	「プログラム・ブロックの作成」の章を参照。	
加工法	▽ 粗削り	
TR	余材用の基本工具	
D	基準工具のバイト (1 または 2)	
Z0	乙方向の基準点 (abs)	mm
Z1	Z0 に関係付けられた深さ (abs または inc)	mm
DXY	XY レベルでの最大位置決め	mm
	%単位のレベル位置決め:フライス直径(mm)に対するレベル位置決め(mm)の比率	%
D7	深さでの最大位置付け (Z 方向)	mm
	平面での仕上げ削り寸法	mm
UZ	深さでの仕上げ削り寸法	mm
引上モード	加工のために複数の到達点が必要である場合、工具をつぎの到達点への移行時に後退させる	
	後退高さを指定します。	
	• 後退面上	
	• Z0 + 安全間隔	
	加工範囲に Z0 より大きいジャーナルや他の要素がないときには、引上モード Z0+として安全距	
	離がプログラミングできます。	

3.5.14 輪郭ジャーナルの仕上げ削り

	ジャーナルのフライス加工の際に、ジャーナルの基部および縁の精密測量をプログ ラムしていると、ジャーナルを仕上げ削りする必要があります。
=?	基部もしくは縁の仕上げ削りには、その都度別々のブロックをプログラミングする必 要があります。その際、ジャーナルはその都度一度だけ加工されます。
	「縁の仕上げ削り」の代わりに、「パス・フライス」をプログラムすることもできます。このとき、到達/離脱方針および到達/離脱モードのための最適化の可能性が 用意されています。プログラミングの際は、以下の手順で進みます: 1. 輪郭 未加工部分
	 2. 輪郭 ジャーナル 3. ジャーナル フライス加工(粗削り) 4. 輪郭 未加工部分
	 パス・フライス (仕上げ削り) 輪郭 ジャーナル パス・フライス (仕上げ削り)

ジャーナル・

フライス加エ>

▶ ソフトキー「輪郭フライス加工」および「ジャーナル・フライス加工」を押します。

▶ 加工方法「基部の仕上げ削り」あるいは「縁の仕上げ削り」を選択します。

A	パラメータ	説明	単位
U			
	T, D, F, S, V	「プログラム・ブロックの作成」の章を参照。	
	加工法	──── 基部での仕上げ削り	
		☆☆☆ 縁の仕上げ削り	
	Z0	乙方向の基準点 (abs)	mm
	Z1	Z0 に関係付けられた深さ (abs または inc)	mm
	DXY	 XY レベルでの最大位置決め (基礎部 仕上げ削りのみ)	mm
		%単位のレベル位置決め:フライス直径(mm)に対するレベル位置決め(mm)の比率	%
		最高位置決め深さ(Z方向)- (縁仕上げ削りのみ)	mm
	DZ	平面での仕上げ削り寸法	mm
	UXY UZ	深部での仕上げ削り寸法 – (基礎部 仕上げ削りのみ)	mm
	引上モード	加工のために複数の到達点が必要である場合、工具をつぎの到達点への移行時に後退させる	
		後退高さを指定します。	
		• 後退面上	
		● Z0 + 安全間隔	
		ー 加工範囲に Z0 より大きいジャーナルや他の要素がないときには、引上モード Z0+として安全距	
		離がプログラミングできます。	

角が破損している場合、斜角面の面取りを行ってください。

パラメータ	説明	単位
T, D, F, S, V	「プログラム・ブロックの作成」の章を参照。	
加工法	面取り	
Z0	Z方向の基準点 (abs)	mm
FS	斜角面の幅; abs	mm
ZF	工具先端の沈降度、abs. または inc	mm

3.6 直線または円形のパス移動

この機能は、軌道移動として簡単な加工のために考案されています。 高い技術を要求する加工、例えば斜角面、半径、到達計画、接線移行などを 装備した加工は、「輪郭のフライス加工」及び「軌道フライス加工」機能により実 行できます。

簡単な直線あるいは円がプログラミングされる場合、事前に工具がプログラミング されていなければなりません。主軸回転速度を備えた工具の選択は、ソフトキー 「直線/円」と「工具」により行われます。 早送りは、直線の移動パスでプログラムできます。

3.6.1 直線

半径修正

工具は、プログラムされた送りあるいは早送りで、現在の位置からプログラムされた 終了地点まで移動します。

選択により半径補正付きの直線機能を利用することもできます。半径補正は自 己保持的(度ーダル)に作用します。つまり、半径補正なしで移動させたい場合、 これをオフにする必要があります。しかし、半径補正付きの連続直線では、最初 のプログラム・ブロックで半径補正を指定するだけで結構です。

半径修正付きの初めの軌道移動の際に、工具がスタート地点と終了地点に半 径修正付きで移動します。つまりプログラミングされた垂直の軌道では、傾斜移 動します。半径修付きで二番目にプログラミングされた軌道移動では、修正が全 移動パスに作用します。半径補正をオフにすると、逆の作用があります。

半径修正付きの初めの 軌道移動

半径修正を解除した初めの 軌道移動

プログラミングした軌道を外れる移動行路を避けるために、初めの軌道移動を半 径修正付きで、または半径修正を解除してワークの外側でプログラミングすること ができます。座標指示なしのプログラミングは不可能です。

3.6.2 周知の中心点をもつ円

工具が、円軌道を現在位置からプログラムされた円終了地点まで移動します。 円中心点の位置は、周知である必要があります。円/円弧の半径は、内挿パラメ ータの指示により制御盤を通して算出されます。

加工送りでのみ移動できます。円が移動する前に、工具がプログラミングされていなければなりません。

▶ ソフトキー「直線円」および「円中心点」を押します。

周知の中心点付き円の解説図

ê	パラメータ	説明	単位
	凹転方问	円入タート地点から円中心点まじ、ノロクフムされた方向じ移動します。この方向は、時計周りめ 	
		るいは反時計周りでプログラミングできます。	
	х	X-地点 円終了地点(abs.あるいは inc)	mm
	Y	Y-地点 円終了地点(abs.あるいは inc)	mm
	I	X 方向での円中心点までの円スタート地点の距離(inc)	mm
	J	Y 方向での円中心点までの円スタート地点の距離(inc)	mm
	平面	円は、調節された平面で付属の内挿パラメータにより移動します。	
		XYIJ:内挿パラメータ I および J の付いた XY 面	mm
		XZIK:内挿パラメータ I および K の付いた XZ 面	mm
		YZJK:内挿パラメータ J および K の付いた YZ 面	mm

01/2008

3

3.6.3 周知の半径をもつ円

₿	パラメータ	説明	単位
	回転方向	円スタート地点から円中心点まで、プログラムされた方向で移動します。この方向は、時計周りあ るいは反時計周りでプログラミングできます。	
	X Y	X-地点 円終了地点(abs.あるいは inc) Y-地点 円終了地点(abs.あるいは inc)	mm mm
	R	円弧の半径; 正あるいは負の符号を入力して、希望の円弧を選択できます。	mm

らせん

R

3.6.4 らせん

直線

らせん内挿では、平面での円移動が工具軸の直線移動と重なります。つまりスパ イラルが作られます。

▶ ソフトキー「直線円」および「らせん」を押します。

 シーン
 キーにより解説図が

 呼び出し可能
 グレクレーク

 シーン
 シーン

 シーン
 シーン

 シーン
 シーン

 シーン
 シーン

 シーン
 シーン

 シーン
 シーン

 ウーン
 シーン

 シーン
 シーン

 シーン
 シーン

 シーン
 シーン

 シーン
 シーン

 シーン
 シーン

₿	パラメータ		説明	単位
	回転方向	円スタート地点から	ら円中心点まで、プログラムされた方向で移動します。この方向は、時計周りあ	
		るいは反時計周り	でプログラミングできます。	
	I, J	インクレメンタル:	X および Y 方向の中心点までの	mm
			らせんスタート地点の距離	
		絶対:	X および Y 方向の中心点	
	Р	らせんの購勾配; な	勾配は、回転毎に mm の単位でプログラミングされます。	mm/360 °
	Z	らせん終了地点の	Z 地点(abs.あるいは inc)	mm

3.6.5 極座標

パラメータ	説明	単位
х	極の X 位置 (abs または inc)	mm
Y	極の Y 位置 (abs または inc)	mm

3.6.6 直線極

極座標システムの直線は、半径(L)と角度 (α)により決められます。角度は、X 軸に関連します。

工具は現在の位置から直線でプログラムされた終了地点まで加工送りであるい は早送りで移動します。

極指示後の極座標内の第1直線は、絶対角度でプログラムされている必要が あります。その他全ての直線あるいは円弧は、インクレメンタルでプログラミングでき ます。

解説図 角度のある直線極 絶対あるいはインクレメンタル

パラメータ	説明	単位
L	直線終了地点までの極の半径	mm
α	極の角度(abs あるいは inc、正あるいは負)	度
半径修正	輪郭の面やフライスの移動方向についての指示:	
	半径補正、輪郭の左 経補正、オフ	
	半径補正、輪郭の右 設定された半径補正を維持	

3.6.7 円極

直線

円田線

曲線 >

極座標システム内の円は、角度(α)により決められます。角度は、X 軸に関連します。

工具は現在の位置から円軌道上でプログラムされた終了地点(角度)まで加工 送りで移動します。

半径は、決められた極までの現在の位置から生じます。つまり円スタート地点と円 終了地点は、決められた極まで同じ距離を含みます。

極指示後の極座標内の第一の円弧は、絶対角度でプログラムされている必要 があります。その他全ての直線あるいは円弧は、インクレメンタルでプログラミングで きます。

▶ ソフトキー「直線円」」、「極線」および「円極線」を押します。

解説図 角度のある円極 絶対あるいはインクレメンタル

e	パラメータ	説明	単位
	回転方向	円スタート地点から円中心点まで、プログラムされた方向で移動します。この方向は、時計周り	
		(右)あるいは反時計周り(左)でプログラミングできます。	
	α	極の角度(abs あるいは inc、正あるいは負)	度

3.6.8 極座標のプログラミング例

五角形のプログラミング

<u>\$</u>

五角形の外部輪郭がプログラミングされるとします。

入力の際にワークの寸法に注意してください! 早送りでスタート地点に到達します:X70、Y50、半径修正 切 極:X=50、Y=50

- 1. 直線 極:L=20、α= -72 絶対、半径修正 右
- 5番目の直線極まで:L=20、α= -72 度 インクレメンタル、
 半径修正 右

→	N10	早送り ※ X50 Y50 Z2
Ф	N15	X50 Y50
→	N20	®ð L210 α−72
→	N25	L20 α-72ink
→	N30	L20 α-72ink
→	N35	L20 α-72ink
→	N40	L20 α-72ink
→	N45	L20 α-72ink
END	N50	プログラムエンド

プログラミンググラフィックと加工プランからの抜粋

円弧 225 度のプログラミング

円弧の外部輪郭がプログラミングされるとします。 入力の際にワークの寸法に注意してください! 早送りでスタート地点に到達します:X=80、Y=50、半径修正 右 極:X=60、Y=50 回転方向 右、α= 135 度 絶対

→ N10 EILG. ※ X80 Y50 Z2 ◆ N15 X60 Y50 → N20 F200/min ℚ α135 END N25 プログラムエンド

プログラミンググラフィックと加工プランからの抜粋

穴あけ 3.7

01/2008

	· · · · · · · · · · · · · · · · · · ·
穿孔とねじのプログラミング	ShopMillで、初めに必要なテクノロジー・ブロックを加工の際に必要とされる正確 な順序でプログラミングしてください。例えば、 1. 工具、主軸回転速度と加工送りによるセンタリング 2. 工具、主軸回転速度と加工送りによる アボーリング
	3. 工具、主軸回転速度と加工送りによる タップ立て
	テクノロジーがプログラムされると、 地点の指示 が続きます。その際、様々な位置 構図を利用できます(「位置決め」の章を参照)。
	初めにテクノロジー、その後にブロック地点付けという順序を、穴あけサイクル時に は絶対に守らなければなりません。

3.7.1 センタリング

(i)

HELP

工具が、後退面と安全間隔を考慮して早送りで、センタリングされるべき地点に 移動します。プログラミングされた送り(F)で工具が、Z1 に到達するまで、又は直 径が表面に到達するまでワーク内に潜ります。停留時間が経過した後、工具が 早送りでパラメータ「後退位置構図」で調整後、後退面あるいは安全間隔上を 引き返します。パラメータ「後退位置構図」は、パラメータヘッドあるいはメニュー「そ の他」内の「調整」のもとにあります。 ▶ ソフトキー「穴あけ」および「センタリング」を押します。 センタリング> 穴あけ z z キーにより解説図が 7 呼び出し可能

解説図 深さ方向へのセンタリング

解説図 直径方向へのセンタリング

パラメータ	説明	単位
T, D, F, S, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
直径	工具は、直径がワーク表面に到達するまで深く潜ります。その際、工具リストに入力されたセンタリ ングドリルの角度が考慮されます。	
先端	工具は、プログラムされた浸漬深さに到達するまで深く潜ります。	
Ø	直径に到達するまで深く潜ります。	mm
Z1	Z1 に到達するまで深く潜ります。	mm
Z0	ワークの高さ; Z0 は位置構図内で (ソフトキー 「位置決め」)示されます。	mm
DT	自由に切削するための停留時間	秒
		回転

3.7.2 穴あけとリーマ仕上げ

-

工具が、後退面と安全間隔を考慮して早送りで、プログラミングされた地点に移動します。その後、F でプログラミングされた送りにより、Z1の深さに到達するまで ワークに潜ります。

穴あけ:数値 Z1 に到達し、停留時間が経過すると、早送りによる穴あけの際 に、パラメータ「後退 位置構図」での調整後、後退面あるいは安全間隔上に戻 ります。パラメータ「後退位置構図」は、パラメータヘッドあるいはメニュー「その他」 内の「調整」のもとにあります。

リーマ仕上げ:数値 Z1 に到達し、停留時間が経過すると、リーマ仕上げの際に、 プログラムされた後退送り移動で安全間隔上に戻ります。

呼び出し可能

_____ キーにより解説図が

> ソフトキー「穴あけ」および「穴あけリーマ仕上げ」を押します。

解説図 ボーリング

解説図 リーマ仕上げ

z

	パラメータ	説明	単位
-			
	T, D, F, S, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
	シャフト	ドリル底がプログラムされた数値 Z1 に到達するまで深く潜ります。その際、工具リストに入力された	
		角度が考慮されます。	
	先端	ドリル先端がプログラムされた数値 Z1 に到達するまで深く潜ります(リーマ仕上げの際にはありませ	
		ん)。	
	Z1	ドリル先端あるいはドリル底用の浸漬深さ	mm
	Z0	ワークの高さ; Z0 は位置構図内で (ソフトキー 「位置決め」)示されます。	mm
	DT	自由に切削するための停留時間	秒
			回転
	FB	後退用の送り(リーマ仕上げでのみ)	

3.7.3 深ボーリング

 (\mathbf{i})

解説図 チップ破砕付き深ボーリング

解説図 鉋加工付き深ボーリング

パラメータ	説明	単位
T, D, F, S, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
鉋加工	ドリルは鉋加工のためにワークから離れます。	
チップ破砕	ドリルは後退値 V2 分だけチップ粉砕のために戻ります。	
先端	ボーリング終了深さ(Z1)は、ドリル先端に関連します。	
シャフト	ボーリング終了深さ(Z1)は、ドリル底に関連します。	
Z1	穴あけ終了深さ (inc)	mm
D	最高位置決め	mm
DF	その他の位置決め用のパーセンテージブロック	%
	DF=100:位置決め量は、かわりません。	
	DF<100:位置決めの数値は、穴あけ終了深さの方向に減少します。	
	例: 最後の位置決めが 4mm であったとすると、DF は数値 80 に達します。	
	次の位置決め = 4 x 80% = 3.2 mm	
	次の位置決め = 3.2 x 80% = 2.56 mm 等	
V1	最少位置決め	mm
	パラメータ V1 は、DF<100 がプログラムされたときのみに存在します。	
	位置決めの数値が非常に小さくなると、パラメータ「V1」により最少位置決めがプログラミングできま	
	す。	
	V1 < 位置決め数値:位置決め数値分だけが位置決めされます。	
	V1 > 位置決め数値:V1 でプログラミングされた数値により位置決めされます。	
V2	後退値あるいは機械データによる決定-チップ粉砕のみ	mm
	チップ粉砕時にドリルが後退する量	
	V2=0:工具は戻らず、回転するために停止したままです。	
V3	前方調整幅 – 鉋加工の際のみ	mm
	ドリルが早送りで鉋加工後に移動する最後の位置決め深さまでの間隔	
	自動:前方調整幅は ShopMill により算出されます。	
DT	自由に切削するための停留時間	秒
		回転

3.7.4 旋盤によるくり抜き

パラメータ	説明	単位
T, D, F, S, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
引上げる	バイトは、穿孔の縁かた自由に移動し、その後後退面に戻ります。 バイトは自由に移動せず、早送りで安全間隔に戻ります。	
引上げない		
Z1	Z0 に関係付けられた深さ (abs または inc)	mm
Z0	ワークの高さ; Z0は位置構図内で (ソフトキー「位置決め」)示されます。	mm

DT	自由に切削するための停留時間	S
		回転
D	引上げ値(あるいは機械データにより確定)ー引上げの際のみ	mm
α	ツー利方向付け角度(あるいは機械データにより確定)ー引上げの際のみ	度

3.7.5 タップ立て

		雌ねじをフライス加工したい場合、機能「タップ立て」を利用します。
		タップ立て中は、主軸回転数を主軸補正で変更することができます。送り補正が 有効ではありません。
		穴あけ時にチップを粉砕するか、またはチップ除去のためにワークから離れるかどう かを選択することができます。
		工具が、後退面と安全間隔を考慮して早送りで、プログラミングされた地点に移 動します。
		工具は主軸が停止した状態で早送りで後退レベルに移動し、続いて安全距離 まで移動します。
		そこで主軸は回転を始め、主軸回転速度を送りは同期化します。 工具は早送りでプログラムされた位置に移動します。
第1ス	テップ	 工具はプログラムされた主軸回転速度 S または切削速度 V でタップ立て深 さ X1 または Z1 まで穴あけします。 主軸の回転方向が変わり、工具がプログラムされた主軸回転速度 SR また は切削速度 VR で安全間隔まで出ます。
鉋加工	:	 エ具はプログラムされた主軸回転速度 S または送り速度 V で切り込み深さ 1 まで掘ります (最高切込み深さ D)。 鉋加工のために工具は、主軸回転速度 SR または切削速度 VR でワーク から安全間隔まで出ます。
		3. その後工具は主軸回転速度 SR または送り速度 VR で再び第 1 位置決 め深さまで 1mm の前方調整幅で潜ります。主軸回転速度は S に切り替 わり、送り速度は V に変わり、続いて工具は次の位置決め深さまで穴あけ します。
		 ステップ2および3は、プログラムしたジャーナル深さに達するまで繰り返されます。
		5. 主軸の回転方向が変わり、工具が主軸回転速度 SR または切削速度 VR で安全間隔まで出ます。

	チップの粉砕	 工具はプログラムされた主軸回転速度 S または送り速度 V で切り込み深さ 1 まで掘ります (最高切込み深さ D)。 工具が後退値 V2 分だけ戻ってチップを粉砕します。 その後工具が主軸回転速度 S または送り速度 V で次の切り込み深さまで 穴あけします。 ステップ 2 および 3 は、プログラムしたジャーナル深さに達するまで繰り返され ます。 主軸の回転方向が変わり、工具が主軸回転速度 SR または切削速度 VR で安全間隔まで出ます。
1		アナログの主軸によるタップ立ての場合は、均衡チャックが必要になります。この場 合は一回の切断でのみ穴あけができます。 機械データでは、機械メーカーによって規定された、タップ立てのための設定が行 われることがあります。 これについては機械メーカーの情報に注意してください。
	たなます。 たかあけ なり抜き > タップ立て	▶ ソフトキー「穴あけ」、「旋盤によるくり抜き」および「タップ立て」を押します。
	(〕) HELP キーにより解説図が 呼び出し可能	Z0 Image: Constraint of the second secon

パラメータ	説明	単位
1, D, S, V	工具、修止値と王軸回転数のフロクラミンク」の草を参照して下さい。	
Р	ネジピッチ	mm/回転
	ネジピッチは、利用工具に依存します。	in/回転
	MODUL:通常、例えば歯車で噛み合う環状ネジで	MODUL
	ねじ山/":通常、例えばパイプネジで	ねじ山/"
	ねじ山/" に入力の際に、初めのパラメータ欄に小数点前の全数を記入し、二番目と三番目の欄	
	に小数点以降の数を分数で入力します。	
	13,5 ねじ山/"を例えば以下のように入力します: P 13 1/ 2 ねじ山/ <u>"</u>	

SR	後退のための主軸回転数(均衡チャックによるタップ立ての場合以外)	rpm
VR	後退のための切削速度 (SR の代替)(均衡チャックによるタップ立ての場合以外)	m/分
第 1 ステップ	ネジが一度に中断することなく穴あけされます。	
鉋加工	鉋加工のために、ドリルがワークから外に出ます (均衡チャックによるタップ立ての場合以外)。	
	ドリルが、チップ除去のため後退量 V2 分だけ戻ります(均衡チャックによるタップ立ての場合以	
チップ破砕	外)。	
Z1	Z0 に関連付けられたネジ山ボーリング深さ (abs または inc)	mm
	Z0 は位置構図内で (ソフトキー 「位置決め」)示されます。	
D	最高切り込み深さ(鉋加工あるいはチップ粉砕の場合のみ)	mm
V2	後退値 (チップ粉砕の場合のみ)	mm
	チップ粉砕時にドリルが後退する量	
	V2=自動:工具が一回転分戻ります。	

3.7.6 ネジ切りフライス加工

この形のフライスでは、任意で雌ねじ、あるいは雄ねじが作成できます。 ねじを、右または左ねじとして加工することが可能で、加工は上から下へ、あるい は反対に行われます。

メートル法のねじ (ネジピッチ P の単位 mm/回転) の場合、ShopMill はパラメー タ ねじ深さ K にネジピッチから計算された数値を割当てます。この数値は変更で きます。事前の割当ては、機械データにより作動する必要があります。

これについては機械メーカーの情報に注意してください。

入力された送りは、加工に関係します。しかしフライス中盤心点の送りが表示されます。そのため雌ねじでは、小さめの数値が、雄ねじでは大き目の数値が入力 値として表示されます。

.

34

ネジ山

> ソフトキー「ボーリング」、「ネジ山」および「ネジ山フライス加工」を押します。

雌ねじ

穴あけ

ネジ山 フライス加工

プロセス:

- 早送りで後退面のネジ中心点に位置決めします
- 安全間隔分だけ移動した基準面に早送りで位置決めします
- プログラムされた送りで制御装置内部で算出された円への到達
- 円軌道上のネジ直径への移動
- 時計回りあるいは反時計周り(左右ネジに依存)でスパイラル軌道上でのネジ 切りフライス加工
- 同じ回転方向とプログラムされた送りによる円軌道上での出発移動
- ネジ中心点へ、続いて後退面へ早送りで後退

ShopMill によるプログラミング 3.7 穴あけ

₿	パラメータ	説明	単位
	加工法	────────────────────────────────────	
		✓ 仕上げ削り	
	方向		
	雌ねじ	雌ねじがフライス加工されます。	
	雄ねじ	」 雄ねじがフライス加工されます。	
	左ねじ	左ねじがフライス加工されます。	
	右ねじ	ー 右ねじがフライス加工されます。	
	NT		
		一つあるいは幾つかの歯を備えたフライスパレットを使用できます。バイト歯の入力は、パラメータ	
		NTで可能です。必要な移動はサイクルにより内部で実行されるので、ネジ終了地点に到達の際	
		ーには、フライスパレットの下歯の先端は、プログラムされた終了地点と一致します。フライスパレットの	
		バイト・ジオメトリに応じて、ワーク底での自由移動が考慮されます。	
	Z1	ねじ長さ	mm
	Z0	ワークの高さ; Z0は位置構図内で (ソフトキー 「位置決め」)示されます。	mm
	Ø	ねじの公称直径、例:M12の公称直径 = 12 mm	mm
	Р	ネジピッチ	mm/回転
		フライスパレットに幾つかのバイト歯が含まれていると、ネジピッチは利用工具に依存します。	inch/回転
		ネジピッチをねじ山/" で入力の際に、初めのパラメータ欄に小数点前の全数を記入し、二番目と	MODUL
		三番目の欄に小数点以降の数を分数で入力します。	ねじ山/"
		13,5 ねじ山/"を例えば以下のように入力します: P 13 1/ 2 ねじ山/	
	К	ねじ深さ	mm
	DXY	切削毎の位置決め	mm
		」 選択で、平面位置決めは %でも、比例> 平面位置決め(mm)で切削フライス直径(mm)を指	%
		示できます。	
	回転	仕上げ寸法	mm
	α0	開始角度	度

ネジ切りフライス加工のための 円ポケットを十分にフライス加工、引き続きネジ切りフライス加工します。 プログラム例 利用フライスは、中心を通って切削できないので、円ポケットを、Ø22 mmのボー リング機により、あらかじめ穴あけします。それによりフライスは、中心へ浸すことが

できます。

位置構図を使って、上に述べたサイクルの地点が位置決めできます(「フライス加 工時の地点構図の使用」の章を参照)。

ネジ付き円ポケットの製図

א א 🕅 א 🕅 🕅	センタリング		T=心取り機 F250/min S900U ø5
	ボーリング		T=ฅル 22mm F80/min S400U Z1=42ink
💭 - N20	円ポケット	⊽	T=12 F500/min S600U
, [≢] ∦ ∦ - N25	めねじ	⊽	T=ねじ 56 F100/min S400U Z1=40 ø56
√	001: 位置		Z0=0 X0=60 Y0=50

加エプランからの抜粋; ねじによる円ポケットのフライス加工

3.7.7 穿孔ネジ切りフライス加工

パラメータ	説明	単位
T, D, S, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
F1		mm/分
		mm/回転
Z1		mm
D		mm
DF	その他の位置決め用のパーセンテージブロック	%
	DF=100:位置決め量は、かわりません。	
	DF<100:位置決めの数値は、ボーリング終了深さZ1の方向に減少します。	
	例: 最後の位置決め 4 mm; DF 80%	
	次の位置決め = 4 x 80% = 3.2 mm	
	さらにその次の位置決め = 3.2 x 80% = 2.56 mm 等	
V1		mm
	パラメータ V1 は、DF<100 がプログラムされたときのみに存在します。	
	位置決めの数値が非常に小さくなると、パラメータ「V1」により最少位置決めがプログラミングできま	
	す。	
	V1 < 位置決め数値:位置決め数値分だけが位置決めされます。	
	V1 > 位置決め数値:V1 でプログラミングされた数値により位置決めされます。	
穴開け	穴あけの最初に、減少した送りで移動します。	
	減少した穴あけ送りが、以下のように生じます:	
	穴あけ送り F1 < 0,15 mm/回転:穴あけ送り = F1の 30%	
	穴あけ送り F1 ≥ 0,15 mm/回転:穴あけ送り = 0,1 mm/U	
穴通し	穴開け時に、残りの穿孔深さ ZR を贈り FR でドリル加工します。	
ZR	残りの穿孔深さ(穴通しのみ)	mm
FR	送り 穴通し(穴通しのみ)	mm/分
		mm/回転
鉋加工	ネジ切りフライス加工前に、鉋加工をするために工具表面に戻ります。	
ネジ	右ネジ	
	左ネジ	
F2	フライス送り	mm/分
		mm/歯
Р	ネジピッチ	in/回転
	ネジピッチをねじ山/" で入力の際に、初めのパラメータ欄に小数点前の全数を記入し、二番目と	ねじ山/"
	三番目の欄に小数点以降の数を分数で入力します。	
	13,5 ねじ山/"を例えば以下のように入力します: P 13 1/ 2ねじ山/	
Z2	ネジ切りフライス加工前の後退	mm
	Z2 により、ネジ深さが、工具軸方向に確定されます。 Z2 は、その際工具先端に関連します。	
Ø		mm
加工方向		
	逆作動:ネジを1回の回転でフライス加工します。	
	 逆作動+同期作動:ネジを2回の回転でフライス加工し、その際準備フライス加工を逆作動で固	
	定された寸法と、それに続く仕上げフライス加工が、フライス送り FS により同期作動で実行されま	

FS	フライス送り 仕上げ削り(逆作動+同期作動でのみ)	mm/分
		mm/歯

3.7.8 任意の地点および位置構図での位置決め

	テクノロジーがプログラムされた後に、地点がプログラミングされなければなりませ ん。ShopMillは、その際様々な位置構図を提供しています: ・ 任意の地点 ・ 一直線上あるいはグリッド上でのポジションニング ・ 半円あるいは部分円上での位置決め
	複数の位置サンプルを連続してプログラムすることができます (最高で合計 20 の 技術サンプルおよび位置サンプル)。プログラムされた順序で出発します。 事前にプログラムされたテクノロジーとそれに続くプログラム地点が自動的に連結し ます。
加工順序と工具走行路	工具が初めに、プログラムされた全ての地点にプログラムされた工具で出発しま す、例えば全ての地点をセンタリングします。位置の処理は、常に基準点で始まり ます。
	グリッドでは、まず第1軸の方向に、次に蛇行して処理されます。フレームおよび 穴のピッチ円が時計回りに処理されます。その後、プログラムされた全ての地点 が、二回目にプログラムされた工具で加工されます。このプロセスは、プログラムさ れた穿孔テクノロジーがプログラムされた全ての地点で加工されるまで繰り返され ます。 位置構図内で、また位置構図から次の地点への出発の際に、最適な後退で安 全間隔上で、その他には後退面に出発移動します。引き続き、新しい地点に早 送りで到達します。 位置構図が、一地点から成り立っていると、加工後に後退面に出発移動しま す。
位置のフェードイン/フェード アウト	任意の位置をフェードイン/フェードアウトさせることができます (「位置のフェードイン /フェードアウト」の章を参照)。
回転軸	機械に A もしくは B 軸がセットアップされている場合は、穴あけの際(任意の位置 構図、完全円、部分円)にサポートされます。 これについては機械メーカーの情報に注意してください。 A 軸あるいは B 軸がある場合は、X = シリンダのフロント面により、原点オフセット を定義することは合理的です。 Y = シリンダの中心点 Z = シリンダの中心点 「シリンダ」は、A/B 軸に固定されている任意の部分に相応します。

3.7.9 任意の地点

2

01/2008

それにより任意の地点、直角又は極が測量され、X/Y-, X/A- および XYA-面が プログラミングされます。 各地点に、プログラムされた順序で到達します。ソフトキー「全て消去」で、プログ

ラムされた全ての X/Y 地点が消去されます。

回転軸

• XA-面

Y 軸が加工中に移動すべきでない場合は、XA にプログラムします。 穴あけが「シリンダ」の中心点を指すべき場合は、Y 軸をあらかじめ「シリンダ」上の 中心に位置決めしなければなりません。

穴あけが中心点を指している

Y 軸がシリンダ (ΔY)上の中心点にない

• XYA-面

Y 軸が移動すべきでない場合は、XYA にプログラムします。各位置に、数値を一つ指示できます

さらに XA により、例えば次のことが実現可能です。

Y *軸の移動 (*Y0, Y1)

A	パラメータ	説明 XY	単位
		(A もしくは B 軸のサポートなし)	
	直角/	直角あるいは極測定の際のプログラミング	
	極		
	Z0	ワークピース深さ(abs あるいは inc)	mm
	X0	X 内の第 1 穿孔地点(abs あるいは inc)	mm
	Y0	Y 内の第 1 穿孔地点(abs あるいは inc)	mm
	直角:		
	X1X8	X 軸でのその他の地点(abs あるいは inc)	mm
	Y1Y8	Y 軸でのその他の地点(abs あるいは inc)	mm
		」 さらにその他の地点がプログラムされるべきなら、事前にプログラムされた地点を保存し、引き続きも	
		う一度パラメータ入力面をソフトキー「任意の地点」で開きます。	
	極:		
	L1L7	地点間隔(絶対)	mm
	α1 α7	回転角度は X-軸に関係します。	度
		正の角度: 直線が、反時計回りに回転します。	
		負の角度: 直線が、時計回りに回転します。	
		さらにその他の地点がプログラムされるべきなら、事前にプログラムされた地点を保存し、引き続きも う一度パラメータ入力面をソフトキー「任意の地点」で開きます。	

A	パラメータ	説明	単位
		(A もしくは B 軸のサポートあり)	
	Z0	ワーク深さ(abs あるいは inc)	mm
	XA:	(AのかわりにBが至る所に存在可能。Xの代わりにYが存在可能)	
	X0	X 内の第 1 穿孔地点(abs あるいは inc)	mm
	A0	A 内の第 1 穿孔位置 (abs.)	度
	X1X8	X 軸でのその他の地点(abs あるいは inc)	mm
	A1 A8	A 軸でのその他の地点(abs あるいは inc)	度
		さらにその他の地点がプログラムされるべきなら、事前にプログラムされた地点を保存し、引き続きも	
		う一度パラメータ入力面をソフトキー「任意の地点」で開きます。	
	XYA:	(A のかわりに至るところに B がある可能性あり)	
	X0	X 内の第 1 穿孔地点(abs あるいは inc)	mm
	Y0	Y 内の第 1 穿孔地点(abs あるいは inc)	mm
	A0	A 内の第 1 穿孔位置 (abs.)	度
	X1X5	X 軸でのその他の地点(abs あるいは inc)	mm
	Y1 Y5	Y 軸でのその他の地点(abs あるいは inc)	mm
	A1 A5	A 軸でのその他の地点(abs あるいは inc)	度
		さらにその他の地点がプログラムされるべきなら、事前にプログラムされた地点を保存し、引き続きも	
		う一度パラメータ入力面をソフトキー「任意の地点」で開きます。	

3.7.10 直線の位置構図

Ê	パラメータ	説明	
	Z0	ワーク深さ(abs あるいは inc)	mm
		1 回目の呼び出しの際には、この地点が絶対にプログラムされなければなりません。	
	X0	基準点(最初の地点)	mm
		1 回目の呼び出しの際には、この地点が絶対にプログラムされなければなりません。	
	Y0	基準点(最初の地点)	mm
		1 回目の呼び出しの際には、この地点が絶対にプログラムされなければなりません。	
	α0	回転角度は X-軸に関係します。	度
		正の角度: 直線が、反時計回りに回転します。	
		負の角度: 直線が、時計回りに回転します。	
	L	地点間隔	mm
	Ν	地点数	

3.7.11 グリッドの位置構図

地点が同じ間隔で一本あるいは数本の平行する直線上にあるときは、この機能 により任意の地点数がプログラミングできます。

ひし形のグリッドをプログラムしたい場合は、角度αX もしくは. αY を入力してください。

> ソフトキー「穴あけ」、「位置」および「線/グリッド/フレーム」を押します。

カーソルを「直線/グリッド/フレーム」欄上に置いてください。ソフトキー「代替」により、位置構図「グリッド」を選択します。

解説図「グリッド」

Ø al

x

Y

· ·
_

+

Z0	ワーク深さ(abs	あるいは inc)	mm	
	1 回目の呼び出	しの際には、この地点が絶対にプログラムされなければなりません。		
X0	基準点(最初の	地点)	mm	
	1 回目の呼び出	しの際には、この地点が絶対にプログラムされなければなりません。		
Y0	基準点(最初の	地点)	mm	
	1 回目の呼び出	しの際には、この地点が絶対にプログラムされなければなりません。		
α0	グリッドの回転角	3	度	
	正の角度:	グリッドが、反時計回りに回転します。		
	負の角度:	グリッドが、時計回りに回転します。		
αΧ	グリッドのせん断	角、X軸に関係付け	度	
	正の角度:グリッ	ドが、反時計回りに回転します。		
	負の角度:	グリッドが、時計回りに回転します。		
αΥ	グリッドの回転角	は X-軸に関係します。	度	
	正の角度:	グリッドが、反時計回りに回転します。		
	負の角度:	グリッドが、時計回りに回転します。		
L1	X 方向での地点	X 方向での地点の間隔		
L2	Y 方向での地点	Y 方向での地点の間隔		
N1	X 方向での地点	気数		
N2	Y 方向での地点	見数 しんしょう しんしょ しんしょ		

3.7.12 フレームの位置構図

地点が同じ間隔で一つのフレーム上にあるときは、この機能により任意の地点数 がプログラミングできます。間隔は任意の軸内で異なります。 ひし形のフレームをプログラムしたい場合は、角度αX bzw. αY を入力してください。 ▶ ソフトキー「穴あけ」、「位置」および「線/グリッド/フレーム」を押します。

カーソルを「直線/グリッド/フレーム」欄上に置いてください。ソフトキー「代替」によ り、位置構図「フレーム」を選択します。

補助図「フレーム」

₿	パラメータ	説明	単位
	Z0	ワーク深さ(abs あるいは inc)	mm
		1 回目の呼び出しの際には、この地点が絶対にプログラムされなければなりません。	
	X0	基準点(最初の地点)	mm
		1 回目の呼び出しの際には、この地点が絶対にプログラムされなければなりません。	
	Y0	基準点(最初の地点)	mm
		1 回目の呼び出しの際には、この地点が絶対にプログラムされなければなりません。	
	α0	フレームの回転角	度
		正の角度:フレームが、反時計回りに回転します。	
		負の角度: フレームは時計回りに回転します。	
	αX	フレームのせん断角、X 軸に関係付け	度
		正の角度:フレームが、反時計回りに回転します。	
		負の角度: フレームは時計回りに回転します。	
	αY	フレームのせん断角、Y 軸に関係付け	度
		正の角度:フレームが、反時計回りに回転します。	
		負の角度: フレームは時計回りに回転します。	
	L1	X 方向での地点の間隔	mm
	L2	Y 方向での地点の間隔	
	N1	X 方向での地点数	
	N2	Y方向での地点数	

3.7.13 完全円の位置構図

	パラメータ	説明 XY	単位		
Ð		(A もしくは B 軸なし)			
	Z0	ワーク深さ(abs あるいは inc)	mm		
	X0	完全円中心点の X-地点(abs あるいは inc)	mm		
Υ0 α0		完全円中心点の Y-地点(abs あるいは inc)			
		基本回転円; 第一穿孔の角度は、X 軸に関係します。	度		
		正の角度: 完全円が、反時計回りに回転します。			
		負の角度: 完全円が、時計回りに回転します。			
	R	完全円の半径	mm		
N FP		完全円上の地点数			
		円軌道上での位置決め用の送り	mm/分		
	位置決め	直線: 次の位置に一直線上を早送りで移動します。			
		円: 次の位置に、円軌道上をプログラムされた送り(FP)で移動します。			

<u> </u>

パラメータ	説明 XA		単位		
	(A もしくは B 軸あり)				
Z0	フーク表面高さ (abs あるいは inc)				
X0	基準点 (abs または inc)	基準点 (abs または inc)			
A0	開始角 (abs)		度		
	X 軸に関係付けられた第1穴あけの角度				
	正の角度: 完全円が、反時計回りに回転します。				
	負の角度: 完全円が、時計回りに回転します。				
Ν	完全円上の地点数				

3.7.14 部分円の位置構図

	パラメータ	説明 標準/XY	単位
U		(A もしくは B 軸なし)	
	Z0	ワーク深さ(abs あるいは inc)	mm
	X0	部分円中心点の X-地点(abs あるいは inc)	mm
	Y0	部分円中心点の Y-地点(abs あるいは inc)	mm
	α0	基本回転円; 第一地点の角度は、X 軸に関係します。	度
	α1	その他の切替角度;最初の穿孔が完了した後、全ての位置にこの角度で移動します。	度
		正の角度: その他の地点が、反時計回りに回転させられます。	
		負の角度: その他の地点が、時計回りに回転させられます。	
	R	部分円の半径	mm
	Ν	部分円上の地点数(穿孔)	
	FP	円軌道上での位置決め用の送り	mm/分
	位置決め	直線: 次の位置に一直線上を早送りで移動します。	
		円: 次の位置に、円軌道上をプログラムされた送り(FP)で移動します。	

パラメータ	説明 XA (A ましくは B 動をD)	単位	
	(AもしてはB 軸のリ)		
Z0	ワーク表面高さ (abs あるいは inc)	mm	
X0	基準点 (abs または inc)	mm	
A0			
	X 軸に関係付けられた第1地点の角度		
A1	增分角度 (abs)	度	
	最初の穿孔が完了した後、その他全ての地点にこの角度で移動します。		
	正の角度: その他の地点が、反時計回りに回転させられます。		
	負の角度: その他の地点が、時計回りに回転させられます。		
N	部分円上の位置の数		

3.7.15 位置のフェードイン/フェードアウト

全位置の同時フェードインまた

はフェードアウト 全てフェード アウト

- 全ての位置をフェードアウトさせるには、ソフトキー「全てフェードアウト」を押してください。
- 全ての位置を再度フェードインさせるには、ソフトキー「全てフェードイン」を押してください。

3.7.16 障害

機能

サンプル2地点間に障害があると、これを無視して通過できます。障害高さが、 絶対あるいはインクレメンタルでプログラミングできます。

第一位置構図の加工が完了すると、工具軸が早送り速度でプログラミングされ た障害高さ+安全間隔で移動します。この高さで、新しい位置に早送りで到達 します。引き続き工具軸が早送りで位置構図 Z0+安全間隔で移動します。

> ソフトキー「穴あけ」、「位置」および「障害」を押してください。

障害は、サンプル2地点間だけで注目されます。

工具交換地点ちプログラムされた後退面が、障害下にあると、工具は後退面の 高さに、障害を考慮せずに新しい地点へ移動します。障害は、後退面より高くて はいけません。

01/2008

プログラミング例

その間に障害がある4地点のドリル加工

穿孔が初めにセンタリングされ、その後仕上げの穴あけが実行されます。最初の 両地点が X=15 にプログラムされた後に、障害がプログラミングされます。その後、 地点が X=100 にプログラミングされます。

製図

N10 ך 🕷	センタリング	T=4 F250∕min S900U ø3
🖏 - N15	ボーリング	T=หัมน 10 F80/min S600U Z1=22ink
√ - N20	001: 位置	Z0=0 X0=15 Y0=8 X1=15 Y1=38
- N25	障害	Z20
√	002: 位置	Z0=0 X0=100 Y0=8 X1=100 Y1=38

プログラミング例「障害」用の加エプランからの抜粋

3.7.17 位置の反復

機能

既にプログラミングした地点にもう一度移動する必要がある場合、「地点繰り返し」機能を素早く実行できます。

加えて地点サンプルの番号を指示する必要があります。ShopMillがこの番号を 自動的に出します。この位置構図番号は、加エプランのブロック番号の後に見つ けられます。

N40 _{C 🕄}	縦グルーブ	∇	T=12 F0.2/Z S600U
ひ - №45 001: ピッチ完全円			Z0=0 X0=50 Y0=50 R32 N6
	+		

位置構図番号

加エプラン、位置構図番号=001からの抜粋

ソフトキーによる呼び出し

穴あけ	地点の
	反復. >

位置構図番号、例えば1を入力後に、ソフトキー「取り込み」を押します。選択した位置構図に、その後もう一度移動します。

N40 _[縦グルーブ ▽	7	T=12 F0.2/Z S600U
🗘 🗌 N45	001: ピッチ完全円		Z0=0 X0=50 Y0=50 R32 N6
ד 🕅 🖉	センタリング		T=3 F200∕min S900U Z1=1ink
📲 - N55	穴あけ		T=2 F400∕min S500U Z1=15ink
\$- N60	地点の繰り返し		001: ピッチ完全円

加エプランからの抜粋; 地点をブロック番号で繰り返します。60

3.7.18 穴あけ用のプログラミング例

\$	様々な高さでの穴あけ	加工課題 :既にワークの傾斜面がフライス加工されています。このワーク上で様々な高さの 加工面が、袋型および通過型の穿孔 Ø 12 mm が作成されます。 プログラミング: 穿孔 4 個のセンタリング 袋型穿孔の鉋加工による深ボーリング 通過型穿孔のチップ破砕付き深ボーリング			
		工具 後退面 Z=0用 安全間隔 Z=-36用 安全間隔 大	Z Z Z Z Z Z S 0		
		Y 30 12 25 60 * 業図		 穿孔4個 直径12mm → 早送り → 加工送り 	
		N10 センタリング N15 001:位置	T=心取り機 Z0=0 X0=25	F250/min S900U Z1=2ink Y0=12 X1=25 Y1=30	
		∧/ ⁻ N20 002:位置	Z0=-36 X0=	60 Y0=12 X1=60 Y1=30	

N25 ך 🕅 🖁	深ボーリング	T=ドリル	12 F8	80⁄min	S600U	Z1=14ink	
=≎ <mark>_</mark> изө	地点の繰り返し	001: 位置					
⁸ 8 ך №35	深ボーリング	T=ドリル	12 F8	B0∕min	S600U	Z1=-52	
-↓ <mark> N40</mark>	地点の繰り返し	002:位置					

加エプランからの抜粋

א א 10 ר	センタリング	T=心取り機 F200/min S600U ø3
[₿] /// - N15	穴あけ	T=bohr9 F100⁄min S400U Z1=31ink
[₿] ////////////////////////////////////	穴あけ	T=ジャーナル・シンカー F60/min S400U Z1=8.5ink
🗘 - N25	001: ピッチ完全円	Z0=0 X0=50 Y0=40 R30 N6

A

100

50

加エプランからの抜粋

▶ Х

3.8 フライス加工

3.8.1 正面削り

• F		このサイクルで任意のワークを正面削りすることができます。その際常に、直角面 が加工処理されます。長方形が、未加工部分の測定値により、プログラムヘッド に保存されているコーナー地点 1と2からできあがります。 ワークを制限あり/なしで正面加工することができます。 制限が4つ付いたワークの加工には、ポケットサイクルを選びます。
		サイクルは、粗削りと仕上げ削りを区別します。 粗削り: ・ 平面を何度かフライス加工します。 ・ 工具が、ワーク・エッジ上で折り返します。
		仕上げ削り: • 平面を一度フライス加工します。 • 工具が、X/Y 面の安全間隔で折り返します。 • フライスの自由移動
		深位置決めは、常にワークの外部で実行されます。
П		ワークの角が破損している場合、長方形ジャーナルサイクルを選択してください。
		正面削りの際には、機械データに「フライス」タイプの工具に有効なフライス直径が 設定されています。
		これについては機械メーカーの情報に注意してください。
	スタート地点	始点は、垂直加工の場合は常に上もしくは下にあります。水平加工の場合は、 右もしくは左にあります。 加工はできるだけ外側から行われます。 補助図には、始点が明白に示されます。
	アライス 正面削り>	▶ ソフトキー「フライス加工」および「正面削り」を押してください。

ShopMill によるプログラミング 3.8 フライス加工

加工方向の選択

希望の加工方向の記号が現れるまで、ソフトキー「代替」により「方向」欄を切り 替えてください。

制限の選択

|--|--|--|--|

希望する制限に合ったソフトキーを押してください。

選択された制限が、補助図と線描写のグラフィックに表示されます。

パラメータ	説明	単位
加工方法		
	プログラムされた仕上げ削り寸法(UZ)までの正面削り	
	└─── 仕上げ削り:	
	平面が、一度平面上でフライス加工されます。切削後に、工具は自由に移動します。	
加工方向		
	同じ加工方向	
	交互の加工方向	
X0, Y0	Xまたは Y 方向での平面のコーナー地点(abs あるいは inc)	mm
Z0	未加工部分高さ(abs あるいは inc)	
X1	X 方向での平面のコーナー地点 2(abs あるいは inc)	mm
Y1	Y 方向での平面のコーナー地点 2(abs あるいは inc)	
Z1	既成部品高さ(abs あるいは inc)	
DXY	XY 面での最大位置決め(フライス直径に依存)	mm
	選択で、平面位置決めは %でも、比例 → 平面位置決め(mm)で切削フライス直径(mm)を指	%
	示できます。	
DZ	Z 方向への最大位置決め	mm
UZ	仕上げ寸法	mm

	仕上げ削りでは、同じ仕上げ寸法が、粗削りと同様に記入されなければなりません。仕上げ寸法は、位置決めの際に工具退避のために利用されます。
プログラミング例 正面削り	ワークの表面上では、10mm フライス加工されます。そこから初めに 8mm 粗削りされ、そ の後 2mm 仕上げ削りされます。フライス直径は 40mm です。 未加工部分:X0=0, Y0=0, Z0=10, X1=100 絶対., Y1=50 絶対., Z1=0 絶対
	上面削り:粗削りと仕上げ削り 正面削り 丁2 D1 丁300.000 nn/nin S300 U/nin 加工: ▼ X0 0.000 abs Y0 0.000 abs Y0 0.000 abs Y1 50.000 abs Y2 1.0.000 abs Y1 50.000 abs Y2 1.0.000 abs Y1 1.00.000 abs Y1 50.000 abs Y1 1.0.000 Y2
	⇒ N110 止面削り マ T=2 F600/min 53000 X0=0 Y0=0 Z0=10 事 N15 正面削り マママ T=2 F300/min S3500 X0=0 Y0=0 Z0=10

工作図からの抜粋; 正面削り 粗削りと仕上げ削り

01/2008

3.8.2 矩形ポケット

	任意の矩形ポケットをフライス加工したい場合、「矩形ポケット」機能を利用しま す。
=?	 ここでは以下の加工バリエーションが用意されています。 完全材料からなる矩形ポケットをフライス加工します。 例えばフライス機が真ん中を切削しないとき(順々にプログラムブロック 穴開 け、矩形ポケットおよび位置のプログラミング)、矩形ポケットの真ん中をまず初 めに穴あけします。 事前に加工処理した矩形ポケットを処理します(パラメータ「クリアリング」を参 照)。
	ワーク製図内で矩形ポケットがどのように測定されるかに応じて、適切な基準点 を矩形ポケット用に選択できます。
離脱/到	 エ具は早送りで後退レベルの高さでポケット中点に達し、安全距離で位置 決めします。 選択した方法に応じて、工具が材質の中に沈降します。 ポケットの加工は、選択した加工方法により、常に中から外へ行われます。 工具は早送りで安全距離に後退します。
加工方法	 矩形ポケットのフライス加工では、加工法を自由に選択することができます。 粗削りの際には順々に中心からZ1に達するまでポケットの各面を加工処理します。 仕上げ削り 仕上げ削りの際には常にまず縁を加工処理します。その際角半径に向かって開いている 1/4 円でポケットの縁に達します。最後の位置決めの際に、中心から基礎部が仕上げ削りされます。 縁の仕上げ削りは、仕上げ削りと同じくただ最後の位置決めのみ(基部の仕上げ削り)が省かれます。 面取りの際には、ポケットの上縁が砕かれます。

- UZ

3

> ソフトキー「フライス」、「ポケット」および「矩形ポケット」を押します。

解説図 矩形ポケットのフライス加工

斜角面の一面をフライス加工したい場合で、仕上げ削り際にコーナーの半径が R=0の場合は、面取りの際にパラメータRに仕上げフライス機の半径を入力し なければなりません。

パラメータ	説明	単位	
T, F, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。		
基準点の位置	5 つの異なる基準点の位置が選択できます:		
	 ポケット中心 		
	• コーナー左下		
	 コーナー右下 		
	• コーナー左上		
	 コーナー右上 		
基準点(黄色にマーク)が、解説図に表示されます。			
加工方法	▽ 粗削り		
	▽▽▽ 仕上げ削り		
	◇◇◇ 縁仕上げ削り		
	面取り		
シングル地点 矩形ポケットが、プログラムされた地点(X0, Y0, Z0)でフライス加工されます。			
位置構図 幾つかの矩形ポケットが、位置構図上(例えば完全円、部分円、グリッドなど)でフライス加工され			
व 。			
	地点は、基準点に関連しています:		
XO	X 方向(シングル地点でのみ)の地点、abs あるいは inc	mm	
Y0	Y 方向(シングル地点でのみ)の地点、abs あるいは inc	mm	
ZO	ワーク高さ(シングル地点でのみ)、abs あるいは inc	mm	

W	ポケット幅	mm
L	ポケット長さ	mm
R	ポケット角での半径	mm
α0	ポケットの回転角度は X-軸に関係します。	度
Z1	Z0 に関係付けられたポケットの深さ (abs または inc)(面取りの場合以外)	mm
DXY	平面(XY 方向)での最大位置決め	mm
	選択で、平面位置決めは %でも、比例 → 平面位置決め(mm)で切削フライス直径(mm)を指	%
	示できます。(面取りの場合以外)	

DZ	max. 位置決め深さ (Z 方向)(面取りの場合以外)	mm
UXY	平面での仕上げ寸法 (ポケット縁) (面取りの場合以外)	mm
UZ	仕上げ寸法 深さ(ポケット基礎部)(面取りの場合以外)	mm
沈降	様々な沈降の計画が選択できます:	
	らせん:スパイラル軌道上での沈降	
	フライス中心点は、回転ごとに半径と深さにより決定されたスパイラル軌道上を作動します。位置	
	決め深さに達すると、沈降の傾斜した軌道を取り除くために、さらに完全な円が実行されます。	
	振り子振動:ポケットの中心軸を振り子振動しながら浸漬	
	フライス中心点は、位置決め深さに達するまで直線上を振り子振動します。深さに達すると、沈降	
	の傾斜軌道を取り除くために、深く位置決めされることなく、もう一度行路が繰り返されます。	
	中心:ポケット中心に垂直に沈降	
	算出された位置決め深さは、ポケット中心に垂直に実行されます。	
	注意:この設定には、フライスは中心を通って切削するか、事前に穴あけされている必要がありま	
	वे .	
EP	max. 沈降度 (らせん沈降でのみ)	mm/回転
	らせんのピッチは、ジオメトリに基づきわずかでも大丈夫です。	
ER	沈降半径 (らせん状の沈降の場合のみ)	mm
	半径は、材質が残ったままになるので、フライス半径より大きくてはいけません。さらにポケットが傷つ	
	かないように注意してください。	
EW	浸漬角度(振子振動での浸漬のときのみ)	度
FZ	位置決め送り深さ(中心沈降のときのみ)	mm/分
		mm/歯
クリア	完全加工:	
	ポケットは完全な材質でフライス加工されるべきです(例えば鋳造部分)	
	仕上げ加工:	
	一本あるいは数本の軸内で拡大すべき、既に比較的小さいポケットあるいは穿孔があります。その	
	場合、パラメータ AZ、W1とL1 をプログラミングしなけれななりません。	
FS	斜角面の幅 (面取りの場合のみ) inc	mm
ZFS	工具先端の挿入深度 (面取り時のみ)、abs または inc	mm
AZ	事前に加工されたポケットの深さ(仕上げ処理でのみ)	mm
W1	事前に加工されたポケットの幅(仕上げ処理でのみ)	mm
11		
	事前に加工されたホケットの長さ(仕工け処理でのみ)	mm

プログラム例

3

矩形ポケットは、フライスにより事前に粗削りされ、引き続き仕上げ削りされます。 それに使用されるフライスは中心を通って切削しないので、初めにドリル Ø 20 mm によりあらかじめ穴あけされます。

> 巨形ポケット Т

中心 加工:

F

S

Ψ L

R αØ Z1

DXY DZ UXY

UZ

浸漬: FZ

フライス機 2

位置サンプル

200.000 mm/min

50.000 80.000

1.000

0.000 • 26.000 ink 3.000 3.000

1.000 mm

0.100 mm/歯

1.000

600 U/min

 $\nabla \nabla \nabla$

中心

D1

矩形ポケットの製図

矩形オ	ポケット	
Т	フライス機 3	D1
F	300.000 mm/mi	n
S	500 U/min	
	中心	
加工:		
	位置サンプル	
W	50.000	
L	80.000	
R	1.000	
αØ	0.000 °	
Z1	26.000 ink	
DXY	3.000	
DZ	3.000	
UXY	1.000 mm	
UZ	1.000	
浸漬:	中心	
FZ	0.100 mm/ma	
クリアリ	ルグ: 完全	

矩形ポケット 粗削り

矩形ポケット 仕上げ削り

ך 🌌	N10	センタリング		^{T=} 心取機	F250⁄min S900U ø5
7)#72 -	N15	穴あけ		T=หมม 22nm	F80/min S400U Z1=26ink
# -	N20	矩形ポケット	V	Т=フライス機 3	F300/min S500U
<u> </u>	N25	矩形ポケット	$\overline{\mathbf{w}}$	T=フライス機 2	F200/min S600U
$^{\prime}$	N30	001:位置		Z0=0 X0=60	Y0=45

工作図からの抜粋; 事前の穴あけと矩形ポケットのフライス加工

ShopMill によるプログラミング 3.8 フライス加工

01/2008

3.8.3 円ポケット

¢		円形ポケットをフライス加工したい場合、「円形ポケット」機能を利用します。
=?		 ここでは以下の加工バリエーションが用意されています。 円ポケットを完全材料からフライス加工します。 例えばフライス機が真ん中を切削しないとき(順々にプログラムブロック 穴開け、円形ポケットおよび位置のプログラミング)、円形ポケットの真ん中をまず初めに穴あけします。 事前に加工処理した円形ポケットを処理します(パラメータ「クリアリング」を参照)。
	平面加工	「円ポケット」機能によるフライス加工では、平面またはらせんでの作業方法が利 用できます。 ポケットを平面でクリアリングする場合には、材質が「層状に」水平に削って平らに されます。
	離脱/到達	 1. 工具は早送りで後退レベルの高さでポケット中点に達し、安全距離で位置 決めします。 2. 選択した方法に応じて、工具が材質の中に沈降します。 3. ポケットの加工は、選択した加工方法により、常に中から外へ行われます。 4. 工具は早送りで安全距離に後退します。
	加工方法	 円ボケットのフライス加工では、加工法を自由に選択することができます。 粗削りの際には順々に中心からZ1に達するまでポケットの各面を加工処理します。 仕上げ削り 仕上げ削りの際には常にまず縁を加工処理します。その際、円半径に向かって開いている1/4 円のポケットの縁に達します。最後の位置決めの際に、中心から基礎部が仕上げ削りされます。 縁の仕上げ削り 縁の仕上げ削りま、仕上げ削りと同じくただ最後の位置決めのみ(基部の仕上げ削り)が省かれます。 面取り 面取りの際には、ポケットの上縁が砕かれます。
	らせん加工	らせんでクリアリングする際には、材質がらせん運動でポケットの深部をのぞいて削 って平らにされます。

離脱/到達	 工具は早送りで後退レベルの高さでポケット中点に達し、安全距離で位置 決めします。 初めの加工直径への位置決め ポケットの加工は、選択した加工方法でポケット深さもしくは仕上げ寸法のポ ケット深さまで行われます。
加工方法	 ・ 工具は中区りて又生産産にて反应します。 円ポケットのフライス加工では、加工法を自由に選択することができます。 ・ 粗削り 粗削りの際には、ポケットは、らせん運動により上下に加工されます。 ポケット深部では、余材を除去するために完全円に仕上げられます。 工具はポケット縁と 1/4 円の基部から退避し、早送りで安全間隔まで後退します。 このプロセスは、ポケットが完全に加工されるまで、シェル毎に内から外へ繰り返されます。 ・ 仕上げ削り 仕上げ削りでは、まず縁がらせん運動により基部まで加工されます。 ポケット深部では、余材を除去するために完全円に仕上げられます。 ポケット中心から早送りで、安全間隔へ後退します。 ・ 縁の仕上げ削り 縁の仕上げ削りでは、まず縁がらせん運動により基部まで加工されます。 ポケット中心から早送りで、安全間隔へ後退します。 ・ 縁の仕上げ削りでは、まず縁がらせん運動により基部まで加工されます。 ポケット深部では、余材を除去するために完全円に仕上げられます。 エ具はポケット縁と 1/4 円の基部から退避し、早送りで安全間隔まで後退します。
アライス 加工 ポケット > ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	 > ソフトキー「フライス加工」、「ポケット」および「円ポケット」を押します。 マ ト
呼び出し可能	

解説図 円ポケットのフライス加工

パラメータ	説明	単位
T, F, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
平面的らせん	ポケットを平面でクリアリングします	
	ポケットをらせんにクリアリングします	
加工方法	▽ _{粗削り}	
	└─── 仕上げ削り	
	面取り(平面的な場合のみ)	
シングル地点	ー 円ポケットが、プログラムされた地点(X0, Y0, Z0) でフライス加工されます。	
位置構図	幾つかの円ポケットが、位置構図上(例えば完全円、部分円、グリッドなど)でフライス加工されます。	
	地点は、円ポケットの中心点に関連しています:	
xo	X 方向(シングル地点でのみ)の地点、abs あるいは inc	mm
Y0	Y 方向(シングル地点でのみ)の地点、abs あるいは inc	mm
Z0	ワーク高さ(シングル地点でのみ)、abs あるいは inc	mm
Ø	ポケットの直径	mm
Z1	Z0に関係付けられたポケットの深さ (abs または inc)(面取りの場合以外)	mm
DXY	平面(XY 方向)での最大位置決め	mm
	選択で、平面送達は %でも、比例> 平面送達(mm)で切削フライス直径(mm)を指示できま す。(面取りの場合以外)	%
DZ	Max. 位置決め深さ (Z 方向)(面取りの場合以外)	mm
UXY	平面での仕上げ寸法 (ポケット縁) (面取りの場合以外)	mm
UZ	仕上げ寸法 深さ (ポケット基礎部) (面取りの場合以外)	mm
沈降	様々な沈降方法を選択できます (加エバリエーションが「平面的」な場合のみ)	
	らせん:スパイラル軌道上での沈降	
	フライス中心点は、回転ごとに半径と深さにより決定されたスパイラル軌道上を作動します。位置	
	決め深さに達すると、沈降の傾斜した軌道を取り除くために、さらに完全な円が実行されます。	
	送り加工送り	
	中心:ボケット中心に垂直に沈降	
	算出された位置決め深さは、ポケット中心に垂直に実行されます。	
	送り:FZ にプログラムされているような位置決め送り	
	注意ボケット中心に垂直に沈降する際には、フライスが中心を通って切削するか、事前に穴あけし なければなりません。	

EP	max. 沈降度 (らせん沈降でのみ)	mm/回転
	らせんのピッチは、ジオメトリに基づきわずかでも大丈夫です。	
ER	沈降半径 (らせん状の沈降の場合のみ)	mm
	半径は、材質が残ったままになるので、フライス半径より大きくてはいけません。さらにポケットが傷つ	
	かないように注意してください。	
FZ	位置決め送り深さ(中心沈降のときのみ)	mm/分
		mm/歯
クリア	完全加工:	
	ポケットは完全な材質でフライス加工されるべきです(例えば鋳造部分)	
	仕上げ加工:	
	既に拡大すべき円ポケット或は穿孔があります。 パラメータ AZ、と ∅ がプログラムされていなければ なりません。	<i>!</i>
FS	斜角面の幅 (面取りの場合のみ) inc	mm
ZFS	工具先端の挿入深度 (面取り時のみ)、abs または inc	mm
AZ	事前に加工されたポケットあるいは穿孔の深さ(仕上げ処理でのみ)	mm
Ø1	事前に加工されたポケットあるいは穿孔の直径(仕上げ処理でのみ)	mm

3.8.4 長方形ジャーナル

Ì	-	
L		
E		

各種の長方形ジャーナルをフライス加工したい場合、機能「長方形ジャーナル」を 利用します。

ここでは角半径付き、または角半径なしの以下の形状が用意されています。

長方形ジャーナル

ワーク製図内で長方形ジャーナルがどのように測定されるかに応じて、適切な基 準点を長方形ジャーナル用に選択できます。

追加で希望の長方形ジャーナルのために、未加工部分ジャーナルを決定する必要があります。その範囲外に材質がない場合、未加工部分ジャーナルは、範囲を確定します。つまりそこに早送りで移動します。未加工部分ジャーナルは、隣接する未加工部分ジャーナルと交差し、ShopMillにより自動的に中心に既成部品ジャーナルの周りに移されます。

ジャーナルは、1回の位置決めで加工されます。加工を数回の位置決めで実行 したいなら、「長方形ジャーナル」機能により数回、常に小さめの仕上げ寸法によ りプログラムしなければなりません。

解説図 長方形ジャーナルのフライス加工

パラメータ	説明	単位
T, F, S, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
基準点		
	• ジャーナル中心	
	• 左下	
	• 右下	
	• 左下	
	• 右下	
加工方法		
	面取り	
シングル地点	長方形ジャーナルが、プログラムされた地点(X0, Y0, Z0) でフライス加工されます。	
位置構図	幾つかの長方形ジャーナルが、位置構図上(例えば完全円、部分円、グリッドなど)でフライス加工	
	されます。	
	地点は、基準点に関連しています:	
X0	X 方向(シングル地点でのみ)の地点、abs あるいは inc	mm
Y0 70	Y 方向(シングル地点でのみ)の地点、abs あるいは inc	mm
20	ワーク高さ(シングル地点でのみ)、abs あるいは inc	mm
W	加工後のジャーナルの幅	mm
L	加工後のジャーナルの長さ	mm
R	ジャーナルのエッジの半径(コーナー半径)	mm
α0	回転角度	度
Z1	ジャーナルの深さ (abs または inc) (面取りの場合以外)	mm
DZ	位置決め深さ (Z 方向)(面取りの場合以外)	mm
FS	斜角面の幅 (面取りの場合のみ) inc	mm
ZFS	工具先端の挿入深度 (面取り時のみ)、abs または inc	mm
UXY	平面でのジャーナルの長さ(L)とジャーナルの幅(W)の仕上げ寸法	mm
	サイクルをもう一度呼び出し、減少させた仕上げ寸法でプログラムすることにより、比較的小さいジ ャーナルの測定ができます。 (面取りの場合以外)	
UZ	仕上げ寸法 深さ (工具軸) (面取りの場合以外)	mm
W1	未加工部分ジャーナルの幅(到達位置の決定のために重要)	mm
L1	未加工部分ジャーナルの長さ(到達位置の決定のために重要)	mm
		I

3.8.5 円ジャーナル

円ジャーナルをフライス加工したい場合、機能「円ジャーナル」を利用します。

追加で希望の円ジャーナルのために、未加工部分ジャーナルを決定する必要が あります。その範囲外に材質がない場合、未加工部分ジャーナルは、範囲を確 定します。つまりそこに早送りで移動します。未加工部分ジャーナルは、隣接する 未加工部分ジャーナルと交差し、ShopMillにより自動的に中心に既成部品ジ ャーナルの周りに移されます。

ジャーナルは、1回の位置決めで加工されます。加工を数回の位置決めで実行 したいなら、「円ジャーナル」機能により数回、常に小さめの仕上げ寸法によりプロ グラムしなければなりません。

離脱/到達

- 1. 工具は早送りで後退レベルの高さで始点に達し、安全距離で位置決めしま す。スタート地点は、常に正のX軸上にあります。
- 工具は加工送りで半円で側部からジャーナル輪郭に達します。まず加工深さ への位置付けが行われ、つぎに平面への移動が行われます。ジャーナルは、プ ログラムされた加工方向(逆作動/同期作動)に依存し、時計回りあるいは反 時計回りで加工されます。
- 3. ジャーナルが 1 周されると、工具は半円で輪郭を離れ、次の加工深さでへの 位置決めが行われます。
- ジャーナルに再び半円で到達し、1 周されます。このプロセスは、プログラムされたジャーナル深さ(Z1)に達するまで繰り返されます。

右回転の主軸および同期作動のフライス加工での半円における輪郭の到達及び離脱

加工方法 円ジャーナルのフライス加工では、加工法を自由に選択することができます。 粗削り 粗削りの際には、プログラムされた仕上げ寸法に達するまでジャーナルの周囲 がなぞられます。 仕上げ削り 仕上げ寸法をプログラムした場合、深部 Z1 に達するまで、ジャーナルの周囲 がなぞられます。 面取り 面取りの際には、円ジャーナル上縁の角が砕かれます。 フライス 加工 > ソフトキー「フライス加工」、「ジャーナル」および「円ジャーナル」を押します。 ジャーナル > 円ジャーナル (j) ø1 z 🕮 キーにより解説図が 呼び出し可能 Θ ZØ -DZ, υz ø Ζ1 UXY х

解説図 円ジャーナルのフライス加工

	パラメータ	説明	単位
	T, F, S, V	「工具、修正値とスピンドル回転数のプログラミング」の章を参照して下さい。	
	加工方法	── 粗削り ✓✓✓✓ 仕上げ削り	
		面取り	
	シングル地点	円ジャーナルが、プログラムされた地点(X0, Y0, Z0) でフライス加工されます。	
	位置構図	幾つかの円ジャーナルが、プログラムされた位置構図上(例えば部分円、グリッド、直線など)でフラ	
		イス加工されます。	
		地点は、基準点に関連しています:	
	X0	X 方向(シングル地点でのみ)の地点、abs あるいは inc	mm
	Y0	Y 方向(シングル地点でのみ)の地点、abs あるいは inc	mm
	Z0	ワーク高さ(シングル地点でのみ)、abs あるいは inc	mm
	Ø	加工後のジャーナルの直径	mm
	Z1	ジャーナル深さ(abs あるいは inc)(面取りの場合以外)	mm
	FS	斜角面の幅 (面取りの場合のみ) inc	mm
	ZFS	工具先端の挿入深度 (面取り時のみ)、abs または inc	mm
	DZ	位置決め深さ (Z 方向)(面取りの場合以外)	mm
	UXY	平面での仕上げ寸法 (ジャーナル直径) (面取りの場合以外)	mm
	ZU	仕上げ寸法 深さ(ジャーナル基礎部)(面取りの場合以外)	mm
	Ø1	未加工部分ジャーナルの直径	mm
		(到達位置の決定のために重要)	

3.8.6 縦グルーブ

任意の縦グルーブをフライス加工したい場合、「縦グルーブ」機能を利用します。

ここでは以下の加工バリエーションが用意されています。

- 縦方向グルーブを完全材料からフライス加工する。
- 例えばフライス機が真ん中を切削しないとき(順々にプログラムブロック 穴開け、矩形ポケットおよび位置のプログラミング)、縦グルーブの真ん中をまず初めに穴あけします。

ワーク製図内で縦グルーブがどのように測定されるかに応じて、適切な基準点を 縦グルーブ用に選択できます。

離脱/到達

- 1. 工具が早送りで後退面に移動し、安全間隔に位置決めします。
- 2. 選択した方法に応じて、工具が材質の中に沈降します。
- 3. 縦方向グルーブの加工は、選択した加工方法により、常に中から外へ行われ ます。
- 4. 工具は早送りで安全距離に後退します。

加工方法

フライス 加工

縦グルーブ

グルーブ >

縦方向グルーブのフライス加工では、加工法を自由に選択することができます。

- 粗削り
 粗削りでは、深さ Z1 に達するまで、グルーブの連続する面を加工します。
- 仕上げ削り
 仕上げ削りの際には常にまず縁を加工処理します。その際角半径に向かって
 開いている 1/4 円でグルーブ縁に達します。最後の位置決めにより、中心点から基部が仕上げ削りされます。
- 縁の仕上げ削り
 縁の仕上げ削りは、仕上げ削りと同じくただ最後の位置決めのみ(基部の仕上げ削り)が省かれます。
- 面取り
 面取りの際には、縦方向グルーブ上縁の角が砕かれます。
- ▶ ソフトキー「フライス加工」、「グルーブ」および「縦グルーブ」を押します。

解説図 縦グルーブ

	パラメータ	説明	単位
	T, F, S, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
	基準点	 基準点の位置が確定されていなければなりません: 縦グルーブの中心点、 左内部 右内部 左縁 右線 	
	加工方法	 ■ 11/8 ■ 11/8<td></td>	
	シングル地点 位置構図	縦グルーブが、プログラムされた地点(X0, Y0, Z0) でフライス加工されます。 幾つかの縦グルーブが、位置構図上(例えば完全円、部分円、グリッドなど)でフライス加工されま す。	
	X0 Y0 Z0	地点は、基準点に関連しています: X 方向(シングル地点でのみ)の地点、abs あるいは inc Y 方向(シングル地点でのみ)の地点、abs あるいは inc ワーク高さ(シングル地点でのみ)、abs あるいは inc	mm mm mm
	W	グループ幅	mm
	L	グループ長さ	mm
	α0	回転角度	度
	Z1	グルーブの深さ (面取りの場合以外)	mm
	DXY	平面(XY 方向)での最大位置決め 選択で、平面位置決めは %でも、比例 → 平面位置決め(mm)で切削フライス直径(mm)を指 示できます。(面取りの場合以外)	Mm %
	DZ	位置決め深さ (Z 方向)(面取りの場合以外)	mm
	FS		mm
	ZFS	工具先端の挿入深度 (面取り時のみ)、abs または inc	mm
	UXY	+	mm
	ZU	仕上げ寸法 深さ (グルーブ基礎部) (面取りの場合以外)	mm
	沈降	中心に(Mi)あるいは振り子振動(Pe)で浸漬できます: 中心=縦グルーブ中心部に垂直に沈降: ポケット中心部の位置決め深さに移動します。 注意:この調整では、フライスは中心部を切削しなければなりません。 振り子振動=振り子振動しながら縦グルーブの中心軸に沈降: フライス中心点は、位置決め深さに達するまで直線上を振り子振動します。深さに達すると、沈降 の傾斜軌道を取り除くために、深く位置決めされることなく、もう一度行路が繰り返されます。	Mm
	FZ	位置決め送り深さ(中心沈降のときのみ)	mm/分 mm/歯
	EW	沈降角度(振子振動でのみ)	度

3.8.7	円グループ	
		1 つまたは複数の同じ大きさの円グルーブを完全円または部分円でフライス加工 したい場合、機能「円グルーブ」を利用します。
=?	工具寸法	 加工の際にフライス機が円グルーブの最低寸法を下回らないように注意してください。 粗削り: ½ グルーブ幅 W - 精密量目 UXY ≤ フライス機直径 仕上げ削り:
	リング・グルーブ	リング・グルーブを作成したいときには、パラメータ数 Nと開放角度α1に、以下の 数値を入力する必要があります: N = 1 α1 = 360 -
	離脱/到達	 工具は早送りで後退レベルの高さでグルーブ終わりの半円の中心地点に達し、安全距離で位置決めします。 その後工具は加工送り速度でワークに沈降します。その際、Z-方向への最大位置決めと仕上げ寸法が考慮されます。円グルーブはプログラムされた加工回転方向に応じて(逆方向/順方向)時計回りまたは反時計回りで加工されます。 最初の円グルーブが完成すると、工具は加工送りで後退面に戻ります。 次の円グルーブは、一直線状または円軌道上で運搬され、引き続き加工処理されます。 工具は早送りで安全距離に後退します。

ShopMill によるプログラミング		
<u>3.8 フライス加工</u>		

加工方法

円グルーブのフライス加工では、加工法を自由に選択することができます。

- 粗削りの際には順々にグルーブ終わりの半円中心からZ1に達するまでグル ーブの各面が加工処理されます。
- 仕上げ削り
 仕上げ削りの際には常に、Z1 に達するまで縁が加工処理されます。その際
 角に向かって開いている 1/4 円のグループ縁に達します。最後の位置決めに
 より、グループ終わりの半円の中心点から基部が仕上げ削りされます。
- 縁の仕上げ削り
 縁の仕上げ削りは、仕上げ削りと同じくただ最後の位置決めのみ(基部の仕上げ削り)が省かれます。
- 面取り
 面取りの際には、円形グルーブ上縁の角が砕かれます。
- ▶ ソフトキー「フライス加工」、「グルーブ」および「円グルーブ」を押します。

「代替」ソフトキーにより、円グルーブを完全円あるいは部分円に位置付けできます。

01/2008

解説図 完全円と部分円としての円グループ

₿	パラメータ	説明	単位
	T, F, S, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
	FZ	位置決め送り深さ	mm/分
			mm/歯
	加工方法		
		面取り	
		円グルーブが、完全円上に位置付けされます。一つの円グルーブから次の円グルーブまでの間隔	
		は、同じで制御装置により算出されます。	
		円グルーブが、部分円上に位置付けされます。一つの円グルーブから次の円グルーブ間での間隔	
	部分円	は、角度 α2 により決定されます。	
		地点は、中心点に関連しています:	
	XO	X-方向の地点、abs あるいは inc	mm
	YO	Y-方向の地点、abs あるいは inc	mm
	ZO	ワーク高さ(abs あるいは inc)	mm
	W	グルーブ幅	mm
	R	円グループの半径	mm
	α0	X軸に関係する回転角度	度
	α1	グルーブの開放角度	度
	α2	その他の切替角度(部分円でのみ)	度
	N	グルーブ数	
	Z1	Z0 に関係するグルーブの深さ (面取りの場合以外)	mm
	DZ	位置決め深さ (Z 方向)(面取りの場合以外)	mm
	FS	斜角面の幅 (面取りの場合のみ) inc	mm
	ZFS	工具先端の挿入深度 (面取り時のみ)、abs または inc	mm
	UXY	XY 面での精密量目(円グルーブの縁)(面取りの場合以外)	mm
	位置決め	直線:次の位置に直線上で早送りで到達します。	
		円:次の位置に、円軌道上をプログラムされた送り(FP)で到達します。	
	FP	円軌道上での位置決め用の送り	mm/分

01/2008

3.8.8 ネジ溝(開放)

		開いている溝を一掃したい場合、「ネジ溝(開放)」機能を利用してください。
=?		ワークおよび機械の性質に応じて、次の加工方法から選んでください。 • 渦巻き状フライス加工 • プランジフライス加工
	渦巻き状フライス加工	硬化材質では特別に、VHM フライスとともに、粗削りおよび輪郭準備のためのプ ロセスが使用されます。 HSC 粗削りに優先される渦巻き状フライスは、工具を完全に沈降させることはあ りません。そのため、重複が設定通りに守られます。
	渦巻き状フライスの場合の 境界条件	 ・ 粗削り 1/2 グルーブ幅 W - 精密量目 UXY ≤ フライス機直径 ・ 仕上げ削り 1/2 グルーブ幅 W ≤ フライス機直径 ・ 縁の仕上げ削り 仕上げ寸法 UXY ≤ フライス機直径 ・ グルーブ幅 最低 1.15 x フライス直径 + 仕上げ代 最高 2 x フライス直径 + 2 x 仕上げ代 ・ 放射状の位置決め 最低 0.02 x フライス直径 ・ 最高位置決め深さ ≤ フライスの掘削高さ
П		フライスの掘削高さを点検できないか、注意してください。 放射状の最高位置決めは、フライスに応じます。 硬い材料には、位置決めを小さくしてください。

離脱/到達	 工具は早送りでスタート地点に動きますが、その際安全間隔は守られます。 工具は切断深さに位置決めします。 開いたネジ溝の加工は、選択した加工方法で常に溝の長さ全体にわたって 行われます。 工具は早送りで安全距離に後退します。
加工方法	 一掃時に囲う方を自由に選択することができます。 粗削り 粗削りは、フライスが環状の動きをして行われます。この動きの間、フライスは 常に継続的に平面に位置決めされます。フライスが溝全体を取り除くと、フラ イスは同様に環状の動きで再び戻り、次の層(位置決め深さ)を Z 方向に取 り去ります。このプロセスは、プリセットされた溝の深さ+仕上げ代に達するま で繰り返されます。 仕上げ削り 壁の仕上げの際に、フライスは溝の壁に沿って動き、Z 方向で同様に再び一 つ一つ位置決めされます。このときフライスは、溝全体において溝壁の表面が 均一になるように、溝の開始および溝の終了までにわたる安全距離分だけを 動きます。 縁の仕上げ削りは、仕上げ削りと同じくただ最後の位置決めのみ(基部の仕 上げ削り)が省かれます。 基部の仕上げ削り 基部の仕上げ削り 溝壁に余材がありすぎると、仕上げ代を目指して余分な端が取り除かれま す。 面取り 面取りの際には、グルーブ上縁の角が砕かれます。
プランジフライス加工	プランジフライス加工は、「不安定な」機械およびワーク形状のポケットおよび溝を ー掃するのに好まれる方法です。 この方法では基本的に、工具軸の縦方向の力、つまり一掃するポケット/溝 (乙方向の XY 平面で)の表面に対して垂直に作用します。
	そのため工具が歪むことはほとんどありません。工具の軸の負荷により、不安定な ワークでも振動が発生する危険はほとんどありません。
	切屑の比率を上げることができます。いわゆるプランジフライスにより、突き出しが 長い場合にわずかの振動により、耐久期間がより長くなります。
プランジフライス加工の場合の 境界条件	 ・ 放射状の最高位置決め 最高位置決めは、フライスのバイト幅に左右されます。 歩幅 側面の刻み幅は、希望の溝幅、フライス直径および仕上げ代から生じます。 後退

ShopMill によるプログラミング

パラメータ	説明	単位
T, D, F, S, V	「工具、修正値と主軸回転数のプログラミング」の章を参照して下さい。	
基準点	基準点の位置が確定されていなければなりません:	
	• 中心(溝中心点)	
	• 左縁	
	• 右縁	
加工方法	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
	→→→ 前削り	
	☆☆☆☆ 縁の仕上げ削り	
	基部の仕上げ削り	
	面取り	
加工方法	渦巻き状フライス加工:	
	溝を通って環状に動いて戻るフライス	
	プランジフライス加工:	
	工具軸に沿ったドリル運動をともなう、シーケンシャルなプランジ運動	
フライス方向	ダウンカット – 渦巻き状フライス加工	
	アップカット – 渦巻き状フライス加工の場合	
	アップカット + ダウンカット 渦巻き状フライス加工 (粗削りのみ)	
個別位置	プログラムされた位置 (X0, Y0, Z0) の縦方向のキー溝を一掃してください。	
位置構図	複数の縦方向キー溝を1つの位置パターン(例:完全円またはグリッド)で一掃してください。	
	地点は、基準点に関連しています:	
X0	X 方向の地点、abs あるいは inc - (シングル地点でのみ)	mm
Y0	Y 方向の地点、abs あるいは inc - (シングル地点でのみ)	mm
Z0	Y 方向の地点、abs あるいは inc - (シングル地点でのみ)	mm
Z1	Z0 に関係付けられたグルーブの深さ (abs または ink) – 面取りの場合以外	mm
DXY	平面(XY 方向)での最大位置決め	mm
	代案として、レベル位置決めを%でも、比率 → レベル位置決め	%
	(mm) で切削フライス直径(mm)を指示できます。– 粗削りの場合のみ	
DZ	最高位置決め深さ (Z 方向) - 粗削り(浸漬ドリル加工)、基部仕上げ削り、面取りの場合以外	mm
UXY	平面での仕上げ寸法 (グルーブ縁) – 仕上げ削り、縁の仕上げ削りと面取りの場合以外	mm
UZ	仕上げ寸法 深さ (グルーブ基礎部) – 仕上げ削り、床精密削りと面取りの場合以外	mm
FS	斜角面の幅 – 面取りの場合のみ	mm
ZFS	工具先端の挿入深度、abs または inc – 面取り時のみ	mm
W	グループ幅	mm

L	グルーブ長さ	mm
α0	グループの回転角度	度

を連結します。

ShopMill によるプログラミング 3.8 フライス加工

プログラミング例1

•

12 個の矩形ポケットが 15 度の角度で平行して順々にフライス加工されるとします。 グリッ

ドでの配列:4 スリット、3 列

未加工部分:X=115 mm, Y=80 mm, Z=30 mm

矩形ポケットの寸法:長さ 20 mm, 幅 10 mm, 深さ 8 mm

角半径 1.5mm

矩形ポケットの基準点が「左下」で選択されました。

_	_			_
ケッ	<u>۲</u>			
15				D1
		0.200	mm/歯	
		400	ll/min	
-	+	100	0/ 1111	
r	Æ		57	
		(# 		
	位置	構図		
		10.000		
	2	20.000		
		1.500		
		15.000	0	
		8 000	ink	
		2 000	THE	
		4 000		
_		1.000		
		0.000	mm	
		0.000		
			He	
		2.000	mm/U	
		2.000	mm	
	イケッ 15 下	ケット 15 下左 位置	ゲット 15 0.200 400 下左 位置構図 10.000 20.000 1.500 15.000 8.000 2.000 1.000 0.000 0.000 2.000 2.000	ゲット 15 0.200 mm/歯 400 U/min 下 左 位置構図 10.000 20.000 1.500 15.000 ° 8.000 ink 2.000 nm 0.000 m He 2.000 nm/U 2.000 nm/U 2.000 nm

矩形ポケットと位置構図用のパラメータ-入力欄

プログラミンググラフィック、15度の角度でグリッド上の矩形ポケット

M10 r	矩形ポケット	⊽	T=15 F0.2/Z S400U Z1=0ink W10 L20 W1=3
⊞ - N15	001: 穴グリッド		Z0=0 X0=15 Y0=5 N1=4 N2=3

工作図からの抜粋; グリッド上の矩形ポケットのフライス加工

01/2008

プログラミング例 2

5

6 つの縦グルーブが、完全円上でØ 32 mm で粗削りされるとします。縦グルーブは 30 度 回転させられています。 未加工部分:X=100 mm, Y=100 mm, Z=20 mm 縦グルーブの寸法:長さ 28 mm, 幅 16 mm, 深さ 5 mm

縦グルーブの基準点が「中心」に選択されました。

縦グルーブと位置構図用のパラメータ-入力欄

プログラミンググラフィック、完全円上 30 度の角度の縦グルーブ

N10 _ך	縦グループ	∇	T=12 F0.2/Z S600U Z1=5ink W16 L28
¢ [_] №15	001:ピッチ完全円		Z0=0 X0=50 Y0=50 R32 N6

工作図からの抜粋; 完全円上の縦グルーブのフライス加工

ShopMillによるプログラミング 3.8 フライス加工

01/2008

3.8.10 彫り込み

		「彫り込み」機能により、円弧の直線にそってテキストを彫り込むことができます。 希望のテキストを、直接「固定テキスト」としてテキスト欄に入力あるいは「可変テ キスト」として変数により分類することができます。
=?		彫り込みの際に、ShopMillはプロポーショナル・フォントを使用します。つまり各文 字の幅は異なります。
	離脱/到達	 エ具は早送りで後退レベルの高さで始点に達し、安全距離で位置決めします。 エ具は位置決め送りFZにより加工深さZ1に移動し、文字をフライス加工します。 エ具が早送りで安全間隔へ後退し、一直線上の次の文字へ移動します。 ステップ2および3は、完全にテキストがフライス加工されるまで繰り返されます。
	可変テキスト	 可変テキストを構成するには、様々な方法があります。 日付および時刻 例えばワークに完了日および現在の時刻を付けることができます。日付と時 刻の数値は、NCKから読み取ることができます。 個数 個数の変数により、ワークに連続したシリーズ番号を付けることができます。その際に、書式設定(桁数、先行ゼロ)を確定できます。「個数」の変数は、ユ ーザーの変数(_E_PART[0])としてデータの基礎的要素として決められています。 場所確保機能(#)を使って、出力個数を開始する桁数を書式設定してく
	3	 たさい。 初めのワークに個数 1 を出力したくない場合、付加値を指示できます (例えば(<#,_E_PART[0] + 100>)。出力された個数は、この数値分だけ増えます (例 101, 102, 103,)。 数 数の出力の場合 (例えば測定結果)、彫り込む数の出力形式 (前後の少数位)を自由に選択できます。 テキスト 固定テキストを彫り込みのテキスト欄に入力する代わりに、テキスト変数 (例えば_VAR_TEXT="ABC123") により彫り込むテキストをあらかじめ設定できます。

3

	鏡文字 完全円	鏡文字を彫り込みたい場合は、まずミラーリング(「座標変換の定義」の章を参照) をプログラムし、それから希望のテキストを「彫り込み」機能で入力します。 文字を均等に完全円に分配したい場合は、開口角α2=360°を入力してくださ
		い。そうすると ShopMill が自動的に文字を完全円上に均等に分配します。
.	プライス 加工 小文字	▶ ソフトキー「フライス加工」および「彫り込み」を押します。
	小文字	小文字を入力したい場合は、ソフトキー「小文字」を押してください。 もう一度押すと、再び大文字が入力できます。
	特殊文字 特殊文字>	> 入力キーにない文字が必要となる場合には、ソフトキー「特殊文字」を押して ください。
		ウィンドウ「特殊文字」が表示されます。
		▶ カーソルを希望の文字の上に置いてください。
	1	>> ソフトキー「OK」を押してください。
		選択された文字が、カーソル位置で、テキストに挿入されます。
	変数 > 日付	▶ 現在の日付を彫り込みたい場合は、ソフトキー「変数」および「日付」を押してください。
Ħ		日付はヨーロッパの書式で挿入されます (<日>.<月>.<年>)。 他の表記法を維持するには、テキスト欄に指定の書式を適合させなければなりま せん。例えば日付をアメリカの表記法(月/日/年 => 8/16/04) で彫り込むために は、書式を <m>/<d>/<yy>に変更します。</yy></d></m>

ShopMillによるプログラミング 3.8 フライス加工

	時刻の入力	
	変数 > 時刻	現在の時刻を彫り込みたい場合は、ソフトキー「変数」および「時刻」を押してください。
П		時刻はヨーロッパの書式で挿入されます (<time24)。 時刻をアメリカの表記法にするには、書式を <time12>に変更してください。</time12></time24)。
		例: テキスト入力:時間: <time24> 実行:時間: 16.35 時間:<time12> 時間: 04.35 PM</time12></time24>
	個数の入力 変数> 個数 000123	> 個数を固定桁数と先行ゼロにより彫り込みたい場合には、ソフトキー「変数」 および「個数 000123」を押してください。
		書式形式のテキスト <######,_E_PART[0]> が挿入され、ソフトキーバーによ り彫り込み欄に戻ります。 ▶ 場所確保機能(#)の数を彫り込み欄に合わせ、桁数を確定してください。
		指示された桁数 (例えば##) が個数を表示するのに十分でない場合は、 ShopMill が自動的に必要な桁数を増やします。 -または-
	変数 >	▶ 個数を先行ゼロなしで彫り込みたい場合は、ソフトキー「変数」と「個数 123」を押してください。
		書式形式のテキスト <#,_E_PART[0]> が挿入され、ソフトキーバーにより彫り 込み欄に戻ります。 ▶ 場所確保機能の数を彫り込み欄に合わせ、桁数を確定してください。
FI		指示された桁数 (例えば 123) が個数を表示するのに十分でない場合は、 ShopMill が自動的に必要な桁数を増やします。 例えば中断後にワークの製作を連続する個数で続けたい場合は、付加数値を み カレてください、出 カされた個数が、この数値の分だけ増やされます
		パリリークスとして、田ノリビイルと回数が、この数値の力だけ相できれよう。
	可変数の入力 変数 > 数 123.456	▶ 任意の数を特定の書式で彫り込みたい場合は、ソフトキー「変数」と「数 123.456」を押してください。
		書式形式のテキスト <#.###, VAR NUM> が挿入され、ソフトキーバーにより

彫り込み欄に戻ります。

3

01/2008

▶ 場所確保機能 #.###により、どの形式で_VAR_NUM に定義された数を 彫り込みたいか決めてください。

_VAR_NUM に例えば 12.35 を定義した場合、次の方法で変数を書式化でできます。

入力	発行	意味
< #,_VAR_NUM>	12	小数点前の桁数が書式化され
		ていない、小数点後の桁数なし
<####,_VAR_NUM>	0012	小数点前の桁数4、先行ゼロ、
		小数点後の桁数なし
< #,_VAR_NUM>	12	小数点前の桁数 4、先行空
		白、小数点後の桁数なし
<#.,_VAR_NUM>	12.35	小数点前後の桁数が書式化さ
		れていない
<#.#,_VAR_NUM>	12.4	小数点前の桁数が書式化され
		ていない、小数点後の桁数 1
		(四捨五入)
<#.##,_VAR_NUM>	12.35	小数点前の桁数が書式化され
		ていない、小数点後の桁数 2
		(四捨五入)
<#.####,_VAR_NUM>	12.3500	小数点前の桁数が書式化され
		ていない、小数点後の桁数 4
		(四捨五入)

小数点前のスペースが入力した数を表示するのに十分でない場合には、自動的 に拡張されます。指定された桁数が、彫り込む数より大きい場合には、出力形 式が自動的に適切な数により満たされます。

小数点前の書式設定には、空白も使用できます。

_VAR_NUM の代わりに任意の他の数字の変数も使用できます。(例 R0)

可変テキストの入力

テキスト削除 テキスト

削除 >

変数 >	可変 テキスト
------	------------

彫り込むテキスト(最高 200 文字)を変数から取り込みたい場合は、ソフトキ
 「変数」および「可変テキスト」を押してください。

01/2008

書式形式のテキスト <テキスト, _VAR_TEXT> が挿入され、ソフトキーバーによ り彫り込み欄に戻ります。

_VAR_TEXTの代わりに、任意の他のテキスト変数も使用できます。

▶ テキスト全部を取り除きたい場合は、ソフトキー「テキスト削除」を押してください。

変数の書式テキストは、常に現在のカーソル位置に挿入されます。

カーソルを彫り込みテキストの入力欄に置いた場合にのみ、ソフトキー「小文字」、 「変数」および「テキスト削除」が表示されます。

A	パラメータ	説明	単位
e			
	T, D, F, S, V	「プログラム・ブロックの作成」の章を参照。	
	調整	ABC _{テキストを直線に調整}	
		●● テキストを円弧に調整	
		▶ テキストを円弧に調整	
	基準点	テキスト内の基準点の位置	
彫り込みテキス		最高 91 文字	
	X0	X 方向の基準点(abs)	mm
	R	極長さの基準点 (X0 の代わり) – (円弧に調整する場合のみ)	mm
	Y0	Y 方向の基準点(abs)	mm
	α0	極角度の基準点 (YO の代わり) – (円弧に調整する場合のみ)	度
	Z0	Z方向の基準点 (abs)	mm
	Z1	加工深さ (絶対またはインクリメント)	mm
	FZ	位置決め送り深さ	mm/分
			mm/歯
	W	文字高さ	mm
	DX1	文字間隔	mm
	DX2	全体幅 (DX1の代わり) – (直線に調整する場合のみ)	mm
	α1	テキスト方向 (直線に調整する場合のみ)	度
	α2	開口角 (DX1 の代わり) – (円弧に調整する場合のみ)	度
	ХМ	円弧の中心点 (abs) – (円弧に調整する場合のみ)	mm
	YM	円弧の中心点 (abs) – (円弧に調整する場合のみ)	mm

3.9.1 ワーク測定

プログラム内でワーク原点を電子計測プローブにより決めたい時は、「ワーク原点」 機能を利用します。

例えばいくつかのワークを加工したい時には、万力上で次のワークを固定する際 に、古いワーク原点と新しいワーク原点間に充填が生じることがあります。新しい 原点を、ワークのエッジを正確に測定することにより決定し原点オフセットまたは GUD に保存できます。

前のワーク着脱のための充填をもったワーク着脱

いくつかの固定されたワークを同時に加工処理したいときでも、まず始めに各ワー クの原点を決めることができます。

いくつかのワーク着脱

ワーク原点をプログラム内で決めるためには、電子計測プローブのみを利用できま す。事前に内径測定する必要があります(「電子測定工具の内径測定」参照) 工具管理では、この計測プローブは常に 3D キータイプでなければなりません。

自動計測プロセスでは、計測プローブはまず早送りで到達地点に運ばれ、引き 続き測定送りでワーク・エッジに移り、再び戻ります。測定送りは機械データ内に 決められています。

これについては機械メーカーの情報に注意してください。

ワーク原点は工具半径を考慮に入れて算出され、原点オフセットに保存されま す。

- ▶ 電子計測プローブを主軸に取り替えて入れます(「工具、修正値、主軸回転 数のプログラミング」参照)。
- 各種
 ワーク 原点>

 X
 Z
- **√** 確定

- ▶ ソフトキー「各種」および「ワーク原点」を押します。
- ▶ ソフトキーを使って、どの軸方法に初めにワークを移動させたいか選びます。
- ▶ 個々のパラメータの値を入力します。
- ▶ ソフトキー「確定」を押します。
- ▶ その他の両軸にも同様のプロセスを繰り返してください。

₿	パラメータ	説明	単位
	т		
	х		mm
	Y	Y 方向の到達地点(絶対)	mm
	z	Z 方向の到達地点(絶対)	mm
	原点オフセット	 ワーク原点が保存される原点オフセット 基本-原点オフセット 原点オフセット(数値は概算オフセットに保存され、現存値が精細オフセット内で消去されます) GUD-データ (測定結果をその他の算出(許容誤差の確認など)をするために GUD E_MEAS で調べることができます) 	
	到達方向	+: 計測プローブは、ワークの正の方向に移動します。 : 計測プローブは、ワークの負の方向に移動します。 Z-方向の到達地点では、負の方向のみにワークが移動できるので、このパラメータはなくなります。	
	X0, Y0, Z0 ワーク・エッジの規定地点		mm

3.9.2 工具測定

=?

ワークの加工中に工具磨耗を点検したい時には、「工具測定」機能を利用してく ださい。

事前にないけいする必要のある電子計測プローブを使ってプログラム内で工具を 測定できます。

測定の際には側面および長さ充填Vを考慮できます。工具の最長箇所が工具 の外にあるか、横幅が工具の下にある場合は、この差異を調整装置に保存でき ます。

長さ調整

側面調整

工具・キャリア基準点の周知の位置および計測プローブから、ShopMillは工具 補正データを算出します。消耗値は自動的に消耗リストに記入され場合によって は現存値に加算されます。

工具消耗が、ΔL あるいはΔR に記入されている最大許容値より大きいと、工具 は交換して出され、ロックされます。姉妹工具がない場合、加工は中断します。

測定サイクル中に、工具は自動的に測定送りにより計測プローブへ移動します。 続いて工具はまず後退面へ移動し、その後工具交換地点へ戻ります。 工具タイプと測定方法(半径/長さ測定)により、ShopMillは自動的に回転ある いは停止主軸により測定します。

半径は、常に逆の回転で回転する主軸により測定されます。

工具の長さは、停止主軸により測定されます。しかし測定されるフライスの直径 が、計測プローブの直径より大きい場合は、回転主軸により反対方向で測定さ れます。工具は、計測プローブ上方の中心ではなく、工具の外縁により、計測プ ローブの中心点上に移動します。

01/2008

- 工具をおおよそ計測プローブの測定面の中心上に移動させます(「直線あるいは円形のパス移動」参照)。
- ▶ ソフトキー「各種」および「工具測定」を押します。

▶ 工具の半径または長さを測定するか、ソフトキーを選択します。

A	パラメータ	説明	単位
	Т	測定する工具	
	D	工具のバイト番号	
	V	側面充填(必要な場合) - 長さのみ測定	mm
		長さ充填(必要な場合) – 半径のみ測定	mm
	ΔL	最大許容消耗値(エ具メーカの工具データ表参照) - (長さ測定の際のみ)	mm
	ΔR	最大許容消耗値(エ具メーカの工具データ表参照) – 半径測定の際のみ	mm

3.9.3 計測プローブの調整

3.10.1 サブプログラムの呼び出し

各種ワークのプログラミングで同じ加エステップが必要な場合、この加エステップを 専用のサブプログラムとして決定できます。このサブプログラムは任意のプログラムで 呼び出すことができます。このようにして、同じ加エステップを何度もプログラムする 必要がなくなります。

=?

ShopMill はメイン・プログラムとサブプログラムとを区別しません。つまり、「通常」の 作業プロセスのプログラムならびに G コード・プログラムを別の作業プロセスのプロ グラムでサブプログラムとして呼び出すことができます。

サブプログラムでは、同様にサブプログラムの呼び出しができます。最大で8つのサ ブプログラムが組み込み可能です。

連結ブロック内には、サブプログラムを挿入できません。

作業プロセスのプログラムをサブプログラムとして呼び出したい時には、プログラムが あらかじめ既に算出されている必要があります(「機械自動」モードでプログラムをロ ードするかシミュレーションします)。Gコードサブプログラムでは、これは必要ありま せん。

サブプログラムは、NCK ワーキングメモリ(独自のディレクトリ「XYZ」あるいはディレ クトリ「ShopMill」、「部分プログラム」、「サブプログラム」)に保存されていなければ なりません。

その他のドライブにあるサブプログラムを呼び出したいときは、Gコードコマンド 「EXTCALL」が利用できます。

例:NCUの ShopMill バージョンの CompactFlash Card にあるプログラム "Form25_1.mpf"を呼び出します。 EXTCALL "C:\FORM25_1.MPF"

サブプログラムの呼び出しの際に ShopMill がサブプログラムのプログラムのプログラ ムヘッドからの調整を読み取ることに注意してください。この調整は、サブプログラム の終了後も有効なままです。 メインプログラムのプログラムヘッドから設定を再び有効にしたい時には、メインプロ

メインフロクラムのフロクラムヘットから設定を用ひ有効にしたい時には、メインフロ グラムで、サブプログラムを呼び出した後に、希望する設定を再び実行することが 可能です(「プログラム設定の変更」の章を参照)。

- サブプログラムとして、その他のプログラムで呼び出したい ShopMill または G コードプログラムを作成してください。
- カーソルをメインプログラムの工作図内で、サブプログラムを後に呼び出したい プログラムブロック上に置いて下さい。

	サブ
	プログラム

▶ ソフトキー「各種」と「サブプログラム」を押してください。

希望するサブプログラムがメイン・プログラムと同じディレクトリにない場合、サブ プログラムのパスを入力します。

ディレクトリ	指定のパス
ShopMill	ShopMill
専用のディレクトリ XYZ	XYZ
部分プログラム	MPF
サブプログラム	SPF

挿入したいサブプログラム名を入力して下さい。 サブプログラムが、サブプログラムが保存されていないディレクトリにあらかじめ 設定されたファイル拡張子がないときに、ファイル拡張子(*.mpf または *.spf) を付けて指示する必要があります。

ディレクトリ	あらかじめ設定されたファイル拡張子
ShopMill	*.mpf
専用のディレクトリ XYZ	*.mpf
部分プログラム	*.mpf
サブプログラム	*.spf

サブプログラムは、位置構図上でも実施されます。

▶ ソフトキー「確定」を押します。

サブプログラムの呼び出しが、メインプログラムに挿入されます。

Р	N5	SHOPMILL			
ŧ	N10	正面削り	V	T=正面削り	
e	N15	原点オフセット		1 G54	サブプログラム「ポ
鱪	N20	実行		"ポケット_b"	- ケット_b」の呼び
e	N25	原点オフセット		2 655	出し
諧	N30	実行		"ポケット_b"	
e	N35	原点オフセット		3 656	
鱪	N40	実行		"ポケット_b"	
e	N45	原点オフセット		4 657	
	N50	実行		"ポケット_b"	
END		プログラム終了			

サブプログラムの呼び出し:

=?

3

3.10.2 プログラムブロックの反復

;	フークの加工の際に、一定のステップを何度も実行する必要 加工ステップを一度だけプログラムするだけで十分です。Sho ブラムブロックを繰り返すことができます。	がある場合は、この pMill はつまり、プロ
; - - - -	躁り返したいプログラムブロックを、スタートおよびエンド記号て できます。このプログラムブロックは、プログラム内で最高 9999 きます。記号には、明確な、それぞれ異なる名前がついている NCK で使用された名前を使うことはできません。 記号と反復は、リンクしたプログラムブロック内ではなく、後から す。	でしるしをつけることが 9 回繰り返すことがで る必要があります。 6追加で設定できま
-	さらに、同じ記号を、前のプログラムブロックのエンド記号と同う ムブロックのスタート記号として利用することができます。	様に後に続くプログラ
	P N5 SHOPMILL 雪 N10 スタート: 二 N15 矩形ポケット ▽ T=フライス機16	開始マーク
	····································	終了マーク

P	N5	SHOPMILL			
	N10	スタート:			開始マーク
ļ,	N15	矩形ポケット	V	T=フライス機 16	
	N20	エンド:			終了マーク
∆÷4	N25	オフセット		X30 Y0	
<u></u> ∆→4	N30	スケーリング	add	X1.5 Y1.5	
≣Ð	N35	反復		スタート エンド	―― 繰り返し
END	N40	プログラム終了			

プログラムブロックの繰り返し

ShopMill によるプログラミング 3.10 様々な機能

01/2008

- ▶ 名前を入力して下さい。
- ▶ ソフトキー「確定」を押します。

現在のブロックの後にスタート記号が挿入されます。

- ▶ 後で繰り返したいプログラムブロックを入力して下さい。
- ▶ ソフトキー「各種」および「マークの設定」を押してください。
- ▶ 名前を入力して下さい。
- ▶ ソフトキー「確定」を押します。

現在のブロックの後に終点マークが挿入されます。

- プログラム・ブロックを繰り返したい箇所までプログラミングを続けます。
- ▶ ソフトキー「各種」と「反復」を押してください。
- ▶ スタート及びエンド記号の名前および繰り返しの回数を入力して下さい。
- ▶ ソフトキー「確定」を押します。
- マークされたプログラムブロックが繰り返します。

プログラムヘッドで確定された全てのパラメータは、測定単位を除いて、プログラム 内の任意の場所で変更できます。

プログラムヘッド内の調整は、自動的に保持されます。つまり変更されるまで有効 です。

シミュレーション中に、画面に見える部分図を変更したいときには、例えば作業プ ロセスのプログラム内で新しい未加工部分を決定してください。

これは、原点オフセット、座標変換、シリンダーカバー変換、旋回の機能の際に有 意義です。初めの上に挙げられた機能をプログラミングし、その後新しい未加工 部分を確定してください。

- ▶ ソフトキー「各種」と「設定」を押してください。
- ▶ 希望のパラメータを入力して下さい。 パラメータの説明は、「プログラムの新設」の章にあります。
- ▶ ソフトキー「確定」を押します。

プログラムに新しい調整が取り込まれました。

3.10.4 原点オフセットの呼び出し

原点オフセット (G54 など)を各プログラムから呼び出すことができます。 このオフセットは、たとえば同じプログラムで未加工部寸法の異なるワークを加工し たい場合などで利用することができます。オフセットは新しい未加工部のためのワ ーク零位に適合化されます。

=?		原点オフセットを原点オフセット・リストで定義します(「原点オフセットの定義」の 章を参照)。ここでは選択したオフセットの座標を参照することができます。
_ }**	● 各種 変換 > 原点	▶ ソフトキー「各種」、「変換」および「原点オフセット」を押します。
	オノゼット>	▶ 原点オフセット又は基本オフセットを選択します。
		-または-
		▶ 希望するオフセットを入力フィールドに直接入力します。
		-または-
	原点オフセットを	▶ ソフトキー「原点オフセット」を押します。
		原点オフセット・リストが開きます。
		-そして-
		▶ 原点オフセットを選択します。
		-そして-
	プログラムへ	▶ ソフトキー「プログラムへ」を押してください。
		原点オフセットがパラメータ・リストに引継されます。
61		原点オフセットをオフにしたい場合、基本オフセットを選択するか、又はフィールドに ゼロを入力します。

3.10.5 座標変換の定義

=?

プログラミングを容易にするために、座標系を変換することができます。座標系を 回転させるために、これを利用してください。

座標系は現在のプログラムにのみ適用されます。 オフセット、回転又はスケーリングを定義することができます。このとき、新しい、又 は追加の座標変換を選択することができます。 新しい座標変換では、定義済みのすべての座標変換がオフになります。追加の 座標変換は現在選択されている座標変換に影響を及ぼします。

オフセット
 各軸に原点オフセットをプログラミングできます。

各軸を一定の角度だけ回転させることができます。正の角度は、反時計回り の回転に相当します。

新しい回転

• スケーリング

付加的な回転

アクティブな加エレベルおよび工具軸について縮尺を入力することができます。 プログラムされた座標はこの係数で積算されます。

スケーリングは常にワーク原点に関係することに注意して下さい。例えば、中心点 が原点と一致しないポケットを拡大したいとき、ポケットの中心点は、スケーリング の際に位置がずらされます。

付加的なスケーリング

01/2008

ShopMill によるプログラミング

3.10.6 シリンダーカバーの変換

機能

シリンダーカバーの変換は、以下の加工のために必用とされます。

- シリンダーボディーの縦グルーブ、
- シリンダーボディーの横グルーブ、
- シリンダーボディーの進行中の任意のグルーブ

シリンダーカバー変換機能は、ソフトウェアのオプションです。

グルーブの進行は、平面のシリンダーカバー表面上に関連してプログラミングされま す。プログラミングは、直線/円、ボーリングあるいはフライスサイクルまたは輪郭のフ ライス加工(自由な輪郭プログラミング)を通して可能です。

シリンダーカバー変換には二つの特性があります:

- グルーブ側面修正 切
- グルーブ側面修正 入(軌道フライスのみ)

グループ側面修正 オフ

工具直径がグルーブ幅と同じ時は、グル ーブ側面修正を切って、平行する壁によ り任意のグルーブを作成できます。 グルーブ幅は工具直径より大きい時は、 グルーブ側面は平行ではありません。

加工用に、グルーブの修正がプログラミングされています。

3	ShopMillによるプログラミング 3.10 様々な機能	01/2008
	グループ側面修正 入	グルーブ幅が工具直径より大きいとき は、グルーブ側面修正を入れて平行す る壁によりグルーブを作成できます。 平行に制限された縦グルーブ、 グルーブ側面補正 オン
61		加工用にグルーブの輪郭ではなく、グルーブ内に通された、壁に沿って移動するボ ルトの想定中心点軌道をプログラミングする必要があります。グルーブ幅は、パラ メータ D により決定されます。(「例 5:グルーブ側面修正」の章も参照)
	プログラミング	 プログラミングの際の根本的な措置方法は、以下のようになっています: シリンダーカバー変換のための原点オフセットを選択します(例えばシリンダー正面の中心点に原点を移動します)。 Y軸を位置づけます(Y軸は、変換後は別に定義されてしまうので、シリンダーカバー変換前に位置付けしなければなりません)。 シリンダーカバー変換のスイッチを入れます。 原点オフセットを、加工用にシリンダーカバー上で選択します(例えばワーク製図の原点に原点を移動)。 加工をプログラミングします(例えば、輪郭の入力と軌道フライス加工)。 シリンダーカバー変換のスイッチを切ります。
		プログラミングされたシリンダーカバー変換のシミュレーションは、カバー処理としての み描写されます。 シリンダーカバー変換の呼び出し前に作動している原点オフセットは、機能の選
	各種 変換 >	 アフトキー「各種」、「変換」および「シリンダーカバー」を押してください。

シリンダー カバー>

	パラメータ		兑明	単位
	変換	シリンダーカバー変換入/切(以下の例も参照)		
	Ø	シリンダー直径(変換の際のみ入)		mm
グルーブ側面 グルーブ側面修正入/切(変換の際のみ入) 修正				
	D	プログラミングされた軌道の充填(グルーブ側面修正の際のみ入)		mm

自由な輪郭プログラミングのための拡張

一般 シリンダー上での輪郭(例えばグルービング)では、頻繁に角度指示がシリンダーカバー表面(例えば Y 軸)の回転方向の長さ用に指示されます。
 さらに幾つかの拡張が、「輪郭フライス加工」機能下の自由な輪郭プログラミング内にあります。
 選択した軸(機械データの指示により選択可能)に応じて、角度指示として長さが入力できます。
 スタート地点 面では、スタート地点の選択により、追加でシリンダーカバー変換機能が、ソフトキー「代替」を使って入/切できます。機能のスイッチをいれると、シリンダーの直径

「直線 水平/垂直/対角線上」及び「円弧」面が、シリンダーカバー変換のスイッチ を入れると、軸および各要素に依存して角度パラメータ Xa、la または Ya、Ja 分だけ拡張します。

注意

Øが提供されます。

グラフィックでは、処理の測定がmmで表示されます!

3.10.7 旋回

旋回ヘッドまたは旋回テーブルの補助により傾斜面を作成または加工処理できま す。

その際、機械(A,B,C)の回転軸をプログラミングするのではなく、各ワーク製図に 書かれているように、直接ワーク座標系のジオメトリ軸(X,Y,Z)周りの回転を指 示することができます。

プログラム内のワーク座標系の回転は、その後自動的にワーク加工の際に、機械の各回転軸の回転へと換算されます。

手動旋回の場合、選択により直接機械の旋回軸をプログラムし、この旋回軸の 位置に合う座標系を作成させることもできます。作成された座標系は、機械のキ ネマティクスに応じます。これにより生成されたプログラムは、一般的に変更なしに 他の機械にセットすることはできません。

旋回軸は、次の加工の際に、工具軸に対し加工面が垂直になるように回されま す。加工中は、加工面は不動です。

座標系の旋回の際には、前に設定された原点オフセットが自動的に旋回状態に 合わせて換算されます。

プログラミングの際の根本的な措置方法は、以下のようになっています:

1. 座標系が加工面に旋回します。

2. 加工を通常通り、X-/Y-面でプログラムします。

3. 座標系が再び戻って旋回します。

旋回面でプログラムされた加工に到達する際に、ソフトウェアリミットスイッチが損傷 することがあります。そのような場合は、後退面上を、ShopMillはソフトウェアリミッ トスイッチにそって動きます。後退面下での損傷の場合は、プログラムは安全のた めアラームとともに中断します。これを避けるためには、旋回前に、例えば工具を X/Y 面にできるだけ近く、加工のスタート地点に移動させるか、後退面をワーク近 くに決めることができます。

旋回面では、機能「ワーク原点」が有効で、機能「工具測定」は有効ではありません。

リセット状態、またパワーオン後は、旋回座標がそのまま残ります。つまり、例えば Z+-方向の後退により、傾斜穴から出発することができます。

これについては機械メーカーの情報に注意してください。

以下に、旋回の際の重要なパラメータが説明されています:

3

	自由移動	軸の旋回前に、工具を安全な退避地点に移動できます。どの退避方法が利用 できるかは、旋回データの開始の際にパラメータ「退避位置」に決められています。 退避モードは、モーダルに有効です。工具交換の際あるいはブロック検索後に、 最後に設定された退避モードが利用されます。 これについては機械メーカーの情報に注意してください。
~		警告
<u> </u>		旋回の際に、工具とワーク間に衝突がおきないように、退避位置を選ぶ必要があ ります。
	旋回	例えば新しい座標系でその他の旋回を実行するために、座標系を回転させたい か、あるいは実際に旋回軸を動かしたいか、選択してください。旋回面で加工を 実行したいときは、旋回軸も作動させる必要があります。
	旋回-変形態	旋回は、軸により、立体角、発射角により、あるいは直接実行できます。どの旋 回-バリエーションが利用できるかは、機械メーカにより「旋回」機能の調整で確定 されています。
		これについては機械メーカーの情報に注意してください。
		 軸ごとの旋回では、座標系が順々に各軸周りで回転し、その際に、各回転は前の回転上に重なります。軸の順番は、自由に選択できます。 空間角度上の旋回では、初めに Z 軸、その後 Y 軸の周りを旋回します。二番目の旋回は、初めの旋回上に重なります。 投影角度上の旋回の際には、初めに同時に 2 軸の周りを旋回します。つまり2つの角度が同時に考慮されます。三回目の回転が初めの二回にかぶさります。 軸は自由に選択可能です。
		この変形態は例えば、ワーク製図の側面の角度が計測された傾斜穿孔に利 用されます。側面図は、旋回してない座標系には適合しません。
		 直接千回の場合、回転軸の希望の位置が指示されます。ShopMillは、そこから適切で新しい座標系を算出します。工具軸が、Z方向に調整されます。XおよびY軸の結果として生じる方向を、軸の移動から算出できます。 Z軸周りの座標系の回転により、方向を調整できます。

方向 工具先端の固定保持		様々な旋回の変形態でのそれぞれの正の回転方向を、解説図に取り出すことが できます。 2本の回転軸を備えた旋回システムでは、一定面に、二つの異なった方法で到 達することが可能です。「方向」パラメータでは、両方の異なる位置間で選択でき ます。+/- は、回転軸の大きめあるいは低めの数値に相当します。これは加エス ペースへの影響をもたらします。 両位置間でどの回転軸が選択されるかは、旋回データブロックの運転開始の際 に「方向」パラメータで確定されます。
		位置の一つに、機械的な理由から到達できないと、「方向」パラメータ内での調整 に依存して、自動的に代わりの位置が選択されます。 衝突を避けるために、5軸変換(ソフトウェアオプション)の補助により、旋回の際に 工具先端の位置を保持することができます。この機能は、パラメータ「追走工具」 で「旋回」の調整の際に起動されなければなりません。
		これについては機械メーカーの情報に注意してください。
_3**	各種 変換 > 旋回 >	▶ ソフトキー「各種」、「変換」および「旋回」を押します。
	基本位置	▶ 基本状態に再び戻りたい時、つまり数値をOにセットしたい時は、ソフトキー 「基本位置」を押してください。

座標系を再び元の位置に旋回させたい場合に、利用してください。

ShopMill によるプログラミング 3.10 様々な機能

3

© Siemens AG 2008 All rights reserved. SINUMERIK 840D sl 操作/プログラミング ShopMill (BASsl) - 発行 2008 年 1 月

01/2008

₿

バラメータ	説印	3	単位	
тс	旋回データブロックの名前			
	0:旋回ヘッドを取り除き、旋回データブロックを選択解除します。			
	入力なし:調整された旋回データブロックの変更はあ	入力なし:調整された旋回データブロックの変更はありません		
Т	工具表示			
自由移動	いいえ:旋回前に、工具は戻りません。			
	Z:工具軸は、旋回前に退避地点へ移動します。			
	Z, X, Y:加工軸は、旋回前に退避地点へ移動しま	ます。		
	工具 最高:工具が、工具方向にソフトウェアリミット	スイッチまで戻ります。		
	工具 inc:工具が、入力された増分値まで、工具	方向へ戻ります。		
旋回	はい:計算及び旋回(座標系の旋回と旋回軸の作	動)		
	いいえ:旋回せず計算のみ(座標系の旋回、旋回車	10作動なし)		
変換	付加的または新しい旋回			
X0	回転の基準点		mm	
Y0	回転の基準点		mm	
Z0			mm	
旋回-変形態	軸式:座標系を軸により旋回します。			
	立体角:立体角上の旋回			
	発射角:発射角上の旋回			
	直接:回転軸を、直接位置決めします。			
Х	軸角度(軸ごとの旋回)	軸の順番は、	o	
Y	軸角度(軸ごとの旋回)		0	
Z	=	 交換できます。	0	
α	XY 面の Y 軸周りの旋回角度(空間角度上の旋回	3)	0	
β	空間での Y 軸周りの旋回角度(空間角度上の旋	回)	0	
Χα	 軸角度(投影角度上の旋回)	軸の順番は、	o	
Υα	 軸角度(投影角度上の旋回)	 「代替」により、任意に	0	
Ζβ	軸角度(投影角度上の旋回)	 交換できます。	0	
В	角度 回転軸 1(直接旋回)		0	
С	角度 回転軸 2(直接旋回)		0	
WZ	工具軸周りの座標系の回転 (直接旋回)		0	
X1	回転面の新しい原点		mm	
Y1	 回転面の新しい原点		mm	
Z1	回転面の新しい原点			
方向	2 つの選択肢をもつ優先回転方向			
	+:旋回ヘッド/テーブルのスケール上の軸の大きい方	の角度		
	-:旋回ヘッド/テーブルのスケール上の軸の小さい方の	の角度		
工具先端の固定	追走:工具先端の地点は、旋回中は保持されます。			
保持	追走なし:工具先端の地点は、旋回中に変更しま	す。		

R

プログラム例

旋回前(X0, Y0, Z0) または旋回後 (X1, Y1, Z1)の移動は、追加的な変換に より補うことができます(「原点オフセット」の章を参照)。

立方体では、角を面取りすることが薦められます。加工面として、傾斜面が次のように定義されます:

- 軸ごとの旋回と空間角度上の旋回では、初めに座標の十字が XY 面で回転させられるので、立方体の傾斜面の上部エッジは、X 軸に平行して作動します(Z-軸周りを 45°回転または α=45°)。その後座標十字は、横転させされるので、立方体の傾斜面は、XY 面にあります(Y 軸周りを -54,736°回転または β=54,736°)。
- 投影角度上の旋回では、立方体の傾斜面が、XY面にあるように X および Y 軸が 45° だけ回転させられます。その後 Z 軸が 30°だけ回転させられる ので、X 軸は傾斜面(回転面の原点)の中心点を通って作動します。

旋回ヘッドにより加工されたワーク

3

旋回(軸ごと)

旋回 (空間角度)

旋回 (投影角度)

3.10.8 追加機能

各加工ステップ間では、主軸を新たに位置付けし、クーランと材を入れ、加工を 停止することができます。

以下の機能が利用できます:

- 主軸
 主軸回転方向または主軸地点を決定します(「手動による主軸のスタート、 ストップ、位置決め」の章を参照)。
- ギアステージ
 機械にギアが提供されている場合、ギアステージを調節します。

これについては機械メーカーの情報に注意してください。

その他の M 機能
 機械機能、例えば「ドアを閉める」などが、機械メーカにより追加で利用可能
 になっています。

これについては機械メーカーの情報に注意してください。

- クーラント ½のクーラントを入-/切
- 独自の機能1から4までを備えた工具 機械メーカにより追加で提供されている、工具独自の機能を1から4までを 選択します。

これについては機械メーカーの情報に注意してください。

- 停留時間
 後で機械加工が続けられる時間
- プログラムされた停止
 追加でソフトキー「プログラム停止」が作動すると、機械加工が停止します(「プログラムの影響」の章を参照)。
- 停止
 機械での加工を停止します。

- ▶ ソフトキー「直線 円」と「機械機能」を押します。
- ▶ 希望のパラメータを入力して下さい。
- ▶ ソフトキー「確定」を押します。

3

3.11 作業プロセスプログラムの G コード挿入

		作業プロセスのプログラム内で、Gコード・ブロックをプログラムすることができます。 さらに、プログラムの注にコメントを挿入することができます。		
51		挿入された G コードブロックによる作業プロセスのプログラムの処理の際に、これら が点検されます。 例えば G コードブロック G18 を平面選択のために作業プロセスプログラムに挿入 した場合、これは考慮されません。		
=?		DIN66025 に準 す。	拠する G	3 コードブロックの詳しい説明は、以下に書かれていま
		参考文献:	/PG/, /PGA/,	プログラミングマニュアル 基礎 SINUMERIK 840D/840Di/840D sl , プログラミングマニュアル 作業準備 SINUMERIK 840D/840Di/840D sl
		プログラムヘッド前 ブロックは作成でき	」に、プログ きません。	グラム終了後の連結プログラムブロック内では、Gコード
		ShopMillは、G	コードブロ	コックをプログラムグラフィックでは表示しません。
	送り	ShopMill サイクル(穴あけ、フライス加工、輪郭フライス加工)後は、常に送り G94 (mm/min)が作動し、どの送りが ShopMill サイクルにプログラムされている かは関係ありません。送り値 F は、ShopMill サイクル後に、ShopMill サイクル G94 がプログラムされた場合にのみ作動します。		
		しかし一般的に、 (F)をプログラムし	初めの C て、予期	G コードブロックに常に送り(G94 または G95)と送り値 せぬ移動が起こらないようにしなければなりません。
	FOR カーブ	作業プロセスプログラムに FOR カーブをプログラムしたい場合は、グローバルユー ザーの変数 (GUD7)_E_COUNTER [0] から_E_COUNTER [9] タイプ INT を利用できます。		

Р	N5	COUNTER	原点オフセット	1 G54	\rightarrow
т	N10	T=フライス機_10 S1000U			
G	N15	; 早送りでスタート地点に到達			
	N20	早送り X0 Y0 Z5			
G	N25	; 送りによる深部位置決め			
→	N30	F200/min Z-5			
G	N35	G64 ; 軌道制御運転			
G	N40	; 1/10度毎の正弦(360度)上の)カーブ		
G	N45	FOR _E_COUNTER[0]=0	TO 3600		
G	N50	; 正弦カーブの直線との接近			
G	N55	G1 X=_E_COUNTER[0]	/20 Y=SIN(_E_COUNTER[0]/10)*70	
G	N60	ENDFOR			
\rightarrow	N65	早送り 25			
END		プログラム終了	N=1		

カーブプログラミングの例 (正弦パス)

グラフィック描写でプログラミングされた正弦パス

- ▶ 作業プロセスのプログラムの加工図にGコード・ブロックを挿入したいプログラム・ブロックにカーソルを置きます。
- ▶ 「Input」キーを押して下さい。
- 希望のGコードコマンドあるいはコメントを入力して下さい。 コメントはつねにセミコロン(;)で始まっていなければなりません。

新しく作成したGコード・ブロックは工作図でブロック番号の前に「G」でマークされます。

P	NS	SHOPMILL
G	N10	;Gコードブログラム
G	N15	F200 S900 T1 D2 M3
G	N20	G0 X100 Y100
G	N25	G1 X150
G	N30	Y120
G	N35	X100
G	N40	Y100
G	N45	G0 X0 Y0
END	NSØ	プログラム終了

作業プロセスのプログラムでの G コード

メモ用

01/2008

Δ

G コードによるプログラミング

4.1	G コードプログラムの作成	4-324
4.2	G コードプログラムの加工処理	4-327
4.3	G コードエディタ	4-329
4.4	計算パラメータ	4-333
4.5	ISO-Dialects	4-334

C コードプログラムの作成 4.1

「 G」―トノロクフムの作成				
	プログラムを ShopMill-機能でプログラムしたくないときは、G コードプログラムを G コードコマンドにより ShopMill-操作画面で作成することもできます。			
?	Gコードコマンドは、DIN66025 に準拠してプログラミングできます。 さらにパラメータ面が、測定と輪郭、ドリル加工、フライス加工のプログラミングの際 に補助してくれます。各面からGコードが作成され、それを再び面に戻すこともで きます。測定サイクルのサポートは、機械メーカにより調整されなければなりませ ん。 これについては機械メーカーの情報に注意してください。			
	DIN66025 とサイクル、測定サイクルに準拠する G コードコマンドの詳しい説明 は、以下に書かれています。 参考文献: /PG/, プログラミングマニュアル 基礎 SINUMERIK 840D/840Di/840D sl /PGA/, プログラミングマニュアル 作業準備 SINUMERIK 840D/840Di/840D sl /PGZ/, プログラミングマニュアル サイクル SINUMERIK 840D/840Di/840D sl /BNM/, プログラミングマニュアル 測定サイクル SINUMERIK 840D/840Di/840D sl			
	PCU 50.3 (HMI Advanced) で特定の G コードコマンドまたはサイクルパラメー タの詳しい情報を得たい場合は、コンテクストに敏感なオンラインヘルプを呼び出 すことができます。			
	オンラインヘルプについての詳しい説明は以下の文書にあります。 参考文献: /BAD/, 操作マニュアル HMI Advanced SINUMERIK 840D/840Di/840D sl			
G コードプログラムのセットア	マップ			

- プログラム Gコード 新規 > プログラム V DK INPUT -または
- ▶ ソフトキー「プログラム」を押してください。
- ▶ プログラムを新設したいディレクトリを呼び出してください。
- > ソフトキー「新規」と「G コードプログラム」を押して下さい。
- ▶ プログラム名を入力して下さい。 プログラム名は最高24字まで可能です。文字(変母音以外)、数字、下線 「_」、点「.」、斜線「/」が許可されています。ShopMillが自動的に小文字 を大文字に取り替えられます。
- >> ソフトキー「OK」又は「Input」キーを押してください。
- Gコードエディタが開きます。
| | ▶ 希望のGコードコマンドを入力して下さい。 | | | | |
|---|---|--|--|--|--|
| エ具の呼び出し
その他 > 工具 | エ具を工具リストか選択したいときは、ソフトキー「その他」と「工具」を押して下さい。
-子して- | | | | |
| | 加工用に使用したい工具の上にカーソルを置いてください。 | | | | |
| | - 2 して- | | | | |
| プログラムへ | ▶ ソフトキー「プログラムへ」を押してください。 | | | | |
| | 選択された工具が、G コードエディタに取り込まれます。
G コードエディタ内の現在のカーソル位置が、例えば以下のテキストのように現れ
ます:T="フライス機 30" | | | | |
| | 作業プロセスのプログラミングと対照的に、工具の呼び出しにより自動的には工具
管理内の設定は作動しません。
つまり追加で工具に工具交換(M6)、主軸回転方向 (M3/M4)主軸回転数
(S)、クーラント (M7/M8)、その他の工具特殊機能をプログラミングしなければ
なりません。 | | | | |
| | 例: | | | | |
| | ・・・
T="フライス機 30" 工具の呼び出し
M6 ;工具交換
M7 M3 S2000 ;クーラントと主軸のスイッチオン
・・・ | | | | |
| サイクル補助
輪郭 … ^{フライス加工} | 輪郭、ボーリングあるいはフライスサイクルのプログラミングの補助を受けるか、
ソフトキーで選択して下さい。 | | | | |
| 輪郭作成 | ▶ ソフトキーで希望のサイクルを選択して下さい。 | | | | |
| | ▶ パラメータを入力して下さい。 | | | | |
| ОК | >> ソフトキー「OK」を押してください。 | | | | |
| | サイクルが G コードとしてエディタに取り込まれます。 | | | | |

G コードによるプログラミング

それぞれ該当のヘルプが映し出されます。

01/2008

4.2 Gコードプログラムの加工処理

プログラムの加工処理の際には、ワークは機械のプログラミングに応じて加工されます。

自動作動でのプログラミング開始後、ワーク加工が自動的にスタートします。プロ グラムをいつでも停止でき、引き続き加工が新たに開始することができます。

簡単な方法でプログラミング結果をコントロールし、機械軸を作動せずに、プログ ラムの加工処理がスクリーンにグラフィックでシミュレーションできます。 シミュレーションの詳しい情報は、「シミュレーション」の章にあります。

機械へのプログラムの加工処理前に以下の前提条件を満たす必要があります:

- コントローラの計測システムが機械と同期している。
- Gコードで作成されたプログラムがある。
- 必要な工具補正および原点オフセットが入力されている。
- 機械メーカーによる必要な安全ロック機構が起動されている。

Gコードプログラミングの加工処理の際には、作業プロセスのプログラムの際と同様に同じ機能が利用できます(「ワーク加工」の章を参照)。

>> ソフトキー「プログラム」または「Program Manager」キーを押してください。

- ▶ カーソルを希望のGコードプログラムの上に置いてください。
- ボタン「Input」または「右カーソル」を押します。
- Gコードエディタでプログラムが開きます。
- ▶ ソフトキー「シミュレーション」を押してください。

プログラムの完全な加工処理は、グラフィックでスクリーンに描写されます。

シミュレーションから直接、再びGコードエディタに切り替えたいときは、ソフトキー 「Edit」を押して下さい。

Gコードプログラムの加工処理

- > ソフトキー「プログラム」または「Program Manager」キーを押してください。
- -そして-
- ▶ カーソルを希望のGコードプログラムの上に置いてください。

-そして-

▶ ソフトキー「加工処理」を押します。

-または-

▶ 操作範囲「プログラム」内にいる場合は、ソフトキー「加工処理」を押して下さい。

ShopMill が自動的に、運転モード「機械自動」に切換わり、Gコードプログラムを ロードします。

▶ 「Cycle-Start」キーを押して下さい。

機械での G コードプログラムの加工処理がスタートします。

4.3	G コードエディタ	
-----	-----------	--

Er.

プログラムブロックの順序をGコードプログラム内で変更し、Gコードを消去したい時、またあるプログラムからその他にコピーしたい時には、Gコードエディタを使用して下さい。

プログラム内で加工処理中のGコードを変更したいときには、まだ加工処理され ていないGコードブロックのみを変更できます。このブロックは、特に際立っていま す。

Gコードエディタでは、次の機能を利用できます:

- マーク
- 任意のGコードをマークできます。
- コピー/挿入 プログラム内で、あるいは異なるプログラム間でプログラムをコピーしたり挿入し たりできます。
- 切り取り

Gコードを切り取ったり、消去できます。Gコードは、Gコードをその他の位置 に再び挿入できるように中間メモリ内に保存されます。

- 検索/置換
 G コードプログラムでは、任意の記号順で検索し、これを他で埋め合わせることができます。
- 開始/終了へ
- Gコードプログラムでは、簡単に開始または終了にジャンプできます。
- 通し番号

新しいあるいはコピーした G コード・ブロックを、二つの現存する G コード・ブロック間に挿入すると、ShopMill が自動的に新しいブロック番号が与えられます。このブロック番号は、次に続くブロック番号より大きくできます。機能「新たな通し番号」で、G コードブロックを再び上昇して通し番号をつけることができます。

Gコードによるプログラミング 4.3 Gコードエディタ	01/2008
\$**	Gコードプログラムを作成または開くと、自動的にGコードエディタ内に入ります。
G コードのマーク	
	▶ プログラム内のマークを始めるべき場所にカーソルを置きます。
マーキング	▶ ソフトキー「マーキング」を押してください。
	▶ プログラム内のマークを終える場所にカーソルを置きます。
	G コードがマークされます。
G コードのコピー	
	> コピーしたい G コードをマークします。
⊐ピ −	▶ ソフトキー「コピー」を押してください。
	G コードが、中間記憶装置に保存され、その他のプログラムで交換の際にも残り ます。
G コードの挿入	
	▶ 挿入したい G コードをコピーします。
挿入	▶ ソフトキー「挿入」を押してください。
	コピーしたGコードは、カーソル位置前の中間メモリからテキストに挿入されます。
G コードの切り取り	
	▶ 切り取りたい G コードをマークします。
切り取り	▶ ソフトキー「切り取り」を押してください。
	マークされた G コードが取り除かれ、中間メモリに保存されます。

L

G コードによるプログラミング 4.3 G コードエディタ

© Siemens AG 2008 All rights reserved. SINUMERIK 840D sl 操作/プログラミング ShopMill (BASsl) - 発行 2008 年 1 月

4.5 **ISO-Dialects**

ShopMill に ISO-Dialects がセットアップされている場合、ISO-Dialects プログ ラムを作成し、加工処理することができます。

これについては機械メーカーの情報に注意してください。

ISO-Dialects プログラムでは、Siemens-G コードにより作成されたプログラムは 重要ではありません。これに関しては「Gコードプログラムの作成」の章を参照して 下さい。

5

シミュレーション

01/2008

5.1	一般事項	5-336
5.2	標準シミュレーションでのプログラムの開始/中断	5-337
5.3	平面図での描写	5-339
5.4	3 面図での描写	5-340
5.5	断面の拡大	5-341
5.6	立体描写	5-342
5.6.1	断面の位置の変更	5-343
5.6.2	ワークの切断	5-344
5.7	金型製造のためのクイック表示の開始/中断	5-345
5.8	クイック表示での描写	5-346
5.9	ワークグラフィックの調整およびシフト	5-347
5.10	間隔の測定	5-348
5.11	検索機能	5-349
5.12	パーツプログラムブロックの加工	5-350
5.12.1	G ブロックの選択	5-350
5.12.2	Gコードプログラムの加工処理	5-351

01/2008

5.1	一般事項	
		ShopMillには、広範囲で詳細に加工の軌道を描写するシミュレーション機能が あります。
		これについては機械メーカーの情報に注意してください。
	標準シミュレーション	シミュレーションでは、現在のプログラムが完全に算出され、結果がグラフィックで描 写されます。
		以下のシミュレーション描写方法を選択できます:
		 平面図 3面図 立体図
		シミュレーションは、工具とワーク輪郭の正しい比率を利用します。円柱形の鋳造 型フライス、円錐型フライス、角の丸み付け機能の付いた円錐台フライス、円錐 鋳造型フライスが、そこでは底フライスとして描写されます。
		工具の移動パスはカラーで描写されます。 赤色のライン = 工具は早送りで移動 緑色のライン = 工具は加工送りで移動
		すべてのビューでグラフィック処理中に時計が連動します。表示された加工時間 (時間/分/秒)は、機械で加工(工具変更を含む)されたときのプログラムに必 要な時間の近似値です。 同時描画でのプログラム中断時には時計は停止します。
		さらに現在の軸座標、補正および処理対象のプログラム・ブロックが表示されます。 す。 シミュレーションの際には、さらに作動中のバイト番号を備えた工具と送りが表示 されます。
	変換	 変形は、シミュレーションおよび同時描写の際に異なって描写されます。 座標変換(オフセット、スケーリング、)はプログラミングに応じて表示されます。 シリンダーカバー変換は、処理された平面として描写されます。 旋回変換後、これまでの加工のグラフィックが消去され、旋回面での加工のみが表示されます(目線方向は、旋回面に垂直)。

• 原点オフセット (G54, ...) では、グラフィック表示において原点がわずかに変 化します。つまり複合固定では、各ワークの加工が重なり合って描写されま す。

5

51		ShopMill があらかじめ設定しているように、ワークのその他の断面を表示させたい 場合は、プログラムで新しい未加工材を定義できます(「プログラム設定の変更」 の章参照)。
	金型製造のためのクイック表示	大きいパーツプログラムには、移動パスを素早く描写する機能があります。この線 描写のクイック表示では、全てのプログラムされた位置(原点オフセットからも)が、 G1 から結果として生じる軸の軌道として描写されます。
		これについては機械メーカーの情報に注意してください。
H		金型製造のためのクイック表示は、PCU 50.3 (HMI Advanced)でのみ利用で きます。

5.2 標準シミュレーションでのプログラムの開始/中断

\rightarrow	シミュレーションの開始	
	前提条件	希望のプログラム ・ 作業ステッププログラムまたは ・ G コードプログラム が呼び出され、プログラムエディタ内にあります。
	シミュレー 標準	▶ ソフトキー「シミュレーション」および「標準」を押します。
	詳細 ジングル ブロック	> プログラムをブロック毎に加工処理したいときには、「詳細」と「シングルブロッ ク」キーを押します。
		プログラムの処理はディスプレイにグラフィック表示されます。このとき、機械軸は動 きません。
		作業プロセスのプログラムでは、シミュレーションのための未加工部分の測定は、プ ログラムヘッドから読み取られます。
		プログラム内でサブプログラムが呼び出されると、ShopMillはサブプログラムのプロ グラムヘッドを分析し、それによりそこで定義された未加工部分が、グラフィック描 写の際に利用されます。サブプログラムのプロセス後、サブプログラムのプログラムへ ッドからの調整は有効のままです。 メインプログラムの未加工部分をそのまま保持したいならば、サブプログラムのプロ グラムヘッドの未加工部分指示を消去して下さい。
		G コードプログラムでは、未加工部分の測定または希望の切り取りは、自分で指 示する必要があります。

5

詳細設定	> G-コード-プログラムのソフトキー「詳細」および「設定」を押し、希望の測定を 入力して下さい(「プログラムの新設; 未加工部分の決定」)。
	測定は、次のGコードプログラムのシミュレーションのために保存されます。 パラメー タ、未加工部分を「オフ」に設定すると、指示が消去されます。
	シミュレーション中は、送り補正も有効です。 0%: シミュレーションが停止します。 ≥ 100%: プログラムが可能な限り速く処理されます。 送り補正を機械データにより有効にする必要があります。
	これについては機械メーカーの情報に注意してください。
シミュレーションの停止	
	▶ ソフトキー「停止」を押します。
	シミュレーションが停止します。
シミュレーションの中断	
	▶ ソフトキー「リセット」を押します。
	シミュレーションが中断し、ワークの未加工材型が再び表示されます。
シミュレーションの再開始	
	▶ ソフトキー「開始」を押してください。
	シミュレーションが新たに開始します。
シミュレーションの終了	
終了	▶ ソフトキー「終了」を押します。

工作図およびプログラムのプログラミング・グラフィックが再び表示されます。

5.3 平面図での描写

このソフトキーでは、平面図でワークが描写されます。 奥行き描写は、現在の加工中の奥行きを描写します。 グラフィックの奥行き描写に適用: 「深ければ深いほど、一層暗く表示されます」

▶ ソフトキー「平面図」を押します。

現在のワークの平面図が表示されます。 平面図のワークの例

5.4 3 面図での描写

3 面図の表示

▶ ソフトキー「3 面図表示」を押してください。

二断面図による平面図で、技術製図に似たような形で描写されます。

3 平面図の描写では、抜粋部分の拡大機能が利用できます。

現在のワークの3面図が表示されます。 3面図のワークの例:

切断面の移動

郭を見えるようにできます。 ▶ 切断面を y 面にシフトしたい場合は、カーソルを押してください。

平面図の十字線の位置により、切断面を各側面図で見ることができます。

切断面は、3 面描写で任意に移動させることができます。それにより、隠れた輪

-または-

▶ 切断面をx面にシフトしたい場合は、カーソルを押してください。

-または-

▷ 切断面を z 面にシフトしたい場合は、「Page Down」もしくは「Page Up」ボ タンを押して下さい。

5.6 立体描写

5

ワークは、立体的な固体として描写されます。 シミュレーションは、現在の加工状態を知らせてくれます。

立体図では、隠れた輪郭と外観を以下の方法で描写できます。

- 位置を垂直の軸周りで変更させる
- 希望の場所で立体図を切断する

▶ ソフトキー「立体図」を押します。

現在のワークの立体図が表示されます。 立体図の例:

5.6.1 断面の位置の変更

> ソフトキー「詳細」を押します。

-そして-

▶ 左のワーク側面を前から観察したい場合は、このソフトキーを押して下さい。

-または-

	J	

- ▶ 右のワーク側面を前から観察したい場合は、このソフトキーを押して下さい。

-または-

▶ 右のワーク側面を後ろから観察したい場合は、このソフトキーを押して下さ い。

-または-

左のワーク側面を後ろから観察したい場合は、このソフトキーを押して下さ \triangleright い。

5.6.2 ワークの切断

5

切断面の移動

立体図を切断し、断面を表示させることができます。

前提条件:希望のワーク断面が選択されています。

▶ ソフトキー「切断」を押してください。

隠れた輪郭を見えるようにするために、切断面をカーソルと「頁をめくる」ボタン(「3 面図での描写」)で希望の位置に移動させます。

新たな設定は、短いアップデート時間が過ぎた後に表示されます。 切断された立体図の例:

5.7 金型製造のためのクイック表示の開始/中断

•	シミュレーションの開始	
	前提条件	プログラムマネージャーで、パーツプログラムが選択されています。
	シミュレー ション G1ブロック	> ソフトキー「シミュレーション」と「金型製造 G1 ブロック」を押してください。
		ワークウィンドウの先頭に、2 行の断面でプログラムが表示されます。 最初のプログ ラムブロックがマーキングされています。 ワークのグラフィック構成が始まります。
	進展の表示	描写されたワーク下のメッセージラインに、既にグラフィックに描写されたパーツプロ グラムのパーセンテージ%が表示されます。
	シミュレーションの終了	
	終了	▶ ソフトキー「終了」を押します。
f		プログラムマネージャーに戻ります。 操作範囲を切り替えると、グラフィック構成は中断します。プログラムマネージャー に戻ると、続行します。

5.8 クイック表示での描写

全方向に回転させることができます。

2D 図面の選択

いつでも 2Dと 3D 描写間を切り替えることができます。選択した図で、ワークを

>> ソフトキー「X/Y-View」を押します。

-または-

>> ソフトキー「X/Z-View」を押します。

-または-

>> ソフトキー「Y/Z-View」を押します。

ワークが選択された図面で描写されます。

5.9 ワークグラフィックの調整およびシフト

表示されたグラフィックのサイズを、必要に応じて調整することができます。

図面の拡大 拡大 ▶ ソフトキー「詳細」と「拡大 縮小」を押します。 詳細 縮小 詳細 ソフトキー「拡大」または「+」ボタンを押して下さい。 \geq + 拡大 -または-グラフィックの断面が拡大します。 図面の縮小 拡大 ▶ ソフトキー「詳細」と「拡大縮小」を押します。 詳細 縮小 垂直のソフトキーバーに、新たなソフトキーが含まれます。 > ソフトキー「縮小」または「-」ボタンを押して下さい。 縮小 -または グラフィックの断面が縮小します。 自動画像サイズ 拡大 ▶ ソフトキー「詳細」と「拡大縮小」を押します。 詳細 縮小 自動 ▶ ソフトキー「自動 画像サイズ」を押して下さい。 画像サイズ グラフィックの図面が、ウィンドウのサイズに合わせられます。 自動サイズ調整では、ワークの最大伸張が、各軸で考慮されます。

シミュレーション 5.10 間隔の測定

5.10 間隔の測定

➡ 間隔の測定

詳細	間隔	
マーキング 点A		
マーキング 点 B		

- グラフィック描写内の2つのマーキングにより、ワークの2地点間の直接パス(空間 対角線)を測定し、表示することができます。
- ▶ ソフトキー「詳細」と「間隔」を押します。
- ▶ 希望の箇所に座標軸を動かしてください。
- > ソフトキー「マーキング 点 A」を押し、初めの点を確定してください。
- ▶ 矢印を二番目に希望する点に位置決めし、ソフトキー「マーキング 点 B」を 押して下さい。

選択した点が、グラフィックでマーキングされます。 両地点の距離が算出され、グラフィック描写下のメッセージラインに表示されま す。 その他の距離を測定したい場合には、このプロセスを繰り返してください。

5.11 検索機能

グラフィック内のブロックの選択

詳細 上へ たへ たへ たへ たへ たへ たへ たへ たへ たへ

-そして-

ブロック

検索

検索機能により、ワーク描写内でマーキングした点のブロックへジャンプすることが できます。

▶ ソフトキー「詳細」と「検索」を押してください。

マウスが十字線に変わります。

> ソフトキー「上へ」、「下へ」、「左へ」、あるいは「右へ」を押して、十字線を希 望の位置に動かし、「Input」ボタンで地点を確定してください。

-または-

カーソルボタンを押して、十字線を位置決めし、「Input」ボタンで地点を確定 してください。

-または-

▶ 十字線を直接希望の場所に位置決めし、ソフトキー「ブロック検索」を押して下さい。

選択した地点には、カラーのマーキングが含まれます。

選択した地点に属するブロックが検索され、グラフィック描写によりプログラムの一 部がカラーでマーキングされます。

サブメニュー編集には、一定のブロックを検索する機能があります。

Н

シミュレーション <u>5.12 パーツプログラムブロックの加工</u>

5.12 パーツプログラムブロックの加工 クイック表示中は、自動的に G コードエディタ内にいます。 描写されたプログラムが 開きます。ここではパーツプログラムを加工する様々な方法があります。 5.12.1 G ブロックの選択 開いたパーツプログラム内で、様々なパスにより直接、あるいは検索機能により加 エするブロックにたどり着くことができます。 文字列によるブロック検索 ▶ ソフトキー「編集」と「検索」を押してください。 編集 検索 ウィンドウ「カーソル位置からの検索」が開きます。 ▶ 入力欄「検索」に希望の文字列を入力してください。 ▶ ソフトキー「検索」を押してください。 検索 検索がスタートします。 相応のブロックが見つかると、プログラムの一部内でカラーでマーキング表示されま す。 ブロック番号によるブロック検索 ジャンプ ▶ ソフトキー「編集」と「ジャンプ」を押してください。 編集 ウィンドウ「ジャンプ」が開きます。 ▶ 「ブロック番号…」入力欄に、希望のGコードを入力し、ソフトキー「OK」を Ok 押してください。 検索がスタートします。 相応のブロックが見つかると、プログラムの一部内で表示され、マーキングされま す。 開始/終了へジャンプ ▶ ソフトキー「編集」と「プログラム開始」もしくは「プログラム終了」を押してくださ 編集 い。 プログラム プログラム 開始 終了

> プログラムの一部に、開いたパーツプログラムの最初もしくは最後のブロックがカラー でマーキング表示されます。

5.12.2 G コードプログラムの加工処理

メモ用

6

01/2008

6.1	ShopMill によるプログラム管理6-35	54
6.2	NCU (HMI Embedded sI)での ShopMill によるプログラム管理6-35	55
6.2.1	プログラムを開く6-35	57
6.2.2	プログラムの加工処理6-35	58
6.2.3	複合固定6-35	58
6.2.4	ネットワーク・ドライブの G コードプログラム処理6-36	51
6.2.5	ディレクトリ/プログラムの新設6-36	52
6.2.6	複数のプログラムのマーキング6-36	63
6.2.7	ディレクトリ/プログラムのコピー/リネーム6-36	64
6.2.8	ディレクトリ/プログラムの削除6-36	55
6.2.9	工具/原点データのバックアップ/読み込み6-36	6
6.3	PCU 50.3(HMI Advanced)によるプログラム管理6-36	;9
6.3 6.3.1	PCU 50.3(HMI Advanced)によるプログラム管理6-36 プログラムを開く	39 71
6.3 6.3.1 6.3.2	PCU 50.3(HMI Advanced)によるプログラム管理6-36 プログラムを開く	39 '1 '2
6.3 6.3.1 6.3.2 6.3.3	PCU 50.3(HMI Advanced)によるプログラム管理	59 '1 '2 '2
6.3 6.3.1 6.3.2 6.3.3 6.3.4	PCU 50.3(HMI Advanced)によるプログラム管理	59 71 72 72 75
 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 	PCU 50.3(HMI Advanced)によるプログラム管理	39 71 72 72 75 76
 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 	PCU 50.3(HMI Advanced)によるプログラム管理	39 71 72 72 75 76 78
 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 	PCU 50.3(HMI Advanced)によるプログラム管理 6-36 プログラムを開く 6-37 プログラムの加工処理 6-37 複合固定 6-37 プログラムのロード/アンロード 6-37 パードディスクまたはフロッピーディスク/ネットワーク・ドライブからの G コードプログラムの処理.6-37 6-37 ディレクトリ/プログラムの新設 6-37 複数のプログラムのマーキング 6-37	39 71 72 72 75 76 78 79
 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 	PCU 50.3(HMI Advanced)によるプログラム管理 6-36 プログラムを開く 6-37 プログラムの加工処理 6-37 複合固定 6-37 プログラムのロード/アンロード 6-37 プログラムのロード/アンロード 6-37 パードディスクまたはフロッピーディスク/ネットワーク・ドライブからの G コードプログラムの処理 .6-37 ディレクトリ/プログラムの新設 6-37 複数のプログラムのマーキング 6-37 ディレクトリ/プログラムのコピー/リネーム/シフト	39 71 72 72 75 76 78 79
 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9 	PCU 50.3(HMI Advanced)によるプログラム管理 6-36 プログラムを開く 6-37 プログラムの加工処理 6-37 複合固定 6-37 プログラムのロード/アンロード 6-37 プログラムのロード/アンロード 6-37 パードディスクまたはフロッピーディスク/ネットワーク・ドライブからの G コードプログラムの処理.6-37 6-37 ディレクトリ/プログラムの新設 6-37 複数のプログラムのマーキング 6-37 ディレクトリ/プログラムのコピー/リネーム/シフト 6-38 ディレクトリ/プログラムの削除 6-38	39 71 72 72 75 76 78 79 80 20

6.1 ShopMill によるプログラム管理

ShopMill で作成されたワークのための全てのプログラムが、NCK ワーキングメモリ に整理されます。

プログラム・マネージャによって、このプログラムにいつでもアクセスし、加工を行ったり、変更したり、またはコピーやリネームすることができます。もう必要でないプログラムは消去し、そのメモリ領域を開放することができます。

プログラムとデータをその他のワーク・スペースと交換するために、ShopMillは様々な機能を提供しています。

- 専用ハードディスク (PCU 50.3 のみ)
- コンパクトフラッシュカード
- フロッピーディスクドライブ (PCU 50.3 のみ)
- USB/ネットワーク接続

次の章では、選択で NCU (HMI Embedded sl) または PCU 50.3 (HMI Advanced)での ShopMill のプログラム管理について説明します。 どのバージョンで ShopMill が作動しているかを調べ、「NCU (HMI Embedded sl)でのプログラムの管理」あるいは「PCU 50.3(HMI Advanced)によるプログラム の管理」の章のいずれかをお読みください。

6.2 NCU (HMI Embedded sl)での ShopMill によるプログラム管理

NCU (HMI Embedded sl) の ShopMill バージョンでは、すべてのプログラムおよ びデータがつねに NCK ワーキングメモリに保存されます。

さらに USB ネットワークドライブあるいは CF-Card-ドライブのディレクトリ管理を 表示できます。

CompactFlash Card 用の「256 MB ユーザーメモリ」および「ネットワークドライブ 管理」の機能が、ソフトウェアのオプションとなります。

NCU (HMI Embedded sl)/バージョンの ShopMill によるデータ管理

すべてのディレクトリおよびプログラムの一覧をプログラム・マネージャで参照できます。

ディ	レクトリ					P 1200212
	名前	タイプ	サイズ	旧付/時間		
	SHOPMILL	WPD	NCK-Dir.	27.09.2002	10:52	
	TEMP	WPD	NCK-Dir.	27.09.2002	10:52	
						新規
						リネーム
						マーキング
						⊐ピ -
						挿入
						削除
空き客	2書			NC :	94178	この(#
1691					$\mathbf{\Sigma}$	CONT
	NC In Arts In Arts	L USB Front				

NCU (HMI Embedded sl)/ 『ージョンの ShopMill プログラムマネージャー

水平のソフトキー・バーで、そのディレクトリおよびプログラムを表示させたい記憶媒体を選択することができます。NCK ワーク・メモリのデータを表示するためのソフトキー「NC」に、さらに 8 つのソフトキーが割り当てられていることがあります。そこで、フロッピーディスクとネットワークのディレクトリとプログラムを表示させることができます:

これについては機械メーカーの情報に注意してください。

一覧の左欄のシンボルには、以下の意味があります:

ディレクトリ

プログラム

原点/工具データ

ディレクトリとプログラムは、常に以下の情報と一緒にリスト化されています。

- 名前
 名前は、最大 24 文字まで含みます。外部システムへのデータ転送の際には、8 文字以降の名前が切り取られます。
- タイプ ディレクトリ:WPD プログラム:MPF 原点/工具データ:INI
- サイズ (バイトで)
- 日付/時間(調整あるいは最後の変更)

ShopMillは、「TEMP」ディレクトリ内で、内部で削り仕上げプロセスの算出のためにつくられるプログラムを整理します。

水平ソフトキーバーの上部に、NCK 内のメモリ配置の指示が表示されています。

ファイルの管理、選択、プログラムの加工処理についての情報については、以下を参照してください。

参考文献: /BEMsl/, 操作マニュアル HMI Embedded sl SINUMERIK 840D sl

6.2.1 プログラムを開く

プログラムをじっくり見たい時や、変更を加えたいときは、プログラムの加工プランを 表示させてください。

▶ ソフトキー「プログラム」を押してください。

ディレクトリー覧が表示されます。

- カーソルを、開きたいプログラム上に置いてください。
- ▶ ボタン「Input」または「右カーソル」を押します。

選択されたプログラムは、操作範囲「プログラム」で開きます。プログラムの加工計 画が表示されます。

6.2.2 プログラムの加工処理

ご使用のシステムに保存されるすべてのプログラムをいつでも選択肢、自動的にワ ークを加工することができます。

01/2008

▶ 「プログラム」を開きます。

▶ 処理したいプログラムにカーソルを置きます。

▶ ソフトキー「加工処理」を押します。

ShopMill が、運転モード「機械自動」に切換え、プログラムをロードします。

▶ 続いてボタン「Cycle Start」を押します。

ワークの加工が開始します(「自動作動」の章も参照)。

プログラムがすでに操作範囲「プログラム」で開いている場合、ソフトキー「加工処理」を押し、プログラムを運転モード「機械自動」に読み込みます。ここでワークの加工を同様にボタン「Cycle Start」で始めます。

6.2.3 複合固定

「複合固定」機能は、数回のワーク固定による工具交換の最適化に作用しま す。それにより、初めにできるだけ全ての工具加工が、全固定で実行されるので、 工具交換時間が省かれます。

平面での加工に並んで、「複合固定」機能を回転する固定ブリッジ用にも使用で きます。このためには、機械は追加の回転軸(例えば A 軸)もしくは割出装置が 使用できるようになっていなければなりません。

これについては機械メーカーの情報に注意してください。

同じワークだけでなく、異なるワークもこの機能で加工処理することができます。

「異なるプログラム用の複合固定」機能は、ソフトウェアのオプションです。

01/2008

ShopMillは、複数のプログラムから自動的に唯一のプログラムを作ります。その際、プログラム内の工具の順番が、与えられます。サイクルとサブプログラムは開かれず、サンプル地点は、閉じたまま加工されます。

各プログラムは、以下の要求を満たす必要があります。

- 作業プロセスのプログラムのみ (G コードプログラム)
- プログラムが作動可能でなければなりません。
- 第1固定のプログラムが、作動していなければなりません。
- マーク/反復なし、つまりプログラムへのジャンプなし
- インチ/メートル法-切換え
- 原点オフセットなし
- 座標変換なし(オフセット、スケーリングなど)
- 輪郭には明確な名前が必要です。つまり輪郭名は、幾つかのプログラムで呼び出してはいけません。
- リーマ作業サイクル(輪郭のフライス加工)では、パラメータ「スタート地点」を手動では設定してはいけません。
- 自己保持の調整、つまり以下のプログラムブロックに効果を及ぼす調整(異なるプログラム用の複合固定)はありません。
- 固定につき最大 50 の輪郭
- 最高 49 の固定

プログラム内で複合固定用に組み込まれてはいけないマークまたは繰り返しは、サ ブプログラムの投入により扱われます。

- ▶ 「プログラム」を開きます。
- ▶ ソフトキー「その他」と「複合固定」を押してください。
- 利用する固定数と最初に原点オフセット数を入力して下さい。 固定は、上昇順序で、開始-原点オフセットから処理されます。原点オフセットは、メニュー「工具/原点オフセット」で決定されます(「原点オフセット」の章を参照)。
- ➤ 新しい全てのプログラムに名前を付けてください (XYZ.MPF)。

,				
	その他	>	複合固定	

6.2.4 ネットワーク・ドライブの G コードプログラム処理

NCK ワーキングメモリの空き容量が少ない場合、G コードプログラムをネットワー ク・ドライブから処理することができます。

すべてのプログラムが NCK メモリでの処理の前に読み込まれるわけではなく、最 初の部分だけが読み込まれます。以降のプログラム・ブロックは最初の部分の処 理とともに後から連続的に読み込まれます。

Gコードプログラムは、ネットワークドライブからの処理の際に保存されます。

作業プロセスのプログラムは、ネットワークドライブから加工処理することはできません。

▶ 「プログラム」を開きます。

- ▶ ソフトキーでフロッピーディスク/ネットドライブを選択して下さい。
- ▶ G-コードプログラムを加工処理させたいディレクトリ上にカーソルを置きます。
- ▶ ボタン「Input」または「右カーソル」を押します。

ディレクトリが開きます。

▶ カーソルを、加工処理させたいGコードプログラム上に置いてください。

▶ ソフトキー「その他」と「ハードディスク加工処理」を押して下さい。

ShopMillが、運転モード「機械自動」に切換え、Gコードプログラムをロードします。

ボタン「Cycle Start」押します。

ワークの加工が開始します(「自動作動」の章も参照)プログラム内容が加工の進行に合わせて連続的に NCK ワーキングメモリにロードされます。

6.2.5 ディレクトリプログラムの新設

🥈 ディレクトリの作成

プログラムの作成

新規

Gコード・

プログラム

- ▶ 「プログラム」を開きます。
- ▶ ソフトキー「新規」と「ディレクトリ」を押してください。
- ▶ 新しいディレクトリ名を入力して下さい。
- >> ソフトキー「OK」を押してください。

希望するディレクトリが作成されます。

- ▶ 「プログラム」を開きます。
- ▶ 新しいプログラムを作成したいディレクトリにカーソルを置きます。
- ▶ ボタン「Input」または「右カーソル」を押します。
- ▶ ソフトキー「新規」を押してください。
- ▶ 作業プロセスのプログラムを作成したい場合、ソフトキー「ShopMill プログラム」を押します。 (「ShopMill によるプログラミング」の章を参照)

-または-

- > G コード・プログラムを作成したい場合、ソフトキー「G コード・プログラム」を押します。
 (「C コードにトスプログランング」の音を参照)
 - (「G コードによるプログラミング」の章を参照)

6.2.6 複数のプログラムのマーキング

後で複数のプログラムを同時にコピー、消去等したいときには、幾つかのプログラム を一度にブロック毎にあるいは一つずつマークできます。

を 複数のプログラムをブロック毎に

複数のプログラムの単独

マーキング

- ▶ 「プログラム」を開きます。
- ▶ カーソルを、マークしたいプログラム上に置いてください。
- ▶ ソフトキー「マーキング」を押してください。
- プログラム選択をカーソルキーを上へ、あるいは下へ動かして拡大してください。

全プログラムブロックがマークされます。

- ▶ 「プログラム」を開きます。
- ▶ カーソルを、マークしたいプログラム上に置いてください。
- ▶ 「Select」キーを押して下さい。
- ▶ その後カーソルを、選択したい次のプログラムに移動させます。
- ⋟ 新たに「Select」キーを押して下さい。

個別に選択されたプログラムがマークされます。

6.2.7 ディレクトリ/プログラムのコピー/リネーム

6

既存のものと類似した新しいディレクトリまたはプログラムを作成したい場合、既存 のディレクトリまたはプログラムをコピーし、選択したプログラムまたはプログラム・ブロ ックだけを変更することで時間を節約できます。その他、ディレクトリまたはプログラ ムを移動したり、別の名前を付けたりすることができます。 ディレクトリおよびプログラムをコピーし、切り取り、別の場所に挿入する機能はネッ トワーク・ドライブによって他の ShopMill システムとデータ交換する場合にも役立 ちます。 さらにディレクトリまたはプログラムの名前を変更することができます。

運転モード「機械 自動」で同時にロードされる場合、プログラムのリネームはできません。

,	ディレクトリ/プログラムのコピー	
	プログラム	▶ 「プログラム」を開きます。
		▶ カーソルを、コピーしたいディレクトリ/プログラム上に置いてください。
	⊐ピ −	▶ ソフトキー「コピー」を押してください。
		コピーしたディレクトリ/プログラムを挿入したいディレクトリ面を呼び出してください。
	挿入	▶ ソフトキー「挿入」を押してください。
		コピーしたディレクトリ/プログラムが、選ばれたディレクトリ面に挿入されます。この面 に既にディレクトリ/プログラムが同じ名前で存在すると、このディレクトリ/プログラム を上書きしたいか、または他の名前で挿入したいかという質問が表示されます。
	ок Ок	 このディレクトリ/プログラムを上書きしたときは、ソフトキー「OK」を押して下さい。
		-または-
		このディレクトリ/プログラムを他の名前で挿入したいなら、他の名前を入力して下さい。
		-そして-
	DK	>> ソフトキー「OK」を押してください。

© Siemens AG 2008 All rights reserved. SINUMERIK 840D sl 操作/プログラミング ShopMill (BASsl) - 発行 2008 年 1 月

01/2008

ディレクトリ/プログラムのリネーム

- ▶ 「プログラム」を開きます。
- ▶ カーソルを、名前変更したいディレクトリ/プログラム上に置いてください。
- ▶ ソフトキー「リネーム」を押してください。
- 欄に新しいディレクトリまたはプログラム名を入力して下さい。 名前は明確でなければなりません。つまり二つのディレクトリあるいはプログラムが、同じ名前であってはいけません。
- >> ソフトキー「OK」を押してください。

ディレクトリ/プログラムの名前が変更されます。

6.2.8 ディレクトリ/プログラムの削除

データ管理を整然と保ち、NCK ワークメモリを開放するために、もう必要としない プログラムやディレクトリを時折消去して下さい。 これらのデータ事前にバックアップし、場合によっては他のデータ記憶媒体 (例えば

USB-FlashDrive) または USB-/ネットワークドライブに保存してください。

USB フラッシュドライブは永続的な保存媒体としては適さないことに注意してください。

ディレクトリの削除によって、このディレクトリにあったすべてのプログラム、工具・デー タおよび原点データならびにサブディレクトリが消去されることに注意してください。

NCK メモリのスペースを解放したい場合、ディレクトリ「TEMP」の内容を消去しま す。ShopMillは、そこで、内部でリーマ仕上げプロセスの算出のためにつくられる プログラムを整理します。

- ▶ 「プログラム」を開きます。
- ▶ カーソルを、消去したいディレクトリ/プログラム上に置いてください。
- ➤ ソフトキー「削除」および「OK」を押します。

選択されたディレクトリあるいはプログラムが削除されます。

6.2.9 工具/原点データのバックアップ/読み込み

6

プログラム後、工具データおよび原点設定をバックアップとして保存することができます。

特定の作業プロセスのプログラムに必要とされる工具及び原点データを保護する ための機能が利用できます。このプログラムを後の時点で再度処理したい場合、 この設定に素早くアクセスすることができます。

外付けの工具プリセット機材で計測された工具データも、容易に工具管理に反映させることができます。これについは以下を参照してください。

参考文献: /FBSPsl/, 使用開始 CNC: ShopMill,

SINUMERIK 840D sl

どのデータを保存するかを選択することができます。

- エ具データ
- マガジン割当
- 原点
- 基本原点

その他、データ保存の条件を規定することができます。

- 完全な工具リストまたはすべての原点
- プログラムで使用されるすべての工具・データまたは原点

マガジン確保の選別は、システムが工具データのマガジンへのロードまたはマガジン からのリロードをあらかじめ想定している時のみ可能です(「工具のロード/アンロー ド」の章を参照)。

01/2008

▶ すべての工具・データをインポートする場合は、ソフトキー「すべて置換」を押 すべて置換 します。他の既存の工具は問い合わせなしで上書きされます。他の既存の 工具は問い合わせなしで上書きされます。 -または-置き換えない ▶ データの読み込みを中止したい場合、ソフトキー「置き換えない」を押します。 -または-× いいえ ▶ 古い工具を維持したい場合、ソフトキー「いいえ」を押します。 古い工具が保存したマガジンスペースにない場合は、そこに移動します。 -または-▶ 古い工具を上書きしたい時は、ソフトキー「はい」を押して下さい。 τ tu ロード/アンロードをともなわない工具管理では古い工具が消去され、ロード/ア ンロードをともなうそれでは古い工具が事前にアンロードされます。

「はい」と確定する前に工具名を変更すると、工具はさらに工具リストに登録され ます。

原点オフセット

既存の原点オフセットは読み込み時につねに上書きされます。

マガジン割当

マガジン割当が同時に読み込まれない場合、工具はスペース番号なしで工具リ ストに登録されます。

6.3 PCU 50.3(HMI Advanced)によるプログラム管理

PCU 50.3 (HMI Advanced) 付の ShopMill では、さらに NCK ワーキングメモ リに独自のハードディスクがついています。それにより、目下 NCK で必要とされな い全てのプログラムをハードディスクに整理することが可能です。さらにフロッピーディ スクあるいは USB またはネットワークドライブのディレクトリ管理を表示させることが できます。

「ネットワークドライブ管理」機能は、ソフトウェアのオプションです。

PCU 50.3 (HMI Advanced)によるデータ管理

すべてのディレクトリおよびプログラムの一覧をプログラム・マネージャで参照できます。

ディ	レクトリ					45 P 1241600
	名前	タイプ	サイズ	日付/時間		
	SHOPMILL	WPD	NCK-Dir.	27.09.2002	10:52	
	ТЕМР	WPD	NCK-Dir.	27.09.2002	10:52	
					_	新規
						リネーム
						マーキング
						コピー
						挿入
						削除
						- AND
空き	容量	ハードディスク・	E GUIL	NC	94178	7.0/1
1691			U. GATT	116.	\geq	その他
		USB UB Front				

プログラムマネージャー PCU 50.3 (HMI Advanced)

水平のソフトキー・バーで、そのディレクトリおよびプログラムを表示させたい記憶媒体を選択することができます。NCK ワーキングメモリおよび固定ディスクのデータベースディレクトリのデータを表示するためのソフトキー「NC」に、さらに 8 つのソフトキーが割り当てられていることがあります。そこで、以下の記憶媒体のディレクトリとプログラムを表示させることができます:

• USB-/ネットワーク・ドライブ (ネットワーク・カードが必要)

- フロッピ・ディスク・ドライブ
- ローカル USB フロントインターフェース
- ハードディスクの保管ディレクトリ

これについては機械メーカーの情報に注意してください。

一覧の左欄のシンボルには、以下の意味があります:

ディレクトリ

プログラム

原点/工具データ

ディレクトリとプログラムは、常に以下の情報と一緒にリスト化されています。

- 名前
 名前は、最大 24 文字まで含みます。外部システムへのデータ転送の際には、8 文字以降の名前が切り取られます。
- タイプ ディレクトリ:WPD プログラム:MPF 原点/工具データ:INI
- ロード済
 「ロード済」欄のクロスで、プログラムがまだ NCK-ワーキングメモリにあるか (X)、またはハードディスクに移されたか()認識してください。
- サイズ (バイトで)
- 日付/時間(調整あるいは最後の変更)

ファイルの管理、選択、プログラムの加工処理についての情報については、以下を 参照してください。

参考文献: /BAD/, 操作マニュアル HMI Advanced SINUMERIK 840D/840Di/840D sl

ShopMillは、「TEMP」ディレクトリ内で、内部で削り仕上げプロセスの算出のためにつくられるプログラムを整理します。

水平ソフトキーバーの上部に、NCK 内ハードディスクのメモリ配置の指示が表示 されています。

6.3.1 プログラムを開く

プログラムをじっくり見たい時や、変更を加えたいときは、プログラムの加エプランを 表示させてください。

ソフトキー「プログラム」を押してください。

ディレクトリー覧が表示されます。

- カーソルを、開きたいプログラム上に置いてください。
- ▶ ボタン「Input」または「右カーソル」を押します。

選択されたプログラムは、操作範囲「プログラム」で開きます。プログラムの加工計 画が表示されます。

6.3.2 プログラムの加工処理

ご使用のシステムに保存されるすべてのプログラムをいつでも選択肢、自動的にワ ークを加工することができます。

▶ 「プログラム」を開きます。

▶ 処理したいプログラムにカーソルを置きます。

▶ ソフトキー「加工処理」を押します。

ShopMill が、運転モード「機械自動」に切換え、プログラムをロードします。

➢ 続いてボタン「Cycle Start」を押します。

ワークの加工が開始します(「自動作動」の章も参照)

プログラムがすでに操作範囲「プログラム」で開いている場合、ソフトキー「加工処理」を押し、プログラムを運転モード「機械自動」に読み込みます。ここでワークの加工を同様にボタン「Cycle Start」で始めます。

6.3.3 複合固定

「複合固定」機能は、数回のワーク固定による工具交換の最適化に作用しま す。それにより、初めにできるだけ全ての工具加工が、全固定で実行されるので、 工具交換時間が省かれます。

平面での加工に並んで、「複合固定」機能を回転する固定ブリッジ用にも使用で きます。このためには、機械は追加の回転軸(例えば A 軸)もしくは割出装置が 使用できるようになっていなければなりません。

これについては機械メーカーの情報に注意してください。

同じワークだけでなく、異なるワークもこの機能で加工処理することができます。

「異なるプログラム用の複合固定」機能は、ソフトウェアのオプションです。

ShopMillは、複数のプログラムから自動的に唯一のプログラムを作ります。その際、プログラム内の工具の順番が、与えられます。サイクルとサブプログラムは開かれず、サンプル地点は、閉じたまま加工されます。

各プログラムは、以下の要求を満たす必要があります。

- 作業プロセスのプログラムのみ (G コードプログラム)
- プログラムが作動可能でなければなりません。
- 第1固定のプログラムが、作動していなければなりません。
- マーク/繰り返しなし、つまりプログラムへのジャンプなし
- インチ/メートル法-切換え
- 原点オフセットなし
- 座標変換なし(オフセット、スケーリングなど)
- 輪郭には明確な名前が必要です。つまり輪郭名は、幾つかのプログラムで呼び出してはいけません。
- リーマ作業サイクル(輪郭のフライス加工)では、パラメータ「スタート地点」を手動では設定してはいけません。
- 自己保持の調整、つまり以下のプログラムブロックに効果を及ぼす調整(異なるプログラム用の複合固定)はありません。
- 複合固定のためのプログラムを設定する前に、「設定」により異なる安全間隔 を指示することはできません。
- 固定につき最大 50 の輪郭
- 最高 99 の固定

,		「ラム
	その他 >	複合固定
	ОК	
	プログラム 選択	

プログラム内で複合固定用に組み込まれてはいけないマークまたは繰り返しは、サ ブプログラムの投入により扱われます。

- ▶ 「プログラム」を開きます。
- > ソフトキー「その他」と「複合固定」を押してください。
- 利用する固定数と最初に原点オフセット数を入力して下さい。 固定は、上昇順序で、開始-原点オフセットから処理されます。原点オフセットは、メニュー「工具/原点オフセット」で決定されます(「原点オフセット」の章を 参照)。
- ▶ 新しい全てのプログラムに名前を付けてください (XYZ.MPF)。
- >> ソフトキー「OK」を押してください。

リストが写し出されます。そのリスト内では幾つかのプログラムが原点オフセットに組 み込まれる必要があります。全ての原点オフセット、つまり固定、プログラムが組み 込まれている必要はありませんが、少なくとも2つは必要です。

▶ ソフトキー「プログラム選択」を押してください。

6

	プロ	リグラム一覧が表示されます。
	۶	カーソルを希望のプログラム上に置いてください。
ОК		ソフトキー「OK」を押してください。
	プロ	1グラムが、分類リスト内に取り込まれます。
		希望の各原点オフセットにプログラムが分類されるまで、プロセスを繰り返して ください。
全固定	۶	同じプログラムを全固定で加工処理したいときは、ソフトキー「全固定」を押 して下さい。
		初めに各原点オフセットを異なるプログラムに割り当て、その後残りの原点オ フセットをソフトキー「全固定」により同じプログラムに組み入れることができま す。
選択消去全て消去		個々の、または全てのプログラムを分類リストから取り除きたいときは、ソフト キー「選択消去」あるいは「全て消去」を押して下さい。
プログラム 算定	۶	分類リストが完全なときは、ソフトキー「プログラム算定」を押して下さい。
	エ全にさ整プ	具交換が最適化されます。 プログラムは、引き続き新たに通し番号がつけられ、異なる着脱中の交換の際 現在の着脱の各番号が表示されます。 しに全プログラム(XYZ.MPF)に追加で、原点オフセットとプログラム間で分類が 埋されているデータ XYZ_MCD.INIが設置されます。両プログラムは、事前に ログラムマネージャーで呼び出されたディレクトリ内で整理されます。
	分割 え、 し出	頃リスト(「中断」あるいは「プログラム作成」なしに)から、その他の機能へ切り替 後で、再び「複合固定」機能を呼び出してください。同じ分類リストが再び映 出されます。

6.3.4 プログラムのロード/アンロード

6.3.5 ハードディスクまたはフロッピーディスク/ネットワーク・ドライブからの G コードプログラムの処理

		NCK ワーキングメモリの空き容量が少ない場合、プログラムをハードディスクまたは フロッピ・ディスク/ネットワーク・ドライブから処理することができます。 すべてのプログラムが NCK メモリでの処理の前に読み込まれるわけではなく、最 初の部分だけが読み込まれます。以降のプログラム・ブロックは最初の部分の処 理とともに後から連続的に読み込まれます。
		G-コードプログラムは、ハードディスクまたはフロッピーディスクドライブ/ネットワーク・ ドライブの処理の際は、そこに保存されたままです。
H		作業プロセスのプログラムは、ハードディスク及びフロッピーディスクドライブ/ネットド ライブから加工処理することはできません。
, - •	ハードディスクの G コード プログラムの処理	
	プログラム	▶ 「プログラム」を開きます。
		ハードディスクの G コードプログラムを加工処理させたいディレクトリ上にカーソ ルを置きます。
\Rightarrow		▶ ボタン「Input」または「右カーソル」を押します。
	-または-	プログラム一覧が表示されます。
		カーソルを、ハードディスクから加工処理させたいGコードプログラム上に置いてください(「X」なし)。
	その他ハードディスク	▶ ソフトキー「その他」と「ハードディスク加工処理」を押して下さい。
	2 加工28社	ShopMillが、運転モード「機械自動」に切換え、G コードプログラムをロードしま す。
	フロッピーディスク-/ネットワークの G コードの加工処理	
		▶ 「プログラム」を開きます。
	BD USB Front	>> ソフトキーでフロッピーディスク/USB-/ネットワークドライブもしくはローカルの USB インターフェースを選択します。
		➤ Gコードプログラムを加工処理させたいディレクトリ上にカーソルを置きます。
	\Rightarrow	▶ ボタン「Input」または「右カーソル」を押します。
	<u> -または または </u>	ディレクトリが開きます。

5

01/2008

▶ カーソルを、加工処理させたいGコードプログラム上に置いてください。

▶ ソフトキー「その他」と「ハードディスク加工処理」を押して下さい。

ShopMill が、運転モード「機械自動」に切換え、Gコードプログラムをロードします。

▶ ボタン「Cycle Start」押します。

ワークの加工が開始します(「自動作動」の章も参照)プログラム内容が加工の進行に合わせて連続的に NCK ワーキングメモリにロードされます。

ディレクトリ構造によって、使用中のプログラムおよびデータを見通しよく管理するこ とができます。このために、ディレクトリ内に任意にサブディレクトリを作成することが できます。 サブディレクトリ/ディレクトリ内では、プログラムを設置し、引き続きプログラムブロッ クを作ることができます(「ShopMillによるプログラミング」の章を参照) 新しいプログラムは NCK ワーキングメモリに自動的に格納することができます。

ディレクトリの作成

プログラムの作成

G コード・ プログラム

- -または-▶ Gコード・プログラムを作成したい場合、ソフトキー「Gコード・プログラム」を押
 - (「G コードによるプログラミング」の章を参照)

- 「プログラム」を開きます。
- ▶ ソフトキー「新規」と「ディレクトリ」を押してください。
- ➤ 新しいディレクトリ名を入力して下さい。
- ソフトキー「OK」を押してください。

希望するディレクトリが作成されます。

- ▶ 「プログラム」を開きます。
- 新しいプログラムを作成したいディレクトリにカーソルを置きます。 \geq
- ▶ ボタン「Input」または「右カーソル」を押します。
- ▶ ソフトキー「新規」を押してください。
- ▶ 作業プロセスのプログラムを作成したい場合、ソフトキー「ShopMill プログラ ム」を押します。 (「ShopMillによるプログラミング」の章を参照)

します。

© Siemens AG 2008 All rights reserved.

6-378

6.3.7 複数のプログラムのマーキング

後で複数のプログラムを同時にコピー、消去等したいときには、幾つかのプログラム を一度にブロック毎にあるいは一つずつマークできます。

🥿 複数のプログラムをブロック毎に

-またし

マーキング

NC

SELECT

()

SELECT

- ▶ カーソルを、マークしたいプログラム上に置いてください。
- ▶ ソフトキー「マーキング」を押してください。
- プログラム選択をカーソルキーを上へ、あるいは下へ動かして拡大してください。

全プログラムブロックがマークされます。

複数のプログラムの単独マーキ ング

プログラム

-または

- ▶ 「プログラム」を開きます。
- ▶ カーソルを、マークしたいプログラム上に置いてください。

- > その後カーソルを、選択したい次のプログラムに移動させます。
- ⋟ 新たに「Select」キーを押して下さい。

個別に選択されたプログラムがマークされます。

6.3.8 ディレクトリ/プログラムのコピー/リネーム/シフト

6

既存のものと類似した新しいディレクトリまたはプログラムを作成したい場合、既存 のディレクトリまたはプログラムをコピーし、選択したプログラムまたはプログラム・ブロ ックだけを変更することで時間を節約できます。その他、ディレクトリまたはプログラ ムを移動したり、別の名前を付けたりすることができます。 さらに、ディレクトリまたはプログラムを移動させたり、名前を変更したりできます。 フロッピーディスクまたはネットドライブを通してデータをその他の ShopMill-装置と 交換するために、ディレクトリやプログラムをコピー、切り取り、その他の場所へ挿入 する機能を利用してください。

運転モード「機械 自動」で同時にロードされる場合、プログラムのリネームはできません。

\rightarrow	ディレクトリ/プログラムのコピー	
	プログラム	▶ 「プログラム」を開きます。
		> カーソルを、コピーしたいディレクトリ/プログラム上に置いてください。
	コピー	▶ ソフトキー「コピー」を押してください。
		コピーしたディレクトリ/プログラムを挿入したいディレクトリ面を呼び出してください。
	挿入	▶ ソフトキー「挿入」を押してください。
		コピーしたディレクトリ/プログラムが、選ばれたディレクトリ面に挿入されます。この面 に既にディレクトリ/プログラムが同じ名前で存在すると、このディレクトリ/プログラム を上書きしたいか、または他の名前で挿入したいかという質問が表示されます。
	OK	 このディレクトリ/プログラムを上書きしたときは、ソフトキー「OK」を押して下さい。
		-または-
		このディレクトリ/プログラムを他の名前で挿入したいなら、他の名前を入力して下さい。
		-そして-
	ОК	>> ソフトキー「OK」を押してください。

ディレクトリ/プログラムのリネーム プログラム 「プログラム」を開きます。 NC カーソルを、名前変更したいディレクトリ/プログラム上に置いてください。 \geq リネーム ソフトキー「リネーム」を押してください。 \triangleright ▶ 欄に新しいディレクトリまたはプログラム名を入力して下さい。 名前は明確でなければなりません。つまり二つのディレクトリあるいはプログラ ムが、同じ名前であってはいけません。 >> ソフトキー「OK」を押してください。 DK ディレクトリ/プログラムの名前が変更されます。 ディレクトリ/プログラムの移動 プログラム ▶ 「プログラム」を開きます。 NC ▶ カーソルを、移動したいディレクトリ/プログラム上に置いてください。 >> ソフトキー「切り取り」を押し、ソフトキー「OK」を押します。 切り取り DK 選択されたディレクトリ/プログラムは、その場で切り取られ、中間記憶媒体に整理 されます。 ディレクトリ/プログラムを挿入したいディレクトリ面を呼び出してください。 \triangleright ▶ ソフトキー「挿入」を押してください。 挿入 ディレクトリ/プログラムが、選択された面に移動します。 このディレクトリ面に既にディレクトリ/プログラムが同じ名前で存在すると、このディ レクトリ/プログラムを上書きしたいか、または他の名前で挿入したいかという質問が 表示されます。 ▶ このディレクトリ/プログラムを上書きしたときは、ソフトキー「OK」を押して下さ DK い。 -または-▷ このディレクトリ/プログラムを他の名前で挿入したいなら、他の名前を入力し て下さい。 -そして->> ソフトキー「OK」を押してください。

DK

6.3.9 ディレクトリ/プログラムの削除

6

		データ管理を整然と保ち、もう必要としないプログラムやディレクトリを時折消去し て下さい。 これらのデータ事前にバックアップし、場合によっては他のデータ記憶媒体 (例えば USB-FlashDrive) または USB-/ネットワークドライブに保存してください。
H		USB フラッシュドライブは永続的な保存媒体としては適さないことに注意してくだ さい。
=?		ディレクトリの削除によって、このディレクトリにあったすべてのプログラム、工具・デー タおよび原点データならびにサブディレクトリが消去されることに注意してください。
6		NCK メモリのスペースを解放したい場合、ディレクトリ「TEMP」の内容を消去しま す。ShopMill は、そこで、内部でリーマ仕上げプロセスの算出のためにつくられる プログラムを整理します。
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7¤//¬Ь	▶ 「プログラム」を開きます。
		 カーソルを、消去したいティレクトリ/フロクラム上に置いてくたさい。 ソフトキー「切り取り」および「OK」を押します。
	UK DK	選択されたディレクトリあるいはプログラムが削除されます。

6.3.10 工具/原点データのバックアップ/読み込み

プログラム後、工具データおよび原点設定をバックアップとして保存することができます。

特定の作業プロセスのプログラムに必要とされる工具及び原点データを保護する ための機能が利用できます。このプログラムを後の時点で再度処理したい場合、 この設定に素早くアクセスすることができます。

外付けの工具プリセット機材で計測された工具データも、容易に工具管理に反映させることができます。これについは以下を参照してください。

参考文献: /FBSPsl/, 使用開始 CNC: ShopMill SINUMERIK 840D sl

どのデータを保存するかを選択することができます。

- 工具データ
- マガジン割当
- 原点
- 基本原点

01/2008

データのバックアップ

NC

その他

DK

プログラム

データの バックアップ データ管理 6.3 PCU 50.3(HMI Advanced)によるプログラム管理

その他、データ保存の条件を規定することができます。

- ・ 完全な工具リストまたはすべての原点
- プログラムで使用されるすべての工具・データまたは原点

マガジン確保の選別は、システムが工具データのマガジンへのロードまたはマガジン からのアンロードをあらかじめ想定している時のみ可能です(「工具のロード/アンロ ード」の章を参照)。

- ▶ 「プログラム」を開きます。
- 工具データおよび原点データをバックアップしたいプログラムにカーソルを置きます。
- > ソフトキー「その他」および「データのバックアップ」を押します。
- ▶ バックアップしたいデータを選択します。
- 必要であれば、指定された名前を変更します。 工具・データおよび原点データの名前として、本来選択されたプログラムの名前に「_TMZ」が付いたものが指定されています。
- >> ソフトキー「OK」を押してください。

工具・データおよび原点データは、指定されたプログラムがある同じディレクトリに 作成されます。

すでに指定された名前をもつ工具・データおよび原点データが存在する場合、これは新しいデータで上書きされます。

一つのディレクトリ内で、MPF プログラムおよび INI ファイルが同じ名前であると、 MPF プログラムを選択した場合に、INI ファイルが自動的に開始します。それにより、不本意に工具データが変更する可能性があります。

- **データの読み込み** 「アログラム 加工処理 -または-
- ▶ 「プログラム」を開きます。
- 再び読み込みたいバックアップ済みの工具データおよび原点データにカーソル を置きます。
- > ソフトキー「加工処理」またはボタン「Input」を押します。

ウィンドウ「バックアップ済みデータの読み込み」が表示されます。

- どのデータ(工具補正データ、マガジン割当、原点データ、基本原点オフセット)を読み込むかを指定します。
- ➤ ソフトキー「OK」を押してください。

データが読み込まれます。

すべての工具補正データ 工具管理のすべてのデータが消去され、バックアップされたデータがインポートされ ます。 プログラムで使用されるすべての工具補正データ 少なくとも1つの読み込む工具がすでに工具管理に存在する場合、以下の可 能性から選択することができます。 ▶ すべての工具・データをインポートする場合は、ソフトキー「すべて置換」を押 すべて置換 します。他の既存の工具は問い合わせなしで上書きされます。他の既存の 工具は問い合わせなしで上書きされます。 -または-▶ データの読み込みを中止したい場合、ソフトキー「置き換えない」を押します。 置き換えない -または-▶ 古い工具を維持したい場合、ソフトキー「いいえ」を押します。 **X** いいえ 古い工具が保存したマガジンスペースにない場合は、そこに移動します。 -または-▶ 古い工具を上書きしたい時は、ソフトキー「はい」を押して下さい。 . ばい

> ロード/アンロードをともなわない工具管理では古い工具が消去され、ロード/ア ンロードをともなうそれでは古い工具が事前にアンロードされます。 「はい」と確定する前に工具名を変更すると、工具はさらに工具リストに登録され ます。

どのデータが選択されたかに応じて、ShopMillは以下のように作動します。

原点オフセット 既存の原点オフセットは読み込み時につねに上書きされます。

マガジン割当

マガジン割当が同時に読み込まれない場合、工具はスペース番号なしで工具リ ストに登録されます。

金型製造

7.1	前提条件	7-386
7.2	機械の取付	7-388
7.2.1	工具 測定	7-388
7.3	プログラムの作成	7-389
7.3.1	プログラムの作成	7-389
7.3.2	工具のプログラミング	7-389
7.3.3	「ハイスピード設定」サイクルのプログラミング	7-389
7.3.4	サブプログラムの呼び出し	7-390
7.4	プログラムの処理	7-394
7.4.1	プログラム処理の選択	7-394
7.4.2	特定のプログラム箇所での処理の開始	7-394
7.5	例	

7.1 前提条件

この章では、ShopMillにより金型製造の特別事項のみ説明されています。 ShopMill機能の詳細説明は、前章を参照してください。

ShopMill は作業プロセスのプログラムと並んで G コード金型製造プログラムも処理できます。このためには、駆動の最適化が前提条件となります。

これについては機械メーカーの情報に注意してください。

機械タイプに応じて、3 軸の金型製造応用に加え、ダイナミックな 5-軸加工も実 行できます。

ワーク原点設定あるいは工具の測定などのような機械調整のための ShopMill に組み込まれた機能を、金型製造プログラムに利用することが可能です。

プログラム構造および保存 金型製造のための最適な速度に達するためには、金型製造プログラムを中心技 術プログラムと別個のジオメトリプログラムに分け、全部そろったプログラムは作成し ないでください。

技術プログラム
 技術プログラムには、原点オフセット、工具呼び出し、送り値、主軸回転数あるいはコントローラ・コマンドなどのような基本的な設定が含まれています。さら
 に技術プログラムによりジオメトリプログラムがサブプログラムとして呼び出されます。

テクノロジープログラムは、ShopMillのGコードエディタで作成できます。

 ジオメトリプログラム 各加工モード(粗削り、事前仕上げ削り、仕上げ削り)のジオメトリプログラム には、加工面のジオメトリ値が唯一含まれます。
 ジオメトリプログラムの作成は、外部 CAM システムで G01-ブロックの形で可 能です。
 利用に応じてジオメトリプログラムのサイズは 500 KB から 100 MB です。この サイズのプログラムは、NCK のワーキングメモリで直接加工処理することはでき ず、EXTCALL により外部から加工処理されなければなりません。
 つまりジオメトリプログラムは、PCU 50.3 (HMI Advanced) のハードディスク または NCU (HMI Embedded)での ShopMill の Compact Flash Card に保存されなければなりません。
 両方の ShopMill では、さらにジオメトリプログラムをネットワークドライブに保存 することができます。

USB-FlashDrivesは、「外部からの加工処理」には薦められません。落ちてきたり、作動中に接触不良が生じることがあります。その結果として、加工が中断します。

衝突により USB-FlashDrives が折れたり、コントロールパネルを損傷する可能 性があります。

CompactFlash Card 用の「256 MB ユーザーメモリ」および「ネットワークドライブ 管理」の機能が、ソフトウェアのオプションとなります。

プログラム構造 ジオメトリプログラムを備えた技術プログラム

完全プログラム

完全プログラムには、原点オフセット、工具呼び出し、加工面のジオメトリ値な どの基本的な設定が含まれています。最適速度のプログラミングは、完全プロ グラムには非常に費用がかかります。

完全プログラムは、外部 CAM システムでも作成できます。サイズに基づき、 完全プログラムが PCU 50.3 (HMI Advanced)のハードディスクあるいは NCU (HMI Embedded sl)での ShopMill の CompactFlash Card にあり ます。

PCU 50.3 (HMI Advanced)の ShopMill では、さらに完全プログラムをネットワークドライブに保存することができます。

プログラム構造 完全プログラム

金型製造 7.2 機械の取付

01/2008

データ転送

金型製造プログラムは、ネットワークドライブあるいは USB ドライブから直接制御 装置にコピーすることができます。

- NCU (HMI Embedded sl)ベースの ShopMill プログラムは CompactFlash Card のユーザーメモリにコピーされます。
- PCU 50.3 (HMI Advanced)
 プログラムは、ハードディスクにコピーされます。

7.2 機械の取付

7.2.1 工具 測定

ジオメトリプログラムの作成の際に、CAM システムは工具のジオメトリを考慮しま す。算出された工具のパスは、工具先端か工具中心点に関連しています。つまり 工具の長さを決めたい時は、CAM システムと同様に、同じ基準点(工具先端あ るいは工具中心点)を使用する必要があります。

工具の測定に ShopMill 機能を利用すると、工具長さが工具先端に関連したものとなります。反対に CAM システムに工具中心点が工具パスの算出の際に考慮されたときには、工具リストで工具長さから工具半径を差し引く必要があります。

金型構造プログラムの処理には、工具リストへの工具直径の記入は関係しませ ん。しかし見やすくするには、工具直径を工具リストに記入してください。

<u>金型製造</u> 7.3 プログラムの作成

7.3 プログラムの作成

7.3.1 プログラムの作成

技術プログラム用にプログラムマネージャー内に新しい G コードプログラムを作り、 引き続き G コードエディタで処理してください。作業プロセスのプログラムは技術プ ログラムとしては適していません。

ジオメトリプログラムおよび完全プログラムを外部 CAM システムを使って作成して ください。後でコメントなどをジオメトリプログラムに挿入したり、完全プログラム内の 工具名を変更したい時には、ShopMillのGコードエディタを利用できます。

7.3.2 工具のプログラミング

技術プログラム内で工具をプログラムする時には、以下のことに注意する必要があ ります。

プログラムされた工具のジオメトリは、CAM システムによりジオメトリプログラムの作成の際に考慮された工具ジオメトリと一致している必要があります。

7.3.3 「ハイスピード設定」サイクルのプログラミング

自由形状面の加工では、速度および精度、品質精度においては高い要求が出されます。

「ハイスピード設定」サイクルにより、加エモード(荒削り、事前精密削り、精密削り)に応じた最適な速度に達することができます。

Gコードエディタのサイクルサポートによりサイクルを呼び出すことができます。パラメ ータ「公差」で、通常 CAM-システムのポストプロセッサの出力公差を入力してくだ さい。

ジオメトリプログラムの呼び出し前に技術プログラム内のサイクルをプログラムしてく ださい。

サイクルに関しての詳しい情報

参考文献: /PGZ/, プログラミングマニュアル サイクル SINUMERIK 840D sl/840D/840Di

7.3.4 サブプログラムの呼び出し

-

- ,		ジオメトリプログラ オメトリプログラム のハードディスク想 CompactFlash で、サブプログラム CF カードあるいは	ムをサブプログラムとして技術プログラムから呼び出して下さい。ジ は NC ワーキングメモリではなく、PCU 50.3 (HMI Advanced) らるいは NCU (HMI Embedded sl)での ShopMill の Card または USB ネットワークドライブ上に保存されているの 、を G-コード-コマンド「EXTCALL」で呼び出す必要があります。 ま USB ネットワークドライブの HMI ユーザーメモリのプログラムを			
-		加工処理するに	は、オプションが必要となります。			
	PCU 50.3 (HMI Advanced)	技術プログラムとジオメトリプログラムはハードディスクの同じディレクトリ内にありま す。				
		EXTCALL "MY 詳しい情報は、以	GEOPROG" でプログラムを呼び出します。 以下を参照してください。			
		参考文献:	/BAD/, 操作マニュアル HMI Advanced SINUMERIK 840D sl/840D/840Di			
	NCUの ShopMill	テクノロジープログ	ラムは、NCK ワーキングメモリに保存されています。			
	(HMI Embedded sl)	ジオメトリプログラ	ムの保存には、NCUの CompactFlash Card 上にある HMI			
		ユーザーメモリを利	り用できます。			
		テクノロジープログラムでコマンド EXTCALL がジオメトリサブプログラ				
		に使用される場合	含、コントローラは、一定の順序で考えられる保存場所で検索し			
		ます。呼び出され 従って次の保存 [」]	たプログラムが保存場所で見つからなかった場合、検索順序に 場所が検索されます。			

設定テータの使用下ての

EXTCALL

7.3 プログラムの作成

金型製造

検索の際に、次の検索順序が守られ、プログラムが見つかるとすぐに終了します。

- 1. パスが指示されている場合は、SD 42700 SC_EXT_PROG_PATH により 指示された保存場所での検索。
- 2. CF カードの HMI ユーザーメモリ内の検索

チャネル特有の設定データ 42700 を介し、保存場所が EXTCALL による呼び 出し用にあらかじめ設定されている場合があります。この場合、EXTCALLコマン ドによる呼び出されたプログラムが、直接設定された保存場所で検索されます。 プログラムが見つかるように、設定された保存場所には同じ名前のファイルがなくて はなりません。存在しない場合、次の保存場所で検索が続行します。

これに関して機械メーカの指図に注意してください。

42700 SC EXT PROG PATH = "/user/sinumerik/data/prog/kanal1" ... EXTCALL "geoprog.spf". ファイル/user/sinumerik/data/prog/kanal1/ geoprog.spf"が検索されます。

設定データの利用により、プログラムの検索が制御されます。

HMI ユーザーメモリの使用下の 次の前提条件を満たしている必要があります: **EXTCALL** テクノロジープログラムは、NCK ワーキングメモリに加工処理用に保存されて います。

- チャネル特有の SD 42700 SC EXT PROG PATH は、ディレクトリパス
- により設定されていません。または設定データによりあらかじめ設定された保 存場所での検索に失敗しました。
- オプションの HMI ユーザーメモリが設定されています。 プログラムとサービスの 操作範囲で、HMI ユーザーメモリの内容を表示させ、管理できる「ローカルド ライブ」ソフトキーが使用できます。

HMIユーザーメモリは、次のように分けられます。

- 部分プログラム (mpf.dir),
- サブプログラム (spf.dir) および
- それぞれワークディレクトリ(.wpd)を持つワーク (wks.dir)

金型製造 7.3 プログラムの作成

7.4 プログラムの処理

7.4.1 プログラム処理の選択

NCK ワーキングメモリにある技術プログラムを、標準の G コードプログラムと同様 に処理用に選択して下さい。ジオメトリプログラムの選択は、コマンド 「EXTCALL」により自動で可能です。

PCU 50.3(HMI Advanced)のハードディスク上あるいは NCU (HMI Embedded sl) の ShopMill の Compact Flash Card 上、または USB ネット ワークドライブ上にある完全プログラムを選択するには、プログラムマネージャーにあ るソフトキー「処理 ハードディスク」使います。

7.4.2 特定のプログラム箇所での処理の開始

ジオメトリプログラムを備えた技 術プログラム	ジオメトリプログラムで特定のプログラム箇所の処理を開始するには、検索インジ ケータに目標を入力してください。 レベル 1(技術プログラム):希望するジオメトリの呼び出しを含んだプログラム列 レベル 2(ジオメトリプログラム):処理を開始するためのプログラム列
	ジオメトリプログラムがコンパクトフラッシュカード上にある時は、「プログラム」入力欄 のレベル 2 にプログラム名だけでなく、パスも指定しなければなりません。コンパクト フラッシュカードのパスは常に"C:\"です。つまり入力欄に以下の通りに入力しま す。
	高速の算出タイプである「外部-算出なし」を選んでください。 技術プログラムでのブロック検索は、算出により実行できます。その際全ての EXTCALL-コマンドが希望するジオメトリプログラム前にジャンプします。希望する ジオメトリプログラムでのブロック検索は、算出なしで実行できます。
	しかしこの算出タイプは、工具呼び出し、加工送り、主軸回転数などの全ての機 械機能が技術プログラム内にあることを前提とします。ジオメトリプログラムは、自 由形状面用のジオメトリ値のみを含みます。ジオメトリプログラムは、自由形状面 用のジオメトリ値のみを含みます。
完全プログラム	完全プログラムで特定のプログラム箇所での処理を開始するには、カーソルを直 接希望する目標ブロック上に置いてください (場合によっては「検索」を使用)。
	引き続き算出タイプを選択する際は、以下に注意してください。 バリエーション「外部 算出なし」は、機械機能を考慮せずに実行します。そのため プログラムの処理は、送り、主軸回転数などの重要な全機械機能が作動する場 所でのみ開始することができます。
	安全上の理由から、バリエーション「輪郭上」あるいは「終点上」も選択してくださ い。しかしこの算出タイプはより集中的です。しかしこの算出タイプはより集中的で す。

ワーク

3 軸機械には、携帯電話ホルダが取り付けられています。

加エワーク

プログラム構造

金型構造プログラムは、技術プログラムおよびジオメトリプログラム内で分けられています。

プログラム	
A3_仕上げ削り_01 12	
N1 G54¶	マーキング
N2 T="ボール _6"; ボールヘッド D=6¶	
N3 L6¶	7ピ –
N4 S14000 M3¶	
N5 G0 C0 A0¶	
N6 G1 Z10 F3000¶	挿入
N7 X0 Y0¶	
N8 M88¶	
N11 CYCLE832(0.01,102001)¶	切り取り
N13 EXTCALL"仕上げ削り _G1"¶	
N14 M30¶	
1	検索
==eof==	
	その他
	戻し移動
	◎加工処理

精密仕上げの加エステップ用の技術プログラム

プログラム						
ハイスピード設定		許容誤	差加工軸			
	加工		仕上げ削り			
	許容誤差	_TOL		0.010		
x x						
	適合		はい			
	圧縮		COMPCAD			
	軌道制御		G642			中断
	事前制御		FFWOF SOFT	r		
						ок
					٤	

サイクル「ハイスピード設定」(CYCLE832)

プログラム						
仕上げ削り61					20	フーキング
1						V -400
N1 ;VERTICALPARALLELPLANES¶						
N2 ;TOOLDIAMETER 6.¶						7ピ –
N3 ; TOOLCORNERRADIUS 3.¶						
N4 ;TOOLAXIS 0.¶						
N5 ;NOVERTHICKNESS 0.1						挿入
N6 ;MACHININTOLERANCE 0.001.¶						
N7 ;SWEEPINGDIRECTION 0.707.¶						
N8 ;STEPOVERDIRECTION -0.707¶						切り取り
N9 ;SWEEPINGMODE ZIGZAG¶						
N10 X99.343 Y-29.966 Z0.284 ¶						
N11 Z-15 ¶						検索
N12 X99.343Y-29.966Z/25 ¶						
N13 X100.657Y-28.651Z-25 ¶						
N14 X101-218 Y/27.949 ¶						
N15 X98-655 Y-30.512 ¶						
N16 X98.187 Y-30.838 ¶						その他
N17 X101.572 Y-27.467 ¶						COLE
N18 X101.572 Y-27.454 ¶						
Π						戻し移動
					$\overline{\Sigma}$	
Z Edit 輪郭	穴あけ	フライス加工	旋盤加工		シミュ レーション	▶ 加工処理

同時描写

金型構造プログラムの処理中は、進み具合を画面で監視することができます。

ワークのグラフィック描写

01/2008

メモ用

アラームとメッセージ

8.1	メッセージ	8-400
8.2	警告	8-400
8.3	ユーザーデータ	8-401
8.4	バージョン表示	8-403

8.1 メッセージ

警告

8

8.2

盃

ShopMillはユーザーに操作のヒントを示し、加エプログレスに関して情報を提供 するメッセージをダイアログ行に表示します。表示されたメッセージによって加工が 中断することはありません。

ShopMill でエラーを含む状態が認識されると、アラームが出され、場合によっては 加工が中断します。

アラーム番号とともに表示されるエラーテキストは、エラーの原因についての詳しい 情報を与えてくれます。

警告

発せられた警告に注意しないで、警告の原因を取り払わないとないと、機械、ワ ーク、保存された設定および状況によっては操作者の健康に危険が生じることが あります。

警告番号は以下の範囲に割り当てられています。

61000-62999	サイクル	
100000-100999	基本システム	
101000-101999	診断	
102000-102999	サービス	
103000-103999	機械	
104000-104999	パラメータ	
105000-105999	プログラミング	
106000-106999	Reserve	
107000-107999	OEM	
110000-110999		留保
111000-112999	ShopMill	
120000-120999		留保

すべての警告の記述については下記を参照してください。

参考文献: /DAsl/, 診断マニュアル SINUMERIK 840D sl/840Di

アラーム リスト

 $\langle \rangle$

Cycle Start

- アラームとメッセージ 8.3 ユーザーデータ
- ▶ ソフトキー「アラームリスト」を押します。

作動中のメッセージを含むリストが表示されます。

- ▶ アラームの記述にしたがって機械を入念にチェックしてください。
- ▶ アラームの原因を除去してください。
- アラームを消したいときは、シンボルとしてアラーム横に表示されたボタンを押します。

-または-

- メイン・スイッチのシンボル(POWER ON)がアラーム横に表示されたら、機 械またはコントローラのスイッチをオフにし、その後オンにします。
- 8.3 ユーザーデータ

Reset

ユーザーデータは、ShopMill でも G コードプログラムでも内部で利用されるバリエ ーションです。このユーザーデータを、リストに表示させることができます。

以下の様々なバリエーションが決められています:

- グローバル・ユーザーデータ (GUD)
 GUDs は全てのプログラムで通用します。
 GUDs の表示は、キースイッチまたはキーワードにより封鎖できます。
- ローカル・ユーザーデータ (LUD) LUDs は定義されたプログラムとサブプログラムでのみ通用します。 ShopMill は、プログラムの加工処理の際に、現在のブロックとプログラム最後 の間にある LUDs を表示します。「Cycle-Stop」キーを押すと、LUDs リスト が実現します。数値は、それに反して作動しながら実現します。
- プログラム・グローバル・ユーザーデータ (PUD)
 PUDsは、メインプログラムで決定されたローカルバリエーションから(LUD)つくられます。
 つまりPUDsは全てのサブプログラムで通用し、そこで書き込み読み込み可能です。
 プログラム・グローバル・ユーザーデータにより、ローカルも表示されます。
- チャネル独自のユーザーデータ
 チャネル独特のユーザーデータは、各チャネルでのみ通用します。

ShopMill が、AXISと FRAME タイプのユーザーデータを表示します。

ShopMill がどのバリエーションを表示するかは、機械メーカの説明を読んで下さい。

次のユーザーデータが、検索記号列とともに表示されます。

8.4 バージョン表示

起動画面から、ShopMillのバージョンが分かります。 ShopMillとNCU-バージョンは、CNC-ISO-操作画面でも読み取れます。

- ▶ 基本メニューバーを拡張して開きたい場合は、「拡張」ボタンを押してください。
- ▶ ソフトキー「診断」および「サービス表示」を押します。
- >> ソフトキー「バージョン」および「NCU バージョン」を押します。

NCU バージョンが映し出されたウィンドウに現れます: xx.yy.zz.nn.

メモ用

例

9.1	例 1:矩形-/円ポケットと円グルービングによる加工	
9.2	例 2:輪郭のシフトとミラーリング	9-414
9.3	例 3:シリンダーカバーの変換	9-417
9.4	例 4:グルーブ側面修正	9-421
9.5	例 5:旋回	9-425

9.1 例 1:矩形-/円ポケットと円グルービングによる加工

01/2008

9.1 例 1:矩形-/円ポケットと円グルービングによる加工

例

9

© Siemens AG 2008 All rights reserved. SINUMERIK 840D sl 操作/プログラミング ShopMill (BASsl) - 発行 2008 年 1 月 例

01/2008

9

c) 輪郭フライス加工/えぐり広げ	•	12. FS 0 13. X 140 7 14. ^{輪郭終了} 確定 ソフトキー 加工 技術的パラメータ T、F、 ラメータを入力します:	⁷ ブソリュートY 25 アブソリュートα1 225 度 R 0 ^{フリアリング} による呼び出し Sを適切に埋め(例えばフライス直径 10)、以下のパ
		加工処理	\bigtriangledown
		Z0	○ 0 アブソリュート
		Z1	10 インクレメンタル
		DXY	4.5 mm
		DZ	10
		UXY	0 mm
		UZ	0
		スタート地点	自動
		沈降	中心的
		FZ	0.1 mm/歯
		引上モード	選択します、例えば後退面
	•	確定	
	注	意:	
	•	フライス工具の選択の際	に、工具直径のサイズが、想定されたポケットのリー
		マ作業を可能にすること	に注意してください。欠陥の場合、通知が現れます。
	•	仕上げ削りをするべき時	には、パラメータ UXYと UZ が適切に埋められ、2
		番目のリーマ作業サイク	ルが仕上げ削りのために用意されている必要がありま
		す。 	_
5. 矩形ボケット (大) フライス加コ	- -		*************************************
	•	技術ナータ例:	
		Ⅰ ノフ1 人(後 10	F 0.1 mm/图 V 200 m/分
		基準点の位置	中心
		加工処理	\bigtriangledown
		地点種類	シングル地点
		X0	90 アブソリュート
		Y0	60 アブソリュート
		20	
		vv	4U 70
		L	10
		К	10

	α0	15
	Z1	4 インクレメンタル
	DXY	4.5 mm
	DZ	4
	UXY	0
	UZ	0
	沈降	らせん
	EP	2
	ER	2
	クリア	完全加工
•	↓ 確定	
6. 矩形ポケット (小) フライス加工 •	ソフトキー 2ライス	ポケット 短形ポケット -> 「年天1年75年1」
	XU	
	YU	
	20	
	W	20
	L	35
	R	5
	α0	15
	Z1	4 インクレメンタル
	DXY	4.5 mm
	DZ	2
	UXY	0
	UZ	0
	沈降	振り子振動
	EW	10 度
	クリア	完全加工
	確定	
7. 円グルーブのフライス加工 •	ソフトキー フライス 加工	ブルーブ > 円グルーブ による呼び出し
•	技術データ例:	
	T フライス機 8 F V 150m/分	⁼ 0.5mm/Zahn FZ 0.02mm/歯
	加工処理	\bigtriangledown
	完全-/部分円	部分円

9

9)

	•	確定		
11.障害	•		位置) 障害 (二上乙1117151山)	
	•	パラメータの入力:		
		7	っマゴンルコート	
		2	2 7 7 7 9 1 - 1	
	•	確定		
	注	意		
	ະ	の障害サイクルが挿入され	いないと、 ドリルにより島輪郭の右コーナーが損傷	され
	£.	す。その他の機能として、5	安全間隔のかさ上げがあります。	
12.位置	•	ソフトキー ちょうちょう いっしょう いっしょう いっしょう しょうしょう いっちょう しょうしょう いっちょう しょう しょう ひょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し		
	•	パラメータの入力:		
			古舟	
		70	直 円 -10 マブハリュート	
		<u>×</u> 2	165 アブリュート	
		Y2	165 アブソリュート	
		X3	15 アブソリュート	
		Y3	165 アブソリュート	
	•	→ 確定		
13.円ポケットフライス加工	•	ソフトキー プライス 加工	** * * * * * * * * * * * * * * * * * *	
	•	技術データ例:		
		T フライス機 8	F 0.15 mm/歯 V 300 m/分	
	•	パラメータの入力:		
		加工処理	\bigtriangledown	
		地点種類	シングル地点	
		X0	85 アブソリュート	
		Y0	135 アブソリュート	
		Z0	-6 アブソリュート	
		直径	30	
		Z1	15 インクレメンタル	
		DXY	4	
		DZ	5	
		UXY	0 mm	
		UZ	0	

9

結果

• プログラミング・グラフィック

• ShopMill-プログラム描写

部分_	4			
Р	NØ	部分_4		
中	N5	正面削り	⊽	T=フライス機 60 F1/Z S400U X0=0 Y0=0 Z0=2
2222	N10	長方形ジャーナル		T=75174 60 F1/Z S500U X0=0 Y0=0 Z0=0
\sim	N15	都分_4_ポケット		
\sim -	N2Ø	部分_4_島		
<u> </u>	N25	クリアリング	V	Т=7547.4 10 F0.2/Z S300U Z0=0 Z1=10ink
ģ	N30	矩形ポケット	⊽	T=フライス機 10 F0.1/Z S200U X0=90 Y0=60
Ő	N35	矩形ポケット	∇	T=751ス機 10 F0.1/Z S200U X0=90 Y0=60
Sĭ	N40	円グループ	▽	Т=77174 8 F0.5/Z S150m X0=85 Y0=135
	N45	センタリング		T=心取機 F300/min S300U ø16
, U 7)-72 -	N50	穴あけ		T=FUN 10 F0.5/min S200m Z1=-25
Ν-	N55	001:位置		Z0=-10 X0=15 Y0=15 X1=165 Y1=15
	N6Ø	障害		Z2
Ν-	N65	002:位置		Z0=-10 X0=15 Y0=15 X1=165 Y1=15 X2=165
Õ	N70	円ポケット	▽	Т=77/74 8 F0.15/Z 5300m X0=85 Y0=135
END		プログラム終了		

9.2 例 2:輪郭のシフトとミラーリング

例 <u>9.2</u>例2:輪郭のシフトとミラーリング

9)

	新/付加	Add
	X	オン
	Y	オン
	Z	オフ
•	確定	
8. 輪郭の繰り返し • •	ソフトキー 以下の印を定めます:	^{繰り返し} > による呼び出し
	閉始マーク	マーク 1
		マークク
	繰り返し数	1
•		
結果 •	プログラミング・グラフィック	
	₩99-1 P - - - - - - - - - - - - -	

ShopMill-プログラム描写 •

b

部分	_1			
Р	NØ	部分_ 1		
×:00	NS	マーク1:		
\sim -	N10	部分_1_3 コーナー		
Ø-	N15	クリアリング	V	T=フライス機3 F0.2/Z S1000U Z0=0 Z1=10ink
×	N2Ø	マーク 2:		
∆÷∕	N30	オフセット		X120 Y60 Z0
∆÷⊾	N25	ミラーリング	add	ХҮ
Ē₽	N35	繰り返し		マーク1 マーク2
END		プログラム終了		

50

100

9.3 例 3:シリンダーカバーの変換

例 9.3 例 3:シリンダーカバーの変換

9

01/2008

0	例
9	9.

SHO	PMIL.	L_シリンダー							
Р	N5	SHOPMILL_シリンダー						(€
e	N10	原点オフセット		1 G54					
→	N15	早送り X10 Y0 Z50	1						
8	N2Ø	シリンダーカバー		オン ø80					
e	N25	原点オフセット		2 655					
\sim -	N30	輪郭:		シリンダー					
<i>13</i> 4 -	N35	軌道フライス加工	∇	T= フライス機8	FØ.2/Z	S5000U	Z0=40	Z1=10in	k
8	N40	シリンダーカバー		オフ					
END		プログラム終了		N=1					

9

9.4 例 4:グルーブ側面修正

平行するグルーブ側面を備えたグルーブが管にフライス加工されます。このために グルーブの輪郭ではなく、グルーブ内に取り込まれたボルトの想定された中心点 軌道がプログラミングされます。

9)

前提条件	 回転軸、例えばA軸があり、変換が機械データにより配置されます。 シリンダーの基準点が固定されます。 基準点X0、Y0、Z0と希望の原点オフセットを例えば「機械手動」、「ワーク 原点」、「エッジ」で決めます。そこから算出された原点オフセットは原点オフセッ トリストに記入されます。
プログラム	
1. プログラム・ヘッダ	 未加工材の外形寸法はシリンダーカバー面の展開に相応します。 X0 -150 アブソリュート Y0 -150 アブソリュート Z0 25 アブソリュート X1 150 アブソリュート Y1 157.08 アブソリュート Z1 22 アブソリュート RP 50 SC 1 注意:Y1 は形に応じて算出します:Y1 = Ø・π ここでは:直径 50 を 3,14で掛けます ソフトキー
2. 原点オフセットをプログラムで 作動させます。	シリンダーカバー変換のための原点オフセットを選択します(シリンダー正面の中心 点に原点を移動します)。 • ソフトキー 変形 、 原点 オフセット > による呼び出し • 希望の原点オフセットを選択し、ソフトキー 確定 を押します。
 Y-軸の位置決め シリンダーカバー変換のスイッチを入れます 	 シリンダー変換の選択後にY-軸はもはや使用されないので、工具をシリンダーの 中心上のY-軸に位置付けします。 ソフトキー パラメータの入力: X 10 アブソリュート Y 0 アブソリュート Z 40 アブソリュート F *早送り* mm/min #径補正 オフ ソフトキー を押します ソフトキー 変形 シリンダー 加バー > による呼び出し パラメータの入力: 変換ein ダ 50 グルーブ側面修正 オン D 6 注意:D はグルーブ側面への想定された中心点軌道の距離間隔です。
	 ソフトキー 確定 を押します

5. 原点オフセットをプログラムで	加工用の原点オフセットをシリンダーカバー上に決めます。(ワーク製図の原点上
作動させます。	に原点をシフトします)。
	 ソフトキー 各種 変形 > 「原点 オフセット > 」による呼び出し
	• 希望の原点オフセットを選択し、ソフトキー 確定 を押します。
6. 輪郭演算機による輪郭の 入力	 ソフトキー サンプレー・ サンプレー・ サンプレー・ キャック・ キャック・
	• 輪郭名 (ここでは:シリンダー)を入力し、確認します
	• 輪郭の開始面を埋めます
	工具軸 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
	シリンダーカバー はい
	Ø 50 X -25 アブソリュート Yα 0 アブソリュート
	注意:Y -値を消去し、その後 Y α - 値を記入します(ここでは 0°)。
	 ソフトキー 確定 を押します
	• 以下の輪郭要素を入力し、その都度ソフトキーで 確定 作動します:
	1. ←・→ X -44 アブソリュート
	 2. ←→→ X -25 アブソリュート
	3. $(\alpha^2 接線)$ $(\alpha^2 接線)$ $(\alpha^2 E)$
	4. ★・・→ X -94 アブソリュート
	5.
	6. 🛛 🕺 X -6 アブソリュート Yα 0 アブソリュート α1 45°
	7. ★ ・ → X -25 アブソリュート
	• 輪郭をソフトキー 確定 で取り込みます。
7. 軌道フライス加工	 ソフトキー
	• パラメータを入力します
	T フライス機_8 F 0.2 mm/歯 S 5000 回転/min
	半径補正 🖄 加工処理 🖓 前方
	Z0 25 アブソリュート Z1 3 インクレメント DZ 2
	UZ 0 UXY 0

• ShopMill-プログラム描写

-20

-40

-80

END

グルー	ブ壁		
Р	N5	グルーブ壁	\Box
e	N10	原点オフセット	1 G54
→	N15	早送り X10 Y0 Z40	
8	N20	シリンダーカー	グループ壁補正によりオン tur ø50 D6
e	N25	原点オフセット	2 655
\sim	N3Ø	輪郭:	シリンダー
<i>15</i> 4 -	N35	軌道フライス加工 ▽	T=フライス機8 F0.2/Z S5000U Z0=25 Z1=3ink
8	N40	シリンダーカモ	オフ
END		プログラム終了	N=1

-60

-40

-20

9.5 例 5:旋回

この例では、加工平面は、数回旋回します。

プログラム例 4

1. プログラム・ヘッダ ・	未加工部分の確定:	
	X0 0 アブソリュート 、	YO 0 アブソリュート ZO 0 アブソリュート
	X1 -50 アブソリュート Y	′1 -50 アブソリュート Z1 -50 アブソリュート
	ソフトキー 確定 ?	を押します
2. 矩形ポケット	ソフトキー	ポケット 2 矩形ポケット による呼び出し
•	技術データ例:	
	T フライス_4	D 1 F 0.1 mm/歯 V 200 m/分
•	以下のパラメータの入力	:
	基準点の位置	中心
	加工方法	粗削り
	地点種類	シングル地点
	X0	-25 アブソリュート
	Y0	-25 アブソリュート
	Z0	0 アブソリュート
	W	10
	L	20
	R	2
	α0	-45°
	Z1	5 インクレメンタル
	DXY	3 mm
	DZ	2.5
	UXY	0 mm
	UZ	0
	沈降	中心
	FZ	0.05 mm/歯

		クリア	完全加工
	•	↓ 確定	
3. 旋回	•	ソフトキー	変換 旋回 > による呼び出し
	•	技術テータ例:	D (
		I ノフ1 ス_4	D
	•	以下のパラメータの入力	:
		後退	あり
		旋回	あり
		変換	新
		X0	0
		Y0	-50
		Z0	0
		旋回	軸式
		X	90°
		Υ	0°
		Z	0°
		X1	0
		Y1	0
		Z1	0
		方向	-
	•	確定	
4. 矩形ポケット	•	ソフトキー レフトキー	ポケット 知形ポケット にトス呼びが出し.
	•	ブノーマ	
		T 7517_4	D 1 F 0.1 mm/歯 V 200 m/分
	•	以下のパラメータの入力	:
		基準点の位置	中心
		加工方法	粗削り
		地点種類	シングル地点
		X0	-25 アブソリュート
		Y0	-25 アブソリュート
		Z0	0 アブソリュート
		W	10
		L	20
		R	2
		α 0	45°
		Z1	5 インクレメンタル

9)

_例 9.5 例 5:旋回

	DXY	3 mm
	DZ	2.5
	UXY	0 mm
	UZ	0
	沈降	中心
	FZ	0.05 mm/歯
	クリア	完全加工
	· 確定	
5. 旋回	■■ 各種	変形
	・ ソフトキー 💶	による呼び出し
	• 技術データ例:	
	T フライス_4	D 1
	• 以下のパラメータの入力]:
	後退	あり
	旋回	あり
	変換	新
	XO	-50
	Y0	-50
	ZO	0
	—— 旋回	— —
	Z	-90°
	×	90°
	Y	0°
	X1	0
	V1	ů O
	71	Ũ
	之, 古向	-
	フーー ・ で 確定	
6. 矩形ポケット	7512	ポケット 矩形ポケット
	 ソフトキー	による呼び出し
	• 技術データ例:	
	T フライス_4	D 1 F 0.1 mm/歯 V 200 m/•a
	• 以下のパラメータの入力]:
	基準点の位置	中心
	加工方法	粗削り
	地点種類	シングル地点
	X0	-25 アブソリュート
	Y0	-25 アブソリュート

	Z0	0 アブソリュート
	W	10
	L	20
	R	2
	α0	-45°
	Z1	5 インクレメンタル
	DXY	3 mm
	DZ	2.5
	UXY	0 mm
	UZ	0
	沈降	中心
	FZ	0.05 mm/歯
	クリア	完全加工
	• 確定	
7. 設定	シミュレーションの際に傾	斜面の加工が鮮明な切片で表示されるようにその他の
	未加工材を決めます。	
	・ ソフトキー	設定による呼び出し
	• 未加工部分の確定	:
	X0 -17.678 アブソリ	Jュート Y0 10.206 アブソリュート Z0 0 アブソリュート
	X1 17.678 アブソリ	ノュート Y1 -20.413 アブソリュート Z1 -10 アブソリュート
	 ソフトキー 確定 	を押します
	· 確定	
8. 旋回	各種	変換 旋回 >
	 ソフトキー 	による呼び出し
	• 技術データ例:	
	T 正面削り	D 1
	• 以下のパラメータのス	入力:
	後退	あり
	旋回	あり
	変換	新
	X0	-50
	Y0	-50
	Z 0	-25
	旋回	軸式
	Z	-45°
	X	54.736°
	Y	0°

12.1			
9.5	例	5:旋回	1

1.Fil

			Y0		0 アブソリュート
			α 0		-90°
			R		5
			Ν		3
			ポジショニング		直線
		•	▲ 確定		
12. 旋回]	旋	回ヘッドおよびテー	ブルを再	∮び元の位置に旋回して戻します :
		•	ソフトキー	種	変換 旋回 > による呼び出し
		•	技術データ例:		
			T 0	D 1	
		•	以下のパラメータの	の入力:	
			<i>///</i> \B		+ P
			後退		あり + p
			旋回		あり +-
			変換		新
			X0		0
			Y0		0
			Z0		0
			旋回		軸式
			X		0°
			Y		0°
			Z		0°
			X1		0
			Y1		0
			Z1		0
			方向		-
		•	▲ 確定		
結果		•	ShopMill-プログラ	ラム描写	- -

例4				
P	NS	例4		
ģ	N10	矩形ポケット	⊽	T=フライス機_4 F0.1/Z S200m X0=-25 Y0=-25
鹦	N15	旋回		X90 Y0 Z0 TC=SK1 T=フライス機_4
<u>ش</u>	N2Ø	矩形ポケット	V	T=フライス機_4 F0.1/Z S200m X0=-25 Y0=-25
愚	N25	旋回		Z-90 X90 Y0 TC=SK1 T=フライス機_4
<u> </u>	NЗØ	矩形ポケット	⊽	T=フライス機_4 F0.1/Z S200m X0=-25 Y0=-25
¢	N35	設定		RP25 未加工部
鹦	N4Ø	旋回		Z-45 X54.736 YØ TC=SK1 T=PLANFRAESER
ŧ	N45	正面削り	V	T=正面削り機 F0.1/Z S200m X0=-17.678
7) / //	N50	穴あけ		T=ドリル F0.1/U S2000U Z1=5ink
Q -	NSS	001: ピッチ完全円		Z0=0 X0=0 Y0=0 R5 N3
ė,	N6Ø	旋回	add	X0 Y0 Z0 TC=0 T=0
END	N65	プログラム終了		

付録

А	略語	A-434
В	索引	I-437

A 略語

ABS	絶対寸法
СОМ	Communication:通信 通信し、調整する NC コントローラのコンポーネント
CNC	Computerized Numerical Control:コンピューター数値制御
D	バイト
DIN	ドイツ工業規格
DRF	Differential Resolver Function:差動リゾルバ機能 電子ハンドホイールとの組み合わせで、インクレメンタル原点オフセットを自動運転 で行う機能です。
DRY	Dry Run:予行送り
F	送り
GUD	Global User Data:グローバル・ユーザー・データ
нw	ハードウェア
INC	Increment:インクリメント
INI	Initializing Data:初期化データ
INK	インクレメンタル寸法
LED	Light Emitting Diode:発光ダイオード
M01	M 機能:プログラムされた停止
M17	M 機能:サブプログラム
MCS	機械座標系
MD	機械データ
MDA	手動データ 自動
MKS	機械座標系

^{付録} A 略語

MLFB	機械で読み込み可能なメーカー図面
MPF	Main Program File:メインプログラム
NC	Numerical Control:数値制御 CN コントローラは、コンポーネント NCK, PLC, PCU および COM から構成され ています。
NCK	Numerical Control Kernel:数値カーネル プログラムを処理し、基本的に工作機械のための移動プロセスを調整するための NC コントローラのコンポーネント。
NPV	原点オフセット
ОР	Operator Panel:操作パネル
PC	パーソナル・コンピュータ
PCU	パソコン・ユニット ユーザーと機械間の通信を可能にする NC コントローラのコンポーネント
PLC	Programmable Logic Control:プログラマブル・ロジック・コントローラ 工作機械の制御ロジック処理用の NC コントローラのコンポーネント
PRT	プログラム・テスト
REF	基準点への到達
REPOS	位置決め
ROV	Rapid Override:高速補正
S	主軸回転速度
SBL	Single Block:シングルブロック
SI	Safety Integrated
ѕк	ソフトキー
SKP	Skip:ブロック省略
SPF	Sub Program File:サブプログラム
sw	ソフトウェア

Δ

Λ	付録	
Α	Α	略語

т	工具
ТМΖ	工具マガジン・ゼロ
v	切削速度
WCS	Work Piece Coordinate System
WKS	ワーク座標系
WPD	Work Piece Directory:ワークディレクトリ
wz	工具

В

索引 3 3D-工具 2-140 3 面図 5-340 С CAM システム 7-386 CNC-ISO-作動 2-163 D D 3-183 DR 3-183 Ε E_COUNTER 3-319 F FOR 3-319 G G-Code ブロックのフェードアウト 2-119 G-機能 2-109 Gコード 作業プロセスプログラム 3-319 Gコードエディタ 4-329 Gコードのコピー 4-330 Gコードのマーク 4-330 Gコードの切り取り 4-330 Gコードの挿入 4-330 Gコードの検索 4-331 G コードプログラム 作成 4-324 処理 6-361 加工処理 4-327, 6-376 G コードプログラムのシミュレーション 4-327 G コードブロック 連番 4-332 н H機能 2-109 H-番号 2-136 I ISO-Dialects 2-136, 4-334 J Jog 1-25 Μ MDA 2-53 MDA-作動 2-107 Mini-操作手動器 1-29

MKS/WKS 2-55 M-機能 2-109, 3-318 Ρ POWER ON 8-401 R R パラメータ 4-333 S S 3-183 S1 1-31 S2 1-31 S3 1-31 ShopMill 1-18 ShopMill Open 2-164 ShopMill: 選択 2-163 Softkey OK 1-37 キャンセル 1-37 取り込み 1-37 戻る 1-37 т T 3-183 TEMP 6-365, 6-382 v V 3-183 w WKS/MKS 2-55 ア アクセス権 1-28 1 インクレメンタル寸法 1-45 インチ/メートル 3-167 インチ/メートル-切替 2-54 Ι エッジの手動測定 2つのエッジ間の距離の測定 2-65 一点の測定 2-63 二点の測定 2-64 エッジの測定 2-62 エッジの自動測定 2つのエッジ間の距離の測定 2-66 一転の測定 2-64 二点の測定 2-65

オ

オフ 2-49 オフセット 3-306 オン 2-49 オンライン-ヘルプ 4-324 ギ ギアステージ 3-318 + +- 1-23 キーワード 0-4, 1-28 ク クイック表示 描写 5-346 クイック表示:2D 選択 5-346 クイック表示:3D 選択 5-346 クイック表示:3Dの位置変更 5-346 クイック表示:Gブロックの検索 5-350 クイック表示: グラフィックのシフト 5-347 クイック表示:サイズ調整 5-347 クイック表示:パーツプログラムの加工 5-350 クイック表示:検索機能 5-349 クイック表示:開始 5-345 クイック表示:間隔の測定 5-348 クーラント 2-146, 3-318 げ グルーブ側面修正 3-309 J コードスイッチ 1-28 コーナーの手動測定 直角/任意のコーナーの測定 2-67 コーナーの測定 2-67 コーナーの自動測定 直角/任意のコーナーの測定 2-68 コマンド 自由な輪郭プログラミング 3-199 サ サイクル 0-7 サイクル 作動開始 3-177 サイクルに移動開始 3-177 サイクル補助 4-324 サブプログラム 3-301

ジ

ジオメトリプログラム 7-386 \$1 シミュレーション 5-336 クイック表示 5-337 標準-シミュレーション 5-336 シミュレーションの開始 5-337 ジ ジャーナルの手動測定 長方形ジャーナルの測定 2-76 ジャーナルの測定 2-75 ジャーナルの自動測定 長方形ジャーナルの測定 2-76 シ シリンダーカバーの変換 3-309 シリンダーカバー変換 3-191 シングルブロック 2-125 シングルブロック: 選択解除 2-125 ス スケーリング 3-307 ステップチェーンプログラム 3-167 スピンドル回転速度 3-168 スペース割当て 2-137 スペース番号 2-135 セ センタリング 3-206, 3-207, 3-231 ソ ソフトキー 操作 1-34 ダ ダイアログ選択 3-193 ダイアログ選択の変更 3-198 タ タップ立て 3-236 Ŧ チップの粉砕 3-237 チップ破砕 3-233 チャネル状態 1-32 チャンネル・ドライブ・メッセージ 1-32 デ ディスプレイ・ボタン 1-33 ディレクトリ

サブ操作モード 1-32

コピー 6-364, 6-380 名前変換 6-365, 6-381 移動 6-381 選択 6-357.6-371 ディレクトリ:削除 6-365, 6-382 ディレクトリの作成 6-362, 6-378 ディレクトリを開きます 6-357, 6-371 デュプロ番号 2-136 F ドリル 2-133, 2-134 ト トロコイド フライス加工 3-284 ネ ネジ切りフライス加工 3-238 ネットワーク・ドライブ 6-361 ネットワークドライブ 6-376 バ バージョン表示 8-403 ハ ハードディスク 6-376 ハイスピード設定 7-389 バ バイト 3-183 パ パス・フライス加工 3-203 パスフライス加工 3-203 パラメータ 変更 1-43 算定 1-43 パラメータ・マスク 1-40 パラメータのクリア 1-43 パラメータの入力 1-42 パラメータの確定 1-43 パラメータの選択 1-42 バ バリエーション 8-401 フ フェードアウト 2-119 フライス加工 3-263 フライス半径修正 3-168 フライス機 2-133, 2-134

プ

プランジフライス加工 3-285 プランジング 3-285 プログラミング・グラフィックス 1-39 プログラミングされた停止 3-318 プログラム 0-7 コピー 6-365, 6-381 中断 2-112 停止 2-111 加工処理のためのプログラムの選択 2-110 名前変更 6-365 名前変更: 6-381 新規 3-172 移動 6-381 複数のマーキング 6-363 プログラム:スタートアップ 2-125 プログラム:テスト 2-121 プログラム:上書き保存 2-120 プログラム:修正 2-127 プログラム:削除 6-365, 6-382 プログラム:加工処理 6-358, 6-372 プログラム:複数のマーキング 6-379 プログラム:開く 6-357, 6-371 プログラム・マネージャ 6-355, 6-369 プログラムエディタ 3-179 プログラムされた停止 2-118 プログラムセットの挿入 3-180 プログラムのアンロード 6-375 プログラムのロード 6-375 プログラムの中断 2-111 プログラムの作成 6-362, 6-378 プログラムの開始 2-111 プログラムブロック 3-170 反復 3-303 新規 3-175 検索 3-182 表示 2-126 プログラムブロック:変更 3-178 プログラムブロック:連番 3-181 プログラムブロックのマーキング 3-180 プログラムブロックの切り取り 3-180 プログラムヘッド 3-170, 3-171

^{付録} **索引** プログラム作用:テストラン送り 2-130 プログラム名 3-171 プログラム影響 1-32 プログラム構成 3-170 プログラム管理 NCU (HMI Embedded sl)での ShopMill 6-355 プログラム管理 PCU 50.3 (HMI Advanced) 6-369 プログラム終了 3-182 フ フロッピーディスクドライブ 6-376 ٨ ヘルプ・イメージ 1-41 ポ ポケット/穿孔の測定 2-69 ポケットの測定 矩形ポケットの手動測定 2-70 ポケットの自動測定 矩形ポケットの測定 2-70 ポジション値 2-56 ボ ボタン 操作 1-34 マ マガジン 2-150 マガジンスペース 位置決め 2-156 マガジンスペース 遮断 2-151 マガジンリスト 2-150 Ξ ミラーリング 3-308 x メインプログラム 3-301 メートル/インチ 3-167 メートル/インチ-切替 2-54 メッセージ 8-400 Ø めねじ 3-238 ユ ユーザーデータ 8-401 Б

付録

索引

らせん 3-226

IJ リーマ仕上げ 3-232 リセット 1-25 リモート診断 2-164 リング・グルーブ 3-281 7 ワーク、数 3-182 ワークカウンタ:Gコード・プログラム 2-131 ワークステーション 1-20 ワーク原点 1-21 手動測定 2-58 測定 2-58 自動測定 2-58 ワーク原点:測定 3-297 ワーク座標系 2-55 ワーク数 3-182 不 不動点 調整 2-90 中 中心軌道 3-204 主 主軸 位置付け 2-97 主軸の停止 2-97 主軸の始動 2-97 主軸回転方向 2-146, 3-318 主軸回転速度 2-99, 3-183 主軸地点 3-318 主軸状態 1-33 主軸補正 1-27 事 事前穴あけ 3-206, 3-208 事前設定 変更 2-106 仕 仕上げ削り 3-176 代 代替 3-176 位 位置 任意 3-245

反復 3-260 位置構図 グリッド 3-250 ひし形 3-250 フライス加工 3-289 フレーム 3-252 完全円 3-253 線 3-249 部分円 3-255 位置構図での後退 3-174 位置移動 3-222 余 余材:輪郭ジャーナル 3-218 余材:輪郭ポケット 3-211 作 作動 2-49 作業ステップ・プログラム 3-171 例 例 9-406, 9-414 グルーブ側面修正 9-421 シリンダーカバーの変換 9-417 ネジ切りフライス加工 3-241 旋回 3-316, 9-425 極座標 3-230 正面削り 3-265 矩形ポケット 3-269 穴あけ 3-261 保 保護段階 1-28 修 修正值 2-145 個 個数 2-148, 3-182 停 停止 3-318 側 側面調整 2-91, 3-299 入 入力欄 1-42 全 全移動 2-157

内

内部輪郭 3-192 円 Р 周知の中心点を持つ 3-224 周知の半径を持つ 3-225 曲線 3-229 円グルーブ 3-281 円ジャーナル 3-276 円ジャーナルの手動測定 1 円ジャーナルの測定 2-77 円ジャーナルの自動測定 1 円ジャーナルの測定 2-77 2 円ジャーナルの測定 2-78 3 円ジャーナルの測定 2-79 4 円ジャーナルの測定 2-80 円ポケット 3-270 円形半径 2-140 円錐型のフライス工具用の角度 2-140 切 切削測度 3-168 切削速度 3-183 切断面 5-344 到 到達モード 3-203 到達計画 3-204 加 加工 停止 2-111 加工の中断 2-111 加エライン 5-336 加工処理 2-108 加工回転方向 3-173 加工時間 5-336 加工送り 3-169 加工開始 2-111 単 単位の選択 1-43 原 原点オフセット 2-157, 2-162 全 2-157 呼び出し 3-305

^{付録} **索引**

基本 2-157 座標変換 2-157 決定 2-159 原点オフセット:選択 2-162 原点オフセット:選択解除 2-162 原点オフセットリスト 2-160 原点データのバックアップ 6-366, 6-382 原点データの読み込み 6-366, 6-382 反 反復 3-303 右 右-手-ルール 1-21 同 同時描写 加工中 2-124 加工前 2-122 回転 3-307 义 図面 変更 5-343 地 地点 3-244 基 基本オフセット 2-56 基本ブロック表示 2-126 基本回転角度 3-253 増 增分寸法入力 3-167 外 外輪郭 3-192 姉 姉妹工具 2-142 安 安全間隔 3-172 完 完全プログラム 7-387 完全加工 3-176 4 寸法 2-161 寸法単位 3-172

小

小文字 3-293 Т 工作図 1-39 工具 2-132 アンロード 2-154 新設 2-139 消去 2-151 測定 2-87, 2-91, 3-299 置換 2-154 複数のバイト 2-141 工具:プログラミング 3-183 工具:ロード 2-152 工具:分類 2-156 エ具タイプ 2-136 エ具タイプの変更 2-151 エ具データのバックアップ 6-366, 6-382 エ具データの読み込み 6-366, 6-382 工具のプログラミング 3-167 エ具マガジン 2-137 エ具リスト 2-132 工具修正 2-132, 2-143 工具半径修正 2-145, 3-168 工具名 2-142 工具状態 2-151 工具監視 2-148 工具磨耗データ 2-147 工具磨耗リスト 2-137 工具長さの修正 2-144, 3-167 平 平面の手動調整 2-82 平面の自動調整 2-83 平面の調整 2-82 平面図 5-339 平面表示 1-44 座 座標変換 2-157 定義 3-306 座標系 1-21 彫 彫り込み 3-292

後 後退面 3-172 戻 戻し移動 4-326 手 手動操作 M機能 2-105 ギアステージ 2-105 事前設定 2-106 工具軸 2-106 測定単位 2-105 手動運転 2-53 軸移動 2-99 手工具 2-142 技 技術プログラム 7-386 拡 拡大 5-341 挿 挿入モード 1-43 接 接線 3-193 操 操作 1-34 操作パネル: OP 010 1-22 操作画面 1-31 操作盤 1-22 +- 1-23 操作者による認証 2-51 断 断面の変更 5-343 新 新しい輪郭:フライス加工 3-189 旋 旋回 手動 2-101 自動操作 3-312 旋盤によるくり抜き 3-235 早 早送り 2-101, 3-170 早送りオーバーライド 1-27

未 未加工材 3-172 未加工部分-測定 5-338 検 検索 テキスト 2-117 ブロック 2-115 椓 極 3-227 極座標 1-44, 3-227 概 概算オフセット 2-158 纗 機械作動時間 2-128 機械制御パネル 1-25 機械原点 1-21 機械座標系 2-55 ΤĒ 正面削り 2-104, 3-217 歩 歩幅 2-99 歯 歯数 2-146 沈 沈降 3-268 深 深ボーリング 3-233 渦 渦巻き状フライス加工 3-284 測 測定 3-297 ワーク原点 2-58 工具 2-87 測定:ワーク原点 3-297 測定サイクルのサポート 4-324 測定工具の測定 2-85 測定計 2-88 測量 3-183 特 特殊文字 3-293 直 直線 3-222

付録 **索引**

半径修正 3-222 極 3-228 矩 矩形ポケット 3-266 磨 磨耗 2-148 穴 穴あけ 3-231, 3-232 空 空スペースの検索 2-153, 2-155 穿 穿孔ネジ切りフライス加工 3-242 穿孔の自動測定 1個の穿孔の測定 2-71 2個の穿孔の測定 2-72 3個の穿孔の測定 2-73 4個の穿孔の測定 2-74 立 立体図 5-342 立体描写 5-342 筀 等距離 2-145 粗 粗削り 3-176 精 精密削り 2-94, 2-95 精細オフセット 2-158 終 終了 4-332 統 統合型安全性 2-51 絵 絵例 サンプル地点 フライス加工 3-290 絶 絶対寸法 1-45 絶対寸法入力 3-167 縱 縦グルーブ 3-278 耐 耐久時間 2-148

自 自動作動 2-108 自動運転 2-53 荒 荒削り 2-94, 2-95 補 補助機能 2-109 補足命令 3-189 複 複合固定 6-358, 6-372 角 角頂点 3-172 計 計測プローブ 2-91 調整 2-93, 3-300 計測プローブ キャリブレート 2-85 計算パラメータ 4-333 記 記号 3-303 設 設定 手動操作 2-105 自動運転 2-130 設定の変更 3-305 詳 詳細シングル・ブロック 2-125 調 調整送り速度 2-100 警 警告 8-400 警告閾値 2-148 軸 軸 3-167 位置決め 2-101 移動 2-99 軸ボタン 1-26 輪 輪郭 0-7 コピー 3-180 表示 3-187 輪郭 ジャーナル 3-185

輪郭 ポケット 3-184

輪郭島 3-184 輪郭:作成 3-189 輪郭:変更 3-197 輪郭から出発 2-112 輪郭ジャーナル 粗削り 3-217 輪郭ジャーナル:仕上げ削り 3-220 輪郭ジャーナル:余材 3-218 輪郭ジャーナル: 面取り 3-221 輪郭のフライス加工 3-184 輪郭の挿入 3-198 輪郭の書き換え 3-182 輪郭への再到達 2-112 輪郭ポケット フライス加工 3-209 粗削り 3-209 面取り 3-216 輪郭ポケット:センタリング 3-206 輪郭ポケット:事前穴あけ 3-206 輪郭ポケット:仕上げ削り 3-213 輪郭ポケット:余材 3-211 輪郭を閉じる 3-194 輪郭始点 3-189 輪郭演算機 3-184 輪郭移行要素 3-192 輪郭終点 3-189 輪郭要素 作成 3-191 輪郭要素の変更 3-197 輪郭要素の消去 3-198 輪郭要素の追加 3-197 追

追加命令 3-192

追加機能 3-318 ツール 2-146 送 送り 3-169, 3-175 送りオーバーライド 1-27 送り状態 1-32 連 連結 3-170 連鎖寸法 1-45 遮 遮断 2-49 金 金型製造 7-386 銄 鉋加工 3-233, 3-236 鏡 鏡文字 3-293 툱 長さ調整 2-91, 3-299 長方形ジャーナル 3-273 開 開始 4-332 障 障害 3-258 雄 雄ネジ 3-239 離 離脱モード 3-203 離脱計画 3-204 非 非常-停止 1-25

^{付録} **索引**

シーメンス株式会社	提案
宛	
	修正
A&D MC MS1	出版物用:
Postfach 3180	SINUMERIK 840D sl
D-91050 Erlangen	ShopMill
電話: +49 (0) 180 5050 – 222 [Hotline]	ユーザー文書
ファックス: +49 (0) 9131 98 – 63315 [資料]	
E-Mail: mailto:docu.motioncontrol@siemens.com	
送信者	操作/プログラミング
名前	注文番号: 6FC5398-4AP10-2TA0
会社/事務所の住所	発行 2008 年 1 月
住所:	万ーこの資料を読み、活字の間違いを発見した場合、この用 紙で当社まで知らせて下さい。同様に、示唆及び改良についる
郵便番号: 所在地:	も歓迎いたします。
電話: /	
ファックス: /	

提案 および/または修正