SIEMENS

Application description • 04/2014

Avoiding vibration in slewing gear pieces SINUMERIK 828D, 840D SI

http://support.automation.siemens.com/WW/view/en/78452062

Warranty and liability

Note

The Application Examples are not binding and do not claim to be complete regarding the circuits shown, equipping and any eventuality. The Application Examples do not represent customer-specific solutions. They are only intended to provide support for typical applications. You are responsible for ensuring that the described products are used correctly. These application examples do not relieve you of the responsibility to use safe practices in application, installation, operation and maintenance. When using these Application Examples, you recognize that we cannot be made liable for any damage/claims beyond the liability clause described. We reserve the right to make changes to these Application Examples at any time without prior notice. If there are any deviations between the recommendations provided in these

If there are any deviations between the recommendations provided in these application examples and other Siemens publications – e.g. Catalogs – the contents of the other documents have priority.

We do not accept any liability for the information contained in this document.

Any claims against us – based on whatever legal reason – resulting from the use of the examples, information, programs, engineering and performance data etc., described in this Application Example shall be excluded. Such an exclusion shall not apply in the case of mandatory liability, e.g. under the German Product Liability Act ("Produkthaftungsgesetz"), in case of intent, gross negligence, or injury of life, body or health, guarantee for the quality of a product, fraudulent concealment of a deficiency or breach of a condition which goes to the root of the contract ("wesentliche Vertragspflichten"). The damages for a breach of a substantial contractual obligation are, however, limited to the foreseeable damage, typical for the type of contract, except in the event of intent or gross negligence or injury to life, body or health. The above provisions do not imply a change of the burden of proof to your detriment.

Any form of duplication or distribution of these Application Examples or excerpts hereof is prohibited without the expressed consent of Siemens Industry Sector.

Security information Siemens provides products and solutions with industrial security functions that support the secure operation of plants, solutions, machines, equipment and/or networks. They are important components in a holistic industrial security concept. With this in mind, Siemens' products and solutions undergo continuous development. Siemens recommends strongly that you regularly check for product updates.

For the secure operation of Siemens products and solutions, it is necessary to take suitable preventive action (e.g. cell protection concept) and integrate each component into a holistic, state-of-the-art industrial security concept. Third-party products that may be in use should also be considered. For more information about industrial security, visit <u>http://www.siemens.com/industrialsecurity</u>.

To stay informed about product updates as they occur, sign up for a productspecific newsletter. For more information, visit <u>http://support.automation.siemens.com</u>.

Table of contents

Warra	anty and	liability	. 2
1	Task		. 4
2	Solution		. 5
	2.1 2.2 2.3 2.4	Overview Programming Setup Settings Application	. 5 . 5 . 9 11
3	Principle	e of the ideal speed behavior	13
4	Contact		15
5	History.		16

1 Task

Description of the application

When machining long and slender workpieces which are often very sensitive to vibrations, the speed in critical areas should be set to a harmonic oscillation in a controlled manner during the machining process. The aim should be to change the spindle speed such that the machining process is not impaired and no chatter marks are formed on the rotating surface.

Overview of the automation task

The following figure shows an example of a workpiece, which is set to vibration by the unfavorable tension condition during the rotating process.

Figure 1-1 Clamped shaft

2 Solution

2.1 Overview

Description

Permanent change in speed of the master spindle can eliminate any vibrations occurring in the slewing gear piece. When manually changing the spindle speed by using the override, it is very difficult to create a harmonious vibration speed of the master spindle. Therefore, a cycle which consists of two part subprograms (.SPF files) should be created. By selectively switching the cycle on and off, a harmonic vibration speed of the master spindle is forced. Both subprograms of the cycle form the basis for future use of the "OSZI" command, which can be safely used in the program GUIDE (G-code).

Required knowledge

Basic knowledge of the programGUIDE (G code) programming is required.

Advantages

This application provides the following benefits:

- Avoiding chatter marks on the workpiece
- Precision turning process on the workpiece is still possible

2.2 Programming

The subprograms OSZI.SPF (Fig. 2-1) and OSZIOFF.SPF (Fig. 2-2), which are used to turn the harmonic vibration at set speed on and off will be stored in the password-protected area of the system data / user cycles. This area is accessible only to authorized, qualified personnel. The end-user should be responsible, act deliberately and cautiously, as the cycles described require changes to system data.

2 Solution

2.2 Programming

	04/02/14 1:38 PM
USB/0SZISPF 1	Select
ACTIVATION OF HARMONIC OSCILLATION CYCLE	1001
; VERSION 1.0 / BEBA¶ ; PARAMETER VALUE: 1. OSCILLATION TIME FACTOR, 2.PERCENTAGE FACTOR¶ PROC OSZI (REAL _OSZI_TIME, REAL _PROCENT)¶	Build group
DEF REHL _11NE_1, _5_1, _5_2, _5, _5P1	Search
Loss programmers	
_S=\$P_S[\$P_MSNUM]¶ _SP=(_S*_PROCENT)/100%	Mark
S_1=SP¶	
_5_2=_SSP¶ \$90 TIMER111_0¶	Сору
_TIME_1=\$AC_TIMER[1]¶	
<pre>ID-1 EVERY \$AC_TIMER[1] >= (_TIME_1+_OSZI_TIME) DO S=_S_1¶</pre>	Paste
ID=2 EVERY \$HC_IINER[1] <= (_IINE_1+_0521_IINE) D0 5=_5_21 ID=3 EVERY \$AC_IINER[1] >= (_IINE_1+(_0521_IINE) D0 5=_5_21	
ER[1]=0¶	Cut
1	
Edit Drilling Billing Cont. Uari- Uari- Simu- ous Simu-	ecute

Note The program for turning on harmonic vibrations is provided as a download and it need not be created by you.

For a better overview of the programGUIDE for turning on harmonic vibration at set speed is shown below:

```
CYCLE FOR TURNING ON HARMONIC VIBRATION
     VERSION 1.0 / BEBA
1
     ;TRANSFER_PARAMETER: 1. OSCILLATION TIME FACTOR,
     2. PROCENTFAKTOR
    PROC OSZI (REAL OSZI TIME, REAL PROCENT)
2
     DEF REAL TIME 1, S 1, S 2, S, SP
3
    {_S=$P_S[$P_MSNUM]
4
     _SP=(_S*_PROCENT)/100
5
     _S_1=_S+_SP
6
     S 2= S- SP
    $AC TIMER[1]=0
7
    TIME_1=$AC_TIMER[1]
    ID=1 EVERY $AC_TIMER[1] >= (_TIME_1+_OSZI_TIME) DO S=_S_1
8
    ID=2 EVERY $AC_TIMER[1] <= (_TIME_1+_OSZI_TIME) DO S=_S_2
    ID=3 EVERY $AC TIMER[1] >= ( TIME 1+( OSZI TIME*2-0.05)) DO
```

Copyright © Siemens AG Copyright year All rights reserved

9

RET

2 Solution

2.2 Programming

No.	Action	Note		
1	TRANSFER_PARAMETER: 1.OSCILLATION TIME FACTOR, 2. PERCENTAGE_FACTOR	Comments area		
2	PROC OSZI (REAL _OSZI_TIME, REAL_PROZENT)	Definition of the procedure name, the transfer parameters and the necessary program runtime variables		
3	_S=\$P_S[\$P_MSNUM]	Query of the current master spindle		
4	_SP=(_S*_PROZENT)/100	Calculation of the spindle speed in relation to the percentage value		
5	_S_1	Upper speed limit		
6	_S_2	Lower speed limit		
7	\$AC_TIMER[1]=0 _TIME_1=\$AC_TIMER[1]	Setting and stopping the timer		
8	ID=1 EVERY \$AC_TIMER[1] >= (_TIME_1+_OSZI_TIME) DO S=_S_1 ID=2 EVERY \$AC_TIMER[1] <= (_TIME_1+_OSZI_TIME) DO S=_S_2 ID=3 EVERY \$AC_TIMER[1] >= (_TIME_1+(_OSZI_TIME*2-0.05)) DO	Synchronous actions for changing the set value of the spindle		
9	2-0.05	Correction factor of the set timer		

Table 2 1 Explanation of the programming steps	(turning on the harmonic vibration at set speed)
--	--

Note The correction factor of the set timer is an empirical value. This prevents the harmonic vibration from exceeding the set upper or lower limit of the spindle speed.

Figure 2-2 Cycle for turning off harmonic vibrations at set speed

Note

The program for deactivation of harmonic vibration at set speed is provided as a download and it need not be created by you.

For a better overview of the programGUIDE for turning off harmonic vibration at set speed is shown below:

;CYCLE FOR TURNING OFF HARMONIC VIBRATION AT SET SPEED ;VERSION 1.0 / BEBA CANCEL(1, 2, 3)

Table 2 2 Explanation of the programming step (turning off the harmonic vibration at set speed)

No.	Action	Note		
1	CANCEL (1,2,3)	Stopping the three synchronous actions		

2.3 Setup Settings

Prerequisite

It must be ensured that the names of the used synchronous actions ID1 to ID3 are identical in the startup and shutdown program (OSZI.SPF and OSZIOFF.SPF). Should other synchronous actions have this designation already, you must assign a numbering that is not used yet to these synchronous actions.

Setup Setting

Note the following settings in the setup of the SINUMERIK control:

- 1. Copy the generated subprograms OSZI.SPF and OSZIOFF.SPF
 - to the user cycle area as shown in Figure 2-3.

Figure 2-3 Inserting the OSC files in the user cycle area

REF.POINT					12:03 PM
Name	Туре	Length	Date	Time	Octivate
🖶 🗂 Archives					Houvalo
🖶 🗀 HMI data					
Local drive					New
E Compile queles					
	DIR		88/12/13	12-83-87 PM	Open
	SPF	530	88/12/13	11:41:36 AM	
□ 🖹 OSZI_OFF	SPF	87	08/12/13	10:59:12 AM	
🖶 🖨 Manufacturer cycles	DIR		86/26/13	3:03:45 PM	Mark
🗄 🗀 Standard cycles	DIR		08/12/13	11:59:38 AM	
🖶 🖨 Definitions	DIR		08/12/13	11:59:43 AM	Conu
🖽 🖻 NC active data	DIR		08/12/13	12:03:03 PM	copy
🖶 🗖 Part programs	UIK		06/26/13	3:03:45 PM	
E C Llorkniegos	UIR		00/20/13	3:03:45 PT1 3:03:45 DM	Paste
er Comments	DIR		00/20/13 09/19/13	3.83.43 FTT 11-50-43 0M	1 830
E C Sustem hard disk	011		00/12/13	11.00.40 HT	
					Cut
NC				Free: 2.4 MB	
A Mark and	4	_	01		0-11 (
MD data NC		📙 нмі		em a	test
				2 -	

Note The machine manufacturer or Siemens Service has the permission to access the system data area.

2. Set the timer of the channel machine date MD 28528 (number of timers) to least "2" (Fig. 2-4) and set it effective.

Figure 2-4 Changing the timer in the channel machine date MD 28258

	- POINT							08/12/13 12:06 PM
Channel ma	achine data					CH1:CHA	N1	
28241	\$MC_MAXNUM_S	YNC_DIA	G_VAR		0	po	^	
28250	\$MC_MM_NUM_S	SYNC_ELE	MENTS		159	po		
28251	\$MC_MM_NUM_	SAFE_SYN	IC_ELEMENTS		0	po		
28252	\$MC_MM_NUM_I	FCTDEF_E	EMENTS		3	po		1
28253	\$MC_MM_NUM_	SYNC_STR	RINGS		200	po		
28254	\$MC_MM_NUM_I	AC_PARA1	1		50	po		
28255	\$MC_MM_BUFFE	RED_AC_F	'nram		0	po		
28256	\$MC_MM_NUM_I	AC_MARK	ER		8	po		Set MD
28257	\$MC_MM_BUFFERED_AC_MARKER			0	po		active (cf)	
28258	\$MC_MM_NUM_AC_TIMER			2		po		
28260	\$MC_NUM_AC_FIFO			0	po		Reset	
28262	\$MC_START_AC_FIFO			0	po		(po)	
28264	\$MC_LEN_AC_FIFO				0	po		
28266	\$MC_MODE_AC_FIFO			0	po		Search	
28274	\$MC_MM_NUM_I	AC_SYSTE	M_PARAM		0	po		
28276	\$MC_MM_NUM_AC_SYSTEM_MARKER			0	po			
28290	\$MC_MM_SHAPED_TOOLS_ENABLE			0	po			
28300[0]	\$MC_MM_PROTO	C_USER_I	ACTIVE		1	po		
Number of	time variables \$AC.	_TIMER (D	RAM)	_				Display
Canaval	Observat	Onio	Harr		4	>		options
MD MD	MD	HXIS MD	views					

3. Turn the machine off and then on again, so that the installation is completed and the cycle is activated.

2.4 Application

The Figure 2-4 shows the use of the vibration prevention function (OSC) in the SINUMERIK. OSC and OSZIOFF can be inserted into the respective workpiece program as high-level language commands. Only the percentage change in speed is entered within the parentheses. A change in the user cycles is not necessary from the perspective of the machine operator. Please note that this feature is intended only for use in the programGUIDE and does not apply to ShopTurn.

Figure 2-4 Application of the OSC function in programGUIDE

Table 2 3 Explanation of the programming steps (vibration prevention program)

No.	Action	Note		
1	G95 S1000 M3	The master spindle turns clockwise at 1000 rpm		
2	OSZI(2,10)	The speed is set to 110% for a period of 2 seconds.		
3	Machining	Is located here as the dummy for the machining process at the workpiece.		
4	OSZIOFF	Turning off the vibration		
5	G95 S1000 M3	Set new speed; otherwise, the last speed used will be active. Either the upper or lower speed limit.		

2.4 Application

Vibrations on the workpiece can be achieved by varying the constant speed. Therefore, the set value of the spindle changes constantly. Thus, the set value of the spindle speed fluctuates between a lower and upper limit back and forth within a defined period of time. In the current example, the selected set value of the spindle speed ranges between 90% and 110% of rated speed selected. The time interval was fixed at 2 seconds at an initial spindle speed of 1000 rpm.

3 Principle of the ideal speed behavior

Vibration and Master Spindle

Vibration acts only on the active master spindle and depends on its dynamics.

Reducing Vibrations

In order to reduce vibrations, the set value of the spindle speed is reduced or increased by the percent factor after each time factor. The result is a vibration that is strongly dependent on the dynamics of the spindle and the workpiece mass. There are no tables of values for this vibration behavior, thus the required parameters (spindle speed, time factor) for the material used must be determined experimentally.

Ideal Vibration Behavior

The desired spindle behavior is illustrated in Figure 3-1. Constant fluctuation of the spindle speed between upper and lower limits specified by you (Section 2.4) results in a sinusoidal wave.

Unfavorable Vibration Behavior

The Figure 3-2 shows a change in the spindle speed with a very large time factor selected. The spindle speed lingers for a moment on the upper or lower limit of the selected set value of the spindle speed; this may again lead to the rattling of the workpiece.

4 Contact

Siemens AG

Industry Sector I DT MC MTS APC 1 2 Frauenauracher Straße 80 D - 91056 Erlangen mailto: MC-MTS-APC-Tech-Team.i-dt@siemens.com

5 History

Tab	le	5-1
100		• •

Version	Date	Modifications
V1.0	09/2013	First version
V2.0	04/2014	Optimization of the sequence programs OSZI