

ProjectGenerator

SIMATIC/SIMOTION
ProjectGenerator

Application manual

03/2015

Preface

Application description
 1

System and error messages
 2

Tips and assistance
 3

Contact
 A

 Siemens AG
Division Digital Factory
Postfach 48 48
90026 NÜRNBERG
GERMANY

Ⓟ 03/2015 Subject to change

Copyright © Siemens AG 2015.
All rights reserved

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

 DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

 CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

 NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

 WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

ProjectGenerator
Application manual, 03/2015 3

Preface

General information

 Note

The standard applications are not binding and do not claim to be complete regarding
configuration, equipment or any eventuality which may arise. The standard applications do
not represent specific customer solutions, but are only intended to provide support for typical
tasks. You are responsible for the proper operation of the described products. These
standard applications do not relieve you of your responsibility regarding the safe handling
when using, installing operating and maintaining the equipment. By using these standard
applications, you agree that Siemens cannot be made liable for possible damage beyond the
mentioned liability clause. We reserve the right to make changes and revisions to these
standard applications at any time without prior notice. In the case of any differences between
the suggestions made in these standard applications and other publications from Siemens,
such as catalogs, the contents of the other documentation have priority.

Warranty conditions, liability, and support
If the application has been made available free of charge, the following applies:

We do not provide a warranty for any of the information contained in this document.

All other rights and claims against Siemens AG irrespective of legal basis are excluded. In
particular claims for damages against Siemens AG in the case of product outage, downtime,
loss of profit, either directly, indirectly or consequential damage are excluded.

This does not apply when liability is compulsory by law, e. g. in the case of the Product
Liability Act, premeditation, an act of gross negligence by superiors and managerial staff of
Siemens AG or in cases of fraudulent concealment of defects.

This limitation of liability also applies to sub-contractors, suppliers, delegates, superiors and
managerial staff of Siemens AG.

German law shall apply to this agreement for customers with head offices in Germany; Swiss
law for customers with head offices outside Germany. Application of the United Nations
Convention on Contracts for the International Sale of Goods as of 11.04.1980 (CISG) is
excluded.

Preface

 ProjectGenerator
4 Application manual, 03/2015

If the application has been made available against payment, the appropriate alternative
applies for the respective business transaction:

● Alternative 1: (Internal business)

If nothing else has been negotiated, then the "Conditions for the supply and services in
Siemens internal business" applies in the version that is valid at the time that the equipment
is purchased.

● Alternative 2: (Domestic business of Siemens AG)

If nothing else was negotiated, the "General License Conditions for Software for Automation
and Drives for Customers with a Registered Office in Germany" valid at the time of sale are
applicable.

● Alternative 3: (Direct export business of Siemens AG)

If nothing else has been negotiated, then the "General License Conditions for Software
Products for Automation and Drives for Customers with a Seat or Registered Office outside
Germany", valid at the time of sale, are applicable.

It is not permitted to distribute or duplicate these application examples in any form including
excerpts thereof without the express consent of Siemens Industry Sector.

Notice regarding export identification codes
AL: N

ECCN: N

About this document

Objective
This document describes the use of the ProjectGenerator for SIMATIC/SIMOTION with
which you can quickly and easily create a SIMOTION SCOUT/SIMATIC STEP 7 project and
update libraries and modules in an existing project.
Previous knowledge of STEP 7 and SIMOTION SCOUT is required.

 Note

This document does not claim to contain all details on devices in any version or to take all
conceivable operational cases and applications into account.

Should you require further information or encounter specific problems not covered in enough
detail for your field of application, please contact your local Siemens office.

Target group
This document is intended for programmers and commissioning engineers.

ProjectGenerator
Application manual, 03/2015 5

Table of contents

 Preface .. 3

1 Application description ... 7

1.1 General information .. 7
1.1.1 Task of the ProjectGenerator .. 7
1.1.2 Scope of delivery .. 10
1.1.3 Requirements .. 14

1.2 Operating the ProjectGenerator .. 15
1.2.1 Preparations .. 15
1.2.2 Starting the ProjectGenerator ... 15
1.2.3 Representation of the configuration sequence ... 17
1.2.4 Creating a sample project ... 19
1.2.4.1 Prerequisites ... 19
1.2.4.2 Creating a new project with SIMATIC devices ... 19
1.2.4.3 Adapting/expanding an existing project with SIMOTION devices .. 27
1.2.4.4 Transfer of SIMOTION IT pages ... 35

1.3 User-specific expansions .. 39
1.3.1 Adding devices and standard modules ... 39
1.3.1.1 Expanding the ProjectGenerator .. 39
1.3.1.2 Adding devices .. 39
1.3.1.3 Adding standard modules ... 41
1.3.2 Adding technology objects (SIMOTION only) ... 42
1.3.3 Creating and adding user-specific modules ... 43

1.4 Architecture of the ProjectGenerator .. 45
1.4.1 General information .. 45
1.4.2 Structure of the ProjectGenerator ... 45
1.4.3 Using the ProjectGenerator in silent mode ... 47

2 System and error messages .. 49

2.1 General information .. 49

2.2 System information ... 49

2.3 Warnings ... 54

2.4 Error messages ... 55

3 Tips and assistance ... 63

3.1 Special characters in XML .. 63

3.2 Comments in the source code .. 64

3.3 Outputting a message box .. 64

3.4 Usable parameters, events, and objects .. 64

3.5 Using text files ... 65

3.6 Using a source several times .. 67

Table of contents

 ProjectGenerator
6 Application manual, 03/2015

3.7 Reloading a user interface ... 68

3.8 Accessing user interface elements generically .. 69

3.9 Changing the user interface generically .. 69

3.10 Performant interface elements ... 77

A Contact .. 79

A.1 Contacts ... 79

A.2 Internet addresses ... 80

ProjectGenerator
Application manual, 03/2015 7

 Application description 1
1.1 General information

1.1.1 Task of the ProjectGenerator

Automatic creation of a SIMATIC/SIMOTION project
With the ProjectGenerator, you can quickly and easily create a new SIMATIC/SIMOTION
project or update an existing project on the basis of templates.

Function collection of standard modules and technological modules
The templates include preconfigured SIMATIC/SIMOTION devices and modules, which are
all supplied with the ProjectGenerator. These can be automatically integrated in a project
with the ProjectGenerator.

The function collection can also be expanded with user-specific modules.

Configuration and parameterization via user interface
The ProjectGenerator provides a user interface for the configuration and parameterization of
the modules that allows module-specific adaptations.

The modules can be expanded without the source code of the ProjectGenerator having to be
changed.

Standardized process hierarchy in accordance with ISA-88
The ProjectGenerator uses internationally established industrial standards such as IEC,
XML, and ISA-88. By using the standardized hierarchies and interfaces based on
international industrial standards, the individual modules of the ProjectGenerator can be
integrated for data exchange within a machine as well as between the machines in a line.
The modules can also be combined with components from other manufacturers and
integrated in existing infrastructures.

The ProjectGenerator is suitable for use in the four lower levels of the hierarchy model in
accordance with standard ISA-88:

Application description
1.1 General information

 ProjectGenerator
8 Application manual, 03/2015

Figure 1-1 Standardized process hierarchy in accordance with ISA-88

The equipment modules (EM) and control modules (CM) contain hardware and software
components that only have to be written once and then can be used as often as required in
the hierarchies shown in the figure.

According to ISA-88, a unit (machine) can be made up of one equipment module, e.g. the
handling machine module, or several identical or different equipment modules. An equipment
module can in turn contain several equipment modules and/or control modules. Control
modules are modules with process interfacing, e.g. an axis or the temperature controller. A
control module can in turn contain several control modules.

The ProjectGenerator presently supports one equipment modules level and one control
modules level below.

 Application description
 1.1 General information

ProjectGenerator
Application manual, 03/2015 9

Overview of the ProjectGenerator functions
You can execute the following functions with the ProjectGenerator:

Table 1- 1 Functions of the ProjectGenerator

Function ProjectGenerator for
SIMATIC

ProjectGenerator for
SIMOTION

Create a new project or open and edit an existing project ✓ ✓
Create a new device or open and edit of an existing device ✓ ✓
Automatic configuration of the modules on the basis of the
selected hardware

✓ ✓

Copy files/directories in the file system ✓ ✓
XML interface for user-specific expansions
• Generation of the user interface elements
• Generic function calls

✓
✓
✓

✓
✓
✓

Assign programs to the execution system

 ✓

FTP transport of files to the SIMOTION device
(e.g. SIMOTION IT pages)

 ✓

Import technology objects (TO) ✓
Interconnect technology objects (synchronous operation inter-
connection)

 ✓

Write configuration data and system variables to technology
objects

 ✓

Import libraries:
• Change code
• Version check and version update
• Setting and restoring constants
• Creating and restoring user areas

✓
✓
✓

✓
✓
✓
✓
✓

Import units
• Change code
• Version check and version update
• Setting and restoring constants
• Creating and restoring user areas

 ✓
✓
✓
✓
✓

Importing sources ✓
Importing/adding networks in organization blocks ✓
Adding variables to the declaration area of an organization
block

✓

Application description
1.1 General information

 ProjectGenerator
10 Application manual, 03/2015

1.1.2 Scope of delivery
The ProjectGenerator can be downloaded via a link on the Utilities & Applications storage
medium. Utilities & Applications is part of the SIMOTION SCOUT engineering system.

Directory structure of the ProjectGenerator
In Version 1.2, the ProjectGenerator is supplied with the following directory structure:

Figure 1-2 Structure of the ProjectGenerator

The top level contains

● The ProjectGenerator.exe file with which you start the ProjectGenerator.

● The documentation for the ProjectGenerator in the form of pdf documents in German and
English.

ProjectGenerator directory

This contains the files required for operating the ProjectGenerator. The files are system-
internal files and should not be changed by the user.

SIMATIC, SIMOTION, and SINAMICS directories

The basic data (directories and files) needed in connection with the generation of a SIMATIC
or SIMOTION project can be found in the SIMATIC and SIMOTION directories.

Importable SINAMICS devices are in the SINAMICS directory.

The SIMATIC, SIMOTION, and SINAMICS directories contain the following subdirectories:

● Devices

The Devices directory contains the files of the SIMATIC, SIMOTION, and SINAMICS
devices.

It is also possible to add your own preconfigured devices to this directory.

 Application description
 1.1 General information

ProjectGenerator
Application manual, 03/2015 11

Table 1- 2 Examples of devices

Folder Subfolder Devices
SIMATIC Devices S7300

SIMATIC S7315
SIMATIC S7317
SIMATIC S7319
...

 S7400
SIMATIC S7414
SIMATIC S7416
...

SIMOTION Devices V4.2:
SIMOTION C240PN
SIMOTION D410PN
SIMOTION D425
SIMOTION D435
...

 V4.3:
SIMOTION C240PN
SIMOTION D410-2PN
SIMOTION D425-2
SIMOTION D435-2
...

SINAMICS Devices 1_DriveObjects
2_ DriveObjects
3_ DriveObjects
…
The IO addresses of the drive objects for HW Config can
be stored in the additional file to be created, IOCon-
fig.XML .

Application description
1.1 General information

 ProjectGenerator
12 Application manual, 03/2015

● EquipmentModules

The EquipmentModules directory contains version-dependent, preconfigured standard
modules of the ProjectGenerator for SIMATIC or SIMOTION.

These are, for example:

Table 1- 3 Examples of SIMATIC and SIMOTION EquipmentModules

Folder Subfolder EquipmentModules
SIMATIC EquipmentModules Communication_LCom

The FBLComMachineCom function block in the LCom library
provides the function of a data record-oriented transport pro-
tocol, LCom protocol. The TCP transport protocol is used for
data transmission via Ethernet.

 OMACV30_LPML
The LPMLV30 software library provides a user-friendly basis
for the configuration of an OMAC-compliant mode manager
and a data interface for a SIMATIC/SIMOTION device.

 Weihenstephan
The LWeihenstephan library provides the functionality of the
Weihenstephan standard for SIMATIC S7 controls.

 ...
SIMOTION EquipmentModules Communication_LCom

The FBLComMachineCom function block in the LCom library
provides the function of a data record-oriented transport pro-
tocol, LCom protocol. The TCP transport protocol is used for
data transmission via Ethernet.

 OMACV30_LPML
The LPMLV30 software library provides a user-friendly basis
for the configuration of an OMAC-compliant mode manager
and a data interface for a SIMATIC/SIMOTION device.

 StartupCheck
The startup check provides functions for checking I/O mod-
ules and technology objects of the axis and external encoder
type when the machine starts up. If an error occurs, the user
is provided with detailed information about the cause of the
fault. When the startup is successful, a signal or a message is
output.

 Messagehandling_LMsgHdl
The LMsgHdl library provides basic functions for displaying
and managing all types of messages of the SIMOTION sys-
tem (e.g. faults and alarms).

 ...

 Application description
 1.1 General information

ProjectGenerator
Application manual, 03/2015 13

● Projects (SIMOTION only)

This contains the original project that is used by the ProjectGenerator when New project
is selected. It includes an already networked programming device for going online later.

The Ethernet interface is already pre-assigned with the address 169.254.11.99 and only
has to be assigned to the network card. This operation is not covered by the
ProjectGenerator, because there are too many different network adapters on the market.

If you want to store a customer-specific basic project, you must make sure you do not
rename the \SIMOTION\Projects\Project_Basis directory, but only replace the project files
in this directory.

If a SIMOTION CPU is inserted into the project, it is automatically connected to the
standard Ethernet(1) subnet if this exists. If it does not exist, the CPU is imported without
networking. The IE2/NET (X130) Ethernet interface is always networked as an interface
for the SIMOTION D4x5 components. The X200 PN interface is networked for the
SIMOTION D410 PN as standard. PN/IE (X127) is used for all SIMOTION D4xx-2
components. Every other CPU also connects to this standard subnet when imported.

If the CPU is to be connected to a different subnet, this can be performed subsequently
via NetPro or directly in the database in the ProjectGenerator.

● Scripts (SIMOTION only)

This contains the version-dependent configuration and overview scripts that can be
imported via the ProjectGenerator.

Figure 1-3 Scripts directory

Application description
1.1 General information

 ProjectGenerator
14 Application manual, 03/2015

● TechnologyObjects (SIMOTION only)

The TechnologyObjects directory contains version-dependent XML exports of the
technology objects of the axis type, e.g.:

Figure 1-4 TechnologyObjects directory

Irrespective of the technology objects listed here, each module can save and address its
own technology objects in the relevant subdirectory.

● TechnologyPackages (SIMOTION only)

The TechnologyPackages directory contains version-dependent internal system files with
the identifiers for the technology packages and devices.

● TelegramConfig (SINAMICS only)

The TelegramConfig directory contains version-dependent internal system files with the
telegram configuration and MLFBs of the SINAMICS Control Units.

1.1.3 Requirements
Use of the ProjectGenerator requires an installation of SIMOTION SCOUT V4.2 or higher
and STEP 7 V5.5.

If you only want to use the SIMATIC functions, SIMOTION SCOUT does not have to be
installed.

 Application description
 1.2 Operating the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 15

1.2 Operating the ProjectGenerator

1.2.1 Preparations

 Note

Before starting the ProjectGenerator, all STEP 7 or SIMOTION SCOUT applications have to
be closed.

 Note

To ensure quick and stable running, the ProjectGenerator must be started from a local drive.

1.2.2 Starting the ProjectGenerator
The ProjectGenerator can be started in standard mode and in silent mode.

Standard mode
Double-click the ProjectGenerator.exe file if you want to start the ProjectGenerator in
standard mode.

The ProjectGenerator interface is loaded and guides you step-by-step from the creation of
the project through to the generation.

Further information and the required individual steps can be found in the section Creating a
sample project (Page 19).

Silent mode
You can execute the ProjectGenerator in silent mode without a dialog with the user program.
In this way, it is possible to integrate the ProjectGenerator in a separate application.

You activate the silent mode by transferring the path to a valid external XML file of the
ProjectGenerator to the ProjectGenerator.exe file when starting. The commands of the file
are then processed directly.

The following is a sample call for a batch file with the extension .xml for starting the
ProjectGenerator in silent mode:

Application description
1.2 Operating the ProjectGenerator

 ProjectGenerator
16 Application manual, 03/2015

Table 1- 4 Coding example: ProjectGenerator for SIMOTION

C:\SIMOTION\ProjectGenerator.exe C:\SIMOTION\PGEN_DATA_BASE.xml
if errorlevel 1 goto error1
if errorlevel 0 goto no_error
goto End

:error1
Echo Error
goto End

:no_error
Echo No Error
goto End

:End

For further information about silent mode, see Section Using the ProjectGenerator in silent
mode (Page 47).

 Application description
 1.2 Operating the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 17

1.2.3 Representation of the configuration sequence

Start of the ProjectGenerator
If you have started the ProjectGenerator, the user interface of the ProjectGenerator is loaded
after checking the software requirements and confirmation of the disclaimer of liability
message. This area cannot be influenced by the user (see Fig. Configuration sequence 1):

Figure 1-5 Configuration sequence 1

Creating a new project or updating an existing project
In the next step you specify whether you want to create a new project or want to load and
edit an existing project.

The SIMATIC or SIMOTION device or SIMATIC/SIMOTION devices are then created or
selected for the project. Whereby each individual device is configured in succession.

The selection and configuration of the individual modules represents the area that can be
influenced by the user (area highlighted in the middle of Fig. Configuration sequence 2).
Standard modules can be integrated or also user-specific modules that can be freely
configured (see section Creating and adding user-specific modules (Page 43)).

Application description
1.2 Operating the ProjectGenerator

 ProjectGenerator
18 Application manual, 03/2015

Generation of the project and opening of SIMOTION SCOUT
When all devices have been configured, the project is generated. After generation, you can
open the project that has just been created or updated. In the case of a SIMOTION project,
SCOUT can be opened directly from the ProjectGenerator. The modules which were
previously selected and configured are now contained in the project.

Figure 1-6 Configuration sequence 2

 Application description
 1.2 Operating the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 19

1.2.4 Creating a sample project

1.2.4.1 Prerequisites

Requirements
● SIMOTION SCOUT and STEP 7 are closed

● The functions and properties of the standard modules are known. The documentation of
the individual modules is supplied in the files of the ProjectGenerator.

1.2.4.2 Creating a new project with SIMATIC devices
In this sample project, a new SIMATIC device is created with the ProjectGenerator using the
standard modules Ethernet Communication LCom and Weihenstephan Standard.

Application description
1.2 Operating the ProjectGenerator

 ProjectGenerator
20 Application manual, 03/2015

How to create a new SIMATIC device with standard modules:
1. Start the ProjectGenerator, agree to the liability disclaimer, and select the option Create a

new project.

Figure 1-7 Creating or selecting a project

 Application description
 1.2 Operating the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 21

2. If you have selected Create a new project, enter a project name and the storage location
of the project (the path can also be selected via Browse) and click Next.

Figure 1-8 Project name and storage path for the project

The Device selection window is opened.

Application description
1.2 Operating the ProjectGenerator

 ProjectGenerator
22 Application manual, 03/2015

3. In the Device selection window, under Select device category, select the device or
devices to be integrated in the project:

Figure 1-9 Creating or selecting a device

Depending on the software installation, you can select either only SIMATIC devices or
mixed SIMOTION and SIMATIC devices, one after the other.

Input the device name, device family and device type and then click Add device. The
new device is added to the Devices in project list.

If you want to create a further device, repeat the procedure.

4. In the Devices in project list, select the device you want to configure and click Next.

The Equipment module selection window opens.

 Application description
 1.2 Operating the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 23

5. In the Equipment module selection window, select the standard module or modules that
you want to integrate in the selected device and click Next.

Figure 1-10 Example: Selecting SIMATIC standard modules

Click the PDF button to open the documentation for the respective standard module.

For some standard modules, you can enter the number of modules on the left.

For this example, we have selected the Ethernet Communication LCom and
Weihenstephan Standards modules, which are configured one after the other in the
following screen forms.

Application description
1.2 Operating the ProjectGenerator

 ProjectGenerator
24 Application manual, 03/2015

6. In the Ethernet Communication LCom - Function Block Call window, configure the
function block call with the required data blocks and communication parameters and click
on Next.

Figure 1-11 Configuration of the standard module Ethernet Communication LCom

Here, make the following entries:

– Add FB call to the project

Under Add FB call to the project, you save the names and numbers for the data blocks
(DB) required for calling the function block: New instance DB name, Parameter DB
name, Send DB name, Receive DB name.

– Communication parameters

Here, you specify the transfer parameters of the function block call:

If the SIMATIC device is a TCP client, and thus the active connection partner, activate
the SIMATIC is TCP Client checkbox. In this case, enter the IP address and the
Remote port number.

You can also change the Local Port and Cycle time.

– Data blocks in device

 Application description
 1.2 Operating the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 25

Data blocks already available for the device are shown in the Data blocks in device
table.

7. Configure the next standard module Weihenstephan Standards and click on Next.

Figure 1-12 Configuration of the Weihenstephan Standards

You can make the following entries here:

– List DB Number/Search DB Number/Data DB Number

Enter the desired numbers of the DBs to create a suitable interface for the
Weihenstephan standards functionality.

– Browse

The Browse button can be used to set or change the path of the PDA-Config File.

When you are finished with the configuration and click on Next, the Generate the project
window opens.

8. Configure all the other devices following the above example by clicking on the Configure
devices button.

Fully configured devices are shown in green with a checkmark on the outer left beneath
the project name, while devices that have not yet been configured are red, and devices
being worked on are orange.

Application description
1.2 Operating the ProjectGenerator

 ProjectGenerator
26 Application manual, 03/2015

9. If you do not want to configure another device (Configure devices) and want to complete
the project, you have the following options.

Figure 1-13 Generate the project

– If you would like to save the configuration of the devices, but generate the project at a
later time, click on Save configuration and enter the storage path in Explorer.

– If you do not wish to configure any other devices and would like to generate the
project, click Generate.

The project is generated. The duration depends on the type of configuration and is
shown using a progress bar.

When the project has been completely generated, the message Generation finished
appears in the window.

10. Click the Exit button to close the ProjectGenerator.

 Application description
 1.2 Operating the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 27

1.2.4.3 Adapting/expanding an existing project with SIMOTION devices

Sample project
In this example, an existing SIMOTION project is opened with the ProjectGenerator and a
new device is created using the standard modules Message Handling and Startup Check.

How to open an existing SIMOTION project and to expand or change it:
1. Start the ProjectGenerator, agree to the liability disclaimer, and select the option Open an

existing project.

Figure 1-14 Creating or selecting a project

The Open an existing project window is opened.

Application description
1.2 Operating the ProjectGenerator

 ProjectGenerator
28 Application manual, 03/2015

2. Select the project that you would like to open and click on Next.

Figure 1-15 Selecting a project

If the desired project is not shown, click on Browse and select the path to the desired
project with Windows Explorer.

The selected project is accepted into the table view. Select the project in the table and
click the Next button.

The Device selection window is opened with the devices created for the project.

 Application description
 1.2 Operating the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 29

3. In the Device selection window, under Devices in project, select the SIMOTION device
that you wish to edit, or create a new device.

Figure 1-16 Creating or selecting a SIMOTION device

You have the following options:

– You can create additional devices for the project in the left-hand part of the window.
To do this, input the version or type and the type name of the device and then click
Add device. The new device is added to the Devices in project list.

– You can delete a newly created device by selecting the device in the Devices in
project list and then clicking on Delete device. Please note that only newly created
devices can be deleted. Devices which already existed when the project was opened
cannot be deleted.

– If you only want to change an existing device, select it in the Devices in project
window.

4. In the Devices list, select the device you want to configure next and click Next.

The Equipment module selection window opens.

Application description
1.2 Operating the ProjectGenerator

 ProjectGenerator
30 Application manual, 03/2015

5. In the Equipment module selection window, select the standard module or modules that
you want to integrate in the selected device and click Next.

Figure 1-17 Selecting standard modules

Click the PDF button to open the documentation for the respective standard module.

For some standard modules, you can enter the number of modules on the left. The left
vertical row of selection boxes shows the modules already included in the project.

The following applies only to SIMOTION devices: The Import scripts to the project
checkbox is activated by default. In this way, all scripts that are in the relative path
SIMOTION\Scripts are imported into the project level of the selected project.

For this example, we have selected the Message Handling and Startup Check modules,
which are configured in the following screen forms.

 Application description
 1.2 Operating the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 31

6. In the Message Handling - Configuration window, configure the selected standard module
Message Handling and click Next.

Figure 1-18 Configuration of the Message Handling standard module

You can make the following entries here:

– Size of active messages list with the number of entries

– Size of message archive with the number of entries

– DRIVE OBJECT diagnostics: Monitoring of the SINAMICS drive objects

– Time synchronization SIMOTION – SINAMICS: Synchronization of the time

– Message archive in STRING format:
Select whether you want to use the buffers in the STRING format in the default
language German or English.

If you activate the Create SIMOTION IT web page checkbox together with transfer
SIMOTION IT web page to storage medium via FTP, the SIMOTION IT page is saved
to the storage medium of the SIMOTION device. It can then be called up with a
standard WEB browser (SIMOTION IT). To do this, you must enter the IP address of
the SIMOTION device. The ProjectGenerator then goes online and transfers the files
for SIMOTION IT to the storage medium of the SIMOTION device. Use the Test button
to test whether a connection to the SIMOTION device is possible.

Application description
1.2 Operating the ProjectGenerator

 ProjectGenerator
32 Application manual, 03/2015

If the Create SIMOTION IT web page checkbox is not activated, the data is saved on
the PC in the project directory.

7. Configure the selected standard module Startup Check and click Next.

Figure 1-19 Configuration of the standard module Startup Check

See step 6 for the meaning of transfer SIMOTION IT web page to storage medium via
FTP.

The Generate the project window opens.

 Application description
 1.2 Operating the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 33

8. If you do not want to configure another device using Configure devices and want to
complete the project, you have the following options:

Figure 1-20 Generate the project

– If you would like to save the configuration of the devices, but generate the project at a
later time, click on Save configuration and enter the storage path in Explorer.

– If you do not wish to configure any other devices and would like to generate the
project, click Generate.

The project is generated. The duration depends on the type of configuration and is
shown using a progress bar.

 Note

Before the project is processed, ProjectGenerator saves the project as an archive in the
Temp directory of the user, e.g., in: C:\Documents and Settings\User\Local
Settings\Temp\PGEN_SAVED_EXPORTS\Archive

Application description
1.2 Operating the ProjectGenerator

 ProjectGenerator
34 Application manual, 03/2015

9. When the project has been completely generated, the message Generation finished
appears in the window and a query whether you want to open SIMOTION SCOUT.

Figure 1-21 Project generation completed

– Click Yes if you want to open the project in SIMOTION SCOUT.

The ProjectGenerator is closed and the project is opened in SIMOTION SCOUT. The
configured modules are integrated and ready to use.
You can add user-specific functions in the relevant module. Details on this are
provided in the documentation for the individual modules.

– If you click on No, you can save the data you have input during this ProjectGenerator
session by clicking Save configuration and leave the ProjectGenerator by clicking Exit.

 Application description
 1.2 Operating the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 35

1.2.4.4 Transfer of SIMOTION IT pages
As of Version 1.3.0 of the ProjectGenerator, in addition to the previous possibility of
downloading SIMOTION IT pages via FTP transfer to a controller during the generation, it is
now possible to download only the SIMOTION IT pages of an existing project to a controller,
without having to regenerate the project

This functionality is described in the following.

1. Start the ProjectGenerator, agree to the liability disclaimer, and select the option
Download SIMOTION IT web pages to SIMOTION.

Application description
1.2 Operating the ProjectGenerator

 ProjectGenerator
36 Application manual, 03/2015

2. When you have selected Download SIMOTION IT web pages to SIMOTION, you can
select the path to an existing project for which SIMOTION IT pages have also been
generated. Make sure that only the directory that contains the project is selected.
The IP address of the SIMOTION controller must also be specified. For this reason, the
option to test whether a connection can be established to the controller is also offered.

Note: The IP address of the network adapter on your computer and the IP address of the
SIMOTION controller must be in the same subnet.

 Application description
 1.2 Operating the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 37

3. After specifying the project path and, if required, a successful test of the connection, the
transfer can be started. To do this, click the Download button. All files under
PGEN_Data_Files\CardFiles are then downloaded to the controller.

Note: As of Version 4.4 of SIMOTION, a user and password must be specified when
downloading the SIMOTION IT pages through the ProjectGenerator. This information
must be available in the SIMOTION user administration so that the transfer can function.

Application description
1.2 Operating the ProjectGenerator

 ProjectGenerator
38 Application manual, 03/2015

4. During the transfer, Transferring in the bottom left of the user interface indicates that the
download is still in progress. When the download has been completed, Transfer
completed is displayed.
When the transfer is complete, you can start another transfer by returning to the
generation mode via the Back button, or exit the ProjectGenerator.

 Application description
 1.3 User-specific expansions

ProjectGenerator
Application manual, 03/2015 39

1.3 User-specific expansions

1.3.1 Adding devices and standard modules

1.3.1.1 Expanding the ProjectGenerator
You can expand the ProjectGenerator with devices and modules without having to change
the source code of the ProjectGenerator.

For the expansion of the ProjectGenerator with modules, you can use either the standard
modules supplied with the ProjectGenerator (see Section Adding standard modules
(Page 41)) or also use user-specific modules.

The expansion of the ProjectGenerator is performed in the SIMATIC/SIMOTION subdirectory
of the ProjectGenerator (see Section Scope of delivery (Page 10)).

1.3.1.2 Adding devices

Proceed as follows to add a new device:
You can add your own preconfigured devices to the SIMATIC/Devices or
SIMOTION/Devices directory so that these are also available for selection in future in the
ProjectGenerator interface.

Application description
1.3 User-specific expansions

 ProjectGenerator
40 Application manual, 03/2015

Adding a SIMATIC or SIMOTION device

1. Create a directory with the device name under the relevant version.

– The following applies for SIMOTION devices: The name of the folder (e.g.
SIMOTION_D435, see figure below) must be identical to the name of the exported
XML file of the device (e.g. SIMOTION_D435.xml) from SIMOTION SCOUT.

– The following applies for all SIMATIC devices: The name of the folder must be
identical to the name of the exported CFG file of the device from STEP 7.

 Note

We recommend that the device name and folder name begin with SIMATIC_ or
SIMOTION_.

2. Save the exported CFG or XML file of the device to the newly created directory.

3. Save the CFG or XML export of the station (e.g. XML_SIMOTION_D435(station)) to the
newly created directory.

At the next start, the ProjectGenerator detects the new device and offers it for import.

Figure 1-22 Example: Adding a device - SIMOTION D435

Figure 1-23 Example: Adding a device - SIMATIC devices

 Application description
 1.3 User-specific expansions

ProjectGenerator
Application manual, 03/2015 41

1.3.1.3 Adding standard modules

Proceed as follows to add a standard module:
1. Create a folder for the new standard module in the SIMATIC/EquipmentModules or

SIMOTION/EquipmentModules directory of the ProjectGenerator.

2. Create a text file (.txt) in this directory, assign it an appropriate name and change the
format from .txt to .xml.

3. Open the XML file and define the data structure and description for the new standard
module.

Use the XML files of the pre-configured module supplied with the ProjectGenerator as an
example.

4. The name of the directory must be identical to the name of the XML file (see figure).

Use the other standard modules with regard to the contents of the directory as an
example.

At the next start, the ProjectGenerator detects the new module and offers it for import.

Figure 1-24 Example: Adding a SIMATIC module

Application description
1.3 User-specific expansions

 ProjectGenerator
42 Application manual, 03/2015

1.3.2 Adding technology objects (SIMOTION only)

Proceed as follows to add technology objects:
To add a further technology object, store the XML export of the new technology object under
the corresponding version directory in the ProjectGenerator directory
SIMOTION/TechnologyObjects.

At the next start, the ProjectGenerator detects the new technology object and offers it for
import.

Each standard module can supply and address its own technology objects. To do this, create
technology objects adapted to your requirements below your module and import these
instead of the technology objects in the default directory.

Figure 1-25 Example: Adding SIMOTION technology objects

 Note

The output cam, measuring input and following object technology objects can only be added
in combination with an axis.

 Application description
 1.3 User-specific expansions

ProjectGenerator
Application manual, 03/2015 43

1.3.3 Creating and adding user-specific modules
You can also insert user-specific modules in a project via the ProjectGenerator without
having to deal with the necessary programming.

You can use all the commands with which the existing standard modules are inserted. You
can find a concise description of the individual commands in the
SIMATIC_ProjectGenerator_List_Manual and SIMOTION_ProjectGenerator_List_Manual List
Manuals.

Structure of the user-specific modules

 Note

For the creation of user-specific modules, we recommend that you use the supplied standard
modules as an example with regard to structure and content. They can be used as a copy
template or as an orientation help for your own expansions.

The first element in a module is a CommandList tag. The name of the library is specified in
the Name attribute, in order to be able to identify whether there is already a module of this
type the next time the ProjectGenerator is run through.

The DisplayText attribute describes the text that is displayed when the module is selected.

If a module is not capable of multi-instances, the number can be limited via the
MaxNumberOfModules attribute.

The following statements apply only to the ProjectGenerator for SIMOTION:

● If a module has no or no unique library, a fixed name of a unit is referenced by setting the
attribute Mode="UnitOnly".

Example of a CommandList tag

Table 1- 5 Example of a CommandList tag

<CommandList Name="pStartupCheck"
 DisplayText="Use Startup Check"
 MaxNumberOfModules="1"
 Mode="UnitOnly"
. . .
</CommandList>

The CommandList tag is followed by the Command tags as Child tags. All Command tags
have a unique identification number (ID) within the module and the name of the function that
is to be called. The ID is always a positive number. The entry level of the module always
begins with ID 1, otherwise the ID can be assigned arbitrarily.

If after completion of a command a further command is to be connected directly, this can be
performed with the attribute NCID, NextCommand ID. The ID of the next command is
entered in the NCID attribute. The command name is entered in the Name attribute.

Application description
1.3 User-specific expansions

 ProjectGenerator
44 Application manual, 03/2015

Examples of Command tags

Table 1- 6 Example of Command tag 1

<Command ID="1" Name="ImportUnit" NCID="2">
 . . .
</Command>

You must use a special logic for some information that is available in the project and in the
ProjectGenerator data management, in order to be able to pass on this information to a
control, for example.

Example: A text box should display the active device name. The programmer of the XML
description files does not know the name. Functions are available that return the information.
These functions have the prefix __Call_ so that the ProjectGenerator detects that a system
function is being used. The ProjectGenerator subsequently replaces the system function call
with the return information. If, for example, the Texttag of a text box is assigned the value
__call_GetSimotionDeviceName, this function call is replaced by the active device name, e.g.
D435.

Transfer parameters must be transferred to some of these functions. This is performed using
the syntax of Visual Basic .NET. The quotation marks are an exception here. These can be
omitted in most cases because there is an automatic conversion to the correct format.
However, the ’ character can also be used instead of quotation marks.

Table 1- 7 Example of Command tag 2

<Control Action="add"
 Type="TextBox"
 Name="TB_DeviceName"
 Text="__call_GetSimotionDeviceName"
 ReadOnly="true"
 Location="175, 300"
 Autosize="true"
 ToolTip="Actual device name">
</Control>

 Application description
 1.4 Architecture of the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 45

1.4 Architecture of the ProjectGenerator

1.4.1 General information
The architecture of the ProjectGenerator is described in this section. This information is
especially for users who want to expand the ProjectGenerator with their own user-specific
modules.

1.4.2 Structure of the ProjectGenerator
The ProjectGenerator consists of the following components:

System core consisting of SL object and XML interpreter
● SL object

The SL object is in the ProjectGenerator. The SL object contains all the functions for
reading and writing the files and the functions that are required for creating and editing a
project.

● XML interpreter

The XML interpreter accesses a standard module or a user-specific module for the
configuration of a module. The XML interpreter generates the user interface of the
ProjectGenerator from the commands of the XML configuration files. After completing the
configuration, the ProjectGenerator checks whether it still has other modules that have to
be configured and whether the Framework.xml is processed further.
Read access to an open project is performed with the XML interpreter.

Framework
The ProjectGenerator accesses the Framework for the project selection, selection of the
device, and the creation of the overview of the existing standard modules.

CFG or XML configuration files
When creating a project, the following configuration files are accessed:

● Framework accesses the system-internal configuration files.

● The CFG or XML configuration files of the standard modules and the user-specific
modules are accessed for the configuration of the individual modules.

Basic data
The basic data that is stored outside the ProjectGenerator in the SIMATIC or SIMOTION
directory is accessed to generate a project (see Section Scope of delivery (Page 10)). The
exact path definition for the basic data is performed with the commands of the XML
configuration files.

Application description
1.4 Architecture of the ProjectGenerator

 ProjectGenerator
46 Application manual, 03/2015

STEP 7 project
Read or write access to the project is by means of the STEP 7 command interface or the
SIMOTION SCOUT scripting interface.

Figure 1-26 System architecture of the ProjectGenerator

 Application description
 1.4 Architecture of the ProjectGenerator

ProjectGenerator
Application manual, 03/2015 47

1.4.3 Using the ProjectGenerator in silent mode

ProjectGenerator
The ProjectGenerator can be embedded in user-specific tools via the silent mode. This is
performed without the user interface of the ProjectGenerator.

In the event of an error, no error messages are output. Errors can be viewed in the log file of
the ProjectGenerator.

External XML file
The required information and commands are transferred to the ProjectGenerator in silent
mode via an external XML file with the start call. The commands contained in the file are
processed directly and no messages are displayed. If errors have occurred, they can be
viewed in the log file.

Creation of an external XML file

During the creation and generation of a project with the ProjectGenerator, all entries and
configurations are logged and stored in the Temp directory of the user (C:\Documents and
Settings\User name\Local Settings\Temp) under the file name PGEN_DATA_BASE.xml.
You can generate an XML file tailored to your requirements by running through the
ProjectGenerator with the required settings and configurations and then transferring the
generated XML file PGEN_DATA_BASE.xml to the ProjectGenerator at the start call.

Figure 1-27 System architecture in silent mode

Basic data
The basic data in the SIMATIC or SIMOTION directory is accessed for the generation of the
project.

STEP 7 project
Read or write access to the project is by means of the STEP 7 command interface or the
SIMOTION SCOUT scripting interface.

Application description
1.4 Architecture of the ProjectGenerator

 ProjectGenerator
48 Application manual, 03/2015

ProjectGenerator
Application manual, 03/2015 49

 System and error messages 2
2.1 General information

The following messages are output on the user interface of the ProjectGenerator or in the
system log file.

After running through the ProjectGenerator, the system log file can be found in the Windows
temp directory under the file name PGenLogfile.xml.

2.2 System information
The character combinations {0} and {1} are filled with the corresponding name or the type.

I_CMD_001 to I_CMD_052

Table 2- 1 I_CMD_001 to I_CMD_052

Message Meaning
I_CMD_001 Value of variable is: {0}
I_CMD_002 Project was not found.
I_CMD_003 Parameter value {0}
I_CMD_004 Project '{0}' ({1}) opened.
I_CMD_005 I/O '{0}' on device '{1}' found.
I_CMD_006 Slave '{0}' removed.
I_CMD_007 I/O '{0}' deactivated.
I_CMD_008 I/O '{0}' removed.
I_CMD_009 Project renamed. New name: '{0}'
I_CMD_010 Library renamed. New name: '{0}'
I_CMD_011 I/O variable '{0}' removed.
I_CMD_012 I/O container '{0}' exported to '{1}'.
I_CMD_013 Library '{0}' removed.
I_CMD_014 Library '{0}' exported to '{1}'.
I_CMD_015 I/O variables imported from '{0}'.
I_CMD_016 Library '{0}' imported from '{1}'.
I_CMD_017 TO '{0}' imported from '{1}'.
I_CMD_018 TO renamed. New name: '{0}'
I_CMD_019 TO '{0}' removed.
I_CMD_020 TO '{0}' exported to '{1}'.
I_CMD_021 DO renamed. New name: '{0}'
I_CMD_022 DO '{0}' removed.

System and error messages
2.2 System information

 ProjectGenerator
50 Application manual, 03/2015

Message Meaning
I_CMD_023 DO '{0}' exported to '{1}'.
I_CMD_024 Unit renamed. New name: '{0}'
I_CMD_025 Unit '{0}' exported to '{1}'.
I_CMD_026 Unit '{0}' removed.
I_CMD_027 Program '{0}.{1}' added to task '{2}'.
I_CMD_028 Program '{0}.{1}' removed from task '{2}'.
I_CMD_029 Script '{0}' exported to '{1}'.
I_CMD_030 Script '{0}' removed.
I_CMD_031 DP slave '{0}' added.
I_CMD_032 Device '{0}' downloaded.
I_CMD_033 Project '{0}' closed.
I_CMD_034 Project '{0}' copied to '{1}'.
I_CMD_035 Project renamed. New name: '{0}'
I_CMD_036 Slot index '{0}' removed.
I_CMD_037 Separator from slot index '{0}' removed.
I_CMD_038 New slot '{0}' added for slave '{1}'.
I_CMD_039 Device '{0}' downloaded to folder '{1}'
I_CMD_040 I/O variables exported to '{0}'.
I_CMD_041 Slot '{0}' copied to '{1}'.
I_CMD_042 Watch table renamed. New name: '{1}'
I_CMD_043 Unit object '{0}' imported from '{1}'.
I_CMD_044 Old library {0} removed.
I_CMD_045 Slot '{0}' copied.
I_CMD_046 Slot '{0}' moved to '{1}'.
I_CMD_047 STEP 7 project closed.
I_CMD_048 Global variable '{0}' added.
I_CMD_049 Last separator removed from slot '{0}'.
I_CMD_050 STEP 7 HW Config opened.
I_CMD_051 STEP 7 HW Config closed.
I_CMD_052 Device renamed. New name: '{0}'

I_SYS_SL_001 to I_SYS_SL005

Table 2- 2 I_SYS_SL_001 to I_SYS_SL005

Message Meaning
I_SYS_SL_001 Simulation active. Function not started.
I_SYS_SL_002 Parameter not optional at parameter column ({0}).
I_SYS_SL_003 Parameter converted from '{0}' to '{1}'.
I_SYS_SL_004 Call function {0}.
I_SYS_SL_005 Log file stored in {0}.

 System and error messages
 2.2 System information

ProjectGenerator
Application manual, 03/2015 51

PG_I_001 to PG_I_090

Table 2- 3 PG_I_001 to PG_I_090

Message Meaning
PG_I_001 Generation started.
PG_I_002 Opening project.
PG_I_003 Generating project.
PG_I_004 Opening device.
PG_I_005 Importing device.
PG_I_006 Setting device config data.
PG_I_007 Importing TOs.
PG_I_008 Setting master-slave connection.
PG_I_009 Setting config data of TO.
PG_I_010 Setting system data of TO.
PG_I_011 Importing the units.
PG_I_012 Deleting unit defines.
PG_I_013 Setting unit defines.
PG_I_014 Importing watch tables.
PG_I_015 Importing libraries.
PG_I_016 Importing unit to library.
PG_I_017 Deleting library unit defines.
PG_I_018 Setting library unit defines.
PG_I_019 Starting compilation.
PG_I_020 Closing project.
PG_I_021 Downloading to file system.
PG_I_022 Transferring files to file system.
PG_I_023 Transferring files to server.
PG_I_024 Generation finished.
PG_I_025 Finished, but errors occurred at compile time. Do you want to open SIMOTION SCOUT?
PG_I_026 Finished. Do you want to open SIMOTION SCOUT?
PG_I_027 Show the workbench.
PG_I_028 Setting property '{1}' of task '{0}' to value '{2}'.
PG_I_029 Importing project scripts.
PG_I_030 Offline unit '{0}' is newer. Do you want to replace it?
PG_I_031 Unit '{0}' already exists. Do you want to replace it?
PG_I_032 New configuration of unit '{0}' can be different. Please check the correct order of the refer-

ences.
PG_I_033 Renaming task.
PG_I_034 Setting properties of the tasks.
PG_I_035 Setting name of task '{0}' to value '{1}'.
PG_I_036 Rearranging programs in the execution system.
PG_I_037 Program '{1}' of unit '{0}' in task '{2}' is rearranged to position '{3}'.
PG_I_038 Value '{0}' was outside the limits '{1}'. It will be changed to min/max value.

System and error messages
2.2 System information

 ProjectGenerator
52 Application manual, 03/2015

Message Meaning
PG_I_039 Text length was greater than '{0}'.
PG_I_040 Do you really want to close this tool?
PG_I_041 Ping was successful.
PG_I_042 Wrong input. The default value will override your input.
PG_I_043 SIMOTION SCOUT is not installed.
PG_I_044 SIMATIC STEP 7 is not installed.
PG_I_045 File not found. This tool will be closed.
PG_I_046 Registry key not found.
PG_I_047 Unit '{0}' already exists. Do you want to replace it?
PG_I_048 Offline library '{0}' is newer. Do you want to replace it?
PG_I_049 Object with the name '{0}' already exists. Choose another name.
PG_I_050 Object cannot be deleted.
PG_I_051 Ping failed.
PG_I_052 Wrong IP address.
PG_I_053 Section between the labels '{0}' and '{1}' not found. (Regex syntax)
PG_I_054 The ProjectGenerator cannot be started from a network drive.
PG_I_055 Important information

The software and the appropriate documentation provided on this medium are made available
at no charge. Customers are granted the non-exclusive and non-transferable right to use the
software at no charge. This includes the right to modify the software, to copy the software
either unchanged, or changed, as well as to link to customer's own software.
The software was not subject to the standard system test that Siemens AG normally applies to
software. Any liability of Siemens - irrespective of the legal grounds -, in particular due to errors
in the software or the appropriate documentation, or damages arising from advice/consultation,
is excluded unless mandatory by law, e.g. in cases of willful misconduct, gross negligence,
personal injury or death, failure to meet guaranteed characteristics, fraudulent concealment of
a defect or in case of breach of fundamental contractual obligations. The above stipulations
shall not change the burden of proof to the detriment of the customer.
These terms shall be governed by German law without recourse to its conflict of law provi-
sions. The place of jurisdiction shall be Erlangen.

PG_I_056 The ProjectGenerator cannot start modules from a network drive.
PG_I_057 The symbol with name '{0}' already exists with an different address. Do you want to replace the

existing symbol?
PG_I_058 The symbol address '{0}' is already in use with a different object. Do you want to replace the

existing symbol address?
PG_I_059 Importing HW Config.
PG_I_060 Importing SIMATIC libraries.
PG_I_061 Generating symbol table.
PG_I_062 Importing SIMATIC sources.
PG_I_063 Importing code to Organization Blocks.
PG_I_064 SIMATIC DB '{0}' already exists. Do you want to replace it?
PG_I_065 Importing Weihenstephan Communication SIMATIC sources.
PG_I_066 DB '{0}' already exists. Do you want to replace it?
PG_I_067 Source '{0}' compiled with errors. Do you want to open SIMATIC log file?
PG_I_068 Source '{0}' compiled with errors. Details can be found in SIMATIC log file.

 System and error messages
 2.2 System information

ProjectGenerator
Application manual, 03/2015 53

Message Meaning
PG_I_069 Configured IP-address for next module is '{0}'
PG_I_070 Importing SINAMICS CU320-2.
PG_I_071 File '{0}' is not a valid STEP7 project.
PG_I_072 The SINAMICS station with the name '{0}' already exists on the interface '{1}'. Choose a differ-

ent name.
PG_I_073 The maximal numbers of DP-Slaves exceeded on this interface.
PG_I_074 The PROFIBUS address is already used. Choose a different one.
PG_I_075 The IP address is already used. Choose a different one.
PG_I_076 Importing I/O tables.
PG_I_077 Connection of TO '{(0)}' to DO '{(1)}' on device '{(2)}' established.
PG_I_078 Generating OPC export files (*.sti).
PG_I_079 Setting SINAMICS parameters & BICOs.
PG_I_080 Importing DOs to the SINAMICS devices.
PG_I_081 Creating HW Config slots for SINAMICS DOs.
PG_I_082 Creating IOs in the address lists.
PG_I_083 Creating global variables.
PG_I_084 Importing AlarmS messages.
PG_I_085 Creating AlarmS messages
PG_I_086 Executing scripts in project.
PG_I_087 Setting preprocessor defines.
PG_I_088 Importing global variable tables.
PG_I_089 Setting unit compile options.
PG_I_090 Deleting unit compile options.

System and error messages
2.3 Warnings

 ProjectGenerator
54 Application manual, 03/2015

2.3 Warnings
The character combination {0} is filled with the corresponding name or type.

W_CMD_001 to W_CMD_012

Table 2- 4 W_CMD_001 to W_CMD_012

Message Meaning
W_CMD_001 Copying of an opened project not possible. Project '{0}' will be closed. Afterwards reference is

automatically generated.
W_CMD_002 No project open.
W_CMD_003 Project must be offline.
W_CMD_004 Project name already exists. Cannot rename.
W_CMD_005 Slot address '{0}' not found.
W_CMD_006 DP subsystem '{0}' not found.
W_CMD_007 New name of imported TO is already used. Renaming is not possible.
W_CMD_008 Reopening of STEP 7 HW Config could cause access problem.
W_CMD_011 Project '{0}' not closed.
W_CMD_012 Task '{0}' not activated.

W_SYS_SL_001 to W_SYS_SL_009

Table 2- 5 W_SYS_SL_001 to W_SYS_SL_009

Message Meaning
W_SYS_SL_001 No optional language packet selected or selected message {0} not found.
W_SYS_SL_002 No optional language packet selected.
W_SYS_SL_003 Function will also be executed in simulation mode.
W_SYS_SL_004 Project '{0}' still open. Will be closed automatically.
W_SYS_SL_005 Warning: {0}
W_SYS_SL_007 Directory '{0}' exists.
W_SYS_SL_008 Directory '{0}' exists and will be removed.
W_SYS_SL_009 Log file extension not correct.

 System and error messages
 2.4 Error messages

ProjectGenerator
Application manual, 03/2015 55

2.4 Error messages
The character combinations {0}, {1} and {2} are filled with the corresponding name or the
type.

E_CMD_002 to E_CMD_047

Table 2- 6 E_CMD_002 to E_CMD_047

Message Meaning
E_CMD_002 Import from file ({0}) caused an error.
E_CMD_003 Too many project files in folder '{0}'.
E_CMD_004 Project file (.s7p) not found in folder '{0}'.
E_CMD_005 Project not open.
E_CMD_006 No write access to parameter {0}.
E_CMD_007 Project must be online.
E_CMD_008 Enum value '{0}' not defined.
E_CMD_009 Statement '{0}' not defined.
E_CMD_010 Drive object type error: Imported DO type is '{0}'.
E_CMD_011 Optional parameter value '{0}' not defined.
E_CMD_012 Could not go to {0}.
E_CMD_013 Enum value '{0}' not defined.
E_CMD_014 State of device not changeable.
E_CMD_015 Unexpected error in STEP 7 project.
E_CMD_016 Unexpected error with I/O address for I/O '{0}'.
E_CMD_017 No slave on the bus '{0}'.
E_CMD_018 I/O variable '{0}' not correct.
E_CMD_019 DO '{0}' not found.
E_CMD_020 Import of unit not successful.
E_CMD_021 Device '{0}' not found.
E_CMD_022 Object '{0}' not found.
E_CMD_023 Unit '{0}' not found.
E_CMD_024 Project could not be copied. Destination folder already exists.
E_CMD_025 Project could not be closed.
E_CMD_026 Symbol '{0}' not found.
E_CMD_027 Timeout. Expected parameter value not reached in time.
E_CMD_028 Slot address not writeable.
E_CMD_029 CU '{0}' not found.
E_CMD_030 Project could not be opened.
E_CMD_031 Ethernet port '{0}' not found.
E_CMD_032 TO '{0}' not found.
E_CMD_033 Library '{0}' not found.
E_CMD_034 Renaming of TO not possible, name '{0}' already exists.
E_CMD_035 Target slot not empty. Copying not possible.

System and error messages
2.4 Error messages

 ProjectGenerator
56 Application manual, 03/2015

Message Meaning
E_CMD_036 Technological alarm '{0}' not found.
E_CMD_037 Parameter '{0}' not found.
E_CMD_038 Symbol '{0}' not found.
E_CMD_039 CU '{0}' not found.
E_CMD_040 NO VALUE.
E_CMD_041 Script '{0}' not found.
E_CMD_042 Watch symbol '{0}' not found.
E_CMD_043 STEP 7 HW Config not open.
E_CMD_044 S7 station not found.
E_CMD_045 S7 subsystem not found.
E_CMD_046 Slot with address '{0}' not found.
E_CMD_047 Parameter must be greater than zero.

E_CMD_500 to E_CMD_599

Table 2- 7 E_CMD_500 to E_CMD_599

Message Meaning
E_CMD_500 Add control to form. Type: '{1}'; name: '{0}'.
E_CMD_501 Start generation.
E_CMD_502 Project already open.
E_CMD_503 New project with name: '{0}' in folder: '{1}' generated.
E_CMD_504 New device with name: '{0}' and version: '{1}' and type: '{2}' is generated.
E_CMD_505 The device is already active.
E_CMD_506 The device '{0}' is already open.
E_CMD_507 Open device '{0}' command is added in XML database.
E_CMD_508 Setting configuration data '{0}' at TO '{2}' to value '{1}'.
E_CMD_509 Connection between master '{0}' and following object '{1}' established.
E_CMD_510 Setting system data '{0}' at TO '{2}' to value '{1}'.
E_CMD_511 Section between '{0}' and '{1}' restored.
E_CMD_512 Constant '{0}' set to value '{1}'.
E_CMD_513 Task information added.
E_CMD_514 Label '{0}' replaced with '{1}'.
E_CMD_515 Information about '{2}' added to section between '{0}' and '{1}'.
E_CMD_516 Adding program '{0}' to execution system.
E_CMD_517 The program '{0}' already exists in the execution system.
E_CMD_518 Preprocessor instruction in unit '{0}' set to '{1}'.
E_CMD_519 Preprocessor instruction in unit '{0}' to library'{2}' set to '{1}'.
E_CMD_520 Importing watch table '{0}' from folder '{1}' .
E_CMD_521 Adding template code '{2}' between the labels '{0}' and '{1}'.
E_CMD_522 Technology package of library '{0}' set to '{1}'.
E_CMD_523 Constants for unit '{0}' saved. Number of VAR_GLOBAL CONSTANT sections found is '{1}'.

 System and error messages
 2.4 Error messages

ProjectGenerator
Application manual, 03/2015 57

Message Meaning
E_CMD_524 Constants in unit '{0}' restored.
E_CMD_525 Unit '{1}' imported to library'{0}'.
E_CMD_526 Project is being compiled.
E_CMD_527 Ping to IP address '{0}' failed. The transfer will not be executed.
E_CMD_528 Transfer from local folder '{1}' to FTP server '{0}' successfully finished.
E_CMD_529 '{1}' ({0}) read.
E_CMD_530 Value incremented to '{0}'.
E_CMD_531 Generation successfully finished.
E_CMD_532 Entry '{1}' deleted in object '{0}'.
E_CMD_533 Object '{0}' (type '{1}') deleted in XML database.
E_CMD_534 Entry '{1}' created in object '{0}'
E_CMD_535 Writing constant '{0}' in unit '{2}' to value '{1}' in XML database.
E_CMD_536 Writing constant '{0}' in library '{2}' and library unit '{3}' to value '{1}' in XML database.
E_CMD_537 Writing master '{0}' <-> slave '{1}' connection in XML database.
E_CMD_538 Writing new TO '{0}' of type '{1}' in XML database.
E_CMD_539 Setting TO '{0}' config data '{1}' to value '{2}'.
E_CMD_540 Setting TO '{0}' system data '{1}' to value '{2}'.
E_CMD_541 Writing label '{0}' in unit '{2}' to value '{1}' in XML database.
E_CMD_542 Writing constant '{0}' in library '{2}' and library unit '{3}' to value '{1}' in XML database.
E_CMD_543 Writing task information for unit '{0}' in XML database.
E_CMD_544 Writing task information for library '{1}' and unit '{0}' in XML database.
E_CMD_545 Writing device and slave information for unit '{0}' in XML database.
E_CMD_546 Creating backup data of unit '{0}' in XML database.
E_CMD_547 Creating backup data of library '{1}' and unit '{0}' in XML database.
E_CMD_548 Assigning program '{0}' to task '{1}' in XML database.
E_CMD_549 Open browser.
E_CMD_550 Selected path: '{0}'
E_CMD_551 Reading next equipment module.
E_CMD_552 Creating backup of constant in unit '{1}' in library '{0}' in XML database.
E_CMD_553 Setting define '{0}' in unit '{1}' in XML database.
E_CMD_554 Setting define '{0}' in unit '{1}' in library '{2}' in XML database.
E_CMD_555 Setting TP '{1}' in library '{0}' in XML database.
E_CMD_556 Setting FTP transfer from local path '{0}' to IP address '{1}' in XML database.
E_CMD_557 Setting import of unit '{0}' in library '{1}' in XML database.
E_CMD_558 Setting import of watch table '{0}' from path '{1}' in XML database.
E_CMD_559 Configuration data '{1}' for device '{0}' is set to value '{2}'.
E_CMD_560 Configuration data '{1}' with value '{2}' is set for device '{0}' in XML database.
E_CMD_561 Deleting preprocessor define '{1}' in unit '{0}'.
E_CMD_562 Deleting preprocessor define '{1}' in unit '{0}' in library '{2}'.
E_CMD_563 Restoring defines in unit '{1}' in library '{0}'.
E_CMD_564 Deleting define '{0}' in unit '{1}' is set in XML database.
E_CMD_565 Deleting define '{0}' in unit '{1}' in library '{2}' is set in XML database.

System and error messages
2.4 Error messages

 ProjectGenerator
58 Application manual, 03/2015

Message Meaning
E_CMD_566 Restoring defines in unit '{0}'.
E_CMD_567 Restoring defines in unit '{0}' in library '{1}'.
E_CMD_568 Creating backup of constants in unit '{0}' in XML database.
E_CMD_569 Transfer command for the files in '{0}' to '{1}' is set to XML database.
E_CMD_570 Instruction 'USEPACKAGE' activated in unit '{0}'.
E_CMD_571 File '{0}' not found.
E_CMD_572 No code found to set a constant.
E_CMD_573 No device active.
E_CMD_574 Directory '{0}' not found.
E_CMD_575 No device GUID found.
E_CMD_576 No TP GUID found.
E_CMD_577 GUID of device '{0}' not found.
E_CMD_578 GUID of TP '{0}' not found.
E_CMD_579 Text of the sender was empty.
E_CMD_580 There was no pattern given.
E_CMD_581 Create directory on the server '{0}' not possible.
E_CMD_582 Create file on the server '{0}' not possible.
E_CMD_583 Unit not found.
E_CMD_584 Wrong file extension.
E_CMD_585 Wrong input parameter.
E_CMD_586 CU not found.
E_CMD_587 Object with name '{0}' already exists. Choose another name.
E_CMD_588 Set auto define TP in unit '{0}' in XML database.
E_CMD_589 Set auto-define TP in unit '{0}' in library '{1}' in XML database.
E_CMD_590 '{0}' is not a valid IP address.
E_CMD_591 Path does not exist.
E_CMD_592 Set auto define TP in unit '{0}' in XML database.
E_CMD_593 Set auto-define TP in unit '{0}' in library '{1}' in XML database.
E_CMD_594 Property '{0}' is not available in the task '{1}'.
E_CMD_595 Value '{1}' not allowed for property '{0}'.
E_CMD_596 Property '{0}' not found.
E_CMD_597 Could not set the property '{1}' of task '{0}' to value '{2}'.
E_CMD_598 Property '{0}' not found.
E_CMD_599 Task '{0}' not found.

E_CMD_600 to E_CMD_664

Table 2- 8 E_CMD_600 to E_CMD_664

Message Meaning
E_CMD_600 The object with the name '{0}' already exists. Choose another name.
E_CMD_601 The object with the name '{0}' already exists. Do you want to replace it?

 System and error messages
 2.4 Error messages

ProjectGenerator
Application manual, 03/2015 59

Message Meaning
E_CMD_602 The object with the name '{0}' can't be replaced, because it's a real TO.
E_CMD_603 The following object with the index '{1}' of the technology object '{0}' was renamed to '{2}'.
E_CMD_604 The following object with the index '{1}' of the technology object '{0}' was renamed to '{2}'.

Index was not found.
E_CMD_605 The following object of the technology object '{0}' cannot be renamed due to wrong index '{1}'.
E_CMD_606 Technology object '{0}' has no following objects to rename.
E_CMD_607 Writing rename following object '{0}' from the object '{1}' in XML database.
E_CMD_608 Data type error in line '{0}'
E_CMD_609 Initial value wrong in line '{0}'
E_CMD_610 The number of the identifiers STRUCT and END_STRUCT is not the same.
E_CMD_611 The length of the cell, row = '{0}' column= '{1}' is wrong.
E_CMD_612 Project '{1}' in path '{0}' already exists. Choose another path or name.
E_CMD_613 Unit with the name '{0}' already exists. Choose another name.
E_CMD_614 IP address of device '{0}' changed to address '{1}' on module '{2}'
E_CMD_615 Writing label '{0}' in SIMATIC source '{2}' to value '{1}' in XML database.
E_CMD_616 Setting symbolic block name '{0}' of block number '{1}' in XML database.
E_CMD_617 Adding networks in path '{1}' to Organization Block '{0}' at position '{2}'.
E_CMD_618 Writing constant '{0}' in source '{2}' to value '{1}' in XML database.
E_CMD_619 Importing IL (AWL) source '{0}' from folder '{1}'.
E_CMD_620 Port '{0}' not found. Port renamed to '{1}'.
E_CMD_621 Setting TO '{0}' to DO '{1}' on device '{2}' in XML database.
E_CMD_622 Removing TO - DO connection on TO '{0}' from the XML database.
E_CMD_623 Creating SINAMICS device '{0}' of type '{1}' with address '{2}'.
E_CMD_624 The device with the name '{0}' already exists. Proceeding with existing device.
E_CMD_625 Importing DO '{0}' and changing the power module to order no '{1}'.
E_CMD_626 Importing DO '{0}' and connecting it to the power unit of DO '{1}'.
E_CMD_627 Importing DO '{0}'.
E_CMD_628 Creating HW Config slots for device '{0}'.
E_CMD_629 Set BiCo connection from SrcName '{0}', SrcNumber '{1}' and SrcIndex '{2}' to target Name

'{3}', Number '{4}' and Index '{5}'.
E_CMD_630 Setting parameter '{1}' on DO '{0}' to value '{2}'.
E_CMD_631 Writing new DO '{0}' to device '{1}' in XML database.
E_CMD_632 SINAMICS device '{1}' not found. Can't insert new DO '{0}'.
E_CMD_633 Writing new SINAMICS device '{0}' at CPU Interface '{1}' in XML database.
E_CMD_634 The SINAMICS device '{0}' at CPU Interface '{1}' already exists in XML database.
E_CMD_635 The I/O variable '{0}' already exists in the project.
E_CMD_636 Writing new I/O variable '{0}' with address '{1}' in XML database.
E_CMD_637 The global variable '{0}' already exists in the project.
E_CMD_638 Writing new global variable '{0}' with data type '{1}' in XML database.
E_CMD_639 The AlarmS message '{0}' already exists in the project.
E_CMD_640 Writing new AlarmS message '{0}' in XML database.
E_CMD_641 Writing AlarmS messages in path '{0}' in XML database.

System and error messages
2.4 Error messages

 ProjectGenerator
60 Application manual, 03/2015

Message Meaning
E_CMD_642 Can't convert MessageClass number '{0}' into an Integer. Proceeding with value 0.
E_CMD_643 Can't convert AlarmID number '{0}' into an Integer. Proceeding with value -1.
E_CMD_644 The AlarmS message '{0}' will be removed.
E_CMD_645 Creating AlarmS message '{0}'.
E_CMD_646 Creating global variable '{0}'.
E_CMD_647 Creating I/O variable '{0}'.
E_CMD_648 The DO '{0}' has no free X2 slot.
E_CMD_649 The X2 slot is already free at the DO '{0}'.
E_CMD_650 Deleting X2 slot at the DO '{0}'.
E_CMD_651 DO '{0}' on device '{1}' not found.
E_CMD_652 Setting parameter '{0}' to value '{1}'.
E_CMD_653 Connecting BiCo '{0}' to '{1}'.
E_CMD_654 Subsystem '{0}' found. Proceeding with this subsystem.
E_CMD_655 '{0}' subsystem '{1}' created.
E_CMD_656 Writing '{0}' device with name '{1}' in XML database.
E_CMD_657 Overwriting '{0}' device with name '{1}' in XML database.
E_CMD_658 The device '{0}' is a CPU and can't be used for a SINAMICS import.
E_CMD_659 Writing subsystem '{0}' property '{1}' with value '{3}' in XML database.
E_CMD_660 Subsystem '{0}' not found.
E_CMD_661 Setting property '{1}' to value '{2}' at subsystem '{0}'.
E_CMD_662 Sinamics device '{1}' at subsystem '{0}' not found.
E_CMD_663 Setting property '{1}' to value '{2}' in device '{3}' at subsystem '{0}'.
E_CMD_664 No CPU in the imported station found. Please check the .cfg file.

E_SYS_SL_001 to E_SYS_SL_509

Table 2- 9 E_SYS_SL_001 to E_SYS_SL_509

Message Meaning
E_SYS_SL_001 Exception: {0}
E_SYS_SL_002 Message '{0}' not found in external language file.
E_SYS_SL_006 Parameter '{0}' does not exist for function '{1}'.
E_SYS_SL_007 Parameter column '{0}' not defined.
E_SYS_SL_008 Function attribute: Critical error.
E_SYS_SL_009 Command '{0}' not found in standard library.
E_SYS_SL_010 {0} parameter conversion error: Parameter '{1}' (exception: {2})
E_SYS_SL_011 Parameter conversion error: '{0}' expected.
E_SYS_SL_012 No parameter in parameter column {0}.
E_SYS_SL_013 Internal error: XML node not found.
E_SYS_SL_014 Message '{0}' not found.
E_SYS_SL_015 Resource '{0}' not found.
E_SYS_SL_016 Standard library function could not be started.

 System and error messages
 2.4 Error messages

ProjectGenerator
Application manual, 03/2015 61

Message Meaning
E_SYS_SL_017 XML file save error. Log file could not be written.
E_SYS_SL_018 Task name '{0}' not defined.
E_SYS_SL_019 Element '{0}' of the enum list '{1}' is not defined.
E_SYS_SL_020 Directory '{0}' not found.
E_SYS_SL_021 STEP 7 project file (*.s7p) not found.
E_SYS_SL_500 Conversion error "Router active".
E_SYS_SL_501 IP address of router is not valid.
E_SYS_SL_502 IP address is not valid.
E_SYS_SL_503 SIMATIC station type not found or not implemented.
E_SYS_SL_504 Symbolic-Name '{0}' of block not found.
E_SYS_SL_505 Program container was not found.
E_SYS_SL_506 Searching for program container '{0}'. No project found.
E_SYS_SL_507 Variable '{0}' already exists in source.
E_SYS_SL_508 Variable '{0}' with type '{1}' generated.
E_SYS_SL_509 Selected Weihenstephan PDACONF.XML is incorrect ('{0}').

System and error messages
2.4 Error messages

 ProjectGenerator
62 Application manual, 03/2015

ProjectGenerator
Application manual, 03/2015 63

 Tips and assistance 3
3.1 Special characters in XML

As some characters have a certain meaning within XML, these have to be re-written with
entities. This also applies to the contents of comments, for example.

How do I depict special characters in XML?
Use the associated entities instead of special characters in XML.

Special characters and rewriting

Special characters Entity
& &
< <
> >
" "
' Chr(39)

 Note

The XML file must be coded in UTF-8 format if you wish to use umlauts and other special
characters in it.

Tips and assistance
3.2 Comments in the source code

 ProjectGenerator
64 Application manual, 03/2015

3.2 Comments in the source code
In the Visual Basic code, comments cannot be inserted with single quotation marks (') for
compatibility reasons.

How do I insert comments in the source code?
To insert your source code comments, use the REM instructions.

Example

Table 3- 1 Code example

REM Comment

3.3 Outputting a message box
The 'and' character (&) cannot be used directly as a concatenation operator. Program either
as a special character or use the plus sign (+).

How do I output a message box?
The Visual Basic Show function of the message box class can be used to output a message
box from the user code.

Code example

MessageBox.Show('Message ' + tmpText1)

3.4 Usable parameters, events, and objects
Due to the multitude of possible parameters and events, all points cannot be described in
this documentation.

Which parameters, events, and objects are possible?
Further information on the parameters can be found on the Internet in the Microsoft.NET
Framework Class Library (http://msdn.microsoft.com/en-us/library/ff361664.aspx).

http://msdn.microsoft.com/en-us/library/ff361664.aspx

 Tips and assistance
 3.5 Using text files

ProjectGenerator
Application manual, 03/2015 65

3.5 Using text files

How do I work with text files?
Time and again it may be necessary to read or write files alien to ProjectGenerator; e.g., as
an interface to other programs.

Example
The following example shows how a file is written and then subsequently reread in a button's
event code.

Table 3- 2 Code example

<Control Action="add"
 Type="Button"
 Name="BT_WriteRead "
 Text="Write & Read "
 Location="650, 531"
 Size="130, 30"
 Enabled="true"
 ToolTip="Write & read a file">
 <Events>
 <VisibleChanged code="@BT_Next@.Focus()"/>
 <Click code="
 Dim tmpWindowsPath As String
 Dim axNameArray(4) As String
 REM get windows temp path
 tmpWindowsPath = IO.Path.GetTempPath()

 REM create temp path for ProjectGenerator. projgen always use tmpProjectGenerator
 IO.Directory.CreateDirectory(tmpWindowsPath + 'tmpProjectGenerator\')

 REM copy text to array
 For i As Integer = 0 To Microsoft.VisualBasic.UBound(axNameArray)
 axNameArray(i) = 'Line' + i.tostring()
 Next

 REM Save some information for next steps
 IO.File.WriteAllLines(tmpWindowsPath + 'tmpProjectGenerator\' + 'axNameArray.txt',
axNameArray, System.Text.Encoding.Default)

 REM read and fill automatically
 Dim tmpProjGenPath As String
 Dim readAxNamesArray() As String

 REM get windows temp path
 tmpProjGenPath = IO.Path.GetTempPath() + 'tmpProjectGenerator\'

Tips and assistance
3.5 Using text files

 ProjectGenerator
66 Application manual, 03/2015

 If IO.File.Exists(tmpProjGenPath + 'axNameArray.txt') Then REM file exists?
 REM read file to the array
 readAxNamesArray = IO.File.ReadAllLines(tmpProjGenPath + 'axNameArray.txt', Sys-
tem.Text.Encoding.Default)

 REM show all read lines
 For Each Line As String In readAxNamesArray REM for all lines
 Microsoft.VisualBasic.Interaction.MsgBox(Line, , 'Show read lines')
 Next

 Else REM file does not exist
 Microsoft.VisualBasic.Interaction.MsgBox('File not found. Path = ' + tmpPro-
jGenPath + 'axNameArray.txt',64, 'File not found')
 End If"/>
 </Events>
</Control>

 Tips and assistance
 3.6 Using a source several times

ProjectGenerator
Application manual, 03/2015 67

3.6 Using a source several times

How do I use a source several times in the execution system?
In order to be able to use a source several times in the execution system, all program names
and all global variables located in the interface must have a unique name. Here, the name of
the source is offered. This must be used in each of the necessary variables and program
names.

To have this task taken care of by ProjectGenerator, create labels (e.g., <UnitName>) in the
export of the unit.

Example

Table 3- 3 Code example (extract from the module LCom)

//SIEMENS AG
//(c)Copyright 2008 All Rights Reserved
//--
//file name: pCom.st
//library: uses LCom
//version: SIMOTION / SCOUT 4.1.1.6
//restrictions:
//functionality: communicate with other controllers with tcp
//--
//change log table:
//version date expert in charge changes applied
//01.01.00 05.2011 TM multi instance corrected for scripting
//==
INTERFACE
//------------- Import ---
 USELIB LCom;
//------------- Device Global Type Definitions ---------------------------------
 TYPE
 //types for example data
 //--
 s<sgUnitName>UserDataSendType : STRUCT; //type for example send data
 r32Spare1 : REAL;
 r32Spare2 : REAL;
 b32Spare1 : DWORD;
 b32Spare2 : DWORD;
 b8Spare1 : BYTE;
 b8Spare2 : BYTE;
 END_STRUCT;
...
END_TYPE
//------------- Device Global Variables --
 VAR_GLOBAL
 gbo<sgUnitName>Enable : BOOL := TRUE; //connect if cpu running

Tips and assistance
3.7 Reloading a user interface

 ProjectGenerator
68 Application manual, 03/2015

 gbo<sgUnitName>Communicate : BOOL := TRUE; //communicate if cpu running
 gu16<sgUnitName>SendDataLength : UINT := 500; //byte length of send data
 gs<sgUnitName>UserDataSend : s<sgUnitName>UserDataSendType;
...
 END_VAR
//------------- Export ---
 PROGRAM <sgProgramName>;
//--
END_INTERFACE

IMPLEMENTATION
//--
 PROGRAM <sgProgramName>
...
END_IMPLEMENTATION

3.7 Reloading a user interface

How do I reload the user interface?
When creating user modules it is very useful if the user interface is reloaded without having
to exit the module. The following construct can be used for this purpose. This allows
changes in the XML code to be visible directly just by pressing a button on the user interface.

Example
In the example, the "Reload" button is added to the user interface. If the button is pressed,
the user interface closes down and then opens up again automatically.

Table 3- 4 Code example

 <Command ID="1" Name="ChangeForm" >
 <Control Action="add"
 Type="Button"
 Name="BT_Reload"
 Text="Reload"
 Location="450, 531"
 Size="130, 30"
 Enabled="true"
 Visible="true"
 ToolTip="Configuration of the Axis FB">
 <Events>
 <Click code="MyApp.NextCommand(100)"/>
 </Events>
 </Command>
 <Command ID="100" Name="DestroyForm" NCID="1"/>

 Tips and assistance
 3.8 Accessing user interface elements generically

ProjectGenerator
Application manual, 03/2015 69

3.8 Accessing user interface elements generically

How can I generically access user interface elements?
With very complex pages, it is necessary to be able to access the user interface elements
generically. You can find all the elements of the current user interface in the
"MyApp.Controls('Panel').Controls" collection.

Example
The example hides all user interface elements that begin with the name "CB_".

Table 3- 5 Code example

 For Each tmpControl As Object In MyApp.Controls('Panel').Controls
 If tmpControl.Name.ToUpper.StartsWith('CB_') Then
 tmpControl.Visible = False

 End If
 Next

3.9 Changing the user interface generically

How do I change the user interface generically with user XML?
With complex modules it may be necessary to change the user interface generically to get to
the target of an executable module more quickly.

Example
The following example shows how the contents of the user interface can be adapted
generically using an XML file (fcInitSyncDataList.xml). The starting point is the screen in
Figure 3.1. The screen contains twenty invisible groups of controls (visible = false). Four of
these groups are shown in the figure for the purposes of illustration. A group consists of the
following controls:

● A label for describing the parameter (LBL_FC1Para1_X). This label is always displayed
and contains the name of the parameter.

● A text box (TB_FC1ParaX), a combo box (CmB_FC1ParaX), and a checkbox
(CB_FC1ParaX). Which of these three controls is to be displayed is specified in the XML
file.

● A label for a possible unit (LBL_FC1ParaX). In the figure, these are the labels with the
text "Unit". This label is only displayed when the second control is a text box.

Tips and assistance
3.9 Changing the user interface generically

 ProjectGenerator
70 Application manual, 03/2015

Figure 3-1 Example: User interface with all elements

The following table shows a section of code from the XML file of the equipment module. In
this section, the module is defined and the user interface is relabeled with the controls from
group 1.

 Tips and assistance
 3.9 Changing the user interface generically

ProjectGenerator
Application manual, 03/2015 71

Table 3- 6 Creating a user interface code example

<CommandList Name="DocExample"
 DisplayText="DocExample"
 MaxNumberOfModules="1"
 ModuleInfoFile=""
 ToolTip="">
<Command ID="1" Name="DestroyForm" NCID="2"/>
<Command ID="2" Name="ResizeForm" NCID="3" X="860" Y="600"/>
<Command ID="3" Name="ChangeForm" NCID ="">
 <Control Action="add"
 Type="Label"
 Name="LBL_FC1Para_1_1"
 Text="LBL_FC1Para_1_1"
 Visible ="True"
 Location="180, 200"
 AutoSize="False"
 Size="140,20"
 BackColor="__call_SetColor(Gray)">
 </Control>
 <Control Action="add"
 Type="CheckBox"
 Name="CB_FC1Para1"
 Text=""
 Location="340,202"
 Size="17, 17"
 AutoSize="False"
 Visible ="True"
 </Control>
 <Control Action="add"
 Type="TextBox"
 Name="TB_FC1Para1"
 Text=""
 Location="340, 200"
 Size="100, 20"
 Autosize="false"
 Visible ="True">

Tips and assistance
3.9 Changing the user interface generically

 ProjectGenerator
72 Application manual, 03/2015

In the XML file (fcInitSyncData-List.xml), each control group is configured by an XML node
(item). Because there are only twenty control groups, the number of items in the XML file
must not exceed this number. Certain parameters must be specified depending on the
control selected. The following section of code shows the structure of the XML file expected
from the source code. To skip certain control groups and thus have influence over the
display, a dummy control "none" is defined.

Table 3- 7 Structure of fcInitSyncDataList.xml code example

<GenericControls>
 <!-- TextBox selection -->
 <Item Control="TextBox"
 ParameterName ="Label text (LBL_FC1Para1_X)"
 Parameter="Label tooltip (LBL_FC1Para1_X)"
 InfoTooltip="TextBox tooltip"
 DefaultValue="TextBox text"
 RotaryUnit="Label unit text"/>

 <!-- CheckBox selection -->
 <Item Control="CheckBox"
 ParameterName ="Label text (LBL_FC1Para1_X)"
 Parameter="Label tooltip (LBL_FC1Para1_X)"
 InfoTooltip="CheckBox tooltip"
 DefaultValue="Checked setting: True or False"/>

 <!-- ComboBox selection -->
 <Item Control="ComboBox"
 ParameterName ="Label text (LBL_FC1Para1_X)"
 Parameter="Label tooltip (LBL_FC1Para1_X)"
 InfoTooltip="ComboBox tooltip"
 DefaultValue="Text of item to be selected initially"
 MaxItems="Number of items, provide at least this number of items"
 Item1="Item1 text"
 Item2="Item2 text"
 <!—- add more ComboBox items if needed --> />

 <!--skip control-->
 <Item Control="None"/>

</GenericControls>

 Tips and assistance
 3.9 Changing the user interface generically

ProjectGenerator
Application manual, 03/2015 73

The following table gives a concrete example with three controls. The second control group
is not displayed.

Table 3- 8 fcInitSyncDataList.xml code example

<GenericControls>

 <!-- CheckBox to configure the new axis as a virtual axis -->
 <Item Control="CheckBox"
 ParameterName ="Add virtual axis "
 Parameter=""
 InfoTooltip="Check to add a virtual axis"
 DefaultValue="False"/>

 <!-- skip second group -->
 <Item Control="None"/>

 <!-- TextBox to enter the name of the new axis -->
 <Item Control="TextBox"

 ParameterName ="Axis name "
 Parameter=""
 InfoTooltip="Name of the new axis"
 DefaultValue="NewAxis"
 RotaryUnit=""/>

 <!-- Combobox to select axis type -->
 <Item Control="ComboBox"
 ParameterName ="Type of axis "
 Parameter=""
 InfoTooltip="Select the type of the new axis"
 DefaultValue="PosAxis"
 MaxItems="4"
 Item1="DriveAxis"
 Item2="PosAxis"
 Item3="GearAxis"
 Item4="PathAxis" />

</GenericControls>

Tips and assistance
3.9 Changing the user interface generically

 ProjectGenerator
74 Application manual, 03/2015

In the source code in the following table, the configuration data for the user interface is
imported from the XML file, the selected controls are displayed, and are initialized with the
imported data.

Table 3- 9 fcInitSyncDataList.xml code example

REM ==============================
REM Read fcInitSyncDataList and insert Labels, Textboxes, CheckBoxes and ComboBoxes
REM ==============================

REM Read the xml file and save the items in the Arraylist fcInitSyncDataList
Dim fcInitSyncDataList As System.Collections.Arraylist =
My-
App.myIsl.readxmlfile('SIMOTION\EquipmentModules\V4_3\DocExample\Data\Lists\fcInitSyncData
List.xml')

REM Check the number of the xml items. Exit the module (Command0) if any er-
ror
If fcInitSyncDataList.count = 0 Then REM No items in XML file or file is miss-
ing
 Microsoft.VisualBasic.Interaction.MsgBox('List with parameters
 SIMOTION\EquipmentModules\V4_3\UserModuleName\Data\Lists\fcInitSyncDataList.XML
 could not be found or is empty.' + Microsoft.VisualBasic.vbCrLf + 'Please check
 fcInitSyncDataList.xml.',64, 'fcInitSyncDataList is missing or corrupt')
 MyApp.NextCommand(0)
Else If fcInitSyncDataList.count > 20 Then REM More than 20 items in XML file
 Microsoft.VisualBasic.Interaction.MsgBox('Parameter list contains more parameters
 than allowed.' + Microsoft.VisualBasic.vbCrLf + 'Please check
 fcInitSyncDataList.xml',64,'fcInitSyncDataList: too many parameters')
 MyApp.NextCommand(0)
Else REM File and count ok

REM Loop through the items in the XML file
 For i As Integer = 0 To fcInitSyncDataList.count – 1
 REM If the item is None continue with the next item
 If fcInitSyncDataList(i)('CONTROL') = 'None' Then
 Continue For
 End If

 REM Show the label LBL_FC1Para_1_X and set the text as in the
 REM attribute ParameterName in the XML file
 With MyApp.Controls('Panel').Controls('LBL_FC1Para_1_' + Cstr(i+1))
 .Visible = True
 .Text = fcInitSyncDataList(i)('PARAMETERNAME')
 End With

 REM Set the tooltip text of the label LBL_FC1Para_1_X as in the
 REM attribute 'PARAMETER' in the XML file
 MyApp.Tooltip.SetToolTip(MyApp.Controls('Panel').Controls('LBL_FC1Para_1_' +
 Cstr(i+1)), fcInitSyncDataList(i)('PARAMETER'))

 Tips and assistance
 3.9 Changing the user interface generically

ProjectGenerator
Application manual, 03/2015 75

 REM =============Textbox selected =============
 If fcInitSyncDataList(i)('CONTROL') = 'TextBox' Then

 REM Show the textbox 'TB_FC1ParaX' and get the text from the variable
 REM with same name. If the variable does not exist use the attribute
 REM DefaultValue in the XML File
 With MyApp.Controls('Panel').Controls('TB_FC1Para' + Cstr(i+1))
 .Visible = True
 .Text = MyApp.myISL.getValueOfTemporaryVariable('TB_FC1Para' +
 Cstr(i+1),'Local',fcInitSyncDataList(i)('DEFAULTVALUE'))
 End With

 REM Set the tooltip of the textbox as in the attribute InfoTooltip
 MyApp.Tooltip.SetToolTip(MyApp.Controls('Panel').Controls('TB_FC1Para' +
 Cstr(i+1)),fcInitSyncDataList(i)('INFOTOOLTIP'))

 REM Set the text of the unitlabel as in the attribute RotaryUnit
 MyApp.Controls('Panel').Controls('LBL_FC1Para' + Cstr(i+1)).Text =
 fcInitSyncDataList(i)('ROTARYUNIT')

 REM Make the unitlabel visible
 MyApp.Controls('Panel').Controls('LBL_FC1Para' + Cstr(i+1)).Visible = True

 REM ============= Checkbox selected =============
 Else If fcInitSyncDataList(i)('CONTROL') = 'CheckBox' Then

 REM Show the checkbox 'CB_FC1ParaX' and set the tooltip
 MyApp.Controls('Panel').Controls('CB_FC1Para' + Cstr(i+1)).Visible = True
 MyApp.Tooltip.SetToolTip(MyApp.Controls('Panel').Controls('CB_FC1Para' +
 Cstr(i+1)), fcInitSyncDataList(i)('INFOTOOLTIP'))

 REM Get the checked property from the variable with same name.
 REM If the variable does not exist
 REM get the value from the attribute DefaultValue in the XML
 REM file and save it in a variable with
 REM the same name as the checkbox
 If MyApp.myISL.getValueOfTemporaryVariable('CB_FC1Para' +
 Cstr(i+1),'Local','noVariableFound') = 'noVariableFound' Then
 CTYPE(MyApp.Controls('Panel').Controls('CB_FC1Para' +
 Cstr(i+1)),System.Windows.Forms.Checkbox).Checked =
 fcInitSyncDataList(i)('DEFAULTVALUE')
 MyApp.myISL.setTemporaryVariable('CB_FC1Para' +
 Cstr(i+1),'Local',fcInitSyncDataList(i)('DEFAULTVALUE'))
 Else REM Variable exists, load saved value
 CTYPE(MyApp.Controls('Panel').Controls('CB_FC1Para' +
 Cstr(i+1)),System.Windows.Forms.Checkbox).Checked =
 MyApp.myISL.getValueOfTemporaryVariable('CB_FC1Para' +
 Cstr(i+1),'Local',fcInitSyncDataList(i)('DEFAULTVALUE'))
 End If

Tips and assistance
3.9 Changing the user interface generically

 ProjectGenerator
76 Application manual, 03/2015

 REM ============= Combobox selected =============
 Else If fcInitSyncDataList(i)('CONTROL') = 'ComboBox' Then
 REM Show the combobox 'CmB_FC1ParaX' and set the tooltip
 MyApp.Controls('Panel').Controls('CmB_FC1Para' + Cstr(i+1)).Visible = True
 MyApp.Tooltip.SetToolTip(MyApp.Controls('Panel').Controls('CmB_FC1Para' +
 Cstr(i+1)),
 fcInitSyncDataList(i)('INFOTOOLTIP'))

 REM Add items to the combobox
 For j As Integer = 1 To fcInitSyncDataList(i)('MAXITEMS')
 CTYPE(MyApp.Controls('Panel').Controls('CmB_FC1Para' +

Cstr(i+1)),System.Windows.Forms.Combobox).Items.Add(fcInitSyncDataList(i)
 ('ITEM' + Cstr(j)))
 Next

 REM Get the item to be selected from a variable or from the XML file
 If MyApp.myISL.getValueOfTemporaryVariable('CmB_FC1Para' +
 Cstr(i+1),'Local','noVariableFound') = 'noVariableFound'
 Then
 MyApp.Controls('Panel').Controls('CmB_FC1Para' + Cstr(i+1)).Text =
 fcInitSyncDataList(i)('DEFAULTVALUE')
 MyApp.myISL.setTemporaryVariable('CmB_FC1Para' +
 Cstr(i+1),'Local',fcInitSyncDataList(i)('DEFAULTVALUE'))
 Else
 MyApp.Controls('Panel').Controls('CmB_FC1Para' + Cstr(i+1)).Text =
 MyApp.myISL.getValueOfTemporaryVariable('CmB_FC1Para' +
 Cstr(i+1),'Local',fcInitSyncDataList(i)('DEFAULTVALUE'))
 End If
 End If
 Next
 End If

 Tips and assistance
 3.10 Performant interface elements

ProjectGenerator
Application manual, 03/2015 77

3.10 Performant interface elements

How can I improve the performance of the user interface?
To improve the performance of the user interface you can consider the following tips.

Use of transparency on the user interface

If you set the background color of the user interface to transparent, the performance is
reduced.

Use a standard color instead.

Use of Autosize

If you have the size of the controls of the user interface of .NET defined automatically, the
performance is reduced.

Instead, provide a fixed size via the SIZEelement.

Use of DestroyForm and ChangeForm

Use these functions sparingly. Often, better results can be achieved if the whole user
interface is constructed in one step and then adapted from the source code by showing and
hiding controls.

Tips and assistance
3.10 Performant interface elements

 ProjectGenerator
78 Application manual, 03/2015

ProjectGenerator
Application manual, 03/2015 79

 Contact A
A.1 Contacts

Siemens AG

Digital Factory

Factory Automation

Production Machines

 DF FA PMA APC

Frauenauracher Strasse 80

D-91056 Erlangen, Germany

Fax: +49 9131 98 1297

mailto:tech.team.motioncontrol@siemens.com

mailto:tech.team.motioncontrol@siemens.com

Contact
A.2 Internet addresses

 ProjectGenerator
80 Application manual, 03/2015

A.2 Internet addresses
Additional information on various topics is provided on the following Internet pages.

See also
SIMOTION (www.siemens.com/simotion)

SINAMICS (www.siemens.com/sinamics)

Motion Control / Application Center (www.siemens.com/motioncontrol/apc)

Packaging (www.siemens.com/packaging)

http://www.siemens.com/simotion
http://www.siemens.com/sinamics
http://www.siemens.com/motioncontrol/apc
http://www.siemens.com/packaging

	SIMATIC/SIMOTION ProjectGenerator
	Legal information
	Preface
	Table of contents
	1 Application description
	1.1 General information
	1.1.1 Task of the ProjectGenerator
	1.1.2 Scope of delivery
	1.1.3 Requirements

	1.2 Operating the ProjectGenerator
	1.2.1 Preparations
	1.2.2 Starting the ProjectGenerator
	1.2.3 Representation of the configuration sequence
	1.2.4 Creating a sample project
	1.2.4.1 Prerequisites
	1.2.4.2 Creating a new project with SIMATIC devices
	1.2.4.3 Adapting/expanding an existing project with SIMOTION devices
	1.2.4.4 Transfer of SIMOTION IT pages

	1.3 User-specific expansions
	1.3.1 Adding devices and standard modules
	1.3.1.1 Expanding the ProjectGenerator
	1.3.1.2 Adding devices
	1.3.1.3 Adding standard modules

	1.3.2 Adding technology objects (SIMOTION only)
	1.3.3 Creating and adding user-specific modules

	1.4 Architecture of the ProjectGenerator
	1.4.1 General information
	1.4.2 Structure of the ProjectGenerator
	1.4.3 Using the ProjectGenerator in silent mode

	2 System and error messages
	2.1 General information
	2.2 System information
	2.3 Warnings
	2.4 Error messages

	3 Tips and assistance
	3.1 Special characters in XML
	3.2 Comments in the source code
	3.3 Outputting a message box
	3.4 Usable parameters, events, and objects
	3.5 Using text files
	3.6 Using a source several times
	3.7 Reloading a user interface
	3.8 Accessing user interface elements generically
	3.9 Changing the user interface generically
	3.10 Performant interface elements

	A.1 Contacts
	A Contact

	A.2 Internet addresses

