
SIMOTION Basic Control

Preface

Description
 1

Function blocks
 2

Application example
 3

Appendix
 A

SIMOTION

Basic Control

Function Manual

08/2008 Edition

Safety Guidelines Safety Guidelines
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION
without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE
indicates that an unintended result or situation can occur if the corresponding information is not taken into
account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The device/system may only be set up and used in conjunction with this documentation. Commissioning and
operation of a device/system may only be performed by qualified personnel. Within the context of the safety notes
in this documentation qualified persons are defined as persons who are authorized to commission, ground and
label devices, systems and circuits in accordance with established safety practices and standards.

Prescribed Usage
Note the following:

WARNING
This device may only be used for the applications described in the catalog or the technical description and only
in connection with devices or components from other manufacturers which have been approved or
recommended by Siemens. Correct, reliable operation of the product requires proper transport, storage,
positioning and assembly as well as careful operation and maintenance.

Trademarks
All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this
publication may be trademarks whose use by third parties for their own purposes could violate the rights of the
owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

 Siemens AG
Industry Sector
Postfach 48 48
90327 NÜRNBERG
GERMANY

Ⓟ 08/2008

Copyright © Siemens AG 2008.
Technical data subject to change

Basic Control
Function Manual, 08/2008 Edition 3

Preface

Contents of the function manual
This document is part of the SIMOTION Programming References documentation package.
This manual will assist you in working with the function blocks of the "Basic Control" software
package.
You will learn how the function blocks work.

Function block
The function blocks for "Basic Control" are part of the program library of the "SIMOTION
SCOUT" engineering system.

SIMOTION Documentation
An overview of the SIMOTION documentation can be found in a separate list of references.
This documentation is included as electronic documentation with the supplied SIMOTION
SCOUT.
The SIMOTION documentation consists of 9 documentation packages containing
approximately 80 SIMOTION documents and documents on related systems (e.g.
SINAMICS).
The following documentation packages are available for SIMOTION V4.1 SP2:
● SIMOTION Engineering System
● SIMOTION System and Function Descriptions
● SIMOTION Diagnostics
● SIMOTION Programming
● SIMOTION Programming - References
● SIMOTION C
● SIMOTION P350
● SIMOTION D4xx
● SIMOTION Supplementary Documentation

Preface

 Basic Control
4 Function Manual, 08/2008 Edition

Hotline and Internet addresses

Technical support
If you have any technical questions, please contact our hotline:

 Europe / Africa
Phone +49 180 5050 222 (subject to charge)
Fax +49 180 5050 223
Internet http://www.siemens.com/automation/support-request

 Americas
Phone +1 423 262 2522
Fax +1 423 262 2200
E-mail mailto:techsupport.sea@siemens.com

 Asia / Pacific
Phone +86 1064 719 990
Fax +86 1064 747 474
E-mail mailto:adsupport.asia@siemens.com

 Note
Country-specific telephone numbers for technical support are provided under the following
Internet address:
http://www.siemens.com/automation/service&support
Calls are subject to charge, e.g. 0.14 €/min. on the German landline network. Tariffs of other
phone companies may differ.

Questions about this documentation
If you have any questions (suggestions, corrections) regarding this documentation, please
fax or e-mail us at:

Fax +49 9131- 98 63315
E-mail mailto:docu.motioncontrol@siemens.com

 Preface

Basic Control
Function Manual, 08/2008 Edition 5

Siemens Internet address
The latest information about SIMOTION products, product support, and FAQs can be found
on the Internet at:
● General information:

– http://www.siemens.de/simotion (German)
– http://www.siemens.com/simotion (international)

● Product support:
– http://support.automation.siemens.com/WW/view/en/10805436

Additional support
We also offer introductory courses to help you familiarize yourself with SIMOTION.
Please contact your regional training center or our main training center at D-90027
Nuremberg, phone +49 (911) 895 3202.
Information about training courses on offer can be found at:
www.sitrain.com

Basic Control
Function Manual, 08/2008 Edition 7

Table of contents
 Preface .. 3
1 Description... 9

1.1 General ..9
1.2 Product description ..10

2 Function blocks.. 11
2.1 Overview ..11
2.2 Integrating the function blocks in the user project ...12
2.3 Continuous control with the _CTRL_pid function block ...13
2.4 Step control using the _CTRL_piStep function block...20
2.5 Pulse width modulation (PWM) with the _CTRL_pwm function block ...26
2.6 Calling function blocks ...35

3 Application example... 37
3.1 Application example...37
3.2 Variables used and preassignments..41

A Appendix.. 43
A.1 List of parameters ..43
A.2 List of abbreviations ...46

 Index.. 47

Basic Control
Function Manual, 08/2008 Edition 9

Description 1
1.1 1.1 General

The "Basic Control" software consists of the function blocks (FBs) for a continuous PID
control (_CTRL_pid) and for a step control (_CTRL_piStep) plus the function block for pulse
width modulation (_CTRL_pwm).
The function blocks are software controllers, with each block containing the entire controller
functionality. FBs can be called more than once.
The _CTRL_pwm function block is used in connection with the _CTRL_pid function block in
order to obtain a controller with pulse output for proportional actuators.

Description
1.2 Product description

 Basic Control
10 Function Manual, 08/2008 Edition

1.2 1.2 Product description

Basic Functions
A controller created using function blocks comprises a series of subfunctions that can be
parameterized by you. Apart from the control algorithm for a continuous-action or step
controller, functions for setpoint and actual value preparation and correction of the
manipulated variable are also integrated in the blocks.

Possible applications
A closed-loop control system created using the "Basic Control" function blocks is basically
neutral in terms of its application. Its controlling power and thus processing speed depends
entirely on the performance of the SIMOTION hardware used.
It is capable of controlling slow systems (temperatures, fill levels, etc.) as well as very fast
systems (flows, speeds, etc.).

Controlled system analysis

 Note
The static behavior (gain) and the dynamic properties (delay, dead time, integration
constant, etc.) of the controlled system are critical factors in the layout and design of the
controller and the settings for its static parameters (proportional component) and dynamic
parameters (integral and derivative component).
It is therefore essential for you to know the controlled system type and its characteristic data.

Controller selection

 Note
The properties of controlled systems are determined by specific process/machine features. It
is unlikely that they can be modified in any way. For this reason, you can obtain good control
quality only by selecting the most suitable controller type for the controlled system in
question and by adapting it correctly to the dynamic response of the system.

Requirement
The following software versions are required for the standard functions described in this
documentation:
● SIMOTION SCOUT V4.0 or higher
● SIMOTION Kernel V4.0 or higher
● SIMOTION Technology Packages V4.0 or higher

Basic Control
Function Manual, 08/2008 Edition 11

Function blocks 2
2.1 2.1 Overview

This chapter describes the function blocks for "Basic Control". You will find a general
description of the data structure containing all input and output parameters of the relevant
function block as well as a description of the function block call. Examples will be used to
show you how to do the following:
● Integrate the function block
● Instantiate the function block
● Set up variables for the data structure
● Call an instance you have created
● Assign values to input parameters
● Access output parameters of the function block

Function blocks
2.2 Integrating the function blocks in the user project

 Basic Control
12 Function Manual, 08/2008 Edition

2.2 2.2 Integrating the function blocks in the user project

Creating the FBs instance in the user project
The function blocks are part of the program library of the SIMOTION SCOUT engineering
system. For working with the function blocks, an instance has to be created in the user
project for each function block used.
Example:

VAR_GLOBAL
...
 myFBPID:_CTRL_pid; // create "_CTRL_pid" instance
 myFBPISTEP:_CTRL_piStep; // create "_CTRL_piStep" instance
 myFBPWM:_CTRL_pwm; // create "_CTRL_pwm" instance
...
END_VAR

Call (LAD representation)
The LAD representation of the individual function blocks can be found in the respective
function block descriptions.

Application example
The application example is included on the "Utilities & Applications" CD-ROM and is
available for various SIMOTION hardware platforms.
The "Utilities & Applications" CD-ROM is provided free of charge with SIMOTION SCOUT.

 Function blocks
 2.3 Continuous control with the _CTRL_pid function block

Basic Control
Function Manual, 08/2008 Edition 13

2.3 2.3 Continuous control with the _CTRL_pid function block

Introduction
The _CTRL_pid function block is used to control technical processes with continuous input
and output variables on SIMOTION systems. Using parameterization, you can activate or
deactivate subfunctions of the PID controller and thus adapt it to the controlled system in
question.

Application
You can use the controller individually as a fixed-setpoint PID controller or in multi-loop
feedback controls as a cascade, combined, or ratio controller. Its operating principle is based
on the PID control algorithm of the sampling controller with analog output signal, possibly
supplemented by a pulse shaper stage for generating pulse-width-modulated output signals
for two- or three-step controls with proportional actuators.

Call (LAD representation)

Parameter description

 Note
The SIMOTION identifiers have changed as of V4.0. A comparison of the identifiers up to
V3.2/as of V4.0 can be found in the Appendix in the table "List of parameters".

Table 2-1 Parameters of the _CTRL_pid function block

Name P-Type 1) Data type Meaning Actions performed
by user

Actions performed
by block

enable IN BOOL Block enable Entered Checked
dataPid IN/OUT Struct_CTRL_dataPid Data structure Entered and

checked
Checked and
entered

error OUT BOOL Request completed with errors Checked Entered
1) Parameter types: IN = input parameters, OUT = output parameters,
IN/OUT = in/out parameters

Function blocks
2.3 Continuous control with the _CTRL_pid function block

 Basic Control
14 Function Manual, 08/2008 Edition

Data structure of the _CTRL_pid function block
The data structure of type Struct_CTRL_dataPid contains all input and output parameters of
the _CTRL_pid function block.
The data structure is used by the _CTRL_pid function block. Elements in the data structure
are accessed using a variable of data type Struct_CTRL_dataPid, which you must define
yourself.
The Struct_CTRL_dataPid data structure is shown in the table below.

 Note
The SIMOTION identifiers have changed as of V4.0. A comparison of the identifiers up to
V3.2/as of V4.0 can be found in the Appendix in the table "List of parameters".

Table 2-2 Data structure of Struct_CTRL_dataPid

Parameters P-Type 1) Data type Value range Initial value Description
reset IN BOOL FALSE / TRUE FALSE Initialization routine

= TRUE
• All output parameters are set to FALSE

or zero
• The integrator is set to initialization value

"initialIValue"
manualMode IN BOOL FALSE / TRUE TRUE Activate manual mode

The control loop is interrupted when the
"manualMode" input is enabled. A manually
entered value acts as the control output.

actValueType IN BOOL FALSE / TRUE FALSE Activate actual I/O value
If the actual value must be read in from the
I/O, then the "binActValue" input must be
interconnected to the I/O and the
"actValueType" input must be set.

setPController IN BOOL FALSE / TRUE TRUE Activate P-action component
It is possible to activate and deactivate PID
components individually in the PID algorithm.
The P-action component is activated when
the "setPController" input is set.

setIController IN BOOL FALSE / TRUE TRUE Activate I-action component
It is possible to activate and deactivate PID
components individually in the PID algorithm.
The I-action component is activated when
the "setIController" input is set.

holdIValue IN BOOL FALSE / TRUE FALSE Freeze I-action component
The integrator output can be frozen. To do
this, the "holdIValue" input must be set.

setIValue IN BOOL FALSE / TRUE FALSE Set I-action component
The integrator output can be set to the
"initialIValue" input. To do this, the
"setIValue" input must be set.

 Function blocks
 2.3 Continuous control with the _CTRL_pid function block

Basic Control
Function Manual, 08/2008 Edition 15

Parameters P-Type 1) Data type Value range Initial value Description
initialIValue IN REAL -100.0...100.0 (%)

or
phys. quantity 3)

0.0 Initialization value for I-action component
The integrator output can be set at the
"setIValue" input. The initialization value is
available at the "initialIValue" input.

setDController IN BOOL FALSE / TRUE FALSE Activate D-action component
It is possible to activate and deactivate PID
components individually in the PID algorithm.
The D-action component is activated when
the "setDController" input is set.

cycleTime IN DINT ≥ 1ms 1000 Block sampling time in ms
The time between block calls must be
constant. The "cycleTime" input specifies the
time between block calls.

setpointValue IN REAL -100.0...100.0 (%)
or
phys. quantity 2)

0.0 Internal setpoint
The "setpointValue" input is used to specify a
setpoint.

numericActValue IN REAL -100.0...100.0 (%)
or
phys. quantity 2)

0.0 Actual value input
The "numericActValue" input can be
parameterized with a startup value or
interconnected to an external actual value in
floating-point format.

binActValue IN WORD 16#0 to 16#FFFF 16#0000 Actual I/O value
The actual value in I/O format is
interconnected to the controller at the
"binActValue" input.

manualValue IN REAL -100.0...100.0 (%)
or
phys. quantity 3)

0.0 Manual value
The "manualValue" input is used to enter a
manual value.

propGain IN REAL 4) 2.0 P-action coefficient
The "propGain" input specifies the controller
gain.

integTime IN DINT ≥ cycleTime 20000 Integration time in ms
The "integTime" input determines the
dynamic response of the integrator.

derivativeTime IN DINT ≥ cycleTime 10000 Derivative time in ms
The "derivativeTime" input determines the
dynamic response of the differentiator.

delayTime IN DINT ≥ cycleTime/2 2000 Delay time of D-action component in ms
The algorithm of the D-action component
includes a delay that can be parameterized
at the "delayTime" input.

deadBand IN REAL ≥ 0.0 (%)
or
phys. quantity 2)

0.0 Dead band width
The error signal is routed over a dead band.
The "deadBand" input determines the size of
the dead band.

Function blocks
2.3 Continuous control with the _CTRL_pid function block

 Basic Control
16 Function Manual, 08/2008 Edition

Parameters P-Type 1) Data type Value range Initial value Description
upperLimit IN REAL lowerLimit to

100.0 (%)
or
phys. quantity 3)

100.0 Upper limit of control output
The control output is always limited to an
upper and a lower limit. The "upperLimit"
input specifies the upper limit.

lowerLimit IN REAL -100.0...
upperLimit (%)
or
phys. quantity 3)

0.0 Lower limit of control output
The control output is always limited to an
upper and a lower limit. The "lowerLimit"
input specifies the lower limit.

actValueFactor IN REAL 4) 1.0 Actual value factor
The "actValueFactor" input is multiplied by
the actual value. This input is used to adjust
the range of actual values.

actValueOffset IN REAL 4) 0.0 Actual value offset
The "actValueOffset" input is added to the
actual value. This input is used to adjust the
range of actual values.

outValueFactor IN REAL 4) 1.0 Control output factor
The "outValueFactor" input is multiplied by
the control output. This input is used to
adjust the control output range.

outValueOffset IN REAL 4) 0.0 Control output offset
The "outValueOffset" input is added to the
control output. This input is used to adjust
the control output range.

disturbValue IN REAL -100.0...100.0 (%)
or
phys. quantity 3)

0.0 Disturbance value
For feedforward control, the disturbance
value is interconnected to
the "disturbValue" input.

numericOutValue OUT REAL 4) 0.0 Output value
The actual control output in effect is output in
floating-point format at the
"numericOutValue" output.

binOutValue OUT WORD 16#0 to 16#FFFF 16#0000 I/O control output
The control output in I/O format is specified
at the "binOutValue" output.

upperLimitReached OUT BOOL FALSE / TRUE FALSE Upper limit of control output violated
The control output is always limited to an
upper and a lower limit. The
"upperLimitReached" output signals that the
control output has exceeded its upper limit.

lowerLimitReached OUT BOOL FALSE / TRUE FALSE Lower limit of control output violated
The control output is always limited to an
upper and a lower limit. The
"lowerLimitReached" output signals that the
control output has dropped below its lower
limit.

 Function blocks
 2.3 Continuous control with the _CTRL_pid function block

Basic Control
Function Manual, 08/2008 Edition 17

Parameters P-Type 1) Data type Value range Initial value Description
POutValue OUT REAL 4) 0.0 P-action component

The "POutValue" output contains the P-
action component of the manipulated
variable.

IOutValue OUT REAL 4) 0.0 I component
The "IOutValue" output contains the I-action
component of the manipulated variable.

DOutValue OUT REAL 4) 0.0 D component
The "DOutValue" output contains the D-
action component of the manipulated
variable.

actValue OUT REAL 4) 0.0 actual value
The actual value that is currently in effect is
available at the "actValue" output.

deviationValue OUT REAL 4) 0.0 Error signal
The actual error signal currently in effect is
available at the "deviationValue" output.

1)Parameter types: IN = input parameter, OUT = output parameter
2) Parameter in setpoint and actual value branches with identical unit
3) Parameter in control output branch with identical unit
4)-3.402823466E+38 to -1.175494351E-38, 0.0, +1.175494351E-38 to +3.402823466E+38

Function description
In addition to the functions in the setpoint and actual value branches, the function block also
produces a complete PID controller with continuous manipulated variable output and allows
manual correction of the control output (value of the manipulated variable).
Description of subfunctions:
Setpoint branch
The setpoint is entered in floating-point format at the "setpointValue" input.
Actual value branch
The actual value can be read either in I/O or floating-point format. The I/O value
"binActValue" is internally converted to a floating-point value between -100% to +100%
according to the following formula (corresponding to nominal range of an analog module):

It is possible to normalize the actual value (floating-point format) according to the formula
below using the "actValueFactor" and "actValueOffset" parameters:

"1.0" is the default setting for "actValueFactor" and "0.0" the default setting for
"actValueOffset".

Function blocks
2.3 Continuous control with the _CTRL_pid function block

 Basic Control
18 Function Manual, 08/2008 Edition

Error signal generation
The difference between the setpoint and actual value is the error signal. To suppress a slight
continuous oscillation resulting from quantization of the manipulated variable (for example, in
the case of pulse width modulation with the _CTRL_pwm function block), the error signal is
routed over a dead band. The dead band is deactivated with setting "deadBand" = 0.0.
PID algorithm
The PID algorithm operates in the position algorithm. The proportional, integral, and
derivative components are connected in parallel and can be activated and deactivated
individually, thus making it possible to parameterize P, PI, PD, and PID controllers. In
addition, pure I-controllers are possible.
Manual value processing
It is possible to switch between manual and automatic mode. In manual mode, the
manipulated variable is corrected to a manually selected value.
The integrator is set internally to "numericOutValue - POutValue - disturbValue" and the
differentiator is set to "0.0" and internally aligned. Switchover to automatic mode is therefore
smooth.
Control output processing
The control output can be limited to selected values. Signaling bits indicate when a limit is
exceeded by the input variable.
The control output (floating-point format) can be normalized according to the formula below
using parameters "outValueFactor" and "outValueOffset":

"1.0" is the default setting for "outValueFactor" and "0.0" the default setting for
"outValueOffset".
The control output is also available in I/O format. The floating-point value is internally
converted to an I/O value (corresponding to nominal range of an analog module):

Feedforward control
A disturbance can be applied additively at the "disturbValue" input.
Initialization routine
If you set the "reset" parameter to TRUE, the following occurs:
● All output parameters (parameter type OUT) of the function block are set to FALSE or

zero
● The integrator is set to initialization value "initialIValue"

 Function blocks
 2.3 Continuous control with the _CTRL_pid function block

Basic Control
Function Manual, 08/2008 Edition 19

Block diagram
The figure below is a block diagram of the _CTRL_pid function block.

Figure 2-1 Block diagram of the _CTRL_pid function block

Task integration (call)
The _CTRL_pid function block must be called cyclically in the BackgroundTask or in the
TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. Calling the function
block in the IPOSynchronousTask is not recommended for runtime reasons.

Function blocks
2.4 Step control using the _CTRL_piStep function block

 Basic Control
20 Function Manual, 08/2008 Edition

2.4 2.4 Step control using the _CTRL_piStep function block

Introduction
The _CTRL_piStep function block is used to control technical processes with binary control
output signals for integrating actuators on SIMOTION systems. Using parameterization, you
can activate or deactivate subfunctions of the PI step controller and thus adapt it to the
controlled system in question.

Application
You can use the controller individually as a fixed-setpoint PI controller or in secondary
control loops as cascade, combined, or ratio controllers, but not as a master controller. Its
operating principle is based on the PI control algorithm of the sampling controller,
supplemented by function elements for generating a binary output signal from an analog
actuating signal.

Call (LAD representation)

_CTRL_piStep

1) 1)

Parameters of the _CTRL_piStep function block

 Note
The SIMOTION identifiers have changed as of V4.0. A comparison of the identifiers up to
V3.2/as of V4.0 can be found in the Appendix in the table "List of parameters".

Table 2-3 Parameters of the _CTRL_piStep function block

Name P-Type 1) Data type Meaning Actions performed
by user

Actions performed
by block

enable IN BOOL Block enable Entered Checked
dataPiStep IN/OUT Struct_CTRL_dataPiStep Data structure Entered and

checked
Checked and
entered

error OUT BOOL Request completed with errors Checked Entered
1) Parameter types: IN = input parameters, OUT = output parameters,
IN/OUT = in/out parameters

 Function blocks
 2.4 Step control using the _CTRL_piStep function block

Basic Control
Function Manual, 08/2008 Edition 21

Data structure of the _CTRL_piStep function block
The data structure of type Struct_CTRL_dataPiStep contains all input and output parameters
of the _CTRL_piStep function block.
The data structure is used by the _CTRL_piStep function block.
Elements in the data structure are accessed using a variable of data type
Struct_CTRL_dataPiStep, which you must define yourself.
The Struct_CTRL_dataPiStep data structure is shown in the table below.

 Note
The SIMOTION identifiers have changed as of V4.0. A comparison of the identifiers up to
V3.2/as of V4.0 can be found in the Appendix in the table "List of parameters".

Table 2-4 Data structure of Struct_CTRL_dataPiStep

Parameters P-Type 1) Data type Value range Initial value Description
reset IN BOOL FALSE / TRUE FALSE Initialization routine

= TRUE
All output parameters are set to FALSE or zero

actValueType IN BOOL FALSE / TRUE FALSE Activate actual I/O value
If the actual value must be read in from the I/O,
then the "binActValue" input must be
interconnected to the I/O and the
"actValueType" input must be set.

cycleTime IN DINT ≥1 ms 1000 Sampling time in ms
The time between block calls must be constant.
The "cycleTime" input specifies the time
between block calls.

setpointValue IN REAL -100.0...100.0 (%)
or
phys. quantity 2)

0.0 Internal setpoint
The "setpointValue" input is used to specify a
setpoint.

numericActValue IN REAL -100.0...100.0 (%)
or
phys. quantity 2)

0.0 Actual value input
The "numericActValue" input can be
parameterized with a startup value or
interconnected to an external actual value in
floating-point format.

binActValue IN WORD 16#0 to 16#FFFF 16#0000 Actual I/O value
The actual value in I/O format is interconnected
to the controller at the "binActValue" input.

propGain IN REAL 4) 2.0 P-action coefficient
The "propGain" input specifies the controller
gain.

integTime IN DINT ≥ cycleTime 20000 Integration time in ms
The "integTime" input determines the dynamic
response of the integrator.

Function blocks
2.4 Step control using the _CTRL_piStep function block

 Basic Control
22 Function Manual, 08/2008 Edition

Parameters P-Type 1) Data type Value range Initial value Description
deadBand IN REAL 0.0...100.0 (%)

or
phys. quantity 2)

1.0 Dead band width
The error signal is routed over a dead band.
The "deadBand" input determines the size of
the dead band.

upperLimit IN BOOL FALSE / TRUE FALSE Upper endstop signal of position feedback
The "Control valve at upper endstop" signal is
interconnected at the "upperLimit" input.
"upperLimit"=TRUE means: The control valve
is at the upper endstop.

lowerLimit IN BOOL FALSE / TRUE FALSE Lower endstop signal of position feedback
The "Control valve at lower endstop" signal is
interconnected at the "lowerLimit" input.
"lowerLimit"=TRUE means: The control valve is
at the lower endstop.

manualMode IN BOOL FALSE / TRUE FALSE Activate manual mode for control output
signals
Control output signal processing is switched to
manual mode at the "manualMode" input.

setOutHigh IN BOOL FALSE / TRUE FALSE Control output signal High
In output signal manual mode, the "outHigh"
output signal is manipulated at the
"setOutHigh" input.

setOutLow IN BOOL FALSE / TRUE FALSE Control output signal Low
In output signal manual mode, the "outLow"
output signal is manipulated at the "setOutLow"
input.

minPulseTime IN DINT ≥ cycleTime 3000 Minimum pulse time in ms
A minimum pulse length can be parameterized
in the "minPulseTime" parameter.

minIdleTime IN DINT ≥ cycleTime 3000 Minimum idle time in ms
A minimum idle time can be parameterized in
the "minIdleTime" parameter.

actuatingTime IN DINT ≥ cycleTime 30000 Motor actuating time in ms
The runtime between strokes of the control
valve is entered in the "actuatingTime"
parameter.

actValueFactor IN REAL 4) 1.0 Actual value factor
The "actValueFactor" input is multiplied by the
actual value. This input is used to adjust the
range of actual values.

actValueOffset IN REAL 4) 0.0 Actual value offset
The "actValueOffset" input is added to the
actual value. This input is used to adjust the
range of actual values.

disturbValue IN REAL -100.0...100.0 (%)
or
phys. quantity 3)

0.0 Disturbance value
For feedforward control, the disturbance value
is interconnected to the "disturbValue" input.

 Function blocks
 2.4 Step control using the _CTRL_piStep function block

Basic Control
Function Manual, 08/2008 Edition 23

Parameters P-Type 1) Data type Value range Initial value Description
outHigh OUT BOOL FALSE / TRUE FALSE Control output signal High

If the "outHigh" output is set, the control valve
must be opened.

outLow OUT BOOL FALSE / TRUE FALSE Control output signal Low
If the "outLow" output is set, the control valve
must be closed.

actValue OUT REAL 4) 0.0 actual value
The actual value that is currently in effect is
available at the "actValue" output.

deviationValue OUT REAL 4) 0.0 Error signal
The actual error signal currently in effect is
available at the "deviationValue" output.

1) Parameter types: IN = input parameter, OUT = output parameter
2) Parameter in setpoint and actual value branches with identical unit
3) Parameter in control output branch with identical unit
4) -3.402823466E+38 to -1.175494351E-38, 0.0, +1.175494351E-38 to +3.402823466E+38

Function description
In addition to the functions in the actual value branch, the function block also produces a
complete PI controller with binary output of the control output and allows manual correction
of the control output.
Description of subfunctions:
Setpoint branch
The setpoint is entered in floating-point format at the "setpointValue" input.
Actual value branch
The actual value can be read either in I/O or floating-point format. The I/O value
"binActValue" is converted internally to a floating-point value of -100 to +100 % according to
the following formula:

It is possible to normalize the actual value (floating-point format) according to the formula
below using the "actValueFactor" and "actValueOffset" parameters:

 "1.0" is the default setting for "actValueFactor" and "0.0" the default setting for
"actValueOffset".

Function blocks
2.4 Step control using the _CTRL_piStep function block

 Basic Control
24 Function Manual, 08/2008 Edition

Error signal generation
The difference between the setpoint and actual value is the error signal. To suppress a slight
continuous oscillation resulting from quantization of the manipulated variable (limited
resolution of control output by the control valve), the error signal is routed over a dead band.
The dead band is deactivated with setting "deadBand" = 0.0.
PI step algorithm
The PI step controller operates without actuating signal feedback at the output.
A signal is generated to indicate that the upper or lower limit has been reached.
The I-action component of the PI algorithm and the "upper/lower limit reached" signal are
calculated in an integrator and compared as a feedback value with the remaining P-action
component. The difference is applied to a three-step element and a pulse shaper that
generates the pulses for the control valve. The operating frequency of the controller is
reduced through adaptation of the response threshold of the three-step element.
Feedforward control
A disturbance can be applied additively at the "disturbValue" input.
Initialization routine
If you set the "reset" parameter to TRUE, all output parameters (parameter type OUT) of the
function block are set to FALSE or zero.

 Function blocks
 2.4 Step control using the _CTRL_piStep function block

Basic Control
Function Manual, 08/2008 Edition 25

Block diagram
The figure below is a block diagram of the _CTRL_piStep function block.

Figure 2-2 Block diagram of the _CTRL_piStep function block

Task integration (call)
The _CTRL_piStep function block must be called cyclically in the BackgroundTask or in the
TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. Calling the function
block in the IPOSynchronousTask is not recommended for runtime reasons.

Function blocks
2.5 Pulse width modulation (PWM) with the _CTRL_pwm function block

 Basic Control
26 Function Manual, 08/2008 Edition

2.5 2.5 Pulse width modulation (PWM) with the _CTRL_pwm function block

Introduction
The _CTRL_pwm function block is used to create a PID controller with pulse output for
proportional actuators.

Application
Two- or three-step PID controllers with pulse width modulation can be implemented with the
_CTRL_pwm function block. The function block is usually used in conjunction with the
_CTRL_pid function block.

Figure 2-3 _CTRL_pid, _CTRL_pwm function blocks

Call (LAD representation)

Parameter description

 Note
The SIMOTION identifiers have changed as of V4.0. A comparison of the identifiers up to
V3.2/as of V4.0 can be found in the Appendix in the table "List of parameters".

 Function blocks
 2.5 Pulse width modulation (PWM) with the _CTRL_pwm function block

Basic Control
Function Manual, 08/2008 Edition 27

Table 2-5 Parameters of the _CTRL_pwm function block

Name P-Type 1) Data type Meaning Actions performed by
user

Actions performed by
block

enable IN BOOL Block enable Entered Checked
dataPwm IN/OUT Struct_CTRL_dataPwm Data structure Entered and checked Checked and entered
error OUT BOOL Request completed with

errors
Checked Entered

1) Parameter types: IN = input parameters, OUT = output parameters, IN/OUT = in/out
parameters

Data structure of the _CTRL_pwm function block
The data structure of type Struct_CTRL_dataPwm contains all input and output parameters
of the _CTRL_pwm function block.
The data structure is used by the _CTRL_pwm function block.
Elements in the data structure are accessed using a variable of data type
Struct_CTRL_dataPwm, which you must define yourself.
The Struct_CTRL_dataPwm data structure is shown in the table below.

 Note
The SIMOTION identifiers have changed as of V4.0. A comparison of the identifiers up to
V3.2/as of V4.0 can be found in the Appendix in the table "List of parameters".

Table 2-6 Data structure of Struct_CTRL_dataPwm

Parameters P-Type 1) Data type Value range Initial value Description
reset IN BOOL FALSE / TRUE FALSE Initialization routine

= TRUE
All output parameters are set to FALSE or zero

inValue IN REAL -100.0...100.0
(%)

0.0 Input variable
An analog control output variable is applied at
the "inValue" input parameter.

periodTime IN DINT ≥ 20 * cycleTime 1000 Period in ms
The constant period of pulse width modulation
is set in the "periodTime" parameter. It equals
the controller sampling time. The ratio of the
pulse shaper to controller sampling times
determines the accuracy of the pulse width
modulation.

minPulseIdleTime IN DINT ≥ cycleTime 0 Minimum pulse or minimum idle time in ms
A minimum pulse or idle length can be
parameterized in the "minPulseIdleTime"
parameter.

Function blocks
2.5 Pulse width modulation (PWM) with the _CTRL_pwm function block

 Basic Control
28 Function Manual, 08/2008 Edition

Parameters P-Type 1) Data type Value range Initial value Description
ratioFactor IN REAL 0.1 ...10.0 1.0 Ratio factor

Using the "ratioFactor" input parameter, you can
alter the ratio of negative to positive pulse
times. In a thermal process, this would, for
example, allow different time constants for
heating and cooling to be compensated (for
example, in a process with electrical heating
and water cooling).

set3StepControl IN BOOL FALSE / TRUE TRUE Activate three-step control
The operating mode is activated at the
"set3StepControl" input parameter. Both output
signals work with the three-step control option.

set2StepControl IN BOOL FALSE / TRUE FALSE Activate two-step control for bipolar control
output range
At the "set2StepControl" input parameter, it is
possible to choose between two operating
modes: "Two-step control for bipolar control
output range" and "Two-step control for unipolar
control output range". In this case,
"set3StepControl" must be FALSE.

setManualMode IN BOOL FALSE / TRUE FALSE Activate manual mode
Setting the "setManualMode" input parameter
allows you to set output signals manually.

setPosPulse IN BOOL FALSE / TRUE FALSE Positive pulse ON (manual mode)
In manual three-step control mode, the
"posPulse" output parameter can be
manipulated at the "setPosPulse" input
parameter. In two-step control manual mode,
"negPulse" is always set in inverted form to
"posPulse".

setNegPulse IN BOOL FALSE / TRUE FALSE Negative pulse ON (manual mode)
In manual three-step control mode, the
"negPulse" output parameter can be
manipulated at the "setNegPulse" input
parameter. In two-step control manual mode,
"negPulse" is always set in inverted form to
"posPulse".

cycleTime IN DINT ≥ 1ms 10 Sampling time in ms
The time between block calls must be constant.
The "cycleTime" input specifies the time
between block calls.

posPulse OUT BOOL FALSE / TRUE FALSE Output signal positive pulse
The "posPulse" output parameter is set if a
pulse is to be output. This is the positive pulse
in three-step control mode. In two-step control
mode, "negPulse" is always set in inverted form
to "posPulse".

 Function blocks
 2.5 Pulse width modulation (PWM) with the _CTRL_pwm function block

Basic Control
Function Manual, 08/2008 Edition 29

Parameters P-Type 1) Data type Value range Initial value Description
negPulse OUT BOOL FALSE / TRUE FALSE Output signal negative pulse

The "negPulse" output parameter is set if a
pulse is to be output. This is the negative pulse
in three-step control mode.
In two-step control mode, "negPulse" is always
set in inverted form to "posPulse".

1) Parameter types: IN = input parameter, OUT = output parameter

 Note
The value of input parameters is not limited in the block; no parameterization check is
performed.

Function description
The _CTRL_pwm function block transforms the "inValue" input variable (=
"numericOutValue" of PID controller) into a pulse train with a constant period by modulating
the pulse width. This period corresponds to the cycle time in which the input variable is
updated and must be parameterized in the "periodTime" parameter.
The duration of a pulse per period is proportional to the input variable. However, the cycle
parameterized in "periodTime" is not identical to the processing cycle of the _CTRL_pwm
function block. Instead, a "periodTime" cycle comprises several processing cycles of the
_CTRL_pwm function block so that the number of _CTRL_pwm calls per "periodTime" cycle
is a measure of the precision of the pulse width.

Figure 2-4 Pulse width modulation

An input variable of 30% and 10 calls of _CTRL_pwm function block per "periodTime"
therefore mean:
● "TRUE" at the "posPulse" output for the first three calls of the _CTRL_pwm function block

(30% of 10 calls)
● "FALSE" at the "positivePulse" output for seven additional calls of the _CTRL_pwm

function block (70% of 10 calls)

Function blocks
2.5 Pulse width modulation (PWM) with the _CTRL_pwm function block

 Basic Control
30 Function Manual, 08/2008 Edition

Block diagram
The figure below is a block diagram of the _CTRL_pwm function block.

Figure 2-5 Block diagram of the _CTRL_pwm function block

Control output accuracy
With a "sampling ratio" of 1:10 (_CTRL_pid calls to _CTRL_pwm calls), the control output
accuracy in this example is limited to 10%, that is, specified "inValue" input values can only
be mapped onto a pulse length at the "posPulse" output in a 10% grid. The precision
increases in proportion to the number of _CTRL_pwm calls per _CTRL_pid call. For example,
if the _CTRL_pwm function block is called 100 times more frequently than the _CTRL_pid
function block, a resolution of 1% of the control output range is achieved.

 Note
You must program any reduction in the call frequency yourself.

Operating modes
Depending on how the pulse shaper is parameterized, it is possible to configure a two or
three-step control with bipolar or unipolar control range.

Table 2-7 Setting the combinations for possible operating modes

Parameters Operating mode
setManualMode set3StepControl set2StepControl

Three-step control FALSE TRUE arbitrary
Two-step control with bipolar
control range (-100% to 100%)

FALSE FALSE TRUE

Two-step control with unipolar
control range (0% to 100%)

FALSE FALSE FALSE

Manual mode TRUE arbitrary arbitrary

 Function blocks
 2.5 Pulse width modulation (PWM) with the _CTRL_pwm function block

Basic Control
Function Manual, 08/2008 Edition 31

Three-step control
Three control signal states can be generated in "three-step control" mode. To accomplish
this, the status values of binary output signals "posPulse" and "negPulse" are assigned to
the respective operating states of the actuator.

Table 2-8 Example of a temperature control

Final controlling element Output signals
Heat Off Cool

posPulse TRUE FALSE FALSE
negPulse FALSE FALSE TRUE

The pulse duration is calculated from the input variable using a characteristic curve. The
shape of this curve is defined by the minimum pulse and minimum idle times and the ratio
factor, see Figure "Symmetrical characteristic curve of the three-step controller (ratio factor =
1)".
The normal value for the ratio factor is 1.
The breakpoints in the characteristic curves are caused by the minimum pulse and minimum
idle times.
Minimum pulse or minimum idle time
A properly parameterized minimum pulse or minimum idle time "minPulseIdleTime" can
prevent short switch-on or switch-off times that reduce the service life of switchgear and
control equipment.

 Note
Low absolute values of the "inValue" input variable that would produce a pulse time shorter
than "minPulseIdleTime" are suppressed. High input values that would produce a pulse time
longer than ("periodTime - minPulseIdleTime") are set to 100% or -100%.

The duration of the positive or negative pulses is calculated by multiplying the input variable
(in %) and the period:

Function blocks
2.5 Pulse width modulation (PWM) with the _CTRL_pwm function block

 Basic Control
32 Function Manual, 08/2008 Edition

Figure 2-6 Symmetrical characteristic curve of the three-step controller (ratio = 1)

asymmetrical three-step control
Using the "ratioFactor" ratio factor, you can alter the ratio of the positive to negative pulse
durations. In a thermal process, for example, this would allow different system time
constants for heating and cooling.
The ratio factor also influences the minimum pulse or minimum break time. A ratio factor < 1
means that the threshold value for negative pulses is multiplied by the ratio factor.
Ratio factor < 1
The pulse duration calculated by multiplying the input variable and the period at the negative
pulse output is reduced by the ratio factor,see Figure "Asymmetrical characteristic curve of
the three-step controller (ratio factor = 0.5)".

•

 Function blocks
 2.5 Pulse width modulation (PWM) with the _CTRL_pwm function block

Basic Control
Function Manual, 08/2008 Edition 33

Figure 2-7 Asymmetrical characteristic curve of the three-step controller (ratio = 0.5)

Ratio factor > 1
The pulse duration calculated by multiplying the input variable and the period at the positive
pulse output is reduced by the ratio factor.

•

Two-step control
With two-step control, only the "posPulse" pulse output of the _CTRL_pwm function block is
connected to the relevant On/Off actuator. Depending on the manipulated value range used,
the two-step controller has a bipolar or a unipolar manipulated value range, see diagrams
below.
Two-step control with bipolar output range (-100% to 100%)

Figure 2-8 Characteristic curve with bipolar control output range (-100% to 100%)

Function blocks
2.5 Pulse width modulation (PWM) with the _CTRL_pwm function block

 Basic Control
34 Function Manual, 08/2008 Edition

Two-step control with unipolar control output range (0% to 100%)

Figure 2-9 Characteristic curve with unipolar control output range (0% to 100%)

The inverted output signal is available at "negPulse" if the two-step controller interconnection
in the control loop requires a logically inverted binary signal for the actuating pulses.

Table 2-9 Assignment of the output signals posPulse and negPulse

Final controlling element Pulse
ON OFF

posPulse TRUE FALSE
negPulse FALSE TRUE

Manual mode with two-step or three-step control
In manual mode ("setManualMode" = TRUE), it is possible to set the binary outputs of the
two- or three-step controller independently of "inValue" using the "setPosPulse" and
"setNegPulse" signals.

Table 2-10 Parameter assignments

 setPosPulse setNegPulse posPulse negPulse
Three-step control FALSE

TRUE
FALSE
TRUE

FALSE
FALSE
TRUE
TRUE

FALSE
TRUE
FALSE
FALSE

FALSE
FALSE
TRUE
FALSE

Two-step control FALSE
TRUE

arbitrary
arbitrary

FALSE
TRUE

TRUE
FALSE

Initialization routine
If you set the "reset" parameter to TRUE, all output parameters (parameter type OUT) of the
function block are set to FALSE or zero.

Task integration (call)
The _CTRL_pwm function block must be called cyclically in the BackgroundTask or in the
TimerInterruptTask. Calling in the SystemInterruptTask is not permitted. Calling the function
block in the IPOSynchronousTask is not recommended for runtime reasons.

 Function blocks
 2.6 Calling function blocks

Basic Control
Function Manual, 08/2008 Edition 35

2.6 2.6 Calling function blocks
In order to be able to work with the function blocks in your user program, proceed as follows
(The numbers shown in the following program segment correspond to the steps below.):
1. Create the function block instance (see the following program segment, e.g. create

instance for the _CTRL_pid function block).
2. Set up variables for the data structure.
3. Call instance of the function block.
4. Transfer input parameters.
5. The output parameters of the function block are accessed with <instance name of

FB>.<name of output parameter>.

Function blocks
2.6 Calling function blocks

 Basic Control
36 Function Manual, 08/2008 Edition

Call example

UNIT E_bc_PID;

INTERFACE
VAR_GLOBAL
 myEnablePID : BOOL;

 myFbPID : _CTRL_pid; // create "_CTRL_pid" instance (1)
 myDataSetPID : Struct_CTRL_dataPid; // create variable for data structure
 myOutValue1 : REAL; // variable created by user for accessing
 // an output variable of the function block

(2)

END_VAR

PROGRAM ExamplePID; // program in TimerInterruptTask
END_INTERFACE

IMPLEMENTATION

PROGRAM ExamplePID // program in TimerInterruptTask

 myDataSetPID.reset := FALSE; // initialization procedure
 myDataSetPID.setpointValue := 150; // setpoint value
 myDataSetPID.integTime := 2000; // integration time

 // examples for transferring parameters specified by the user to the
 // corresponding parameters of the variable created by the user in the
 // "Struct_CTRL_dataPid" data structure.
 // when the created function block instance is called, the variable created
 // by the user in the "Struct_CTRL_dataPid" data structure is transferred
 // with all of its parameters.

 myFbPID(ENABLE := myEnablePID
 , dataPid := myDataSetPID
);

(3)
(4)

 // the created "_CTRL_pid" instance is called.
 // the "myDataSetPID" variable created by the user is assigned to the
 // "dataPid" variable that is used in the "_CTRL_pid" function block.

 myOutValue1:=myDataSetPID.numericOutValue; (5)

 // an output variable in the "_CTRL_pid" function block
 // is assigned to an "myOutValue1" variable created by the user.

END_PROGRAM

END_IMPLEMENTATION

 Note
The ExamplePID program must be assigned in the execution system.

Basic Control
Function Manual, 08/2008 Edition 37

Application example 3
3.1 3.1 Application example

Introduction
A closed-loop temperature control is to be implemented for a film sealing machine.
A two-ply film is unwound from roll 1, sealed and rewound onto roll 2.

Figure 3-1 Example application for a film sealing machine

Application example
3.1 Application example

 Basic Control
38 Function Manual, 08/2008 Edition

Closed-loop temperature control can be implemented by interconnecting the _CTRL_pid
function block (continuous controller) and the _CTRL_pwm function block (pulse width
modulation).

Figure 3-2 Interconnection of function blocks

Three states are to be implemented:
● Heat (sealing bar)
● OFF
● Cool (fan)
The controller output variable will be converted to a pulse train with constant period by
modulating the pulse width. The temperature (actual value) is measured using a PT 100
(resistance thermometer), which can be connected to an analog module, for example.
If an analog module is used, it must be parameterized for measurement using PT 100 and
the addresses must be set.

Content of application example
Based on the given task, three-step control is selected for the "pulse width modulation" block
as this allows three states (heat, off, cool) of the output control signal to be generated.
The "continuous controller" generates the control output, which converts the "pulse width
modulation" to a pulse pattern and supplies the "posPulse" and "negPulse" outputs.
The task is accomplished in the "E_bc_PID" unit. This unit contains the "ExamplePID"
program, which calls the two blocks. The block calls are implemented using a call counter in
such a way that the "continuous controller" is called every 2 seconds and the "pulse width
modulation" every 20 milliseconds. As a result, there is a 1:100 resolution of "continuous
controller" to "pulse width modulation" block calls.
Using variables, you can initialize the blocks and switch to closed-loop control.
Setting the "myInit" variable (program: E_bc_PID - symbol browser) to "TRUE" causes the
initialization routine to be run through once. The variable is reset at the end of the program.
The control is activated when you set the "myCtrlOn" variable to "TRUE" and deactivated
when you set it to "FALSE".

 Application example
 3.1 Application example

Basic Control
Function Manual, 08/2008 Edition 39

The "myInTemperature" variable is used symbolically as an input address. It is an INTEGER
data type. It may be necessary to convert the actual temperature value to data type
INTEGER (for example, from WORD to INT). The "myInTemperature" variable is assigned to
the "myInValue" variable. The "myInValue" variable is assigned to the
"myDataSetPID.numericActValue" parameter when the instance created of the _CTRL_pid
function block is called. The preassignment of the other input parameters of the instances
created of the _CTRL_pid function block or the _CTRL_pwm function block, see Table
"Preassigned parameters of the _CTRL_pid function block" and Table "Preassigned
parameters of the _CTRL_pwm function block".
Heater and fan operation is controlled by relays. Each of these is connected to a hardware
output. In the example, the "myOutHeating" variable is used symbolically as the output
address for heating and the "myOutCooling" variable for the fan.
The myDataSetPWM.posPulse and myDataSetPWM.negPulse parameters of the instance
created of the _CTRL_pwm function block are assigned to the "myOutValueHeating" and
"myOutValueCooling" variables, respectively. The "myOutHeating" and "myOutCooling"
variables are assigned to the "myOutValueHeating" and "myOutValueCooling" variables,
respectively.
The "myDataSetPID.numericOutValue" output parameter of the instance created of the
_CTRL_pid function block must first be normalized to between 0 and 100% and then adapted
to the three-step control of the _CTRL_pwm function block ("normalizedOutValuePID"
variable).
The "normalizedOutValuePID" variable is assigned to the "myDataSetPWM.inValue"
parameter when the instance created of the _CTRL_pwm function block is called.
Because the cycle time of the blocks is required for internal block calculations, the
"ExamplePID" program must run in a time-triggered task. The cycle time of this task must
match the cycle time of the _CTRL_pwm function block.

 Note
The real addresses are dependent on the hardware configuration of the relevant machine.

Hardware platform
The application example is available for various SIMOTION hardware platforms.

 Note
If the application example is not available for your hardware platform, you must adapt the
hardware configuration.

Adapting the application example
The configuration in the example and its available hardware must be adapted.
The following options are available:
1. You can adapt the configuration in the example to the available hardware (insert

digital/analog module, assign parameters, and set addresses).
2. You can simulate actual value acquisition and control of output variables (heating and

cooling). Operator control and monitoring using the symbol browser.

Application example
3.1 Application example

 Basic Control
40 Function Manual, 08/2008 Edition

Calling the application example
The application example can be found on the "SIMOTION Utilities & Applications" CD-ROM.
The "Utilities & Applications" CD-ROM is provided free of charge with SIMOTION SCOUT.
1. Unarchive and open the project containing the application example.
2. If you add modules (DO/AI) to the example, you must assign I/O variables to the I/O

addresses in the hardware configuration (see table below).
The myInTemperature, myOutValueHeating, and myOutValueCooling variables must
then be commented out or deleted in the program under "VAR_GLOBAL". Otherwise,
these variables will be used instead of the I/O variables.

3. Save and compile the example project. Then, you can download the example to the
SIMOTION device and switch to RUN mode.

4. If the actual value acquisition is simulated, the actual temperature value must be
assigned to the myInTemperature variable in the symbol browser.

5. Set the myCtrlOn variable to TRUE. This activates the control.

 Name I/O address Data type
1 myInTemperature PIW 256 INT
2 myOutValueHeating PQ4.0 BOOL
3 myOutValueCooling PQ4.1 BOOL

 Application example
 3.2 Variables used and preassignments

Basic Control
Function Manual, 08/2008 Edition 41

3.2 3.2 Variables used and preassignments

Variables used in the application example

Table 3-1 Variables used in the application example

Icon Data type Name
myInit BOOL Initialize function blocks
myCtrlOn BOOL Activate control
myInTemperature INT Variable as symbolic input address
myInValue INT Variable for actual temperature value
myOutValueHeating BOOL Variable as symbolic output address
myOutValueCooling BOOL Variable as symbolic output address
myOutHeating BOOL Switch on heating
myOutCooling BOOL Switch on cooling

Preassignment of the other input parameters of the _CTRL_pid und _CTRL_pwm function blocks

Table 3-2 Preassigned parameters of the _CTRL_pid function block

Icon Preassignment Name
myDataSetPID.reset FALSE Initialization routine
myDataSetPID.manualMode FALSE Manual mode
myDataSetPID.actValueType FALSE Activate actual I/O value
myDataSetPID.setPController TRUE Activate P-action component
myDataSetPID.setIController TRUE Activate I-action component
myDataSetPID.holdIValue FALSE Freeze I-action component
myDataSetPID.setIValue FALSE Set I-action component
myDataSetPID.setDController FALSE Activate D-action component
myDataSetPID.cycleTime 2000 Block sampling time
myDataSetPID.setpointValue 150 Setpoint
myDataSetPID.binActValue 16#0 Actual I/O value
myDataSetPID.manualValue 0.0 Manual value
myDataSetPID.propGain 6.0 P-action coefficient
myDataSetPID.integTime 2000 Integration time
myDataSetPID.derivativeTime 1000 Differentiation time
myDataSetPID.delayTime 2000 D-action component delay time
myDataSetPID.deadBand 0 Dead band
myDataSetPID.upperLimit 100 Upper limit of control output
myDataSetPID.lowerLimit -100 Lower limit of control output
myDataSetPID.actValueFactor 1 Actual value factor
myDataSetPID.actValueOffset 0 Actual value offset
myDataSetPID.outValueFactor 1 Control output factor

Application example
3.2 Variables used and preassignments

 Basic Control
42 Function Manual, 08/2008 Edition

Icon Preassignment Name
myDataSetPID.outValueOffset 0 Control output offset
myDataSetPID.initialIValue 0.0 Initialization value for I-action component
myDataSetPID.disturbValue 0.0 Disturbance value

Table 3-3 Preassigned parameters of the _CTRL_pwm function block

Icon Preassignment Name
myDataSetPWM.reset FALSE Initialization routine
myDataSetPWM.periodTime 2000 Period
myDataSetPWM.minPulseIdleTime 0 Minimum pulse or minimum idle time
myDataSetPWM.ratioFactor 1.0 Ratio factor
myDataSetPWM.set3StepControl TRUE Three-step control
myDataSetPWM.set2StepControl FALSE Two-step control
myDataSetPWM.setManualMode FALSE Activate manual mode
myDataSetPWM.setPosPulse FALSE Positive pulse ON (manual mode)
myDataSetPWM.setNegPulse FALSE Negative pulse ON (manual mode)
myDataSetPWM.cycleTime 20 Block sampling time

Basic Control
Function Manual, 08/2008 Edition 43

A Appendix A
A.1 A.1 List of parameters

A comparison of the SIMOTION identifiers up to V3.2/as of V4.0 is shown in the table below.

Table A-1 List of parameters

Name in the SIMOTION system as of V4.0
(program library in SCOUT)

Name in the SIMOTION system up to V3.2
(SIMOTION function library)

Function block parameters

_CTRL_pid _FB_basicControl_PID
enable -
dataPid dataPID
error -
_CTRL_piStep _FB_basicControl_PIStep
enable -
dataPiStep dataPIStep
error -
_CTRL_pwm _FB_basicControl_PWM
enable -
dataPwm dataPWM
error -
Data structure elements

Struct_CTRL_dataPid Struct_basicControl_dataPID
reset reset
manualMode manualMode
actValueType actualValueType
setPController setPController
setIController setIController
holdIValue freezeIValue
setIValue setIValue
initialIValue initialIValue
setDController setDController
cycleTime cycleTime
setpointValue setpointValue
numericActValue numericalActualValue

Appendix
A.1 List of parameters

 Basic Control
44 Function Manual, 08/2008 Edition

Name in the SIMOTION system as of V4.0
(program library in SCOUT)

Name in the SIMOTION system up to V3.2
(SIMOTION function library)

binActValue binaryActualValue
manualValue manualValue
propGain proportionalGain
integTime integrationTime
derivativeTime derivativeTime
delayTime delayTime
deadBand deadBand
upperLimit upperLimit
lowerLimit lowerLimit
actValueFactor actualValueFactor
actValueOffset actualValueOffset
outValueFactor outputValueFactor
outValueOffset outputValueOffset
disturbValue disturbanceValue
numericOutValue numericalOutputValue
binOutValue binaryOutputValue
upperLimitReached upperLimitReached
lowerLimitReached lowerLimitReached
POutValue POutputValue
IOutValue IOutputValue
DOutValue DOutputValue
actValue actualValue
deviationValue deviationValue
Struct_CTRL_dataPiStep Struct_basicControl_dataPIStep
reset reset
actValueType actualValueType
cycleTime cycleTime
setpointValue setpointValue
numericActValue numericalActualValue
binActValue binaryActualValue
propGain proportionalGain
integTime integrationTime
deadBand deadBand
upperLimit upperLimit
lowerLimit lowerLimit
manualMode manualMode
setOutHigh setOutputHigh
setOutLow setOutputLow
minPulseTime minPulseTime
minIdleTime minIdleTime
actuatingTime actuatingTime

 Appendix
 A.1 List of parameters

Basic Control
Function Manual, 08/2008 Edition 45

Name in the SIMOTION system as of V4.0
(program library in SCOUT)

Name in the SIMOTION system up to V3.2
(SIMOTION function library)

actValueFactor actualValueFactor
actValueOffset actualValueOffset
disturbanceValue disturbanceValue
outHigh outputHigh
outLow outputLow
actValue actualValue
deviationValue deviationValue
Struct_CTRL_dataPwm Struct_basicControl_dataPWM
reset reset
inValue inputValue
periodTime periodTime
minPulseIdleTime minPulseIdleTime
ratioFactor ratioFactor
set3StepControl setThreeStepControl
set2StepControl setTwoStepControl
setManualMode setManualMode
setPosPulse setPositivePulse
setNegPulse setNegativePulse
cycleTime cycleTime
posPulse positivePulse
negPulse negativePulse

Appendix
A.2 List of abbreviations

 Basic Control
46 Function Manual, 08/2008 Edition

A.2 A.2 List of abbreviations

Table A-2 Abbreviations

Abbreviation Meaning
FB Function block
IN Input parameter
IN/OUT In/out parameter
LAD Ladder logic
OUT Output parameter
SCOUT SIMOTION Controlling with Optimized Usability Toolbox

Basic Control
Function Manual, 08/2008 Edition 47

Index

_
_CTRL_pid function block parameters, 13

A
Application example, 37

B
Basic Control

Overview, 9
Block diagram

FB _CTRL_pid, 19
FB _CTRL_piStep, 25
FB _CTRL_pwm, 30

C
Calling function blocks, 35
Continuous control, 9
Controlled system analysis, 10
Controller selection, 10

D
Data structure of PID controller, 14
Data structure of PI-step controller, 21
Data structure of pulse width modulation, 27

F
FB _CTRL_pid, 13

Block diagram, 19
Data structure, 14
Parameter description, 13

FB _CTRL_piStep, 20
Block diagram, 25
Data structure, 21
Parameter description, 20

FB _CTRL_pwm, 26

asymmetrical three-step control, 32
Block diagram, 30
Data structure, 27
Parameter description, 26
Three-step control, 31
Two-step control, 33

Function blocks
_CTRL_pid, 13
_CTRL_piStep, 20
_CTRL_pwm, 26
Task integration, 19, 25, 34

I
Integrating the function blocks, 12

L
List of parameters, 43

P
Parameters of the _CTRL_piStep function block, 20
Parameters of the _CTRL_pwm function block, 26
Possible applications, 10
Pulse shapes with the _CTRL_pwm function block, 26
Pulse width modulation, 9

R
References, 3

S
Step closed-loop control, 9
Step control using the _CTRL_piStep function block, 20

T
Task integration, 19, 25, 34

	SIMOTION Basic Control
	Preface
	Table of contents
	1 Description
	1.1 General
	1.2 Product description

	2 Function blocks
	2.1 Overview
	2.2 Integrating the function blocks in the user project
	2.3 Continuous control with the _CTRL_pid function block
	2.4 Step control using the _CTRL_piStep function block
	2.5 Pulse width modulation (PWM) with the _CTRL_pwm function block
	2.6 Calling function blocks

	3 Application example
	3.1 Application example
	3.2 Variables used and preassignments

	A Appendix
	A.1 List of parameters
	A.2 List of abbreviations

	Index

