Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

⚠️ **DANGER**
indicates that death or severe personal injury will result if proper precautions are not taken.

⚠️ **WARNING**
indicates that death or severe personal injury may result if proper precautions are not taken.

⚠️ **CAUTION**
with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

⚠️ **CAUTION**
without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE
indicates that an unintended result or situation can occur if the relevant information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

⚠️ **WARNING**
Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by © are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.
Table of contents

1. Introduction ... 5
2. Components of the product .. 7
3. Functional description ... 9
 3.1 Interfaces ...9
 3.2 Opto-electrical signal conversion and signal regeneration ..9
 3.3 Supported FO fiber types ...10
 3.4 Displays..10
 3.5 Operator controls ...11
4. Network topology ... 13
 4.1 Optical bus ...13
 4.2 Integration of long FO cable runs ...14
 4.3 Integrating RS-485 segments ..15
5. Commissioning ... 17
 5.1 Procedure for commissioning ..20
 5.2 Installation ..21
6. Help with problems during operation ... 27
 6.1 Help with problems during operation ...27
7. Technical data ... 29
8. Approvals and certificates .. 33
 8.1 Notes on the CE mark ..33
The PROFIBUS OBT (Optical Bus Terminal) is a network component used in optical PROFIBUS DP fieldbus networks. It allows the connection of either a single device without an integrated optical interface or an RS-485 segment to the optical PROFIBUS DP. The following figure shows an example of a configuration.

Figure 1-1 Example of an optical PROFIBUS DP configuration

1) PROFIBUS cable (terminated at both ends)
2) Plastic FO cable or PCF FO cable with two fibers
Connections

The connection between the individual bus nodes takes the form of an optical bus with two-fiber plastic fiber-optic cables (plastic fiber-optic cables are also known as POF, Polymer Optical Fiber) or PCF fiber-optic cables (PCF = Polymer Cladded Fiber, synonymous with HCS1 fiber-optic cable). Since fiber-optic cables (FO cable) are completely insensitive to EMC interference, complex grounding concepts and protection measures are unnecessary. This also applies to the laying of a equipotential bonding cables. Due to be opto-electronic conversion, there is automatically electrical isolation so that potential differences as can occur in extensive plants are no longer noticed.

1) HCS is a registered trademark of Spectran Speciality Optics and stands for "Hard Polymer Cladded Silica Fiber".

Sensitivity

Just as the FO cable is insensitive to EMC interference, an FO cable also emits no electromagnetic waves into its environment. Sensitive electronic devices located in the vicinity of the fiber-optic cable therefore need no additional protection or suppression measures.

Power supply

The OBT requires an operating power supply of 24 VDC that is connected via two screw terminals.

Operating state

LEDs signal the current operating state and any problems affecting operation.

Mechanical construction

The mechanical construction consists of a compact plastic housing that can be mounted either on a DIN rail or any flat surface.
Components of the product

Supplied

- 1 x PROFIBUS OBT
- 1 x Operating instructions (Compact) A5E03345735-01

Not supplied

- Plastic fiber-optic cables, sold in meters
- Assembly tool for fiber-optic cable connectors
- Operating Instructions for the PROFIBUS OBT
- Fiber-optic cable connectors
Functional description

The OBT is a repeater with 3 channels.

3.1 Interfaces

The OBT has the following interfaces for connection of PROFIBUS DP segments:

- Channel 1 (CH1) is an electrical RS-485 interface. It is designed as a 9-pin D-sub female connector. A PROFIBUS DP node or a PC, PG, OP or an RS-485 segment can be connected to the OBT via this channel. The copper segment should be kept as short as possible since this can couple in disturbances into the optical PROFIBUS DP.

- Channel 2 (CH2) and channel 3 (CH3) are optical interfaces. These are designed as duplex female connectors. The end a two-fiber plastic or PCF fiber-optic cable fitted with two simplex male connectors is connected to each of these duplex female connectors.

The OBT also has a 3-pin terminal for connection of the 24 V power supply and, if necessary, a ground cable.

3.2 Opto-electrical signal conversion and signal regeneration

The OBT converts the RS-485 level received at channel 1 into an optical signal level that is output via channels 2 and channel 3.

Signals received at channel 2 or 3 are converted to electrical signals and

- output on channel 1 as an electrical signal
- they are then converted into an optical signal again and output on the other optical channel.

There is no echo on the receive channel; in other words, received signals are not sent back on the same channel.

The OBT regenerates the signals in amplitude and time. This makes it possible to cascade up to 126 modules in an optical bus. The cascading depth is simply limited by the monitoring times of the connected devices.

The latency per OBT is 6 bit times.
3.3 **Supported FO fiber types**

The OBT supports the fiber types listed in the following table:

<table>
<thead>
<tr>
<th>Fiber type</th>
<th>Link length between 2 devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic FO cable 980/1000 μm with 2 fibers and max. max. 200 dB/km cable attenuation</td>
<td>0.1 to 50 meters</td>
</tr>
<tr>
<td>PCF FO cable 200/230 μm with 2 fibers and max. max. 10 dB/km cable attenuation</td>
<td>0 to 300 meters</td>
</tr>
</tbody>
</table>

The specified link length between the devices assumes that the partner devices use the same optical components as the OBT. This is, for example, the case with the IM 153–2 FO and IM 467 FO.

The transmission speed is not dependent on the fiber type used or the cable length. This can be up to 12 Mbps.

The following accessories are available:

- Plastic fiber-optic cable (sold in meters), connectors/polishing set and the assembly tool for plastic fiber-optic cable
 - The plastic fiber-optic cables do not have connectors fitted. The plastic simplex connectors can be fitted easily on site with the available tools.

- PCF FO cable (preassembled)
 - PCF cables with 4 PCF simplex connectors fitted are available in fixed lengths.

3.4 **Displays**

The OBT has 4 LEDs to display the operating state.

L+ 24 V (green)

- not lit: Power supply missing or internal power supply is defective or short-circuited
- flashes: Power supply present, transmission speed not yet set
- lit green: Transmission speed set, power supply functioning correctly

CH1, CH2, CH3 (channel 1 to 3, yellow)

- not lit: Data is not being received
- lit yellow: Data is being received
3.5 Operator controls

The OBT itself does not have any controls. The only point to remember is that the PROFIBUS connecting cable connected to channel 1 (does not ship with product) needs to be terminated at both ends.
4.1 Optical bus

Along with other SIMATIC devices such as the IM 153–2 FO or IM 467 FO, OBTs are connected to optical PROFIBUS DP to form an optical bus.

PROFIBUS DP bus nodes with an RS-485 interface are connected to channel 1 of the OBT via bus connectors and a PROFIBUS bus cable. The bus segment must be terminated at both ends.

The OBT can be used at any point on the optical bus. If it is used at the start or end, the unused optical channel must remain closed with the rubber plug. This prevents contamination of the optical elements and disturbances caused by incident light.

The connection on an optical bus is made using two-fiber plastic FO cable (max length 50 m) or PCF FO cable (max. length 300 m). The FO cables have two simplex connectors fitted at both ends.

The FO connection between two devices is established by the optical transmitter of one device being connected to the optical receiver of the other device via a fiber, while the optical receiver of the first device is connected to the optical transmitter of the other (crossover cable).

If an OBT or a fiber-optic cable fails, the network is split into two separate networks. Depending on the location of the problem, devices are no longer accessible.

Note

If problems are detected on the electrical interface, there is a segmentation, in other words, the frames are not forwarded. The segmentation is canceled when the problem has been eliminated. In this case, it is assumed that a minimum number of error-free frames were received on the electrical channel. The segmentation is also canceled when no frames are received for at least 1 second. In this case, it is assumed that unplugging the PROFIBUS connector caused problems and that there are no more nodes on the electrical channel.

The OBT does not support the establishment of single-fiber rings or redundant ring structures.
4.2 Integration of long FO cable runs

The maximum permitted length of PCF FO cable with the OBT is 300 m. If longer FO links or other FO cable types, for example glass graded index fibers or monomode fibers are necessary, they can be used by combining OBTs with OLMs (Optical Link Module). In this situation, the OBT is connected electrically with the OLM (OBT/CH 1 to OLM/CH 1) and the OLM is connected to the long FO cable link. At the end of the FO cable link, the combination is reversed with a second OLM/OBT pair.

![Diagram showing the connection of OBTs and OLMs](image)

1) PROFIBUS cable (terminated at both ends)
2) Plastic FO cable or PCF FO cable with two fibers
3) FO cable for longer distances

Figure 4-1 Example of covering longer FO links with OBTs and OLMs

The maximum permitted transmission speed and the type and maximum length of the FO cable link is decided by the OLM type.
4.3 Integrating RS-485 segments

The OBT allows the attachment of a PROFIBUS RS-485 segment.

1) PROFIBUS cable
2) Plastic FO cable or PCF FO cable with two fibers
3) PROFIBUS cable (terminated)
4) PROFIBUS cable (not terminated)

Figure 4-2 Example of the integration of RS-485 segments
Network topology

4.3 Integrating RS-485 segments
Commissioning

Note
Use the PROFIBUS OBT only as intended in these Operating Instructions.

Note
Pay particular attention to all warnings and notices relevant to safety.

WARNING
Operate the PROFIBUS OBT only with safety extra-low voltage complying with IEC 950 / EN 60 950/VDE 0805 of maximum +28.8 V (typically +24 V). The power source must meet the requirements of the UL/CSA approval for NEC Class 2 according to the National Electrical Code (r) (ANSI / NFPA 70).

Note
Never look directly into the opening of the optical transmission diode. The emitted light beam could endanger your eyes.

Note
Never connect the PROFIBUS OBT to a 100 V - 240 V power supply.

Note
Install the device so that the climatic limit values in the technical specifications are adhered to.
Note
The RS-485 channel CH1 of the PROFIBUS OBT is isolated from the 24 V input. This isolation relates to functionality and is not a safety measure.

Note
Make sure that the PROFIBUS OBT is adequately grounded by connecting the DIN rail or mounting plate to local ground with low resistance and inductance. When securing the module to a mounting plate, run a cable from the grounding terminal of the OBT to the nearest possible ground, keeping the cable as short as possible.

The shield of the PROFIBUS cable must be contacted. To do this, strip the insulation from the end of the PROFIBUS cable and connect the shield to functional earth.

Note
Only use bus cables approved for PROFIBUS as the RS-485 bus cable.

Note
The OBT housing must not be opened.

General notices on use in hazardous areas

⚠️ WARNING
Risk of explosion when connecting or disconnecting the device
WARNING – EXPLOSION HAZARD
DO NOT CONNECT OR DISCONNECT EQUIPMENT WHEN A FLAMMABLE OR COMBUSTIBLE ATMOSPHERE IS PRESENT.
WARNING

WARNING – EXPLOSION HAZARD

DO NOT DISCONNECT WHILE CIRCUIT IS LIVE UNLESS AREA IS KNOWN TO BE NON-HAZARDOUS.

WARNING

WARNING – EXPLOSION HAZARD

SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2.

WARNING

This equipment is suitable for use in Class I, Division 2, Groups A, B, C, and D or non-hazardous locations only.

WARNING

This equipment is suitable for use in Class I, Zone 2, Group IIC or non-hazardous locations only.

General notice on use in hazardous areas according to ATEX

WARNING

Requirements for the cabinet/enclosure

When used in hazardous environments corresponding to Class I, Division 2 or Class I, Zone 2, the device must be installed in a cabinet or a suitable enclosure.
5.1 Procedure for commissioning

Commissioning the PROFIBUS OBT involves the following steps:

- Mounting the PROFIBUS OBT;
- Connecting the power supply;
- Connecting the optical bus cables;
- Connecting the electrical RS-485 bus cable.
5.2 Installation

Mounting the PROFIBUS OBT

The PROFIBUS OBTs can be mounted either on a 35 mm DIN rail with a height of 15 mm according to DIN 50 022 - 35 x 15 or directly on a flat surface.

1. Install the device so that the climatic limit values in the technical specifications are adhered to.
2. Make sure that there is adequate space to connect the bus and power supply cables.
3. Mount the modules only on a rail or mounting plate that is grounded with low resistance and inductance. When securing the module to a mounting plate, run a cable from the grounding terminal of the OBT to the nearest possible ground, keeping the cable as short as possible.

Mounting on a DIN rail

Fit the upper catch of the module over the DIN rail and push in the lower part of the module as shown in Figure 5-1 until it clicks in place.

To remove the module, pull down the locking lever.
Mounting on a mounting plate

The PROFIBUS OBTs have two holes. These allow mounting on any flat surface, for example on the mounting plate of a cabinet.

Drill two holes in the mounting plate as shown in the drilling template in Figure 5-2.

Secure the module with two machine screws (for example M3 x 75 and M3 x 55).

Make sure that there is a reliable electrical connection between the terminal of the module housing and the grounded mounting plate using a grounding cable of at least 2.5 mm².

Figure 5-2 Mounting a module on a mounting plate
Instructions for assembling plastic fiber-optic cable (with photos)

You will find detailed instructions (with photos) on fitting connectors to plastic fiber-optic cables on the Internet

Connecting the operating power supply

![Diagram of 3-pin terminal block](image)

Figure 5-3 Pin assignment of the 3-pin terminal block – grounding terminal \(\downarrow\) and power supply M, L+

1. Supply the PROFIBUS OBT only with a stabilized safety extra-low voltage complying with IEC 950 / EN 60 950/VDE 0805 of nominally 24 V (minimum 19.2 V and maximum 28.8 V). The power source must meet the requirements of NEC Class 2 according to the UL/CSA approval.

2. If the PROFIBUS OBT is not mounted on a grounded DIN rail, run a grounding cable with a cross-section of 2.5 mm² from the terminal \(\downarrow\) to the nearest ground keeping the cable as short as possible.
Connecting the optical bus cables

Figure 5-4 View of the module from the side with the optical channels CH2 and CH3

A = CH2, optical receiver
B = CH2, optical transmitter
C = CH3, optical receiver
D = CH3, optical transmitter

Connect the individual PROFIBUS OBTs using a duplex fiber-optic cable fitted with two pairs of simplex connectors.

Make sure that an optical input is connected to an optical output (crossover connection).

Provide adequate strain relief for the fiber-optic cable and remember the minimum bend radii of the FO cable.

Close unused FO cable sockets with the supplied plastic plugs. Incident light from the surroundings can cause disturbances on the PROFIBUS network particularly, if the surroundings are very bright.

Remember the minimum and maximum length of the FO cable and the permitted fiber types listed in Table 1 and in the technical specifications.

Make sure that no dust gets into the optical components. Dust in the optical components can make them unusable.
The fiber of the FO cable must be flush with the surface of the connector.

Note
If the fiber juts out beyond the surface of the connector, the connector must not be inserted in the socket. Otherwise there is a risk of destroying the optical components.

Connecting the electrical RS-485 cable
Channel CH1 is used to connect a single PROFIBUS DP end device or an RS-485 segment. CH1 is designed as an electrical RS-485 interface with a 9-pin D-sub female connector.

1. As the RS-485 bus cable, use only shielded and twisted SIMATIC NET two-wire cables for PROFIBUS.
2. Do not connect any RS-485 bus cables that are laid entirely or partly outdoors. Otherwise, lightning strikes in the surroundings could destroy the PROFIBUS OBTs. If you have bus connections that leave the building, use fiber-optic cables whenever possible.
3. Disconnect the RS-485 bus cable from the OBT if you have not connected a node to the other end of the cable. Coupling in interference can cause disturbances on PROFIBUS.

See also
Commissioning

5.2 Installation
Help with problems during operation

6.1 Help with problems during operation

<table>
<thead>
<tr>
<th>LED display</th>
<th>Possible cause of problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+ 24 V LED not lit</td>
<td>• Power supply failed
• OBT defective</td>
</tr>
<tr>
<td>L+ 24 V LED flashes</td>
<td>• The transmission speed could not be set</td>
</tr>
<tr>
<td>CH1 LED not lit</td>
<td>• One or more wires of the RS-485 bus cable is interrupted
• Wires A and B of the RS-485 bus cable had been swapped over
• Connected PROFIBUS node is defective or is not transmitting
• PROFIBUS node or RS-485 segment is not connected or connected or PROFIBUS node is not turned on</td>
</tr>
<tr>
<td>CH1 LED lit PROFIBUS nodes are, however, signaling problems on the bus</td>
<td>• Wires A and B of the RS-485 bus cable had been swapped over
• Short circuit on the RS-485 bus cable
• Interruption of one of the two wires of the RS-485 bus cable and A or B connected to wrong terminal
• Missing or incorrect termination</td>
</tr>
<tr>
<td>CH2, CH3 LED not lit</td>
<td>• Send and receive FO cable connected to wrong socket
• Interruption of the receive FO cable to the partner module
• No partner module connected or connected partner module is not turned on
• Connected partner module is defective (not transmitting)</td>
</tr>
<tr>
<td>CH2, CH3 LED lit PROFIBUS nodes are, however, signaling problems on the bus</td>
<td>• FO cable connector is loose (bad contact)
• FO cable link to the neighboring module is too long
• Interruption of the receive FO cable with extraneous light entering</td>
</tr>
</tbody>
</table>

If no LED indicates an error and you are still experiencing problems in communication (for example an acknowledgement is not received, unexpected frames), you should check the monitoring times set on the PROFIBUS nodes (for example the slot time). You will find details in the description of your PROFIBUS end devices and your configuration software.
Help with problems during operation

6.1 Help with problems during operation
Table 7-1 Technical specifications

General

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage (safety extra-low voltage, SELV or to NEC Class 2)</td>
<td>24 V = (19.2 V to 28.8 V)</td>
</tr>
<tr>
<td>Current consumption at 24 V input</td>
<td>max. 180 mA</td>
</tr>
<tr>
<td>Bleed resistance between terminal M and terminal</td>
<td>11 Mohms</td>
</tr>
<tr>
<td>Transmission speed</td>
<td>12 Mbps, 6 Mbps, 3 Mbps, 1.5 Mbps, 500 Kbps, 187.5 Kbps, 93.75 Kbps, 45.45 Kbps, 19.2 Kbps, 9.6 Kbps</td>
</tr>
<tr>
<td>Setting the transmission speed</td>
<td>performed automatically</td>
</tr>
<tr>
<td>Operating mode</td>
<td>optical bus</td>
</tr>
<tr>
<td>Bit error rate</td>
<td><10⁻⁹</td>
</tr>
<tr>
<td>Input channel 1 to 3</td>
<td></td>
</tr>
<tr>
<td>Bit length</td>
<td>0.7 to 1.3 tBit</td>
</tr>
<tr>
<td>Jitter</td>
<td>-0.03 to +0.03 tBit</td>
</tr>
<tr>
<td>Output channel 1 to 3</td>
<td></td>
</tr>
<tr>
<td>Bit length</td>
<td>0.99 to 1.01 tBit</td>
</tr>
<tr>
<td>Jitter</td>
<td>-0.003 to +0.003 tBit</td>
</tr>
<tr>
<td>Signal latency (any input/output)</td>
<td>≤ 6 tBit</td>
</tr>
<tr>
<td>Cascading depth optical bus</td>
<td>limited only by latency</td>
</tr>
</tbody>
</table>

Electrical channel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input/output signal</td>
<td>RS-485 level</td>
</tr>
<tr>
<td>Input dielectric strength</td>
<td>-7 V to +12 V</td>
</tr>
<tr>
<td>Minimum current at 5 V (for terminators)</td>
<td>10 mA</td>
</tr>
<tr>
<td>Electrical isolation to 24 V input</td>
<td>Isolation due to functionality, not safety!</td>
</tr>
</tbody>
</table>

Optical channel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical source</td>
<td>LED</td>
</tr>
<tr>
<td>Injectable optical power</td>
<td>$P_{T(min)}$</td>
</tr>
<tr>
<td>- with plastic fiber 980/1000</td>
<td>-5.9 dBm</td>
</tr>
<tr>
<td>- with PCF fiber 200/230</td>
<td>-16 dBm</td>
</tr>
<tr>
<td>Sensitivity of receiver</td>
<td>$P_{R(min)}$</td>
</tr>
<tr>
<td>- with plastic fiber 980/1000</td>
<td>-20 dBm</td>
</tr>
<tr>
<td>- with PCF fiber 200/230</td>
<td>-22 dBm</td>
</tr>
<tr>
<td></td>
<td>$P_{T(max)}$</td>
</tr>
<tr>
<td></td>
<td>+0.5 dBm</td>
</tr>
<tr>
<td></td>
<td>-1.5 dBm</td>
</tr>
<tr>
<td></td>
<td>0 dBm</td>
</tr>
<tr>
<td></td>
<td>-2 dBm</td>
</tr>
</tbody>
</table>
Technical data

Optical channel

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>640 nm to 660 nm</td>
</tr>
<tr>
<td>Permitted FO cable attenuation (with link power margin)</td>
<td></td>
</tr>
<tr>
<td>– with plastic fiber 980/1000</td>
<td>13 dB</td>
</tr>
<tr>
<td>– with PCF fiber 200/230</td>
<td>3 dB</td>
</tr>
<tr>
<td>Link distance with 3 dB link power margin</td>
<td></td>
</tr>
<tr>
<td>– with plastic fiber 980/1000 with max. 200 dB/km cable attenuation</td>
<td>0.1 m to 50 m</td>
</tr>
<tr>
<td>– with PCF fiber 200/230 with max. 10 dB/km cable attenuation</td>
<td>0 m to 300 m</td>
</tr>
<tr>
<td>Fiberoptic connectors</td>
<td>Simplex / duplex</td>
</tr>
</tbody>
</table>

Electromagnetic compatibility (EMC)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission</td>
<td>Limit class A (EN 55022)</td>
</tr>
<tr>
<td>Immunity against static discharge</td>
<td>On shield connector and housing parts: ±6 kV contact discharge (IEC 61000-4-2)</td>
</tr>
<tr>
<td>Immunity against RF radiation</td>
<td>10 V/m at 80% amplitude modulation with 1 kHz, 80 MHz – 1 GHz (ENV 50140; IEC 61000–4–3)</td>
</tr>
<tr>
<td></td>
<td>10 V/m with 50% load factor at 900 MHz (to ENV 50 204)</td>
</tr>
<tr>
<td></td>
<td>10 V/m at 80% amplitude modulation with 1 kHz, 10 kHz – 80 MHz (ENV 50141)</td>
</tr>
<tr>
<td>Immunity to conducted disturbances (burst)</td>
<td>On power supply cables and shielded RS-485 bus cables: ±2 kV (IEC 61000–4–4)</td>
</tr>
<tr>
<td>Immunity to conducted disturbances (surge)</td>
<td>On power supply cables: ±1 kV symmetrical and +2 kV asymmetrical</td>
</tr>
<tr>
<td></td>
<td>On shielded RS485 bus cables: ±2 kV asymmetrical (IEC 61000–4–5)</td>
</tr>
</tbody>
</table>

Safety

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VDE regulation</td>
<td>VDE 0806 = EN60950 and IEC 60950-1</td>
</tr>
<tr>
<td>UL/CSA approval</td>
<td>complying with UL 60950-1, CSA C22.2 No. 60950-00</td>
</tr>
</tbody>
</table>

Climatic environmental conditions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>0 °C to +60 °C (IEC 60068-2-1, IEC 60068-2-2)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40 °C to +70 °C (IEC 60068-2-1, IEC 60068-2-2)</td>
</tr>
</tbody>
</table>
Climatic environmental conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative humidity</td>
<td>< 95% (no condensation) (IEC 60068-2-30)</td>
</tr>
<tr>
<td>Fast change of temperature during operation</td>
<td>0 °C to +60 °C; exposure time 3 h; temperature change 3 K/min.; 5 cycles (IEC 60068-2-14)</td>
</tr>
</tbody>
</table>

Mechanical environmental conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillation in operation</td>
<td>10 to 58 Hz, 0.075 mm excursion</td>
</tr>
<tr>
<td></td>
<td>58 to 150 Hz, 10 m/s² (1g) acceleration (IEC 60068-2-6)</td>
</tr>
<tr>
<td>Oscillation during transportation</td>
<td>5 to 9 Hz, 3.5 mm excursion</td>
</tr>
<tr>
<td></td>
<td>9 to 500 Hz, 10 m/s² (1g) acceleration (IEC 60068-2-6)</td>
</tr>
<tr>
<td>Degree of protection (with external fuse ≤ 8 A)</td>
<td>IP30</td>
</tr>
<tr>
<td>Weight</td>
<td>400 g</td>
</tr>
<tr>
<td>Dimensions</td>
<td>50.5 x 138 x 78 mm</td>
</tr>
<tr>
<td>Housing material</td>
<td>Noryl anthracite</td>
</tr>
</tbody>
</table>
8 Approvals and certificates

8.1 Notes on the CE mark

Product name:
Optical Bus Terminal PROFIBUS OBT, order no.: 6GK1500–3AA10

<table>
<thead>
<tr>
<th>Area of application</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td>Emissions: EN 61000-6-4:2007</td>
</tr>
</tbody>
</table>

Declaration of conformity
The EC Declaration of Conformity is available for the responsible authorities according to the above-mentioned EC Directive at the following address:
Siemens Aktiengesellschaft
Industry Automation Sensors and Communication, Industrial Communication (I IA SC IC)
Postfach 4848
D–90026 Nuernberg

Installation guidelines
The product meets the requirements if you adhere to the installation guidelines included in Optical Bus Terminal PROFIBUS OBT documentation during installation and operation.

The accessible radiation power of the transmit LEDs used complies with Class 1 according to EN 60825–1:2007 or IEC 60825–1:2007 incl. Amendment 1:1997 LED Class 1

The accessible radiation powers after opening the FO cable deliberately or accidentally correspond to degree of danger 1 according to EN 60825–2:2007 or 60825–2:2007

Notes for the manufacturers of machines
Communications processors are not machines in the sense of the EC Machinery Directive 2006/42/EEC. There is therefore no declaration of conformity relating to the current version of the EC Machinery Directive 2006/42/EEC for these products.

If the products are part of the equipment of a machine, they must be included in the declaration of conformity procedure by the manufacturer of the machine.
8.1 Notes on the CE mark

Explosion protection directive (ATEX)

The SIMATIC NET product meets the requirements of the EC directive:94/9/EC “Equipment and Protective Devices for Use in Potentially Explosive Atmospheres”.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>When using (installing) SIMATIC NET products in hazardous area zone 2, make absolutely sure that the associated conditions are adhered to. You will find information on this on the Manual Collection DVD.</td>
</tr>
</tbody>
</table>

ATEX code:
II 3 G Ex nA II T4 KEMA 07 ATEX 0145X

The product meets the requirements of the standards
- EN 60079-15 : 2005 (electrical apparatus for potentially explosive atmospheres; Type of protection "n")
- and EN 60079-0:2006

FM approval

The product meets the requirements of the standards
- Factory Mutual Approval Standard Class Number 3611
- FM Hazardous (Classified) Location Electrical Equipment:
 Non Incendive / Class I / Division 2 / Groups A,B,C,D / T4 and
 Non Incendive / Class I / Zone 2 / Group IIC / T4

cULus Approval for Information Technology Equipment

cULus Listed I. T. E.

Underwriters Laboratories Inc. complying with
- UL 60950-1 (Information Technology Equipment)
- CSA C22.2 No. 60950-1-03

cULus Approval Hazardous Location

cULus Listed I. T. E. FOR HAZ. LOC.

Underwriters Laboratories Inc. complying with
- UL 60950-1 (Information Technology Equipment)
- CSA C22.2 No. 213-M1987
- UL 1604 and 2279-15 (Hazardous Location)

Approved for use in
Cl. 1, Div. 2, GP. A, B, C, D, T4
Cl. 1, Zone 2, GP. IIC T4