

Applications & Tools

Answers for industry.

Cover sheet

ADEPT Robot Control using a
SIMATIC S7-300 Controller
“ADEPT_RobotControl” Function Block

Application Description  August 2013

2
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Siemens Industry Online Support
This entry is from the Siemens Industry Online Support. The following link will take
you directly to the download page of this document:
http://support.automation.siemens.com/WW/view/en/79100154

Caution:
The functions and solutions described in this entry are mainly limited to the
realization of the automation task. Please also take into account that corresponding
protective measures have to be taken in the context of Industrial Security when
connecting your equipment to other parts of the plant, the enterprise network or the
Internet. For more information, please refer to Entry ID 50203404.
http://support.automation.siemens.com/WW/view/en/50203404

http://support.automation.siemens.com/WW/view/en/79100154
http://support.automation.siemens.com/WW/view/en/50203404

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 3

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

s

SIMATIC
FB "ADEPT_RobotControl"

SIMATIC S7-300

Task
 1

Solution
 2

Basics
 3

Function Mechanisms
 4

Installation
 5

Startup
 6

Operation of the
Application

 7

Related Literature
 8

History
 9

Warranty and Liability

4
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Warranty and Liability

Note The Application Examples are not binding and do not claim to be complete with
regard to configuration, equipment or any contingencies. The application
examples do not represent customer-specific solutions; they are only intended to
provide support for typical applications. You are solely responsible for the correct
operation of the described products. These Application Examples do not relieve
you of your responsibility to use sound practices in application, installation,
operation and maintenance. Through using these Application Examples, you
acknowledge that we will not be liable for any damage/claims beyond the liability
clause described. We reserve the right to make changes to these Application
Examples at any time and without prior notice. If there are any deviations
between the recommendations provided in this Application Example and other
Siemens publications – e.g. Catalogs – the contents of the other documents shall
have priority.

We do not accept any liability for the information contained in this document.
Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this Application Example shall be excluded. Such an exclusion shall
not apply in the case of mandatory liability, e.g. under the German Product Liability
Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,
body or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The compensation for damages due to a breach
of a fundamental contractual obligation is, however, limited to the foreseeable
damage, typical for the type of contract, except in the event of intent or gross
negligence or injury to life, body or health. The above provisions do not imply a
change in the burden of proof to your disadvantage.

Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the express consent of Siemens Industry Sector.

Preface

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 5

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Preface
Objective of this application

It is the purpose of the application to describe how an ADEPT robot can be
controlled via a SIMATIC S7-300 controller in a convenient and easy way using a
preprogrammed function block.
In this application, the description of the robot control is restricted to the use of the
preprogrammed function block for influencing the robot functions on the robot
controller. For robot-specific features and functions please refer to the
documentation by the robot manufacturer.

This application was developed in cooperation with the following robot
manufacturer:

Adept Technology GmbH
Otto-Hahn-Str. 23
44227 Dortmund, Germany

Phone: +49 - 231 75 89 4-0
Fax: +49 - 231 75 89 4-50
E-mail: info.de@adept.com

Main contents of this application

The following main points will be discussed in this application:
• Connecting an ADEPT robot to a SIMATIC controller
• Controlling the ADEPT robot via a preprogrammed function block through a

SIMATIC controller

Validity

This application can only be used together with the ADEPT data interface for the
ADEPT SmartController EX with the following version:
• ADEPT ePLC V3.1B Preliminary or higher

Security notice

This application is limited to controlling the ADEPT Robot via a SIMATIC S7-300
Controller. Secure operation of the ADEPT robot is not possible this way.
Particularly in case of a communication failure between the SIMATIC Controller
and the robot controller the robot behavior can no longer be influenced through the
SIMATIC Controller.

DANGER

In case of danger, take additional measures for stopping the robot if the
robot movements can no longer be influenced by the SIMATIC Controller.

Table of Contents

6
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Table of Contents
Warranty and Liability ... 4

Table of Contents ... 6
1 Task ... 8

1.1 Introduction ... 8
1.2 Automation Task .. 9

2 Solution... 10

2.1 Overview... 10
2.1.1 Advantages of the automation solution .. 10
2.1.2 Delimitation ... 10
2.2 Core functionality .. 11
2.3 Required hardware and software components 11
2.3.1 Hardware components ... 11
2.3.2 Software components ... 12
2.3.3 Sample files and projects ... 13

3 Basics ... 14

3.1 Communication connection to the robot ... 14
3.2 ADEPT ePLC setup .. 14
3.2.1 General ... 14
3.2.2 Communication principle .. 15
3.2.3 Command data ... 15
3.2.4 Status data ... 22

4 Function Mechanisms ... 28

4.1 POWER - switching the power on/off ... 28
4.1.1 Functionality ... 28
4.1.2 ADEPT ePLC signals involved ... 28
4.1.3 Signal sequence for function control .. 28
4.2 CALIBRATE - Reference the robot axes .. 29
4.2.1 Functionality ... 29
4.2.2 ADEPT ePLC signals involved ... 29
4.2.3 Signal sequence for function control .. 29
4.3 RESET - Reset errors at the robot ... 30
4.3.1 Functionality ... 30
4.3.2 ADEPT ePLC signals involved ... 30
4.3.3 Signal sequence for function control .. 30
4.4 BRAKE - Immediately stop robot movement...................................... 31
4.4.1 Functionality ... 31
4.4.2 ADEPT ePLC signals involved ... 31
4.4.3 Signal sequence for function control .. 31
4.5 JOG - Move axes in jog mode .. 32
4.5.1 Functionality ... 32
4.5.2 ADEPT ePLC signals involved ... 32
4.5.3 Signal sequence for function control .. 32
4.6 MOVE - Perform sequences of movements 33
4.6.1 Functionality ... 33
4.6.2 ADEPT ePLC signals involved ... 33
4.6.3 Signal sequence for function control .. 34

5 Installation .. 36

5.1 Hardware installation .. 36
5.2 Integrating the application into a STEP 7 project 36
5.2.1 Copying the required blocks and sources .. 36

Table of Contents

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 7

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

5.2.2 Compiling the SCL source of the function block (optional) 38
5.2.3 Integrating the function block into a cyclic OB 38
5.2.4 Using the HMI user interface .. 38

6 Startup .. 40

6.1 Description of the function block interface ... 40
6.1.1 Block interface .. 40
6.1.2 “ComData” data structure ... 42
6.1.3 “JOG” data structure ... 43
6.1.4 “MOVE” data structure ... 45
6.1.5 “ActualPosition” data structure ... 46
6.1.6 “RobotErrorMessage” data structure .. 47
6.2 Structure of the instance data block ... 47
6.3 Error and warning messages ... 49
6.4 Defining the communication parameters .. 50
6.5 Testing the block function... 51
6.5.1 Using the tag table ... 51
6.5.2 Using the HMI user interface .. 52

7 Operation of the Application .. 54

7.1 Starting the communication with the robot controller 54
7.2 Switching on the robot power ... 55
7.3 Referencing (calibrating) the robot axes .. 56
7.4 Acknowledging potentially pending errors .. 57
7.5 Immediately stopping a robot movement ... 58
7.6 Moving the robot axes in jog mode .. 59
7.7 Executing coordinated movements .. 60
7.7.1 Executing a single movement .. 62
7.7.2 Executing a sequence of movements .. 62

8 Related Literature .. 64

8.1 Bibliography .. 64
8.2 Internet Links .. 64

9 History... 64

1 Task
1.1 Introduction

8
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

1 Task
1.1 Introduction

Robot applications in industry are very frequently integrated into production lines
that are controlled by programmable logic controllers.

Figure 1-1 Industrial robot applications

Usually the robot application is a separate unit acting independently from the
production line controller and needs to be supplied with data required for operating
the robot by this controller.

Figure 1-2 Basic diagram of a production line

Production line
Controller

Complete system – “Production line“

Partial system 1 – “Robot 1" Partial system 2 – “Robot 2"

Commissioning a production line requires both the knowledge for commissioning
the PLC and the knowledge of the robot system. The same applies to maintaining
this production line and to changing production to a different product.

1 Task
1.2 Automation Task

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 9

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

1.2 Automation Task

In order to control the robot in a production line in a convenient way it should be
possible to fully integrate the robot into the production line controller and to define
and influence the robot movements directly from this controller.

Figure 1-3 Basic diagram of the automation task

Production line
Controller

Complete system – “Production line“

“Robot 1" “Robot 2"

Through this it will be possible to commission the production line even without any
knowledge of the robot system and to carry out maintenance works or production
changes directly via the production line controller.

2 Solution
2.1 Overview

10
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

2 Solution
2.1 Overview

To solve the automation task, this application will introduce a function block for the
SIMATIC S7-300 PLC, through which an ADEPT robot can be controlled directly
from the automation system.
For this purpose, the ADEPT robot provides a data interface through which
commands for the robot and status data from the robot can be exchanged with the
automation system.

Figure 2-1 Overview of the solution of the automation task

Automation system
SIMATIC S7-300 ADEPT RobotADEPT Robot Controller

TCP/IP Communication

T_SEND
T_RECV ADEPT

ePLC

2.1.1 Advantages of the automation solution

The automation solution presented in this document offers the following
advantages:
• No robot controller knowledge required

The robot system is usually delivered by the manufacturer with a preinstalled
ePLC data interface and is immediately ready for operation.
Adapting the IP address of the robot controller might be required.

• Easy robot control via the SIMATIC S7-300 Controller
The robot is fully controlled via the SIMATIC S7-300 Controller, which allows
for addressing and programming the robot functions via the automation
system. STEP-7 knowledge is sufficient for that.

2.1.2 Delimitation

This application does not include any information on ...
• ... the basic usage and handling of a robot.
• ... the specific geometric characteristics of different robot kinematics for

programming the robot movements.
• ... the internal functional principle of the ADEPT ePLC data interface.

Basic knowledge of these topics is assumed.

2 Solution
2.2 Core functionality

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 11

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

2.2 Core functionality

The focus of this application example is a function block for the SIMATIC S7-300
automation system, through which an ADEPT robot with ePLC data interface can
be fully controlled and monitored.
The function block includes the following functionalities:
• Setting up the communication connection between the SIMATIC S7-300

automation system and the robot controller with ePLC data interface
• Switching the robot power on and off
• Acknowledging and resetting error events in the robot controller
• Triggering a homing operation (Calibration) at the robot
• Moving the robot axes in jog mode (JOG)
• Perform travel movements at the robot by defining the required target position
• Chaining individual movements to one sequence of movements that can be

performed by the robot without interruption with a smooth travel movement.

Figure 2-2 Overview of the core functionality of the function block

C
O

M
M

U
N

IC
A

TE
 (T

_S
E

N
D

/T
_R

E
C

V
)

POWER

RESET

CALIBRATE

JOG

MOVE

FB 600
“ADEPT_RobotControl“

ADEPT Robot

2.3 Required hardware and software components

The hardware and software components described in the following chapters were
used for creating the application example.

2.3.1 Hardware components

Table 2-1 SIEMENS hardware components

SIEMENS
Component

Qty. Order number Note

CPU 315-2 PN/DP 1 6ES7 315-2EH14-0AB0
Firmware: V3.1 or higher

2 Solution
2.3 Required hardware and software components

12
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

SIEMENS
Component

Qty. Order number Note

SM 323 DI8/DO8x24V 1 6ES7 323-1BH01-0AA0 Optional component for
additional hardware
wiring of the robot.
Currently not used in
the Application
Example.

Table 2-2 ADEPT hardware components

ADEPT
Component

Qty. Order number Note

Robot 1 Please inquire order number
from ADEPT.

Models “Viper” and
“Cobra” were used for
testing with the
application example.

Power unit robot 1 Please inquire order number
from ADEPT.

If not already
integrated in the robot.

Robot controller:
• SmartController EX

1 Please inquire order number
from ADEPT.

The ePLC data
interface is compatible
with this controller.

2.3.2 Software components

Table 2-3 SIEMENS software components

SIEMENS
Component

Qty. Order number Note

STEP 7 1 6ES7 810-4CC10-0YA5
Version: V5.5 SP3

STEP 7 option
“S7-SCL”

1 6ES7 811-1CC05-0YA5
Version: V5.3 SP6

Only required if the
function block is to be
opened, changed or
recompiled.

WinCC flexible 1 6AV6 613-0AA51-3CA5
Version: 2008 SP3 Upd3

Engineering system of
the HMI user interface,
in case this is to be
adapted or extended.

WinCC flexible Runtime 1 6AV6 613-4BD01-3AD0
Version: 2008 SP3 Upd3

In case the HMI user
interface is to be
operated on a PC
without engineering
system.

2 Solution
2.3 Required hardware and software components

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 13

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Table 2-4 ADEPT software components

ADEPT
Component

Qty. Order number Note

ADEPT ePLC 1 Please inquire order number
from ADEPT.

Version: V3.1 (Siemens)

Data interface as a
software solution in the
robot controller.

ADEPT ACE 3.3.3.1 1 Please inquire order number
from ADEPT.

Automation Control
Environment Software.
Required only if the
robot controller IP
address needs to be
changed.

2.3.3 Sample files and projects

The following list includes all files and projects associated with this application
example.

Table 2-5 Example files and projects

Component Note

79100154_ADEPT_RobotControlFB_DOKU_en.pdf This documentation
79100154_ADEPT_RobotControlFB_CODE_EXP.zip STEP 7 archive of the application

example as a full STEP 7 project
with HMI user interface

79100154_ADEPT_RobotControlFB_CODE.zip STEP 7 archive of the function
block with all required blocks for
integration into own STEP 7
projects.

3 Basics
3.1 Communication connection to the robot

14
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

3 Basics
3.1 Communication connection to the robot

Data is exchanged between robot and SIMATIC automation system through
“programmed communication” via a TCP/IP connection, which is executed via
functional blocks FB 65 “TCON”, FB 66 “TDISCON” for setting up and clearing the
connection and FB 63 “TSEND”, FB 64 “TRCV” for sending and receiving the data.
Storing the IP address of the robot in the SIMATIC Controller for the “programmed
communication“, as well as defining a freely selectable communication ID (which
must be unique for every connection, meaning for every addressed robot) is
sufficient for establishing the communication connection to the robot. In addition,
the communication port must be defined for the robot controller.
For this purpose, the function block for controlling the robot includes a specific port
for transmitting the required connection data such as communication ID, IP
address and port.

Figure 3-1 Port for transmitting the required connection data

Robot Controller

IP address
Port number

FB 600
“ADEPT_RobotControl“

ComData
Communication ID

IP address
Port number

Note Usually the port number of the robot controller has been defined to be 46555 by
the manufacturer and cannot be changed!

3.2 ADEPT ePLC setup

3.2.1 General

The robot can receive commands and the robot status can be determined via the
ADEPT ePLC data interface which has two messages that are exchanged between
the SIMATIC Controller and the robot controller via a TCP/IP connection:
• Command data

Command bits and parameters for controlling the required robot function in the
robot controller.

3 Basics
3.2 ADEPT ePLC setup

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 15

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

• Status data
Status bits and parameters transmitting the current status of the robot as well
as execution status of the commanded robot function to the SIMATIC
Controller.

3.2.2 Communication principle

The robot controller and the SIMATIC Controller communicate via a TCP/IP
connection using two messages.
Data is exchanged as follows, in a fixed time frame, under the presumption that the
SIMATIC Controller has already set up a TCP/IP connection to the robot controller:
1. The SIMATIC Controller will send the “command data” message to the robot

controller via the TCP/IP connection.
2. Then the SIMATIC Controller will switch to receiving mode.
3. The robot controller will answer with the “status data” message, which will also

be transmitted to the SIMATIC Controller via the TCP/IP connection.
4. The SIMATIC Controller will wait for the end of the communication cycle before

the communication cycle will start again with step 1.

Figure 3-2 Communication principle

Automation system
SIMATIC S7-300 ADEPT RobotPrecondition: TCP/IP connection is ready to send

1

2

T_SEND: Send “Command Data“

Activate receive mode (T_RECV)

3
T_RECV: Receive “Status Data“

44
Remaining waiting time

2

3.2.3 Command data

The command data message has the following structure:

Table 3-1 Command data

Addr. Name/Identifier Type Description

 system_commands STRUCT

0.0 cmd_high_power BOOL Switch on the robot power
0.1 cmd_reset BOOL Reset all pending errors
0.2 cmd_calibrate BOOL Reference (calibrate) the robot

axes
0.3 cmd_tool_invoke BOOL Store specified position value

as the coordinate displacement
in the tool coordinate system
and activate.

0.4 cmd_read_latch BOOL Read out registered print-mark
position.

3 Basics
3.2 ADEPT ePLC setup

16
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Addr. Name/Identifier Type Description

0.5 reserve_0_5 BOOL

0.6 reserve_0_6 BOOL

0.7 reserve_0_7 BOOL

1.0 reserve_1_0 BOOL

1.1 reserve_1_1 BOOL

1.2 reserve_1_2 BOOL

1.3 reserve_1_3 BOOL

1.4 reserve_1_4 BOOL

1.5 reserve_1_5 BOOL

1.6 reserve_1_6 BOOL

1.7 reserve_1_7 BOOL

 END_STRUCT

 motion_commands STRUCT

2.0 cmd_brake BOOL Immediate stopping of the
current travel movement

2.1 cmd_jog BOOL Manual movement of individual
robot axes. Axes are selected
via additional bits.

2.2 cmd_move BOOL Execute a positioning
movement to a specified
position.

2.3 cmd_jump BOOL Execute a pick & place
movement to a specified
position.

2.4 cmd_align BOOL Align Z-axis of the robot to the
next coordinate axis of the
WORLD coordinate system.

2.5 cmd_stop_on_input BOOL Stop the current travel
movement if a preconfigured
port responds.

2.6 cmd_arc BOOL [currently not supported]
2.7 cmd_circle BOOL [currently not supported]
3.0 reserve_3_0 BOOL

3.1 reserve_3_1 BOOL

3.2 reserve_3_2 BOOL

3.3 reserve_3_3 BOOL

3.4 reserve_3_4 BOOL

3.5 reserve_3_5 BOOL

3.6 reserve_3_6 BOOL

3.7 reserve_3_7 BOOL

 END_STRUCT

3 Basics
3.2 ADEPT ePLC setup

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 17

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Addr. Name/Identifier Type Description

 motion_qualifiers STRUCT

4.0 relative_move BOOL 0 = Interpretation of the
specified position as absolute
target position
1 = Interpretation of the
specified position as relative
target position

4.1 joint_coordinates BOOL 0 = movement in the WORLD
coordinate system
1 = movement in the JOINT
coordinate system

4.2 straightline_move BOOL 0 = movement axis-interpolated
1 = movement on a straight line

4.3 approach_at_absolute BOOL 0 = Interpretation of the
specified retraction height as a
relative value.
1 = Interpretation of the
specified retraction height as
the absolute height.

4.4 nonull BOOL 0 = Exact approach of the end
points of the specified
movement
1 = Blending of two movements

4.5 coarse_nulling BOOL 0 = Positioning in the
approximate range
1 = Positioning in the precise
range

4.6 single_turn BOOL 0 = Allow multiple turns of the
axis of revolution
1 = Allow only one single turn of
the axis of revolution

4.7 reserve_4_7 BOOL
5.0 righty_configuration BOOL 0 =Arm alignment to the left

1 =Arm alignment to the right
5.1 below_configuration BOOL 0 =Arm alignment at the top

1 =Arm alignment at the bottom
5.2 flip_configuration BOOL 0 =Arm alignment not flipped

1 =Arm alignment flipped
5.3 relative_to_pallet_frame BOOL 0 = No application of settings for

pallet/frame
1 = Application of settings for
pallet/frame

5.4 reserve_5_4 BOOL
5.5 reserve_5_5 BOOL
5.6 reserve_5_6 BOOL
5.7 reserve_5_7 BOOL
 END_STRUCT

 jog_mode_qualifiers STRUCT

6.0 jog_world_mode BOOL Manual travel movement in
WORLD coordinate system

3 Basics
3.2 ADEPT ePLC setup

18
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Addr. Name/Identifier Type Description

6.1 jog_tool_mode BOOL Manual travel movement in
TOOL coordinate system

6.2 jog_joint_mode BOOL Manual travel movement in
JOINT coordinate system

6.3 jog_free_mode BOOL Remove axis for manual travel
movement from the controller

6.4 reserve_6_4 BOOL
6.5 reserve_6_5 BOOL
6.6 reserve_6_6 BOOL
6.7 reserve_6_7 BOOL
7.0 reserve_7_0 BOOL
7.1 reserve_7_1 BOOL
7.2 reserve_7_2 BOOL
7.3 reserve_7_3 BOOL
7.4 reserve_7_4 BOOL
7.5 reserve_7_5 BOOL
7.6 reserve_7_6 BOOL
7.7 reserve_7_7 BOOL
8.0 jog_joint_1_or_x_PLUS BOOL Manually moving axis 1/X in

plus direction
8.1 jog_joint_2_or_y_PLUS BOOL Manually moving axis 2/Y in

plus direction
8.2 jog_joint_3_or_z_PLUS BOOL Manually moving axis 3/Z in

plus direction
8.3 jog_joint_4_or_yaw_PLUS BOOL Manually moving axis 4/YAW in

plus direction
8.4 jog_joint_5_or_pitch_PLUS BOOL Manually moving axis 5/PITCH

in plus direction
8.5 jog_joint_6_or_roll_PLUS BOOL Manually moving axis 6/ROLL

in plus direction
8.6 reserve_8_6 BOOL
8.7 reserve_8_7 BOOL
9.0 jog_joint_1_or_x_MINUS BOOL Manually moving axis 1/X in

minus direction
9.1 jog_joint_2_or_y_ MINUS BOOL Manually moving axis 2/Y in

minus direction
9.2 jog_joint_3_or_z_ MINUS BOOL Manually moving axis 3/Z in

minus direction
9.3 jog_joint_4_or_yaw_ MINUS BOOL Manually moving axis 4/YAW in

minus direction
9.4 jog_joint_5_or_pitch_ MINUS BOOL Manually moving axis 5/PITCH

in minus direction
9.5 jog_joint_6_or_roll_ MINUS BOOL Manually moving axis 6/ROLL

in minus direction
9.6 reserve_9_6 BOOL
9.7 reserve_9_7 BOOL
 END_STRUCT

3 Basics
3.2 ADEPT ePLC setup

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 19

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Addr. Name/Identifier Type Description

 motion_parameters STRUCT

10 speed INT Absolute value of the speed of
movement

12 acceleration INT Absolute value of the
acceleration of movement

14 deceleration INT Absolute value of the
deceleration of movement

16 acceleration_profile INT 0 = Trapezoidal movement
profile
1 = S-shaped moving profile

18 speed_limit INT

20 pallet_index INT Number of the required “pallet
index” as the target position

22 approach_height REAL Retraction height for the pick-
and-place movement

26 reserve_26 REAL
 END_STRUCT

 location_data STRUCT

30 X REAL X position
34 Y REAL Y position
38 Z REAL Z position
42 Yaw REAL Yaw angle
46 Pitch REAL Pitch angle
50 Roll REAL Roll angle
 END_STRUCT

 location_2_data STRUCT

54 X REAL X position
58 Y REAL Y position
62 Z REAL Z position
66 Yaw REAL Yaw angle
70 Pitch REAL Pitch angle
74 Roll REAL Roll angle
 END_STRUCT

 pallet STRUCT

 pallet_origin STRUCT

78 X REAL X position
82 Y REAL Y position
86 Z REAL Z position
90 Yaw REAL Yaw angle
94 Pitch REAL Pitch angle
98 Roll REAL Roll angle
 END_STRUCT
 pallet_1st_row_location STRUCT

102 X REAL X position
106 Y REAL Y position

3 Basics
3.2 ADEPT ePLC setup

20
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Addr. Name/Identifier Type Description

110 Z REAL Z position
114 Yaw REAL Yaw angle
118 Pitch REAL Pitch angle
122 Roll REAL Roll angle
 END_STRUCT
 pallet_last_row_location STRUCT

126 X REAL X position
130 Y REAL Y position
134 Z REAL Z position
138 Yaw REAL Yaw angle
142 Pitch REAL Pitch angle
146 Roll REAL Roll angle
 END_STRUCT

150 pallet_positions_1st_row INT Number of positions in the first
row of the pallet

152 pallet_number_of_rows INT Number of rows on the pallet
154 pallet_configuration INT Configuration of positions on

the pallet (0...4)
156 pallet_s_traversal INT 0 = Position configuration

always starting from one side
1 = S-Shaped configuration of
positions

 END_STRUCT

 output_signals STRUCT

158.0 out_signal_1 BOOL XDIO output
158.1 out_signal_2 BOOL XDIO output
158.2 out_signal_3 BOOL XDIO output
158.3 out_signal_4 BOOL XDIO output
158.4 out_signal_5 BOOL XDIO output
158.5 out_signal_6 BOOL XDIO output
158.6 out_signal_7 BOOL XDIO output
158.7 out_signal_8 BOOL XDIO output
158.0 out_signal_3001 BOOL Solenoid output
159.1 out_signal_3002 BOOL Solenoid output
159.2 out_signal_3003 BOOL Solenoid output
159.3 out_signal_3004 BOOL Solenoid output
159.4 reserve_159_4 BOOL
159.5 reserve_159_5 BOOL
159.6 reserve_159_6 BOOL
159.7 reserve_159_7 BOOL
 END_STRUCT

 vision STRUCT

 commands STRUCT

160.0 vis_sequence_start BOOL Start vision sequence

3 Basics
3.2 ADEPT ePLC setup

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 21

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Addr. Name/Identifier Type Description

160.1 vis_queue_clear BOOL Reset vision sequence

160.2 vis_queue_pop BOOL Read out vision sequence
160.3 reserve_160_3 BOOL
160.4 reserve_160_4 BOOL
160.5 reserve_160_5 BOOL
160.6 reserve_160_6 BOOL
160.7 reserve_160_7 BOOL
161.0 reserve_161_0 BOOL
161.1 reserve_161_1 BOOL
161.2 reserve_161_2 BOOL
161.3 reserve_161_3 BOOL
161.4 reserve_161_4 BOOL
161.5 reserve_161_5 BOOL
161.6 reserve_161_6 BOOL
161.7 reserve_161_7 BOOL
 END_STRUCT

 parameters STRUCT

162 vis_sequence_number INT Vision sequence number
164 vis_queue_number BYTE Vision queue number
165 reserve_165 BYTE
166 reserve_166 BYTE
167 reserve_167 BYTE
168 reserve_168 BYTE
169 reserve_169 BYTE
 END_STRUCT

 END_STRUCT
170 Total length of the message in bytes

3 Basics
3.2 ADEPT ePLC setup

22
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

3.2.4 Status data

The status data message has the following structure:

Table 3-2 Status data

Addr. Name/Identifier Type Description

 system_state STRUCT
0.0 system_heartbeat BOOL Toggle bit that is inverted with

every robot position update.
0.1 power_state BOOL 0 = Robot power off

1 = Robot power on
0.2 power_ready_state BOOL Robot is ready for switch-on

(key on the Adept panel is
flashing)

0.3 system_initalized_state BOOL Robot controller re-initialized
0.4 emergency_stop_state BOOL The robot is in emergency stop

status
0.5 fault_state BOOL The robot is in fault status
0.6 calibrated_state BOOL Referencing of robot axes is

completed
0.7 command_execution_state BOOL Command detected and being

processed - reset with undoing
command

1.0 read_latch_state BOOL Print-mark position was read.
Configured port has released.

1.1 ace_control_mode BOOL The robot is currently controlled
via the Adept engineering
software.

1.2 reserve_1_2 BOOL
1.3 reserve_1_3 BOOL
1.4 reserve_1_4 BOOL
1.5 reserve_1_5 BOOL
1.6 reserve_1_6 BOOL
1.7 reserve_1_7 BOOL
2 state_robot_overall INT Robot status STATE(1)

For more information please
refer to the manufacturer’s
documentation.

4 state_robot_motion INT Robot status STATE(2)
For more information please
refer to the manufacturer’s
documentation.

6 state_manual_control_mode INT Robot status STATE(3)
For more information please
refer to the manufacturer’s
documentation.

8 state_hardware INT Robot status STATE(4)
For more information please
refer to the manufacturer’s
documentation.

3 Basics
3.2 ADEPT ePLC setup

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 23

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Addr. Name/Identifier Type Description

10 state_switch INT Robot status STATE(5)
For more information please
refer to the manufacturer’s
documentation.

12 state_current_motion INT Robot status STATE(10)
For more information please
refer to the manufacturer’s
documentation.

14 state_power_light INT Robot status STATE(30)
For more information please
refer to the manufacturer’s
documentation.

 END_STRUCT

 motion_state STRUCT

16.0 in_position_state BOOL Positioning completed. Target
position reached.

16.1 motion_state BOOL Robot movement active
16.2 brake_state BOOL Command detected and being

processed - reset with finishing
command execution

16.3 stop_on_input_state BOOL Command detected and being
processed - reset with finishing
command execution

16.4 tool_mode_state BOOL The current robot movement is
executed in the TOOL
coordinate system

16.5 reserve_16_5
16.6 reserve_16_6
16.7 reserve_16_7
17.0 jog_mode_state BOOL The robot is currently moved in

jog mode.
17.1 world_jog_mode_state BOOL The current robot movement is

executed in the WORLD
coordinate system

17.2 tool_ jog_mode_state BOOL The current robot movement is
executed in the TOOL
coordinate system

17.3 joint_ jog_mode_state BOOL The current robot movement is
executed in the JOINT
coordinate system

17.4 free_ jog_mode_state BOOL Robot axes were removed from
the controller for manual
movement.

17.5 reserve_17_5 BOOL
17.6 reserve_17_6 BOOL
17.7 reserve_17_7 BOOL
18.0 righty_configuration BOOL 0 =Arm alignment to the left

1 =Arm alignment to the right
18.1 below_configuration BOOL 0 =Arm alignment at the top

1 =Arm alignment at the bottom

3 Basics
3.2 ADEPT ePLC setup

24
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Addr. Name/Identifier Type Description

18.2 flip_configuration BOOL 0 =Arm alignment not flipped
1 =Arm alignment flipped

18.3 reserve_18_3 BOOL
18.4 reserve_18_4 BOOL
18.5 reserve_18_5 BOOL
18.6 reserve_18_6 BOOL
18.7 reserve_18_7 BOOL
19.0 manual_control_mode_state BOOL 0 = robot is in automatic mode

1 = robot is in setup mode (with
restricted speed)

19.1 reserve_19_1 BOOL
19.2 reserve_19_2 BOOL
19.3 reserve_19_3 BOOL
19.4 reserve_19_4 BOOL
19.5 reserve_19_5 BOOL
19.6 reserve_19_6 BOOL
19.7 reserve_19_7 BOOL
20 motion_counter INT Number of motion commands

executed so far
22 reserve_22 INT
 END_STRUCT

 actual_position STRUCT

 world STRUCT

24 X REAL Current X position in the
WORLD coordinate system.

28 Y REAL Current Y position in the
WORLD coordinate system.

32 Z REAL Current Z position in the
WORLD coordinate system.

36 Yaw REAL Current Yaw angle in the
WORLD coordinate system.

40 Pitch REAL Current pitch angle in the
WORLD coordinate system.

44 Roll REAL Current roll angle in the
WORLD coordinate system.

 END_STRUCT

 joint STRUCT

48 Joint_1 REAL Current position of axis 1 in the
JOINT coordinate system.

52 Joint_2 REAL Current position of axis 2 in the
JOINT coordinate system.

56 Joint_3 REAL Current position of axis 3 in the
JOINT coordinate system.

60 Joint_4 REAL Current position of axis 4 in the
JOINT coordinate system.

64 Joint_5 REAL Current position of axis 5 in the
JOINT coordinate system.

3 Basics
3.2 ADEPT ePLC setup

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 25

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Addr. Name/Identifier Type Description

68 Joint_6 REAL Current position of axis 6 in the
JOINT coordinate system.

 END_STRUCT

 END_STRUCT

 latch_position STRUCT

 world STRUCT

72 X REAL For more information please
refer to ADEPT documentation. 76 Y REAL

80 Z REAL
84 Yaw REAL
88 Pitch REAL
92 Roll REAL
 END_STRUCT

 END_STRUCT

 pallet_relative_coordinates STRUCT

 world STRUCT

96 X REAL For more information please
refer to ADEPT documentation. 100 Y REAL

104 Z REAL
108 Yaw REAL
112 Pitch REAL
116 Roll REAL
 END_STRUCT

 END_STRUCT

 input_singals STRUCT

120.0 input_1001 BOOL XDIO Input 1001
120.1 input_1002 BOOL XDIO Input 1002
120.2 input_1003 BOOL XDIO Input 1003
120.3 input_1004 BOOL XDIO Input 1004
120.4 input_1005 BOOL XDIO Input 1005
120.5 input_1006 BOOL XDIO Input 1006
120.6 input_1007 BOOL XDIO Input 1007
120.7 input_1008 BOOL XDIO Input 1008
121.0 input_1009 BOOL XDIO Input 1009
121.1 input_1010 BOOL XDIO Input 1010
121.2 input_1011 BOOL XDIO Input 1011
121.3 input_1012 BOOL XDIO Input 1012
121.4 soft_signal_2001 BOOL eV+ soft signal 2001
121.5 soft_signal_2002 BOOL eV+ soft signal 2002
121.6 soft_signal_2003 BOOL eV+ soft signal 2003
121.7 soft_signal_2004 BOOL eV+ soft signal 2004
 END_STRUCT

3 Basics
3.2 ADEPT ePLC setup

26
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Addr. Name/Identifier Type Description

 error_message STRUCT

122 error_number INT Error number.
Positive or negative values can
be output here.

124 reserve_124 INT
126 maximum_length BYTE In the SIMATIC, data can be

interpreted as SIMATIC string
and processed.
SIMATIC String = 1 byte total
length (here 80) / 1 byte number
of characters / 80 bytes
character.

127 actual_length BYTE
128 data ARRAY

[1..80]
OF
CHAR

 END_STRUCT

 vision STRUCT
 vis_state STRUCT

208.0 vis_sequence_started BOOL For more information please
refer to ADEPT documentation. 208.1 vis_queue_cleared BOOL

208.2 vis_queue_popped BOOL
208.3 vis_results_valid BOOL
208.4 vis_system_online BOOL
208.5 reserve_208_5 BOOL
208.6 reserve_208_6 BOOL
208.7 reserve_208_7 BOOL
209.0 reserve_209_0 BOOL
209.1 reserve_209_1 BOOL
209.2 reserve_209_2 BOOL
209.3 reserve_209_3 BOOL
209.4 reserve_209_4 BOOL
209.5 reserve_209_5 BOOL
209.6 reserve_209_6 BOOL
209.7 reserve_209_7 BOOL
210 vis_sequence_number INT For more information please

refer to ADEPT documentation. 212 vis_sequence_state BYTE
213 vis_instances_found BYTE
214 vis_results_queue_number BYTE
215 reserve_215 BYTE
 END_STRUCT

 vis_queue_size STRUCT

216 Vision_queue_0 BYTE For more information please
refer to ADEPT documentation. 217 Vision_queue_1 BYTE

218 Vision_queue_2 BYTE
219 Vision_queue_3 BYTE
220 Vision_queue_4 BYTE
221 Vision_queue_5 BYTE
222 Vision_queue_6 BYTE

3 Basics
3.2 ADEPT ePLC setup

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 27

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Addr. Name/Identifier Type Description

223 Vision_queue_7 BYTE
 END_STRUCT
 vis_result STRUCT

224 X REAL For more information please
refer to ADEPT documentation. 228 Y REAL

232 Z REAL
236 Yaw REAL
240 Pitch REAL
244 Roll REAL
 END_STRUCT

 END_STRUCT
248 Total length of the message in bytes

4 Function Mechanisms
4.1 POWER - switching the power on/off

28
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

4 Function Mechanisms
The functions described in the following chapters are stored in the function block
for controlling the robot functions which is introduced in this application. They can
easily be executed through the function block.
In the following, the controlling of these functions via the ADEPT ePLC data
interface in the robot controller, which is executed by the function block in the
SIMATIC controller, will be described briefly.

4.1 POWER - switching the power on/off

4.1.1 Functionality

Switching the power at the robot on and off to enable the movement of the robot
axes.

4.1.2 ADEPT ePLC signals involved

The following signals of the ADEPT ePLC data interface will be used for realizing
this function.

Table 4-1ADEPT ePLC signals involved

Addr. Name/Identifier Type

Command data
0.0 system_commands.cmd_high_power BOOL
0.1 system_commands.cmd_reset BOOL
Status data

0.1 system_state.power_state BOOL
0.4 system_state.emergency_stop_state BOOL
0.5 system_state.fault_state BOOL
0.7 system_state.command_execution_state BOOL

4.1.3 Signal sequence for function control

The function is controlled in the robot controller as follows:

Switch on power
Table 4-2 Signal sequence for function control

No. Functionality Note/Remark

1. Check whether the robot is in
emergency stop state.

If the robot is in emergency stop state,
the function will branch into the error
handling routine.

2. Reset the robot in order to acknowledge
any pending errors.

4 Function Mechanisms
4.2 CALIBRATE - Reference the robot axes

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 29

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

No. Functionality Note/Remark

3. Switch on the power at the robot. If there is a robot error or if a robot error
occurs when the power is switched on,
the function will branch into the error
handling routine.

4. Power will stay on at the robot as long
as the “cmd_high_power” command is
set.

Switch off power
Table 4-3 Signal sequence for function control

No. Functionality Note/Remark

1. Switch off the power at the robot. If there is a robot error or if a robot error
occurs when the power is switched off,
the function will branch into the error
handling routine.

2. Power will stay off at the robot until the
“cmd_high_power” command is set.

4.2 CALIBRATE - Reference the robot axes

4.2.1 Functionality

Calibrate or reference the robot axes. For this, the robot axes will perform a hardly
noticeable movement around the current position.

4.2.2 ADEPT ePLC signals involved

The following signals of the ADEPT ePLC data interface will be used for realizing
this function.

Table 4-4ADEPT ePLC signals involved

Addr. Name/Identifier Type

Command data
0.2 system_commands.cmd_calibrate BOOL
Status data

0.5 system_state.fault_state BOOL
0.6 system_state.calibrated_state BOOL
0.7 system_state.command_execution_state BOOL

4.2.3 Signal sequence for function control

The function is controlled in the robot controller as follows:

4 Function Mechanisms
4.3 RESET - Reset errors at the robot

30
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Table 4-5 Signal sequence for function control

No. Functionality Note/Remark

1. Check whether the robot axes have
already been calibrated.

If the robot axes have already been
calibrated, the function will not be
executed at the robot.

2. Trigger the function for calibrating the
robot axes.

If there is a robot error when the
function is triggered, the function will
branch into the error handling routine.

4.3 RESET - Reset errors at the robot

4.3.1 Functionality

Reset or acknowledge any error states pending at the robot or the robot controller.

4.3.2 ADEPT ePLC signals involved

The following signals of the ADEPT ePLC data interface will be used for realizing
this function.

Table 4-6ADEPT ePLC signals involved

Addr. Name/Identifier Type

Command data
0.1 system_commands.cmd_reset BOOL
0.2 system_commands.cmd_calibrate BOOL
0.3 system_commands.cmd_tool_invoke BOOL
0.4 system_commands.cmd_read_latch BOOL
2.0 motion_commands.cmd_brake BOOL
2.1 motion_commands.cmd_jog BOOL
2.2 motion_commands.cmd_move BOOL
2.3 motion_commands.cmd_jump BOOL
2.4 motion_commands.cmd_align BOOL
2.5 motion_commands.cmd_stop_on_input BOOL
2.6 motion_commands.cmd_arc BOOL
2.7 motion_commands.cmd_circle BOOL
Status data

0.7 system_state.command_execution_state BOOL
0.5 system_state.fault_state BOOL

4.3.3 Signal sequence for function control

The function is controlled in the robot controller as follows:

4 Function Mechanisms
4.4 BRAKE - Immediately stop robot movement

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 31

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Table 4-7 Signal sequence for function control

No. Functionality Note/Remark

1. Reset any currently pending system
commands and travel commands.

2. Trigger the function for acknowledging
the pending error states at the robot.

4.4 BRAKE - Immediately stop robot movement

4.4.1 Functionality

Stop a robot movement currently performed by the robot, or inhibit the triggering of
a new robot movement.

4.4.2 ADEPT ePLC signals involved

The following signals of the ADEPT ePLC data interface are used for realizing this
function.

Table 4-8 ADEPT ePLC signals involved

Addr. Name/Identifier Type

Command data
2.0 motion_commands.cmd_brake BOOL
Status data

16.2 motion_state.brake_state BOOL

4.4.3 Signal sequence for function control

The function is controlled in the robot controller as follows:

Table 4-9 Signal sequence for function control

No. Functionality Note/Remark

1. Trigger the function for stopping the
current robot movement, or for inhibiting
further robot movements.

The function will stay active as long as
the input at the function block is set.

2. Further robot movements will be
inhibited as long as the order
“cmd_brake” command is set.

3. Complete the function by resetting the
input at the function block.

Robot movements are now enabled
again.
Any error states occurred due to the
stopping action might have to be
acknowledged before the next robot
movement.

4 Function Mechanisms
4.5 JOG - Move axes in jog mode

32
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

4.5 JOG - Move axes in jog mode

4.5.1 Functionality

Move the individual robot axes in jog mode. The direction of travel and the required
axis are defined by selecting the corresponding command.

4.5.2 ADEPT ePLC signals involved

The following signals of the ADEPT ePLC data interface will be used for realizing
this function.

Table 4-10 ADEPT ePLC signals involved

Addr. Name/Identifier Type

Command data
2.1 motion_commands.cmd_jog BOOL
6.0 jog_mode_qualifiers.jog_world_mode BOOL
6.1 jog_mode_qualifiers.jog_tool_mode BOOL
6.2 jog_mode_qualifiers.jog_joint_mode BOOL
6.3 jog_mode_qualifiers.jog_free_mode BOOL
8.0 jog_mode_qualifiers.jog_joint_1_or_x_PLUS BOOL
8.1 jog_mode_qualifiers.jog_joint_2_or_y_PLUS BOOL
8.2 jog_mode_qualifiers.jog_joint_3_or_z_PLUS BOOL
8.3 jog_mode_qualifiers.jog_joint_4_or_yaw_PLUS BOOL
8.4 jog_mode_qualifiers.jog_joint_5_or_pit_PLUS BOOL
8.5 jog_mode_qualifiers.jog_joint_6_or_rol_PLUS BOOL
9.0 jog_mode_qualifiers.jog_joint_1_or_x_MINUS BOOL
9.1 jog_mode_qualifiers.jog_joint_2_or_y_ MINUS BOOL
9.2 jog_mode_qualifiers.jog_joint_3_or_z_ MINUS BOOL
9.3 jog_mode_qualifiers.jog_joint_4_or_yaw_ MINUS BOOL
9.4 jog_mode_qualifiers.jog_joint_5_or_pit_ MINUS BOOL
9.5 jog_mode_qualifiers.jog_joint_6_or_rol_ MINUS BOOL
10 motion_parameters.speed INT
12 motion_parameters.acceleration INT
14 motion_parameters.deceleration INT
16 motion_parameters.acceleration_profile INT
18 motion_parameters.speed_limit INT
Status data

17.0 motion_state.jog_mode_state BOOL

4.5.3 Signal sequence for function control

The function is controlled in the robot controller as follows:

4 Function Mechanisms
4.6 MOVE - Perform sequences of movements

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 33

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Table 4-11 Signal sequence for function control

No. Functionality Note/Remark

1. Apply the coordinate system required
for jog mode.

Usually jog mode (JOG) is carried out in
the axis coordinate system (JOINT) or
in the Cartesian coordinate system
(WORLD).

2. Apply the dynamic values required for
jog mode.

For security reasons, individual dynamic
values will be specified for jog mode
(JOG).

3. Triggering the jog mode (JOG) for the
axes selected.

4. The axis movements will be performed
as long as the jog mode is selected for
each axis.

5. Reset the jog mode (JOG).

4.6 MOVE - Perform sequences of movements

4.6.1 Functionality

Perform a coordinated movement or a sequence of movements, which may involve
all axes of the robot and which may be performed using the kinematic
transformation of the robot controller.

4.6.2 ADEPT ePLC signals involved

The following signals of the ADEPT ePLC data interface will be used for realizing
this function.

Table 4-12 ADEPT ePLC signals involved

Addr. Name/Identifier Type

Command data
2.1 motion_commands.cmd_jog BOOL
2.2 motion_commands.cmd_move BOOL
2.3 motion_commands.cmd_jump BOOL
2.4 motion_commands.cmd_align BOOL
2.5 motion_commands.cmd_stop_on_input BOOL
2.6 motion_commands.cmd_arc BOOL
2.7 motion_commands.cmd_circle BOOL
4.0 motion_qualifiers.relative_move BOOL
4.1 motion_qualifiers.joint_coordinates BOOL
4.2 motion_qualifiers.straightline_move BOOL
4.3 motion_qualifiers.approach_at_absolute BOOL
4.4 motion_qualifiers.nonull BOOL
4.5 motion_qualifiers.coarse_nulling BOOL
4.6 motion_qualifiers.single_turn BOOL
5.0 motion_qualifiers.righty_configuration BOOL

4 Function Mechanisms
4.6 MOVE - Perform sequences of movements

34
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Addr. Name/Identifier Type

5.1 motion_qualifiers.below_configuration BOOL
5.2 motion_qualifiers.flip_configuration BOOL
5.3 motion_qualifiers.relative_to_pallet_frame BOOL
10 motion_parameters.speed INT
12 motion_parameters.acceleration INT
14 motion_parameters.deceleration INT
16 motion_parameters.acceleration_profile INT
18 motion_parameters.speed_limit INT
20 motion_parameters.pallet_index INT
22 motion_parameters.approach_height REAL
30 location_data.X REAL
34 location_data.Y REAL
38 location_data.Z REAL
42 location_data.Yaw REAL
46 location_data.Pitch REAL
50 location_data.Roll REAL
Status data

0.7 system_state.command_execution_state BOOL
16.0 motion_state.in_position_state BOOL

4.6.3 Signal sequence for function control

The function is controlled in the robot controller as follows:

Table 4-13 Signal sequence for function control

No. Functionality Note/Remark

1. Reset any currently pending travel
commands.

2. Apply the movement criteria for
performing the movement.

3. Apply the dynamic values required for
the movement.

For security reasons, individual dynamic
values will be specified for the
coordinated movement of the robot.

4. Apply the target position specified for
the movement.

For security reasons, the target position
is specified through different parameters
in the axis coordinate system (JOINT)
and in the Cartesian coordinate system
(WORLD).
Parameters are selected via the motion
qualifier
“motion_qualifiers.joint_coordinates”.

5. Trigger the travel movement.

4 Function Mechanisms
4.6 MOVE - Perform sequences of movements

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 35

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

No. Functionality Note/Remark

6. If, during an active travel movement, a
new travel command is issued, this
command will be added to the currently
processed travel movement.

7. If no new travel command is issued, the
current movement will be completed
and then the robot axes will be stopped.

5 Installation
5.1 Hardware installation

36
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

5 Installation
5.1 Hardware installation

For commissioning the application example the SIMATIC automation system must
be connected to the Ethernet interface of the robot controller via the
PROFINET/Ethernet interface.

Figure 5-1 Hardware installation - wiring of the components

Robot Controller

SIMATIC Controller

Ethernet or PROFINET cable

Note In case the interfaces of the SIMATIC Controller and the robot controller are
directly connected, the use of an Ethernet cross cable might be required.

5.2 Integrating the application into a STEP 7 project

This section describes how to integrate the application into an existing or a newly
established STEP 7 project.

5.2.1 Copying the required blocks and sources

Copy the blocks listed in the table into your existing or newly established STEP 7
project.

Table 5-1 Required blocks

Block Symbolic name Function

FB 63 TSEND Function block working asynchronously,
sending data through an existing
communication connection.

FB 64 TRCV Function block working asynchronously,
receiving data through an existing
communication connection.

FB 65 TCON Function block working asynchronously, for
setting up and establishing a communication
connection.

FB 66 TDISCON Function block working asynchronously, for
clearing a communication connection.

5 Installation
5.2 Integrating the application into a STEP 7 project

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 37

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Block Symbolic name Function

FB 600 ADEPT_RobotControl

Function block for exchanging data between a
SIMATIC Controller and the ADEPT robot
controller with ADEPT ePLC data interface.

FB 601 RobotErrorMessage Function block for converting the robot
messages issued via the ADEPT ePLC data
interface into a STRING that can be displayed
on the operating panel via the HMI user
interface.
Note:
This block is only required if the robot messages
are to be further processed as STRINGS. If not,
there is no need to copy this block.

UDT 600 ADEPT_ePLC Mapping of the ADEPT ePLC data interface
including some parameters required for
establishing the connection.

UDT 601 ADEPT_CommandData Mapping of the command message of the
ADEPT ePLC data interface.

UDT 602 ADEPT_StatusData Mapping of the status message of the ADEPT
ePLC data interface.

UDT 605 ADEPT_JogControl Data interface for performing a JOG movement
with the robot with selection of the jog mode,
triggering of the JOG button for axis selection,
and the dynamic parameters for the JOG
movement.

UDT 606 ADEPT_Position Data interface for the robot position in the
WORLD and JOINT coordinate system for
specifying a target position of the robot or for
transferring the current robot position.

UDT 607 ADEPT_MoveControl Data interface for performing a robot movement,
specifying the movement qualifiers, the dynamic
values, and the target position for the movement
in the WORLD and the JOINT coordinate
system.

UDT 608 ADEPT_ErrorMessage Data interface of the robot messages
transferred via the status message of the
ADEPT ePLC data interface.

UDT 609 ADEPT_RobotState Data interface of the robot status for displaying
the system status and the movement status of
the robot.

UDT 610 ADEPT_ComData Parameter for setting up the communication
connection between SIMATIC Controller and
ADEPT robot controller.

SFB 4 TON Creating a switch-on delay with specifiable
delay time.

SFC 24 TEST_DB Testing a data block with return of the number
of data bytes in the DB and the write protection
status.

5 Installation
5.2 Integrating the application into a STEP 7 project

38
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

5.2.2 Compiling the SCL source of the function block (optional)

The FB 600 “ADEPT_RobotControl“ function block is written in the “STEP 7 SCL”
high-level language for easier handling of data structures. The compiled block is
available in the block folder of the STEP 7 project.
In order to use the block in STEP 7 projects without the “SCL” option, it is sufficient
to copy the compiled FB 600 “ADEPT_RobotControl” block from the block folder
into the existing or newly created STEP 7 project.
In case the “SCL” option has been installed in the SIMATIC Manager, the FB 600
“ADEPT_RobotControl” block can easily be changed and re-compiled.

5.2.3 Integrating the function block into a cyclic OB

In order to use the application in your STEP 7 project, call function block FB 600
“ADEPT_RobotControl” in a cyclically processed organization block, OB1 for
example.
If the robot messages from the status message of the ADEPT ePLC data interface
are to be further processed as a STRING tags, by displaying them on a HMI user
interface, for example, FB 601 “RobotErrorMessage” will also have to be called in a
cyclically processed organization block, e.g. OB1. It is recommendable to call FB
601 “RobotErrorMessage” directly after FB 600 “ADEPT_RobotControl” and to
transfer the data from port “RobotErrorMessage” of FB 600 “ADEPT_RobotControl”
to port “RobotErrorMessage” of FB 601 “RobotErrorMessage”.

5.2.4 Using the HMI user interface

If the HMI user interface for FB 600 “ADEPT_RobotControl” is to be transferred to
the STEP 7 project as well, the WinCC flexible project of the HMI user interface will
also have to be transferred into your STEP 7 project and, if required, the tags of the
HMI user interface will have to be reconnected with the instance block of FB 600
“ADEPT_RobotControl” via WinCC flexible project; in this example this would be
DB 600 “idb_ADEPT_RobotControl”.
This is how to proceed:
• In the SIMATIC Manager, copy HMI object “SIMATIC MobilePanel 277” from

the application example into your STEP 7 project.
• Open the copied HMI object in your STEP 7 project in WinCC flexible and

reconnect the tags of the HMI user interface to the instance block of FB 600
“ADEPT_RobotControl” in your STEP 7 project.

To reconnect the tags of the HMI user interface in the STEP 7 project, proceed as
follows:
After copying the HMI object into your STEP 7 project, open the HMI object via
WinCC flexible. In the project tree, under “Communication > Tags”, you can see
whether the connection of the tags to the controller, or the instance block of FB 600
“ADEPT_RobotControl”, is still active.
If it is not, first check the connection to the HMI user interface to the controller via
“Communication > Connections”. Here, if required, select the controller from your
STEP 7 project. You can then select the function “Reconnect” via the context menu
of the “Communication > Tags” tree object.

5 Installation
5.2 Integrating the application into a STEP 7 project

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 39

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Figure 5-2 WinCC flexible – reconnecting tags

In the function dialog for reconnection, set the functions for reconnecting the tags
as shown below.
Definitely make sure that the option “Replace tag name with symbol name” is
deselected. Otherwise the tag table of the HMI project might be renamed.

Figure 5-3 Options for reconnecting symbols in WinCC flexible

Execute the function by clicking “OK”. After that, all tags should be reconnected
with the controller.

6 Startup
6.1 Description of the function block interface

40
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

6 Startup
6.1 Description of the function block interface

6.1.1 Block interface

FB 600
“ADEPT_RobotControl“

ComData

ConnectBOOL

STRUCT

PowerBOOL

CalibrateBOOL

ResetBOOL

BrakeBOOL

JOGSTRUCT

MOVESTRUCT

Connected BOOL

PowerReady BOOL

PowerON BOOL

Calibrated BOOL

ResetDone BOOL

BrakeON BOOL

Jogging BOOL

Moving BOOL

NextMove BOOL

MoveDone BOOL

Error BOOL

ErrorID WORD

ActualPosition STRUCT

RobotErrorMessage STRUCT/STRING

Table 6-1 Function block interface

Parameter Data type Initial value Description

Input parameters

Connect BOOL False Communication with the robot
controller is started through this
parameter.
The communication with the robot
controller is active as long as the
input is set.

ComData STRUCT Communication parameter for
connection setup with the robot
controller
 see next chapter

Power BOOL False Switching on the power at the
robot.
The robot power will stay on as
long as the input is set.
If necessary, due to fault
conditions, the robot power may
also be switched off by the robot
controller.

Calibrate BOOL False Triggering the homing operation of
the robot axes (with minimum axis
movement).
The homing operation will only be
performed if the axes of the robot
have not yet been referenced, or
calibrated.

6 Startup
6.1 Description of the function block interface

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 41

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Parameter Data type Initial value Description

Reset BOOL False Acknowledging any error
messages pending at the robot
controller and canceling any
current commands within the
function block.

Brake BOOL False Immediately stopping any travel
movements of the robot.
Further travel movements of the
robot axis will be prevented as
long as the input is set.

JOG STRUCT Parameter for performing the jog
mode of the robot axes
 see next chapter

MOVE STRUCT Parameter for the performance of
coordinated movements or a
sequence of movements by the
robot.
 see next chapter

Output parameters

Connected BOOL False The communication connection
with the robot controller is set up.
The robot can be influenced via
the function block.

PowerReady BOOL False Robot is ready for switch-on.
The robot power can be switched
on by actuating the button at the
robot operating panel.

PowerON BOOL False The power at the robot is switched
on.
The robot axes can now be
moved.

Calibrated BOOL False The axes of the robot are
referenced, or calibrated.

ResetDone BOOL False Any error messages pending at
the robot controller were
acknowledged.

BrakeON BOOL False All axes of the robot are stopped.
No travel movements of the robot
axis can be performed as long as
the output is set.

Jogging BOOL False The robot axes are moved in jog
mode.

Moving BOOL False The robot axes are moved through
a coordinated movement.

NextMove BOOL False Another movement command for
performing a sequence of
movements can be issued via the
“MOVE” input.

6 Startup
6.1 Description of the function block interface

42
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Parameter Data type Initial value Description

MoveDone BOOL False The current coordinated
movement or sequence of
movements is completed.

Error BOOL False Error at the function block.
ErrorID WORD W#16#0 Error number for more detailed

specification of the error cause.
 see next chapter

ActualPosition STRUCT Current position of the robot axes
in the axis coordinate system
(JOINT) and in the Cartesian
coordinate system (WORLD)
 see next chapter

RobotErrorMessage STRUCT Output of the robot controller
messages
 see next chapter

DANGER

In case of danger, take additional measures for stopping the robot if the
robot movements can no longer be influenced by the SIMATIC Controller.

6.1.2 “ComData” data structure

Table 6-2 “ComData” data structure

Parameter Data type Initial value Description

 STRUCT

ID WORD W#16#5F Freely selectable communication
ID that must be uniquely specified
for each robot.

IP_Address ARRAY[1..6] OF BYTE
IP_Address[1] BYTE B#16#0 IP address of the robot controller

in IPv4 format for setting up the
communication connection. IP_Address[2] BYTE B#16#0

IP_Address[3] BYTE B#16#0
IP_Address[4] BYTE B#16#0
IP_Address[5] BYTE B#16#0 Not used.
IP_Address[6] BYTE B#16#0
 END_STRUCT
LocalDevice_Type BYTE B#16#2 Identifier of the controller hardware

from which the robot is controlled.
The setting options for this
parameter correspond to the
“local_device_id” parameter
according to the UDT 65 for the
“CONNECT” input of the “T_CON”
block for setting up the connection.

6 Startup
6.1 Description of the function block interface

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 43

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Parameter Data type Initial value Description

Port DINT 46555 Port number of the robot controller
through which the communication
with the SIMATIC Controller takes
place.

BasicComTime TIME T#100ms Cycle time for the communication
with the robot. The data sending
and receiving process between
controller and robot must be
completed within this period of
time.

WatchDogComTime TIME T#40ms Monitoring time for setting up the
connection to the robot.

 END_STRUCT

6.1.3 “JOG” data structure

Table 6-3 “JOG” data structure

Parameter Data type Initial value Description

 STRUCT
JOG_Mode STRUCT

jog_world_mode BOOL False Jog mode along the axes of the
Cartesian coordinate system
(WORLD).

jog_tool_mode BOOL False Jog mode along the axes of the
tool coordinate system.

jog_joint_mode BOOL False Jog mode along the axes of the
axis coordinate system (JOINT).

jog_free_mode BOOL False [currently not supported]
 END_STRUCT
JOG_Buttons STRUCT

jog_joint_1_or_
 x_PLUS

BOOL False Movement of robot axis 1 or along
the x axis of the coordinate system
in plus direction, as long as the
button is pressed.

jog_joint_1_or_
 x_MINUS

BOOL False Movement of robot axis 1 or along
the x axis of the coordinate system
in minus direction, as long as the
button is pressed.

jog_joint_2_or_
 y_PLUS

BOOL False Movement of robot axis 2 or along
the Y axis of the coordinate
system in plus direction, as long as
the button is pressed.

jog_joint_2_or_
 y_MINUS

BOOL False Movement of robot axis 2 or along
the Y axis of the coordinate
system in minus direction, as long
as the button is pressed.

jog_joint_3_or_
 z_PLUS

BOOL False Movement of robot axis 3 or along
the Z axis of the coordinate system
in plus direction, as long as the
button is pressed.

6 Startup
6.1 Description of the function block interface

44
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Parameter Data type Initial value Description

jog_joint_3_or_
 z_MINUS

BOOL False Movement of robot axis 3 or along
the Z axis of the coordinate system
in minus direction, as long as the
button is pressed.

jog_joint_4_or_
 yaw_PLUS

BOOL False Movement of robot axis 4 or
angular movement about the Z
axis of the coordinate system in
plus direction, as long as the
button is pressed.

jog_joint_4_or_
 yaw_MINUS

BOOL False Movement of robot axis 4 or
angular movement about the X
axis of the coordinate system in
minus direction, as long as the
button is pressed.

jog_joint_5_or_
 pit_PLUS

BOOL False Movement of robot axis 5 or
angular movement about the Y
axis of the coordinate system in
plus direction, as long as the
button is pressed.

jog_joint_5_or_
 pit_MINUS

BOOL False Movement of robot axis 5 or
angular movement about the Y
axis of the coordinate system in
minus direction, as long as the
button is pressed.

jog_joint_6_or_
 rol_PLUS

BOOL False Movement of robot axis 6 or
angular movement about the Z
axis of the coordinate system in
plus direction, as long as the
button is pressed.

jog_joint_6_or_
 rol_MINUS

BOOL False Movement of robot axis 6 or
angular movement about the Z
axis of the coordinate system in
minus direction, as long as the
button is pressed.

 END_STRUCT
JOG_MotionParameters STRUCT

speed INT 0 Absolute value of the speed of
movement in jog mode.

acceleration INT 0 Absolute value of the acceleration
of movement in jog mode.

deceleration INT 0 Absolute value of the deceleration
of movement in jog mode.

acceleration_profile INT 0 0 = Trapezoidal movement profile
1 = S-shaped moving profile

speed_limit INT 0 [currently not supported]
 END_STRUCT
 END_STRUCT

6 Startup
6.1 Description of the function block interface

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 45

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

6.1.4 “MOVE” data structure

Table 6-4 “MOVE” data structure

Parameter Data type Initial value Description

 STRUCT
Command STRUCT

Execute BOOL False Via a rising edge at this input the
movement command is started
with the data specified here.

 END_STRUCT
qualifiers STRUCT

relative_move BOOL False 0 = Interpretation of the specified
position as absolute target position
1 = Interpretation of the specified
position as relative target position

joint_coordinates BOOL False 0 = movement in the Cartesian
coordinate system (WORLD)
1 = movement in the axis
coordinate system (JOINT)
Notice:
For security reasons, depending
on this parameter, the target
position of the movement is taken
over from the corresponding
structure (WORLD or JOINT).

straightline_move BOOL False 0 = movement axis-interpolated
1 = movement on a straight line

nonull BOOL False 0 = Exact approach of the end
points of the specified movement
1 = Blending of two movements

coarse_nulling BOOL False 0 = Positioning in the approximate
range
1 = Positioning in the precise
range

single_turn BOOL False 0 = Allow multiple turns of the axis
of revolution
1 = Allow only one single turn of
the axis of revolution

righty_configuration BOOL False 0 =Arm alignment to the left
1 =Arm alignment to the right

below_configuration BOOL False 0 =Arm alignment at the top
1 =Arm alignment at the bottom

flip_configuration BOOL False 0 =Arm alignment not flipped
1 =Arm alignment flipped

 END_STRUCT
parameters STRUCT

speed INT 0 Absolute value of the speed of
movement.

acceleration INT 0 Absolute value of the acceleration
of movement.

deceleration INT 0 Absolute value of the deceleration
of movement.

6 Startup
6.1 Description of the function block interface

46
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Parameter Data type Initial value Description

acceleration_profile INT 0 0 = Trapezoidal movement profile
1 = S-shaped movement profile

 END_STRUCT
location_data STRUCT
world STRUCT

X REAL 0.0 Target position of the movement
for movements in the Cartesian
coordinate system (WORLD)
Notice:
For security reasons, depending
on the “joint_coordinates”
parameter, the target position of
the movement is taken over from
the corresponding structure
(WORLD or JOINT).

Y REAL 0.0

Z REAL 0.0

Yaw REAL 0.0

Pitch REAL 0.0

Roll REAL 0.0

 END_STRUCT
joint STRUCT

joint_1 REAL 0.0 Target position of the movement
for movements in the axis
coordinate system (JOINT)
Notice:
For security reasons, depending
on the “joint_coordinates”
parameter, the target position of
the movement is taken over from
the corresponding structure
(WORLD or JOINT).

joint_2 REAL 0.0

joint_3 REAL 0.0

joint_4 REAL 0.0

joint_5 REAL 0.0

joint_6 REAL 0.0

 END_STRUCT
 END_STRUCT

6.1.5 “ActualPosition” data structure

Table 6-5 “ActualPosition” data structure

Parameter Data type Initial value Description

 STRUCT
world STRUCT

X REAL 0.0 Current position of the robot in the
Cartesian coordinate system
(WORLD) Y REAL 0.0

Z REAL 0.0
Yaw REAL 0.0
Pitch REAL 0.0
Roll REAL 0.0
 END_STRUCT

6 Startup
6.2 Structure of the instance data block

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 47

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Parameter Data type Initial value Description

joint STRUCT

joint_1 REAL 0.0 Current position of the robot in the
axis coordinate system (JOINT) joint_2 REAL 0.0

joint_3 REAL 0.0
joint_4 REAL 0.0
joint_5 REAL 0.0
joint_6 REAL 0.0
 END_STRUCT
 END_STRUCT

6.1.6 “RobotErrorMessage” data structure

Table 6-6 “ComData” data structure

Parameter Data type Initial value Description

 STRUCT
error_message STRUCT
error_number INT 0 Error number.

Positive or negative values can be
output here.

reserve_124 INT 0 [currently not supported]
maximum_length BYTE B#16#0 In the SIMATIC, data can be

interpreted as SIMATIC string and
processed.
SIMATIC String = 1 byte total
length (here 80) / 1 byte number of
characters / 80 bytes character.

actual_length BYTE B#16#0

data ARRAY[1..80] OF CHAR
data[1] CHAR “ “ Character 1 of the message
… … … …
data[80] CHAR “ “ Character 80 of the message
 END_STRUCT
 END_STRUCT
 END_STRUCT

6.2 Structure of the instance data block

The instance data block of FB 600 “ADEPT_RobotControl” has the following
structure:

6 Startup
6.2 Structure of the instance data block

48
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Table 6-7 Structure of the instance data block of FB 610 „ADEPT_RobotComm“

Address Decl. Name Function

Block interface

0.0 IN Connect Input for activating the connection
setup and clearance

2.0
to
20.0

IN ComData Structure of the connecting
parameters for setting up the
communication connection.

24.0 IN Power Input for switching on the robot
power.

24.1 IN Calibrate Input for activating the calibrating
function of the robot.

24.2 IN Reset Input for resetting and acknowledging
error events at the robot.

24.3 IN Brake Input for immediate stopping of travel
movements at the robot.

26.0
to
38.0

IN JOG Structure for activating a jog
movement with specification of JOG
options and dynamic values.

40.0
to
96.0

IN MOVE Structure for specifying the options,
dynamic values and target position
for a moving command.

100.0
to
102.0

OUT … Outputs for displaying the current
status of the function block.

104.0
to
148.0

OUT ActualPosition Structure for outputting the current
position of the robot in WORLD and
JOINT coordinates.

152.0
to
273.0

OUT RobotErrorMessage Structure for outputting the robot
messages.

238.0
to
260.0

OUT RobotState Structure for displaying the current
robot status.

Internal tags

262.0
to
302.0

STAT … Internal tags of the function block.

304.0
to
758.0

STAT RobotData Structure of the ADEPT ePLC data
interface for the communication
between SIMATIC Controller and
ADEPT robot controller.

762.0
to
824.0

STAT ComConfiguration Structure for the connection
parameters of the communication
connection (according to UDT 65).

826.0
to
830.0

STAT … Actually detected times of the
sending and receiving process for
diagnostic purposes.

834.0
to
950.0

STAT … Multi-instances of the blocks used in
the function block.

6 Startup
6.3 Error and warning messages

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 49

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

NOTICE To ensure the correct function of the block, do not make any direct
changes directly in the internal tags of the instance data block.

6.3 Error and warning messages

The meaning of the error and warning messages issued at the “ErrorID” output is
as follows:

Table 6-8 Error and warning messages

FB_
ErrorID

Error Ref. Remark

0000 No error ---
Communication

F001 Timeout during setup of the
communication connection.

Connect Check the connection between the
SIMATIC Controller and the robot
or, if required, increase the
monitoring time
“WatchDogComTime”.

F002 Timeout when sending
command data

Connect Check the connection between the
SIMATIC Controller and the robot
or, if required, increase the
monitoring time “BasicComTime”.

F003 Timeout when receiving
status data

Connect Check the connection between the
SIMATIC Controller and the robot
or, if required, increase the
monitoring time “BasicComTime”.

F004 The length of the
“CommandData” structure
could not be determined in
the block.

Connect

F005 The length of the
“StatusData” structure could
not be determined in the
block.

Connect

F006 The send-receive cycle
could not be executed since
there is no connection to the
robot.

Connect Check the connection between the
SIMATIC Controller and the robot

Power: Switching the robot on/off.
F101 Emergency stop at the

ADEPT robot operator panel
active

Power Unlock the emergency stop of the
ADEPT robot operator panel

F102 Error in resetting the robot
controller

Power

F103 Error in switching on the
robot power

Power

6 Startup
6.4 Defining the communication parameters

50
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

FB_
ErrorID

Error Ref. Remark

F104 Error in switching on the
robot power

Power

F105 Error in switching off the
robot power

Power

Calibrate: Referencing the robot axes
F201 Error in starting the

referencing function of the
robot axes.

Calibrate

F202 Error in performing the
referencing function of the
robot axes.

Calibrate

F203 Error in completing the
referencing function of the
robot axes.

Calibrate

6.4 Defining the communication parameters

Prior to setting up the communication connection between the SIMATIC Controller
and the ADEPT robot controller, define the communication parameters via the
structure of the “ComData” input.

Table 6-9 “ComData” data structure

Parameter Data type Initial value Description

 STRUCT

ID WORD W#16#5F The communication ID needs to be
changed only if connections with
more than one robot controller
exist within the project.

IP_Address ARRAY[1..6] OF BYTE
IP_Address[1] BYTE B#16#0 Enter the IP address of the robot

controller here. IP_Address[2] BYTE B#16#0
IP_Address[3] BYTE B#16#0
IP_Address[4] BYTE B#16#0
IP_Address[5] BYTE B#16#0 Not used.
IP_Address[6] BYTE B#16#0
 END_STRUCT
LocalDevice_Type BYTE B#16#2 The default setting is suitable for

the communication from SIMATIC
CPUs 315-2 PN/DP and 317-2
PN/DP via the integrated interface.
For further setting options please
refer to the FB 65 “TCON” Online
Help.

6 Startup
6.5 Testing the block function

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 51

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Parameter Data type Initial value Description

Port DINT L46555 The port must be left at default
setting for the communication with
ADEPT robot controllers.

BasicComTime TIME T#2s Usually the setting of the
communication monitoring can be
left at the default setting.

WatchDogComTime TIME T#10s Usually the setting of the
monitoring time of the connection
setup can be left at the default
setting.

 END_STRUCT

6.5 Testing the block function

For testing the block functions, the application provides a tag table “VAT_STATES”
and an HMI user interface “SIMATIC MobilePanel 277” that may also be operated
on a PC via the WinCC flexible Runtime.

6.5.1 Using the tag table

In the “VAT_STATES” tag table the required input bits of FB 600
“ADEPT_RobotControl” for controlling and the output bits and parameters for
monitoring the block response have already been entered.

Note The parameters for setting up the communication are not listed in the tag table,
but must be specified directly in the program via OB 1 or OB 100.

In addition, the tag table includes further information on the monitoring of the block
response or the robot:
• Current positions of the robot axes in WORLD coordinates for the X, Y and Z

axes of the world coordinate system.
• Currently active state of the state machine of the individual functions of

function block F600 “ADEPT_RobotControl” for verifying the execution of the
individual functions that can be triggered via the function block inputs.

• Internal error messages of the communication blocks “TCON”, “TDISCON”,
“TSEND”, “TRECV”, that are responsible for setting or clearing the connection
and for data transmission between SIMATIC Controller and ADEPT robot.

6 Startup
6.5 Testing the block function

52
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Figure 6-1 Tag table “VAT_STATES”

6.5.2 Using the HMI user interface

If the HMI user interface is to be used for testing the block functions, it must be
loaded to a SIMATIC MobilePanel 277 or the user interface must be started on a
PC as WinCC flexible Runtime. For this purpose, however, the WinCC flexible
Runtime software must be installed in this PC.
In order to start the HMI user interface as WinCC flexible Runtime, call the file
“<STEP 7 project directory> > ADEPT_Ro > HmiEs > PROJECT_1 >
PROJECT_1.SIMATIC MobilePanel 277.fwx“ directly from the Microsoft Windows
Explorer. This way the WinCC flexible Runtime will only start the actual user
interface on the PC.

6 Startup
6.5 Testing the block function

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 53

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Figure 6-2 HMI user interface - “Communication” function

Through the HMI user interface you can now easily control and monitor all inputs
and outputs of FB 600 “ADEPT_RobotControl” on the corresponding pages.

Figure 6-3 HMI user interface - “Movement” function

7 Operation of the Application
7.1 Starting the communication with the robot controller

54
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

7 Operation of the Application
The application and thus the entire robot is operated through the function block of
the application example. The proceeding for the individual functions of the function
block will be described in the following chapters.

7.1 Starting the communication with the robot controller

Enter the connection parameters and the cycle and monitoring times for data
exchange via the “ComData” input and then start the connection via the “Connect”
input.
If the connection to the robot controller was successful, the “Connected” output will
be set and the cyclic data exchange between SIMATIC Controller and robot
controller will be executed within the specified time frame.
After successful connection setup, the robot controller will also issue a message
that can be viewed via the “RobotErrorMessage” output.
In case an error occurred during connection setup, it can be identified and
analyzed via the “Error” and “ErrorID” outputs.

Figure 7-1 Communication with the robot controller

FB 600
“ADEPT_RobotControl“

ComData

ConnectBOOL

STRUCT

PowerBOOL

CalibrateBOOL

ResetBOOL

BrakeBOOL

JOGSTRUCT

MOVESTRUCT

Connected BOOL

PowerReady BOOL

PowerON BOOL

Calibrated BOOL

ResetDone BOOL

BrakeON BOOL

Jogging BOOL

Moving BOOL

NextMove BOOL

MoveDone BOOL

Error BOOL

ErrorID WORD

ActualPosition STRUCT

RobotErrorMessage STRUCT/STRING

The connection parameters and the cycle and monitoring times for data exchange
will be specified via the structure at the “ComData” input. Here, a unique but freely
selectable (connection) ID, the IP address of the robot controller and the
communication port of the robot controller through which data is exchanged must
be defined for each robot.
In addition, the cycle time for data exchange between SIMATIC Controller and
robot controller must be specified and the monitoring time for the communication
connection setup must be defined.

7 Operation of the Application
7.2 Switching on the robot power

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 55

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Figure 7-2 Definition of connection parameters and the cycle / monitoring times

FB 600
“ADEPT_RobotControl“

ComData

Connect
INT

Power

Calibrate

Reset

Brake

JOG

MOVE

Connected

PowerReady

PowerON

Calibrated

ResetDone

BrakeON

Jogging

Moving

NextMove

MoveDone

Error

ErrorID

ActualPosition

RobotErrorMessage

DINT

TIME

TIME

ID

IP_Adress

Port

BasicComTime

WatchDogComTime

STRUCT (ARRAY OF BYTE)

Note Any other functions of the robot can only be controlled via the function block if
the communication connection with the robot was set up successfully and the
connection is currently active.

An active communication connection with the robot controller will be indicated
through the “Connected” output of the function block.

DANGER

In case of danger, take additional measures for stopping the robot if the
robot movements can no longer be influenced by the SIMATIC Controller.

7.2 Switching on the robot power

If the “Power” input at the function block is set, the command for switching on the
robot power will be issued to the robot controller.
If the robot controller is ready for switching on the power at the robot, the
“PowerReady” output at the function block will be set and the key for switching on
the robot power at the robot front panel will be flashing. Pressing the key will switch
on the power at the robot and the robot axes will go to controlled mode. This status
will be displayed at the function block by setting the “PowerON” output.
In case any error occurs at the robot when the power is switched on, this will be
indicated via the “Error” and “ErrorID” outputs of the function block. The robot
controller can also send out a message concerning the error via the
“RobotErrorMessage” output. The potential cause for such an error might be an
active emergency stop function at the robot, e.g. if the emergency stop button at
the front panel of the robot is pressed.

7 Operation of the Application
7.3 Referencing (calibrating) the robot axes

56
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Figure 7-3 Switching on the robot power

FB 600
“ADEPT_RobotControl“

ComData

ConnectBOOL

STRUCT

PowerBOOL

CalibrateBOOL

ResetBOOL

BrakeBOOL

JOGSTRUCT

MOVESTRUCT

Connected BOOL

PowerReady BOOL

PowerON BOOL

Calibrated BOOL

ResetDone BOOL

BrakeON BOOL

Jogging BOOL

Moving BOOL

NextMove BOOL

MoveDone BOOL

Error BOOL

ErrorID WORD

ActualPosition STRUCT

RobotErrorMessage STRUCT/STRING

Figure 7-4 Switching on the robot power at the front panel of the robot

7.3 Referencing (calibrating) the robot axes

Prior to their first use, the robot axes must be calibrated or referenced via the
“Calibrate” input. A rising edge at the input will trigger the function.
At the “Calibrated” output, the function blocks indicates that the robot axes are
referenced or calibrated and can now be used for further movement functions. In
case any error occurs at the robot when the power is switched on, this will be
indicated via the “Error” and “ErrorID” outputs of the function block. In addition, the
robot controller may also output further information on this function via the
“RobotErrorMessage” output.

7 Operation of the Application
7.4 Acknowledging potentially pending errors

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 57

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Figure 7-5 Referencing (calibrating) the robot axes

FB 600
“ADEPT_RobotControl“

ComData

ConnectBOOL

STRUCT

PowerBOOL

CalibrateBOOL

ResetBOOL

BrakeBOOL

JOGSTRUCT

MOVESTRUCT

Connected BOOL

PowerReady BOOL

PowerON BOOL

Calibrated BOOL

ResetDone BOOL

BrakeON BOOL

Jogging BOOL

Moving BOOL

NextMove BOOL

MoveDone BOOL

Error BOOL

ErrorID WORD

ActualPosition STRUCT

RobotErrorMessage STRUCT/STRING

Note If the function is started via the “Calibrate” input even though the “Calibrated”
output already indicates that the axes of the robot have already been calibrated
or referenced, there will be no active referencing of the axes again. The
execution of this function will be suppressed.

7.4 Acknowledging potentially pending errors

In case of any errors pending at the function block or at the robot or robot
controller, these can be acknowledged or reset via the “Reset” input of the function
block.
The successful execution of the function will be indicated via the “ResetDone”
output, which will be set at least for one call cycle of the block, or will stay set until
the “Reset” input is reset again.
In case any error occurs during the execution of this function, this will be indicated
via the “Error” and “ErrorID” outputs. The currently pending error may possibly be
indicated via these outputs even before the function is started. In addition, a
message of the robot controller concerning a pending error may be output via the
“RobotErrorMessage” output.

7 Operation of the Application
7.5 Immediately stopping a robot movement

58
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Figure 7-6 Acknowledging potentially pending errors

FB 600
“ADEPT_RobotControl“

ComData

ConnectBOOL

STRUCT

PowerBOOL

CalibrateBOOL

ResetBOOL

BrakeBOOL

JOGSTRUCT

MOVESTRUCT

Connected BOOL

PowerReady BOOL

PowerON BOOL

Calibrated BOOL

ResetDone BOOL

BrakeON BOOL

Jogging BOOL

Moving BOOL

NextMove BOOL

MoveDone BOOL

Error BOOL

ErrorID WORD

ActualPosition STRUCT

RobotErrorMessage STRUCT/STRING

7.5 Immediately stopping a robot movement

If the robot axes are currently moving, this axis movement can immediately be
stopped by setting the “Brake” input. The axes cannot be started again as long as
the “Brake” input of the function block is set.
The “BrakeON” output of the function block indicates that the function for stopping
the robot axes is active and that no further travel movement of the axes can be
started.
In case any error occurs during the execution of this function, this will be indicated
via the “Error” and “ErrorID” outputs. In addition, a message of the robot controller
concerning this function may be output via the “RobotErrorMessage” output.

Figure 7-7 Immediately stopping a robot movement

FB 600
“ADEPT_RobotControl“

ComData

ConnectBOOL

STRUCT

PowerBOOL

CalibrateBOOL

ResetBOOL

BrakeBOOL

JOGSTRUCT

MOVESTRUCT

Connected BOOL

PowerReady BOOL

PowerON BOOL

Calibrated BOOL

ResetDone BOOL

BrakeON BOOL

Jogging BOOL

Moving BOOL

NextMove BOOL

MoveDone BOOL

Error BOOL

ErrorID WORD

ActualPosition STRUCT

RobotErrorMessage STRUCT/STRING

7 Operation of the Application
7.6 Moving the robot axes in jog mode

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 59

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

7.6 Moving the robot axes in jog mode

The robot axes can be moved in the different coordinate systems of the robot in jog
mode via the “JOG” input.
Active travel movement of the robot axes in jog mode will be indicated via the
“Jogging” output.
In case any error occurs during the execution of this function, this will be indicated
via the “Error” and “ErrorID” outputs. In addition, a message of the robot controller
concerning this function may be output via the “RobotErrorMessage” output.

Figure 7-8 Moving the robot axes in jog mode

FB 600
“ADEPT_RobotControl“

ComData

ConnectBOOL

STRUCT

PowerBOOL

CalibrateBOOL

ResetBOOL

BrakeBOOL

JOGSTRUCT

MOVESTRUCT

Connected BOOL

PowerReady BOOL

PowerON BOOL

Calibrated BOOL

ResetDone BOOL

BrakeON BOOL

Jogging BOOL

Moving BOOL

NextMove BOOL

MoveDone BOOL

Error BOOL

ErrorID WORD

ActualPosition STRUCT

RobotErrorMessage STRUCT/STRING

Jog mode is controlled through the structure of the “JOG” input. “JOG_Mode”
enables switching between the Cartesian coordinate system (“jog_world_mode”
input), the tool coordinate system (“jog_tool_mode” input), and the axis coordinate
system (“jog_joint_mode” input).
The dynamic parameters for the jog mode of the axes, such as speed (“speed”
input), acceleration (“acceleration” input), and deceleration (“deceleration” input)
and the dynamic profile (“acceleration_profile” input) will be specified via the
“JOG_MotionParameters”.
After that, through the “JOG_Buttons”, the respective axis can be moved, and
several axes can be selected at the same time. The robot axes will keep moving as
long as the corresponding jog buttons are pressed.

7 Operation of the Application
7.7 Executing coordinated movements

60
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Figure 7-9 Controlling the jog mode

FB 600
“ADEPT_RobotControl“

ComData

ConnectBOOL

Power

Calibrate

Reset

Brake

JOG

MOVE

Connected

PowerReady

PowerON

Calibrated

ResetDone

BrakeON

Jogging

Moving

NextMove

MoveDone

Error

ErrorID

ActualPosition

RobotErrorMessage

JOG_MotionParameters

JOG_Buttons

JOG_Mode

jog_joint_mode

jog_tool_mode

jog_world_mode

Jog_joint_1_or_x_plus

Jog_joint_1_or_x_minus

Jog_joint_6_or_rol_plus

Jog_joint_6_or_rol_minus

...

speed

acceleration

deceleration

acceleration_profile

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

INT

INT

INT

INT

7.7 Executing coordinated movements

One or more coordinated and chained movements of the robot can be executed,
with a target position specified, via the “MOVE” input.
Active travel movement of the robot axes will be indicated via the “Moving” output.
The “NextMove” output indicates that a further moving command for a chained
sequence of movements can be transferred to the function block, allowing orbital
movements of the robot with several support points to be executed. The
“MoveDone” ouput indicates that a single movement or a chained sequence of
movements or orbital movement was fully executed and completed. This output will
be displayed at least for one call cycle of the block, or until the
“MOVE.command.Execute” input is reset.
In case any error occurs during the execution of this function, this will be indicated
via the “Error” and “ErrorID” outputs. In addition, a message of the robot controller
concerning this function may be output via the “RobotErrorMessage” output.

7 Operation of the Application
7.7 Executing coordinated movements

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 61

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Figure 7-10 Executing coordinated movements

FB 600
“ADEPT_RobotControl“

ComData

ConnectBOOL

STRUCT

PowerBOOL

CalibrateBOOL

ResetBOOL

BrakeBOOL

JOGSTRUCT

MOVESTRUCT

Connected BOOL

PowerReady BOOL

PowerON BOOL

Calibrated BOOL

ResetDone BOOL

BrakeON BOOL

Jogging BOOL

Moving BOOL

NextMove BOOL

MoveDone BOOL

Error BOOL

ErrorID WORD

ActualPosition STRUCT

RobotErrorMessage STRUCT/STRING

The moving functions of the robot will be controlled through the structure of the
“MOVE” input.
The properties of the required movement are defined by means of the qualifiers.
They allow the setting whether the target specification of the movement is an
absolute or a relative position specification (“relative_mode” input), whether the
position is specified in the Cartesian coordinate system or in the axis coordinate
system (“joint_coordinates” input), whether the movement is to be executed on a
straight line (“straightline_move” input), whether the command shall be chained to
the next command (“nonull” input), and whether the specified target position is to
be targeted precisely or only approximately (“coarse_nulling” input). The movement
of the rotary axes can also be limited (“single_turn” input) or the arm positions of
the robot can be defined (“righty_configuration”, “below_configuration”, and
“flip_configuration” inputs).
The dynamic properties of the movement or the sequence of movements will be
defined through the “parameters” structure.
Finally the target position of the movement or the individual support point of a
sequence of movements will be defined through the “location_data” structure. This
structure also has the two sub-structures “world” and “joint” which, for security
reasons, will be selected in dependence of the “qualifiers.joint_coordinates” input:
• If the “qualifiers.joint_coordinates” input is set, the target position will be taken

from the “joint” structure. The movement will then be executed in the axis
coordinate system.

• If the “qualifiers.joint_coordinates” input is not set, the target position will be
taken from the “world” structure. The movement will then be executed in the
Cartesian coordinate system.

The sub-structures each have six parameter inputs for the target position in the
Cartesian coordinate system of the “world“ structure (inputs “X“, “Y“, “Z“, “Yaw“,
“Pitch“, “Roll“) or in the axis coordinate system of the “joint“ structure (inputs
“joint_1“, “joint_2“, “joint_3“, “joint_4“, “joint_5“, “joint_6“).
Finally the parameterized movement can be started via the “command.Execute”
input.

7 Operation of the Application
7.7 Executing coordinated movements

62
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Figure 7-11 Controlling the “MOVE” function

FB 600
“ADEPT_RobotControl“

ComData

Connect

BOOL

Power

Calibrate

Reset

Brake

JOG

MOVE

Connected

PowerReady

PowerON

Calibrated

ResetDone

BrakeON

Jogging

Moving

NextMove

MoveDone

Error

ErrorID

ActualPosition

RobotErrorMessage

parameters

qualifiers

commandexecute

relative_move

joint_coordinates

single_turn

righty_configuration

speed

acceleration

deceleration

acceleration_profile

BOOL

BOOL

BOOL

BOOL

INT

INT

INT

INT

location_data

straightline_move

nonull

coarse_nulling

below_configuration

flip_configuration

BOOL

BOOL

BOOL

BOOL

BOOL

world

joint

STRUCT

STRUCT

7.7.1 Executing a single movement

The properties of the movement will be defined through the structures “qualifiers”
and “parameters” and the target position will be set through the “location_data”
structure.
After that, a rising edge at the “MOVE.command.Execute” input will start the
movement. The active movement will be indicated via the “Moving” output.
Once the “NextMove” output is set, the command for another movement for a
sequence of movements could be given. However, this output is of no significance
for executing a single movement.
After successful execution of the movement the “Moving” output will be reset and
the “MoveDone” output will be set, which will stay active until the
“MOVE.command.Execute” input is reset again.

Figure 7-12 Executing a single movement

Moving

MOVE.command.Execute

NextMove

MoveDone

t

7.7.2 Executing a sequence of movements

If a sequence of movements is to be executed, the properties of the movement
must first be defined through the structures “qualifiers” and “parameters” and the
target position of the first movement, i.e. the first support point of the movement,
will be set through the “location_data” structure.

7 Operation of the Application
7.7 Executing coordinated movements

FB "ADEPT_RobotControl"
V1.0, Entry ID: 79100154 63

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

Then a rising edge at the “MOVE. command.Execute“ input will start the sequence
of movements. The active movement will be indicated via the “Moving” output.
Once the “NextMove” output is set, the properties of the movement can be defined
through the structures “qualifiers” and “parameters” and the target position of the
next movement, i.e. the next support point of the movement, will be set through the
“location_data” structure.
Then a rising edge at the “MOVE. command.Execute“ input will activate the next
movement. This movement will be executed as soon as the previous movement
has been completed with the defined properties.
Once the “NextMove” output is set again, the command for the next movement can
be given. This process will repeat until the command for the last movement of the
sequence of movements has been given.
After successful execution of the sequence of movements, or the last movement of
the sequence, the “Moving” output will be reset and the “MoveDone” output will be
set, which will stay active until the “MOVE.command.Execute” input is reset again.

Figure 7-13 Executing a sequence of movements

Moving

MOVE.command.Execute

NextMove

MoveDone

t

1 2 3Movement

Note If the individual movements in a sequence of movements are to be “blended”, i.e.
executed without stopping the robot axis between the individual movements, the
command for the follow-up movement must be given while the current movement
is still being executed.

In addition, the “MOVE.Qualifiers.nonull” input must be set for each movement of
the sequence.

8 Related Literature

64
FB "ADEPT_RobotControl"

V1.0, Entry ID: 79100154

C
op

yr
ig

ht
 

 S
ie

m
en

s
AG

 2
01

3
Al

l r
ig

ht
s

re
se

rv
ed

8 Related Literature
8.1 Bibliography

This list is by no means complete and only represents a selection of relevant
literature.
Table 8-1

 Subject Title

/1/ STEP7
SIMATIC S7-300/400

Automating with STEP7 in STL and SCL
Author: Hans Berger
Publicis MCD Verlag
ISBN: 978-3895784125

/2/ STEP7
SIMATIC S7-300/400

Automating with STEP7 in LAD and FBD
Author: Hans Berger
Publicis MCD Verlag
ISBN: 978-3895784101

/3/ STEP7
SIMATIC S7-300

Automating with SIMATIC S7-300 inside TIA Portal
Author: Hans Berger
Publicis MCD Verlag
ISBN: 978-3895783821

8.2 Internet Links

The following list is not complete and only represents a selection of relevant
information.
Table 8-2

 Subject Title

\1\ Reference to this
entry

http://support.automation.siemens.com/WW/view/en/79100154

\2\ Siemens Industry
Online Support

http://support.automation.siemens.com

9 History

Table 9-1

Version Date Modifications

V1.0 08/2013 First version

http://support.automation.siemens.com/WW/view/en/79100154
http://support.automation.siemens.com/

	ADEPT Robot Control using a SIMATIC S7-300 Controller
	Warranty and Liability
	Preface
	Table of Contents
	1 Task
	1.1 Introduction
	1.2 Automation Task

	2 Solution
	2.1 Overview
	2.1.1 Advantages of the automation solution
	2.1.2 Delimitation

	2.2 Core functionality
	2.3 Required hardware and software components
	2.3.1 Hardware components
	2.3.2 Software components
	2.3.3 Sample files and projects

	3 Basics
	3.1 Communication connection to the robot
	3.2 ADEPT ePLC setup
	3.2.1 General
	3.2.2 Communication principle
	3.2.3 Command data
	3.2.4 Status data

	4 Function Mechanisms
	4.1 POWER - switching the power on/off
	4.1.1 Functionality
	4.1.2 ADEPT ePLC signals involved
	4.1.3 Signal sequence for function control

	4.2 CALIBRATE - Reference the robot axes
	4.2.1 Functionality
	4.2.2 ADEPT ePLC signals involved
	4.2.3 Signal sequence for function control

	4.3 RESET - Reset errors at the robot
	4.3.1 Functionality
	4.3.2 ADEPT ePLC signals involved
	4.3.3 Signal sequence for function control

	4.4 BRAKE - Immediately stop robot movement
	4.4.1 Functionality
	4.4.2 ADEPT ePLC signals involved
	4.4.3 Signal sequence for function control

	4.5 JOG - Move axes in jog mode
	4.5.1 Functionality
	4.5.2 ADEPT ePLC signals involved
	4.5.3 Signal sequence for function control

	4.6 MOVE - Perform sequences of movements
	4.6.1 Functionality
	4.6.2 ADEPT ePLC signals involved
	4.6.3 Signal sequence for function control

	5 Installation
	5.1 Hardware installation
	5.2 Integrating the application into a STEP 7 project
	5.2.1 Copying the required blocks and sources
	5.2.2 Compiling the SCL source of the function block (optional)
	5.2.3 Integrating the function block into a cyclic OB
	5.2.4 Using the HMI user interface

	6 Startup
	6.1 Description of the function block interface
	6.1.1 Block interface
	6.1.2 “ComData” data structure
	6.1.3 “JOG” data structure
	6.1.4 “MOVE” data structure
	6.1.5 “ActualPosition” data structure
	6.1.6 “RobotErrorMessage” data structure

	6.2 Structure of the instance data block
	6.3 Error and warning messages
	6.4 Defining the communication parameters
	6.5 Testing the block function
	6.5.1 Using the tag table
	6.5.2 Using the HMI user interface

	7 Operation of the Application
	7.1 Starting the communication with the robot controller
	7.2 Switching on the robot power
	7.3 Referencing (calibrating) the robot axes
	7.4 Acknowledging potentially pending errors
	7.5 Immediately stopping a robot movement
	7.6 Moving the robot axes in jog mode
	7.7 Executing coordinated movements
	7.7.1 Executing a single movement
	7.7.2 Executing a sequence of movements

	8 Related Literature
	8.1 Bibliography
	8.2 Internet Links

	9 History

