
Automatiser des projets à l'aide de
scripts

Manuel système

Impression de l'aide en ligne

10/2016

Consignes de sécurité 1
Lisezmoi TIA Portal
Openness 2

Nouveautés d'Openness V14 3

notions de base 4

Introduction 5

Configurations 6

Public API 7

Exportation/importation 8
Les modifications les plus
importantes dans Openness
V14

9

Mentions légales
Signalétique d'avertissement

Ce manuel donne des consignes que vous devez respecter pour votre propre sécurité et pour éviter des dommages
matériels. Les avertissements servant à votre sécurité personnelle sont accompagnés d'un triangle de danger, les
avertissements concernant uniquement des dommages matériels sont dépourvus de ce triangle. Les
avertissements sont représentés ci-après par ordre décroissant de niveau de risque.

DANGER
signifie que la non-application des mesures de sécurité appropriées entraîne la mort ou des blessures graves.

ATTENTION
signifie que la non-application des mesures de sécurité appropriées peut entraîner la mort ou des blessures graves.

PRUDENCE
signifie que la non-application des mesures de sécurité appropriées peut entraîner des blessures légères.

IMPORTANT
signifie que la non-application des mesures de sécurité appropriées peut entraîner un dommage matériel.
En présence de plusieurs niveaux de risque, c'est toujours l'avertissement correspondant au niveau le plus élevé
qui est reproduit. Si un avertissement avec triangle de danger prévient des risques de dommages corporels, le
même avertissement peut aussi contenir un avis de mise en garde contre des dommages matériels.

Personnes qualifiées
L’appareil/le système décrit dans cette documentation ne doit être manipulé que par du personnel qualifié pour
chaque tâche spécifique. La documentation relative à cette tâche doit être observée, en particulier les consignes
de sécurité et avertissements. Les personnes qualifiées sont, en raison de leur formation et de leur expérience, en
mesure de reconnaître les risques liés au maniement de ce produit / système et de les éviter.

Utilisation des produits Siemens conforme à leur destination
Tenez compte des points suivants:

ATTENTION
Les produits Siemens ne doivent être utilisés que pour les cas d'application prévus dans le catalogue et dans la
documentation technique correspondante. S'ils sont utilisés en liaison avec des produits et composants d'autres
marques, ceux-ci doivent être recommandés ou agréés par Siemens. Le fonctionnement correct et sûr des produits
suppose un transport, un entreposage, une mise en place, un montage, une mise en service, une utilisation et une
maintenance dans les règles de l'art. Il faut respecter les conditions d'environnement admissibles ainsi que les
indications dans les documentations afférentes.

Marques de fabrique
Toutes les désignations repérées par ® sont des marques déposées de Siemens AG. Les autres désignations dans
ce document peuvent être des marques dont l'utilisation par des tiers à leurs propres fins peut enfreindre les droits
de leurs propriétaires respectifs.

Exclusion de responsabilité
Nous avons vérifié la conformité du contenu du présent document avec le matériel et le logiciel qui y sont décrits.
Ne pouvant toutefois exclure toute divergence, nous ne pouvons pas nous porter garants de la conformité intégrale.
Si l'usage de ce manuel devait révéler des erreurs, nous en tiendrons compte et apporterons les corrections
nécessaires dès la prochaine édition.

Siemens AG
Division Digital Factory
Postfach 48 48
90026 NÜRNBERG
ALLEMAGNE

Ⓟ 10/2016 Sous réserve de modifications
Copyright © Siemens AG 2016.
Tous droits réservés

Sommaire

1 Consignes de sécurité..9

2 Lisezmoi TIA Portal Openness...11

2.1 Lisezmoi...11

3 Nouveautés d'Openness V14...13

4 notions de base..15

4.1 Conditions requises pour TIA Portal Openness V14..15

4.2 Installation..17
4.2.1 Installation de TIA Portal Openness V14...17
4.2.2 Ajouter un utilisateur au groupe d'utilisateurs "Siemens TIA Openness"...............................19
4.2.3 Accéder au portail TIA..25
4.2.4 Enabler File et Usage File..25

4.3 Tâches d'Openness...27
4.3.1 Possibilités d'utilisation...27
4.3.2 Exportation/importation..28

4.4 Liste d'objets..29

4.5 Bibliothèques standard...34

4.6 Remarques sur la performance de TIA Portal Openness V14...35

5 Introduction...37

6 Configurations..39

7 Public API...43

7.1 Introduction..43

7.2 Etapes de programmation..44

7.3 Modèle d'objet Openness V14...45

7.4 Blocs et types de modèle d'objet Openness..50

7.5 Hiérarchie des objets matériels du modèle d'objet...59

7.6 Informations sur les versions d'Openness installées...61

7.7 Exemple de programme...62

7.8 Utilisation des exemples de code...67

7.9 Fonctions générales...69
7.9.1 IntelliSense-Support pour Openness...69
7.9.2 Etablissement d'une connexion au portail TIA...69
7.9.3 Pare-feu Openness..74
7.9.4 Gestionnaire d'événements..75
7.9.5 Confirmer les boîtes de dialogue comportant des alarmes système par commande du

programme...77

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 3

7.9.6 Mettre fin à la connexion au portail TIA..79
7.9.7 Interfaces de diagnostic dans TIA Portal...80
7.9.8 Exclusive access..85
7.9.9 Traitement des transactions...87

7.10 Fonctions des projets/données de projet...90
7.10.1 Ouvrir un projet..90
7.10.2 Enumérer et appeler des appareils..92
7.10.3 Enumérer et appeler des éléments d'appareils..95
7.10.4 Déterminer la structure et les attributs de l'objet..98
7.10.5 Attributs obligatoires d'appareils et d'éléments d'appareils..100
7.10.6 Ouvrir l'éditeur "Appareils & réseaux"..101
7.10.7 Interroger PLC Target et HMI Target...102
7.10.8 Accéder au logiciel cible ..104
7.10.9 Interroger un groupe système pour variables API..104
7.10.10 Enumérer les groupes personnalisés pour variables API..105
7.10.11 Enumérer des variables API..107
7.10.12 Enumérer des tables de variables API dans un dossier..108
7.10.13 Interroger les informations d'une table de variables API..109
7.10.14 Compiler le projet...110
7.10.15 Fonctions pour bibliothèques...112
7.10.15.1 Fonctions pour objets et instances...112
7.10.15.2 Accéder aux bibliothèques...113
7.10.15.3 Accéder aux dossiers dans une bibliothèque...115
7.10.15.4 Accéder aux types..117
7.10.15.5 Accéder aux types de versions..118
7.10.15.6 Accéder aux instances...123
7.10.15.7 Accéder à des modèles de copie...125
7.10.15.8 Créer la copie maîtresse d'un projet dans la bibliothèque...127
7.10.15.9 Copier le contenu d'un modèle de copie dans le projet...128
7.10.15.10 Copier un objet copie maîtresse issu d'une bibliothèque globale dans la bibliothèque de

projet ...131
7.10.15.11 Copier un modèle de copie..132
7.10.15.12 Déterminer les versions de types d'instances..133
7.10.15.13 Actualiser un projet..137
7.10.15.14 Actualiser une bibliothèque..140
7.10.15.15 Supprimer les contenus de bibliothèque..142
7.10.16 Lire des attributs liés au projet...144
7.10.17 Suppression d'un graphique du projet..147
7.10.18 Enregistrer le projet..148
7.10.19 Déterminer le statut d'un API...149
7.10.20 Comparer le logiciel de l'API..150
7.10.21 Accéder aux paramètres d'une liaison en ligne..153
7.10.22 Etablir ou interrompre une liaison en ligne à l'API..157
7.10.23 Fermer un projet...158
7.10.24 Prise en charge de l'autodescription pour attributs, navigateurs, actions et services..........159

7.11 Fonctions sur les données d'un appareil HMI..162
7.11.1 Vues...162
7.11.1.1 Créer des dossiers de vues personnalisés..162
7.11.1.2 Supprimer la vue d'un dossier..162
7.11.1.3 Supprimer un modèle de vue d'un dossier...163
7.11.1.4 Supprimer toutes les vues d'un dossier...164

Sommaire

Automatiser des projets à l'aide de scripts
4 Manuel système, 10/2016

7.11.2 Cycles..165
7.11.2.1 Suppression de cycle...165
7.11.3 Listes de textes..166
7.11.3.1 Suppression de la liste de textes...166
7.11.4 Listes de graphiques..167
7.11.4.1 Suppression d'une liste de graphiques..167
7.11.5 Connexions..167
7.11.5.1 Suppression de la liaison...167
7.11.6 Table des variables..168
7.11.6.1 Générer des dossiers personnalisés pour variables IHM..168
7.11.6.2 Enumérer les variables d'une table de variables IHM..169
7.11.6.3 Suppression de variables individuelles d'une table de variables IHM..................................169
7.11.6.4 Supprimer une table de variables d'un dossier..170
7.11.7 Scripts VB..171
7.11.7.1 Créer des dossiers personnalisés pour les scripts...171
7.11.7.2 Supprimer les scripts VB d'un dossier..171
7.11.8 Supprimer le dossier personnalisé d'un pupitre opérateur ..172

7.12 Fonctions sur les données d'un appareil API...173
7.12.1 Blocs..173
7.12.1.1 Interroger le groupe "Blocs de programme"...173
7.12.1.2 Enumérer les groupes Blocs personnalisés...173
7.12.1.3 Enumérer tous les blocs...174
7.12.1.4 Interroger les informations d'un bloc/type de données utilisateur..175
7.12.1.5 Supprimer un bloc..177
7.12.1.6 Supprimer un type de données utilisateur..178
7.12.1.7 Créer un groupe pour blocs...178
7.12.1.8 Supprimer un groupe pour blocs..179
7.12.1.9 Interroger un groupe système pour blocs système..180
7.12.1.10 Enumérer les sous-groupes système...180
7.12.1.11 Ajouter un fichier externe...182
7.12.1.12 Générer une source à partir d'un bloc..183
7.12.1.13 Générer les blocs à partir de la source..185
7.12.1.14 Supprimer un fichier externe..186
7.12.1.15 Démarrer un éditeur de bloc..186
7.12.2 Tables des variables..187
7.12.2.1 Créer les groupes personnalisés pour variables API...187
7.12.2.2 Supprimer les groupes personnalisés pour variables API...188
7.12.2.3 Supprimer la table des variables API dans un groupe...189
7.12.2.4 Supprimer une variable individuelle d'une table des variables API......................................189
7.12.2.5 Démarrer l'éditeur "Variables"..190
7.12.2.6 Lire la date et l'heure de la dernière modification d'une table de variables API...................191
7.12.3 Supprimer un groupe personnalisé dans un appareil API..191

7.13 Concepts de base..193
7.13.1 Traitement des exceptions...193
7.13.2 Utilisation d'associations..194
7.13.3 Utilisation de compositions...195
7.13.4 Vérifier l'égalité des objets...196
7.13.5 Opérations de lecture pour attributs...197

8 Exportation/importation...199

8.1 Vue d'ensemble..199

Sommaire

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 5

8.1.1 Notions élémentaires sur l'importation/exportation..199
8.1.2 Domaine d'utilisation de l'importation/exportation..201
8.1.3 Importation SimaticML spécifique à la version...202
8.1.4 Structure d'un fichier XML..203
8.1.5 Structure des données pour l'importation/exportation..205
8.1.6 Edition du fichier XML..209
8.1.7 Exportation de données de configuration...210
8.1.8 Importation de données de configuration...211
8.1.9 Exportation/importation de graphiques..213

8.2 Importation/exportation de données du projet..215
8.2.1 Exportation de textes de projet..215
8.2.2 Importation de textes de projet...216
8.2.3 Graphiques...217
8.2.3.1 Exporter les graphiques d'un projet..217
8.2.3.2 Importer des graphiques dans un projet..218

8.3 Importation/exportation de données d'un appareil IHM..219
8.3.1 Cycles..219
8.3.1.1 Exportation de cycles...219
8.3.1.2 Importer des cycles..220
8.3.2 Table des variables..221
8.3.2.1 Exporter des tables de variables IHM..221
8.3.2.2 Importer une table de variables IHM..224
8.3.2.3 Exporter des variables individuelles d'une table de variables IHM......................................225
8.3.2.4 Importer des variables individuelles d'une table de variables IHM.......................................226
8.3.2.5 Particularités de l'importation/exportation de variables IHM..227
8.3.3 Scripts VB..229
8.3.3.1 Exporter des scripts VB..229
8.3.3.2 Exporter des scripts VB à partir d'un dossier...230
8.3.3.3 Importer des scripts VB..231
8.3.4 Listes de textes..232
8.3.4.1 Exporter des listes de textes à partir d'un appareil IHM...232
8.3.4.2 Importer une liste de texte dans un appareil IHM..233
8.3.4.3 Formats XML avancés pour l'exportation/importation de listes de textes............................234
8.3.5 Listes de graphiques..235
8.3.5.1 Exporter les listes de graphiques...235
8.3.5.2 Importer les listes de graphiques...236
8.3.6 Connexions..237
8.3.6.1 Exporter des connexions..237
8.3.6.2 Importation de connexions...238
8.3.7 Vues...239
8.3.7.1 Vue d'ensemble des objets graphiques pouvant être exportés..239
8.3.7.2 Exporter toutes les vues d'un appareil IHM..243
8.3.7.3 Exporter une vue à partir d'un dossier de vues..244
8.3.7.4 Importer des vues dans un appareil IHM...246
8.3.7.5 Exporter une fenêtre permanente..249
8.3.7.6 Importer une fenêtre permanente..250
8.3.7.7 Exporter des modèles de vue à partir d'un dossier..251
8.3.7.8 Exporter tous les modèles de vue d'un appareil IHM...253
8.3.7.9 Importer des modèles de vue...254

8.4 Importation/exportation de données d'un appareil API..256
8.4.1 Blocs..256

Sommaire

Automatiser des projets à l'aide de scripts
6 Manuel système, 10/2016

8.4.1.1 Modifications du modèle d'objet et format de fichier XML..256
8.4.1.2 Exporter des blocs ..257
8.4.1.3 Exporter des blocs avec protection know-how...260
8.4.1.4 Exporter des blocs F..261
8.4.1.5 Exporter des blocs système...262
8.4.1.6 Importer un bloc...263
8.4.2 Tables des variables..264
8.4.2.1 Exporter des tables de variables API...264
8.4.2.2 Importer une table de variables API...265
8.4.2.3 Exporter des variables ou constantes individuelles d'une table de variables API................266
8.4.2.4 Importer une seule variable ou constante dans une table de variables API........................267
8.4.3 Exporter un type de données utilisateur...268
8.4.4 Importer un type de données utilisateur...269
8.4.5 Exportation de données au format OPC UA XML..270

9 Les modifications les plus importantes dans Openness V14...273

9.1 Principales modifications du modèle d'objet..273

9.2 Avant la mise à niveau d'une application vers Openness V14...275

9.3 Principales modifications de chaîne de caractères..276

9.4 Importation de fichiers créés avec Openness V13 SP1 et des versions antérieures...........280

Index...283

Sommaire

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 7

Sommaire

Automatiser des projets à l'aide de scripts
8 Manuel système, 10/2016

Consignes de sécurité 1
Informations de sécurité

Siemens commercialise des produits et solutions comprenant des fonctions de sécurité
industrielle qui contribuent à une exploitation sûre des installations, solutions, machines,
équipements et/ou réseaux.

Pour protéger les installations, les systèmes, les machines et les réseaux des cybermenaces,
il est nécessaire d'intégrer un concept de sécurité industrielle moderne complet et d'en assurer
la maintenance. Les produits et solutions de Siemens ne constituent qu’une partie d’un tel
concept.

Il incombe au client d'empêcher tout accès non autorisé à ses installations, systèmes,
machines et réseaux. Les systèmes, machines et composants doivent uniquement être
connectés au réseau d’entreprise ou à Internet dans la mesure où c’est nécessaire et en
appliquant des mesures de protection correspondantes (p. ex. utilisation de pare-feux et
segmentation du réseau).

En outre, il convient de respecter les directives de Siemens relatives aux mesures de sécurité
correspondantes. Pour plus d’informations sur la sécurité industrielle, rendez-vous sur

http://www.siemens.com/industrialsecurity (http://www.industry.siemens.com/topics/global/
en/industrial-security/Pages/Default.aspx)

Les produits et solutions Siemens font l’objet de développements continus pour être plus sûrs.
Siemens recommande d'utiliser impérativement les mises à jour des produits dès qu'elles sont
disponibles ainsi que les versions de produits les plus récentes. L'utilisation de versions de
produits qui ne sont plus supportées et le non-respect des mises à jour les plus récentes peut
augmenter le risque d'exposition du client à des cybermenaces.

Afin d’être informé des mises à jour des produits, veuillez souscrire au flux RSS Siemens
Industrial Security à l'adresse

http://www.siemens.com/industrialsecurity (http://www.industry.siemens.com/topics/global/
en/industrial-security/Pages/Default.aspx)

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 9

http://www.industry.siemens.com/topics/global/en/industrial-security/Pages/Default.aspx
http://www.industry.siemens.com/topics/global/en/industrial-security/Pages/Default.aspx
http://www.industry.siemens.com/topics/global/en/industrial-security/Pages/Default.aspx
http://www.industry.siemens.com/topics/global/en/industrial-security/Pages/Default.aspx

Consignes de sécurité

Automatiser des projets à l'aide de scripts
10 Manuel système, 10/2016

Lisezmoi TIA Portal Openness 2
2.1 Lisezmoi

Copie d'Openness
Lorsque vous copiez une application Openness exécutable, il est possible que le chemin de
répertoire qui est lu soit encore celui où l'application Openness a été créée à l'origine.

Solution :

Lorsque vous avez copié l'application Openness dans un nouveau répertoire, ouvrez par
exemple la boîte de dialogue "Propriétés", puis refermez-la pour mettre à jour le cache de
Windows.

Compatibilité multi-utilisateur d'Openness

Remarque

Openness ne prend pas en charge le mode multi-utilisateur, car l'utilisation d'Openness dans
des projets multi-utilisateurs ne peut pas être recommandée. Notez que certaines actions
Openness peuvent même perturber le bon déroulement des opérations multi-utilisateurs
définies par l'interface utilisateur de TIA Portal.

Toutefois, si vous souhaitez effectuer des modifications avec Openness, exportez d'abord le
projet multi-utilisateur dans un projet unique.

Amélioration du niveau de performance d'Openness
Pour atteindre le niveau de performance maximal d'Openness, vous pouvez désactiver la
fonction de recherche globale de TIA Portal. Pour désactiver la recherche globale, utilisez
l'interface utilisateur de TIA Portal, puisque Openness n'offre pas d'appel d'API à cet effet. À
la fin du script Openness, vous pouvez de nouveau activer la recherche globale. La
désactivation de la recherche globale permet certes d'améliorer le niveau de performance,
mais toutes les fonctions Openness marchent normalement même lorsque la recherche
globale est activée.

Failsafe et Openness

Remarque

Si vous utilisez Openness, vous devez tenir compte de certaines restrictions concernant la
sécurité en cas de défaut. Pour plus d'informations, voir la documentation correspondante.

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 11

Code du programme à thread sécurisé

Remarque

Notez que votre code est à thread sécurisé, un événement apparaît dans différents threads.

Comportement d'exportation d'éléments d'écran avec style activé
Lors de l'exportation d'un élément d'écran avec style activé, les propriétés de l'élément de
style ne sont pas exportées, mais uniquement les propriétés de l'élément d'écran avant
l'activation du style. Lorsqu'un style est sélectionné et que "UseDesignColorSchema" est
activé pour l'élément d'écran, l'élément d'écran prend les valeurs des propriétés du style sur
l'interface utilisateur. Toutefois, dans la base de données, les propriétés définies avant la
sélection du style restent enregistrées pour cet élément d'écran. Openness exporte les valeurs
enregistrées dans la base de données.

Lorsque le style est désactivé puis réactivé et que l'élément d'écran est à nouveau exporté,
ce sont les valeurs des propriété applicables dans l'élément de style qui sont exportées pour
cet élément d'écran, car les valeurs des propriétés de l'élément de style sélectionné pour cet
élément d'écran sont enregistrées dans la base de données lorsque
"UseDesignColorSchema" n'est pas activé.

Ce problème peut être résolu de la manière suivante :

1. Affectez l'élément d'écran à l'élément de style :

– la base de données contient les valeurs de propriétés valables avant l'activation du style.

– L'interface utilisateur reprend les propriétés directement de l'élément de style.

2. Exportez l'élément d'écran affecté à l'élément de style :

– Le fichier XML contient les valeurs des propriétés issues de la base de données, qui
correspondent aux valeurs antérieures à l'activation du style.

3. Désactivez "UseDesignColorSchema" :

– Les valeurs des propriétés de l'élément de style sont ajoutés aux propriétés de l'élément
d'écran dans la base de données.

4. Activez "UseDesignColorSchema" :

– Les valeurs des propriétés de l'élément d'écran ne sont pas modifiées dans la base de
données et correspondent toujours à celles de l'étape 3.

– L'interface utilisateur reprend les propriétés directement de l'élément de style.

5. Exportez l'élément d'écran affecté à l'élément de style :

– Le fichier XML contient les valeurs des propriétés issues de la base de données, qui
ont été définies à l'étape 3 et qui correspondent aux valeurs de l'élément de style.

Lisezmoi TIA Portal Openness
2.1 Lisezmoi

Automatiser des projets à l'aide de scripts
12 Manuel système, 10/2016

Nouveautés d'Openness V14 3
Nouveau modèle d'objet Openness

Par comparaison à Openness V13 SP1, le modèle d'objet dans Openness V14 a changé.

Remarque

Le code de programme des applications, qui ont été utilisées pour Openness jusqu'à V13 SP1,
doit être mis à jour.

Pour en savoir plus sur le nouveau modèle d'objet Openness, voir Modèle d'objet Openness
V14 (Page 45) et Les modifications les plus importantes dans Openness V14 (Page 273).

Voir aussi
Traitement des exceptions (Page 193)

Principales modifications de chaîne de caractères (Page 276)

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 13

Nouveautés d'Openness V14

Automatiser des projets à l'aide de scripts
14 Manuel système, 10/2016

notions de base 4
4.1 Conditions requises pour TIA Portal Openness V14

Conditions requises pour l'utilisation d'applications Openness
● Un produit basé sur TIA Portal est installé sur le PC, tel que "STEP 7 Professional" ou

"WinCC Professional".

● Le complément "TIA Portal Openness V14 " est installé sur le PC.
Voir Installation de TIA Portal Openness V14 (Page 17)

Systèmes d'exploitation Windows pris en charge
Le tableau suivant montre les combinaisons du système d'exploitation Windows, de TIA Portal
et de l'application utilisateur qui sont compatibles :

Système d'exploitation Windows TIA Portal Application utilisateur
64 bits 64 bits 32 bits, 64 bits et AnyCPU

Conditions requises pour la programmation d'applications Openness
● Microsoft Visual Studio 2015 Update 1 ou supérieur avec .Net 4.6.1.

Savoir-faire nécessaire de l'utilisateur
● Connaissances en ingénierie système

● Connaissances avancées de Microsoft Visual Studio 2015 Update 1 ou supérieur
avec .Net 4.6.1

● Connaissances avancées de C# / VB.net et .Net

● Connaissances sur l'utilisation de TIA Portal

Canaux Openness Remoting
Les canaux Openness Remoting sont enregistrés comme type IpcChannel, le paramètre
"ensureSecurity" étant mis sur "false".

Remarque

Evitez d'enregistrer un autre IpcChannel avec le paramètre "ensureSecurity" différent de
"false" et une priorité supérieure ou égale à "1".

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 15

Les attributs suivants sont définis pour le IpcChannel :

Attribut Paramètres
"name" et "portName" Mis sur $”{Process.Name}_{Process.Id}” ou $”{Process.Na‐

me}_{Process.Id}_{AppDomain.Id}” si enregistré dans un au‐
tre AppDomain que l'AppDomain par défaut de l'application.

“priority” Mis à la valeur par défaut "1".
“typeFilterLevel” Mis sur 'Elevé".
“authorizedGroup” Mis sur la chaîne de caractères de la valeur de compte NT

pour le compte d'utilisateur intégré (c.-à-d. Tous)

Voir aussi
Ajouter un utilisateur au groupe d'utilisateurs "Siemens TIA Openness" (Page 19)

notions de base
4.1 Conditions requises pour TIA Portal Openness V14

Automatiser des projets à l'aide de scripts
16 Manuel système, 10/2016

4.2 Installation

4.2.1 Installation de TIA Portal Openness V14

Introduction
Le complément "TIA Portal Openness V14 " est installé automatiquement par un programme
d'installation.

Le fichier d'installation ""Siemens_TIA_Openness_V14.exe" est une archive à décompression
automatique se trouvant sur le DVD du produit, dans le répertoire "Support"".

Conditions
● Le matériel et les logiciels de l'appareil de programmation ou du PC sont conformes à la

configuration système requise.

● Vous détenez les droits d'administrateur.

● Les programmes en cours d'exécution ont été fermés.

● La fonction d'exécution automatique est désactivée.

● WinCC V14 et/ou STEP 7 V14 est/sont installé(s).

● Le numéro de version du complément "TIA Portal Openness" correspond aux numéros de
version de WinCC et STEP 7.

Remarque
Public API - Openness V13 SP1 et Openness V14

Si vous installez Openness V14, Openness V14 est installé à côté d'Openness V13 SP1.

Marche à suivre

Remarque

Le complément "TIA Portal Openness V14 " ne peut être installé que lorsque l'installation de
TIA Portal est terminée.

Pour installer le complément, procédez comme suit :

1. Insérez le support de données d'installation dans le lecteur correspondant et ouvrez
répertoire "Support"

2. Double-cliquez sur le fichier "Siemens_TIA_Openness_V14.exe.

3. Sélectionnez la langue utilisée pour l'installation.

notions de base
4.2 Installation

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 17

4. Les données d'installation sont extraites. Le programme d'installation d'Openness est lancé
après l'extraction.
La boîte de dialogue d'installation suivante apparaît :

5. Cliquez sur "Next" puis sélectionnez l'option requise.

6. Cliquez sur "Next" et sélectionnez le produit "TIA Portal Openness V14.0".

Au besoin, modifiez le répertoire cible pour l'installation et cliquez sur "Next".
Notez bien que le chemin d'installation ne doit pas dépasser 89 caractères.

notions de base
4.2 Installation

Automatiser des projets à l'aide de scripts
18 Manuel système, 10/2016

7. A l'étape suivante de l'installation, acceptez tous les accords de licence puis cliquez sur
"Next".
Si l'installation de TIA Portal Openness nécessite une modification préalable des
paramètres de sécurité et des droits d'accès, la boîte de dialogue des paramètres de
sécurité s'ouvre.

8. Afin de poursuivre l'installation, confirmez les modifications des paramètres de sécurité et
des droits puis cliquez sur "Next".
La boîte de dialogue suivante présente les paramètres d'installation :

9. Vérifiez les paramètres d'installation sélectionnés et modifiez-les au besoin.

10.Cliquez sur Install pour démarrer l'installation.
Si elle se déroule correctement, un message correspondant s'affiche à l'écran. Si des
erreurs sont survenues pendant l'installation, un message d'erreur indiquant la cause de
l'erreur s'affiche.

Résultat
Le complément "TIA Portal Openness V14 " est installé sur le PC. En outre, le groupe
d'utilisateurs local "Siemens TIA Openness" est créé.

Remarque

Le complément "TIA Portal Openness V14 " ne suffit pas pour continuer d'avoir accès à TIA
Portal. Vous devez être membre du groupe d'utilisateurs "Siemens TIA Openness" (voir
Ajouter un utilisateur au groupe d'utilisateurs "Siemens TIA Openness" (Page 19)).

4.2.2 Ajouter un utilisateur au groupe d'utilisateurs "Siemens TIA Openness"

Introduction
Lorsque vous installez TIA Portal Openness V14 sur le PC, le groupe d'utilisateurs "Siemens
TIA Openness" est automatiquement créé.

Chaque fois que vous accédez à TIA Portal avec votre application Openness, TIA Portal vérifie
si vous êtes membre du groupe d'utilisateurs "Siemens TIA Openness", soit directement ou
indirectement via un autre groupe d'utilisateurs. Si vous êtes membre du groupe d'utilisateurs
"Siemens TIA Openness", l'application Openness démarre et établit une liaison à TIA Portal.

notions de base
4.2 Installation

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 19

Marche à suivre
Vous ajoutez un utilisateur au groupe d'utilisateurs "Siemens TIA Openness" grâce à des
applications de votre système d'exploitation. Le portail TIA ne prend pas en charge ce
processus.

Remarque

En fonction de la configuration de votre domaine ou de votre PC, les droits d'administrateur
sont requis pour l'extension d'un groupe d'utilisateurs.

Avec le système d'exploitation Windows 7 (avec l'anglais comme langue paramétrée), vous
pouvez par exemple ajouter un utilisateur au groupe d'utilisateurs comme suit :

1. Sélectionnez "Start" > "Control Panel".

2. Double-cliquez dans le panneau de configuration sur "Administrative Tools".

notions de base
4.2 Installation

Automatiser des projets à l'aide de scripts
20 Manuel système, 10/2016

3. Cliquez sur "Computer Management" pour ouvrir la boîte de dialogue de configuration du
même nom.

4. Sélectionnez "Local Users and Groups > Groups" pour afficher tous les groupes
d'utilisateurs créés.

5. Dans la liste des groupes d'utilisateurs, sélectionnez dans le volet à droite l'entrée "Siemens
TIA Openness".

notions de base
4.2 Installation

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 21

6. Sélectionnez la commande de menu "Action > Add to Group...".

La boîte de dialogue des propriétés du groupe d'utilisateurs s'ouvre :

notions de base
4.2 Installation

Automatiser des projets à l'aide de scripts
22 Manuel système, 10/2016

7. Cliquez sur "Add".
Une boîte de dialogue de sélection regroupant les utilisateurs pouvant être sélectionnés
s'ouvre alors :

8. Entrez un nom d'utilisateur valide dans le champ de saisie.

Remarque

Cliquez sur le bouton "Check Names" pour vérifier si l'utilisateur saisi dispose d'un compte
utilisateur valable pour ce domaine ou cet ordinateur.

Le champ "From this location" affiche le domaine ou le nom de l'ordinateur du nom
d'utilisateur saisi. Vous pouvez obtenir des informations supplémentaires auprès de votre
administrateur système.

notions de base
4.2 Installation

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 23

9. Confirmez votre sélection par "OK".
Le nouvel utilisateur s'affiche alors dans la boîte de dialogue des propriétés du groupe
d'utilisateurs.

Vous saisissez d'autres utilisateurs à l'aide du bouton "Add".

10.Cliquez sur "OK" pour mettre fin à cette opération.

11.Connectez-vous de nouveau au PC pour que les modifications deviennent effectives.

notions de base
4.2 Installation

Automatiser des projets à l'aide de scripts
24 Manuel système, 10/2016

4.2.3 Accéder au portail TIA

Vue d'ensemble

Marche à suivre
1. Pour accéder et lancer TIA Portal, configurez votre environnement de développement.

2. Dans votre programme, créez une instance de l'objet de l'application de TIA Portal pour
démarrer ce dernier.

3. Cherchez le projet souhaité et ouvrez-le.

4. Accédez aux données de projet.

5. Fermez le projet et quittez le portail TIA.

Voir aussi
Etablissement d'une connexion au portail TIA (Page 69)

Mettre fin à la connexion au portail TIA (Page 79)

4.2.4 Enabler File et Usage File

Introduction
Pour importer des blocs d'un appareil API, il vous faut deux fichiers :

● Enabler-File

● Usage-File

notions de base
4.2 Installation

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 25

Vous trouverez la description indiquant comment vous procurer les deux fichiers dans
l'autorisation de livraison STEP 7 V14, à la fin de l'article intitulé "Documents d'information".

Mot clé : TIA Portal Openness, instructions pour EnablerFile/UsageFile : TIA Portal Openness
- Instructions Enabler File et Usage File (http://support.automation.siemens.com/WW/view/en/
103627307)

Fonction des fichiers Enabler File et Usage File
L'importation et l'utilisation de blocs d'un appareil API requièrent deux fichiers différents :

Pour importer des blocs, il vous faut les fichiers "Enabler-File" et "Usage-File". Pour pouvoir
utiliser le bloc importé sur le même PC, il vous faut le fichier "Usage-File".

Si vous voulez copier et utiliser le bloc importé sur un autre PC, vous devez également copier
le fichier "Usage-File" du bloc copié sur l'autre PC.

Remarque

Le fichier Enabler-File et le fichier d'exécution de votre application doivent se trouver dans le
même répertoire. Le fichier Usage-File doit se trouver dans le répertoire PublicAPI/V14/ ou
dans un sous-répertoire de celui-ci. Si vous ajoutez ces fichiers pendant l'exécution de TIA
Portal, vous devez redémarrer TIA Portal pour pouvoir les utiliser. Évitez de renommer les
fichiers Enabler-File ou Usage-File.

notions de base
4.2 Installation

Automatiser des projets à l'aide de scripts
26 Manuel système, 10/2016

http://support.automation.siemens.com/WW/view/en/103627307
http://support.automation.siemens.com/WW/view/en/103627307

4.3 Tâches d'Openness

4.3.1 Possibilités d'utilisation

Introduction
TIA Portal Openness V14 vous offre différentes possibilités d'accès à TIA Portal et une
sélection de fonctions pour des tâches définies.

Vous accédez aux zones suivantes de TIA Portal par le biais de l'interface Public API :

● Données du projet

● Données API

● Données IHM

Remarque

L'interface Public API ne doit pas servir à procéder à des contrôles ou à créer des données
utilisées pour la réception/validation d'une installation de sécurité. Seuls une impression de
sécurité réalisée avec le progiciel STEP 7 Safety ou le test fonctionnel conviennent pour une
réception/valiation. Public API ne saurait les remplacer.

Accéder à TIA Portal
Avec TIA Portal Openness V14 , vous disposez de différentes possibilités d'accès à TIA Portal.
Ce faisant, vous créez une instance externe de TIA Portal dans le processus, avec ou sans
interface utilisateur. Vous pouvez également accéder en parallèle à des processus en cours
de TIA Portal.

Accéder aux projets et données de projet
Lorsque vous accédez à des projets et des données de projet, vous utilisez TIA Portal
Openness V14 principalement pour les tâches suivantes :

● Ouvrir, fermer et enregistrer un projet

● Enumérer et interroger des objets

● Créer des objets

● Supprimer des objets

notions de base
4.3 Tâches d'Openness

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 27

4.3.2 Exportation/importation

Introduction
TIA Portal Openness V14 prend en charge l'importation et l'exportation de données de projet
au moyen de fichiers XML. La fonction d'importation/exportation permet la configuration
externe de données d'ingénierie existantes. Vous utilisez cette fonction pour rendre votre
processus d'ingénierie plus efficace et éviter les erreurs.

Utilisation
Vous utilisez la fonction d'importation/exportation aux fins suivantes :

● Echange de données

● Copie de parties d'un projet

● Traitement externe de données de configuration, par exemple pour des opérations sur
données de masse avec rechercher et remplacer

● Traitement externe de données de configuration pour de nouveaux projets sur la base de
configurations existantes

● Importation de données de configuration générées en externe, telles que des listes de
textes et des variables

● Mise à disposition de données de projet pour des applications externes

notions de base
4.3 Tâches d'Openness

Automatiser des projets à l'aide de scripts
28 Manuel système, 10/2016

4.4 Liste d'objets

Introduction
Les tableaux suivants indiquent les objets disponibles, y compris Runtime Advanced et si ces
objets sont pris en charge par Openness.

Ni le logiciel de visualisation Runtime Professional ni les fichiers de proxy d'appareil ne sont
pris en charge par Openness dans WinCC V14.

Objets
Selon le pupitre opérateur que vous utilisez vous pouvez avoir recours aux données de projet
suivantes :

Tableau 4-1 Vues

Objet Basic Panels Panels Comfort Panels Multi Panels Mobile Panels RT Advanced
Vue oui oui oui oui oui oui
Vue globale oui oui oui oui oui oui
Modèles oui oui oui oui oui oui
Fenêtre perma‐
nente

non oui oui oui oui oui

Vue contextuel‐
le

non non non non non non

Vue coulissante non non non non non non

Tableau 4-2 Objets de vue

Objet Basic Panels Panels Comfort Panels Multi Panels Mobile Panels RT Advanced
Ligne oui oui oui oui oui oui
Ligne polygonale non oui oui oui oui oui
Polygone non oui oui oui oui oui
Ellipse oui oui oui oui oui oui
Segment d'ellip‐
se

non non non non non non

Segment de cer‐
cle

non non non non non non

Arc d'ellipse non non non non non non
Affichage camé‐
ra

non non non non non non

Arc de cercle non non non non non non
Cercle oui oui oui oui oui oui
Affichage PDF non non non non non non
Rectangle oui oui oui oui oui oui
Connecteur non non non non non non

notions de base
4.4 Liste d'objets

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 29

Objet Basic Panels Panels Comfort Panels Multi Panels Mobile Panels RT Advanced
Champ de texte oui oui oui oui oui oui
Affichage graphi‐
que

oui oui oui oui oui oui

Tuyau non non non non non non
Double raccord
en T

non non non non non non

Raccord en T non non non non non non
Coude non non non non non non
Champ d'E/S oui oui oui oui oui oui
Champ date/
heure

oui oui oui oui oui oui

Champ d'E/S
graphique

oui oui oui oui oui oui

Champ de texte
éditable

non non non non non non

Champ de liste non non non non non non
Zone de liste dé‐
roulante

non non non non non non

Bouton oui oui oui oui oui oui
Bouton rond non non non non non non
Bouton-poussoir
lumineux

non non non non oui non

Commutateur oui oui oui oui oui oui
Champ d'E/S
symbolique

oui oui oui oui oui oui

Commutateur à
clé

non non non non oui non

Bargraphe oui oui oui oui oui oui
Bibliothèque
d'icônes

non oui oui oui oui oui

Curseur non oui oui oui oui oui
Barre de défile‐
ment

non non non non non non

Case à cocher non non non non non non
Bouton d'option non non non non non non
Instrument à ai‐
guille

non oui oui oui oui oui

Horloge non oui oui oui oui oui
Vue de l'espace
mémoire

non non non non non non

Touches de fonc‐
tion

oui oui oui oui oui oui

Instances de
bloc d'affichage

non non non non non non

Fenêtre de vues non non non non non non

notions de base
4.4 Liste d'objets

Automatiser des projets à l'aide de scripts
30 Manuel système, 10/2016

Objet Basic Panels Panels Comfort Panels Multi Panels Mobile Panels RT Advanced
Vue des utilisa‐
teurs

oui oui oui oui oui oui

Navigateur
HTML

non non non non non non

Travail d'impres‐
sion/Diagnostic
de script

non non non non non non

Vue de recette non non non non non non
Vue des alarmes non non non non non non
Indicateur d'alar‐
me

non non non non non non

Fenêtre d'alar‐
mes

non non non non non non

Vue de courbes
f(x)

non non non non non non

Vue de courbes
f(t)

non non non non non non

Vue tabellaire non non non non non non
Table des va‐
leurs

non non non non non non

Media Player non non non non non non
Diagnostic de
voie

non non non non non non

WLAN - Récep‐
tion

non non non non non non

Zone - Nom non non non non non non
Zone - Signal non non non non non non
Nom de la plage
d'action

non non non non non non

Nom de la plage
d'action (RFID)

non non non non non non

Signal de la pla‐
ge d'action

non non non non non non

Etat de charge‐
ment

non non non non non non

Molette non non non non oui non
Indicateur d'aide non non non non non non
Vue
Sm@rtClient

non non non non non non

Visualisation/for‐
çage

non non non non non non

Vue de diagnos‐
tic système

non non non non non non

Fenêtre de diag‐
nostic système

non non non non non non

notions de base
4.4 Liste d'objets

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 31

Tableau 4-3 Dynamiquement

Objet Basic Panels Panels Comfort Panels Multi Panels Mobile Panels RT Advanced
Affichage oui oui oui oui oui oui
Commande
opérateur

non oui oui oui oui oui

Visibilité oui oui oui oui oui oui
Déplacements oui oui oui oui oui oui

Tableau 4-4 Objets supplémentaires

Objet Basic Panels Panels Comfort Panels Multi Panels Mobile Panels RT Advanced
Groupes oui oui oui oui oui oui
Touches pro‐
grammables

oui oui oui oui oui oui

Cycles oui oui oui oui oui oui
Scripts VB non oui oui oui oui oui
Listes de fonc‐
tions

oui oui oui oui oui oui

Bibliothèque de
graphiques

oui oui oui oui oui oui

Tableau 4-5 Variables

Objet Basic Panels Panels Comfort Panels Multi Panels Mobile Panels RT Advanced
Variables multi‐
plex

oui oui oui oui oui oui

Tableaux oui oui oui oui oui oui
Types de don‐
nées utilisateur

oui oui oui oui oui oui

Interne non oui oui oui oui oui
Occurrences
des types de
données élé‐
mentaires

oui oui oui oui oui oui

Occurrences
de types de
données utilisa‐
teur

oui oui oui oui oui oui

Occurrence de
tableaux

oui oui oui oui oui oui

En outre, Openness prend en charge toutes les plages de valeurs prises en charge par les
pilotes de communication.

Connexions

Openness prend en charge les connexions non intégrées prises en charge par les pupitres
opérateur correspondants. Vous trouverez des informations complémentaires à ce sujet dans

notions de base
4.4 Liste d'objets

Automatiser des projets à l'aide de scripts
32 Manuel système, 10/2016

l'aide en ligne de TIA Portal sous "Visualisation de processus > Communication avec les API
> Dépendance par rapport à l'appareil".

Tableau 4-6 Listes

Objet Basic Panels Panels Comfort Panels Multi Panels Mobile Panels RT Advanced
Listes de textes oui oui oui oui oui oui
Listes de gra‐
phiques

oui oui oui oui oui oui

Tableau 4-7 Textes

Objet Basic Panels Panels Comfort Panels Multi Panels Mobile Panels RT Advanced
Textes multilin‐
gues

oui oui oui oui oui oui

Textes forma‐
tés et leurs oc‐
currences

non oui oui oui oui oui

notions de base
4.4 Liste d'objets

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 33

4.5 Bibliothèques standard
Pour que les exemples de code fonctionnent, ajoutez les instructions Namespace suivantes
au début de l'exemple de code correspondant :

using System;
using Siemens.Engineering;
using Siemens.Engineering.HW;
using Siemens.Engineering.SW;
using Siemens.Engineering.SW.Blocks;
using Siemens.Engineering.SW.ExternalSources;
using Siemens.Engineering.SW.Tags;
using Siemens.Engineering.SW.Types;
using Siemens.Engineering.Hmi;
using Siemens.Engineering.Hmi.Tag;
using Siemens.Engineering.Hmi.Screen;
using Siemens.Engineering.Hmi.Cycle;
using Siemens.Engineering.Hmi.Communication;
using Siemens.Engineering.Hmi.Globalization;
using Siemens.Engineering.Hmi.TextGraphicList;
using Siemens.Engineering.Hmi.RuntimeScripting;
using System.Collections.Generic;
using Siemens.Engineering.Online;
using Siemens.Engineering.Compiler; //for Compiler related methods
using Siemens.Engineering.Library;
using Siemens.Engineering.Library.Types;
using Siemens.Engineering.Library.MasterCopies;
using Siemens.Engineering.Compare;
using System.IO; //for certain export related methods

notions de base
4.5 Bibliothèques standard

Automatiser des projets à l'aide de scripts
34 Manuel système, 10/2016

4.6 Remarques sur la performance de TIA Portal Openness V14

Objet racine
Vous pouvez indiquer plusieurs objets racine dans les fichiers d'importation.

Exemple : vous pouvez créer plusieurs listes de textes dans un fichier XML au lieu d'une liste
de textes par fichier XML.

Fonctions Openness
Lorsque vous ouvrez une fonction Openness pour la première fois, l'appel peut durer plus
longtemps que les appels suivants de cette fonction Openness.

Exemple : si vous exécutez plusieurs exportations de données de configuration les unes après
les autres, la première exportation peut durer plus longtemps que les suivantes.

notions de base
4.6 Remarques sur la performance de TIA Portal Openness V14

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 35

notions de base
4.6 Remarques sur la performance de TIA Portal Openness V14

Automatiser des projets à l'aide de scripts
36 Manuel système, 10/2016

Introduction 5
Introduction

TIA Portal Openness V14 décrit des interfaces ouvertes pour l'ingénierie avec TIA Portal V14.

Avec TIA Portal Openness V14, vous pouvez automatiser l'ingénierie en commandant à
distance le TIA Portal à partir d'un programme créé par vos soins.

TIA Portal Openness V14 vous permet d'exécuter les actions suivantes :

● Créer des données de projet

● Modifier des projets et des données de projet

● Supprimer des données de projet

● Lire des données de projet

● Mettre à disposition des projets et des données de projet pour d'autres applications.

Remarque

Siemens n'est pas responsable de la compatibilité des données transmises par le biais de ces
interfaces avec un logiciel tiers et ne fournit aucune garantie à cet égard.

Nous attirons expressément l'attention sur le fait que l'utilisation inadéquate des interfaces
peut entraîner la perte de données ou l'arrêt de la production.

Remarque

Les sections de code contenues dans cette documentation sont rédigées dans la syntaxe C#.

En raison de l'utilisation de sections de code courtes, une grande partie du traitement des
erreurs n'est pas décrite.

Utilisation
Vous utilisez l'interface Openness aux fins suivantes :

● mettre à disposition des données de projet

● accéder au processus TIA Portal

● utiliser des données de projet

Utilisation de valeurs par défaut du domaine de l'automatisation
● par l'importation de données générées à distance

● par la commande à distance du portail TIA pour la génération de projets

Mise à disposition de données de projet du portail TIA pour des applications externes
● par l'exportation de données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 37

Conserver les atouts vis-à-vis de la concurrence par une ingénierie efficace
● Vous n'avez besoin de configurer les données d'ingénierie existantes dans le TIA Portal.

● Les processus d'ingénierie automatisés remplacent l'ingénierie manuelle.

● La réduction des coûts d'ingénierie renforcent la position concurrentielle.

Travail en commun sur des données de projet
● Les tests de routine et le traitement groupé des données peuvent avoir lieu parallèlement

à la configuration en cours.

Voir aussi
Configurations (Page 39)

Introduction

Automatiser des projets à l'aide de scripts
38 Manuel système, 10/2016

Configurations 6
Vous pouvez travailler avec deux variantes de TIA Portal Openness V14 :

L'application et le TIA Portal se trouvent sur différents ordinateurs

● Les données sont échangées via des fichiers XML. Les fichiers XML peuvent être exportés
ou importés par vos programmes.

● Les données exportées du portail TIA vers PC2 peuvent être modifiées sur PC1 et
réimportées.

Remarque

Vous devez développer un programme exécutable "Votre programme 2" pour PC2, par
exemple "programm2.exe". Le portail TIA s'exécute avec ce programme en arrière-plan.

L'importation et l'exportation de fichiers XML s'effectuent exclusivement par le biais de l'API
public.

● Vous pouvez archiver les données échangées à des fins de vérification.

● Les données échangées peuvent être éditées à différents endroits et différents moments.

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 39

L'application et le TIA Portal se trouvent sur le même ordinateur

● Votre programme lance le TIA Portal avec ou sans interface utilisateur. Votre programme
ouvre, enregistre et/ou ferme un projet. Le programme peut également établir une liaison
avec un TIA Portal en cours d'exécution.

● Vous pouvez alors utiliser les fonctionnalités du TIA Portal pour demander, générer et
modifier des données de projet ou pour déclencher des processus d'importation et
d'exportation.

● Les données sont créées sous le contrôle du traitement du portail TIA et enregistrées dans
les données du projet.

Configurations

Automatiser des projets à l'aide de scripts
40 Manuel système, 10/2016

Un domaine d'application typique est la construction de machines modulaire.

● Un système d'automatisation efficace doit être appliqué sur des machines similaires.

● Un projet comprenant les composants de tous les modèles de machines est disponible
dans le portail TIA.

● L'outil Generator Tool commande la création du projet correspondant à un modèle de
machine donné.

● Il appelle les valeurs par défaut en lisant les paramètres du modèle de machine demandé.

● Il filtre les éléments concernés du projet global du portail TIA, les modifie le cas échéant
et génère le projet de machine demandé.

Configurations

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 41

Configurations

Automatiser des projets à l'aide de scripts
42 Manuel système, 10/2016

Public API 7
7.1 Introduction

Vue d'ensemble
TIA Portal Openness prend en charge une sélection de fonctions pour des tâches définies,
fonctions que vous pouvez appeler par le biais de Public API en-dehors de TIA Portal.

Remarque
Public API - Openness V13 SP1 et Openness V14

Si vous installez Openness V14, Openness V14 est installé à côté d'Openness V13 SP1.

Vous trouverez ci-après une vue d'ensemble des étapes de programmation typiques. Vous
découvrirez comment les différentes sections de code interagissent et comment intégrer les
différentes fonctions dans un programme complet. En outre, vous verrez quels éléments de
code doivent être adaptés pour chaque tâche.

Exemple de programme
Les différentes étapes de programmation sont expliquées à l'aide de l'exemple de fonction
"Créer l'accès de l'API dans une application console". Dans ce code de programme, vous
intégrez les fonctions mises à disposition et vous adaptez les éléments de code
correspondants pour cette tâche.

Fonctions
La rubrique ci-dessous indique les fonctions pour des tâches définies que vous pouvez appeler
avec TIA Portal Openness en-dehors de TIA Portal.

Voir aussi
Possibilités d'utilisation (Page 27)

Liste d'objets (Page 29)

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 43

7.2 Etapes de programmation

Vue d'ensemble
TIA Portal Openness requiert les étapes de programmation suivantes pour l'accès via Public
API :

1. Faire connaître TIA Portal dans l'environnement de développement

2. Configurer l'accès du programme à TIA Portal

3. Activer l'accès du programme à TIA Portal

4. Publier et démarrer TIA Portal

5. Ouvrir un projet

6. Exécuter des commandes

7. Enregistrer et fermer un projet

8. Mettre fin à la connexion au portail TIA

Remarque
Chaînes de caractères autorisées

Seuls certains caractères sont autorisés dans les chaînes de caractères sur TIA Portal. Toutes
les chaînes de caractères transmises à TIA Portal par le biais de l'application Openness
doivent se conformer à ces règles. Si vous transmettez un caractère non autorisé dans un
paramètre, le système déclenche une exception.

Voir aussi
Exemple de programme (Page 62)

Utilisation des exemples de code (Page 67)

Public API
7.2 Etapes de programmation

Automatiser des projets à l'aide de scripts
44 Manuel système, 10/2016

7.3 Modèle d'objet Openness V14

Vue d'ensemble
Le schéma suivant illustre le niveau le plus élevé du modèle d'objet Openness :

Le schéma suivant illustre les objets disponibles sous ProjectLibrary.

Le schéma suivant illustre les objets disponibles sous HmiTarget.

Public API
7.3 Modèle d'objet Openness V14

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 45

Le schéma suivant illustre les objets disponibles sous PlcSoftware.

Public API
7.3 Modèle d'objet Openness V14

Automatiser des projets à l'aide de scripts
46 Manuel système, 10/2016

Accéder à des objets de listes
Pour adresser un objet dans une liste, vous avez les options suivantes :

● Adressez via l'index. Le comptage au sein des listes commence à partir de 0.

● Utilisez la méthode Find.

● Utilisez cette méthode pour adresser un objet par son nom. Vous pouvez appliquer cette
méthode à une composition ou une liste. La méthode Find n'est pas récursive.
Exemple :
ScreenComposition screens = folder.Screens;
Screen screen = screens.Find("myScreen");

● Utilisez les noms symboliques.

Public API
7.3 Modèle d'objet Openness V14

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 47

Relation entre TIA Portal et le modèle d'objet Openness
La figure suivante présente la relation entre le modèle d'objet et un projet dans TIA Portal :

Project

HmiTarget

PlcSoftware

DeviceItem

① L'objet "Project" correspond à un projet ouvert dans TIA Portal.
② L'objet "PlcSoftware" est de type "SoftwareBase"④ et correspond à un API. Le contenu de l'objet correspond à un

API dans la navigation du projet, avec accès à des objets tels que des blocs ou des variables API.
③ L'objet "HmiTarget" est de type "SoftwareBase"④ et correspond à un pupitre opérateur. Le contenu de l'objet

correspond à un appareil IHM dans la navigation du projet, avec accès à des objets tels que des vues ou des
variables IHM.

④ L'objet "DeviceItem" correspond à un objet dans l'éditeur "Appareils & réseaux". Un objet du type "DeviceItem" peut
être aussi bien un châssis qu'un module enfiché.

Voir aussi
Hiérarchie des objets matériels du modèle d'objet (Page 59)

Public API (Page 43)

Public API
7.3 Modèle d'objet Openness V14

Automatiser des projets à l'aide de scripts
48 Manuel système, 10/2016

Exportation/importation (Page 199)

Ajouter un fichier externe (Page 182)

Exporter les graphiques d'un projet (Page 217)

Exporter des blocs (Page 257)

Exporter des blocs système (Page 262)

Exporter des tables de variables API (Page 264)

Importer une table de variables API (Page 265)

Exporter des variables ou constantes individuelles d'une table de variables API (Page 266)

Importer une seule variable ou constante dans une table de variables API (Page 267)

Exporter des connexions (Page 237)

Importation de connexions (Page 238)

Exportation de cycles (Page 219)

Importer des cycles (Page 220)

Exporter les listes de graphiques (Page 235)

Importer les listes de graphiques (Page 236)

Exporter des listes de textes à partir d'un appareil IHM (Page 232)

Importer une liste de texte dans un appareil IHM (Page 233)

Exporter des scripts VB (Page 229)

Importer des scripts VB (Page 231)

Exporter des tables de variables IHM (Page 221)

Importer une table de variables IHM (Page 224)

Exporter des variables individuelles d'une table de variables IHM (Page 225)

Importer des variables individuelles d'une table de variables IHM (Page 226)

Importer des graphiques dans un projet (Page 218)

Exporter toutes les vues d'un appareil IHM (Page 243)

Importer des vues dans un appareil IHM (Page 246)

Importer des modèles de vue (Page 254)

Exporter des modèles de vue à partir d'un dossier (Page 251)

Exporter une fenêtre permanente (Page 249)

Importer une fenêtre permanente (Page 250)

Public API
7.3 Modèle d'objet Openness V14

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 49

7.4 Blocs et types de modèle d'objet Openness

Introduction
Le schéma suivant représente le modèle de domaine des API afin de donner une vue
d'ensemble de la structuration actuelle dans Openness.

Représentation de blocs et types dans l'API Openness
L'élément de modèle simplifié des blocs et de la structure est basé sur les attributs dans l'API
Openness. Les classes correspondantes mettent à disposition la fonction d'exportation ainsi
que la fonction de compilation pour les blocs. ILibraryTypeInstance constitue l'unique interface
pour ces éléments.

Public API
7.4 Blocs et types de modèle d'objet Openness

Automatiser des projets à l'aide de scripts
50 Manuel système, 10/2016

Diagrammes de classes
Toutes les classes qui ne sont pas directement instanciées sont définies de manière abstraite
dans le modèle d'objet Openness.

Public API
7.4 Blocs et types de modèle d'objet Openness

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 51

Données

Public API
7.4 Blocs et types de modèle d'objet Openness

Automatiser des projets à l'aide de scripts
52 Manuel système, 10/2016

Public API
7.4 Blocs et types de modèle d'objet Openness

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 53

Code et type

Espaces de noms
Comme résultat de la nouvelle structure du modèle d'objet, les espaces de noms ont été
modifiés.

Public API
7.4 Blocs et types de modèle d'objet Openness

Automatiser des projets à l'aide de scripts
54 Manuel système, 10/2016

L'instruction d'espace de noms Siemens.Engineering.SW existante a été étendue et modifiée
comme suit :

● ControllerTarget est modifié dans PlcSoftware.

● "Blocks" est ajouté avec le contenu suivant :

– ArrayDB

– CodeBlock

– CompileUnit

– CompileUnitComposition

– DataBlock

– FB

– FC

– GlobalDB

– InstanceDB

– PlcBlock

– PlcBlockComposition

– OB

– MemoryLayout

– ProgrammingLanguage

– PlcBlockGroup

– PlcBlockSystemGroup

– PlcBlockUserGroup

– PlcBlockUserGroupComposition

– PlcSystemBlockGroup

– PlcSystemBlockGroupComposition

Public API
7.4 Blocs et types de modèle d'objet Openness

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 55

● "ExternalSources" est ajouté avec le contenu suivant :

– PlcExternalSource

– PlcExternalSourceComposition

– PlcExternalSourceGroup

– PlcExternalSourceSystemGroup

– PlcExternalSourceUserGroup

– PlcExternalSourceUserGroupComposition

● "Types" est ajouté avec le contenu suivant :

– PlcType

– PlcTypeComposition

– PlcStruct

– PlcTypeGroup

– PlcTypeSystemGroup

– PlcTypeUserGroup

– PlcTypeUserGroupComposition

Représentation de groupes de blocs et types dans l'API Openness
Les deux groupes "PlcBlocks" du niveau supérieur ("Blocs de programme" dans l'interface
utilisateur de TIA Portal) et "PlcTypes" ("Types de données API" dans l'interface utilisateur de
TIA Portal) contiennent des blocs et des définitions de type. Ces groupes mettent la fonction
d'importation et la fonction de compilation à la disposition des blocs. Les noms de classes
avec le préfixe "a.k.a." correspondent aux noms utilisés dans le modèle d'objet Openness V13
SP1. Étant donné que la plupart des méthodes qui s'appliquent aux fonctionnalités des
groupes ne sont accessibles que via des bibliothèques, il existe une représentation "intégrée"
ou "condensée" des bibliothèques et des méthodes correspondantes dans les classes "Host".

Public API
7.4 Blocs et types de modèle d'objet Openness

Automatiser des projets à l'aide de scripts
56 Manuel système, 10/2016

Blocs et types

Public API
7.4 Blocs et types de modèle d'objet Openness

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 57

Sources externes

Public API
7.4 Blocs et types de modèle d'objet Openness

Automatiser des projets à l'aide de scripts
58 Manuel système, 10/2016

7.5 Hiérarchie des objets matériels du modèle d'objet

Relation entre les éléments visibles du portail TIA et les éléments structurés du modèle d'objet

Modèle matériel Explication
Appareil
(Device)

Objet conteneur pour une configuration centralisée ou décentralisée.

Élément d'appareil
(IDeviceItem)

Chaque objet élément d'appareil possède un objet conteneur.
La relation logique est "Éléments".

Pour les objets éléments d'appareil, la relation conteneur-élément est similaire à la relation
des modules.

Exemple : un appareil contient un ou plusieurs emplacements. Un emplacement contient des
modules. Un module contient des sous-modules.

Il s'agit de la relation similaire à la représentation dans la vue de réseau et la vue d'appareil
de TIA Portal. L'attribut "PositionNumber" d'un élément d'élément d'appareil est unique dans
la zone du conteneur.

La relation enfant-parent entre les objets élément d'appareil est une relation logique pure dans
le modèle d'objet. Un enfant ne peut exister sans ses parents.

● Si un sous-module est structuré comme une partie d'un module (enfant), le sous-module
ne peut pas être retiré sans le module.

● Si vous ajoutez au module un sous-module, puis vous le retirez du sous-module, cet enfant
a les mêmes parents que le module.

Le diagramme ci-dessous indique la hiérarchie entre des appareils et des éléments d'appareils
API et IHM.

Hiérarchie entre appareils API

Hiérarchie pour le travail avec des .Items Hiérarchie pour le travail avec des .DeviceItems

Public API
7.5 Hiérarchie des objets matériels du modèle d'objet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 59

Hiérarchie entre appareils IHM

Hiérarchie pour le travail avec des .Items Hiérarchie pour le travail avec des .DeviceItems

Voir aussi
Public API (Page 43)

Exportation/importation (Page 199)

Public API
7.5 Hiérarchie des objets matériels du modèle d'objet

Automatiser des projets à l'aide de scripts
60 Manuel système, 10/2016

7.6 Informations sur les versions d'Openness installées

Conditions
● Openness et TIA Portal sont installés

Utilisation
À partir d'Openness V14, chaque version installée dispose d'une clé de Registre qui contient
des informations sur la version. Cela permet de créer automatiquement le fichier de
configuration d'application pour chaque version d'Openness installée.

La clé de Registre se trouve dans le chemin suivant :

HKEY_LOCAL_MACHINE\Software\Siemens\Automation\Openness
\14.0\PublicAPI

Remarque

Le numéro de version présent dans ce chemin est toujours identique au numéro de la version
de TIA Portal actuelle installée. En cas de plusieurs installations parallèles, plusieurs jeux
d'entrées correspondant à Openness sont présents dans le registre.

Il existe une clé unique par version d'Openness. Les noms des versions sont identiques à ceux
dans la description de Assembly, par ex. les entrées de registre pour Openness V14 :

[HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\Automation\Openness\14.0\PublicAPI
\14.0.0.0]"PublicKeyToken"="d29ec89bac048f84"
"Siemens.Engineering"="C:\Program Files\Siemens\Automation\Portal V14\PublicAPI
\V14\Siemens.Engineering.dll"
"Siemens.Engineering.Hmi"="C:\Program Files\Siemens\Automation\Portal V14\PublicAPI
\V14\Siemens.Engineering.Hmi.dll"
"EngineeringVersion"="V14"
"AssemblyVersion"="14.0.0.0"

Remarque

Si vous souhaitez créer un fichier de configuration d'application (Page 69), vous pouvez
connaître le chemin d'accès à Siemens.Engineering.dll, Siemens.Engineering.Hmi.dll et au
jeton de la clé publique grâce à la clé de Registre.

Public API
7.6 Informations sur les versions d'Openness installées

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 61

7.7 Exemple de programme

Exemple d'application : Créer l'accès de l'API dans une application
Le code du programme complet de l'exemple d'application est indiqué ci-après. Les étapes
typiques de programmation sont décrites ci-après à l'aide de cet exemple.

Remarque

Un fichier de configuration d'exemple (Page 69) est requis pour l'exemple d'application.

Public API
7.7 Exemple de programme

Automatiser des projets à l'aide de scripts
62 Manuel système, 10/2016

using System;
using Siemens.Engineering;
using Siemens.Engineering.HW;
using Siemens.Engineering.SW;
using Siemens.Engineering.SW.Blocks;
using Siemens.Engineering.SW.ExternalSources;
using Siemens.Engineering.SW.Tags;
using Siemens.Engineering.SW.Types;
using Siemens.Engineering.Hmi;
using HmiTarget = Siemens.Engineering.Hmi.HmiTarget;
using Siemens.Engineering.Hmi.Tag;
using Siemens.Engineering.Hmi.Screen;
using Siemens.Engineering.Hmi.Cycle;
using Siemens.Engineering.Hmi.Communication;
using Siemens.Engineering.Hmi.Globalization;
using Siemens.Engineering.Hmi.TextGraphicList;
using Siemens.Engineering.Hmi.RuntimeScripting;
using System.Collections.Generic;
using Siemens.Engineering.Compiler; //for Compiler related methods
using Siemens.Engineering.Library; //for library and update check related methods
using System.IO; //for certain export related methods

namespace HelloTIA
{
 internal class Program
 {
 private static void Main(string[] args)
 {
 RunTiaPortal();
 }

 private static void RunTiaPortal()
 {
 Console.WriteLine("Starting TIA Portal");
 using (TiaPortal tiaPortal = new TiaPortal(TiaPortalMode.WithUserInterface))
 {
 Console.WriteLine("TIA Portal has started");
 ProjectComposition projects = tiaPortal.Projects;

 Console.WriteLine("Opening Project...");

 string projectPath = @"C:\Demo\AnyCompanyProject.ap14";//edit the path
according to your project
 Project project = null;
 try
 {
 project = projects.Open(projectPath);
 }
 catch (Exception)
 {
 Console.WriteLine(String.Format("Could not open project {0}",
projectPath));
 Console.WriteLine("Demo complete hit enter to exit");
 Console.ReadLine();

Public API
7.7 Exemple de programme

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 63

 return;
 }

 Console.WriteLine(String.Format("Project {0} is open", project.Path));

 IterateThroughDevices(project);

 project.Close();

 Console.WriteLine("Demo complete hit enter to exit");
 Console.ReadLine();
 }
 }

 private static void IterateThroughDevices(Project project)
 {
 if (project == null)
 {
 Console.WriteLine("Project cannot be null");
 return;
 }

 Console.WriteLine(String.Format("Iterate through {0} device(s)",
project.Devices.Count));

 foreach (Device device in project.Devices)
 {
 Console.WriteLine(String.Format("Device: \"{0}\".", device.Name));
 }

 Console.WriteLine();
 }
 }
}

Procédure par étapes

1. Faire connaître le portail TIA dans l'environnement de développement
Créez dans votre environnement de développement un renvoi à tous les "fichiers dll" dans le
répertoire "C:\Program Files\Siemens\Automation\PortalV14\PublicAPI\V14".

Cette procédure est illustrée ci-après pour le fichier "Siemens.Engineering.dll".

Le fichier "Siemens.Engineering.dll" se trouve dans le répertoire "C:\Program Files\Siemens
\Automation\PortalV14\PublicAPI\V14". Créez dans votre environnement de développement
un renvoi au fichier "Siemens.Engineering.dll".

Remarque

Affectez la valeur "False" au paramètre "CopyLocal" dans les propriétés de référence.

Public API
7.7 Exemple de programme

Automatiser des projets à l'aide de scripts
64 Manuel système, 10/2016

2. Publier la plage de noms pour le TIA Portal
Insérez le code suivant :

using Siemens.Engineering;

3. Publier et démarrer TIA Portal
Pour publier et démarrer TIA Portal, insérez le code suivant :

using (TiaPortal tiaPortal = new TiaPortal())

4. Ouvrir un projet
Pour ouvrir un projet, vous pouvez par exemple utiliser le code suivant :

ProjectComposition projects = tiaPortal.Projects;
Console.WriteLine("Opening Project...");
string projectPath = @"C:\Demo\AnyCompanyProject.ap14";
Project project = null;
try
{
 project = projects.Open(projectPath);
}
catch (Exception)
{
 Console.WriteLine(String.Format("Could not open project {0}", projectPath));
 Console.WriteLine("Demo complete hit enter to exit");
 Console.ReadLine();
 return;
}
Console.WriteLine(String.Format("Project {0} is open", project.Path));

Public API
7.7 Exemple de programme

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 65

5. Énumérer les appareils d'un projet
Ajoutez le code suivant pour énumérer tous les appareils du projet :

static private void IterateThroughDevices(Project project)
 {
 if (project == null)
 {
 Console.WriteLine("Project cannot be null");
 return;
 }

 Console.WriteLine();
 Console.WriteLine(String.Format("Iterate through {0} device(s)",
project.Devices.Count));
 foreach (Device device in project.Devices)
 {
 Console.WriteLine(String.Format("Device: \"{0}\".", device.Name));
 }
 Console.WriteLine();
 }

6. Enregistrer et fermer un projet
Insérez le code suivant puis enregistrez et fermez le projet :

project.Save();
project.Close();

Public API
7.7 Exemple de programme

Automatiser des projets à l'aide de scripts
66 Manuel système, 10/2016

7.8 Utilisation des exemples de code

Structure des sections de code
Chaque section de code de cette documentation est réalisée comme fonction sans valeur de
retour avec une référence d'objet comme paramètre de transmission. L'accès aux objets de
TIA Portal se fait par leur nom à l'aide de la méthode Find.

Dans la section de code qui suit, une vue "MyScreen" du groupe "myScreenFolder" est
supprimée :

//Deletes a single screen from a user folder or a system folder
private static void DeleteScreenFromFolder(HmiTarget hmiTarget)
{
 //Change the names according to the names in your project
 string screenName = "MyScreen";
 ScreenUserFolder folder = hmiTarget.ScreenFolder.Folders.Find("myScreenFolder");
 ScreenComposition screens = folder.Screens;
 Screen screen = screens.Find(screenName);
 if (screen != null)
 {
 screen.Delete();
 }
}

Pour exécuter cette section de code, les éléments suivants sont requis :

● Un projet WinCC avec un appareil IHM contenant un groupe avec au moins une vue.

● Une fonction qui est instanciée par le pupitre opérateur.

Remarque

Si vous indiquez des chemins de répertoire, utilisez le chemin absolu, par ex. "C:/path/file.txt".

Les chemins de répertoire relatifs ne sont autorisés que pour les fichiers XML et l'importation/
l'exportation, par ex. "file.txt" ou "C:/path01/.../path02/file.txt".

Public API
7.8 Utilisation des exemples de code

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 67

Exemple d'exécution de la section de code
Pour exécuter la section de code "DeleteScreenFromFolder" dans le cadre de l'exemple de
programme "Hello TIA", utilisez l'exemple suivant :

//In the sample program "Hello TIA" replace the function call
//"IterateThroughDevices(project)" by the following functions calls:
 HmiTarget hmiTarget = GetTheFirstHmiTarget(project);
 DeleteScreenFromFolder(hmiTarget);

//Put the following function definitions before or after the
//function definition of "private static void IterateThroughDevices(Project project)":
private static HmiTarget GetTheFirstHmiTarget(Project project)
{
 if (project == null)
 {
 Console.WriteLine("Project cannot be null");
 throw new ArgumentNullException("project");
 }
 foreach (IDevice device in project.Devices)
 {
 foreach (IDeviceItem deviceItem in device.DeviceItems)
 {
 DeviceItem deviceItemToGetService = deviceItem as DeviceItem;
 SoftwareContainer container =
deviceItemToGetService.GetService<ISoftwareContainer>() as SoftwareContainer;
 if (container != null)
 {
 HmiTarget hmi = container.Software as HmiTarget;
 if (hmi != null)
 {
 return hmi;
 }
 }
 }
 }
 return null;
}

//Deletes a single screen from a user folder or a system folder
private static void DeleteScreenFromFolder(HmiTarget hmiTarget)
{
 string screenName = "MyScreen";
 ScreenUserFolder folder = hmiTarget.ScreenFolder.Folders.Find("myScreenFolder");
 ScreenComposition screens = folder.Screens;
 Screen screen = screens.Find(screenName);
 if (screen != null)
 {
 screen.Delete();
 }
}

Public API
7.8 Utilisation des exemples de code

Automatiser des projets à l'aide de scripts
68 Manuel système, 10/2016

7.9 Fonctions générales

7.9.1 IntelliSense-Support pour Openness

Utilisation
IntelliSense-Support pour Openness vous offre de l'aide sur les propriétés ou méthodes
existantes par le biais d'info-bulles et peut vous renseigner sur le nombre, les noms et les
types de paramètres requis. Dans l'exemple suivant, le paramètre en gras dans la première
ligne indique le paramètre requis suivant lors de l'entrée de la fonction.

Vous pouvez appeler manuellement des informations sur les paramètres de différentes
manières : Cliquez sur "Edit IntelliSense/Parameter Info", à l'aide de la combinaison de touches
<CTRL + MAJ + ESPACE> ou cliquez sur le bouton "Parameter Info" dans la barre d'outils de
l'éditeur.

7.9.2 Etablissement d'une connexion au portail TIA

Introduction
Vous démarrez TIA Portal avec TIA Portal Openness ou établissez la liaison avec un TIA Portal
en cours d'exécution. Si vous démarrez TIA Portal avec TIA Portal Openness, indiquez si TIA
Portal doit être démarré avec ou sans interface utilisateur graphique. Si vous travaillez avec
TIA Portal sans interface utilisateur, TIA Portal est uniquement lancé comme un processus du
système d'exploitation. Si nécessaire, une application Openness vous permet de créer
plusieurs instances de TIA Portal.

Remarque

Si vous utilisez l'application Openness pour accéder à l'interface TIA Portal, l'éditeur ne doit
pas être un éditeur IHM. Vous pouvez ouvrir l'éditeur "Appareils & réseaux" ou l'éditeur de
programmation manuellement ou via Public API.

Vous disposez des options suivantes pour démarrer TIA Portal avec une application
Openness.

● Vous pouvez utiliser un fichier de configuration d'application (recommandé pour la plupart
des applications).

● Utilisez la méthode "AssemblyResolve" (recommandé pour la copie, etc.).

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 69

Remarque

Nous vous recommandons de charger Siemens.Engineering.dll à l'aide du fichier de
configuration d'application. Cette méthode permet de tenir compte des noms forts et les
modifications dommageables au Engineering.dll entraînent une erreur de chargement. Ce qui
n'est pas détectable en cas d'utilisation de la méthode AssemblyResolve.

Démarrage de TIA Portal avec un fichier de configuration d'application
Créez dans le fichier de configuration d'application des renvois à toutes les bibliothèques de
programmes requises. Répartissez le fichier de configuration d'application avec l'application
Openness.

Enregistrez le fichier de configuration d'application "app.config" dans le même répertoire que
l'application Openness et intégrez ce fichier dans votre application. Vérifiez dans chaque code
si le chemin d'accès au fichier correspond au chemin d'installation de TIA Portal.

Vous pouvez utiliser l'extrait de code suivant pour le fichier de configuration d'application :

<?xml version="1.0"?>
<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="Siemens.Engineering" culture="neutral"
publicKeyToken="d29ec89bac048f84"/>
 <!-- Edit the following path according to your installation -->
 <codeBase version="14.0.0.0" href="FILE://C:\Program Files\Siemens\Automation
\Portal V14\PublicAPI\V14\Siemens.Engineering.dll"/>
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="Siemens.Engineering.Hmi" culture="neutral"
publicKeyToken="d29ec89bac048f84"/>
 <!-- Edit the following path according to your installation -->
 <codeBase version="14.0.0.0" href="FILE://C:\Program Files\Siemens\Automation
\Portal V14\PublicAPI\V14\Siemens.Engineering.Hmi.dll"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
70 Manuel système, 10/2016

Pour ouvrir une nouvelle instance de TIA Portal via le fichier de configuration d'application,
utilisez le code de programme suivant :

//Connect an openness application via API using
using System;
using System.IO;
using Siemens.Engineering;

namespace UserProgram
{
 internal class MyProgram
 {
 public static void Main(string[] args)
 {
 // To start TIA Portal with user interface:
 // using (TiaPortal tiaPortal = new TiaPortal(TiaPortalMode.WithUserInterface)
 //
 // To start TIA Portal without user interface:
 // using (TiaPortal tiaPortal = new TiaPortal(TiaPortalMode.WithoutUserInterface)
 using (TiaPortal tiaPortal = new TiaPortal(TiaPortalMode.WithUserInterface))
 {
 //begin of code for further implementation
 //...
 //end of code
 }
 }
 }
}

Démarrage de TIA Portal avec la méthode "AssemblyResolve"
Créez le code de programme d'Openness de telle sorte que l'enregistrement sur l'événement
"AssemblyResolve" soit effectué le plus tôt possible. Encapsulez l'accès à TIA Portal dans un
objet ou une méthode supplémentaire.

La prudence est de mise lors de la résolution d'Engineering Assembly par la méthode
AssemblyResolve. Lorsque des types de l'Engineering Assembly sont utilisés avant l'exécution
de l'Assembly Resolver, le programme se bloque. Cela est dû au fait que le compilateur Just-
in-time (compilateur JIT) ne compile une méthode qu'au moment où il doit l'exécuter. Lorsque
des types d'un Engineering Assembly sont utilisés par ex. dans "Main", le compilateur JIT
essaie de compiler "Main" pendant l'exécution du programme. Ce qui échoue parce que le
compilateur JIT ne sait pas où trouver l'Engineering Assembly. L'enregistrement de Assembly
Resolver dans Main n'y change rien. La méthode doit être en cours d'exécution avant
l'enregistrement de Assembly Resolver et compilée avant que celui-ci ne puisse être exécuté.
La solution à ce problème consiste à placer la Business Logic, qui utilise les types provenant
de l'Engineering Assembly, dans une méthode séparée. Et la méthode séparée utilise
uniquement des types que le compilateur JIT comprend déjà. L'exemple suivant utilise une
méthode qui fournit en retour "void", ne possède aucun paramètre et contient toutes les
Business Logic. Le compilateur JIT peut maintenant compiler "Main" avec succès parce qu'il
comprend tous les types présents dans Main. Assembly Resolver est déjà enregistré lorsque
RunTiaPortal est appelé pendant l'exécution. Ainsi, le compilateur JIT sait où trouver
l'Engineering Assembly lorsqu'il cherche les types de Business Logic.

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 71

Pour ouvrir une nouvelle instance de TIA Portal, utilisez le code de programme suivant.

using System;
using System.IO;
using System.Reflection;
using Siemens.Engineering;

namespace UserProgram
{
 static class MyProgram
 {
 public static void Main(string[] args)
 {
 AppDomain.CurrentDomain.AssemblyResolve += MyResolver;
 RunTiaPortal();
 }
 private static void RunTiaPortal()
 {
 // To start TIA Portal with user interface:
 // using (TiaPortal tiaPortal = new TiaPortal(TiaPortalMode.WithUserInterface)
 //
 // To start TIA Portal without user interface:
 // using (TiaPortal tiaPortal = new
TiaPortal(TiaPortalMode.WithoutUserInterface)
 using (TiaPortal tiaPortal = new TiaPortal(TiaPortalMode.WithUserInterface))
 {
 //begin of code for further implementation
 //...
 //end of code
 }
 }
 private static Assembly MyResolver(object sender, ResolveEventArgs args)
 {
 int index = args.Name.IndexOf(',');
 if (index == -1)
 {
 return null;
 }
 string name = args.Name.Substring(0, index) + ".dll";
 string path = Path.Combine(@"C:\Program Files\Siemens\Automation\Portal
V14\PublicAPI\V14\", name);
 // User must provide the correct path
 string fullPath = Path.GetFullPath(path);
 if (File.Exists(fullPath))
 {
 return Assembly.LoadFrom(fullPath);
 }
 return null;
 }
 }
}

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
72 Manuel système, 10/2016

Accéder à des instances actives de TIA Portal
Pour pouvoir établir une liaison à une instance active de TIA Portal avec une application
Openness, énumérez d'abord les instances de TIA Portal. Vous pouvez vous connecter à
plusieurs instances au cours d'une session Windows. L'instance active peut être TIA Portal
avec ou sans interface utilisateur démarrée :

foreach (TiaPortalProcess tiaPortalProcess in TiaPortal.GetProcesses()
 {
 ...
 }

Si vous connaissez l'ID de processus de l'instance du TIA Portal, utilisez cet ID de processus
pour accéder à l'objet. Le démarrage de TIA Portal nécessite un certain temps avant que vous
ne puissiez le connecter à Openness.

Lors de l'établissement de la liaison à une instance active de TIA Portal, une invite de
commande du pare-feu Openness s'affiche. Vous pouvez choisir parmi ces options pour la
liaison :

● Autoriser la liaison de manière unique

● Ne pas autoriser la liaison

● Toujours autoriser les liaisons de cette application
Pour plus d’informations, voir Pare-feu Openness (Page 74).

Remarque

Si l'invite de commande du registre est rejetée trois fois, le système déclenche une
exception du type EngineeringSecurityException.

Une fois la liaison au processus établie, vous pouvez appeler des informations sur les
instances de TIA Portal à l'aide de l'un des attributs suivants :

Attribut Information
InstalledSoftware as
IList
<TIAPortalProduct>

Fournit en retour des informations sur les produits installés.

Mode as TiaPortalMode Fournit en retour le mode dans lequel TIA Portal a été démarré (WithoutUserInterface/
WithUserInterface).

AttachedSessions as
Process[]

Fournit en retour un tableau d'applications qui sont connectées à TIA Portal.

ProjectPath as string Fournit en retour le nom de fichier du projet ouvert dans TIA Portal, y compris le dossier,
par exemple.
"D:\WinCCProjects\ColorMixing\ColorMixing.ap14"
Si aucun projet n'est ouvert, une chaîne de caractères vide est fournie en retour.

ID as string Fournit en retour l'ID de processus de l'instance TIA Portal.
Path as string Fournit en retour le chemin d'accès au fichier exécutable de TIA Portal.

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 73

7.9.3 Pare-feu Openness

Invite de commande du pare-feu Openness
Si vous essayez d'établir une liaison via Openness à une instance de TIA Portal en cours
d'exécution, TIA Portal vous invite à accepter ou à rejeter la liaison, comme représenté sur la
copie d'écran suivante.

Autoriser la liaison à TIA Portal de manière unique
Si vous souhaitez autoriser de manière unique la liaison de votre application Openness à TIA
Portal, cliquez sur "Yes" à l'invite de commande. Lorsque votre application Openness essaiera
d'établir une liaison à TIA Portal la prochaine fois, l'invite apparaîtra de nouveau.

Ajouter une entrée Whitelist par l'accès à TIA Portal
Pour créer une entrée Whitelist pour votre application Openness, procédez comme suit :

1. Cliquez sur "Yes to all" à l'invite. TIA Portal ouvre ensuite le contrôle de compte utilisateur.

2. Dans le contrôle de compte utilisateur, cliquez sur "Yes". Votre application est alors ajoutée
à la Whitelist du pare-feu Openness et reliée à TIA Portal.

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
74 Manuel système, 10/2016

Ajouter une entrée Whitelist sans TIA Portal
Si vous voulez créer une entrée Whitelist sans utiliser TIA Portal, vous pouvez générer un
fichier de Registre comme suit :

Windows Registry Editor Version 5.00
[HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\Automation\Openness\14.0\Whitelist
\CustomerApplication.exe]
[HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\Automation\Openness\14.0\Whitelist
\CustomerApplication.exe\Entry]
"Path"="E:\\Work\\Openness\\CustomerApplication\\bin\\Release\\CustomerApplication.exe"
"DateModified"="2014/06/10 15:09:44.406"
"FileHash"="0rXRKUCNzMWHOMFrT52OwXzqJef10ran4UykTeBraaY="

L'exemple suivant montre comment calculer la valeur Filehash et la date de dernière
modification :

string applicationPath = @"E:\\Work\\Openness\\CustomerApplication\\bin\\Release\
\CustomerApplication.exe";
string lastWriteTimeUtcFormatted = String.Empty;
DateTime lastWriteTimeUtc;
HashAlgorithm hashAlgorithm = SHA256.Create();
FileStream stream = File.OpenRead(applicationPath);
byte[] hash = hashAlgorithm.ComputeHash(stream);
string convertedHash = Convert.ToBase64String(hash); // this is how the hash should appear
in the .reg file
lastWriteTimeUtc = fileInfo.LastWriteTimeUtc;
lastWriteTimeUtcFormatted = lastWriteTimeUtc.ToString(@"yyyy/MM/dd HH:mm:ss.fff"); // this
is how the last write time should be formatted

7.9.4 Gestionnaire d'événements

Gestionnaire d'événements dans l'application Openness
Une instance de TIA Portal propose les événements suivants, auxquels vous pouvez réagir
avec un gestionnaire d'événements dans une application Openness. Vous pouvez accéder
aux propriétés de notifications et définir les réactions en conséquence.

Evénement Réponse
Disposed Cet événement vous permet de réagir avec une application Openness à la fermeture de

TIA Portal.
Notification Cet événement vous permet de réagir avec une application Openness aux notifications

de TIA Portal. Les notifications requièrent juste une confirmation, telle que "OK".
Confirmation Cet événement vous permet de réagir avec une application Openness aux notifications

de TIA Portal. Les confirmations requièrent toujours une décision, telle que "Voulez-vous
enregistrer le projet ?".

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 75

Code du programme
Pour enregistrer un gestionnaire d'événements dans une application Openness, modifiez le
code de programme suivant :

//Register event handler for Disposed-Event

 TiaPortal.Disposed +=TiaPortal_Disposed;
....

private static void TiaPortal_Disposed(object sender, EventArgs e)
{

}

//Register event handler for Notification-Event

 TiaPortal.Notification += TiaPortal_Notification;
....

private static void TiaPortal_Notification(object sender, NotificationEventArgs e)

{

}

//Register event handler for Confirmation-Event

 TiaPortal.Confirmation += TiaPortal_Confirmation;
....

private static void TiaPortal_Confirmation(object sender, ConfirmationEventArgs e)
{

}

Propriétés des notifications de TIA Portal
Les notifications de TIA Portal possèdent les propriétés suivantes :

Propriété Description
Caption Fournit en retour le nom de la confirmation.
DetailText Fournit en retour le texte détaillé de la confirmation.
Icon Fournit en retour l'icône de la confirmation.
IsHandled Fournit en retour la confirmation ou indique si le système attend la confirmation.
MessageID Fournit en retour l'ID univoque au sein du service.
ServiceID Fournit en retour l'ID du service ayant déclenché la confirmation.
Text Fournit en retour le texte de la confirmation.

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
76 Manuel système, 10/2016

Propriétés des confirmations
Les confirmations possèdent les propriétés suivantes :

Propriété Description
Caption Fournit en retour le nom de la confirmation.
Choices Donne les possibilités pour acquitter la confirmation.
DetailText Fournit en retour le texte détaillé de la confirmation.
Icon Fournit en retour l'icône de la confirmation.
IsHandled Fournit en retour la confirmation ou indique si le système attend la confirmation.
MessageID Fournit en retour l'ID univoque au sein du service.
Result Fournit ou indique le résultat de l'acquittement.
ServiceID Fournit en retour l'ID du service ayant déclenché la confirmation.
Text Fournit en retour le texte de la confirmation.

Voir aussi
Confirmer les boîtes de dialogue comportant des alarmes système par commande du
programme (Page 77)

7.9.5 Confirmer les boîtes de dialogue comportant des alarmes système par
commande du programme

Condition requise
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Les gestionnaires d'événements sont enregistrés.
Voir Etablissement d'une connexion au portail TIA (Page 69)

Utilisation
Si vous commandez le portail TIA par le biais de l'interface utilisateur, des boîtes de dialogue
comportant des événements système s'affichent pour certaines séquences du programme. À
l'aide de ces événements système, vous décidez comment continuer.

Si vous accédez à TIA Portal avec une application Openness, ces événements système
doivent être acquittés via les événements ".NET" correspondants.

Les confirmations autorisées figurent dans la liste Choices :

● Abort
● Cancel
● Ignore

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 77

● No
● NoToAll
● None
● OK
● Retry
● Yes
● YesToAll
La valeur de ConfirmationEventArgs.Result doit être l'une des entrées
susmentionnées. Faute de quoi une exception est déclenchée.

Code du programme
Pour réagir à un événement de confirmation, modifiez le code de programme suivant :

private void TiaPortalOnConfirmation(object sender, ConfirmationEventArgs e)
{
 int serviceId = e.ServiceId;
 int messageId = e.MessageId;
 if (serviceId == MyExpectedServiceId)
 {
 if (messageId == MyExpectedMessageId && ((e.Choices & ConfirmationChoices.Yes) ==
ConfirmationChoices.Yes))
 {
 e.Result = ConfirmationResult.Yes;
 e.IsHandled = true;
 }
 }
}

Pour informer le concepteur des actions exécutées avec une application Openness, modifiez
le code de programme suivant :

//Handles notifications
using (TiaPortal tiaPortal = new TiaPortal())
{
 tiaPortal.Notification += Notification;
 try
 {
 //perform actions that will result in a notification event
 }
 finally
 {
 tiaPortal.Notification -= Notification;
 }
}

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
78 Manuel système, 10/2016

private void TiaPortalOnNotification(object sender, NotificationEventArgs e)
{
 if (e.MessageId == MyExpectedMessageId && e.ServiceId == MyExpectedServiceId)
 {
 e.IsHandled = true;
 }
 }

Voir aussi
Bibliothèques standard (Page 34)

7.9.6 Mettre fin à la connexion au portail TIA

Introduction
Si vous avez démarré l'instance du portail TIA sans interface utilisateur, vous pouvez fermer
cette instance du portail TIA via l'application Openness. Dans tous les autres cas, déconnectez
l'application Openness de l'instance du portail TIA. Si un concepteur ferme l'instance du portail
TIA en dépit d'un accès en cours d'une application Openness, une exception de la catégorie
"NonRecoverableException" est déclenchée dans l'application Openness.

Déconnectez ou fermez l'instance active de TIA Portal à l'aide de la méthode
IDisposable.Dispose().

Vous pouvez utiliser la méthode IDisposable.Dispose() comme suit :

● avec un using-Statement.

● Entourez la description de l'objet avec un bloc try-finally et appelez la méthode
IDispose.Dispose() au sein du bloc finally.

Si vous quittez l'instance active du portail TIA, vous ne pouvez plus accéder au portail TIA.

Code du programme
Pour couper la connexion au portail TIA ou y mettre fin, utilisez le code de programme suivant :

// Add code to dispose the application if the application is still instantiated
if (tiaPortal != null)
{
 tiaPortal.Dispose();
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 79

7.9.7 Interfaces de diagnostic dans TIA Portal

Utilisation
Vous pouvez appeler certaines informations de diagnostic d'instances de TIA Portal en cours
d'exécution avec une méthode statique. L'interface de diagnostic est réalisée dans l'objet
TiaPortalProcess que vous pouvez appeler pour chaque instance TIA Portal en cours
d'exécution.

L'interface de diagnostic n'est pas bloquée. Vous pouvez donc accéder à l'objet
TiaPortalProcess ainsi qu'à ses membres et ce, que TIA Portal soit occupé ou non. L'interface
de diagnostic comprend les membres suivants :

Classe TiaPortalProcess

Membre Type Fonction
AcquisitionTime DateTime Date et heure auxquelles l'objet

TiaPortalProcess a été saisi.
Comme l'objet TiaPortalProcess
représente un instantané tout à
fait statique de l'état de TIA Por‐
tal à un moment donné, les infor‐
mations qu'il contient peuvent
être obsolètes.

Attach TiaPortal Est relié au TiaPortalProcess
donné et fournit en retour une
instance de TIA Portal.

AttachedSessions IList<TiaPortalSession> Bibliothèque de toutes les autres
sessions actuellement atta‐
chées au même TIA Portal. Cet‐
te bibliothèque peut être vide.
Chaque session est représentée
par un objet TiaPortalSession
décrit comme suit.

Attaching EventHandler<AttachingEven‐
tArgs>

Cet événement permet à l'appli‐
cation d'autoriser des tentatives
de lien à TIA Portal. Lorsqu'une
autre application essaie de s'at‐
tacher à TIA Portal, les membres
de cet événement en sont infor‐
més. Les membres ont alors 10
secondes pour autoriser l'opéra‐
tion. Si un membre ignore cet
événement ou n'y réagit pas à
temps, cela est considéré com‐
me un refus et l'opération n'est
pas autorisée à l'application de‐
mandeuse. Les applications blo‐
quées, et donc incapables de
réagir à cet événement, ne peu‐
vent pas refuser à une autre ap‐
plication l'autorisation de s'atta‐
cher.

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
80 Manuel système, 10/2016

Membre Type Fonction
Dispose void Ferme l'instance de TIA Portal

correspondante.
Id int ID de processus de TIA Portal.
InstalledSoftware IList<TiaPortalProduct> Bibliothèque de tous les produits

actuels installés comme partie
de TIA Portal. Chaque produit
est représenté par un objet Tia‐
PortalProduct décrit comme suit.

Mode TiaPortalMode Fournit en retour le mode dans
lequel TIA Portal a été démarré.
Valeurs actuelles : WithUserIn‐
terface et WithoutUserInterface.

Path string Chemin d'accès au fichier exécu‐
table de TIA Portal.

ProjectPath string Chemin d'accès au projet actuel
ouvert dans TIA Portal. Si aucun
projet n'est ouvert, cette proprié‐
té a la valeur zéro.

Classe TiaPortalSession

Membre Type Fonction
AccessLevel TiaPortalAccessLevel Niveau d'accès de la session.

Est représenté sous forme d'une
énumération de mémentos et
plusieurs niveaux d'accès sont
possibles. La section qui suit pro‐
pose une description détaillée de
TiaPortalAccessLevel.

AttachTime DateTime Date et heure auxquelles la liai‐
son à TIA Portal été établie.

Id int L'ID de la session actuelle.
IsActive bool Fournit "vrai" en retour lorsque le

traitement d'un appel provenant
de cette session est en cours
d'exécution sur TIA Portal.

Dispose void Met fin à la connexion entre le
processus et TIA Portal. Cette
méthode ne force pas la fin du
processus, comme ce serait le
cas avec System.Diagnos‐
tics.Process.Kill. L'application
dont la connexion est terminée
reçoit malgré tout un événement
Disposed. Toutefois, aucune in‐
dication n'est donnée sur ce qui
a provoqué la fin de la conne‐
xion.

ProcessId int ID du processus attaché.
ProcessPath string Chemin d'accès au fichier exécu‐

table du processus attaché.

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 81

Membre Type Fonction
TrustAuthority TiaPortalTrustAuthority Indique si la session actuelle a

été démarrée par un processus
signé et s'il s'agit d'un certificat
Openness ou non. TrustAuthori‐
ty est une énumération de mé‐
mentos décrite comme suit.

UtilizationTime TimeSpan Période pendant laquelle le pro‐
cessus a été actif dans TIA Por‐
tal. En combinaison avec la pro‐
priété AttachTime, ceci peut ser‐
vir à déterminer des pourcenta‐
ges de durée de vie ou d'autres
informations similaires.

Version string Version de Siemens.Engineer‐
ing.dll attaché à la session.

Enum TiaPortalAccessLevel

Valeur d'énumération Fonction
None Cette valeur n'est pas valide. La valeur est indi‐

quée parce que TiaPortalAccessLevel est un mé‐
mento de type Enum et qu'à ce titre, une "valeur
zéro" correspondante est requise pour montrer
qu'aucun mémento n'est mis à 1. Mais elle n'ap‐
paraît jamais dans la pratique, car aucune session
ne peut être démarrée sans accès.

Published La session a accès à la fonctionnalité publiée.
Prepublished La session a accès à la fonctionnalité prépubliée.
Modify La session a accès en modification.

Enum TiaPortalTrustAuthority

Valeur d'énumération Fonction
None Le module principal du processus attaché n'est

pas signé à l'aide d'un certificat.
CustomerIdentification Le module principal utilise un fichier CustomerID.
Signed Le module principal est signé à l'aide d'un certifi‐

cat, mais il ne s'agit pas d'un certificat Openness.
Certified Le module principal est signé à l'aide d'un certifi‐

cat.

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
82 Manuel système, 10/2016

Classe TiaPortalProduct

Membre Type Fonction
Name string Nom du produit (par ex. STEP 7

Professional).
Options IList<TiaPortalProduct> Une bibliothèque de tous les pro‐

giciels qui font partie du TIA Por‐
tal connecté, représentés com‐
me objets TiaPortalProduct.
Lorsqu'un progiciel contient, à
son tour, des progiciels, le ni‐
veau d'imbrication peut être plus
important.

Version string Trame de version du produit.

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 83

L'exemple de section de code suivant montre comment utiliser l'interface de diagnostic pour
interroger des informations et comment ensuite utiliser ces informations dans votre application.

public void TiaPortalDiagnostics()
{
 IList<TiaPortalProcess> tiaPortalProcesses = TiaPortal.GetProcesses();
 foreach (TiaPortalProcess tiaPortalProcess in tiaPortalProcesses)
 {
 Console.WriteLine("Process ID: {0}", tiaPortalProcess.Id);
 Console.WriteLine("Path: {0}", tiaPortalProcess.Path);
 Console.WriteLine("Project: {0}", tiaPortalProcess.ProjectPath);
 Console.WriteLine("Timestamp: {0}", tiaPortalProcess.AcquisitionTime);
 Console.WriteLine("UI Mode: {0}", tiaPortalProcess.Mode);
 //See method body below.
 Console.WriteLine("Installed Software:");
 EnumerateInstalledProducts(tiaPortalProcess.InstalledSoftware);
 Console.WriteLine("Attached Openness Applications:");
 foreach (TiaPortalSession session in tiaPortalProcess.AttachedSessions)
 {
 Console.WriteLine("Process: {0}", session.ProcessPath);
 Console.WriteLine("Process ID: {0}", session.ProcessId);
 DateTime attachTime = session.AttachTime;
 TimeSpan timeSpentAttached = DateTime.Now - attachTime;
 TimeSpan utilizationTime = session.UtilizationTime;
 long percentageTimeUsed = (utilizationTime.Ticks / timeSpentAttached.Ticks) *
100;
 Console.WriteLine("AttachTime: {0}", attachTime);
 Console.WriteLine("Utilization Time: {0}", utilizationTime);
 Console.WriteLine("Time spent attached: {0}", timeSpentAttached);
 Console.WriteLine("Percentage of attached time spent using TIA Portal: {0}",
percentageTimeUsed);
 Console.WriteLine("AccessLevel: {0}", session.AccessLevel);
 Console.WriteLine("TrustAuthority: {0}", session.TrustAuthority);
 if ((session.TrustAuthority & TiaPortalTrustAuthority.Certified) !=
TiaPortalTrustAuthority.Certified)
 {
 Console.WriteLine("TrustAuthority doesn't match required level, attempting
to terminate connection to TIA Portal."); session.Dispose();
 }
 }
 }
}
public void EnumerateInstalledProducts(IEnumerable<TiaPortalProduct> products)
{
 foreach (TiaPortalProduct product in products)
 {
 Console.WriteLine("Name: {0}", product.Name);
 Console.WriteLine("Version: {0}", product.Version);
 //recursively enumerate all option packages
 Console.WriteLine("Option Packages \n:");
 EnumerateInstalledProducts(product.Options);
 }
}

Information de sécurité

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
84 Manuel système, 10/2016

Du fait que l'utilisation de l'interface de diagnostic ne nécessite aucune liaison à TIA Portal, il
est possible d'écrire un service Windows qui se sert de l'événement latéral pour vérifier toute
application qui essaie de s'attacher à TIA Portal. Ainsi, il est possible par ex. de définir que
seules les applications commençant par le nom de votre entreprise sont autorisées à
s'attacher. Une autre option pourrait consister à autoriser systématiquement l'accès mais à
écrire les informations sur les processus latéraux dans un journal. Le code du programme
suivant donne un exemple de gestionnaire d'événements pour vérifier des liaisons entrantes :

public void OnAttaching(object sender, AttachingEventArgs e)
{
 string name = Path.GetFileNameWithoutExtension(e.ProcessPath);
 TiaPortalAccessLevel requestedAccessLevel = e.AccessLevel &
TiaPortalAccessLevel.Published;
 TiaPortalTrustAuthoritycertificateStatus = e.TrustAuthority
&TiaPortalTrustAuthority.Certified;
 if (requestedAccessLevel == TiaPortalAccessLevel.Published &&
 certificateStatus == TiaPortalTrustAuthority.Certified &&
 name.StartsWith("SampleCustomerName"))
 {
 e.GrantAccess();
 }
}

7.9.8 Exclusive access

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Pour une application Client Openness qui a besoin d'un accès exclusif à un processus de TIA
Portal attaché, la classe "TIA Portal" propose la méthode "ExclusiveAccess(Stringtext)" pour
configurer un processus exclusif.

Remarque

Toute tentative visant à créer un deuxième accès exclusif dans l'étendue d'un accès exclusif
ouvert, entraîne le déclenchement d'une exception qui peut être restaurée.

Remarque

Utilisez "ExclusiveAccess" dans une instruction "using" pour vous assurer que l'accès est
correctement terminé lorsque des exceptions se produisent ou l'application est arrêtée.

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 85

Modifiez l'exemple suivant pour avoir "ExclusiveAccess" à une instance :

...
[assembly: AssemblyTitle("MyApplication")]
// Est utilisé pour la boîte de dialogue d'accès exclusif, si présent...
TiaPortal tiaPortal = ...;
using (ExclusiveAccess exclusiveAccess = tiaPortal.ExclusiveAccess("My Activity"))
{
 ...
}

Après la saisie d'une instance 'ExclusiveAccess' pour un processus de TIA Portal donné, une
boîte de dialogue s'ouvre. Cette boîte de dialogue affiche le message prévu lors de
l'instanciation. En plus, les informations suivantes sur l'application Client sont également
affichées :

● le titre d'Assembly des données manifestes, s'il est disponible, ou le nom du processus

● l'ID du processus

● le SID

Remarque

Plusieurs sessions peuvent être actives pour une application Client Openness donnée parce
qu'il existe plusieurs instances de TIA Portal, même si celles-ci sont attribuées respectivement
au même processus TIA Portal.

L'application Client peut également actualiser le contenu affiché dans la boîte de dialogue
d'accès exclusif en remplaçant les valeurs de la propriété "Texte" par de nouvelles valeurs.
Pour obtenir ce comportement, modifiez le code de programme suivant :

exclusiveAccess = ...;
...
exclusiveAccess.Text = "My Activity Phase 1";
...
exclusiveAccess.Text = "My Activity Phase 2";
...
exclusiveAccess.Text = String.Empty; // or null;
...

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
86 Manuel système, 10/2016

Vous pouvez exiger l'annulation de l'accès exclusif à l'aide du bouton "Cancel"/"Annuler". Pour
obtenir ce comportement, modifiez le code de programme suivant :

exclusiveAccess = ...;
...
if (exclusiveAccess.IsCancellationRequested)
{
 // Arrêtez votre action
 ...
}
else
{
 // Poursuivez votre action
 ...
}
...

7.9.9 Traitement des transactions

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Opération
Une rémanence (projet, bibliothèque, etc.) ouverte au sein d'un processus TIA Portal
correspondant peut être modifiée par une application Client Openness. Vous pouvez obtenir
cette modification avec une opération unique ou une série d'opérations. Pendant l'action, il est
utile de regrouper ces opérations dans une seule pile Undo afin d'obtenir un déroulement plus
logique. En outre, regrouper des opérations dans une pile Undo unique présente également
des avantages en matière de performance. Pour aider à cela, la classe "ExclusiveAccess"
propose la méthode "Transaction(ITransactionSupport persistence, string undoDescription)".
L'appel depuis cette méthode entraîne l'instanciation d'un nouvel objet de type "Transaction"
qui peut être arrêté. Vous devez fournir la description du contenu de la transaction (l'attribut
Texte ne doit pas être nul ou vide). Tant que cette instance n'a pas été terminée, toutes les
opérations des applications Client sont regroupées dans une pile Undo unique au sein du
processus TIA Portal correspondant.

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 87

Pour saisir une instance de type "Transaction", modifiez le code de programme suivant :

ExclusiveAccess exclusiveAccess = ...;
Project project = ...;
using (Transaction transaction = exclusiveAccess.Transaction(project, "My Operation"))
{
 ...
}

Remarque

Utilisez une instruction "using" pour instancier une "Transaction". Cela vous permet d'assurer
que la transaction soit terminée correctement, même si des exceptions se produisent, et
d'annuler ainsi la transaction.

Application cohérente ou annulation
Une "Transaction" dans une application Client vous permet d'assurer qu'il existe un chemin
prévisible pour rendre effectif ou annuler un jeu de modifications. Votre application Client doit
décider si les modifications apportées à une rémanence doivent devenir effectives ou pas.
Pour cela, votre application doit demander que les modifications dans l'étendue d'une
transaction ouvertes deviennent effectives lorsque la transaction est terminée par appel de la
méthode "Transaction.CommitOnDispose()". Si cette méthode n'est jamais appelée dans le
déroulement du code, les modifications apportées dans l'étendue de la transaction ouverte
sont automatiquement annulées à la fin de la transaction.

Si une exception se produit après cette requête, toutes les modifications apportées dans
l'étendue d'une transaction ouverte sont malgré tout annulées à la fin de la transaction.

Pour créer une pile Undo unique dans un processus TIA Portal attaché avec deux modifications
"Create", modifiez le code de programme suivant :

ExclusiveAccess exclusiveAccess = ...;
Project project = ...;
using (Transaction transaction = exclusiveAccess.Transaction(project, "My Operation")
{
 project.DeviceGroups.Create("My Group 1");
 project.DeviceGroups.Create("My Group 2");
 transaction.CommitOnDispose();
}

Comportement Undo
Les actions exécutées par une application Client Openness peuvent résulter en piles Undo à
l'intérieur du processus TIA Portal attaché. Chacune de ces entrées Undo est regroupée sous
une entrée locale. L'entrée locale est composée des informations suivantes provenant de
l'application Client :

● le titre d'Assembly des données manifestes, s'il est disponible, ou le nom du processus

● l'ID du processus

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
88 Manuel système, 10/2016

● le SID ou

● un message indiquant que le processus Client est en cours d'exécution

Ces entrées appartiennent à un des deux types suivants :

1. Les opérations, qui sont regroupées dans une transaction Undo comme résultats de
l'utilisation d'une "Transaction", possèdent la description mise à disposition par l'application
Client lorsque la "Transaction" a été instanciée.

– Entrée Undo pour une application Client en cours d'exécution :

– Entrée Undo pour une application Client arrêtée :

2. Pour les opérations qui sont exécutées individuellement, il existe des entrées Undo
séparées pour la description de l'opération telle que définie dans la commande de
métadonnées correspondante.

– Entrée Undo pour une application Client en cours d'exécution :

– Entrée Undo pour une application Client arrêtée :

Public API
7.9 Fonctions générales

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 89

7.10 Fonctions des projets/données de projet

7.10.1 Ouvrir un projet

Conditions
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

Remarque

Le projet à ouvrir ne doit être ouvert dans aucune autre instance du portail TIA.

Remarque
Aucun accès aux projets en écriture seule

TIA Portal Openness V14 ne peut accéder qu'aux projets avec droits en lecture et en écriture.

Utilisation
Utilisez la méthode Projects.Open pour ouvrir les projets qui ont été créés avec TIA Portal
V 14 ou qui ont été mis à niveau vers la version 14.

Placez la commande d'ouverture du projet dans un bloc try et la commande de fermeture dans
un bloc finally.

Dans la méthode Projects.Open, entrez un chemin pour le projet de votre choix.

Remarque
Accès aux projets de TIA Portal V13 SP1

La méthode Projects.Open ne peut accéder qu'aux projets qui ont été créés avec TIA
Portal V14 ou qui ont été mis à niveau vers la version 14.

Si vous accédez à un projet d'une version précédente avec la méthode Projects.Open ,
vous obtiendrez une exception en retour.

Utilisez la méthode OpenWithUpgrade pour ouvrir les projets qui ont été créés avec une
version précédente de TIA Portal.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
90 Manuel système, 10/2016

Code du programme
Pour ouvrir un projet, modifiez le code de programme suivant :

Project project =tiaPortal.Projects.Open(@"D:\Some\Path\Here\Project.apXX");
if (project != null)
{
 try
 {
 ...
 }
 finally
 {
 project.Close();
 }
}

Ouvrir un projet qui a été créé avec une version précédente
Utilisez la méthode OpenWithUpgrade pour ouvrir un projet qui a été créé avec une version
précédente de TIA Portal. Cette méthode permet de mettre à niveau le projet vers la version
actuelle et de l'ouvrir.

Code du programme
Pour ouvrir un projet avec la méthode OpenWithUpgrade, modifiez le code de programme
suivant :

Project project = tiaPortal.Projects.OpenWithUpgrade(@"D:\Some\Path\Here
\Project.apXX");
if (project != null)
{
 try
 {
 ...
 }
 finally
 {
 project.Close();
 }
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 91

7.10.2 Enumérer et appeler des appareils

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Application : Accès à un appareil
Pour appeler des objets de type "IDeviceItem", utilisez la propriété suivante :

● Nom (string) : nom de l'appareil

Créez le code de votre programme conformément à l'exemple suivant :

IDevice device = ...
string name = device.Name;

Application : Énumération d'appareils

Remarque

Faire attention à Hiérarchie des objets matériels du modèle d'objet (Page 59).

Utilisez une des possibilités suivantes pour énumérer les appareils d'un projet :

● Énumérer tous les appareils du premier niveau

● Énumérer tous les appareils en groupes ou sous-groupes

● Énumérer tous les appareils d'un projet ne contenant aucun groupe d'appareils

● Énumérer tous les appareils des groupes de système d'appareils non groupés

Exemples d'appareils pouvant être énumérés :

● Central station

● PB-Slave / PN-IO device

● HMI Device

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
92 Manuel système, 10/2016

Code du programme : énumérer les appareils du premier niveau
Pour énumérer les appareils du premier niveau, utilisez le code de programme suivant :

private static void EnumerateDevicesInProject(Project project)
{
 IDeviceComposition deviceComposition = project.Devices;
 foreach (IDevice device in deviceComposition)
 {
 // add code here
 }
}

Pour accéder à un appareil en particulier, modifiez le code de programme suivant :

private static void AccessSingleDeviceByName(Project project)
{
 IDeviceComposition deviceComposition = project.Devices;
 // The parameter specifies the name of the device
 Device device = deviceComposition.Find("MyDevice")as Device;
}

Code du programme : Énumérer des appareils en groupes ou sous-groupes

Remarque

Avant de pouvoir accéder aux appareils d'un groupe, vous devez d'abord naviguer jusqu'au
groupe, ensuite jusqu'à l'appareil.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 93

Pour énumérer les appareils en groupes et sous-groupes, modifiez le code de programme
suivant :

private static void EnumerateDevicesInGroups(Project project)
{
 foreach (DeviceUserGroup deviceUserGroup in project.DeviceGroups)
 {
 EnumerateDeviceUserGroup(deviceUserGroup);
 }
}
private static void EnumerateDeviceUserGroup(DeviceUserGroup deviceUserGroup)
{
 EnumerateDeviceObjects(deviceUserGroup.Devices);
 foreach (deviceUserGroup subDeviceUserGroup in deviceUserGroup.Groups)
 {
 // recursion
 EnumerateDeviceUserGroup(subDeviceUserGroup);
 }
}
private static void EnumerateDeviceObjects(IDeviceComposition deviceComposition)
{
 foreach (IDevice device in deviceComposition)
 {
 // add code here
 }
}

Code du programme : Énumérer les appareils d'un projet ne contenant aucun groupe d'appareils
Pour énumérer tous les appareils qui se trouvent sous un projet ne contenant aucun groupe
d'appareils, modifiez le code de programme suivant :

Project project = ...
foreach (IDevice device in project.Devices)
{
 ... // Work with the devices
}

Pour rechercher un appareil en particulier avec son nom, modifiez le code de programme
suivant :

Project project = ...
IDevice plc1 = project.Devices.FirstOrDefault(d => d.Name == "Mydevice");
... // Work with the device

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
94 Manuel système, 10/2016

Pour rechercher un appareil en particulier avec la méthode "Find", modifiez le code de
programme suivant :

Project project = ...
IDevice plc1 = project.Devices.Find("MyDevice");
... // Work with the device

Code du programme : Énumérer les appareils des groupes de système d'appareils non groupés

Remarque

Pour structurer les projets, des appareils décentralisés ont été ajoutés dans le groupe
UngroupedDevices. Avant de pouvoir accéder au groupe correspondant, vous devez d'abord
naviguer jusqu'au groupe, ensuite jusqu'à l'appareil.

Pour énumérer tous les appareils du groupe UngoupedDevices, modifiez le code de
programme suivant :

Project project = ...
DeviceSystemGroup group = project.UngroupedDevicesGroup;
IDevice plc1 = group.Devices.First(d => d.Name == "MyStationName");
... // Work with the device

Voir aussi
Bibliothèques standard (Page 34)

7.10.3 Enumérer et appeler des éléments d'appareils

Conditions
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Application : Appeler des éléments d'appareils
Pour appeler des objets de type "IDeviceItem", utilisez les propriétés suivantes :

● Nom (string) : Nom de l'élément d'appareil

● Conteneur (IHardwareObject) : Conteneur dans lequel l'élément d'appareil est placé

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 95

Code du programme : Appeler l'élément d'appareil
Pour appeler un élément d'appareil, modifiez le code de programme suivant :

public static IDeviceItem AccessDeviceItemFromDevice(Device device)
{
 IDeviceItem deviceItem = device.DeviceItems[0];
 return deviceItem;
}

Code du programme : Accéder à un élément d'appareil depuis un élément d'appareil
Pour accéder à un élément d'appareil depuis un élément d'appareil, modifiez le code de
programme suivant :

public static IDeviceItem AccessDeviceItemFromDeviceItem(DeviceItem deviceItem)
{
 IDeviceItem subDeviceItem = deviceItem.DeviceItems[0];
 return subDeviceItem;
}

Application : Énumérer des éléments d'appareils
Utilisez "Items" sur IHardwareObject. pour énumérer les éléments d'appareils : Il peut s'agir
des éléments suivants :

● châssis dans un appareil

● module dans un châssis

● sous-module dans un module

Remarque

Avant de pouvoir accéder aux éléments d'appareil internes à un niveau inférieur, Il est possible
que vous soyez obligé de naviguer au travers plusieurs niveaux d'éléments d'appareil.

Vous trouverez plus d'informations à ce sujet au chapitre Hiérarchie des objets matériels du
modèle d'objet (Page 59).

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
96 Manuel système, 10/2016

Code du programme : Énumérer les éléments d'un appareil
Pour énumérer les éléments d'appareil d'un objet matériel, modifiez le code de programme
suivant :

private static void EnumerateDeviceItems(IHardwareObject hardwareObject)
{
 foreach (IDeviceItem deviceItem in hardwareObject.Items)
 {
 // add code here
 }
}

Code du programme : Énumérer au moyen de la hiérarchie de composition
Pour énumérer les éléments d'un appareil au moyen de la hiérarchie de composition, modifiez
le code de programme suivant :

//Enumerates devices using an composition
private static void EnumerateDeviceItems(Device device)
{
 IDeviceItemComposition deviceItemComposition = device.DeviceItems;
 foreach (IDeviceItem deviceItem in deviceItemComposition)
 {
 // add code here
 }
}

Code du programme : Énumérer des éléments d'appareils avec affectation
Pour énumérer des éléments d'appareils au moyen d'une affectation, modifiez le code de
programme suivant :

//Enumerates devices using an association
private static void EnumerateDeviceItemsWithAssociation(Device device)
{
 IDeviceItemAssociation deviceItemAssociation = device.Items;
 foreach (IDeviceItem deviceItem in deviceItemAssociation)
 {
 // add code here
 }
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 97

Code du programme : Naviguer jusqu'au conteneur d'un élément d'appareil
Pour retourner au conteneur d'un élément d'appareil modifiez le code de programme suivant
avec la propriété ""Container"" de IDeviceItem :

IDeviceItem deviceItem = ...;
IHardwareObject container = deviceItem.Container;

Voir aussi
Bibliothèques standard (Page 34)

7.10.4 Déterminer la structure et les attributs de l'objet

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness.
Voir Ouvrir un projet (Page 90)

Utilisation
Vous pouvez déterminer la structure de navigation de la hiérarchie d'objet à l'aide de l'interface
IEngineeringObject. Le résultat est retourné sous forme de liste :

● Objets inférieurs

● Compositions inférieures

● Tous les attributs aux droits d'accès spécifiques, comme la lecture ou l'écriture.

Signature
Utilisez la méthode GetAttributeInfos pour déterminer les attributs aux droits d'accès
spécifiques.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
98 Manuel système, 10/2016

IList<EngineeringAttributeInfo>
IEngineeringObject.GetAttributeInfos(AttributeAccessMode
attributeAccessMode);

Paramètres Fonction
AttributeAccessMode Définit le droit d'accès avec lequel les attributs de

l'objet indiqué sont interrogés.
● Read : fournit en retour tous les attributs avec

l'accès "Lecture".
● ReadOnly : fournit en retour tous les attributs

avec l'accès "Lecture seule".
● Write : fournit en retour tous les attributs avec

l'accès "Ecriture".
● WriteOnly : fournit en retour tous les attributs

avec l'accès "Ecriture seule".
● ReadWrite : fournit en retour tous les attributs

avec l'accès "Lecture et écriture".

Code de programme : Déterminer des objets ou compositions
Si vous connaissez la valeur de retour, modifiez le code de programme suivant :

public static void DisplayCompositionInfos(Device device)
{
 IList<EngineeringCompositionInfo> compositionInfos =
((IEngineeringObject)device).GetCompositionInfos();
 foreach (EngineeringCompositionInfo compositionInfo in compositionInfos)
 {
 Console.WriteLine(compositionInfo.Name);
 }
}

Si vous ne connaissez pas la valeur de retour, modifiez le code de programme suivant :

public static IDeviceItemComposition GetDeviceItemComposition(Device device)
{
 IEngineeringCompositionOrObject composition = ((IEngineeringObject)
device).GetComposition("DeviceItems");
 IDeviceItemComposition deviceItemComposition = (IDeviceItemComposition)composition;
 return deviceItemComposition;
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 99

Code de programme : détermination des attributs
Pour fournir en retour les attributs d'un objet aux droits d'accès spécifiques dans une liste,
modifiez le code de programme suivant :

public static void DisplayAttributenInfos(Device device)
{
 IList<EngineeringAttributeInfo> attributeInfos =
((IEngineeringObject)device).GetAttributeInfos();
 foreach (EngineeringAttributeInfo attributeInfo in attributeInfos)
 {
 Console.WriteLine("Attribute: {0} - AccessMode {1} ",
 attributeInfo.Name, attributeInfo.AccessMode);
 switch (attributeInfo.AccessMode)
 {
 case EngineeringAttributeAccessMode.Read: Console.WriteLine("Attribute: {0} -
Read Access", attributeInfo.Name);
 break;
 case EngineeringAttributeAccessMode.Write: Console.WriteLine("Attribute: {0} -
Write Access", attributeInfo.Name);
 break;
 case EngineeringAttributeAccessMode.Read | EngineeringAttributeAccessMode.Write:
Console.WriteLine("Attribute: {0} - Read and Write Access", attributeInfo.Name);
 break;
 }
 }
}
public static string GetDeviceNameAttribute(Device device)
{
 Object nameAttribute = ((IEngineeringObject)device).GetAttribute("Name");
 string name = (string)nameAttribute; return name;
}

7.10.5 Attributs obligatoires d'appareils et d'éléments d'appareils

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Chaque appareil ou élément d'appareil possède certains attributs obligatoires pouvant être
lus et/ou écrits. Ces attributs sont toujours identiques à ceux de l'interface utilisateur de TIA
Portal.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
100 Manuel système, 10/2016

Openness prend en charge les attributs suivants :

Nom d'attribut Type de données Accessible en écriture Description
Nom Chaîne de caractères read
PositionNumber int read Uniquement pour éléments

d'appareils

Code du programme : Attributs obligatoires d'un appareil
Pour appeler les attributs obligatoires d'un appareil, modifiez le code de programme suivant :

IDevice device = ...;
string nameValue = device.Name;

Code du programme : Attributs obligatoires d'un élément d'appareil
Pour appeler les attributs obligatoires d'un élément d'appareil, modifiez le code de programme
suivant :

IDeviceItem deviceItem = ...;
string nameValue = deviceItem.Name;
int positionNumberValue = deviceItem.PositionNumber;

7.10.6 Ouvrir l'éditeur "Appareils & réseaux"

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Vous pouvez ouvrir l'éditeur "Appareils & réseaux" avec l'interface API grâce à l'une des deux
méthodes suivantes :

● ShowHwEditor(View.Topology ou Network ou Device) : Ouvre l'éditeur
"Appareils & Réseaux" depuis le projet.

● ShowInEditor(View.Topology ou Network ou Device) : Affiche l'appareil indiqué
dans l'éditeur "Appareils & Réseaux".

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 101

Le paramètre View vous permet de définir la vue qui est affichée lors de l'ouverture de
l'éditeur :

● View.Topology
● View.Network
● View.Device

Code du programme
Pour ouvrir l'éditeur "Appareils & Réseaux", modifiez le code de programme suivant :

// Open topology view from project
private static void OpenEditorDevicesAndNetworksFromProject(Project project)
{
 project.ShowHwEditor(Siemens.Engineering.HW.View.Topology);
}

Pour ouvrir l'éditeur "Appareils & Réseaux" pour un appareil, modifiez le code de programme
suivant :

// Open topology view for given device
private static void OpenEditorDevicesAndNetworksFromDevice(Device device)
{
 device.ShowInEditor(Siemens.Engineering.HW.View.Topology);
}

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

7.10.7 Interroger PLC Target et HMI Target

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Vous pouvez définir si un logiciel de base peut être utilisé comme PLC Target (PlcSoftware)
ou HMI Target dans l'API public.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
102 Manuel système, 10/2016

Code du programme : PLC Target
Pour vérifier si un élément d'appareil peut être utilisé comme PLC Target, utilisez le code de
programme suivant :

// Returns PlcSoftware
private PlcSoftware GetPlcSoftware(Device device)
{
 IDeviceItemComposition deviceItemComposition = device.DeviceItems;
 foreach (DeviceItem deviceItem in deviceItemComposition)
 {
 ISoftwareContainer softwareContainer = deviceItem.GetService<ISoftwareContainer>();
 if (softwareContainer != null)
 {
 SoftwareBase softwareBase = softwareContainer.Software;
 PlcSoftware plcSoftware = softwareBase as PlcSoftware;
 return plcSoftware;
 }
 }
 return null;
 }

Code du programme : HMI Target
Pour vérifier si un élément d'appareil peut être utilisé comme HMI Target, modifiez le code de
programme suivant :

//Checks whether a device is of type hmitarget
private HmiTarget GetHmiTarget(Device device)
{
 IDeviceItemComposition deviceItemComposition = device.DeviceItems;
 foreach (DeviceItem deviceItem in deviceItemComposition)
 {
 ISoftwareContainer softwareContainer = deviceItem.GetService<ISoftwareContainer>();
 if (softwareContainer != null)
 {
 SoftwareBase softwareBase = softwareContainer.Software;
 HmiTarget hmiTarget = softwareBase as HmiTarget;
 return hmiTarget;
 }
 }
 return null;
}

Voir aussi
Bibliothèques standard (Page 34)

Enumérer et appeler des appareils (Page 92)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 103

7.10.8 Accéder au logiciel cible

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Code du programme
Pour mettre à disposition un logiciel cible, modifiez le code de programme suivant :

ISoftwareContainer softwareContainer =
((IEngineeringServiceProvider)deviceItem).GetService<ISoftwareContainer>();
if (softwareContainer != null)
{
 SoftwareBase softwareBase = softwareContainer.Software;
}

Pour accéder aux propriétés du logiciel, modifiez le code de programme suivant :

ISoftwareContainer softwareContainer =
((IEngineeringServiceProvider)deviceItem).GetService<ISoftwareContainer>();
if (softwareContainer != null)
{
 PlcSoftware software = softwareContainer.Software as PlcSoftware;
 string name = software.Name;
}

7.10.9 Interroger un groupe système pour variables API

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Tous les appareils sont énumérés.
Voir Enumérer et appeler des appareils (Page 92)

● Tous les éléments d'appareil d'un appareil API sélectionné sont énumérés.
Voir Enumérer et appeler des éléments d'appareils (Page 95)

● Tous les éléments d'appareils contenant des tables de variables sont décelés.
Voir Interroger PLC Target et HMI Target (Page 102)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
104 Manuel système, 10/2016

Code du programme
Pour interroger un groupe système pour variables API, modifiez le code de programme suivant :

//Retrieves the plc tag table group from a plc
private PlcTagTableSystemGroup GetControllerTagfolder(PlcSoftware plcSoftware)
{
 PlcTagTableSystemGroup plcTagTableSystemGroup = plcSoftware.TagTableGroup;
 return plcTagTableSystemGroup;
}

Voir aussi
Bibliothèques standard (Page 34)

7.10.10 Enumérer les groupes personnalisés pour variables API

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Tous les appareils sont énumérés.
Voir Enumérer et appeler des appareils (Page 92)

● Tous les éléments d'appareil d'un appareil API sélectionné sont énumérés.
Voir Enumérer et appeler des éléments d'appareils (Page 95)

● Tous les éléments d'appareils contenant des tables de variables sont décelés.
Voir Interroger PLC Target et HMI Target (Page 102)

Utilisation
Les sous-dossiers compris sont considérés comme récurrents lors de l'énumération.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 105

Code du programme : Enumérer les groupes personnalisés pour variables API
Pour énumérer les groupes personnalisés pour variables API, modifiez le code de programme
suivant :

//Enumerates all plc tag table user groups including subgroups
private static void EnumeratePlcTagTableUserGroups(PlcSoftware plcSoftware)
{
 foreach (PlcTagTableUserGroup plcTagTableUsergroup in plcSoftware.TagTableGroup.Groups)
 {
 EnumerateTagTableUserGroups(plcTagTableUsergroup);
 }
}
private static void EnumerateTagTableUserGroups(PlcTagTableUserGroup tagTableUsergroup)
{
 foreach (PlcTagTableUserGroup plcTagTableUsergroup in tagTableUsergroup.Groups)
 {
 EnumerateTagTableUserGroups(plcTagTableUsergroup);
 // recursion
 }
}

Code du programme : Accéder à un groupe personnalisé
Pour accéder à un groupe personnalisé pour variables API, modifiez le code de programme
suivant :

//Gives individual access to a specific plc tag table user folder
private static void AccessPlcTagTableUserGroupWithFind(PlcSoftware plcSoftware, string
folderToFind)
{
 PlcTagTableUserGroupComposition plcTagTableUserGroupComposition =
plcSoftware.TagTableGroup.Groups;
 PlcTagTableUserGroup controllerTagUserFolder =
plcTagTableUserGroupComposition.Find(folderToFind);
 // The parameter specifies the name of the user folder
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
106 Manuel système, 10/2016

7.10.11 Enumérer des variables API

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Code du programme : Enumérer des variables API dans des tables de variables
Pour énumérer toutes les variables API contenues dans une table des variables, modifiez le
code de programme suivant :

//Enumerates all plc tags in a specific tag table
private static void EnumerateAllPlcTagsInTagTable(PlcSoftware plcSoftware)
{
 PlcTagTable tagTable = plcSoftware.TagTableGroup.TagTables.Find("Tagtable XYZ");
 foreach (PlcTag tag in tagTable.Tags)
 {
 // add code here
 }
}

Code du programme : Accéder à une variable API
Pour accéder à la variable API de votre choix, modifiez le code de programme suivant : Vous
avez accès aux propriétés suivantes :

● Nom

● Type de données

● Adresse symbolique

● Commentaire

//Gives individual access to a specific plc tag
private static void AccessPlcTag(PlcTagTable tagTable)
{
 PlcTag tag = tagTable.Tags.Find("Tag XYZ");
 // The parameter specifies the name of the tag
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 107

7.10.12 Enumérer des tables de variables API dans un dossier

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Code du programme : Enumérer des tables de variables API
Pour énumérer toutes les tables de variables API contenues dans les groupes système ou
groupes personnalisés, modifiez le code de programme suivant :

//Enumerates all plc tag tables in a specific system group or and user group
private static void EnumerateAllPlcTagTablesInFolder(PlcSoftware plcSoftware)
{
 PlcTagTableComposition tagTables = plcSoftware.TagTableGroup.TagTables;
 // alternatively, PlcTagTableComposition tagTables =
plcSoftware.TagTableGroup.Groups.Find("UserGroup XYZ").TagTables;
 foreach (PlcTagTable tagTable in tagTables)
 {
 // add code here
 }
}

Code du programme : Accéder à une table de variables API
Pour accéder à la table de variables API de votre choix, modifiez le code de programme
suivant :

//Gives individual access to a specific Plc tag table
private static void AccessToPlcTagTableWithFind(PlcSoftware plcSoftware)
{
 PlcTagTableComposition tagTables = plcSoftware.TagTableGroup.TagTables;
 // alternatively, PlcTagTableComposition tagTables =
plcSoftware.TagTableGroup.Groups.Find("UserGroup XYZ").TagTables;
 PlcTagTable controllerTagTable = tagTables.Find("Tag table XYZ");
 // The parameter specifies the name of the tag table
}

Voir aussi
Bibliothèques standard (Page 34)

Enumérer et appeler des appareils (Page 92)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
108 Manuel système, 10/2016

7.10.13 Interroger les informations d'une table de variables API

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Vous pouvez connaître le nombre de variables d'une table de variables API grâce au numéro
de composition des variables.

Code du programme
Pour interroger les informations d'une table de variables API, modifiez le code de programme
suivant :

private static void AccessPlcConstantsUsingFind(PlcTagTable tagTable)
{
 PlcConstantComposition plcConstants = tagTable.Constants;
 PlcConstant plcConstant = plcConstants.Find("Constant XYZ");
}
private static void EnumeratePlcTags(PlcTagTable tagTable)
{
 PlcTagComposition plcTags = tagTable.Tags;
 foreach (PlcTag plcTag in plcTags)
 {
 string name = plcTag.Name; string typeName = plcTag.DataTypeName;
 string logicalAddress = plcTag.LogicalAddress;
 }
}
private static void EnumeratePlcTagsUsingFind(PlcTagTable tagTable)
{
 PlcTagComposition plcTags = tagTable.Tags;
 PlcTag plcTag = plcTags.Find("Constant XYZ");
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 109

7.10.14 Compiler le projet

Condition
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Tous les appareils sont "hors ligne".

Application
L'interface API prend en charge la compilation d'appareils et de blocs de programme. Le
résultat de la compilation est retourné en tant qu'objet. Selon le type d'objet, la compilation
HW, SW ou HW/SW est mise à disposition. Les types d'objet suivants sont pris en charge :

● Device - HW & SW
● DeviceItem - HW

● PlcSoftware - SW
● CodeBlock - SW
● DataBlock - SW
● PlcType - SW
● PlcBlockSystemGroup - SW
● PlcBlockUserGroup - SW
● PlcTypeSystemGroup - SW
● PlcTypeUserGroup - SW

Signature
Pour la compilation, utilisez la méthode ICompilable.

ICompilable compileService = <eom object>.GetService<ICompilable>();
CompilerResult = compileService.Compile();

Remarque

Pour compiler le matériel d'un appareil, utilisez le type d'objet Device.

Remarque

Tous les appareils doivent être "hors ligne" avant le début de la compilation.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
110 Manuel système, 10/2016

Code du programme
Pour compiler les modifications logicielles d'un objet de type PlcSoftware, modifiez le code
de programme suivant :

public static void CompilePlcSoftware(PlcSoftware plcSoftware)
{
 ICompilable compileService = plcSoftware.GetService<ICompilable>();
 CompilerResult result = compileService.Compile();
}

Pour compiler les modifications logicielles d'un objet de type CodeBlock, modifiez le code de
programme suivant :

public static void CompileCodeBlock(PlcSoftware plcSoftware)
{
 CodeBlock block = plcSoftware.BlockGroup.Blocks.Find("MyCodeBlock") as CodeBlock;
 if (block != null)
 {
 ICompilable compileService = block.GetService<ICompilable>();
 CompilerResult result = compileService.Compile();
 }
}

Pour évaluer le résultat de la compilation, modifiez le code de programme suivant :

private void WriteCompilerResults(CompilerResult result)
{
 Console.WriteLine("State:" + result.State);
 Console.WriteLine("Warning Count:" + result.WarningCount);
 Console.WriteLine("Error Count:" + result.ErrorCount);
 RecursivelyWriteMessages(result.Messages);
}
private void RecursivelyWriteMessages(CompilerResultMessageComposition messages, string
indent = "")
{
 indent += "\t";
 foreach (CompilerResultMessage message in messages)
 {
 Console.WriteLine(indent + "Path: " + message.Path);
 Console.WriteLine(indent + "DateTime: " + message.DateTime);
 Console.WriteLine(indent + "State: " + message.State);
 Console.WriteLine(indent + "Description: " + message.Description);
 Console.WriteLine(indent + "Warning Count: " + message.WarningCount);
 Console.WriteLine(indent + "Error Count: " + message.ErrorCount);
 RecursivelyWriteMessages(message.Messages, indent);
 }
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 111

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

7.10.15 Fonctions pour bibliothèques

7.10.15.1 Fonctions pour objets et instances

Accès aux types et instances
L'interface Public API vous permet d'accéder aux types, versions de types et copies maîtresse
dans la bibliothèque de projet ou les bibliothèques globales. Vous pouvez déterminer des
liaisons entre les versions de types et les instances. Vous pouvez également actualiser les
instances dans le projet et synchroniser les modifications entre une bibliothèque globale et la
bibliothèque de projet. En outre, l'interface Public API prend en charge la comparaison des
versions de type et des instances.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
112 Manuel système, 10/2016

Fonctions pour des objets et des instances
L'interface Public API vous permet d'accéder aux fonctions suivantes pour les types, versions
de types, copies maîtresse et instances :

① Afficher les propriétés de types, versions de types, copies maîtresse et instances
② Les fonctions suivantes sont disponibles dans la bibliothèque de projet :

● Mettre à jour les instances des types
● Instancier les versions de types dans le projet
● Naviguer à l'intérieur d'un groupe de bibliothèques
● Supprimer un groupe, des types, des versions de types et des copies maîtresses

③ Les fonctions suivantes sont disponibles dans la bibliothèque globale :
● Mettre à jour les instances des types
● Instancier la version de type dans le projet
● Naviguer à l'intérieur d'un groupe de bibliothèques

7.10.15.2 Accéder aux bibliothèques

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness.
Voir Ouvrir un projet (Page 90)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 113

Utilisation
L'interface Public API vous permet d'accéder aux contenus suivants de la bibliothèque globale
et de la bibliothèque de projet.

Code du programme

Remarque

Vous pouvez uniquement accéder à des bibliothèques globales à partir de TIA Portal V14 avec
Openness. Si vous ouvrez des bibliothèques globales d'une version antérieure, une exception
est déclenchée.

Remarque

GlobalLibraries.Open n'ouvre pas la bibliothèque globale dans l'interface utilisateur de
TIA Portal.

GlobalLibraries ne fournit pas de liste des bibliothèques ouvertes en retour.

Pour accéder à une bibliothèque globale, modifiez le code de programme suivant :

public static void AccessGlobalLibrary(TiaPortal tiaPortal)
{
 String strPathToGlobalLib = @"C:\OpennessSamples\MyGlobalLib\MyGlobalLib.al14";
 GlobalLibrary globalLibrary = tiaPortal.GlobalLibraries.Open(strPathToGlobalLib);

}

Pour accéder à la bibliothèque de projet, modifiez le code de programme suivant :

public static void AccessProjectLibrary(Project project)
{
 ProjectLibrary projectLibrary = project.ProjectLibrary;
}

Voir aussi
Accéder aux dossiers dans une bibliothèque (Page 115)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
114 Manuel système, 10/2016

7.10.15.3 Accéder aux dossiers dans une bibliothèque

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness.
Voir Ouvrir un projet (Page 90)

● Vous avez accès à la bibliothèque requise.
Voir Accéder aux bibliothèques (Page 113).

Utilisation
L'interface Public API vous permet d'accéder aux dossiers système pour les types et copies
maître dans une bibliothèque. Vous pouvez alors accéder aux types, versions de types, copies
maître et dossiers personnalisés dans le dossier système.

La méthode Find, par ex.
libTypeUserFolder.Folders.Find("SomeUserFolder");, vous permet d'accéder à
tout moment à un dossier personnalisé.

Code du programme
Pour accéder au dossier système pour les types dans une bibliothèque, modifiez le code de
programme suivant :

public static void AccessTypeSystemFolder(ILibrary library)
{
 LibraryTypeSystemFolder libTypeSystemFolder = library.TypeFolder;
}

Pour accéder au dossier système pour les copies maître dans une bibliothèque, modifiez le
code de programme suivant :

public static void AccessMasterCopySystemFolder(ILibrary library)
{
 MasterCopySystemFolder libMasterCopySystemFolder = library.MasterCopyFolder;
}

Pour accéder à des dossiers personnalisés avec la méthode Find() , modifiez le code de
programme suivant :

...
LibraryTypeUserFolderComposition userFolderComposition = ...
LibraryTypeUserFolder userFolder = userFolderComposition.Find("Name of user folder");
...

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 115

Pour énumérer les dossiers personnalisés dans un dossier système, modifiez le code de
programme suivant :

public static void EnumerateUserFoldersInTypeSystemFolder(ILibrary library)
{
 // Enumerating user folders in type system folder:
 LibraryTypeSystemFolder libTypeSystemFolder = library.TypeFolder;
 foreach (LibraryTypeUserFolder libTypeUserFolder in libTypeSystemFolder.Folders)
 {
 //...
 }
}

public static void EnumerateUserFoldersInMasterCopySystemFolder(ILibrary library)
{
 // Enumerating user folders in master copy system folder:
 MasterCopySystemFolder libMasterCopySystemFolder = library.MasterCopyFolder;
 foreach (MasterCopyUserFolder libMasterCopyUserFolder in
libMasterCopySystemFolder.Folders)
 {
 //..
 }
}

Pour énumérer les sous-dossiers personnalisés dans un dossier personnalisé pour des types,
modifiez le code de programme suivant :

public static void EnumerateAllUserFolders(LibraryTypeUserFolder libUserFolder)
{
 foreach (LibraryTypeUserFolder libSubUserFolder in libUserFolder.Folders)
 {
 EnumerateAllUserFolders(libSubUserFolder);
 }
}

Pour énumérer les sous-dossiers personnalisés dans un dossier personnalisé pour des copies
maître, modifiez le code de programme suivant :

public static void EnumerateAllUserFolders(MasterCopyUserFolder libUserFolder)
{
 foreach (MasterCopyUserFolder libSubUserFolder in libUserFolder.Folders)
 {
 EnumerateAllUserFolders(libSubUserFolder);
 }
}

Voir aussi
Accéder à des modèles de copie (Page 125)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
116 Manuel système, 10/2016

7.10.15.4 Accéder aux types

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness.
Voir Ouvrir un projet (Page 90)

● Vous avez accès à la bibliothèque requise.
Voir Accéder aux bibliothèques (Page 113).

● Vous avez accès à un groupe pour les types.
Voir Accéder aux dossiers dans une bibliothèque (Page 115).

Utilisation
Vous pouvez accéder aux types d'une bibliothèque par le biais d'une interface Public API.

● Vous pouvez énumérer les types.

● Vous pouvez accéder aux propriétés suivantes des différents types :

Propriété type de données Description
Author String Fournit le nom de l'auteur :
Comment MultilingualText Fournit en retour le commentaire.
Guid Guid Fournit en retour le GUID du type.1

Name String Fournit en retour le nom du type. 2

1 Cette propriété vous permet de trouver un type précis dans une bibliothèque. La recherche est
récursive.

2 Cette propriété vous permet de trouver un type précis dans un dossier. Les sous-dossiers ne sont
pas pris en compte dans la recherche.

Code du programme
Pour énumérer tous les types dans le dossier système d'une bibliothèque, modifiez le code
de programme suivant :

public static void EnumerateTypesInTypesSystemFolder(LibraryTypeSystemFolder
libraryTypeSystemFolder)
{
 foreach (LibraryType libraryType in libraryTypeSystemFolder.Types)
 {
 //...
 }
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 117

Pour énumérer tous les types dans le dossier personnalisé d'une bibliothèque, modifiez le
code de programme suivant :

public static void EnumerateTypesInTypesUserFolder (LibraryTypeUserFolder
libraryTypeUserGroup)
{
 foreach (LibraryType libraryType in libraryTypeUserGroup.Types)
 {
 //...
 }
}

Pour accéder aux propriétés d'un type, modifiez le code de programme suivant :

public static void InspectPropertiesOfType (LibraryType libTypeObject)
{
 string typeAuthor = libTypeObject.Author;
 MultilingualText typeComment = libTypeObject.Comment;
 string typeName = libTypeObject.Name;
 Guid typeGUID = libTypeObject.Guid;
}

Pour trouver un type précis par son nom ou son GUID, modifiez le code de programme suivant :

public static void FindTypeObjectInLibrary(ILibrary library)
{
 // Find type object by its GUID in a given library:
 System.Guid targetGuid = ...;
 LibraryType libTypeByGUID = library.FindType(targetGuid);
 // Find type object by its name in a given group:
 ILibraryTypeFolder libTypeSystemFolder = library.TypeFolder;
 LibraryType libTypeByName = libTypeSystemFolder.Types.Find("myTypeObject");
}

7.10.15.5 Accéder aux types de versions

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness.
Voir Ouvrir un projet (Page 90)

● Vous avez accès à la bibliothèque requise.
Voir Accéder aux bibliothèques (Page 113).

● Vous avez accès à un groupe pour les types.
Voir Accéder aux dossiers dans une bibliothèque (Page 115).

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
118 Manuel système, 10/2016

Utilisation
Vous pouvez accéder aux versions de type par le biais de l'interface Public API.

● Vous pouvez énumérer les versions de types d'un type.

● Vous pouvez déterminer le type auquel cette version de type appartient.

● Vous pouvez déterminer les instances d'une version de type.

● Vous pouvez déterminer les copies maîtresses contenant des instances.

● Vous pouvez déterminer les instances d'une version de type.

● Vous pouvez créer une nouvelle instance d'une version de type.

● Vous pouvez accéder aux propriétés suivantes des différentes versions de type :

Propriété type de données Description
Author String Fournit le nom de l'auteur :
Comment MultilingualText Fournit en retour le commentaire.
Guid Guid Fournit en retour le GUID de la version de type.1

ModifiedDate DateTime Fournit en retour la date et l'heure à laquelle la version de
type a été mise au statut "Committed".

State LibraryTypeVersionS‐
tate

Fournit en retour l'état de la version :
● InWork : Correspond, selon le type affecté, au statut

"En cours" ou "Test en cours".
● Committed : Correspond au statut "Validé".

TypeObject LibraryType Fournit en retour les types auxquels cette version de type
appartient.

VersionNumber Version Fournit en retour le numéro de version sous forme de dé‐
signation à trois chiffres, p. ex. "1.0.0".2

1 Cette propriété vous permet de trouver une version de type précise dans une bibliothèque.
2 Cette propriété vous permet de trouver une version de type précise dans une composition

"LibraryTypeVersion".

Déterminer les utilisations d'une version de type
Les utilisations suivantes sont différenciées pour les versions de type :

● La version de type utilise d'autres versions de types issues de la bibliothèque.
Exemple : un type de données personnalisé est utilisé dans un bloc de programme. Le bloc
de programme doit avoir accès au type de données utilisateur. Cela signifie que le bloc de
programme dépend du type de données utilisateur.
Si vous appelez la méthode GetDependencies() dans le bloc de programme, le type
de données utilisateur est fourni en retour.

● Le type est utilisé par une autre version de type dans la bibliothèque.
Exemple : un type de données personnalisé est utilisé dans un bloc de programme. Le bloc
de programme doit avoir accès au type de données utilisateur. Le type de données
utilisateur a le bloc de programme correspondant. Le bloc de programme dépend du type
de données utilisateur.
Si vous appelez la méthode GetDependents() dans le type de données utilisateur, le
bloc de programme est fourni en retour.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 119

Dans les deux méthodes, une liste contenant des objets du type LibraryTypeVersion est
fournie en retour. Si aucune utilisation n'existe, une chaîne vide est fournie en retour.

Remarque

Une exception peut être déclenchée si vous appliquez cette méthode aux versions de type
avec le statut "InWork".

Déterminez à la place l'instance test du type d'objet ILibraryTypeInstance de cette
version de type et appliquez les méthodes à cet objet.

Déterminer les instances d'une version de type
Vous pouvez déterminer les instances d'une version de type par la méthode
FindInstancesInProject(IInstanceSearchScope searchScope).

Le paramètre searchScope vous permet d'indiquer le champ de recherche au sein du projet.
Les classes suivantes implémentent l'interface IInstanceSearchScope et peuvent être
utilisées pour la recherche d'instances :

● PlcSoftware
● HmiTarget
Cette méthode fournit en retour une liste comprenant des objets du type
ILibraryTypeInstance. Si aucune instance n'existe, une chaîne vide est fournie en retour.

Créer l'instance d'une version de type
Vous pouvez créer une nouvelle instance d'une version de type. Les objets suivants sont pris
en charge :

● Blocs (FB/FC)

● Types de données personnalisé API

● Vues

● Scripts VB

Une instance permet de générer une version de type d'une bibliothèque globale et de la
bibliothèque de projet. Si vous créez une instance d'une version de type depuis une
bibliothèque globale, la version de type est d'abord synchronisée avec la bibliothèque de projet.

Signature
Utilisez la méthode Instantiate pour créer une instance.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
120 Manuel système, 10/2016

ILibraryTypeInstance Instantiate(ILibraryTypeInstantiationTarget
instantiationTarget, UpdatePathsMode updatePathsMode)

Paramètres Fonction
ILibraryTypeInstantiationTarget
instantiationTarget

Indique le dossier où l'instance est créée. Le grou‐
pe système et le groupe personnalisé qu'ils con‐
tient sont pris en charge en relation avec les objets
indiqués ci-dessus.

UpdatePathsMode updatePathsMode Définit la réaction lorsqu'une instance de cette ver‐
sion de type est déjà disponible dans le groupe
cible :
● UpdatePathsInTarget : L'instance

existante est déplacée dans le groupe indiqué.
● KeepExistingPathsInTarget : L'instance

existante est conservée dans le groupe
d'origine.

● ThrowIfPathsConfict : une exception est
déclenchée. L'exécution est annulée. Aucune
instance n'est créée.

Code du programme
Pour énumérer toutes les versions de type d'un type, modifiez le code de programme suivant :

public static void EnumerateVersionsInType(LibraryType libraryType)
{
 foreach (LibraryTypeVersion libraryTypeVersion in libraryType.Versions)
 {
 //...
 }
}

Pour déterminer le type auquel appartient une version de type, modifiez le code de programme
suivant :

public static void GetParentTypeOfVersion(LibraryTypeVersion libTypeVersion)
{
 LibraryType parentType = libTypeVersion.TypeObject;
}

Pour déterminer les utilisations d'une version de type dans une bibliothèque, modifiez le code
de programme suivant :

public static void GetDependenciesAndDependentsOfAVersion(LibraryTypeVersion
libTypeVersion)
{
 IList<LibraryTypeVersion> versionDependents = libTypeVersion.GetDependents();
 IList<LibraryTypeVersion> versionDependencies = libTypeVersion.GetDependencies();
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 121

Pour déterminer les instances d'une version de type dans le projet, modifiez le code de
programme suivant :

public static void GetInstancesOfVersionInProject(LibraryTypeVersion libTypeVersion,
PlcSoftware plcSoftware)
{
 IInstanceSearchScope searchScope = plcSoftware as IInstanceSearchScope; // or HmiTarget
 if (searchScope != null)
 {
 IList<ILibraryTypeInstance> instances =
libTypeVersion.FindInstancesInProject(searchScope);
 }
}

Pour déterminer les copies maîtresses contenant des instances d'une version de type,
modifiez le code de programme suivant :

public static void GetMasterCopiesContainingInstances(LibraryTypeVersion libTypeVersion)
{
 MasterCopyAssociation masterCopies = libTypeVersion.MasterCopiesContainingInstances;
}

Pour créer une instance d'une version de type, modifiez le code de programme suivant :

public static void InstantiateTypeVersion(LibraryTypeVersion libTypeVersion,
ILibraryTypeInstantiationTarget instantiationTarget)
{
 ILibraryTypeInstance instance = libTypeVersion.Instantiate(instantiationTarget,
UpdatePathsMode.UpdatePathsInTarget);
}

Pour accéder aux propriétés d'une version de type, modifiez le code de programme suivant :

public static void InspectPropertiesOfVersion(LibraryTypeVersion libTypeVersion)
{
 string versionAuthor = libTypeVersion.Author;
 MultilingualText versionComment = libTypeVersion.Comment;
 Guid versionGUID = libTypeVersion.Guid; DateTime versionModifiedDate =
libTypeVersion.ModifiedDate;
 LibraryTypeVersionState versionStateLibrary = libTypeVersion.State;
 LibraryType versionParentObject = libTypeVersion.TypeObject;
 Version versionNumber = libTypeVersion.VersionNumber;
}

Pour trouver une version de type précise par son numéro de version, modifiez le code de
programme suivant :

public static void FindVersionInLibrary(ILibrary library, Guid versionGUID)
{
 LibraryTypeVersion libTypeVersionByVersionNumber = library.FindVersion(versionGUID);
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
122 Manuel système, 10/2016

7.10.15.6 Accéder aux instances

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness.
Voir Ouvrir un projet (Page 90)

● Vous avez accès à la bibliothèque requise.
Voir Accéder aux bibliothèques (Page 113).

● Vous avez accès à un groupe pour les types.
Voir Accéder aux dossiers dans une bibliothèque (Page 115).

Utilisation
Vous pouvez accéder aux instances des versions de type par le biais de l'interface Public API.

Remarque

Les instances des blocs d'affichage et des types de données utilisateur HMI sont toujours
associées à la version de type correspondante.

Les instances de tous les autres objets tels que les blocs de programme ou les vues peuvent
être associées à une version de type.

Code du programme
Les classes suivantes peuvent implémenter une ILibraryTypeInstance :

● Script VB - IHM

● Vue - IHM

● Variable - IHM

● FB - SW

● FC - SW

● Structure - SW

Pour accéder à une instance, modifiez le code de programme suivant :

public static void GetInstance()
{
 FB codeBlock = null; // Or screen, datatype, etc. Browsed from the project
 ILibraryTypeInstance libTypeInstance = codeBlock as ILibraryTypeInstance;
}

Si, par ex. une instance d'un type de données utilisateur API est utilisé dans l'instance d'une
interface de bloc, les deux instances dépendent l'une de l'autre.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 123

Pour déterminer les instances dépendant d'une instance, modifiez le code de programme
suivant :

public static void GetDependents(ILibraryTypeInstance libTypeInstance)
{
 ILibraryTypeInstanceAssociation dependentInstances = libTypeInstance.Dependents;
}

Pour déterminer l'instance dépendant d'une instance, modifiez le code de programme suivant :

public static void GetDependencies(ILibraryTypeInstance libTypeInstance)
{
 ILibraryTypeInstanceAssociation dependencyInstances = libTypeInstance.Dependencies;
}

Pour déterminer la version de type associée à une instance, modifiez le code de programme
suivant : Avant de poursuivre, vérifiez que l'instance est associée à une version de type.

public static void NavigateFromInstanceToObjectVersion(ILibraryTypeInstance
libTypeInstance)
{
 LibraryTypeVersion connectedVersion = libTypeInstance.ConnectedVersion;
 if (connectedVersion != null)
 {
 //instance object is connected to a library type-version
 //...
 }
 else
 {
 //instance object is not connected to a library type-version
 //...
 }
}

Pour énumérer les dépendances d'une instance de type de bibliothèque, modifiez le code de
programme suivant :

public static void EnumerateDependenciesOfLibraryTypeInstance(ILibraryTypeInstance
libTypeInstance, FB fb)
{
 ILibraryTypeInstance instance = fb as ILibraryTypeInstance;
 ILibraryTypeInstanceAssociation dependencyInstances = instance.Dependencies;
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
124 Manuel système, 10/2016

7.10.15.7 Accéder à des modèles de copie

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Vous avez accès à la bibliothèque requise.
Voir Accéder aux bibliothèques (Page 113)

● Vous avez accès à un groupe pour les copies maîtresses.
Voir Accéder aux dossiers dans une bibliothèque (Page 115)

Utilisation
L'interface Public API prend en charge l'accès aux copies maîtresse dans une bibliothèque
globale et la bibliothèque de projet :

● Enumérer des copies maîtresses dans des dossiers système et des dossiers personnalisés

● Interroger les informations des copies maîtresses

Propriété type de données Description
Author String Fournit le nom de l'auteur :
CreationDate DateTime Fournit en retour la date de création.
Name String Fournit en retour le nom de la copie maîtresse.

Code du programme
Pour énumérer toutes les copies maîtresse dans le dossier système d'une bibliothèque,
modifiez le code de programme suivant :

public static void EnumerateMasterCopiesInSystemFolder
(MasterCopySystemFolder masterCopySystemFolder)
{
 foreach (MasterCopy masterCopy in masterCopySystemFolder.MasterCopies)
 {
 //...
 }
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 125

Pour accéder à une copie maîtresse individuelle par la méthode "Find", modifiez le code de
programme suivant :

...
 MasterCopySystemFolder systemFolder = projectLibrary.MasterCopyFolder;
 MasterCopyComposition mastercopies = systemFolder.MasterCopies;
 MasterCopy masterCopy = mastercopies.Find("Copy of ...");
...

Pour énumérer les groupes et sous-groupes des copies maîtresses, modifiez le code de
programme suivant :

foreach (MasterCopyUserFolder userFolder in systemFolder.Folders)
{
 EnumerateUserFolder(userFolder) ...
}
private static void EnumerateUserFolder(MasterCopyUserFolder userFolder)
{
 EnumerateMasterCopies(userFolder.MasterCopies);
 foreach (MasterCopyUserFolder subUserFolder inuserFolder.Folders)
 {
 EnumerateUserFolder(subUserFolder); // recursion
 }
}
private static void EnumerateMasterCopies(MasterCopyComposition masterCopies)
{
 foreach (MasterCopy masterCopy in masterCopies)
 {
 ...
 }
}

Pour accéder à un MasterCopyUserFolder par la méthode "Find", modifiez le code de
programme suivant :

...
 MasterCopyUserFolderComposition userFolderComposition = ...
 MasterCopyUserFolder userFolder = userFolderComposition.Find("Name of user folder");
...

Pour lire les informations d'une copie maîtresse, modifiez le code de programme suivant :

public static void GetMasterCopyInformation(MasterCopy masterCopy)
{
 string author = masterCopy.Author;
 DateTime creationDate = masterCopy.CreationDate;
 string name = masterCopy.Name;
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
126 Manuel système, 10/2016

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

Copier un modèle de copie (Page 132)

Supprimer les contenus de bibliothèque (Page 142)

Copier le contenu d'un modèle de copie dans le projet (Page 128)

7.10.15.8 Créer la copie maîtresse d'un projet dans la bibliothèque

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
 Lorsqu'il s'agit d'une bibliothèque en lecture/écriture, vous pouvez créer une copie maîtresse
issue d'une IMasterCopySource sur l'emplacement cible.

Pour créer la copie maîtresse sur l'emplacement cible, modifiez le code de programme
suivant :

MasterCopy
MasterCopyComposition.Create(Siemens.Engineering.Library.MasterCopies.IMasterCopySource
sourceObject);

Une exception EngineeringException est déclenchée dans les cas suivants :

● L'emplacement cible est accessible en lecture seule

● Le système refuse la génération d'une copie maîtresse issue de la source

Les éléments suivants sont définis comme IMasterCopySources :

● Device - HW

● DeviceItem - HW

● DeviceUserGroup - HW

● CodeBlock - SW

● DataBlock - SW

● PlcBlockUserGroup - SW

● PlcTag - SW

● PlcTagTable - SW

● PlcTagTableUserGroup - SW

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 127

● PlcType - SW

● PlcTypeUserGroup - SW

● VBScript - HMI

● VBScriptUserFolder - HMI

● Screen - HMI

● ScreenTemplate - HMI

● ScreenTemplateUserFolder - HMI

● ScreenUserFolder - HMI

● Tag - HMI

● TagTable - HMI

● TagUserFolder - HMI

Code du programme
Pour créer une copie maîtresse issue d'une bibliothèque de projets, modifiez le code de
programme suivant :

public static void Create(Project project, PlcSoftware plcSoftware)
{
 MasterCopySystemFolder masterCopyFolder = project.ProjectLibrary.MasterCopyFolder;
 CodeBlock block = plcSoftware.BlockGroup.Groups[0].Blocks.Find("Block_1") as CodeBlock;
 MasterCopy masterCopy = masterCopyFolder.MasterCopies.Create(block);
}

7.10.15.9 Copier le contenu d'un modèle de copie dans le projet

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● L'API n'est pas en ligne.

Utilisation
L'interface Public API prend en charge l'utilisation de copies maîtresse dans le projet. Vous
pouvez copier le contenu d'une copie maîtresse dans un dossier du projet ouvert.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
128 Manuel système, 10/2016

Si vous copiez le contenu d'une copie maîtresses, le système fournit en retour une liste des
copies maîtresse copiées comme résultat. Les objets maître suivants sont pris en charge :

● Groupes d'utilisateurs d'appareils

● Appareils

● Eléments d'appareils

● Vues

● Modèles

● Scripts

● Tables de variables IHM

● Type de données IHM

● Groupes d'utilisateurs de bloc API

● Variable API

● Tables de variables API

● Groupe d'utilisateurs de table de variables API

● Groupe d'utilisateurs de type API

● Types de données API

● Blocs de programme

– Blocs d'organisation (OB)

– Fonctions (FC)

– Blocs fonctionnels (FB)

– Blocs de données (DB)

Exemple : Vous copiez une copie maîtresse qui contient une table de variables avec des
variables. La table de variables et les variables sont copiées. La liste fournie en retour ne
contient que la table des variables.

Signature
Pour copier le contenu d'une copie maîtresse, utilisez la méthode CopyTo :

IList<IEngineeringObject> copiedItems CopyTo(IMasterCopyTarget
target, MasterCopyMode copyMode)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 129

Paramètre Fonction
IMasterCopyTarget target Objet du dossier cible dans la navigation de projet dans lequel le contenu de la

copie maîtresse est copié.
Si le contenu et le dossier cible ne concordent pas, une exception est déclenchée.
Exemple : La copie maîtresse contient des blocs de programme. Vous indiquez
ScreenUserFolder comme dossier cible.

MasterCopyMode Le mode de copie définit la procédure suivie lorsqu'un objet de même nom est déjà
disponible dans le lieu de stockage cible.
● ThrowIfExists

Le processus de copie est annulé et une exception est déclenchée. L'exception
contient les informations sur l'objet ayant déclenché l'exception.

● Rename
L'objet à copier est renommé selon les règles de nom de TIA Portal et collé au
lieu de stockage cible.

● Replace
Les objets de même nom se trouvant au lieu de stockage cible sont remplacés
par les objets copiés.

Code du programme
Pour copier le contenu d'une copie maîtresse d'une bibliothèque vers la navigation du projet,
modifiez le code de programme suivant :

public static void CopyMasterCopyToFolder(MasterCopy masterCopy, PlcBlockUserGroup
plcBlockUserGroup)
{
 IList<IEngineeringObject> copiedObjects = masterCopy.CopyTo(plcBlockUserGroup,
MasterCopyMode.ThrowIfExists);
}

Pour copier une copie maîtresse d'une bibliothèque de projets dans un projet, modifiez le code
de programme suivant :

public static void CopyMasterCopyToUserFolder(Project project, PlcSoftware plcSoftware)
{
 MasterCopySystemFolder masterCopyFolder = project.ProjectLibrary.MasterCopyFolder;
 CodeBlock block = plcSoftware.BlockGroup.Groups[0].Blocks.Find("Block_1") as
CodeBlock;
 MasterCopy masterCopy = masterCopyFolder.MasterCopies.Create(block);
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
130 Manuel système, 10/2016

Pour copier une copie maîtresse issue d'une bibliothèque globale dans un projet, modifiez le
code de programme suivant :

public static void CopyMasterCopyToGlobalLibrary(GlobalLibrary globalLibrary,
PlcBlockUserGroup plcBlockUserGroup)
{
 MasterCopySystemFolder masterCopyFolder = globalLibrary.MasterCopyFolder;
 MasterCopy masterCopy = masterCopyFolder.MasterCopies.Find("Copy of Block_1");
 IList<IEngineeringObject> copiedObjects = masterCopy.CopyTo(plcBlockUserGroup,
MasterCopyMode.ThrowIfExists);
}

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

Accéder à des modèles de copie (Page 125)

7.10.15.10 Copier un objet copie maîtresse issu d'une bibliothèque globale dans la bibliothèque de
projet

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Vous pouvez copier des objets copies maîtresses au sein d'une bibliothèque et entre
bibliothèques en appliquant l'action MasterCopy CopyTo(IMasterCopyFolder
targetFolder) sur les objets Siemens.Engineering.Library.MasterCopies.MasterCopy .

L'action CopyTo essaie de créer une copie de la copie maîtresse source dans le dossier cible.

● Si cette action se termine avec succès, la nouvelle copie maîtresse est fournie en retour.

● En cas de conflit pendant la copie dans un dossier cible, une copie renommée de la copie
maîtresse est enregistrée dans le dossier cible. Le changement de nom est géré par le
système grâce à un comportement de changement de nom par défaut.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 131

IMasterCopyFolder peut être un MasterCopySystemFolder ou un MasterCopyUserFolder.
Vous pouvez utiliser le dossier d'origine de la copie maîtresse comme dossier cible. Si tel est
le cas, une copie supplémentaire est enregistrée dans le dossier.

Remarque

Les bibliothèques globales ne peuvent pas servir de destination de copie. Si le paramètre
dossier cible est une bibliothèque globale, une exception est déclenchée.

Code du programme
Pour copier un objet copie maîtresse issue d'une bibliothèque globale dans une bibliothèque
de projet, modifiez le code de programme suivant :

ProjectLibrary projectLib = ...;
MasterCopy globalLibMC = ...;
MasterCopy copyInProjectLibrary = globalLibMC.CopyTo(projectLib.MasterCopyFolder);

7.10.15.11 Copier un modèle de copie

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
L'interface Public API prend en charge la copie de copies maîtresse :

● Vous pouvez copier une copie maîtresse issue d'une bibliothèque globale dans la
bibliothèque de projet.

● Vous pouvez copier une copie maîtresse dans la bibliothèque de projet.

Si vous copiez une copie maîtresse, le système fournit en retour la copie maîtresse copiée
comme résultat.

Signature
Vous pouvez copier une copie maîtresse issue d'une bibliothèque globale dans la bibliothèque
de projet à l'aide de la méthode CopyTo.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
132 Manuel système, 10/2016

MasterCopy CopyTo(IMasterCopyFolder targetFolder)

Paramètres Fonction
IMasterCopyFolder
targetFolder

Indique le dossier où la copie maîtresse est copiée. Le dossier sys‐
tème ou un dossier personnalisé s'y trouvant peut être utilisé comme
dossier. S'il existe une copie maîtresse portant le même nom, une
copie de la copie maîtresse est ajoutée.

Vous trouverez une liste des cibles disponibles sous Créer la copie maîtresse d'un projet dans
la bibliothèque (Page 127).

Code du programme
Pour copier une copie maîtresse issue d'une bibliothèque globale dans le dossier système
des copies maîtresses dans la bibliothèque de projet, modifiez le code de programme suivant :

public static void CopyMasterCopyToFolder(MasterCopy masterCopyFromGlobalLib,
ProjectLibrary projectLibrary)
{
 MasterCopy copyInProjectLib =
masterCopyFromGlobalLib.CopyTo(projectLibrary.MasterCopyFolder);
}

Pour copier une copie maîtresse dans la bibliothèque de projet, modifiez le code de programme
suivant :

public static void CopyMasterCopyToUserFolder(MasterCopy masterCopyFromProjectLib,
MasterCopyUserFolder userFolder)
{
 MasterCopy copyInProjectLibFolder = masterCopyFromProjectLib.CopyTo(userFolder);
}

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

Accéder à des modèles de copie (Page 125)

7.10.15.12 Déterminer les versions de types d'instances

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 133

● Vous avez accès à la bibliothèque requise.
Voir Accéder aux bibliothèques (Page 113)

● Vous avez accès à un dossier pour les types.
Voir Accéder aux dossiers dans une bibliothèque (Page 115).

Utilisation
L'interface Public API prend en charge la détermination des versions de types faisant partie
des instances dans le projet ouvert. L'interface Public API fournit un des deux états suivants
pour chaque instance :

● L'instance se rapporte à une version de type obsolète.

● L'instance se rapporte à la version de type actuelle.

Les règles applicables pour la détermination de version sont les suivantes :

● La détermination de version est basée sur une bibliothèque et le projet que vous souhaitez
ouvrir via l'interface Public API.

● Aucune instance n'est actualisée dans le cadre de la détermination de version.

Signature
Vous pouvez déterminer les instances d'une version de type par la méthode UpdateCheck :
UpdateCheck(Project project, UpdateCheckMode updateCheckMode)

Paramètres Fonction
Project Définit le projet dans lequel les versions de types des instances sont déter‐

minées.
Cela est uniquement requis si vous déterminez des versions de types d'une
bibliothèque globale.

UpdateCheckMode Indique les versions qui sont déterminées :
● ReportOutOfDateOnly : fournit en retour seulement l'état de type

"obsolète".
● ReportOutOfDateAndUpToDate :

fournit en retour l'état des types "obsolète" et "actuel" :

Résultat
Lors de la détermination de version, les appareils du projet sont interrogés de haut en bas. La
présence d'une instance d'une version de type issue de la bibliothèque indiquée dans les
données de configuration de l'appareil est contrôlée pour chaque appareil. La méthode
UpdateCheck fournit le résultat de la vérification de version selon un ordre hiérarchique.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
134 Manuel système, 10/2016

Le tableau ci-après montre le résultat d'une vérification de version avec le paramètre
UpdateCheck.ReportOutOfDateAndUpToDate:

Update check for: HMI_1
 Update check for library element Screen_1 0.0.3

 Out-of-date
 \HMI_1\Screens Screen_4 0.0.1

\HMI_1\Screens Screen_2 0.0.2
Up-to-date
 \HMI_1\Screens Screen_1 0.0.3

\HMI_1\Screens Screen_10 0.0.3
Update check for: HMI_2
 Update check of library element Screen_4 0.0.3

 Out-of-date
 \Screens folder1 Screen_02 0.0.1

\Screens folder1 Screen_07 0.0.2
Up-to-date
 \Screens folder1 Screen_05 0.0.3

\Screens folder1 Screen_08 0.0.3

Code du programme
Pour déterminer les versions de type d'une bibliothèque globale pour les instances dans le
projet, modifiez le code de programme suivant :

public static void UpdateCheckOfGlobalLibrary(Project project, TiaPortal tiaPortal)
{
 GlobalLibrary globalLibrary = tiaPortal.GlobalLibraries.Open(@"SomePathHere");
 // check for out of date instances and report only out of date instances
 // in the returned feedback
 UpdateCheckResult result = globalLibrary.UpdateCheck(project,
UpdateCheckMode.ReportOutOfDateOnly);

 //Alternatively, check for out of date instances and report both out of date
 //and up to date instances in the returned feedback
 UpdateCheckResult alternateResult = globalLibrary.UpdateCheck(project,
UpdateCheckMode.ReportOutOfDateAndUpToDate);

 //Show result
 RecursivelyWriteMessages(result.Messages);
 // Alternatively, show result and access single message parts
 RecursivelyWriteMessageParts(result.Messages);
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 135

Pour déterminer les versions de type d'une bibliothèque de projet pour les instances dans le
projet, modifiez le code de programme suivant :

public static void UpdateCheckOfProjectLibrary(Project project)
{
 // check for out of date instances and report only out of date instances
 // in the returned feedback
 UpdateCheckResult result =
project.ProjectLibrary.UpdateCheck(UpdateCheckMode.ReportOutOfDateOnly);

 //Alternatively, check for out of date instances and report both out of date
 //and up to date instances in the returned feedback
 UpdateCheckResult alternateResult =
project.ProjectLibrary.UpdateCheck(UpdateCheckMode.ReportOutOfDateAndUpToDate);

 //Show result
 RecursivelyWriteMessages(result.Messages);
 // Alternatively, show result und access single message parts
 RecursivelyWriteMessageParts(result.Messages);
}

Pour afficher le résultat de la détermination de version et parcourir les messages un par un,
modifiez le code de programme suivant :

private void RecursivelyWriteMessages (UpdateCheckResultMessageComposition messages,
string indent = "")
{
 indent += "\t";
 foreach (UpdateCheckResultMessage message in messages)
 {
 Console.WriteLine(indent + message.Description);
 RecursivelyWriteMessages(message.Messages, indent);
 }
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
136 Manuel système, 10/2016

Pour accéder à certaines parties de message dans le résultat de la détermination de version,
modifiez le code de programme suivant :

private void RecursivelyWriteMessageParts (UpdateCheckResultMessageComposition messages,
string indent= "")
{
 indent += "\t";
 foreach (UpdateCheckResultMessage message in messages)
 {
 Console.WriteLine(indent + "Full description: " + message.Description);
 foreach (KeyValuePair<string, string> messagePart in message.MessageParts)
 {
 // first level
 // part 1: device name
 // second level:
 // part 1: Name of the type in the global library
 // part 2: version of the type in the global library
 // third level:
 // part 1: title (either "Out-of-date" or "Up-to-date");
 // fourth level:
 // part 1: Path hierarchy to instance
 // part 2: Instance name in project
 // part 3: Version of the instance in the project
 Console.WriteLine(indent + "*Key: {0} Value:{1}", messagePart.Key,
messagePart.Value);
 }
 RecursivelyWriteMessageParts(message.Messages,indent);
 }
}

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

7.10.15.13 Actualiser un projet

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness.
Voir Ouvrir un projet (Page 90)

● Vous avez accès à la bibliothèque requise.
Voir Accéder aux bibliothèques (Page 113).

● Vous avez accès à un dossier pour les types.
Voir Accéder aux dossiers dans une bibliothèque (Page 115).

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 137

Utilisation
L'interface Public API vous permet de mettre à jour des instances de types sélectionnés dans
un dossier de type d'un projet.

Lors de l'actualisation, les instances utilisées dans le projet sont actualisées sur la base de la
dernière version de type validée. Si vous actualisez les instances d'une bibliothèque globale,
une synchronisation est d'abord exécutée.

Signature
Utilisez la méthode UpdateProject pour actualiser des instances.

Pour les classes implémentant l'interface ILibraryType, utilisez l'appel suivant :

void UpdateProject(IUpdateProjectScope updateProjectScope,
UpdatePathsMode updatePathsMode, DeleteUnusedVersionsMode
deleteUnusedVersionsMode)
Pour les classes implémentant l'interface ILibrary, utilisez l'appel suivant :

void UpdateProject(IEnumerable<ILibraryTypeOrFolderSelection>
selectedTypesOrFolders, IEnumerable <IUpdateProjectScope>
updateProjectScope, UpdatePathsMode updatePathsMode,
DeleteUnusedVersionsMode deleteUnusedVersionsMode)
Chaque appel est entré dans le fichier-journal du répertoire de projet.

Paramètre Fonction
IEnumerable<ILibraryTypeOrFolderSele
ction> selectedTypesOrFolders

Indique les dossiers ou types devant être synchro‐
nisés ou dont les instances doivent être actuali‐
sées dans le projet.

IUpdateProjectScope
updateProjectScope
IEnumerable <IUpdateProjectScope>
updateProjectScope

Indique dans le projet les objets dans lesquels les
utilisations des instances sont actualisées. Les ob‐
jets suivants sont pris en charge :
● PlcSoftware
● HmiTarget

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
138 Manuel système, 10/2016

Paramètre Fonction
UpdatePathsMode updatePathsMode Indique la réaction dans le cas où la structure des

dossiers de la bibliothèque globale et celle de la
bibliothèque du projet sont différentes. Le paramè‐
tre n'est évalué que si vous lancez l'actualisation
du projet depuis une bibliothèque globale :
● UpdatePathsInTarget : la structure des

dossiers dans la bibliothèque cible est
actualisée et le contenu déplacé en
conséquence.

● KeepExistingPathsInTarget : la
structure des dossiers de la bibliothèque cible
est conservée. Le contenu est actualisé.

● ThrowIfPathsConflict : l'actualisation est
annulée. Aucune modification n'a été
effectuée. Une exception est déclenchée.

DeleteUnusedVersionsMode
deleteUnusedVersionsMode

Indique la manipulation des versions de types qui
ne sont plus utilisées :
● AutomaticallyDelete : la version de type

est supprimée. Seules les versions de types
déterminées comme obsolètes lors de
l'actualisation sont supprimées.

● DoNotDelete : la version de type n'est pas
supprimée.

Code du programme
Pour actualiser les instances de types sélectionnés au sein d'un dossier de type, modifiez le
code de programme suivant :

private static void UpdateInstances(ILibrary myLibrary,
ILibraryTypeFoldersingleFolderContainingTypes, LibraryType singleType, PlcSoftware
plcSoftware, HmiTargethmiTarget)
{
 //Update Instances of multiple types (subset of types and folders)
 IUpdateProjectScope[] updateProjectScopes =
 {
 plcSoftware as IUpdateProjectScope, hmiTarget as IUpdateProjectScope
 };
 myLibrary.UpdateProject(new ILibraryTypeOrFolderSelection[] {singleType,
singleFolderContainingTypes}, updateProjectScopes,
UpdatePathsMode.KeepExistingPathsInTarget, DeleteUnusedVersionsMode.AutomaticallyDelete);
 //Update Instances of multiple types (all types in library)
 myLibrary.UpdateProject(new[] {myLibrary.TypeFolder}, updateProjectScopes,
UpdatePathsMode.UpdatePathsInTarget, DeleteUnusedVersionsMode.AutomaticallyDelete);
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 139

7.10.15.14 Actualiser une bibliothèque

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness.
Voir Ouvrir un projet (Page 90)

● Vous avez accès à la bibliothèque requise.
Voir Accéder aux bibliothèques (Page 113).

● Vous avez accès à un dossier pour les types.
Voir Accéder aux dossiers dans une bibliothèque (Page 115).

Utilisation
L'interface Public API prend en charge les actualisations suivantes dans la bibliothèque de
projet :

● Synchronisation de tous les types entre la bibliothèque globale et la bibliothèque de projet

● Synchronisation des types sélectionnés entre la bibliothèque globale et la bibliothèque de
projet

Seul le sens de synchronisation d'une bibliothèque globale vers la bibliothèque de projet est
pris en charge lors de la synchronisation de types. La structure des dossiers peut être adaptée
en option lors de la synchronisation. Les types à actualiser sont déterminés et actualisés à
l'aide de leur GUID :

● Si un type d'une bibliothèque comporte une version de type manquant dans la bibliothèque
devant être actualisée, la version de type est copiée.

● L'opération est annulée et une Exception est émise, si un type d'une bibliothèque comporte
une version de type avec les propriétés suivantes :

– La version de type est présente dans la bibliothèque devant être actualisée.

– La version de type a le même numéro de version

– La version de type a un GUID différent.

Signature
Pour synchroniser les versions de types, utilisez la méthode UpdateLibrary.

Pour les classes implémentant l'interface LibraryType, utilisez l'appel suivant :

void UpdateLibrary(ILibrary targetLibrary, UpdatePathsMode
updatePathsMode, DeleteUnusedVersionsMode deleteUnusedVersionsMode)
Pour les classes implémentant l'interface ILibrary, utilisez l'appel suivant :

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
140 Manuel système, 10/2016

void UpdateLibrary(IEnumerable<LibraryTypeOrFolderSelection>
selectedTypesOrFolders, ILibrary targetLibrary, UpdatePathsMode
updatePathsMode, DeleteUnusedVersionsMode deleteUnusedVersionsMode)

Paramètre Fonction
IEnumerable<ILibraryTypeOrFolderSele
ction> selectedTypesOrFolders

Indique les dossiers ou types devant être synchro‐
nisés ou dont les instances doivent être actuali‐
sées dans le projet.

ILibrary targetLibrary Indique la bibliothèque dont le contenu doit être
synchronisé avec une bibliothèque globale.
Si la bibliothèque source et la bibliothèque cible
sont identiques, une exception est déclenchée. Si
la bibliothèque cible est une bibliothèque globale,
une exception est déclenchée.

UpdatePathsMode updatePathsMode Indique la réaction dans le cas où la structure des
dossiers de la bibliothèque globale et celle de la
bibliothèque du projet sont différentes. Le paramè‐
tre n'est évalué que si vous lancez l'actualisation
du projet depuis une bibliothèque globale :
● UpdatePathsInTarget : la structure des

dossiers dans la bibliothèque cible est
actualisée et le contenu déplacé en
conséquence.

● KeepExistingPathsInTarget : la
structure des dossiers de la bibliothèque cible
est conservée. Le contenu est actualisé.

● ThrowIfPathsConflict : l'actualisation est
annulée. Aucune modification n'a été
effectuée. Une exception est déclenchée.

DeleteUnusedVersionsMode
deleteUnusedVersionsMode

Indique la manipulation des versions de types qui
ne sont plus utilisées :
● AutomaticallyDelete : la version de type

est supprimée. Seules les versions de types
déterminées comme obsolètes lors de
l'actualisation sont supprimées.

● DoNotDelete : la version de type n'est pas
supprimée.

Code du programme
Pour synchroniser un type d'une bibliothèque de projet avec une bibliothèque globale, modifiez
le code de programme suivant :

sourceType.UpdateLibrary(projectLibrary, UpdatePathsMode.KeepExistingPathsInTarget,
DeleteUnusedVersionsMode.DoNotDelete);

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 141

Pour synchroniser des types sélectionnés dans un dossier de type entre une bibliothèque
globale et la bibliothèque de projet, modifiez le code de programme suivant :

globalLibrary.UpdateLibrary(new[]{globalLibrary.TypeFolder}, projectLibrary,
UpdatePathsMode.KeepExistingPathsInTarget, DeleteUnusedVersionsMode.DoNotDelete);

7.10.15.15 Supprimer les contenus de bibliothèque

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness.
Voir Ouvrir un projet (Page 90)

● Vous avez accès à la bibliothèque requise.
Voir Accéder aux bibliothèques (Page 113).

● Vous avez accès à un dossier pour les types.
Voir Accéder aux dossiers dans une bibliothèque (Page 115).

Utilisation
L'interface Public API vous permet de supprimer les contenus suivants dans la bibliothèque
du projet :

● Types

● Version de type

● Dossiers personnalisés pour types

● Copies maîtresse

● Dossiers personnalisés pour copies maîtresse

Remarque
Suppression de types et de dossiers avec des types personnalisés

Si vous souhaitez supprimer un type ou un dossier avec des types personnalisés, les "Règles
de suppression de versions" doivent être respectées. Vous pouvez supprimer un dossier de
type vide à tout moment.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
142 Manuel système, 10/2016

Remarque
Règles de suppression de versions

Seules les versions au statut "Committed" peuvent être supprimées. Pour la suppression de
versions, les règles à respecter sont les suivantes :
● Si vous venez de créer une version au statut "InWork" depuis une version au statut

"Committed", vous ne pouvez supprimer la version au statut "Committed" que lorsque
la nouvelle version est annulée ou obtient le statut "Committed".

● Si un type ne possède qu'une seule version, le type est également supprimé.
● Si la version A dépend de la version B d'un autre type, supprimez d'abord la version A, puis

la version B.
● Si des instances de la version A existent, vous ne pouvez supprimer la version A que si

vous supprimez également les instances. De plus, si une instance se trouve dans une copie
maîtresse, celle-ci est également supprimée.

Code du programme
Pour supprimer des types ou des dossiers avec des types personnalisés, modifiez le code de
programme suivant :

public static void DeleteMultipleTypesOrTypeUserFolders(ILibrary library)
{
 LibraryType t1 = library.TypeFolder.Types.Find("type1");
 LibraryType t2 = library.TypeFolder.Types.Find("type2");
 LibraryTypeUserFolder f1 = library.TypeFolder.Folders.Find("folder1");
 t1.Delete();
 t2.Delete();
 f1.Delete();
}

Pour supprimer un type ou dossier avec des types personnalisés en particulier, modifiez le
code de programme suivant :

public static void DeleteSingleTypeOrTypeUserFolder(ILibrary library)
{
 //Delete a single type
 LibraryType t1 = library.TypeFolder.Types.Find("type1");
 t1.Delete();

 //Delete a single folder
 ILibraryTypeFolder parentFolder = library.TypeFolder;
 LibraryTypeUserFolder f1 = parentFolder.Folders.Find("folder1");
 f1.Delete();
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 143

Pour supprimer une version, modifiez le code de programme suivant :

public static void DeleteVersion(ILibrary library)
{
 LibraryType singleType = library.TypeFolder.Types.Find("type1");
 LibraryTypeVersion version1 = singleType.Versions.Find(new System.Version(1, 0, 0));
 version1.Delete();
}

Pour supprimer une copie maîtresse ou un dossier avec des copies maîtresses
personnalisées, modifiez le code de programme suivant :

public static void DeleteMasterCopies(ILibrary library)
{
 // Delete master copy
 MasterCopy masterCopy = library.MasterCopyFolder.MasterCopies.Find("myMasterCopy");
 masterCopy.Delete();

 // Delete master copy user folder
 MasterCopyUserFolder masterUserFolder =
library.MasterCopyFolder.Folders.Find("myFolder");
 masterUserFolder.Delete();
}

Voir aussi
Accéder à des modèles de copie (Page 125)

7.10.16 Lire des attributs liés au projet

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Cette fonction vous permet d'appeler des attributs liés au projet issus de la Public API. Les
informations fournies contiennent les propriétés du projet, l'historique du projet et les produits
utilisés par le projet.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
144 Manuel système, 10/2016

Propriétés du projet
Les propriétés du projet fournissent les informations suivantes :

Nom d'attribut Type de données Accessible en écriture Description
Author System.String r/o Auteur du projet.
 Name System.String r/o Nom du projet.
 Path System.String r/o Chemin absolu du pro‐

jet.
 CreationTime System.DateTime r/o Date et heure auxquel‐

les le projet a été créé.
 LastModified System.DateTime r/o Date et heure auxquel‐

les le projet a été modi‐
fié pour la dernière fois.

 LastModifiedBy System.String r/o Auteur de la dernière
modification.

 Version System.String r/o Version du projet.
 Comment Siemens.Engineer‐

ing.MultilingualText
 r/o Commentaire du projet.

 Copyright System.String r/o Mention de copyright du
projet.

 Family System.String r/o Famille du projet.
 Size System.Int64 r/o Taille du projet, en Ko.

 Languages Siemens.Engineer‐

ing.LanguageComposi‐
tion

 r/o Langues utilisées dans
le projet.

Pour accéder aux attributs liés au projet, modifiez le code de programme suivant :

Project project = ...;
string author = project.Author;
string name = project.Name;
string path = project.Path;
DateTime creationTime = project.CreationTime;
DateTime modificationTime = project.LastModified;
string lastModifiedBy = project.LastModifiedBy;
string version = project.Version;
MultilingualText comment = project.Comment;
string copyright = project.Copyright;
string family = project.Family;
Int64 size = project.Size;
LanguageComposition languages = project.Languages;

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 145

Pour énumérer les langues du projet, modifiez le code de programme suivant :

Project project = ...;
LanguageComposition languages = project.Languages;
foreach (Language language in languages)
{
 CultureInfo lang = language.Culture;
}

Pour appeler le texte de commentaire avec la culture actuelle, modifiez le code de programme
suivant :

Project project = ...;
MultilingualText projectComment = project.Comment;
string comment = projectComment.GetText(CultureInfo.CurrentCulture);

Historique du projet
L'historique du projet regroupe des objets du type HistoryEntry, qui contiennent les
informations suivantes :

Nom d'attribut Type de données Accessible en écriture Description
Text System.String r/o Description de l'événe‐

ment.
 DateTime System.DateTime r/o Date et heure auxquel‐

les l'événement s'est
produit.

Pour énumérer HistoryEntries et accéder à ses propriétés, modifiez le code de programme
suivant :

Project project = ...;
HistoryEntryComposition historyEntryComposition = project.HistoryEntries;
foreach (HistoryEntry historyEntry in historyEntryComposition)
{
 string entryText = historyEntry.Text;
 DateTime entryTime = historyEntry.DateTime;
}

Remarque

La propriété Texte de HistoryEntry contient une chaîne de caractères dans la même
langue que celle de l'interface utilisateur. Lorsqu'une application Openness est attachée à un
TIA Portal sans interface utilisateur, la chaîne de caractères est fournie en anglais par défaut.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
146 Manuel système, 10/2016

Produits utilisés
L'objet UsedProduct contient les informations suivantes :

Nom d'attribut Type de données Accessible en écriture Description
Name System.String r/o Nom du projet utilisé.
 Version System.String r/o Version du projet.

Pour énumérer UsedProduct et accéder à ses propriétés, modifiez le code de programme
suivant :

Project project = ...;
UsedProductComposition usedProductComposition = project.UsedProducts;
foreach (UsedProduct usedProduct in usedProductComposition)
{
 string productName = usedProduct.Name; string productVersion = usedProduct.Version;
}

7.10.17 Suppression d'un graphique du projet

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Code du programme
Pour supprimer une bibliothèque de graphiques, modifiez le code de programme suivant :

//Deletes a single project graphic entry
public static void DeletesSingleProjectGraphicEntry(Project project)
{
 MultiLingualGraphicComposition graphicsAggregation = project.Graphics;
 MultiLingualGraphic graphic = graphicsAggregation.Find("Graphic XYZ");
 graphic.Delete();
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 147

7.10.18 Enregistrer le projet

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Utilisez la méthode project.Save() pour enregistrer un projet.

Code du programme
Pour ouvrir et enregistrer un projet, modifiez le code de programme suivant :

public static void SaveProject(Project project)
{
 //Use the code in the try block to open and save a project
 try
 {
 project = tiaPortal.Projects.Open(@"Some\Path\MyProject.ap14");
 //begin of code for further implementation
 //...
 //end of code
 project.Save();
 }
 //Use the code in the final block to close a project
 finally
 {
 project.Close();
 }
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
148 Manuel système, 10/2016

7.10.19 Déterminer le statut d'un API

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness.
Voir Ouvrir un projet (Page 90)

Utilisation
Vous pouvez déterminer l'état d'un API ou de tous les API au sein d'un projet.

Openness distingue les états suivants :

● Offline

● l'API est connecté ("la connexion est établie")

● En ligne

● l'API n'est pas connecté ("la connexion est coupée")

● Incompatible

● accès impossible

● Protégé

Code du programme
Pour déterminer l'état d'un API, modifiez le code de programme suivant :

public static OnlineState GetOnlineState(DeviceItem deviceItem)
{
 OnlineProvider onlineProvider = deviceItem.GetService<OnlineProvider>();
 return onlineProvider.State;
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 149

Pour déterminer l'état de tous les API dans un projet, modifiez le code de programme suivant :

public static void DetermineOnlineStateOfAllProjectDevices(Project project)
{
 foreach (Device device in project.Devices)
 {
 foreach (DeviceItem deviceItem in device.DeviceItems)
 {
 OnlineProvider onlineProvider = deviceItem.GetService<OnlineProvider>();
 if (onlineProvider != null)
 {
 OnlineState state = onlineProvider.State;
 }
 }
 }
}

7.10.20 Comparer le logiciel de l'API

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness.
Voir Ouvrir un projet (Page 90)

Utilisation
Pour déterminer la divergence entre les logiciels de deux appareils, vous disposez des
possibilités suivantes :

● Comparaison entre les logiciels de deux API configurés

● Comparaison entre le logiciel d'un API et la bibliothèque de projet

● Comparaison entre le logiciel d'un API et la bibliothèque globale

● Comparaison entre le logiciel d'un API et la copie principale d'un API

● Comparaison entre le logiciel d'un API configuré et le logiciel d'un API connecté à l'état "En
ligne"

Signature
Utilisez la méthode CompareTo ou CompareToOnline pour la comparaison.

public CompareResult CompareTo (ITargetComparable compareTarget)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
150 Manuel système, 10/2016

public CompareResult CompareToOnline ()

Valeur de retour/paramètre Fonction
CompareResult compareResult Fournit en retour le résultat de comparaison :

● FolderContentsDifferent : le contenu des dossiers
comparés diffère.

● FolderContentsIdentical : le contenu des dossiers
comparés est identique.

● ObjectsDifferent : le contenu des objets comparés
diffère.

● ObjectsIdentical : le contenu des objets comparés
est identique.

● LeftMissing : l'objet n'est pas compris dans l'objet à
partir duquel la comparaison a été lancée.

● RightMissing : l'objet n'est pas compris dans l'objet
auquel la comparaison s'applique.

ITargetComparable
compareTarget

Liste d'objets comparables.

Code du programme
Pour afficher le résultat de la comparaison, modifiez le code de programme suivant :

private static void WriteResult(CompareResultElement compareResultElement, string indent)
{
 Console.WriteLine("{0}<{1}> <{2}> <{3}> <{4}> <{5}> ",
 indent,
 compareResultElement.LeftName,
 compareResultElement.ComparisonResult,
 compareResultElement.RightName,
 compareResultElement.PathInformation,
 compareResultElement.DetailedInformation);
 WriteResult(compareResultElement.Elements, indent);
}
private static void WriteResult (IEnumerable<CompareResultElement> compareResultElements,
string indent)
{
 indent += " ";
 foreach (CompareResultElement compareResultElement in compareResultElements)
 {
 WriteResult(compareResultElement, indent);
 }
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 151

Pour comparer les logiciels des appareils, modifiez le code de programme suivant :

private static void CompareTwoOfflinePlcs(PlcSoftware plcSoftware0, PlcSoftware
plcSoftware1)
{
 if (plcSoftware0 != null && plcSoftware1 != null)
 {
 CompareResult compareResult = plcSoftware0.CompareTo(plcSoftware1);
 WriteResult(compareResult.RootElement, string.Empty);
 }
}

Pour comparer le logiciel d'un API avec la bibliothèque de projet, modifiez le code de
programme suivant :

private static void ComparePlcToProjectLibrary(Project project, PlcSoftware plcSoftware)
{
 if (project != null && plcSoftware != null)
 {
 CompareResult compareResult = plcSoftware.CompareTo(project.ProjectLibrary);
 WriteResult(compareResult.RootElement, string.Empty);
 }
}

Pour comparer le logiciel d'un API avec la bibliothèque globale, modifiez le code de programme
suivant :

private static void ComparePlcToGlobalLibrary(PlcSoftware plcSoftware, GlobalLibrary
globalLibrary)
{
 if (plcSoftware != null && globalLibrary != null)
 {
 CompareResult compareResult = plcSoftware.CompareTo(globalLibrary);
 WriteResult(compareResult.RootElement, String.Empty);
 }
}

Pour comparer le logiciel d'un API avec une copie maîtresse, modifiez le code de programme
suivant :

private static void ComparePlcToMasterCopy(Project project, PlcSoftware plcSoftware)
{
 if (project != null && plcSoftware != null)
 {
 CompareResult compareResult =
plcSoftware.CompareTo(project.ProjectLibrary.MasterCopyFolder.MasterCopies[0]);
 WriteResult(compareResult.RootElement, string.Empty);
 }
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
152 Manuel système, 10/2016

Pour comparer le logiciel d'un API avec le logiciel d'un API connecté, modifiez le code de
programme suivant :

private static void ComparePlcToOnlinePlc(PlcSoftware plcSoftware)
{
 if (plcSoftware != null)
 {
 CompareResult compareResult = plcSoftware.CompareToOnline();
 WriteResult(compareResult.RootElement, string.Empty);
 }
}

7.10.21 Accéder aux paramètres d'une liaison en ligne

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
L'interface Public API vous permet de définir les paramètres pour une liaison en ligne :

● Enumérer les types de connexion disponibles avec un API

● Enumérer les interfaces disponibles avec un API

● Enumérer les emplacements affectés

● Enumérer les adresses disponibles des sous-réseaux et passerelles

● Définir les paramètres de liaison

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 153

Code de programme : déterminer les paramètres de liaison
Pour énumérer les modes de liaison, interfaces de PC et emplacements disponibles, modifiez
le code de programme suivant :

public static void EnumerateConnectionModesOfPLC(DeviceItem deviceItem)
{
 OnlineProvider onlineProvider = deviceItem.GetService<OnlineProvider>();
 if (onlineProvider == null)
 {
 return; // Only cpu device items can provide OnlineProvider service
 }
 // Accessing connection configuration object
 ConnectionConfiguration configuration = onlineProvider.Configuration;
 // Now access connection configuration members
 foreach (ConfigurationMode mode in configuration.Modes)
 {
 Console.WriteLine("Mode name:{0}", mode.Name);
 foreach (ConfigurationPcInterface pcInterface in mode.PcInterfaces)
 {
 Console.WriteLine("PcInterface name:{0}", pcInterface.Name);
 Console.WriteLine("PcInterface number:{0}", pcInterface.Number);
 foreach (ConfigurationTargetInterface targetInterface in
pcInterface.TargetInterfaces)
 {
 Console.WriteLine("TargetInterface:{0}", targetInterface.Name);
 }
 }
 }
}

Vous pouvez aussi accéder à un type de connexion et une interface de PC par le nom :

public static ConfigurationTargetInterface
GetTargetInterfaceForOnlineConnection(OnlineProvider onlineProvider)
{
 ConnectionConfiguration configuration = onlineProvider.Configuration;
 ConfigurationMode mode = configuration.Modes.Find("PN/IE");
 ConfigurationPcInterface pcInterface = mode.PcInterfaces.Find("PLCSIM", 1);
 ConfigurationTargetInterface slot = pcInterface.TargetInterfaces.Find("2 X3");
 return slot;
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
154 Manuel système, 10/2016

Pour énumérer les adresses disponibles des sous-réseaux et passerelles sur une interface
de PC, modifiez le code de programme suivant :

public static void EnumeratingPCInterfaceSubnetsAndGateways(ConfigurationPcInterface
pcInterface)
{
 foreach (ConfigurationSubnet subnet in pcInterface.Subnets)
 {
 Console.WriteLine("Subnet name:{0}", subnet.Name);
 foreach (ConfigurationGateway gateway in subnet.Gateways)
 {
 //Get the name of the gateway:
 Console.WriteLine("Gateway name:{0}", gateway.Name);
 //Get the IP address of each gateway:
 foreach (ConfigurationAddress gatewayAddress in gateway.Addresses)
 {
 Console.WriteLine("Gateway Address:{0}", gatewayAddress.Name);
 }
 }
 }
}

Vous pouvez également accéder aux sous-réseaux et passerelles par le nom ou l'adresse IP :

public static void AccessSubnetAndGatewayOfPCInterface(ConfigurationPcInterface
pcInterface)
{
 ConfigurationSubnet subnet = pcInterface.Subnets.Find("PN/IE_1");
 ConfigurationAddress subnetAddress = subnet.Addresses.Find("192.168.0.1");
 ConfigurationGateway gateway = subnet.Gateways.Find("Gateway 1");
 ConfigurationAddress gatewayAddress = gateway.Addresses.Find("192.168.0.2");
}

Code de programme : Définir les paramètres de liaison

Remarque

La définition des paramètres de liaison écrase tous les paramètres de liaison définis
auparavant. Si vous avez déjà défini les paramètres de liaison directement dans le portail TIA,
vous n'avez pas besoin d'appeler ApplyConfiguration. Si une liaison en ligne existe déjà
vers un API pendant l'appel de ApplyConfiguration, une exception sera déclenchée.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 155

Pour définir les paramètres d'emplacement, modifiez le code de programme suivant :

public static void SetConnectionWithSlot(OnlineProvider onlineProvider)
{
 ConnectionConfiguration configuration = onlineProvider.Configuration;
 ConfigurationMode mode = configuration.Modes.Find(@"PN/IE");
 ConfigurationPcInterface pcInterface = mode.PcInterfaces.Find("PLCSIM", 1);
 // or network pc interface that is connected to plc
 ConfigurationTargetInterface slot = pcInterface.TargetInterfaces.Find("2 X3");
 configuration.ApplyConfiguration(slot);
 // After applying configuration, you can go online
 onlineProvider.GoOnline();
}

Pour définir les paramètres d'adresse de passerelles, modifiez le code de programme suivant :

public static void SetConnectionWithGatewayAddress(OnlineProvider onlineProvider, string
subnetName, string gatewayAddressName)
{
 ConnectionConfiguration configuration = onlineProvider.Configuration;
 ConfigurationMode mode = configuration.Modes.Find(@"PN/IE");
 ConfigurationPcInterface pcInterface = mode.PcInterfaces.Find("PLCSIM", 1);
 // or network pc interface that is connected to plc
 ConfigurationSubnet subnet = pcInterface.Subnets.Find(subnetName);
 ConfigurationAddress gatewayAddress = subnet.Addresses.Find(gatewayAddressName);
 configuration.ApplyConfiguration(gatewayAddress);
 // After applying configuration, you can go online
 onlineProvider.GoOnline();
}

Pour définir les paramètres d'adresse de sous-réseaux, modifiez le code de programme
suivant :

public static void SetConnectionWithSubnetAddress(OnlineProvider onlineProvider, string
subnetName)
{
 ConnectionConfiguration configuration = onlineProvider.Configuration;
 ConfigurationMode mode = configuration.Modes.Find(@"PN/IE");
 ConfigurationPcInterface pcInterface = mode.PcInterfaces.Find("PLCSIM", 1);
 // or network pc interface that is connected to plc
 ConfigurationSubnet subnet = pcInterface.Subnets.Find(subnetName);
 ConfigurationAddressComposition addresses = subnet.Addresses;
 configuration.ApplyConfiguration(addresses[0]);
 // After applying configuration, you can go online
 onlineProvider.GoOnline();
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
156 Manuel système, 10/2016

7.10.22 Etablir ou interrompre une liaison en ligne à l'API

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Tous les appareils sont énumérés.
Voir Enumérer et appeler des éléments d'appareils (Page 95).

Utilisation
Vous pouvez établir la liaison en ligne à un API ou interrompre une liaison en ligne existante.

Code du programme
Pour établir ou interrompre la liaison en ligne à un API, modifiez le code de programme suivant :

public static void SetOnlineConnection(DeviceItem deviceItem)
{
 OnlineProvider onlineProvider = deviceItem.GetService<OnlineProvider>();
 if (onlineProvider == null) { return; }
 // Go online
 if (onlineProvider.Configuration.IsConfigured)
 {
 onlineProvider.GoOnline();
 }
 // Go offline
 onlineProvider.GoOffline();
}

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 157

Vous pouvez également établir ou interrompre les liaisons en ligne à tous les API disponibles
dans un projet.

public static void SetOnlineConnectionForAllPLCs(Project project)
{
 foreach (Device device in project.Devices)
 {
 foreach (DeviceItem deviceItem in device.DeviceItems)
 {
 OnlineProvider onlineProvider = deviceItem.GetService<OnlineProvider>();
 if (onlineProvider != null)
 {
 // Establish online connection to PLC:
 onlineProvider.GoOnline();
 // Disconnect online connection to PLC:
 onlineProvider.GoOffline();
 }
 }
 }
}

7.10.23 Fermer un projet

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness.
Voir Ouvrir un projet (Page 90)

Code du programme
Pour fermer un projet, modifiez le code de programme suivant :

public static void CloseProject(Project project)
{
 project.Close();
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
158 Manuel système, 10/2016

7.10.24 Prise en charge de l'autodescription pour attributs, navigateurs, actions et
services

Utilisation
Dans Openness, chaque IEngineeringServiceProvider de la Public API décrit ses capacités
pour de potentiels appels.

Prise en charge de l'autodescription pour IEngineeringObject

Nom de la méthode Valeurs retournées
GetCompositionInfos Fournit en retour une bibliothèque d'objets du type

EngineeringCompositionInfo, qui décrivent les dif‐
férentes compositions de ces objets. La section
qui suit propose une description de Engineering‐
CompositionInfo.

GetAttributeInfos Fournit en retour une bibliothèque d'objets du type
EngineeringAttributeInfo, qui décrivent les diffé‐
rents attributs de ces objets. La section qui suit
propose une description deEngineeringAttributeIn‐
fo.

GetInvocationInfos Fournit en retour une bibliothèque d'objets du type
EngineeringInvocationInfo, qui décrivent les diffé‐
rentes actions de ces objets. La section qui suit
propose une description de EngineeringInvocatio‐
nInfo.

Prise en charge de l'autodescription pour IEngineeringServiceProvider

Nom de la méthode Valeurs retournées
GetServiceInfos Fournit en retour une bibliothèque d'objets du type

EngineeringServiceInfo, qui décrivent les diffé‐
rents services de ces objets. La section qui suit
propose une description de EngineeringServiceIn‐
fo.

Classe EngineeringCompositionInfo

Nom de la méthode Valeurs retournées
Name Nom de la composition.

Classe EngineeringAttributeInfo

Nom de la méthode Valeurs retournées
AccessMode Niveau d'accès pris en charge par l'attribut. La

section qui suit propose une description détaillée
de cet attribut.

Name Nom de l'attribut.

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 159

Classe EngineeringInvocationInfo

Nom de la méthode Valeurs retournées
Name Nom de l'action.
ParameterInfos Une bibliothèque d'objets du type EngineeringIn‐

vocationParameterInfo, qui décrivent les paramè‐
tres requis éventuellement pour l'action. La sec‐
tion qui suit propose une description de Enginee‐
ringInvocationParameterInfo.

Classe EngineeringServiceInfo

Nom de la méthode Valeurs retournées
Type Type de service comme objet System.Type.

Enum AccessMode

Valeur d'énumération Valeurs retournées
None Option invalide.
Read L'attribut peut être lu.
Write L'attribut peut être écrit.

 Classe EngineeringInvocationParameterInfo

Nom de la méthode Valeurs retournées
Name Nom du paramètre.
Type Type du paramètre comme objet System.Type.

Code de programme
AccessMode est une énumération de mémentos dont les valeurs peuvent être combinées
comme dans le code de programme suivant :

EngineeringAttributeAccessMode value = EngineeringAttributeAccessMode.Read|
EngineeringAttributeAccessMode.Write;

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
160 Manuel système, 10/2016

Pour rechercher tous les attributs d'un IEngineeringObject et apporter des modifications au
mode d'accès à ces derniers, modifiez le code de programme suivant :

...
IEngineeringObject engineeringObject = ...;
IList<EngineeringAttributeInfo> attributeInfos = engineeringObject.GetAttributeInfos();
foreach(EngineeringAttributeInfo attributeInfo in attributeInfos)
{
 switch (attributeInfo.AccessMode)
 {
 case EngineeringAttributeAccessMode.Read:
 ...
 break;
 case EngineeringAttributeAccessMode.Write:
 ...
 break;
 case EngineeringAttributeAccessMode.Read|EngineeringAttributeAccessMode.Write:
 ...
 break;
 }
}
...

Public API
7.10 Fonctions des projets/données de projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 161

7.11 Fonctions sur les données d'un appareil HMI

7.11.1 Vues

7.11.1.1 Créer des dossiers de vues personnalisés

Condition
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Code du programme
Pour créer un dossier de vues personnalisé, modifiez le code de programme suivant :

private static void CreateScreenFolder(HmiTarget hmitarget)
//Creates a screen folder
{
 ScreenUserFolder myCreatedFolder =
hmitarget.ScreenFolder.Folders.Create("myScreenFolder");
}

Voir aussi
Bibliothèques standard (Page 34)

7.11.1.2 Supprimer la vue d'un dossier

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Public API
7.11 Fonctions sur les données d'un appareil HMI

Automatiser des projets à l'aide de scripts
162 Manuel système, 10/2016

Utilisation

Remarque

Vous ne pouvez pas supprimer une fenêtre permanente. Une fenêtre permanente est une vue
système toujours existante.

Code du programme
Pour supprimer une vue d'un certain dossier, modifiez le code de programme suivant :

public static void DeleteScreenFromFolder(HmiTarget hmiTarget)
{
 ScreenUserFolder screenUserFolder =
hmiTarget.ScreenFolder.Folders.Find("myScreenFolder");
 ScreenComposition screens = screenUserFolder.Screens;
 Screen screen = screens.Find("myScreenName");
 if (screen != null)
 {
 screen.Delete();
 }
}

Voir aussi
Bibliothèques standard (Page 34)

7.11.1.3 Supprimer un modèle de vue d'un dossier

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Un appareil IHM existe dans le projet.

Public API
7.11 Fonctions sur les données d'un appareil HMI

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 163

Code du programme
Pour supprimer un modèle de vue d'un certain dossier, modifiez le code de programme suivant :

private static void DeleteScreenTemplateFromFolder(HmiTarget hmiTarget)
{
 string templateName = "MyScreenTemplate";
 ScreenTemplateUserFolder folder =
hmiTarget.ScreenTemplateFolder.Folders.Find("myScreenTemplateFolder");
 ScreenTemplateComposition templates = folder.ScreenTemplates;
 ScreenTemplate template = templates.Find(templateName);
 if (template != null)
 {
 template.Delete();
 }
}

Voir aussi
Bibliothèques standard (Page 34)

7.11.1.4 Supprimer toutes les vues d'un dossier

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation

Remarque

Vous ne pouvez pas supprimer une fenêtre permanente. Une fenêtre permanente est une vue
système toujours existante.

Public API
7.11 Fonctions sur les données d'un appareil HMI

Automatiser des projets à l'aide de scripts
164 Manuel système, 10/2016

Code du programme
Pour supprimer toutes les vues d'un certain dossier, modifiez le code de programme suivant :

private static void DeleteAllScreensFromFolder(HmiTarget hmitarget)
//Deletes all screens from a user folder or a system folder
{
 ScreenUserFolder folder = hmitarget.ScreenFolder.Folders.Find("myScreenFolder");
 //or ScreenSystemFolder folder = hmitarget.ScreenFolder;
 ScreenComposition screens = folder.Screens;
 List<Screen> list = new List<Screen>();
 foreach(Screen screen in screens)
 {
 list.Add(screen);
 }
 foreach (Screen screen in list)
 {
 screen.Delete();
 }
}

Voir aussi
Bibliothèques standard (Page 34)

7.11.2 Cycles

7.11.2.1 Suppression de cycle

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Un appareil IHM existe dans le projet.

Utilisation
Vous ne pouvez pas supprimer les cycles prédéfinis.

À l'aide de la composition dans le modèle objet (composition count) du cycle concerné, vous
pouvez déterminer si des cycles ont effectivement été supprimés. Il n'est plus possible
d'accéder à ces cycles.

Public API
7.11 Fonctions sur les données d'un appareil HMI

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 165

Code du programme
Pour supprimer un cycle d'un appareil IHM, modifiez le code de programme suivant :

public static void DeleteCycle(HmiTarget hmiTarget)
{
 CycleComposition cycles = hmiTarget.Cycles;
 Cycle cycle = cycles.Find("myCycle");
 cycle.Delete();
}

Voir aussi
Bibliothèques standard (Page 34)

7.11.3 Listes de textes

7.11.3.1 Suppression de la liste de textes

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Un appareil IHM existe dans le projet.

Code du programme
Pour supprimer une liste de textes sélectionnée et toutes les entrées de liste correspondantes
d'un appareil IHM, modifiez le code de programme suivant :

public static void DeleteTextList(HmiTarget hmiTarget)
{
 TextListComposition textLists = hmiTarget.TextLists;
 TextList textList = textLists.Find("myTextList");
 textList.Delete();
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.11 Fonctions sur les données d'un appareil HMI

Automatiser des projets à l'aide de scripts
166 Manuel système, 10/2016

7.11.4 Listes de graphiques

7.11.4.1 Suppression d'une liste de graphiques

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Un appareil IHM existe dans le projet.

Code du programme
Pour supprimer une liste de graphiques sélectionnée et toutes les entrées de liste
correspondantes d'un appareil IHM, modifiez le code de programme suivant :

private static void DeleteGraphicList(HmiTarget hmiTarget)
{
 GraphicListComposition graphicLists = hmiTarget.GraphicLists;
 GraphicList graphicList = graphicLists.Find("myGraphicList");
 graphicList.Delete();
}

Voir aussi
Bibliothèques standard (Page 34)

7.11.5 Connexions

7.11.5.1 Suppression de la liaison

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Un appareil IHM existe dans le projet.

Public API
7.11 Fonctions sur les données d'un appareil HMI

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 167

Code du programme
Pour supprimer une liaison de communication sélectionnée d'un appareil IHM, modifiez le code
de programme suivant :

private static void DeleteConnection(HmiTarget hmiTarget)
{
 ConnectionComposition connections = hmiTarget.Connections;
 Connection connection = connections.Find("HMI_connection_1");
 connection.Delete();
}

Voir aussi
Bibliothèques standard (Page 34)

7.11.6 Table des variables

7.11.6.1 Générer des dossiers personnalisés pour variables IHM

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Code du programme
Pour créer un dossier personnalisé pour variables HMI, modifiez le code de programme
suivant :

private static void CreateUserfolderForHMITags(HmiTarget hmitarget)
// Creates an HMI tag user folder
{
 TagSystemFolder folder = hmitarget.TagFolder;
 TagUserFolder myCreatedFolder = folder.Folders.Create("MySubFolder");
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.11 Fonctions sur les données d'un appareil HMI

Automatiser des projets à l'aide de scripts
168 Manuel système, 10/2016

7.11.6.2 Enumérer les variables d'une table de variables IHM

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Code du programme
Pour énumérer toutes les variables d'une table de variables IHM, modifiez le code de
programme suivant :

private static void EnumerateTagsInTagtable(HmiTarget hmitarget)
// //Enumerates all tags of a tag table
{
 TagTable table = hmitarget.TagFolder.TagTables.Find("MyTagtable");
 // Alternatively, you can access the default tag table:
 // TagTable defaulttable = hmitarget.TagFolder.DefaultTagTable;

 TagComposition tagComposition = table.Tags;
 foreach (Tag tag in tagComposition)
 {
 // Add your code here
 }
}

Voir aussi
Bibliothèques standard (Page 34)

7.11.6.3 Suppression de variables individuelles d'une table de variables IHM

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Public API
7.11 Fonctions sur les données d'un appareil HMI

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 169

Code du programme
Pour supprimer une variable déterminée d'une table des variables IHM, modifiez le code de
programme suivant :

private static void DeleteATag(HmiTarget hmiTarget)
{
 string tagName = "MyTag";
 TagTable defaultTagTable = hmiTarget.TagFolder.DefaultTagTable;
 TagComposition Variablen = defaultTagTable.Tags;
 Tag tag = tags.Find(tagName);
 tag.Delete();
}

Voir aussi
Bibliothèques standard (Page 34)

7.11.6.4 Supprimer une table de variables d'un dossier

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Un appareil IHM existe dans le projet.

Code du programme
Pour supprimer un tableau des variables d'un certain dossier, modifiez le code de programme
suivant :

private static void DeleteTagTable(HmiTarget hmiTarget)
{
 string tableName = "myTagTable";
 TagSystemFolder tagSystemFolder = hmiTarget.TagFolder;
 TagTableComposition tagTables = tagSystemFolder.TagTables;
 TagTable tagTable = tagTables.Find(tableName);
 tagTable.Delete();
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.11 Fonctions sur les données d'un appareil HMI

Automatiser des projets à l'aide de scripts
170 Manuel système, 10/2016

7.11.7 Scripts VB

7.11.7.1 Créer des dossiers personnalisés pour les scripts

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Code du programme
Pour créer un sous-dossier personnalisé pour scripts dans un dossier système ou un autre
dossier personnalisé, modifiez le code de programme suivant :

private static void CreateFolderInScriptfolder(HmiTarget hmitarget)
//Creates a script user subfolderVBScriptSystemFolder
{
 VBScriptSystemFolder vbScriptFolder = hmitarget.VBScriptFolder;
 VBScriptUserFolderComposition vbScriptFolders = vbScriptFolder.Folders;
 VBScriptUserFolder vbScriptSubFolder = vbScriptFolder.Folders.Create("mySubfolder");
}

Voir aussi
Bibliothèques standard (Page 34)

7.11.7.2 Supprimer les scripts VB d'un dossier

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Un appareil IHM existe dans le projet.

Public API
7.11 Fonctions sur les données d'un appareil HMI

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 171

Code du programme
Pour supprimer un script VB d'un certain dossier, modifiez le code de programme suivant :

private static void DeleteVBScriptFromScriptFolder(HmiTarget hmitarget)
//Deletes a vbscript from a script folderVBScriptSystemFolder
{
 VBScriptUserFolder vbscriptfolder =
hmitarget.VBScriptFolder.Folders.Find("MyScriptFolder");
 var vbScripts = vbscriptfolder.VBScripts;
 if (null != vbScripts)
 {
 var vbScript = vbScripts.Find("MyScript");
 vbScript.Delete();
 }
}

Voir aussi
Bibliothèques standard (Page 34)

7.11.8 Supprimer le dossier personnalisé d'un pupitre opérateur

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Code de programme
Pour supprimer un dossier personnalisé d'un pupitre opérateur, modifiez le code de
programme suivant :

HmiTarget hmiTarget = ...;
ScreenUserFolder screenUserGroup = hmiTarget.ScreenFolder.Folders.Find("MyUserFolder");
screenUserGroup.Delete();

Public API
7.11 Fonctions sur les données d'un appareil HMI

Automatiser des projets à l'aide de scripts
172 Manuel système, 10/2016

7.12 Fonctions sur les données d'un appareil API

7.12.1 Blocs

7.12.1.1 Interroger le groupe "Blocs de programme"

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Un API est décelé dans le projet.

Code du programme
Pour interroger le groupe "Blocs de programme", modifiez le code de programme suivant :

private static void GetBlockGroupOfPLC(PlcSoftware plcsoftware)
//Retrieves the system group of a block
{
 PlcBlockSystemGroup blockGroup = plcsoftware.BlockGroup;
}

Voir aussi
Bibliothèques standard (Page 34)

7.12.1.2 Enumérer les groupes Blocs personnalisés

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Un API est décelé dans le projet.

Utilisation
Les sous-groupes compris sont considérés comme récurrents lors de l'énumération.

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 173

Code du programme : Enumérer tous les groupes
Pour énumérer les groupes Blocs personnalisés, modifiez le code de programme suivant :

//Enumerates all block user groups including sub groups
private static void EnumerateAllBlockGroupsAndSubgroups(PlcSoftware plcsoftware)
{
 foreach (PlcBlockUserGroup blockUserGroup in plcsoftware.BlockGroup.Groups)
 {
 EnumerateBlockUserGroups(blockUserGroup);
 }
}

private static void EnumerateBlockUserGroups(PlcBlockUserGroup blockUserGroup)
{
 foreach (PlcBlockUserGroup subBlockUserGroup in blockUserGroup.Groups)
 {
 EnumerateBlockUserGroups(subBlockUserGroup);
 // recursion
 }
}

Code du programme : Accéder à un groupe
Pour accéder à un groupe de blocs personnalisé sélectionné, modifiez le code de programme
suivant :

//Gives individual access to a specific block user group
private static void AccessBlockusergroup(PlcSoftware plcsoftware)
{
 PlcBlockUserGroupComposition plcBlockUserGroupComposition
=plcsoftware.BlockGroup.Groups;
 PlcBlockUserGroup plcBlockUserGroup =
plcBlockUserGroupComposition.Find("MyUserfolder");
}

Voir aussi
Bibliothèques standard (Page 34)

7.12.1.3 Enumérer tous les blocs

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Un API est décelé dans le projet.

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
174 Manuel système, 10/2016

Utilisation
Il est possible d'accéder de manière ciblée à un bloc de programme si son nom est connu.

Code du programme : Enumérer tous les blocs
Pour énumérer les blocs de tous les groupes Blocs, modifiez le code de programme suivant :

private static void EnumerateAllBlocks(PlcSoftware plcsoftware)
//Enumerates all blocks
{
 foreach (PlcBlock block in plcsoftware.BlockGroup.Blocks)
 {
 // Do something...
 }
}

Code du programme : Accéder à un bloc déterminé
Pour accéder à un bloc donné, modifiez le code de programme suivant :

private static void AccessASingleBlock(PlcSoftware plcsoftware)
//Gives individual access to a block
{
 // The parameter specifies the name of the block
 PlcBlock block = plcsoftware.BlockGroup.Blocks.Find("MyBlock");
}

Voir aussi
Bibliothèques standard (Page 34)

7.12.1.4 Interroger les informations d'un bloc/type de données utilisateur

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 175

Utilisation
Public API prend en charge l'interrogation des informations suivantes pour le programme et
les blocs de données et pour les types de données utilisateur :

● Horodatage au format UTC
L'horodatage fournit les informations suivantes :

– Quand le bloc a-t-il été compilé pour la dernière fois ?

– Quand le bloc a-t-il été modifié pour la dernière fois ?

● Attribut "Consistency"
L'attribut « Consistency" est mis sur "True" dans les cas suivants :

– Le bloc a été correctement compilé.

– Le bloc n'a pas été modifié depuis la compilation.

– Aucune modification ayant impliqué une nouvelle compilation n'a été apportée aux
objets externes.

● Langage de programmation utilisé (uniquement programme et de blocs de données)

● Numéro de bloc

● Nom de bloc

● Auteur du bloc

● Famille de bloc

● Titre du bloc

● Version du bloc

Pour plus d’informations, voir Blocs et types de modèle d'objet Openness (Page 50).

Code du programme
Pour interroger les informations susmentionnées, modifiez le code de programme suivant :

private static void GetPlcBlockInformation(PlcSoftware plcSoftware)
{
 PlcBlock plcBlock = plcSoftware.BlockGroup.Blocks.Find("MyBlock");
 //Read information DateTime compileDate = plcBlock.CompileDate;
 DateTime modifiedDate = plcBlock.ModifiedDate;
 bool isConsistent = plcBlock.IsConsistent;
 int blockNumber = plcBlock.Number;
 string blockName = plcBlock.Name;
 ProgrammingLanguage programmingLanguage = plcBlock.ProgrammingLanguage;
 string blockAuthor = plcBlock.HeaderAuthor;
 string blockFamily = plcBlock.HeaderFamily;
 string blockTitle = plcBlock.HeaderName;
 string blockVersion = plcBlock.HeaderVersion;
}

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
176 Manuel système, 10/2016

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

7.12.1.5 Supprimer un bloc

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● L'API n'est pas en ligne.

Code du programme
Pour supprimer un bloc, modifiez le code de programme suivant :

private static void DeleteBlocks(PlcSoftware plcsoftware)
//Runs through block group and deletes blocks
{
 PlcBlockSystemGroup group = plcsoftware.BlockGroup;
 // or BlockUserGroup group = ...;
 for (int i = group.Blocks.Count - 1; i >= 0; i--)
 {
 PlcBlock block = group.Blocks[i];
 if (block != null)
 {
 block.Delete();
 }
 }
}

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 177

7.12.1.6 Supprimer un type de données utilisateur

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● L'API n'est pas en ligne.

Code du programme
Pour supprimer un type utilisateur, modifiez le code de programme suivant :

private static void DeleteUserDataType(PlcSoftware plcSoftware)
{
 PlcTypeSystemGroup typeGroup = plcSoftware.TypeGroup;
 PlcTypeComposition dataTypes = typeGroup.Types;
 PlcType dataType = dataTypes.Find("DataTypeName");
 if (dataType != null)
 {
 dataType.Delete();
 }
}

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

7.12.1.7 Créer un groupe pour blocs

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
178 Manuel système, 10/2016

Code du programme
Pour créer un groupe pour blocs, modifiez le code de programme suivant :

private static void CreateBlockGroup(PlcSoftware plcsoftware)
//Creates a block group
{
 PlcBlockSystemGroup systemGroup = plcsoftware.BlockGroup;
 PlcBlockUserGroupComposition groupComposition = systemGroup.Groups;
 PlcBlockUserGroup myCreatedGroup = groupComposition.Create("MySubGroupName");
}

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

7.12.1.8 Supprimer un groupe pour blocs

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● L'API n'est pas en ligne.

Code du programme
Pour supprimer un groupe pour blocs, modifiez le code de programme suivant :

// Deletes user groups from PlcBlockSystemGroup or PlcBlockUserGroup
private static void DeleteBlockFolder(PlcSoftware plcSoftware)
{
 PlcBlockUserGroup group = plcSoftware.BlockGroup.Groups.Find("myGroup");
 //PlcBlockSystemGroup group = plcSoftware.BlockGroup;
 PlcBlockUserGroupComposition subgroups = group.Groups;
 PlcBlockUserGroup subgroup = subgroups.Find("myUserGroup");
 if (subgroup != null)
 {
 subgroup.Delete();
 }
}

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 179

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

7.12.1.9 Interroger un groupe système pour blocs système

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Code du programme :
Pour déterminer le groupe créé par le système pour les blocs système, modifiez le code de
programme suivant :

PlcSoftware plcSoftware = ...
foreach (PlcSystemBlockGroup systemGroup in plcSoftware.BlockGroup.SystemBlockGroups)
{
 foreach (PlcSystemBlockGroup group in systemGroup.Groups)
 {
 PlcBlockComposition pbComposition = group.Blocks;
 foreach (PlcBlock block in pbComposition)
 {
 //Ajoutez votre code ici
 }
 }
}

Voir aussi
Bibliothèques standard (Page 34)

7.12.1.10 Enumérer les sous-groupes système

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
180 Manuel système, 10/2016

Code du programme : Enumérer tous les sous-groupes système
Pour énumérer les sous-groupes système de tous les blocs système, modifiez le code de
programme suivant :

//Retrieves the system generated group for system blocks
private static void GetSystemgroupForSystemblocks(PlcSoftware plcSoftware)
{
 PlcSystemBlockGroupComposition systemBlockGroups =
plcSoftware.BlockGroup.SystemBlockGroups;
 if (systemBlockGroups.Count != 0)
 {
 PlcSystemBlockGroup sbSystemGroup = systemBlockGroups[0];
 foreach (PlcSystemBlockGroup group in sbSystemGroup.Groups)
 {
 EnumerateSystemBlockGroups(group);
 }
 }
}
private static void EnumerateSystemBlockGroups(PlcSystemBlockGroup systemBlockGroup)
{
 foreach (PlcSystemBlockGroup group in systemBlockGroup.Groups)
 {
 // recursion EnumerateSystemBlockGroups(group);
 }
}

Code du programme : Accéder à un sous-groupe déterminé
Pour accéder à un sous-groupe déterminé, modifiez le code de programme suivant :

private static void AccessSbGroup(PlcSystemBlockGroup systemBlockGroup)
{
 PlcSystemBlockGroup group1 = systemBlockGroup.Groups.Find("User group XYZ");
 PlcSystemBlockGroup group2 = group1.Groups.Find("User group ZYX");
}

Voir aussi
Bibliothèques standard (Page 34)

Ajouter un fichier externe (Page 182)

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 181

7.12.1.11 Ajouter un fichier externe

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness :
Voir Ouvrir un projet (Page 90)

Utilisation
Vous pouvez ajouter un fichier externe à un API. Ce fichier externe est enregistré sous le
chemin défini dans le système de fichiers.

Les formats suivants sont pris en charge :

● LIST

● SCL

● DB

● UDT

Remarque

L'accès à des groupes dans le dossier "Fichiers sources externes" n'est pas pris en charge.

Une exception se déclenche si vous indiquez une autre extension de fichier que *.AWL, *.SCL,
*.DB ou *UDT.

Code de programme
Pour créer un fichier externe dans le dossier "Fichiers sources externes" à partir d'un bloc,
modifiez le code de programme suivant :

private static void CreateBlockFromFile(PlcSoftware plcsoftware)
// Creates a block from a AWL, SCL, DB or UDT file
{
 PlcExternalSource externalSource =
plcSoftware.ExternalSourceGroup.ExternalSources.CreateFromFile("SomeBlockNameHere","SomePa
thHere");
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
182 Manuel système, 10/2016

7.12.1.12 Générer une source à partir d'un bloc

Conditions requises
● L'application Openness est connectée à TIA Portal.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● L'API n'est pas en ligne.

Utilisation
L'interface API prend en charge la génération de sources à partir de blocs et de types de
données utilisateur.

Pour les blocs, seuls les langages de programmation STL et SCL sont pris en charge. Des
exceptions sont déclenchées dans les cas suivants :

● Le langage de programmation n'est pas STL ou SCL

● Un fichier du même nom existe déjà dans l'emplacement de sauvegarde cible.

Seule l'extension de fichier "*.udt" est prise en charge pour les types de données utilisateur.
Des exceptions sont déclenchées dans les cas suivants :

● L'extension de fichier pour blocs de données n'est pas "*.db"

● L'extension de fichier pour blocs STL n'est pas "*.awl"

● L'extension de fichier pour blocs SCL n'est pas "*.scl"

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 183

Code du programme
Pour générer les fichiers sources à partir de blocs et de types, modifiez le code de programme
suivant :

...
PlcBlock FC1 = ...;
PlcBlockSystemGroup plcBlockSystemGroup = ...;
// fails if programming language is not SCL
plcBlockSystemGroup.GenerateSourceFromBlocks(new PlcBlock[] { FC1 },
"SomePathHere.scl");
...
or
...
PlcBlock FC1 = ...;
PlcBlock FC2 = ...;
PlcBlockSystemGroup plcBlockSystemGroup = ...;
// fails if programming language is not SCL
plcBlockSystemGroup.GenerateSourceFromBlocks(new PlcBlock[] { FC1, FC2 },
"SomePathHere.scl");
...
or
... PlcBlock FC1 = ...;
PlcBlock FC2 = ...;
PlcBlockSystemGroup plcBlockSystemGroup = ...;
// fails if programming language is not SCL
plcBlockSystemGroup.GenerateSourceFromBlocks(new List<PlcBlock> { FC1,
FC2 }, "SomePathHere.scl");
...
or
...
IEnumerable<PlcBlock> blocks = ...;
PlcBlockSystemGroup plcBlockSystemGroup = ...;
// fails if programming language is not SCL
plcBlockSystemGroup.GenerateSourceFromBlocks(blocks, "SomePathHere.scl");
...
or
...
PlcBlockComposition blocks = ...;
PlcBlockSystemGroup plcBlockSystemGroup = ...;
// fails if programming language is not SCL
plcBlockSystemGroup.GenerateSourceFromBlocks(blocks, "SomePathHere.scl");
...
or
...
IEnumerable<PlcType> plcTypes = ...;
PlcTypeSystemGroup plcTypeSystemGroup = ...;
plcTypeSystemGroup.GenerateSourceFromTypes(plcTypes, "SomePathHere.scl");
...

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
184 Manuel système, 10/2016

7.12.1.13 Générer les blocs à partir de la source

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● L'API n'est pas en ligne.

Utilisation
Vous pouvez générer des blocs à partir de tous les fichiers externes du groupe "Fichiers
sources externes". Seuls les fichiers externes au format ASCII sont pris en charge.

Remarque

L'accès à des groupes dans le dossier "Fichiers sources externes" n'est pas pris en charge.

Les blocs existants sont écrasés.

Si une erreur apparaît lors de l'appel, une Exception est déclenchée. Les 256 premiers
caractères de tout message d'erreur sont compris dans le message de l'Exception. Le projet
est remis à l'état de traitement où il se trouvait avant l'exécution de la méthode
GenerateBlocksFromSource.

Code du programme
Pour générer les blocs à partir de tous les fichiers externes du groupe "Fichiers sources
externes", modifiez le code de programme suivant.

// Creates a block from an external source file
PlcSoftware plcSoftware = ...;
foreach (PlcExternalSource plcExternalSource in
plcSoftware.ExternalSourceGroup.ExternalSources)
{
 plcExternalSource.GenerateBlocksFromSource();
}

Voir aussi
Bibliothèques standard (Page 34)

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 185

7.12.1.14 Supprimer un fichier externe

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Vous avez ouvert un projet par le biais d'une application Openness :
Voir Ouvrir un projet (Page 90)

● L'API n'est pas en ligne.

Code du programme
Pour supprimer un fichier externe dans le groupe "Fichiers sources externes", modifiez le code
de programme suivant :

Remarque

L'accès à des groupes dans "Fichiers sources externes" n'est pas pris en charge.

// Deletes an external source file
private static void DeleteExternalSource(PlcSoftware plcSoftware)
{
 PlcExternalSource externalSource =
plcSoftware.ExternalSourceGroup.ExternalSources.Find("myExternalsource");
 externalSource.Delete();
}

Voir aussi
Bibliothèques standard (Page 34)

7.12.1.15 Démarrer un éditeur de bloc

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● L'instance du portail TIA est ouverte avec interface utilisateur.

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
186 Manuel système, 10/2016

Code du programme
Pour démarrer l'éditeur correspondant à une référence d'objet du type PlcBlock dans
l'instance de TIA Portal, modifiez le code de programme suivant :

//Opens a block in a block editor
private static void StartBlockEditor(PlcSoftware plcSoftware)
{
 PlcBlock plcBlock = plcSoftware.BlockGroup.Blocks.Find("MyBlock");
 plcBlock.ShowInEditor();
}

Pour ouvrir l'éditeur correspondant à une référence d'objet du type PlcType dans l'instance
de TIA Portal, modifiez le code de programme suivant :

//Opens a udt in udt editor
private static void StartPlcTypEditor(PlcSoftware plcSoftware)
{
 PlcTypeComposition types = plcSoftware.TypeGroup.Types;
 PlcType udt = types.Find("my_udt");
 udt.ShowInEditor();
}

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

7.12.2 Tables des variables

7.12.2.1 Créer les groupes personnalisés pour variables API

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
L'interface API prend en charge la création de groupes personnalisés pour variables API.

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 187

Code du programme
Pour créer un groupe personnalisé pour variables API, modifiez le code de programme suivant :

//Creates a plc tag table user group
private static void CreatePlcTagTableUserGroup(PlcSoftware plcSoftware)
{
 PlcTagTableSystemGroup systemGroup = plcSoftware.TagTableGroup;
 PlcTagTableUserGroupCompostion groupComposition = systemGroup.Groups;
 PlcTagTableUserGroup myCreatedGroup = groupComposition.Create("MySubGroupName");
 // Optional;
 // create a subgroup
 PlcTagTableUserGroup mySubCreatedGroup =
myCreatedGroup.Groups.Create("MySubSubGroupName");
}

Voir aussi
Bibliothèques standard (Page 34)

7.12.2.2 Supprimer les groupes personnalisés pour variables API

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
L'interface API prend en charge la suppression d'un groupe personnalisé déterminé pour
tables de variables API.

Code du programme
Pour supprimer un groupe personnalisé déterminé pour tables de variables API, modifiez le
code de programme suivant :

private static void DeletePlcTagTableUserGroup(PlcSoftware plcSoftware)
{
 PlcTagTableUserGroup group = plcSoftware.TagTableGroup.Groups.Find("MySubGroupName");
 if (group != null)
 {
 group.Delete();
 }
}

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
188 Manuel système, 10/2016

Voir aussi
Bibliothèques standard (Page 34)

7.12.2.3 Supprimer la table des variables API dans un groupe

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Code du programme
Pour supprimer une table des variables déterminée dans un groupe, modifiez le code de
programme suivant :

//Deletes a PlcTagTable of a group
private static void DeletePlcTagTableInAGroup(PlcSoftware plcSoftware)
{
 PlcTagTableSystemGroup group = plcSoftware.TagTableGroup;
 PlcTagTable tagtable = group.TagTables.Find("MyTagTable");
 if (tagtable!= null)
 {
 tagtable.Delete();
 }
}

Voir aussi
Bibliothèques standard (Page 34)

7.12.2.4 Supprimer une variable individuelle d'une table des variables API

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 189

Code du programme
Pour supprimer une variable déterminée dans une table des variables API, modifiez le code
de programme suivant :

private static void DeleteTagFromPLCTagtable(PlcSoftware plcsoftware)
// Deletes a single tag of a tag table
{
 string tagName = "MyTag";
 PlcTagTable table = plcsoftware.TagTableGroup.TagTables.Find("myTagTable");
 PlcTagComposition tagComposition = table.Tags;
 PlcTag tag = tagComposition.Find(tagName);
 if (tag != null)
 {
 tag.Delete();
 }
}

Voir aussi
Bibliothèques standard (Page 34)

7.12.2.5 Démarrer l'éditeur "Variables"

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● L'instance du portail TIA est ouverte avec interface utilisateur.

Code du programme
Pour démarrer l'éditeur correspondant à une référence d'objet du type PlcTagTable dans
l'instance de TIA Portal, modifiez le code de programme suivant :

//Ouvre la table des variables dans l'éditeur "Tags"
private static void OpenTagtableInEditor(PlcSoftware plcSoftware)
{
 PlcTagTable plcTagTable = plcSoftware.TagTableGroup.TagTables.Find("MyTagTable");
plcTagTable.ShowInEditor();
}

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
190 Manuel système, 10/2016

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

7.12.2.6 Lire la date et l'heure de la dernière modification d'une table de variables API

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Le format de l'horodatage est l'UTC.

Code du programme
Pour lire l'horodatage d'une table de variables API déterminée, modifiez le code de programme
suivant :

//Reads Time-Stamp of a plc Tag Table
private static void GetLastModificationDateOfTagtable(PlcSoftware plcSoftware)
{
 PlcTagTable plcTagTable = plcSoftware.TagTableGroup.TagTables.Find("MyTagTable");
 DateTime modifiedTagTableTimeStamp = plcTagTable.ModifiedTimeStamp;
}

Voir aussi
Bibliothèques standard (Page 34)

7.12.3 Supprimer un groupe personnalisé dans un appareil API

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 191

Code de programme
Pour supprimer un groupe personnalisé dans un appareil API, modifiez le code de programme
suivant :

PlcSoftware plcSoftware = ...;
PlcBlockUserGroup blockUserGroup = plcSoftware.BlockGroup.Groups.Find("MyUserFolder");
blockUserGroup.Delete();

Public API
7.12 Fonctions sur les données d'un appareil API

Automatiser des projets à l'aide de scripts
192 Manuel système, 10/2016

7.13 Concepts de base

7.13.1 Traitement des exceptions

Exceptions en cas d'accès au portail TIA avec des API publics
Lors de l'exécution d'une application Openness avec l'API public, toutes les erreurs qui se sont
produites sont signalées comme des exceptions. Ces exceptions contiennent des informations
qui vous aident à éliminer les erreurs survenues.

Il existe deux types d'exception :

● Recoverable (Siemens.Engineering.EngineeringException)
Avec cette exception, vous continuez d'accéder à TIA Portal sans interruption. Vous pouvez
également couper la liaison au portail TIA.
Les EngineeringExceptions contiennent les types suivants :

– Exceptions de sécurité (EngineeringSecurityException), par exemple en cas d'absence
de droits d'accès.

– Exceptions lors de l'accès aux objets (EngineeringObjectDisposedException), par ex.
lors de l'accès à des objets qui n'existent plus.

– Exceptions lors de l'accès aux attribut (EngineeringNotSupportedException), par ex.
lors de l'accès à des attributs qui n'existent plus.

– Exceptions générales lors de l'appel (EngineeringTargetInvocationException), par ex.
en cas d'erreur malgré des appels valides de l'API public.

– Exceptions lors de l'appel (EngineeringRuntimeException), par ex. lors d'une affectation
invalide.

– Exceptions lorsque les appels sont terminés (EngineeringUserAbortException), par ex.
lors de l'interruption du processus d'importation par l'utilisateur.

Les EngineeringExceptions ont les attributs suivants :

– ExceptionMessageData messageData: Contient la cause pour laquelle l'exception
a été déclenchée.

– ExceptionMessageData detailMessageData: Contient des informations
supplémentaires sur la cause. Le résultat est fourni en retour sous forme de <IList>.

– String message : Fournit en retour le résultat issu de MessageData et de
DetailMessageData.

ExceptionMessageData fournit en retour les informations suivantes :

– String Text : Contient la cause pour laquelle l'exception a été déclenchée.

– Int ServiceId : Fournit l'ID du service ayant déclenché l'exception.

– Int MessageId : ID univoque au sein du service.

● NonRecoverable (Siemens.Engineering.NonRecoverableException)
Dans le cas de cette exception, le portail TIA est fermé et la liaison au portail TIA est coupée.
Vous devez redémarrer le portail TIA avec l'application Openness.

Public API
7.13 Concepts de base

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 193

Code du programme
L'exemple suivant montre les possibilités que vous avez pour réagir à des exceptions :

try
{
 ...
}

catch(EngineeringSecurityException engineeringSecurityException)
{
 Console.WriteLine(engineeringSecurityException);
}

catch(EngineeringObjectDisposedException engineeringObjectDisposedException)
{
 Console.WriteLine(engineeringObjectDisposedException.Message);
}

catch(EngineeringNotSupportedException engineeringNotSupportedException)
{
 Console.WriteLine(engineeringNotSupportedException.MessageData.Text);
 Console.WriteLine();
 Foreach(ExceptionMessageData detailMessageData in
engineeringNotSupportedException.DetailMessageData)
 {
 Console.WriteLine(detailMessageData.Text);
 }
}

catch (TargetInvocationException)
{
 throw;
}

catch (EngineeringException)
{
 //Do not catch general exceptions
 throw;
}

catch(NonRecoverableException nonRecoverableException)
{
 Console.WriteLine(nonRecoverableException.Message);
}

7.13.2 Utilisation d'associations

Accéder aux affectations
Une affectation décrit la relation entre deux objets ou plus au niveau du type.

Public API
7.13 Concepts de base

Automatiser des projets à l'aide de scripts
194 Manuel système, 10/2016

TIA Portal Openness V14 prend en charge l'accès aux affectations via l'index et les boucles
foreach. L'accès direct, par exemple via string name, n'est pas pris en charge.

Propriétés
Les propriétés suivantes sont disponibles :

● int Count
● bool IsReadonly
● IEngineeringObject Parent
● retType this [int index] { get; }

Méthodes
TIA Portal Openness V14 prend en charge les méthodes suivantes :

● int IndexOf (type) : fournit en retour l'index dans l'affectation pour une instance
transmise :

● bool Contains (type) : détermine si l'instance transmise est contenue dans
l'affectation.

● IEnumerator GetEnumerator <retType>() : est utilisé dans des boucles foreach
et permet d'accéder à un objet.

● void Add (type)1 : ajoute l'instance transmise de l'affectation.

● void Remove (type)1 : supprime l'instance transmise de l'affectation.
1 : n'est pas prise en charge par toutes les affectations.

7.13.3 Utilisation de compositions

Appel de compositions
Une composition est un cas particulier d'affectation Une composition exprime une relation
sémantique entre deux objets dont l'un est une partie de l'autre.

Propriétés
Les propriétés suivantes sont disponibles :

● int Count
● bool IsReadonly
● IEngineeringObject Parent
● retType this [int index] {get;} : accède de manière indexée à un objet de la

composition.
Vous devez utiliser ce type d'accès de manière ciblée uniquement, car chaque accès
indexé dépasse les limites du processus.

Public API
7.13 Concepts de base

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 195

Méthodes
TIA Portal Openness V14 prend en charge les méthodes suivantes :

● retType Create (id, …) : crée une nouvelle instance et l'ajoute à la composition.
La signature de la méthode dépend du type de création de l'instance. Cette méthode n'est
pas prise en charge par toutes les compositions.

● type Find (id, …) : Recherche dans une composition l'instance ayant l'ID transmis.
La recherche n'est pas récursive. La signature de la méthode dépend du type de recherche
de l'instance. Cette méthode n'est pas prise en charge par toutes les compositions.

● IEnumerator GetEnumerator<retType> () : est utilisé dans des boucles foreach
et permet d'accéder à un objet.

● Delete (type)1 : supprime l'instance spécifiée par la référence d'objet actuelle.

● int IndexOf (type) : fournit en retour l'index dans la composition pour une instance
transmise.

● bool Contains (type) : détermine si l'instance transmise est contenue dans la
composition.

● void Import(string path, ImportOptions importOptions)1 : S'applique à
chaque composition comportant des types pouvant être importés.
Chaque signature d'importation contient un paramètre de configuration du type
"ImportOptions (Page 211)" ("None", "Overwrite") qui permet à l'utilisateur de commander
le comportement à l'importation.

1 : Pas prise en charge par toutes les compositions.

7.13.4 Vérifier l'égalité des objets

Utilisation
En tant qu'utilisateur d'un API public, vous pouvez vérifier l'identité des objets à l'aide du
programme :

● Vous vérifiez alors avec l'opérateur == si deux références d'objet sont identiques.

● La méthode System.Object.Equals() vous permet de vérifier si deux objets sont
réellement identiques en ce qui concerne le portail TIA.

Public API
7.13 Concepts de base

Automatiser des projets à l'aide de scripts
196 Manuel système, 10/2016

Code du programme
Pour vérifier les types de référence d'objet, modifiez le code de programme suivant :

...
//Composition
IDeviceComposition sameCompA = project.Devices;
IDeviceComposition sameCompB = project.Devices;
if (sameCompA.Equals(sameCompB))
{
 Console.WriteLine("sameCompA is equal to sameCompB");
}
if (!(sameCompA == sameCompB))
{
 Console.WriteLine("sameCompA is not reference equal to sameCompB");
}
IDeviceComposition sameCompAsA = sameCompA;
if (sameCompAsA.Equals(sameCompA))
{
 Console.WriteLine("sameCompAsA is equal to sameCompA");
}
if (sameCompAsA == sameCompA)
{
 Console.WriteLine("sameCompAsA is reference equal to sameCompA");
}
MultiLingualGraphicComposition notSameComp = project.Graphics;
if (!sameCompA.Equals(notSameComp))
{
 Console.WriteLine("sameCompA is not equal to notSameComp");
}

Voir aussi
Bibliothèques standard (Page 34)

7.13.5 Opérations de lecture pour attributs

Opérations d'ensemble et opérations de lecture standards pour attributs
TIA Portal Openness V14 prend en charge l'accès aux attributs par les méthodes suivantes,
disponibles au niveau de l'objet :

● Opérations d'ensemble pour l'accès en lecture

● Opérations standard de lecture

Public API
7.13 Concepts de base

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 197

Code du programme pour les opérations d'ensemble

//Exercise GetAttributes and GetAttributeNames
//get all available attributes for a device,
//then get the names for those attributes, then display the results.
private static void DynamicTest(Project project)
{
 IDevice device = project.Devices[0];
 IList<string> attributeNames = new List<string>();
 IList<EngineeringAttributeInfo> attributes =
((IEngineeringObject)device).GetAttributeInfos();
 foreach (EngineeringAttributeInfo engineeringAttributeInfo in attributes)
 {
 string name = engineeringAttributeInfo.Name;
 attributeNames.Add(name);
 }
 IList<object> values = ((IEngineeringObject)device).GetAttributes(attributeNames);
 for (int i = 0; i < attributes.Count; i++)
 {
 Console.WriteLine("attribute name: " + attributeNames[i] + " value: " + values[i]);
 }
}

Opérations d'ensemble pour l'accès en lecture
Cette méthode est disponible pour chaque objet :

public abstract IList<object> GetAttributes(IList<string> names);

Opérations standard de lecture
Les opérations standard de lecture sont des méthodes optionnelles. Utilisez ces méthodes
sur des objets qui prennent en charge des attributs dynamiques.

Les options suivantes sont disponibles :

● Méthode standard pour tous les noms d'attributs actuellement disponibles, en fonction de
l'état actuel de l'objet
public abstract IList<string> GetAttributeNames();

● Méthode standard pour la lecture d'un attribut
public abstract object GetAttribute(string name);

Remarque

Les attributs dynamiques ne s'affichent pas dans IntelliSense car leur disponibilité dépend de
l'état de l'instance d'objet.

Public API
7.13 Concepts de base

Automatiser des projets à l'aide de scripts
198 Manuel système, 10/2016

Exportation/importation 8
8.1 Vue d'ensemble

8.1.1 Notions élémentaires sur l'importation/exportation

Introduction
Vous pouvez exporter certaines données de configuration puis les réimporter après édition,
soit dans le même projet, soit dans un autre.

Remarque

L'utilisation de cette description pour éditer et exploiter manuellement le fichier source
n'entraîne aucune obligation ni garantie d'aucune sorte. Siemens décline donc toute
responsabilité en cas d'utilisation de cette description ou de parties de cette description.

Objets exportables et importables
Vous pouvez également importer ou exporter les données de configuration suivantes par le
biais de Public API :

Tableau 8-1 Projets

Objets Exportation Importation
Bibliothèque de graphiques X X

Tableau 8-2 API

Objets Exportation Importation
Blocs X X
Blocs avec protection Know How X –
Blocs F X –
Blocs système X –
Tables de variables API X X
Variables API X X
Types de données utilisateur X X

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 199

Tableau 8-3 IHM

Objets Exportation Importation
Vues X X
Modèles de vue X X
Vues globales X X
Scripts X X
Listes de textes X X
Listes de graphiques X X
Cycles X X
Connexions X X
Table des variables X X
Variables X X

Exportation complète ou de références ouvertes
Les types d'objets dont la liste est dressée ci-dessus sont exportés ou importés avec tous les
objets lorsqu'ils appartiennent à la même arborescence. Cela vaut également pour les objets
référencés de la même arborescence.

Les objets référencés dans d'autres arborescences ne peuvent pas, quant à eux contraire,
être complètement exportés ou importés. Des "références ouvertes" à ces objets sont
exportées ou importées à leur place.

Les objets référencés de la même arborescence sont exportés uniquement s'ils font partie du
groupe des objets exportables. Toutes les dynamisations s'appliquant à des objets sont
traitées comme des objets lors de l'importation/exportation et sont également exportées et
importées.

Lors de l'exportation, toutes les propriétés d'objet qui ont été modifiées durant la configuration
sont exportées. Cela s'applique toujours, qu'une propriété modifiée soit utilisée ou non.

Exemple : Vous avez configuré un champ d'E/S graphique avec le mode "Entrée/Sortie" et
sélectionné le réglage "Visible après avoir cliqué" pour la propriété "Barre de défilement". Puis
vous avez basculé le mode sur "Deux états" pendant la configuration. Dans ce mode, la
propriété "Barre de défilement" n'est pas disponible. Etant donné que la propriété "Barre de
défilement" a été modifiée, elle est exportée lors de l'exportation, bien qu'elle ne soit pas
utilisée.

Importation de références ouvertes
Vous pouvez également importer des objets assortis de références ouvertes (voir Importation
de données de configuration (Page 211)).

Si les objets référencés se situent dans le projet cible, les références ouvertes sont
automatiquement liées à nouveau aux types d'objet. Ces objets doivent se situer au même
endroit et porter le même nom pendant l'exportation. Si les objets référencés ne sont pas situés
dans le projet cible, les références ouvertes ne peuvent pas être résolues. Aucun objet
supplémentaire n'est créé pour la résolution des références ouvertes.

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
200 Manuel système, 10/2016

Importation et exportation de polices de caractère
Les polices définies pour des objets sont également exportées et importées.

Si vous importez des polices qui ne sont pas incluses dans le projet, la police par défaut
s'affiche pour l'objet après l'importation. La police importée est toutefois enregistrée dans la
gestion des données.

Si les attributs d'une police ne sont pas définis dans le fichier d'importation, les attributs sont
dotés de valeurs par défaut après l'importation.

Restrictions
Le format d'exportation est interne et n'est valable que pour la version V14. Le format
d'exportation peut être modifié pour les versions ultérieures.

Toutes les erreurs survenant au cours de l'importation ou de l'exportation sont signalées
comme des exceptions.
Pour plus d'informations sur les exceptions, veuillez vous référer au chapitre Traitement des
exceptions (Page 193).

Voir aussi
Domaine d'utilisation de l'importation/exportation (Page 201)

Exportation de données de configuration (Page 210)

Structure d'un fichier XML (Page 203)

8.1.2 Domaine d'utilisation de l'importation/exportation

Introduction
La fonction d'importation/exportation vous permet d'exporter certains objets ou groupes
d'objets de manière ciblée.

Vous pouvez éditer les données exportées avec un programme externe ou les réutiliser telles
quelles dans d'autres projets TIA Portal.

Si vous structurez correctement le fichier d'importation, vous pouvez également importer sans
exportation préalable des données de configuration créées en externe.

Remarque

L'importation de données de configuration créées en externe avec des erreurs de code ou de
structure erronée peut provoquer des erreurs inattendues.

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 201

Domaine d'application
Exporter et importer des données est utile pour les tâches suivantes :

● éditer des données de configuration en externe,

● importer des données de configuration générées en externe, telles que des listes de textes
et des variables,

● distribuer à différents projets des données de configuration prédéfinies, p. ex. une vue de
processus modifiée qui doit être utilisée dans plusieurs projets.

Voir aussi
Notions élémentaires sur l'importation/exportation (Page 199)

8.1.3 Importation SimaticML spécifique à la version

Utilisation
L'importation SimaticML s'effectue indépendamment de la version à partir de Openness V14.
Vous pouvez désormais utiliser des objets de données exportés de versions actuelles dans
des versions ultérieures. Le système utilise la version d'Openness spécifiée ppur la création
d'un objet.

Remarque

Des objets après V14 ne peuvent pas être importés dans un TIA Portal V14, mais des objets
V14 peuvent être importés dans un TIA Portal à partir de V14.

Pour prendre en charge cette caractéristique, les fichiers SimaticML contiennent maintenant
les informations de version de modèle représentées ci-dessous :

<?xml version="1.0" encoding="utf-8"?>
<Document>
 <Engineering version="V14"/>
 <DocumentInfo>
 ...
 </DocumentInfo>
 <SW.DataBlock ID="0">
 ...
 </SW.DataBlock>
</Document>

Remarque

Si ces informations de version ne sont pas présentes dans le fichier SimaticML, le système
utilise la version de modèle actuelle.

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
202 Manuel système, 10/2016

8.1.4 Structure d'un fichier XML

Introduction
Les données du fichier d'exportation issues de l'importation/exportation sont organisées au
moyen d'une structure de base.

Structure de base d'un fichier d'exportation
Le fichier d'exportation est créé au format XML.

Le fichier XML commence par des informations sur le document. Il comporte les données de
l'installation spécifique à l'ordinateur avec laquelle le projet a été exporté.

Le fichier d'exportation comprend les deux zones suivantes :

● Informations sur le document
Cette zone vous permet d'indiquer vos propres informations relatives à l'exportation et ce
dans une syntaxe XML valide. L'importation ignore le contenu.
Vous pouvez par ex. insérer un bloc <IntegrityInformation>...</
IntegrityInformation> en plaçant des informations supplémentaires à la validation.
Après la transmission du fichier XML, le destinataire peut vérifier avant l'importation avec
ce bloc si le fichier XML a été modifié.

● Objet
Cette zone contient les éléments à exporter.

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 203

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
204 Manuel système, 10/2016

Objets graphiques d'un fichier d'exportation
Les éléments exportés sont disponibles dans d'autres éléments du fichier XML.

Voir aussi
Notions élémentaires sur l'importation/exportation (Page 199)

8.1.5 Structure des données pour l'importation/exportation

Objets
La structure de base est la même pour tous les objets.

Chaque objet du fichier XML débute par son type, p. ex. "Hmi.Screen.Button" et un ID. L'ID
est automatiquement générée durant l'exportation.

Excepté l'objet de départ, chaque objet contient également un attribut XML
"CompositionName". La valeur de cet attribut est prédéfinie. Dans quelques cas, vous devez
spécifier cet attribut, p. ex. pour changer d'inscription quand un bouton est enfoncé ou relâché.

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 205

Attributs
Chaque objet comprend des attributs qui sont contenus dans une section appelée
"AttributeList". Chaque attribut est structuré comme élément XML, p. ex. "BackColor". La
valeur d'un attribut est structurée comme contenu XML, p. ex "204, 204, 204".

Pour référencer des objets, chaque objet reçoit au besoin une section appelée "LinkList". Cette
section contient des liaisons à d'autres objets à l'intérieur ou à l'extérieur du fichier XML.
Chaque liaison est structurée comme élément XML. La désignation d'une liaison est prédéfinie
par l'objet cible dans le fichier modèle. Chaque liaison comprend également l'attribut
"TargetID". Si l'objet cible se trouve dans le fichier XML, la valeur de l'attribut "TargetID" est
l'ID de l'objet référencé, précédé de dièse "#". Si l'objet cible ne se trouve pas dans le fichier
XML, la valeur de l'attribut "TargetID" est égale à "@OpenLink". La référence à l'objet
proprement dite est structurée comme un élément XML subordonné.

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
206 Manuel système, 10/2016

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 207

Corrélation entre les objets et la structure XML
Les figures ci-dessous montrent la corrélation entre la structure XML exportée et les objets
correspondants dans WinCC.

Figure 8-1 Corrélation entre l'interface utilisateur WinCC et la structure XML

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
208 Manuel système, 10/2016

Figure 8-2 Corrélation entre les paramètres de WinCC et la structure XML

8.1.6 Edition du fichier XML

Introduction
Pour éditer un fichier XML destiné à l'importation de données de configuration, vous utilisez
un éditeur XML ou un éditeur de texte.

Si vous effectuez des modifications importantes ou si vous créez vous-même des structures
d'objet, il est recommandé d'utiliser un éditeur XML disposant d'une fonction de complément
automatique.

Remarque

La modification du contenu XML requiert de solides connaissances de la structure et des règles
de validation dans XML. Evitez les erreurs de validation et ne modifiez manuellement la
structure XML qu'exceptionnellement.

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 209

8.1.7 Exportation de données de configuration

Introduction
Les données de configuration sont à chaque fois exportées dans un fichier XML par objet de
départ (racine).

L'édition du fichier d'exportation requiert des connaissances en XML. Pour une édition
simplifiée, utilisez un éditeur XML.

Exemple
Vous avez une vue de processus qui contient un champ E/S. Une variable externe est
configurée pour ce champ E/S. Si vous exportez la vue de processus, la vue et le champ E/S
sont exportés. La variable et la liaison utilisée par la variable ne sont pas exportées, seule une
référence ouverte est exportée.

Contenu du fichier d'exportation
Dans le fichier d'exportation sont stockés tous les objets d'une arborescence, à partir de l'objet
de départ, ainsi que leurs propriétés. En revanche, toutes les références aux objets d'autres
arborescences sont exportés comme références ouvertes uniquement. Les propriétés
correspondantes des objets référencés dans différentes arborescences ne sont pas écrites
dans le fichier d'exportation.

Remarque
L'exportation de types d'objet de la bibliothèque n'est pas prise en charge.

Vous pouvez créer des objets comme type dans la bibliothèque. Les instances du type d'objet
utilisées dans le projet peuvent être éditées avec l'application Openness comme d'autres
objets. Si vous exportez des objets, les instances sont exportées sans les informations de
type.

Si vous réimportez ces objets dans le projet, les instances des types d'objet sont écrasées et
l'instance est coupée du type d'objet.

Le fichier d'exportation ne contient pas nécessairement tous les attributs d'un objet. C'est vous
qui définissez les données à exporter :

● ExportOptions.None
Ce paramétrage n'exporte que les données modifiées ou différentes des données standard.
Le fichier d'exportation contient, de plus, toutes les valeurs obligatoires pour une
importation ultérieure des données.

● ExportOptions.WithDefaults1

De plus, les valeurs par défaut sont exportées.

● ExportOptions.WithReadOnly1

De plus, les valeurs protégées en écriture sont exportées.
1 : vous pouvez combiner ces deux options avec la syntaxe suivante :
Export(path,ExportOptions.WithDefaults |
ExportOptions.WithReadOnly);

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
210 Manuel système, 10/2016

Le contenu du fichier d'exportation est entièrement en anglais. Indépendamment de cela, les
textes de projet sont exportés et importés dans toutes les langues disponibles.

Dans le fichier d'exportation, les données de configuration sont toutes structurées comme
objets XML.

Voir aussi
Notions élémentaires sur l'importation/exportation (Page 199)

Bibliothèques standard (Page 34)

Exporter des blocs (Page 257)

8.1.8 Importation de données de configuration

Introduction
Les données de configuration sont importées depuis un fichier XML exporté au préalable et
édité ou bien depuis un fichier XML que vous créez vous-même. Les données contenues dans
ce fichier sont contrôlées lors de l'importation. Cela garantit que l'importation ne provoquera
pas une incohérence des données de configuration dans TIA Portal.

Restrictions
● Lors de l'importation de textes, les langues du projet correspondantes doivent être

paramétrées dans le projet cible pour éviter que l'importation n'échoue.

● Seul les pointeurs de zone sous "separately for each connection" peuvent être importés
ou exportés.

● Si plusieurs objets racine sont indiqués dans un fichier d'importation et que l'un de ces
objets n'est pas valide, le contenu entier du fichier d'importation n'est pas importé.

● Si vous indiquez, dans le fichier d'importation, des propriétés d'un objet invalides, non
éditables dans l'interface utilisateur graphique de TIA Portal, l'importation est annulée.

Remarque
Plages de valeurs pour les propriétés graphiques en fonction de l'appareil

Si les valeurs de propriétés graphiques se situent en dehors de la plage de valeurs valide, ces
valeurs sont remises aux valeurs maximales possibles pour l'appareil IHM lors de l'importation.

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 211

Remarque
L'importation de types d'objet de la bibliothèque n'est pas prise en charge.

Vous pouvez créer des objets comme type dans la bibliothèque. Les instances du type d'objet
utilisées dans le projet peuvent être éditées avec l'application Openness comme d'autres
objets. Si vous exportez des objets, les instances sont exportées sans les informations de
type.

Si vous réimportez ces objets dans le projet, les instances des types d'objet sont écrasées et
l'instance est coupée du type d'objet.

Comportement d'importation différent
Si les objets à importer existent déjà dans le projet, vous devez commander le comportement
d'importation à l'aide de différents codes de programme. Faute de quoi, les objets sont de
nouveau créés dans le projet lors de l'importation.

Les paramétrages suivants peuvent être effectués pour définir le comportement d'importation :

● ImportOptions.None
Ce paramètre permet d'importer les données de configuration sans écrasement.
Si un objet existe déjà dans le projet lors de l'importation depuis un fichier XML, le processus
est annulé par une exception.

● ImportOptions.Override
Ce paramètre est utilisé pour l'importation des données de configuration avec écrasement
automatique.
Vous pouvez décider d'écraser les objets existants au sein du projet pendant l'importation.
Les objets pertinents sont supprimés du projet avant l'importation et recréés avec des
valeurs par défaut. Lors de l'importation, ces valeurs par défaut sont écrasées par des
valeurs issues de l'importation.

Marche à suivre pour l'importation
Pour importer un fichier XML, il faut que les données qu'il contient satisfassent à certaines
règles. Le contenu du fichier d'importation doit avoir la forme correcte. Il ne doit présenter
aucune erreur de syntaxe ni aucune erreur dans la structure des données. En cas de
modifications importantes, utilisez un éditeur XML, car ce dernier contrôle ces critères avant
l'importation.

Lors de l'importation du fichier XML dans TIA Portal, les données contenues dans le fichier
sont d'abord contrôlées afin d'exclure toute erreur formelle dans le code XML. Si des erreurs
sont détectées lors de la vérification, l'importation est interrompue et les erreurs s'affichent
dans une exception (voir Traitement des exceptions (Page 193)).

Voir aussi
Notions élémentaires sur l'importation/exportation (Page 199)

Bibliothèques standard (Page 34)

Importer un type de données utilisateur (Page 269)

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
212 Manuel système, 10/2016

8.1.9 Exportation/importation de graphiques

Introduction
Lorsque vous exportez des données de configuration à partir du portail TIA, les graphiques
sélectionnés ou référencés par un objet ne sont pas enregistrés dans le fichier XML. Ils sont
enregistrés séparément lors de l'exportation. Les graphiques sont référencés dans le fichier
XML par une indication d'un chemin d'accès relatif et de leur nom de fichier. Dans le fichier
XML, une référence à un graphique est structurée comme objet et contient, comme les autres
objets, une liste d'attributs ainsi qu'une liste de liens le cas échéant.

Exportation de graphiques
Lors de l'exportation de données de configuration, seuls les graphiques ayant été directement
sélectionnés pour l'exportation sont exportés. Les graphiques pouvant être exportés sont
enregistrés selon leur langue dans le portail TIA. Quand un projet est configuré en plusieurs
langues, toutes les versions de langue utilisées sont exportées lors de l'exportation.

Lorsque vous exportez des graphiques, un nouveau dossier est créé dans le dossier du fichier
d'exportation. Les graphiques exportés sont enregistrés dans ce dossier. Si ce dossier existe
déjà, un nouveau dossier est créé et son nom est doté d'un numéro incrémenté.

Les graphiques sont enregistrés au même format de fichier que dans le projet. Le format n'est
ni modifié, ni converti, et la résolution, ainsi que l'intensité des couleurs, restent également
inchangées.

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 213

Pour la langue qui est choisie comme langue par défaut, c'est le code "default" qui est utilisé
comme extension.

Quand un fichier de même nom se trouve déjà dans le dossier, un numéro incrémenté est
ajouté au nom de fichier du graphique exporté.

Importation de graphiques
L'importation de graphiques implique les exigences suivantes :

● Les graphiques doivent avoir un format de fichier pris en charge par le portail TIA.

● Les graphiques doivent être référencés dans le fichier XML par une indication de chemin
relative.

Lorsque vous exportez un graphique, vous pouvez l'éditer à l'aide d'une application graphique
en dehors du portail TIA, puis le réimporter.

Voir aussi
Notions élémentaires sur l'importation/exportation (Page 199)

Exportation/importation
8.1 Vue d'ensemble

Automatiser des projets à l'aide de scripts
214 Manuel système, 10/2016

8.2 Importation/exportation de données du projet

8.2.1 Exportation de textes de projet

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Les textes de projet se trouvent sous le nœud "Langues et ressources" d'un projet dans TIA
Portal. Cette fonction vous permet d'exporter des textes de projet dans un fichier xlsx, ce qui
peut servir à des fins de traduction, par exemple. Les restrictions valables pour l'interface
utilisateur s'appliquent également à l'exportation et l'importation de textes de projet.
Restrictions valables :

● Les textes exportés peuvent être importés uniquement dans le projet dont ils ont été
exportés.

● Les textes ne peuvent être traduits que dans les langues existant dans le projet.

● Seuls les textes existants peuvent être réimportés. Une fois que des textes ont été
supprimés du projet d'origine ou créés à nouveau, l'importation de ces textes échoue.

Vous devez définir les paramètres suivants :

Nom Exemple Description
fileName "D:\Test\ProjectText.xlsx" Chemin complet du fichier d'ex‐

portation
 sourceLanguage new CultureInfo("en-US") Langue de référence de laquelle

le texte doit être traduit
 targetLanguage new CultureInfo("de-DE") Langue de référence dans la‐

quelle le texte doit être traduit

Des paramètres de l'exemple utilisé, il résulte le code de programme suivant pour l'exportation
de textes de projet :

project.ExportProjectTexts (@"D:\Test\ProjectText.xlsx", new CultureInfo("en-US"), new
CultureInfo("de-DE"));

Exportation/importation
8.2 Importation/exportation de données du projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 215

8.2.2 Importation de textes de projet

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Cette fonction vous permet d'importer des textes de projet d'un fichier xlsx, ce qui peut servir
à des fins de traduction, par exemple. Les restrictions valables pour l'interface utilisateur
s'appliquent également à l'exportation et l'importation de textes de projet. Restrictions valables :

● Les textes exportés peuvent être importés uniquement dans le projet dont ils ont été
exportés.

● Les textes traduits peuvent être importés uniquement dans les langues disponibles dans
le projet dont ils ont été exportés.

● Seuls les textes existants peuvent être réimportés. Une fois que des textes ont été
supprimés du projet d'origine ou créés à nouveau, l'importation de ces textes échoue.

Vous devez définir les paramètres suivants :

Nom Exemple Description
fileName "D:\Test\ProjectText.xlsx" Chemin complet du fichier d'im‐

portation
 updateSourceLanguage true A "true", le texte de la langue de

référence est actualisé à l'aide
du fichier d'exportation.
A "false", le texte de la langue de
référence n'est pas actualisé.

Des paramètres de l'exemple utilisé, il résulte le code de programme suivant pour l'importation
de textes de projet :

ProjectTextResult result = project.ImportProjectTexts(@"D:\Test\ProjectText.xlsx", true);

L'importation de textes de projet fournit en retour un objet qui affiche l'état de l'importation et
indique le chemin où le journal d'importation est enregistré. Pour accéder à ces propriétés,
vous pouvez utiliser les codes suivants :

ProjectTextResultState resultState = result.State;
string logFilePath = result.Path;

Exportation/importation
8.2 Importation/exportation de données du projet

Automatiser des projets à l'aide de scripts
216 Manuel système, 10/2016

8.2.3 Graphiques

8.2.3.1 Exporter les graphiques d'un projet

Conditions
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Vous avez le choix entre exporter un graphique individuel ou exporter tous les graphiques de
la bibliothèque de graphiques d'un projet dans toutes les langues. Un fichier XML contenant
toutes les entrées du graphique du projet concernées est créé lors de l'exportation et référencé
avec les graphiques exportés. Les graphiques concernés sont stockés avec le fichier XML
dans le même répertoire du système de fichiers.

Pour que les graphiques exportés ("*.jpg", "*.bmp", "*.png", "*.ico" etc.) puissent être modifiés,
ces graphiques ne sont pas protégés en écriture.

Code du programme : Exporter un graphique
Pour exporter le graphique requis, utilisez le code de programme suivant :

//Exports all language variants of a single grafic
Project project = …;
MultiLingualGraphicComposition graphicsComposition = project.Graphics;
MultiLingualGraphic graphic = graphicsComposition.Find("graphicName");
graphic.Export(@"D:\ExportFolder\graphicName.xml", ExportOptions.WithDefaults);

Code du programme : Exporter tous les graphiques
Pour exporter tous les graphiques de la bibliothèque de graphiques, modifiez le code de
programme suivant :

//Exports all graphics of a graphic library
Project project = …;
MultiLingualGraphicComposition graphicsComposition = project.Graphics;
foreach(MultiLingualGraphic graphic in graphicsComposition)
{
 graphic.Export(String.Format(@"D:\Graphics\{0}.xml", graphic.Name),
ExportOptions.WithDefaults);
}

Exportation/importation
8.2 Importation/exportation de données du projet

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 217

Voir aussi
Bibliothèques standard (Page 34)

8.2.3.2 Importer des graphiques dans un projet

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Un fichier XML est stocké avec les différentes versions linguistiques d'un graphique dans un
répertoire de votre système de fichiers.

Vous pouvez référencer tous les graphiques dans un chemin relatif de votre fichier XML.

Vous pouvez désormais importer toutes les versions linguistiques d'un graphique contenu
dans le fichier XML dans la bibliothèque de graphiques.

Veuillez également tenir compte de ce qui suit Importation de données de configuration
(Page 211).

Code du programme
Pour importer un ou plusieurs graphiques, modifiez le code de programme suivant :

//Import all language variants of a single graphic
Project project = …;
MultiLingualGraphicComposition graphicComposition = project.Graphics;
graphicComposition.Import(@"D:\Graphics\Graphic1.xml", ImportOptions.Override);

Voir aussi
Bibliothèques standard (Page 34)

Exportation/importation
8.2 Importation/exportation de données du projet

Automatiser des projets à l'aide de scripts
218 Manuel système, 10/2016

8.3 Importation/exportation de données d'un appareil IHM

8.3.1 Cycles

8.3.1.1 Exportation de cycles

Conditions
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
L'interface API prend en charge l'exportation de tous les cycles d'un appareil IHM connu vers
un fichier XML. La génération du fichier d'export correspondant indique que l'export est
terminé.

Code du programme
Pour exporter des cycles d'un appareil IHM vers un fichier XML, modifiez le code de
programme suivant :

//Exports cycles from an HMI device
private static void ExportCyclesFromHMITarget(HmiTarget hmitarget)
{
 CycleComposition cycles = hmitarget.Cycles;
 foreach(Cycle cycle in cycles)
 {
 cycle.Export(String.Format(@"C:\OpennessSamples\ExportFiles\" + cycle.Name +
".xml"), ExportOptions.WithDefaults);
 }
}

Voir aussi
Bibliothèques standard (Page 34)

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 219

8.3.1.2 Importer des cycles

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Si vous utilisez ImportOptions.None, le numéro de la composition (Composition count)
vous permet de détecter les cycles effectivement importés. Vous avez accès à ces cycles
importés.

Remarque

Les cycles standard ont des propriétés qui ne peuvent être éditées dans l'interface utilisateur.
Si vous indiquez dans le fichier d'importation que ces propriétés doivent être modifiées,
l'importation déclenche une NonRecoverableException et ferme TIA Portal.

Code du programme
Pour importer un cycle ou plusieurs cycles dans un appareil IHM depuis un fichier XML,
modifiez le code de programme suivant :

//Imports cycles to an HMI device
private static void ImportCyclesToHMITarget(HmiTarget hmitarget)
{
 CycleComposition cycles = hmitarget.Cycles;
 string dirPathImport = @"C:\OpennessSamples\Import\";
 string cycleImportFileName = "CycleImport.xml";
 string fullFilePath = dirPathImport + cycleImportFileName;

 cycles.Import(fullFilePath, ImportOptions.None);
}

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
220 Manuel système, 10/2016

8.3.2 Table des variables

8.3.2.1 Exporter des tables de variables IHM

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Établissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouverture d'un projet (Page 90)

Utilisation
Un fichier XML est exporté par table de variables IHM. L'API prend en charge ce processus
d'exportation. L'exportation de tables de variables est aussi disponible dans les sous-dossiers.

Code du programme : Exporter toutes les tables de variables IHM à partir d'un dossier indiqué
Pour exporter toutes les tables de variables IHM d'un dossier défini, modifiez le code de
programme suivant :

//Exports all tag tables from a tag folder
private static void ExportAllTagTablesFromTagFolder(HmiTarget hmitarget)
{
 TagSystemFolder folder = hmitarget.TagFolder;
 TagTableComposition tables = folder.TagTables;

 foreach (TagTable table in tables)
 {
 string fullFilePath = string.Format(@"C:\OpennessSamples\TagTables\{0}.xml",
table.Name);
 table.Export(fullFilePath, ExportOptions.WithDefaults);

 }
}

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 221

Code du programme : Exporter une table de variables IHM
Pour exporter une seule table de variables IHM, modifiez le code de programme suivant :

//Exports a tag table from an HMI device
private static void ExportTagTableFromHMITarget(HmiTarget hmitarget)
{
 string tableName = "Tag table XYZ";
 TagSystemFolder folder = hmitarget.TagFolder;
 TagTableComposition tables = folder.TagTables;
 TagTable table = tables.Find(tableName);

 if (table != null)
 {
 string fullFilePath = string.Format(@"C:\OpennessSamples\TagTables\{0}.xml",
table.Name);
 table.Export(fullFilePath, ExportOptions.WithDefaults);
 }
}

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
222 Manuel système, 10/2016

Code du programme : Exporter toutes les tables de variables IHM
Pour exporter toutes les tables de variables IHM, modifiez le code de programme suivant :

//Exports all tag tables from an HMI device
private static void ExportAllTagTablesFromHMITarget(HmiTarget hmitarget)
{
 TagSystemFolder sysFolder = hmitarget.TagFolder;

 //First export the tables in underlying user folder
 foreach (TagUserFolder userFolder in sysFolder.Folders)
 {
 ExportUserFolderDeep(userFolder);
 }

 //then, export all tables in the system folder
 ExportTablesInSystemFolder(sysFolder);
}

private static void ExportUserFolderDeep(TagUserFolder rootUserFolder)
{
 foreach (TagUserFolder userFolder in rootUserFolder.Folders)
 {
 ExportUserFolderDeep(userFolder);
 }
 ExportTablesInUserFolder(rootUserFolder);
}

private static void ExportTablesInUserFolder(TagUserFolder folderToExport)
{
 TagTableComposition tables = folderToExport.TagTables;
 foreach (TagTable table in tables)
 {
 string fullFilePath = string.Format(@"C:\OpennessSamples\TagTables\{0}.xml",
table.Name);
 table.Export(fullFilePath, ExportOptions.WithDefaults);
 }
 }

private static void ExportTablesInSystemFolder(TagSystemFolder folderToExport)
{
 TagTableComposition tables = folderToExport.TagTables;
 foreach (TagTable table in tables)
 {
 string fullFilePath = string.Format(@"C:\OpennessSamples\TagTables\{0}.xml",
table.Name);
 table.Export(fullFilePath, ExportOptions.WithDefaults);
 }
 }

Voir aussi
Bibliothèques standard (Page 34)

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 223

8.3.2.2 Importer une table de variables IHM

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Établissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir projet (Page 90)

Code du programme
Pour importer la table de variables IHM d'un fichier XML dans un dossier personnalisé ou un
dossier système, modifiez le code de programme suivant :

//Imports a single HMI tag table from a XML file
private static void ImportSingleHMITagTable(HmiTarget hmitarget)
{
 TagSystemFolder folder = hmitarget.TagFolder;
 TagTableComposition tables = folder.TagTables;

 string fullFilePath = @"C:\OpennessSamples\TagTables\myExportedTagTable.xml";
 tables.Import(fullFilePath, ImportOptions.Override);
}

Importation erronée de variables
Si vous utilisez les caractères spéciaux suivants dans des noms de variables ou de variables
référencées, l'importation de variables échoue :

● . (Point)

● \ (Barre oblique inversée)

Solution 1 :

Vérifiez avant une exportation que les noms des variables à exporter ou des variables
référencées ne contiennent aucun point ou barre oblique inversée.

Solution 2 :

Ajoutez dans le fichier d'importation des guillemets aux noms des variables ou de variables
référencées.

Exemple

● Nom de variable avec caractère spécial :
<name>Siemens.Simatic.Hmi.Utah.Tag.HmiTag:41000_Options_Time_Date
\DB_SFX0908_HMI1.Actual_Date_Time.Hour</name>

● Nom de variable avec caractère spécial, entre guillemets :
<name>"Siemens.Simatic.Hmi.Utah.Tag.HmiTag:41000_Options_Time_Date
\DB_SFX0908_HMI1.Actual_Date_Time.Hour"</name>

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
224 Manuel système, 10/2016

Voir aussi
Bibliothèques standard (Page 34)

8.3.2.3 Exporter des variables individuelles d'une table de variables IHM

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Établissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir projet (Page 90)

Utilisation
Les types d'objet de modèle d'objet suivants peuvent exister sous la forme d'éléments
subordonnés d'une variable HMI et sont pris en compte à l'exportation :

MultilingualText Pour commentaire, TagValue, DisplayName
TagArrayMemberTag Pour éléments de tableau IHM
TagStructureMember Pour éléments de structure IHM
Événement Pour événements configurés
MultiplexEntry Pour les entrées multiplex configurées de variables

Code du programme
Pour exporter une seule variable d'une table de variables IHM vers un fichier XML, modifiez
le code de programme suivant :

//Exports a selected tag from a tag table
private static void ExportSelectedTagFromTagTable(HmiTarget hmitarget)
{
 TagSystemFolder tagFolder = hmitarget.TagFolder;
 TagTable mytable = tagFolder.TagTables.Find("MyTagTable");

 TagComposition containingTags = mytable.Tags;
 Tag myTag = containingTags.Find("MyTag");

 if (myTag != null)
 {
 string fullFilePath = string.Format(@"C:\OpennessSamples\Tags\{0}.xml", myTag.Name);
 myTag.Export(fullFilePath, ExportOptions.WithDefaults);
 }
}

Voir aussi
Bibliothèques standard (Page 34)

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 225

8.3.2.4 Importer des variables individuelles d'une table de variables IHM

Conditions
● L'application Openness est connectée au portail TIA.

VoirÉtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouverture d'un projet (Page 90)

Utilisation
Les types d'objet de modèle d'objet suivants peuvent exister sous la forme d'éléments
subordonnés d'une variable HMI et être pris en compte à l'importation :

MultilingualText Pour commentaire, TagValue, DisplayName
TagArrayMemberTag Pour éléments de tableau IHM
TagStructureMember Pour éléments de structure IHM
Événement Pour événements configurés
MultiplexEntry Pour les entrées multiplex configurées de variables

Code du programme
Pour importer une variable IHM dans une table de variables IHM depuis un fichier XML,
modifiez le code de programme suivant :

//Imports a tag into a tag table
private static void ImportTagIntoTagTable(HmiTarget hmitarget)
{
 TagSystemFolder tagFolder = hmitarget.TagFolder;
 TagTable myTable = tagFolder.DefaultTagTable;
 TagComposition tagComposition = myTable.Tags;

 string fullFilePath = @"C:\OpennessSamples\Tags\myExportedTag.xml";
 tagComposition.Import(fullFilePath, ImportOptions.Override);
}

Voir aussi
Bibliothèques standard (Page 34)

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
226 Manuel système, 10/2016

8.3.2.5 Particularités de l'importation/exportation de variables IHM

Introduction
L'exportation/importation des variables IHM suivantes présentent des particularités :

● Variables IHM externes avec liaison intégrée

● Variables IHM avec le type de données "UDT"

Codes de programme similaires
Le code de programme pour les variables IHM susmentionnées est presque identique aux
codes de programme suivants :

● Code du programme : Exportation de variables IHM (Page 225)

● Code du programme : Importation de variables IHM (Page 226)

Conditions requises
● L'application Openness est connectée àTIA Portal.

Voir Etablissement d'une connexion à TIA Portal (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Particularités de l'importation/exportation d'une variable IHM externe avec liaison intégrée
Lors de l'exportation d'une variable IHM externe avec liaison IHM intégrée, seule la liaison des
variables IHM à la variable API est enregistrée dans le fichier d'exportation, à la place des
données de variables API.

Avant l'importation, assurez-vous que l'API, les variables API correspondantes et la liaison
intégrée à l'API correspondant sont présents dans le projet. Si tel n'est pas le cas, il faut créer
ces éléments avant de lancer l'importation. Lors de l'importation consécutive de la variable
IHM externe, la liaison à la variable API est réactivée.

Les noms des variables IHM externes au-delà de toutes les tables de variables d'un projet
doivent être univoques. Si vous n'indiquez pas la table de variables correspondant à la variable
IHM lors de l'importation, l'importation est annulée.

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 227

Pour importer une variable IHM externe avec liaison intégrée, utilisez la structure XML
suivante :

<Hmi.Tag.Tag ID="1" CompositionName="Tags">
 <AttributeList>
 <Name>MyIntegratedHmiTag_1</Name>
 </AttributeList>
 <LinkList>
 <AcquisitionCycle TargetID="@OpenLink">
 <Name>1 s</Name>
 </AcquisitionCycle>
 <Connection TargetID="@OpenLink">
 <Name>HMI_Connection_MP277_300400</Name> <- Must exist in the project
 </Connection>
 <ControllerTag TargetID="@OpenLink">
 <Name>Datablock_1.DBElement1</Name> <- Must exist in the project
 </ControllerTag>
 </LinkList>
</Hmi.Tag.Tag>

Particularités de l'importation/exportation d'une variable IHM du type de données "UDT"
Lors de l'exportation d'une variable IHM du type de données "UDT", le raccourci vers le type
de données est exporté. Pour l'importation, seuls les types de données versionnés sont pris
en charge.

Les types de données doivent être enregistrés dans la bibliothèque de projet. Les types de
données de la bibliothèque globale ne sont pas pris en charge.

Les règles suivantes doivent être respectées pour l'importation :

● Les types de données référencés doivent figurer dans la bibliothèque de projet.
L'importation est annulée si le type de données ne figurent pas dans la bibliothèque de
projet.

● Le type de données référencé doit être versionné. L'attribution de versions est prise en
charge à partir de TIA Portal V13 SP1.
Si le type de données n'est pas versionné, une exception est déclenchée.

Remarque
Le premier type de données trouvé est utilisé pour la résolution de la référence lors de
l'importation.

Tenez compte ici des points suivants : Le répertoire racine de la bibliothèque est d'abord
parcouru, puis les sous-dossiers.

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
228 Manuel système, 10/2016

Pour importer une variable IHM du type de données "UDT", utilisez la structure XML suivante :

<Hmi.Tag.Tag ID="1" CompositionName="Tags">
 ...
 <LinkList>
 <DataType TargetID="@OpenLink">
 <Name>HmiUdt_1 V 1.0.0</Name> <- Must exist in the project library
 </DataType>
 ...
 </LinkList>
 ...
</Hmi.Tag.Tag>

8.3.3 Scripts VB

8.3.3.1 Exporter des scripts VB

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Tous les dossiers personnalisés de niveau inférieur sont pris en compte au cours de
l'exportation. Pour chaque script VB exporté est créé un fichier XML spécifique.

Code du programme : Exporter un script VB
Pour exporter un script VB sélectionné d'un appareil IHM vers un fichier XML, modifiez le code
de programme suivant :

//Exports a single vbscript of an HMI device
private static void ExportSingleVBScriptOfHMITarget(HmiTarget hmitarget)
{
 VBScriptSystemFolder vbScriptFolder = hmitarget.VBScriptFolder;
 VBScriptComposition vbScripts = vbScriptFolder.VBScripts;
 VBScript vbScript = vbScripts.Find("MyVBScript");

 string fullFilePath = String.Format(@"C:\OpennessSamples\Export\Scripts\{0}.xml",
vbScript.Name);
 vbScript.Export(fullFilePath, ExportOptions.None);
}

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 229

Voir aussi
Bibliothèques standard (Page 34)

8.3.3.2 Exporter des scripts VB à partir d'un dossier

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Pour chaque script VB exporté est créé un fichier XML spécifique.

Code du programme : exporter un script VB d'un dossier personnalisé
Pour exporter un script VB d'un dossier personnalisé vers un fichier XML, modifiez le code de
programme suivant :

//Exports vbscripts of a selected vbscript system folder
private static void ExportVBScriptOfSelectedVBScriptSystemFolder(HmiTarget hmitarget)
{
 string dirPathExport = @"C:\Export";
 VBScriptSystemFolder vbScriptFolder = hmitarget.VBScriptFolder;
 VBScriptUserFolderComposition vbUserFolders = vbScriptFolder.Folders;
 VBScriptUserFolder vbUserFolder = vbUserFolders.Find("MyVBUserFolder");
 VBScriptComposition vbScripts = vbUserFolder.VBScripts; foreach (VBScript script in
vbScripts)
 {
 string fullPathExport = String.Format(@"C:\OpennessSamples\Export\Scripts\{0}.xml",
script.Name);
 script.Export(fullPathExport, ExportOptions.None);
 }
}

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
230 Manuel système, 10/2016

Code du programme : Exporter tous les scripts VB à partir d'un dossier système
Pour exporter tous les scripts VB du dossier système, modifiez le code de programme suivant :

//Exports all vbscripts by using a foreach loop
private static void ExportAllVBScripts(HmiTarget hmitarget)
{
 VBScriptSystemFolder vbScriptFolder = hmitarget.VBScriptFolder;
 VBScriptComposition vbScripts = vbScriptFolder.VBScripts;
 if (null != vbScripts)
 {
 foreach (VBScript script in vbScripts)
 {
 String fullFilePath = String.Format(@"C:\OpennessSamples\Scripts\{0}.xml",
script.Name);
 script.Export(fullFilePath, ExportOptions.None);
 }
 }
}

Voir aussi
Bibliothèques standard (Page 34)

8.3.3.3 Importer des scripts VB

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Les importations groupées sont prises en charge : Sinon, vous pouvez aussi utiliser un code
de programme avec une boucle Foreach (Exporter des scripts VB (Page 229)).

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 231

Code du programme
Pour importer un script VB dans un appareil IHM depuis un fichier XML, modifiez le code de
programme suivant :

//Imports a single vbscript to an HMI device
private static void ImportSingleVBScriptToHMITarget(HmiTarget hmitarget)
{
 string dirPathImport = @"C:\OpennessSamples\Import";
 VBScriptSystemFolder vbScriptFolder = hmitarget.VBScriptFolder;
 VBScriptComposition vbScripts = vbScriptFolder.VBScripts;
 if (null != vbScripts)
 {
 string fullPath = dirPathImport + "ImportTest_VBScript.xml";
 vbScripts.Import(fullPath, ImportOptions.None);
 }
}

Voir aussi
Bibliothèques standard (Page 34)

8.3.4 Listes de textes

8.3.4.1 Exporter des listes de textes à partir d'un appareil IHM

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
L'exportation de listes de textes et de graphiques inclut toutes les entrées des listes. Les listes
de textes et de graphiques peuvent être exportées séparément.

Les listes de textes d'un appareil IHM sont exportées. Pour chaque liste de textes exportée,
un fichier XML spécifique est créé.

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
232 Manuel système, 10/2016

Code du programme
Pour exporter des listes de textes d'un appareil IHM, modifiez le code de programme suivant :

//Export TextLists
private static void ExportTextLists(HmiTarget hmitarget)
{
 TextListComposition text = hmitarget.TextLists;
 foreach (TextList textList in text)
 {
 String fullFilePath = String.Format(@"C:\OpennessSamples\TextGraphic\TextLists
\{0}.xml", textList.Name);
 textList.Export(fullFilePath, ExportOptions.WithDefaults);
 }
}

Voir aussi
Bibliothèques standard (Page 34)

8.3.4.2 Importer une liste de texte dans un appareil IHM

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
L'interface API prend en charge l'importation d'une liste de textes dans un appareil IHM depuis
un fichier XML.

Code du programme
Pour importer une liste de textes dans un appareil IHM depuis un fichier XML, modifiez le code
de programme suivant :

//Imports a single TextList
private static void ImportSingleTextList(HmiTarget hmitarget)
{
 TextListComposition textListComposition = hmitarget.TextLists;
 IList<TextList> importedTextLists = textListComposition.Import(@"C:\OpennessSamples
\Import\textListImport.xml", ImportOptions.Override);
}

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 233

Voir aussi
Bibliothèques standard (Page 34)

8.3.4.3 Formats XML avancés pour l'exportation/importation de listes de textes

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion à TIA Portal (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● Exportation standard de listes de textes
Voir Exporter des listes de textes à partir d'un pupitre opérateur (Page 232)

● Importation standard de listes de textes
Voir Importer des listes de textes dans un pupitre opérateur (Page 233)

Utilisation
Une liste de textes peut aussi contenir des textes formatés Cela concerne pour l'essentiel les
formatages suivants :

● Formatage de texte

● Références aux autres objets dans le texte

Les formatages textuels purs dans une liste de textes à exporter conduisent à un format
d'exportation XML étendu. Les références aux objets sont exprimés sous la forme d'Open
Links. De même que les listes de textes à importer avec des textes formatés.

Les formats d'exportation XML étendus peuvent aussi nettement se complexifier. A titre
d'exemple, d'autres liens que le seul nom de l'objet peuvent parfois exister dans la liste de

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
234 Manuel système, 10/2016

textes, p. ex. via un Open Link vers une variable API d'un autre appareil. Si tel est le cas, toutes
les informations doivent être codées en une chaîne de caractères pour supprimer l'Open Link.

<?xml version="1.0" encoding="utf-8"?>
<Document>
 <!-- ... -->
 <MultilingualText ID="4" CompositionName="Text">
 <AttributeList>
 <TextItems>
 <Value lang="en-US">
 <body >
 <p>
 Mary<field ref="0" />
 </p>
 </body>
 <fieldinfos >
 <fieldinfo name="0" domaintype="HMICommonTagDisplayFormat" >
 <reference TargetID="@OpenLink">
 <name>Siemens.Simatic.Hmi.Utah.Tag.HmiTag:Tag_1</name>
 </reference>
 <domaindata>
 <format displaytype="Decimal" length="1" formatpattern="9" />
 </domaindata>
 </fieldinfo>
 </fieldinfos>
 </Value>
 </TextItems>
 </AttributeList>
 </MultilingualText>
 <!-- ... -->
</Document>

8.3.5 Listes de graphiques

8.3.5.1 Exporter les listes de graphiques

Conditions
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
L'exportation de listes de textes et de graphiques inclut toutes les entrées des listes. Les listes
de textes et de graphiques peuvent être exportées séparément.

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 235

Un fichier XML est créé par liste de graphiques. Les objets graphiques globaux contenus dans
les listes de graphiques sont exportés sous la forme d'Open Links.

Code du programme
Pour exporter des listes de graphiques d'un pupitre opérateur, modifiez le code de programme
suivant :

//Exports GraphicLists
private static void ExportGraphicLists(HmiTarget hmitarget)
{
 GraphicListComposition graphic = hmitarget.GraphicLists;
 foreach (GraphicList graphicList in graphic)
 {
 string fullFilePath = String.Format(@"C:\OpennessSamples\TextGraphic\GraphicLists
\{0}.xml", graphicList.Name);
 graphicList.Export(fullFilePath, ExportOptions.WithDefaults);
 }
}

Voir aussi
Bibliothèques standard (Page 34)

8.3.5.2 Importer les listes de graphiques

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
L'interface API prend en charge l'importation d'une liste de graphiques dans un appareil IHM
depuis un fichier XML.

Tous les objets graphiques référencés de la liste de graphiques sont inclus dans l'importation.
Les références aux graphiques globaux ne sont pas incluses. Si les graphiques globaux
référencés existent dans le projet cible, les références aux graphiques globaux sont rétablies
lors de l'importation.

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
236 Manuel système, 10/2016

Code du programme
Pour importer une liste de graphiques dans un appareil IHM depuis un fichier XML, modifiez
le code de programme suivant :

//Imports a single GraphicList
private static void ImportSingleGraphicList(HmiTarget hmitarget)
{
 GraphicListComposition graphicListComposition = hmitarget.GraphicLists;
 IList<GraphicList> importedGraphicLists = graphicListComposition.Import(@"C:
\OpennessSamples\Import\graphicListImport.xm", ImportOptions.Override);
}

Voir aussi
Bibliothèques standard (Page 34)

8.3.6 Connexions

8.3.6.1 Exporter des connexions

Conditions
● L'application Openness est connectée au portail TIA.

VoirÉtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouverture d'un projet (Page 90)

Utilisation
L'interface API prend en charge l'exportation de toutes les liaisons d'un appareil IHM vers un
fichier XML.

Remarque
Exporter des connexions intégrées

L'exportation de connexions intégrées n'est pas prise en charge.

Pour chaque connexion exportée, un fichier XML spécifique est créé.

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 237

Code du programme
Pour exporter toutes les connexions d'un appareil IHM vers un fichier XML, modifiez le code
de programme suivant :

//Exports communication connections from an HMI device
private static void ExportCommunicationConnectionsFromHMITarget(HmiTarget hmitarget)
{
 ConnectionComposition connections = hmitarget.Connections;
 foreach(Connection conn in connections)
 {
 String fullFilePath = String.Format(String.Format(@"C:\OpennessSamples\Export
\{0}.xml", conn.Name));
 conn.Export(fullFilePath, ExportOptions.WithDefaults);
 }
}

Voir aussi
Bibliothèques standard (Page 34)

8.3.6.2 Importation de connexions

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouverture d'un projet (Page 90)

Utilisation
L'interface API prend en charge l'importation de toutes les liaisons d'un appareil IHM dans un
appareil IHM depuis un fichier XML. Si vous souhaitez importer plusieurs liaisons de
communication, importez à chaque fois le fichier XML pour la connexion correspondante.

Remarque

Si vous importez une liaison dans un projet dans lequel une liaison intégrée est déjà configurée,
cette liaison n'est pas écrasée. L'importation est annulée et une Exception est déclenchée.

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
238 Manuel système, 10/2016

Code du programme
Pour importer une seule liaison d'un appareil IHM dans un appareil IHM depuis un fichier XML,
modifiez le code de programme suivant :

//Imports Communication connections to an HMI device
private static void ImportCommunicationConnectionsToHMITarget(HmiTarget hmitarget)
{
 ConnectionComposition connections = hmitarget.Connections;
 IList<Connection> importedConnectionLists = connections.Import(@"C:\OpennessSamples
\Import\ConnectionImport.xml", ImportOptions.Override);
}

Voir aussi
Bibliothèques standard (Page 34)

8.3.7 Vues

8.3.7.1 Vue d'ensemble des objets graphiques pouvant être exportés

Utilisation
Vous pouvez importer ou exporter les vues suivantes par le biais de Public API :

Tableau 8-4 Vues prises en charge

Objet WinCC V14
Vue x
Vue globale x
Modèle de vue x
Fenêtre permanente x
Vue contextuelle –
Vue coulissante –

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 239

Vous pouvez importer ou exporter les objets graphiques suivants par le biais de Public API :

Tableau 8-5 Objets graphiques pris en charge

Zone Type d'objet WinCC V14
Objets simples Ligne x

Ligne polygonale x
Polygone x
Ellipse x
Segment d'ellipse –
Segment de cercle –
Arc d'ellipse –
Arc de cercle –
Cercle x
Rectangle x
Connecteur –
Champ de texte x
Affichage graphique x
Tuyau –
Double raccord en T –
Raccord en T –
Coude –

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
240 Manuel système, 10/2016

Zone Type d'objet WinCC V14
Eléments Champ d'E/S x

Champ d'E/S graphique x
Champ de texte éditable –
Champ de liste –
Zone de liste déroulante –
Bouton x
Bouton rond –
Bouton-poussoir lumineux x
Commutateur x
Champ d'E/S symbolique x
Champ date/heure x
Bargraphe x
Bibliothèque d'icônes x
Curseur x
Barre de défilement –
Case à cocher –
Bouton d'option –
Instrument à aiguille x
Horloge x
Vue de l'espace mémoire –
Touches de fonction (touches programmables) x
Groupes x
Instances de bloc d'affichage –

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 241

Zone Type d'objet WinCC V14
Controls Fenêtre de vues –

Vue des utilisateurs x
Travail d'impression/Diagnostic de script –
Affichage caméra –
Affichage PDF –
Vue de recette –
Vue des alarmes –
Indicateur d'alarme –
Fenêtre d'alarmes –
Vue de courbes f(x) –
Vue de courbes f(t) –
Vue tabellaire –
Table des valeurs –
HTML Browser –
Media Player –
Diagnostic de voie –
WLAN - Réception –
Zone - Nom –
Zone - Signal –
Nom de la plage d'action –
Nom de la plage d'action (RFID) –
Signal de la plage d'action –
Etat de chargement –
Molette –
Indicateur d'aide –
Vue Sm@rtClient –
Visualisation/forçage –
Vue de l'espace mémoire –
Affichage de section de programme NC –
Vue de diagnostic système –
Fenêtre de diagnostic système –

Voir aussi
Notions élémentaires sur l'importation/exportation (Page 199)

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
242 Manuel système, 10/2016

8.3.7.2 Exporter toutes les vues d'un appareil IHM

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Un autre code de programme est nécessaire pour exporter toutes les vues agrégées de tous
les dossiers personnalisés d'un appareil IHM.

Code du programme : Exporter toutes les vues d'un dossier personnalisé
Pour exporter les vues d'un dossier de vues personnalisé d'un appareil IHM et le dossier de
vues système, modifiez le code de programme suivant :

//Exports all screens of an HMI device
private static void ExportScreensFromFolder(HmiTarget hmitarget)
{
 ScreenUserFolder folder = hmitarget.ScreenFolder.Folders.Find("MyScreenFolder");
 //or ScreenSystemFolder folder = …;
 ScreenComposition screens = folder.Screens;
 foreach(Screen screen in screens)
 {
 screen.Export(String.Format(@"D:\Screens\{0}.xml", screen.Name),
 ExportOptions.WithDefaults);
 }
}

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 243

Code du programme : exporter toutes les vues d'un appareil IHM quel que soit l'utilisateur
Pour exporter toutes les vues, modifiez le code de programme suivant :

public static void ExportScreens(string screenPath, HmiTarget target)
{
 string exportFilePath = @"C:\OpennessSamples\Screens";

 foreach(Screen screen in target.ScreenFolder.Screens)
 {
 screen.Export(System.IO.Path.Combine(exportFilePath, screen.Name + ".xml"),
ExportOptions.WithDefaults);
 }
 foreach(ScreenUserFolder folder in target.ScreenFolder.Folders)
 {
 ExportScreenUserFolder(System.IO.Path.Combine(exportFilePath, folder.Name), folder);
 }
}

private static void ExportScreenUserFolder(string exportFilePath,ScreenUserFolder folder)
{
 foreach(Screen screen in folder.Screens)
 {
 screen.Export(System.IO.Path.Combine(exportFilePath, screen.Name + ".xml"),
ExportOptions.WithDefaults);
 }
 foreach(ScreenUserFolder subFolder in folder.Folders)
 {
 ExportScreenUserFolder(System.IO.Path.Combine(exportFilePath, subFolder.Name),
subFolder);
 }
}

Voir aussi
Bibliothèques standard (Page 34)

8.3.7.3 Exporter une vue à partir d'un dossier de vues

Conditions
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
244 Manuel système, 10/2016

Utilisation
Les données suivantes d'une vue sont exportées :

Vue Données
Propriétés ActiveLayer, BackColor, Height, Width, Name, Number, HelpText
Ouvrir des liens Template
Compositions ● Layers

● Animations
Toutes les animations basées sur Runtime Advanced configurées sont
exportées.

● Events
Tous les événement basés sur Runtime Advanced configurés sont exportés.

● Softkeys
Toutes les touches programmables configurées sont exportées.

Pour chaque couche, les données suivantes sont exportées :

Remarque

le nom de la couche dans TIA Portal est un texte vide par défaut.

Si vous ne modifiez pas le nom de la couche dans TIA Portal, le nom de la couche exportée
est vide. Dans ce cas, le nom de la couche affiché dans TIA Portal dépend de la langue de
l'interface utilisateur.

Si vous modifiez le nom de la couche dans TIA Portal, le nom modifié sera affiché dans toutes
les langues correspondantes.

Couche Données
Propriétés Name, Index, VisibleES
Compositions ScreenItems (avec éléments de vue)

Les éléments suivants ne sont pas inclus dans l'exportation :

● Propriétés spécifiques à SCADA

● Couches qui ne contiennent pas d'éléments de vue et dont les propriétés ne peuvent se
distinguent des valeurs par défaut.

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 245

Code du programme
Pour exporter une seule vue à partir du dossier utilisateur ou du dossier système d'un appareil
IHM, modifiez le code de programme suivant :

//Exports a single screen from a screen folder
private static void ExportSingleScreenFromScreenFolder(HmiTarget hmitarget)
{
 string screenName = "Screen_1.xml";
 ScreenUserFolder folder = hmitarget.ScreenFolder.Folders.Find("MyScreenFolder");
 //or ScreenSystemFolder folder = hmitarget.ScreenFolder;
 ScreenComposition screens = folder.Screens;
 Screen screen = screens.Find(screenName);
 if (screen != null)
 {
 screen.Export(String.Format(@"C:\OpennessSamples\Screens\{0}.xml", screen.Name),
 ExportOptions.WithDefaults);
 }
}

Voir aussi
Bibliothèques standard (Page 34)

8.3.7.4 Importer des vues dans un appareil IHM

Conditions
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Les vues ne peuvent être importées que dans un type donné d'appareil IHM. L'appareil IHM
et l'appareil à partir duquel les vues ont été exportées sont du même type d'appareil.

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
246 Manuel système, 10/2016

Les données suivantes d'une vue sont exportées :

Vue Données
Propriétés ActiveLayer, BackColor, Height, Width, Name, Number, HelpText
Ouvrir des liens Templates
Compositions ● Layers

● Animations
Toutes les animations configurables pour des vues sont importées.

● Events
Toutes les animations configurables pour des événements sont importées.

● Softkeys
Toutes les animations configurables pour des touches programmables sont
importées.

Pour chaque couche, les données suivantes sont importées :

Remarque

Si vous avez indiqué un texte vide pour le nom de la couche avant l'importation, le nom de la
couche affiché dans TIA Portal dépend de la langue de l'interface utilisateur après l'importation.

Si vous avez attribué un nom à la couche, le nom indiqué est affiché dans toutes les langues
correspondantes après l'importation.

Couche Données
Propriétés Name, Index
Compositions ScreenItems

Restrictions :
● Lorsque la largeur et la hauteur d'une vue ne correspondent pas aux dimensions de

l'appareil, le processus d'importation est interrompu et une Exception est déclenchée.
L'ajustement des éléments de vue compris n'est pas pris en charge. C'est pourquoi,
certains éléments de vue peuvent se trouver en-dehors des limites de la vue. Si tel est le
cas, un avertissement du compilateur est émis.

● Le numéro de vue doit être univoque pour toutes les vues de l'appareil. L'importation d'une
vue est annulée si une vue avec un numéro de vue qui a déjà été créé dans l'appareil, est
trouvé. Si vous n'avez pas encore attribué de numéro à la vue, un numéro de vue univoque
est affecté à la vue pendant le processus d'importation.

● L'ordre des éléments de vue au sein de l'ordre Z doit être univoque et sans lacunes pour
chaque couche dans la vue. C'est pourquoi une vérification de la cohérence, qui répare
l'ordre si nécessaire, est effectuée après l'importation de la vue. Ce processus peut
entraîner la modification d'"Indices de tabulation" pour certains éléments de vue.
Vous pouvez modifier manuellement l'ordre Z des éléments de vue dans le fichier XML.
L'élément de vue au premier emplacement se trouve tout à la fin de l'ordre Z.

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 247

Remarque

Vous pouvez modifier les valeurs de largeur et hauteur d'un élément de vue dans le fichier
XML si la propriété "Adapter la taille au contenu" est activée pour l'élément de vue.

Remarque
L'importation de types de vue de la bibliothèque n'est pas prise en charge

À partir de WinCC V12 SP1, vous pouvez créer une vue en tant que type dans la bibliothèque.
Les instances du type de vue utilisées dans le projet peuvent être éditées avec l'application
Openness comme d'autres vues. Si vous exportez des vues, les instances des types de vue
sont exportées sans les informations de type.

Si vous réimportez ces vues dans le projet, les instances du type de vue sont écrasées et
l'instance est résolue par le type de vue.

Code du programme : Importer des vues dans un appareil IHM
Pour importer des vues avec la boucle For each dans un appareil IHM, modifiez le code de
programme suivant :

//Imports all screens to an HMI device
private static void ImportScreensToHMITarget(HmiTarget hmitarget)
{
 string[] exportedScreens = new string[]{"Screen_1.xml", "Screen_n.xml"};
 ScreenUserFolder folder = hmitarget.ScreenFolder.Folders.Find("MyScreenFolder");
 foreach (string screenFileName in exportedScreens)
 {
 folder.Screens.Import(String.Format(@”D:\Screens\{0}.xml”), screenFileName),
ImportOptions.Override);
 }
}

Code du programme : Importer dans un dossier utilisateurs nouvellement créé
Pour importer une vue dans un dossier utilisateur venant d'être créé d'un appareil IHM,
modifiez le code de programme suivant :

//Imports a single screen to a new created user folder of an HMI device
private static void ImportSingleScreenToNewFolderOfHMITarget(HmiTarget hmitarget)
{
 ScreenUserFolder folder = hmitarget.ScreenFolder.Folders.Create("MyFolder");
 folder.Screens.Import(@"C:\OpennessSamples\Import\ExportedScreens.xml",
ImportOptions.Override);
}

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
248 Manuel système, 10/2016

Voir aussi
Bibliothèques standard (Page 34)

8.3.7.5 Exporter une fenêtre permanente

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Les données suivantes de la fenêtre permanente sont exportées :

Fenêtre permanente Données
Propriétés ActiveLayer, BackColor, Height, Width, Name
Compositions Layers

Pour chaque couche, les données suivantes sont exportées :

Couche Données
Propriétés Name, Index
Compositions ScreenItems (avec éléments de vue)

Code du programme
Pour exporter une fenêtre permanente d'un appareil IHM vers un fichier XML, modifiez le code
de programme suivant :

//Exports a screenoverview
private static void ExportScreenoverview(HmiTarget hmitarget)
{
 ScreenOverview overview = hmitarget.ScreenOverview;
 if (overview != null)
 {
 overview.Export(@"C:\OpennessSamples\ExportedOverview.xml",
ExportOptions.WithDefaults);
 }
}

Voir aussi
Bibliothèques standard (Page 34)

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 249

8.3.7.6 Importer une fenêtre permanente

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Les données suivantes de la fenêtre permanente sont importées :

Fenêtre permanente Données
Propriétés ActiveLayer, BackColor, Height, Width, Name, Visible, Number
Compositions Layers

Pour chaque couche, les données suivantes sont importées :

Couche Données
Propriétés Name, Index
Compositions ScreenItems (avec éléments de vue)

Lorsque la largeur et la hauteur d'une vue ne correspondent pas aux dimensions de l'appareil,
le processus d'importation est interrompu et une Exception est déclenchée. L'ajustement des
éléments d'appareil compris (éléments de vue) n'est pas pris en charge. C'est pourquoi,
certains éléments d'appareil peuvent se trouver en-dehors des limites de la vue. Si tel est le
cas, un avertissement du compilateur est émis.

L'ordre des éléments d'appareil dans la fenêtre permanente doit être univoque et ne présenter
aucune lacune. C'est pourquoi une vérification de la cohérence, qui répare l'ordre si
nécessaire, est effectuée après l'importation de la fenêtre permanente. Ce processus peut
entraîner la modification d'"Indices de tabulation" pour certains éléments d'appareil.

Code du programme
Pour importer une fenêtre permanente dans un appareil IHM depuis un fichier XML, modifiez
le code de programme suivant :

//Imports a screenoverview
private static void ImportScreenOverview(HmiTarget hmiTarget)
{
 hmiTarget.ImportScreenOverview(@"C:\OpennessSamples\ExportedOverview.xml",
ImportOptions.Override);
}

Voir aussi
Bibliothèques standard (Page 34)

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
250 Manuel système, 10/2016

8.3.7.7 Exporter des modèles de vue à partir d'un dossier

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Les données suivantes du modèle de vue sont exportées :

Modèles de vue Données
Propriétés ActiveLayer, BackColor, Height, Width, Name
Compositions ● Layers

● Animations
Toutes les animations configurées sont exportées. Les animations SCADA
ne sont pas exportées.

● Softkeys
Toutes les touches programmables configurées sont exportées.

Pour chaque couche, les données suivantes sont exportées :

Couche Données
Propriétés Name, Index
Compositions ScreenItems (avec éléments de vue)

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 251

Code du programme : Exporter un modèle de vue
Pour exporter un seul modèle de vue à partir du dossier système ou d'un dossier personnalisé,
modifiez le code de programme suivant :

//Exports a single screen template
private static void ExportSingleScreenTemplate(HmiTarget hmiTarget)
{
 string templateName = "Template name XYZ";
 string fullFilePath = String.Format(@"C:\OpennessSamples\Templates\{0}.xml",
templateName);

 ScreenTemplateUserFolder folder =
hmitarget.ScreenTemplateFolder.Folders.Find("MyTemplateFolder");
 //or ScreenTemplateSystemFolder folder = hmitarget.ScreenTemplateFolder;
 ScreenTemplateComposition templates = folder.ScreenTemplates;
 ScreenTemplate template = templates.Find(templateName);
 if(template != null)
 {
 template.Export(fullFilePath, ExportOptions.WithDefaults);
 }
}

Code du programme : exporter tous les modèles de vue
Pour exporter tous les modèles de vue d'un certain dossier, modifiez le code de programme
suivant :

//Exports all screen templates of a selected folder
private static void ExportAllScreenTamplates(HmiTarget hmitarget)
{
 ScreenTemplateUserFolder folder =
hmitarget.ScreenTemplateFolder.Folders.Find("MyTemplateFolder");
 //or ScreenTemplateSystemFolder folder = hmitarget.ScreenTemplateFolder;
 ScreenTemplateComposition templates = folder.ScreenTemplates;
 foreach(ScreenTemplate template in templates)
 {
 string fullFilePath = String.Format(@"C:\OpennessSamples\Templates\{0}.xml",
template.Name);
 template.Export(fullFilePath, ExportOptions.WithDefaults);
 }
}

Voir aussi
Bibliothèques standard (Page 34)

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
252 Manuel système, 10/2016

8.3.7.8 Exporter tous les modèles de vue d'un appareil IHM

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Un fichier XML est créé par modèle de vue.

Les exportations groupées n'étant pas prises en charge, vous devez énumérer tous les
modèles de vue et les exporter séparément. Ce faisant, veillez à ce que les noms utilisés pour
les modèles de vue correspondent aux conventions de dénomination de fichiers de votre
système de fichiers.

Code du programme
Pour exporter un modèle de vue à partir d'un appareil IHM, modifiez le code de programme
suivant :

public static void ExportScreenTemplates(HmiTarget hmiTarget)
{
 string templatePath = @"C:\OpennessSamples\Templates";

 foreach (ScreenTemplate screen in target.ScreenTemplateFolder.ScreenTemplates)
 {
 screen.Export(Path.Combine(templatePath, screen.Name + ".xml"),
ExportOptions.WithDefaults);
 }
 foreach (ScreenTemplateUserFolder folder in target.ScreenTemplateFolder.Folders)
 {
 ExportTemplateUserFolder(Path.Combine(templatePath, folder.Name), folder);
 }
}

private static void ExportTemplateUserFolder(string exportFilePath,
ScreenTemplateUserFolder folder)
{
 foreach (ScreenTemplate screen in folder.ScreenTemplates)
 {
 screen.Export(Path.Combine(exportFilePath, screen.Name + ".xml"),
ExportOptions.WithDefaults);
 }
 foreach (ScreenTemplateUserFolder subFolder in folder.Folders)
 {
 ExportTemplateUserFolder(Path.Combine(exportFilePath, subFolder.Name + ".xml"),
subFolder);
 }
}

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 253

Voir aussi
Bibliothèques standard (Page 34)

8.3.7.9 Importer des modèles de vue

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

Utilisation
Les données suivantes d'un modèle de vue sont importées :

Modèle de vue Données
Propriétés ActiveLayer, BackColor, Height, Width, Name, SetTabOrderInFront
Compositions ● Layers

● Animations
Toutes les animations configurables pour des vues sont importées.

● Softkeys
Toutes les animations configurables pour des touches programmables sont
importées.

Pour chaque couche, les données suivantes sont importées :

Couche Données
Propriétés Name, Index
Compositions ScreenItems (avec éléments de vue)

Lorsque la largeur et la hauteur d'un modèle de vue ne correspondent pas aux dimensions de
l'appareil, le processus d'importation est interrompu et une Exception est déclenchée.
L'ajustement des éléments de vue compris n'est pas pris en charge. C'est pourquoi, certains
éléments de vue peuvent se trouver en-dehors des limites de la vue. Si tel est le cas, un
avertissement du compilateur est émis.

L'ordre des éléments d'appareil dans le modèle de vue doit être univoque et ne présenter
aucune lacune. C'est pourquoi une vérification de la cohérence, qui répare l'ordre si
nécessaire, est effectuée après l'importation du modèle de vue. Ce processus peut entraîner
la modification d'"Indices de tabulation" pour certains éléments de vue.

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
254 Manuel système, 10/2016

Code du programme : Importation générale
Pour importer tous les modèles de vues avec la boucle For each dans un appareil IHM,
modifiez le code de programme suivant :

//Imports screen templates to an HMI device
private static void ImportScreenTemplatesToHMITarget(HmiTarget hmitarget)
{
 ScreenTemplateUserFolder folder = …;
 hmitarget.ScreenTemplateFolder.Folders.Find("MyTemplateFolder");
 // or ScreenTemplateSystemFolder folder = hmitarget.ScreenTemplateFolder;
 string[] exportedTemplates = {"Template_1.xml", "Template_2.xml", "Template_3.xml"};
 foreach (string templateFileName in exportedTemplates)
 {
 folder.ScreenTemplates.Import(String.Format(@"D:\Templates
\{0}.xml",templateFileName), ImportOptions.Override);
 }
}

Code du programme : Importer dans un dossier utilisateurs nouvellement créé
Pour importer un modèle de vue dans un dossier utilisateur venant d'être créé d'un appareil
IHM, modifiez le code de programme suivant :

//Imports screen templates to a user folder of an HMI device
private static void ImportScreenTemplatesToFolderOfHMITarget(HmiTarget hmitarget)
{
 ScreenTemplateUserFolder screenTemplateFolder =
 hmitarget.ScreenTemplateFolder.Folders.Find("MyTemplateFolder");
 ScreenTemplateUserFolder folder = screenTemplateFolder.Folders.Create("MyNewFolder");
 folder.ScreenTemplates.Import(@"C:\ScreenTemplates\ExportedScreenTemplate.xm",
ImportOptions.Override);
}

Voir aussi
Bibliothèques standard (Page 34)

Exportation/importation
8.3 Importation/exportation de données d'un appareil IHM

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 255

8.4 Importation/exportation de données d'un appareil API

8.4.1 Blocs

8.4.1.1 Modifications du modèle d'objet et format de fichier XML

Introduction
Pour importer un fichier XML personnalisé créé par l'utilisateur ou édité par le bias d'Openness
avec succès dans TIA Portal, le fichier doit respecter des schémas définis.

Chaque fichier XML se compose de deux parties principales :

● Interface

● Unité de compilation

La section qui suit propose une description des schémas à respecter par les fichiers.

Interface
Une interface peut contenir plusieurs segments (par ex. Input, InOut, Static) : Vous trouverez
tous ces segments dans le répertoire suivant :

C:\Program Files\Siemens\Automation\Portal V14\PublicAPI\Schemas
\SW.InterfaceSections.xsd

Unité de compilation
Il existe des schémas différents pour les unités de compilation des blocs GRAPH, LAD/FBD
et STL. Vous trouverez les schémas correspondants dans les répertoires suivants :

● GRAPH : C:\Program Files\Siemens\Automation\Portal V14\PublicAPI\Schemas
\SW.PlcBlocks.Graph.xsd

● LAD/FBD : C:\Program Files\Siemens\Automation\Portal V14\PublicAPI\Schemas
\SW.PlcBlocks.LADFBD.xsd

● STL : C:\Program Files\Siemens\Automation\Portal V14\PublicAPI\Schemas
\SW.PlcBlocks.STL.xsd

Sous-schémas
Il existe les définitions de schéma supplémentaires suivantes, utilisées par toutes les unités
de compilation :

● Accès

● Généralités

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
256 Manuel système, 10/2016

Accès
Le nœud d'accès décrit par ex. :

● membres locaux/globaux et utilisations constantes

● Appels de FB, FC, d'instructions

● DB pour les appels

Vous trouverez le schéma d'accès dans le répertoire suivant :

 C:\Program Files\Siemens\Automation\Portal V14\PublicAPI\Schemas
\SW.PlcBlocks.Access.xsd

Généralités
Regroupe les attributs et éléments généraux utilisés, par ex. commentaires de toutes sortes,
textes et jetons.

Vous trouverez le schéma général dans le répertoire suivant :

 C:\Program Files\Siemens\Automation\Portal V14\PublicAPI\Schemas\SW.Common.xsd

8.4.1.2 Exporter des blocs

Conditions
● L'application Openness est connectée à TIA Portal.

Voir Établissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouverture d'un projet (Page 90)

● L'API n'est pas en ligne.

Utilisation
L'interface API prend en charge l'exportation de blocs et types de données utilisateur cohérents
vers un fichier XML.

Le fichier XML se voit attribuer le nom du bloc. Les types de bloc suivants sont pris en charge :

● Blocs fonctionnels (FB)

● Fonctions (FC)

● Blocs d'organisation (OB)

● Blocs de données globaux (DB)

Les types de langages de programmation suivants sont pris en charge :

● LIST

● LOG

● CONT

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 257

● GRAPH

● SCL
Le fichier XML issu de l'exportation d'un bloc SCL contient uniquement l'interface de bloc.

Données exportées
Les propriétés suivantes peuvent être exportées selon le bloc ou le type de données utilisateur
et selon les ExportOptions sélectionnées (voir Exportation de données de configuration
(Page 210)). Les propriétés représentées en gras sont toujours exportées.

Propriété Type Valeur par défaut Protection en
écriture

Domaine de validité

Name String numéro suivant dispo‐
nible

false Tous les blocs

Number Int32 - false Tous les blocs
AutoNumber Bool true false Tous les blocs
HeaderAuthor String "" false Tous les blocs
HeaderFamily String "" false Tous les blocs
HeaderName String "" false Tous les blocs
HeaderVersion String "0,1" false Tous les blocs
MemoryLayout enum MemoryLayout - false Tous les blocs
IsWriteProtectedInAS Bool false false Seulement DB
IsOnlyStoredInLoadMemory Bool false false Seulement DB
IsIECCheckEnabled Bool false false Seulement DB et FB
IsRetainMemResEnabled1 Bool false false Seulement DB et FB
MemoryReserve Unsigned 0 false Seulement DB et FB
RetainMemoryReserve1 Unsigned 0 false Seulement DB et FB
SecondaryType2 String - false Seulement OB
ProgrammingLanguage enum ProgrammingLan‐

guage
- false Tous les blocs

IsKnowHowProtected Bool false true Tous les blocs
InstanceOfName String "" false Seulement le DB

d'instance d'un FB
et le DB d'instance
d'un UDT

InstanceOfNumber Unsigned Short - true Seulement le DB
d'instance d'un FB
et le DB d'instance
d'un UDT

InstanceOfType enum BlockType - true Seulement le DB
d'instance d'un FB
et le DB d'instance
d'un UDT

OfSystemLibElement String "" false Seulement le DB
d'instance d'un FB
et le DB d'instance
d'un UDT

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
258 Manuel système, 10/2016

Propriété Type Valeur par défaut Protection en
écriture

Domaine de validité

OfSystemLibVersion String "" false Seulement le DB
d'instance d'un FB
et le DB d'instance
d'un UDT

ParameterPassing Bool false false Seulement FB et FC
(LIST)

CreationDate DateTime - true Tous les blocs
ModifiedDate DateTime - true Tous les blocs
Interface String interface non occupée false Tous les blocs
InterfaceModifiedDate DateTime - true Tous les blocs
ParameterModified DateTime - true Tous les blocs
StructureModified DateTime - true Tous les blocs
CodeModifiedDate DateTime - true Tous les blocs
CompileDate DateTime - true Tous les blocs
IsConsistent Bool - true Tous les blocs
UDAEnableTagReadback Bool false false Seulement le FB, la

FC et le DB d'instan‐
ce d'un FB

UDABlockProperties String "" false Seulement le FB, la
FC et le DB d'instan‐
ce d'un FB

HandleErrorsWithinBlock Bool false true Seulement FB et OB
PLCSimAdvancedSupport Bool false true Tous les blocs
LibraryConformanceStatus String - false Seulement FB et FC
IsPLCDB Bool false false Seulement DB
SkipSteps Bool false false Seulement blocs

GRAPH
AcknowledgeErrorsRequired Bool true false Seulement blocs

GRAPH
PermanentILProcessingInMAN‐
Mode

Bool false false Seulement blocs
GRAPH

LockOperatingMode Bool false false Seulement blocs
GRAPH

SetENOAutomatically Bool - false Seulement blocs
GRAPH

CreateMinimizedDB Bool false false Seulement blocs
GRAPH

LanguageInNetworks String - false Seulement blocs
GRAPH

ISMultiInstanceCapable Bool - true Seulement FB
ArrayDataType String - true Seulement DB
ArrayLimitUpperBound Int32 - true Seulement DB
GraphVersion String - false Tous les blocs
WithAlarmHandling Bool true false Tous les blocs

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 259

Propriété Type Valeur par défaut Protection en
écriture

Domaine de validité

DownloadWithoutReinit Bool - false Pas de GRAPH s'il
ne s'agit pas d'un
produit de sécurité

LibraryType String - true Seulement FB et FC
LibraryTypeVersionGuid String - true Seulement FB et FC
ILibraryTypeInstance.Connected‐
Version

ILibraryTypeVersion - false Seulement FB et FC

ILibraryTypeInstance.Dependen‐
cies

ILibraryTypeInstanceAs‐
sociation

- false Seulement FB et FC

ILibraryTypeInstance.Dependents ILibraryTypeInstanceAs‐
sociation

- false Seulement FB et FC

1 Si la propriété "IsRetainMemResEnabled possède la valeur false et que la propriété "RetainMemoryReserve" n'est pas
égale à 0, le système déclenche une exception.

2 Lors de l'exportation d'un OB, le SecondaryType est défini par ailleurs à l'aide du numéro d'OB. L'affectation est vérifiée
pendant le processus d'importation. Si l'affectation est incorrecte, une exception de type "Recoverable" est déclenchée.

Vous trouverez des informations complémentaires dans le système d'informations de TIA
Portal sous "Aperçu des propriétés du bloc".

Code du programme
Pour exporter un bloc dépourvu de protection Know-how vers un fichier XML, modifiez le code
de programme suivant :

//Exports a regular block
private static void ExportRegularBlock(PlcSoftware plcSoftware)
{
 PlcBlock plcBlock = plcSoftware.BlockGroup.Blocks.Find("MyBlock");
 plcBlock.Export(String.Format(@"C:\OpennessSamples\Blocks\{0}.xml", plcBlock.Name),
ExportOptions.WithDefaults);
}

Voir aussi
Bibliothèques standard (Page 34)

8.4.1.3 Exporter des blocs avec protection know-how

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouverture d'un projet (Page 90)

● L'API n'est pas en ligne.

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
260 Manuel système, 10/2016

Utilisation
Le fichier XML qui en résulte ressemble au fichier d'exportation d'un bloc sans protection know-
how. L'exportation couvre toutefois les données visibles de l'interface utilisateur lorsque le bloc
s'ouvre sans mot de passe.

La liste d'attributs du bloc indique que le bloc correspondant possède une protection know-
how.

Code du programme
Pour exporter les données visibles d'un bloc doté d'une protection know-how vers un fichier
XML, modifiez le code de programme suivant :

private static void ExportBlock(PlcSoftware plcsoftware)
{
 PlcBlock plcBlock = plcsoftware.BlockGroup.Blocks.Find("MyBlock");
 plcBlock.Export(String.Format(@"C:\OpennessSamples\Blocks\{0}.xml", plcBlock.Name),
ExportOptions.WithDefaults);
}

Voir aussi
Bibliothèques standard (Page 34)

8.4.1.4 Exporter des blocs F

Remarque

Les blocs F sont exportés de la même manière que les autres blocs.

Voir aussi
Etablissement d'une connexion au portail TIA (Page 69)

Ouvrir un projet (Page 90)

Bibliothèques standard (Page 34)

Exporter des blocs (Page 257)

Exporter des blocs avec protection know-how (Page 260)

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 261

8.4.1.5 Exporter des blocs système

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouverture d'un projet (Page 90)

● Le projet contient un bloc système.

● L'API n'est pas en ligne.

Utilisation
La liste d'attributs du bloc indique que le bloc correspondant possède une protection know-
how.

Code du programme
Pour exporter les données visibles d'un bloc vers un fichier XML, modifiez le code de
programme suivant :

//Exports system blocks
private static void ExportSystemBlocks(PlcSoftware plcsoftware)
{
 PlcSystemBlockGroup sbSystemGroup = plcsoftware.BlockGroup.SystemBlockGroups[0];
 foreach (PlcSystemBlockGroup group in sbSystemGroup.Groups)
 {
 foreach (PlcBlock block in group.Blocks)
 {
 String fullFilePath = String.Format(@"C:\OpennessSamples\Blocks\{0}.xml",
block.Name);
 block.Export(fullFilePath, ExportOptions.WithDefaults);
 }
 }
}

Voir aussi
Bibliothèques standard (Page 34)

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
262 Manuel système, 10/2016

8.4.1.6 Importer un bloc

Conditions requises
● Pour importer des blocs, vous avez besoin des fichiers suivants :

– Fichier de validation XML

– Fichier d'utilisation XML

Vous trouverez des informations détaillées sur la manière d'obtenir et d'utiliser ces fichiers
à l'endroit suivant : Enabler File et Usage File (Page 25)

● L'application Openness est liée à TIA Portal.
Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● L'API n'est pas en ligne.

Utilisation
La Public API prend en charge l'importation de blocs avec les langages de programmation
"LIST", "LOG", "GRAPH" ou "CONT" à partir d'un fichier XML. Les types de bloc suivants sont
pris en charge :

● Blocs fonctionnels (FB)

● Fonctions (FC)

● Blocs d'organisation (OB)

● Blocs de données globaux (DB)

Remarque

S'il n'existe aucun "BlockNumber", le numéro de bloc est automatiquement affecté.

S'il n'existe aucune "Version", le numéro de version actuel est utilisé.

Remarque
Importation de blocs de données optimisés

Les blocs de données optimisés sont uniquement pris en charge par les CPU à partir de
S7-1200. Si vous importez des blocs de données optimisés dans une S7-300 ou S7-400, ces
blocs de données seront signalés comme "incohérents".

Remarque

L'utilisation de constantes globales peut être importée même si la constante globale n'est pas
définie.

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 263

Réaction à l'importation
Pour l'importation d'un bloc, les règles à respecter sont les suivantes :

● Le fichier XML peut contenir moins de données que le bloc se trouvant dans le projet, par
ex. moins de paramètres.

● Les informations redondantes telles que les informations d'appel doivent être identiques
dans le projet et dans le fichier XML. Faute de quoi une exception est déclenchée.

● Les données du fichier XML peuvent être "incohérentes" en ce qui concerne leur capacité
à être compilées dans TIA Portal.

● Les attributs possédant les propriétés "ReadOnly=True" et "Informative=True" ne sont pas
importés.

● Les DB d'instance manquants ne sont pas automatiquement créés.

Code du programme
Pour importer un bloc à partir d'un fichier XML, modifiez le code de programme suivant :

//Imports blocks
private static void ImportBlocks(PlcSoftware plcSoftware)
{
 string filePath = @"C:\OpennessSamples\Import\ SystemBlocks.xml”;
 PlcBlockSystemGroup blockGroup = plcSoftware.BlockGroup;
 IList<PlcBlock> blocks = blockGroup.Blocks.Import(filePath, ImportOptions.Override);
}

8.4.2 Tables des variables

8.4.2.1 Exporter des tables de variables API

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouverture d'un projet (Page 90)

Utilisation
Un fichier XML est exporté par table des variables API.

L'interface Public API prend en charge l'exportation de toutes les tables de variables API du
groupe système et de ses sous-groupes.

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
264 Manuel système, 10/2016

Code du programme
Pour exporter toutes les tables de variables API du groupe système et de ses sous-groupes,
modifiez le code de programme suivant :

private static void ExportAllTagTables(PlcSoftware plcSoftware)
{
 PlcTagTableSystemGroup plcTagTableSystemGroup = plcSoftware.TagTableGroup;
 // Export all tables in the system group
 ExportTagTables(plcTagTableSystemGroup.TagTables);
 // Export the tables in underlying user groups
 foreach(PlcTagTableUserGroup userGroup in plcTagTableSystemGroup.Groups)
 {
 ExportUserGroupDeep(userGroup);
 }
}

private static void ExportTagTables(PlcTagTableComposition tagTables)
{
 foreach(PlcTagTable table in tagTables)
 {
 string fullFilePath = String.Format(@"C:\OpennessSamples\TagTables\{0}.xml",
table.Name);
 table.Export(fullFilePath, ExportOptions.WithDefaults);
 }
}

private static void ExportUserGroupDeep(PlcTagTableUserGroup group)
{
 ExportTagTables(group.TagTables);
 foreach(PlcTagTableUserGroup userGroup in group.Groups)
 {
 ExportUserGroupDeep(userGroup);
 }
}

Voir aussi
Bibliothèques standard (Page 34)

Exportation de données de configuration (Page 210)

8.4.2.2 Importer une table de variables API

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouverture d'un projet (Page 90)

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 265

Code du programme
Pour importer des tables de variables API ou une structure de dossiers avec des tables de
variables API dans le groupe système ou un groupe personnalisé depuis un fichier XML,
modifiez le code de programme suivant :

//Imports tag tables to the tag system group
private static void ImportTagTable(PlcSoftware plcSoftware)
{
 string exportFileName = "ExportedTagTable.xml";
 string dirPathImport = @"C:\OpennessSamples\Import";
 string fullFilePath = Path.Combine(dirPathImport, exportFileName);
 PlcTagTableSystemGroup plcTagTableSystemGroup = plcSoftware.TagTableGroup;
 PlcTagTableComposition tagTables = plcTagTableSystemGroup.TagTables;
 tagTables.Import(fullFilePath, ImportOptions.Override);
 // Or, to import into a subfolder:
 // plcTagTableSystemGroup.Groups.Find("SubGroup").TagTables.Import(fullFilePath,
ImportOptions.Override);
}

Voir aussi
Remarques sur la performance de TIA Portal Openness V14 (Page 35)

Bibliothèques standard (Page 34)

8.4.2.3 Exporter des variables ou constantes individuelles d'une table de variables API

Conditions requises
● L'application Openness est connectée au portail TIA.

VoirEtablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir projet (Page 90)

Utilisation
L'interface API prend en charge l'exportation d'une variable ou d'une constante depuis une
table de variables API vers un fichier XML. Ce faisant, veillez à ce que les noms utilisés pour
les tables des variables correspondent aux conventions de dénomination de fichiers de votre
système de fichiers.

Le commentaire d'une variable ou d'une constante n'est exporté que si au moins une langue
est définie pour le commentaire. Si le commentaire n'est pas défini pour toutes les langues du
projet, il est uniquement exporté pour les langues du projet définies.

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
266 Manuel système, 10/2016

Code du programme
Pour exporter une variable ou une constante déterminée d'une table de variables API vers un
fichier XML, modifiez le code de programme suivant :

//Exports a single tag or constant of a controller tag table
private static void ExportTag(PlcSoftware plcSoftware, string tagName)
{
 PlcTagTableSystemGroup plcTagTableSystemGroup = plcSoftware.TagTableGroup;
 PlcTag tag = plcTagTableSystemGroup.TagTables[0].Tags.Find(tagName);
 if(tag != null)
 {
 tag.Export(String.Format(@"C:\OpennessSamples\SingleTags\{0}.xml", tag.Name),
ExportOptions.WithDefaults);
 }
}

private static void ExportUserConstant(PlcSoftware plcSoftware, string userConstantName)
{
 PlcTagTableSystemGroup plcTagTableSystemGroup = plcSoftware.TagTableGroup;
 PlcConstant plcConstant =
plcTagTableSystemGroup.TagTables[0].Constants.Find(userConstantName); if(plcConstant!=
null)
 {
 plcConstant.Export(String.Format(@"C:\OpennessSamples\SingleUserConstants\{0}.xml",
plcConstant.Name), ExportOptions.WithDefaults);
 }
}

Voir aussi
Exportation de données de configuration (Page 210)

Remarques sur la performance de TIA Portal Openness V14 (Page 35)

Bibliothèques standard (Page 34)

8.4.2.4 Importer une seule variable ou constante dans une table de variables API

Conditions requises
● L'application Openness est connectée au portail TIA.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouverture d'un projet (Page 90)

Utilisation
Lors d'un appel d'importation, vous pouvez importer soit des variables soit des constantes.

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 267

Code du programme
Pour importer des groupes de variables ou certaines variables ou constantes depuis un fichier
XML, modifiez le code de programme suivant :

//Imports tags into a plc tag table
private static void ImportTag(PlcSoftware plcSoftware, string tagtableName, string tagFile)
{
 PlcTagTableSystemGroup plcTagTableSystemgroup = plcSoftware.TagTableGroup;
 PlcTagTable tagTable = plcTagTableSystemgroup.TagTables.Find(tagtableName);
 if(tagTable != null)
 {
 tagTable.Tags.Import(tagFile, ImportOptions.Override);
 }
}

//Imports constants into a plc tag table
private static void ImportConstant(PlcSoftware plcSoftware, string tagtableName,
stringconstantFile)
{
 PlcTagTableSystemGroup plcTagTableSystemgroup = plcSoftware. TagTableGroup;
 PlcTagTable tagTable = plcTagTableSystemgroup.TagTables.Find(tagtableName);
 if(tagTable != null)
 {
 tagTable.Constants.Import(constantFile, ImportOptions.Override);
 }
}

Voir aussi
Exportation de données de configuration (Page 210)

Remarques sur la performance de TIA Portal Openness V14 (Page 35)

Bibliothèques standard (Page 34)

8.4.3 Exporter un type de données utilisateur

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● L'API n'est pas en ligne.

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
268 Manuel système, 10/2016

Code de programme
Pour exporter un type de données utilisateur vers un fichier XML, modifiez le code de
programme suivant :

//Exports a user defined type
private static void ExportUserDefinedType(PlcSoftware plcSoftware)
{
 string udtname = "udt name XYZ";
 PlcTypeComposition types = plcSoftware.TypeGroup.Types;
 PlcType udt = types.Find(udtname);
 udt.Export(String.Format(@"C:\OpennessSamples\udts\{0}.xml", udt.Name),
ExportOptions.WithDefaults);
}

8.4.4 Importer un type de données utilisateur

Conditions requises
● L'application Openness est connectée au portail TIA.

Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Ouvrir un projet (Page 90)

● L'API n'est pas en ligne.

Utilisation
L'interface API prend en charge l'importation de types de données utilisateur à partir d'un fichier
XML.

Syntaxe du fichier d'importation
L'exemple de code suivant présente un extrait d'un fichier d'importation d'un type de données
utilisateur :

<Section Name="Input">
 <Member Name="Input1" Datatype=quot;myudt1">
 <Sections>
 <Section Name="None">
 <Member Name="MyUDT1Member1" Datatype="bool"/>
 <Member Name="MyUDT1Member2" Datatype="myudt1">
 <Sections...

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 269

Remarque
Syntaxe pour les types de données personnalisés d'éléments

Si le type de données personnalisé d'un élément présente une mauvaise syntaxe dans le
fichier d'importation pour types de données utilisateur, une exception est déclenchée.

Assurez-vous que " est utilisé pour noter les types de données personnalisés.

Code du programme
Pour importer un type de données utilisateur, modifiez le code de programme suivant :

//Imports user data type
private static void ImportUserDataType(PlcSoftware plcSoftware)
{
 string exportFileName = "ExportedPlcType.xml";
 string dirPathImport = @"C:\OpennessSamples\Import";
 string fullFilePath = Path.Combine(dirPathImport, exportFileName);
 PlcTypeComposition types = plcSoftware.TypeGroup.Types;
 IList<PlcType> importedTypes = types.Import(fullFilePath, ImportOptions.Override);
}

Voir aussi
Importation de données de configuration (Page 211)

Bibliothèques standard (Page 34)

8.4.5 Exportation de données au format OPC UA XML

Conditions requises
● L'application Openness est connectée à TIA Portal.

Voir Etablissement d'une connexion au portail TIA (Page 69)

● Un projet est ouvert.
Voir Ouvrir un projet (Page 90)

● L'API n'est pas en ligne.

Utilisation
Vous pouvez exporter des données API dans un fichier au format OPC UA XML en appelant
une action sur Openness API. En paramètre d'entrée de l'action, vous avez besoin d'un chemin
de répertoire absolu dans lequel sera enregistré le fichier XML.

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
270 Manuel système, 10/2016

Code de programme
Pour lancer le service OPCUAExportProvider, modifiez le code de programme suivant :

Project project = ...;
OPCUAExportProvider opcUAExportProvider = project.HwExtensions.Find("OPCUAExportProvider")
as OPCUAExportProvider;

Pour lancer l'exportation, modifiez le code de programme suivant :

Siemens.Engineering.HW.DeviceItem plc = ...;
opcUAExportProvider.Export(plc, string.Format(@"D:\OPC UA export files\{0}.xml",
plc.Name));

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 271

Exportation/importation
8.4 Importation/exportation de données d'un appareil API

Automatiser des projets à l'aide de scripts
272 Manuel système, 10/2016

Les modifications les plus importantes dans Openness
V14 9
9.1 Principales modifications du modèle d'objet

Modèle d'objet de TIA Portal Openness V13 SP1 et plus ancien
Pour permettre une comparaison entre l'ancien et le nouveau modèle objet d'Openness, le
diagramme ci-dessous décrit le modèle objet de TIA Portal V13 SP1.

Remarque

Le modèle objet décrit dans le diagramme est déconseillé. Vous trouverez des informations
sur le modèle objet d'Openness V14 sous Modèle d'objet Openness V14 (Page 45)

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 273

Les modifications les plus importantes dans Openness V14
9.1 Principales modifications du modèle d'objet

Automatiser des projets à l'aide de scripts
274 Manuel système, 10/2016

9.2 Avant la mise à niveau d'une application vers Openness V14

Application
Les paramètres suivants doivent être modifiés avant de mettre à niveau une application vers
Openness V14 :

1. Les renvois vers l'API V14 doivent être adaptés en complétant les API Openness suivants :

– Siemens.Engineering
– Siemens.Engfineering.Hmi

2. Mettre à niveau le .Net-Framework de Visual Studio vers la version 4.6.1.

3. Actualisez la méthode AssemblyResolve en modifiant le nouveau chemin d'installation de
TIA Portal.

– Si vous travaillez à partir du fichier d'enregistrement, modifiez la nouvelle clé comme
dans l'exemple suivant :
"HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\Automation_InstalledSW
\TIAP14\TIA_Opns\..."

– Si vous travaillez avec le fichier de configuration d'application, adaptez les chemins au
nouveau chemin d'installation.

Les modifications les plus importantes dans Openness V14
9.2 Avant la mise à niveau d'une application vers Openness V14

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 275

9.3 Principales modifications de chaîne de caractères

Introduction
Les modifications suivantes ont été apportées à Openness V14 et il se peut que cela ait des
effets sur vos applications existantes :

Modification Adaptation nécessaire du code de programme
Les méthodes de compilation ont été modifiées. Modifiez les méthodes de compilation comme dans l'exemple

suivant :
● Openness V13 SP1 (obsolète) :

controllerTarget.Compile(CompilerOptions.
Software, BuildOptions.Rebuild);

● Openness V14:
plcSoftware.GetService<ICompilable>().Com
pile();

De nouveaux espaces de noms ont été ajoutés. 1. Ajoutez les instructions d'espaces de noms suivantes :
Siemens.Engineering.SW.Blocks;
Siemens.Engineering.SW.ExternalSources;
Siemens.Engineering.SW.Tags;
Siemens.Engineering.SW.Types;

2. Supprimez l'instruction d'espace de nom using
ControllerTarget =
Siemens.Engineering.HW.ControllerTarget.

3. Compilez l'application.
ControllerTarget a été remplacé par PlcSoftware et
la fonctionnalité a été modifiée dans certains cas.

1. Vérifiez les exemples de code dans la documentation
faisant partie de votre fonctionnalité d'application.

2. Actualisez le code du programme de votre application
Openness d'après l'exemple suivant :
– Openness V13 SP1 (obsolète) :

ControllerTarget controllerTarget =
deviceItem as ControllerTarget

– Openness V14:
PlcSoftware plcSoftware =
deviceItem.GetService<SoftwareContainer
>().Software as PlcSoftware

3. Compilez l'application.

Les modifications les plus importantes dans Openness V14
9.3 Principales modifications de chaîne de caractères

Automatiser des projets à l'aide de scripts
276 Manuel système, 10/2016

Modification Adaptation nécessaire du code de programme
Des objets ont été remplacés.

1. Recherchez et remplacez les objets suivants :
DeviceUserFolderAggregation =
DeviceUserGroupComposition
DeviceFolders = DeviceGroups
DeviceUserFolder = DeviceUserGroup
ProgramblockSystemFolder =
PlcBlockSystemGroup
ProgramblockUserFolder = PlcBlockUserGroup
IBlock = PlcBlock
ControllerDatatypeSystemFolder =
PlcTypeSystemGroup
ControllerDatatypeUserFolder =
PlcTypeUserGroup
ControllerDatatype = PlcType
ControllerTagSystemFolder =
PlcTagTableSystemGroup
ControllerTagUserFolder =
PlcTagTableUserGroup
ControllerTagTable = PlcTagTable
ControllerTag = PlcTag
ControllerConstant = PlcConstant
ExternalSourceSystemFolder =
PlcExternalSourceSystemGroup
ExternalSource = PlcExternalSource
IOnline = OnlineProvider
ILibraryType = LibraryType

2. Compilez l'application.
Les agrégations ont été remplacées par des compositions. 1. Remplacez chaque Aggregation dans votre code par

Composition comme dans les exemples suivants :
ProjectAggregation = ProjectComposition
IDeviceAggregation = IDeviceComposition
TagTableAggregation = TagTableComposition
CycleAggregation = CycleComposition
GraphicListAggregation =
GraphicListComposition
TextListAggregation = TextListComposition
ConnectionAggregation =
ConnectionComposition
MultiLingualGraphicAggregation =
MultiLingualGraphicComposition
UpdateCheckResultMessageAggregation =
UpdateCheckResultMessageComposition

2. Compilez l'application.
Les dossiers ont été remplacés par des groupes dans toutes
les relations, sauf pour concerne les pupitres opérateurs.

1. Excepté les sections de code concernant les pupitres
opérateurs, remplacez chaque Folder dans votre code
de programme par Group.

2. Compilez l'application.

Les modifications les plus importantes dans Openness V14
9.3 Principales modifications de chaîne de caractères

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 277

Modification Adaptation nécessaire du code de programme
La méthode GetAttributeNames a été remplacée par la
méthode GetAttributeInfos .

1. Pour déterminer les attributs, utilisez
IList<EngineeringAttributeInfo>
IEngineeringObject.GetAttributeInfos(Attr
ibuteAccessMode attributeAccessMode); .

2. Compilez l'application.
Pour plus d'informations, référez-vous à Déterminer la
structure et les attributs de l'objet (Page 98).

La méthode Close de fermeture d'un projet a été modifiée. 1. Remplacez
project.Close(CloseMode.PromptIfModified)
; par project.Close();.

2. Compilez l'application.
Pour plus d'informations, référez-vous à Fermer un
projet (Page 158).

L'accès simultané a été remplacé par l'accès exclusif et des
transactions exclusives.

1. Remplacez l'accès simultané par l'accès exclusif et des
transactions exclusives comme dans les exemples
suivants :
– Openness V13 SP1 (obsolète) :

tiaProject.StartTransaction("Reseting
project to default");
...
tiaProject.CommitTransaction();

– Openness V14:
//Use exclusive access to avoid user
changes
ExclusiveAccess exclusiveAccess =
tiaPortal.ExclusiveAccess();
...
exclusiveAccess.Dispose();
//Use transaction to be able to
rollbank changes:
Transaction transaction =
exclusiveAccess.Transaction(tiaProject,
 "Compiling device");
transaction.CommitOnDispose();

2. Compilez l'application.
Pour plus d’informations, voir Exclusive access
(Page 85) et Traitement des transactions (Page 87).

Les modifications les plus importantes dans Openness V14
9.3 Principales modifications de chaîne de caractères

Automatiser des projets à l'aide de scripts
278 Manuel système, 10/2016

Modification Adaptation nécessaire du code de programme
L'accès en ligne à la CPU a été modifié 1. Modifiez l'accès en ligne à la CPU comme dans les

exemples suivants :
– Openness V13 SP1 (obsolète) :

((IOnline)controllerTarget).GoOffline()
;

– Openness V14:
((DeviceItem)
plcSoftware.Parent.Parent).GetService<O
nlin
eProvider>().GoOffline();

2. Compilez l'application.
La configuration matérielle a été modifiée 1. Modifiez la configuration matérielle :

Device.Elements = Device.Items
2. Supprimez les propriétés matérielles suivantes :

– Device.InternalDeviceItem
– Device.SubType

3. Compilez l'application.

Voir aussi
Traitement des exceptions (Page 193)

Nouveautés d'Openness V14 (Page 13)

Etablissement d'une connexion au portail TIA (Page 69)

Les modifications les plus importantes dans Openness V14
9.3 Principales modifications de chaîne de caractères

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 279

9.4 Importation de fichiers créés avec Openness V13 SP1 et des versions
antérieures

Application
Si vous essayez d'importer des fichiers qui ont été générés avec Openness V13 SP1 ou une
version antérieure, une exception d'incompatibilité est déclenchée. Motif : des modifications
dans les variables IHM et les écrans IHM. Les tableaux suivants montrent les principales
modifications d'attributs. Vous trouverez des informations détaillées dans le chapitre "Créer
les vues > Utilisation des objets et de groupes d'objets > Utilisation des objets > Configuration
de plages" dans l'aide en ligne de TIA Portal :

Modifications de variables IHM
Le tableau suivant montre les principales modifications d'attributs de variables IHM :

Attributs supprimés Attributs ajoutés
RangeMaximumType
RangeMaximum
RangeMinimumType
RangeMinimum

LimitUpper2Type.
LimitUpper2.
LimitLower2Type.
LimitLower2.
LimitUpper1Type
LimitUpper1
LimitLower1Type
LimitLower1

Modifications d'éléments de vue IHM
Le tableau suivant montre les principales modifications d'attributs de curseur :

Attributs supprimés Attributs ajoutés
 RangeLower1Color

RangeLower1Enabled
RangeLower2Color
RangeLower2Enabled
RangeNormalColor
RangeNormalEnabled
RangeUpper1Color
RangeUpper1Enabled
RangeUpper2Color
RangeUpper2Enabled
ScalePosition
ShowLimitLines
ShowLimitMarkers
ShowLimitRanges

Les modifications les plus importantes dans Openness V14
9.4 Importation de fichiers créés avec Openness V13 SP1 et des versions antérieures

Automatiser des projets à l'aide de scripts
280 Manuel système, 10/2016

Le tableau suivant montre les principales modifications d'attributs de plage de mesure :

Attributs supprimés Attributs ajoutés
DangerRangeColor
DangerRangeStart
DangerRangeVisible
WarningRangeColor
WarningRangeStart
WarningRangeVisible

RangeLower1Color
RangeLower1Enabled
RangeLower2Color
RangeLower2Enabled
RangeNormalColor
RangeNormalEnabled
RangeUpper1Color
RangeUpper1Enabled
RangeUpper1Start
RangeUpper2Color
RangeUpper2Enabled
RangeUpper2Start

Le tableau suivant montre les principales modifications d'attributs de bargraphe :

Attributs supprimés Attributs ajoutés
AlarmLowerLimitColor
AlarmUpperLimitColor

RangeLower1Color
RangeLower1Enabled
RangeLower2Color
RangeLower2Enabled
RangeNormalColor
RangeNormalEnabled
RangeUpper1Color
RangeUpper1Enabled
RangeUpper2Color
RangeUpper2Enabled

Les modifications les plus importantes dans Openness V14
9.4 Importation de fichiers créés avec Openness V13 SP1 et des versions antérieures

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 281

Les modifications les plus importantes dans Openness V14
9.4 Importation de fichiers créés avec Openness V13 SP1 et des versions antérieures

Automatiser des projets à l'aide de scripts
282 Manuel système, 10/2016

Index

A
Accéder

Copie maîtresse dans une bibliothèque de
projet, 125

Acquittement d'événements système piloté par le
programme, 77
API

Comparaison avec état réel, 150
Comparer, 150
Déterminer statut, 149
Etablir une liaison en ligne, 157
Interrompre la liaison en ligne/déconnecter, 157

B
Bibliothèque

Accéder à des dossiers, 115
Déterminer les versions de types
d'instances, 134
Fonctions, 112

Bibliothèque de projet
Accéder, 113
Accéder aux copies maîtresse, 125

Bibliothèque globale
Accéder, 113

Bloc
Créer un groupe, 179
Exporter, 257
Générer une source, 183
Importer, 263
Interroger des informations, 176
Supprimer, 177
Supprimer un groupe, 179

Bloc de programme
Supprimer, 177

C
Compilation

Logiciel, 110
Compiler

Matériel, 110
Condition d'édition

Votre application Openness et le TIA Portal se
trouvent sur le même ordinateur, 40

Configuration
Votre application Openness et le TIA Portal se
trouvent sur différents ordinateurs, 39

Connexion au portail TIA
Fermer, 79

Copie maîtresse
Copie, 132
Copier le contenu dans un dossier du projet, 128

Copier
Contenu d'une copie maîtresse dans un dossier
du projet, 128
Copie maîtresse, 132

Copies maîtresse
Supprimer, 142

Coupure de la connexion au portail TIA, 79
Création

Créer des dossiers de vues personnalisés, 162
Dossier personnalisé pour les tables des variables
API, 187
Dossiers personnalisés pour variables IHM, 168
Groupe pour bloc, 179
Sous-dossiers personnalisés pour scripts, 171

D
Démarrer

Editeur de bloc, 187
Editeur de variables, 190

Dossier
Supprimer, 142

E
Éditeur "Appareils et réseaux"

Ouvrir, 101
Editeur de bloc

Démarrer, 187
Editeur de variables

Démarrer, 190
Enregistrer le projet, 148
Énumération d'appareils, 92
Enumérer

Blocs, 174
Dossiers Blocs personnalisés, 173
Dossiers personnalisés pour variables API, 105
Sous-dossier système, 180
Tables de variables API, 108

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 283

Toutes les variables d'une table de variables, 169
Variables API, 107

Énumérer
Appareils, 92
Éléments d'appareils, 95

Énumérer des éléments d'appareils, 95
Établir une liaison à TIA Portal, 69
Exceptions

En cas d'accès au portail TIA avec des API
publics, 193

Exemple d'application Public API, 62
Exemple de programme, 43
Exportation/importation

Utilisation, 28
Exporter

Bloc, 257
Type de données utilisateur, 257
Une seule variable ou constante d'une table de
variables API, 266

F
Fichier d'exportation

Contenu, 210
Structure de base, 205
Structure du fichier XML, 205

Fichier XML
Editer, 209
Exportation, 210

Fonctions, 43
API, 173, 174, 176, 180, 187, 188, 189, 191, 265,
266, 267
Créer des dossiers de vues personnalisés, 162
Créer les sous-dossiers personnalisés pour
scripts, 171
Créer un dossier personnalisé pour tables des
variables API, 187
Définir un dossier système, 180
Enregistrer le projet, 148
Énumération d'appareils, 92
Enumérer des blocs, 174
Énumérer des éléments d'appareils, 95
Enumérer des tables de variables API dans des
dossiers, 108
Enumérer des variables API, 107
Enumérer le dossier Blocs personnalisé, 173
Enumérer le sous-dossier système, 180
Enumérer les dossiers personnalisés pour
variables API, 105
Enumérer les variables d'une table de variables
IHM, 169
Exemple d'application Public API, 62

Exporter une variable ou une constante d'une
table de variables API, 266
Fermer un projet, 158
Généralités, 69, 77, 79
Générer des dossiers personnalisés pour
variables IHM, 168
IHM, 162, 163, 164, 165, 166, 167, 168, 169, 170,
171
Importer une table de variables API, 265
Importer une variable dans une table des variables
API, 267
Interroger la famille du bloc, 176
Interroger la version du bloc, 176
Interroger l'attribut "Consistency" d'un bloc, 176
Interroger l'auteur du bloc, 176
Interroger le dossier "Blocs de programme", 173
Interroger le nom de bloc, 176
Interroger le numéro de bloc, 176
Interroger le titre du bloc, 176
Interroger le type de bloc, 176
Interroger les informations d'une table de
variables API, 109
Interroger l'horodatage d'un bloc, 176
Interroger PLC Target et HMI Target, 102
Interroger un dossier système pour variables
API, 104
Lecture de l'heure des dernières modifications
dans une table des variables API, 191
Limitation aux projets de TIA Portal V13, 90
Ouvrir un projet, 90
Projets, 90, 92, 95, 102, 104, 105, 107, 108, 109,
147, 148, 158
Suppression de cycle, 165
Suppression de la bibliothèque de
graphiques, 147
Suppression de la liaison, 167
Suppression de la liste de textes, 166
Suppression de la table des variables, 170
Suppression de la table des variables API, 189
Suppression de toutes les vues, 164
Suppression d'un modèle de vue, 163
Suppression d'une liste de graphiques, 167
Suppression d'une variable d'une table des
variables API, 189
Suppression d'une vue, 162
Supprimer les scripts VB d'un dossier, 171
Supprimer un dossier personnalisé pour tables de
variables API, 188
Supprimer une variable d'une table des
variables, 169

Index

Automatiser des projets à l'aide de scripts
284 Manuel système, 10/2016

G
Générer

Source à partir d'un bloc, 183
Source à partir d'un type de données
utilisateur, 183

H
Hiérarchie des objets matériels du modèle
d'objet, 59

I
Importation/exportation

Editer un fichier XML, 209
Exporter des blocs F, 261
Graphiques, 213

Importer
Bloc, 263
Tables de variables API, 265
Type de données utilisateur, 269
Une seule variable dans une table des variables
API, 267

Importer/Exporter
API, 257, 260, 262
Définir le comportement d'importation à l'aide de
codes de programme, 212
Domaine d'application, 201
Données du projet, 217, 218
Exportation de cycles, 219
Exportation de données de configuration, 210
Exporter aussi les valeurs standard, 210
Exporter des blocs avec protection know-
how, 260
Exporter des blocs sans protection know-
how, 257
Exporter des blocs système, 262
Exporter des connexions, 237
Exporter des listes de textes, 232
Exporter des modèles de vue, 251
Exporter des scripts VB, 229, 230
Exporter des tables de variables API, 264
Exporter des tables de variables IHM, 221
Exporter la variable sélectionnée, 225
Exporter les listes de graphiques, 235
Exporter les valeurs modifiées uniquement, 210
Exporter les vues d'un appareil IHM, 243
Exporter tous les graphiques d'un projet, 217
exporter tous les modèles de vue, 253

Exporter une fenêtre permanente, 249
Exporter une variable d'une table de
variables, 225
Exporter une vue à partir d'un dossier de
vues, 244
Format d'exportation, 201
Formats XML avancés pour l'exportation/
importation de listes de textes, 234
IHM, 219, 220, 221, 224, 225, 226, 227, 229, 230,
231, 232, 233, 234, 235, 236, 238, 239, 243, 244,
246, 249, 250, 251, 253, 254, 264
Importation de connexions, 238
Importation de données de configuration, 211
Importer des cycles, 220
Importer des graphiques dans un projet, 218
Importer des listes de textes, 233
Importer des modèles de vue, 254
Importer des scripts VB, 231
Importer des vues dans un appareil IHM, 246
Importer les listes de graphiques, 236
Importer une fenêtre permanente, 250
Importer une table de variables dans un dossier
de variables, 224
Importer une variable HMI dans une table de
variables, 226
Limiter les exportations aux valeurs
modifiées, 210
Marche à suivre pour l'importation, 212
notions de base, 199
Objets exportables, 199
Objets graphiques exportables, 239
Objets importables, 199
Paramétrage de l'exportation, 210
Particularités des variables IHM intégrées, 227
Références ouvertes, 200
Restrictions, 201
Structure des données, 205
Volume d'exportation, 210

Installation
Ajouter un utilisateur au groupe d'utilisateurs, 19
Etapes standard pour l'accès au portail TIA, 25
TIA Openness V13 complément, 17, 25
Vérifier l'authentification d'accès, 19

Installation du complément, 17, 25
Instances

Définir une version de type, 134
Interroger

Informations du bloc, 176
Informations du type de données utilisateur, 176

Index

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 285

L
Liaison à TIA Portal

Configuration, 69
Lire

Heure des dernières modifications dans une table
des variables API, 191

Logiciel
Compiler, 110

M
Matériel

Compilation, 110
Modèle d'objet, 45

O
Objets

Objets exportables, 199
Objets importables, 199

Objets graphiques exportables, 239
Ouverture d'un projet, 90
Ouvrir

Éditeur "Appareils et réseaux", 101

P
Particularités des variables IHM du type de données
"UDT", 228
Projet

Enregistrer, 148
Fermer, 158
Interroger HMI Targets, 102
Interroger PLC Targets, 102
Interroger un type d'appareil, 102
Ouvrir, 90

R
Requêtes

Attribut "Consistency" d'un bloc, 176
Auteur du bloc, 176
Dossier "Blocs de programme", 173
Dossier système pour variables API, 104
Famille de bloc, 176
Horodatage d'un bloc, 176
Informations d'une table de variables API, 109
Nom de bloc, 176

Numéro de bloc, 176
Titre du bloc, 176
Trouver, 180
Type de bloc, 176
Version du bloc, 176

S
Siemens.Engineering, 34
Siemens.Engineering.Hmi, 34
Siemens.Engineering.Hmi.Communication, 34
Siemens.Engineering.Hmi.Cycle, 34
Siemens.Engineering.Hmi.Globalization, 34
Siemens.Engineering.Hmi.RuntimeScripting, 34
Siemens.Engineering.Hmi.Screen, 34
Siemens.Engineering.Hmi.Tag, 34
Siemens.Engineering.Hmi.TextGraphicList, 34
Siemens.Engineering.HW, 34
Siemens.Engineering.SW, 34
Statut (API)

Déterminer, 149
Structure de base d'un fichier d'exportation, 205
Structure des données d'exportation, 205
Suppression

Bibliothèque de graphiques, 147
Certaines variables d'une table des
variables, 169
Connexion, 167
Cycle, 165
Liste de graphiques, 167
Liste de textes, 166
Modèle de vue, 163
Script VB d'un dossier, 171
Table des variables, 170
Toutes les vues, 164
Une seule variable d'une table des variables
API, 189
Vue, 162

Supprimer
Bloc, 177
Bloc de programme, 177
Dossier personnalisé pour les tables des variables
API, 188
Groupe pour bloc, 179
Supprimer une table de variables API d'un
dossier, 189
Type de données utilisateur, 178

Index

Automatiser des projets à l'aide de scripts
286 Manuel système, 10/2016

T
TIA Portal Openness, 37

Accès, 27
Ajouter un utilisateur au groupe d'utilisateurs, 19
API publique, 43
Concepts sous-jacents à la vérification de l'identité
d'objet, 196
Concepts sous-jacents d'affectations, 194
Concepts sous-jacents pour la manipulation
d'exceptions, 193
Conditions, 15
Configuration, 39
Droits d'accès, 19
Etapes standard pour l'accès au portail TIA, 25
Etendue des fonctions, 37
Exportation/importation, 28
Fonctions, 43
Introduction, 37
Notions de base sur la composition, 195
Savoir-faire nécessaire de l'utilisateur, 15
Tâches typiques, 27
Vue d'ensemble de la programmation, 43

Type de données utilisateur
Exporter, 257
Générer une source, 183
Importer, 269
Interroger des informations, 176
Supprimer, 178

Types
Supprimer, 142

V
Variables IHM du type de données "UDT", 228
Variables IHM intégrées, 227
Vue d'ensemble de la programmation, 43

Index

Automatiser des projets à l'aide de scripts
Manuel système, 10/2016 287

Index

Automatiser des projets à l'aide de scripts
288 Manuel système, 10/2016

	Automatiser des projets à l'aide de scripts
	Mentions légales - Signalétique d'avertissement
	Sommaire
	1 Consignes de sécurité
	2 Lisezmoi TIA Portal Openness
	2.1 Lisezmoi

	3 Nouveautés d'Openness V14
	4 notions de base
	4.1 Conditions requises pour TIA Portal Openness V14
	4.2 Installation
	4.2.1 Installation de TIA Portal Openness V14
	4.2.2 Ajouter un utilisateur au groupe d'utilisateurs "Siemens TIA Openness"
	4.2.3 Accéder au portail TIA
	4.2.4 Enabler File et Usage File

	4.3 Tâches d'Openness
	4.3.1 Possibilités d'utilisation
	4.3.2 Exportation/importation

	4.4 Liste d'objets
	4.5 Bibliothèques standard
	4.6 Remarques sur la performance de TIA Portal Openness V14

	5 Introduction
	6 Configurations
	7 Public API
	7.1 Introduction
	7.2 Etapes de programmation
	7.3 Modèle d'objet Openness V14
	7.4 Blocs et types de modèle d'objet Openness
	7.5 Hiérarchie des objets matériels du modèle d'objet
	7.6 Informations sur les versions d'Openness installées
	7.7 Exemple de programme
	7.8 Utilisation des exemples de code
	7.9 Fonctions générales
	7.9.1 IntelliSense-Support pour Openness
	7.9.2 Etablissement d'une connexion au portail TIA
	7.9.3 Pare-feu Openness
	7.9.4 Gestionnaire d'événements
	7.9.5 Confirmer les boîtes de dialogue comportant des alarmes système par commande du programme
	7.9.6 Mettre fin à la connexion au portail TIA
	7.9.7 Interfaces de diagnostic dans TIA Portal
	7.9.8 Exclusive access
	7.9.9 Traitement des transactions

	7.10 Fonctions des projets/données de projet
	7.10.1 Ouvrir un projet
	7.10.2 Enumérer et appeler des appareils
	7.10.3 Enumérer et appeler des éléments d'appareils
	7.10.4 Déterminer la structure et les attributs de l'objet
	7.10.5 Attributs obligatoires d'appareils et d'éléments d'appareils
	7.10.6 Ouvrir l'éditeur "Appareils & réseaux"
	7.10.7 Interroger PLC Target et HMI Target
	7.10.8 Accéder au logiciel cible
	7.10.9 Interroger un groupe système pour variables API
	7.10.10 Enumérer les groupes personnalisés pour variables API
	7.10.11 Enumérer des variables API
	7.10.12 Enumérer des tables de variables API dans un dossier
	7.10.13 Interroger les informations d'une table de variables API
	7.10.14 Compiler le projet
	7.10.15 Fonctions pour bibliothèques
	7.10.15.1 Fonctions pour objets et instances
	7.10.15.2 Accéder aux bibliothèques
	7.10.15.3 Accéder aux dossiers dans une bibliothèque
	7.10.15.4 Accéder aux types
	7.10.15.5 Accéder aux types de versions
	7.10.15.6 Accéder aux instances
	7.10.15.7 Accéder à des modèles de copie
	7.10.15.8 Créer la copie maîtresse d'un projet dans la bibliothèque
	7.10.15.9 Copier le contenu d'un modèle de copie dans le projet
	7.10.15.10 Copier un objet copie maîtresse issu d'une bibliothèque globale dans la bibliothèque de projet
	7.10.15.11 Copier un modèle de copie
	7.10.15.12 Déterminer les versions de types d'instances
	7.10.15.13 Actualiser un projet
	7.10.15.14 Actualiser une bibliothèque
	7.10.15.15 Supprimer les contenus de bibliothèque

	7.10.16 Lire des attributs liés au projet
	7.10.17 Suppression d'un graphique du projet
	7.10.18 Enregistrer le projet
	7.10.19 Déterminer le statut d'un API
	7.10.20 Comparer le logiciel de l'API
	7.10.21 Accéder aux paramètres d'une liaison en ligne
	7.10.22 Etablir ou interrompre une liaison en ligne à l'API
	7.10.23 Fermer un projet
	7.10.24 Prise en charge de l'autodescription pour attributs, navigateurs, actions et services

	7.11 Fonctions sur les données d'un appareil HMI
	7.11.1 Vues
	7.11.1.1 Créer des dossiers de vues personnalisés
	7.11.1.2 Supprimer la vue d'un dossier
	7.11.1.3 Supprimer un modèle de vue d'un dossier
	7.11.1.4 Supprimer toutes les vues d'un dossier

	7.11.2 Cycles
	7.11.2.1 Suppression de cycle

	7.11.3 Listes de textes
	7.11.3.1 Suppression de la liste de textes

	7.11.4 Listes de graphiques
	7.11.4.1 Suppression d'une liste de graphiques

	7.11.5 Connexions
	7.11.5.1 Suppression de la liaison

	7.11.6 Table des variables
	7.11.6.1 Générer des dossiers personnalisés pour variables IHM
	7.11.6.2 Enumérer les variables d'une table de variables IHM
	7.11.6.3 Suppression de variables individuelles d'une table de variables IHM
	7.11.6.4 Supprimer une table de variables d'un dossier

	7.11.7 Scripts VB
	7.11.7.1 Créer des dossiers personnalisés pour les scripts
	7.11.7.2 Supprimer les scripts VB d'un dossier

	7.11.8 Supprimer le dossier personnalisé d'un pupitre opérateur

	7.12 Fonctions sur les données d'un appareil API
	7.12.1 Blocs
	7.12.1.1 Interroger le groupe "Blocs de programme"
	7.12.1.2 Enumérer les groupes Blocs personnalisés
	7.12.1.3 Enumérer tous les blocs
	7.12.1.4 Interroger les informations d'un bloc/type de données utilisateur
	7.12.1.5 Supprimer un bloc
	7.12.1.6 Supprimer un type de données utilisateur
	7.12.1.7 Créer un groupe pour blocs
	7.12.1.8 Supprimer un groupe pour blocs
	7.12.1.9 Interroger un groupe système pour blocs système
	7.12.1.10 Enumérer les sous-groupes système
	7.12.1.11 Ajouter un fichier externe
	7.12.1.12 Générer une source à partir d'un bloc
	7.12.1.13 Générer les blocs à partir de la source
	7.12.1.14 Supprimer un fichier externe
	7.12.1.15 Démarrer un éditeur de bloc

	7.12.2 Tables des variables
	7.12.2.1 Créer les groupes personnalisés pour variables API
	7.12.2.2 Supprimer les groupes personnalisés pour variables API
	7.12.2.3 Supprimer la table des variables API dans un groupe
	7.12.2.4 Supprimer une variable individuelle d'une table des variables API
	7.12.2.5 Démarrer l'éditeur "Variables"
	7.12.2.6 Lire la date et l'heure de la dernière modification d'une table de variables API

	7.12.3 Supprimer un groupe personnalisé dans un appareil API

	7.13 Concepts de base
	7.13.1 Traitement des exceptions
	7.13.2 Utilisation d'associations
	7.13.3 Utilisation de compositions
	7.13.4 Vérifier l'égalité des objets
	7.13.5 Opérations de lecture pour attributs

	8 Exportation/importation
	8.1 Vue d'ensemble
	8.1.1 Notions élémentaires sur l'importation/exportation
	8.1.2 Domaine d'utilisation de l'importation/exportation
	8.1.3 Importation SimaticML spécifique à la version
	8.1.4 Structure d'un fichier XML
	8.1.5 Structure des données pour l'importation/exportation
	8.1.6 Edition du fichier XML
	8.1.7 Exportation de données de configuration
	8.1.8 Importation de données de configuration
	8.1.9 Exportation/importation de graphiques

	8.2 Importation/exportation de données du projet
	8.2.1 Exportation de textes de projet
	8.2.2 Importation de textes de projet
	8.2.3 Graphiques
	8.2.3.1 Exporter les graphiques d'un projet
	8.2.3.2 Importer des graphiques dans un projet

	8.3 Importation/exportation de données d'un appareil IHM
	8.3.1 Cycles
	8.3.1.1 Exportation de cycles
	8.3.1.2 Importer des cycles

	8.3.2 Table des variables
	8.3.2.1 Exporter des tables de variables IHM
	8.3.2.2 Importer une table de variables IHM
	8.3.2.3 Exporter des variables individuelles d'une table de variables IHM
	8.3.2.4 Importer des variables individuelles d'une table de variables IHM
	8.3.2.5 Particularités de l'importation/exportation de variables IHM

	8.3.3 Scripts VB
	8.3.3.1 Exporter des scripts VB
	8.3.3.2 Exporter des scripts VB à partir d'un dossier
	8.3.3.3 Importer des scripts VB

	8.3.4 Listes de textes
	8.3.4.1 Exporter des listes de textes à partir d'un appareil IHM
	8.3.4.2 Importer une liste de texte dans un appareil IHM
	8.3.4.3 Formats XML avancés pour l'exportation/importation de listes de textes

	8.3.5 Listes de graphiques
	8.3.5.1 Exporter les listes de graphiques
	8.3.5.2 Importer les listes de graphiques

	8.3.6 Connexions
	8.3.6.1 Exporter des connexions
	8.3.6.2 Importation de connexions

	8.3.7 Vues
	8.3.7.1 Vue d'ensemble des objets graphiques pouvant être exportés
	8.3.7.2 Exporter toutes les vues d'un appareil IHM
	8.3.7.3 Exporter une vue à partir d'un dossier de vues
	8.3.7.4 Importer des vues dans un appareil IHM
	8.3.7.5 Exporter une fenêtre permanente
	8.3.7.6 Importer une fenêtre permanente
	8.3.7.7 Exporter des modèles de vue à partir d'un dossier
	8.3.7.8 Exporter tous les modèles de vue d'un appareil IHM
	8.3.7.9 Importer des modèles de vue

	8.4 Importation/exportation de données d'un appareil API
	8.4.1 Blocs
	8.4.1.1 Modifications du modèle d'objet et format de fichier XML
	8.4.1.2 Exporter des blocs
	8.4.1.3 Exporter des blocs avec protection know-how
	8.4.1.4 Exporter des blocs F
	8.4.1.5 Exporter des blocs système
	8.4.1.6 Importer un bloc

	8.4.2 Tables des variables
	8.4.2.1 Exporter des tables de variables API
	8.4.2.2 Importer une table de variables API
	8.4.2.3 Exporter des variables ou constantes individuelles d'une table de variables API
	8.4.2.4 Importer une seule variable ou constante dans une table de variables API

	8.4.3 Exporter un type de données utilisateur
	8.4.4 Importer un type de données utilisateur
	8.4.5 Exportation de données au format OPC UA XML

	9 Les modifications les plus importantes dans Openness V14
	9.1 Principales modifications du modèle d'objet
	9.2 Avant la mise à niveau d'une application vers Openness V14
	9.3 Principales modifications de chaîne de caractères
	9.4 Importation de fichiers créés avec Openness V13 SP1 et des versions antérieures

	Index

