Digitization with TIA Portal: Virtual commissioning with SIMATIC and Simulink

Main document: Overview of the two use cases and the Simulink model

SIMATIC S7-PLCSIM Advanced
SIMATIC S7-1500 Open Controller
SIMATIC Target 1500S
Simulink

Legal information

Use of application examples

Application examples illustrate the solution of automation tasks through an interaction of several components in the form of text, graphics and/or software modules. The application examples are a free service by Siemens AG and/or a subsidiary of Siemens AG ("Siemens"). They are non-binding and make no claim to completeness or functionality regarding configuration and equipment. The application examples merely offer help with typical tasks; they do not constitute customer-specific solutions. You yourself are responsible for the proper and safe operation of the products in accordance with applicable regulations and must also check the function of the respective application example and customize it for your system.

Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the application examples used by technically trained personnel. Any change to the application examples is your responsibility. Sharing the application examples with third parties or copying the application examples or excerpts thereof is permitted only in combination with your own products. The application examples are not required to undergo the customary tests and quality inspections of a chargeable product; they may have functional and performance defects as well as errors. It is your responsibility to use them in such a manner that any malfunctions that may occur do not result in property damage or injury to persons.

Disclaimer of liability

Siemens shall not assume any liability, for any legal reason whatsoever, including, without limitation, liability for the usability, availability, completeness and freedom from defects of the application examples as well as for related information, configuration and performance data and any damage caused thereby. This shall not apply in cases of mandatory liability, for example under the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of life, bodily injury or damage to health, non-compliance with a guarantee, fraudulent non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for damages arising from a breach of material contractual obligations shall however be limited to the foreseeable damage typical of the type of agreement, unless liability arises from intent or gross negligence or is based on loss of life, bodily injury or damage to health. The foregoing provisions do not imply any change in the burden of proof to your detriment. You shall indemnify Siemens against existing or future claims of third parties in this connection except where Siemens is mandatorily liable.

By using the application examples you acknowledge that Siemens cannot be held liable for any damage beyond the liability provisions described.

Other information

Siemens reserves the right to make changes to the application examples at any time without notice. In case of discrepancies between the suggestions in the application examples and other Siemens publications such as catalogs, the content of the other documentation shall have precedence.

The Siemens terms of use (https://support.industry.siemens.com) shall also apply.

Security information

Siemens provides products and solutions with Industrial Security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens’ products and solutions constitute one element of such a concept. Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected to an enterprise network or the Internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place. For additional information on industrial security measures that may be implemented, please visit https://www.siemens.com/industrialsecurity.

Siemens’ products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer’s exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed at: https://www.siemens.com/industrialsecurity.
Table of contents

Legal information .. 2

1 Introduction ... 4
 1.1 Overview .. 4
 1.2 Principle of operation ... 5
 1.3 Components used ... 6

2 Engineering ... 7
 2.1 Control loop .. 7
 2.1.1 Pendulum model (control path) .. 7
 2.1.2 Structure of the pendulum model ... 8
 2.1.3 Real-time behavior of the model ... 9
 2.1.4 Selecting the integration method .. 10
 2.2 Controller .. 12

3 Use cases .. 13
 3.1 Use case 1 ... 13
 3.1.1 Principle of operation ... 13
 3.1.2 Advantages of the use case ... 14
 3.1.3 Limitations of the use case .. 14
 3.2 Use case 2 .. 15
 3.2.1 Principle of operation ... 15
 3.2.2 Advantages of the use case .. 16
 3.2.3 Limitations of the use case .. 16

4 Appendix ... 17
 4.1 Service and support ... 17
 4.2 Industry Mall .. 18
 4.3 Links and literature ... 18
 4.4 Change documentation ... 18
1 Introduction

1.1 Overview

The Simulink software\(^1\) from MathWorks is frequently used in automation and controls engineering to simulate processes and create algorithms. The requirement is to simulate the model, the algorithm or the function in a few steps either in a virtual environment with PLCSIM Advanced or, using hardware, via a software controller.

This application example describes the structure of a simulation model with Simulink. With the help of two use cases from the area of digitization, it presents the possibilities and the limitations of validating and simulating the simulation model, both virtually as well as hardware-based with SIMATIC products. The example Simulink model consists of a process simulation and a PID controller.

The complete application example consists of the following documents:

- **Main document**: Overview of the two use cases and the Simulink model (this document).
- **Use case 1**: Connecting Simulink models to SIMATIC PLCSIM Advanced via API\(^2\).
- **Use case 2**: Connecting Simulink models to a SIMATIC S7-1500 software controller via OPC UA\(^3\).

Figure 1-1: Overview of use cases

```
+-------------------+          +-------------------+
| Simulink          |          | Simulink          |
| +-------------------+          +-------------------+  
| PID Controller    |          | Open Controller   |
| +-------------------+          +-------------------+  
| Process model     |          | Use case 1        |
|                   |          | Use case 2        |
```

Required knowledge

- Basics of configuration and programming with STEP 7 (TIA Portal)
- Basics of creating models with Simulink

\(^1\) MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

\(^2\) Via a user interface (API), S7-PLCSIM Advanced facilitates interaction with your own C++/C# programs or software.

\(^3\) OPC Unified Architecture (UA), an industrial communication protocol
1.2 Principle of operation

A Simulink-made model of a control loop for a propeller-driven pendulum arm is simulated and optimized in the MATLAB environment. The control loop consists of a control path which maps the physical behavior of the pendulum arm, and a PID controller for positioning the pendulum arm in the specified deflection angle.

The next step provides two use cases (see Figure 1-1) to simulate the process model in conjunction with an S7 CPU.

Use case 1

This use case describes how to control the process model in Simulink with PLCSIM Advanced. For this purpose, communication must be established with the virtual controller from PLCSIM Advanced via the API interface. This is realized by an S-function in Simulink, which is used instead of the PID controller. The Simulink model of the PID controller is coded with the Simulink add-on SIMATIC Target 1500S and is run on the virtual controller.

Use case 2

This use case describes how to control the process model in Simulink with the software controller. For this purpose, communication with the software controller must be established via the OPC UA interface. This is realized by a MATLAB function in Simulink, which is used instead of the PID controller. The Simulink model of the PID controller is coded with the Simulink add-on SIMATIC Target 1500S and is run on the virtual controller.
1.3 Components used

This application example was created with these hardware and software components:

Table 1-1: Software components

<table>
<thead>
<tr>
<th>Components</th>
<th>Item number / Notes / Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R2019b)</td>
<td></td>
</tr>
<tr>
<td>MATLAB V9.7</td>
<td></td>
</tr>
<tr>
<td>MATLAB Coder V4.3</td>
<td></td>
</tr>
<tr>
<td>Simulink V10.0</td>
<td></td>
</tr>
<tr>
<td>Simulink Coder V9.2</td>
<td></td>
</tr>
<tr>
<td>OPC Toolbox V4.0.8</td>
<td></td>
</tr>
<tr>
<td>STEP 7 Professional V16</td>
<td>6ES7822-1..06..</td>
</tr>
<tr>
<td>SIMATIC S7-1500 ODK 1500S V2.5 SP1</td>
<td>6ES7806- 2CD03-0YA0</td>
</tr>
<tr>
<td>SIMATIC Target 1500S for Simulink V4.0</td>
<td>6ES7823-1BE03-0YA5</td>
</tr>
<tr>
<td>S7-PLCSIM Advanced V3.0 Upd1</td>
<td>6ES7823-1FE02-0YA5</td>
</tr>
</tbody>
</table>

MathWorks online documentation: http://mathworks.com/help/

Table 1-2: Hardware components

<table>
<thead>
<tr>
<th>Components</th>
<th>Quantity</th>
<th>Item number</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMATIC ET 200SP Open Controller CPU 1515SP PC2</td>
<td>1</td>
<td>6ES7677-2DB42-0GB0</td>
<td>-</td>
</tr>
</tbody>
</table>

Manual, SIMATIC S7-1500 CPU 150xS

Manual: SIMATIC ET 200SP Open Controller CPU 1515SP PC

This application example consists of the following components:

Table 1-3

<table>
<thead>
<tr>
<th>Components</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>109749187_DIGI_Usecases_MAIN_DOC_V20_en.pdf</td>
<td>This document.</td>
</tr>
<tr>
<td>109749187_DIGI_Usecases_TIAV16_PROJ_V20.zip</td>
<td>TIA Portal project for use cases 1 & 2.</td>
</tr>
<tr>
<td>109749187_DIGI_Usecases_Simulink_PROJ_V20.zip</td>
<td>Simulink models for use cases 1 & 2.</td>
</tr>
</tbody>
</table>
2 Engineering

This chapter describes the structure and derivation of the control loop for the propeller-driven pendulum arm for the Simulink simulation.

You can find the finished Simulink model in the included example project under the name "Pendulum_Controlled.slx". The file is located in the folder "Simulink_Main" in the compressed file "109749187_DIGI_Usecases_Simulink_PROJ_V20.zip".

2.1 Control loop

The control loop consists of the control path, which maps the physical behavior of the pendulum arm, and a PID controller.

The control variable of the control loop is the deflection angle φ of the pendulum arm. The manipulated variable, force F, represents the thrust of the propeller.

Figure 2-1: Control loop

2.1.1 Pendulum model (control path)

So that the arm of the pendulum can be moved to the setpoint position, the thrust force F of the propeller must be greater than or equal to the sum of all counterforces.

Figure 2-2: Pendulum model
The sum of the counterforces is composed of the following forces:

- inertial force \(F_{\text{inertia}} \)
- tangential component of the weight force \(F_{\text{gtan}} \)
- the force of friction \(F_{\text{friction}} \) resulting from the frictional torque \(M_{\text{friction}} \)

Mathematical derivation

Figure 2-3: Mathematical derivation of the pendulum model

\[
\begin{align*}
F &= F_{\text{gtan}} + F_{\text{inertia}} + F_{\text{friction}} \\
F_{\text{gtan}} &= m \cdot g \cdot \sin(\varphi) \\
F_{\text{inertia}} &= m \cdot r \cdot a = m \cdot l \cdot a \\
F_{\text{friction}} &= \frac{M_{\text{friction}}}{l} = \omega \cdot \frac{c}{l} \\
F &= m \cdot g \cdot \sin(\varphi) + m \cdot l \cdot a + \omega \cdot \frac{c}{l}
\end{align*}
\]

Resulting formula for the angular acceleration:

\[
\dot{\alpha} = \frac{F}{m \cdot l} - \frac{g}{l} \cdot \sin(\varphi) - \omega \cdot \frac{c}{l} - \frac{1}{m \cdot l}
\]

2.1.2 Structure of the pendulum model

Based on the resulting formula for the angular acceleration from Figure 2-3, a recursive state space model for the pendulum is constructed in Simulink.

The angular velocity (\(\omega \)) results from the integration of angular acceleration (\(\alpha \)). The deflection angle (\(\varphi \)) results from the integration of angular velocity.

Figure 2-4 shows the structure of the control path.

- \(\ddot{x} \) = angular acceleration \(\alpha \)
- \(\dot{x} \) = angular velocity \(\omega \)
- \(x \) = deflection angle \(\varphi \)
2.1.3 Real-time behavior of the model

The Simulink function "OPC Config Real-Time" (see Figure 2.5) makes it possible to run the simulation at the same speed that it unfolds in reality. However, this is only a pseudo-real-time and minimal deviations from true time may occur. The deviation depends on the computing power of the computer and cannot be determined or predicted exactly.

4 The term "real-time" characterizes the operation of information processing systems which can reliably provide certain results within a predefined time span, for example in a fixed time reference.

Source: https://en.wikipedia.org/wiki/Real-time_computing
2.1.4 Selecting the integration method

The following options for integration method are available:

- Forward Euler method
- Backward Euler method
- Bilinear transform (trapezoidal rule)

The bilinear transform yields an average from the forward and backward Euler method.

For selecting the suitable integration method, the damping constant is set to 0 and a constant tangential force is applied to the control path. In this case the controller is commented out. The deflection of the pendulum is monitored in Simulink with the "Scope" function.

With a damping constant equal to 0 and a constant force, a sinewave oscillation is expected for the deflection of the pendulum.
Evaluating the integration method

Figure 2-6: Evaluation of the integration method with "Scope" function

Because the bilinear transformation yields the expected, physically correct behavior of the control path, this method will be selected for the integration. Due to the addition of the discretization error in each calculation step, the forward Euler and backward Euler methods are not suitable for the model. The bilinear transform gives an average between the two methods, thus canceling out the discretization error.
2.2 Controller

Dimensioning of the controller

For the controller’s dimensioning, the empirical dimensioning is applied.

- A small, non-critical value is selected for the amplification P, and the integral and differential component set to 0.
- The amplification P is slowly increased until the system oscillates steadily.
- The integral component and differential component are added and slowly increased until the result is acceptable.

Figure 2-7 represents the result of the control loop after the dimensioning of the controller has been performed.

![Figure 2-7: Optimized control loop](image)

The following controller parameters were found in the process:

- Proportional component $P = 2$
- Integral component $I = 0.75$
- Differential component $D = 0.5$
3 Use cases

This chapter gives an overview of the two use cases. All details and instructions can be found in the corresponding detail document on the use case in question.

<table>
<thead>
<tr>
<th>Use case</th>
<th>Title</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connecting Simulink models to SIMATIC PLCSIM Advanced via API</td>
<td>109749187_DIGI_Usecases_API_DOC_V20_en.pdf</td>
</tr>
<tr>
<td>2</td>
<td>Connecting Simulink models to a SIMATIC S7-1500 software controller via OPC UA</td>
<td>109749187_DIGI_Usecases.OPC_DOC_V20_en.pdf</td>
</tr>
</tbody>
</table>

3.1 Use case 1

This chapter gives an overview of the connection of Simulink models to SIMATIC PLCSIM Advanced via the user interface API. You can find specifics on use case 1 in the supplied documentation "109749187_DIGI_Usecases_API_DOC_V20_en.pdf".

3.1.1 Principle of operation

Using the Simulink ass-on SIMATIC Target 1500S, the Simulink model of the PID controller is codes and then run with the ODK-capable S7-1500 controller. The closed-loop control in the control path from Simulink is made possible here with the PLCSIM Advanced virtual controller.

SIMATIC Target 1500S generates SCL sources for TIA Portal blocks and thus an SO file, which is uploaded to the controller's integrated web browser. The S7 program calls the SO file.

In Simulink, instead of the PID controller the "S-function" is inserted for communication with SIMATIC S7-PLCSIM Advanced.

Figure 3-1: Simulink model for communicating via PLCSIM Advanced API
Tag exchange between the control path in Simulink and the closed-loop controller in the virtual controller occurs via the PLCSIM Advanced API.

The S-function is called cyclically with the sampling rate $T_s = 20\, ms$. The tags are then read and written at the cycle control point of the virtual controller. The control path is thus supplied every $20\, ms$ with the current values from the virtual controller.

The PID controller runs in the virtual controller in a cyclic interrupt OB with the same cycle time ($20\, ms$) as the sampling rate T_s in Simulink.

Figure 3.2

3.1.2 Advantages of the use case

Linking to Simulink via the API offers you the following advantages:

- Additional options for programming via the API, e.g. pausing the virtual controller at the cycle control point (freeze state)
- Synchronizing to the cycle control point of the virtual controller
- Synchronizing the Simulink model with the virtual time of the virtual controller
- Independent of Simulink, e.g. for setting and testing new controller parameters during a service (e.g. via a web server).

3.1.3 Limitations of the use case

Linking to Simulink via the API has the following limitations:

- Performance highly dependent on the performance of the PC, as PLCSIM Advanced and MATLAB run on one computer.
- No communication in real time
- The simulation of complex paths can extend the cycle time on the controller, thereby deviating from the actual behavior in reality.
3.2 Use case 2

This chapter gives an overview of linking Simulink models to a SIMATIC S7-1500 software controller via OPC UA. You can find specifics on use case 2 in the supplied documentation "109749187_DIGI_Usecases_OPC_DOC_V20_en.pdf".

3.2.1 Principle of operation

Using the Simulink ass-on SIMATIC Target 1500S, the Simulink model of the PID controller is codes and then run with the ODK-capable S7-1500 controller. The closed-loop control in the control path from Simulink is made possible here with the software controller on a SIMATIC ET 200SP Open Controller.

SIMATIC Target 1500S generates SCL sources for TIA Portal blocks and thus an SO file, which is uploaded to the controller’s integrated web browser. The S7 program calls the SO file.

In Simulink, instead of the PID controller the MATLAB function "Read_OPC_Func" is inserted. This function contains the necessary connection parameters to the OPC server of the software controller, as well as the instructions for reading and writing the controller tags.

Figure 3-3: Simulink model for communicating via OPC UA

Tag exchange between the control path in Simulink and the closed-loop controller in the software controller occurs via OPC UA. The MATLAB function is called cyclically with the sampling rate $T_s = 20$ ms. Thus, the closed-loop controller tags are read from and written to the software controller every 20 ms. For this purpose, nodes are defined in the function "Read_OPC_Func" for access to interface tags from the global DB "OpcInterface" in the software controller.

The PID controller runs in the virtual controller in a cyclic interrupt OB with the same cycle time as the sampling rate $T_s = 20$ ms in Simulink.
3 Use cases

3.2.2 Advantages of the use case

Linking to Simulink via OPC UA offers you the following advantages:

- Validation of closed-loop controller parameters before even commissioning with the corresponding hardware
- Controller and Simulink do not run on the same computer
- Independent of Simulink, e.g. for setting and testing new closed-loop controller parameters during a service.

3.2.3 Limitations of the use case

Linking via OPC UA has the following limitations:

- Simulink model runs in pseudo-real-time
- No communication in real time
- No cycle synchronicity between the model in Simulink and the PID controller in the controller. Regardless of the cycle control point, data exchange happens at an undefined point in time.
4 Appendix

4.1 Service and support

Industry Online Support
Do you have any questions or need assistance?
Siemens Industry Online Support offers round the clock access to our entire service and support know-how and portfolio.
The Industry Online Support is the central address for information about our products, solutions and services.
Product information, manuals, downloads, FAQs, application examples and videos – all information is accessible with just a few mouse clicks:
support.industry.siemens.com

Technical Support
The Technical Support of Siemens Industry provides you fast and competent support regarding all technical queries with numerous tailor-made offers – ranging from basic support to individual support contracts.
Please send queries to Technical Support via Web form:
support.industry.siemens.com/cs/my/src

SITRAIN – Training for Industry
We support you with our globally available training courses for industry with practical experience, innovative learning methods and a concept that’s tailored to the customer’s specific needs.
For more information on our offered trainings and courses, as well as their locations and dates, refer to our web page:
siemens.com/sitrain

Service offer
Our range of services includes the following:
- Plant data services
- Spare parts services
- Repair services
- On-site and maintenance services
- Retrofitting and modernization services
- Service programs and contracts
You can find detailed information on our range of services in the service catalog web page:
support.industry.siemens.com/cs/sc

Industry Online Support app
You will receive optimum support wherever you are with the "Siemens Industry Online Support" app. The app is available for iOS and Android:
support.industry.siemens.com/cs/ww/en/sc/2067
4.2 Industry Mall

The Siemens Industry Mall is the platform on which the entire siemens Industry product portfolio is accessible. From the selection of products to the order and the delivery tracking, the Industry Mall enables the complete purchasing processing – directly and independently of time and location: mall.industry.siemens.com

4.3 Links and literature

Table 4-1

<table>
<thead>
<tr>
<th>No.</th>
<th>Topic</th>
</tr>
</thead>
</table>
| 1 | Siemens Industry Online Support
https://support.industry.siemens.com |
| 2 | Link to this entry page of this application example
| 3 | Target 1500S for Simulink, product page
http://www.siemens.com/simulink |
| 4 | Target 1500S for Simulink, Industry Online Support site
https://support.industry.siemens.com/cs/ww/en/ps/6ES7823-1BE03-0YA5 |
| 5 | SIMATIC S7-1200, S7-1500 PID control
| 6 | Manual: SIMATIC S7-PLCSIM Advanced
| 7 | MathWorks online documentation:
http://mathworks.com/help/ |
| 8 | Manual: STEP 7 Professional V16

4.4 Change documentation

Table 4-2

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0</td>
<td>12/2017</td>
<td>First edition</td>
</tr>
<tr>
<td>V2.0</td>
<td>09/2020</td>
<td>Revised use cases 1 & 2</td>
</tr>
</tbody>
</table>