
Preface, Contents

Part 1: Designing Programs

Part 2: Operating and Debugging

Part 3: Language Description

Appendix

Glossary, Index

Structured Control Language
(SCL) for S7-300/S7-400
Programming

Manual

This manual has the order number:

6ES7811-1CA02-8BA0

SIMATIC

ii
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000 G7076 C522 01

This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

!
Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions are
not taken.

!
Warning

indicates that death, severe personal injury or substantial property damage can result if proper precautions are
not taken.

!
Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a particular
part of the documentation.

The device/system may only be set up and operated in conjunction with this manual.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and
systems in accordance with established safety practices and standards.

Note the following:

!
Warning

This device and its components may only be used for the applications described in the catalog or the technical
description, and only in connection with devices or components from other manufacturers which have been
approved or recommended by Siemens.

SIMATIC�, SIMATIC NET� and SIMATIC HMI� are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to
trademarks might infringe upon the rights of the trademark owners.

We have checked the contents of this manual for agreement with the
hardware and software described. Since deviations cannot be precluded
entirely, we cannot guarantee full agreement. However, the data in this
manual are reviewed regularly and any necessary corrections included in
subsequent editions. Suggestions for improvement are welcomed.

� Siemens AG 1998
Technical data subject to change.

Disclaimer of LiabilityCopyright � Siemens AG 1998 All rights reserved

The reproduction, transmission or use of this document or its contents is
not permitted without express written authority. Offenders will be liable for
damages. All rights, including rights created by patent grant or registration
of a utility model or design, are reserved.

Siemens AG
Bereich Automatisierungs- und Antriebstechnik
Geschaeftsgebiet Industrie-Automatisierungssysteme
Postfach 4848, D-90327 Nuernberg

Siemens Aktiengesellschaft 6ES7811-1CA02-8BA0

Safety Guidelines

Qualified Personnel

Correct Usage

Trademarks

iii
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Preface

This manual is your guide to creating user programs in the Structured Control
Language (SCL) programming language. The manual explains the basic
procedures for creating programs using the SCL editor, SCL compiler and
SCL debugger.

This manual also includes a reference section that describes the syntax and
functions of the language elements of SCL.

This manual is intended for S7 programmers, commissioning engineers, and
maintenance/service personnel. A working knowledge of automation
procedures is essential.

This manual is valid for release 3.0 of the STEP 7 standard programming
software package.

SCL corresponds to the Structured Control Language defined in the
DIN EN-61131-3 (IEC 1131-3)� standard, although there are essential
differences with regard to the operations. For further details, refer to the table
of standards in the STEP 7 file NORM.TAB.

Purpose

Audience

Scope of the
Manual

Compliance with
Standards

iv
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

There is a wide range of both general and task-oriented user documentation
available to support you when configuring and programming an S7
programmable controller. The following descriptions and the figure below
will help you to find the user documentation you require.

LAD FBD SCL

CFCs for
S7

Reference
Manual

Progr.
Manual

User
Manual

GRAPH
for S7

HiGraph

/234/

/231/

/233/ /236/ /250/

/254//251/ /252/

/xxx/: Number in the list of references

/235/

System Software for S7-300/S7-400
Program Design

Standard Software for S7 and M7
STEP 7

Primer

/30/

S7-300 Programmable Controller
Quick Start

System Software for
S7-300/400
System and Standard
Functions

User
Manual

/230/

Standard Software for S7
Converting S5 Programs

Language Packages

Online Help

This symbol indicates the order in which you should read the
manuals, particularly if you are a first-time user of S7.

This documentation introduces the methodology.

This is a reference manual on a specific topic.

The documentation is supported by online help.

Symbol Meaning

Manuals on
S7-300/S7-400
Hardware

Manual

 STL

/232/

Overview of the
STEP 7
Documentation

Preface

v
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table 1-1 Summary of the Documentation

Title Subject

S7-300 Programmable
Logic Controller
Quick Start, Primer

The primer provides you with a very simple introduction to the methods of
configuring and programming an S7-300/400. It is particularly suitable for first-time
users of an S7 programmable controller.

S7-300/400 Program Design
Programming Manual

The “S7-300/400 Program Design” programming manual provides you with the
basic information you require about the structure of the operating system and a user
program for an S7 CPU. First-time users of an S7-300/400 should read this manual to
get a basic overview of programming methods on which to base the design of a user
program.

S7-300/400 System and
Standard Functions
Reference Manual

The S7 CPUs have system functions and organization blocks integrated in the
operating system that can be used when programming. The manual provides you
with an overview of the system functions, organization blocks and loadable standard
functions available with an S7 programmable controller and contains detailed
interface descriptions explaining how to use the functions and blocks in your user
program.

STEP 7
User Manual

The “STEP 7” User Manual explains the basic use and functions of the STEP 7
automation software. Whether you are a first-time user of STEP 7 or an experienced
STEP 5 user, the manual will provide you with an overview of the procedures for
configuring, programming and getting started with an S7-300/400 programmable
controller. When working with the software, you can call up the online help which
supports you with information about specific details of the program.

Converting S5 Programs
User Manual

You require the “Converting S5 Programs” User Manual if you want to convert
existing S5 programs and to run them on S7 CPUs. The manual explains how to use
the converter. The online help system provides more detailed information about using
the specific converter functions. The online help system also includes an interface
description of the available converted S7 functions.

STL, LAD, FBD, SCL1

Manuals
The manuals for the language packages STL, LAD, FBD, and SCL contain both
instructions for the user and a description of the language. To program an
S7-300/400, you only require one of the languages, but you can, if required, mix the
languages within a project. When using one of the languages for the first time, it is
advisable to familiarize yourself with the methods of creating a program as explained
in the manual.

When working with the software, you can use the online help system which provides
you with detailed information about using the editors and compilers.

GRAPH1 , HiGraph1,
CFC1

Manuals

The GRAPH, HiGraph, and CFC languages provide you with optional methods for
implementing sequential control systems, status control systems, or graphical
interconnection of blocks. The manuals contain both the user instructions and the
description of the language. When using one of these languages for the first time, it is
advisable to familiarize yourself with the methods of creating a program based on the
“S7-300 and S7-400 Program Design” manual. When working with the software,
you can also use the online help system (with the exception of HiGraph) which
provides you with detailed information about using the editors and compilers.

1 Optional package for system software for S7-300/S7-400

Preface

vi
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

To use this SCL manual effectively, you should already be familiar with the
theory behind S7 programs. This is explained in the Programming Manual
/234/. The language packages also use the standard software for S7, so you
you should also be familiar with the standard software as described in the
User Manual /231/.

The manual is divided into the following parts:

� Chapter 1 introduces you to programming with SCL.

� Chapter 2 describes the design process on the basis of an example which
you can also run.

� Chapters 3 to 6 demonstrate how to use the SCL development
environment. They introduce you to the SCL Editor, Compiler and
Debugger.

� Chapters 7 to 19 form the reference section which provides you with
detailed information about the functions of the individual SCL
instructions.

The Appendix contains the following:

� A complete explanation of the SCL syntax conventions.

� The glossary includes definitions of the basic terms.

� The index will help you to locate a topic quickly.

References to other manuals and documentation are indicated by numbers in
slashes /.../. These numbers refer to the titles of manuals listed in
Appendix D.

If you have any questions regarding the software described in this manual
and cannot find an answer here or in the online help, please contact the
Siemens representative in your area. You will find a list of addresses in the
Appendix of /70/ or /100/, or in catalogs, and in Compuserve (go
autforum) . You can also contact our Hotline under the following phone or
fax number:

Tel. (+49) (911) 895–7000 (Fax 7001)

If you have any questions or comments on this manual, please fill out the
remarks form at the end of the manual and return it to the address shown on
the form. We would be grateful if you could also take the time to answer the
questions giving your personal opinion of the manual.

Siemens also offers a number of training courses to introduce you to the
SIMATIC S7 automation system. Please contact your regional training center
or the central training center in Nuremberg, Germany for details:

D–90327 Nuremberg, Tel. (+49) (911) 895–3154.

The user’s guide sections in this manual do not describe procedures in
step-by-step detail, but simply outline basic procedures. You will find more
detailed information on the individual dialogs in the software and how to use
them in the online help.

How to Use This
Manual

Conventions

Additional
Assistance

Notes on Using the
Manual

Preface

vii
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Contents

Part 1: Designing Programs

1 Product Overview 1-1.

1.1 What is SCL? 1-2.

1.2 What Are the Advantages of SCL? 1-3.

1.3 Performance Characteristics of the Development Environment 1-5.

2 Designing SCL Programs 2-1.

2.1 Overview 2-2.

2.2 Defining the Tasks 2-3.

2.3 Using SCL Blocks to Perform the Tasks 2-5.
2.3.1 Defining the Subtasks 2-5.
2.3.2 Selecting and Assigning the Available Block Types 2-6.
2.3.3 Defining the Interfaces Between the Blocks 2-7.
2.3.4 Defining the Input/Output Interface 2-9.
2.3.5 Programming the Blocks 2-10.

2.4 Creating the Organization Block CYCLE 2-11.

2.5 Creating the Function Block RECORD 2-12.

2.6 Creating the Function Block ANALYZE 2-17.

2.7 Creating the Function SQUARE 2-21.

2.8 Debugging Data 2-22.

viii
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Part 2: Operating and Debugging

3 Installing the SCL Software 3-1.
Introduction 3-1.

3.1 User Authorization 3-2.

3.2 Installing / Uninstalling the SCL Software 3-4.

4 Using SCL 4-1.

4.1 Starting the SCL Program 4-2.

4.2 Customizing the User Interface 4-3.

4.3 Working with the SCL Editor 4-5.

5 Programming with SCL 5-1.

5.1 Creating User Programs Using SCL 5-2.

5.2 Creating and Opening an SCL Source File 5-3.

5.3 Entering Declarations, Statements and Comments 5-4.

5.4 Saving and Printing an SCL Source File 5-5.

5.5 The Compilation Process 5-6.

5.6 Transferring the Compiled User Program to the PLC 5-9.

5.7 Creating a Compilation Control File 5-10.

6 Debugging Programs 6-1.

6.1 Overview 6-2.

6.2 “Monitor Continuously” Debugging Function 6-3.

6.3 “Breakpoints Active” Debugging Function 6-5.

6.4 “Monitoring/Modifying Variables” Debugging Function 6-8.

6.5 “Reference Data” Debugging Function 6-9.

6.6 Using the STEP 7 Debugging Functions 6-10.

Contents

ix
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Part 3: Language Description

7 General Introduction to Basic SCL Terms 7-1.

7.1 Language Definition Aids 7-2.

7.2 The SCL Character Set 7-4.

7.3 Reserved Words 7-5.

7.4 Identifiers in SCL 7-7.

7.5 Standard Identifiers 7-8.

7.6 Numbers 7-10.

7.7 Data Types 7-12.

7.8 Variables 7-14.

7.9 Expressions 7-16.

7.10 Statements 7-17.

7.11 SCL Blocks 7-18.

7.12 Comments 7-20.

8 Structure of an SCL Source File 8-1.

8.1 Structure 8-2.
Introduction 8-2.
Order of Blocks 8-2.

8.2 Beginning and End of a Block 8-4.

8.3 Block Attributes 8-5.

8.4 Declaration Section 8-7.

8.5 Code Section 8-10.

8.6 Statements 8-11.

8.7 Structure of a Function Block (FB) 8-12.

8.8 Structure of a Function (FC) 8-14.

8.9 Structure of an Organization Block (OB) 8-16.

8.10 Structure of a Data Block (DB) 8-17.
Overview 8-17.

8.11 Structure of a User-Defined Data Type (UDT) 8-19.

9 Data Types 9-1.

9.1 Overview 9-2.

9.2 Elementary Data Types 9-3.

9.3 Complex Data Types 9-4.
9.3.1 DATE_AND_TIME Data Type 9-5.
9.3.2 STRING Data Type 9-6.
9.3.3 ARRAY Data Type 9-7.
9.3.4 STRUCT Data Type 9-8.

Contents

x
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

9.4 User-Defined Data Type (UDT) 9-10.

9.5 Parameter Types 9-12.

10 Declaring Local Variables and Block Parameters 10-1.

10.1 Overview 10-2.

10.2 Declaring Variables and Parameters 10-4.

10.3 Initialization 10-5.

10.4 Instance Declaration 10-7.

10.5 Static Variables 10-8.

10.6 Temporary Variables 10-9.

10.7 Block Parameters 10-10.

10.8 Flags (OK Flag) 10-12.

11 Declaring Constants and Jump Labels 11-1.

11.1 Constants 11-2.

11.2 Literals 11-3.

11.3 Formats for Integer and Real Number Literals 11-4.

11.4 Formats for Character and String Literals 11-7.

11.5 Formats for Times 11-10.

11.6 Jump Labels 11-14.

12 Declaring Global Data 12-1.

12.1 Overview 12-2.

12.2 CPU Memory Areas 12-3.

12.3 Absolute Access to CPU Memory Areas 12-4.

12.4 Symbolic Access to CPU Memory Areas 12-6.

12.5 Indexed Access to CPU Memory Areas 12-7.

12.6 Data Blocks 12-8.

12.7 Absolute Access to Data Blocks 12-9.

12.8 Indexed Access to Data Blocks 12-11.

12.9 Structured Access to Data Blocks 12-12.

13 Expressions, Operators and Addresses 13-1.

13.1 Operators 13-2.

13.2 Syntax of Expressions 13-3.
13.2.1 Addresses 13-5.

13.3 Mathematical Expressions 13-7.

13.4 Exponential Expressions 13-9.

13.5 Comparative Expressions 13-10.

Contents

xi
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

13.6 Logical Expressions 13-12.

14 Value Assignments 14-1.

14.1 Overview 14-2.

14.2 Value Assignments Using Variables of Elementary Data Types 14-3.

14.3 Value Assignments Using Variables of the Types STRUCT or UDT 14-4.

14.4 Value Assignments Using Variables of the Type ARRAY 14-6.

14.5 Value Assignments Using Variables of the Type STRING 14-8.

14.6 Value Assignments Using Variables of the Type DATE_AND_TIME 14-9.

14.7 Value Assignments using Absolute Variables for Memory Areas 14-10.

14.8 Value Assignments using Global Variables 14-11.

15 Control Statements 15-1.

15.1 Overview 15-2.

15.2 IF Statement 15-4.

15.3 CASE Statement 15-6.

15.4 FOR Statement 15-8.

15.5 WHILE Statement 15-10.

15.6 REPEAT Statement 15-11.

15.7 CONTINUE Statement 15-12.

15.8 EXIT Statement 15-13.

15.9 GOTO Statement 15-14.

15.10 RETURN Statement 15-16.

16 Calling Functions and Function Blocks 16-1.

16.1 Calling and Transferring Parameters 16-2.

16.2 Calling Function Blocks (FB or SFB) 16-3.
16.2.1 FB Parameters 16-5.
16.2.2 Input Assignment (FB) 16-7.
16.2.3 In/Out Assignment (FB) 16-8.
16.2.4 Example of Calling a Global Instance 16-10.
16.2.5 Example of Calling a Local Instance 16-12.

16.3 Calling Functions 16-13.
16.3.1 FC Parameters 16-15.
16.3.2 Input Assignment (FC) 16-16.
16.3.3 Output and In/Out Assignment (FC) 16-17.
16.3.4 Example of a Function Call 16-19.

16.4 Implicitly Defined Parameters 16-20.

17 Counters and Timers 17-1.

17.1 Counter Functions 17-2.
17.1.1 Input and Evaluation of the Counter Reading 17-6.
17.1.2 Counter Up (CU) 17-7.

Contents

xii
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17.1.3 Counter Down (CD) 17-7.
17.1.4 Counter Up/Down (CUD) 17-8.
17.1.5 Example of the Function S_CD (Counter Down) 17-8.

17.2 Timer Functions 17-10.
17.2.1 Input and Evaluation of the Timer Reading 17-14.
17.2.2 Pulse Timer 17-16.
17.2.3 Extended Pulse Timer 17-17.
17.2.4 On-Delay Timer 17-18.
17.2.5 Retentive On-Delay Timer 17-19.
17.2.6 Off-Delay Timer 17-20.
17.2.7 Example of Program Using Extended Pulse Timer Function 17-21.
17.2.8 Selecting the Right Timer Function 17-22.

18 SCL Standard Functions 18-1.

18.1 Converting Data Types 18-2.

18.2 Standard Functions for Data Type Conversions 18-3.

18.3 Numeric Standard Functions 18-9.

18.4 Bit String Standard Functions 18-11.

19 Function Call Interface 19-1.

19.1 Function Call Interface 19-2.

19.2 Data Transfer Interface with OBs 19-4.

Contents

xiii
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Appendix

A Formal Description of Language A-1.

A.1 Overview A-2.

A.2 Overview of Terms A-5.

A.3 Lexical Rule Terms A-6.

A.4 Formatting Characters, Delimiters and Operators A-7.

A.5 Keywords and Predefined Identifiers A-9.

A.6 Address Identifiers and Block Keywords A-12.

A.7 Overview of Non Terms A-14.

A.8 Overview of Tokens A-14.

A.9 Identifiers A-15.

A.10 Naming Conventions in SCL A-16.

A.11 Predefined Constants and Flags A-18.

B Lexical Rules B-1.

B.1 Identifiers B-2.
B.1.1 Literals B-4.
B.1.2 Absolute Addresses B-9.

B.2 Remarks B-11.

B.3 Block Attributes B-12.

C Syntax Rules C-1.

C.1 Subunits of SCL Source Files C-2.

C.2 Structure of Declaration Sections C-4.

C.3 Data Types in SCL C-8.

C.4 Code section C-11.

C.5 Value Assignments C-13.

C.6 Function and Function Block Calls C-16.

C.7 Control Statements C-18.

D References D-1.

Glossary Glossary-1.

Index Index-1.

Contents

xiv
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Contents

Product Overview 1

Designing SCL Programs 2

Part 1:
Designing Programs

-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

1-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Product Overview

Apart from their traditional control tasks, programmable controllers
nowadays increasingly have to perform data management tasks and complex
mathematical operations. It is for these functions in particular that we offer
SCL for S7300/400 (Structured Control Language), the programming
language that makes programming easier and conforms to IEC 113-3.

SCL not only assists you with “normal” control tasks but also with extensive
applications and is thus superior to the “traditional” programming languages
in the following areas of application:

� Data management

� Process optimization

� Recipe management

� Mathematical/statistical operations

In order to be able to work with SCL, you need a SIMATIC programming
device or a PC (80486 processor or higher, 16 Mbytes of RAM).

Language Capability

Operators

Functions

Control structures

Elementary

Complex

Data Types

Exponential/Mathematical
Comparators
Links

Timers/Counters
Function block calls

BOOL/BYTE/WORD/DWORD/
INT/DINT/REAL/TIME/
TIME_OF_DAY

Strings/Arrays/Structures/User-defined

Loops (FOR/WHILE/REPEAT)
Alternatives (IF THEN/CASE/GOTO)

Section Description Page

1.1 What is SCL? 1-2

1.2 What Are the Advantages of SCL? 1-3

1.3 Performance Characteristics of Development Environment 1-5

SCL Programming
Language

Technical
Specifications

Chapter
Overview

1

1-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

1.1 What is SCL?

SCL (Structured Control Language) is a high-level textual programming
language which is based on PASCAL. It is also based on a standard for PLCs
(programmable logic controllers).

The standard DIN EN-61131-3 (IEC 1131-3) sets down standardized requirements
for programming languages for programmable controllers. The basis for SCL
is the section ”structured text”. For precise details of standards conformity,
refer to the ”Compliance List” in the NORM.TBL file in STEP 7.

In addition to high-level language elements, SCL also includes language
elements typical of PLCs such as inputs, outputs, timers, bit memory, block
calls, etc. In other words, SCL complements and extends the STEP 7
programming software and its programming languages Ladder Logic and
Statement List.

For optimum use and practical application of SCL, there is a powerful
development environment which is matched both to specific characteristics
of SCL and STEP 7. This development environment consists of the following
components:

� an Editor for writing programs consisting of functions (FCs), function
blocks (FBs), organization blocks (OBs), data blocks (DBs) and
user-defined data types (UDTs); the programmer is supported in his/her
tasks by powerful functions;

� a Batch Compiler for translating the program written using the Editor
into MC7 machine code. The MC7 code generated will run on all
S7-300/400 CPUs from CPU 314 upwards;

� a Debugger which enables the programmer to check for logical
programming errors within an error-free environment; the debugging
operation is performed in the source language.

The individual components are simple and convenient to use since they run
under Windows 95 and thus benefit from all the advantages of that system.

Editor Batch Compiler Debugger

SCL for S7-300/400

Figure 1-1 SCL development environment

High-Level
Programming
Language

Development
Environment

Product Overview

1-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

1.2 What Are the Advantages of SCL?

SCL offers you all the advantages of a high-level programming language. In
addition, however, it also has a number of characteristics designed to provide
assistance with structured programming, such as:

� the block structure of STEP 7

� ready-made blocks

� compatibility with STEP 5

SCL is ideally suited to dealing with all the tasks involved in automation
projects, which means that you can combine SCL effectively with STEP 7 at
all stages of your project.

In particular, SCL supports the STEP 7 block concept and therefore,
alongside Statement List and Ladder Logic, enables standardized block
programming.

STEP 7 Blocks

OB FC FB DB SFC SFBUDT

STEP 7 blocks are subunits of a user program which are delimited on the
basis of their structure or purpose. SCL provides the facility for creating the
following types of blocks:

Abbrevi-
ation

Block Type Function

OB Organization block
Interface between operating system and user
program

FC Function Block with parameter transfer capability but no
memory

FB Function block Block with parameter transfer capability and
memory

DB Data block Block for storing user data

UDT User-defined
data type

Block for storing user-defined data types

High-Level
Programming
Language

Proven Block
Structure of
STEP 7

Types of Block

Product Overview

1-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

3 You do not have to program every function yourself. You can also make use
of ready-made blocks. These are integrated in the CPU operating system or
stored in libraries (S7lib) in the STEP 7 Standard package and can be used to
program communications functions, for example. The specific block types
involved are as follows:

Abbrevi-
ation

Block Type Function

SFC System function Characteristics similar to a function (FC)

SFB System function block Characteristics similar to a function block (FB)

You can use blocks programmed using SCL in combination with Statement
List (STL), Ladder Logic (LAD), and Function Block Diagram (FBD)
blocks. This means that a block written in SCL can call a block written in
STL, LAD, or FBD. In the same way, SCL blocks can be called by STL,
LAD, or FBD programs. The programming languages of STEP 7 and SCL
(optional package) thus complement one another perfectly.

SCL blocks can be recompiled into the STEP 7 programming language
Statement List. Recompilation from STL to SCL is not possible.

Blocks written in SCL for STEP 5 are, apart from a few exceptions, upwardly
compatible; that is, they can also be edited, compiled and tested using SCL
for STEP 7.

Thanks to modern software engineering techniques, SCL supports structured
programming.

Provided you have some experience of using a high-level programming
language, SCL is easy to learn because the repertoire of language constructs
in SCL is based on other high-level programming languages.

Ready-Made
Blocks

Mutual
Compatibility of
Blocks

Decompilation

Compatibility with
STEP 5

Programming
Methods

Ease of Learning

Product Overview

1-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

1.3 Performance Characteristics of the Development Environment

The SCL Editor is a text editor which can be used for editing any text files.
Its central purpose is the creation and editing of source files for STEP 7
programs. In a source file you can write one or more program blocks (see
below).

Source file1

Editor

Block 1

Block i

.

.

. . Source file j

Figure 1-2 SCL Editor

The SCL Editor allows you to:

� Edit a complete source file incorporating one or more blocks

� Edit a compilation control file which with which you can automate the
compilation of a series of source files

� Use additional functions which simplify the task of editing the source file,
for example, Search and Replace

� Customize the Editor settings to suit your specific requirements

The Editor does not check the syntax of text while it is being entered.

Once you have created your source files using the SCL Editor, you must
translate them into MC code.

Batch
Compiler

Block 1

Block i

.
.

Blocks in the S7
program

Source file 1

Source file j

.

.

SCL source file

Compilation control file

or

Figure 1-3 SCL Compiler

Editor

Compiler

Product Overview

1-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The SCL Compiler allows you to:

� Compile an SCL source file consisting of a number of blocks in a single
compilation run

� Compile a series of SCL source files using a compilation control file
which specifies the names of the source files

� Customize the Compiler settings to suit your specific requirements

� view all errors and warning messages which occur during the compilation
process

� Easily locate errors in the source file with an additional facility which
provides descriptions of the errors and hints on how to rectify them.

The SCL Debugger provides a means of checking how a program will run on
the PLC and thereby a means of identifying any logical errors.

Debugger

S7-300/400 programmable controller

Figure 1-4 SCL Debugger

SCL provides two different debugging modes:

� single-step monitoring – this follows the logical processing sequence of
the program; you can execute the program algorithm one instruction at a
time and observe how the variable values being processed alter in a
Result window;

� continuous monitoring – in this mode you can test out a group of
instructions within a block of the source file; during the test run the
values of the variables and parameters are displayed in chronological
sequence and – where possible – cyclically updated.

The SCL development environment allows you to perform STEP 7 standard
package functions such as displaying and modifying the CPU mode and
setting the time directly from within SCL.

Debugger

STEP 7 Standard
Package

Product Overview

2-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Designing SCL Programs

Experience shows that the easiest and quickest way to program is if you
structure your tasks by splitting them up into individual self-contained
sections. SCL helps you to do this by enabling you to design individual
blocks efficiently.

This chapter describes how to design and implement a user program in SCL.
The explanations are illustrated by a sample program which you can run
using the debugging data supplied and your own input and output modules.

Section Description Page

2.1 Overview 2-2

2.2 Defining the Tasks 2-3

2.3 Using SCL Blocks to Perform the Tasks 2-5

2.3.1 Defining the Subtasks 2-5

2.3.2 Selecting and Assigning the Available Block Types 2-6

2.3.3 Defining the Interfaces Between the Blocks 2-7

2.3.4 Defining the Input/Output Interface 2-9

2.3.5 Creating the Blocks 2-10

2.4 Creating the Organization Block CYCLE 2-11

2.5 Creating the Function Block RECORD 2-12

2.6 Creating the Function Block ANALYZE 2-17

2.7 Creating the Function SQUARE 2-21

2.8 Debugging Data 2-22

Introduction

Chapter
Overview

2

2-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

2.1 Overview

The design section shows you how to use SCL effectively. At first, you will
probably have lots of questions, such as:

� How do I go about creating a program with SCL?

� Which SCL language functions are suitable for performing the task?

� What debugging functions are there for me to use?

These and other questions are answered in this section.

The sample program introduces the following SCL language functions,
among others:

� Structure and use of the various SCL block types

� Calling blocks with transfer and analysis of parameters

� Different input and output formats

� Programming with elementary data types and arrays

� Initializing variables

� Program structure and the use of branches and loops

You can run the sample program on a SIMATIC S7-300 or SIMATIC S7-400,
and you will need the following peripherals:

� One 16-channel input module

� One 16-channel output module

The program is constructed in such a way that you can perform a quick test
using the switches on the input module and the displays on the output
module. To perform a thorough test, use the SCL debugging functions (see
Chapter 6).

You also have all other system functions provided by the STEP 7 Standard
package.

Objective

SCL Language
Functions

Hardware for the
Sample Program

Debugging
Functions

Designing SCL Programs

2-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

2.2 Defining the Tasks

The measured data are to be recorded by an input module, sorted and
processed. Assuming a required range for the measured data of 0 to 255, one
byte is required for input.

The processing functions to be used are square root and square. The results
are to be displayed on an output module which will require one word.
Program control is to be performed via an input byte.

A measured value set by means of the eight input switches is to be copied to
the measured data array in the memory at precisely the point when a signal
pulse is detected at the Enter switch (see Figure 2-1). The measured data
array is to be organized as a cyclic buffer with a maximum of eight entries.

When a signal is detected at the Sort switch, the values stored in the
measured data array must be arranged in ascending order. After that, the
square root and the square of each number must be calculated.

Sort switchMeasured value

Sort measured data Calculate resultsRecord measured data

Calcula-
tions

x=Signal detection

Enter switch

1

3

7

15

31

63

127

255

255

127

63

31

15

7

3

1

1

2

3

4

6

8

11

16

1

9

49

225

961

3969

16129

Overflow

Square Root Square

1 1 1 1 1 1 1 1

255

Data Entry:

X X

Figure 2-1 Recording and Processing Measured Data

Summary

Recording
Measured Data

Processing
Measured Data

Designing SCL Programs

2-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Since only one value at a time can be displayed, the following options must
be available:

� Selection of an item from a list

� Selection of measured value, square root or square

The selection of an item from a list is to be implemented in such a way that a
list item is addressed by means of the following switch setting:

� Three switches are used to set a code which is copied if a signal is
detected at the fourth switch, the Code switch. From this, an address is
calculated which is used to access the output data.

� The same address identifies three possible values; that is, the measured
value, its square root and its square. To select one of these three options,
two changeover switches are required (see Figure 2-2).

Data Entry:

Two changeover switches Code

Sorted data Calculated results

Data Output:

Output

Code switch

x=Signal detection

X

4

Square root
or Square

Measured value or
Calculated result

10

1

3

7

15

31

63

127

255

1

2

3

4

6

8

11

16

1

9

49

225

961

3969

16129

Overflow

Square
Root

3

Address

1

1
0

Measured Value

Address

Switches on Input Module

Displays on
Output Module

Select
Output

Access
output data

Change-
over switch

Square

Figure 2-2 Programmable Output

Programmable
Output

Designing SCL Programs

2-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

2.3 Using SCL Blocks to Perform the Tasks

The task defined above is best performed by means of a structured SCL
program. This involves using a modular design; that is, the program is
subdivided into a number of blocks, each of which performs a specific
subtask. In SCL, as with the other programming languages in STEP 7, you
have a number of block types available. For more information on these types,
see Chapters 1, 7 and 8.

You can adopt the following procedure:

1. Define the subtasks

2. Select and assign the available block types

3. Define the interfaces between the blocks

4. Define the input/output interface

5. Program the blocks

2.3.1 Defining the Subtasks

The subtasks are shown as boxes in Figure 2-3. The rectangular shaded areas
represent the blocks. The order of the code blocks from left to right
corresponds to the order in which they are called.

Organization Block
CYCLE

Function Block
RECORD

Function Block
ANALYZE

Sort
measured

data

Record
measured

data

Access
and select
output data

Calculate
results

Cyclic
program

call

Data Block
RECORD_DATA

Data
input

Data
output

Square root,
Square

Store
data

Functions
SQRT

 (Square Root)
and SQUARE

Program flow Data flow

Figure 2-3 Creating Blocks Based on the Subtasks

Overview

Steps in the Task

Overview

Designing SCL Programs

2-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

2.3.2 Selecting and Assigning the Available Block Types

The individual blocks were selected according to the following criteria:

User programs can only be called by an OB. Since the measured data are to
be received cyclically, an OB for a cyclic operation call (OB1) is required.
Part of the processing – Data Input and Data Output – is programmed in
the OB.

The subtask Record Measured Data requires a block with a memory; that is,
a function block (FB), since certain block-specific data (for example, the
cyclic buffer) must be retained from one program cycle to the next. The
location for the task Store Data (memory) is the instance data block
RECORD_DATA.

The same FB can also perform the subtask Access and Select Output Data,
since this is where the required data is kept.

When selecting the type of block for performing the subtasks Sort Measured
Data and Calculate Results you must remember that an output buffer has to
be set up which contains the calculated results Square Root and Square for
each measured value.

For that reason, this block can only be an FB. Since this FB is called by a
higher-level FB it does not require its own DB. Its instance data can be stored
in the instance data block of the calling FB.

The type of block best suited to performing the subtasks Calculate Square
Root and Square is a function (FC) since the the result can be returned as a
function value. In addition, no data which has to be stored for more than one
program cycle is required for the calculation.

The standard SCL function SQRT can be used for calculating the square root.
A special function SQUARE is to be created for calculating the square and
will also check that the value is within the permissible range.

Overview

CYCLE

RECORD

ANALYZE

SQRT (Square Root)
and SQUARE

Designing SCL Programs

2-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

2.3.3 Defining the Interfaces Between the Blocks

The interface between two blocks is defined by declaring the formal
parameters. SCL offers the following possibilities:

� Input parameters: declared by means of VAR_INPUT

� Output parameters: declared by means of VAR_OUTPUT

� In/out parameters: declared by means of VAR_IN_OUT

When a block is called, input data is passed to it as actual parameters. After
the program returns to the calling block, the output data is prepared for
copying. An FC can transfer its result as a function value (for details, refer
to Chapter 16).

The OB CYCLE has no formal parameters itself. It calls the FB RECORD and
passes to it the measured value and the control data for its formal parameters
(Table 2-1):

Table 2-1 Formal Parameters of RECORD

Parameter Name Data Type Declaration Type Description

measval_in INT VAR_INPUT Measured value

newval BOOL VAR_INPUT Switch for copying measured
value to cyclic buffer

resort BOOL VAR_INPUT Switch for sorting and
analyzing measured data

select
function

BOOL VAR_INPUT Two-way switch for selecting
square root or square

selection WORD VAR_INPUT Code for selecting output
value

newselection BOOL VAR_INPUT Switch for copying code

result_out DWORD VAR_OUTPUT Output of calculated result

measval_out DWORD VAR_OUTPUT Output of corresponding
measured value

Overview

RECORD

Designing SCL Programs

2-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The FB RECORD calls the FB ANALYZE. The information they share is the
measured value array to be sorted. For that reason, this array is declared as an
in/out parameter. A structured array is set up as an output parameter for the
calculated results Square Root and Square. For details of formal parameters,
see Table 2-2:

Table 2-2 Formal Parameters of ANALYZE

Parameter
Name

Data Type Declaration
Type

Description

sortbuffer ARRAY[..]
OF REAL

VAR_IN_OUT Measured value array,
corresponds to cyclic buffer

calcbuffer ARRAY[..]
OF STRUCT

VAR_OUTPUT Array for results:
Structure having components
”Square Root” and ”Square”
of type INT

These functions are called by ANALYZE. They require an input value and
return their results as a function value, see Table 2-3.

Table 2-3 Formal Parameters and Function Values of SQRT and SQUARE

Name Data
Type

Declaration Type Description

value REAL VAR_INPUT Input for SQRT

SQRT REAL Function value Square root of input value

value INT VAR_INPUT Input for SQUARE

SQUARE INT Function value Square of input value

ANALYZE

SQRT and SQUARE

Designing SCL Programs

2-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

2.3.4 Defining the Input/Output Interface

Figure 2-4 shows the input/output interface. Note that in the case of
input/output in bytes, the least significant byte is at the top and the most
significant byte is at the bottom. In the case of input/output in words on the
other hand, the opposite is true.

Power
pack

CPU
 314

D
is

pl
ay

s

S
w

itc
he

s

 Channel DescriptionInput Module
 0 Copy measured value
 1 Initiate sorting and calculation
 2 Select result: square root or square
 3 Select output: measured value or result
 4 Code, Bit 0
 5 Code, Bit 1
 6 Code, Bit 2
 7 Copy code

0 to 7 Input byte: measured value

Channel DescriptionOutput Module
0 to 7 Most significant byte

of output word (bits 8 to 15):
Required for calculation of square only,
otherwise 0

0 to 7 Least significant byte of
output word (bits 0 to 7):
Measured value or result:

square root or square

D
is

pl
ay

s
S

w
itc

he
s

Memory address:
Input: 0
Output: 4

PLC

Input Output

Byte 0

Byte 1

Byte 0

Byte 1

Figure 2-4 Displays and Controls

Overview

Designing SCL Programs

2-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

2.3.5 Programming the Blocks

Once the interfaces have been defined, you can create each of the blocks
separately from one another. This is best done from the top down; that is, in
the order CYCLE, RECORD, ANALYZE and SQUARE. This is the order in
which the blocks are described below.

When compiling the blocks, you must remember that a block must exist
before you can use it; that is, call it from another block. This dictates that the
order of the blocks in the SCL source file must be SQUARE, ANALYZE,
RECORD, and CYCLE (for details, refer to Chapter 8).

The comprehensibility of the program will be improved if you use symbolic
names for module addresses and blocks. To do this, you must enter
definitions in the symbol table as shown in Figure 2-5 (see Chapter 7). The
names must conform to the naming conventions for either IDENTIFIERS or
symbols (for example, ”Input 0.0”), see Appendix A.

Figure 2-5 shows the introductory comment of the SCL source file and the
symbolic names which are to be declared in the symbol table to permit its
error–free compilation.

(*##

SCL Program for Recording and Processing Measured Data:

– A measured value whose signal is present on the input module is copied from
input 0.0 (input switch)

– Subsequent processing of the measured values can be controlled by various
switches

– All values are stored in the working section of the function block RECORD,
the instance data block RECORD_DATA.

The program is programmed symbolically. In order for it to be compiled, details of
the assignment of the symbolic names to the module addresses and the blocks running
on the CPU must be specified. This requires the following symbol table:

Input IB1 BYTE // Measured value
Input 0.0 I0.0 BOOL // Input switch for copying measured value
Sort switch I0.1 BOOL // Initiates sorting and calculation
Function switch I0.2 BOOL // Selects result: square root or square
Output switch I0.3 BOOL // Selects output: measured value or result
Code IW0 WORD // Code, relevant bits 12,13 and 14
Code switch I0.7 BOOL // Copies code
Output QW4 INT // Measured value or result: square root or square

RECORD FB10 FB10 // Records measured values,
// accesses and selects output

RECORD_DATA DB10 FB10 // Instance data block for RECORD
ANALYZE FB20 FB20 // Analyzes measured values, calculates results
SQUARE FC41 FC41 // Function for calculating square
CYCLE OB1 OB1 // Cyclic operation call and input/output

###*)

Figure 2-5 Introductory Comment and Symbol Table

Programming
Blocks

Symbolic
Programming

Introductory
Comment and
Symbol Table

Designing SCL Programs

2-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

2.4 Creating the Organization Block CYCLE

An OB1 was chosen because it is called cyclically by the STEP 7 system. It
performs the following tasks for the program:

� Calls and supplies the function block RECORD with input and control
data.

� Copies the results data from the function block RECORD

� Outputs the data to the display

At the beginning of the declaration section is the 20-byte temporary data
array “system data” (see also Chapter 8).

ORGANIZATION_BLOCK CYCLE

(***
 CYCLE corresponds to OB1; that is, it is called cyclically by the S7 system
 Part 1 : Calls function block and transfers input data
 Part 2 : Copies output data and outputs data with switch to output
**)

VAR_TEMP
 system data : ARRAY[0..20] OF BYTE; // Range for OB1
END_VAR

BEGIN

(* Part 1 : **)

RECORD.RECORD_DATA(

measval_in := WORD_TO_INT(Input),
 newval := ”Input 0.0”, //Input switch as symbol
 resort := Sort switch,
 selectfunction := Function switch,
 newselection := Code switch,
 selection := Code);

(* Part 2 : **)

IF Output switch THEN //Switch to output

Output := RECORD_DATA.result_out; //Square root or Square
ELSE

Output := CREATE_DATA.measval_out; //Measured value
END_IF;

END_ORGANIZATION_BLOCK

Figure 2-6 Organization Block CYCLE (OB1)

The measured value is present at the input as data type BYTE. It has to be
converted to data type INT. To do so, you must convert it from WORD to
INT – prior conversion from BYTE to WORD is implicit in the compilation
process (see Chapter 18). The output on the other hand requires no
conversion, since it has been declared as data type INT in the symbol table,
see Figure 2-5.

Processing
Sequence

Data Type
Conversion

Designing SCL Programs

2-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

2.5 Creating the Function Block RECORD

The block type FB was chosen because certain data has to be retained from
one program cycle to the next. This relates to the static variables which are
declared in the declaration block “VAR, END_VAR” (see Table 2-4).

Static variables are local variables whose values are retained throughout the
processing of every block. They are used to save values of a function block,
and are stored in the instance data block.

FUNCTION_BLOCK RECORD

(***
 Part 1 : Records measured data
 Part 2 : Initiates sorting and calculation
 Part 3 : Analyzes code and prepares data for output
***)

Figure 2-7 Header of Function Block RECORD

Table 2-4 Static Variables for RECORD

Name Data Type Decla-
ration
Type

Initial-
ization
Value

Description

measdata ARRAY [..]
OF INT

VAR 8(0) Cyclic buffer for measured
data

results-
buffer

ARRAY [..]
OF STRUCT

VAR – Array for structures with
the components ”square
root” and ”square” of the
type INT

index INT VAR 0 Index for cyclic buffer
identifying location for
next measured value

prevval BOOL VAR FALSE Previous value for
copying measured value
using ”newval”

prevsort BOOL VAR FALSE Previous value for sorting
using ”resort”

prev-
selection

BOOL VAR FALSE Previous value for
copying code using
”newselection”

address INT VAR 0 Address for output of
measured value or result

analyzing_
block

ANALYZE,
= FB 20

VAR – Local instance for the FB
ANALYZE

Processing
Sequence

Static Variables

Designing SCL Programs

2-13
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Please note the initialization values which are assigned to the variables when
the block is initialized (after being downloaded to the CPU). The local
instance for the FB ANALYZE is also declared in the declaration block “VAR,
END_VAR”. This name is used subsequently for calling and accessing the
output parameters. The global instance RECORD_DATA is used to store the
data.

The declaration section in this block consists of the following components:

� Constants: declared between CONST and END_CONST

� Input parameters: declared between VAR_INPUT and END_VAR

� Output parameters: declared between VAR_OUTPUT and END_VAR

� Static variables: declared between VAR and END_VAR (this also
includes declaration of the local instance for the block ANALYZE).

CONST
 LIMIT := 7;
 COUNT := LIMIT + 1;
END_CONST

VAR_INPUT
 measval_in : INT; // New measured value
 newval : BOOL; // Copies measured value into cyclic buffer
 resort : BOOL; // Sorts measured data
 selectfunction : BOOL; // Selects calculation function, Square Root/Square
 newselection : BOOL; // Copies output address
 selection : WORD; // Output address
END_VAR

VAR_OUTPUT
 result_out : INT; // Calculated value
 measval_out : INT; // Corresponding measured value
END_VAR

VAR
 measdata : ARRAY[0..LIMIT] OF INT := 8(0);
 resultsbuffer : ARRAY[0..LIMIT] OF

STRUCT
 squareroot : INT;
 square : INT;

END_STRUCT;
 index : INT := 0;
 prevval : BOOL := TRUE;
 prevsort : BOOL := TRUE;
 prevselection : BOOL := TRUE;
 address : INT := 0; //Converted output address
 analyzing_block: ANALYZE; //Declaration of local instance
END_VAR

Figure 2-8 Declaration Section of the Function Block RECORD

Declaration
Section of
RECORD

Designing SCL Programs

2-14
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

This is split into three sections:

If the input parameter ”newval” is different from the ”prevval”, a new
measured value is copied to the cyclic buffer.

Performed by calling the function block ANALYZE if the input parameter
”resort” is different from ”prevsort”.

The code is read word by word. According to SIMATIC conventions, this
means that the upper group of switches (byte 0) contains the most significant
eight bits of the input word and the lower group of switches (byte 1) the least
significant. Figure 2-9 shows the location of the switches for setting the code.

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6

Switches
for code
number

Code
switch

0
1
2
3
4
5
6
7

8
9

10
11

ÍÍÍ
ÍÍÍ

15

12
13
14

Switches on
Module

Word in
memory

After SHR
by 12 places

After AND,
mask 000F

0
1
2
ÍÍ
ÍÍ

3
4
5
6
7

8
9

10
11

ÍÍ
ÍÍ

15

12
13
14

0
1
2

ÍÍÍ
ÍÍÍ

3
4
5
6
7

8
9

10
11

ÍÍÍ
ÍÍÍ

15

12
13
14

“address”

ÍÍÍ
ÍÍÍ

7

Byte 0

Byte 1 IW0

Figure 2-9 Analysis of the Code

Figure 2-9 also shows how the address is calculated. The input word IW0
contains in bits 12 to 14 the code which is copied when a signal is detected at
the code switch (bit 15). By shifting right using the standard function SHR
and hiding the relevant bits using an AND mask, the “address” is calculated.

This address is used to write the array elements (calculated result and
corresponding measured value) to the output parameters. Whether square
root or square is output depends on “functionchoice”.

A signal at the code switch is detected by virtue of the fact that
“newselection” is different from “prevselection”.

Designing the
Code Section

Recording
measured data

Initiating sorting and
calculation

Analyzing the code
and preparing output
data

Calculating the
Address

Designing SCL Programs

2-15
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Figure 2-10 represents the algorithm in the form of a flow chart:

Start

End

 recalculate index

yes

yes

no

no

yes

FALSE

Sort cyclic buffer and
perform calculations
(set up results array)

ANALYZE

Copy calculated results
to results array

 Copy measured value to cyclic buffer,

 calculate output address

 Analyze code and

Function Block

RECORD

Load from instance
data block

new code

changed?

newval

changed?

resort

changed?

function-
choice?

TRUE

 Load square root result Load square result

 Load measured value

First shift relevant bits to right
margin then hide spaces not
required by means of AND

Cyclic buffer is imple-
mented by means of
MOD operation:
when limit is reached
start from beginning
again

Load:
Write list items with output addresses
to the output parameters so that their
values can be displayed afterwards.

Figure 2-10 Algorithm for Recording Measured Data

Flow Chart for
RECORD

Designing SCL Programs

2-16
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Figure 2-11 shows the SCL formulation of the flow chart shown in
Figure 2-10; that is, the code section of the logic block.

BEGIN

(* Part 1 : Records measured data **
 If ”newval” changes, the measured value is entered.
 A cyclic buffer for the measured data is implemented by means of

the operation MOD.*)

IF newval <> prevval THEN

index := index MOD COUNT;
measdata[index] := measval_in;
index := index + 1;

END_IF;
prevval := newval;

(* Part 2 : Initiates sorting and calculation *******************************
 If ”resort” changes, sorting of cyclic buffer and performing of
 calculations on measured data is initiated. Results
 are stored in a new array ”calcbuffer”. *)

IF resort <> prevsort THEN
 index := 0; //Reset cyclic buffer index
 analyzing_block(sortbuffer := measdata); //Call ANALYZE
END_IF;
prevsort := resort;

resultsbuffer := analyzing_block.calcbuffer; //Square and Square Root

(* Part 3 : Analyzes code and prepares data for output *********************
 If ”newselection” changes, the address code for accessing the

array element for the output data is recalculated. The
relevant bits of ”newselection” are hidden and converted into
integers. Depending on the setting of the switch ”functionchoice”,
either ”squareroot” or ”square” is prepared for output. *)

IF newselection <> prevselection THEN
 address := WORD_TO_INT(SHR(IN := selection, N := 12) AND 16#0007);
END_IF;
prevselection := newselection;

IF functionchoice THEN
 result_out := resultsbuffer[address].square;
ELSE
 result_out := resultsbuffer[address].squareroot;
END_IF;

measval_out := measdata[address]; //Display measured data

END_FUNCTION_BLOCK

Figure 2-11 Code Section of the Function Block RECORD

Code Section of
RECORD

Designing SCL Programs

2-17
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

2.6 Creating the Function Block ANALYZE

The declaration section of this block consists of the following components:

� Constants: declared between CONST and END_CONST

� In/out parameters: declared between VAR_IN_OUT and END_VAR

� Output parameters: between VAR_OUTPUT and END_VAR

� Temporary variables: declared between VAR_TEMP and END_VAR

FUNCTION_BLOCK ANALYZE

(**
 Part 1 : Sorts measured data in cyclic buffer
 Part 2 : Initiates calculation of results
***)

Figure 2-12 Header of Function Block ANALYZE

CONST
 LIMIT := 7;
END_CONST

VAR_IN_OUT
 sortbuffer : ARRAY[0..LIMIT] OF INT;
END_VAR

VAR_OUTPUT
 calcbuffer : ARRAY[0..LIMIT] OF

STRUCT
squareroot : INT;
square : INT;

END_STRUCT;
END_VAR

VAR_TEMP
 swap : BOOL;
 index, aux : INT;
 valr, resultr : REAL;
END_VAR

Figure 2-13 Declaration Section of the Function Block ANALYZE

The in/out parameter “sortbuffer” is linked to the cyclic buffer “measdata”;
that is, the original contents of the buffer are overwritten by the sorted
measured data.

The new array “calcbuffer” is created as an output parameter for the
calculated results. Its elements are structured in such a way that they contain
the square root and the square of each measured value.

Declaration
Section of
EVALUATE

Procedure

Designing SCL Programs

2-18
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Figure 2-14 shows you the relationship between the fields described.

measdata sortbuffer

calcbuffer

Figure 2-14 Interface of the FB ANALYZE

This interface shows the core element of data exchange for processing the
measured data. The data is stored in the instance data block RECORD_DATA,
since a local instance for the FB ANALYZE has been created in the calling FB
RECORD.

First of all, the measured data in the cyclic buffer is sorted and then the
calculations performed.

� Sort algorithm method

The permanent exchange of values method is used for sorting the measured
data buffer; that is, adjacent pairs of values are compared and their order
reversed until the desired overall order is obtained. The buffer used is the
in/out parameter ”sortbuffer”.

� Initiation of calculations

Once the sorting operation is complete, the program runs through a
calculation loop in which the functions SQUARE and SQRT are called to
obtain the square and square root respectively of the number in question.
Their results are stored in the structured array ”calcbuffer”.

Designing the
Code Section

Designing SCL Programs

2-19
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Figure 2-15 depicts the algorithm in the form of a flow chart:

swap := FALSE

I >= 1 ?

sortbuffer [I–1] >

sortbuffer[I] ?

 Swap the values

of sortbuffer[I–1] and

sortbuffer[I]

SWAP = TRUE

yes

swap?

TRUE

FALSE

Enter results in the structured
results array

Function Block
ANALYZE Start

End

SQRT

SQUARE

End of
REPEAT loop

Start of
FOR loop

Start of
REPEAT loop

I <= LIMIT ?

no

I := I – 1

I := 0

no

yes

Enter results in the structured
results array

I := LIMIT

I := I + 1

I represents index

no

yes

End of
FOR loop

Start of
FOR loop

End of
FOR loop

Figure 2-15 Algorithm for Analyzing the Measured Data

Flow Chart for
ANALYZE

Designing SCL Programs

2-20
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Figure 2-16 shows the SCL formulation of the flow chart shown in
Figure 2-15; that is, the code section of the logic block.

BEGIN

(* Part 1 Sorting of data **
 Swaps adjacent pairs of values using the ”bubble sort”
 method until the measured data buffer is correctly sorted. *)

REPEAT
swap := FALSE;

FOR index := LIMIT TO 1 BY –1 DO
IF sortbuffer[index–1] > sortbuffer[index] THEN

 aux := sortbuffer[index];
sortbuffer[index] := sortbuffer[index–1];
sortbuffer[index–1] := aux;
swap := TRUE;

END_IF;
END_FOR;

UNTIL NOT swap
END_REPEAT;

(* Part 2 Calculation of results ***
 Calculates square root using standard function SQRT and
 square using function SQUARE. *)

FOR index := 0 TO LIMIT BY 1 DO
 valr := INT_TO_REAL(sortbuffer[index]);
 resultr := SQRT(valr);
 calcbuffer[index].squareroot := REAL_TO_INT(resultr);
 calcbuffer[index].square := SQUARE(sortbuffer[index]);
END_FOR;

END_FUNCTION_BLOCK

Figure 2-16 Code Section of the Function Block ANALYZE

Code Section of
ANALYZE

Designing SCL Programs

2-21
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

2.7 Creating the Function SQUARE

The program first checks whether the input value exceeds the limit at which
the result would be outside the integer range. If it does, the maximum value
for an integer is inserted. Otherwise, the square calculation is performed. The
result is passed over as a function value.

FUNCTION SQUARE : INT

(***
This function returns as its function value the square of the input value or, in
the event of overrun, the maximum value representable by an integer.
**)

VAR_INPUT
 value : INT;
END_VAR

BEGIN
IF value <= 181 THEN
 SQUARE := val * val; // Calculates function value
ELSE
 SQUARE := 32_767; // Set to maximum value in the event of overrun
END_IF;

END_FUNCTION

Figure 2-17 The Function SQUARE

Designing the
Code Section

Designing SCL Programs

2-22
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

2.8 Debugging Data

To perform the test, you require an input module at address 0 and an output
module at address 4 (see Figure).

Before performing the test, set all eight switches in the upper group to the
left (“0”) and all eight switches in the lower group to the right (“1”).

Reload the blocks to the CPU, since the initial values of the variables must
also be tested.

Now carry out the test as described in Table 2-5.

Table 2-5 Stages of the Test

Test Action Result

1 Set the code to ”111” (I0.4, I0.5 and I0.6) and copy
that code by means of the code switch (I0.7).

All outputs on the output module (least significant
byte) are activated and the displays light up.

2 Display the corresponding square root by setting the
output switch (I0.3) to ”1”.

The displays on the output module indicate the
binary number ”10000” (=16).

3 Display the corresponding square by setting the
function switch (I0.2) to ”1”.

15 displays on the output module light up. This
indicates a memory overflow since 255 x 255 gives
too large a figure for the integer range.

4a Reset the output switch (I0.3) to ”0” again. The measured value is displayed again. All displays
on the outputs of the least significant output byte
are set.

4b Set the number 3; that is, the binary number ”11” as
the new measured value on the input module.

The output does not change at this stage.

5a Observe the process of reading the measured value as
follows: set the code to ”000” and copy it by means
of the code switch (I0.7) so that you can
subsequently observe the input of the data.

The output module shows 0; that is, none of the
displays lights up.

5b Switch over the input switch ”Input 0.0” (I0.0). This
copies the value set in test stage 4.

The output module displays the measured value 3,
binary ”11”.

6 Initiate sorting and calculation by switching over the
sort switch (I0.1).

The output module again shows 0 since the sorting
process has moved the measured value to a higher
position in the array.

7 Display the measured value after sorting as follows:
Set the code ”110” (I0.6 = 1, I0.5 = 1, I0.4 = 0 on
IB0; corresponds to bit 14, bit 13 and bit 12 on IW0)
and copy it by switching over the code switch.

The output module now shows the measured value
”11” again since it is the second highest value in the
array.

8a Display the corresponding results as follows:
switching over the output switch (I0.3) displays the
square of the measured value from stage 7.

The output value 9 (binary ”1001”) is displayed.

8b Switch over the function switch (I0.2) to obtain the
square root.

The output value 2 (binary ”10”) is displayed.

Basic
Requirements

Stages of the Test

Designing SCL Programs

2-23
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Tables 2-6 and 2-7 describe the switches on the input module and the
examples for square and square root. These descriptions will enable you to
define your own tests:

� Input is effected by means of switches. The top eight switches perform
control functions, the bottom eight are used to set the measured value.

� Output is effected via displays. The top group displays the most
significant output byte, the bottom group the least significant byte.

Table 2-6 Control Switches

Control
Switches

Name Description

Channel 0 Input switch Switch over to copy measured value

Channel 1 Sort switch Switch over to initiate sorting/calculation

Channel 2 Function switch Set to left (“0”) for square root Set to right
(“1”) for square

Channel 3 Output switch Set to left (“0”) for measured value Set to
right (“1”) for calculated result

Channel 4 Code Output address Bit 0

Channel 5 Code Output address Bit 1

Channel 6 Code Output address Bit 2

Channel 7 Code switch Switch over to copy code

Table 2-7 contains eight examples of measured values arranged in order.

You can enter the values in any order. Set the bit combination for each value
and transfer this value by operating the input switch. Once all values have
been entered, initiate sorting and calculation by operating the sort switch.
After that, you can view the sorted data or the calculated results (square root
or square).

Table 2-7 Sample Data for Square Root and Square

Measured Value Square Root Square

 0000 0001 = 1 0, 0000 0001 = 1 0000 0000, 0000 0001 = 1

 0000 0011 = 3 0, 0000 0010 = 2 0000 0000, 0000 1001 = 9

 0000 0111 = 7 0, 0000 0011 = 3 0000 0000, 0011 0001 = 49

 0000 1111 = 15 0, 0000 0100 = 4 0000 0000, 1110 0001 = 225

 0001 1111 = 31 0, 0000 0110 = 6 0000 0011, 1100 0001 = 961

 0011 1111 = 63 0, 0000 1000 = 8 0000 1111, 1000 0001 = 3969

 0111 1111 = 127 0, 0000 1011 = 11 0011 1111, 0000 0001 = 16129

 1111 1111 = 255 0, 0001 0000 = 16 0111 111, 1111 1111 = Overflow!

Supplementary
Test

Designing SCL Programs

2-24
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Designing SCL Programs

Installing the SCL Software 3

Using SCL 4

Programming with SCL 5

Debugging Programs 6

Part 2:
Operating and Debugging

2-26
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

3-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Installing the SCL Software

A menu-driven Setup program guides you through the process of installing
the SCL software. The Setup program must be started using the standard
procedure for installing software under Windows 95.

To install the SCL software, you require the following:

� A programming device or PC on which the STEP 7 Standard package has
previously been installed and with

– a 80486 processor (or higher) and

– 16 Mbytes of RAM

� A color monitor, keyboard and mouse supported by Microsoft
Windows 95

� A hard disk with 78 Mbytes of free storage space (10 Mbytes for user
data, 60 Mbytes for swap-out files and 8 Mbytes for the SCL optional
package)

� At least 1 Mbyte of free disk space on drive C: for the Setup program (the
Setup files are erased once installation is completed)

� The Windows 95 operating system

� An MPI interface between the programming device/PC and the PLC
consisting of:

– Either a PC/MPI cable which is connected to the communications port
of your device

– Or an MPI module installed in your device. Some programming
devices already have an MPI interface fitted.

Section Description Page

3.1 User Authorization 3-2

3.2 Installing / Uninstalling the SCL Software 3-4

Introduction

Installation
Requirements

Chapter
Overview

3

3-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

3.1 User Authorization

Product-specific user authorization is required for using the SCL software
package. The software is protected in such a way that it can only be used if it
detects the required authorization for the program or software package on the
hard disk of the programming device/PC.

In order to obtain user authorization, you require the read-protected
authorization diskette. This contains the user authorization and the
AUTHORS program, which are necessary for displaying, installing and
uninstalling the authorization.

The number of possible user authorizations is specified by an authorization
counter on the authorization diskette. For each authorization granted, the
counter is reduced by one. Once it reaches zero, the disk in question can not
be used for any further authorization.

For more details and rules governing the use of authorization, please refer to
the User Manual /231/.

!
Caution

Read the notes in the README.WRI file on the authorization diskette. If
you do not adhere to these guidelines, the authorization may be irretrievably
lost.

You should complete the authorization procedure when the program prompts
you to do so during first-time installation. Proceed as follows:

1. Insert the authorization diskette when prompted to do so.

2. Acknowledge the prompt.

The authorization details are transferred to a physical drive (in other words,
your computer records that you have authorization).

Introduction

Authorization
Diskette

Recording
Authorization
during First-Time
Installation

Installing the SCL Software

3-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

If you start the SCL software when there is no record of authorization
present, a message to that effect appears. To record authorization at any point
after installation, start the program AUTHORS from the authorization
diskette. This allows you to view, install or remove user authorization. The
program is menu-driven.

Note

Always enter drive C: as the destination drive when installing authorization
for SCL.

If you need to re-install authorization details, for example after re-formatting
the drive on which the authorization details are recorded, you must first save
those details elsewhere. To do this, you require the original authorization
diskette.

Proceed as follows to retransfer the authorization details to the authorization
diskette:

1. Insert the original authorization diskette in drive A: (3.6 inch).

2. Start the program AUTHORS.EXE from the authorization diskette.

3. Choose the menu command Authorization � Remove.

4. In the dialog box which then appears, enter the drive on which the
authorization details are recorded and confirm your entry. A list of the
authorizations recorded on the specified drive appears.

5. Select the authorization you wish to remove and confirm your entry. If the
operation is completed without errors, you will receive the following
message:
”Authorization for <Name> successfully removed from drive <X:>.”

6. Acknowledge the message.

The dialog box with the list of remaining authorizations on the drive then
appears again. Close the dialog box if you do not wish to remove any
other authorizations.

You can then use this disk to reinstall the authorization concerned at a later
date.

If a fault occurs on your hard disk before you can save the authorization
details, please contact your local SIEMENS representative.

Recording
Authorization
at a Later Date

Removing
Authorization

If Your Hard Disk
is Defective ...

Installing the SCL Software

3-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

3.2 Installing / Uninstalling the SCL Software

SCL includes a Setup program that automatically installs the software.
Prompts which appear on the screen guide you step by step through the
complete installation process.

Before you can start installation, Windows 95 must be running and the
STEP 7 Standard package must be also be loaded.

’ Proceed as follows:

1. In the Windows 95 Control Panel window, double-click on the
Add/Remove Programs icon.

2. Select Install...

3. Insert the floppy disk (Disk 1) or the CD-ROM in the drive and then click
Next. Windows 95 then automatically searches for the installation
program SETUP.EXE.

4. Follow the instructions given by the installation program as and when
they appear.

The program guides you through the installation process step by step. After
each step you can choose to continue to the next step or go back to the
previous one.

If the installation program detects that there is already a version of SCL on
the programmable logic controller, a message to that effect appears and you
have the following options:

� Cancel installation (to uninstall the existing version of SCL from
Windows 95 and then restart installation of the new version) or

� Continue with the installation process and allow the older version to be
replaced by the new one.

It is always preferable to remove an earlier version before installing the new
version. The disadvantage of simply overwriting the old version is that if you
subsequently remove it, the uninstall procedure may not remove files which
were components of the earlier version.

During the installation process, dialog boxes appear asking you questions or
offering you a choice of options. Please read the notes below to enable you to
respond more quickly and easily to the dialog boxes.

Summary

Preparations

Starting the
Installation
Program

If a Version of SCL
is Already Installed

Installing the SCL Software

3-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Use the standard Windows 95 procedure for removing programs as follows:

1. In the Windows 95 Control Panel window, double-click on the
Add/Remove Programs icon.

2. From the list of installed programs, select STEP 7 and then click the
Add/Remove... button.

3. If dialog boxes appear asking you to confirm deletion of ”released files”,
click the No button if in doubt.

All languages in the user interface and all examples require approximately
8 Mbytes of RAM.

During installation, the program checks whether the appropriate
authorization exists by looking to see if details are recorded on the hard disk.
If no authorization details are found, a message appears indicating that the
software can only be used with the appropriate authorization. If you wish you
can record the authorization immediately or continue with the installation
procedure and record authorization details at a later stage.

In the former case, you must insert the authorization diskette when prompted
to do so and confirm the operation. Information about the authorization
procedure is given in Section 3.1.

If installation is successfully completed, this is indicated by a message to that
effect on the screen.

The following errors will cause installation to be aborted:

� If an initialization error occurs immediately after the Setup program is
started this most probably means that Windows 95 was not running when
the program SETUP.EXE was started.

� Insufficient disk space – you require at least 8 Mbytes of free space on the
hard disk.

� Faulty disk – if you discover that your floppy disk is faulty, please contact
your Siemens representative.

� Operator errors: restart the installation process and follow the instructions
carefully.

Uninstalling

Scope of
Installation

Authorization

When Installation
is Complete

Errors During
Installation

Installing the SCL Software

3-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Installing the SCL Software

4-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Using SCL

This chapter introduces you to using SCL. It provides information about the
SCL Editor user interface.

Section Description Page

4.1 Starting the SCL Program 4-2

4.2 Customizing the User Interface 4-3

4.3 Working with the SCL Editor 4-5

Introduction

Chapter
Overview

4

4-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

4.1 Starting the SCL Program

Once you have installed the SCL software on your programming device/PC,
you can start SCL USING the Start button in the Taskbar of Windows 95
(entry under “SIMATIC / STEP 7”).

The quickest way to start SCL is to position the mouse pointer on an SCL
source file in the SIMATIC Manager and double-click on it. For more
information, refer to the user manual /231/.

Figure 4-1 shows the SCL window after the program has been started.

SCL: Programming S7 Blocks
File View Help

Press F1 for help. NUM

Figure 4-1 SCL Window

Note

Precise details of standard operations and options in Windows 95 are given
in your Windows 95 documentation or the online Windows 95 Tutorial.

Starting from the
Windows Interface

Starting from the
SIMATIC Manager

Using SCL

4-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

4.2 Customizing the User Interface

The SCL windows consist, as do other STEP 7 windows, of the following
standard components (see Figure 4-2):

� Title bar:
 Contains the window title and window control buttons

� Menu bar:
Shows all menus available in the window concerned

� Toolbar:
Contains a series of buttons which provide shortcuts to frequently used
commands

� Working area:
Contains one or more windows in which you can edit program code or
read compiler information or debugging data

� Status bar
Displays the status of and other information relating to the active object

Title bar
Menu bar

Toolbar

Working area

Status bar

SCL: Programming S7 Blocks
File View Help

Press F1 for help. NUM

Figure 4-2 Components of the SCL Window

Overview

Using SCL

4-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The following components can be customized to your own personal
specifications:

� Display of the toolbar

� Display of the breakpoint bar

� Display of the status bar

You can choose to display or hide the toolbar by selecting or deselecting the
menu command View � Toolbar. When the function is activated, a check
mark appears next to the command.

You can choose to display or hide the breakpoint bar by selecting or
deselecting the menu command View � Breakpoint Bar. When the function
is activated, a check mark appears next to the command.

Similarly, you can choose to display or hide the status bar by selecting or
deselecting the menu command View � Status Bar. When the function is
activated, a check mark appears next to the command.

The Editor and the Compiler allow you to make certain settings which will
make your job easier.

� Settings when creating blocks

� Editor settings

� Compiler settings

You can, for example, decide whether existing blocks are overwritten or not
when compiling. To do this, select the menu command Options � Customize
and click the“Create Blocks” tab in the “Customize” dialog box. The options
are described in detail in Section 5.5.

You can also adapt the compilation process to your own requirements. A
detailed description of the options is given in Section 5.5.

Select the menu command Options � Customize and click the “Compiler”
tab in the “Customize” dialog box.

You can specify the tab indent width, save before compiling, and display line
numbers settings and other options. To do this, select the menu command
Options � Customize and click the “Editor” tab in the “Customize” dialog
box.

Modifying
Components

Customizing the
Tool Bar

Customizing the
Breakpoint Bar

Customizing the
Status Bar

Customizing the
Development
Environment

Creating Blocks

Customizing the
Compiler

Customizing the
Editor

Using SCL

4-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

4.3 Working with the SCL Editor

The SCL source code consists primarily of running text. When entering text,
the SCL Editor provides assistance in the form of word processing functions
adapted specifically to SCL requirements.

The source object for your user program is typed in the workspace using the
keyboard. You can open more than one window for the same source object or
open a number of windows each containing different source objects. The
window arrangement can be controlled by means of the commands in the
Window menu.

File Edit Insert PLC Debug View Options Window Help

FUNCTION_BLOCK FB11

VAR
I:INT;
Array:ARRAY[1..10,1..20] OF REAL;
CONTROLLER:

ARRAY[1..3,1..4] OF INT:=–54, 736, –83, 77,
–1289, 10362, 385, 2,
60, –37, –7, 103;

END_VAR

BEGIN

ÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
Á

Press F1 for help. Insert 0:0 Offline

SCL: Programming S7 Blocks – proj1\...\Source File1

proj1\SIMATIC 300 Station(1)\CPU314(1)\...\Source File1

Figure 4-3 SCL Editor Window

In SCL you can select text by positioning the cursor at the beginning of the
section you wish to select and then pressing and holding the left mouse
button while dragging the highlight so that it covers the whole of the desired
section of text.

You can also:

� Select the complete source code text by selecting the menu command
Edit � Select All.

� Select a word by double-clicking on it.

� Select a whole row by clicking on it three times.

Overview

The Editor Window

Selecting Text

Using SCL

4-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

a The menu command Edit Find/Replace opens a dialog box in which you
can enter a character string you wish to find or replace with different text.

Inserting templates enables you to program more efficiently and makes it
easier to avoid syntax errors. In SCL you can

� Insert templates for blocks by selecting the menu command Insert
Block Template.

� Insert templates for control structures by selecting the menu command
Insert Control Structure .

Text can be cut, copied, pasted and deleted in the normal way. The relevant
commands are to be found in the Edit menu.

In most cases, you can move and copy objects by “dragging and dropping”
with the mouse.

With the menu command Edit Go To ..., a dialog box is opened in which
you enter the number of the row at which you want to position the insert
cursor, and then confirm with “OK”.

With the menu command Edit Undo, you can reverse an action, for
example, undelete a row. The menu command Edit Restore enables you to
restore an action that was undone.

Search and
Replace

Inserting
Templates

Cut, Copy, Paste
and Delete

GO TO

Undo, Restore

Using SCL

5-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Programming with SCL

When programming with SCL, you must perform a series of individual tasks
which make up the processing sequence, as described in the following.

Section Description Page

5.1 Creating User Programs Using SCL 5-2

5.2 Creating and Opening an SCL Source File 5-3

5.3 Entering Declarations, Statements and Comments 5-4

5.4 Saving and Printing an SCL Source File 5-5

5.5 The Compilation Process 5-6

5.6 Transferring the Compiled User Program to the PLC 5-9

5.7 Creating a Compilation Control File 5-10

Introduction

Chapter
Overview

5

5-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

5.1 Creating User Programs Using SCL

Before you start to write a program using SCL, you should first perform the
following operations:

1. Set up a project using the SIMATIC Manager.

2. Use the SIMATIC Manager to assign every CPU a communications
address in the network.

3. Configure and initialize the CPU module and signal modules.

4. Create a symbol table if you wish to use symbolic addresses for CPU
memory areas or block names.

If you want to use symbolic addresses for CPU memory areas or block names
in your SCL program, you must create a symbol table. SCL will access this
table during compilation. Use STEP 7 to create the symbol table and enter
values.

You can open the symbol table with the SIMATIC Manager or directly with
SCL using the menu command Options � Symbol Table.

Moreover, you can also import and continue editing other symbol tables
which may have been created as text files with any text editor (for more
information, consult the manual /231/).

To create a user program using SCL, you must first create an SCL source file.
In this source file you can write one or more program blocks (OBs, FBs, FCs,
DBs and UDTs) and then compile them by means of a batch process. The
compilation process places the source file blocks into the user program folder
(<AP-off>, see Figure 5-1) of the same S7 program in which the source file is
stored.

The SCL source file can be created and edited using the integrated Editor or
a standard text editor. Source files created using a standard text editor must
be imported into the project using the SIMATIC Manager. Once imported,
they can be opened, edited and compiled.

Basic
Requirements for
Writing Programs

Creating the
Symbol Table

Processing
Sequence

Programming with SCL

5-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

5.2 Creating and Opening an SCL Source File

Source files created in SCL can be integrated in the structure of an
S7 program as follows:

Blocks

S7 Program

Sources

Block
(e.g. FB1, OB1)

Source file
(e.g. SCL source file)

Symbols

Figure 5-1 Structure of an S7 Program in the SIMATIC Manager

To create a new source file for SCL, proceed as follows:

1. Select the menu command File � New or click the New File button on the
Tool Bar.

2. In the New dialog box, select the desired project and the corresponding
S7 program.

3. Open the source folder and select Insert � S7 Software � Source File in
the menu bar.

4. Mark the source file and select Edit � Object Properties in the menu bar.
Enter the name of the source object in the “General” tabbed page. The
name can be up to 24 characters long. Source file names are
case-sensitive.

5. Double-click the source file. A blank window opens in which you can edit
the SCL source file.

You can open an existing source file previously created and saved in SCL in
order to edit or compile it. Proceed as follows:

1. Select the menu command File � Open or click the Open File button on
the Tool Bar.

2. In the Open dialog box, select the desired project and the corresponding
S7 program.

3. Make sure that the filter “SCL source file” is activated and select the
source file container (SO).

4. The dialog box then displays all SCL source files for the selected S7
program. Select the desired object and confirm your selection by selecting
OK or double-clicking the name of the source file.

Source files created using a standard text editor can be opened in the same
way once they have been imported into the project by the SIMATIC
Manager.

Overview

Creating an SCL
Source File

Opening an SCL
Source File

Programming with SCL

5-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

5.3 Entering Declarations, Statements and Comments

An SCL source file must be written according to strictly defined syntactical
rules. Those rules are an integral component of the language definition. For
their detailed description, refer to the Appendices.

proj1\SIMATIC 300 Station(1)\CPU314(1)\...\Source File1

FUNCTION_BLOCK FB11

VAR
I:INT;
ARRAY:ARRAY[1..10,1..20] OF REAL;
CONTROLLER:

ARRAY[1..3,1..4] OF INT:=–54, 736, –83, 77,
–1289, 10362, 385, 2,
60, –37, –7, 103;

END_VAR

BEGIN

ÁÁÁÁÁÁ
Á
ÁÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ

Figure 5-2 SCL Source File

The following conventions must be observed when writing source files:

� An SCL source file can contain any number of logic blocks (FBs, FCs,
OBs), data blocks (DBs) and user-defined data types (UDTs). Each type
of block has a standardized structure (see Chapter 8).

� The use of upper or lower case letters is only of significance for symbolic
identifiers (for example, variable names and string literals).

� Called blocks must precede blocks in which they are called.

� User-defined data types (UDTs) must precede the blocks in which they
are used.

� Global data blocks must precede all blocks which access them.

� Observe the layout and syntax rules described in the Language
Description section of this manual.

Overview

Rules

Programming with SCL

5-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

5.4 Saving and Printing an SCL Source File

The term ”saving” always refers to saving the source files. Blocks are
generated in SCL when the source file is compiled and automatically stored
in the appropriate program directory.

There are a number of options available when saving an SCL source file.
These are as follows:

� Select the menu command File Save or click the Save button on the
tool bar.

The copy of the SCL source file on disk is updated.

� If you wish to create a copy of the active SCL source file, select the menu
command File Save As. The Save As dialog box appears in which you
can enter a name and path for the duplicate file.

� If you select the menu command File Close without having saved
changes to the SCL source file, you are asked whether you wish to save
the changes or not or cancel the Save command.

Instead of using the menu command File Close, you can click the Close
button on the title bar.

Even if you exit SCL by selecting the menu command File Exit when
there are open source files in which the current changes have not been
saved, the dialog box asking whether or not you wish to save the changes
appears for each open file.

You can print out the blocks, declarations and statements in your SCL source
file at any time. You must first have installed and set up the printer from the
Windows 95 Control Panel. To print a source file, proceed as follows:

� Click the Print button on the tool bar or choose the menu command
File Print . A dialog box appears in which you can select various
printing options such as sections to be printed and number of copies.

Choose OK to confirm your selections and print the document.

The menu command File � Page Setup allows you to adjust page layout.

You can make the settings for headers and footers in your printed documents
in the SIMATIC Manager using the File � Headers and Footers menu
command.

The menu command File � Print Preview allows you to obtain a preview of
how your page layout settings will look when printed out. You can not alter
the settings in this view.

Saving an SCL
Source File

Printing a
Source Object

Page Setup

Creating Headers
and Footers

Print Preview

Programming with SCL

5-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

5.5 The Compilation Process

Before you run can run or test your program, you have to compile it.
Initiating the compilation process (see below) activates the Compiler. The
Compiler has the following characteristics:

� The Compiler works in batch mode, i.e. it treats an SCL source file as a
complete unit. Partial compilation (e.g. line by line) is not possible.

� The Compiler checks the syntax of the SCL source file and subsequently
indicates all errors found during the compilation process.

� It generates blocks containing debugging information if the SCL source
file is error-free and the appropriate option is set. The Debug Info option
has to be set individually for every program that you wish to test with
SCL at high language level.

� It generates an instance data block for every function block call if it does
not already exist.

You can adapt the compilation process to suit your specific requirements. To
do so, choose the menu command Options Customize and click the
Compiler tab in the Customize dialog box. The various options can be
selected or deselected by clicking on them with the mouse.

Customize

CancelOK Apply Help

Create Block EditorCompiler

Create Object Code Maximum No. of Errors: 99

Optimize Object Code Maximum String Length: 253

Monitor Array Limits Permit Nested Comments

Create Debug Info

Set OK Flag

Figure 5-3 “Customize” Dialog, “Compiler” Tab

Overview

Compiler Options

Programming with SCL

5-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The various options available are:

� Maximum No. of Errors : The compiler will abort compilation of the
SCL source file if the number of errors reaches the maximum number
specified.

� Create Object Code: Create code capable of being run on a PLC?
Yes/No

� Optimize Object Code: Create shorter code. If the Create Debug Info
option is selected, complete optimization is not possible.

� Monitor Array Limits : Run-time check on whether array indices are
within the permissible range according to the declaration for the array
concerned. If an array index is outside the permissible range, the OK flag
is set to FALSE (provided the OK flag option is activated).

� Create Debug Info: Generate debugging information: Yes/No.
Debugging information is required for debugging with the high-level
language debugger.

� Set OK Flag: Every run-time error sets the OK variable to FALSE.

� Maximum String Length : Reduce the standard length of the “STRING”
data type. The default standard length is 254 characters. In order to
optimize the use of your CPU resources, you can reduce the standard
length.

� Permit Nested Comments: Several comments can be nested in each
other in the SCL source file.

In the “Create Block” tabbed page, you can make settings that influence the
compilation:

� You can decide whether or not existing blocks are overwritten during
compilation.

� You can have reference data generated automatically during compilation
of a source file. If you activate this option, the compilation takes longer.

� Activate the “Include System Attribute S7_server” if the block is relevant
for message or connection configuration. This option also extends the
time required for compilation.

 There are two ways in which the compilation can be initiated.

� Select then menu command File Compile, or

� Click the Compile button on the tool bar.

To make sure that you always compile the latest version of your SCL source
file, it is advisable to select the menu command Options Customize and to
select the option Save Before Compiling in the Editor tabbed page. The
menu command File Compile will then automatically save the SCL source
file first before compiling it.

Options

Creating a Block

Starting
Compilation

Programming with SCL

5-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

When the compilation process has been completed, you will either receive a
message to the effect that compilation has been successfully completed
without errors or a window similar to that in Figure 5-4 will appear listing all
errors and warning messages encountered.

HelpClose

Help Text

Message

15:4397

Go To

SCL Source File1
F:Z00016 S 00012 : invalid expression
W: Code Generator not called due to error
1 error and 1 warning message(s) found.

1 error and 1 warning message(s) found.

SCL: Error Report

Figure 5-4 Window Listing Errors and Warning Messages

Every message is listed together with the relevant line and column position
as well as a brief description. You can obtain a detailed explanation of the
error/ warning message by selecting it and then clicking the Help button.

Double-clicking a message will move the cursor to the corresponding point in
the SCL source file.

These two functions allow you to locate and correct errors and warning
messages quickly and simply.

After Compiling a
Source File

Finding the
Causes of Error
and Warning
Messages

Programming with SCL

5-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

5.6 Transferring the Compiled User Program to the PLC

When an SCL source file is compiled, the blocks in the source file are
generated and saved in the “Blocks” folder of the S7 program. In SCL you
can subsequently download only those blocks from the programming device
to the CPU.

Use the SIMATIC Manager if you wish to transfer other blocks of the S7
program to the PLC.

In order to be able to load the application program into the PLC, the
following requirements must be satisfied:

� There must be a connection between the programming device and the
PLC.

� The blocks to be downloaded must have been successfully compiled
without errors.

The function Clear/Reset can be used to completely clear an application from
a CPU online. Please note that at the same time it resets the CPU, shuts down
all existing connections with the CPU and, if a memory card is fitted, copies
the contents of the memory card to the internal load memory. To perform the
function, proceed as follows:

1. Select the menu command PLC � Operating Mode and set the CPU to
STOP mode.

2. Select the menu command PLC � Clear/Reset.

3. Confirm the action in the dialog box which then appears.

It is preferable to transfer the blocks with the CPU in STOP mode since
errors can occur if a program is overwritten when the CPU is in RUN mode.
To transfer the blocks, proceed as follows:

1. Select the menu command PLC � Download.

2. If the block is already present in the CPU RAM, confirm when prompted
whether the block is to be overwritten.

Overview

Basic
Requirements

Resetting the CPU
Memory

Downloading to
the PLC

Programming with SCL

5-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

5.7 Creating a Compilation Control File

You can automate compilation of a series of SCL source files by creating a
compilation control file.

You can create a compilation control file for your STEP 7 project. In it, you
enter the names of SCL source files in the project which are to be compiled
in a batch processing run.

You create the file as follows:

� When you create or open a file with the command New or Open you must
activate the Compilation Control File filter.

� The file is then given the special extension ”.inp”.

� When you compile this file, the files specified in it are compiled one after
the other.

When the files are compiled, the blocks created are stored in the “Blocks”
folder of the S7 program.

Overview

Compilation
Control File

Creating the File

Compiling

Programming with SCL

6-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Debugging Programs

The SCL debugging functions allow you to check the execution of a program
on the CPU and to locate any errors that it might contain.

Syntax errors are indicated by the compiler. Run time errors occurring during
the execution of the program are also indicated, in this case, by system
alarms. You can locate logical programming errors using the debugging
functions.

You can obtain more detailed information on debugging with SCL from the
online help. The online help system can provide you with answers to specific
problems while you are working with SCL.

Section Description Page

6.1 Overview 6-2

6.2 “Monitor Continuously” Debugging Function 6-3

6.3 “Breakpoints Active” Debugging Function 6-5

6.4 “Monitoring/Modifying Variables” Debugging Function 6-8

6.5 “Reference Data” Debugging Function 6-9

6.6 Using the STEP 7 Debugging Functions 6-10

Introduction

Getting Further
Information

Chapter
Overview

6

6-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

6.1 Overview

You can use the SCL debugging functions to debug user programs
programmed in SCL at high-language level. This debugging method allows
you to:

� Identify programming errors

� Observe and monitor the effects of a user program on the processing
sequence in the CPU.

Before you can debug an SCL program you must first complete the following
operations:

1. The program must have been successfully compiled without errors using
the compilation options ”Create Object Code” and ”Create Debug
Information”. These options are set in the Compiler tabbed page in the
Options Customize dialog box.

2. You must have established an online connection between the
programming device/PC and the CPU.

3. You must also have loaded the program into the CPU. You can do this by
means of the menu command PLC � Download.

Table 6-1 lists the basic debugging functions available in SCL and gives a
brief description of their features.

Table 6-1 Summary of Debugging Functions

Function Features

Monitor continuously

(S7-300/400 CPUs)

Output names and current values of
variables of a monitoring range

Breakpoints active

(only S7-400 CPUs)

Set, delete and edit breakpoints;
single-step debugging

Monitor/modify variables Monitor/specify current values of shared
data

Create reference data Create an overview of the user data

STEP 7 StandardPackage

debugging functions

Check/change the CPU mode

!
Note

Testing while the system is running could result in serious damage or injury
in the event of malfunctions or program errors! Always make sure that no
dangerous situations can occur before activating debugging functions.

High Language
Level

Basic
Requirements

SCL Debugging
Functions

Debugging Programs

6-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

6.2 “ Monitor Continuously” Debugging Function

Using the “Monitor continuously” function, you can debug a group of
statements. This group of statements is also known as the monitoring range.

During the test, the values of the variables and the parameters of this range
are displayed in chronological order and updated cyclically. If the monitoring
range is in a program section that is executed in every cycle, the values of the
variables cannot normally be displayed for consecutive cycles.

Values that have changed in the current run are displayed in black. Values
that have not changed are displayed in light gray.

The range of statements that can be tested depends on the performance of the
connected CPUs. After compilation, different SCL statements in the source
code produce different numbers of statements in machine code, so that the
length of the monitoring range is variable and is determined and indicated by
the SCL debugger when you select the first statement of the required
monitoring range.

When debugging in the “Monitor Continuously” mode, the current values of
the data in the monitoring range are queried and displayed. The values are
queried while the debugger is running through the monitoring range. This
usually extends the length of the cycle times.

To allow you to influence the extent to which the cycle time is extended,
SCL provides two different test environments.

� “Process” Test Environment

In the “Process” test environment, the SCL debugger restricts the maximum
monitoring range so that the cycle times during testing do not exceed the real
run times of the process or only very little.

� “Laboratory” Test Environment

In the ”Laboratory” test environment, the monitoring range is only limited by
the performance of the connected CPU. The cycle times can however be
longer than in the real process so that the maximum monitoring range is
greater than in the ”Process” test environment.

Summary

Debug Mode

Debugging Programs

6-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Proceed as follows to execute the “Monitor Continuously” function:

1. Make sure that the basic requirements listed in Section 6.1 are met.

2. Select the window containing the source file of the program to be tested.

3. If you want to change the default test environment (process), select the
menu option Debug Test Environment Laboratory.

4. Position the cursor in the line of the source text containing the first
statement of the range to be tested.

5. Select the menu option Debug Monitor Continuously.

Result: The largest possible monitoring range is determined and indicated
by a gray bar at the left edge of the window. The window is split and the
names and current values of the variables in the monitoring range are
displayed line by line in the right-hand half of the window.

6. Select the menu option Debug “Monitor Continuously” again to
interrupt debugging and continue later.

7. Select the menu option Debug “Finish Debugging” to stop debugging.

Using “ Monitor
Continuously”
Mode

Debugging Programs

6-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

6.3 “Breakpoints Active” Debugging Function

When debugging in the ”Breakpoints Active” mode, the program is run
through in single steps. You can execute the program statement by statement
and see how the values of the variables change.

After setting breakpoints, you can allow the program to be executed as far as
a breakpoint and then monitor step-by-step starting at that breakpoint.

You can define breakpoints at any point in the code section of the source file.

The breakpoints are sent to the programmable controller and activated only
after you select the menu command Debug Breakpoints Active. The
program is then executed until the first breakpoint is reached.

The maximum possible number of active breakpoints is CPU-dependent.

� CPU 416: maximum of 4 active breakpoints possible

� CPU 414: maximum of 2 active breakpoints possible

� CPU 314: no active breakpoints possible

Once the debugging function Breakpoints Active has been activated, the
following functions can be performed:

� Next Statement

Continues with next statement – for output of variable values

� Continue

Continues to next activated breakpoint

� To Cursor

Continues to a point currently selected in the source file.

Note

Please make sure that the maximum number of active breakpoints is not
exceeded when you use the menu commands Next Statement or To Cursor
since these functions automatically set and activate a breakpoint.

Overview

Breakpoints

Single-Step
Functions

Debugging Programs

6-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

First make sure that the requirements listed in Section 6.1 are met before you
start debugging. You can now test out your program step by step with the
“Breakpoints Active” function. The description below and the flow chart in
Figure 6-1 explain the procedure.

1. Select and open the window containing the source file for the block you
wish to test.

2. Set the breakpoints by positioning the cursor at the desired point in the
program source file and selecting the menu command Debug Set
Breakpoint. The breakpoints are displayed at the left edge of the window
as a red circle.

3. Start single-step execution by selecting the menu command Debug
Breakpoints Active.

Result: The window is split vertically into two halves and the program
looks for the next breakpoint. When it finds it, the CPU is switched to the
HOLD mode and the point reached is marked with a yellow arrow.

4. You can now select one of the following functions:

– Select the menu command Debug Next Statement (4a)
Result: the CPU briefly switches to RUN. When the next statement is
reached, it stops again and the values of the variables processed for
the last statement are displayed in the left half of the window.

– Select the menu command Debug Continue (4b)
Result: the CPU switches to RUN. When the next active breakpoint is
reached, it stops again and the breakpoint is displayed at the left edge
of the window. To view the values of the variables, select the menu
command Debug Next Statement again.

– Select the menu command Debug To Cursor (4c)
A breakpoint is automatically set and activated at the currently
selected position. The CPU switches to RUN. When it reaches the
selected point, it stops again and the breakpoint is displayed. To view
the values of the variables, select the menu command Debug Next
Statement.

5. Return to step 2 if you wish to continue testing using changed
breakpoints. At step 2 you can set new breakpoints or delete existing
ones.

6. Select the menu command Debug Breakpoints Active again to
deactivate the test loop.

7. If you do not want to test any other statements in the source file, quit
debugging with the menu command Debug Finish Debugging.

Using
“Breakpoints
Active”

Debugging Programs

6-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Open

Debugging in
single steps

Start

End

Single step function
?

New breakpoints
?

Set breakpoints
(or delete)

Start single step
execution

To next breakpoint To breakpoint set at
cursor

Display variable
content

Repeat
 ?

Interrupt single step
execution

Repeat
 ?

Close

1)

2)

3)

4a) 4b) 4c)

5)

6)

yes

no

yes

no

yes

no

Deactivate
”Breakpoints Active”

Cancel split screen

”To Next Statement”

Continue

with ”Finish Debugging”

SCL source file

Window of the
SCL source file

”Breakpoints Active”

”To Cursor”

Split window Monitor and SCL source file

Figure 6-1 Algorithm for Debugging

Debugging Programs

6-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

6.4 “Monitoring/Modifying Variables” Debugging Function

When you use the “Monitor/Modify Variables” function, you can do the
following:

� Display (monitor) the current values of shared data from your user
program.

� Assign fixed values to the variables of a user program (modify).

With the PLC Monitor/Modify Variables menu command, you can do the
following:

� Set trigger points and conditions.

� Specify values for the variables of a user program.

In both cases, you must create a variable table, in which you specify the
required variables. If you want to modify the variables, you also enter the
required values.

The debugging and test functions are described in detail in the STEP 7 User
Manual /231/.

Overview

Monitoring and
Modifying
Variables

Debugging Programs

6-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

6.5 “Reference Data” Debugging Function

You can create and evaluate reference data to help you debug and modify
your user program.

Reference data include the following: program structure, cross reference list,
assignment list, list of unused addresses, and list of addresses without
symbols.

You can use reference data for the following:

� To provide an overview of the entire user program

� As a basis for modifications and tests

� To supplement program documentation

You can create reference data in the folloiwng ways:

� With the Options Reference Data menu command, you can create,
update and display reference data.

� With the Options Customize menu command, you can have the
reference data generated automatically when the source file is compiled.
If you want the reference data compiled automatically, enter a check
mark beside “Create Reference Data” in the “Create Block” tabbed page.
Automatic creation of the reference data extends the time required for
compilation.

The debugging and test functions are described in detail in the STEP 7 User
Manual /231/.

Overview

Creating Reference
Data

Debugging Programs

6-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

6.6 Using the STEP 7 Debugging Functions

Blocks that have been compiled by SCL can be opened in STL and then
tested with the STL (Statement List) Editor.

Select the menu command PLC Operating Mode to check or change the
current operating mode of the CPU.

The menu command PLC Module Information opens a dialog box in
which you can

� determine the reason for the CPU switching to STOP mode by reading the
diagnostic buffer

� view the contents of the CPU stacks. The break stack in particular is an
important source of information for locating faults

� view the CPU technical data

� view the CPU date and time

� determine the CPU cycle time

� find out which blocks are in the CPU

� view information about CPU communication

For the above functions, the CPU must be online

STL Editor

Querying and
Changing
Operating Mode

Viewing CPU
Status

Debugging Programs

General Introduction to
Basic SCL Terms 7

Structure of an SCL Source File 8

Data Types 9

Declaring Local Variables and
Block Parameters 10

Declaring Constants and
Jump Labels 11

Declaring Global Data 12

Expressions, Operators and
Addresses 13

Value Assignments 14

Control Statements 15

Calling Functions and Function
Blocks 16

Counters and Timers 17

SCL Standard Functions 18

Function Call Interface 19

Part 3:
Language Description

6-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

General Introduction to Basic SCL Terms

This chapter explains the language functions provided by SCL and how to
use them. Please note that only the basic concepts and essential definitions
are dealt with at this point and that more detailed explanations are given in
the subsequent chapters.

Section Description Page

7.1 Language Definition Aids 7-2

7.2 The SCL Character Set 7-4

7.3 Reserved Words 7-5

7.4 SCL Identifiers 7-7

7.5 Standard Identifiers 7-8

7.6 Numbers 7-10

7.7 Data Types 7-12

7.8 Variables 7-14

7.9 Expressions 7-16

7.10 Statements 7-17

7.11 SCL Blocks 7-18

7.12 Comments 7-20

Introduction

Chapter
Overview

7

7-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7.1 Language Definition Aids

The language definition is based on syntax diagrams. These provide you with
a good overview of the syntactical (in other words grammatical) structure of
SCL. Appendix B of this manual contains a collection of all the diagrams
with the language elements.

A syntax diagram is a graphical representation of the structure of the
language. The structure is created using a hierarchical sequence of rules.
Each rule can be based on preceding rules.

Block 1 Block 2 Block 4

Block 3

Block 5

Name of rule

Iteration
Alternative

Sequence

Option

Figure 7-1 Syntax Diagram

The syntax diagram is read from right to left. The following rule structures
must be adhered to:

� Sequence: sequence of blocks

� Option: skippable branch

� Iteration: repetition of branches

� Alternative: multiple branch

A block is a fundamental element or an element that itself is made up of
blocks. The symbols used to represent the various types of block are
illustrated below:

Complex element that is described
by other syntax diagrams.

Basic element that requires no further
explanation.

These are printable characters or special
characters, keywords and predefined
identifiers.
The details of these blocks are copied
unchanged.

SCL Language
Definition

What is a Syntax
Diagram?

What Types of
Block are there?

General Introduction to Basic SCL Terms

7-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

When writing source code, the programmer must observe not only the syntax
rules but also lexical rules.

The lexical and syntax rules are described in detail in Appendices B and C.
Free format means that you can insert formatting characters such as spaces,
tabs and page breaks as well as comments between the rule blocks.

In the case of lexical rules such as the example in Figure 7-2, there is no
freedom of format. When you apply a lexical rule, you must adopt the
specifications exactly as set out.

Underscore

_ _

Number

Letter

Number

Letter Letter

Underscore

Figure 7-2 Example of a Lexical Rule

The following are examples of adherence to the above rule:

C_CONTROLLER3

_A_FIELD

_100_3_3_10

The following are examples of non-adherence to the above rule:

1_1AB

RR__20

*#AB

The syntax rules (e.g. Figure 7-3) allow free format.

:= Constant ;Simple variable

Figure 7-3 Example of a Syntax Rule

The following are examples of adherence to the above rule:

VARIABLE_1 := 100; SWITCH:=FALSE;

VARIABLE_2 := 3.2;

What Does Free
Format Mean?

Lexical Rules

Syntax Rules

General Introduction to Basic SCL Terms

7-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7.2 The SCL Character Set

SCL uses the following subset of the ASCII character set:

� The upper and lower case letters A to Z

� The Arabic numbers 0 to 9

� The space character (ASCII value 32) and all control characters (ASCII
0-31) including the end of line character (ASCII 13)

The following characters have a specific meaning in SCL:

+ – * / = < > [] ()

. , : ; $ # ” ’ { }

Refer to Appendix A of this manual for a detailed list of all permitted
characters and how those characters are interpreted in SCL.

Letters and
Numeric
Characters

Other Characters

Other Information

General Introduction to Basic SCL Terms

7-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

7.3 Reserved Words

Reserved words are keywords that you can only use for a specific purpose.
No distinction is made between upper and lowercase letters.

AND END_STRUCT

ANY END_VAR

ARRAY END_WHILE

BEGIN EXIT

BLOCK_DB FOR

BLOCK_FB FUNCTION

BLOCK_FC FUNCTION_BLOCK

BLOCK_SDB GOTO

BLOCK_SFB IF

BLOCK_SFC INT

BOOL LABEL

BY MOD

BYTE NIL

NOT

CASE OF

CHAR OR

CONST ORGANIZATION_BLOCK

CONTINUE POINTER

COUNTER REAL

DATA_BLOCK REPEAT

DATE RETURN

DATE_AND_TIME S5TIME

DINT STRING

DIV STRUCT

DO THEN

DT TIME

DWORD TIMER

ELSE TIME_OF_DAY

ELSIF TO

END_CASE TOD

END_CONST TYPE

END_DATA_BLOCK VAR

END_FOR VAR_TEMP

Explanation

Keywords

General Introduction to Basic SCL Terms

7-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

END_FUNCTION UNTIL

END_FUNCTION_BLOCK VAR_INPUT

END_IF VAR_IN_OUT

END_LABEL VAR_OUTPUT

END_TYPE WHILE

END_ORGANIZATION_BLOCK WORD

END_REPEAT XOR

VOID

EN

ENO

OK

TRUE

FALSE

��
��� ��� ���� ������
�� �����	���

Keywords,
Continuation

Other Reserved
Words

General Introduction to Basic SCL Terms

7-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

7.4 Identifiers in SCL

An identifier is a name that you assign to an SCL language object, in other
words to a constant, a variable, a function or a block.

Identifiers can be made up of letters or numbers in any order but the first
character must be either a letter or the underscore character. Both upper and
lowercase letters are permitted. As with keywords, identifiers are not
case-sensitive (Anna and AnNa are, for example, identical).

An identifier can be formally represented by the following syntax diagram:

Underscore

_ _

Num. char.

Letter

Num. char.

Letter Letter

IDENTIFIER

Underscore

Figure 7-4 Syntax of an Identifier

Please note the following points:

� When choosing names for identifiers, it is advisable to use unambiguous
and self-explanatory names which add to the comprehensibility of the
program.

� You should check that the name is not already in use by a standard
identifier or a keyword (for example, as in Table 7-1).

� The maximum length of an identifier is 24 characters.

� Symbolic names for blocks (that is, other identifiers as in Table 7-1) must
be defined in the STEP 7 symbol table (for details refer to /231/).

The following names are examples of valid identifiers:

x y12 Sum Temperature

Name Surface Controller Table

The following names are not valid identifiers for the reasons specified:

4th The first character must be a letter or an underscore character

Array ARRAY is a keyword and is not permitted.

S Value Spaces are characters and not allowed.

Definition

Rules

Examples

General Introduction to Basic SCL Terms

7-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7.5 Standard Identifiers

In SCL, a number of identifiers are predefined and are therefore called
standard identifiers. These standard identifiers are as follows:

� the block keywords and

� the address identifiers for addressing memory areas of the CPU.

These standard identifiers are used for absolute addressing of blocks.

Table 7-1 is sorted in the order of the SIMATIC mnemonics and the
corresponding international IEC mnemonics are also shown.

Table 7-1 Block Keywords

Mnemonic
(SIMATIC)

Mnemonic
(IEC)

Identifies

DBx DBx Data Block

FBx FBx Function Block

FCx FCx Function

OBx OBx Organization Block

SDBx SDBx System Data Block

SFCx SFCx System Function

SFBx SFBx System Function Block

Tx Tx Timer

UDTx UDTx Global or User-Defined Data Type

Zx Cx Counter

x = number between 0 and 65533
DBO = reserved

DB, FB, FC, OB, SDB, SFB, SFC, UDT

Keyword
Block

Number

STANDARD IDENTIFIER

Figure 7-5 Syntax of a Standard Identifier

The following are examples of valid identifiers:

FB10
DB100
T141

Definition

Block Keywords

General Introduction to Basic SCL Terms

7-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

You can address memory areas of a CPU at any point in your program using
their address identifiers.

The following table is sorted in order of the SIMATIC mnemonics, the
corresponding international IEC mnemonic is shown in the second column.

Mnemonic
(SIMATIC)

Mnemonic
(IEC)

Addresses Data Type

Ax,y Qx,y Output (via process image) Bit

ABx QBx Output (via process image) Byte

ADx QDx Output (via process image) Double word

AWx QWx Output (via process image) Word

AXx.y QXx.y Output (via process image) Bit

Dx.y 1 Dx.y 1 Data block Bit

DBx 1 DBx 1 Data block Byte

DDx 1 DDx 1 Data block Double word

DWx 1 DWx 1 Data block Word

DXx DXx Data block Bit

Ex.y Ix.y Input (via process image) Bit

EBx IBx Input (via process image) Byte

EDx IDx Input (via process image) Double word

EWx IWx Input (via process image) Word

EXx.y IXx.y Input (via process image) Bit

Mx.y Mx.y Bit memory Bit

MBx MBx Bit memory Byte

MDx MDx Bit memory Double word

MWx MWx Bit memory Word

MXx.y MXx.y Bit memory Bit

PABx PQBx Output (I/O direct) Byte

PADx PQDx Output (I/O direct) Double word

PAWx PQWx Output (I/O direct) Word

PEBx PIBx Input (I/O direct) Byte

PEDx PIDx Input (I/O direct) Double word

PEWx PIWx Input (I/O direct) Word

x = number between 0 and 64535 (absolute address)
y = number between 0 and 7 (bit number)

The following are examples of valid address identifiers:

I1.0 MW10 PQW5 DB20.DW3

KEIN MERKER These address identifiers only apply if the data block is specified

Address Identifiers

General Introduction to Basic SCL Terms

7-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7.6 Numbers

There are several ways in which you can write numbers in SCL. A number
can have a plus or minus sign, a decimal point, and an exponent. The
following rules apply to all numbers:

� A number must not contain commas or spaces.

� To create a visual separation between numbers, the underscore character
(_) can be used.

� The number can be preceded if required by a plus (+) or minus (–)
sign. If the number is not preceded by a sign, it is assumed to be positive.

� Numbers must not be outside certain maximum and minimum limits.

An integer contains neither a decimal point nor an exponent. This means that
an integer is simply a sequence of digits that can be preceded by a plus or
minus sign. Two integer types are implemented in SCL, INT und DINT, each
of which has a different permissible range of values (see Chapter 9).

Examples of valid integers:

0 1 +1 –1

743 –5280 600_00 –32_211

The following integers are illegal for the reasons stated in each case:

123,456 Integers must not contain commas.

36. Integers must not contain a decimal point.

10 20 30 Integers must not contain spaces.

In SCL, you can also represent integers in different numerical systems. To do
this, the number is preceded by a keyword for the numerical system. The
keyword 2# stands for the binary system, 8# for the octal system and 16# for
the hexadecimal system.

Valid integers for decimal 15:

2#1111 8#17 16#F

A real number must contain either a decimal point or an exponent (or both).
A decimal point must be between two numeric characters. This means that a
real number cannot start or end with a decimal point.

Examples of valid real numbers:

0.0 1.0 –0.2 827.602

50000.0 –0.000743 12.3 –315.0066

Summary

Integers

Integers as Binary,
Octal or
Hexadecimal
Numbers

Real Numbers

General Introduction to Basic SCL Terms

7-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The following real numbers are illegal:

1. There must be a number on both sides of the decimal point.

1,000.0 Real numbers must not contain commas.

.3333 There must be a number on both sides of the decimal point.

A real number can include an exponent in order to specify the position of the
decimal point. If the number contains no decimal point, it is assumed that it
is to the right of the number. The exponent itself must be either a positive or
a negative integer. Base 10 is represented by the letter E.

The value 3 x 10 10 can be correctly represented in SCL by the following real
numbers:

3.0E+10 3.0E10 3e+10 3E10

0.3E+11 0.3e11 30.0E+9 30e9

The following real numbers are illegal:

3.E+10 There must be a number on both sides of the decimal point.

8e2.3 The exponent must be an integer.

.333e–3 There must be a number on both sides of the decimal point.

30 E10 Spaces are not allowed.

A character string is a sequence of characters (in other words letters,
numbers, or special characters) set in quotation marks. Both upper and
lowercase letters can be used.

Examples of permissible character strings:

’RED’ ’7500 Karlsruhe’ ’270–32–3456’

’DM19.95’ ’The correct answer is:’

You can enter special formatting characters, the single quotation mark (’) or
a $ character by using the alignment symbol $.

Source Code After Compilation

’SIGNAL$’RED’ SIGNAL’RED’
’50.0$$’ 50.0$
’VALUE$P’ VALUE Page break
’REG-$L’ REG Line feed
’CONTROLLER$R CONTROLLER Carriage return
’STEP$T’ STEP Tab

To enter non-printing characters, type in the substitute representation in
hexadecimal code in the form $hh, where hh stands for the hexadecimal
value of the ASCII character.

To enter comments in a character string that are not intended to be printed
out or displayed, you use the characters $> and $< to enclose the comments.

Character Strings

General Introduction to Basic SCL Terms

7-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7.7 Data Types

A declaration of a variable must always specify what data type that variable
is. The data type determines the permissible range of values for the variable
and the operations that it can be used to perform.

The data type determines

� the type and interpretation of a data element,

� the permissible range of values for a data element,

� the permissible number of operations that can be performed by an address
of a variable, and

� the format of the data of that data type.

The following types of data type are distinguished:

Table 7-2 Elementary Data Types

Data Type Explanation

Elementary Standard type provided by SCL

Complex
Can be created by combining elementary data
types

User-defined
Defined by the user for specific applications and
assigned a user-defined name

Parameter types
Can only be used for declaring parameters

Elementary data types define the structure of data elements which can not be
subdivided into smaller units. They conform to the definition given in the
standard DIN EN 1131-3.

SCL has twelve predefined elementary data types as follows:

BOOL CHAR INT TIME

BYTE DINT DATE

WORD REAL TIME_OF_DAY

DWORD S5TIME

Summary

Types of Data Type

Elementary Data
Types

General Introduction to Basic SCL Terms

7-13
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Complex data types define the structure of data elements which are made up
of a combination of other data elements. SCL allows the following complex
data types:

DATE_AND_TIME

STRING

ARRAY

STRUCT

These are global data types (UDTs) which can be created in SCL for
user-specific applications. This data type can be used with its UDT identifier
UDTx (x represents a number) or an assigned symbolic name in the
declaration section of a block or data block.

In addition to elementary, complex and user-defined data types, you can also
use parameter types for defining parameters. SCL provides the following
parameter types for that purpose:

TIMER BLOCK_FB POINTER ANY

COUNTER BLOCK_FC

BLOCK_DB

BLOCK_SDB

Complex Data
Types

User-Defined Data
Types

Parameter Types

General Introduction to Basic SCL Terms

7-14
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7.8 Variables

An identifier whose assigned value can change during the process of
execution of a program is called a variable. Each variable must be
individually declared (that is, defined) before it can be used in a logic block
or data block. The declaration of a variable specifies that an identifier is a
variable (rather than a constant, etc.) and defines the variable type by
assigning it to a data type.

The following types of variable are distinguished on the basis of their
applicability:

� Local data

� Global user data

� Permissible predefined variables (CPU memory areas)

Local data are declared in a logic block (FC, FB, OB) and apply only within
that logic block. Specifically these are the following:

Table 7-3 Local Data of a Block

Variable Type Explanation

Static Variables A static variable is a local variable whose value is retained
throughout all block cycles (block memory). It is used for
storing values for a function block.

Temporary Variables Temporary variables belong to a local logic block and do not
occupy any static memory. Their values are retained for a
single block cycle only. Temporary variables can not be
accessed from outside the block in which they are declared.

Block Parameters Block parameters are formal parameters of a function block.
or a function. They are local variables that are used to pass
over the current parameters specified when a block is called.

Declaration of
Variables

Local Data

General Introduction to Basic SCL Terms

7-15
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

These are data or data areas that can be accessed from any point in a
program. To use global user-defined variables, you must create data blocks
(DBs).

When you create a DB, you define its structure in a structure declaration.
Instead of a structure declaration, you can use a user-defined data type
(UDT). The order in which you specify the structural components determines
the sequence of the data in the DB.

You can access the memory areas of a CPU directly from any point in the
program via the address identifiers (see Section 7.5) without having to
declare those variables first.

Apart from that, you can always address those memory areas symbolically.
Assignment of symbols is performed globally in this case by means of the
symbol table in STEP 7. For more details, refer to /231/.

Global
User-Defined Data

CPU Memory
Areas

General Introduction to Basic SCL Terms

7-16
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7.9 Expressions

An expression stands for a value that is calculated either when the program is
compiled or when it is running. It consists of one or more addresses linked by
operators. The order in which the operators are applied is determined by their
priority and can also be controlled by bracketing.

� Mathematical expressions

� Logical expressions

� Comparative expressions

A typical example of a mathematical expression is

(b * b–4 * a* c)/(2 * a)

The identifiers a and b and the numbers 4 and 2 are the addresses, the
symbols * , – and / are the corresponding operators (multiply, subtract and
divide). The complete expression represents a numerical value.

A comparative expression is a logical expression that can be either true or
false. The following is an example of a comparative expression:

Setpoint < 100.0

In this expression, SETPOINT is a real variable, 100.0 a real number and
the symbol < a comparator. The expression has the value True if the value of
Setpoint is less than 100.0. If it is not, the value of the expression is False.

The following is a typical example of a logical expression:

a AND NOT b

The identifiers a and b are the addresses, the keywords AND and NOT are
logical operators. The complete expression represents a bit pattern.

Summary

Mathematical
Expressions

Comparative
Expressions

Logical
Expression

General Introduction to Basic SCL Terms

7-17
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

7.10 Statements

An SCL statement is an executable action in the code section of a logic
block. There are three basic types of statements in SCL:

� Value assignments (assignment of an expression to a variable)

� Control statements (repetition or branching statements)

� Subroutine calls (statements calling or branching to other logic blocks)

The following is an example of a typical value assignment:

SETPOINT := 0.99 * PREV_SETPOINT

This example assumes that SETPOINT and PREV_SETPOINT are real
variables. The assignment instruction multiplies the value of
PREV_SETPOINT by 0.99 and assigns the product to the variable
SETPOINT. Note that the symbol for assignment is := .

The following is an example of a typical control statement:

FOR Count :=1 TO 20 DO
LIST[Counter] := VALUE+Counter;

END_FOR;

In the above example, the statement is performed 20 times over. Each time,
the recalculated value in the array LIST is entered in the next highest
position on the list.

By specifying a block identifier for a function (FC) or a function block (FB)
you can call the block declared for that identifier. 1 If the declaration of the
logic block includes formal parameters, then current addresses can be
assigned to the formal parameters when the formal parameters are called.

All parameters listed in the declaration sections

VAR_INPUT, VAR_OUTPUT and VAR_IN_OUT

of a logic block are referred to as formal parameters - in contrast, the
corresponding parameters included in the subroutine calls within the code
section are termed actual parameters.

Assignment of the actual parameters to the formal parameters is part of the
subroutine call.

The following is a typical example of a subroutine call:

FC31(X:=5, S1:=Sumdigits);

KEIN MERKER If you have declared formal parameters in a function, the assignment of current parameters is
mandatory, with function blocks it is optional.

Summary

Value
Assignments

Control
Statements

Subroutine Call

General Introduction to Basic SCL Terms

7-18
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7.11 SCL Blocks

An SCL source file can contain any number of blocks as source code.

���
�
��	��� ����	��

����� ����	��

Keyword A

Keyword B

SCL source file

�

�

�

�

FUNCTION_BLOCK FB10

CONST

VAR

END_FUNCTION_BLOCK

Constant::INT;
END_CONST

VALUE1,VALUE2:REAL
;END_VAR

BEGIN
VALUE1:=100;

:

Figure 7-6 Structure of an SCL Source File

STEP 7 blocks are subunits of a user program delimited according to their
function, their structure or their intended use. SCL allows you to program the
following types of block:

STEP 7 Blocks

OB FC FB DB UDT

You do not have to program every function yourself. You can also make use
of various ready-made blocks. They are to be found in the CPU operating
system or libraries (S7lib) in the STEP7 Standard Package and can be used
for programming communication functions, for example.

All blocks consist of the following components:

� Start/end of block header (keyword corresponding to block type)

� Declaration section

� Code section (assignment section in the case of data blocks)

Overview

Types of Block

Ready-Made
Blocks

Structure of an
SCL Block

General Introduction to Basic SCL Terms

7-19
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The declaration section must contain all specifications required to create the
basis for the code section, for example, definition of constants and
declaration of variables and parameters.

The code section is introduced by the keyword BEGIN and terminated with a
standard identifier for the end of block; that is, END_xxx (see Section 8.2).

Every statement is concluded with a semicolon (“ ; ”). Each statement can
also be preceded by a jump label. The syntax rules for the code section and
the individual statements themselves are explained in Chapter 13.

Statement

Jump label

:Identifier ;

Code Section

Figure 7-7 Syntax of a Statement

Below is an example of the code section of an FB:

: //End of declaration section

:

BEGIN //START of code section

X := X+1;

LABEL1 Y := Y+10;

Z := X * Y;

:

GOTO LABEL1

LABELn; FC10 := Z;//End of code section

END_FUNCTION_BLOCK

In the code section of a data block, you can assign initialization values to
your DB data. For that reason, the code section of a DB is referred to from
now on as the assignment section.

Following compilation, the blocks generated are stored in the “Blocks” folder
of the S7 program. From here, they must be downloaded to the CPU. For
details of how this is done, refer to /231/.

Declaration
Section

Code Section

S7 Program

General Introduction to Basic SCL Terms

7-20
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7.12 Comments

Comments are used for documentation and to provide an explanation of an
SCL block. After compilation, comments have no effect whatsoever on the
running of the program. There are the following two types of comments:

� Line comments

� Block comments

These are comments introduced by a double slash // and extending no further
than the end of the line. The length of such comments is limited to a
maximum of 253 characters including the identifying characters //. Line
comments can be represented by the following syntax diagram:

// CR
Printable

character

Line Comment

Figure 7-8 Syntax of a Line Comment

For details of the printing characters, please refer to Table A-2 in the
Appendix. The character pairings using ‘(*’ and ‘*)’ have no significance
inside line comments.

These are comments which can extend over a number of lines and are
introduced as a block by ‘(* ’ and terminated by ‘*)’. The nesting of block
comments is permitted as standard. You can, however, change this setting
and make the nesting of block comments impossible.

Block Comment

(* *)Character

Figure 7-9 Syntax of a Block Comment

For details of the permissible characters, please refer to Table A-2 in the
Appendix.

Summary

Line Comments

Block Comments

General Introduction to Basic SCL Terms

7-21
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Observe the notation for comments:

� With block comments in data blocks, you must use the notation for block
comments that is, these comments are also introduced with ‘// ’.

� Nesting of comments is permitted in the default setting. This compiler
setting can, however, be modified with the “Permit Nested Comments”
option. To change the setting, select the menu command Options
Customize and deselect the option in the “Compiler” tab page.

� Comments must not be placed in the middle of a symbolic name or a
constant. They may, however, be placed in the middle of a string.

The following comment is illegal:

(*// FUNCTION_BLOCK // Adaptation *)

The example shows two block comments and one line comment.

FUNCTION_BLOCK FB15

(* At this point there is a remarks block

which can extend over a number of lines *)

VAR

SWITCH: INT; //

END_VAR;

BEGIN

SWITCH:= 3;

END_FUNCTION_BLOCK

Line comments

(* Assign a value to the variable SWITCH *)

Figure 7-10 Example for Comments

Note

Line comments which come directly after the variable declaration of a block
are copied to an STL program on decompilation.

You can find these comments in STL in the interface area; that is, in the
upper part of the window (see also /231/).

In the example in Figure 7-10, therefore, the first line comment would be
copied.

Points to Note

Example of the
Use of Comments

General Introduction to Basic SCL Terms

7-22
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

General Introduction to Basic SCL Terms

8-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Structure of an SCL Source File

An SCL source file basically consists of running text. A source file of this
type can contain a number of blocks. These may be OBs, FBs, FCs, DBs, or
UDTs.

This chapter explains the external structure of the blocks. The succeeding
chapters then deal with the internal structures.

Section Description Page

8.1 Structure 8-2

8.2 Beginning and End of a Block 8-4

8.3 Block Attributes 8-5

8.4 Declaration Section 8-7

8.5 Code Section 8-10

8.6 Statements 8-11

8.7 Structure of a Function Block (FB) 8-12

8.8 Structure of a Function (FC) 8-14

8.9 Structure of an Organization Block (OB) 8-16

8.10 Structure of a Data Block (DB) 8-17

8.11 Structure of a User-Defined Data Type (UDT) 8-19

Introduction

Chapter
Overview

8

8-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

8.1 Structure

An SCL source file consists of the source code made up of between 1 and n
blocks (that is, FBs, FCs, OBs, DBs and UDTs).

In order that the individual blocks can be compiled from your SCL source
file, they must must conform to specific structures and syntax rules.

SCL Program Subunit

Function Block

Organization Block

Data Block

User-Defined Data Type

Function

Figure 8-1 SCL Program Subunit

With regard to the order of the blocks, the following rules must be observed
when creating the source file:

Called blocks must precede the calling blocks. This means:

� User-defined data types (UDTs) must precede the blocks in which they
are used.

� Data blocks with an assigned user-defined data type (UDT) must follow
the UDT.

� Data blocks that can be accessed by all logic blocks must precede all
blocks which access them.

� Data blocks with an assigned function block come after the function
block.

� The organization block OB1, which calls other blocks, comes at the very
end. Blocks which are called by blocks called by OB1 must precede those
blocks.

Blocks that you call in a source file, but that you do not program in the same
source file must exist already when the file is compiled into the user
program.

Introduction

Order of Blocks

Structure of an SCL Source File

8-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

UDT

DB

DB from UDT

FB 3

Instance DB for FB 3

FC 5

OB 1

calls

assigned

calls

calls

calls

O
rd

er
 in

 th
e

so
ur

ce
 fi

le

assigned

Figure 8-2 Block Structure of a Source File (Example)

The source code for a block consists of the following sections:

� Block start with specification of the block (absolute or symbolic)

� Block attributes (optional)

� Declaration section (differs from block type to block type)

� Code section in logic blocks or assignment of current values in data
blocks (optional)

� Block end

General Block
Structure

Structure of an SCL Source File

8-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

8.2 Beginning and End of a Block

Depending on the type of block, the source text for a single block is
introduced by a standard identifier for the start of the block and the block
name. It is closed with a standard identifier for the end of the block (see
Table 8-1).

Table 8-1 Standard Identifiers for Beginning and End of Blocks

Syntax Block Type Identifier

ORGANIZATION_BLOCK ob_name
: OB Organization block

END_ORGANIZATION_BLOCK

FUNCTION fc_name:functiontype
: FC Function

END_FUNCTION

FUNCTION_BLOCK fb_name
: FB Function block

END_FUNCTION_BLOCK

DATA_BLOCK db_name
: DB Data block

END_DATA_BLOCK

TYPE name udt_name
:
END_TYPE

UDT User-defined data type

In Table 8-1 above, xx_name stands for the block name according to the
following syntax:

DB, FB, FC, OB, UDT

Keyword
Block

IDENTIFIER

Symbol

Number

Figure 8-3 Syntax of the Block Name

More detailed information is given in Section 7.5. Please note also that you
must define an identifier of a symbol in the STEP 7 symbol table (see /231/.).

FUNCTION_BLOCK FB10
FUNCTION_BLOCK ControllerBlock
FUNCTION_BLOCK ”Controller.B1&U2”

Introduction

Syntax

Block Name

Example

Structure of an SCL Source File

8-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

8.3 Block Attributes

Attributes for blocks can be as follows:

� Block attributes

� System attributes for blocks

The title, version, block protection, author, name and family of a block can
be specified using keywords.

Title

TITLE = ’ ’
Printable

character

Version
: ’ ’

DECIMALVersion .

Block Protection

KNOW_HOW_PROTECT

Author
: IDENTIFIERAUTHOR

max. 8 characters

Name
: IDENTIFIERNAME

max. 8 characters

Block Family
: IDENTIFIERFAMILY

max. 8 characters

DIGIT STRING
DECIMAL

DIGIT STRING

Figure 8-4 Syntax: Block Attributes

Definition

Block Attributes

Structure of an SCL Source File

8-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

You can also assign system attributes to blocks, for example for process
control configuration.

System attributes for blocks

{ }’:=IDENTIFIER

max. 24 characters
Printable

character
’

;

Figure 8-5 Syntax: System Attributes for Blocks

Table 8-2 shows which system attributes you can assign for blocks in SCL.

Table 8-2 System Attributes for Blocks

Attribute Value When to Assign the Attribute Permitted Block Type

S7_m_c true, false When the block will be manipulated or
monitored from an operator console.

FB

S7_tasklist taskname1,
taskname2, etc.

When the block will be called not only in
the cyclic organization blocks but also in
other OBs (for example error or startup
OBs).

FB, FC

S7_block-
view

big, small When the block will be displayed on an
operator console in big or small format.

FB, FC

You assign block attributes after the block identifier and before the
declaration section.

���	������
�
�����

�����
�����

FUNCTION_BLOCK FB10

TITLE=’Average’

AUTHOR:AUT 1

VERSION:’2.1’
KNOW_HOW_PROTECT

NAME:B12
FAMILY:ANALOG
{S7_m_c:=’true’;
S7_blockview:=’big’}

Figure 8-6 Assigning Attributes

System Attributes
for Blocks

Assigning
Attributes

Structure of an SCL Source File

8-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

8.4 Declaration Section

The declaration section is used for defining local and global variables,
parameters, constants, and jump labels.

� The local variables, parameters, constants, and jump labels that are to
apply within a particular block only are defined in the declaration section
of the code block.

� The global data that can be addressed by any code block are defined in
the DB declaration section.

� In the declaration section of a UDT, you specify the user-defined data
type.

A declaration section is divided into a number of declaration subsections,
each delimited by its own pair of keywords. Each subsection contains a
declaration list for data of a particular type, such as constants, labels, static
data and temporary data. Each subsection type may only occur once and not
every subsection type is allowed in every type of block, as shown in the
table. There is no fixed order in which the subsections have to be arranged.

Data Syntax FB FC OB DB UDT

Constants
CONST
Declaration list
END_CONST

X X X

Jump labels
LABEL
Declaration list
END_LABEL

X X X

Temporary variables
VAR_TEMP
Declaration list
END_VAR

X X X

Static variables
VAR
Declaration list
END_VAR

X X2 X1 X1

Input parameters
VAR_INPUT
Declaration list
END_VAR

X X

Output parameters
VAR_OUTPUT
Declaration list
END_VAR

X X

In/out parameters
VAR_IN_OUT
Declaration liste
END_VAR

X X

Declaration list: the list of identifiers for the data type being declared

1 In DBs and UDTs, the keywords VAR and END_VAR are replaced by
STRUCT and END_STRUCT respectively.

2 Although the declaration of variables within the keyword pair VAR and
END_VAR is permitted in functions, the declarations are shifted to the
temporary area during compilation.

Overview

Structure

Declaration
Subsections

Structure of an SCL Source File

8-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

You can also asssign system attributes to input, output, and in/out parameters,
for example for message or connection configuration.

System attributes for parameters

{ }’:=IDENTIFIER

max. 24 characters
Printable

character
’

;

Figure 8-7 Syntax: System Attributes for Parameters

Table 8-3 shows which system attributes you can assign to the parameters:

Table 8-3 System Attributes for Parameters

Attribute Value When to Assign the Attribute Permitted Declaration type

S7_server connection,
alarm_archiv

When the parameter is relevant to connection or
message configuration. This parameter contains
the connection or message number.

IN

S7_a_type alarm, alarm_8,
alarm_8p,
alarm_s, notify,
ar_send

When the parameter will define the message block
type in a message block called in the code section
(only possible when the S7_server attribute is set
to alarm_archiv).

IN, only with blocks of the
type FB

S7_co pbkl, pbk, ptpl,
obkl, fdl, iso,
pbks, obkv

When the parameter will specify the connection
type in the connection configuration (only
possible when the S7_server attribute is set to
connection).

IN

S7_m_c true, false When the parameter will be modified or
monitored from an operator panel.

IN/OUT / IN_OUT, only
with blocks of the type FB

S7_shortcut Any 2
characters, for
example, W, Y

When the parameter is assigned a shortcut to
evaluate analog values.

IN/OUT / IN_OUT, only
with blocks of the type FB

S7_unit Unit, for
example, liters

When the parameter is assigned a unit for
evaluating analog values.

IN/OUT / IN_OUT, only
with blocks of the type FB

S7_string_0 Any 16
characters, for
example OPEN

When the parameter is assigned text for
evaluating binary values.

IN/OUT/ IN_OUT, only with
blocks of the type FB and FC

System Attributes
for Parameters

Structure of an SCL Source File

8-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table 8-3 System Attributes for Parameters, continued

Attribute Permitted Declaration typeWhen to Assign the AttributeValue

S7_string_1 Any 16
characters, for
example,
CLOSE

When the parameter is assigned text for
evaluating binary values

IN/OUT / IN_OUT, only
with blocks of the type FB
and FC

S7_visible true, false When you do not want the parameter to be
displayed in CFC.

IN/OUT / IN_OUT, only
with blocks of the type FB
and FC

S7_link true, false When you do not want the parameter to be linked
in CFC.

IN/OUT / IN_OUT, only
with blocks of the type FB
and, FC

S7_dynamic true, false When you want the parameter to have dynamic
capability when testing in CFC.

IN/OUT / IN_OUT, only
with blocks of the type FB
and FC

S7_param true, false When you want the parameter to be protected
from incorrect value assignment in CFC.

IN/OUT / IN_OUT, only
with blocks of the type FB
and FC

You assign system attributes for parameters in the declaration fields for input
parameters, output parameters or in/out parameters.

Example:

VAR_INPUT
in1 { S7_server:=’alarm_archiv’;

S7_a_type:=’ar_send’ } :DWORD;
END_VAR

Assigning
Attributes

Structure of an SCL Source File

8-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

8.5 Code Section

The code section contains statements1

� that are executed when a code block is called. These statements are used
for processing data or addresses.

� for setting individual initialization values in data blocks.

Figure 8-8 shows the syntax of the code section. It consists of a series of
individual statements, each of which can be preceded by a jump label (see
Section 11.6) which represents the destination for a jump statement.

Code Section

Statement

Jump label

:IDENTIFIER ;

Figure 8-8 Code Section Syntax

Below are some examples of valid statements.

BEGIN

STARTVALUE :=0;
ENDVALUE :=200;

:
SAVE: RESULT :=SETPOINT;
:

The important points to observe when writing the code section are that:

� The code section starts as an option with the keyword BEGIN

� The code section is completed with the keyword for the end of the block.

� Every statement must be terminated with a semicolon.

� All identifiers used in the code section must have been declared.

1 In this manual, the term “statement” is used for all constructs that declare an executable function.

Summary

Syntax

Rules to Observe

Structure of an SCL Source File

8-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

8.6 Statements

Each individual statement is one of the following types:

� Value assignments used to assign the result of an expression or the value
of another variable to a variable.

� Control statements used to repeat statements or groups of statements or
to branch within a program.

� Subroutine calls used to call functions or function blocks.

Statement

Value assignment

Subroutine
call

Control statement

Figure 8-9 Syntax of a Statement

The elements required to formulate these statements are expressions,
operators and addresses. These items are treated in more detail in subsequent
chapters.

The following examples illustrate the various types of statement:

// Example of a value assignment

MEASVAL:= 0 ;

// Example of a subroutine call
FB1.DB11(TRANSFER:= 10) ;

// Example of a control statement

WHILE COUNT < 10 DO..
:
END_WHILE;

Example 8-1 Statements

Summary

Examples

Structure of an SCL Source File

8-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

8.7 Structure of a Function Block (FB)

A function block (FB) is a logic block constituting part of a program and
having a memory area assigned to it. Whenever an FB is called, an instance
DB (see Chapter 10) must be assigned to it. You specify the structure of this
instance DB when you define the FB declaration section.

Code sectionBEGIN END_FUNCTION_BLOCK

FUNCTION_BLOCK FB declaration
section

FB
IDENTIFIER

Function block

Figure 8-10 Structure of a Function Block (FB)

After the keyword

FUNCTION_BLOCK

specify the keyword FB followed by the block number or the symbolic name
of the FB as the FB identifier.

Examples:

FUNCTION_BLOCK FB10

FUNCTION_BLOCK MOTOR_1

The FB declaration section is used to establish the block-specific data. For
details of the permissible declaration subsections, refer to Section 8.4. Note
that the declaration section also determines the structure of the assigned
instance DB.

Examples:

CONST
CONSTANT:=5;

END_CONST

VAR
VALUE1,VALUE2,VALUE3:INT;

END_VAR

Overview

FB Identifier

FB Declaration
Section

Structure of an SCL Source File

8-13
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Example 8-2 shows the source code for a function block. The input and
output parameters (in this case, V1 and V2) are assigned initial values in this
example.

FUNCTION_BLOCK FB11

VAR_INPUT

V1: INT:= 7;

END_VAR

VAR_OUTPUT

V2: REAL;

END_VAR

VAR

PASS_1:INT;

END_VAR

BEGIN

IF V1 = 7 THEN

PASS_1:= V1;

V2:= FC2 (TESTVAL:= PASS_1);

//Call function FC2 and

//supply parameters by means of static

//variable PASS_1

END_IF;

END_FUNCTION_BLOCK

Example 8-2 Example of a Function Block

Example

Structure of an SCL Source File

8-14
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

8.8 Structure of a Function (FC)

A function (FC) is a logic block that is not assigned its own memory area.
For this reason, it does not require an instance DB. In contrast to an FB, a
function can return a function result (return value) to the point from which it
was called. A function can therefore be used like a variable in an expression.
Functions of the type VOID do not have a return value.

Function

Code sectionBEGIN END_FUNCTION

Data type
specification:

FC declaration
section

FUNCTION

VOID

FC
IDENTIFIER

Figure 8-11 Syntax of a Function (FC)

After the keyword

FUNCTION

specify the keyword FC followed by the block number or the symbolic name
of the FC as the FC identifier.

Examples:

FUNCTION FC100

FUNCTION SPEED

Here you specify the data type of the return value. The permissible data types
are all those described in Chapter 9, with the exception of data types
STRUCT and ARRAY. A data type does not need to be specified if a return
value is dispensed with by the use of VOID .

The permissible declaration sections are described in detail in Section 8.4.

Within the code section, the function name must be assigned the function
result. The following is an example of a valid statement within a function
with the name FC31:

FC31:= VALUE;

Overview

FC Names

Date Type
Specification

FC Declaration
Section

Code Section

Structure of an SCL Source File

8-15
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The example below shows a function with the formal input parameters x1,
x2, y1 and y2, a formal output parameter Q2 and a return value FC11.

For an explanation of formal parameters, refer to Chapter 10.

FUNCTION FC11: REAL

VAR_INPUT

x1: REAL;

x2: REAL;

y1: REAL;

y2: REAL;

END_VAR

VAR_OUTPUT

Q2: REAL;

END_VAR

BEGIN // Code section

FC11:= SQRT // Return of function value

((x2 - x1)**2 + (y2 - y1) **2);

Q2:= x1;

END_FUNCTION

Example 8-3 Example of a Function

Example

Structure of an SCL Source File

8-16
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

8.9 Structure of an Organization Block (OB)

An organization block (OB), like an FB or FC, is part of a user program and
is called by the operating system cyclically or when certain events occur. It
provides the interface between the user program and the operating system.

Organization Block

Code sectionBEGIN END_ORGANIZATION_BLOCK

OB
IDENTIFIER

OB declaration sectionORGANIZATION_BLOCK

Figure 8-12 Syntax of an Organization Block

After the keyword

ORANIZATION_BLOCK

specify the keyword OB followed by the block number or the symbolic name
of the OB as the OB identifier.

Examples:

ORGANIZATION_BLOCK OB14

ORGANIZATION_BLOCK TIMER_ALARM

In order to run, each OB has a basic requirement of 20 bytes of local data for
the start information. Depending on the requirements of the program, you can
also declare additional temporary variables in the OB. For a description of
the 20 bytes of local data, please refer to /235/ .

Example:

ORGANIZATION_BLOCK OB14
//TIMER_ALARM

VAR_TEMP
HEADER:ARRAY [1..20] OF BYTE;// 20 bytes for
startinformation
:
:
END_VAR

For details of the remaining permissible declaration subsections for OBs,
please refer to Section 8.4.

Overview

OB Name

OB Declaration
Section

Structure of an SCL Source File

8-17
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

8.10 Structure of a Data Block (DB)

A data block (DB) contains global user-specific data which is to be
accessible to all blocks in the program. Each FB, FC or OB can read or write
data from/to global DBs. The structure of data blocks which are assigned to
specific FBs only (instance DBs) is described in Chapter 12.

Data Block

DB assignment sectionBEGIN END_DATA_BLOCK

DATA_BLOCK DB declaration sectionDB
NAME

Figure 8-13 Syntax of a Data Block (DB)

After the keyword

DATA_BLOCK

specify the keyword DB followed by the block number or the symbolic name
of the DB as the DB identifier.

Examples:
DATA_BLOCK DB20
DATA_BLOCK MEASRANGE

In the DB declaration section, you define the data structure of the DB. A DB
variable can be assigned either a structured data type (STRUCT) or a
user-defined data type (UDT).

DB
NAME

Structure of Data
Type Specification

DB Declaration Section

Figure 8-14 Syntax of the DB Declaration Section

Example:
DATA_BLOCK DB 20

STRUCT // Declaration section
VALUE:ARRAY [1..100] OF INT;
END_STRUCT

BEGIN // Start of assignment section
:

END_DATA_BLOCK // End of data block

Overview

DB Name

DB Declaration
Section

Structure of an SCL Source File

8-18
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

In the assignment section, you can adapt the data you have declared in the
declaration section so that it has DB-specific values for your particular
application. The assignment section begins with the keyword

BEGIN

and then consists of a sequence of value assignments with the following
syntax:

DB Assignment Section

:= Constant ;Simple variable

Figure 8-15 Syntax of the DB Assignment Section

Note

When assigning initial values (initialization), STL syntax applies to entering
attributes and comments within a DB. For information on how to write
constants, attributes and comments, consult the user manual /231/ or the
manual /232/.

The example below illustrates how the assignment section can be formulated
if the array values [1] and [5] are to have the integer values 5 and –1
respectively instead of the initialization value 1.

DATA_BLOCK DB20

STRUCT //Data declaration with

//initialization values

VALUE : ARRAY [1..100] OF INT := 100 (1);

MARKER: BOOL := TRUE;
S_WORD: WORD := W�16�FFAA;
S_BYTE: BYTE := Bq16qFF;
S_TIME: S5TIME := S5T#1h30m30s;

END_STRUCT

BEGIN //Assignment section

//Value assignments for specific array elements

VALUE [1] := 5;

VALUE [5] :=–1;

END_DATA_BLOCK

Example 8-4 Assignment Section of a DB

DB Assignment
Section

Example

Structure of an SCL Source File

8-19
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

8.11 Structure of a User-Defined Data Type (UDT)

User-defined data types (UDTs) are special data structures created by the
user. Since user-defined data types are assigned names they can be used
many times over. By virtue of their definition, they can be used at any point
in the CPU program and are thus global data types. As such, they can
therefore

� be used in blocks in the same way as elementary or complex data types,
or

� be used as templates for creating data blocks with the same data structure.

User-Defined Data Type

END_TYPE
Structure
data type

specification
TYPE UDT

NAME

Figure 8-16 Syntax of a User-Defined Data Type (UDT)

After the keyword

TYPE

specify the keyword UDT followed by a number or simply the symbolic
name of the UDT.

Examples:

TYPE UDT 10
TYPE SUPPLY_BLOCK

The data type is always specified with a STRUCT data type specification.
The data type UDT can be used in the declaration subsections of logic blocks
or in data blocks or assigned to DBs. For details of the permissible
declaration subsections and other information, please refer to Chapter 9.

Overview

Naming UDTs

Specifying Data
Types

Structure of an SCL Source File

8-20
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Structure of an SCL Source File

9-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Data Types

A data type is the combination of value ranges and operations into a single
unit. SCL, like most other programming languages, has a number of
predefined data types (that is, integrated in the language). In addition, the
programmer can create complex and user-defined data types.

Section Description Page

9.1 Overview 9-2

9.2 Elementary Data Types 9-3

9.3 Complex Data Types 9-4

9.3.1 DATE_AND_TIME Data Type 9-5

9.3.2 STRING Data Type 9-6

9.3.3 ARRAY Data Type 9-7

9.3.4 STRUCT Data Type 9-8

9.4 User-Defined Data Type (UDT) 9-10

9.5 Parameter Types 9-12

Introduction

Chapter
Overview

9

9-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

9.1 Overview

Table 9-1 shows the various data types in SCL:

Table 9-1 Data Types in SCL

Elementary Data Types

BOOL CHAR INT TIME

BYTE DINT DATE

WORD
DWORD

REAL TIME_OF_DAY

S5TIME

Complex Data Types

DATE_AND_TIME STRING ARRAY STRUCT

User-Defined Data Types

UDT

Parameter Types

TIMER BLOCK_FB POINTER ANY

COUNTER BLOCK_FC

BLOCK_DB

BLOCK_SDB

The above data types determine:

� the nature and interpretation of the data elements,

� the permissible value ranges for the data elements,

� the permissible number of operations that can be performed by an
operand of a data type, and

� the format of the data of a data type.

Overview

Data Types

9-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

9.2 Elementary Data Types

Elementary data types define the structure of data elements that cannot be
subdivided into smaller units. They correspond to the definition given in the
standard DIN EN 1131-3. An elementary data type defines a memory area of
a fixed size and represents bit, integer, real, period, time and character
values. These data types are all predefined in SCL.

Table 9-2 Bit Widths and Value Ranges of Elementary Data Types

Type Keyword Bit
Width

Value Range

Bit Data Type Data elements of this type are either 1Bit (BOOL data type),
8 Bits, 16 Bits or 32 Bits in length.

Bit BOOL 1 0, 1 or FALSE, TRUE

Byte BYTE 8 A numerical value range can not be
specified These are bit

Word WORD 16
specified. These are bit
combinations which can not be

Double word DWORD 32
combinations which can not be
expressed in numerical terms.

Character Type Data elements of this type occupy exactly 1 character in the
ASCII character set

Individual
Characters

CHAR 8 Extended ASCII character set

Numeric Types These are used for processing numerical values

Integer (whole
number) INT 16

-32_768 to 32_767

Double integer
DINT 32

-2_147_483_648 to
 2_147_483_647

Floating point
number
(IEE floating point
number)

REAL 32 -3.402822E+38 to -1.175495E-38,
0.0,
+1.175495E-38 to 3.402822E+38

Time Types Data elements of this type represent different date values in
STEP 7.

S5 time S5TIME 16
T#0H_0M_0S_10MS to
T#2H_46M_30S

Time
IEC time in
increments of 1 ms

TIME
(=DURATION)

32
-T#24D_20H_31M_23S_647MS
to
T#24D_20H_31M_23S_647MS

Date
IEC date in
increments of 1 day

DATE 16
D#1990-01-01 to
D#2168-12-31

Time of day
Time of day in
increments of 1 ms

TIME_OF_DAY
(=TOD) 32

TOD#0:0:0 to
TOD#23:59:59.999

Note on S5 time: Depending whether the time base is 0.01S, 0.1S, 1S or
10S, the time resolution is limited accordingly. The compiler rounds the
values accordingly.

Overview

Data Types

9-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

9.3 Complex Data Types

SCL supports the following complex data types:

Table 9-3 Complex Data Types

Data Type Description

DATE_AND_TIME
DT

Defines an area of 64 bits (8 bytes). This data type stores date
and time (as a binary coded decimal) and is a predefined data
type in SCL.

STRING
Defines an area for a character string of up to 254 characters
(DATA TYPE CHAR).

ARRAY
Defines an array consisting of elements of one data type (either
elementary or complex).

STRUCT

Defines a group of data types in any combination of types. It
can be an array of structures or a structure of structures and
arrays.

Overview

Data Types

9-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

9.3.1 DATE_AND_TIME Data Type

The data type DATE_AND_TIME is made up of the data types DATE and
TIME. It defines an area of 64 bits (8 bytes) for specifying the date and time.
The data area stores the following information (in binary coded decimal
format): year–month–day–hours: minutes: seconds.milliseconds.

DATE_AND_TIME#

DT#

TimeDate –

DATE_AND_TIME

Figure 9-1 Syntax of DATE_AND_TIME

Table 9-4 Bit widths and value ranges

Type Keyword Bits Range of Values

Date and time
DATE_AND_TIME
(=DT) 64

DT#1990-01-01:0:0:0.0 to

DT#2089-12-31:23:59:59.999

The precise syntax for the date and time is described in Chapter 11 of this
manual. Below is a valid definition for the date and time 20/10/1995
12:20:30 and 10 milliseconds.

DATE_AND_TIME#1995-10–20–12:20:30.10

DT#1995–10–20–12:20:30.10

Note

There are standard FCs available for accessing the specific components
DATE or TIME.

Overview

Value Range

Data Types

9-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

9.3.2 STRING Data Type

A STRING data type defines a character string with a maximum of
254 characters.

The standard area reserved for a character string consists of 256 bytes. This is
the memory area required to store 254 characters and a header consisting of
two bytes.

You can reduce the memory required by a character string by defining a
maximum number of characters to be saved in the string. A null string, in
other words a string containing no data, is the smallest possible value.

STRING Data Type Specification

[]Simple
expression

String dimension

STRING

Figure 9-2 Syntax of the STRING Data Type Specification

The simple expression (string dimension) represents the maximum number of
characters in the string.

The following are some examples of valid string types:

STRING[10]

STRING[3+4]

STRING[3+4 * 5]

STRING max. value range (default � 254 characters)

Any characters in the ASCII character set are permitted in a character string.
Chapter 11 describes how control characters and non-printing characters are
treated.

Note

In the case of return values, input and in/out parameters, the standard length
of the data type STRING can be reduced from 254 characters to a number of
your choice, in order to make better use of the resources on your CPU.
Select the Customize menu command in the Options menu and then the
“Compiler” tab. Here, you can enter the required number of characters in the
“Maximum String Length” option box.

Overview

Value Range

Data Types

9-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

9.3.3 ARRAY Data Type

The array data type has a specified number of components of particular data
type. In the syntax diagram for arrays shown in Figure. 9-3, the data type is
precisely specified by means of the reserved word OF. SCL distinguishes
between the following types of array:

� The one-dimensional ARRAY type.
(This is a list of data elements arranged in ascending order).

� The two-dimensional ARRAY type.
(This is a table of data consisting of rows and columns. The first
dimension refers to the row number and the second to the column
number).

� The multidimensional ARRAY type.
(This is an extension of the two-dimensional ARRAY type adding further
dimensions. The maximum number of dimensions permitted is six).

ARRAY Data Type Specification

[..]

Data type
specificationOF

,

ARRAY Index Index

Index specification

1 n

Figure 9-3 Syntax of ARRAY Data Type Specification

This describes the dimensions of the ARRAY data type as follows:

� The smallest and highest possible index (index range) for each dimension.
The index can have any integer value (–32768 to 32767).

� The limits must be separated by two full stops.

� The individual index ranges must be separated by commas. The entire
index specification is enclosed in square brackets.

The data type specification is used to declare the data type of the array
components. The permissible data types are all those detailed in this section.
The data type of an ARRAY can also be a structure.

The following specifications are examples of possible array types:

ARRAY[1..10] OF REAL
ARRAY[1..10] OF STRUCT..END_STRUCT
ARRAY[1..100, 1..10] OF REAL

Overview

Index Specification

Data Type
Specification

Data Types

9-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

9.3.4 STRUCT Data Type

A STRUCT data type describes an area consisting of a fixed number of
components that can be of different data types. These data elements are
specified in Figure 9-4 immediately following the STRUCT keyword in the
component declaration. The main feature of the STRUCT data type is that a
data element within it can also be structured. This means that nesting of
STRUCT data types is permitted. Chapter 10 explains how to access the data
of a structure.

STRUCT

Component
declaration END_STRUCTSTRUCT

Figure 9-4 Syntax of STRUCT Data Type Specification

This is a list of the various components in a structure. As shown in the syntax
diagram in Figure 9-5, this list consists of:

� 1 to n identifiers

� the assigned data type and

� optional specification of an initial value

Component Declaration

: ;IDENTIFIER Data type
specification

Data type
initialization

Component name

Figure 9-5 Syntax of a Component Declaration

This is the name of a structure element to which the subsequent data type
specification is to apply.

Overview

Component
Declaration

Identifier

Data Types

9-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

You have the option of specifying an initial value for a specific structure
element after the data type specification. Assignment is made by means of a
value assignment as described in Chapter 10.

The example below illustrates a definition of a STRUCT data type.

//START of component declaration

STRUCT

A1 :INT;
A2 :STRING[254];
A3 :ARRAY [1..12] OF REAL;

//END of component declaration

END_STRUCT

Component names Data type specifications

Example 9-1 Definition of a STRUCT Data Type

Data Type
Initialization

Example

Data Types

9-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

9.4 User-Defined Data Type (UDT)

As explained in Chapter 8, a UDT data type is defined as a block. By virtue
of its definition, such a data type can be used at any point of the CPU
program and is thus a global data type. You can use these data types with
their UDT name, UDTx (x represents a number), or with an assigned
symbolic name defined in the declaration section of a block or data block.

END_TYPE
Structure
data type

specification
TYPE UDT

NAME

User-Defined Data Type

Figure 9-6 Syntax of a User-Defined Data Type (UDT)

A declaration for a UDT is introduced by the keyword TYPE followed by the
name of the UDT (UDT identifier). The name of the UDT can either be
specified in absolute form, that is, by a standard name in the form UDTx (x
stands for a number), or else a symbolic name can be used (see also Chapter
8).

The UDT name is followed by the data type specification. The only data type
specification permissible in this case is STRUCT (see Section 9.3.4).

STRUCT

:

END_STRUCT

Subsequently, the complete declaration for the UDT is concluded with the
keyword

END_TYPE

The data type thus defined can be used for variables or parameters or
declaring DBs. Components of structures or arrays, including those inside
other UDTs, can also be declared by means of UDTs.

Note

When assigning initial values (initialization) within a UDT, STL syntax
applies. For information on how to write constants, consult the user manual
/231/ or manual /232/.

Overview

UDT Name

Data Type
Specification

Using UDTs

Data Types

9-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The example below illustrates the definition of a UDT and the use of this
data type within a variable declaration. It is assumed that the name
”MEASDATA” has been declared for UDT50 in the symbol table.

FUNCTION_BLOCK

VAR

MEAS_RANGE: MEASDATA;

END_VAR

BEGIN

...

MESS_RANGE.BIPOL:= -4;

MESS_RANGE.READING.UNIPOLAR_4_20MA:= 2.7;

...

END_FUNCTION_BLOCK

TYPE MEASDATA // UDT Definition

STRUCT

BIPOL_1 : INT;
BIPOL_2 : WORD := W �16�AFAL;
BIPOL_3 : BYTE := B �16�FF;
BIPOL_4 : WORD := B �(25,25);
BIPOL_5 : INT := 25;
S_TIME : S5TIME:= S5T#1h20m10s;

READING: STRUCT

BIPOLAR_10V: REAL;

UNIPOLAR_4_20MA: REAL;

END_STRUCT;

END_STRUCT

END_TYPE

Example 9-2 Declaration of User-Defined Data Types

Example

Data Types

9-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

9.5 Parameter Types

In addition to elementary, complex and user-defined data types, you can also
use so-called parameter types for specifying the formal block parameters for
FBs and FCs. These data types are used for the following:

� declaring timer/counter functions as parameters (TIMER/COUNTER),

� declaring FCs, FBs, DBs and SDBs as parameters (BLOCK_xx)

� allowing an address of any data type as a parameter (ANY)

� allowing a memory area as a parameter (POINTER)

Table 9-5 Parameter Types

Parameter Size Description

TIMER 2 bytes Identifies a specific timer to be used by the program in the
logic block called.
Actual parameter: e.g. T1

COUNTER 2 bytes Identifies a specific counter to be used by the program in the
logic block called.
Actual parameter: e.g. C10

BLOCK_FB
BLOCK_FC
BLOCK_DB
BLOCK_SDB

2 bytes Identifies a specific block to be used by the program in the
block called.
Actual parameter: e.g. FC101

 DB42

ANY 10 bytes Used if any data type with the exception of ANY is to be
allowed for the data type of the actual parameter.

POINTER 6 bytes Identifies a particular memory area to be used by the
program.
Actual parameter: e.g. M50.0

You specify a particular timer or a counter to be used when processing a
block. The TIMER and COUNTER data types are only permitted for input
parameters (VAR_INPUT).

You specify a certain block to be used as an input parameter. The declaration
of the input parameter determines the type of block (FB, FC or DB). When
supplying parameters, you specify the absolute block identifier either in
absolute form (for example, FB20) or by a symbolic name.

SCL does not provide any operations which manipulate these data types.
Parameters of this type can only be supplied with data in the course of
subroutine calls. In the case of FCs, input parameters cannot be passed on.

Overview

TIMER and
COUNTER

BLOCK Types

Data Types

9-13
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

In SCL, you can assign addresses to the following data types as actual
parameters:

� Function blocks without formal parameters

� Function blocks without formal parameters and return value (VOID)

� Data blocks and system data blocks.

In SCL it is possible to declare block parameters of the data type ANY. When
such a block is called, these parameters can be supplied with addresses of any
data type. SCL, however, provides only one method of processing the ANY
data type, namely passing on to underlying blocks.

You can assign addresses of the following data types as the actual parameter:

� Elementary data types
You specify the absolute address or the symbolic name of the actual
parameter.

� Complex data types
You specify the symbolic name of the data and the complex data type.

� ANY data type
This is only possible when the address is a parameter type that does not
clash with the formal parameter.

� NIL data type
You specify a zero pointer.

� Timers, counters, and blocks
You specify the identifier (for example, T1, C20 or FB6).

The data type ANY is permitted for formal input parameters, in/out
parameters of FBs and FCs, and for output parameters of FCs.

Note

If you supply a temporary variable to a formal parameter of the ANY type
when an FB or FC is called, you must not pass on this parameter to a further
block in the block that was called. The addresses of temporary variables lose
their validity when they are passed on.

ANY

Data Types

9-14
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

In SCL, you can declare block parameters of the POINTER data type and can
supply these parameters with addresses of any data type when such a block is
called. SCL, however, provides only one method of processing the ANY data
type, namely passing on to underlying blocks.

You can assign addresses of the following data types as the actual parameter
in SCL:

� Elementary data types
You specify the absolute address or the symbolic name of the actual
parameter.

� Complex data types
You specify the symbolic name of the data and the complex data type (for
example arrays and structures).

� POINTER data type
This is only possible when the address is a parameter type that does not
clash with the formal parameter.

� NIL data type
You specify a zero pointer.

The POINTER data type is permitted for formal input parameters, in/out
parameters of FBs and FCs and for output parameters of FCs.

Note

If you supply a temporary variable to a formal parameter of the POINTER
type when an FB or FC is called, you must not pass on this parameter to a
further block in the block that was called. The addresses of temporary
variables lose their validity when they are passed on.

POINTER

Data Types

9-15
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

FUNCTION GAP: REAL

VAR_INPUT

MyDB:BLOCK_DB;

TIME : TIMER;

END_VAR

VAR

INDEX: INTEGER;

END_VAR

BEGIN

MyDB.DB5:=5;

GAP:=.... // RETURNVALUE

END_FUNCTION

Example 9-3 BLOCK_DB and TIMER Data Types

FUNCTION FC100: VOID

VAR_IN_OUT

in, out:ANY;

END_VAR

VAR_TEMP

ret: INT;

END_VAR

BEGIN

//...

ret:=SFC20(DSTBLK:=out,SCRBLK:=in);

//...

END_FUNCTION

FUNCTION_BLOCK FB100

VAR

ii:INT;

aa, bb:ARRAY[1..1000] OF REAL;

END_VAR

BEGIN

//...

FC100(in:=aa, out:=bb);

//...

END_FUNCTION_BLOCK

Example 9-4 ANY Data Type

Examples

Data Types

9-16
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Data Types

10-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Local Variables and Block
Parameters

Local variables and block parameters are data that are declared within a code
block (FC, FB or OB) and are valid only within that logic block. This chapter
explains how such data are declared and initialized.

Section Description Page

10.1 Overview 10-2

10.2 Declaration of Variables 10-4

10.3 Initialization 10-5

10.4 Instance Declaration 10-7

10.5 Static Variables 10-8

10.6 Temporary Variables 10-9

10.7 Block Parameters 10-10

10.8 Flags (OK Flag) 10-12

Introduction

Chapter
Overview

10

10-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

10.1 Overview

Local variables can be subdivided into the categories shown in Table 10-1:

Table 10-1 Local Variables

Variable Explanation

Static Variables Static variables are local variables whose value is retained
throughout all block cycles (block memory). They are used
to store values for a function block and are stored in the
instance data block.

Temporary Variables Temporary variables belong to a logic block at local level
and do not occupy a static memory area, since they are
stored in the CPU stack. Their values are retained only for
the duration of a single block cycle. Temporary variables
can not be accessed from outside the block in which they
are declared.

Block parameters are placeholders that are definitely specified only when the
block is actually used (called). The placeholders in the block are termed
formal parameters and the values assigned to them when the block is called
are referred to as the actual parameters. The formal parameters of a block can
be viewed as local variables.

Block parameters can be subdivided into the categories shown in Table 10-2:

Table 10-2 Block Parameters

Block Parameter Type Explanation

Input Parameters Input parameters accept the current input
values when the block is called. They are
read-only.

Output parameters Output parameters transfer the current
output values to the calling block. Data
can be written to and read from them.

In/out parameters In/out parameters copy the current value
of a variable when the block is called,
process it and write the result back to the
original variable.

The SCL compiler provides a flag which can be used for detecting errors
when running programs on the CPU. It is a local variable of the type BOOL
with the predefined name “OK”.

Categorization of
Variables

Categorization of
Block Parameters

Flags (OK Flag)

Declaring Local Variables and Block Parameters

10-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

As shown in Table 10-3, each category of local variables or parameters is
assigned as well a separate declaration subsection as its own pair of
keywords.

Each subsection contains the declarations that are permitted for that
particular declaration subsection. Each subsection may only appear once in
the declaration section of the block. There is no specified order in which the
subsections have to be placed.

The declaration subsections permitted within a particular block are marked
with an “x” in Table 10-3.

Table 10-3 Declaration Subsections for Local Variables and Parameters

Data Syntax FB FC OB

Static Variables
VAR
:
END_VAR

X X1)

Temporary Variables
VAR_TEMP
:
END_VAR

X X X

Block Parameters:

Input parameters

VAR_INPUT
:
END_VAR

X X

Output parameters
VAR_OUTPUT
:
END_VAR

X X

In/out parameters
VAR_IN_OUT
:
END_VAR

X X

1) Although the declaration of variables within the keyword pair VAR and END_VAR is permitted
in functions, the declarations are shifted to the temporary area during compilation.

When they are declared, the variables and parameters must be assigned a
data type which determines the structure and thereby the memory
requirements. In addition, you can also assign static variables and function
block parameters initial values. Table 10-4 summarizes the situations in
which initialization is possible.

Table 10-4 Initialization of Local Data

Data Category Initialization

Static Variables Possible

Temporary Variables Not possible

Block Parameters Only possible in the case of input or output
parameters of a function block

Declaring
Variables
and Parameters

Initialization

Declaring Local Variables and Block Parameters

10-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

10.2 Declaring Variables and Parameters

A variable or parameter declaration consists of a user-definable identifier for
the variable name and details of the data type. The basic format is shown in
the syntax diagram below. Assigning system attributes for parameters is
described in Section 8.4.

Variable Declaration

,

: ;

Variable name

IDENTIFIER Data type
specification

Data type
initialization

Parameter name
or

Component
name

1)

1) System attributes for parameters

Figure 10-1Syntax of a Variable Declaration

The following are examples of valid declarations:

VALUE1 : REAL;

Or, if there are several variables of the same type:

VALUE2, VALUE2,VALUE4,....: INT;

ARRAY : ARRAY[1..100, 1..10] OF REAL;

SET : STRUCT
MEASBAND:ARRAY[1..20] OF REAL;
SWITCH:BOOL;

END_STRUCT

All data types dealt with in Chapter 9 are permissible.

Note

Reserved words, which are only valid in SCL, can be declared as identifiers
by putting the character “#” in front (for example, #FOR). This can be useful
if you want to transfer the actual parameters to blocks which were created in
a different language (for example, STL).

Summary

Data Type
Specification

Declaring Local Variables and Block Parameters

10-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

10.3 Initialization

Static variables, input parameters and output parameters of an FB can be
assigned an initial value when they are declared. The initialization is
performed by means of a value assignment (:=) which follows the data type
specification. As shown in the syntax diagram in Figure 10-2, you can either:

� assign a simple variable a constant or

� assign an array an initialization list

Initialization

Array :=

Constant

initialization list

Figure 10-2 Syntax of Data Type Initialization

Example:

VALUE :REAL := 20.25;

Note that initialization of a list of variables (A1, A2, A3,...: INT:=...) is not
possible. In such cases, the variables have to be initialized individually.
Arrays are initialized as shown in Figure 10-3.

Constant

Array
initialization list

Array Initialization List

()

Repeat factor

Decimal

,

Constant

Array
initialization list

digit string

Figure 10-3 Syntax of an Array Initialization List

Value

ARRAY : ARRAY[1..10, 1..100] OF INT:=10(100(0));

Repetition factor (number of rows)

Repetition factor (number of columns)

Principle

Declaring Local Variables and Block Parameters

10-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Example 10-1 below illustrates the initialization of a static variable.

VAR

INDEX1: INT:= 3;

END_VAR

Example 10-1 Initialization of Static Variables

Initialization of a two-dimensional array is shown in Example 10-2. If you
wish to declare the following data structure in SCL and assign it the name
CONTROLLER, you do so as follows:

-54 736 -83 77

-1289 10362 385 2

60 -37 -7 103

END_VAR

-54,

ARRAY [1..4, 1..4] OF INT:=

-1289,

60,

736, -83, 77,

10362,

-37,

385,

-7,

2,
103,

VAR

CONTROLLER:

60 60 60 60

4(60);

Example 10-2 Array initialization

An example of initialization of a structure is shown in Example 10-3:

VAR

GENERATOR:STRUCT

DATA: REAL := 100.5;

A1: INT := 10;

A2: STRING[6]:= ’FACTOR’;

A3: ARRAY[1..12] OF REAL:= 12(100.0);

END_STRUCT

END_VAR

Example 10-3 Structure Intialization

Examples:

Declaring Local Variables and Block Parameters

10-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

10.4 Instance Declaration

Apart from the elementary, complex and user-defined variables already
mentioned, you can also declare variables of the type FB or SFB in the
declaration section of function blocks. Such variables are called local
instances of the FB or SFB.

The local instance data is stored in the instance data block of the calling
function block.

Instance Declaration

Local instance name

,

FBs must

: ;

already exist!

IDENTIFIER

FB
NAME

SFB
NAME

Figure 10-4 Syntax of Instance Declaration

Examples: The following are examples of correct syntax according to the
syntax diagram in Figure 10-4:

Supply1 : FB10;

Supply2,Supply3,Supply4 : FB100;

Motor1 : Motor ;

// Motor is a symbol declared in the symbol table.

Symbol Address Data Type

MOTOR FB20 FB20

Figure 10-5 Corresponding Symbol Table in STEP 7

Local instance-specific initialization is not possible.

Summary

Initialization

Declaring Local Variables and Block Parameters

10-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

10.5 Static Variables

Static variables are local variables whose value is retained throughout all
block cycles. They are used to store the values of a function block and are
contained in a corresponding instance data block.

Static Variable Block

Variable
declaration

Instance
declaration

VAR END_VAR

Figure 10-6 Syntax of a Static Variable Block

The declaration subsection is a component of the FB declaration section. In it
you can:

� Declare variable names and data types in a variable declaration with
initialization if required (see Section 10.2)

� Insert existing variable declarations using an instance declaration (see
Section 10.4).

After compilation, this subsection together with the subsections for the block
parameters determines the structure of the assigned instance data block.

Example 10-4 below illustrates the declaration of static variables.

VAR

PASS :INT;

MEASBAND :ARRAY[1..10] OF REAL;

SWITCH :BOOL;

MOTOR_1,Motor_2 :FB100; // Instance declaration

END_VAR

Example 10-4 Declaration of Static Variables

The variables are accessed from the code section as follows:

� Internal access: that is, from the code section of the function block in
whose declaration section the variable is declared. This is explained in
Chapter 14 (Value Assignments).

� External access via the instance DB: by way of the indexed variable
DBx.variable. DBx is the data block name.

Overview

Declaration
Subsection
VAR
END_VAR

Example

Access

Declaring Local Variables and Block Parameters

10-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

10.6 Temporary Variables

Temporary variables belong to a logic block locally and do not occupy any
static memory area. They are located in the stack of the CPU. The value only
exists while a block is being processed. Temporary variables cannot be
accessed outside the block in which they are declared.

You should declare data as temporary data if you only require it to record
interim results during the processing of your OB, FB or FC.

END_VAR

,

Variable
declarationVAR_TEMP

Temporary Variable Subsection

Initialization not possible

Figure 10-7 Syntax of a Temporary Variable Subsection

The declaration subsection is a component of an FB, FC, or OB. It is used to
declare variable names and data types within the declaration section (see
Section 10.2).

When an OB, FB or FC is first executed, the value of the temporary data has
not been defined. Initialization is not possible.

Example 10-5 below illustrates the declaration of block-temporary variables.

VAR_TEMP

BUFFER_1 :ARRAY [1..10] OF INT;

AUX1,AUX2 :REAL;

END_VAR

Example 10-5 Declaration of Block-Temporary Variables

A variable is always accessed from the code section of the logic block in
whose declaration section the variable is declared (internal access), see
Chapter 14, Value Assignments.

Overview

Declaration
Subsection
VAR_TEMP
END_VAR

Example

Access

Declaring Local Variables and Block Parameters

10-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

10.7 Block Parameters

Block parameters are formal parameters of a function block or a function.
When the function block or function is called, the actual parameters replace
the formal parameters, thus forming a mechanism for exchange of data
between the called block and the calling block.

� Formal input parameters are assigned the actual input values
(inward flow of data)

� Formal output parameters are used to transfer output values
(outward flow of data)

� Formal in/out parameters have the function of both an input and an output
parameter.

For more detailed information about the use of parameters and the associated
exchange of data, refer to Chapter 16.

Parameter Subsection

VAR_OUTPUT Variable
declaration END_VAR

VAR_INPUT

VAR_IN_OUT

Initialization only possible for VAR_INPUT and VAR_OUTPUT

Figure 10-8 Syntax of Parameter Subsection

The declaration subsection is a component of an FB or FC. In it, the variable
name and assigned data type are specified within the variable declaration see
Section 10.2.

After compilation of an FB, these subsections together with the subsection
delimited by VAR and END_VAR determine the structure of the assigned
instance data block.

Overview

Declaration
Subsection
VAR_INPUT
VAR_OUTPUT
VAR_IN_OUT

Declaring Local Variables and Block Parameters

10-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Example 10-6 below illustrates the declaration of a parameter:

VAR_INPUT //Input parameter

CONTROLLER :DWORD;

TIME :TIME_OF_DAY;

END_VAR

VAR_OUTPUT //Output parameter

SETPOINTS: ARRAY [1..10] of INT;

END_VAR

VAR_IN_OUT //In/out parameter

EINSTELLUNG: INT;

END_VAR

Example 10-6 Declaration of Parameters

Block parameters are accessed from the code section of a logic block as
follows:

� Internal access: that is, from the code section of the block in whose
declaration section the parameter is declared. This is explained in
Chapter 14 (Value Assignments) and Chapter 13 (Expressions, Operators
and Addresses).

� External access by way of instance data block. You can access block
parameters of function blocks via the assigned instance DB (see
Section 14.8).

Example

Access

Declaring Local Variables and Block Parameters

10-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

10.8 Flags (OK Flag)

The OK flag is used to indicate the correct or incorrect execution of a block.
It is a global variable of the type BOOL identified by the keyword ”OK”.

If an error occurs when a block statement is being executed (for example
overflow during multiplication), the OK flag is set to FALSE. When the
block is quit, the value of the OK flag is saved in the implicitly defined
output parameter ENO (Section 16.4) and can thus be read by the calling
block.

When the block is first called, the OK flag has the value TRUE. It can be
read or set to TRUE / FALSE at any point in the block by means of SCL
statements.

The OK flag is a system variable. Declaration is not necessary. However, you
do have to select the compiler option ”OK Flag” before compiling the source
file if you wish to use the OK flag in your application program.

Example 10-7 below illustrates the use of the OK flag.

// Set OK variable to TRUE

// in order to be able to check

// whether the operation below

// is performed successfully

OK: = TRUE;

SUM: = SUM + IN;

IF OK THEN

// Addition completed successfully

:

:

ELSE // Addition not completed successfully

:

END_IF;

Example 10-7 Use of the OK Variable

Description

Declaration

Example

Declaring Local Variables and Block Parameters

11-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Constants and Jump Labels

Constants are data elements that have a fixed value which can not be altered
while the program is running. If the value of a constant is expressed by its
format, it is termed a literal constant.

You do not have to declare constants. However, you have the option of
assigning symbolic names for constants in the declaration section.

Jump labels represent the names of jump command destinations within the
code section of the logic block.

Symbolic names of constants and jump labels are declared separately in their
own declaration subsections.

Section Description Page

11.1 Constants 11-2

11.2 Literals 11-3

11.3 Formats for Integer and Real Number Literals 11-4

11.4 Formats for Character and String Literals 11-7

11.5 Formats for Times 11-10

11.6 Jump Labels 11-14

Introduction

Chapter
Overview

11

11-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

11.1 Constants

In value assignments and expressions, constants are also used in addition to
variables and block parameters. Constants can be used as literal constants or
they can have a symbolic name.

Symbolic names for constants are declared within the CONST declaration
subsection in the declaration section of your logic block (see Section 8.4).

Constant Subsection

CONST := Simple
expression ;

Constant name

IDENTIFIER END_CONST

Figure 11-1 Syntax of Constant Subsection

’Simple expression’ in this case refers to mathematical expressions in which
you can use using the basic operations +, –, *, /, DIV and MOD.

Example 11-1 below illustrates the declaration of symbolic names.

 CONST

 Figure := 10 ;
 TIME1 := TIME#1D_1H_10M_22S.2MS ;
 NAME := ’SIEMENS’ ;

 FIG2 := 2 * 5 + 10 * 4 ;

 FIG3 := 3 + NUMBER2 ;

 END_CONST

 Example 11-1 Declaration of Symbolic Constants

SCL provides a number of different formats for entering or displaying
constants. Those formats are known as literals. The sections which follow
deal with the various types of literal.

Use of Constants

Declaration of
Symbolic Names

Example

Formats

Declaring Constants and Jump Labels

11-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

11.2 Literals

A literal is a syntactical format for determining the type of a constant. There
are the following groups of literals:

� Numeric literals

� Character literals

� Times

There is a specific format for the value of a constant according to its data
type and data format.

15 VALUE 15 as integer in decimal notation

2#1111 Value 15 as integer in binary notation

16#F Value 15 as integer in hexadecimal notation

Literal with different formats for the value 15

A constant is assigned the data type whose value range is just sufficient to
accommodate the constant without loss of data. When using constants in an
expression (for example, in a value assignment), the data type of the target
variable must incorporate the value of the constant. If, for example, an
integer literal is specified whose value exceeds the integer range, it is
assumed that it is a double integer. The compiler returns an error message if
you assign this value to a variable of the type Integer.

Definition

Assigning Data
Types to
Constants

Declaring Constants and Jump Labels

11-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

11.3 Formats for Integer and Real Number Literals

SCL provides the following formats for numerical values:

� Integer literals for whole number values

� Real number literals for floating point numbers

In both of the above literals, you use a string of digits which must conform to
the structure shown in Figure 11-2. This string of digits is referred to simply
as a decimal digit string in the syntax diagrams below.

3000.40

20.00

Digit string = Decimal digit string

INT:
40

2000

REAL:

Figure 11-2 Digit String in a Literal

The decimal number in a literal consists of a string of digits which may also
be separated by underscore characters. The underscores are used to improve
readability in the case of long numbers.

_

Underscore

Digit

Decimal Digit String

Figure 11-3 Syntax of Decimal Digit Strings

Below are some examples of valid formats for decimal digit strings in
literals:

1000
1_120_200
666_999_400_311

Overview

Declaring Constants and Jump Labels

11-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Integer literals are whole numbers. Depending on their length, they can be
assigned in the SCL program to variables of the following data types:

BOOL, BYTE, INT, DINT, WORD, DWORD.

Figure 11-4 shows the syntax of an integer literal.

INTEGER LITERAL

–

+

Only with data types
INT and DINT

Octal integer
Hexadecimal integer
Binary integer

1)

1)

DECIMAL
DIGIT STRING

Figure 11-4 Syntax of an Integer Literal

Below are some examples of permissible formats for decimal digit strings in
integer literals:

1000
+1_120_200
–666_999_400_311

You can specify an integer literal in a numeric system other than the decimal
system by using the prefixes 2#, 8# or 16# followed by the number in the
notation of the selected system. You can use the underscore character within
a number to make longer numbers easier to read.

The general format for an integer literal is illustrated in Figure 11-5 using the
example of a digit string for an octal number.

_
Underscore

Octal digit string

8# Octal number

Figure 11-5 Syntax of an Octal Digit String

Below are some examples of permissible formats for integer literals:

Wert_2:=2#0101;// Binary number, decimal value 5
Wert_3:=8#17; // Octal number, decimal value 15
Wert_4:=16#F; // Hexadecimal number, decimal

// value 15

Integer Literals

Binary/Octal/Hexa-
decimal Values

Declaring Constants and Jump Labels

11-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Real number literals are values with decimal places. They can be assigned to
variables of the data type REAL. The use of a plus or minus sign is optional.
If no sign is specified, the number is assumed to be positive. Figure 11-7
shows the syntax for specifying an exponent. Figure 11-6 shows the syntax
for a real number:

REAL NUMBER LITERAL

. Exponent

.

–

+

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Figure 11-6 Syntax of a Real Number Literal

With exponential format, you can use an exponent to specify floating point
numbers. The exponent is indicated by preceding the integer with the letter
“E” or “e”, following a decimal digit string. Figure 11-7 shows the syntax for
entering an exponent.

Exponent

e

E

–

+

DECIMAL
DIGIT STRING

Figure 11-7 Exponent Syntax

Example:

The value 3 x 10 10 can be represented by the following real numbers in SCL:

3.0E+10 3.0E10 3e+10 3E10

0.3E+11 0.3e11 30.0E+9 30e9

Example 11-2 summarizes the various alternatives once again:

// Integer literals

NUMBER1:= 10 ;

NUMBER2:= 2#1010 ;

NUMBER3:= 16#1A2B ;

// Real number literals

NUMBER4:= -3.4 ;

NUMBER5:= 4e2 ;

NUMBER6:= 40_123E10;

Example 11-2 Numeric Literals

Real Number
Literals

Examples

Declaring Constants and Jump Labels

11-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

11.4 Formats for Character and String Literals

SCL also provides the facility for entering and processing text data, for
example a character string to be displayed as a message.

Calculations can not be performed on character literals, which means that
character literals can not be used in expressions. A distinction is made
between

� character literals, that is, single characters, and

� string literals, that is, a character string of up to 254 separate characters.

A character literal, as shown in Figure 11-8, consists of a single character
only. That character is enclosed in single inverted commas (’).

CHARACTER LITERAL

’ ’Character

Figure 11-8 Character Literal Syntax

Example:

Char_1:=’B’; // Letter B

A string literal is a string of up to 254 characters (letters, numbers and special
characters) enclosed in single inverted commas (’). Both upper and lower
case letters can be used.

’ ’
break
String

STRING LITERAL

Character Character

Figure 11-9 String Literal Syntax

The following are some examples of permissible string literals:

’RED’ ’7500 Karlsruhe’ ’270–32–3456’

’DM19.95’ ’The correct answer is:’

Please note that when assigning a string literal to a string variable, the
maximum number of characters can be limited to less than 254.

Summary

Character Literals
(Single Characters)

String Literals

Declaring Constants and Jump Labels

11-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The value assignment
TEXT:STRING[20]:=’SIEMENS �_�KARLSRUHE�_�Rheinbrückenstr.’

will result in an error message and the information stored in the variable
’TEXT’ will be as follows:

’SIEMENS �_�KARLSRUHE�_�Rh’

Special formatting characters, the inverted comma (’) and the $ sign can be
entered using the character $. A string literal can contain any number of
breaks.

A string is located either on a single line of an SCL block or is spread over
several lines by means of special identifiers. The identifier ’$>’ is used to
break a string and the identifier ’$<’ to continue it on a subsequent line.

TEXT:STRING[20]:=’The FB$>//Preliminary version
$<converts’;

The space between the break and the continuation identifiers may extend
over a number of lines and can only contain comments or spaces. A string
literal can be broken and continued in this way (see also Figure 11-10) any
number of times.

String Break Syntax

$<

Comments

Formatting
character

$>

Space,
Line feed,
Carriage return,
Form feed, or
Tabulator

Figure 11-10 String Break Syntax

All characters of the extended ASCII character set are permissible in a
character or string literals. Special formatting characters and characters that
cannot be directly represented (’ and $) in a string can be entered using the
alignment symbol $.

Characters

$ Alignment symbol $

Printing
character

$ or ’

P or L or R or T

Alternative representation in hex code

Hexadecimal
digit

Hexadecimal
digit

Substitute char.

Control char.

Figure 11-11 Character Syntax

String Breaks

Printable
Characters

Declaring Constants and Jump Labels

11-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

In a character literal, you can also use all non-printing characters of the
extended ASCII character set. To do this, you specify the substitute
representation in hexadecimal code.

You type in an ASCII character in the form $hh , where hh represents the
value of the ASCII character in hexadecimal notation.

Example:

CHAR_A :=’$41’; //Represents the letter ’A’
Space :=’$20’;.//Represents the character �_�

For more details of substitute and control characters, refer to Appendix A.

The following examples illustrate the formulation of character literals:

// Character literal

Char:= ’S’ ;

// String literal:

NAME:= ’SIEMENS’ ;

// Breaking a string literal:

MESSAGE1:= ’MOTOR $>

$< Control’ ;

 // String in hexadecimal notation:

 MESSAGE1:= ’$41$4E’ (*Character string AN*);

Example 11-3 Character Literals

Non-Printable
Characters

Examples

Declaring Constants and Jump Labels

11-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

11.5 Formats for Times

SCL provides various fomats for entering times and dates. The following
types of time data are possible:

Date

Time period

Time of day

Date and time

A date is introduced by the prefix DATE# or D# as shown in Figure 11-12.

DATE#

Details of date

D#

DATE

Figure 11-12 Date Syntax

The date is specified by means of integers for the year (4 digits), the month
and the day, separated by hyphens.

Date

– –

Year Month Day

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Figure 11-13 Date Entry Syntax

The following are examples of valid dates:

// Date

TIMEVARIABLE1:= DATE#1995-11-11;

TIMEVARIABLE2:= D#1995-05-05;

Different Types of
Time Data

Date

Declaring Constants and Jump Labels

11-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

A time period is introduced as shown in Figure 11-14 by the prefix TIME# or
T#. The time period can be expressed in two possible ways:

� in simple time format

� in complex time format

TIME PERIOD

TIME#

T# Complex time

Simple time

Simple time

- Each time unit (hours, minutes, etc.) may only be specified once.
- The order days, hours, minutes, seconds, milliseconds must be adhered to.

Figure 11-14 Time Period Syntax

You use the simple time format if the time period has to be expressed in a
single time unit (either days, hours, minutes, seconds or milliseconds).

Simple Time Format

Use of the simple time format is only possible for undefined time units.

. D

. H

. M

. S

. MS

Days

Hours

Minutes

Seconds

Milliseconds

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Figure 11-15 Syntax of Simple Time Format

The following are valid simple times:

TIME#20.5D for 20,5 Days

TIME#45.12M for 45,12 Minutes

T#300MS for 300 Milliseconds

Time Period

Examples

Declaring Constants and Jump Labels

11-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The complex time format is used when you have to express the time period
as a combination of more than one time unit (as a number of days, hours,
minutes, seconds and milliseconds, see Figure 11-16). Individual components
can be omitted. However, at least one time unit must be specified.

Complex Time Format

_D

Days

_H

Hours

_M

Minutes

_S

Seconds

Milliseconds

_MS

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Figure 11-16 Complex Time Format Syntax

The following are valid complex times:

TIME#20D or TIME#20D_12H

TIME#20D_10H_25M_10s

TIME#200S_20MS

Declaring Constants and Jump Labels

11-13
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

A time of day is introduced by the prefix TIME_OF_DAY# or TOD# as
shown in Figure 11-17.

TIME OF DAY

TIME_OF_DAY#

TOD#

Time

Figure 11-17 Time-of-Day Syntax

A time of day is indicated by specifying the number of hours, minutes and
seconds separated by colons. Specifying the number of milliseconds is
optional. The milliseconds are separated from the other numbers by a
decimal point. Figure 11-18 shows the syntax for a time of day.

Time of Day

: :

Hours Minutes

.

MillisecondsSeconds

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Figure 11-18 Time-of-Day Entry Syntax

The following are valid times of day:

//Time of day

TIME1:= TIME_OF_DAY#12:12:12.2;

TIME2:= TOD#11:11:11.7.200;

A date and time is introduced as shown in Fig. 11-19 by the prefix
DATE_AND_TIME# or DT#. It is a literal made up of a date and a time of
day.

DATE_AND_TIME#

DT#

Time of dayDate –

DATE AND TIME

Figure 11-19 Date and Time Syntax

The example below illustrates the use of date and time:

// Time of day

TIME1:= DATE_AND_TIME#1995-01-01–12:12:12.2;

TIME2:= DT#1995-02-02–11:11:11;

Time of Day

Date and Time

Declaring Constants and Jump Labels

11-14
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

11.6 Jump Labels

Jump labels are used to define the destination of a GOTO statement (see
Section 11-4).

Jump labels are declared in the declaration section of a logic block together
with their symbolic names (see Section 8.4) as follows:

Jump Label Subsection

LABEL ; END_LABEL

,

Jump label

IDENTIFIER

Figure 11-20 Syntax of a Jump Label Subsection

The following example illustrates the declaration of jump labels:

LABEL

LABEL1, LABEL2, LABEL3;

END_LABEL;

Example 11-4 Jump Labels

Description

Declaring Jump
Labels

Example

Declaring Constants and Jump Labels

12-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Global Data

Global data can be used by any logic block (FC, FB or OB). These data can
be accessed absolutely or symbolically. This chapter introduces you to the
individual data areas and explains how the data can be accessed.

Section Description Page

12.1 Overview 12-2

12.2 CPU Memory Areas 12-3

12.3 Absolute Access to CPU Memory Areas 12-4

12.4 Symbolic Access to CPU Memory Areas 12-6

12.5 Indexed Access to CPU Memory Areas 12-7

12.6 Global User Data 12-8

12.7 Absolute Access to Data Blocks 12-9

12.8 Indexed Access to Data Blocks 12-11

12.9 Structured Access to Data Blocks 12-12

Introduction

Chapter
Overview

12

12-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

12.1 Overview

In SCL you have the facility of accessing global data. There are two types of
global data as follows:

� CPU Memory Areas

These memory areas represent system data such as inputs, outputs and bit
memory (see Section 7.5). The number of memory areas available is
determined by your CPU.

� Global User Data in the form of Loadable Data Blocks

These data areas are contained within data blocks. In order to be able to
use them you must first have created the data blocks and declared the data
within them. In the case of instance data blocks, they are derived from
function blocks and automatically generated.

Global data can be accessed in the following ways:

� absolute: via address identifier and absolute address

� symbolic: via a symbol previously defined in the symbol table (see
/231/).

� indexed: via address identifier and array index

� structured: via a variable

Table 12-1 Use of Types of Access to Global Data

Type of Access CPU Memory Areas Global User Data

absolute yes yes

symbolic yes yes

indexed yes yes

structured no yes

Global Data

Types of Access

Declaring Global Data

12-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

12.2 CPU Memory Areas

CPU memory areas are system data areas. For this reason, you do not have to
declare them in your logic block.

Each CPU provides the following memory areas together with a separate
address area for each:

� Inputs/outputs in the image memory

� Peripheral inputs/outputs

� Bit memory

� Timers, counters (see Chapter 17)

A CPU area is accessed by means of a value assignment in the code section
of a logic block (see Section 14.3) using either

� a simple accessing operation which can be specified in absolute or
symbolic terms, or

� an indexed accessing operation.

ADDRESS

SIMPLE MEMORY ACCESS

absolute access

symbolic access

,

Basic
expression[]

INDEXED MEMORY ACCESS
Index

IDENTIFIER

IDENTIFIER

SYMBOL

Address

ADDRESS
IDENTIFIER

Figure 12-1 Syntax of Simple and Indexed Memory Access

Definition

Different Areas of
Memory

Syntax for Access

Declaring Global Data

12-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

12.3 Absolute Access to CPU Memory Areas

Absolute access to a memory area of the CPU is achieved by assigning an
absolute identifier to a variable of the same type.

STATUS_2:= IB10;

Variable of matching type

Absolute identifier

The absolute identifier indicates a memory area in the CPU. You specify this
area by specifying the address identifier (in this case IB) followed by the
address (in this case 10) .

The absolute identifier is made up of the address identifier, consisting of a
memory and a size prefix, and an address.

Memory prefix

Size prefix

I B 10

Address identifier

Address

The combination of memory and size prefix makes the address identifier.

Memory
prefix

Size
prefix

Memory Prefix

Figure 12-2 Syntax of Memory Address Identifiers

The memory prefix is used to specify the type of memory area to be
accessed. Figure 12-3 below shows the various possible types of memory
area. 1

Input

Output

Bit memory

Peripheral input

Peripheral output

SIMATIC mnemonic IEC mnemonic

I

Q

M

PQ

A

M

PA

E

PIPE

Memory Prefix

Figure 12-3 Syntax of Memory Prefix

1 Depending on the language set in the SIMATIC Manager, either the SIMATIC or the IEC address identifiers have a
reserved meaning. You can set the language and the mnemonics separately in the SIMATIC Manager.

Basic Principle

Absolute
Identifiers

Address Identifier

Memory Prefix

Declaring Global Data

12-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The size prefix is used to specify the length or the type of the memory area
(for example, a byte or a word) to be read from the peripheral I/Os. You can,
for example read a byte or a word. Using the size prefix is optional if only
one bit is specified. Figure 12-4 shows the syntax:

Bit

Byte

Word

Double word

X

W

D

Size Prefix

B

Figure 12-4 Syntax of Size Prefix

When specifying an address depending on which size prefix you have used,
you specify an absolute address that identifies a specific bit, byte, word or
double word. Only if you have specified ”Bit” as the size can you specify an
additional bit address (see Figure 12-5). The first number refers to the byte
address and the second to the bit address.

.

Bit address only

Number Number

Address

Figure 12-5 Syntax of Addresses

Below are some examples of absolute access:

STATUSBYTE := IB10;

STATUS_3 := I1.1;

Measval := IW20;

Example 12-1 Absolute Access

Size Prefix

Address

Examples

Declaring Global Data

12-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

12.4 Symbolic Access to CPU Memory Areas

When you program symbolically, instead of using the absolute address
consisting of address identifier and address, you use a symbolic name to
access a specific CPU memory area, as illustrated by the following examples:

Symbol Absolute
Address

Data Type Comments

Motor_contact I 1.7 BOOL Contact switch 1 for
Motor A 1

Input1 IW 10 INT Status word

Input_byte1 IB 1 BYTE Input byte

“Input 1.1” I 1.1 BOOL Photoelectric barrier

Meas_channels MW 2 WORD Meas. value buffer

The symbolic name is assigned to the address in your application program by
creating a symbol table.

For the data type specification, you can use any elementary data type
providing it can accept the specified data element size.

You access a symbol, for example, by assigning a value to a variable of the
same type using the symbol declared.

MEASVAL_1 := Motor_contact;

The symbol table is created and values entered in it using STEP 7.

You can open the symbol table by means of the SIMATIC Manager or in SCL
by selecting the menu command Options Symbol Table.

You can also import and edit symbol tables created with any text editor (for
details, refer to /231/).

Below are some examples of symbolic access:

STATUSBYTE := Input_byte1;

STATUS_3 := ”Input 1.1”;

Measval := Meas_channels;

Example 12-2 Symbolic Access

Basic Principle

Accessing

Creating the
Symbol Table

Examples

Declaring Global Data

12-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

12.5 Indexed Access to CPU Memory Areas

You can also access memory areas of the CPU using an index. Compared
with absolute addressing, the advantage of this method is that you can
address dynamically using variable indices. For example, you can use the
control variable of a FOR loop as the index.

Indexed access to a memory area is performed in a similar manner to the
absolute method. It differs only by virtue of the address specification. Instead
of the absolute address, an index is specified which can be a constant, a
variable or a mathematical expression.

The absolute identifier in the case of indexed access is made up of the
address identifier and a basic expression for the indexing operation (as per
Section 12.3).

Memory prefix

Size prefix

E X [i,j]

Address identifier

Address
Basic expression for index
enclosed in square
brackets

Indexing must conform to the following rules:

� When accessing data of the types BYTE, WORD or DWORD, you must use
one index only. The index is interpreted as a byte address. The size of the
data unit accessed is specified by the size prefix.

� When accessing data of the type BOOL, you must use two indices. The
first index specifies the byte address, the second index the bit position
within the byte.

� Each index must be a mathematical expression of the data type INT.

OUTMARKER := I[BYTENUM, BITNUM];

MEASWORD_1 := IW[COUNTER];

Example 12-3 Indexed Access

Basic Principle

Absolute Identifier

Rules for Indexed
Access

Declaring Global Data

12-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

12.6 Data Blocks

Within data blocks, you can store and process all the data for your
application that is valid throughout the entire program or the entire project.
Every logic block can read or write data from/to a data block.

The syntax for the structure of data blocks is explained in Chapter 8. You
should distinguish between two sorts of data block as follows:

� Data Blocks

� Instance data blocks

The data in any data block can always be accessed in any of the following
ways:

� Simple or absolute

� Indexed

� Structured

Figure 12-6 below summarizes the methods of access.

,

Basic
expression[]

Absolute DB access

Structured DB access

Address�����		�����
�����

Address identifier

. Simple
variable

Indexed DB access Index

DB designation

Symbolic DB access

. Simple
variableSymbol for DB

Figure 12-6 Syntax of Methods for Absolute, Indexed and Structured DB Access

Summary

Declaration

Accessing Data
Blocks

Declaring Global Data

12-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

12.7 Absolute Access to Data Blocks

Absolute access to a data block is effected by assigning a value to a variable
of a matching type in the same way as for CPU memory areas. You first
specify the DB identifier followed by the keyword ”D” and the size prefix
(for example X for BIT) and the byte address (for example 13.1).

STATUS_5:= DB11.DX13.1;

Variable of matching type

Address

DB identifier

Size prefix

Accessing is performed as shown in Figure 12-7 by specifying the DB
identifier together with the size prefix and the address.

. D Size
prefix

DB
IDENTIFIER Address

Addresss identifier

Absolute DB Access

Figure 12-7 Syntax ofAbsolute DB Access

Specifies the size of the memory area in the data block to be addressed; for
example, one byte or one word. Specifying the size prefix is optional if you
specify a bit address. Figure 12-8 shows the syntax for the size prefix.

D

Bit

Byte

Word

Double word

X

W

D

B

Size Prefix

Figure 12-8 Syntax of Size Prefix

Basic Principle

Accessing

Size Prefix

Declaring Global Data

12-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

When specifying the address as shown in Figure 12-9, you specify an
absolute address that identifies a specific bit, byte, word or double word
depending on the size prefix you have used. You can only specify an
additional bit address if you have used the size prefix ”bit”. The first number
represents the byte address and the second the bit address.

.

Bit address only

Number Number

Address

Figure 12-9 Syntax of Address

Below are some examples of data block accessing operations. The data block
itself is specified in absolute terms in the first part and in symbolic terms in
the second part.

STATUSBYTE := DB101.DB10;

STATUS_3 := DB30.D1.1;

Measval := DB25.DW20;

STATUSBYTE := Statusdata.DB10;

STATUS_3 := ”New data” D1.1;

Measval := Measdata.DW20;
STATUS_1 := WORD_TO_BLOCK_DB(INDEX).DW10;

Example 12-4 Absolute Access

Address

Examples

Declaring Global Data

12-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

12.8 Indexed Access to Data Blocks

You can also access global data blocks using an index. Compared with
absolute addressing, the advantage of this method is that by the use of
variable indices you can address data dynamically. For example, you can use
the control variable of a FOR loop as the index.

Indexed accessing of a data block is performed in a similar manner to
absolute accessing. It differs only by virtue of the address.

Instead of the address, an index is specified which can be a constant, a
variable or a mathematical expression.

The absolute identifier in the case of indexed access is made up of the
address identifer (as per Section 12.7) and a basic indexing expression.

Memory prefixSize prefix

D X [i,j]

Address identifier

Address
Basic indexing expression
enclosed in square brackets

DB identifier

When using indices, the following rules must be adhered to:

� Each index must be a mathematical expression of the data type INT .

� When accessing data of the types BYTE, WORD or DWORD, you must use
one index only. The index is interpreted as a byte address. The size of the
data unit accessed is specified by the size prefix.

� When accessing data of the type BOOL, you must use two indices. The
first index specifies the byte address, the second index the bit position
within the byte.

STATUS_1:= DB11.DW[COUNTER];
STATUS_2:= DB12.DW[WNUM, BITNUM];

STATUS_1:= Database1.DW[COUNTER];
STATUS_2:= Database2.DW[WNUM, BITNUM];

STATUS_1:= WORD_TO_BLOCK_DB(INDEX).DW[COUNTER];

Example 12-5 Indexed Access

Indexed Access

Absolute Identifier

Rules for Indexed
Access

Declaring Global Data

12-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

12.9 Structured Access to Data Blocks

Structured access is effected by assigning a value to a variable of a matching
type.

TIME_1:= DB11.TIME_OF_DAY ;

Variable of matching type
DB identifier

Simple variable

You identify the variable in the data block by specifying the DB name and
the name of the simple variable separated by a full stop. The required syntax
is detailed in Figure 12-6.

The simple variable stands for a variable to which you have assigned an
elemetary or a complex data type in the declaration.

Declaration section of FB10:
VAR
Result: STRUCT ERG1 : INT;

ERG2 : WORD;
END_STRUCT

END_VAR

User-defined data type UDT1:
TYPE UDT1 STRUCT ERG1 : INT;

ERG2 : WORD;
END_STRUCT

DB20 with user-defined data type:
DB20
UDT1
BEGIN ...

DB30 without user-defined data type:
DB30 STRUCT ERG1 : INT;

ERG2 : WORD;
END_STRUCT

BEGIN ...

Example 12-6 Declaration of Data for Data Blocks

Function block showing accessing operations:
..
FB10.DB10();
ERGWORD_A := DB10.Result.ERG2;
ERGWORD_B := DB20.ERG2;
ERGWORD_C := DB30.ERG2;

Example 12-7 Accessing Data Block Data

Basic Principle

Examples

Declaring Global Data

13-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Expressions, Operators and Addresses

An expression stands for a value that is calculated during compilation or
when the program is running and consists of addresses (for example
constants, variables or function values) and operators (for example *, /, +
or –).

The data types of the addresses and the operators used determine the type of
expression. SCL distinguishes:

� mathematical expressions

� exponential expressions

� comparative expressions

� logical expressions

Section Description Page

13.1 Operators 13-2

13.2 Syntax of Expressions 13-3

13.2.1 Addresses 13-5

13.3 Mathematical Expressions 13-7

13.4 Exponential Expressions 13-9

13.5 Comparative Expressions 13-10

13.6 Logical Expressions 13-12

Introduction

Chapter
Overview

13

13-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

13.1 Operators

Expressions consist of operators and addresses. Most SCL operators link two
addresses and are therefore termed binary operators. The others work with
only one address and are thus called unary operators.

Binary operators are placed between the addresses as in the expression ‘A +
B’. A unary operator always immediately precedes its address as in the
expression ‘–B’.

The operator priority listed in Table 13-1 governs the order in which
calculations are performed. ‘1’ represents the highest priority.

Table 13-1 Summary of Operators

Class Operator Symbol Priority

Assignment operator

This operator assigns a
value to a variable

Assignment : = 11

Mathematical Exponential ** 2

Operators Unary Operators

Unary plus + 3

Required for
mathematical
calculations

Unary minus - 3

Basic Mathematical Operators

Multiplication * 4

Modulus MOD 4

Integer division DIV 4

Addition + 5

Subtraction - 5

Comparative operators Less than

Greater than

L h l

<

>

 6

 6

6These operators are
required for formulating
conditions

Less than or equal to

Greater than or
equal to

Equal to

Not equal to

<=

>=

=

<>

 6

 6

 7

 7

Logical Negation NOT 3

operators Basic Logical Operators

These operators are
required for logical
expressions

And

Exclusive or

Or

AND or &

XOR

OR

 8

 9

 10

Parentheses (Expression) () 1

Overview

Operator Classes

Expressions, Operators and Addresses

13-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

13.2 Syntax of Expressions

Expressions can be illustrated using the syntax diagram in Figure 13-1.
Mathematical, logical and comparative expressions as well as exponential
expressions have a number of special characteristics and are therefore treated
individually in Sections 13.3 to 13.6.

Basic

Address

()

+

Expression

operator
Basic

comparative operator
Basic

Expression

Expression **

Exponent

–

Expression

NOT

Expression

Unary plus

Unary minus

Negation

logical operator

Expression

Exponent

Figure 13-1 Syntax of Expressions

You can perform the following operations on the result of an expression:

� Assign it to a variable.

� Use it as the condition for a control instruction.

� Use it as a parameter for calling a function or a function block.

The order in which the operations are performed is determined by:

� The priority of the operators involved

� The sequence from left to right

� The use of parentheses (if operators have the same priority).

Overview

Result of an
Expression

Sequence of
Operations

Expressions, Operators and Addresses

13-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Expressions are processed according to the following rules:

� An address between two operators of different priority is always attached
to the higher-priority operator.

� Operators with the same priority are processed from left to right.

� Placing a minus sign before an identifier is the same as multiplying it by
–1.

� Mathematical operators must not follow each other directly. The
expression a * – b is invalid, whereas a * (–b) is permitted.

� Parentheses can be used to overcome operator priority, in other words
parentheses have the highest priority.

� Expressions in parentheses are considered as a single address and always
processed first.

� The number of left parentheses must match the number of right
parentheses.

� Mathematical operators cannot be used with characters or logical data.
Expressions such as ‘A’ +‘B’ and (n<=0) + (n<0) are thus not permissible.

Below are some examples of the structure of the various expressions:

MEASVAL** 2 // Exponential expression

(DIFFERENCE) ** DB10.EXPONENT

(SUM)** FC100(..) // Exponential
 expression

IB10 // address

A1 AND (A2) // Logical expression

(A3) < (A4) // Comparative expression

3+3* 4/2 // Mathematical expression

Example 13-1 Various Expressions

Rules

Examples

Expressions, Operators and Addresses

13-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

13.2.1 Addresses

Addresses are objects which can be used to construct expressions. The syntax
of addresses is illustrated in Figure 13-2.

Address
Constant

Extended variable

(Expression)

NOT Address

Figure 13-2 Syntax of Addresses

Constants can be a numerical value or a symbolic name or a character string.

Constant

Numerical value

Character string

Constant name

Figure 13-3 Syntax of Constants

The following are examples of valid constants:

4_711

4711

30.0

’CHARACTER’

FACTOR

Definition

Constants

Expressions, Operators and Addresses

13-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

An extended variable is a generic term for a series of variables which are
dealt with in more detail in Chapter 14.

Extended variable

Simple variable

Absolute variable

Variable in DB

Variable in local instance

FC call

for CPU memory areas

Figure 13-4 Syntax of Extended Variables

The following are examples of valid variables:

SETPOINT Simple variable

IW10 Absolute variable

I100.5 Absolute variable

DB100.DW[INDEX] Variable in DB

MOTOR.SPEED Variable in local instance

SQR(20) Standard function

FC192 (SETPOINT) Function call

Example 13-2 Extended variables in expressions

Note

In the case of a function call, the calculated result, the return value, is
inserted in the expression in place of the function name. For that reason,
VOID functions which do not give a return value are not permissible as
addresses in an expression.

Extended
Variables

Examples of
Extended
Variables

Expressions, Operators and Addresses

13-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

13.3 Mathematical Expressions

A mathematical expression is an expression formed using mathematical
operators. These expressions allow numeric data types to be processed.

Basic mathematical operator

/ MOD DIV* –+

Figure 13-5 Syntax of Basic Mathematical Operators

Table 13-2 below shows all the possible operations and indicates which type
the result is assigned to depending on the operands. The abbreviations have
the following meaning:

ANY_INT for data types INT, DINT

ANY_NUM for data types ANY_INT and REAL

Table 13-2 Mathematical Operators

Operation Operator 1st Address 2nd Address Result 1 Priority

Exponent ** ANY_NUM INT REAL 2

Unary plus + ANY_NUM - ANY_NUM 3

TIME - TIME

Unary minus - ANY_NUM - ANY_NUM 3

TIME - TIME

Multiplication * ANY_NUM ANY_NUM ANY_NUM 4

TIME ANY_INT TIME

Division / ANY_NUM ANY_NUM ANY_NUM 4

TIME ANY_INT TIME

Integer division DIV ANY_INT ANY_INT ANY_INT 4

TIME ANY_INT TIME

Modulus MOD ANY_INT ANY_INT ANY_INT 4

 + ANY_NUM ANY_NUM ANY_NUM 5

Addition TIME TIME TIME

TOD TIME TOD

DT TIME DT

ANY_NUM ANY_NUM ANY_NUM 5

Subtraction – TIME TIME TIME

TOD TIME TOD

DATE DATE TIME

TOD TOD TIME

DT TIME DT

DT DT TIME

1) Remember that the result type is decided by the dominant address type.

Definition

Mathematical
Operations

Expressions, Operators and Addresses

13-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Rules The order in which operators are applied within a mathematical expression is
based on their priority(see Table 13-2).

� It is advisable to place negative numbers in brackets for the sake of
clarity even in cases where it is not necessary from a mathematical point
of view.

� When dividing with two whole numbers of the type INT, the operators
“DIV” and “/” produce the same result (see example 13-3).

� The division operators (‘/’, ‘MOD’ and ‘DIV’) require that the second
address is not equal to zero.

� If one number is of the INT type (integer) and the other of the REAL type
(real number), the result will always be of the REAL type.

Examples The examples below illustrate the construction of mathematical expressions.

Let us assume that ‘i’ and ‘j’ are integer variables whose values are 11 and –3
respectively. Example 13-3 shows some integer expressions and their
corresponding values.

i + j 8

i – j 14

i * j –33

i DIV j –3

i MOD j 2

i/j –3

Expression Value

Example 13-3 Mathematical Expressions

Let us assume that i and j are integer variables whose values are 3 and –5
respectively. In Example 13-4 the result of the mathematical expression
shown, (that is, the integer value 7) is assigned to the variable VALUE.

 VALUE:= i + i * 4 / 2 - (7+i) / (-j) ;

Example 13-4 Mathematical Expression

Expressions, Operators and Addresses

13-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

13.4 Exponential Expressions

Figure 13-6 illustrates the construction of the exponent in an exponential
expression (see also Section 13.2). Remember, in particular, that the
exponent expression can also be formed with extended variables.

()–

–

Extended variable

DECIMAL DIGIT STRING

DECIMAL DIGIT STRING

Exponent

Figure 13-6 Syntax of an Exponent

MEASVAL** 2 // Exponential expression

(DIFFERENCE) ** DB10.EXPONENT//Exponential expression

(SUM)** FC100 // Exponential expression

Example 13-5 Exponential Expressions with Various Exponents

Overview

Expressions, Operators and Addresses

13-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

13.5 Comparative Expressions

Definition A comparative expression is an expression of the type BOOL formed with
comparative operators. These expressions are formed by combinations of
addresses of the same type or type class with the operators shown in
Table 13-7.

Comparative Operator

>< <>=>=<=

Figure 13-7 Syntax of Comparative Operators

The comparative operators compare the numerical value of two addresses.

Address1 Operator Address2 ⇒ Boolean value

The result obtained is a value that represents either the attribute TRUE or
FALSE. The value is TRUE if the comparison condition is satisfied and
FALSE if it is not.

Rules The following rules must be adhered to when creating comparative
expressions:

� Logical addresses should be enclosed in parentheses to ensure that the
order in which the logical operations are to be performed is unambiguous.

� Logical expressions can be linked according to the rules of Boolean logic
to create queries such as ”if a < b and b < c then ...”. Variables or
constants of the type BOOL and comparative expressions can be used as
the expression.

� Comparisons of all variables in the following type classes are permitted:

– INT, DINT, REAL

– BOOL, BYTE, WORD, DWORD

– CHAR, STRING

� With the following time types, only variables of the same type can be
compared:

– DATE, TIME, TOD, DT

� When comparing characters (type CHAR), the operation follows the order
of the ASCII character string.

� S5TIME variables can not be compared.

� If both addresses are of the type DT or STRING, you must use the
appropriate IEC functions to compare them.

Comparisons

Expressions, Operators and Addresses

13-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Examples The examples below illustrate the construction of comparative expressions:

// The result of the comparative expression
// is negated.

IF NOT (COUNTER > 5) THEN... ;
 //...

//...
END_IF;

// The result of the first comparative expression
// is negated and conjugated with the result
// of the second

A:= NOT (COUNTER1 = 4) AND (COUNTER2 = 10) ;

// Disjunction of two comparative expressions
WHILE (A >= 9) OR (QUERY <> ’n’) DO

 //...
//...

END_WHILE;

Example 13-6 Logical Expressions

Expressions, Operators and Addresses

13-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

13.6 Logical Expressions

A logical expression is an expression formed by logical operators. Using the
operators AND, &, XOR and OR, logical addesses (type BOOL) or variables of
the data type BYTE, WORD or DWORD can be combined to form logical
expressions. The operator NOT is used to negate (that is, reverse) the value of
a logical address.

Basic Logical Operator

AND & XOR OR

NOT is not a basic operator
The operator acts like a mathematical sign.

Figure 13-8 Syntax of Basic Logical Operators

Table 13-3 below lists the available logical expressions and the data types for
the results and addresses. The abbreviations have the following meaning:

ANY_BIT for data types BOOL, BYTE, WORD, DWORD

Table 13-3 Logical Operators

Operation Operator 1st Address 2nd Address Result Priority

Negation NOT ANY_BIT - ANY_BIT 3

Conjunction AND ANY_BIT ANY_BIT ANY_BIT 8

Exclusive
disjunction

XOR ANY_BIT ANY_BIT ANY_BIT 9

Disjunction OR ANY_BIT ANY_BIT ANY_BIT 10

The result of a logical expression is either

� 1 (true) or 0 (false) if Boolean operators are combined, or

� A bit pattern corresponding to the combination of the two addresses.

Definition

Logic Operations

Results

Expressions, Operators and Addresses

13-13
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Examples Let us assume that n is an integer variable with the value 10 and s is a
character variable representing the character ‘A’. Some logical expressions
using those variables could then be as follows:

(n>0) AND (n<20) True

(n>0) AND (n<5) False

(n>0) OR (n<5) True

(n>0) XOR (n<20) False

(n=10) AND (s=’A’) True

(n<>5) OR (s>=’A’) True

Expression Value

Example 13-7 Logical Expressions

Expressions, Operators and Addresses

13-14
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Expressions, Operators and Addresses

14-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Value Assignments

A value assignment is used to assign the value of an expression to a variable.
The previous value of the variable is overwritten.

Section Description Page

14.1 Overview 14-2

14.2 Value Assignments Using Variables of an Elementary
Data Type

14-3

14.3 Value Assignments Using Variables of the Types STRUCT
or UDT

14-4

14.4 Value Assignments Using Variables of the Type ARRAY 14-6

14.5 Value Assignments Using Variables of the Type STRING 14-8

14.6 Value Assignments Using Variables of the Type
DATE_AND_TIME

14-9

14.7 Value Assignments using Absolute Variables for
Memory Areas

14-10

14.8 Value Assignments using Global Variables 14-11

In SCL there are simple and structured instructions. As well as value
assignments, the simple instructions include operation calls and the GOTO
instruction. For more detailed information, refer to Chapters 15 and 16.

The control instructions for a program branching operation or loop
processing are structured instructions. A detailed explanation is given in
Chapter 15.

Introduction

Further
Information

14

14-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

14.1 Overview

A value assignment replaces the current value of a variable with a new value
specified by an expression. This expression can also contain identifiers for
functions that it activates and which return corresponding values (return
values).

As shown in syntax diagram 14-1, the expression on the right-hand side of
the assignment operator is evaluated and the value obtained as the result is
stored in the variable whose name is on the left-hand side of the assignment
operator. The variables permitted for this function are shown in Figure 14-1.

Value assignment

ExpressionSimple variable

Absolute variable

Variable in DB

:= ;

in CPU memory areas

Variable in local instance

Figure 14-1 Syntax of Value Assignment

The type of an assignment expression is the same as the type of the address
on the left.

Basic Principle

Results

Value Assignments

14-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

14.2 Value Assignments Using Variables of Elementary Data Types

Any expression or variable of an elementary data type can be assigned to a
different variable of the same type.

Identifier := expression ;

Identifier := variable of an elementary data type ;

The following are examples of valid value assignments:

FUNCTION_BLOCK FB10

VAR

SWITCH_1 :INT;

SWITCH_2 :INT;

SETPOINT_1 :REAL;

SETPOINT_2 :REAL;

QUERY_1 :BOOL;

TIME_1 :S5TIME;

TIME_2 :TIME;

DATE_1 :DATE;

TIME_NOW_1 :TIME_OF_DAY;

END_VAR

BEGIN

// Assigning a constant to a variable

SWITCH_1 := -17;

SETPOINT_1 := 100.1;

QUERY_1 := TRUE;
TIME_1 :=TIME#1H_20M_10S_30MS;
TIME_2 :=TIME#2D_1H_20M_10S_30MS;
DATE_1 :=DATE#1996–01–10;

// Assigning a variable to a variable

SETPOINT_1 := SETPOINT_2;

SWITCH_2_ := SWITCH_1;

// Assigning an expression to a variable

SWITCH_2:= SWITCH_1 * 3;

END_FUNCTION_BLOCK

Example 14-1 Value Assignments Using Elementary Data Types

Assignment

Examples

Value Assignments

14-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

14.3 Value Assignments Using Variables of the Types STRUCT or UDT

Variables of the types STRUCT and UDT are structured variables which
represent either a complete structure or a component of that structure.

The following are examples of valid structure variables:

Image //Identifier for a structure

Image.element //Identifier for a structure
//component

Image.array //Identifier for a single array
//within a structure

Image.array[2,5] //Identifier for an array component
//within a structure

An entire structure can only be assigned to another structure when the
structure components match each other both in terms of data type and name.
A valid assignment would be, for example:

structname_1:=structname_2;

You can assign any structure component a variable of the same type, an
expression of the same type or another structure component. The following
assignments would be valid:

structname_1.element1 := Value;

structname_1.element1 := 20.0;

structname_1.element1 := structname_2.element1;

structname_1.arrayname1:= structname_2.arrayname2;

structname_1.arrayname[10]:= 100;

STRUCT and UDT
Variables

Assigning a
Complete
Structure

Assigning
Structure
Components

Value Assignments

14-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The following examples illustrate value assignments for structure data.

FUNCTION_BLOCK FB10

VAR

AUXVAR: REAL;

MEASVALUE: STRUCT //destination structure

VOLTAGE:REAL;

RESISTANCE:REAL;

SIMPLE_ARRAY:ARRAY[1..2,1..2] OF INT;

END_STRUCT;

PROCVALUE: STRUCT //source structure

VOLTAGE: REAL;

RESISTANCE: REAL;

SIMPLE_ARRAY:ARRAY[1..2,1..2] OF INT;

 END_STRUCT

END_VAR

BEGIN

//Assigning a complete structure to

//a complete structure

MEASVALUE:= PROCVALUE;

//Assigning a structure component to a

//structure component

MEASVALUE.VOLTAGE:= PROCVALUE.VOLTAGE

// Assigning a structure component to a

// variable of the same type

AUXVAR:= PROCVALUE.RESISTANCE;

// Assigning a constant to a

// structure component

MEASVALUE.RESISTANCE:= 4.5;

// Assigning a constant to a simple array

MEASVALUE.SIMPLE_ARRAY[1,2]:= 4;
END_FUNCTION_BLOCK

Example 14-2 Value Assignments Using Variables of the Type STRUCT

Examples

Value Assignments

14-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

14.4 Value Assignments Using Variables of the Type ARRAY

An array consists of one up to a maximum of six dimensions and contains
elements that are all of the same type. There are two ways of assigning arrays
to a variable as follows:

You can reference complete arrays or a component of an array. A complete
array can be referenced by specifying the variable name of the array.

arrayname_1

A single component of an array is addressed using the array name followed
by suitable index values in square brackets. An index is available for each
dimension. These are separated by commas and also enclosed in square
brackets. An index must be a mathematical expression of the data type INT .

arrayname_1[2]

arrayname_1[4,5]

A complete array can be assigned to another array when both the data types
of the components and the array limits (lowest and highest possible array
indices) match. A valid assignment would be as follows:

arrayname_1 := arrayname_2 ;

A value assignment for a permissible array component is obtained by
omitting indices in the square brackets after the name of the array, starting on
the right. In this way, you address a subset of the array whose number of
dimensions is equal to the number of indices omitted.

This means that you can reference ranges of lines and individual components
of a matrix but not column ranges (that is, from ... to).

The following are examples of valid assignments

arrayname_1[i] := arrayname_2[j] ;

arrayname_1[i] := expression ;

identifier_1 := arrayname_1[i] ;

Array Variable

Assigning a
Complete Array

Assigning an
Array Component

Value Assignments

14-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The examples below illustrate value assignments for arrays.

FUNCTION_BLOCK FB3

VAR

SETPOINTS :ARRAY [0..127] OF INT;

PROCVALUES :ARRAY [0..127] OF INT;

END_VAR

// Declaration of a matrix

// (=two-dimensional array)

// with 3 lines and 4 columns

CTRLLR: ARRAY [1..3, 1..4] OF INT;

// Declaration of a vector

// (=one-dimensional array)

// with 4 components

CTRLLR_1: ARRAY [1..4] OF INT;

END_VAR

BEGIN

// Assigning a complete array to an array

SETPOINTS:= PROCVALUES;

// Assigning a vector to the second line

// of the CTRLLR ARRAY

CTRLLR[2]:= CTRLLR_1;

//Assigning a component of an array to a

//component of the CTRLLR ARRAY

CTRLLR [1,4]:= CTRLLR_1 [4];

END_FUNCTION_BLOCK

Example 14-3 Value Assignments Using Variables of the Type ARRAY

Examples

Value Assignments

14-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

14.5 Value Assignments Using Variables of the Type STRING

A variable of the data type STRING contains a character string with a
maximum of 254 characters.

Each variable of the data type STRING can be assigned another variable of
the same type. Valid assignments would be as follows:

stringvariable_1 := Stringliteral ;

stringvariable_1 := stringvariable_2 ;

The examples below illustrate value assignments using STRING variables:

FUNCTION_BLOCK FB3
VAR

DISPLAY_1 : STRING[50] ;

 STRUCTURE1 : STRUCT
 DISPLAY_2 : STRING[100] ;
 DISPLAY_3 : STRING[50] ;

END_STRUCT;

END_VAR

BEGIN
// Assigning a constant to a STRING
// variable

DISPLAY_1 := ’error in module 1’ ;

// Assigning a structure component to a
// STRING variable.

DISPLAY_1 := STRUCTURE1.DISPLAY_3 ;

// Assigning a STRING variable to
// a STRING variable

If DISPLAY_1 <> DISPLAY_3 THEN
 DISPLAY_1 := DISPLAY_3 ;

END_IF;

END_FUNCTION_BLOCK

Example 14-4 Value Assignments Using Variables of the Type STRING

STRING Variables

Assignment

Example

Value Assignments

14-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

14.6 Value Assignments Using Variables of the Type DATE_AND_TIME

The data type DATE_AND_TIME defines an area with 64 bits (8 bytes) for
the date and time.

Each variable of the data type DATE_AND_TIME can be assigned another
variable of the same type or a constant. Valid assignments would be as
follows:

dtvariable_1 := date and time literal ;

dtvariable_1 := dtvariable_2 ;

The examples below illustrate value assignments using DATE_AND_TIME
variables:

FUNCTION_BLOCK FB3
VAR

TIME_1 : DATE_AND_TIME;
 STRUCTURE1 : STRUCT

 TIME_2 : DATE_AND_TIME ;
 TIME_3 : DATE_AND_TIME ;

END_STRUCT;

END_VAR
BEGIN
// Assigning a constant to a
// DATE_AND_TIME variable

TIME_1 := DATE_AND_TIME#1995–01–01–12:12:12.2 ;
STRUCTURE.TIME_3 := DT#1995–02–02–11:11:11 ;

// Assigning a structure component to a
// DATE_AND_TIME variable.

TIME_1 := STRUCTURE1.TIME_2 ;

// Assigning a DATE_AND_TIME variable

// to a DATE_AND_TIME structure component
If TIME_1 < STRUCTURE1.TIME_3 THEN
 TIME_1 := STRUCTURE3.TIME_1 ;
END_IF;

END_FUNCTION_BLOCK

Example 14-5 Value Assignments Using DATE_AND_TIME Variables

DATE_AND_TIME
Variables

Assignment

Example

Value Assignments

14-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

14.7 Value Assignments using Absolute Variables for Memory Areas

An absolute variable references the globally valid memory areas of a CPU.
You can assign values to these areas in three ways as described in Chapter
12.

Memory
prefix AddressSize

prefix

Address identifier

Absolute Variable

Figure 14-2 Syntax of Absolute Variables

Any absolute variable with the exception of peripheral inputs and process
image inputs can be assigned a variable or expression of the same type.

The examples below illustrate value assignments using absolute variables:

VAR
STATUSWORD1: WORD;
STATUSWORD2: BOOL;
STATUSWORD3: BYTE;
STATUSWORD4: BOOL;
ADDRESS: INT:= 10;

END_VAR

BEGIN
// Assigning an input word to a
// variable (simple access)
STATUSWORD1:= IW4 ;

// Assigning a variable to an
// output bit (simple access)
STATUSWORD2:= Q1.1 ;

// Assigning an input byte to a
// variable (indexed access)
STATUSWORD3:= IB[ADDRESS];

// Assigning an input bit to a
// variable (indexed access)
FOR ADDRESS:= 0 TO 7 BY 1 DO
STATUSWORD4:= I[1,ADDRESS] ;
END_FOR;

END_FUNCTION_BLOCK

Example 14-6 Value Assignments Using Absolute Variables

Absolute Variables

Assignment

Example

Value Assignments

14-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

14.8 Value Assignments using Global Variables

You can also access global variables in data blocks by assigning a value to
variables of the same type or vice-versa. You have the option of using
structured, absolute or indexed access (see Chapter 12).

. D Size
prefix Address

DB
IDENTIFIER

Address identifier

Figure 14-3 Syntax of DB Variables

You can assign any global variable a variable or expression of the same type.
The following are examples of valid assignments:

DB11.DW10:=20;

DB11.DW10:=Status;

The example below assumes that that a variable ”DIGIT” of the data type
INTEGER and a structure ”DIGIT1” with the component ”DIGIT2” of the
type INTEGER have been declared in the data block DB11.

// Required data block DB11

DATA_BLOCK DB11

STRUCT
DIGIT : INT:=1;
DIGIT1: STRUCT

 DIGIT2:INT := 256;
END_STRUCT;
WORD3 : WORD:=W#16#aa;
WORD4 : WORD:=W#16#aa;
WORD5 : WORD:=W#16#aa;
WORD6 : WORD:=W#16#aa;
WORD7 : WORD:=W#16#aa;
WORD8 : WORD:=W#16#aa;
WORD9 : WORD:=W#16#aa;
WORD10: WORD;

END_STRUCT

BEGIN

WORD10:=W#16#bb;

END_DATA_BLOCK

Example 14-7 Value Assignments Using Global Variables

Variables in DBs

Assignment

Examples

Value Assignments

14-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Data block DB11 could then be used as follows, for example:

VAR
CONTROLLER_1: ARRAY [1..4] OF INT;
STATUSWORD1 : WORD ;
STATUSWORD2 : ARRAY [1..4] OF INT;
STATUSWORD3 : INT ;
ADDRESS : INT ;

END_VAR

BEGIN
// Assignment of word 10 from DB11 to a
// variable (simple access)
STATUSWORD1:= DB11.DW10

// The 1st array component is assigned
// the variable
// ”DIGIT” from DB11
// (structured access):
CONTROLLER_1[1]:= DB11.DIGIT;

 // Assignment of structure component ”DIGIT2”
 // of structure ”DIGIT1” to the variable
 // Statusword3
STATUSWORD3:= DB11.DIGIT1.DIGIT2

// Assignment of a word with index
 ADDRESS from
// DB11 to a variable
// (indexed access)
FOR ADDRESS:= 1 TO 10 BY 1 DO
STATUSWORD2[ADDRESS]:= DB11.DW[ADDRESS] ;
END_FOR;

Example 14-8 Value Assignments Using the Global Variables of a Data Block

Value Assignments

15-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Control Statements

Only on rare occasions is it possible to program blocks in such a way that all
statements are processed one after the other from the beginning to the end of
the block. It is usually the case that on the basis of specific conditions only
certain statements (alternatives) are executed or are repeated a number of
times over (loops). The programming tools used to bring about such effects
are the control statements in an SCL block.

Section Description Page

15.1 Overview 15-2

15.2 IF Statement 15-4

15.3 CASE Statement 15-6

15.4 FOR Statement 15-8

15.5 WHILE Statement 15-10

15.6 REPEAT Statement 15-11

15.7 CONTINUE Statement 15-12

15.8 EXIT Statement 15-13

15.9 GOTO Statement 15-14

15.10 RETURN Statement 15-16

Introduction

Chapter
Overview

15

15-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

15.1 Overview

In programs, different instructions often have to be executed according to
different conditions. A selective instruction enables you to direct the program
progression into any number of alternative sequences of instructions.

Table 15-1 Types of Branch

Branch Type Function

IF Statement The IF statement enables you to direct the program progression
into one of two alternative branches according to whether a
specified condition is either TRUE of FALSE:

CASE
Statement

The CASE statement enables you direct the program progression
into 1 of n alternative branches by having a variable adopt a value
from n alternatives.

You can control loop processing by means of repetition instructions. A
repetition instruction specifies which parts of a program should be repeated
on the basis of specific conditions.

Table 15-2 Types of Statement for Loop Processing

Branch Type Function

FOR
Statement

Used to repeat a sequence of statements for as long as the control
variable remains within the specified value range

WHILE
Statement

Used to repeat a sequence of statements while an execution
condition continues to be satisfied

REPEAT
Statement

Used to repeat a sequence of statements until a break condition is
met

A jump statement causes the program to jump immediately to a specified
jump destination and therefore to a different statement within the same block.

Table 15-3 Types of Jump Statement

Branch Type Function

CONTINUE
Statement

Used to stop processing of the current loop pass

EXIT
Statement

Used to exit from a loop at any point regardless of whether the
break condition is satisfied or not

GOTO
Statement

Causes the program to jump immediately to a specified jump label

RETURN
Statement

Causes the program to exit the block currently being processed

Selective
Instructions

Repetition
Instructions

Jump Statements

Control Statements

15-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

A condition is either a comparative expression or a logical expression. The
data type of a condition is BOOL and it can adopt either of the two values
TRUE or FAlSE .

The following are examples of valid comparative expressions:

COUNTER<=100

SQR(A)>0.005

Answer = 0

BALANCE>=BALBFWD

ch1< ’T’

The following are examples of the use of comparative expressions with
logical operators:

(COUNTER<=100) AND(CH1<’*’)

(BALANCE<100.0) OR (STATUS =’R’)

(Answer<0)OR((Answer>5.0) AND (Answer<10.0))

Note

Note that the logical addresses (in this case comparative expressions) are in
brackets in order to prevent any ambiguity with regard to the order in which
they are processed.

Conditions

Control Statements

15-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

15.2 IF Statement

The IF statement is a conditional statement. It provides one or more options
and selects one (or none) of its statement components for execution.

IF Statement

IF THENExpression

ELSIF THENExpression

ELSE END_IF

Code
section

Code
section

Code
section

Condition

Condition

Figure 15-1 Syntax of the IF Statement

Execution of the conditional statement forces analysis of the specified logical
expressions. If the value of an expression is TRUE then the condition is
satisfied, if it is FALSE the condition is not satisfied.

An IF statement is processed according to the following rules:

1. If the value of the first expression is TRUE, the component of the
statement which follows THEN is executed. Otherwise the statements in
the ELSIF branches are processed.

2. If no Boolean expression in the ELSIF branches is TRUE, the sequence
of statements following ELSE (or no sequence of statements if there is no
ELSE branch) is executed.

Any number of ELSIF statements can be used.

It should be noted that the ELSIF branches and/or the ELSE branch can be
omitted. In such cases, the program behaves as if those branches were present
but contained no statements.

Note

Note that the statement END_IF must be concluded with a semicolon.

Basic Principle

Execution

Control Statements

15-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Note

Using one or more ELSIF branches has the advantage that the logical
expressions following a valid expression are no longer evaluated in contrast
to a sequence of IF statements. The runtime of a program can therefore be
reduced.

Example 15-1 below illustrates the use of the IF statement.

IF I1.1 THEN

N:= 0;

SUM:= 0;

OK:= FALSE; // Set OK flag to FALSE

ELSIF START = TRUE THEN

N:= N + 1;

SUM:= SUM + N;

ELSE

OK:= FALSE;

END_IF;

Example 15-1 IF Statements

Example

Control Statements

15-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

15.3 CASE Statement

The CASE statement selects one program section from a choice of n
alternatives. That choice is based on the current value of a selection
expression.

Selection expression (Integer)
CASE Statement

CASE OFExpression

ELSE END_CASE

Code
section

Code
section

:Value list

Value

:

Figure 15-2 Syntax of the CASE Statement

The CASE statement is processed according to the following rules:

1. When a CASE statement is processed, the program checks whether the
value of the selection expression is contained within a specified list of
values. Each value in that list represents one of the permissible values for
the selection expression. The selection expression must return a value of
the type INTEGER.

2. If a match is found, the statement component assigned to the list is
executed.

3. The ELSE branch is optional: it is executed if no match is found.

Note

Note that the statement END_CASE must be concluded with a semicolon.

Basic Principle

Execution

Control Statements

15-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

This contains the permissible values for the selection expression

Integer
Value List

. .

,

Value

Value

Value

Figure 15-3 Syntax of Value List

When creating the value list you must observe the following rules:

� Each value list must begin with a constant, a list of constants or a range of
constants.

� The values within the value list must be of the INTEGER type.

� Each value must only occur once.

Example 15-2 below illustrates the use of the CASE statement. The variable
TW is usually of the INTEGER type.

CASE TW OF

1: DISPLAY := OVEN_TEMP;

2: DISPLAY := MOTOR_SPEED;

3: DISPLAY := GROSS_TARE;

QW4 := 16#0003;

4..10:DISPLAY := INT_TO_DINT (TW);

QW4 := 16#0004;

11,13,19:DISPLAY:= 99;

QW4 := 16#0005;

ELSE: DISPLAY := 0;

TW_ERROR := 1;

END_CASE;

Example 15-2 CASE Statement

Note

Take care to ensure that the running time of loops is not too long, otherwise
the CPU will register a time-out error and switch to STOP mode.

Value List

Rules

Examples

Control Statements

15-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

15.4 FOR Statement

A FOR statement is used to repeat a sequence of statements in a loop while a
variable (the control variable) is continually assigned values. The control
variable must be the identifier of a local variable of the type INT or DINT.

FOR TO

DO

FOR Statement

Basic
expression

for final value

for increment

Initial
statement

Code
section

END_FOR

BY

for initial value

Basic
expression

Figure 15-4 Syntax of FOR Statement

The definition of a loop using FOR includes the specification of an initial and
a final value. Both values must be the same type as the control variable.

The FOR statement is processed according to the following rules:

1. At the start of the loop, the control variable is set to the initial value
(initial assignment) and each time the loop is run through it is increased
(positive increment) or decreased (negative increment) by the specified
increment until the final value is reached.

2. Following each run through of the loop, the condition

| initial value | <= |final value|

is checked to establish whether or not it is satisfied. If the condition is
satisfied, the sequence of statements is executed, otherwise the loop and
thereby the sequence of statements is skipped.

Note

Note that the statement END_FOR must be concluded with a semicolon.

Basic Principle

Execution

Control Statements

15-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The initial assignment shown in Figure 15-5 can be used to create the initial
value of the control variable.

Initial Assignment

:= expression
Simple
variable

Basic

for initial valueof data type
INT/DINT

Figure 15-5 Syntax for Creating the Initial Value

Examples:

FOR I := 1 TO 20

FOR I := 1 TO (Init+J) DO

You can create a basic expression for creating the final value and the required
increment.

The following rules must be observed for the FOR statement:

� You can omit the statement BY [increment] . If no increment is
specified, it is automatically assumed to be +1.

� Initial value, final value and increment are expressions (see Chapter 13).
They are processed once only at the start of execution of the FOR
statement.

� Alteration of the values for final value and increment is not permissible
while the loop is being processed.

Example 15-3 below illustrates the use of the FOR statement.

FUNCTION_BLOCK SEARCH

VAR

INDEX : INT;

KEYWORD : ARRAY [1..50] OF STRING;

END_VAR

BEGIN

FOR INDEX:= 1 TO 50 BY 2 DO

IF KEYWORD [INDEX] = ’KEY’ THEN

EXIT;

END_IF;

END_FOR;

END_FUNCTION_BLOCK

Example 15-3 FOR Statement

Initial Assignment

Final Value and
Increment

Rules

Example

Control Statements

15-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

15.5 WHILE Statement

The WHILE statement allows the repeated execution of a sequence of
statements on the basis of an execution condition. The execution condition is
formed according to the rules of a logical expression.

Execution condition

WHILE Statement

Code
section END_WHILEWHILE Expression DO

Figure 15-6 Syntax of the WHILE Statement

The statement component which follows DO is repeated as long as the value
of the execution condition remains TRUE.

The WHILE statement is processed according to the following rules:

1. The execution condition is checked before each execution of the
statement component.

2. If the value TRUE is returned, the statement component is executed.

3. If the value FALSE is returned, execution of the WHILE statement is
terminated. It is possible for this to occur on the very first occasion the
execution condition is checked.

Note

Note that the statement END_WHILE must be concluded with a semicolon.

Example 15-4 below illustrates the use of the WHILE statement.

FUNCTION_BLOCK SEARCH

VAR

INDEX : INT;

KEYWORD : ARRAY [1..50] OF STRING;

END_VAR

BEGIN

INDEX:= 1;

WHILE INDEX <= 50 AND KEYWORD[INDEX] <> ’KEY’ DO

INDEX:= INDEX + 2;

END_WHILE;

END_FUNCTION_BLOCK

Example 15-4 WHILE Statement

Basic Principle

Execution

Example

Control Statements

15-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

15.6 REPEAT Statement

A REPEAT statement causes the repeated execution of a sequence of
statements between REPEAT and UNTIL until a break condition occurs. The
break condition is formed according to the rules of a logical expression.

Break condition

REPEAT Statement

Code
section END_REPEATREPEAT ExpressionUNTIL

Figure 15-7 Syntax of the REPEAT Statement

The condition is checked after the loop has been executed. This means that
the loop must be executed at least once even if the break condition is
satisfied when the loop is started.

Note

Note that the statement END_REPEAT must be concluded with a semicolon.

Example 15-5 below illustrates the use of the REPEAT statement

FUNCTION_BLOCK SEARCH

VAR

INDEX : INT;

KEYWORD : ARRAY [1..50] OF STRING;

END_VAR

BEGIN

INDEX:= 0;

REPEAT

INDEX:= INDEX + 2;

UNTIL

INDEX > 50 OR KEYWORD[INDEX] = ’KEY’

END_REPEAT;

END_FUNCTION_BLOCK

Example 15-5 REPEAT Statement

Basic Principle

Example

Control Statements

15-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

15.7 CONTINUE Statement

A CONTINUE statement is used to terminate the execution of the current
iteration of a loop (initiated by a FOR, WHILE or REPEAT statement) and to
restart processing within the loop.

CONTINUE Statement

CONTINUE

Figure 15-8 Syntax of the CONTINUE Statement

In a WHILE loop, the initial condition determines whether the sequence of
statements is repeated and in a REPEAT loop the terminal condition.

In a FOR statement, the control variable is increased by the specified
increment immediately after a CONTINUE statement.

Example 15-6 below illustrates the use of the CONTINUE statement.

FUNCTION_BLOCK_CONTINUE

VAR

INDEX :INT;

ARRAY_1:ARRAY[1..100] OF INT;

END_VAR

BEGIN

INDEX:= 0;

WHILE INDEX <= 100 DO

INDEX:= INDEX + 1;

// If ARRAY_1[INDEX] equals INDEX,

// then ARRAY_1 [INDEX] is not altered:

IF ARRAY_1[INDEX] = INDEX THEN

CONTINUE;

END_IF;

ARRAY_1[INDEX]:= 0;

// Other statements..

//....

END_WHILE;

END_FUNCTION_BLOCK

Example 15-6 CONTINUE Statement

Basic Principle

Example

Control Statements

15-13
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

15.8 EXIT Statement

An EXIT statement is used to exit a loop (FOR, WHILE or REPEAT loop) at
any point regardless of whether the break condition is satisfied.

EXIT Statement

EXIT

Figure 15-9 Syntax of the EXIT Statement

This statement causes the repetition statement immediately surrounding the
exit statement to be exited immediately.

Execution of the program is continued after the end of the loop (for example
after END_FOR).

Example 15-7 below illustrates the use of the EXIT statement.

FUNCTION_BLOCK_EXIT

VAR

INDEX_1 := INT;

INDEX_2 := INT;

INDEX_SEARCH:= INT;

KEYWORD : ARRAY[1..51] OF STRING;

END_VAR

BEGIN

INDEX_2 := 0;

FOR INDEX_1:= 1 TO 51 BY 2 DO

// Exit the FOR loop if

// KEYWORD[INDEX_1] equals ’KEY’:

IF KEYWORD[INDEX_1] = ’KEY’ THEN

INDEX_2:= INDEX_1;

EXIT;

END_IF;

END_FOR;

// The following value assignment is executed

// after execution of EXIT or after the

// normal termination of the FOR loop

INDEX_SEARCH:= INDEX_2;

END_FUNCTION_BLOCK

Example 15-7 EXIT Statement

Basic Principle

Example

Control Statements

15-14
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

15.9 GOTO Statement

The GOTO statement is used to implement a program jump. It effects an
immediate jump to the specified jump label and therefore to a different
statement within the same block.

GOTO statements should only be used in special circumstances; for example,
for error handling. According to the rules of structured programming, the
GOTO statement should not be used.

GOTO Statement

GOTO

Jump label

IDENTIFIER

Figure 15-10 Syntax of the GOTO Statement

Jump label refers to a marker in the LABEL / END_LABEL declaration
subsection. That marker precedes the statement which is to be next executed
after the GOTO statement.

The following rules should be observed when using the GOTO statement:

� The destination of a GOTO statement must be within the same block.

� The destination of the jump must be unambiguous.

� Jumping to a loop is not permitted. Jumping from a loop is possible.

Basic Principle

Rules

Control Statements

15-15
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Example 15-8 below illustrates the use of the GOTO statement.

FUNCTION_BLOCK FB3//GOTO_BSP

VAR

INDEX : INT;

A : INT;

B : INT;

C : INT;

KEYWORD: ARRAY[1..51] OF STRING;

END_VAR

LABEL

LABEL1, LABEL2, LABEL3;

END_LABEL

BEGIN

IF A > B THEN GOTO LABEL1;

ELSIF A > C THEN GOTO LABEL2;

END_IF;

//...

LABEL1 : INDEX:= 1;

GOTO LABEL3;

LABEL2 : INDEX:= 2;

//...

LABEL3 : ;

//...

END_FUNCTION_BLOCK

Example 15-8 GOTO Jump Statement

Example

Control Statements

15-16
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

15.10 RETURN Statement

A RETURN statement causes the program to exit the block (OB, FB or FC)
currently being processed and to return to the calling block or the operating
system if the block being exited is an OB.

RETURN Instruction

RETURN

Figure 15-11 Syntax of the RETURN Statement

Note

A RETURN statement at the end of the code section of a logic block or the
declaration section of a data block is redundant, since the operation is
performed automatically at those points.

Basic Principle

Control Statements

16-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Calling Functions and Function Blocks

An SCL block can call the following:

� Other functions (FCs) and function blocks (FBs) created in SCL

� Functions and function blocks programmed in another STEP 7 language
(for example, Statement List or Ladder Logic)

� System functions (SFCs) and system function blocks (SFBs) in the
operating system of the CPU you are using.

Section Description Page

16.1 Calling and Transferring Parameters 16-2

16.2 Calling Function Blocks (FBs or SFBs) 16-3

16.2.1 FB Parameters 16-5

16.2.2 Input Assignment (FB) 16-7

16.2.3 In/Out Assignment (FB) 16-8

16.2.4 Example of Calling a Global Instance 16-10

16.2.5 Example of Calling a Local Instance 16-12

16.3 Calling Functions 16-13

16.3.1 FC Parameters 16-15

16.3.2 Input Assignment (FC) 16-16

16.3.3 Output and In/Out Assignment (FC) 16-17

16.3.4 Example of a Function Call 16-19

16.4 Implicitly Defined Parameters 16-20

Introduction

Chapter
Overview

16

16-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

16.1 Calling and Transferring Parameters

When functions or function blocks are called, data is exchanged between the
calling and the called block. The parameters that are to be transferred must
be specified in the function call in the form of a parameter list. The
parameters are enclosed in brackets. A number of parameters are separated
by commas.

In the example of a function call below, an input parameter, an in/out
parameter and an output parameter are specified.

FC31 (I_Par:=3, IO_Par:=LENGTH, O_Par:=Digitsum);

Function name

Parameter list

Current input pa-
rameter Current in/out

parameter Current output
parameter

Figure 16-1 Basic Principle of Parameter Transfer

As is shown in Figure 16-2, specification of parameters takes the form of a
value assignment. That value assignment assigns a value (actual parameter)
to the parameters defined in the declaration section of the called block
(formal parameters).

I_Par � 3

IO_Par � LENGTH

O_Par � Digitsum

Formal Parameter Actual Parameter

Figure 16-2 Value Assignment within the Parameter List

The formal parameters are those parameters expected by the block when
invoked. They are merely “placeholders” for the actual parameters that are
transferred to the block when called. Those parameters have been defined in
the declaration section of a block (FB or FC).

Table 16-1 Permissible Declaration Subsections for Formal Parameters

Declaration Subsections Data Keyword

Input parameters
VAR_INPUT
Declaration list
END_VAR

Parameter subsection
Output parameters

VAR_OUTPUT
Declaration list
END_VAR

In/Out parameters
VAR_IN_OUT
Declaration list
END_VAR

Parameter Transfer

Basic Principle

Formal Parameters

Calling Functions and Function Blocks

16-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

16.2 Calling Function Blocks (FB or SFB)

When you call a function block in SCL you can use

� Global instance data blocks, and

� Local instance areas of the active instance data block.

Calling an FB as a local instance differs from calling it as a global instance
by virtue of the way in which the data is stored. In this case, the data is not
stored in a special DB but is nested in the instance data block of the calling
FB.

Function Block Call

(FB parameters)

Local instance name

IDENTIFIER

.

FB
IDENTIFIER

SFB
IDENTIFIER

DB
IDENTIFIER

FB: Function block
SFB: System function block

see 16.2.1

Global instance name

Figure 16-3 Syntax of an FB Call

The function call is made in a call instruction by specifying the following:

� the name of the function block or system function block (FB or SFB
identifier),

� the instance data block (DB identifier),

� the parameter assignment (FB parameters)

A function call for a global instance can be either absolute or symbolic.

FB10.DB20 (X1:=5,X2:=78,......);

Parameter assignment

DRIVE.ON (X1:=5,X2:=78,......);

Absolute function call:

Symbolic function call:

Figure 16-4 Calling FB10 Using Instance Data Block DB20

Global and Local
Instance

Calling as Global
Instance

Calling Functions and Function Blocks

16-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The function call is made in a call instruction by specifying the following:

� the local instance name (IDENTIFIER),

� the parameter assignment (FB parameters).

A function call for a local instance is always symbolic, for example:

MOTOR (X1:=5,X2:=78,......);

Parameter assignment

Figure 16-5 Calling a Local Instance

Calling as Local
Instance

Calling Functions and Function Blocks

16-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

16.2.1 FB Parameters

When calling a function block – as a global or local instance – you must
make a distinction in the parameter list between

� the input parameters and

� the in/out parameters

of an FB. In both cases, you use value assignments to assign the actual
parameters to the formal parameters as illustrated below:

I_Par � 3 //Input assignment

IO_Par � LENGTH //In/Out assignment

Formal Parameter Actual Parameter

Figure 16-6 Value Assignment within the Parameters List

The output parameters do not have to be specified when an FB is called.

The syntax of the FB parameter specification is the same when calling both
global and local instances.

FB Parameters

,

Input
assignment

In/out
assignment

Figure 16-7 Syntax of FB Parameters

A function call involving assignment of one input and one in/out parameter
might be as follows:

FB31.DB77(I_Par:=3, IO_Par:=LENGTH);

Basic Principle

Example

Calling Functions and Function Blocks

16-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The rules for assigning parameter values are as follows:

� The assignments can be in any order.

� Individual assignments are separated by commas.

� The data type of formal and actual parameters must match.

� Output assignments are not possible in FB calls. The value of a declared
output parameter is stored in the instance data. From there it can be
accessed by all FBs. To read an output parameter, you must define the
access from within an FB (see Section 14.8).

When the block has been run through once:

� The actual parameters transferred are unchanged.

� The transferred and altered values of the in/out parameters have been
updated; in/out parameters of an elementary data type are an exception to
this rule (see Section 16.2.3).

� The output parameters can be read by the calling block from the global
instance area or the local instance area. For more precise details, refer to
Example 16-3.

Rules

Results of
Function Call

Calling Functions and Function Blocks

16-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

16.2.2 Input Assignment (FB)

Input assignments are used to assign actual parameters to the formal input
parameters. The FB cannot change these actual parameters. The assignment
of actual input parameters is optional. If no actual parameter is specified, the
values of the last call are retained.

Input Assignment

:=

Expression

TIMER
INDENTIFIER

BLOCK
IDENTIFIER

COUNTER
IDENTIFIER

Actual parameter

Parameter name of the
input parameter

IDENTIFIER

(formal parameter)

Figure 16-8 Syntax of an Input Assignment

The following actual parameters are permitted in input assignments:

Table 16-2 Actual Parameters in Input Assignments

Actual
Parameter

Explanation

Expression � Mathematical, logical or comparative expression

� Constant

� Extended variable

TIMER/COUNTER
Identifier

Defines a specific timer or counter to be used when a block is
processed (see also Chapter 17).

BLOCK Identifier Defines a specific block to be used as an input parameter. The
block type (FB, FC or DB) is specified in the input parameter
declaration.
When assigning parameter values you specify the block
number. You can use either the absolute or symbolic number
(see also Chapter 9).

Basic Principle

Permissible Actual
Parameters

Calling Functions and Function Blocks

16-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

16.2.3 In/Out Assignment (FB)

In/out assignments are used to assign actual parameters to the formal in/out
parameters of the FB that has been called.

In contrast to input parameters, the called FB can change the in/out
parameters. The new value of a parameter that results from processing the FB
is written back to the actual parameters. The original value is overwritten.

If in/out parameters are declared in the called FB, they must be assigned
values the first time the block is called. After that, the specification of actual
parameters is optional.

In/Out Assignment

Actual parameterParameter name of the
in/out parameter

:= Extended
variableIDENTIFIER

(formal parameter)

Figure 16-9 Syntax of an In/out Assignment

Since the actual parameter assigned can be altered when the FB is processed
as it is an in/out parameter, it has to be a variable. For that reason, input
parameters can not be assigned by means of in/out assignments (the new
value would not be capable of being written back).

Table 16-3 Actual Parameters in In/Out Assignments

Actual
Parameter

Explanation

Extended
variable

The following types of extended variable are possible:

Simple variables and parameters

Access to absolute variables

Access to data blocks

Function calls (see also Chapter 14).

Basic Principle

Actual Parameters
of an In/out
Assignment

Calling Functions and Function Blocks

16-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Note the following special considerations:

� When the block is processed, the altered value of the in/out parameter is
updated. In/out parameters of an elementary data type are an exception
to this rule. In the latter case, an update is only performed if an actual
parameter is specified in the function call.

� The following can not be used as actual parameters for an in/out
parameter of a non elementary data type:

– FB in/out parameters

– FC parameters

� ANY parameters: the aforesaid applies in this case, too. In addition,
constants are not permissible as actual parameters.

Special
Considerations

Calling Functions and Function Blocks

16-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

16.2.4 Example of Calling a Global Instance

An example of a function block with a FOR loop is shown in Example 16-1.
The examples given assume that the symbol TEST has been declared in the
symbol table for FB17.

FUNCTION_BLOCK TEST

VAR_INPUT

FINALVAL: INT; //Input parameter

END_VAR

VAR_IN_OUT

IQ1: REAL; //In/Out parameter

END_VAR

VAR_OUTPUT

CONTROL: BOOL;//Output parameter

END_VAR

VAR

INDEX: INT;

END_VAR

BEGIN

CONTROL:= FALSE;

FOR INDEX:= 1 TO FINALVAL DO

IQ1:= IQ1 * 2;

IF IQ1 > 10000 THEN

CONTROL:= TRUE;

END_IF;

END_FOR;

END_FUNCTION_BLOCK

Example 16-1 Example of an FB

To call the FB, you can choose one of the following options. It is assumed
that VARIABLE1 has been declared in the calling block as a REAL variable.

 //Absolute function call, global instance:

FB17.DB10 (FINALVAL:=10, IQ1:= VARIABLE1);

 //Symbolic function call; global instance:

TEST.TEST_1 (FINALVAL:= 10, IQ1:= VARIABLE1) ;

Example 16-2 Example of FB Call Using an Instance Data Block

After the block has been processed, the value calculated for the in/out
parameter IQ1 can be accessed from VARIABLE1.

Basic Principle

Calling

Result

Calling Functions and Function Blocks

16-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The two examples below illustrate the two possible ways of reading the
output parameter CONTROL.

//The output parameter is

//accessed by

RESULT:= DB10.CONTROL;

//However, you can also use the output parameter
//directly in another //FB call for assigning
//a value to an input parameter as follows:

FB17.DB12 (IN_1:= DB10.CONTROL);

Example 16-3 Result of FB Call with Instance Data Block

Reading the
Output Value

Calling Functions and Function Blocks

16-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

16.2.5 Example of Calling a Local Instance

Example 16-1 illustrates how a function block with a simple FOR loop could
be programmed assuming that the symbol TEST has been declared in the
symbol table for FB17.

This FB can be invoked as shown below, assuming that VARIABLE1 has
been declared in the invoking block as a REAL variable.

// Call local instance:

TEST_L (FINALVAL:= 10, IQ1:= VARIABLE1) ;

Example 16-4 Example of FB Call as Local Instance

TEST_L must have been declared in the variable declaration as follows:

VAR
TEST_L : TEST;
END_VAR

The output parameter CONTROL can be read as follows:

// The output parameter is

// accessed by

RESULT:= TEST_L.CONTROL;

Example 16-5 Result of FB Call as Local Instance

Basic Principle

Calling

Reading Output
Parameters

Calling Functions and Function Blocks

16-13
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

16.3 Calling Functions

In contrast to function blocks, functions always return a result known as the
return value. For this reason, functions can be treated as addresses. Functions
with a return value of the type VOID are an exception to this rule.

In the following value assignment, for example, the function DISTANCE is
called with specific parameters:

LENGTH:= DISTANCE (X1:=–3, Y1:=2);

Return value is DISTANCE!

The function calculates the return value, which has the same name as the
function, and returns it to the calling block. There, the value replaces the
function call.

The return value can be used in the following elements of an FC or FB:

� a value assignment,

� a logical, mathematical or comparative expression or

� as a parameter for a further function block/function call.

Functions of the type VOID are an exception. They have no return value and
can therefore not be used in expressions.

Figure 16-10 below illustrates the syntax of a function call.

(

Standard function name
or symbolic name

FC: Function
SFC: System function
Standard function implemented in compiler

FC
IDENTIFIER

SFC
IDENTIFIER

IDENTIFIER

)FC parameter

Function Call

Figure 16-10 Syntax of Function Call

Return Value

Calling Functions and Function Blocks

16-14
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Note

If a function is called in SCL whose return value was not supplied, this can
lead to incorrect execution of the user program.

In an SCL function, this situation can occur when the return value was
supplied but the corresponding statement is not executed.
In an STL/LAD/FBD function, this situation can occur when the function
was programmed without supplying the return value or the corresponding
statement is not executed.

A function is called by specifying:

� the function name (FC IDENTIFIER, SFC IDENTIFIER, IDENTIFIER)

� the parameter list.

The function name which identifies the return value can be specified in
absolute or symbolic terms as shown in the following examples:

FC31 (X1:=5, Q1:= Digitsum)
DISTANCE (X1:=5, Q1:= Digitsum)

The results of a function call are available after execution of the call in the
form of

� a return value or

� output or in/out parameters (actual parameters)

For more detailed information on this subject, refer to Chapter 18.

Calling

Example

Results of the
Function Call

Calling Functions and Function Blocks

16-15
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

16.3.1 FC Parameters

In contrast to function blocks, functions do not have any memory in which to
store the values of parameters. Local data is only stored temporarily while
the function is active. For this reason, all formal input, in/out and output
parameters defined in the declaration section of a function must be assigned
actual parameters as part of the function call.

Figure 16-11 below shows the syntax for FC parameter assignment.

FC Parameter

,

Input
assignment

Output/

assignment
In/Out

Expression

Figure 16-11 Syntax of an FC Parameter

The example below illustrates a function call involving assignment of an
input parameter, an output parameter and an in/out parameter.

FC32 (I_Param1:=5,IO_Param1:=LENGTH,
O_Param1:=Digitsum)

The rules for assigning values to parameters are as follows:

� The value assignments can be in any order.

� The data type of the formal and actual parameter in each case must
match.

� The individual assignments must be separated by commas.

Basic Principle

Rules

Calling Functions and Function Blocks

16-16
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

16.3.2 Input Assignment (FC)

Input assignments assign values (actual parameters) to the formal input
parameters of the called FC. The FC can work with these actual parameters
but cannot change them. In contrast to an FB call, this assignment is not
optional with an FC call. Input assignments have the follwing syntax:

Input Assignment

:=

Expression

TIMER
IDENTIFIER

BLOCK
IDENTIFIER

COUNTER
IDENTIFIER

Actual parameters

Parameter name of the
input parameter

IDENTIFIER

(formal parameter)

Figure 16-12 Syntax of an Input Assignment

The following actual parameters can be assigned in input assignments:

Table 16-4 Actual Parameters in Input Assignments

Actual Parameter Explanation

Expression An expression represents a value and consists of addresses
and operators. The following types of expression are
possible:

Mathematical, logical or comparative expressions

Constants

Extended variables

TIMER/COUNTER
Identifier

Defines a specific timer or counter to be used when a block is
processed (see also Chapter 17).

BLOCK
Identifier

Defines a specific block to be used as an input parameter. The
block type (FB, FC or DB) is specified in the declaration of
the input parameter. When assigning parameters, you specify
the block address. You can use either the absolute or the
symbolic address (see also Chapter 9).

Note that FB in/out parameters and FC parameters are not permissible as
actual parameters for formal FC input parameters of a non-elementary data
type.

Basic Principle

Actual Parameters
in Input
Assignments

Special
Consideration

Calling Functions and Function Blocks

16-17
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

16.3.3 Output and In/Out Assignment (FC)

In an output assignment, you specify where the output values resulting from
processing a function are to be written to. An in/out assignment is used to
assign an actual value to an in/out parameter.

Figure 16-13 below shows the syntax of output and in/out assignments.

Output and In/Out Assignments

:=

Actual parameter
Parameter name of the
output or in/out

Extended
variableIDENTIFIER

parameter

(formal parameter)

Figure 16-13 Syntax of Output and In/Out Assignments

The actual parameters in output and in/out assignments must be variables
since the FC writes values to the parameters. For this reason, input
parameters can not be assigned in in/out assignments (the value could not be
written).

Thus, only extended variables can be assigned in output and in/out
assignments.

Table 16-5 Actual Parameters in Output and In/Out Parameters

Actual Parameter Explanation

Extended
variable

The following types of extended variable can be used:

Simple variables and parameters

Access to absolute variables

Access to data blocks

Function calls (see also Chapter 14).

Basic Principle

Actual Parameters
in Output and
In/Out
Assignments

Calling Functions and Function Blocks

16-18
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Note the following special considerations:

� After the block is processed, the altered value of the in/out parameter is
updated.

� The following are not permitted as actual parameters for in/out
parameters of a non elemenatary data type:

– FB input parameters

– FB in/out parameters and

– FC parameters

� ANY parameters: The first point made above also applies here. The
following are not permitted as actual parameters for in/out parameters of
a non elemenatary data type:

– FB input parameters

– FC input parameters

In addition, constants are not permitted as actual parameters.
If the ANY type is declared as a function result (return value), the
following also applies:

– All ANY parameters must be supplied with addresses whose data
types are within a type class. By type class is meant the number of
numerical data types (INT, DNIT, REAL) or the number of bit data
types (BOOL, BYTE, WORD, DWORD) is meant. The other data
types each make up their own type class.

– The SCL Compiler assumes that the data type of the current function
result will be given as the highest-level type among the actual
parameters which are assigned to the ANY parameters.
With the function result, all operations are permitted which are
defined for this data type.

� POINTER-parameter: The first point made above also applies here. The
following are not permitted as actual parameters for in/out parameters of
a non elemenatary data type:

– FB input parameters

– FC input parameters

Special
Considerations

Calling Functions and Function Blocks

16-19
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

16.3.4 Example of a Function Call

A function DISTANCE for calculating the distance between two points
(X1,Y1) and (X2,Y2) in the same plane using the Cartesian system of
co-ordinates might take the following form (the examples assume that the
symbol DISTANCE has been declared in a symbol table for FC37).

FUNCTION DISTANCE: REAL

VAR_INPUT

X1: REAL;

X2: REAL;

Y1: REAL;

Y2: REAL;

END_VAR

VAR_OUTPUT

Q2: REAL;

END_VAR

BEGIN

DISTANCE:= SQRT

((X2-X1)**2 + (Y2-Y1)**2);

Q2:= X1+X2+Y1+Y2;

END_FUNCTION

Example 16-6 Distance Calculation

The examples below show further options for subsequent use of a function
value:

In a value assignment, for example

LENGTH:= DISTANCE (X1:=-3, Y1:=2, X2:=8.9,
Y2:=7.4, Q2:=Digitsum);

In a mathematical or logical expression, for example

RADIUS + DISTANCE (X1:=-3, Y1:=2, X2:=8.9,
Y2:=7.4, Q2:=Digitsum)

When assigning values to parameters in a called block, for example

FB32 (DIST:= DISTANCE (X1:=-3, Y1:=2, X2:=8.9,
Y2:=7.4, Q2:=Digitsum);

Example 16-7 Calculation of Values in an FC

Basic Principle

Calling Functions and Function Blocks

16-20
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

16.4 Implicitly Defined Parameters

Implicitly defined parameters are parameters that you can use without having
to declare them first in a block. SCL provides the following implicitly
defined parameters:

� the input parameter EN and

� the output parameter ENO

Both parameters are of the data type BOOL and are stored in the temporary
block data area.

Every function block and every function has the implicitly defined input
parameter EN. If EN is TRUE, the called block is executed. Otherwise it is
not executed. Supplying a value for the parameter EN is optional.

Remember, however, that EN must not be declared in the declaration section
of a block or function.

Since EN is an input parameter, you cannot change EN within a block.

Note

The return value of a function is not defined if the function is not called
because EN:=FALSE.

The following example illustrates the use of the parameter EN:

FUNCTION_BLOCK FB57
VAR

RESULT : REAL;
MY_ENABLE : BOOL;

END_VAR
...

BEGIN
MY_ENABLE:= FALSE;
// Function call
// in which the parameter EN is assigned a value:

RESULT:= FC85 (EN:= MY_ENABLE, PAR_1:= 27);
// FC85 not executed because MY_ENABLE
// is set to FALSE
//...
END_FUNCTION_BLOCK

Example 16-8 Use of EN

Overview

Input Parameter
EN

Example

Calling Functions and Function Blocks

16-21
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Every function block and every function has the implicitly defined output
parameter ENO which is of the data type BOOL. When the execution of a
block is completed, the current value of the OK variable is set in ENO.

Immediately after a block has been called you can check the value of ENO to
see whether all the operations in the block ran correctly or whether errors
occurred.

The following example illustrates the use of the parameter EN0:

FUNCTION_BLOCK FB57
//...
//...

BEGIN
// Function block call:
FB30.DB30 (X1:=10, X2:=10.5);

// Check to see if all
// operations performed properly:

IF ENO THEN
// Everything OK
//...

ELSE
// Error occurred,
// therefore error handling
//...

END_IF;
//...
//...

END_FUNCTION_BLOCK

Example 16-9 Use of ENO

The following example shows the combination of EN and ENO:

// EN and ENO can also be combined
// as shown here:

FB30.DB30(X1:=10, X2:=10.5);

// The following function is only
// to be executed if FB30 is
// processed without errors

RESULT:= FC85 (EN:= ENO, PAR_1:= 27);

Example 16-10 Use of EN and ENO

Output Parameter
ENO

Example

Example

Calling Functions and Function Blocks

16-22
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Calling Functions and Function Blocks

17-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Counters and Timers

In SCL you can control the running of a program on the basis of a timer or
counter reading.

STEP 7 provides standard counter and timer functions for this purpose which
you can use in your SCL program without having to declare them
beforehand.

Section Description Page

17.1 Counter Functions 17-2

17.1.1 Input and Evaluation of the Counter Reading 17-6

17.1.2 Counter Up 17-7

17.1.3 Counter Down 17-7

17.1.4 Counter Up/Down 17-8

17.1.5 Example of the Function S_CD (Counter Down) 17-8

17.2 Timer Functions 17-10

17.2.1 Input and Evaluation of the Timer Reading 17-14

17.2.2 Pulse Timer 17-16

17.2.3 Extended Pulse Timer 17-17

17.2.4 On-Delay Timer 17-18

17.2.5 Retentive On-Delay Timer 17-19

17.2.6 Off-Delay Timer 17-20

17.2.7 Example of Program Using Extended Pulse Timer 17-21

17.2.8 Selecting the Right Timer Function 17-22

Introduction

Chapter
Overview

17

17-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17.1 Counter Functions

STEP 7 provides a series of standard counter functions. You can use these
counters in your SCL program without needing to declare them previously.
You must simply supply them with the required parameters. STEP 7 provides
the following counter functions:

� Counter Up

� Counter Down

� Counter Up/Down

Counter functions are called just like functions. The function identifier can
therefore be used as an address in an expression provided you make sure that
the data type of the function result is compatible with the address replaced.

Table 17-1 Function Name of Counter Functions

Function Name Description

S_CU Counter Up

S_CD Counter Down

S_CUD Counter Up/Down

The function value (return value) which is returned to the calling block is the
current counter reading (BCD format) in data type WORD. For more
information on this subject, refer to Section 17.1.1.

Overview

Calling

Function Value

Counters and Timers

17-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The function call parameters for all three counter functions are listed in Table
17-2 together with their identifiers and descriptions. Basically, the following
types of parameters should be distinguished:

� Control parameters (for example, set, reset, counting direction)

� Initialization value for a counter reading

� Status output (shows whether a counter limit has been reached).

� Counter reading in binary form

Table 17-2 Counter Function Call Parameters

Identifier Parameter Data Type Description

C_NO COUNTER Counter number (COUNTER
IDENTIFIER);
the area depends on the CPU

CU Input BOOL CU input: count up

CD Input BOOL CD input: count down

S Input BOOL Input for presetting the counter

PV Input WORD Value in the range between 0 and 999 for
initializing the counter (entered as
16#<value>, with the value in BCD format)

R Input BOOL Reset input

Q Output BOOL Status of the counter

CV Output WORD Counter reading (binary)

The counter function call shown in Example 17-1 below causes a global
memory area of the type COUNTER with the name C12 to be reserved when
the function is configured.

S_CUD (C_NO :=C12,

CD :=I.0,

CU :=I.1,

S :=I.2 & I.3,

PV :=120,

R :=FALSE,

CV :=binVal,

Q :=actFlag);

Counter_Reading:=

Example 17-1 Calling a Counter Down Function

Function Call
Parameters

Example

Counters and Timers

17-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Instead of the absolute counter number (for example,C_NO=C10), you can
also specify a variable of the data type COUNTER to call the function. The
advantage of this method is that the counter function call can be made
dynamic by assigning that variable a different absolute number in each
function call.

Example:
Function_Block COUNTER;
Var_Input
 MyCounter: Counter;
End_Var
:
currVAL:=S_CD (C_NO:=MyCounter,........);

Since the parameter values (for example, CD:=I.0) are stored globally, under
certain circumstances specifying those parameters is optional. The following
general rules should be observed when supplying parameters with values:

� The parameter for the counter identifier C_NO must always be assigned a
value when the function is called.

� Either the parameter CU (up counter) or the parameter CD (down
counter) must be assigned a value, depending on the counter function
required.

� The parameters PV (initialization value) and S (set) can be omitted as a
pair.

� The result value in BCD format is always the function value.

Note

The names of the functions and parameters are the same in both SIMATIC
und IEC mnemonics. Only the counter identifier is mnemonic-dependent,
thus: SIMATIC: Z and IEC: C

Calling
Dynamically

Rules

Counters and Timers

17-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Example 17-2 below illustrates various counter function calls:

Function_block FB1

VAR

 currVal, binVal: word;
 actFlag: bool;

END_VAR

BEGIN

currVal :=S_CD(C_NO:=C10, CD:=TRUE, S:=TRUE,
PV:=100, R:=FALSE, CV:=binVal,
Q:=actFlag);

currVal :=S_CU(C_NO:=C11, CU:=M0.0, S:=M0,1,
PV:=16#110, R:=M0.2, CV:=binVal,
Q:=actFlag);

currVal :=S_CUD(C_NO:=C12, CD:=E.0,
CU:=I.1,S:=I.2 & I.3, PV:=120,
R:=FALSE,CV:=binVal, Q:=actFlag);

currVal :=S_CD(C_NO:=C10,CD:=FALSE,
S:=FALSE,
PV:=100, R:=TRUE, CV:=bVal,
Q:=actFlag);

END_FUNCTION_BLOCK

Example 17-2 Counter Function Calls

Example of
Counter Function
Call

Counters and Timers

17-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17.1.1 Input and Evaluation of the Counter Reading

To input the initialization value or to evaluate the result of the function, you
require the internal representation of the counter reading (see Figure 17-1).

When you set the counter (parameter S), the value you specify is written to
the counter. The range of values is between 0 and 999. You can change the
counter reading within this range by specifying the operations count up/down
or count up and down

Figure 17-1 below illustrates the bit configuration of the counter reading.

These bits are irrelevant; that is, they are ignored when a counter is set.

Counter reading in BCD format (0 to 999)

15

1 2 7

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 111 10000000X X X X

Figure 17-1 Bit Configuration of Counter Reading

You can load a predefined counter reading using the following formats:

� Decimal integer: for example 295 if that value corresponds to a valid
BCD code

� BCD code (input as a hexadecimal constant): for example 16#127

You can evaluate the result in two different formats:

� As a function result (type WORD) in BCD format

� As the output parameter CV (type WORD) in binary code

Overview

Format

Input

Evaluation

Counters and Timers

17-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

17.1.2 Counter Up (CU)

With the Counter Up function, you can only perform upward counting
operations.

Table 17-3 Counter Up Function

Operation Explanation

Counter up The counter reading is increased by ”1” when the signal status at input
CU changes from ”0” to ”1” and the count value is less than 999.

Set counter When the signal status at input S changes from ”0” to ”1”, the counter
is set to the value of input PV. Such a signal change is always required
to set a counter.

Reset The counter is reset when input R = 1 is set. Resetting the counter sets
the counter reading to ”0”.

Query
counter

A signal status query at output Q returns ”1” if the counter reading is
greater than ”0”. The query returns ”0” if the counter reading is equal
to ”0”.

17.1.3 Counter Down (CD)

With the Counter Down function, you can only execute downward counting
operations.

Table 17-4 Counter Down Function

Function Explanation

Counter
down

The counter reading is decreased by ”1” if the signal status at input CD
changes from ”0” to ”1” and the count value is greater than ”0”.

Set counter If the signal status at input S changes from ”0” to ”1”, the counter is set
to the value of input PV. Such a signal change is always required to set
a counter.

Reset The counter is reset if input R = 1 is set. Resetting the counter sets the
count value to ”0”.

Query
counter

A signal status query at output Q returns ”1” if the counter reading is
greater than ”0”. The query returns ”0” if the counter reading is equal
to ”0”.

Description

Method of
Operation

Description

Method of
Operation

Counters and Timers

17-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17.1.4 Counter Up/Down (CUD)

With the Counter Up/Down function, you can execute both upward and
downward counting operations. If up and down count pulses are received
simultaneously, both operations are performed. The counter reading remains
unchanged.

Table 17-5 Up/Down Counter Function

Function Function

Counter up The counter reading is increased by ”1” if the signal status at input CU
changes from ”0” to ”1” and the counter reading is less than 999.

Counter
down

The counter reading is decreased by ”1” if the signal status at input CD
changes from ”0” to ”1” and the counter reading is greater than ”0”.

Set counter If the signal status at input S changes from ”0” to ”1”, the counter is set
to the value of input PV. Such a signal change is always required to set
a counter.

Reset The counter is reset if input R = 1 is set. Resetting the counter sets the
counter reading to ”0”.

Query
counter

A signal status query at output Q returns ”1” if the counter reading is
greater than ”0”. The query returns ”0” if the counter reading is equal
to ”0”.

17.1.5 Example of the Function S_CD (Counter Down)

Table 17-6 below illustrates parameter assignment for the function S_CD.

Table 17-6 Function Call Parameters

Parameter Description

C_NO MyCounter

CD Input I0.0

S SET

PV Initiliazation 16#0089

R Reset

Q Q0.7

CV BIN_VAL

Description

Method of
Operation

Parameter
Assignment

Counters and Timers

17-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Example 17-3 illustrates use of the counter function S_CD:

FUNCTION_BLOCK COUNT

VAR_INPUT

 MYCOUNTER: COUNTER;

END_VAR

VAR_OUTPUT

 RESULT: INT;

END_VAR

VAR

 SET : BOOL;

 RESET : BOOL;

 BCD_VALUE : WORD; //counter reading BCD
coded

 BIN_VALUE : WORD; //counter reading
binary

 INITIALIZATION : WORD;

END_VAR

BEGIN

 Q0.0:= 1;

 SET:= I0.2;

 RESET:= I0.3;

 INITIALIZATION:= 16#0089;

 BCD_VALUE:= S_CD

 (C_NO := MYCOUNTER,//COUNT UP.
CD := I.0,

 S := SET,

 PV := INITIALIZATION,

R := RESET,

CV := BIN_VALUE,

Q := Q0.7);

RESULT := WORD_TO_INT (BIN_VALUE);//further
 //processing as an output
 //parameter

QW4 := BCD_VALUE //to output for display

END_FUNCTION_BLOCK

Example 17-3 Example of Counter Function

Example

Counters and Timers

17-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17.2 Timer Functions

Timers are functional elements in your program that perform and monitor
timed processes. STEP 7 provides a series of standard timer functions which
you can access using SCL. You can use timer operations to

� set delay periods

� enable monitoring periods

� generate pulses

� measure times

Timer functions are called in the same way as counter functions. The
function identifier can be used in any expression in place of an address
provided the data type of the function result is compatible with that of the
address replaced.

Table 17-7 STEP 7 Timer Functions

Function Name Description

S_PULSE Pulse timer

S_PEXT Extended pulse timer

S_ODT On-delay timer

S_ODTS Retentive on-delay timer

S_OFFDT Off-delay timer

The function value (return value) that is returned to the calling block is a
time value of the data type S5TIME. For more information on this subject,
refer to Section 17.2.1

Overview

Calling

Function Value

Counters and Timers

17-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The parameters that have to be assigned values are listed in a table in the
description of the standard function concerned. The function names and
corresponding data types for all 5 timer functions are given in Table 17-8.

In general, the following types of parameter should be distinguished:

� Control parameters (for example, set, reset)

� Initialization value for start time

� Status output (indicates whether timer is running)

� Remaining time in binary form

Table 17-8 Function Call Parameters

Parameter Data Type Description

T_NO TIMER Identification number of the timer; the range depends on
the CPU

S BOOL Start input

TV S5TIME Initialization of the timer reading (BCD format)

R BOOL Reset input

Q BOOL Status of the timer

BI WORD Time remaining (binary)

The timer function call shown in Example 17-4 causes a global memory area
of the type TIMER and with the name T10 to be reserved when the function
is processed.

DELAY:= S_ODT (T_NO := T10,

S := TRUE,

TV := T#1s,

R := FALSE,

BI := biVal,

Q := actFlag

);

Example 17-4 Timer Function Call

Function Call
Parameters

Example

Counters and Timers

17-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Instead of the absolute timer number (for example, T10), you can also
specify a variable of the data type TIMER in the function call. The advantage
of this is that the timer function call is made dynamic by assigning that
variable a different absolute number in every function call.

Example:
FUNCTION_BLOCK TIMERUNIT
VAR_INPUT
MyTimer: timer;
END_VAR
:
currTime:=S_ODT (T_NO:=MyTimer,.........)

Since the parameter values are stored globally, under certain circumstances
specifying those values is optional. The following general rules should be
observed when assigning values to parameters:

� The parameter for the timer identifier T_NO must be assigned a value in
symbolic or absolute form in the function call.

� The parameters TV (initialization value) and S (set) can be omitted as a
pair.

� Reading of parameter values is optional. You can access Q and BI by
means of a value assignment.

� The result in S5TIME format is always the function value.

Note

The names of the functions are the same in both SIMATIC and IEC
mnemonics.

Calling
Dynamically

Rules

Counters and Timers

17-13
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Example 17-5 below illustrates various timer function calls:

FUNCTION_BLOCK FB2

VAR

currTime: S5time;

biVal: word;

actFlag: bool;

END VAR

BEGIN

currTime:= S_ODT (T_NO:=T10, S:=TRUE, TV:=T#1s,

R:=FALSE, BI:=biVal,

Q:=actFlag);

currTime:= S_ODTS (T_NO:=T11, S:=M0,0, TV:=T#1s,

R:= M0.1, BI:=biVal,

Q:= actFlag);

currTime:=S_OFFDT (T_NO:=T12, S:=I0.1&actFlag,

TV:= T#1s,R:=FALSE,BI:=biVal,

Q:= actFlag);

currTime:= S_PEXT (T_NO:=T13, S:=TRUE,

TV:=T#1s,R:=I0.0, BI:=biVal,

Q:=actFlag);

currTime:= S_PULSE (T_NO:=T14, S:=TRUE,

 TV:=T#1s,R:=FALSE, BI:=biVal,

 Q:=actFlag);

END_FUNCTION_BLOCK

Example 17-5 Timer Function Calls

Example Timer
Function Call

Counters and Timers

17-14
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17.2.1 Input and Evaluation of the Timer Reading

To input the initialization value and to evaluate the function result in BCD
code, you require the internal representation of the timer reading (see Figure
17-2).

Updating the time decreases the timer reading by 1 unit in 1 interval as
specified by the time base. The timer reading is decreased until it reaches
”0”. The possible range of time is from 0 to 9,990 seconds.

Figure 17-2 shows the internal representation of the timer reading.

Time base
1 second

Irrelevant: these bits are ignored when the timer is started.

Timer reading in BCD format (0 to 999)

15... ...8 7... ...0

1 2 7

x x 1 0 0 0 0 1 0 0 1 0 0 1 1 1

Figure 17-2 Format of Timer Reading

You can load a predefined timer reading using the following formats:

� In composite time format: TIME#aH_bbM_ccS_dddMS

� In simple format: TIME#2.4H

You can evaluate the result in two different formats:

� As a function result (type S5TIME): in BCD format

� As an output parameter (time without time base in data type WORD): in
binary code

Overview

Format

Input

Evaluation

Counters and Timers

17-15
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Bits 12 and 13 of the timer word contain the time base in binary code. The
time base defines the interval at which the time value is decreased by 1 unit
(see Table 17-9 and Figure 17-2). The shortest time base is 10 ms; the longest
is 10 s.

Table 17-9 Time Base and Binary Code

Time Base Binary Code for Time Base

10 ms 00

100 ms 01

1 s 10

10 s 11

Note

Since timer readings can only be saved in one time interval, values that do
not represent an exact multiple of the time interval are truncated.

Values with a resolution too high for the required range are rounded down so
that the required range is achieved but not the required resolution.

Time Base

Counters and Timers

17-16
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17.2.2 Pulse Timer

The maximum time for which the output signal remains set to ”1” is the same
as the programmed timer reading.

If, during the runtime of the timer, the signal status 0 appears at the input, the
timer is set to ”0”. This means a premature termination of the timer runtime.

Figure 17-3 shows how the ”pulse timer” function works:

I 2.1

Q 4.0

Input signal

Output signal
(pulse timer) t

S_PULSE

Figure 17-3 Pulse Timer

Table 17-10 Method of Operation of Pulse Timer

Function Explanation

Start time The ”pulse timer” operation starts the specified timer when the
signal status at the start input (S) changes from ”0” to ”1”. To
enable the timer, a signal change is always required.

Specify runtime The timer runs using the value at input TV until the programmed
time expires and the input S = 1.

Abort runtime If input S changes from ”1” to ”0” before the time has expired, the
timer is stopped.

Reset The time is reset if the reset input (R) changes from ”0” to ”1”
while the timer is running. With this change, both the timer reading
and the time base are reset to zero. The signal status ”1” at input R
has no effect if the timer is not running.

Query signal
status

As long as the timer is running, a signal status query following a
”1” at output Q produces the result ”1”. If the timer is aborted, a
signal status query at output Q produces the result ”0”.

Query current
timer reading

The current timer reading can be queried at output BI and using the
function value S_PULSE.

Description

Method of
Operation

Counters and Timers

17-17
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

17.2.3 Extended Pulse Timer

The output signal remains set to ”1” for the programmed time (t) regardless
of how long the input signal remains set to ”1”. Triggering the start pulse
again restarts the counter time so that the output pulse is extended
(retriggering).

Figure 17-4 shows how the ”extended pulse timer” function works:

I 2.1

S_PEXT

Input signal

t
Q 4.0Output signal

(extended pulse
timer)

Figure 17-4 Extended pulse timer

Table 17-11 Method of Operation of Extended Pulse Timer

Function Explanation

Start time The ”extended pulse timer” (S_PEXT) operation starts the
specified time when the signal status at the start input (S) changes
from ”0” to ”1”. To enable the timer, a signal change is always
required.

Restart the
counter time

If the signal status at input S changes to ”1” again while the timer
is running, the timer is restarted with the specified timer reading.

Initialize
runtime

The timer runs with the value at input TV until the programmed
time has expired.

Reset The time is reset if the reset input (R) changes from ”0” to ”1”
while the timer is running. With this change, both the timer reading
and the time base are reset to zero. The signal status ”1” at input R
has no effect if the timer is not running.

Query signal
status

As long as the timer is running, a signal status query following ”1”
at output Q produces the result ”1” regardless of the length of the
input signal.

Query current
timer reading

The current timer reading can be queried at output BI and using the
function value S_PEXT.

Description

Method of
Operation

Counters and Timers

17-18
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17.2.4 On-Delay Timer

The output signal only changes from ”0” to ”1” if the programmed time has
expired and the input signal is still ”1”. This means that the output is
activated following a delay. Input signals that remain active for a time that is
shorter than the programmed time do not appear at the output.

Figure 17-5 illustrates how the ”on-delay timer” function works.

I 2.1Input signal

S_ODT

t

Q 4.0

Output signal

(on-delay timer)

Figure 17-5 On-Delay Timer

Table 17-12 Method of Operation of On-Delay Timer

Function Explanation

Start time The ”on-delay timer” starts a specified time if the signal status at
the start input (S) changes from ”0” to ”1”. To enable the timer, a
signal change is always required.

Stop timer If the signal status at input S changes from ”1” to ”0” while the
timer is running, it is stopped.

Specify the
runtime

The timer continues to run with the value at input TV as long as
the signal status at input S = 1.

Reset The timer is reset if the reset input (R) changes from ”0” to ”1”
while the timer is still running. With this signal change, the timer
reading and the time base are reset to zero. The time is also reset if
R = 1 is set when the timer is not running.

Query signal
status

A signal status query following ”1” at output Q returns ”1” if the
time has expired without an error occurring and input S is still set
to ”1”.
If the timer is stopped, a signal status query following ”1” always
returns ”0”.
A signal status query after ”1” at output Q also returns ”0” if the
timer is not running and the RLO at input S is still ”1”.

Query current
timer reading

The current timer reading can be queried at output BI and using the
function value S_ODT.

Description

Method of
Operation

Counters and Timers

17-19
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

17.2.5 Retentive On-Delay Timer

The output signal only changes from ”0” to ”1” if the programmed time has
expired regardless of how long the input signal remains set to ”1”.

Figure 17-6 shows how the ”retentive on-delay timer” function works.

I 2.1Input signal

S_ODTS
t

Q4.0
Output signal
(retentive on-delay timer)

Figure 17-6 Retentive On-Delay Timer

Table 17-13 Method of Operation of Retentive On-Delay Timer

Function Explanation

Start time The ”stored on-delay timer” function starts a specified timer if the
signal status at the start input (S) changes from ”0” to ”1”. To
enable the timer, a signal change is always required.

Restart
timer

The timer is restarted with the specified value if input S changes
from ”0” to ”1” while the timer is running.

Specify runtime The timer continues to run with the value at input TV even if the
signal status at input S changes to ”0” before the time has expired.

Reset If the reset input (R) changes from ”0” to ”1”, the timer is reset
regardless of the RLO at input S.

Query signal
status

A signal status query following ”1” at output Q returns the result
”1” after the time has expired regardless of the signal status at
input S.

Query current
timer reading

The current timer reading can be queried at output BI and using
the function value S_ODTS.

Description

Method of
Operation

Counters and Timers

17-20
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17.2.6 Off-Delay Timer

With a signal status change from ”0” to ”1” at start input S, output Q is set to
”1”. If the start input changes from ”1” to ”0”, the timer is started. The
output only returns to signal status ”0” after the time has expired. The output
is therefore deactivated following a delay.

Figure 17-7 shows how the ”off-delay timer” function works.

I 2.1Input signal

S_OFFDT
t

Q 4.0
Output signal
(Off-delay timer)

Figure 17-7 Off-Delay Timer

Table 17-14 Method of Operation of Off-Delay Timer

Function Explanation

Start time The ”off-delay timer” operation starts the specified timer if the
signal status at the start input (S) changes from ”1” to ”0”. A signal
change is always required to enable the timer.

Restart
timer

The timer is restarted if the signal status at input S changes from
”1” to ”0” again (for example following a reset).

Specify runtime The timer runs with the value specified at input TV.

Reset If the reset input (R) changes from ”0” to ”1” while the timer is
running, the timer is reset.

Query signal
status

A signal status query following ”1” at output Q produces ”1” if the
signal status at input S = 1 or the timer is running.

Query current
timer reading

The current timer reading can be queried at output BI and using the
function value S_OFFDT.

Description

Method of
Operation

Counters and Timers

17-21
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

17.2.7 Example of Program Using Extended Pulse Timer Function

Example 17-6 below illustrates a program using the extended pulse timer
function.

FUNCTION_BLOCK TIMER

VAR_INPUT

 MYTIME: TIMER;

END_VAR

VAR_OUTPUT

 RESULT: S5TIME;

END_VAR

VAR

 SET : BOOL;

 RESET : BOOL;

 BCD_VALUE : S5TIME;//time base and time
 //remaining
 //BCD coded

 BIN_VALUE WORD; //timer reading
binary

 INITIALIZATION : S5TIME;

END_VAR

BEGIN

 Q0.0:= 1;

 SET:= I0.0;

 RESET:= I0.1;

 INITIALIZATION:= T#25S;

 BCD_VALUE:= S_PEXT(T_NO:= MYTIME,

S := SET,

TV := INITIALIZATION,

R := RESET,

BI := BIN_VALUE,

Q := Q0.7);

RESULT:=BCD_VALUE; //Further processing

 //as output parameter

QW4:= BIN_VALUE //To output for display

END_FUNCTION_BLOCK

;

Example 17-6 Timer Function

Example of
S_PEXT

Counters and Timers

17-22
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17.2.8 Selecting the Right Timer Function

Figure 17-8 summarizes the five different timer functions described in this
chapter. This summary is intended to assist you in selecting the timer
function best suited to your particular purpose.

The output signal only switches from ”0” to ”1” if the input signal
changes from ”1” to ”0”. The output signal remains on ”1” for
the duration of the programmed period. The timer is started
when the input signal switches from ”0” to ”1”.

I 2.1

Q 4.0

S_PEXT

S_ODT

S_ODTS

S_OFFDT

Input signal

Output signal
(Pulse timer) t

S_PULSE

t

t

t

t

The maximum time for which the output signal remains ”1” is
equal to the programmed time t. The output signal remains on
”1” for a shorter period if the input signal switches to ”0”.

The output signal remains on ”1” for the duration of the
programmed time regardless of how long the input signal
remains on ”1”. The pulse is restarted if the start signal is
triggered again within ”t”.

The output signal only switches from ”0” to ”1” if the
programmed time has expired and the input signal is still ”1”.

The output signal only switches from ”0” to ”1” if the
programmed time has expired regardless of how long the
input signal remains on ”1”.

Q 4.0Output signal
(Extended
pulse timer)

Q 4.0Output signal
(On delay timer)

Q 4.0Output signal
(Retentive
on-delay timer)

Q 4.0Output signal
(Off-delay timer)

Figure 17-8 Selecting the Right Timer Function

Counters and Timers

18-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

SCL Standard Functions

SCL provides a series of standard functions for performing common tasks
which can be called by the SCL blocks you program.

Section Description Page

18.1 Converting Data Types 18-2

18.2 Standard Functions for Data Type Conversions 18-3

18.3 Numeric Standard Functions 18-9

18.4 Bit String Standard Functions 18-11

Introduction

Chapter
Overview

18

18-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

18.1 Converting Data Types

When you link two addresses of differing data types or assign expressions to
variables, you must check the mutual compatibility of the data types involved
in each case. The following cases would produce incorrect results:

� a change to a different type class, for example, from a bit data type to a
numeric data type;

� a change within a type class if the destination data type is of a lower order
than the source data type.

Therefore, in such cases you must perform an explicit data type conversion.
The necessary details are given in Section 18.2.

If neither of the above cases applies, the compiler forces automatic
conversion to a common format. This type of conversion is referred to from
now on as implicit data type conversion.

Within the classes of auxiliary data type listed in Table 18-1, the compiler
performs implicit data type conversions in the order indicated. The common
format of two addresses is taken to be the lowest common standard type
whose value range covers both addresses. Thus, the common format of Byte
and Integer is Integer.

Please note also that in the case of data type conversion within the class
ANY_BIT, leading bits are set to 0.

Table 18-1 Order of Implicit Data Type Conversions

Class Conversion Order

ANY_BIT BOOL ⇒ BYTE ⇒ WORD ⇒ DWORD

ANY_NUM INT ⇒ DINT ⇒ REAL

Example 18-1 illustrates implicit conversion of data types.

FUNCTION_BLOCK FB10

VAR
PID_CONTROLLER_1:BYTE;
PID_CONTROLLER_2:WORD;

END_VAR

BEGIN

IF (PID_CONTROLLER_1 <> PID_CONTROLLER_2) THEN...

(* In the condition for the above IF/THEN
instruction, PID_ CONTROLLER_1 is implicitly
converted to a variable of data type WORD *)

END_FUNCTION_BLOCK

Example 18-1 Implicit Data Type Conversion

Overview

Implicit Data Type
Conversions

SCL Standard Functions

18-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

18.2 Standard Functions for Data Type Conversions

Explicit data type conversions are performed by means of standard functions.
These standard functions are listed in Tables 18-2 and 18-3.

For a detailed description of the function call, refer to Chapter 16.

� Input parameter:

Each function for converting a data type has one input parameter only. This
parameter has the name IN . Since this is a function with only one parameter,
you only need to specify the actual parameter.

� Function value

The result is always the function value. The two tables detail the rules
according to which the data is converted. Table 18-3 also indicates whether
or not the function affects the OK flag.

� Names of the functions

Since the data types of the input parameter and the function value are derived
from the function name in each case, they are not separately itemized in
Tables 18-2 and 18-3. For example, for the function BOOL_TO_BYTE, the
data type of the input parameter is BOOL and the data type of the function
value BYTE.

Table 18-2 shows the data type conversion functions of Class A. These
functions are performed implicitly by the compiler or you can specify them
explicitly. The result is always defined.

Table 18-2 Data Type Conversion Functions, Class A

Function Name Conversion Rule

BOOL_TO_BYTE Adds leading zeros

BOOL_TO_DWORD

BOOL_TO_WORD

BYTE_TO_DWORD

BYTE_TO_WORD

CHAR_TO_STRING Transformation to a string (of length 1) containing the same
character.

DINT_TO_REAL Transformation to REAL according to the IEEE standard.
The value may change (due to the different resolution of
REAL).

INT_TO_DINT The higher-order word of the function value is padded with
16#FFFF for a negative input parameter, otherwise it is
padded with zeros. The value remains the same.

INT_TO_REAL Transformation to REAL according to the IEEE standard.
The value remains the same.

WORD_TO_DWORD Adds leading zeros

Explicit Data Type
Conversion

Function Call

List of Conversion
Functions
(Class A)

SCL Standard Functions

18-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Table 18-3 shows the data type conversion functions of Class B. These
functions must be specified explicitly. The result can also be undefined if the
size of the destination type is insufficient.

You can check for this situation yourself by including a limit check or you
can have the system make the check by selecting the ”OK flag” option prior
to compilation. In situations where the result is undefined, the system then
sets the OK variable to FALSE. Evaluation must be done by yourself.

Table 18-3 Data Type Conversion Functions, Class B

Function name Conversion Rule OK

BYTE_TO_BOOL Copies the least significant bit Y

BYTE_TO_CHAR Copies the bit string N

CHAR_TO_BYTE Copies the bit string N

CHAR_TO_INT The bit string in the input parameter is entered
in the lower-order byte of the function value.

The higher-order byte is padded with zeros.

N

DATE_TO_DINT Copies the bit string N

DINT_TO_DATE Copies the bit string Y

DINT_TO_DWORD Copies the bit string N

DINT_TO_INT Copies the bit for the sign.

The value in the input parameter is interpreted
in the data type INT .

If the value is less than –32_768 or greater
than 32_767 , the OK variable is set to FALSE.

DINT_TO_TIME Copies the bit string N

DINT_TO_TOD Copies the bit string Y

DWORD_TO_BOOL Copies the least significant bit Y

DWORD_TO_BYTE Copies the 8 least significant bits Y

DWORD_TO_DINT Copies the bit string N

DWORD_TO_REAL Copies the bit string N

DWORD_TO_WORD Copies the 16 least significant bits Y

INT_TO_CHAR Copies the bit string Y

INT_TO_WORD Copies the bit string N

REAL_TO_DINT Rounds the IEEE REAL value to DINT.

If the value is less than –2_147_483_648 or
greater than 2_147_483_647 , the OK
variable is set to FALSE.

Y

REAL_TO_DWORD Copies the bit string N

REAL_TO_INT Rounds the IEEE REAL value to INT .

If the value is less than –32_768 or greater
than 32_767 , the OK variable is set to FALSE.

Y

List of Conversion
Functions
(Class B)

SCL Standard Functions

18-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table 18-3 Data Type Conversion Functions, Class B

Function name OKConversion Rule

STRING_TO_CHAR Copies the first character of the string.

If the STRING does not have a length of 1, the
OK variable is set to FALSE.

Y

TIME_TO_DINT Copies the bit string N

TOD_TO_DINT Copies the bit string N

WORD_TO_BOOL Copies the least significant bit Y

WORD_TO_BYTE Copies the least significant 8 bits Y

WORD_TO_INT Copies the bit string N

WORD_TO_BLOCK_DB The bit pattern of WORD is interpreted as the
data block number

N

BLOCK_DB_TO_WORD The data block number is interpreted as the bit
pattern of WORD

N

Note

You also have the option of using IEC functions for data type conversion. In
this case, you should copy the desired function from the STEP 7 library
STDLIBS\IEC to your program directory. For details of individual IEC
functions, refer to /235/.

In Example 18-2 below, an explicit conversion is necessary since the
destination data type is of a lower order than the source data type.

FUNCTION_BLOCK FB10

VAR

SWITCH : INT;

CONTROLLER : DINT;

END_VAR

BEGIN

SWITCH := DINT_TO_INT (CONTROLLER);

(* INT is of a lower order than DINT *)

//...

END_FUNCTION_BLOCK

Example 18-2 Target Data Type does not Match Source Data Type

Examples of
Explicit
Conversions

SCL Standard Functions

18-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

In Example 18-3, an explicit data type conversion is necessary, since the data
type REAL is not permissible for a mathematical expression with the MOD
operator.

FUNCTION_BLOCK FB20

 VAR

intval:INT:=17;

CONV2 := INT;

 END_VAR

BEGIN

 CONV2 := intval MOD REAL_TO_INT (2.3);

 (* MOD may only be used for data of the types
 INT or DINT. *)

//...

END_FUNCTION_BLOCK

Example 18-3 Conversion due to Non-Permissible Data Type

In Example 18-4, conversion is necessary because the data type is incorrect
for a logical operator. The NOT operator should only be used for data of the
types BOOL, BYTE, WORD or DWORD.

FUNCTION_BLOCK FB30

 VAR

intval:INT:=17;

CONV1 :=WORD;

 END_VAR

BEGIN

 CONV1 := NOT INT_TO_WORD(intval);

 (* NOT may only be used for data

 of the type INT. *)

//...

END_FUNCTION_BLOCK

Example 18-4 Conversion due to Incorrect Data Type

SCL Standard Functions

18-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Example 18-5 illustrates data type conversion in the case of peripheral
inputs/outputs.

FUNCTION_BLOCK FB40

 VAR

radius_on : WORD;
radius : INT;

 END_VAR

BEGIN

 radius_on := IB0;
 radius := WORD_TO_INT(radius_on);

(* Conversion due to change to different type
class. Value comes from input and is converted for
subsequent processing. *)

 radius := Radius(area:= circledata.area);

 QB0 := WORD_TO_BYTE(INT_TO_WORD(radius));

(* Radius is recalculated from the area and is
present in integer format. For output purposes,
the value is first converted to a different type
class (INT_TO_WORD) and then to a lower-order type
(WORD_TO_BYTE). *)

//...

END_FUNCTION_BLOCK

Example 18-5 Conversion of Inputs and Outputs

SCL Standard Functions

18-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The functions for rounding and truncating numbers are also classed as data
type conversion functions. Table 18-4 shows the names, data types (for the
input parameters and the function value) and purposes of these functions:

Table 18-4 Functions for Rounding and Truncating

Function
Name

Data Type of
Input Parameter

Data Type of
Function Value

Purpose

ROUND REAL DINT Rounds
(forms a DINT number)

TRUNC REAL DINT Truncates
(forms a DINT number)

The differences in the way the various functions work are illustrated by the
following examples:

� ROUND (3.14) // Rounding down,
// Result: 3

� ROUND (3.56) // Rounding up,
// Result: 4

� TRUNC (3.14) // Truncating,
// Result: 3

� TRUNC (3.56) // Truncating,
// Result: 3

Functions for
Rounding and
Truncating

SCL Standard Functions

18-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

18.3 Numeric Standard Functions

Each numeric standard function has one input parameter. The result is always
the function value. Each of the Tables 18-5, 18-6 and 18-7 details a group of
numeric standard functions together with their function names and data
types. The data type ANY_NUM stands for INT, DINT or REAL.

General functions are for calculating the absolute amount, the square or the
square root of an amount.

Table 18-5 General Functions

Function Name Data Type of Input
Parameter

Data Type of
Function Value

Description

ABS ANY_NUM1 ANY_NUM Number

SQR ANY_NUM1 REAL Square

SQRT ANY_NUM1 REAL Square root

1 Note that input parameters of the type ANY_NUM are converted internally into real variables.

Logarithmic functions are for calculating an exponential value or the
logarithm of a number.

Table 18-6 Logarithmic Functions

Function Name Data Type of Input
Parameter

Data Type of
Function Value

Description

EXP ANY_NUM1 REAL e to the power IN

EXPD ANY_NUM1 REAL 10 to the power
IN

LN ANY_NUM1 REAL Natural logarithm

LOG ANY_NUM1 REAL Common
logarithm

1 Note that input parameters of the type ANY_NUM are converted internally into real variables.

Note

You also have the option of using IEC functions as numeric standard
functions. In that case, you should copy the desired function from the
STEP 7 library STDLIBS\IEC to your program directory. For details of the
individual IEC functions, refer to /235/.

Function

List of General
Functions

List of Logarithmic
Functions

SCL Standard Functions

18-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The trigonometrical functions listed in Table 18-7 expect and calculate
angles in radians.

Table 18-7 Trigonometrical Functions

Function Name Data Type of Input
Parameter

Data Type of
Function Value

Description

ACOS ANY_NUM1 REAL Arc cosine

ASIN ANY_NUM1 REAL Arc sine

ATAN ANY_NUM1 REAL Arc tangent

COS ANY_NUM1 REAL Cosine

SIN ANY_NUM1 REAL Sine

TAN ANY_NUM1 REAL Tangent

1 Note that input parameters of the type ANY_NUM are converted internally into real variables.

Table 18-8 shows possible function calls for standard functions and their
various results:

Table 18-8 Calling Numeric Standard Functions

Function Call Result

RESULT := ABS (-5); 5

RESULT := SQRT (81.0); 9

RESULT := SQR (23); 529

RESULT := EXP (4.1); 60.340 ...

RESULT := EXPD (3); 1_000

RESULT := LN (2.718_281); 1

RESULT := LOG (245); 2.389_166 ...

PI := 3. 141 592;

RESULT := SIN (PI / 6);

0.5

RESULT := ACOS (0.5); 1.047_197

(=PI / 3)

List of
Trigonometrical
Functions

Examples

SCL Standard Functions

18-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

18.4 Bit String Standard Functions

Each bit string standard function has two input parameters identified by IN
and N. The result is always the function value. Table 18-9 lists the function
names and data types of the two input parameters in each case as well as the
data type of the function value. Explanation of input parameters:

� Input parameter IN: buffer in which bit string operations are performed.

� Input parameter N: number of cycles of the cyclic buffer functions ROL
and ROR or the number of places to be shifted in the case of SHL and
SHR.

Table 18-9 shows the possible bit string standard functions.

Table 18-9 Bit String Standard Functions

Function
Name

Data Type of
Input

Parameter
IN

Data Type of
Input

Parameter
 N

Data Type of
Function

Value

Purpose

ROL BOOL INT BOOL The value in the
parameter IN is

BYTE INT BYTE
parameter IN is
rotated left by the
number of bit places

WORD INT WORD
number of bit places
specified by the
content of parameter

DWORD INT DWORD
content of parameter
N.

ROR BOOl INT BOOL The value in the
parameter IN is

BYTE INT BYTE
parameter IN is
rotated right by the
number of bit places

WORD INT WORD
number of bit places
specified by the
content of parameter

DWORD INT DWORD
content of parameter
N.

SHL BOOL INT BOOL The value in the
parameter IN is
hift d lBYTE INT BYTE shifted as many places

left and as many bit
places on the

WORD INT WORD
places on the
right-hand side
replaced by 0 as are

ifi d b hDWORD INT DWORD

p y
specified by the
parameter N.

SHR BOOL INT BOOL The value in the
parameter IN is

BYTE INT BYTE
p
shifted as many places
right and as many bit
l h l f h dWORD INT WORD places on the left-hand

side replaced by 0 as
are specified by theDWORD INT DWORD are specified by the
parameter N.

Function

List of Functions

SCL Standard Functions

18-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Note

You also have the option of using IEC functions for bit string operations. In
that case you should copy the desired function from the STEP 7 library
STDLIBS\IEC to your program directory. For details of individual IEC
functions, refer to /235/.

Table 18-10 shows possible function calls for bit string standard functions
and the results in each case.

Table 18-10 Calling Bit String Standard Functions

Function Call RESULT

RESULT := ROL

(IN:=2#1101_0011, N:=5);

// IN := 211 decimal

2#0111_1010

(= 122 decimal)

RESULT := ROR

(IN:=2#1101_0011, N:=2);

// IN := 211 decimal

2#1111_0100

(= 244 decimal)

RESULT := SHL

(IN:=2#1101_0011, N:=3);

// IN := 211 decimal

2#1001_1000

(= 152 decimal)

RESULT := SHR

(IN:=2#1101_0011, N:=2);

// IN := 211 decimal

2#0011_0100

(= 52 decimal)

Examples

SCL Standard Functions

19-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Function Call Interface

S7 CPUs contain system and standard functions integrated in the operating
system which you can make use of when programming in SCL. Specifically,
those functions are the following:

� Organization blocks (OBs)

� System functions (SFCs)

� System function blocks (SFBs)

Section Description Page

19.1 Function Call Interface 19-2

19.2 Data Transfer Interface with OBs 19-4

Introduction

Chapter
Overview

19

19-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

19.1 Function Call Interface

You can call blocks in symbolic or absolute terms. To do so, you require
either the symbolic name, which must have been declared in the symbol
table, or the number of the absolute identifier of the block.

In the function call, you must assign the formal parameters, whose names
and data types have been specified when the configurable block was created,
actual parameters with which the block works when the program is running.

All the information you require is given in /235/. This manual provides a
general outline of the basic functions in S7 and, as reference information,
detailed interface descriptions for use in your programs.

The following command lines enable you to call the system function SFC 31
(query time of day interrupt):

FUNCTION_BLOCK FB20

 VAR

Result:INT;

 END_VAR

BEGIN

 //...

 Result:= SFC 31 (OB_NR:= 10,STATUS:= MW100);

 //...

 //...

END_FUNCTION_BLOCK

Example 19-1 Querying the Time-Of-Day Interrupt

Results
The data type of the function value is Integer. If its value is > = 0 this
indicates that the block has been processed without errors. If the value is < 0,
an error has occurred. After calling the function, you can check the implicitly
defined output parameter ENO.

For a conditional function call, you must set the predefined input parameter
EN to 0 (foe example, via input I0.3). The block is then not called. If EN is
set to 1, the function is called. The output parameter ENO is also set to ”1”
in this case (otherwise ”0”) if no error occurs during processing of the block.

Overview

Example of SFC 31

Conditional
Function Call

Function Call Interface

19-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Note

In the case of function blocks or system function blocks, the information that
can be passed over by means of the function value in the case of a function
must be stored in output parameters. These are then subsequently read via
the instance data block. For more detailed information, refer to Chapter 16.

Function Call Interface

19-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

19.2 Data Transfer Interface with OBs

Organization blocks form the interface between the CPU operating system
and the application program. OBs can be used to execute specific program
sections in the following situations:

� when the CPU is powered up

� as cyclic or timed operations

� at specific times or on specific days

� on expiry of a specified time period

� if errors occur

� if process or communications interrupts are triggered

Organization blocks are processed according to the priority they are assigned.

Not all CPUs can process all OBs provided by S7. Refer to the data sheets for
your CPU to find out which OBs you can use.

Additional information can be obtained from the on-line help and the
following manuals:

� /70/ Manual: S7-300 Programmable Controller, Hardware and
Installation
This manual contains the data sheets which describe the performance
specifications of the various S7-300 CPUs. This also includes the possible
start events for each OB.

� /100/ Manual: S7-400/M7-400 Programmable Controllers, Hardware and
Installation
This manual contains the data sheets which describe the performance
specifications of the various S7-400 CPUs. This also includes the possible
start events for each OB.

Organization
Blocks

Available OBs

Additional
Information

Function Call Interface

Formal Description of
Language A

Lexical Rules B

Syntax Rules C

References D

Appendix

S-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

A-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Formal Description of Language

The basic tool for the description of the language in the various chapters of
this manual is the syntax diagram. It provides a clear insight into the syntax
(that is, grammatical structure) of SCL. The complete set of syntax diagrams
and language elements is presented in Appendices B and C.

Section Description Page

A.1 Overview A-2

A.2 Overview of Terms A-5

A.3 Terms for Lexical Rules A-6

A.4 Formatting Characters, Delimiters and Operators A-7

A.5 Keywords and Predefined Identifiers A-9

A.6 Address Identifiers and Block Keywords A-12

A.7 Overview of Non Terms A-14

A.8 Overview of Tokens A-14

A.9 Identifiers A-15

A.10 SCL Naming Conventions A-16

A.11 Predefined Constants and Flags A-18

Introduction

Chapter
Overview

A

A-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

A.1 Overview

The syntax diagram is a graphical representation of the structure of the
language. That structure is defined by a series of rules. One rule may be
based on others at a more fundamental level.

Block 1 Block 2 Block 4

Block 3

Block 5

Name of Rule

Iteration
Alternative

Sequence

Option

Figure A-1 Example of a Syntax Diagram

The syntax diagram is read from left to right and should conform to the
following rule structures:

� Sequence: a sequence of blocks

� Option: a skippable branch

� Iteration: repetition of branches

� Alternative: a split into multiple branches

A block is a basic element or an element made up of other blocks. The
diagram below shows the symbols that represent the various types of block.

Complex element described by
additional syntax diagrams.

Basic element that requires no further
explanation

This refers to printing characters and
special characters, keywords and
predefined identifiers. The information
in these blocks must be copied as it is
shown.

Term Non Term

Complex element used as a basic
element in the syntax rules and
explained in the lexical rules.

Token

<Rule name>

Rule name may use upper
or lower case letters

<Rule name>

Rule name must always be in
upper case letters!

Figure A-2 Types of Symbols for Blocks

What is a Syntax
Diagram?

What Types of
Blocks Are There?

Formal Description of Language

A-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

The rules which you apply to the structure of your SCL program are
subdivided into the categories lexical and syntax rules.

The lexical rules describe the structure of the elements (tokens) processed
during the lexical analysis performed by the Compiler. For this reason lexical
rules are not free-format; that is, they must be strictly observed. In particular,
this means that

� insertion of formatting characters is not permitted,

� insertion of remarks blocks and lines is not permitted,

� insertion of attributes for identifiers is not permitted.

Underscore

_ _

Number

Letter

Number

Letter Letter

IDENTIFIER

Underscore

Figure A-3 Example of a Lexical Rule

The above example shows the lexical rule for IDENTIFIER. It defines the
structure of an identifier (name), for example:

MEAS_ARRAY_12
SETPOINT_B_1

The syntax rules are built up from the lexical rules and define the structure of
SCL. Within the limitations of those rules the structure of the your SCL
program is free-format.

free-format

not free formal

Syntax
Rules

SCL Program

Lexical Rules

Figure A-4 Rule Categories and Format Restrictions

Rules

Lexical Rules

Syntax Rules

Formal Description of Language

A-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Each rule has a name which precedes the definition. If that rule is used in a
higher-level rule, that name appears in the higher-level rule as a non term. If
the rule name is written in upper case, it is a token that is described in the
lexical rules.

The rules can only represent the formal structure of the language. The
meaning; that is, the semantics, is not always obvious from the rules. For this
reason, where it is important, additional information is written next to the
rule. The following are examples of such situations:

� Where there are elements of the same type with different meanings, an
additional name is specified, for example, in the Date Specification rule
the explanatory names Year, Month or Day are added to the element
DECIMAL_DIGIT_STRING.

� Where there are important limitations, these are noted alongside the rule,
for example, in the case of Symbol, the fact that it has to be defined in the
symbol editor.

Formal
Considerations

Semantics

Formal Description of Language

A-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

A.2 Overview of Terms

A term is a basic element that can not be explained by another rule but is
represented verbally. In a syntax diagram, it is represented by the following
symbol:

A term is represented by an oblong with rounded
corners or a circle. The item is shown in literal
terms or as a name (in upper case letters).

This defines the range of ASCII characters that
can be used.

Figure A-5 Symbols for Terms

In Sections A.3 to A.4 the types of use for different characters are explained.
The various types of character are as follows:

� letters, numbers, printing characters and special characters,

� formatting characters and delimiters in the lexical rules,

� prefixes for literals

� formatting characters and delimiters in the syntax rules

� operators

Sections A.5 and A.6 deal with keywords and predefined identifiers made up
of character strings. The tables are arranged in alphabetical order. In the
event of differences between SIMATIC and IEC mnemonics, the
corresponding IEC mnemonic is shown as well.

� Keywords and predefined identifiers

� Address identifiers and block keywords

Definition

Summary

Formal Description of Language

A-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

A.3 Lexical Rule Terms

The tables below define the terms on the basis of a range of characters from
the ASCII character set.

Letters and numbers are the characters most commonly used. An
IDENTIFIER (see Section A.1), for example, can be made up of a
combination of letters, numbers and the underscore character.

Table A-1 Letters and Numbers

Character Subgroup Character Set Range

Letter Upper case letters A.. Z

Lower case letters a.. z

Number Decimal numbers 0.. 9

Octal number Octal numbers 0.. 7

Hexadecimal number Hexadecimal numbers 0.. 9, A.. F, a.. f

Bit Binary numbers 0, 1

The complete extended ASCII character set can be used in strings, comments
and symbols.

Table A-2 Printing Characters and Special Characters

Character Subgroup Character Set Range

Printing character Depends on the chracter code
used. In the case of ASCII
code, for example, upwards of
decimal equivalent 31
excluding DEL and the
following substitute characters:

All printing characters

Substitute characters Dollar sign $

Apostrophe ’

Control characters $P or $p Page break
(form feed, page feed)

$L or $l Line break
(line feed)

$R or $r Carriage return

$T or $t Tabulator

Substitute representation in
hexadecimal code

$hh Any characters
capable of representation in
hexadecimal code (hh)

Summary

Letters and
Numbers

Printing
Characters and
Special Characters

Formal Description of Language

A-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

A.4 Formatting Characters, Delimiters and Operators

Table A-3 below defines the use of individual characters in the ASCII
character set as formatting characters and delimiters within lexical rules (see
Appendix B).

Table A-3 Formatting Characters and Delimiters in Lexical Rules

Character Description

: Delimiter between hours, minutes and seconds

Attribute

. Delimiter for absolute addresses in real number or time period
representation

’ ’ Characters and character strings

” ” Introductory character for symbols according to symbol editor rules

_ Underscore Delimiter for numbers in literals and can be used in IDENTIFIERS

$ Alignment symbol for specifying control characters or substitute
characters

$> $< String break, in case the string does not fit in one row, or if the
comments are to be inserted.

Table A-4 defines the use of individual characters and character strings in
lexical rules. The table applies to SIMATIC and IEC versions.

Table A-4 Mnemonics for Literals in Alphabetical Order

Prefix Represents Lexical Rule

2# INTEGER LITERAL Binary digit string

8# INTEGER LITERAL Octal digit string

16# INTEGER LITERAL Hexadecimaldigit string

D# Time specification DATE

DATE# Time specification DATE

DATE_AND_TIME# Time specification DATE AND TIME

DT# Time specification DATE AND TIME

E Delimiter for REAL NUMBER LITERAL Exponent

e Delimiter for REAL NUMBER LITERAL Exponent

D Delimiter for time unit (day) Days (rule: complex format)

H Delimiter for time unit (hours) Hours: (rule: complex format)

M Delimiter for time unit (minutes) Minutes : (rule: complex format)

MS Delimiter for time unit (milliseconds) Milliseconds: (rule: complex format)

S Delimiter for time unit (seconds) Seconds: (rule: complex format)

T# Time specification TIME PERIOD

TIME# Time specification TIME PERIOD

TIME_OF_DAY# Time specification TIME OF DAY

TOD# Time specification TIME OF DAY

In Lexical Rules

For Literals

Formal Description of Language

A-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The table below defines the use of individual characters as formatting
characters and delimiters in the syntax rules and remarks and attributes (see
Appendices B.2 and B.3).

Table A-5 Formatting Characters and Delimiters in Syntax Rules

Character Description Syntax Rule, Remarks or Attribute

: Delimiter for type specification

in statement after jump label

Variable declaration, instance declaration,
function code section, CASE statement

; Terminates a declaration or statement Constant and variable declarations, code section,
DB assignment section, constant subsection,
jump label subsection, component declaration

, Delimiter for lists and jump label subsectionVariable declaration, array data type specification,
array initialization list, FB parameters, FC
parameters, value list, instance declaration

.. Range specification Array data type specification, value list

. Delimiter for FB and DB name, absolute
address

FB call, structure variables

() Function and function block calls bracketed
in expressions

Initialization list for arrays

Function call, FB call, expression,

array initialization list, simple multiplication,
exponential expression

[] Array declaration,

array structured variable section, indexing of
global variables and strings

Array data type specification, STRING data type
specification

(* *) Block comment see Appendix B

// Line comment see Appendix B

{ } Attribute field For specifying attributes

% Introduction for direct descriptor In order to program in agreement with IEC, you
can use %M4.0 instead of M4.0.

Table A-6 details all SCL operators, keywords, for example, AND, and the
usual operators as individual characters. The table applies for both SIMATIC
and IEC mnemonics.

Table A-6 SCL Operators

Operator Description Example, Syntax Rule

:= Assignment operator, initial assignment,
data type initialization

Value assignment, DB assignment section,
constant subsection, output and in/out
assignments, input assignment

+, - Mathematical operators: unary operators,
plus and minus signs

Expression, simple expression,
exponential expression

+, -, *, /

MOD; DIV

Basic mathematical operators Basic mathematical operator, simple
multiplication

** Mathematical operators, exponent
operator

Expression

NOT Logical operators; negation Expression

AND, &, OR; XOR, Basic logical operators Basic logical operator, expression

<,>,<=,>=,=,<> Comparator Comparator

In Syntax Rules

Operators

Formal Description of Language

A-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

A.5 Keywords and Predefined Identifiers

Table A-7 lists SCL keywords and predefined identifiers in alphabetical
order. Alongside each one is a description and the syntax rule as per
Appendix C in which they are used as a term. Keywords are generally
independent of the mnemonics.

Table A-7 SCL Keywords and Predefined Identifiers in Alphabetical Order

Keyword Description Syntax Rule

AND Logical operator Basic logical operator

ANY Identifier for data type ANY Parameter data type specification

ARRAY Introduces the specification of an array and is
followed by the index list enclosed in ”[” and
”]”.

Array data type specification

BEGIN Introduces code section in logic blocks or
initialization section in data blocks

Organization block, function,
function block, data block

BLOCK_DB Identifier for data type BLOCK_DB Parameter data type specification

BLOCK_FB Identifier for data type BLOCK_FB Parameter data type specification

BLOCK_FC Identifier for data type BLOCK_FC Parameter data type specification

BLOCK_SDB Identifier for data type BLOCK_SDB Parameter data type specification

BOOL Elementary data type for binary data Bit data type

BY Introduces increment specification FOR statement

BYTE Elementary data type Bit data type

CASE Introduces control statement for selection CASE statement

CHAR Elementary data type Character type

CONST Introduces definition of constants constant subsection

CONTINUE Control statement for FOR, WHILE and
REPEAT loops

CONTINUE statement

COUNTER Data type for counters, useable in parameter
subsection only

Parameter data type specification

DATA_BLOCK Introduces a data block Data block

DATE Elementary data type for dates Time type

DATE_AND_TIME Composite data type for date and time see Table C-4

DINT Elementary data type for whole numbers
(integers), double resolution

Numeric data type

DIV Operator for division Basic mathematical operator, simple
multiplication

DO Introduces code section for FOR statement FOR statement, WHILE statement

DT Elementary data type for date and time see Table C-4

DWORD Elementary data type for double word Bit data type

ELSE Introduces instructions to be executed if
condition is not satisfied

IF statement

ELSIF Introduces alternative condition IF statement

EN Block clearance flag

Keywords and
Predefined
Identifiers

Formal Description of Language

A-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Table A-7 SCL Keywords and Predefined Identifiers in Alphabetical Order, continued

Keyword Syntax RuleDescription

ENO Block error flag

END_CASE Terminates CASE statement CASE statement

END_CONST Terminates definition of constants constant subsection

END_DATA_BLOCK Terminates data block Data block

END_FOR Terminates FOR statement FOR statement

END_FUNCTION Terminates function Function

END_FUNCTION_BL
OCK

Terminates function block Function block

END_IF Terminates IF statement IF statement

END_LABEL Terminates declaration of a jump label
subsection

Jump label subsection

END_TYPE Terminates UDT User-defined data type

END_ORGANIZATIO
N_BLOCK

Terminates organization block Organization block

END_REPEAT Terminates REPEAT statement REPEAT statement

END_STRUCT Terminates specification of a structure Structure data type specification

END_VAR Terminates declaration block Temporary variables subsection,
static variables ssubsection,
parameter subsection

END_WHILE Terminates WHILE statement WHILE statement

EXIT Executes immediate exit from loop EXIT

FALSE Predefined Boolean constant; logical condition
not satisfied, value equals 0

FOR Introduces control statement for loop
processing

FOR statement

FUNCTION Introduces function Function

FUNCTION_BLOCK Introduces function block Function block

GOTO Instruction for executing a jump to a jump labelProgram jump

IF Introduces control statement for selection IF statement

INT Elementary data type for whole numbers
(integers), single resolution

Numeric data type

LABEL Introduces declaration of a jump label
subsection

Jump label block

MOD Mathematical operator for division remainder
(modulus)

Basic mathematical operator, simple
multiplication

NIL Zero pointer

NOT Logical operator, one of the unary operators Expression, address

OF Introduces data type specification Array data type specification,
CASE statement

OK Flag that indicates whether the instructions in a
block have been processed without errors

OR Logical operator Basic logical operator

ORGANIZATION_
BLOCK

Introduces an organization block Organization block

Formal Description of Language

A-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table A-7 SCL Keywords and Predefined Identifiers in Alphabetical Order, continued

Keyword Syntax RuleDescription

POINTER Pointer data type, only allowed in parameter
declarations in parameter subsection, not
processed in SCL

See Chapter 10

REAL Elementary data type Numeric data type

REPEAT Introduces control statement for loop
processing

REPEAT statement

RETURN Control statement which executes return from
subroutine

RETURN statement

S5TIME Elementary data type for time specification,
special S5 format

Time type

STRING Data type for character string STRING data type specification

STRUCT Introduces specification of a structure and is
followed by a list of components

Structure data type specification

THEN Introduces resulting actions if condition is
satisfied

IF statement

TIME Elementary data type for time specification Time type

TIMER Data type of timer, useable only in parameter
subsection

Parameter data type specification

TIME_OF_DAY Elementary data type for time of day Time type

TO Introduces the terminal value FOR statement

TOD Elementary data type for time of day Time type

TRUE Predefined Boolean constant; logical condition
satisfied, value not equal to 0

TYPE Introduces UDT User-defined data type

UNTIL Introduces break condition for REPEAT
statement

REPEAT statement

VAR Introduces declaration subsection Static variables subsection

VAR_INPUT Introduces declaration subsection Parameter subsection

VAR_IN_OUT Introduces declaration subsection Parameter subsection

VAR_OUTPUT Introduces declaration subsection Parameter subsection

VAR_TEMP Introduces declaration subsection Temporary variables subsection

WHILE Introduces control statement for loop
processing

WHILE statement

WORD Elementary data type Word Bit data type

VOID No return value from a function call See Chapter 8

XOR Logical operator Logical operator

Formal Description of Language

A-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

A.6 Address Identifiers and Block Keywords

Table A-8 details the SIMATIC mnemonics of SCL address identifiers
arranged in alphabetical order along with a description of each.

� Address identifier specification:
Memory prefix (Q, I, M, PQ, PI) or data block (D)

� Data element size specification:
Size prefix (optional or B, D, W, X)

The mnemonics represent a combination of the address identifier (memory
prefix or D for data block) and the size prefix. Both are lexical rules. The
table is arranged in order of SIMATIC mnemonics and the corresponding IEC
mnemonics specified in the second column.

Table A-8 Address Identifiers for Global System Data

SIMATIC
Mnemonics

IEC
Mnemonics

Memory Prefix or Data Block Size Prefix

A Q Output (via process image) Bit

AB QB Output (via process image) Byte

AD QD Output (via process image) Double word

AW QW Output (via process image) Word

AX QX Output (via process image) Bit

D D Data block Bit

DB DB Data block Byte

DD DD Data block Double word

DW DW Data block Word

DX DX Data block Bit

E I Input (via process image) Bit

EB IB Input (via process image) Byte

ED ID Input (via process image) Double word

EW IW Input (via process image) Word

EX IX Input (via process image) Bit

M M Bit memory Bit

MB MB Bit memory Byte

MD MD Bit memory Double word

MW MW Bit memory Word

MX MX Bit memory Bit

PAB PQB Output (Direct to peripherals) Byte

PAD PQD Output (Direct to peripherals) Double word

PAW PQW Output (Direct to peripherals) Word

PEB PIB Input (Direct from peripherals) Byte

PED PID Input (Direct from peripherals) Double word

PEW PIW Input (Direct from peripherals) Word

Global System
Data

Formal Description of Language

A-13
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Used for absolute addressing of blocks. The table is arranged in order of
SIMATIC mnemonics and the corresponding IEC mnemonics given in the
second column.

Table A-9 Block Keywords Plus Counters and Timers

SIMATIC
Mnemonics

IEC
Mnemonics

Memory Prefix or Data Block

DB DB Data block

FB FB Function block

FC FC Function

OB OB Organization block

SDB SDB System data block

SFC SFC System function

SFB SFB System function block

T T Timer

UDT UDT User-defined data type

Z C Counter

Block Keywords

Formal Description of Language

A-14
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

A.7 Overview of Non Terms

A non term is a complex element that is described by another rule. A non
term is represented by an oblong box. The name in the box is the name of the
more specific rule.

Non term

<Rule name>

Rule name may be in
upper or lower case!

Figure A-6 Non Term

This element occurs in lexical and syntax rules.

A.8 Overview of Tokens

A token is a complex element used as a basic element in syntax rules and
explained in the lexical rules. A token is represented by an oblong box. The
NAME, written in upper case letters, is the name of the explanatory lexical
rule (not shown inside a box).

Token

<Rule name>

Rule name must always be in
upper case letters!

Figure A-7 Token

The defined tokens represent identifiers calculated as the result of lexical
rules. Such tokens describe:

� Identifiers

� SCL names

� Predefined constants and flags

Definition

Definition

Summary

Formal Description of Language

A-15
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

A.9 Identifiers

Identifiers are used to address SCL language objects. Table A-10 below
details the classes of identifier.

Table A-10 Types of Identifier in SCL

Identifier Type Comments, Examples

Keywords For example, control statements BEGIN, DO,WHILE

Predefined names Names of
� standard data types (for example, BOOL, BYTE, INT)
� PREDEFINED STANDARD FUNCTIONS E.G ABS
� STANDARD CONSTANTS TRUE and FALSE

Absolute address
identifiers

For global system data and data blocks:
for example, I1.2, MW10, FC20, T5, DB30,
DB10.D4.5

User-defined names
based on the rule
IDENTIFIER

Names of
� declared variables
� structure components
� parameters
� declared constants
� jump labels

Symbol editor symbols Conform either to the lexical rule IDENTIFIER or the
lexical rule Symbol, that is, enclosed in inverted commas,
for example, ”xyz”

In the case of the keywords, use of upper and lower case is of no
consequence. From SCL version 4.0 and higher, predefined names and
user-defined names, for example, for variables, and symbols defined in the
symbol table are no longer case-sensitive. Table A-11 summarises the
requirements.

Table A-11 Significance of Use of Upper and Lower Case for Identifiers

Identifier Type Case-Sensitive?

Keywords No

Predefined names for standard data types No

Names of standard functions No

Predefined names for standard constants No

Absolute address identifiers No

User-defined names No

Symbols in the symbol tyble No

The names of standard functions, for example, BYTE_TO_WORD and ABS
can also be written in lower case. The same applies to the parameters for
timer and counter functions, for example, SE, se or CU, cu.

Identifiers in SCL

Use of Upper and
Lower Case

Formal Description of Language

A-16
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

A.10 Naming Conventions in SCL

There are generally two options when creating user-defined names:

� You can assign names within SCL itself. Such names must conform to the
rule IDENTIFIER (see Figure A-8). IDENTIFIER is the general term you
can use for any name in SCL.

� Alternatively, you can assign the name via STEP 7 using the symbol
table. The rule to be applied in this case is also IDENTIFIER or, as an
additional option, Symbol. By putting your entry in inverted commas, you
can write the symbol with all printable characters (for example, spaces).

” ”
Printable

character

 SYMBOL

Underscore

_ _

Number

Letter

Number

Letter Letter

IDENTIFIER

Underscore

Figure A-8 Lexical Rules IDENTIFIER and Symbol

Please observe the following rules:

� Choose names that are unambiguous and self-explanatory and which
enhance the comprehensibility of the program.

� Check that the name is not already in use by the system, for example as
an identifier for a data type or standard function.

� Limits of applicability: names that apply globally are valid throughout the
whole program, locally valid names on the other hand apply only within a
specific block. This enables you to use the same names in different
blocks. Table A-12 details the various options available.

User-Defined
Names

Naming
Conventions

Formal Description of Language

A-17
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

When assigning names, you must observe the following restrictions:

A name must be unique within the limits of its own applicability, that is,
names already used within a particular block can not be used again within the
same block. In addition, the following names reserved by the system may not
be used:

� Names of keywords: for example, CONST, END_CONST, BEGIN

� Names of operators: for example, AND, XOR

� Names of predefined identifiers: e.g. names of data types such as BOOL,
STRING, INT

� Names of the predefined constants TRUE and FALSE

� Names of standard functions: for example, ABS, ACOS, ASIN, COS,
LN

� Names of absolute address identifiers for global system data: for example,
IB, IW, ID, QB, QW, QD MB, MD

Table A-12 shows in which situations you can use names that conform to the
rule for IDENTIFIERS.

Table A-12 Occurrences of IDENTIFIER

IDENTIFIER Description Rule

Block name Symbolic name for block BLOCK IDENTIFIER,
Function call

Name of timer
or counter

Symbolic name for timer or
counter

TIMER IDENTIFIER,
COUNTER IDENTIFIER

Attribute name Name of an attribute Attribute assignment

Constant name Declaration/use of symbolic
constant

constant subsection
Constant

Jump label Declaration of jump label, use of
jump label

Jump labels subsection code
section GOTO statement

Variable name Declaration of temporary or static
variable

Variable declaration, simple
variable,
Structured variable

Local instance
name

Declaration of local instance Instance declaration, FB call
name

Naming
Restrictions

Use of
IDENTIFIERS

Formal Description of Language

A-18
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The rule BLOCK IDENTIFIER is a case in which you have the choice of using
either an IDENTIFIER or a symbol.

DB, FB, FC, OB, SDB, SFC, SFC, UDT

Keyword
Block

IDENTIFIER

Symbol

Number

BLOCK IDENTIFIER

Figure A-9 Lexical Rule BLOCK IDENTIFIER

The same applies to the rules TIMER IDENTIFIER and COUNTER
IDENTIFIER as with BLOCK IDENTIFIER.

A.11 Predefined Constants and Flags

The table applies for both SIMATIC and IEC mnemonics.

Table A-13 Predefined Constants

Mnemonic Description

FALSE Predefined Boolean constant (standard constant) with the value 0.
Its logical meaning is that a condition has not been satisfied.

TRUE Predefined Boolean constant (standard constant) with the value 1.
Its logical meaning is that a condition has been satisfied.

Table A-14 Flags

Mnemonic Description

EN Block clearance flag

ENO Block error flag

OK Flag is set to FALSE if the statement has been incorrectly
processed.

BLOCK
IDENTIFIERS

Predefined
Constants and
Flags

Formal Description of Language

B-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Lexical Rules

Section Description Page

B.1 Identifiers B-2

B.1.1 Literals B-4

B.1.2 Absolute addresses B-9

B.2 Comments B-11

B.3 Block Attributes B-12

The lexical rules describe the structure of the elements (tokens) processed
during lexical analysis performed by the Compiler. For this reason lexical
rules are not free-format; in other words, they must be strictly observed. In
particular, this means that:

� Insertion of formatting characters is not permitted.

� Insertion of comment blocks and lines is not permitted.

� Insertion of attributes for identifiers is not permitted.

The lexical rules are subdivided into the following categories:

� Identifiers

� Literals

� Absolute addresses

Chapter
Overview

Lexical rules

Categories

B

B-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

B.1 Identifiers

Table B-1 Identifiers

Rule Syntax Diagram

IDENTIFIER

Underscore

_ _

Number

Letter

Number

Letter Letter

Underscore

BLOCK IDENTIFIER

FB IDENTIFIER
FC IDENTIFIER

DB IDENTIFIER

The rule also applies to the following rule names:

OB IDENTIFIER UDT IDENTIFIER

DB, FB, FC, OB, UDT

Keyword
Block

IDENTIFIER

Symbol

Number

TIMER IDENTIFIER
Number

in SIMATIC
and IEC mnemonics

IDENTIFIER

Symbol

T

Lexical Rules

B-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table B-1 Identifiers, continued

Rule Syntax Diagram

COUNTER
IDENTIFIER NumberZ

in SIMATIC mnemonics
’C’ in IEC mnemonics

IDENTIFIER

Symbol

Block Keyword

Organization block

System function block

Data block

User-defined data typeUDT

DB

SFB

OB

FunctionFC

System functionSFC

Function block
FB

Symbol

” ”
Printing

character

Number

Number

Lexical Rules

B-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

B.1.1 Literals

Table B-2 Literals

Rule Syntax Diagram

INTEGER LITERAL

–

+

Octal digit string

Binary digit string

Hexadecimal digit string

DECIMAL
DIGIT STRING

Data types
INT and DINT only

1)

1)

REAL NUMBER

LITERAL

. Exponent

.

–

+

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL DIGIT
STRING

_

Underscore

Decimal number

Decimal number: 0 to 9

Binary Digit String

_

Underscore

Binary number2#

Binary number: 0 or 1

Octal Digit String

_

Underscore

Octal number8#

Octal number: 0 to 8

Lexical Rules

B-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table B-2 Literals, continued

Rule Syntax Diagram

Hexadecimal
Digit String

_

Underscore

Hexadecimal number16#

Hexadecimal number: 0-9
A-F

Exponent

e

E

–

+

DECIMAL
DIGIT STRING

CHARACTER

LITERAL ’ ’Character

STRING LITERAL

’ ’
Break
String

Character Character

Character

$ Alignment symbol $

Printing
character

$ or ’

P or L or R or T

Alternative representation in hexadecimal code

Hexadecimal
number

Hexadecimal
number

Substitute character

Control character

Lexical Rules

B-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Table B-2 Literals, continued

Rule Syntax Diagram

String Break

$<

Comments

Formatting
character

$>

Space (blank),
Line break (line feed),
Carriage return,
Page break (form feed, page feed) or
Horizontal tabulator

DATE
DATE#

Date specification

D#

Time Period
TIME#

T# Composite format

Decimal format

Decimal format

 Each time unit (for example, hours, minutes) may only be specified once
 The order days, hours, minutes, seconds, milliseconds must be adhered to.

Time of Day
TIME_OF_DAY#

TOD#

Time of day specification

Date and Time
DATE_AND_TIME#

DT#

Time of day specificationDate specification –

Lexical Rules

B-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table B-2 Literals, continued

Rule Syntax Diagram

Date Specification

– –

Year Month Day

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Time of Day
Specification : :

Hours specification Minutes specification

.

Milliseconds specificationSeconds specification

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Lexical Rules

B-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Table B-2 Literals, continued

Rule Syntax Diagram

Decimal Format

Use of decimal format is only possible in the case of previously undefined
time units.

. D

. H

. M

. S

. MS

Days

Hours

Minutes

Seconds

Milliseconds

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Complex Format

_D

Days

_H

Hours

_M

Minutes

_S

Seconds

Milliseconds

_MS

A value for at least one time unit must be specified!

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

DECIMAL
DIGIT STRING

Lexical Rules

B-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

B.1.2 Absolute Addresses

Table B-3 Absolute Addresses

Rule Syntax Diagram

SIMPLE

MEMORY ACCESS

ADDRESS

absolute access

symbolic access

IDENTIFIER

IDENTIFIER

Address

SYMBOL

INDEXED

MEMORY ACCESS

,Basic
expression

[]

Index

ADDRESS
IDENTIFIER

Basic
expression

in the case of bit access only

ADDRESS

IDENTIFIER

FOR MEMORY

Memory
prefix

Size
prefix

ABSOLUTE
DB ACCESS

Address���
�������	�����
���

Absolute access

INDEXED
DB ACCESS

,Basic
expression

[]

Index

Address
identifier DB

Basic
expression

in the case of bit access only

STRUCTURED DB
ACCESS

. Simple
variableDB Identifier

Lexical Rules

B-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Table B-3 Absolute Addresses, continued

Rule Syntax Diagram

Address

Identifier DB
. D Size

prefix
DB

IDENTIFIER

Address identifier

Memory Prefix Input

Output

Bit Memory

Peripheral Input

Peripheral Output

SIMATIC Mnemonic IEC Mnemonic

I

Q

M

PI

PQ

E

A

M

PE

PA

Size Prefix

for Memory and DB
Bit

Byte

Word

Double word

X

W

D

B

Address

for Memory and DB
.

in the case of bit address only

Number Number

Access to Local
Instance

. Simple
variable

Local instance name

IDENTIFIER

Lexical Rules

B-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

B.2 Remarks

The following are the most important points to be observed when inserting
remarks:

� Nesting of comments is not permitted

� They can be inserted at any point in the syntax rules but not in the lexical
rules.

Table B-4 Remarks

Rule Syntax Diagram

COMMENTS

Comment block

Comment line

COMMENT LINE
// CR

Printing
character

COMMENT BLOCK
(* *)Character

Points to Note

Lexical Rules

B-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

B.3 Block Attributes

Block attributes can be placed after the BLOCK IDENTIFIER and before the
declaration of the first variables or parameters subsection using the syntax
indicated.

Table B-5 Attributes

Rule Syntax Diagram

TITLE
TITLE = ’ ’

Printable
character

VERSION
: ’ ’VERSION .DECIMAL

DIGIT STRING
DECIMAL
DIGIT STRING

0 15 0 15

BLOCK
PROTECTION KNOW_HOW_PROTECT

AUTHOR

: IDENTIFIERAUTHOR

max. 8 characters

NAME

: IDENTIFIERNAME

max. 8 characters

BLOCK FAMILY
: ����
����	������

max. 8 characters

System attributes for
blocks

{ }’:=IDENTIFIER

max. 24 characters
Printable

characters
’

;

Points to Note

Lexical Rules

C-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Syntax Rules

The syntax rules develop from the lexical rules and describe the structure of
SCL. Within the framework of these rules, you can create your SCL program
without format restrictions.

Section Description Page

C.1 Subunits of SCL Source Files C-2

C.2 Structure of Declaration Sections C-4

C.3 Data Types in SCL C-8

C.4 Code Section C-11

C.5 Value Assignments C-13

C.6 Function and Function Block Calls C-16

C.7 Control Statements C-18

Each rule has a name which precedes it. If a rule is used in a higher-level
rule, its name appears in an oblong box.

If the name in the oblong box is written in upper case letters, this means it is
a token, which is described in the lexical rules.

In Appendix A you will find information about rule names which appear in a
box with rounded corners or a circle.

The free-format characteristic means the following:

� You can insert formatting characters at any point.

� You can insert comment blocks and lines (see Section 7.6).

Definition

Chapter
Overview

Formal
Considerations

Points to Note

C

C-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

C.1 Subunits of SCL Source Files

Table C-1 Syntax of SCL Source Files

Rule Syntax Diagram

SCL Program
SCL program unit

SCL Program Unit

Function block

Organization block

Data block

User-defined data type

Function

Organization Block

Code sectionBEGIN END_ORGANIZATION_BLOCK

OB
IDENTIFIER

OB declaration sectionORGANIZATION_BLOCK

Function

Note that in the case of
functions without VOID
in the code section the
return value must be
assigned to the function
name. Code sectionBEGIN END_FUNCTION

Data type
specification:

FC declaration
section

FUNCTION

VOID

FC
IDENTIFIER

Function Block

Code sectionBEGIN END_FUNCTION_BLOCK

FUNCTION_BLOCK FB declaration
section

FB
IDENTIFIER

Syntax Rules

C-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table C-1 Syntax of SCL Source Files, continued

Rule Syntax Diagram

Data Block

DB assignments sectionBEGIN END_DATA_BLOCK

DATA_BLOCK DB declaration sectionDB
IDENTIFIER

User-Defined
Data Type

END_TYPE
STRUCT
Data type

specification
TYPE UDT

IDENTIFIER

Syntax Rules

C-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

C.2 Structure of Declaration Sections

Table C-2 Syntax of Declaration Section

Rule Syntax Diagram

OB Declaration
Section

Each subsection may only
occur once in each

Temporary
variables subsection

Constants subsection

Jump labels subsection

declaration section

FC Declaration
Section

Interface

Each subsection may only
occur once in each
declaration section

Temporary
variables subsection

Jump labels subsection

Constants subsection

Parameters subsection

FB Declaration
Section

Temporary
variables subsection

Static
variables subsection

Each subsection may only
occur once in each
declaration section

Jump labels subsection

Constants subsection

InterfaceParameters subsection

DB Declaration
Section

UDT
IDENTIFIER

Structure data type
specification

Syntax Rules

C-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table C-3 Syntax of Declaration Subsections

Rule Syntax Diagram

DB Assignment
Section

:= Constant ;Simple Variable

Constant Subsection

CONST := Simple
expression ;

Constant name

IDENTIFIER END_CONST

Jump Label
Subsection

LABEL ; END_LABEL

,

Jump label

IDENTIFIER

Static Variable
Subsection

Variables
Declaration

Instance
declaration

VAR END_VAR

Variable Declaration

,

: ;

Variable name,

IDENTIFIER Data type
specification

Data type
initialization

Component name within structures

Parameter name,
or

Component
name

Not during initialization

1)

{ }’:=IDENTIFIER

max. 24 characters
Printable

character
’

;

1) System attributes for parameters

Syntax Rules

C-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Table C-3 Syntax of Declaration Subsections, continued

Rule Syntax Diagram

Data Type
Initialization

Array

Initialization
of simple data

:=

Constant

Initialization list

Array Initialization List

Constant

Array
initialization list

Repetition factor

,

Constant

Array
initialization list

DECIMAL DIGIT STRING)(

Instance Declaration

Local instance name

,

FBs must

: ;

already exist

IDENTIFIER

FB
IDENTIFIER

SFB
IDENTIFIER

Temporary Variable
Subsection

END_VARVariable
declarationVAR_TEMP

Initialization not possible

Syntax Rules

C-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table C-3 Syntax of Declaration Subsections, continued

Rule Syntax Diagram

Parameter
Subsection

VAR_OUTPUT Variable
declaration END_VAR

VAR_INPUT

VAR_IN_OUT

Initialization only possible for VAR_INPUT and VAR_OUTPUT

Data Type
Specification

specification
ARRAY data type

Elementary
data type

specification
STRUCT data type

UDT
IDENTIFIER

specification
Parameter data type

String data type
specification

DATE_AND_TIME

Syntax Rules

C-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

C.3 Data Types in SCL

Table C-4 Syntax of Data Types in Declaration Section

Rule Syntax Diagram

Elementary Data
Type

Character type

Bit data
type

Time type

Numeric
data type

Bit Data Type Bit

Byte

Word

Double word

WORD

DWORD

BOOL

BYTE

Character Type
CHAR

STRING Data Type
Specification

[]Simple
expressionSTRING

Max. string length
Default: 254

Numeric Data Type

DINT

REAL

INT Integer

Real number

Integer, double resolution

Syntax Rules

C-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table C-4 Syntax of Data Types in Declaration Section, continued

Rule Syntax Diagram

Time Type

Time

Time,
S5 format

TIME

S5TIME

Time of day

TIME_OF_DAY

TOD

DATE Date

see also Appendix B.1.1

DATE_AND_TIME DATE_AND_TIME#

DT#

Time of day specificationDate specification –

ARRAY Data Type
Specification

[..]

Data type
specificationOF

,

ARRAY Index Index

Index specification

1 n

Max. 5 repetitions = 6 dimensions!

STRUCT Data Type
Specification

Remember that the
keyword END_STRUCT
must be terminated by a
semicolon.

Component
declaration

END_STRUCTSTRUCT

Syntax Rules

C-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Table C-4 Syntax of Data Types in Declaration Section, continued

Rule Syntax Diagram

Component
Declaration

: ;IDENTIFIER Data type
specification

Data
initialization

Component
name

Parameter Data Type
Specification

Counter

Timer

Any type

Function block

Function

Data block

System data block

COUNTER

TIMER

ANY

BLOCK_FC

BLOCK_SDB

BLOCK_DB

BLOCK_FB

POINTER Address

Syntax Rules

C-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

C.4 Code section

Table C-5 Syntax of Code Section

Rule Syntax Diagram

Code Section

Instruction

Jump label

:IDENTIFIER ;

Statement
Value assignment

Subroutine
processing

Control statement

Value Assignment ExpressionSimple variable

Absolute variable

Variable in DB

:=

in CPU Memory areas

Variable in local instance

Extended Variable Simple variable

Absolute variable

Variable in DB

Variable in local instance

FC call

for CPU memory areas

Syntax Rules

C-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Table C-5 Syntax of Code Section, continued

Rule Syntax Diagram

Simple Variable

Structured
variable

Variable name or

IDENTIFIER

Simple
array

Parameter name

Structured Variable

Simple
array

.

First part of identifier is
variable name or

and part following

IDENTIFIER

full stop is component name

parameter name,

Syntax Rules

C-13
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

C.5 Value Assignments

Table C-6 Syntax of Value Assignments

Rule Syntax Diagram

Expression

logical operator
Basic

Operand

()

+

Expression

Comparator

Basic mathematical
operator

Expression

Expression **

Exponential

Expression

NOT

Expression

Unary plus

Unary minus

Negation

Exponent

Simple Expression

+

–

Simple
multiplication

Simple
expression

Simple Multiplication
*

/

Simple
multiplication

Constant

Simple
expression()

DIV

MOD

–

Syntax Rules

C-14
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Table C-6 Syntax of Value Assignments, continued

Rule Syntax Diagram

Address Constant

Extended variable

(Expression)

NOT Address

Extended Variable Simple variable

Absolute variable

Variable in DB

Variable in local instance

FC call

for CPU memory areas

Constant
Constant

Numeric value

Character string

Constant name

Exponential
Expression

()–

–

Extended variable

DECIMAL DIGIT STRING

DECIMAL DIGIT STRING

Basic Logical
Operator

AND & XOR OR

Syntax Rules

C-15
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table C-6 Syntax of Value Assignments, continued

Rule Syntax Diagram

Basic Mathematical
Operator

/ MOD DIV* –+

Comparator

>< <>=>=<=

Syntax Rules

C-16
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

C.6 Function and Function Block Calls

Table C-7 Syntax of Function and Function Block Calls

Rule Syntax Diagram

FB Call

()

Local instance name

IDENTIFIER

.

FB
IDENTIFIER

SFB
IDENTIFIER

DB
IDENTIFIER

FB: Function block
SFB: System function block

FB
Parameter

Global instance name

Function Call

(

Standard
function name or

FC: Function
SFC: System function
Standard function implemented in compile

FC
IDENTIFIER

SFC
IDENTIFIER

IDENTIFIER

)FC Parameter

•
•
•symbolic name

FB Parameter

,

Input
assignment

In/out
assignment

FC Parameter

,

Input
assignment

Output or

assignment
in/out

Expression

Syntax Rules

C-17
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table C-7 Syntax of Function and Function Block Calls, continued

Rule Syntax Diagram

Input Assignment

:=

Expression

TIMER
IDENTIFIER

BLOCK
IDENTIFIER

COUNTER
IDENTIFIER

Actual parameter

Parameter name of
input parameter

IDENTIFIER

Formal parameter

Output or In/Out
Assignment

:=

Actual parameter
Parameter name of

output or

Extended
variableIDENTIFIER

in/out parameter

Formal parameter

In/Out Assignment

Actual parameterParameter name of
in/out parameter

Formal parameter

:= Extended
variableIDENTIFIER

Syntax Rules

C-18
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

C.7 Control Statements

Table C-8 Syntax of Control Statements

Rule Syntax Diagram

IF Statement

Do not forget that the
keyword END_IF must
be terminated by a
semicolon.

IF THENExpression

ELSIF THENExpression

ELSE END_IF

Code
section

Code
section

Code
section

Condition

Condition

CASE Statement

Do not forget that the
keyword END_CASE
must be terminated by a
semicolon.

CASE OFExpression

ELSE END_CASE

Code
section

Code
section

:Value list

Value

:

Value List

. .

,

Value

Value

Value

Syntax Rules

C-19
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Table C-8 Syntax of Control Statements, continued

Rule Syntax Diagram

Value

INTEGER LITERAL

IDENTIFIER

Constant name

Iteration and Jump
Instructions

WHILE

REPEAT
statement

statement

FOR
statement

CONTINUE
statement

EXIT
statement

RETURN
statement

GOTO
statement

FOR Statement

Do not forget that the
keyword END_FOR
must be terminated by a
semicolon.

FOR TO

DO

Basic
expression

Basic
expression

for terminal value

for increment size

Initial
assignment

Code
section

END_FOR

BY

Syntax Rules

C-20
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Table C-8 Syntax of Control Statements, continued

Rule Syntax Diagram

Initial Assignment

:= expression
Simple
variable

Basic

for initial valueof data type
INT/DINT

WHILE Statement

Do not forget that the
keyword END_WHILE
must be terminated by a
semicolon.

Code
section END_WHILEWHILE Expression DO

REPEAT Statement

Do not forget that the
keyword END_REPEAT
must be terminated by a
semicolon.

Code
section END_REPEATREPEAT ExpressionUNTIL

CONTINUE
Statement CONTINUE

RETURN Statement
RETURN

EXIT Statement
EXIT

Program Jump
GOTO

Jump label

IDENTIFIER

Syntax Rules

D-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

References

/12/ Technical Overview: S7-300 Programmable Controller,
Configuration and Application

/13/ Technical Overview: S7-400 Programmable Controller,
Configuration and Application

/14/ Technical Overview: M7-300/M7-400 Programmable Controllers,
Configuration and Application

/20/ Technical Overview: S7-300/S7-400 Programmable Controllers,
Programming

/25/ Technical Overview: M7 Programmable Controller,
Programming

/30/ Primer: S7-300 Programmable Controller,
Quick Start

/70/ Manual: S7-300 Programmable Controller,
Hardware and Installation

/71/ Reference Manual: S7-300, M7-300 Programmable Controllers
Module Specifications

/72/ Instruction List: S7-300 Programmable Controller

/100/ Manual: S7-400/M7-400 Programmable Controllers,
Hardware and Installation

/101/ Reference Manual: S7-400/M7-400 Programmable Controllers
Module Specifications

/102/ Instruction List: S7-400 Programmable Controller

/231/ User Manual: Standard Software for S7 and M7,
STEP 7

/232/ Manual: Statement List (STL) for S7-300 and S7-400,
Programming

/233/ Manual: Ladder Logic (LAD) for S7-300 and S7-400,
Programming

/234/ Programming Manual: System Software for S7-300 and S7-400
Program Design

/235/ Reference Manual: System Software for S7-300 and S7-400
System and Standard Functions

/236/ Manual: FBD for S7-300 and 400,
Programming

D

D-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

/237/ Master Index, STEP 7

/251/ Manual: GRAPH for S7-300 and S7-400,
Programming Sequential Control Systems

/252/ Manual: HiGraph for S7-300 and S7-400,
Programming State Graphs

/253/ Manual: C Programming for S7-300 and S7-400,
Writing C Programs

/254/ Manual: Continuous Function Charts (CFC) for S7 and M7,
Programming Continuous Function Charts

/290/ User Manual: ProC/C++ for M7-300 and M7-400,
Writing C Programs

/291/ User Manual: ProC/C++ for M7-300 and M7-400,
Debugging C Programs

/800/ DOCPRO
Creating Wiring Diagrams (CD only)

/803/ Reference Manual: Standard Software for S7-300/400
STEP 7 Standard Functions, Part 2 (CD only)

References

Glossary-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Glossary

A

Actual parameters replace the formal parameters when a function block (FB)
or function (FC) is called.

Example: the formal parameter ”Start” is replaced by the actual parameter
”I 3.6”.

An address is a component of an instruction that specifies the data on which
an operation is to be performed. It can be addressed in both absolute and
symbolic terms.

With absolute addressing, the memory location of the address to be processed
is given. Example: The address Q 4.0 describes bit 0 in byte 4 of the
process-image output area.

Using symbolic addressing, the address to be processed is entered as a
symbol and not as an address. The assignment of a symbol to an address is
made in the symbol table.

An address identifier is that part of an address of an operation which contains
information, for example, the details of the memory area where the operation
can access a value (data object) with which it is to perform a logic operation,
or the value of a variable (data object) with which it is to perform a logic
operation. In the instruction ”Value := IB10”, ”IB” is the address identifier
(”I” designates the input area of the memory and ”B” stands for a byte in that
area).

An array is a complex data type consisting of a number of data elements of
the same type. Those data elements in turn can be elementary or complex.

Actual Parameter

Address

Addressing,
Absolute

Addressing,
Symbolic

Address Identifier

Array

Glossary-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

An attribute is a characteristic which can be attached to a block identifier or
variable name, for example. In SCL there are attributes for the following
items of information: block title, release version, block protection, author,
block name, block family.

B

In STEP 7, internal specification of timers and counters is is done in BCD
format only. BCD stands for binary coded decimal.

A memory area in the system memory of a SIMATIC S7 CPU. This area can
be accessed using write or read access (bit, byte, word, and double word).
The bit memory area can be used by the user to store interim results.

Blocks are subunits of a user program delimited according to their function,
their structure or their purpose. In STEP 7 there are logic blocks (FBs, FCs,
OBs, SFCs and SFBs), data blocks (DBs and SDBs) and user-defined data
types (UDTs).

A block call calls a block in a STEP 7 user program. Organization blocks are
only called by the operating system; all other blocks are called by the STEP 7
user program.

Blocks are subdivided according to the type of information they contain into
the following two classes:

Logic blocks and data blocks; user-defined data types (UDTs) can be
categorized as data blocks.

Block protection refers to the facility of protecting individual blocks against
decompilation. This is done by employing the keyword
”KNOW_HOW_PROTECTED” when the block source file is compiled.

Additional information about a block (for example, explanatory information
about the automated process) which can not be loaded into the RAM of the
SIMATIC S7 programmable controllers.

⇒ Continuous Monitoring

The block architecture of STEP 7 recognizes the following block types:
organization blocks, function blocks, functions, data blocks as well as system
function blocks, system functions, system data blocks and user-defined data
types. ⇒ Block

Attribute

BCD Format

Bit Memory (M)

Block

Block Call

Block Class

Block Protection

Block Comment

Block Status

Block Type

Glossary

Glossary-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

This function can be used to switch the CPU to STOP mode at specific points
in the program. When the program reaches a breakpoint, debugging functions
such as single-step instruction processing or controlling/monitoring variables
can be performed.

C

Any block has to be called before it can be processed. The order and nesting
sequence of the operation calls by which blocks are called is referred to as
the operation call hierarchy.

The call interface is defined by the input, output and in/out parameters
(formal parameters) of a block in the STEP 7 user program. When the block
is called, those parameters are replaced by the actual parameters.

This statement is a selective branching statement. It is used to select a
specific program branch from a choice of n branches on the basis of the value
of a selection expression.

The process of generating a user program from a source file.

When using incremental input, the program is not checked for possible input
errors until it is compiled. Executable code is not generated until no more
errors are found.

Constants with symbolic names are placeholders for constant values in logic
blocks. Symbolic constants are used for improving the legibility of a
program.

Constants whose value and type are determined by their formal format. A
distinction is made between literals, character literals and time literals.

Object in the SIMATIC Manager user interface which can be opened and can
contain other folders and objects.

Exits a control loop and restarts it using the next value for that control
variable.

SCL debugging mode. When debugging a program in continuous monitoring
mode, you can test out a series of instructions. This series of instructions is
referred to as the monitoring range.

Breakpoint

Call Hierarchy

Call Interface

CASE Statement

Compilation

Compilation,
Incremental

Constant, Literal

Constant,
Symbolic

Container

CONTINUE
Statement

Continuous
Monitoring

Glossary

Glossary-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Explicit conversion refers to inserting a conversion function in the source
file. When two addresses of differing data types are linked, the programmer
must perform an explicit conversion in the following cases: if data is being
changed into a different type class, for example, from a bit data type to a
numeric data type, and – if the destination data type is of a lower order than
the source data type – if data is changed to another type of the same class.

Implicit conversion refers to a conversion function being inserted
automatically by the compiler. When two addresses of differing data types
are linked, automatic conversion takes place if the operation does not involve
a change of type class and if the destination data type is not of a lower order
than the source data type.

Counters are components of the system memory of the CPU. The contents of
a counter are updated by the operating system asynchronously with the user
program. STEP 7 instructions are used to define the precise function of a
counter (for example, up counter) and to activate it (for example, start).

D

Global data refer to memory areas of the CPU that can be accessed from any
point in the program (for example, bit memory).

Static data are local data of a function block which are stored in the instance
data block and are thus retained until the next time the function block is
processed.

Temporary data are assigned to a logic block at local level and do not occupy
any static memory areas since they are stored in the CPU stack. Their value
is only retained while the block concerned is running.

Data blocks are areas in the user program which contain user data. There are
shared data blocks which can be accessed by all logic blocks, and there are
instance data blocks which are associated with a particular function block
(FB) call.

Data types are used to specify how the value of a variable or constant is to be
used in the user program. In SCL there are three classes of data type
available to the user, as follows:

� Elementary data types (data type, elementary)

� Complex data types (data type, complex)

� User-defined data types (UDTs).

Conversion,
Explicit

Conversion,
Implicit

Counter

Data, Global

Data, Static

Data, Temporary

Data Block (DB)

Data Type

Glossary

Glossary-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

User-defined data types (UDTs) are created by the user in the data type
declaration. Each one is assigned a unique name and can be used any number
of times. Thus, a user-defined data type can be used to generate a number of
data blocks with the same structure (for example, controller).

The data type declaration is where the user declares user-defined data types.

Elementary data types are predefined data types in accordance with IEC
1131-3. Examples: the data type ”BOOL” defines a binary variable (”Bit ”);
the data type ”INT ” defines a 16-bit fixed point variable.

A distinction is made between structures and arrays. ”Structures” are made
up of various different data types (for example, elementary data types).
”Arrays” consist of a number of identical elements of a single data type. The
data types STRING and DATE_AND_TIME are also complex data types.

This is where the local data of a logic block are declared.

The declaration type specifies how a parameter or a local variable is to be
used by a block. There are input parameters, output parameters and in/out
parameters as well as static and termporary variables.

Decompilation to STL enables a block downloaded to the CPU to be opened
and viewed on any programming device or PC. Certain components of the
block such as symbols and comments may be missing.

Transfer of loadable objects (for example, logic blocks) from the
programming device to the working memory of a programmable module.
This can be done either via a programming device directly connected to the
CPU or; for example via PROFIBUS.

E

In STEP 7 every block has an ”Enable” input (EN) that can be set when a
block is called. If the signal present at EN is 1, the block is called. If the
signal is 0, it is not.

Data Type,
User-defined

Data Type
Declaration

Data Type,
Elementary

Data Type,
Complex

Declaration
Section

Declaration Type

Decompilation

Download to PLC

Enable (EN)

Glossary

Glossary-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

In STEP 7 every block has an ”Enable Output” (ENO). Within the block, the
programmer can link the input ”Enable” with an internal value (UND). The
result is automatically assigned to the output ENO. ENO enables the
processing of succeeding blocks in block call sequences to be made
dependent on correct processing of the preceding block.

Exits a control loop.

In SCL, an expression is a means of processing data. A distinction is made
between mathematical, logical and comparative expressions.

F

A FOR instruction is used to repeat a sequence of instructions for as long as a
control variable remains within a specified range.

A formal parameter is a placeholder for the ”actual” parameter in
configurable logic blocks. In the case of FBs and FCs, the formal parameters
are declared by the programmer, in the case of SFBs and SFCs they already
exist. When a block is called, the formal parameters are assigned actual
parameters with the result that the called block works with the actual values.
The formal parameters count as local block data and are subdivided into
input, output and in/out parameters.

The free-edit mode is possible when programming with SCL. A program can
be written with the aid of any text editor. The actual program code is
generated only when the source file is compiled. At that point any errors are
detected as well. This mode is suited to symbolic programming of standard
programs.

In free-edit mode, the blocks or the complete user program are edited in text
file form. The syntax is not checked until the source file is compiled. SCL
uses free-edit mode.

According to the International Electrotechnical Commission’s IEC 1131–3
standard, functions are logic blocks that do not reference an instance data
block, meaning they do not have a ’memory’. A function allows you to pass
parameters in the user program, which means they are suitable for
programming complex functions that are required frequently, for example,
calculations.

Enable Out (ENO)

EXIT Statement

Expression

FOR Statement

Formal Parameter

Free-Edit Mode

Function (FC)

Glossary

Glossary-7
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

According to the International Electrotechnical Commission’s IEC 1131–3
standard, function blocks are logic blocks that reference an instance data
block, meaning they have static data. A function block allows you to pass
parameters in the user program, which means they are suitable for
programming complex functions that are required frequently, for example,
control systems, operating mode selection.

G

Global data is data that can be accessed from any logic block (FC, FB or
OB). Specifically it includes bit memory (M), inputs (I), outputs (O), timers,
counters and elements of data blocks (DBs). Global data can be addressed in
either absolute or symbolic terms.

A GOTO statement executes an immediate jump to a specified label.

H

The HOLD state is reached from the RUN mode via a request from the
programming device. Special test functions are possible in this mode.

I

Identifiers are used to address SCL language objects. There are the following
classes of identifier: standard identifiers, predefined names and keywords,
absolute identifiers (or address identifiers), user-defined names, for example,
for variables and jump labels or symbolic names generated by a symbol
table.

In/out parameters are used in functions and function blocks. In/out
parameters are used to transfer data to the called block, where they are
processed, and to return the result to the original variable from the called
block.

Only functions and function blocks have input parameters. Input parameters
are used to transfer data to the called block for processing.

Function Block
(FB)

Global Data

GOTO Statement

HOLD Mode

Identifier

In/Out Parameter

Input Parameter

Glossary

Glossary-8
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The term ”instance” refers to a function block call. The function block
concerned is assigned an instance data block or a local instance. If a function
block in a STEP 7 user program is called n times, each time using different
parameters and a different instance data block name, then there are n
instances.

FB13.DB3 (P3:=...), FB13.DB4 (P4:=...),

FB13.DB5 (P5:=...),FB13.DBn (Pn:=...).

An instance data block stores the formal parameters and static local data for a
function block. An instance data block can be assigned to an FB call or a
function block call hierarchy. It is generated automatically in SCL.

A local instance is defined in the static variable section of a function block.
Instead of a complete instance data block, only a local section is used as the
data area for the function block which is called using the local instance
name.

An instruction is a component of a statement specifying what action the
processor is to perform.

Integer (INT) is an elementary data type. Its format is 16-bit whole number.

K

Keywords are used in SCL to mark the beginning of a block, to mark
subsections in the declaration section and to identify instructions. They are
also used for attributes and comments.

L

The lower level of rules in the formal language description of SCL consists
of the lexical rules. When applied, they do not permit unrestricted format;
that is, addition of spaces and control characters is not permitted.

Local data refers to the data assigned to a specific logic block which is
declared in its declaration section. It consists of (depending on the particular
block) the formal parameters, static data and temporary data.

Instance

Instance Data
Block (Instance
DB)

Instance, Local

Instruction

Integer (INT)

Keyword

Lexical Rule

Local Data

Glossary

Glossary-9
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

A logic block in SIMAT IC S7 is a block that contains a section of a STEP 7
user program. In contrast, a data block contains only data. There are the
following types of logic blocks: organization blocks (OBs), function blocks
(FBs), functions (FCs), system function blocks (SFBs) and system functions
(SFCs).

M

A SIMATIC S7 CPU has three memory areas - the load area, the working
area and the system area.

A mnemonic is an abbreviation for an address or a programming operation
used in the program (for example, ”I” stands for input). STEP 7 supports IEC
mnemonics (which are based on English terms) and SIMATIC mnemonics
(which are based on the German names of operations and the SIMATIC
addressing conventions).

When multiple instances are used, the instance data block holds the data for a
series of function blocks within a function call hierarchy.

N

A non term is a complex element that is described by another lexical or
syntax rule.

O

Off-line designates the operating mode whereby the programming device is
not connected (physically or logically) to the PLC.

The OK variable is used to indicate whether a sequence of block statements
has been executed correctly or not. It is a global variable of the type BOOL.

On-line designates the operating mode whereby the programming device is
connected (physically or logically) with the PLC.

STEP 7 provides the facility of obtaining context-sensitive help on the screen
while working with the programming software.

Logic Block

Memory Area

Mnemonic

Multiple Instance

Non Term

Off-Line

OK Variable

On-Line

On-Line Help

Glossary

Glossary-10
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Organization blocks form the interface between the CPU operating system
and the user program. The organization blocks specify the sequence in which
the user program is to be processed.

The output parameters of a block in a STEP 7 user program are used to
transfer results to the calling block.

P

In SCL, a parameter is a variable of a logic block (actual parameter or formal
parameter).

Parameter type is a special data type for timers, counters and blocks. It can
be used for input parameters of function blocks and functions, and for in/out
parameters of function blocks only in order to transfer timer and counter
readings and blocks to the called block.

The signal states of the digital input and output modules are stored in the
CPU in a process image. There is a process-image input table (PII) and a
process-image output table (PIQ).

The process image of the inputs is read in from the input modules by the
operating system before the user program is processed.

The process image of the outputs is transferred to the output modules at the
end of the user program by the operating system.

To facilitate the implementation of complex automation tasks, a user
program is subdivided into separate, self-contained subunits (blocks).
Subdivision of a user program is based on functional considerations or the
technological structure of the system.

The programming language SCL permits the use of symbolic character
strings in place of addresses, for example, the address A1.1 might be
replaced by ”Valve_17”. The symbol table in STEP 7 creates the link
between the address and its assigned symbolic character string.

A folder for storing all objects relating to a particular automation concept
regardless of the number of stations, modules or how they are networked.

Organization Block
(OB)

Output Parameter

Parameter

Parameter Type

Process Image

Process-Image
Input Table (PII)

Process-Image
Output Table (PIQ)

Programming,
Structured

Programming,
Symbolic

Project

Glossary

Glossary-11
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

R

A real number, also called a floating point number, is a positive or negative
number which contains a decimal fraction, for example, 0.339 or -11.1.

A REPEAT statement is used to repeat a sequence of statements until a break
condition is satisfied.

This statement causes the program to exit the active block.

In the RUN mode the user program is processed and the process image is
updated cyclically. In addition, all digital outputs are enabled.

The operating mode RUN-P is the same as RUN operating mode except that
in RUN-P mode, all programming device functions are permitted without
restriction.

S

The S7 user program is located in the “Blocks” folder. It contains blocks that
are uploaded to a programmable S7 module (for example CPU) and are
capable of being run on the module as part of the program controlling a
system or a process.

The scan cycle time is the time required by the CPU to process the user
program once.

If the user program processing time exceeds the set scan cycle monitoring
time, the operating system generates an error message and the CPU switches
to STOP mode.

PASCAL-based high-level language which conforms to the standard
DIN EN-61131-3 (IEC 1131-3) and is intended for programming complex
operations on a PLC, for example, algorithms and data processing tasks.
Abbreviation for ”Structured Control Language”.

The SCL Compiler is a batch compiler which is used to translate a program
written using a text editor (SCL source file) into M7 machine code. The
blocks generated by the process are stored in the “Blocks” folder.

Real Number

REPEAT Statement

RETURN
Statement

RUN Mode

RUN-P Mode

S7 User Program

Scan Cycle Time

Scan Cycle
Monitoring Time

SCL

SCL Compiler

Glossary

Glossary-12
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The SCL Debugger is a high-level language debugger used for finding
logical programming errors in user programs created with SCL.

The SCL Editor is a text editor specially adapted for use with SCL for
creating SCL source files.

An SCL source file is a file in which a program is written in SCL. The SCL
source file is translated into machine code by the SCL Compiler after it has
been written.

A single step is a step in a debugging operation carried out by the SCL
Debugger. In single-step debugging mode you can execute a program one
instruction at a time and view the results of each step in the Results window.

A source file (text file) contains source code (ASCII text) that can be created
with any text editor. A source file is translated into a user program file by a
compiler (STL, SCL). Source files are stored in the “Source Files” folder
under the name of the S7 program.

An instruction is the smallest indivisible unit of a user program written in a
text-based language. It represents an instruction to the processor to perform a
specific operation.

Statement List is a low-level text-based programming language.

The status word is a component of the CPU register. The status word contains
status information and error information in connection with the processing of
STEP 7 commands. The status bits can be read and written by the
programmer. The error bits can only be read.

A structure is a complex data type consisting of data elements of differing
types. Those data elements can be elementary or complex.

A symbol is a name defined by the user, taking syntax rules into
consideration. This name can be used in programming and in operating and
monitoring once you have defined it (for example, as a variable, a data type,
a jump label, or a block).
Example: Address: I 5.0, Data Type: BOOL, Symbol: Emer_Off_Switch

SCL Debugger

SCL Editor

SCL Source File

Single Step

Source File

Statement

Statement List

Status Word

Structure
(STRUCT)

Symbol

Glossary

Glossary-13
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

A table used to assign symbols (or symbolic names) to addresses for shared
data and blocks.
Examples: Emer_Off (Symbol), I 1.7 (Address)

Controller (Symbol), SFB24 (Block)

The higher level of rules in the formal description of SCL consists of the
syntax rules. When they are used they are not subject to format restrictions;
that is, spaces and control characters can be added.

A system function (SFC) is a function integrated in the CPU operating
system which can be called in the user program when required. Its associated
instance data block is found in the work memory.

A system function block (SFB) is a function block integrated in the CPU
operating system which can be called in the STEP 7 user program when
required.

System data blocks are data areas in the CPU which contain system settings
and module parameters. System data blocks are generated and edited by the
STEP 7 standard software.

The system memory is integrated in the CPU and executed in the form of
RAM. The address areas (timers, counters, bit memory etc.) and data areas
required internally by the operating system (for example, backup for
communication) are stored in the system memory.

T

A term is a basic element of a lexical or syntax rule that can not be explained
by another rule but is represented in literal terms. A term can be a keyword
or a single character, for example.

Timers are an area in the system memory of the CPU. The contents of these
timers is updated by the operating system asynchronously to the user
program. You can use STEP 7 instructions to define the exact function of the
timer (for example, on-delay timer) and start processing it (Start).

Symbol Table

Syntax Rule

System Function
(SFC)

System Function
Block (SFB)

System Data Block
(SDB)

System Memory

Term

Timer (T)

Glossary

Glossary-14
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

U

⇒ Data Type, User-Defined

Transfer loadable objects (for example, logic blocks) from the load memory
of a programmable module to a programming device. This can be done either
via a programming device with a direct connection or, for example, via
PROFIBUS.

User data are exchanged between a CPU and a signal module, function
module and communications modules via the process image or direct access.
Examples of user data are: digital and analog input/output signals from signal
modules, control and status data from function modules.

The user program contains all the statements and declarations and the data
required for signal processing to control a plant or a process. The program is
linked to a programmable module (for example, CPU, FM) and can be
structured in the form of smaller units (blocks.)

V

A variable defines an item of data with variable content which can be used in
the STEP 7 user program. A variable consists of an address (for example,
M 3.1) and a data type (for example, BOOL), and can be identified by means
of a symbolic name (for example, TAPE_ON): Variables are declared in the
declaration section.

Variable declaration involves the specification of a symbolic name, a data
type and, if required, an initialization value, address and comments.

The variable table is used to collect together the variables that you want to
monitor and modify and set their relevant formats.

UDT

Upload to PC

User Data

User Program

Variable

Variable
Declaration

Variable Table
(VAT)

Glossary

Index-1
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Index

A
Absolute access

to global data blocks, 12-9
to global system data, 12-4

Absolute identifiers, 12-4
Accessing, global data, 12-2, 12-3
Actual parameters, 16-2

input assignment, 16-16
output and in/out assignments, 16-17

Address, 12-5, 12-10, 13-5
Address identifier, 12-4
Alignment symbol, 11-8
Alternatives, 15-1
ARRAY

multidimensional, 9-7
one-dimensional (vector), 9-7
two-dimensional (matrix), 9-7

Array initialization list, 10-5
ASCII source file, creating in SCL, 5-2, 5-3
Assignment, simple variables, 14-3
Assignment section, DB, 8-18
Attributes, 8-5
Authorization, 3-2, 3-5

original disk, 3-3
retransferring details, 3-3

AUTHORS.EXE, 3-3

B
Basic structure, OB, 8-16
Bit string standard functions, 18-12
BLOCK, 9-12
Block, ready-made, 1-4
Block comment, 7-20

See also Comment block
Block parameters, 7-14, 10-10

access, 10-11
Block structure, in source files, 8-3
Block structure of STEP 7, 1-3
Block type, 1-3

function, 1-3, 1-4

Blocks, 1-3, 7-2, 7-18, A-2
mutual compatibility of, 1-4
programming, 2-10
symbolic programming, 2-10

Boolean expression, 13-10
Break criterion, 15-13, 15-15

C
Calling

counter functions, 17-2
counters, dynamically, 17-4
function blocks, FBs or SFBs, 16-3
functions, 16-13
global instance, 16-10
local instance, 16-12
timer functions, 17-10
timers, dynamically, 17-12

CASE statement, 15-2, 15-6
Character literals, printable characters, 11-8
Character types, 9-3
Code section, 8-10

FB, 7-19
rules, 8-10
statements, 8-10
syntax, 8-10

Comments, 7-20
incorporating, 7-21
nesting, 7-21

Comparative expression, 13-10
Comparisons, 13-10
Compilation process, 5-7
Compiler

development environment, 1-2
general description, 1-5, 1-6

Compiler options, 5-6
Complete array, 14-6
Complete structures, 14-4
Complex data types, 9-4
Conditional function call, 19-2

Index-2
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Conditions, 15-3
break, 15-13

Constants
declaring symbolic names, 11-2
string, 11-7
use of, 11-2

CONTINUE statement, 15-2, 15-14
Continuity of a string, 11-8
Control statements, 15-1, 15-3
Conversion, implicit, 18-2
Conversion functions

class A, 18-3
class B, 18-4

COUNTER, 17-8
See also Counter up and down (S_CUD)

Counter
Down, 17-7–17-9
Up, 17-7–17-9
Up and Down, 17-8

Counter Down (S_CD), 17-7–17-9
Counter functions, 17-2
Counter reading, 17-6

evaluation, 17-6
input, 17-6

Counter Up, (S_CU), 17-7–17-9
CPU memory areas, global data, 12-2
Creating

final value, 15-9
initial value, 15-9
organization block, 2-11

D
Data, global, 12-1
Data areas, declared, 12-2
Data block, 1-3
Data categories, 10-2
Data type

ARRAY, 9-7
BOOL, 16-20
specification, 9-7
STRUCT, 9-8

Data type conversion, implicit, 18-2
Data types

complex, 7-13, 9-4
elementary, 9-3
for formal parameters, 9-12
overview, 9-3–9-5
User-defined. See UDT
user-defined (UDT), 8-19, 9-10

Debugger
debugging modes, 1-6
development environment, 1-2
general description, 1-6

Declaration section, 8-17
FB, 8-12
OB, 8-16

Declaration subsections, 8-7, 10-3
FB, 8-12, 8-14
OB, 8-16

Declared data areas, 12-2
Declaring

global data, 12-1
jump labels, 11-14
labels, 11-14

Decompilation, SCL blocks, 1-4
Description, of SCL, A-1
Development environment, 1-2

Batch Compiler, 1-2
Debugger, 1-2
Editor, 1-2

Digit string, 11-4
Dimension, 9-7
DIN EN 61131-3, 1-3
DIN Standard EN-61131-3, 1-2

E
Ease of learning, SCL, 1-4
Editor

development environment, 1-2
general description, 1-5

Elementary data types, 9-3
EN, 16-20
EN-61131-3, 1-2
ENO, 10-12, 16-20
Error and warning messages, causes, 5-8
Error detection, OB types, 19-4
Error OB, OB types, 19-4
Errors during installation, 3-5
Execution condition, 15-11
EXIT statement, 15-2, 15-15
Exponential expression, 13-3
Expression

boolean, 13-10
exponential, 13-9
exponential expression, 13-3
logical, 13-10
mathematical, 13-7
rules, 13-4

Index

Index-3
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Extended pulse timer (S_PEXT), 17-17
Extended variable, 13-6
Extensions, LAD, STL, 1-2

F
FB parameters

basic principle, 16-5
in/out assignment, 16-8
input assignment, 16-7

FC call, not optional, 16-16
FC parameters, 16-15

input assignment, 16-16
Flag, OK flag, 10-12
Flow chart, SORT, 2-19
FOR statement, 15-2, 15-8
Formal parameters, 16-2

data types, 9-12
in/out parameters, 10-10
input parameters, 10-10
output parameters, 10-10

Format, 11-2
date literal, 11-10
numeric literals, 11-4
time of day, 11-13
time period, 11-11
timer reading, 17-14
types of time data, 11-10

Free format, 7-3
Function, 1-3

block status, 6-4
block type, 1-3, 1-4
rounding, 18-9
single-step mode, 6-5, 6-6
truncating, 18-9

Function block, 1-3, 19-3
calling, 16-3
RECORD, 2-12

Function call, 13-6, 16-19
return value, 16-14

results, 16-14

G
General description

Compiler, 1-5, 1-6
Debugger, 1-6
Editor, 1-5

Global data
accessing, 12-2, 12-3
CPU memory areas, 12-2
declaring, 12-1
types of access, 12-2
user data, 12-2

Global data blocks
absolute access, 12-9
indexed access, 12-11
structured access, 12-12

Global instance, calling, 16-3
Global system data

absolute access, 12-4
indexed access, 12-7

GOTO statement, 15-2, 15-16

H
High-level programming language, 1-3

I
Identifiers, 7-7
IF statement, 15-2, 15-4
Implicitly defined parameters, 16-20
In/out assignment, actual parameters, 16-8
In/out parameters, 10-10
Index, 9-7
Index specification, 9-7
Indexed access

rules, 12-7, 12-11
to global data blocks, 12-11
to global system data, 12-7

Indexing, rules, 12-7
Initialization, 10-5

input parameters, 10-5
static variables, 10-5

Input assignment, actual parameters, 16-7
Input parameters, 10-10
Installation

of SCL software, 3-1, 3-4
requirements, 3-1

Installation requirements, 3-1

J
Jump labels, 11-14

Index

Index-4
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

K
Keywords, 9-3, 9-5

L
Labels, declaring, 11-14
LAD, (Ladder Logic), 1-2
Language definition, aids to, 7-2
Language description, A-1
Line comment, 7-20

See also Comment line
Literals, 11-3

assigning data types, 11-3
character, 11-7
integer, 11-5
numeric, 11-6
real number, 11-6
string, 11-7

Loading a timer reading, format, 17-14
Local data, 7-14, 10-1

storage method, 10-2
Local instance, calling, 16-3
Logic operation, 13-10
Logical expressions, 13-12
Loop processing, 15-2
Loops, 15-1

M
Mathematical, operators, 13-7
Mathematical expression, 13-7
Measured data, processing, 2-3
Memory prefix, 12-4
Menu bar, 4-3
Mutual compatiblity of blocks, 1-4

N
Name assignment, 7-7
Non terms, A-14–A-34
Non-printable characters, 11-7, 11-9
Numeric standard functions, 18-10

general functions, 18-10
logarithmic functions, 18-10
trigonometric functions, 18-11

Numeric types, 9-3

O
Off-delay timer (S_OFFDT), 17-20–17-22
OK flag, 10-2, 10-12
On-delay timer (S_ODT), 17-18–17-22
Operations, alphabetical listing, A-5–A-34
Operators

mathematical, 13-7
placing in parentheses, 13-4
priority, 13-8

Order of blocks, 8-2
Organization block, 1-3

OB1, 2-12, 2-13, 2-16, 2-17, 2-20, 2-21
types, 19-4

Output parameters, 10-10
reading, 16-12

Output value, reading, 16-11

P
Parameter

assignment, 16-3
implicitly defined, 16-20
input parameter EN, 16-20
output parameter ENO, 16-21

Parameter type
BLOCK, 7-13, 9-12
COUNTER, 7-13, 9-12
POINTER, 7-13, 9-12
TIMER, 7-13, 9-12

Parameter value assignment, 16-2
Priority, operators, 13-8
Priority class, OB types, 19-4
Product overview, 1-1
Program branching, 15-2
Program code

OB 1, 2-10, 2-11
RECORD, 2-13, 2-16
STANDARDIZATION, 2-21

Program file, 7-19
Program jump, 15-2
Programmable output, 2-4
Programming, 5-1

OB types, 19-4
Programming methods, 1-4
Pulse timer (S_PULSE), 17-16–17-22

Index

Index-5
Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

R
Referenzdaten, erzeugen, 6-9
REPEAT statement, 15-2, 15-13
Repetition instruction, 15-2
Repetition instructions, exiting, 15-15
Resolution. See Time base for S5 TIME
Retentive on-delay timer (S_ODTS),

17-19–17-22
RETURN statement, 15-2, 15-18
Return value, 16-13
Rule structures, 7-2, A-2

S
S_CD. See Counter Down (S_CD)
S_CU. See Counter Up (S_CU)
S_CUD. See Counter up and down (S_CUD)
S_ODT. See On–delay timer (S_ODT)
S_ODTS. See Retentive ondelay timer

(S_ODTS)
S_OFFDT. See Off delay timer (S_OFFDT)
S_PEXT. See Extended pulse timer (S_PEXT)
S_PULSE. See Pulse timer (S_PULSE)
S5 TIME

time base, 17-15
timer reading, 17-14

Saving
a block, 5-5
an ASCII source file, 5-5

SCL
block structure, 7-18
Debugger, 6-2
debugging functions, 6-2
definition, 1-2
ease of learning, 1-4
errors during installation, 3-5
extensions, LAD, STL, 1-2
high-level programming language, 1-2, 1-3
identifiers, 7-7
installing/uninstalling the software, 3-4
language definition, 7-2
name assignment, 7-7
product overview, 1-1
program compilation, 5-6
programming, 5-1
software installation, 3-1
starting, 4-2

SCL installation
errors, 3-5
procedure, 3-4

SCL language functions, 2-2

SCL program, starting, 4-2
SCL programming language, 1-1
SCL user interface, 4-3
Selective instruction, 15-2
Size prefix, 12-5
Software engineering, programming methods,

1-4
Standard functions, 18-2

data type conversion, 18-2
explicit data type conversion, 18-2
implicit data type conversion, 18-2

Standards conformity, 1-2
Starting SCL, 4-2
Statement List. See STL
Statements, 8-10

CASE, 15-6
CONTINUE, 15-14
EXIT, 15-15
FOR, 15-8
GOTO, 15-16
IF, 15-4
REPEAT, 15-13
RETURN, 15-18
WHILE, 15-11

Static variables, 7-14, 10-2, 10-8
Status bar, 4-3
STEP 7

block structure, 1-3
OB types, 19-4

STEP 7 block concept, 1-3
STEP 7 tools, S7 Information, 6-10
STL

(Statement List), 1-2
decompiling SCL blocks, 1-4

String
continuity, 11-8
using the alignment symbol, 11-8

String breaks, 11-8
STRUCT, 9-8

component declaration, 9-8
variable declaration, 9-8

Structure
data block (DB), 8-17
function (FC), 8-14
function block (FB), 8-12
organization block (OB), 8-16

Structured access, to global data blocks, 12-12
Structured Control Language. See SCL
Structured programming, 1-4, 2-5
Symbol table, creating, 12-6
Syntax diagram, 7-2, A-2
Syntax rules, 7-3

Index

Index-6
Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

System attributes
for blocks, 8-6
for parameters, 8-8

System function (SFC), 1-4
System function block (SFB), 1-4, 19-3
System parameter ENO, 10-12
System requirements, 2-2

T
Temporary variables, 7-14, 10-2, 10-9
Testfunktion

Referenzdaten erzeugen, 6-9
Variablen beobachten/steuern, 6-8

Text files, structure, 8-1, 8-2
Time base, resolution, 17-15
Time base for S5 TIME, 17-15
Time resolution. See Time base for S5 TIME
Time types, 9-3
TIMER and COUNTER, 9-12
Timer functions, (TIMER), 17-10
Timer reading, syntax, 17-14
Timers

components, 17-14–17-22
summary, 17-22
timer operations

extended pulse timer (S_PEXT),
17-17–17-22

off-delay timer (S_OFFDT), 17-20
on-delay timer (S_ODT), 17-18
pulse timer (S_PULSE), 17-16–17-22
retentive on-delay timer (S_ODTS),

17-19
timer reading, 17-14

range, 17-14–17-22
syntax, 17-14

Title bar, 4-3
Tool bar, 4-3

Transfer of parameters, parameter types, 7-13,
9-12

Types of access, 12-2

U
UDT definition

calling, 8-19
elements, 8-19

Uninstalling SCL, 3-5
Upward compatibility, 1-4
User authorization, 3-2
User data, global, 12-2
User interface, 4-3
User program, 1-3, 7-18
Using SCL, 4-1

V
Value assignment, 14-1

array components, 14-6
arrays, 14-6
global system data, 14-10
global user data, 14-11
structures, 14-4

Variable declaration, 10-10
Variablen, beobachten/steuern, 6-8
Variables

static, 7-14, 10-2, 10-8
temporary, 7-14, 10-2, 10-9

W
WHILE statement, 15-2, 15-11
Windows 95, 1-2
Workspace, 4-3

Index

Structured Control Language (SCL) for S7-300/S7-400, Programming
6ES7811-1CA02-8BA0-01 1✄

Siemens AG

A&D AS E46

Östliche Rheinbrückenstr. 50

D-76181 Karlsruhe

Federal Republic of Germany

Please check any industry that applies to you:

❒ Automotive

❒ Chemical

❒ Electrical Machinery

❒ Food

❒ Instrument and Control

❒ Nonelectrical Machinery

❒ Petrochemical

❒ Pharmaceutical

❒ Plastic

❒ Pulp and Paper

❒ Textiles

❒ Transportation

❒ Other _ _ _ _ _ _ _ _ _ _ _

From:

Your Name:_ _

Your Title: _

Company Name: _

Street: _

City, Zip Code_ _

Country: _

Phone: _

2
Structured Control Language (SCL) for S7-300/S7-400, Programming

6ES7811-1CA02-8BA0-01

Additional comments:

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness
of our publications. Please take the first available opportunity to fill out this questionnaire
and return it to Siemens.

Please give each of the following questions your own personal mark within the range
from 1 (very good) to 5 (poor).

1. Do the contents meet your requirements?

2. Is the information you need easy to find?

3. Is the text easy to understand?

4. Does the level of technical detail meet your requirements?

5. Please rate the quality of the graphics/tables:

	Title
	Preface
	Contents
	Part 1: Designing Programs
	1 Product Overview
	1.1 What is SCL?
	1.2 What Are the Advantages of SCL?
	1.3 Performance Characteristics of the Development Environment

	2 Designing SCL Programs
	2.1 Overview
	2.2 Defining the Tasks
	2.3 Using SCL Blocks to Perform the Tasks
	2.3.1 Defining the Subtasks
	2.3.2 Selecting and Assigning the Available Block Types
	2.3.3 Defining the Interfaces Between the Blocks
	2.3.4 Defining the Input/Output Interface
	2.3.5 Programming the Blocks
	2.4 Creating the Organization Block
	2.5 Creating the Function Block
	2.6 Creating the Function Block
	2.7 Creating the Function
	2.8 Debugging Data

	Part 2: Operating and Debugging
	3 Installing the SCL Software
	3.1 User Authorization
	3.2 Installing / Uninstalling the SCL Software

	4 Using SCL
	4.1 Starting the SCL Program
	4.2 Customizing the User Interface
	4.3 Working with the SCL Editor

	5 Programming with SCL
	5.1 Creating User Programs Using SCL
	5.2 Creating and Opening an SCL Source File
	5.3 Entering Declarations, Statements and Comments
	5.4 Saving and Printing an SCL Source File
	5.5 The Compilation Process
	5.6 Transferring the Compiled User Program to the PLC
	5.7 Creating a Compilation Control File

	6 Debugging Programs
	6.1 Overview
	6.2 Monitor Continuously” Debugging Function
	6.3 “Breakpoints Active” Debugging Function
	6.4 “Monitoring/Modifying Variables” Debugging Function
	6.5 “Reference Data” Debugging Function
	6.6 Using the STEP 7 Debugging Functions

	Part 3: Language Description
	7 General Introduction to Basic SCL Terms
	7.1 Language Definition Aids
	7.2 The SCL Character Set
	7.3 Reserved Words
	7.4 Identifiers in SCL
	7.5 Standard Identifiers
	7.6 Numbers
	7.7 Data Types
	7.8 Variables
	7.9 Expressions
	7.10 Statements
	7.11 SCL Blocks
	7.12 Comments

	8 Structure of an SCL Source File
	8.1 Structure
	8.2 Beginning and End of a Block
	8.3 Block Attributes
	8.4 Declaration Section
	8.5 Code Section
	8.6 Statements
	8.7 Structure of a Function Block (FB)
	8.8 Structure of a Function (FC)
	8.9 Structure of an Organization Block (OB)
	8.10 Structure of a Data Block (DB)
	8.11 Structure of a User-Defined Data Type (UDT)

	9 Data Types
	9.1 Overview
	9.2 Elementary Data Types
	9.3 Complex Data Types
	9.3.1 DATE_AND_TIME Data Type
	9.3.2 STRING Data Type
	9.3.3 ARRAY Data Type
	9.3.4 STRUCT Data Type
	9.4 User-Defined Data Type (UDT)
	9.5 Parameter Types

	10 Declaring Local Variables and Block Parameters
	10.1 Overview
	10.2 Declaring Variables and Parameters
	10.3 Initialization
	10.4 Instance Declaration
	10.5 Static Variables
	10.6 Temporary Variables
	10.7 Block Parameters
	10.8 Flags (OK Flag)

	11 Declaring Constants and Jump Labels
	11.1 Constants
	11.2 Literals
	11.3 Formats for Integer and Real Number Literals
	11.4 Formats for Character and String Literals
	11.5 Formats for Times
	11.6 Jump Labels

	12 Declaring Global Data
	12.1 Overview
	12.2 CPU Memory Areas
	12.3 Absolute Access to CPU Memory Areas
	12.4 Symbolic Access to CPU Memory Areas
	12.5 Indexed Access to CPU Memory Areas
	12.6 Data Blocks
	12.7 Absolute Access to Data Blocks
	12.8 Indexed Access to Data Blocks
	12.9 Structured Access to Data Blocks

	13 Expressions, Operators and Addresses
	13.1 Operators
	13.2 Syntax of Expressions
	13.2.1 Addresses
	13.3 Mathematical Expressions
	13.4 Exponential Expressions
	13.5 Comparative Expressions
	13.6 Logical Expressions

	14 Value Assignments
	14.1 Overview
	14.2 Value Assignments Using Variables of Elementary Data Types
	14.3 Value Assignments Using Variables of the Types STRUCT or UDT
	14.4 Value Assignments Using Variables of the Type ARRAY
	14.5 Value Assignments Using Variables of the Type STRING
	14.6 Value Assignments Using Variables of the Type DATE_AND_TIME
	14.7 Value Assignments using Absolute Variables for Memory Areas
	14.8 Value Assignments using Global Variables

	15 Control Statements
	15.1 Overview
	15.2 IF Statement
	15.3 CASE Statement
	15.4 FOR Statement
	15.5 WHILE Statement
	15.6 REPEAT Statement
	15.7 CONTINUE Statement
	15.8 EXIT Statement
	15.9 GOTO Statement
	15.10 RETURN Statement

	16 Calling Functions and Function Blocks
	16.1 Calling and Transferring Parameters
	16.2 Calling Function Blocks (FB or SFB)
	16.2.1 FB Parameters
	16.2.2 Input Assignment (FB)
	16.2.3 In/Out Assignment (FB)
	16.2.4 Example of Calling a Global Instance
	16.2.5 Example of Calling a Local Instance
	16.3 Calling Functions
	16.3.1 FC Parameters
	16.3.2 Input Assignment (FC)
	16.3.3 Output and In/Out Assignment (FC)
	16.3.4 Example of a Function Call
	16.4 Implicitly Defined Parameters

	17 Counters and Timers
	17.1 Counter Functions
	17.1.1 Input and Evaluation of the Counter Reading
	17.1.2 Counter Up (CU)
	17.1.3 Counter Down (CD)
	17.1.4 Counter Up/Down (CUD)
	17.1.5 Example of the Function S_CD (Counter Down)
	17.2 Timer Functions
	17.2.1 Input and Evaluation of the Timer Reading
	17.2.2 Pulse Timer
	17.2.3 Extended Pulse Timer
	17.2.4 On-Delay Timer
	17.2.5 Retentive On-Delay Timer
	17.2.6 Off-Delay Timer
	17.2.7 Example of Program Using Extended Pulse Timer Function
	17.2.8 Selecting the Right Timer Function

	18 SCL Standard Functions
	18.1 Converting Data Types
	18.2 Standard Functions for Data Type Conversions
	18.3 Numeric Standard Functions
	18.4 Bit String Standard Functions

	19 Function Call Interface
	19.1 Function Call Interface
	19.2 Data Transfer Interface with OBs

	Appendix
	A Formal Description of Language
	A.1 Overview
	A.2 Overview of Terms
	A.3 Lexical Rule Terms
	A.4 Formatting Characters, Delimiters and Operators
	A.5 Keywords and Predefined Identifiers
	A.6 Address Identifiers and Block Keywords
	A.7 Overview of Non Terms
	A.8 Overview of Tokens
	A.9 Identifiers
	A.10 Naming Conventions in SCL
	A.11 Predefined Constants and Flags

	B Lexical Rules
	B.1 Identifiers
	B.1.1 Literals
	B.1.2 Absolute Addresses
	B.2 Remarks
	B.3 Block Attributes

	C Syntax Rules
	C.1 Subunits of SCL Source Files
	C.2 Structure of Declaration Sections
	C.3 Data Types in SCL
	C.4 Code section
	C.5 Value Assignments
	C.6 Function and Function Block Calls
	C.7 Control Statements

	D References

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

