SIEMENS

SIMATIC

Structured Control Language
(SCL) for S7-300/S7-400
Programming

Manual

This manual has the order number:

6ES7811-1CA02-8BA0

Preface| Contents

Part 1: Designing Programs

Part 2: Operating and Debugging

Part 3: Language Description

Appendix

Glossary,|Index

Safety Guidelines

This manual contains notices which you should observe to ensure your own personal safety, as well as to

protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

indicates that death, severe personal injury or substantial property damage will result if proper precautions are

indicates that death, severe personalinjury or substantial property damage can resultif proper precautions are

i’i Danger
not taken.
i’i Warning
not taken.
Caution

/N

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly importantinformation on the product, handling the product, or to a particular

part of the documentation.

Quialified Personnel

The device/system may only be set up and operated in conjunction with this manual.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and
systems in accordance with established safety practices and standards.

Correct Usage Note the following:

Warning

/N

This device and its components may only be used for the applications described in the catalog or the technical

description, and only in connection with devices or components from other manufacturers which have been
approved or recommended by Siemens.

Trademarks

Third parties using for their own purposes any other names in this document which refer to

SIMATIC®, SIMATIC NET® and SIMATIC HMI® are registered trademarks of SIEMENS AG.

trademarks might infringe upon the rights of the trademark owners.

Copyright © Siemens AG 1998 All rights reserved

The reproduction, transmission or use of this document or its contents is
not permitted without express written authority. Offenders will be liable for
damages. Allrights, including rights created by patentgrantor registration
of a utility model or design, are reserved.

Siemens AG

Bereich Automatisierungs- und Antriebstechnik
Geschaeftsgebiet Industrie-Automatisierungssysteme
Postfach 4848, D-90327 Nuernberg

Disclaimer of Liability

We have checked the contents of this manual for agreement with the
hardware and software described. Since deviations cannot be precluded
entirely, we cannot guarantee full agreement. However, the data in this
manual are reviewed regularly and any necessary correctionsincludedin
subsequent editions. Suggestions for improvement are welcomed.

© Siemens AG 1998
Technical data subject to change.

Siemens Aktiengesellschaft

6ES7811-1CA02-8BA0

Preface

Purpose

Audience
Scope of the
Manual

Compliance with
Standards

This manual is your guide to creating user programs in the Structured Control
Language (SCL) programming language. The manual explains the basic
procedures for creating programs using the SCL editor, SCL compiler and
SCL debugger.

This manual also includes a reference section that describes the syntax and
functions of the language elements of SCL.

This manual is intended for S7 programmers, commissioning engineers, and
maintenance/service personnel. A working knowledge of automation
procedures is essential.

This manual is valid for release 3.0 of the STEP 7 standard programming
software package.

SCL corresponds to the Structured Control Language defined in the

DIN EN-61131-3 (IEC 1131-3tandard, although there are essential
differences with regard to the operations. For further details, refer to the table
of standards in the STEP 7 file NORM.TAB.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Preface

Overview of the

STEP 7

Documentation

There is a wide range of both general and task-oriented user documentation
available to support you when configuring and programming an S7
programmable controller. The following descriptions and the figure below
will help you to find the user documentation you require.

Primer

/30/

1232/

reT

| GrRAPH |
: fors7 |
|

I
_ 1251

User

S7-300 Programmable Controller

Quick Start

Manual STEP 7 Manual
1230/
[| || [|
: LAD : } FBD } { scL :
I [|| |
I [I S
L3yl 236l | 1250 - 1
Referencel System Software for
Manual S7-300/400
F———n (— > System and Standard
| | i | o35/ Functions
HiGraph | CFCs for | —
' I ls7 |
| [I
I
L_ 12520 |25 |
Language Packages

System Software for S7-300/S7-400
Program Design

/ Online Help

Standard Software for S7 and M7

This symbol indicates the order in which you should read the
manuals, particularly if you are a first-time user of S7.

Symbol | Meaning

L]

[
L

1

This documentation introduces the methodology.
This is a reference manual on a specific topic.
The documentation is supported by online help.

Manuals on
S7-300/S7-400
Hardware

Manual

Standard Software for S7
Converting S5 Programs

User

Ixxx/: Number in the list of references

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Preface

Table 1-1

Summary of the Documentation

Title

Subject

S7-300 Programmable
Logic Controller
Quick Start, Primer

The primer provides you with a very simple introduction to the methods of
configuring and programming an S7-300/400. It is particularly suitable for first
users of an S7 programmable controller.

Programming Manual

S7-300/400 Program Desig

nThe“S7-300/400 Program Designprogramming manual provides you with the
basic information you require about the structure of the operating system and
program for an S7 CPU. First-time users of an S7-300/400 should read this ma
get a basic overview of programming methods on which to base the design o
program.

S7-300/400 System and
Standard Functions
Reference Manual

operating system that can be used when programming. The manual provides

functions available with an S7 programmable controller and contains detailed
interface descriptions explaining how to use the functions and blocks in your
program.

STEP 7
User Manual

The“STEP 7" User Manualexplains the basic use and functions of the STEP 7
automation software. Whether you are a first-time user of STEP 7 or an expe
STEP 5 user, the manual will provide you with an overview of the procedures
configuring, programming and getting started with an S7-300/400 programma
controller. When working with the software, you can call up the online help wh
supports you with information about specific details of the program.

Converting S5 Programs
User Manual

You require thé¢Converting S5 Programs” User Manud you want to convert
existing S5 programs and to run them on S7 CPUs. The manual explains how
the converter. The online help system provides more detailed information abou
the specific converter functions. The online help system also includes an inte
description of the available converted S7 functions.

STL, LAD, FBD, SCL1
Manuals

The manuals for the language packages STL, LAD, FBD, and SCL contain bg
instructions for the user and a description of the language. To program an
S7-300/400, you only require one of the languages, but you can, if required, n
languages within a project. When using one of the languages for the first time|
advisable to familiarize yourself with the methods of creating a program as exy
in the manual.

When working with the software, you can use the online help system which pr
you with detailed information about using the editors and compilers.

GRAPH1 | HiGraph1,
CFc?
Manuals

The GRAPH, HiGraph, and CFC languages provide you with optional method
implementing sequential control systems, status control systems, or graphical
interconnection of blocks. The manuals contain both the user instructions and
description of the language. When using one of these languages for the first tin
advisable to familiarize yourself with the methods of creating a program based
“S7-300 and S7-400 Program Designianual. When working with the software
you can also use the online help system (with the exception of HiGraph) whic
provides you with detailed information about using the editors and compilers.

1 Optional package for system software for S7-300/S7-400

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

The S7 CPUs have system functions and organization blocks integrated in the

time

a user
nual to
a user

you

with an overview of the system functions, organization blocks and loadable standard

ser

ienced
for
ble
ich

to use
t using
face

th

nix the
| itis
lained

pvides

s for

the
ne, itis
on the

=

Preface

How to Use This
Manual

Conventions

Additional
Assistance

Notes on Using the
Manual

\Y

To use this SCL manual effectively, you should already be familiar with the
theory behind S7 programs. This is explained irRttgramming Manual
[234/.The language packages also use the standard software for S7, so you
you should also be familiar with the standard software as described in the
User Manual/231/.

The manual is divided into the following parts:
e Chapter 1 introduces you to programming with SCL.

¢ Chapter 2 describes the design process on the basis of an example which
you can also run.

¢ Chapters 3 to 6 demonstrate how to use the SCL development
environment. They introduce you to the SCL Editor, Compiler and
Debugger.

e Chapters 7 to 19 form the reference section which provides you with
detailed information about the functions of the individual SCL
instructions.

The Appendix contains the following:
¢ A complete explanation of the SCL syntax conventions.
¢ The glossary includes definitions of the basic terms.

¢ The index will help you to locate a topic quickly.

References to other manuals and documentation are indicated by numbers in
slashes /.../. These numbers refer to the titles of manuals listed in
Appendix D.

If you have any questions regarding the software described in this manual
and cannot find an answer here or in the online help, please contact the
Siemens representative in your area. You will find a list of addresses in the
Appendix of/70/ or A00Q, or in catalogs, and in Compuserge (

autforum) . You can also contact our Hotline under the following phone or
fax number:

Tel. (+49) (911) 895-7000 (Fax 7001)

If you have any questions or comments on this manual, please fill out the
remarks form at the end of the manual and return it to the address shown on
the form. We would be grateful if you could also take the time to answer the
questions giving your personal opinion of the manual.

Siemens also offers a number of training courses to introduce you to the
SIMATIC S7 automation system. Please contact your regional training center
or the central training center in Nuremberg, Germany for details:

D-90327 Nuremberg, Tel. (+49) (911) 895-3154.

The user’s guide sections in this manual do not describe procedures in
step-by-step detail, but simply outline basic procedures. You will find more
detailed information on the individual dialogs in the software and how to use
them in the online help.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Contents

Part 1: Designing Programs

1

ProduCt OVeIVIBW oo 1-1

1.1 What IS SCL? ..ot 1-2
1.2 What Are the Advantages of SCL? 1-3
1.3 Performance Characteristics of the Development Environment 1-5
Designing SCL Programsttt 2:1

2.1 OV IV W . oo 2-2
2.2 Definingthe Tasks e 2-3
2.3 Using SCL Blocks to Performthe Tasks, 2-5
23.1 Defining the Subtasks i 2-5
2.3.2 Selecting and Assigning the Available Block Types 2-6
2.3.3 Defining the Interfaces Betweenthe Blocks 2-7
2.3.4 Defining the Input/Output Interface 2-9
2.3.5 Programmingthe Blocks i 2-10
2.4 Creating the Organization Block CYCLE 2-11
25 Creating the Function BIock RECORD ciiiiiiinn... 2-12
2.6 Creating the Function Block ANALYZE i, 2-17
2.7 Creating the Function SQUARE i 2-21
2.8 Debugging Datat e 2-22

Structured Control Language (SCL) for S7-300/S7-400, Programming .
C79000-G7076-C522-01 Vil

Contents

Part 2: Operating and Debugging

3

viii

Installing the SCL Software 3:1
INtrodUCHION 3-1
3.1 User AUtNONZationo e 3-2
3.2 Installing / Uninstalling the SCL Software 3-4
USING SCL oot e e 4-1
4.1 Starting the SCL Program 4-2
4.2 Customizing the User Interface 4-3
4.3 Working withthe SCLEdItor i 4-5
Programming with SCL 5-1
5.1 Creating User Programs Using SCLcoiiiiiiiiinnn.n. 5-2
5.2 Creating and Opening an SCL Source File 5-3
5.3 Entering Declarations, Statements and Comments 5-4
5.4 Saving and Printingan SCL Source File 5-5
5.5 The Compilation ProCcesst 5-6
5.6 Transferring the Compiled User Programtothe PLC 5-9
5.7 Creating a Compilation Control File 5-10
Debugging Programs e 6-1
6.1 OVBIVIBW et e 6-2
6.2 “Monitor Continuously” Debugging Function 6-3
6.3 “Breakpoints Active” Debugging Function 6-5
6.4 “Monitoring/Modifying Variables” Debugging Function 6-8
6.5 “Reference Data” Debugging Function 6-9
6.6 Using the STEP 7 Debugging Functions 6-10

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Contents

Part 3: Language Description

7 General Introduction to Basic SCL Terms ... i 7-1
7.1 Language Definition Aids 7-2
7.2 The SCL Character Set ...t e 7-4
7.3 Reserved WOrds e 7-5
7.4 Identifiers in SCLt 7-7
7.5 Standard Identifiers 7-8
7.6 NUMDEIS .. 7-10
7.7 Data TY PSS oottt e e 7-12
7.8 Variables 7-14
7.9 EXPreSSIONS . oot 7-16
7.10 StateMENTS . . . 7-17
7.11 SCL BIOCKS .ttt 7-18
7.12 COMMENTS .. 7-20

8 Structure of an SCL Source File e 8-1
8.1 SHUCIUIE . . o e e e e 8-2

INtroducCtion o 8-2

Order of BIOCKS 8-2
8.2 Beginningand EndofaBlock i 8-4
8.3 Block Attributes 8-5
8.4 Declaration SECtioNt 8-7
8.5 COode SECHON . .o 8-10
8.6 StalemMeNtS 8-11
8.7 Structure of a Function Block (FB) ...t 8-12
8.8 Structure of a Function (FC) i 8-14
8.9 Structure of an Organization Block (OB), 8-16
8.10 Structure of aDataBIock (DB) e 8-17

OVBIVIBW ettt e e e e 8-17
8.11 Structure of a User-Defined Data Type (UDT) 8-19

9 Data TYPES ..ot 9-1
9.1 OV BIVIBW oottt e 9-2
9.2 Elementary Data TYPeS . ..ot 9-3
9.3 Complex Data TYPES . ..o i it 9-4
9.31 DATE_AND TIMEDAta TYPE . . v v oeee e e 9-5
9.3.2 STRING Data TYpPe . ..ot e e e e e e 9-6
9.3.3 ARRAY Data TYpe ..ot e 9-7
9.34 STRUCT Data TYPE . ..ottt e e 9-8

Structured Control Language (SCL) for S7-300/S7-400, Programming .
C79000-G7076-C522-01 iX

Contents

10

11

12

13

9.4 User-Defined Data Type (UDT) ..ottt iae e 9-10
9.5 Parameter TYPeSo 9-12
Declaring Local Variables and Block Parameters ~ 10-1
10.1 OV BIVIBW oottt e 10-2
10.2 Declaring Variables and Parameters, 10-4
10.3 Initialization 10-5
10.4 Instance Declarationt 10-7
10.5 Static Variables 10-8
10.6 Temporary Variables 10-9
10.7 Block Parameters 10-10
10.8 Flags (OK Flag)o e e 10-12
Declaring Constants and Jump Labels i 11-1
111 CONStANIS . ..o 11-2
11.2 Literals .. 11-3
11.3 Formats for Integer and Real Number Literals 11-4
11.4 Formats for Character and String Literals 11-7
115 Formats for TIMeso e 11-10
11.6 Jump Labels ... 11-14
Declaring Global Data ... i 12-1
121 OVBIVIBW oottt e 12-2
12.2 CPU MEMOIY AlBaS . ottt ittt it e et 12-3
12.3 Absolute Access to CPU Memory Areasc.ovveineennneenn. 12-4
12.4 Symbolic Access to CPU Memory Areasc.ooviiineeenn.n. 12-6
125 Indexed Access to CPU Memory Areasoouuiiinennnennen.. 12-7
12.6 Data BIoCKS o 12-8
12.7 Absolute AccesstoDataBlocks i 12-9
12.8 Indexed Accessto Data Blocksco i 12-11
12.9 Structured Accessto DataBlocks it 12-12
Expressions, Operators and Addresses ...ttt e 13-1
131 OPEIAONS . . ittt e e 13-2
13.2 Syntax of EXPreSSioNSttt 13-3
1321 AAArESSES .ottt 13-5
13.3 Mathematical EXPressions ...t 13-7
13.4 Exponential EXPressionst 13-9
135 Comparative EXPreSSionSttt 13-10

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Contents

14

15

16

17

13.6 Logical EXPresSSiONSt e 13-12
Value ASSIgNMENIS .o e 14-1
14.1 OV W ottt e 14-2
14.2 Value Assignments Using Variables of Elementary Data Types 14-3
14.3 Value Assignments Using Variables of the Types STRUCT or UDT 14-4
14.4 Value Assignments Using Variables of the Type ARRAY 14-6
14.5 Value Assignments Using Variables of the Type STRING 14-8
14.6 Value Assignments Using Variables of the Type DATE_AND_TIME 14-9
14.7 Value Assignments using Absolute Variables for Memory Areas 14-10
14.8 Value Assignments using Global Variables 14-11
Control StatemeNntS 15-1
151 OVBIVIBW ettt e e e 15-2
15.2 IF Statement 15-4
15.3 CASE Statementt e 15-6
154 FOR Statement e e 15-8
15.5 WHILE Statement e 15-10
15.6 REPEAT Statemento i 15-11
15.7 CONTINUE Statement e e e 15-12
15.8 EXIT Statement 15-13
15.9 GOTO Statementt e 15-14
1510 RETURN Statement ...t 15-16
Calling Functions and Function Blocks i i 16+1
16.1 Calling and Transferring Parameters, 16-2
16.2 Calling Function Blocks (FBor SFB) it 16-3
16.2.1 FBParametersoiiiii 16-5
16.2.2 Input Assignment (FB)coiiiii i e e e 16-7
16.2.3 In/Out Assignment (FB) ... 16-8
16.2.4 Example of Calling a Global Instance 16-10
16.2.5 Example of Calling aLocalInstance 16-12
16.3 Calling FUNCLIONS 16-13
16.3.1 FC Parameterst 16-15
16.3.2 Input Assignment (FC)ttt i e e e e 16-16
16.3.3 Outputand In/Out Assignment (FC)c i, 16-17
16.3.4 ExampleofaFunctionCall i i 16-19
16.4 Implicitly Defined Parameters i 16-20
Counters and TIMEIS i e e e 17-1
17.1 Counter FUNCLIONSttt e 17-2
17.1.1 Input and Evaluation of the Counter Reading 17-6
17.1.2 Counter Up (CU) ...t e e e 17-7

Structured Control Language (SCL) for S7-300/S7-400, Programming)
C79000-G7076-C522-01 XI

Contents

18

19

Xii

17.1.3 CounterDown (CD) ..ottt e e e 17-7
17.1.4 Counter Up/Down (CUD)ottt i 17-8
17.1.5 Example of the Function S_CD (Counter Down) 17-8
17.2 TiMer FUNCHONSo e e e 17-10
17.2.1 Input and Evaluation of the Timer Reading 17-14
17.2.2 PUISE TIMer ot e e 17-16
17.2.3 Extended Pulse TIMer ittt e 17-17
17.2.4 On-Delay Timer 17-18
17.2.5 Retentive On-Delay TiIMerot 17-19
17.2.6 Off-Delay TiIMero e 17-20
17.2.7 Example of Program Using Extended Pulse Timer Function 17-21
17.2.8 Selecting the Right Timer Functionot 17-22
SCL Standard FUNCLONS e e 18-1

18.1 Converting Data TYPeS ... vv it e e 18-2
18.2 Standard Functions for Data Type Conversions 18-3
18.3 Numeric Standard Functions i, 18-9
18.4 Bit String Standard Functions 18-11
Function Call Interface 19-1

19.1 Function Call Interface i e 19-2
19.2 Data Transfer Interface with OBs 19-4

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Contents

Appendix

A Formal Description of Language ... A-1
Al OVBIVIBW et e e e e e A-2
A2 Overview Of TeIMS e A-5
A3 Lexical RUle TEIMS e A-6
A4 Formatting Characters, Delimiters and Operators A-7
A5 Keywords and Predefined Identifiers, A-9
A.6 Address Identifiers and Block Keywords o .. A-12
A7 Overview of NON Terms e A-14
A.8 Overview of TOKENS A-14
A.9 [dentifiers A-15
A.10 Naming Conventionsin SCL A-16
All Predefined Constantsand Flags i, A-18

B Lexical RUIBS ... B-1
B.1 [dentifiers ... o B-2
B.1.1 Literals ... B-4
B.1.2 AbSoOlute AdAreSSEeS B-9
B.2 ReMAIKS . .. e B-11
B.3 Block Attributes B-12

C SYNtAX RUIES .. C-1
C1 Subunits of SCL Source Files C-2
C.2 Structure of Declaration Sections C-4
C.3 Data Typesin SCL ... e e C-8
C4 €00 SECHION .. oottt c-11
C5 Value ASSIGNMENTSo C-13
C.6 Function and FunctionBlock Calls C-16
C.7 Control Statements C-18

D RefErENCES .. o D-1
GlOSSaIY .ot Glossary-1
NOEX e Index-1

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 Xl

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Part 1: |
Designing Programs Product Overview

Designing SCL Programs

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Product Overview 1

SCL Programming Apart from their traditional control tasks, programmable controllers

Language nowadays increasingly have to perform data management tasks and complex
mathematical operations. It is for these functions in particular that we offer
SCL for S7300/400 (Structured Control Language), the programming
language that makes programming easier and conforms to IEC 113-3.

SCL not only assists you with “normal” control tasks but also with extensive
applications and is thus superior to the “traditional” programming languages
in the following areas of application:

e Data management
* Process optimization
* Recipe management

e Mathematical/statistical operations

Technical In order to be able to work with SCL, you need a SIMATIC programming
Specifications device or a PC (80486 processor or higher, 16 Mbytes of RAM).

Language Capability

Operators Exponential/Mathematical

Comparators
Links

Functions Timers/Counters
Function block calls

Control structures Loops (FOR/WHILE/REPEAT)
Alternatives (IF THEN/CASE/GOTO)

Data Types
Elementary BOOL/BYTE/WORD/DWORD/
INT/DINT/REAL/TIME/
TIME_OF_DAY
Complex Strings/Arrays/Structures/User-defined
Chapter Section Description Page
Overview 1.1 What is SCL? 1-2
1.2 What Are the Advantages of SCL? 1-3
1.3 Performance Characteristics of Development Environment -5

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 1-1

Product Overview

1.1 Whatis SCL?

High-Level
Programming
Language

Development
Environment

1-2

SCL (&ructured_ntrol Languagé is a high-level textual programming
language which is based on PASCAL. It is also based on a standard for PLCs
(programmabile logic controllers).

The standar®IN EN-61131-3 (IEC 1131-3) sets down standardized requirements
for programming languages for programmable controllers. The basis for SCL
is the sectioristructured text”. For precise details of standards conformity,
refer to the "Compliance List” in thdORM.TBL file in STEP 7.

In addition to high-level language elements, SCL also includes language
elements typical of PLCs such as inputs, outputs, timers, bit memory, block
calls, etc. In other words, SCL complements and extends the STEP 7
programming software and its programming languages Ladder Logic and
Statement List.

For optimum use and practical application of SCL, there is a powerful
development environment which is matched both to specific characteristics
of SCL and STEP 7. This development environment consists of the following
components:

e ankEditor for writing programs consisting of functions (FCs), function
blocks (FBs), organization blocks (OBs), data blocks (DBs) and
user-defined data types (UDTs); the programmer is supported in his/her
tasks by powerful functions;

¢ aBatch Compiler for translating the program written using the Editor
into MC7 machine code. The MC7 code generated will run on all
S7-300/400 CPUs from CPU 314 upwards;

¢ aDebuggerwhich enables the programmer to check for logical
programming errors within an error-free environment; the debugging
operation is performed in the source language.

The individual components are simple and convenient to use since they run
under Windows 95 and thus benefit from all the advantages of that system.

SCL for S7-300/400

Editor Batch Compiler Debugger

Figure 1-1 SCL development environment

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Product Overview

1.2 What Are the Advantages of SCL?

High-Level SCL offers you all the advantages of a high-level programming language. In
Programming addition, however, it also has a number of characteristics designed to provide
Language assistance with structured programming, such as:

¢ the block structure of STEP 7
¢ ready-made blocks
e compatibility with STEP 5

Proven Block SCL is ideally suited to dealing with all the tasks involved in automation
Structure of projects, which means that you can combine SCL effectively with STEP 7 at
STEP 7 all stages of your project.

In particular, SCL supports the STEP 7 block concept and therefore,
alongside Statement List and Ladder Logic, enables standardized block
programming

OB FC FB DB ubDT SFC| | SFB

STEP 7 Blocks

Types of Block STEP 7 blocks are subunits of a user program which are delimited on the
basis of their structure or purpose. SCL provides the facility for creating the
following types of blocks:

Abbrevi- Block Type Function
ation
OB Organization block Interface between operating system and user
program
FC Function Block with parameter transfer capability but po
memory
FB Function block | Block with parameter transfer capability and
memory
DB Data block Block for storing user data
ubT User-defined Block for storing user-defined data types
data type

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 1-3

Product Overview

Ready-Made
Blocks

Mutual
Compatibility of
Blocks

Decompilation

Compatibility with
STEP 5

Programming

Methods

Ease of Learning

1-4

You do not have to program every function yourself. You can also make use
of ready-made blocks. These are integrated in the CPU operating system or
stored in librarieg¢S7lib)in the STEP 7 Standard package and can be used to
program communications functions, for example. The specific block types
involved are as follows:

Abbrevi- Block Type Function
ation
SFC System function | Characteristics similar to a function (FC)
SFB System function block | Characteristics similar to a function block (FB)

You can use blocks programmed using SCL in combination with Statement
List (STL), Ladder Logic (LAD), and Function Block Diagram (FBD)

blocks. This means that a block written in SCL can call a block written in
STL, LAD, or FBD. In the same way, SCL blocks can be called by STL,
LAD, or FBD programs. The programming languages of STEP 7 and SCL
(optional package) thus complement one another perfectly.

SCL blocks can be recompiled into the STEP 7 programming language
Statement List. Recompilation from STL to SCL is not possible.

Blocks written in SCL for STEP 5 are, apart from a few exceptions, upwardly
compatible; that is, they can also be edited, compiled and tested using SCL
for STEP 7.

Thanks to modern software engineering techniques, SCL supports structured
programming.

Provided you have some experience of using a high-level programming
language, SCL is easy to learn because the repertoire of language constructs
in SCL is based on other high-level programming languages.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Product Overview

1.3 Performance Characteristics of the Development Environment

Editor The SCL Editor is a text editor which can be used for editing any text files.
Its central purpose is the creation and editing of source files for STEP 7
programs. In a source file you can write one or more program blocks (see

below).
Editor
k Block 1
Block i
Source file j
Source filel

Figure 1-2 SCL Editor

The SCL Editor allows you to:
e Edit a complete source file incorporating one or more blocks

¢ Edit a compilation control file which with which you can automate the
compilation of a series of source files

¢ Use additional functions which simplify the task of editing the source file,
for example, Search and Replace

e Customize the Editor settings to suit your specific requirements

The Editor does not check the syntax of text while it is being entered.

Compiler Once you have created your source files using the SCL Editor, you must
translate them into MC code.

SCL source file

Block 1
Bloc'ki Batch
atc Pl BN
Source file 1 % Compiler {r—
Source file E Blocks in the S7

program
Compilation control file

Figure 1-3 SCL Compiler

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 1-5

Product Overview

The SCL Compiler allows you to:

e Compile an SCL source file consisting of a number of blocks in a single
compilation run

¢ Compile a series of SCL source files using a compilation control file
which specifies the names of the source files

e Customize the Compiler settings to suit your specific requirements

¢ view all errors and warning messages which occur during the compilation
process

¢ Easily locate errors in the source file with an additional facility which
provides descriptions of the errors and hints on how to rectify them.

Debugger The SCL Debugger provides a means of checking how a program will run on
the PLC and thereby a means of identifying any logical errors.

Bl

<:> Debugger

S7-300/400 programmable controller

Figure 1-4 SCL Debugger

SCL provides two different debugging modes:

¢ single-stepmonitoring — this follows the logical processing sequence of
the program; you can execute the program algorithm one instruction at a
time and observe how the variable values being processed alter in a
Result window;

e continuousmonitoring — in this mode you can test out a group of
instructions within a block of the source file; during the test run the
values of the variables and parameters are displayed in chronological
sequence and — where possible — cyclically updated.

STEP 7 Standard The SCL development environment allows you to perform STEP 7 standard
Package package functions such as displaying and modifying the CPU mode and
setting the time directly from within SCL.

Structured Control Language (SCL) for S7-300/S7-400, Programming
1-6 C79000-G7076-C522-01

Designing SCL Programs

Introduction

Chapter
Overview

Experience shows that the easiest and quickest way to program is if you
structure your tasks by splitting them up into individual self-contained
sections. SCL helps you to do this by enabling you to design individual
blocks efficiently.

This chapter describes how to design and implement a user program in SCL.

The explanations are illustrated by a sample program which you can run

using the debugging data supplied and your own input and output modules.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Section Description Page
21 Overview 2-2
2.2 Defining the Tasks 2-3
2.3 Using SCL Blocks to Perform the Tasks 2-5
231 Defining the Subtasks 2-5
23.2 Selecting and Assigning the Available Block Types 2-6
2.33 Defining the Interfaces Between the Blocks 2-7
234 Defining the Input/Output Interface 2-9
235 Creating the Blocks 2-10
2.4 Creating the Organization Blo¢kYCLE 2-11
2.5 Creating the Function BlodRECORD 2-12
2.6 Creating the Function BlockKNALYZE 2-17
2.7 Creating the FunctioBQUARE 2-21
2.8 Debugging Data 2-22

2-1

Designing SCL Programs

2.1 Overview

Obijective

SCL Language
Functions

Hardware for the
Sample Program

Debugging
Functions

2-2

The design section shows you how to use SCL effectively. At first, you will
probably have lots of questions, such as:

¢ How do | go about creating a program with SCL?
¢ Which SCL language functions are suitable for performing the task?
¢ What debugging functions are there for me to use?

These and other questions are answered in this section.

The sample program introduces the following SCL language functions,
among others:

e Structure and use of the various SCL block types

e Calling blocks with transfer and analysis of parameters
¢ Different input and output formats

¢ Programming with elementary data types and arrays

¢ Initializing variables

e Program structure and the use of branches and loops

You can run the sample program on a SIMATIC S7-300 or SIMATIC S7-400,
and you will need the following peripherals:

e One 16-channel input module

¢ One 16-channel output module

The program is constructed in such a way that you can perform a quick test
using the switches on the input module and the displays on the output
module. To perform a thorough test, use the SCL debugging functions (see
Chapter 6).

You also have all other system functions provided by the STEP 7 Standard
package.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Designing SCL Programs

2.2 Defining the Tasks

Summary

Recording
Measured Data

Processing
Measured Data

The measured data are to be recorded by an input module, sorted and
processed. Assuming a required range for the measured data of 0 to 255, one
byte is required for input.

The processing functions to be used are square root and square. The results
are to be displayed on an output module which will require one word.
Program control is to be performed via an input byte.

A measured value set by means of the eight input switches is to be copied to
the measured data array in the memory at precisely the point when a signal
pulse is detected at the Enter switch (see Figure 2-1). The measured data
array is to be organized as a cyclic buffer with a maximum of eight entries.

When a signal is detected at the Sort switch, the values stored in the
measured data array must be arranged in ascending order. After that, the
square root and the square of each number must be calculated.

Data Entry: x=Signaldetection

Enter switch Measured value Sort switch

¥ (1]afa]afafafaf1] [¥]
S Pl

—l Square Root Square
255 1 1 1
127 3 2 9
63 7 | Caleula- 13 49
tions
31 . I“‘I N 15 . 4 225
15 = 31 6 961
7 63 8 3969
3 127 11 16129
1 255 16 Overflow
|
Record measured data Sort measured data Calculate results

Figure 2-1 Recording and Processing Measured Data

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

2-3

Designing SCL Programs

Programmable
Output

Since only one value at a time can be displayed, the following options must
be available:

¢ Selection of an item from a list
¢ Selection of measured value, square root or square

The selection of an item from a list is to be implemented in such a way that a
list item is addressed by means of the following switch setting:

¢ Three switches are used to set a code which is copied if a signal is
detected at the fourth switch, the Code switch. From this, an address is
calculated which is used to access the output data.

¢ The same address identifies three possible values; that is, the measured
value, its square root and its square. To select one of these three options,
two changeover switches are required (see Figure 2-2).

Data Entry: x=Signal detection
Switches on Input Module E
Two changeover switches ~ Code § | 1| Code switch
o] 0 [
o e 1
Square root | Measured value or
or Square Calculated result 3
Square
Measured Value Root ~ Square
1 1 1
3 Access 2 9
output data
7 3 49
15 - o fol—w 4 225
31 { Change-f ¢ 961
over switch
63 8 3969
Select
127 Output 1 16129
255 16 Overflo
Address Address
Sorted data Calculated results
Data Output: v
Displays on | 4 |
Output Module Output

Figure 2-2 Programmable Output

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Designing SCL Programs

2.3 Using SCL Blocks to Perform the Tasks

Overview The task defined above is best performed by meanstofictured SCL
program. This involves using a modular design; that is, the program is
subdivided into a number of blocks, each of which performs a specific
subtask. In SCL, as with the other programming languages in STEP 7, you
have a number of block types available. For more information on these types,
see Chapters 1, 7 and 8.

Steps in the Task You can adopt the following procedure:

1. Define the subtasks
Select and assign the available block types
Define the interfaces between the blocks

Define the input/output interface

o M 0w DN

Program the blocks

2.3.1 Defining the Subtasks

Overview The subtasks are shown as boxes in Figure 2-3. The rectangular shaded areas
represent the blocks. The order of the code blocks from left to right
corresponds to the order in which they are called.

Organization Block Function Block Function Block
CYCLE RECORD ANALYZE
r I
Functions
Data | Record | Sort SORT
input | me;;u;ed | . me(?;;red (Square Root)
Cyclic | | and SQUARE
program
call Access el s .
. Data . | and select | Caculate > qgare root,
output | output data | results quare
Data Block | Store ‘J_ _ J
RECORD_DATA data
B | | Pro Data flo
gram flow Data flow
L I

Figure 2-3 Creating Blocks Based on the Subtasks

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 2-5

Designing SCL Programs

2.3.2 Selecting and Assigning the Available Block Types

Overview

CYCLE

RECORD

ANALYZE

SQRT(Square Root)
and SQUARE

2-6

The individual blocks were selected according to the following criteria:

User programs can only be called by an OB. Since the measured data are to
be received cyclically, an OB forcgclic operation cal(OB1) is required.

Part of the processingBata InputandData Output -is programmed in

the OB.

The subtasiRecord Measured Dataequires a block with a memory; that is,
a function block (FB), since certain block-specific data (for example, the
cyclic buffer) must be retained from one program cycle to the next. The
location for the tasiStore Data(lmemory) is the instance data block
RECORD_DATA

The same FB can also perform the subtsstess and Select Output Data,
since this is where the required data is kept.

When selecting the type of block for performing the subt&sksMeasured
Data andCalculate Resultgou must remember that an output buffer has to
be set up which contains the calculated results Square Root and Square for
each measured value.

For that reason, this block can only be an FB. Since this FB is called by a
higher-level FB it does not require its own DB. Its instance data can be stored
in the instance data block of the calling FB.

The type of block best suited to performing the subt&s#tsulate Square

Root and Squaris a function (FC) since the the result can be returned as a
function value. In addition, no data which has to be stored for more than one
program cycle is required for the calculation.

The standard SCL function SQRT can be used for calculating the square root.
A special function SQUARE is to be created for calculating the square and
will also check that the value is within the permissible range.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Designing SCL Programs

2.3.3 Defining the Interfaces Between the Blocks
Overview The interface between two blocks is defined by declarinfptineal
parameters.SCL offers the following possibilities:
* Input parameters: declared by means of VAR_INPUT
e Output parameters: declared by means of VAR_OUTPUT
* In/out parameters: declared by means of VAR_IN_OUT
When a block is called, input data is passed toactasal parameters After
the program returns to the calling block, the output data is prepared for
copying. An FC can transfer its result asilaction value (for details, refer
to Chapter 16).
RECORD The OBCYCLEhas no formal parameters itself. It calls theFBCOR[RNnd
passes to it the measured value and the control data for its formal parameters
(Table 2-1):
Table 2-1 Formal ParametersRECORD
Parameter Name| Data Type | Declaration Type Description
measval_in INT VAR_INPUT Measured value
newval BOOL VAR_INPUT Switch for copying measured
value to cyclic buffer
resort BOOL VAR_INPUT Switch for sorting and
analyzing measured data
select BOOL VAR_INPUT Two-way switch for selecting
function square root or square
selection WORD VAR_INPUT Code for selecting output
value
newselection BOOL VAR_INPUT Switch for copying code
result_out DWORD | VAR_OUTPUT | Output of calculated result
measval_out DWORD | VAR_OUTPUT | Output of corresponding
measured value

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

2-7

Designing SCL Programs

ANALYZE

The FBRECORIRalls the FBANALYZE The information they share is the

measured value array to be sorted. For that reason, this array is declared as an
infout parameter. A structured array is set up as an output parameter for the
calculated results Square Root and Square. For details of formal parameters,

see Table 2-2:
Table 2-2 Formal ParametersANALYZE
Parameter Data Type Declaration Description
Name Type
sortbuffer ARRAYI..] VAR_IN_OUT | Measured value array,
OF REAL corresponds to cyclic buffer
calcbuffer ARRAYI..] VAR_OUTPUT | Array for results:
OF STRUCT Structure having component
"Square Root” and "Square”
of type INT

7]

SQRT and SQUARE

These functions are called BNALYZE They require an input value and

return their results as a function value, see Table 2-3.

Table 2-3 Formal Parameters and Function Value&QRTandSQUARE
Name Data Declaration Type Description
Type
value REAL VAR_INPUT Input for SQRT
SQRT REAL Function value Square root of input value
value INT VAR_INPUT Input for SQUARE
SQUARE INT Function value Square of input value

2-8

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Designing SCL Programs

2.34 Defining the Input/Output Interface

Overview Figure 2-4 shows the input/output interface. Note that in the case of
input/output in bytes, the least significant byte is at the top and the most
significant byte is at the bottom. In the case of input/output in words on the
other hand, the opposite is true.

Power | CPU |:| |:|
pack 314
PLC gl Memory address:
= Input: O
i Output: 4
Input Output
Input Module Channel Description
] 0 Copy measured value
1 Initiate sorting and calculation
" 2 Select result: square root or square
g Byte 0 3 Select output: measured value or result
FE — 4 Code, Bit0
UE) 5 Code, Bit 1
6 Code, Bit 2
7 Copy code
| Byte 1 i
Oto7 Input byte: measured value
Qutput Module Channel Description
Oto7 Most significant byte
Byte O of output word (bits 8 to 15):
Required for calculation of square only,
(‘% otherwise 0
- Oto7 Least significant byte of
g ﬁ? output word (bits 0 to 7):
Measured value or result:
square root or square

Figure 2-4 Displays and Controls

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 2-9

Designing SCL Programs

2.35 Programming the Blocks

Programming Once the interfaces have been defined, you can create each of the blocks
Blocks separately from one another. This is best done from the top down; that is, in
the ordeiICYCLE RECORPANALYZEandSQUAREThis is the order in
which the blocks are described below.

When compiling the blocks, you must remember that a block must exist
before you can use it; that is, call it from another block. This dictates that the
order of the blocks in the SCL source file musSig8UAREANALYZE
RECORPandCYCLE(for details, refer to Chapter 8).

Symbolic The comprehensibility of the program will be improved if you sigabolic

Programming namesfor module addresses and blocks. To do this, you must enter
definitions in the symbol table as shown in Figure 2-5 (see Chapter 7). The
names must conform to the naming conventions for either IDENTIFIERS or
symbols (for example, "Input 0.0”), see Appendix A.

Introductory Figure 2-5 shows the introductory comment of the SCL source file and the
Comment and symbolic names which are to be declared in the symbol table to permit its
Symbol Table error—free compilation.

(CHEHHEH R R R R R R R R R

SCL Program for Recording and Processing Measured Data:

- A measured value whose signal is present on the input module is copied from
input 0.0 (input switch)

- Subsequent processing of the measured values can be controlled by various
switches

- All values are stored in the working section of the function block RECORD,
the instance data block RECORD_DATA.

The program is programmed symbolically. In order for it to be compiled, details of
the assignment of the symbolic names to the module addresses and the blocks running
on the CPU must be specified. This requires the following symbol table:

Input IB1 BYTE /I Measured value
Input 0.0 10.0 BOOL /I Input switch for copying measured value
Sort switch 10.1 BOOL /I Initiates sorting and calculation
Function switch ~ 10.2 BOOL /I Selects result: square root or square
Output switch 10.3 BOOL /I Selects output: measured value or result
Code IW0 WORD /I Code, relevant bits 12,13 and 14
Code switch 10.7 BOOL /I Copies code
Output Qw4 INT /I Measured value or result: square root or square
RECORD FB10 FB10 /I Records measured values,
/I accesses and selects output
RECORD_DATA DB10 FB10 /I Instance data block for RECORD
ANALYZE FB20 FB20 /I Analyzes measured values, calculates results
SQUARE FC41 FC41 /I Function for calculating square
CYCLE OB1 OB1 /I Cyclic operation call and input/output

B T T T T R T)

Figure 2-5 Introductory Comment and Symbol Table

Structured Control Language (SCL) for S7-300/S7-400, Programming
2-10 C79000-G7076-C522-01

Designing SCL Programs

2.4 Creating the Organization Block CYCLE

Processing An OB1 was chosen because it is caltgdlically by the STEP 7 system. It
Sequence performs the following tasks for the program:

e Calls and supplies the function block RECORD with input and control
data.

¢ Copies the results data from the function block RECORD
e Qutputs the data to the display

At the beginning of the declaration section is the 20-byte temporary data
array “system data” (see also Chapter 8).

ORGANIZATION_BLOCK CYCLE

(
CYCLE corresponds to OB1; that is, it is called cyclically by the S7 system

Part1 : Calls function block and transfers input data
Part2 : Copies output data and outputs data with switch to output
)
VAR_TEMP
system data . ARRAY[0..20] OF BYTE; // Range for OB1
END_VAR
BEGIN
* Part1)
RECORD.RECORD_DATA(
measval_in := WORD_TO_INT(Input),
newval := "Input 0.0", //Input switch as symbol
resort := Sort switch,
selectfunction := Function switch,
newselection = Code switch,
selection := Code);
* pPart2)
IF Output switch THEN /ISwitch to output
Output := RECORD_DATA. result_out; /ISquare root or Square
ELSE
Output = CREATE_DATA.measval_out; /IMeasured value
END_IF;

END_ORGANIZATION_BLOCK

Figure 2-6 Organization Block CYCLE (OB1)

Data Type The measured value is present at the input as data type BYTE. It has to be

Conversion converted to data type INT. To do so, you must convert it from WORD to
INT — prior conversion from BYTE to WORD is implicit in the compilation
process (see Chapter 18). The output on the other hand requires no
conversion, since it has been declared as data type INT in the symbol table,
see Figure 2-5.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 2-11

Designing SCL Programs

2.5

Processing
Sequence

Creating the Function Block

RECORD

The block type FB was chosen because certain data has to be retained from
one program cycle to the next. This relates to the static variables which are
declared in the declaration block “VAR, END_VAR” (see Table 2-4).

Static variables are local variables whose values are retained throughout the
processing of every block. They are used to save values of a function block,

and are stored in the instance data block.

FUNCTION_BLOCK RECORD

(

Part1: Records measured data
Part2: Initiates sorting and calculation
Part3: Analyzes code and prepares data for output
)
Figure 2-7 Header of Function Block RECORD

Static Variables

2-12

Table 2-4 Static Variables for RECORD
Name Data Type Decla- | Initial- Description
ration ization
Type Value
measdata ARRAY [..] VAR 8(0) | Cyclic buffer for measured
OF INT data

results- ARRAY [.] VAR — Array for structures with

buffer OF STRUCT the components "square
root” and "square” of the
type INT

index INT VAR 0 Index for cyclic buffer
identifying location for
next measured value

prevval BOOL VAR FALSE | Previous value for
copying measured value
using "newval”

prevsort BOOL VAR FALSE | Previous value for sorting
using "resort”

prev- BOOL VAR FALSE | Previous value for

selection copying code using
"newselection”

address INT VAR 0 Address for output of
measured value or result

analyzing_ ANALYZE, VAR — Local instance for the FB

block =FB 20 ANALYZE

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Designing SCL Programs

Please note the initialization values which are assigned to the variables when
the block is initialized (after being downloaded to the CPU). The local
instance for the FBINALYZEis also declared in the declaration block “VAR,
END_VAR”. This name is used subsequently for calling and accessing the
output parameters. The global instaRteECORD_DATM used to store the

data.

Declaration The declaration section in this block consists of the following components:
Section of
* Constants: declared between CONST and END_CONST
RECORD -
¢ Input parameters: declared between VAR _INPUT and END_VAR
¢ Output parameters: declared between VAR_OUTPUT and END_VAR
e Static variables: declared between VAR and END_VAR (this also
includes declaration of the local instance for the block ANALYZE).
CONST
LIMIT =7,
COUNT = LIMIT + 1;
END_CONST
VAR_INPUT
measval_in INT; // New measured value
newval BOOL; /I Copies measured value into cyclic buffer
resort BOOL; // Sorts measured data
selectfunction : BOOL; // Selects calculation function, Square Root/Square
newselection BOOL; /I Copies output address
selection : WORD; // Output address
END_VAR
VAR_OUTPUT
result_out INT; // Calculated value
measval_out INT; /I Corresponding measured value
END_VAR
VAR
measdata ARRAYIO..LIMIT] OF INT := 8(0);
resultsbuffer ARRAYIO0..LIMIT] OF
STRUCT
squareroot : INT,;
square © INT;
END_STRUCT;
index INT = 0;
prevval BOOL = TRUE;
prevsort BOOL = TRUE;
prevselection : BOOL := TRUE;
address INT = 0; /IConverted output address
analyzing_block: ANALYZE; /IDeclaration of local instance
END_VAR
Figure 2-8 Declaration Section of the Function Block RECORD

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

2-13

Designing SCL Programs

Designing the
Code Section

Recording

measured data

Initiating sorting and
calculation

Analyzing the code
and preparing output
data

Calculating the
Address

2-14

This is split into three sections:

If the input parameter "newval” is different from the "prevval”, a new
measured value is copied to the cyclic buffer.

Performed by calling the function blo&NALYZEif the input parameter
"resort” is different from "prevsort”.

The code is read word by word. According to SIMATIC conventions, this

means that the upper group of switches (byte 0) contains the most significant
eight bits of the input word and the lower group of switches (byte 1) the least
significant. Figure 2-9 shows the location of the switches for setting the code.

Switches on Word in After SHR After AND,
Module memory by 12 places mask 000F

0 0 0 0

1 1 1 1 “address”

2 2 2 2

3 3 3 3
Switches)) 4)
forcode | [s s 5

6 6 6 6
Code =»>> 74 7 7 7
switch Byte 0

0 8

1 9 9 9

2 10 10 10

3 11 11 11

4 12 12 12

5 13 13 13

6 14 14 14

7 15 15 15

Byte 1 W0

Figure 2-9 Analysis of the Code

Figure 2-9 also shows how the address is calculated. The input word IWO
contains in bits 12 to 14 the code which is copied when a signal is detected at
the code switch (bit 15). By shifting right using the standard function SHR

and hiding the relevant bits using an AND mask, the “address” is calculated.

This address is used to write the array elements (calculated result and
corresponding measured value) to the output parameters. Whether square
root or square is output depends on “functionchoice”.

A signal at the code switch is detected by virtue of the fact that
“newselection” is different from “prevselection”.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Designing SCL Programs

Flow Chart for
RECORD

Figure 2-10 represents the algorithm in the form of a flow chart:

Function Block

RECORD

Copy measured value to cyclic buffer,
recalculate index

resort
changed?

no

yes

ANALYZE

Copy calculated results
to results array

new code
changed?

Load from instance
data block

Analyze code and

calculate output address

function-
choice?

FALSE

TRUE

Load square root result

| Load square result |

/

| Load measured value

Load:

Cyclic buffer is imple-
mented by means of
MOD operation:
when limit is reached
start from beginning
again

Sort cyclic buffer and
perform calculations
(set up results array)

First shift relevant bits to right
margin then hide spaces not
required by means of AND

Write list items with output addresses
to the output parameters so that their
values can be displayed afterwards.

Figure 2-10 Algorithm for Recording Measured Data

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

2-15

Designing SCL Programs

Code Section of Figure 2-11 shows the SCL formulation of the flow chart shown in
RECORD Figure 2-10; that is, theode sectiorof the logic block.

BEGIN

(*Partl: Records measured data

If "newval” changes, the measured value is entered.
A cyclic buffer for the measured data is implemented by means of
the operation MOD.*)

IF newval <> prevval THEN

index = index MOD COUNT;
measdatafindex] = measval_in;
index = index + 1;

END_IF;

prewal = newval;

(*Part 2 : Initiates sorting and calculation

If "resort” changes, sorting of cyclic buffer and performing of
calculations on measured data is initiated. Results
are stored in a new array "calcbuffer”. *)

IF resort <> prevsort THEN
index := 0; //Reset cyclic buffer index
analyzing_block(sortbuffer := measdata); //Call ANALYZE

END_IF;

prevsort = resort;

resultsbuffer = analyzing_block.calcbuffer; //Square and Square Root
(* Part 3 : Analyzes code and prepares data for output *****kkkkkkiiiiiiik

If "newselection” changes, the address code for accessing the
array element for the output data is recalculated. The
relevant bits of "newselection” are hidden and converted into
integers. Depending on the setting of the switch "functionchoice”,
either "squareroot” or "square” is prepared for output. *)

IF newselection <> prevselection THEN
address = WORD_TO_INT(SHR(IN := selection, N := 12) AND 16#0007);

END_IF;
prevselection := newselection;
IF functionchoice THEN
result_out := resultsbuffer[address].square;
ELSE
result_out = resultsbuffer[address].squareroot;
END_IF;
measval_out := measdata[address]; //Display measured data

END_FUNCTION_BLOCK

Figure 2-11 Code Section of the Function Block RECORD

Structured Control Language (SCL) for S7-300/S7-400, Programming
2-16 C79000-G7076-C522-01

Designing SCL Programs

2.6

Declaration
Section of
EVALUATE

Creating the Function Block ANALYZE

The declaration section of this block consists of the following components:
Constants: declared between CONST and END_CONST

In/out parameters: declared between VAR_IN_OUT and END_VAR
Output parameters: between VAR_OUTPUT and END_VAR
Temporary variables: declared between VAR_TEMP and END_VAR

FUNCTION_BLOCK ANALYZE

(
Part 1:

Part 2 :

Sorts measured data in cyclic buffer
Initiates calculation of results

Figure 2-12

Header of Function Block ANALYZE

CONST
LIMIT
END_CONST

VAR_IN_OUT
sortbuffer
END_VAR

VAR_OUTPUT
calcbuffer
STRUCT
squareroot
square
END_STRUCT;
END_VAR

VAR_TEMP
swap
index, aux
valr, resultr
END_VAR

. REAL;

ARRAYIO..LIMIT] OF INT;

ARRAYIO0..LIMIT] OF

INT;
INT;

. BOOL,;
. INT;

Figure 2-13 Declaration

Procedure

Section of the Function Block ANALYZE

The in/out parameter “sortbuffer” is linked to the cyclic buffer “measdata”;
that is, the original contents of the buffer are overwritten by the sorted
measured data.

The new array “calcbuffer” is created as an output parameter for the
calculated results. Its elements are structured in such a way that they contain
the square root and the square of each measured value.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

2-17

Designing SCL Programs

Designing the
Code Section

2-18

Figure 2-14 shows you the relationship between the fields described.

— measdata sortbuffer —

calcbuffer —

Figure 2-14 Interface of the FB ANALYZE

This interface shows the core element of data exchange for processing the
measured data. The data is stored in the instance dateREGRRD DATA
since a local instance for the PBIALYZEhas been created in the calling FB
RECORD

First of all, the measured data in the cyclic buffer is sorted and then the
calculations performed.

¢ Sort algorithm method

The permanent exchange of values method is used for sorting the measured
data buffer; that is, adjacent pairs of values are compared and their order
reversed until the desired overall order is obtained. The buffer used is the
in/out parameter "sortbuffer”.

¢ |nitiation of calculations

Once the sorting operation is complete, the program runs through a
calculation loop in which the functions SQUARE and SQRT are called to
obtain the square and square root respectively of the number in question.
Their results are stored in the structured array "calcbuffer”.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Designing SCL Programs

Flow Chart for Figure 2-15 depicts the algorithm in the form of a flow chart:
ANALYZE
Function Block
ANALYZE Start
Start of !
REPEAT loop | swap = FALSE |
v
Start of -
FOR loop | = umiT | | represents index
|
no
| >=17?
yes

yes

P

Swap the values

sortbuffer [I-1] >

sortbuffer[l] ?

no of sortbuffer[l-1] and
sortbuffer[l]
| SWAP = TRUE |
|
End of b=1-1
FOR loop ‘
End of
REPEAT loop TRUE
swap?
FALSE
Start of 1:=0
FOR loop
no
| <= LIMIT? -
yes
SQRT Enter results in the structured
results array
SQUARE Enter results in the structured
results array
End of | l=1+1 |
FOR loop *

End

Figure 2-15 Algorithm for Analyzing the Measured Data

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 2-19

Designing SCL Programs

Code Section of
ANALYZE

Figure 2-16 shows the SCL formulation of the flow chart shown in
BEGIN

Figure 2-15; that is, theode sectiorof the logic block.

(*Partl Sorting of data

Swaps adjacent pairs of values using the "bubble sort”
REPEAT

method until the measured data buffer is correctly sorted. *)
swap = FALSE;
FOR index := LIMIT TO 1 BY -1 DO
IF sortbuffer[index—1] > sortbuffer[index] THEN
aux

sortbuffer[index]

= sortbuffer[index—1];
sortbuffer[index—1] = aux;

swap =
END_IF;

TRUE;
END_FOR,;
UNTIL NOT swap
END_REPEAT;

sortbuffer[index];

(*Part2 Calculation of results

Calculates square root using standard function SQRT and
square using function SQUARE. *)
FOR index

valr
resultr :=

:=0TO LIMIT BY 1 DO
= INT_TO_REAL(sortbuffer[index]);
SQRT(valr);
calcbuffer[index].squareroot := REAL_TO_INT(resultr);
calcbuffer[index].square =
END_FOR;

SQUARE(sortbuffer[index]);
END_FUNCTION_BLOCK

Figure 2-16

Code Section of the Function Block ANALYZE

2-20

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Designing SCL Programs

2.7 Creating the Function SQUARE

Designing the The program first checks whether the input value exceeds the limit at which

Code Section the result would be outside the integer range. If it does, the maximum value
for an integer is inserted. Otherwise, the square calculation is performed. The
result is passed over as a function value.

FUNCTION SQUARE : INT

(
This function returns as its function value the square of the input value or, in

the event of overrun, the maximum value representable by an integer.
)

VAR_INPUT
value : INT,;
END_VAR

BEGIN
IF value <= 181 THEN
SQUARE = val * val; /I Calculates function value
ELSE
SQUARE = 32_767; /I Set to maximum value in the event of overrun
END_IF;

END_FUNCTION

Figure 2-17 The Function SQUARE

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 2-21

Designing SCL Programs

2.8 Debugging Data

Basic To perform the test, you require an input module at address 0 and an output
Requirements module at address 4 (see Figure).

Before performing the test, set all eight switches in the upper group to the
left (“0”) and all eight switches in the lower group to the right (“1").

Reload the blocks to the CPU, since the initial values of the variables must
also be tested.

Stages of the Test Now carry out the test as described in Table 2-5.
Table 2-5 Stages of the Test
Test Action Result
1 Set the code to "111” (10.4, 10.5 and 10.6) and copyll outputs on the output module (least significant
that code by means of the code switch (10.7). byte) are activated and the displays light up.
2 Display the corresponding square root by setting|thike displays on the output module indicate the
output switch (10.3) to "1". binary number "10000” (=16).
3 Display the corresponding square by setting the | 15 displays on the output module light up. This
function switch (10.2) to "1". indicates a memory overflow since 255 x 255 givies
too large a figure for the integer range.
da Reset the output switch (10.3) to "0” again. The measured value is displayed again. All displays
on the outputs of the least significant output byte
are set.

4b Set the number 3; that is, the binary number "11" 8$he output does not change at this stage.
the new measured value on the input module.

5a Observe the process of reading the measured valu€resoutput module shows 0; that is, none of the
follows: set the code to "000” and copy it by meandisplays lights up.

of the code switch (10.7) so that you can
subsequently observe the input of the data.

5b Switch over the input switch "Input 0.0” (10.0). ThjsThe output module displays the measured value |3,

copies the value set in test stage 4. binary "11".
6 Initiate sorting and calculation by switching over fiEhe output module again shows 0 since the sorting
sort switch (10.1). process has moved the measured value to a higher

position in the array.

7 Display the measured value after sorting as followshe output module now shows the measured value
Set the code "110” (10.6 =1, 10.5 = 1, 10.4 = 0 on| "11” again since it is the second highest value in the
IBO; corresponds to bit 14, bit 13 and bit 12 on IW@Jray.
and copy it by switching over the code switch.

8a Display the corresponding results as follows: The output value 9 (binary "1001") is displayed.
switching over the output switch (10.3) displays the
square of the measured value from stage 7.

8b Switch over the function switch (10.2) to obtain theThe output value 2 (binary "10”) is displayed.
square root.

Structured Control Language (SCL) for S7-300/S7-400, Programming
2-22 C79000-G7076-C522-01

Designing SCL Programs

Supplementary
Test

Tables 2-6 and 2-7 describe the switches on the input module and the

examples for square and square root. These descriptions will enable you to

define your own tests:

¢ Input is effected by means of switches. The top eight switches perform
control functions, the bottom eight are used to set the measured value.

* Output is effected via displays. The top group displays the most
significant output byte, the bottom group the least significant byte.

Table 2-6 Control Switches
Control Name Description
Switches
Channel 0 Input switch Switch over to copy measured value
Channel 1 Sort switch Switch over to initiate sorting/calculation
Channel 2 Function switch Set to left (“0”) for square root Set to right|
(“1") for square
Channel 3 Output switch Set to left (“0”) for measured value Set to
right (“1”) for calculated result
Channel 4 Code Output address Bit 0
Channel 5 Code Output address Bit 1
Channel 6 Code Output address Bit 2
Channel 7 Code switch Switch over to copy code

Table 2-7 contains eight examples of measured values arranged in order.

You can enter the values in any order. Set the bit combination for each value
and transfer this value by operating the input switch. Once all values have
been entered, initiate sorting and calculation by operating the sort switch.
After that, you can view the sorted data or the calculated results (square root
or square).

Table 2-7

Sample Data for Square Root and Square

Measured Value

Square Root

Square

00000001 =1 0, 00000001 =1 0000 0000, 0000 0001 =1
0000 0011 =3 0, 0000 0010 =2 0000 0000, 0000 1001 =9
00000111 =7 0, 0000 0011 =3 0000 0000, 0011 0001 = 49

0000 1111 =15

0, 0000 0100 = 4

0000 0000, 1110 0001 = 225

0001 1111 =31

0, 0000 0110=6

0000 0011, 1100 0001 = 961

0011 1111 = 63

0, 0000 1000 = 8

0000 1111, 1000 0001 = 3969

0111 1111 =127

0,0000 1011 =11

0011 1111, 0000 0001 = 16129

1111 1111 = 255

0, 0001 0000 = 16

0111 111, 1111 1111 = Overflow!

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

2-23

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Part 2:
Operating and Debugging

Installing the SCL Software

Using SCL

Programming with SCL

Debugging Programs

o o1 B~ W

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Installing the SCL Software 3

Introduction A menu-driven Setup program guides you through the process of installing
the SCL software. The Setup program must be started using the standard
procedure for installing software under Windows 95.

Installation To install the SCL software, you require the following:

Requirements e A programming device or PC on which the STEP 7 Standard package has

previously been installed and with
— a 80486 processor (or higher) and

— 16 Mbytes of RAM

¢ A color monitor, keyboard and mouse supported by Microsoft
Windows 95

* A hard disk with 78 Mbytes of free storage space (10 Mbytes for user
data, 60 Mbytes for swap-out files and 8 Mbytes for the SCL optional
package)

e Atleast 1 Mbyte of free disk space on drive C: for the Setup program (the
Setup files are erased once installation is completed)

e The Windows 95 operating system

* An MPI interface between the programming device/PC and the PLC
consisting of:

— Either a PC/MPI cable which is connected to the communications port
of your device

— Or an MPI module installed in your device. Some programming
devices already have an MPI interface fitted.

Chapter Section Description Page
Overview 3.1 User Authorization 3-2
3.2 Installing / Uninstalling the SCL Software 3-4

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 3-1

Installing the SCL Software

3.1 User Authorization

Introduction

Authorization
Diskette

/N

Recording
Authorization
during First-Time
Installation

3-2

Product-specific user authorization is required for using the SCL software
package. The software is protected in such a way that it can only be used if it
detects the required authorization for the program or software package on the
hard disk of the programming device/PC.

In order to obtain user authorization, you require the read-protected
authorization diskette. This contains the user authorization and the
AUTHORS program, which are necessary for displaying, installing and
uninstalling the authorization.

The number of possible user authorizations is specified by an authorization
counter on the authorization diskette. For each authorization granted, the
counter is reduced by one. Once it reaches zero, the disk in question can not
be used for any further authorization.

For more details and rules governing the use of authorization, please refer to
the User Manual31/

Caution

Read the notes in the README.WRI file on the authorization diskette. If
you do not adhere to these guidelines, the authorization may be irretrievably
lost.

You should complete the authorization procedure when the program prompts
you to do so during first-time installation. Proceed as follows:

1. Insert the authorization diskette when prompted to do so.
2. Acknowledge the prompt.

The authorization details are transferred to a physical drive (in other words,
your computer records that you have authorization).

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Installing the SCL Software

Recording
Authorization
at a Later Date

Removing
Authorization

If Your Hard Disk
is Defective ...

If you start the SCL software when there is no record of authorization

present, a message to that effect appears. To record authorization at any point
after installation, start the program AUTHORS from the authorization

diskette. This allows you to view, install or remove user authorization. The
program is menu-driven.

Note

Always enter drive C: as the destination drive when installing authorization
for SCL.

If you need to re-install authorization details, for example after re-formatting
the drive on which the authorization details are recorded, you must first save
those details elsewhere. To do this, you require the original authorization
diskette.

Proceed as follows to retransfer the authorization details to the authorization
diskette:

1. Insert the original authorization diskette in drive A: (3.6 inch).

2. Start the program AUTHORS.EXE from the authorization diskette.
3. Choose the menu comma#fdthorization » Remove
4

. In the dialog box which then appears, enter the drive on which the
authorization details are recorded and confirm your entry. A list of the
authorizations recorded on the specified drive appears.

5. Select the authorization you wish to remove and confirm your entry. If the
operation is completed without errors, you will receive the following
message:

" Authorization for <Name>successfully removed from drive<X:>.”

6. Acknowledge the message.

The dialog box with the list of remaining authorizations on the drive then
appears again. Close the dialog box if you do not wish to remove any
other authorizations.

You can then use this disk to reinstall the authorization concerned at a later
date.

If a fault occurs on your hard disk before you can save the authorization
details, please contact your local SIEMENS representative.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

3-3

Installing the SCL Software

3.2 Installing / Uninstalling the SCL Software

Summary

Preparations

Starting the
Installation
Program

If a Version of SCL
is Already Installed

3-4

SCL includes a Setup program that automatically installs the software.
Prompts which appear on the screen guide you step by step through the
complete installation process.

Before you can start installation, Windows 95 must be running and the
STEP 7 Standard package must be also be loaded.

Proceed as follows:

1. In the Windows 95 Control Panel window, double-click on the
Add/Remove Programs icon.

2. Select Install...

3. Insert the floppy disk (Disk 1) or the CD-ROM in the drive and then click
Next. Windows 95 then automatically searches for the installation
program SETUP.EXE.

4. Follow the instructions given by the installation program as and when
they appear.

The program guides you through the installation process step by step. After
each step you can choose to continue to the next step or go back to the
previous one.

If the installation program detects that there is already a version of SCL on
the programmable logic controller, a message to that effect appears and you
have the following options:

¢ Cancel installation (to uninstall the existing version of SCL from
Windows 95 and then restart installation of the new version) or

¢ Continue with the installation process and allow the older version to be
replaced by the new one.

It is always preferable to remove an earlier version before installing the new
version. The disadvantage of simply overwriting the old version is that if you
subsequently remove it, the uninstall procedure may not remove files which
were components of the earlier version.

During the installation process, dialog boxes appear asking you questions or
offering you a choice of options. Please read the notes below to enable you to
respond more quickly and easily to the dialog boxes.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Installing the SCL Software

Uninstalling

Scope of
Installation

Authorization

When Installation
is Complete

Errors During
Installation

Use the standard Windows 95 procedure for removing programs as follows:

1. Inthe Windows 95 Control Panel window, double-click on the
Add/Remove Programs icon.

2. From the list of installed programs, select STEP 7 and then click the
Add/Remove... button.

3. If dialog boxes appear asking you to confirm deletion of "released files”,
click the No button if in doubt.

All languages in the user interface and all examples require approximately
8 Mbytes of RAM.

During installation, the program checks whether the appropriate
authorization exists by looking to see if details are recorded on the hard disk.
If no authorization details are found, a message appears indicating that the
software can only be used with the appropriate authorization. If you wish you
can record the authorization immediately or continue with the installation
procedure and record authorization details at a later stage.

In the former case, you must insert the authorization diskette when prompted
to do so and confirm the operation. Information about the authorization
procedure is given in Section 3.1.

If installation is successfully completed, this is indicated by a message to that
effect on the screen.

The following errors will cause installation to be aborted:

¢ If an initialization error occurs immediately after the Setup program is
started this most probably means that Windows 95 was not running when
the program SETUP.EXE was started.

¢ Insufficient disk space — you require at least 8 Mbytes of free space on the
hard disk.

e Faulty disk — if you discover that your floppy disk is faulty, please contact
your Siemens representative.

e Operator errors: restart the installation process and follow the instructions
carefully.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

3-5

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Using SCL

Introduction This chapter introduces you to using SCL. It provides information about the
SCL Editor user interface.
Chapter Section Description Page
Overview 4.1 Starting the SCL Program 4-Z
4.2 Customizing the User Interface 4-3
4.3 Working with the SCL Editor 4-5

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Using SCL

4.1 Starting the SCL Program

Starting from the
Windows Interface

Starting from the
SIMATIC Manager

4-2

Once you have installed the SCL software on your programming device/PC,
you can start SCL USING the Start button in the Taskbar of Windows 95
(entry under “SIMATIC / STEP 7).

The quickest way to start SCL is to position the mouse pointer on an SCL
source file in the SIMATIC Manager and double-click on it. For more
information, refer to the user manuaBi/.

Figure 4-1 shows the SCL window after the program has been started.

E SCL: Programming S7 Blocks
File View Help

DlsE| Sf [~] § 5|8 0<len] X?)

BEEE

Press F1 for help. [[Nnom[

Figure 4-1 SCL Window

Note

Precise details of standard operations and options in Windows 95 are given
in your Windows 95 documentation or the online Windows 95 Tutorial.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Using SCL

4.2 Customizing the User Interface

Overview

Title bar

Menubar ———»

Toolbar —

Working area —— »

Status bar ——»

The SCL windows consist, as do other STEP 7 windows, of the following
standard components (see Figure 4-2):

e Title bar:
Contains the window title and window control buttons

e Menu bar:
Shows all menus available in the window concerned

e Toolbar:
Contains a series of buttons which provide shortcuts to frequently used
commands

e Working area:
Contains one or more windows in which you can edit program code or
read compiler information or debugging data

¢ Status bar
Displays the status of and other information relating to the active object

E SCL: Programming S7 Blocks
File View Help

O] Sf <] ~| & [==(@] cx

atf | x?|

o[[[12[]

Press F1 for help. [INnom[

Figure 4-2 Components of the SCL Window

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

4-3

Using SCL

Modifying
Components

Customizing the
Tool Bar

Customizing the
Breakpoint Bar

Customizing the
Status Bar

Customizing the
Development
Environment

Creating Blocks

Customizing the
Compiler

Customizing the
Editor

4-4

The following components can be customized to your own personal
specifications:

¢ Display of the toolbar
¢ Display of the breakpoint bar

¢ Display of the status bar

You can choose to display or hide the toolbar by selecting or deselecting the
menu commandiew » Toolbar. When the function is activated, a check
mark appears next to the command.

You can choose to display or hide the breakpoint bar by selecting or
deselecting the menu commavigw » Breakpoint Bar. When the function
is activated, a check mark appears next to the command.

Similarly, you can choose to display or hide the status bar by selecting or
deselecting the menu commaviigw > Status Bar. When the function is
activated, a check mark appears next to the command.

The Editor and the Compiler allow you to make certain settings which will
make your job easier.

e Settings when creating blocks
e Editor settings

e Compiler settings

You can, for example, decide whether existing blocks are overwritten or not
when compiling. To do this, select the menu comm@ptions » Customize

and click the“Create Blocks” tab in the “Customize” dialog box. The options
are described in detail in Section 5.5.

You can also adapt the compilation process to your own requirements. A
detailed description of the options is given in Section 5.5.

Select the menu commagptions > Customizeand click the “Compiler”
tab in the “Customize” dialog box.

You can specify the tab indent width, save before compiling, and display line
numbers settings and other options. To do this, select the menu command
Options » Customizeand click the “Editor” tab in the “Customize” dialog

box.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Using SCL

4.3 Working with the SCL Editor

Overview

The Editor Window

Selecting Text

The SCL source code consists primarily of running text. When entering text,
the SCL Editor provides assistance in the form of word processing functions
adapted specifically to SCL requirements.

The source object for your user program is typed in the workspace using the
keyboard. You can open more than one window for the same source object or
open a number of windows each containing different source objects. The
window arrangement can be controlled by means of the commands in the
Window menu.

@ SCL: Programming S7 Blocks — projl\...\Source Filel
File Edit Insert PLC Debug View Options Window Help

o|e|[12[]

Dl=ld] S| < | s|=|@] e

B proj1\SIMATIC 300 Station(1)\CPU314(1)\...\Source Filel

FUNCTION_BLOCK FB11 =

VAR

:INT;

Array:ARRAY[1..10,1..20] OF REAL;

CONTROLLER:

ARRAY[1..3,1..4] OF INT:=-54, 736, -83, 77,

—-1289, 10362, 385, 2, _
60, -37, -7, 103;

END_VAR

BEGIN

Press F1 for help. [Insert [0:0 [oOffine

Figure 4-3 SCL Editor Window

In SCL you can select text by positioning the cursor at the beginning of the
section you wish to select and then pressing and holding the left mouse
button while dragging the highlight so that it covers the whole of the desired
section of text.

You can also:

e Select the complete source code text by selecting the menu command
Edit » Select All.

¢ Select a word by double-clicking on it.

¢ Select a whole row by clicking on it three times.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

4-5

Using SCL

8earch and
Replace

Inserting
Templates

Cut, Copy, Paste
and Delete

GO TO

Undo, Restore

4-6

The menu commartttlit » Find/Replaceopens a dialog box in which you
can enter a character string you wish to find or replace with different text.

Inserting templates enables you to program more efficiently and makes it
easier to avoid syntax errors. In SCL you can

* Insert templates for blocks by selecting the menu comrimeedt »
Block Template.

¢ Insert templates for control structures by selecting the menu command
Insert » Control Structure.

Text can be cut, copied, pasted and deleted in the normal way. The relevant
commands are to be found in tBdit menu.

In most cases, you can move and copy objects by “dragging and dropping”
with the mouse.

With the menu commaniddit » Go To .., a dialog box is opened in which
you enter the number of the row at which you want to position the insert
cursor, and then confirm with “OK”.

With the menu commaniddit » Undo, you can reverse an action, for
example, undelete a row. The menu commiadid » Restoreenables you to
restore an action that was undone.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Programming with SCL

Introduction When programming with SCL, you must perform a series of individual tasks
which make up the processing sequence, as described in the following.

Chapter Section Description Page

Overview 5.1 Creating User Programs Using SCL 5-2
5.2 Creating and Opening an SCL Source File 5-3
5.3 Entering Declarations, Statements and Comments 5-4.
5.4 Saving and Printing an SCL Source File 5-5
5.5 The Compilation Process 5-6
5.6 Transferring the Compiled User Program to the PLC 5-9
5.7 Creating a Compilation Control File 5-10

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 5-1

Programming with SCL

5.1 Creating User Programs Using SCL

Basic
Requirements for
Writing Programs

Creating the
Symbol Table

Processing
Sequence

5-2

Before you start to write a program using SCL, you should first perform the
following operations:

1. Set up a project using the SIMATIC Manager.

2. Use the SIMATIC Manager to assign every CPU a communications
address in the network.

3. Configure and initialize the CPU module and signal modules.

4. Create a symbol table if you wish to use symbolic addresses for CPU
memory areas or block names.

If you want to use symbolic addresses for CPU memory areas or block names
in your SCL program, you must create a symbol table. SCL will access this
table during compilation. Use STEP 7 to create the symbol table and enter
values.

You can open the symbol table with the SIMATIC Manager or directly with
SCL using the menu commafptions» Symbol Table

Moreover, you can also import and continue editing other symbol tables
which may have been created as text files with any text editor (for more
information, consult the manu&31/).

To create a user program using SCL, you must first create an SCL source file.
In this source file you can write one or more program blocks (OBs, FBs, FCs,
DBs and UDTs) and then compile them by means of a batch process. The
compilation process places the source file blocks into the user program folder
(<AP-off>, see Figure 5-1) of the same S7 program in which the source file is
stored.

The SCL source file can be created and edited using the integrated Editor or
a standard text editor. Source files created using a standard text editor must
be imported into the project using the SIMATIC Manager. Once imported,
they can be opened, edited and compiled.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Programming with SCL

5.2 Creating and Opening an SCL Source File

Overview

Creating an SCL
Source File

Opening an SCL
Source File

Source files created in SCL can be integrated in the structure of an
S7 program as follows:

S7 Program
ﬂ Blocks Block
(e.g. FB1, OB1)

ﬂ Sources Source file
(e.g. SCL source file)
— | Symbols

Figure 5-1 Structure of an S7 Program in the SIMATIC Manager

To create a new source file for SCL, proceed as follows:

1.

Select the menu commaRde » Newor click the New File button on the
Tool Bar.

In the New dialog box, select the desired project and the corresponding
S7 program.

Open the source folder and selesert » S7 Software> Source Filein
the menu bar.

Mark the source file and seldadit » Object Propertiesin the menu bar.
Enter the name of the source object in the “General” tabbed page. The
name can be up to 24 characters long. Source file names are
case-sensitive.

Double-click the source file. A blank window opens in which you can edit
the SCL source file.

You can open an existing source file previously created and saved in SCL in
order to edit or compile it. Proceed as follows:

1.

Select the menu commahide » Openor click the Open File button on
the Tool Bar.

In the Open dialog box, select the desired project and the corresponding
S7 program.

Make sure that the filter “SCL source file” is activated and select the
source file container (SO).

The dialog box then displays all SCL source files for the selected S7
program. Select the desired object and confirm your selection by selecting
OK or double-clicking the name of the source file.

Source files created using a standard text editor can be opened in the same
way once they have been imported into the project by the SIMATIC
Manager.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

5-3

Programming with SCL

5.3 Entering Declarations, Statements and Comments

Overview An SCL source file must be written according to strictly defined syntactical
rules. Those rules are an integral component of the language definition. For
their detailed description, refer to the Appendices.

B proj1\SIMATIC 300 Station(1)\CPU314(1)\...\Source Filel

FUNCTION_BLOCK FB11
VAR
IINT,;
ARRAY:ARRAYI[1..10,1..20] OF REAL;
CONTROLLER:
ARRAY([1..3,1..4] OF INT:=-54, 736, -83, 77,
-1289, 10362, 385, 2, —
60, -37, -7, 103;
END_VAR
BEGIN
=
Figure 5-2 SCL Source File
Rules The following conventions must be observed when writing source files:

5-4

An SCL source file can contain any number of logic blocks (FBs, FCs,
OBs), data blocks (DBs) and user-defined data types (UDTs). Each type
of block has a standardized structure (see Chapter 8).

The use of upper or lower case letters is only of significance for symbolic
identifiers (for example, variable names and string literals).

Called blocks must precede blocks in which they are called.

User-defined data types (UDTs) must precede the blocks in which they
are used.

Global data blocks must precede all blocks which access them.

Observe the layout and syntax rules described ihahguage
Descriptionsection of this manual.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Programming with SCL

5.4 Saving and Printing an SCL Source File

Saving an SCL
Source File

Printing a
Source Object

Page Setup

Creating Headers
and Footers

Print Preview

The term "saving” always refers to saving the source files. Blocks are
generated in SCL when the source file is compiled and automatically stored
in the appropriate program directory.

There are a number of options available when saving an SCL source file.
These are as follows:

e Select the menu commafde » Saveor click the Save button on the
tool bar.

The copy of the SCL source file on disk is updated.

* If you wish to create a copy of the active SCL source file, select the menu
command-ile » Save As The Save As dialog box appears in which you
can enter a name and path for the duplicate file.

e If you select the menu commakRde » Closewithout having saved
changes to the SCL source file, you are asked whether you wish to save
the changes or not or cancel B&ecommand.

Instead of using the menu commditk » Close you can click the Close
button on the title bar.

Even if you exit SCL by selecting the menu commaitel» Exit when

there are open source files in which the current changes have not been
saved, the dialog box asking whether or not you wish to save the changes
appears for each open file.

You can print out the blocks, declarations and statements in your SCL source
file at any time. You must first have installed and set up the printer from the
Windows 95 Control Panel. To print a source file, proceed as follows:

¢ Click the Print button on the tool bar or choose the menu command
File » Print. A dialog box appears in which you can select various
printing options such as sections to be printed and number of copies.

Choose OK to confirm your selections and print the document.

The menu commarigile » Page Setupallows you to adjust page layout.

You can make the settings for headers and footers in your printed documents
in the SIMATIC Manager using tHele » Headersand Footersmenu
command.

The menu commarigile » Print Preview allows you to obtain a preview of
how your page layout settings will look when printed out. You can not alter
the settings in this view.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

5-5

Programming with SCL

5.5 The Compilation Process

Overview

Compiler Options

5-6

Before you run can run or test your program, you have to compile it.
Initiating the compilation process (see below) activates the Compiler. The
Compiler has the following characteristics:

* The Compiler works in batch mode, i.e. it treats an SCL source file as a
complete unit. Partial compilation (e.g. line by line) is not possible.

e The Compiler checks the syntax of the SCL source file and subsequently
indicates all errors found during the compilation process.

¢ |t generates blocks containing debugging information if the SCL source
file is error-free and the appropriate option is set. The Debug Info option
has to be set individually for every program that you wish to test with
SCL at high language level.

¢ |t generates an instance data block for every function block call if it does
not already exist.

You can adapt the compilation process to suit your specific requirements. To
do so, choose the menu comm&nations» Customizeand click the

Compiler tab in the Customize dialog box. The various options can be
selected or deselected by clicking on them with the mouse.

Customize
Create Block Compiler ‘ Editor |
[‘»(fréafeigibjiecit Code Maximum No. of Errors: 99
[Optimize Object Code Maximum String Length: 253
[Monitor Array Limits [~ Permit Nested Comments
[create Debug Info
[SetOK Flag
OK I Cancel Apply Help

Figure 5-3“Customize” Dialog, “Compiler” Tab

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Programming with SCL

Options

Creating a Block

Starting
Compilation

The various options available are:

e Maximum No. of Errors: The compiler will abort compilation of the
SCL source file if the number of errors reaches the maximum number
specified.

¢ Create Object Code Create code capable of being run on a PLC?
Yes/No

e Optimize Object Code Create shorter code. If the Create Debug Info
option is selected, complete optimization is not possible.

* Monitor Array Limits : Run-time check on whether array indices are
within the permissible range according to the declaration for the array
concerned. If an array index is outside the permissible range, the OK flag
is set toFALSE (provided the OK flag option is activated).

e Create Debug Infa Generate debugging information: Yes/No.
Debugging information is required for debugging with the high-level
language debugger.

¢ Set OK Flag Every run-time error sets the OK variabld-#LSE

e Maximum String Length: Reduce the standard length of the “STRING”
data type. The default standard length is 254 characters. In order to
optimize the use of your CPU resources, you can reduce the standard
length.

e Permit Nested CommentsSeveral comments can be nested in each
other in the SCL source file.

In the “Create Block” tabbed page, you can make settings that influence the
compilation:

* You can decide whether or not existing blocks are overwritten during
compilation.

* You can have reference data generated automatically during compilation
of a source file. If you activate this option, the compilation takes longer.

e Activate the “Include System Attribute S7_server” if the block is relevant
for message or connection configuration. This option also extends the
time required for compilation.

There are two ways in which the compilation can be initiated.
¢ Select then menu commakRde » Compile, or
¢ Click the Compile button on the tool bar.

To make sure that you always compile the latest version of your SCL source
file, it is advisable to select the menu comm@mdions» Customizeand to
select the option Save Before Compiling in the Editor tabbed page. The
menu commanéile » Compile will then automatically save the SCL source
file first before compiling it.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

5-7

Programming with SCL

After Compiling a When the compilation process has been completed, you will either receive a

Source File message to the effect that compilation has been successfully completed
without errors or a window similar to that in Figure 5-4 will appear listing all
errors and warning messages encountered.

SCL: Error Report

SCL Source Filel

F:Z00016 S 00012 : invalid expression

W: Code Generator not called due to error
1 error and 1 warning message(s) found.

— Message

| 15:4397 Help Text |

@)

GoTo|
Close I Help I

Figure 5-4 Window Listing Errors and Warning Messages

1 error and 1 warning message(s) found.
Go To

Finding the Every message is listed together with the relevant line and column position
Causes of Error as well as a brief description. You can obtain a detailed explanation of the
and Warning error/ warning message by selecting it and then clicking the Help button.
Messages

Double-clicking a message will move the cursor to the corresponding point in
the SCL source file.

These two functions allow you to locate and correct errors and warning
messages quickly and simply.

Structured Control Language (SCL) for S7-300/S7-400, Programming
5-8 C79000-G7076-C522-01

Programming with SCL

5.6 Transferring the Compiled User Program to the PLC

Overview When an SCL source file is compiled, the blocks in the source file are
generated and saved in the “Blocks” folder of the S7 program. In SCL you
can subsequently download only those blocks from the programming device
to the CPU.

Use the SIMATIC Manager if you wish to transfer other blocks of the S7
program to the PLC.

Basic In order to be able to load the application program into the PLC, the
Requirements following requirements must be satisfied:

* There must be a connection between the programming device and the
PLC.

e The blocks to be downloaded must have been successfully compiled
without errors.

Resetting the CPU The function Clear/Reset can be used to completely clear an application from

Memory a CPU online. Please note that at the same time it resets the CPU, shuts down
all existing connections with the CPU and, if a memory card is fitted, copies
the contents of the memory card to the internal load memory. To perform the
function, proceed as follows:

1. Select the menu commaRd C » Operating Mode and set the CPU to
STOP mode.

2. Select the menu commaRd C » Clear/Reset

3. Confirm the action in the dialog box which then appears.

Downloading to It is preferable to transfer the blocks with the CPU in STOP mode since
the PLC errors can occur if a program is overwritten when the CPU is in RUN mode.
To transfer the blocks, proceed as follows:

1. Select the menu commaRdiC » Download.

2. If the block is already present in the CPU RAM, confirm when prompted
whether the block is to be overwritten.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 5-9

Programming with SCL

5.7 Creating a Compilation Control File

Overview

Compilation
Control File

Creating the File

Compiling

5-10

You can automate compilation of a series of SCL source files by creating a
compilation control file.

You can create a compilation control file for your STEP 7 project. In it, you
enter the names of SCL source files in the project which are to be compiled
in a batch processing run.

You create the file as follows:

* When you create or open a file with the command New or Open you must
activate the Compilation Control File filter.

¢ The file is then given the special extension ".inp”.

¢ When you compile this file, the files specified in it are compiled one after
the other.

When the files are compiled, the blocks created are stored in the “Blocks”
folder of the S7 program.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Debugging Programs

Introduction

Getting Further
Information

Chapter
Overview

The SCL debugging functions allow you to check the execution of a program
on the CPU and to locate any errors that it might contain.

Syntax errors are indicated by the compiler. Run time errors occurring during
the execution of the program are also indicated, in this case, by system
alarms. You can locate logical programming errors using the debugging
functions.

You can obtain more detailed information on debugging with SCL from the
online help. The online help system can provide you with answers to specific
problems while you are working with SCL.

Section Description Page
6.1 Overview 6-2
6.2 “Monitor Continuously” Debugging Function 6-3
6.3 “Breakpoints Active” Debugging Function -5
6.4 “Monitoring/Modifying Variables” Debugging Function 6-§
6.5 “Reference Data” Debugging Function 6-9
6.6 Using the STEP 7 Debugging Functions 6-10

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

6-1

Debugging Programs

6.1 Overview

High Language
Level

Basic
Requirements

SCL Debugging
Functions

6-2

You can use the SCL debugging functions to debug user programs
programmed in SCL at high-language level. This debugging method allows
you to:

¢ Identify programming errors

¢ Observe and monitor the effects of a user program on the processing
sequence in the CPU.

Before you can debug an SCL program you must first complete the following
operations:

1. The program must have been successfully compiled without errors using
the compilation options "Create Object Code” and "Create Debug
Information”. These options are set in the Compiler tabbed page in the
Options» Customizedialog box.

2. You must have established an online connection between the
programming device/PC and the CPU.

3. You must also have loaded the program into the CPU. You can do this by
means of the menu commaRtC » Download.

Table 6-1 lists the basic debugging functions available in SCL and gives a
brief description of their features.

Table 6-1 Summary of Debugging Functions

Function Features
Monitor continuously Output names and current values of
(S7-300/400 CPUs) variables of a monitoring range
Breakpoints active Set, delete and edit breakpoints;
(only S7-400 CPUs) single-step debugging
Monitor/modify variables Monitor/specify current values of shared

data

Create reference data Create an overview of the user data
STEP 7 StandardPackage Check/change the CPU mode
debugging functions

Note

Testing while the system is running could result in serious damage or injury
in the event of malfunctions or program errors! Always make sure that no
dangerous situations can occur before activating debugging functions.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Debugging Programs

6.2 “Monitor Continuously” Debugging Function

Summary

Debug Mode

Using the “Monitor continuously” function, you can debug a group of
statements. This group of statements is also known as the monitoring range.

During the test, the values of the variables and the parameters of this range
are displayed in chronological order and updated cyclically. If the monitoring
range is in a program section that is executed in every cycle, the values of the
variables cannot normally be displayed for consecutive cycles.

Values that have changed in the current run are displayed in black. Values
that have not changed are displayed in light gray.

The range of statements that can be tested depends on the performance of the
connected CPUs. After compilation, different SCL statements in the source
code produce different numbers of statements in machine code, so that the
length of the monitoring range is variable and is determined and indicated by
the SCL debugger when you select the first statement of the required
monitoring range.

When debugging in the “Monitor Continuously” mode, the current values of
the data in the monitoring range are queried and displayed. The values are
queried while the debugger is running through the monitoring range. This
usually extends the length of the cycle times.

To allow you to influence the extent to which the cycle time is extended,
SCL provides two different test environments.

e “Process” Test Environment

In the “Process” test environment, the SCL debugger restricts the maximum
monitoring range so that the cycle times during testing do not exceed the real
run times of the process or only very little.

¢ “Laboratory” Test Environment

In the "Laboratory” test environment, the monitoring range is only limited by
the performance of the connected CPU. The cycle times can however be
longer than in the real process so that the maximum monitoring range is
greater than in the "Process” test environment.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

6-3

Debugging Programs

Using “Monitor
Continuously”
Mode

6-4

Proceed as follows to execute the “Monitor Continuously” function:

1.
2.
3.

Make sure that the basic requirements listed in Section 6.1 are met.
Select the window containing the source file of the program to be tested.

If you want to change the default test environment (process), select the
menu optiorDebug? Test Environment» Laboratory.

Position the cursor in the line of the source text containing the first
statement of the range to be tested.

Select the menu optidebug®» Monitor Continuously.

Result: The largest possible monitoring range is determined and indicated
by a gray bar at the left edge of the window. The window is split and the
names and current values of the variables in the monitoring range are
displayed line by line in the right-hand half of the window.

Select the menu optidpebug? “Monitor Continuously” again to
interrupt debugging and continue later.

. Select the menu optiddebug?» “Finish Debugging” to stop debugging.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Debugging Programs

6.3 “Breakpoints Active” Debugging Function

Overview When debugging in the "Breakpoints Active” mode, the program is run
through in single steps. You can execute the program statement by statement
and see how the values of the variables change.

After setting breakpoints, you can allow the program to be executed as far as
a breakpoint and then monitor step-by-step starting at that breakpoint.

Breakpoints You can define breakpoints at any point in the code section of the source file.

The breakpoints are sent to the programmable controller and activated only
after you select the menu commaddebug» Breakpoints Active. The
program is then executed until the first breakpoint is reached.

The maximum possible number of active breakpoints is CPU-dependent.
e CPU 416: maximum of 4 active breakpoints possible
e CPU 414: maximum of 2 active breakpoints possible

¢ CPU 314: no active breakpoints possible

Single-Step Once the debugging functi®@reakpoints Active has been activated, the
Functions following functions can be performed:

¢ Next Statement

Continues with next statement — for output of variable values
e Continue

Continues to next activated breakpoint
¢ To Cursor

Continues to a point currently selected in the source file.

Note

Please make sure that the maximum number of active breakpoints is not
exceeded when you use the menu commaleds$ Statementor To Cursor
since these functions automatically set and activate a breakpoint.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 6-5

Debugging Programs

Using First make sure that the requirements listed in Section 6.1 are met before you
“Breakpoints start debugging. You can now test out your program step by step with the
Active” “Breakpoints Active” function. The description below and the flow chart in

Figure 6-1 explain the procedure.

1. Select and open the window containing the source file for the block you
wish to test.

2. Set the breakpoints by positioning the cursor at the desired point in the
program source file and selecting the menu comreinlig> Set
Breakpoint. The breakpoints are displayed at the left edge of the window
as a red circle.

3. Start single-step execution by selecting the menu comDelndg»
Breakpoints Active.

Result: The window is split vertically into two halves and the program
looks for the next breakpoint. When it finds it, the CPU is switched to the
HOLD mode and the point reached is marked with a yellow arrow.

4. You can now select one of the following functions:

— Select the menu commababug» Next Statement(4a)
Result: the CPU briefly switches to RUN. When the next statement is
reached, it stops again and the values of the variables processed for
the last statement are displayed in the left half of the window.

— Select the menu commababug» Continue (4b)
Result: the CPU switches to RUN. When the next active breakpoint is
reached, it stops again and the breakpoint is displayed at the left edge
of the window. To view the values of the variables, select the menu
commandDebug®» Next Statementagain.

— Select the menu commababug» To Cursor (4c)
A breakpoint is automatically set and activated at the currently
selected position. The CPU switches to RUN. When it reaches the
selected point, it stops again and the breakpoint is displayed. To view
the values of the variables, select the menu comiabdg» Next
Statement

5. Return to step 2 if you wish to continue testing using changed
breakpoints. At step 2 you can set hew breakpoints or delete existing
ones.

6. Select the menu commabBebug?»Breakpoints Active again to
deactivate the test loop.

7. If you do not want to test any other statements in the source file, quit
debugging with the menu commabébug? Finish Debugging

Structured Control Language (SCL) for S7-300/S7-400, Programming
6-6 C79000-G7076-C522-01

Debugging Programs

Debugging in
single steps (:
Start

1)

Open
SCL source file

yes

New breakpoints

A

2)
Set breakpoints Window of the
(or delete) SCL source file

3)
Start single step) o
execution ‘Breakpoints Active

"To Next Statement” ., .

. X To Cursor’

Single step function
?

Continue
4a) 4b) 4c)
Display variable To next breakpoint To breakpoint set at
content cursor
‘ Split window Monitor and SCL source file ‘

yes

Repeat
?

¢

Q\

no

5) . Deactivate
Interrupt single step "Breakpoints Active”
execution
yes
Repeat
?
no
6) Cancel split screen
Close with "Finish Debugging”
End

Figure 6-1 Algorithm for Debugging

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 6-7

Debugging Programs

6.4 “Monitoring/Modifying Variables” Debugging Function

Overview When you use the “Monitor/Modify Variables” function, you can do the
following:

¢ Display (monitor) the current values of shared data from your user
program.

¢ Assign fixed values to the variables of a user program (modify).

Monitoring and With thePLC » Monitor/Modify Variables menu command, you can do the
Modifying following:
Variables

e Set trigger points and conditions.
e Specify values for the variables of a user program.

In both cases, you must create a variable table, in which you specify the
required variables. If you want to modify the variables, you also enter the
required values.

The debugging and test functions are described in detail in the STEP 7 User
Manual/231/

Structured Control Language (SCL) for S7-300/S7-400, Programming
6-8 C79000-G7076-C522-01

Debugging Programs

6.5 “Reference Data” Debugging Function

Overview You can create and evaluate reference data to help you debug and modify
your user program.

Reference data include the following: program structure, cross reference list,
assignment list, list of unused addresses, and list of addresses without
symbols.

You can use reference data for the following:
e To provide an overview of the entire user program
¢ As a basis for modifications and tests

¢ To supplement program documentation

Creating Reference You can create reference data in the folloiwng ways:

Data ¢ With theOptions» Reference Datamenu command, you can create,

update and display reference data.

¢ With theOptions» Customizemenu command, you can have the
reference data generated automatically when the source file is compiled.
If you want the reference data compiled automatically, enter a check
mark beside “Create Reference Data” in the “Create Block” tabbed page.
Automatic creation of the reference data extends the time required for
compilation.

The debugging and test functions are described in detail in the STEP 7 User
Manual/231/

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 6-9

Debugging Programs

6.6 Using the STEP 7 Debugging Functions

STL Editor

Querying and
Changing
Operating Mode

Viewing CPU
Status

6-10

Blocks that have been compiled by SCL can be opened in STL and then
tested with the STL (Statement List) Editor.

Select the menu commamd.C » Operating Mode to check or change the
current operating mode of the CPU.

The menu commani@LC » Module Information opens a dialog box in
which you can

determine the reason for the CPU switching to STOP mode by reading the
diagnostic buffer

view the contents of the CPU stacks. The break stack in particular is an
important source of information for locating faults

view the CPU technical data

view the CPU date and time
determine the CPU cycle time

find out which blocks are in the CPU

view information about CPU communication

For the above functions, the CPU must be online

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Part 3:
Language Description

General Introduction to
Basic SCL Terms

Structure of an SCL Source File

Data Types

Declaring Local Variables and
Block Parameters

Declaring Constants and
Jump Labels

Declaring Global Data

Expressions, Operators and
Addresses

Value Assignments

Control Statements

Calling Functions and Function
Blocks

Counters and Timers

SCL Standard Functions

Function Call Interface

10
11
12
13
14
15
16
17
18
19

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

General Introduction to Basic SCL Terms

Introduction This chapter explains the language functions provided by SCL and how to
use them. Please note that only the basic concepts and essential definitions
are dealt with at this point and that more detailed explanations are given in
the subsequent chapters.

Chapter Section Description Page

Overview 7.1 Language Definition Aids 7-2
7.2 The SCL Character Set 7-4
7.3 Reserved Words 7-5
7.4 SCL Identifiers 7-1
7.5 Standard Identifiers 7-&
7.6 Numbers 7-10
7.7 Data Types 7-12
7.8 Variables 7-14
7.9 Expressions 7-16
7.10 Statements 7-17
7.11 SCL Blocks 7-18
7.12 Comments 7-20

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 7-1

General Introduction to Basic SCL Terms

7.1 Language Definition Aids

SCL Language The language definition is based on syntax diagrams. These provide you with
Definition a good overview of the syntactical (in other words grammatical) structure of
SCL. Appendix B of this manual contains a collection of all the diagrams
with the language elements.

What is a Syntax A syntax diagram is a graphical representation of the structure of the
Diagram? language. The structure is created using a hierarchical sequence of rules.
Each rule can be based on preceding rules.

Name of rule
Sequence
o
H e L] B
Iteration

Alternative

Figure 7-1 Syntax Diagram

The syntax diagram is read from right to left. The following rule structures
must be adhered to:

e Sequence: sequence of blocks
e Option: skippable branch
¢ lteration: repetition of branches

e Alternative: multiple branch

What Types of A block is a fundamental element or an element that itself is made up of
Block are there? blocks. The symbols used to represent the various types of block are
illustrated below:

O |

Basic element that requires no further Complex element that is described
explanation. by other syntax diagrams.

These are printable characters or special
characters, keywords and predefined
identifiers.

The details of these blocks are copied
unchanged.

Structured Control Language (SCL) for S7-300/S7-400, Programming
7-2 C79000-G7076-C522-01

General Introduction to Basic SCL Terms

What Does Free When writing source code, the programmer must observe not ordyritax
Format Mean? rules but alsdexical rules.

The lexical and syntax rules are described in detail in Appendices B and C.
Free format means that you can insert formatting characters such as spaces,
tabs and page breaks as well as comments between the rule blocks.

Lexical Rules In the case of lexical rules such as the example in Figure 7-2, timere is
freedom of format. When you apply a lexical rule, you must adopt the
specifications exactly as set out.

Letter

Underscore Underscore

v

Figure 7-2 Example of kexical Rule

The following are examples of adherence to the above rule:

C_CONTROLLER3
_A_FIELD
100 3310

The following are examples of non-adherence to the above rule:

1_1AB
RR__ 20
“HAB

Syntax Rules The syntax rules (e.g. Figure 7-3) allow free format.

= Simple variable e ‘ —)

Figure 7-3 Example of Syntax Rule

The following are examples of adherence to the above rule:

VARIABLE_1 :=100; SWITCH:=FALSE;
VARIABLE_2 :=3.2;

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 7-3

General Introduction to Basic SCL Terms

7.2 The SCL Character Set

Letters and
Numeric
Characters

Other Characters

Other Information

7-4

SCL uses the following subset of the ASCII character set:
¢ The upper and lower case letters Ato Z
¢ The Arabic numbers 0to 9

¢ The space character (ASCII value 32) and all control characters (ASCII
0-31) including the end of line character (ASCII 13)

The following characters have a specific meaning in SCL:
- x = < > 0 1 ()
; : ; $ # " ' { }

Refer to Appendix A of this manual for a detailed list of all permitted
characters and how those characters are interpreted in SCL.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

General Introduction to Basic SCL Terms

7.3 Reserved Words

Explanation Reserved words are keywords that you can only use for a specific purpose.
No distinction is made between upper and lowercase letters.

Keywords AND END_STRUCT
ANY END_VAR
ARRAY END_WHILE
BEGIN EXIT
BLOCK_DB FOR
BLOCK_FB FUNCTION
BLOCK_FC FUNCTION_BLOCK
BLOCK_SDB GOTO
BLOCK_SFB IF
BLOCK_SFC INT
BOOL LABEL
BY MOD
BYTE NIL

NOT
CASE OF
CHAR OR
CONST ORGANIZATION_BLOCK
CONTINUE POINTER
COUNTER REAL
DATA BLOCK REPEAT
DATE RETURN
DATE_AND_TIME S5TIME
DINT STRING
DIV STRUCT
DO THEN
DT TIME
DWORD TIMER
ELSE TIME_OF_DAY
ELSIF TO
END_CASE TOD
END_CONST TYPE
END_DATA BLOCK VAR
END_FOR VAR_TEMP

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 7-5

General Introduction to Basic SCL Terms

Keywords,
Continuation

Other Reserved
Words

7-6

END_FUNCTION
END_FUNCTION_BLOCK
END_IF

END_LABEL

END_TYPE
END_ORGANIZATION_BLOCK
END_REPEAT

VOID

EN
ENO
OK
TRUE
FALSE

Names of the standard functions

UNTIL
VAR_INPUT
VAR_IN_OUT
VAR_OUTPUT
WHILE
WORD

XOR

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

General Introduction to Basic SCL Terms

7.4 ldentifiers in SCL

Definition An identifier is a name that you assign to an SCL language object, in other
words to a constant, a variable, a function or a block.

Rules Identifiers can be made up of letters or numbers in any order but the first
character must be either a letter or the underscore character. Both upper and
lowercase letters are permitted. As with keywords, identifiers are not
case-sensitive (Anna and AnNa are, for example, identical).

An identifier can be formally represented by the following syntax diagram:

IDENTIFIER

Letter

Underscore Underscore

v

Figure 7-4 Syntax of an Identifier

Please note the following points:

* When choosing names for identifiers, it is advisable to use unambiguous
and self-explanatory names which add to the comprehensibility of the
program.

¢ You should check that the name is not already in use by a standard
identifier or a keyword (for example, as in Table 7-1).

¢ The maximum length of an identifier is 24 characters.

¢ Symbolic names for blocks (that is, other identifiers as in Table 7-1) must
be defined in the STEP 7 symbol table (for details refé23a/).

Examples The following names are examples of valid identifiers:
X y1l2 Sum Temperature
Name Surface Controller Table

The following names aneot valid identifiers for the reasons specified:
4th The first character must be a letter or an underscore character
Array ARRAY is a keyword and is not permitted.

S Value Spaces are characters and not allowed.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 7-7

General Introduction to Basic SCL Terms

7.5 Standard Identifiers

Definition

Block Keywords

7-8

In SCL, a number of identifiers are predefined and are therefore called
standard identifiersThese standard identifiers are as follows:

¢ the block keywords and

¢ the address identifiers for addressing memory areas of the CPU.

These standard identifiers are used for absolute addressing of blocks.

Table 7-1 is sorted in the order of the SIMATIC mnemonics and the
corresponding international IEC mnemonics are also shown.

Table 7-1 Block Keywords
Mnemonic | Mnemonic | Identifies
(SIMATIC) (IEC)
DBx DBx Data Block
FBx FBx Function Block
FCx FCx Function
OBXx OBx Organization Block
SDBx SDBx System Data Block
SFCx SFCx System Function
SFBx SFBXx System Function Block
TX TX Timer
UDTx UDTx Global or User-Defined Data Type
Zx Cx Counter
X = number between 0 and 65533
DBO = reserved

STANDARD IDENTIFIER

4%

Figure 7-5

Block
s | e}

DB, FB, FC, OB, SDB, SFB, SFC, UDT

Syntax of a Standard Identifier

The following are examples of valid identifiers:

FB10
DB100
T141

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

General Introduction to Basic SCL Terms

Address Identifiers You can address memory areas of a CPU at any point in your program using

their address identifiers.

The following table is sorted in order of the SIMATIC mnemonics, the
corresponding international IEC mnemonic is shown in the second column.

Mnemonic | Mnemonic Addresses Data Type
(SIMATIC) (IEC)
AX,y Qx,y Output (via process image) Bit
ABXx QBx Output (via process image) Byte
ADx QDx Output (via process image) Double word
AWx QWx Output (via process image) Word
AXX.y QXx.y Output (via process image) Bit
Dx.yl Dx.y 1 Data block Bit
DBx 1 DBx 1 Data block Byte
DDx 1 DDx 1 Data block Double word
DWwx 1 DWwx 1 Data block Word
DXx DXx Data block Bit
Ex.y IX.y Input (via process image) Bit
EBx IBx Input (via process image) Byte
EDx IDx Input (via process image) Double word
EWx IWx Input (via process image) Word
EXx.y IXX.y Input (via process image) Bit
Mx.y Mx.y Bit memory Bit
MBx MBx Bit memory Byte
MDx MDx Bit memory Double word
MWx MWx Bit memory Word
MXx.y MXx.y Bit memory Bit
PABX PQBx Output (1/O direct) Byte
PADx PQDx Output (1/O direct) Double word
PAWX PQWx Output (1/O direct) Word
PEBx PIBx Input (I/O direct) Byte
PEDx PIDx Input (I/O direct) Double word
PEWx PIWx Input (I/O direct) Word
X = number between 0 and 64535 (absolute address)
y = number between 0 and 7 (bit number)
The following are examples of valid address identifiers:
11.0 MW10 PQWS5 DB20.DW3

KEIN MERKER These address identifiers only apply if the data block is specified

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 7-9

General Introduction to Basic SCL Terms

7.6 Numbers

Summary

Integers

Integers as Binary,
Octal or
Hexadecimal
Numbers

Real Numbers

7-10

There are several ways in which you can write numbers in SCL. A number
can have a plus or minus sign, a decimal point, and an exponent. The
following rules apply to all numbers:

e A number must not contain commas or spaces.

¢ To create a visual separation between numbers, the underscore character
() can be used.

¢ The number can be preceded if required by a plus (+) or minus (-)
sign. If the number is not preceded by a sign, it is assumed to be positive.

e Numbers must not be outside certain maximum and minimum limits.

An integer contains neither a decimal point nor an exponent. This means that
an integer is simply a sequence of digits that can be preceded by a plus or
minus sign. Two integer types are implemented in SR, undDINT, each

of which has a different permissible range of values (see Chapter 9).

Examples of valid integers:
0 1 +1 -1
743 -5280 600_00 -32_211

The following integers ardlegal for the reasons stated in each case:

123,456 Integers must not contain commas.
36. Integers must not contain a decimal point.
10 20 30 Integers must not contain spaces.

In SCL, you can also represent integers in different numerical systems. To do
this, the number is preceded by a keyword for the numerical system. The
keyword 2# stands for the binary system, 8# for the octal system and 16# for
the hexadecimal system.

Valid integers for decimal 15:
2#1111 8#17 16#F

A real number must contain either a decimal point or an exponent (or both).
A decimal point must be between two numeric characters. This means that a
real number cannot start or end with a decimal point.

Examples of valid real numbers:
0.0 1.0 -0.2 827.602
50000.0 —0.000743 12.3 —315.0066

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

General Introduction to Basic SCL Terms

Character Strings

The following real numbers aiiéegal:

1. There must be a number on both sides of the decimal point.
1,000.0 Real numbers must not contain commas.
.3333 There must be a number on both sides of the decimal point.

A real number can include an exponent in order to specify the position of the
decimal point. If the number contains no decimal point, it is assumed that it
is to the right of the number. The exponent itself must be either a positive or
a negative integer. Base 10 is represented by the letter E.

The value 3 x 18%9can be correctly represented in SCL by the following real
numbers:

3.0E+10 3.0E10 3e+10 3E10
0.3E+11 0.3el1 30.0E+9 30e9

The following real numbers aikegal:

3.E+10 There must be a number on both sides of the decimal point.
8e2.3 The exponent must be an integer.

.333e-3 There must be a number on both sides of the decimal point.

30 E10 Spaces are not allowed.

A character string is a sequence of characters (in other words letters,
numbers, or special characters) set in quotation marks. Both upper and
lowercase letters can be used.

Examples of permissible character strings:
'RED’ '7500 Karlsruhe’ '270-32-3456
'DM19.95’ 'The correct answer is:’

You can enter special formatting characters, the single quotation mark () or
a $ character by using the alignment symbol $.

Source Code After Compilation
'SIGNAL$'RED’ SIGNAL'RED’

'50.0$%’ 50.0%

'VALUES$P’ VALUE Page break

'REG-$L’ REG Line feed
'"CONTROLLERS$R CONTROLLERarriage return
'STEPST’ STEP Tab

To enter non-printing characters, type in the substitute representation in
hexadecimal code in the fornhl$ wherehh stands for the hexadecimal
value of the ASCII character.

To enter comments in a character string that are not intended to be printed
out or displayed, you use the characters $> and $< to enclose the comments.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7-11

General Introduction to Basic SCL Terms

7.7 Data Types

Summary A declaration of a variable must always specify what data type that variable
is. The data type determines the permissible range of values for the variable
and the operations that it can be used to perform.

The data type determines
¢ the type and interpretation of a data element,
¢ the permissible range of values for a data element,

¢ the permissible number of operations that can be performed by an address
of a variable, and

¢ the format of the data of that data type.

Types of Data Type The following types of data type are distinguished:

Table 7-2 Elementary Data Types

Data Type Explanation

Elementary Standard type provided by SCL

Can be created by combining elementary data
types

Defined by the user for specific applications an
assigned a user-defined name

Complex

o

User-defined

Can only be used for declaring parameters

Parameter types

Elementary Data Elementary data types define the structure of data elements which can not be
Types subdivided into smaller units. They conform to the definition given in the
standard DIN EN 1131-3.

SCL has twelve predefined elementary data types as follows:

BOOL CHAR INT TIME

BYTE DINT DATE

WORD REAL TIME_OF_DAY
DWORD S5TIME

Structured Control Language (SCL) for S7-300/S7-400, Programming
7-12 C79000-G7076-C522-01

General Introduction to Basic SCL Terms

Complex Data
Types

User-Defined Data
Types

Parameter Types

Complex data types define the structure of data elements which are made up
of a combination of other data elements. SCL allows the following complex
data types:

DATE_AND_TIME
STRING

ARRAY

STRUCT

These are global data types (UDTs) which can be created in SCL for
user-specific applications. This data type can be used with its UDT identifier
UDTXx (x represents a number) or an assigned symbolic name in the
declaration section of a block or data block.

In addition to elementary, complex and user-defined data types, you can also
use parameter types for defining parameters. SCL provides the following
parameter types for that purpose:

TIMER BLOCK_FB POINTER ANY
COUNTER BLOCK_FC

BLOCK_DB

BLOCK_SDB

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7-13

General Introduction to Basic SCL Terms

7.8 Variables

Declaration of
Variables

Local Data

7-14

An identifier whose assigned value can change during the process of
execution of a program is calledvariable Each variable must be

individually declared (that is, defined) before it can be used in a logic block
or data block. The declaration of a variable specifies that an identifier is a
variable (rather than a constant, etc.) and defines the variable type by
assigning it to a data type.

The following types of variable are distinguished on the basis of their
applicability:

e Local data
e Global user data

e Permissible predefined variables (CPU memory areas)

Local data are declared in a logic block (FC, FB, OB) and apply only within
that logic block. Specifically these are the following:

Table 7-3 Local Data of a Block

Variable Type Explanation

Static Variables A static variable is a local variable whose value is retained
throughout all block cycles (block memory). It is used for
storing values for &unction block.

Temporary Variables| Temporary variables belong to a local logic block andiato
occupy any static memory. Their values are retained for a
single block cycle only. Temporary variables cent be
accessed from outside the block in which they are declared.

Block Parameters Block parameters are formal parameters of a function block.
or a function. They are local variables that are used to pass
over the current parameters specified when a block is cdlled.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

General Introduction to Basic SCL Terms

Global
User-Defined Data

CPU Memory
Areas

These are data or data areas that can be accessed from any point in a
program. To use global user-defined variables, you must create data blocks
(DBs).

When you create a DB, you define its structure in a structure declaration.
Instead of a structure declaration, you can use a user-defined data type
(UDT). The order in which you specify the structural components determines
the sequence of the data in the DB.

You can access the memory areas of a CPU directly from any point in the
program via the address identifiers (see Section 7.5) without having to
declare those variables first.

Apart from that, you can always address those memory areas symbolically.
Assignment of symbols is performed globally in this case by means of the
symbol table in STEP 7. For more details, refé2g1i/

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7-15

General Introduction to Basic SCL Terms

7.9 Expressions

Summary

Mathematical
Expressions

Comparative
Expressions

Logical
Expression

7-16

An expression stands for a value that is calculated either when the program is
compiled or when it is running. It consists of one or more addresses linked by
operators. The order in which the operators are applied is determined by their
priority and can also be controlled by bracketing.

¢ Mathematical expressions
e Logical expressions

e Comparative expressions

A typical example of a mathematical expression is
(b « b—4+ax C)/(Z * a)

The identifiers a and b and the numbers 4 and 2 are the addresses, the
symbols:, — and / are the corresponding operators (multiply, subtract and
divide). The complete expression represents a numerical value.

A comparative expression is a logical expression that can be either true or
false. The following is an example of a comparative expression;

Setpoint < 100.0

In this expressiorSETPOINT is a real variablel00.0 a real number and
the symbol < a comparator. The expression has the value True if the value of
Setpoint is less than 100.0. If it is not, the value of the expresdi@isis

The following is a typical example of a logical expression:
a AND NOT b

The identifiers a and b are the addresses, the keywords AND and NOT are
logical operators. The complete expression represents a bit pattern.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

General Introduction to Basic SCL Terms

7.10 Statements

Summary

Value
Assignments

Control
Statements

Subroutine Call

An SCL statement is an executable action in the code section of a logic
block. There are three basic types of statements in SCL.:

¢ Value assignments (assignment of an expression to a variable)
¢ Control statements (repetition or branching statements)

¢ Subroutine calls (statements calling or branching to other logic blocks)

The following is an example of a typical value assignment:
SETPOINT :=0.99 +«PREV_SETPOINT

This example assumes tI8#E TPOINTandPREV_SETPOINTare real
variables. The assignment instruction multiplies the value of
PREV_SETPOINTby 0.99 and assigns the product to the variable
SETPOINT. Note that the symbol for assignment is :=.

The following is an example of a typical control statement:

FOR Count :=1 TO 20 DO
LIST[Counter] := VALUE+Counter;

END_FOR;

In the above example, the statement is performed 20 times over. Each time,
the recalculated value in the arda T is entered in the next highest
position on the list.

By specifying a block identifier for a function (FC) or a function block (FB)
you can call the block declared for that identifldf.the declaration of the
logic block includes formal parameters, then current addresses can be
assigned to the formal parameters when the formal parameters are called.

All parameters listed in the declaration sections
VAR_INPUT, VAR_OUTPUT and VAR_IN_OUT

of a logic block are referred to as formal parameters - in contrast, the
corresponding parameters included in the subroutine calls within the code
section are termed actual parameters.

Assignment of the actual parameters to the formal parameters is part of the
subroutine call.

The following is a typical example of a subroutine call:
FC31(X:=5, S1:=Sumdigits);

KEIN MERKER If you have declared formal parameters in a function, the assignment of current parameters is
mandatory, with function blocks it is optional.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7-17

General Introduction to Basic SCL Terms

7.11 SCL Blocks

Overview

Types of Block

Ready-Made
Blocks

Structure of an
SCL Block

7-18

An SCL source file can contain any number of blocks as source code.

SCL source file FUNCTION_BLOCK FB10

Keyword A COE\:ISTt o
onstant:: ;
/ Declaration Section EN D_CONST
VAR
\: VALUE1,VALUE2:REAL
\ END_VAR

[]
[} Code Section BEGIN
L4 VALUE1:=100;
[] .

Keyword B END_FUNCTION_BLOCK

Figure 7-6 Structure of an SCL Source File

STEP 7 blocks are subunits of a user program delimited according to their
function, their structure or their intended use. SCL allows you to program the
following types of block:

OB FC FB DB ubT

STEP 7 Blocks

You do not have to program every function yourself. You can also make use
of various ready-made blocks. They are to be found in the CPU operating
system or librariegS7lib)in the STEP7 Standard Package and can be used
for programming communication functions, for example.

All blocks consist of the following components:
e Start/end of block header (keyword corresponding to block type)
¢ Declaration section

¢ Code section (assignment section in the case of data blocks)

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

General Introduction to Basic SCL Terms

Declaration
Section

Code Section

S7 Program

The declaration section must contain all specifications required to create the
basis for the code section, for example, definition of constants and
declaration of variables and parameters.

The code section is introduced by the keywBE(5IN and terminated with a
standard identifier for the end of block; thatiyD_xxx (see Section 8.2).

Every statement is concluded with a semicolon (“; ”). Each statement can
also be preceded by a jump label. The syntax rules for the code section and
the individual statements themselves are explained in Chapter 13.

Code Section

v

Identifier |—() Statement PL@—}

Jump label

Figure 7-7 Syntax of a Statement

Below is an example of the code section of an FB:

/IEnd of declaration section

BEGIN /ISTART of code section

X = X+1;
LABEL1 Y :=Y+10;

Z:=X Y,

GOTO LABEL1
LABELnN; FC10 := Z;//End of code section
END_FUNCTION_BLOCK

In the code section of a data block, you can assign initialization values to
your DB data. For that reason, the code section of a DB is referred to from
now on as thassignment section

Following compilation, the blocks generated are stored in the “Blocks” folder
of the S7 program. From here, they must be downloaded to the CPU. For
details of how this is done, refer/@31/

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7-19

General Introduction to Basic SCL Terms

7.12 Comments

Summary Comments are used for documentation and to provide an explanation of an
SCL block. After compilation, comments have no effect whatsoever on the
running of the program. There are the following two types of comments:

¢ Line comments

e Block comments

Line Comments These are comments introduced by a double slash // and extending no further
than the end of the line. The length of such comments is limited to a
maximum of 253 characters including the identifying characters //. Line
comments can be represented by the following syntax diagram:

Line Comment

Printable
D R

Figure 7-8 Syntax of a Line Comment

For details of the printing characters, please refer to Table A-2 in the
Appendix. The character pairings using ‘(* and *)’ have no significance
inside line comments.

Block Comments These are comments which can extend over a number of lines and are
introduced as a block by-“(and terminated by:)’. The nesting of block
comments is permitted as standard. You can, however, change this setting
and make the nesting of block comments impossible.

Block Comment

O CITt] G

Figure 7-9 Syntax of a Block Comment

For details of the permissible characters, please refer to Table A-2 in the
Appendix.

Structured Control Language (SCL) for S7-300/S7-400, Programming
7-20 C79000-G7076-C522-01

General Introduction to Basic SCL Terms

Points to Note

Example of the
Use of Comments

Observe the notation for comments:

¢ With block comments idata blocks you must use the notation for block

comments that is, these comments are also introduced/ivith °

* Nesting of comments is permitted in the default setting. This compiler
setting can, however, be modified with the “Permit Nested Comments”
option. To change the setting, select the menu comn@ptibns »

Customizeand deselect the option in the “Compiler” tab page.

e Comments must not be placed in the middle of a symbolic name or a
constant. They may, however, be placed in the middle of a string.

The following comment iglegal:

(*// FUNCTION_BLOCK // Adaptation

The example shows two block comments and one line comment.

FUNCTION_BLOCK FB15

VAR
SWITCH: INT,; I[Line comments
END_VAR;

SWITCH:=3;
END_FUNCTION_BLOCK

Figure 7-10 Example for Comments

Note

Line comments which come directly after the variable declaration of a block

are copied to an STL program on decompilation.

You can find these comments in STL in the interface area; that is, in the

upper part of the window (see al&31/).

In the example in Figure 7-10, therefore, the first line comment would be

copied.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

7-21

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Structure of an SCL Source File

Introduction

Chapter
Overview

An SCL source file basically consists of running text. A source file of this

type can contain a number of blocks. These may be OBs, FBs, FCs, DBs, or

UDTs.

This chapter explains the external structure of the blocks. The succeeding
chapters then deal with the internal structures.

Section Description Page
8.1 Structure 8-2
8.2 Beginning and End of a Block 8-4
8.3 Block Attributes 8-5
8.4 Declaration Section 8-7
8.5 Code Section 8-10
8.6 Statements 8-11
8.7 Structure of a Function Block (FB) 8-12
8.8 Structure of a Function (FC) 8-14
8.9 Structure of an Organization Block (OB) 8-16
8.10 Structure of a Data Block (DB) 8-17
8.11 Structure of a User-Defined Data Type (UDT) 8-19

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

8-1

Structure of an SCL Source File

8.1 Structure

Introduction

Order of Blocks

8-2

An SCL source file consists of the source code made up of between 1 and n
blocks (that is, FBs, FCs, OBs, DBs and UDTSs).

In order that the individual blocks can be compiled from your SCL source
file, they must must conform to specific structures and syntax rules.

SCL Program Subunit

—{ Organization Block |f
4 Function l—

} Function Block }

A 4

v

4‘ Data Block Ii

4‘ User-Defined Data Type F

Figure 8-1 SCL Program Subunit

With regard to the order of the blocks, the following rules must be observed
when creating the source file:

Called blocks must precede the calling blockShis means:

¢ User-defined data types (UDTs) must precede the blocks in which they
are used.

e Data blocks with an assigned user-defined data type (UDT) must follow
the UDT.

¢ Data blocks that can be accessed by all logic blocks must precede all
blocks which access them.

¢ Data blocks with an assigned function block come after the function
block.

¢ The organization block OB1, which calls other blocks, comes at the very
end. Blocks which are called by blocks called by OB1 must precede those
blocks.

Blocks that you call in a source file, but that you do not program in the same
source file must exist already when the file is compiled into the user
program.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Structure of an SCL Source File

General Block
Structure

assigned | UDT

calls
DB <

calls

DB from UDT

calls i
FB 3 assigned

Instance DB for FB 3

calls

FC5

Order in the source file

OB 1

Figure 8-2 Block Structure of a Source File (Example)

The source code for a block consists of the following sections:

Block start with specification of the block (absolute or symbolic)
Block attributes (optional)
Declaration section (differs from block type to block type)

Code section in logic blocks or assignment of current values in data
blocks (optional)

Block end

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Structure of an SCL Source File

8.2 Beginning and End of a Block

Introduction Depending on the type of block, the source text for a single block is
introduced by a standard identifier for the start of the block and the block
name. It is closed with a standard identifier for the end of the block (see
Table 8-1).

Table 8-1 Standard Identifiers for Beginning and End of Blocks

Syntax Syntax Block Type Identifier
ORGANIZATION_BLOCKob_name
: OB Organization block
END_ORGANIZATION_BLOCK
FUNCTION fc_name:functiontype)
. FC Function
END_FUNCTION
FUNCTION_BLOCKfb_name
: FB Function block
END_FUNCTION_BLOCK
DATA_BLOCKdb_name
: DB Data block
END_DATA_BLOCK
TYPE name udt_name)
: ubDT User-defined data type
END_TYPE

Block Name In Table 8-1 abovesx_namestands for the block hame according to the

following syntax:

Block
— Keyword
DB, FB, FC, OB, UDT

IDENTIFIER

v

Figure 8-3 Syntax of the Block Name

More detailed information is given in Section 7.5. Please note also that you
must define an identifier of a symbol in the STEP 7 symbol tabléZ3&¢).

Example FUNCTION_BLOCK FB10
FUNCTION_BLOCK ControllerBlock
FUNCTION_BLOCK "Controller.B1&U2"

Structured Control Language (SCL) for S7-300/S7-400, Programming
8-4 C79000-G7076-C522-01

Structure of an SCL Source File

8.3 Block Attributes
Definition Attributes for blocks can be as follows:
e Block attributes

e System attributes for blocks

Block Attributes The title, version, block protection, author, name and family of a block can
be specified using keywords.
Title

TITLE e ‘ Printable ‘
character

Version

- DECIMAL DECIMAL
‘ ‘ DIGIT STRING <) DIGITSTR|N64®_’

Block Protection

—»—{KNOW_HOW_PROTECT)—}

Author max. 8 characters

(AUTHOR) () |_enTier |

Name max. 8 characters
NAME ‘ IDENTIFIER
Block Family max. 8 characters

Py} () |_oentirer |

Figure 8-4 Syntax: Block Attributes

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 8-5

Structure of an SCL Source File

System Attributes You can also assign system attributes to blocks, for example for process
for Blocks control configuration.

System attributes for blocks
max. 24 characters

Printable @_’
IDENTIFIER
(x| _ENTRER |(2)) O

()
\J

Figure 8-5 Syntax: System Attributes for Blocks

Table 8-2 shows which system attributes you can assign for blocks in SCL.

Table 8-2 System Attributes for Blocks

Attribute Value When to Assign the Attribute Permitted Block Type

S7 m ¢ |true, false When the block will be manipulated or | FB
monitored from an operator console.

S7_tasklist| tasknamel, When the block will be called not only in FB, FC
taskname2, etc. [the cyclic organization blocks but also ir
other OBs (for example error or startup

OBs).
S7_block- | big, small When the block will be displayed on an| FB, FC
view operator console in big or small format.
Assigning You assign block attributesdter the block identifier antefore the
Attributes declaration section.
— > FUNCTION_BLOCK FB10
Declaration section TITLE='Average’
VERSION:’2.1’
i KNOW_HOW_PROTECT
Code section AUTHOR:AUT 1
Q NAME:B12
FAMILY:ANALOG
{S7_m_c:="true’;
S7_blockview:="big’}

Figure 8-6 Assigning Attributes

Structured Control Language (SCL) for S7-300/S7-400, Programming
8-6 C79000-G7076-C522-01

Structure of an SCL Source File

8.4 Declaration Section

Overview

Structure

Declaration
Subsections

The declaration section is used for defining local and global variables,
parameters, constants, and jump labels.

* The local variables, parameters, constants, and jump labels that are to
apply within a particular block only are defined in the declaration section
of the code block.

e The global data that can be addressed by any code block are defined in
the DB declaration section.

¢ In the declaration section of a UDT, you specify the user-defined data
type.

A declaration section is divided into a number of declaration subsections,
each delimited by its own pair of keywords. Each subsection contains a
declaration list for data of a particular type, such as constants, labels, static
data and temporary data. Each subsection type may only occur once and not
every subsection type is allowed in every type of block, as shown in the
table. There is no fixed order in which the subsections have to be arranged.

Data Syntax FB | FC | OB | DB |UDT

CONST
Constants Declaration list X X X
END_CONST

LABEL
Jump labels Declaration list X X X
END_LABEL

VAR_TEMP
Temporary variables Declaration list X X X
END_VAR

VAR
Static variables Declaration list X X2 Xt Xt
END_VAR

VAR_INPUT
Input parameters Declaration list X X
END_VAR

VAR_OUTPUT
Output parameters Declaration list X X
END_VAR

VAR_IN_OUT
In/out parameters Declaration liste X X
END_VAR

Declaration list: the list of identifiers for the data type being declared

1 In DBs and UDTs, the keywords VAR and END_VAR are replaced by
STRUCT and END_STRUCT respectively.

2 Although the declaration of variables within the keyword pair VAR and
END_VAR is permitted in functions, the declarations are shifted to the
temporary area during compilation.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

8-7

Structure of an SCL Source File

System Attributes
for Parameters

You can also asssign system attributes to input, output, and in/fout parameters,
for example for message or connection configuration.

D=

System attributes for parameters

max. 24 characters

()

Printable
penTreR () 9

\J

Figure 8-7 Syntax: System Attributes for Parameters

Table 8-3 shows which system attributes you can assign to the parameters:

Table 8-3 System Attributes for Parameters
Attribute Value When to Assign the Attribute Permitted Declaration type
S7_server | connection, When the parameter is relevant to connection|{dN
alarm_archiv message configuration. This parameter contains
the connection or message number.
S7_a_type |alarm, alarm_8,| When the parameter will define the message bldtk only with blocks of the
alarm_8p, type in a message block called in the code segtigpe FB
alarm_s, notify, | (only possible when the S7_server attribute is|set
ar_send to alarm_archiv).
S7_co pbkl, pbk, ptpl, | When the parameter will specify the connectigiN
obkl, fdl, iso, type in the connection configuration (only
pbks, obkv possible when the S7_server attribute is set td
connection).
S7_m_c true, false When the parameter will be modified or IN/OUT / IN_OUT, only
monitored from an operator panel. with blocks of the type FB
S7_shortcut | Any 2 When the parameter is assigned a shortcut to| IN/OUT / IN_OUT, only
characters, for | evaluate analog values. with blocks of the type FB
example, W, Y
S7_unit Unit, for When the parameter is assigned a unit for IN/OUT / IN_OUT, only
example, liters | evaluating analog values. with blocks of the type FB
S7_string_0 | Any 16 When the parameter is assigned text for IN/OUT/ IN_OUT, only with
characters, for | evaluating binary values. blocks of the type FB and F[C
example OPEN
Structured Control Language (SCL) for S7-300/S7-400, Programming
8-8 C79000-G7076-C522-01

Structure of an SCL Source File

Table 8-3 System Attributes for Parameters, continued
Attribute Value When to Assign the Attribute Permitted Declaration type
S7_string_1 [Any 16 When the parameter is assigned text for IN/OUT / IN_OUT, only
characters, for | evaluating binary values with blocks of the type FB
example, and FC
CLOSE
S7_visible | true, false When you do not want the parameter to be | IN/OUT / IN_OUT, only
displayed in CFC. with blocks of the type FB
and FC
S7_link true, false When you do not want the parameter to be linkB/OUT / IN_OUT, only
in CFC. with blocks of the type FB
and, FC
S7_dynamic | true, false When you want the parameter to have dynamidN/OUT / IN_OUT, only
capability when testing in CFC. with blocks of the type FB
and FC
S7_param | true, false When you want the parameter to be protected IN/OUT / IN_OUT, only
from incorrect value assignment in CFC. with blocks of the type FB
and FC
Assigning You assign system attributes for parameters in the declaration fields for input
Attributes parameters, output parameters or in/out parameters.

Example:
VAR_INPUT

inl {S7_server:="alarm_archiv’;

S7 _a_type:='ar_send’

END_VAR

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

}:DWORD;

8-9

Structure of an SCL Source File

8.5 Code Section

Summary The code section contains stateménts

e that are executed when a code block is called. These statements are used
for processing data or addresses.

¢ for setting individual initialization values in data blocks.

Syntax Figure 8-8 shows the syntax of the code section. It consists of a series of
individual statements, each of which can be preceded by a jump label (see
Section 11.6) which represents the destination for a jump statement.

Code Section

‘ iDENTIFER |-) Statement ‘ 2NN

Jump label

v

Figure 8-8 Code Section Syntax

Below are some examples of valid statements.

BEGIN
STARTVALUE :=0;
ENDVALUE :=200;
SAVE: RESULT :=SETPOINT,;
Rules to Observe The important points to observe when writing the code section are that:

¢ The code section starts as an option with the keyB&@IN
¢ The code section is completed with the keyword for the end of the block.

¢ Every statement must be terminated with a semicolon.

All identifiers used in the code section must have been declared.

1 In this manual, the term “statement” is used for all constructs that declare an executable function.

Structured Control Language (SCL) for S7-300/S7-400, Programming
8-10 C79000-G7076-C522-01

Structure of an SCL Source File

8.6 Statements

Summary Each individual statement is one of the following types:

¢ Value assignmentsised to assign the result of an expression or the value
of another variable to a variable.

¢ Control statementsused to repeat statements or groups of statements or
to branch within a program.

e Subroutine callsused to call functions or function blocks.

Statement

Value assignment

Subroutine
call

v
v

Control statement

Figure 8-9 Syntax of a Statement
The elements required to formulate these statements are expressions,

operators and addresses. These items are treated in more detail in subsequent
chapters.

Examples The following examples illustrate the various types of statement:

/I Example of a value assignment
MEASVAL:=0;

/l Example of a subroutine call
FB1.DB11(TRANSFER:=10) ;

/I Example of a control statement
WHILE COUNT < 10 DO..

END_WHILE;

Example 8-1 Statements

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 8-11

Structure of an SCL Source File

8.7 Structure of a Function Block (FB)

Overview A function block (FB) is a logic block constituting part of a program and
having a memory area assigned to it. Whenever an FB is called, an instance
DB (see Chapter 10) must be assigned to it. You specify the structure of this
instance DB when you define the FB declaration section.

Function block

FB FB declaration
—-{_FUNCTION_BLOCK }——— |pENTIFIER section T

' (BEGIN) w!| Code section | (END_FUNCTION_BLOCK))

Figure 8-10 Structure of a Function Block (FB)

FB Identifier After the keyword
FUNCTION_BLOCK

specify the keyword FB followed by the block number or the symbolic name
of the FB as the FB identifier.

Examples:
FUNCTION_BLOCK FB10
FUNCTION_BLOCK MOTOR_1

FB Declaration The FB declaration section is used to establish the block-specific data. For
Section details of the permissible declaration subsections, refer to Section 8.4. Note
that the declaration section also determines the structure of the assigned
instance DB.
Examples:
CONST
CONSTANT:=5;
END_CONST
VAR
VALUE1,VALUE2 VALUES:INT;
END_VAR

Structured Control Language (SCL) for S7-300/S7-400, Programming
8-12 C79000-G7076-C522-01

Structure of an SCL Source File

Example Example 8-2 shows the source code for a function block. The input and
output parameters (in this case, V1 and V2) are assigned initial values in this
example.

FUNCTION_BLOCK FB11
VAR_INPUT
V1. INT:=7;
END_VAR
VAR_OUTPUT
V2: REAL;
END_VAR
VAR
PASS_1:INT,;
END_VAR
BEGIN
IFV1=7THEN
PASS_1:= V1,
V2:= FC2 (TESTVAL:= PASS_1);
/ICall function FC2 and
/[supply parameters by means of static
[Ivariable PASS 1
END_IF;
END_FUNCTION_BLOCK

Example 8-2 Example of a Function Block

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 8-13

Structure of an SCL Source File

8.8 Structure of a Function (FC)

Overview

FC Names

Date Type
Specification

FC Declaration
Section

Code Section

8-14

A function (FC) is a logic block that is not assigned its own memory area.
For this reason, it does not require an instance DB. In contrast to an FB, a
function can return a function resulefurn value) to the point from which it
was called. A function can therefore be used like a variable in an expression.
Functions of the type VOID do not have a return value.

Function

Data type
specification

FC
FUNCTION IDENTIFIER

t FC declaration { BEGIN) Code section I [END_FUNCTION)_>

section

Figure 8-11 Syntax of a Function (FC)

After the keyword
FUNCTION

specify the keyword FC followed by the block number or the symbolic name
of the FC as the FC identifier.

Examples:
FUNCTION FC100
FUNCTION SPEED

Here you specify the data type of the return value. The permissible data types
are all those described in Chapter 9, with the exception of data types
STRUCT and ARRAY. A data type does not need to be specified if a return
value is dispensed with by the usev@dID .

The permissible declaration sections are described in detail in Section 8.4.

Within the code section, the function name must be assigndahittéon
result. The following is an example of a valid statement within a function
with the name FC31:

FC31:= VALUE;

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Structure of an SCL Source File

Example The example below shows a function with the formal input parameters x1,
x2, yl and y2, a formal output parameter Q2 and a return value FC11.

For an explanation of formal parameters, refer to Chapter 10.

FUNCTION FC11: REAL
VAR_INPUT
x1: REAL;
x2: REAL;
y1: REAL;
y2: REAL;
END_VAR
VAR_OUTPUT
Q2: REAL;
END_VAR
BEGIN /I Code section

FC11:= SQRT // Return of function value
((x2-x1)*2 + (y2 - y1) **2);

Q2:=x1;
END_FUNCTION

Example 8-3 Example of a Function

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 8-15

Structure of an SCL Source File

8.9 Structure of an Organization Block (OB)

Overview An organization block (OB), like an FB or FC, is part of a user program and
is called by the operating system cyclically or when certain events occur. It
provides the interface between the user program and the operating system.

Organization Block

HORGANIZATION_BLOCK)— IDENQI'|I3FIER 4 OB declaration section W

L(BEGIN)_{l Code section | { END_ORGANIZATION_BLOCK)

Figure 8-12 Syntax of an Organization Block

OB Name After the keyword
ORANIZATION_BLOCK

specify the keyword OB followed by the block number or the symbolic name
of the OB as the OB identifier.

Examples:

ORGANIZATION_BLOCK OB14

ORGANIZATION_BLOCK TIMER_ALARM
OB Declaration In order to run, each OB has a basic requireme20 difytes of local datdor
Section the start information. Depending on the requirements of the program, you can

also declare additional temporary variables in the OB. For a description of
the 20 bytes of local data, please refeP®b/.

Example:

ORGANIZATION_BLOCK OB14
/ITIMER_ALARM

VAR_TEMP
HEADER:ARRAY [1..20] OF BYTE;// 20 bytes for
startinformation

END_VAR

For details of the remaining permissible declaration subsections for OBs,
please refer to Section 8.4.

Structured Control Language (SCL) for S7-300/S7-400, Programming
8-16 C79000-G7076-C522-01

Structure of an SCL Source File

8.10 Structure of a Data Block (DB)

Overview A data block (DB) contains global user-specific data which is to be
accessible tall blocks in the program. Each FB, FC or OB can read or write
data from/to global DBs. The structure of data blocks which are assigned to
specific FBs only (instance DBSs) is described in Chapter 12.

Data Block

DATA_BLOCK NRI\%IE —{ DB declaration section |7

BEGIN)| | DB assignment section | 3 END_DATA_BLOCK

Figure 8-13 Syntax of a Data Block (DB)

DB Name After the keyword
DATA BLOCK

specify the keyword DB followed by the block number or the symbolic name
of the DB as the DB identifier.

Examples:
DATA_BLOCK DB20
DATA BLOCK MEASRANGE

DB Declaration In the DB declaration section, you define the data structure of the DB. A DB
Section variable can be assigned either a structured data type (STRUCT) or a
user-defined data type (UDT).

DB Declaration Section DB

NAME
-
Structure of Data

Type Specification

Figure 8-14 Syntax of the DB Declaration Section

Example:

DATA_BLOCK DB 20
STRUCT /I Declaration section
VALUE:ARRAY [1..100] OF INT;
END_STRUCT

BEGIN /I Start of assignment section

END_DATA_BLOCK /l End of data block

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 8-17

Structure of an SCL Source File

DB Assignment
Section

Example

8-18

In the assignment section, you can adapt the data you have declared in the
declaration section so that it has DB-specific values for your particular
application. The assignment section begins with the keyword

BEGIN

and then consists of a sequence of value assignments with the following
syntax:

DB Assignment Section

— Simple variable e ‘ E—

Figure 8-15 Syntax of the DB Assignment Section

Note

When assigning initial values (initialization), STL syntax applies to entering
attributes and comments within a DB. For information on how to write
constants, attributes and comments, consult the user magfabr the

manual 232.

The example below illustrates how the assignment section can be formulated
if the array values [1] and [5] are to have the integer values 5 and -1
respectively instead of the initialization value 1.

DATA_BLOCK DB20
STRUCT /IData declaration with
/linitialization values
VALUE :ARRAY [1..100] OF INT := 100 (1);

MARKER: BOOL := TRUE;
S_WORD: WORD := W#16 #FFAA;
S_BYTE: BYTE := Bql6qFF;
S_TIME: S5TIME := S5T#1h30m30s;

END_STRUCT

BEGIN /[Assignment section
/IValue assignments for specific array elements
VALUE [1] :=5;

VALUE [5] :=-1;

END_DATA_BLOCK

Example 8-4 Assignment Section of a DB

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Structure of an SCL Source File

8.11 Structure of a User-Defined Data Type (UDT)

Overview

Naming UDTs

Specifying Data
Types

User-defined data types (UDTs) are special data structures created by the
user. Since user-defined data types are assigned names they can be used
many times over. By virtue of their definition, they can be used at any point
in the CPU program and are thus global data types. As such, they can
therefore

* be used in blocks in the same way as elementary or complex data types,
or

* be used as templates for creating data blocks with the same data structure.

User-Defined Data Type

Structure

uDT d
TYPE — ata type END_TYPE
H{__TYPE J name speciication S

Figure 8-16 Syntax of a User-Defined Data Type (UDT)

After the keyword
TYPE

specify the keyword UDT followed by a number or simply the symbolic
name of the UDT.

Examples:

TYPE UDT 10
TYPE SUPPLY_BLOCK

The data type is always specified witBBRUCT data type specification

The data type UDT can be used in the declaration subsections of logic blocks
or in data blocks or assigned to DBs. For details of the permissible
declaration subsections and other information, please refer to Chapter 9.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

8-19

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Data Types

Introduction A data type is the combination of value ranges and operations into a single
unit. SCL, like most other programming languages, has a number of
predefined data types (that is, integrated in the language). In addition, the
programmer can create complex and user-defined data types.

Chapter Section Description Page

Overview 9.1 Overview 9-2
9.2 Elementary Data Types 9-3
9.3 Complex Data Types 9-4
9.3.1 DATE_AND_TIME Data Type 9-5
9.3.2 STRING Data Type 9-6
9.3.3 ARRAY Data Type 9-7
9.3.4 STRUCT Data Type 9-§
9.4 User-Defined Data Type (UDT) 9-10
9.5 Parameter Types 9-12

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 9-1

Data Types

9.1 Overview

Overview Table 9-1 shows the various data types in SCL:

Table 9-1 Data Types in SCL

Elementary Data Types

BOOL CHAR INT TIME

BYTE DINT DATE

WORD REAL TIME_OF_DAY

DWORD S5TIME
Complex Data Types

DATE_AND_TIME |STRING ARRAY STRUCT

User-Defined Data Types

ubDT
Parameter Types
TIMER BLOCK_FB POINTER ANY
COUNTER BLOCK_FC
BLOCK_DB
BLOCK_SDB

The above data types determine:
¢ the nature and interpretation of the data elements,
¢ the permissible value ranges for the data elements,

¢ the permissible number of operations that can be performed by an
operand of a data type, and

¢ the format of the data of a data type.

Structured Control Language (SCL) for S7-300/S7-400, Programming
9-2 C79000-G7076-C522-01

Data Types

9.2

Overview

Elementary Data Types

Elementary data types define the structure of data elements that cannot be
subdivided into smaller units. They correspond to the definition given in the
standard DIN EN 1131-3. An elementary data type defines a memory area of
a fixed size and represents bit, integer, real, period, time and character
values. These data types are all predefined in SCL.

Table 9-2 Bit Widths and Value Ranges of Elementary Data Types
Type Keyword Bit Value Range
Width

Bit Data Type

Data elements of this type are either 1Bit (BOOL data type

8 Bits, 16 Bits or 32 Bits in length.
Bit BOOL 1 0, 1 or FALSE, TRUE
Byte BYTE 8 A numerical value range can not
specified. These are bit
Word WORD 16 | combinations which cannatbe
Double word DWORD 32 | expressed in numerical terms.

Character Type

Data elements of this type occupy exactly 1 character in th

ASCII character set

Individual
Characters

CHAR

8

Extended ASCII character set

Numeric Types

These are used for processing numerical values

Integer (whole
number)

-32_768 1t032_767

pe

1%}

Double integer

Floating point
number

(IEE floating point
number)

INT 16
5y |2.147.483.648 to

DINT 2_147_483_647

REAL 32 |-3.402822E+38 to -1.175495E-39

0.0,
+1.175495E-38 to 3.402822E+38

increments of 1 ms

Time Types Data elements of this type represent different date values i
STEP 7.

;I'én;et'me in TIME 32 -T#24D_20H_31M_23S_647MS
ime i a o

incremens of 1 mgy ("PURATION) T#24D 20H _31M 23S 647MS

Date

IEC date in DATE 16 D#1990-01-01 to

increments of 1 day D#2168-12-31

Time of day TIME_OF_DAY .

Time of day in (=TOD) 32 TOD#0:0:0 to

TOD#23:59:59.999

Note on S5 time:Depending whether the time base is 0.01S, 0.1S, 1S or
10S, the time resolution is limited accordingly. The compiler rounds the
values accordingly.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

9-3

Data Types

9.3

Overview

Complex Data Types

SCL supports the following complex data types:

Table 9-3 Complex Data Types

Data Type Description

Defines an area of 64 bits (8 bytes). This data type stores|date
DATE_AND_TIME | and time (as a binary coded decimal) and is a predefined fata
DT type in SCL.

Defines an area for a character string of up to 254 characters
STRING (DATA TYPE CHAR).

Defines an array consisting of elements of one data type (either
ARRAY elementary or complex).

Defines a group of data types in any combination of types| It
STRUCT can be an array of structures or a structure of structures apd

arrays.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Data Types

9.3.1 DATE_AND_TIME Data Type

Overview The data type DATE_AND_TIME is made up of the data types DATE and
TIME. It defines an area of 64 bits (8 bytes) for specifying the date and time.
The data area stores the following information (in binary coded decimal
format): year—-month—day—hours: minutes: seconds.milliseconds.

DATE_AND_TIME

DATE_AND_TIME#

Figure 9-1 Syntax of DATE_AND_TIME

Table 9-4 Bit widths and value ranges
Value Range Type Keyword Bits Range of Values
Date and time DATE_AND_TIME DT#1990-01-01:0:0:0.0 to
(=DT) 64 | DT#2089-12-31:23:59:59.999

The precise syntax for the date and time is described in Chapter 11 of this
manual. Below is a valid definition for the date and time 20/10/1995
12:20:30 and 10 milliseconds.

DATE_AND_TIME#1995-10-20-12:20:30.10
DT#1995-10-20-12:20:30.10

Note

There are standard FCs available for accessing the specific components
DATE or TIME.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 9-5

Data Types

9.3.2 STRING Data Type

Overview

Value Range

9-6

A STRING data type defines a character string with a maximum of
254 characters.

The standard area reserved for a character string consists of 256 bytes. This is
the memory area required to store 254 characters and a header consisting of
two bytes.

You can reduce the memory required by a character string by defining a
maximum number of characters to be saved in the strimgllAtring, in
other words a string containing no data, is the smallest possible value.

STRING Data Type Specification

N Simple FA
v STRING <) expression

String dimension

Figure 9-2 Syntax of the STRING Data Type Specification

The simple expression (string dimension) represents the maximum number of
characters in the string.

The following are some examples of valid string types:

STRINGJ[10]

STRING[3+4]

STRING[3+4 « 5]

STRING max. value range (default A 254 characters)

Any characters in the ASCII character set are permitted in a character string.
Chapter 11 describes how control characters and non-printing characters are
treated.

Note

In the case of return values, input and in/out parameters, the standard length
of the data type STRING can be reduced from 254 characters to a number of
your choice, in order to make better use of the resources on your CPU.
Select theCustomizemenu command in th@ptions menu and then the
“Compiler” tab. Here, you can enter the required number of characters in the
“Maximum String Length” option box.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Data Types

9.3.3 ARRAY Data Type

Overview

Index Specification

Data Type
Specification

The array data type has a specified number of components of particular data
type. In the syntax diagram for arrays shown in Figure. 9-3, the data type is
precisely specified by means of the reserved \@kdSCL distinguishes
between the following types of array:

¢ The one-dimensional ARRAY type.
(This is a list of data elements arranged in ascending order).

e The two-dimensional ARRAY type.
(This is a table of data consisting of rows and columns. The first
dimension refers to the row number and the second to the column
number).

¢ The multidimensional ARRAY type.
(This is an extension of the two-dimensional ARRAY type adding further
dimensions. The maximum number of dimensions permitted is six).

ARRAY Data Type Specification

Index specification

/

()

Data type

@ specification

A 4

Figure 9-3 Syntax of ARRAY Data Type Specification

This describes the dimensions of the ARRAY data type as follows:

e The smallest and highest possible index (index range) for each dimension.
The index can have any integer value (—-32768 to 32767).

¢ The limits must be separated by two full stops.

* The individual index ranges must be separated by commas. The entire
index specification is enclosed in square brackets.

The data type specification is used to declare the data type of the array
components. The permissible data types are all those detailed in this section.
The data type of an ARRAY can also be a structure.

The following specifications are examples of possible array types:

ARRAY][1..10] OF REAL
ARRAY][1..10] OF STRUCT..END_STRUCT
ARRAY][1..100, 1..10] OF REAL

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

9-7

Data Types

9.34 STRUCT Data Type

Overview

Component
Declaration

Identifier

9-8

A STRUCT data type describes an area consisting of a fixed number of
components that can be of different data types. These data elements are
specified in Figure 9-4 immediately following the STRUCT keyword in the
component declaration. The main feature of the STRUCT data type is that a
data element within it can also be structured. This means that nesting of
STRUCT data types is permitted. Chapter 10 explains how to access the data
of a structure.

STRUCT

Component
—p—{ STRUCT } declaration END_STRUCT'—}

Figure 9-4 Syntax of STRUCT Data Type Specification

This is a list of the various components in a structure. As shown in the syntax
diagram in Figure 9-5, this list consists of:

e 1 tonidentifiers
¢ the assigned data type and

e optional specification of an initial value
Component Declaration

Data type
IDENTIFIER ’ specification

Component name

A 4

Data type .
initialization '

Figure 9-5 Syntax of a Component Declaration

This is the name of a structure element to which the subsequent data type
specification is to apply.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Data Types

Data Type You have the option of specifying an initial value for a specific structure
Initialization element after the data type specification. Assignment is made by means of a
value assignment as described in Chapter 10.

Example The example below illustrates a definition 3 8RUCTdata type.
STRUCT
/ISTART of component declaration
Al ANT;
A2 :STRING[254];
A3 ‘ARRAY [1..12] OF REAL;

Component names ‘ Data type specifications
//END of component declaration

END_STRUCT

Example 9-1 Definition of aSSTRUCT Data Type

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 9-9

Data Types

9.4 User-Defined Data Type (UDT)

Overview As explained in Chapter 8, a UDT data type is defined as a block. By virtue
of its definition, such a data type can be used at any point of the CPU
program and is thus a global data type. You can use these data types with
their UDT name, UDTx (x represents a number), or with an assigned
symbolic name defined in the declaration section of a block or data block.

User-Defined Data Type

Structure

uDT d
TYPE - ata type END_TYPE
- NAME specification —

Figure 9-6 Syntax of a User-Defined Data Type (UDT)

UDT Name A declaration for a UDT is introduced by the keyword TYPE followed by the
name of the UDT (UDT identifier). The name of the UDT can either be
specified in absolute form, that is, by a standard name in the form UDTx (x
stands for a number), or else a symbolic name can be used (see also Chapter
8).

Data Type The UDT name is followed by the data type specification. The only data type
Specification specification permissible in this case is STRUCT (see Section 9.3.4).

STRUCT

END_STRUCT

Subsequently, the complete declaration for the UDT is concluded with the
keyword

END_TYPE

Using UDTs The data type thus defined can be used for variables or parameters or
declaring DBs. Components of structures or arrays, including those inside
other UDTSs, can also be declared by means of UDTs.

Note

When assigning initial values (initialization) within a UDT, STL syntax
applies. For information on how to write constants, consult the user manual
/231 or manual232.

Structured Control Language (SCL) for S7-300/S7-400, Programming
9-10 C79000-G7076-C522-01

Data Types

Example The example below illustrates the definition of a UDT and the use of this
data type within a variable declaration. It is assumed that the name
"MEASDATA" has been declared for UDT50 in the symbol table.

TYPE MEASDATA // UDT Definition
STRUCT

BIPOL_1: INT;

BIPOL_2:WORD :=W #16#AFAL;
BIPOL_3:BYTE:=B #16#FF;
BIPOL_4:WORD =B #(25,25);
BIPOL_5: INT := 25;

S_TIME : SSTIME:= S5T#1h20m10s;

READING: STRUCT
BIPOLAR_10V: REAL;
UNIPOLAR_4_20MA: REAL;
END_STRUCT;

END_STRUCT

END_TYPE

FUNCTION_BLOCK
VAR

MEAS_RANGE: MEASDATA;
END_VAR
BEGIN

MESS_RANGE.BIPOL:= -4,
MESS_RANGE.READING.UNIPOLAR_4_20MA:=2.7;

END_FUNCTION_BLOCK

Example 9-2 Declaration of User-Defined Data Types

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 9-11

Data Types

9.5 Parameter Types

Overview

TIMER and
COUNTER

BLOCK Types

9-12

In addition to elementary, complex and user-defined data types, you can also
use so-callegparameter typesfor specifying the formal block parameters for
FBs and FCs. These data types are used for the following:

¢ declaring timer/counter functions as paramet€iIER/COUNTER
¢ declaring FCs, FBs, DBs and SDBs as parame®&rOCK_xx)
¢ allowing an address of any data type as a paranf&iy) (

¢ allowing a memory area as a parameter (POINTER)

Table 9-5 Parameter Types

Parameter Size Description

TIMER 2 bytes | Identifies a specific timer to be used by the program i the
logic block called.
Actual parameter: e.g. T1

COUNTER 2 bytes | Identifies a specific counter to be used by the program in tl
logic block called.
Actual parameter: e.g. C10

1]

BLOCK_FB 2 bytes | Identifies a specific block to be used by the program in the
BLOCK_FC block called.

BLOCK_DB Actual parameter: e.g. FC101

BLOCK_SDB DB42

ANY 10 bytes| Used if any data type with the exception of ANY is to pe
allowed for the data type of the actual parameter.

POINTER 6 bytes | Identifies a particular memory area to be used by the
program.

Actual parameter: e.g. M50.0

You specify a particular timer or a counter to be used when processing a
block. The TIMER and COUNTER data types are only permitted for input
parameters (VAR_INPUT).

You specify a certain block to be used as an input parameter. The declaration
of the input parameter determines the type of block (FB, FC or DB). When
supplying parameters, you specify the absolute block identifier either in
absolute form (for example, FB20) or by a symbolic name.

SCL does not provide any operations which manipulate these data types.
Parameters of this type can only be supplied with data in the course of
subroutine calls. In the case of FCs, input parameters cannot be passed on.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Data Types

In SCL, you can assign addresses to the following data types as actual
parameters:

¢ Function blocks without formal parameters
* Function blocks without formal parameters and return value (VOID)

¢ Data blocks and system data blocks.

ANY In SCL it is possible to declare block parameters of the data type ANY. When
such a block is called, these parameters can be supplied with addresses of any
data type. SCL, however, provides only one method of processing the ANY
data type, namely passing on to underlying blocks.

You can assign addresses of the following data types as the actual parameter:

e Elementary data types
You specify the absolute address or the symbolic name of the actual
parameter.

e Complex data types
You specify the symbolic name of the data and the complex data type.

e ANYdata type
This is only possible when the address is a parameter type that does not
clash with the formal parameter.

* NIL data type
You specify a zero pointer.

e Timers, counters, and blocks
You specify the identifier (for example, T1, C20 or FB6).

The data type ANY is permitted for formal input parameters, in/out
parameters of FBs and FCs, and for output parameters of FCs.

Note

If you supply a temporary variable to a formal parameter of the ANY type
when an FB or FC is called, you must not pass on this parameter to a further
block in the block that was called. The addresses of temporary variables lose
their validity when they are passed on.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 9-13

Data Types

POINTER

9-14

In SCL, you can declare block parameters of the POINTER data type and can
supply these parameters with addresses of any data type when such a block is
called. SCL, however, provides only one method of processing the ANY data
type, namely passing on to underlying blocks.

You can assign addresses of the following data types as the actual parameter
in SCL:

Elementary data types
You specify the absolute address or the symbolic name of the actual
parameter.

Complex data types
You specify the symbolic name of the data and the complex data type (for
example arrays and structures).

POINTERdata type
This is only possible when the address is a parameter type that does not
clash with the formal parameter.

NIL data type
You specify a zero pointer.

The POINTERdata type is permitted for formal input parameters, infout
parameters of FBs and FCs and for output parameters of FCs.

Note

If you supply a temporary variable to a formal parameter of the POINTER
type when an FB or FC is called, you must not pass on this parameter to a
further block in the block that was called. The addresses of temporary
variables lose their validity when they are passed on.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Data Types

Examples

FUNCTION GAP: REAL
VAR_INPUT
MyDB:BLOCK_DB;
TIME :TIMER;
END_VAR
VAR
INDEX: INTEGER;
END_VAR
BEGIN
MyDB.DB5:=5;
GAP:=.... /I RETURNVALUE

END_FUNCTION

Example 9-3 BLOCK_DB and TIMER Data Types

FUNCTION FC100: VOID
VAR_IN_OUT
in, out:ANY;
END_VAR
VAR_TEMP
ret: INT,;
END_VAR
BEGIN
/...
ret:=SFC20(DSTBLK:=out,SCRBLK:=in);
/...
END_FUNCTION

FUNCTION_BLOCK FB100
VAR
ii:INT;
aa, bb:ARRAY[1..1000] OF REAL;
END_VAR
BEGIN
/...
FC100(in:=aa, out:=bb);
/...
END_FUNCTION_BLOCK

Example 9-4 ANY Data Type

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 9-15

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Local Variables and Block 10
Parameters

Introduction Local variables and block parameters are data that are declared within a code
block (FC, FB or OB) and are valid only within that logic block. This chapter
explains how such data are declared and initialized.

Chapter Section Description Page

Overview 10.1 Overview 10-2
10.2 Declaration of Variables 10-4
10.3 Initialization 10-5
10.4 Instance Declaration 10-7
10.5 Static Variables 10-8
10.6 Temporary Variables 10-¢
10.7 Block Parameters 10-10
10.8 Flags (OK Flag) 10-12

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 10-1

Declaring Local Variables and Block Parameters

10.1 Overview

Categorization of
Variables

Categorization of
Block Parameters

Flags (OK Flag)

10-2

Local variables can be subdivided into the categories shown in Table 10-1:

Table 10-1 Local Variables

Variable Explanation

Static Variables Static variables are local variables whose value is retained
throughout all block cycles (block memory). They are Used
to store values for a function block and are stored in the
instance data block.

Temporary Variables Temporary variables belong to a logic block at local level
and donot occupy a static memory area, since they arg
stored in the CPU stack. Their values are retained only for
the duration of a single block cycle. Temporary variables

are declared.

cannot be accessed from outside the block in which tTey

Block parameters are placeholders that are definitely specified only when the
block is actually used (called). The placeholders in the block are termed
formal parameters and the values assigned to them when the block is called
are referred to as the actual parameters. The formal parameters of a block can
be viewed as local variables.

Block parameters can be subdivided into the categories shown in Table 10-2:

Table 10-2 Block Parameters

Block Parameter Type Explanation
Input Parameters Input parameters accept the current input
values when the block is called. They are
read-only.
Output parameters Output parameters transfer the current

output values to the calling block. Datd
can be written to and read from them.

Infout parameters In/out parameters copy the current valye
of a variable when the block is called,
process it and write the result back to the
original variable.

The SCL compiler provides a flag which can be used for detecting errors
when running programs on the CPU. It is a local variable of the type BOOL
with the predefined name “OK”.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Local Variables and Block Parameters

Declaring As shown in Table 10-3, each category of local variables or parameters is
Variables assigned as well a separate declaration subsection as its own pair of
and Parameters keywords.

Each subsection contains the declarations that are permitted for that
particular declaration subsection. Each subsection may only appear once in
the declaration section of the block. There is no specified order in which the
subsections have to be placed.

The declaration subsections permitted within a particular block are marked
with an “x” in Table 10-3.

Table 10-3 Declaration Subsections for Local Variables and Parameters

Data Syntax FB FC OB
VAR
Static Variables : X | XD
END_VAR
VAR_TEMP
Temporary Variables : X X X
END_VAR
Block Parameters: VAR_INPUT
: X X
Input parameters END_VAR
VAR_OUTPUT
Output parameters |: X X
END_VAR
VAR_IN_OUT
In/out parameters | : X X
END_VAR

1) Although the declaration of variables within the keyword pair VAR and END_VAR is permitted
in functions, the declarations are shifted to the temporary area during compilation.

Initialization When they are declared, the variables and parameters must be assigned a
data type which determines the structure and thereby the memory
requirements. In addition, you can also assign static variables and function
block parameters initial values. Table 10-4 summarizes the situations in
which initialization is possible.

Table 10-4 Initialization of Local Data
Data Category Initialization
Static Variables Possible
Temporary Variables Not possible
Block Parameters Only possible in the case of input or output
parameters of a function block

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 10-3

Declaring Local Variables and Block Parameters

10.2 Declaring Variables and Parameters

Summary

Data Type
Specification

10-4

A variable or parameter declaration consists of a user-definable identifier for
the variable name and details of the data type. The basic format is shown in
the syntax diagram below. Assigning system attributes for parameters is
described in Section 8.4.

Variable Declaration

. Data type Data type
hr‘ IDENTIFIER 1 I @ specification initialization

Variable name
Parameter name

v

or
Component
name

(Y 1) System attributes for parameters

N

Figure 10-1Syntax of a Variable Declaration

The following are examples of valid declarations:

VALUELl : REAL;
Or, if there are several variables of the same type:
VALUE2, VALUE2,VALUE4,....: INT;

ARRAY : ARRAY[1..100, 1..10] OF REAL,;

SET . STRUCT
MEASBAND:ARRAY[1..20] OF REAL;
SWITCH:BOOL,;

END_STRUCT

All data types dealt with in Chapter 9 are permissible.

Note

Reserved words, which are only valid in SCL, can be declared as identifiers
by putting the character “#” in front (for example, #FOR). This can be useful
if you want to transfer the actual parameters to blocks which were created in
a different language (for example, STL).

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Local Variables and Block Parameters

10.3 Initialization

Principle Static variables, input parameters and output parameters of an FB can be
assigned an initial value when they are declared. The initialization is
performed by means of a value assignment (:=) which follows the data type
specification. As shown in the syntax diagram in Figure 10-2, you can either:

¢ assign a simple variable a constant or

e assign an array an initialization list

Initialization

Constant

Array
initialization list

Figure 10-2 Syntax of Data Type Initialization

Example:
VALUE :REAL :=20.25;

Note that initialization of a list of variables (AL, A2, A3,.... INT:=...) is not
possible. In such cases, the variables have to be initialized individually.
Arrays are initialized as shown in Figure 10-3.

Array Initialization List

Constant

Array
initialization list

Constant
) Decimal) ¥ >
v digit string 4
Array
Repeat factor initialization list

()
o/

Figure 10-3 Syntax of an Array Initialization List

ARRAY : ARRAY][1..10, 1..100] OF INT:=10(100(0));

}

Repetition factor (number of cqumns)T T Value

Repetition factor (number of rows)

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 10-5

Declaring Local Variables and Block Parameters

Examples:

10-6

Example 10-1 below illustrates the initialization of a static variable.

VAR
INDEX1: INT:= 3;
END_VAR

Example 10-1 Initialization of Static Variables

Initialization of a two-dimensional array is shown in Example 10-2. If you
wish to declare the following data structure in SCL and assign it the name
CONTROLLERyou do so as follows:

-54 736 -83 77
-1289 10362 385 2
60 -37 -7 103
60 60 60 60
VAR
CONTROLLER:
ARRAY [1..4, 1..4]OF INT:= -54, 736, -83, 77,
-1289, 10362, 385, 2,
60, -37, -7, 103,
4(60);
END_VAR

Example 10-2 Array initialization

An example of initialization of a structure is shown in Example 10-3:

VAR
GENERATOR:STRUCT
DATA: REAL :=100.5;
Al: INT = 10;
A2: STRING[6]:="'FACTOR’;
A3: ARRAY[1..12] OF REAL:=12(100.0);
END_STRUCT
END_VAR

Example 10-3 Structure Intialization

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Local Variables and Block Parameters

10.4 Instance Declaration

Summary

Initialization

Apart from the elementary, complex and user-defined variables already
mentioned, you can also declare variables of the type FB or SFB in the
declaration section of function blocks. Such variables are datiatl
instancesof the FB or SFB.

The local instance data is stored in the instance data block of the calling
function block.

Instance Declaration FBs must
already exist!
FB
NAME
> IDENTIFIER
Local instance name SFB
NAME
)
o

Figure 10-4 Syntax of Instance Declaration

Examples: The following are examples of correct syntax according to the
syntax diagram in Figure 10-4:

Supplyl : FB10;
Supply2,Supply3,Supply4 : FB100;
Motorl : Motor ;

I/l Motor is a symbol declared in the symbol table.

Symbol Address Data Type
MOTOR FB20 FB20

Figure 10-5 Corresponding Symbol Table in STEP 7

Local instance-specific initialization is not possible.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

10-7

Declaring Local Variables and Block Parameters

10.5 Static Variables

Overview Static variables are local variables whose value is retained throughout all
block cycles. They are used to store the values of a function block and are
contained in a corresponding instance data block.

Static Variable Block

Variable
declaration T
VAR L END_VAR |—}
Instance J
declaration

Figure 10-6 Syntax of a Static Variable Block

Declaration The declaration subsection is a component of the FB declaration section. In it
Subsection you can:
VAR

¢ Declare variable names and data types in a variable declaration with

END_VAR initialization if required (see Section 10.2)

¢ Insert existing variable declarations using an instance declaration (see
Section 10.4).

After compilation, this subsection together with the subsections for the block
parameters determines the structure of the assigned instance data block.
Example Example 10-4 below illustrates the declaration of static variables.

VAR
PASS JINT;
MEASBAND :ARRAYT1..10] OF REAL;
SWITCH :BOOL;
MOTOR_1,Motor_2 :FB100; // Instance declaration

END_VAR

Example 10-4 Declaration of Static Variables

Access The variables are accessed from the code section as follows:

¢ Internal accessthat is, from the code section of the function block in
whose declaration section the variable is declared. This is explained in
Chapter 14 (Value Assignments).

e External access via the instance DBy way of the indexed variable
DBx.variable DBx is the data block name.

Structured Control Language (SCL) for S7-300/S7-400, Programming
10-8 C79000-G7076-C522-01

Declaring Local Variables and Block Parameters

10.6 Temporary Variables

Overview

Declaration
Subsection
VAR_TEMP
END_VAR

Example

Access

Temporary variables belong to a logic block locally andiaiooccupy any

static memory area. They are located in the stack of the CPU. The value only
exists while a block is being processed. Temporary variablesot be

accessed outside the block in which they are declared.

You should declare data as temporary data if you only require it to record
interim results during the processing of your OB, FB or FC.

Temporary Variable Subsection

Variable (\
VAR_TEMP declaration (_END_VAR)) 4
()
o/

Initialization not possible

Figure 10-7 Syntax of a Temporary Variable Subsection

The declaration subsection is a component of an FB, FC, or OB. It is used to
declare variable names and data types within the declaration section (see
Section 10.2).

When an OB, FB or FC is first executed, the value of the temporary data has
not been defined. Initialization is not possible.

Example 10-5 below illustrates the declaration of block-temporary variables.

VAR_TEMP
BUFFER_1 :ARRAY [1..10] OF INT;
AUX1,AUX2 ‘REAL;

END_VAR

Example 10-5 Declaration of Block-Temporary Variables

A variable is always accessed from the code section of the logic block in
whose declaration section thariable is declaredifiternal acces$, see
Chapter 14, Value Assignments.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

10-9

Declaring Local Variables and Block Parameters

10.7 Block Parameters

Overview

Declaration
Subsection
VAR_INPUT
VAR_OUTPUT
VAR _IN_OUT

10-10

Block parameters are formal parameters of a function block or a function.
When the function block or function is called, the actual parameters replace
the formal parameters, thus forming a mechanism for exchange of data
between the called block and the calling block.

e Formal input parameters are assigned the actual input values
(inward flow of data)

e Formal output parameters are used to transfer output values
(outward flow of data)

¢ Formal in/out parameters have the function of both an input and an output
parameter.

For more detailed information about the use of parameters and the associated
exchange of data, refer to Chapter 16.

Parameter Subsection

VAR_INPUT

VAR_OUTPUT

VAR_IN_OUT

Initialization only possible for VAR_INPUT and VAR_OUTPUT

Variable
declaration [END_VAR)’

Figure 10-8 Syntax of Parameter Subsection

The declaration subsection is a component of an FB or FC. In it, the variable
name and assigned data type are specified within the variable declaration see
Section 10.2.

After compilation of an FB, these subsections together with the subsection
delimited byVAR and END_VAR determine the structure of the assigned
instance data block.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Local Variables and Block Parameters

Example

Access

Example 10-6 below illustrates the declaration of a parameter:

VAR_INPUT /lInput parameter
CONTROLLER :DWORD;
TIME :TIME_OF_DAY;

END_VAR

VAR_OUTPUT //Output parameter
SETPOINTS: ARRAY [1..10] of INT;

END_VAR

VAR_IN_OUT //Infout parameter
EINSTELLUNG: INT;

END_VAR

Example 10-6 Declaration of Parameters

Block parameters are accessed from the code section of a logic block as
follows:

Internal access that is, from the code section of the block in whose
declaration section th@arameter is declared. This is explained in

Chapter 14 (Value Assignments) and Chapter 13 (Expressions, Operators
and Addresses).

External access by way of instance data blockou can access block
parameters of function blocks via the assigned instance DB (see
Section 14.8).

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

10-11

Declaring Local Variables and Block Parameters

10.8 Flags (OK Flag)

Description The OK flag is used to indicate the correct or incorrect execution of a block.
It is a global variable of the type BOOL identified by the keyword "OK”.

If an error occurs when a block statement is being executed (for example
overflow during multiplication), the OK flag is set to FALSE. When the
block is quit, the value of the OK flag is saved in the implicitly defined
output parameter ENO (Section 16.4) and can thus be read by the calling
block.

When the block is first called, the OK flag has the value TRUE. It can be
read or set to TRUE / FALSE at any point in the block by means of SCL
statements.

Declaration The OK flag is a system variable. Declaration is not necessary. However, you
do have to select the compiler option "OK Flag” before compiling the source
file if you wish to use the OK flag in your application program.

Example Example 10-7 below illustrates the use of the OK flag.

/I Set OK variable to TRUE
Il in order to be able to check
/I whether the operation below
Il'is performed successfully
OK: = TRUE;
SUM: = SUM + IN;
IF OK THEN
// Addition completed successfully

ELSE // Addition not completed successfully

END_IF;

Example 10-7 Use of the OK Variable

Structured Control Language (SCL) for S7-300/S7-400, Programming
10-12 C79000-G7076-C522-01

Declaring Constants and Jump Labels

Introduction

Chapter
Overview

11

Constants are data elements that have a fixed value which can not be altered
while the program is running. If the value of a constant is expressed by its
format, it is termed &teral constant.

You do not have to declare constants. However, you have the option of
assigning symbolic names for constants in the declaration section.

Jump labels represent the names of jump command destinations within the
code section of the logic block.

Symbolic names of constants and jump labels are declared separately in their
own declaration subsections.

Section Description Page
11.1 Constants 11-2
11.2 Literals 11-3
11.3 Formats for Integer and Real Number Literals 11-4
114 Formats for Character and String Literals 11-7
11.5 Formats for Times 11-10
11.6 Jump Labels 11-14

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

11-1

Declaring Constants and Jump Labels

11.1 Constants

Use of Constants

Declaration of
Symbolic Names

Example

Formats

11-2

In value assignments and expressions, constants are also used in addition to
variables and block parameters. Constants can be used as literal constants or
they can have a symbolic name.

Symbolic names for constants are declared withirfChdlSTdeclaration
subsection in the declaration section of your logic block (see Section 8.4).

Constant Subsection

- CONST; IDENTIFIER I—(:)— ex%irrggslieon O END_CONST '—}

Constant name

Figure 11-1 Syntax of Constant Subsection

'Simple expression’ in this case refers to mathematical expressions in which
you can use using the basic operations +, —, *, /, DIV and MOD.

Example 11-1 below illustrates the declaration of symbolic names.

CONST

Figure :=10;

TIME1 = TIME#1D_1H_10M_22S.2MS ;
NAME :='SIEMENS’ ;

FIG2 =2*5+10*4;

FIG3 :=3 + NUMBER2 ;

END_CONST

Example 11-1 Declaration of Symbolic Constants

SCL provides a number of different formats for entering or displaying
constants. Those formats are known as literals. The sections which follow
deal with the various types of literal.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Constants and Jump Labels

11.2 Literals

Definition

Assigning Data
Types to
Constants

A literal is a syntactical format for determining the type of a constant. There
are the following groups of literals:

e Numeric literals
e Character literals
e Times

There is a specific format for the value of a constant according to its data
type and data format.

15 VALUE 15 as integer in decimal notation
2#1111 Value 15 as integer in binary notation
16#F Value 15 as integer in hexadecimal notation

Literal with different formats for the value 15

A constant is assigned the data type whose value range is just sufficient to
accommodate the constant without loss of data. When using constants in an
expression (for example, in a value assignment), the data type of the target
variable must incorporate the value of the constant. If, for example, an
integer literal is specified whose value exceeds the integer range, it is
assumed that it is a double integer. The compiler returns an error message if
you assign this value to a variable of the type Integer.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

11-3

Declaring Constants and Jump Labels

11.3 Formats for Integer and Real Number Literals

Overview

11-4

SCL provides the following formats for numerical values:
¢ Integer literals for whole number values
¢ Real number literals for floating point numbers

In both of the above literals, you use a string of digits which must conform to
the structure shown in Figure 11-2. This string of digits is referred to simply
as adecimal digit string in the syntax diagrams below.

INT: REAL:
40 3000.40

2000 20.00
Digit string = Decimal digit string
Figure 11-2 Digit String in a Literal

The decimal number in a literal consists of a string of digits which may also
be separated by underscore characters. The underscores are used to improve
readability in the case of long numbers.

Decimal Digit String
4
N

R

Underscore

v

Figure 11-3 Syntax of Decimal Digit Strings

Below are some examples of valid formats for decimal digit strings in
literals:

1000
1_120_200
666_999 400 311

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Constants and Jump Labels

Integer Literals

Binary/Octal/Hexa-
decimal Values

Integer literals are whole numbers. Depending on their length, they can be
assigned in the SCL program to variables of the following data types:

BOOL, BYTE, INT, DINT, WORD, DWORD.

Figure 11-4 shows the syntax of an integer literal.

INTEGER LITERAL

: DECIMAL
DIGIT STRING
> 1))
1 Octal integer
) Hexadecimal integer
Only with data types Binary integer
INT andDINT

Figure 11-4 Syntax of an Integer Literal

Below are some examples of permissible formats for decimal digit strings in
integer literals:

1000
+1_120_200
—666_999_400_311

You can specify an integer literal in a numeric system other than the decimal
system by using the prefix@#, 8# or 16#ollowed by the number in the
notation of the selected system. You can use the underscore character within
a number to make longer numbers easier to read.

The general format for an integer literal is illustrated in Figure 11-5 using the
example of a digit string for an octal number.

Octal digit string

4
Al

3 Underscore

Figure 11-5 Syntax of an Octal Digit String

v

Below are some examples of permissible formats for integer literals:

Wert_2:=2#0101;// Binary number, decimal value 5

Wert_3:=8#17; // Octal number, decimal value 15

Wert_4:=16#F; [/ Hexadecimal number, decimal
// value 15

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

11-5

Declaring Constants and Jump Labels

Real Number Real number literals are values with decimal places. They can be assigned to
Literals variables of the data tyg®EAL The use of a plus or minus sign is optional.
If no sign is specified, the number is assumed to be positive. Figure 11-7
shows the syntax for specifying an exponent. Figure 11-6 shows the syntax
for a real number:

REAL NUMBER LITERAL

DECIMAL \ DECIMAL
DIGIT STRING o/ DIGIT STRING
DECIMAL DECIMAL
DIGIT STRING DIGIT STRING

Figure 11-6 Syntax of a Real Number Literal

With exponential format, you can use an exponent to specify floating point

numbers. The exponent is indicated by preceding the integer with the letter
“E” or “e”, following a decimal digit string. Figure 11-7 shows the syntax for
entering an exponent.

DECIMAL)
DIGIT STRING

Figure 11-7 Exponent Syntax

Exponent

Example:

The value 3 x 189can be represented by the following real numbers in SCL:

3.0E+10 3.0E10 3e+10 3E10
0.3E+11 0.3ell 30.0E+9 30e9
Examples Example 11-2 summarizes the various alternatives once again:

/I Integer literals
NUMBER1:=10;
NUMBER2:= 2#1010 ;
NUMBERS3:= 16#1A2B ;
/I Real number literals
NUMBER4:=-3.4 ;
NUMBERS5:= 4e2 ;
NUMBERG6:= 40_123E10;

Example 11-2 Numeric Literals

Structured Control Language (SCL) for S7-300/S7-400, Programming
11-6 C79000-G7076-C522-01

Declaring Constants and Jump Labels

11.4 Formats for Character and String Literals

Summary SCL also provides the facility for entering and processing text data, for
example a character string to be displayed as a message.

Calculations can not be performed on character literals, which means that
character literals camot be used in expressions. A distinction is made
between

e character literals, that is, single characters, and

e string literals, that is, a character string of up to 254 separate characters.

Character Literals A character literal, as shown in Figure 11-8, consists of a single character
(Single Characters) only. That character is enclosed in single inverted comimas (

CHARACTER LITERAL

)

v

Figure 11-8 Character Literal Syntax

Example:
Char_1:='B’; /I Letter B
String Literals A string literal is a string of up to 254 characters (letters, numbers and special

characters) enclosed in single inverted comrhasBoth upper and lower
case letters can be used.

STRING LITERAL

String [Pra—— Q
Character break CharacterI 13

Figure 11-9 String Literal Syntax

The following are some examples of permissible string literals:
'RED’ '7500 Karlsruhe’ '270-32-3456’
'DM19.95’ 'The correct answer is:’

Please note that when assigning a string literal to a string variable, the
maximum number of characters can be limited to less than 254.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 11-7

Declaring Constants and Jump Labels

String Breaks

Printable
Characters

11-8

The value assignment
TEXT:STRING[20]:="SIEMENS _KARLSRUHERheinbriickenstr.’

will result in an error message and the information stored in the variable
"TEXT’ will be as follows:

'SIEMENS,_ KARLSRUHERH

Special formatting characters, the inverted comma (') and the $ sign can be
entered using the character $. A string literal can contain any number of
breaks.

A string is located either on a single line of an SCL block or is spread over
several lines by means of special identifiers. The identifier is used to
break a string and the identifié<’ to continue it on a subsequent line.

TEXT:STRING[20]:="The FB$>//Preliminary version
$<converts’;

The space between the break and the continuation identifiers may extend
over a number of lines and can only contain comments or spaces. A string
literal can be broken and continued in this way (see also Figure 11-10) any
number of times.

String Break Syntax Space,
Line feed,

Carriage return,
Form feed, or

Formatting Tabulator
character l

Figure 11-10 String Break Syntax

All characters of the extended ASCII character set are permissible in a
character or string literals. Special formatting characters and characters that
cannot be directly represented (" &)dn a string can be entered using the
alignment symba.

Characters
> :rmtl?g)
@ Alignment symbol $ character |

$or’

PorLorRorT

Hexadecimal Hexadecimal
digit digit

Alternative representation in hex code

Figure 11-11 Character Syntax

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Constants and Jump Labels

Non-Printable In a character literal, you can also use all non-printing characters of the
Characters extended ASCII character set. To do this, you specify the substitute
representation in hexadecimal code.

You type in an ASCII character in the fofshh, where hh represents the
value of the ASCII character in hexadecimal notation.

Example:
CHAR_A :='$41’; /IRepresents the letter 'A’
Space :='$20';.//Represents the character L

For more details of substitute and control characters, refer to Appendix A.

Examples The following examples illustrate the formulation of character literals:

/I Character literal
Char:='S’;

/I String literal:
NAME:='SIEMENS’ ;

/I Breaking a string literal:
MESSAGE1:="MOTOR $>

$< Control’ ;

/I String in hexadecimal notation:
MESSAGE1:= "$41$4E’ (*Character string AN*);

Example 11-3 Character Literals

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 11-9

Declaring Constants and Jump Labels

11.5 Formats for Times

Different Types of SCL provides various fomats for entering times and dates. The following
Time Data types of time data are possible:

Date

Time period

Time of day

Date and time

Date A date is introduced by the prefix DATE# or D# as shown in Figure 11-12.

DATE

- 4‘ Details of date I—p

Figure 11-12 Date Syntax

Thedate is specified by means of integers for the year (4 digits), the month
and the day, separated by hyphens.

Date

) DECIMAL @ DECIMAL () DECIMAL)
DIGIT STRING DIGIT STRING DIGIT STRING

Year Month Day

Figure 11-13 Date Entry Syntax

The following are examples of valid dates:

/I Date
TIMEVARIABLE1:= DATE#1995-11-11;
TIMEVARIABLEZ2:= D#1995-05-05;

Structured Control Language (SCL) for S7-300/S7-400, Programming
11-10 C79000-G7076-C522-01

Declaring Constants and Jump Labels

Time Period A time period is introduced as shown in Figure 11-14 by the prefix TIME# or
T#. The time period can be expressed in two possible ways:

* in simple time format

* in complex time format

TIME PERIOD

Simple time I
Complex time I‘—{ Simple time IL—

- Each time unit (hours, minutes, etc.) may only be specified once.
- The order days, hours, minutes, seconds, milliseconds must be adhered to.

Figure 11-14 Time Period Syntax

You use thesimple time format if the time period has to be expressed in a
single time unit (either days, hours, minutes, seconds or milliseconds).

Simple Time Format

5

| DECIMAL DECIMAL LCD} Days
DIGIT STRING DIGIT STRING
DECIMAL DECIMAL 9y
| DIGIT STRING G DIGIT STRING ours
R DECIMAL DECIMAL ‘ Minutes
’ DIGIT STRING *{} DIGIT STRING 4@}4}
| | DECIMAL 7{} DECIMAL C}
DIGIT STRING DIGIT STRING S Seconds
DECIMAL DECIMAL ‘ .
| DIGIT STRING *{} DIGIT STRING J%:} Milliseconds

Use of the simple time format is only possible for undefined time units.

Figure 11-15 Syntax of Simple Time Format

Examples The following are valid simple times:
TIME#20.5D for 20,5 Days
TIME#45.12M for 45,12 Minutes
T#300MS for 300 Milliseconds

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 11-11

Declaring Constants and Jump Labels

Thecomplex time formatis used when you have to express the time period

as a combination of more than one time unit (as a number of days, hours,
minutes, seconds and milliseconds, see Figure 11-16). Individual components
can be omitted. However, at least one time unit must be specified.

Complex Time Format

DECIMAL DECIMAL
1 DIGIT STRING @J‘QL DIGIT STRING)

Days Hours

DECIMAL L DECIMAL
DIGIT STRING = DIGIT STRING —

Minutes Seconds

DECIMAL
DIGIT STRING ¥)

Milliseconds

Figure 11-16 Complex Time Format Syntax

The following are valid complex times:
TIME#20D or TIME#20D_12H
TIME#20D_10H_25M_10s
TIME#200S_20MS

Structured Control Language (SCL) for S7-300/S7-400, Programming
11-12 C79000-G7076-C522-01

Declaring Constants and Jump Labels

Time of Day

Date and Time

A time of day is introduced by the prefix TIME_OF_DAY# or TOD# as
shown in Figure 11-17.

TIME OF DAY

TIME_OF_DAY#
—>— — Time E—
TOD#)

Figure 11-17 Time-of-Day Syntax

A time of day is indicated by specifying the number of hours, minutes and
seconds separated by colons. Specifying the number of milliseconds is
optional. The milliseconds are separated from the other numbers by a
decimal point. Figure 11-18 shows the syntax for a time of day.

Time of Day
DECIMAL N\ DECIMAL
1 DIGIT STRING o/ DIGIT STRING
Hours Minutes
|| DECIMAL N\ DECIMAL .
DIGIT STRING o/ DIGIT STRING 4
Seconds Milliseconds

Figure 11-18 Time-of-Day Entry Syntax

The following are valid times of day:

/[Time of day

TIME1:= TIME_OF_DAY#12:12:12.2;

TIME2:= TOD#11:11:11.7.200;

A date and time is introduced as shown in Fig. 11-19 by the prefix

DATE_AND_TIME#or DT#. It is a literal made up of a date and a time of
day.

DATE AND TIME

DATE_AND_TIME#

Time of day

DT#)

Figure 11-19 Date and Time Syntax

The example below illustrates the use of date and time:

/l Time of day
TIME1:= DATE_AND_TIME#1995-01-01-12:12:12.2;
TIME2:= DT#1995-02-02-11:11:11;

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

11-13

Declaring Constants and Jump Labels

11.6 Jump Labels

Description

Declaring Jump
Labels

Example

11-14

Jump labels are used to define the destination of a GOTO statement (see
Section 11-4).

Jump labels are declared in the declaration section of a logic block together
with their symbolic names (see Section 8.4) as follows:

Jump Label Subsection

—){ LABEL } IDENTIFIER F—C} END_LABEL

Jump label

S W

Figure 11-20 Syntax of a Jump Label Subsection

The following example illustrates the declaration of jump labels:
LABEL

LABEL1, LABEL2, LABELS3;
END_LABEL;

Example 11-4 Jump Labels

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Global Data 1 2

Introduction Global data can be used by any logic block (FC, FB or OB). These data can
be accessed absolutely or symbolically. This chapter introduces you to the
individual data areas and explains how the data can be accessed.

Chapter Section Description Page

Overview 12.1 Overview 12-2
12.2 CPU Memory Areas 12-3
12.3 Absolute Access to CPU Memory Areas 12-4
12.4 Symbolic Access to CPU Memory Areas 12-6
125 Indexed Access to CPU Memory Areas 12-7
12.6 Global User Data 12-8
12.7 Absolute Access to Data Blocks 12-9
12.8 Indexed Access to Data Blocks 12-11
12.9 Structured Access to Data Blocks 12-12

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 12-1

Declaring Global Data

12.1 Overview

Global Data

Types of Access

12-2

In SCL you have the facility of accessing global data. There are two types of
global data as follows:

e CPU Memory Areas

These memory areas represent system data such as inputs, outputs and bit
memory (see Section 7.5). The number of memory areas available is
determined by your CPU.

e Global User Data in the form of Loadable Data Blocks

These data areas are contained within data blocks. In order to be able to
use them you must first have created the data blocks and declared the data
within them. In the case of instance data blocks, they are derived from
function blocks and automatically generated.

Global data can be accessed in the following ways:
e absolute:via address identifier and absolute address

¢ symbolic: via a symbol previously defined in the symbol table (see
/231).

¢ indexed:via address identifier and array index

e structured: via a variable

Table 12-1 Use of Types of Access to Global Data

Type of Access CPU Memory Areas Global User Data
absolute yes yes
symbolic yes yes
indexed yes yes
structured no yes

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Global Data

12.2 CPU Memory Areas

Definition CPU memory areas are system data areas. For this reason, you do not have to
declare them in your logic block.

Different Areas of Each CPU provides the following memory areas together with a separate
Memory address area for each:

* Inputs/outputs in the image memory

e Peripheral inputs/outputs

e Bit memory

¢ Timers, counters (see Chapter 17)

Syntax for Access A CPU area is accessed by means of a value assignment in the code section
of a logic block (see Section 14.3) using either

e asimple accessing operation which can be specified in absolute or
symbolic terms, or

¢ an indexed accessing operation.

SIMPLE MEMORY ACCESS

v

ADDRESS
IDENTIFIER

IDENTIFIER

{

SYMBOL

Address

absolute access

INDEXED MEMORY ACCESS

—) | ADDRESS
IDENTIFIER

symbolic access

Index

D
U

Basic

v

expression

N

\J

Figure 12-1 Syntax of Simple and Indexed Memory Access

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

12-3

Declaring Global Data

12.3 Absolute Access to CPU Memory Areas

Basic Principle Absolute access to a memory area of the CPU is achieved by assigning an
absolute identifier to a variable of the same type.

STATUS_2:=1B10;
\ L Absolute identifier

Variable of matching type

The absolute identifier indicates a memory area in the CPU. You specify this
area by specifying the address identifier (in this ¢B9efollowed by the
address (in this cad®) .

Absolute The absolute identifier is made up of the address identifier, consisting of a
Identifiers memory and a size prefix, and an address.
Size prefix ————
Memory prefix — — Address
=

Address identifier

Address Identifier The combination of memory and size prefix makes the address identifier.

Memory Prefix

Memory Size
» prefix prefix)

Figure 12-2 Syntax of Memory Address Identifiers

Memory Prefix The memory prefix is used to specify the type of memory area to be
accessed. Figure 12-3 below shows the various possible types of memory
1
area.

Memory Prefix

E ', ! Input
,' utput
A Q (0]
4’7@ M Bit memory >

pE)P ipheral i

PE Peripheral input
(Y PQ ;

PA Peripheral output

SIMATIC mnemonic IEC mnemonic

Figure 12-3 Syntax of Memory Prefix

1 Depending on the language set in the SIMATIC Manager, either the SIMATIC or the IEC address identifiers have a
reserved meaning. You can set the language and the mnemonics separately in the SIMATIC Manager.

Structured Control Language (SCL) for S7-300/S7-400, Programming
12-4 C79000-G7076-C522-01

Declaring Global Data

Size Prefix The size prefix is used to specify the length or the type of the memory area
(for example, a byte or a word) to be read from the peripheral I/Os. You can,
for example read a byte or a word. Using the size prefix is optional if only
one bit is specified. Figure 12-4 shows the syntax:

Size Prefix
T
X " Bit
B) Byte
>) y
> >
% ', Word
D ,l Double word

Figure 12-4 Syntax of Size Prefix

Address When specifying an address depending on which size prefix you have used,
you specify an absolute address that identifies a specific bit, byte, word or
double word. Only if you have specified "Bit” as the size can you specify an
additional bit address (see Figure 12-5). The first number refers to the byte
address and the second to the bit address.

Address

B o S Sy 7 B S

Bit address only

Figure 12-5 Syntax of Addresses

Examples Below are some examples of absolute access:
STATUSBYTE = 1B10;
STATUS_3 =11.1;
Measval = 1wW20;

Example 12-1 Absolute Access

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 12-5

Declaring Global Data

12.4 Symbolic Access to CPU Memory Areas

Basic Principle When you program symbolically, instead of using the absolute address
consisting of address identifier and address, you use a symbolic name to
access a specific CPU memory area, as illustrated by the following examples:

Symbol Absolute Data Type Comments
Address
Motor_contact 11.7 BOOL Contact switch 1 for
Motor A 1
Inputl IW 10 INT Status word
Input_bytel IB1 BYTE Input byte
“Input 1.1” 111 BOOL Photoelectric barrier
Meas_channels MW 2 WORD Meas. value buffer

The symbolic name is assigned to the address in your application program by
creating a symbol table.

For the data type specification, you can use any elementary data type
providing it can accept the specified data element size.

Accessing You access a symbol, for example, by assigning a value to a variable of the
same type using the symbol declared.
MEASVAL_1 := Motor_contact;

Creating the The symbol table is created and values entered in it using STEP 7.

Symbol Table

You can open the symbol table by means of the SIMATIC Manager or in SCL
by selecting the menu comma@qtions » Symbol Table

You can also import and edit symbol tables created with any text editor (for
details, refer t023Y/).

Examples Below are some examples of symbolic access:
STATUSBYTE = Input_byte1,
STATUS 3 :="Input 1.1%
Measval := Meas_channels;

Example 12-2 Symbolic Access

Structured Control Language (SCL) for S7-300/S7-400, Programming
12-6 C79000-G7076-C522-01

Declaring Global Data

12.5 Indexed Access to CPU Memory Areas

Basic Principle

Absolute Identifier

Rules for Indexed
Access

You can also access memory areas of the CPU using an index. Compared
with absolute addressing, the advantage of this method is that you can
address dynamically using variable indices. For example, you can use the
control variable of a FOR loop as the index.

Indexed access to a memory area is performed in a similar manner to the
absolute method. It differs only by virtue of the address specification. Instead
of the absolute address, an index is specified which can be a constant, a
variable or a mathematical expression.

The absolute identifier in the case of indexed access is made up of the
address identifier and a basic expression for the indexing operation (as per
Section 12.3).

Size prefix |

Memory prefix— EX [ii] — Address

— Basic expression for index
‘ enclosed in square

Address identifier brackets

Indexing must conform to the following rules:

¢ When accessing data of the ty@B6TE WORDr DWORDyou must use
one index only. The index is interpreted as a byte address. The size of the
data unit accessed is specified by the size prefix.

* When accessing data of the typ@OL you must use two indices. The
first index specifies the byte address, the second index the bit position
within the byte.

e Each index must be a mathematical expression of the datiNype

MEASWORD_1 :=IW[COUNTER];

OUTMARKER = [[BYTENUM, BITNUM];

Example 12-3 Indexed Access

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

12-7

Declaring Global Data

12.6 Data Blocks

Summary

Declaration

Accessing Data
Blocks

12-8

Within data blocks, you can store and process all the data for your
application that is valid throughout the entire program or the entire project.
Every logic block can read or write data from/to a data block.

The syntax for the structure of data blocks is explained in Chapter 8. You
should distinguish between two sorts of data block as follows:

e Data Blocks

¢ Instance data blocks

The data in any data block can always be accessed in any of the following
ways:

¢ Simple or absolute
¢ Indexed
e Structured

Figure 12-6 below summarizes the methods of access.

Absolute DB access

4—‘ Address identifier Address |———)
Indexed DB access Index
H Address identifier [A‘i exg’raessigion ®—’
()
o/
Structured DB access
.) Simple
DB designation variable IEEE—
Symbolic DB access
Simple
Symbol for DB variable >

Figure 12-6 Syntax of Methods for Absolute, Indexed and Structured DB Access

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Global Data

12.7 Absolute Access to Data Blocks

Basic Principle Absolute access to a data block is effected by assigning a value to a variable
of a matching type in the same way as for CPU memory areas. You first
specify the DB identifier followed by the keywotd” and the size prefix
(for exampleX for BIT) and the byte address (for example 13.1).

STATUS 5:=DB11.DX13.1;
Address
Variable of matching type| Size prefix

DB identifier

Accessing Accessing is performed as shown in Figure 12-7 by specifying the DB
identifier together with the size prefix and the address.

Absolute DB Access

-<+——— Addresss identifier ———

DB Size
—»— IDENTIFIER prefix [Address [—»

Figure 12-7 Syntax ofAbsolute DB Access

Size Prefix Specifies the size of the memory area in the data block to be addressed,; for
example, one byte or one word. Specifying the size prefix is optional if you
specify a bit address. Figure 12-8 shows the syntax for the size prefix.

Size Prefix

X) Bit

(8) o
Ol
word
: ' | Double word

Figure 12-8 Syntax of Size Prefix

v

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 12-9

Declaring Global Data

Address

Examples

12-10

Figure 12-9

When specifying the address as shown in Figure 12-9, you specify an
absolute address that identifies a specific bit, byte, word or double word
depending on the size prefix you have used. You can only specify an
additional bit address if you have used the size prefix "bit”. The first number
represents the byte address and the second the bit address.

Address

> by nber

")

Syntax of Address Bit address only

Below are some examples of data block accessing operations. The data block
itself is specified in absolute terms in the first part and in symbolic terms in
the second part.

STATUSBYTE :=DB101.DB10;
STATUS 3 :=DB30.D1.1;
Measval := DB25.DW20;
STATUSBYTE := Statusdata.DB10;

STATUS_3 :="New data” D1.1;

Measval := Measdata.DW20;
STATUS 1 :=WORD_TO_BLOCK_DB(INDEX).DW10;

Example 12-4 Absolute Access

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Declaring Global Data

12.8 Indexed Access to Data Blocks

Indexed Access

Absolute Identifier

Rules for Indexed
Access

You can also access global data blocks using an index. Compared with
absolute addressing, the advantage of this method is that by the use of
variable indices you can address data dynamically. For example, you can use
the control variable of a FOR loop as the index.

Indexed accessing of a data block is performed in a similar manner to
absolute accessing. It differs only by virtue of the address.

Instead of the address, an index is specified which can be a constant, a
variable or a mathematical expression.

The absolute identifier in the case of indexed access is made up of the
address identifer (as per Section 12.7) and a basic indexing expression.

Size prefix - Memory prefix

DB identifier | DX il |~ Address
Basic indexing expression
‘ enclosed in square brackets

Address identifier

When using indices, the following rules must be adhered to
e Each index must be a mathematical expression of the datiNype

¢ When accessing data of the ty@B6TE, WORDr DWORDyou must use
one index only. The index is interpreted as a byte address. The size of the
data unit accessed is specified by the size prefix.

* When accessing data of the typ@OlL, you must use two indices. The
first index specifies the byte address, the second index the bit position
within the byte.

STATUS_1:= DB11.DW[COUNTERY];
STATUS_2:= DB12.DW[WNUM, BITNUM]J;

STATUS_1:= Databasel.DW[COUNTER];
STATUS_2:= Database2.DW[WNUM, BITNUM];

STATUS_1:= WORD_TO_BLOCK_DB(INDEX).DW[COUNTER];

Example 12-5 Indexed Access

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

12-11

Declaring Global Data

12.9 Structured Access to Data Blocks

Basic Principle

Examples

12-12

Structured access is effected by assigning a value to a variable of a matching
type.

TIME_1:= DB11.TIME_OF DAY ;

\

‘ Simple variable
DB identifier

Variable of matching type

You identify the variable in the data block by specifying the DB name and
the name of the simple variable separated by a full stop. The required syntax
is detailed in Figure 12-6.

The simple variable stands for a variable to which you have assigned an
elemetary or a complex data type in the declaration.

Declaration section of FB10:

VAR
Result: STRUCT ERGL1 : INT;
ERG2 : WORD;
END_STRUCT
END_VAR

User-defined data type UDTL1:
TYPE UDT1 STRUCT ERGL1 : INT;

ERG2 : WORD;
END_STRUCT
DB20 with user-defined data type:
DB20
UDT1
BEGIN ...
DB30 without user-defined data type:
DB30 STRUCT ERGL1 : INT;
ERG2 : WORD;
END_STRUCT
BEGIN ...

Example 12-6 Declaration of Data for Data Blocks

Function block showing accessing operations:

FB10.DB10();

ERGWORD_A = DB10.Result.ERG2;
ERGWORD_B = DB20.ERG2;
ERGWORD_C = DB30.ERGZ2;

Example 12-7 Accessing Data Block Data

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Expressions, Operators and Addresses 13

Introduction An expression stands for a value that is calculated during compilation or
when the program is running and consists of addresses (for example
constants, variables or function values) and operators (for example *, /, +
or -).

The data types of the addresses and the operators used determine the type of
expression. SCL distinguishes:

¢ mathematical expressions
* exponential expressions
* comparative expressions

¢ |ogical expressions

Chapter Section Description Page

Overview 13.1 Operators 13-2
13.2 Syntax of Expressions 13-3
13.2.1 Addresses 13-5
13.3 Mathematical Expressions 13-7
134 Exponential Expressions 13-9
135 Comparative Expressions 13-10
13.6 Logical Expressions 13-12

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 13-1

Expressions, Operators and Addresses

13.1 Operators

Overview

Operator Classes

13-2

Expressions consist of operators and addresses. Most SCL operators link two

addresses and are therefore teriviedry operators. The others work with
only one address and are thus calladryoperators.

Binary operators are placed between the addresses as in the expression ‘A +
B’. A unary operator always immediately precedes its address as in the

expression ‘—B’.

The operator priority listed in Table 13-1 governs the order in which

calculations are performed. ‘1’ represents the highest priority.

Table 13-1 Summary of Operators
Class Operator Symbol Priority

Assignment operator [Assignment 1= 11

This operator assigns a

value to a variable

Mathematical Exponential b 2

Operators Unary Operators
Unary plus + 3

Required for Unary minus -

mathematical

calculations
Basic Mathematical Operators
Multiplication * 4
Modulus MOD 4
Integer division DIV 4
Addition + 5
Subtraction - 5

Comparative operators | Less than < 6
Greater than > 6

These operators are Less than or equal o <= 6

required for formulating Greater than or >= 6

conditions equal to - 7
Equal to <> 7
Not equal to

Logical Negation NOT 3

operators Basic Logical Operators

These operators are And AND or & 8

required- for logical Exclusive or XOR 9

expressions or OR 10

Parentheses (Expression) () 1

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Expressions, Operators and Addresses

13.2 Syntax of Expressions

Overview Expressions can be illustrated using the syntax diagram in Figure 13-1.
Mathematical, logical and comparative expressions as well as exponential
expressions have a number of special characteristics and are therefore treated
individually in Sections 13.3 to 13.6.

Expression

—‘ Address I
: Basic :

Expression . Expression

|Og|ca| Operator

Basic
operator

Basic
comparative operator

Exponent

4‘4‘ Expressioni @ Exponent |——}
() Expression I—
\U Unary plus

=) Unary minus

NOT Negation

O {Bwression})

Figure 13-1 Syntax of Expressions

Result of an You can perform the following operations on the result of an expression:
Expression e Assign it to a variable.
¢ Use it as the condition for a control instruction.

e Use it as a parameter for calling a function or a function block.

Sequence of The order in which the operations are performed is determined by:
Operations . .

e The priority of the operators involved
* The sequence from left to right

¢ The use of parentheses (if operators have the same priority).

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 13-3

Expressions, Operators and Addresses

Rules

Examples

13-4

Expressions are processed according to the following rules:

e An address between two operators of different priority is always attached
to the higher-priority operator.

e Operators with the same priority are processed from left to right.

¢ Placing a minus sign before an identifier is the same as multiplying it by
-1.

¢ Mathematical operators must not follow each other directly. The
expression a * — b is invalid, whereas(ab) is permitted.

¢ Parentheses can be used to overcome operator priority, in other words
parentheses have the highest priority.

e Expressions in parentheses are considered as a single address and always

processed first.

* The number of left parentheses must match the number of right
parentheses.

¢ Mathematical operators cannot be used with characters or logical data.
Expressions such as ‘A’ +'B’ and (n<=0) + (n<0) are thus not permissible.

Below are some examples of the structure of the various expressions:

IB10 /I address
Al AND (A2) /I Logical expression
(A3) < (A4) /I Comparative expression
3+3+4/2 /I Mathematical expression
MEASVAL 2 /I Exponential expression
(DIFFERENCE) »+ DB10.EXPONENT
(SUM)+ FC100(..) /I Exponential

expression

Example 13-1 Various Expressions

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Expressions, Operators and Addresses

13.2.1 Addresses

Definition Addresses are objects which can be used to construct expressions. The syntax
of addresses is illustrated in Figure 13-2.

Address

74—{ Constant h#

4_‘ Extended variable F
4—‘ (Expression) P
4—(NOT H Address F

Figure 13-2 Syntax of Addresses

Constants Constants can be a numerical value or a symbolic name or a character string.

Constant

Numerical value
Character string
Constant name

Figure 13-3 Syntax of Constants

The following are examples of valid constants:
4 711

4711

30.0

'CHARACTER’

FACTOR

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 13-5

Expressions, Operators and Addresses

Extended An extended variable is a generic term for a series of variables which are
Variables dealt with in more detail in Chapter 14.

Extended variable

T Simple variable Hﬁ
4_‘ Absolute variable li

for CPU memory areas

4—‘ Variable in DB lf

4—‘ Variable in local instance I—
%—‘ FC call l—

Figure 13-4 Syntax of Extended Variables

Examples of The following are examples of valid variables:
Extended
Variables
SETPOINT Simple variable
IW10 Absolute variable
1100.5 Absolute variable
DB100.DW[INDEX] Variable in DB
MOTOR.SPEED Variable in local instance
SQR(20) Standard function
FC192 (SETPOINT) Function call

Example 13-2 Extended variables in expressions

Note

In the case of a function call, the calculated result, the return value, is
inserted in the expression in place of the function name. For that reason,
VOID functions which do not give a return value aot permissible as
addresses in an expression.

Structured Control Language (SCL) for S7-300/S7-400, Programming
13-6 C79000-G7076-C522-01

Expressions, Operators and Addresses

13.3 Mathematical Expressions

Definition A mathematical expression is an expression formed using mathematical
operators. These expressions allow numeric data types to be processed.

Basic mathematical operator

T

Figure 13-5

Syntax of Basic Mathematical Operators

Mathematical Table 13-2 below shows all the possible operations and indicates which type

Operations the result is assigned to depending on the operands. The abbreviations have
the following meaning:
ANY_INT for data types INT, DINT
ANY_NUM for data types ANY_INT and REAL
Table 13-2 Mathematical Operators
Operation Operator | 1st Address | 2nd Address | Resultl | Priority
Exponent * ANY_NUM |INT REAL 2
Unary plus + ANY_NUM | - ANY_NUM 3
TIME - TIME
Unary minus - ANY_NUM | - ANY_NUM 3
TIME - TIME
Multiplication * ANY_NUM |ANY_NUM |ANY_NUM 4
TIME ANY_INT | TIME
Division / ANY_NUM |ANY_NUM |ANY_NUM 4
TIME ANY_INT | TIME
Integer division DIV |ANY_INT |ANY_INT |ANY_INT 4
TIME ANY_INT | TIME
Modulus MOD |ANY_INT |ANY_INT |ANY_INT 4
+ ANY_NUM |ANY_NUM |ANY_NUM 5
Addition TIME TIME TIME
TOD TIME TOD
DT TIME DT
ANY_NUM |ANY_NUM |ANY_NUM 5
Subtraction - TIME TIME TIME
TOD TIME TOD
DATE DATE TIME
TOD TOD TIME
DT TIME DT
DT DT TIME

1) Remember that the result type is decided by the dominant address type.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

13-7

Expressions, Operators and Addresses

Rules The order in which operators are applied within a mathematical expression is
based on their priority(see Table 13-2).

¢ |tis advisable to place negative nhumbers in brackets for the sake of
clarity even in cases where it is not necessary from a mathematical point
of view.

¢ When dividing with two whole numbers of the type INT, the operators
“DIV” and “/” produce the same result (see example 13-3).

¢ The division operators (/', ‘MOD’ and ‘DIV’) require that the second
address is not equal to zero.

¢ If one number is of the INT type (integer) and the other of the REAL type
(real number), the result will always be of the REAL type.

Examples The examples below illustrate the construction of mathematical expressions.

Let us assume that ‘i’ and ‘j’ are integer variables whose values are 11 and -3
respectively. Example 13-3 shows some integer expressions and their
corresponding values.

Expression Value
i+ 8
i—] 14
[-33
i DIV | -3
i MOD j 2
i/j -3

Example 13-3 Mathematical Expressions

Let us assume that i and j are integer variables whose values are 3 and -5
respectively. In Example 13-4 the result of the mathematical expression
shown, (that is, the integer value 7) is assigned to the variable VALUE.

VALUE:=i+i*4/2-(7+)/());

Example 13-4 Mathematical Expression

Structured Control Language (SCL) for S7-300/S7-400, Programming
13-8 C79000-G7076-C522-01

Expressions, Operators and Addresses

13.4 Exponential Expressions

Figure 13-6 illustrates the construction of the exponent in an exponential
expression (see also Section 13.2). Remember, in particular, that the
exponent expression can also be formed with extended variables.

Overview

Exponent

v

Extended variable !

4@ DECIMAL DIGIT STRING |-

®_®_{ DECIMAL DIGIT STRING |_Q}

Figure 13-6 Syntax of an Exponent

v

MEASVAL 2 /I Exponential expression
(DIFFERENCE) +» DB10.EXPONENT//Exponential expression
(SUM)+ FC100 /I Exponential expression

Example 13-5 Exponential Expressions with Various Exponents

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 13-9

Expressions, Operators and Addresses

13.5 Comparative Expressions

Definition

Comparisons

Rules

13-10

A comparative expression is an expression of the type BOOL formed with
comparative operators. These expressions are formed by combinations of
addresses of the same type or type class with the operators shown in
Table 13-7.

Comparative Operator

BERCECRCRERC N

Figure 13-7 Syntax of Comparative Operators

The comparative operators compare the numerical value of two addresses.
Address1 Operator Address2 O Boolean value

The result obtained is a value that represents either the attribute TRUE or
FALSE. The value is TRUE if the comparison condition is satisfied and
FALSE if it is not.

The following rules must be adhered to when creating comparative
expressions:

* Logical addresses should be enclosed in parentheses to ensure that the
order in which the logical operations are to be performed is unambiguous.

¢ Logical expressions can be linked according to the rules of Boolean logic
to create queries such as "if a afd b < ¢ then ...”. Variables or
constants of the type BOOL and comparative expressions can be used as
the expression.

e Comparisons of all variables in the following type classes are permitted:
— INT, DINT, REAL
— BOOL, BYTE, WORD, DWORD
— CHAR, STRING

¢ With the following time types, only variables of the same type can be
compared:

— DATE, TIME, TOD, DT

¢ When comparing characters (type CHAR), the operation follows the order
of the ASCII character string.

e SS5TIME variables can not be compared.

¢ If both addresses are of the typ& or STRING, you must use the
appropriate IEC functions to compare them.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Expressions, Operators and Addresses

Examples The examples below illustrate the construction of comparative expressions:

I/l The result of the comparative expression
Il is negated.

IF NOT (COUNTER > 5) THEN... ;
/...
...

END_IF;

I/l The result of the first comparative expression
Il is negated and conjugated with the result
Il of the second

A:= NOT (COUNTER1 = 4) AND (COUNTER2 = 10) ;

// Disjunction of two comparative expressions
WHILE (A >=9) OR (QUERY <>'n") DO
/...
/...
END_WHILE;

Example 13-6 Logical Expressions

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 13-11

Expressions, Operators and Addresses

13.6 Logical Expressions

Definition

Logic Operations

Results

13-12

A logical expression is an expression formed by logical operators. Using the
operatorfAND &, XORandOR logical addesses (tyBOOL or variables of

the data typ&YTE WORDr DWORDan be combined to form logical
expressions. The operafdOTis used to negate (that is, reverse) the value of
a logical address.

Basic Logical Operator NOT is not a basic operator
The operator acts like a mathematical sign.

Figure 13-8 Syntax of Basic Logical Operators

Table 13-3 below lists the available logical expressions and the data types for
the results and addresses. The abbreviations have the following meaning:

ANY_BIT for data types BOOL, BYTE, WORD, DWORD

Table 13-3 Logical Operators

Operation |Operator | 1st Address | 2nd Address Result Priority
Negation NOT |ANY_BIT - ANY_BIT 3
Conjunction AND |ANY_BIT ANY_BIT ANY_BIT 8

Exclusive XOR |ANY_BIT ANY_BIT ANY_BIT 9
disjunction

Disjunction | OR |ANY_BIT |ANY_BIT |ANY_BIT | 10

The result of a logical expression is either
e 1 (true) or O falsg if Boolean operators are combined, or

* A bit pattern corresponding to the combination of the two addresses.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Expressions, Operators and Addresses

Examples Let us assume that n is an integer variable with the value 10 and s is a
character variable representing the character ‘A. Some logical expressions
using those variables could then be as follows:

Expression Value
(n>0) AND (n<20) True
(n>0) AND (n<b) False
(n>0) OR (n<b) True
(n>0) XOR (n<20) False

(n=10) AND (s='A) True
(n<>5) OR (s>='A) True

Example 13-7 Logical Expressions

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 13-13

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Value Assignments

Introduction A value assignment is used to assign the value of an expression to a variable.
The previous value of the variable is overwritten.

Section Description Page
141 Overview 14-2
14.2 Value Assignments Using Variables of an Elementary 14-5
Data Type
14.3 Value Assignments Using Variables of the Types STRUCT [14-4
or UDT
14.4 Value Assignments Using Variables of the Type ARRAY| 14-€
14.5 Value Assignments Using Variables of the Type STRING 14-¢
14.6 Value Assignments Using Variables of the Type 14-¢
DATE_AND_TIME
14.7 Value Assignments using Absolute Variables for 14-10
Memory Areas
14.8 Value Assignments using Global Variables 14-11
Further In SCL there are simple and structured instructions. As well as value
Information assignments, the simple instructions include operation calls and the GOTO

instruction. For more detailed information, refer to Chapters 15 and 16.

The control instructions for a program branching operation or loop
processing are structured instructions. A detailed explanation is given in
Chapter 15.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 14-1

Value Assignments

14.1 Overview

Basic Principle

Results

14-2

A value assignment replaces the current value of a variable with a new value
specified by an expression. This expression can also contain identifiers for
functions that it activates and which return corresponding values (return
values).

As shown in syntax diagram 14-1, the expression on the right-hand side of
the assignment operator is evaluated and the value obtained as the result is
stored in the variable whose name is on the left-hand side of the assignment
operator. The variables permitted for this function are shown in Figure 14-1.

Value assignment

+4—{ Simple variable ljfk®f Expression —@
4_‘ Absolute variable F

in CPU memory areas

4—‘ Variable in DB F
4—‘Variable in local instanceF

Figure 14-1 Syntax of Value Assignment

The type of an assignment expression is the same as the type of the address
on the left.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Value Assignments

14.2 Value Assignments Using Variables of Elementary Data Types

Assignment

Examples

Identifier ;= expression ;

Identifier := variable of an elementary data type ;

The following are examples of valid value assignments:

Any expression or variable of an elementary data type can be assigned to a
different variable of the same type.

FUNCTION_BLOCK FB10

/I Assigning a variable to a variable
SETPOINT_1 :=SETPOINT_2;
SWITCH_2_ = SWITCH_1;

/I Assigning an expression to a variable
SWITCH_2:= SWITCH_1* 3;

END_FUNCTION_BLOCK

VAR
SWITCH_1 JINT;
SWITCH_2 ANT,
SETPOINT_1 :REAL;
SETPOINT_2 :REAL;
QUERY_1 :BOOL;
TIME_1 :S5TIME;
TIME_2 TIME;
DATE_1 :DATE;
TIME_NOW_1 :TIME_OF_DAY;
END_VAR
BEGIN
/I Assigning a constant to a variable
SWITCH_1 =-17;
SETPOINT_1 :=100.1;
QUERY_1 := TRUE;
TIME_1 =TIME#1H_20M_10S_30MS;
TIME_2 =TIME#2D_1H_20M_10S_30MS;
DATE_1 :=DATE#1996-01-10;

Example 14-1 Value Assignments Using Elementary Data Types

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

14-3

Value Assignments

14.3 Value Assignments Using Variables of the Types STRUCT or UDT

STRUCT and UDT Variables of the types STRUCT and UDT are structured variables which
Variables represent either a complete structure or a component of that structure.

The following are examples of valid structure variables:

Image /lldentifier for a structure

Image.element /l\dentifier for a structure
/lcomponent

Image.array /lldentifier for a single array

[Iwithin a structure

Image.array[2,5] //Identifier for an array component
/lwithin a structure

Assigning a An entire structure can only be assigned to another structure when the
Complete structure components match each other both in terms of data type and name.
Structure A valid assignment would be, for example:

structname_1:=structname_2;

Assigning You can assign any structure component a variable of the same type, an
Structure expression of the same type or another structure component. The following
Components assignments would be valid:

structname_1l.elementl :=Value;

structname_1l.elementl :=20.0;

structname_1.elementl := structname_2.elementl;

structname_1.arraynamel:= structname_2.arraynamez;
structname_1.arrayname[10]:= 100;

Structured Control Language (SCL) for S7-300/S7-400, Programming
14-4 C79000-G7076-C522-01

Value Assignments

Examples

The following examples illustrate value assignments for structure data.

FUNCTION_BLOCK FB10
VAR
AUXVAR: REAL;
MEASVALUE: STRUCT //destination structure
VOLTAGE:REAL;
RESISTANCE:REAL;
SIMPLE_ARRAY:ARRAY[1..2,1..2] OF INT;
END_STRUCT,

PROCVALUE: STRUCT //source structure
VOLTAGE: REAL,;
RESISTANCE: REAL;
SIMPLE_ARRAY:ARRAY[1..2,1..2] OF INT;
END_STRUCT
END_VAR
BEGIN
/[Assigning a complete structure to
/la complete structure
MEASVALUE:= PROCVALUE;

/[Assigning a structure component to a
[[structure component
MEASVALUE.VOLTAGE:= PROCVALUE.VOLTAGE

[/l Assigning a structure component to a
[/l variable of the same type
AUXVAR:= PROCVALUE.RESISTANCE;

I/l Assigning a constant to a
/I structure component
MEASVALUE.RESISTANCE:= 4.5;

/I Assigning a constant to a simple array

MEASVALUE.SIMPLE_ARRAY[1,2]:= 4;
END_FUNCTION_BLOCK

Example 14-2 Value Assignments Using Variables of the Type STRUCT

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

14-5

Value Assignments

14.4 Value Assignments Using Variables of the Type ARRAY

Array Variable

Assigning a
Complete Array

Assigning an
Array Component

14-6

An array consists of one up to a maximum of six dimensions and contains
elements that are all of the same type. There are two ways of assigning arrays
to a variable as follows:

You can referenceompletearrays or &omponentof an array. A complete
array can be referenced by specifying the variable name of the array.

arrayname_1

A single component of an array is addressed using the array name followed
by suitable index values in square brackets. An index is available for each
dimension. These are separated by commas and also enclosed in square
brackets. An index must be a mathematical expression of the datalfype

arrayname_1[2]

arrayname_1[4,5]

A complete array can be assigned to another array when both the data types
of the components and the array limits (lowest and highest possible array
indices) match. A valid assignment would be as follows:

arrayname_1 := arrayname_2 ;

A value assignment for a permissible array component is obtained by
omitting indices in the square brackets after the name of the array, starting on
the right. In this way, you address a subset of the array whose number of
dimensions is equal to the number of indices omitted.

This means that you can reference ranges of lines and individual components
of a matrix but not column ranges (that is, from ... to).

The following are examples of valid assignments
arrayname_1[i] := arrayname_2[|];
arrayname_1[i] := expression ;

identifier_1 = arrayname_1[i];

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Value Assignments

Examples

The examples below illustrate value assignments for arrays.

FUNCTION_BLOCK FB3
VAR
SETPOINTS :ARRAY [0..127] OF INT;
PROCVALUES :ARRAY [0..127] OF INT;
END_VAR

/I Declaration of a matrix
/I (=two-dimensional array)
/I with 3 lines and 4 columns
CTRLLR: ARRAY [1..3, 1..4] OF INT;

/I Declaration of a vector
/I (=one-dimensional array)
/I with 4 components
CTRLLR_1: ARRAY [1..4] OF INT;
END_VAR

BEGIN
/I Assigning a complete array to an array
SETPOINTS:= PROCVALUES;

/I Assigning a vector to the second line
/l of the CTRLLR ARRAY
CTRLLR[2]:= CTRLLR_1;

/IAssigning a component of an array to a

/lcomponent of the CTRLLR ARRAY
CTRLLR [1,4]:= CTRLLR_1 [4];

END_FUNCTION_BLOCK

Example 14-3 Value Assignments Using Variables of the Type ARRAY

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

14-7

Value Assignments

14.5 Value Assignments Using Variables of the Type STRING

STRING Variables A variable of the data type STRING contains a character string with a
maximum of 254 characters.

Assignment Each variable of the data type STRING can be assigned another variable of
the same type. Valid assignments would be as follows:

stringvariable_1 := Stringliteral ;

stringvariable_1 := stringvariable 2 ;

Example The examples below illustrate value assignments using STRING variables:

FUNCTION_BLOCK FB3

VAR
DISPLAY_1 : STRING[50] ;

STRUCTURE1 :STRUCT
DISPLAY_2 : STRING[100] ;
DISPLAY_3 : STRING[50] ;
END_STRUCT;

END_VAR

BEGIN
/I Assigning a constant to a STRING

I/ variable
DISPLAY_1 :="error in module 1’ ;
/I Assigning a structure component to a
/I STRING variable.
DISPLAY_1 := STRUCTUREL.DISPLAY_3;

/I Assigning a STRING variable to
/l a STRING variable

If DISPLAY_1 <> DISPLAY_3 THEN
DISPLAY_1 := DISPLAY_3;

END_IF;
END_FUNCTION_BLOCK

Example 14-4 Value Assignments Using Variables of the Type STRING

Structured Control Language (SCL) for S7-300/S7-400, Programming
14-8 C79000-G7076-C522-01

Value Assignments

14.6 Value Assignments Using Variables of the Type DATE_AND_TIME

DATE_AND_TIME
Variables

Assignment

Example

dtvariable_1 := date and time literal ;
dtvariable_1 := dtvariable_2 ;

The data type DATE_AND_TIME defines an area with 64 bits (8 bytes) for
the date and time.

Each variable of the data type DATE_AND_TIME can be assigned another
variable of the same type or a constant. Valid assignments would be as
follows:

The examples below illustrate value assignments using DATE_AND_TIME
variables:

FUNCTION_BLOCK FB3
VAR
TIME_1 : DATE_AND_TIME;
STRUCTURE1 :STRUCT
TIME_2 : DATE_AND_TIME ;

TIME_3 : DATE_AND_TIME ;
END_STRUCT;

END_VAR

BEGIN
/I Assigning a constant to a
/l DATE_AND_TIME variable

TIME_1 := DATE_AND_TIME#1995-01-01-12:12:12.2 ;
STRUCTURE.TIME_3 := DT#1995-02-02-11:11:11 ;

/I Assigning a structure component to a
/| DATE_AND_TIME variable.

TIME_1 := STRUCTURE1.TIME_2 ;

/I Assigning a DATE_AND_TIME variable

/I to a DATE_AND_TIME structure component

If TIME_1 < STRUCTUREL1.TIME_3 THEN
TIME_1 := STRUCTURE3.TIME_1 ;

END_IF;

END_FUNCTION_BLOCK

Example 14-5 Value Assignments Using DATE_AND_TIME Variables

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

14-9

Value Assignments

14.7 Value Assignments using Absolute Variables for Memory Areas

Absolute Variables An absolute variable references the globally valid memory areas of a CPU.
You can assign values to these areas in three ways as described in Chapter
12.

Absolute Variable

Address identifier

Memory Size
> prefix prefix Address »

Figure 14-2 Syntax of Absolute Variables

Assignment Any absolute variable with the exception of peripheral inputs and process
image inputs can be assigned a variable or expression of the same type.

Example The examples below illustrate value assignments using absolute variables:

VAR
STATUSWORD1: WORD;
STATUSWORDZ2: BOOL,;
STATUSWORDS: BYTE;
STATUSWORD4: BOOL,;
ADDRESS: INT:= 10;

END_VAR
BEGIN

/I Assigning an input word to a
// variable (simple access)
STATUSWORD1:= W4 ;

/I Assigning a variable to an

[/l output bit (simple access)
STATUSWORD2:= Q1.1 ;

/I Assigning an input byte to a

[/l variable (indexed access)
STATUSWORDS:= IBJADDRESS];

/l Assigning an input bit to a

/l variable (indexed access)

FOR ADDRESS:=0TO 7 BY 1 DO
STATUSWORDA4:= I[1,ADDRESS] ;
END_FOR;

END_FUNCTION_BLOCK

Example 14-6 Value Assignments Using Absolute Variables

Structured Control Language (SCL) for S7-300/S7-400, Programming
14-10 C79000-G7076-C522-01

Value Assignments

14.8 Value Assignments using Global Variables

Variables in DBs

Assignment

Examples

You can also access global variables in data blocks by assigning a value to
variables of the same type or vice-versa. You have the option of using
structured, absolute or indexed access (see Chapter 12).

Address identifier

) be Size
IDENTIFIER prefix || Address | —P

Figure 14-3 Syntax of DB Variables

You can assign any global variable a variable or expression of the same type.
The following are examples of valid assignments:

DB11.DW10:=20;

DB11.DW10:=Status;

The example below assumes that that a vari@di@IT” of the data type
INTEGERand a structureDIGIT1” with the componerDIGIT2” of the
typeINTEGERhave been declared in the data block DB11.

/l Required data block DB11

DATA_BLOCK DB11

STRUCT
DIGIT : INT:=1;
DIGIT1: STRUCT

DIGIT2:INT := 256;

END_STRUCT;
WORD3 : WORD:=W#16#aa;
WORD4 WORD:=W#16#aa;
WORDS : WORD:=W#16#aa,
WORDS6 : WORD:=W#16#aa;
WORD?7 : WORD:=W#16#aa;
WORDS : WORD:=W#16#aa;
WORD?9 : WORD:=W#16#aa;
WORD10: WORD;

END_STRUCT

BEGIN

WORD10:=W#16#bb;

END_DATA BLOCK

Example 14-7 Value Assignments Using Global Variables

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

14-11

Value Assignments

14-12

Data block DB11 could then be used as follows, for example:

VAR

CONTROLLER_1: ARRAY [1..4] OF INT;
STATUSWORD1 :WORD;
STATUSWORD?2 : ARRAY [1..4] OF INT;
STATUSWORD3 DINT ;

ADDRESS :INT;
END_VAR

BEGIN

/I Assignment of word 10 from DB11to a
/[variable (simple access)
STATUSWORD1:= DB11.DW10

/I The 1st array component is assigned
/ the variable

// "DIGIT” from DB11

/I (structured access):
CONTROLLER_1[1]:= DB11.DIGIT;

/I Assignment of structure component "DIGIT2”
/I of structure "DIGIT1” to the variable

/I Statusword3

STATUSWORDS:= DB11.DIGIT1.DIGIT2

/I Assignment of a word with index

ADDRESS from
// DB11 to a variable
/I (indexed access)
FOR ADDRESS:=1 TO 10 BY 1 DO
STATUSWORD2[ADDRESS]:= DB11.DW[ADDRESS] ;
END_FOR,;

Example 14-8 Value Assignments Using the Global Variables of a Data Block

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Control Statements 1 5

Introduction

Chapter
Overview

Only on rare occasions is it possible to program blocks in such a way that all
statements are processed one after the other from the beginning to the end of
the block. It is usually the case that on the basis of specific conditions only
certain statements (alternatives) are executed or are repeated a number of
times over (loops). The programming tools used to bring about such effects
are the control statements in an SCL block.

Section Description Page
151 Overview 15-2
15.2 IF Statement 15-4
15.3 CASE Statement 15-6
15.4 FOR Statement 15-8
155 WHILE Statement 15-10
15.6 REPEAT Statement 15-11
15.7 CONTINUE Statement 15-12
15.8 EXIT Statement 15-13
15.9 GOTO Statement 15-14
15.10 RETURN Statement 15-16

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

15-1

Control Statements

15.1 Overview

Selective
Instructions

Repetition
Instructions

Jump Statements

15-2

In programs, different instructions often have to be executed according to
different conditions. A selective instruction enables you to direct the program
progression into any humber of alternative sequences of instructions.

Table 15-1 Types of Branch

Branch Type Function

IF Statement The IF statement enables you to direct the program progressjon
into one of two alternative branches according to whether a
specified condition is either TRUE of FALSE:

CASE The CASE statement enables you direct the program progression
Statement into 1 of n alternative branches by having a variable adopt a value

from n alternatives.

You can control loop processing by means of repetition instructions. A
repetition instruction specifies which parts of a program should be repeated
on the basis of specific conditions.

Table 15-2 Types of Statement for Loop Processing

Branch Type Function
FOR Used to repeat a sequence of statements for as long as the control
Statement variable remains within the specified value range
WHILE Used to repeat a sequence of statements while an execution
Statement condition continues to be satisfied
REPEAT Used to repeat a sequence of statements until a break condition is
Statement met

A jump statement causes the program to jump immediately to a specified
jump destination and therefore to a different statement within the same block.

Table 15-3 Types of Jump Statement

Branch Type Function
CONTINUE Used to stop processing of the current loop pass
Statement
EXIT Used to exit from a loop at any point regardless of whether the
Statement break condition is satisfied or not
GOTO Causes the program to jump immediately to a specified jump |label
Statement
RETURN Causes the program to exit the block currently being processed
Statement

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Control Statements

Conditions A condition is either a comparative expression or a logical expression. The
data type of a condition BOOL and it can adopt either of the two values
TRUEor FAISE .

The following are examples of val@mparative expressions

COUNTER<=100
SQR(A)>0.005

Answer =0
BALANCE>=BALBFWD
chi<'T

The following are examples of the use of comparative expressions with
logical operators:

(COUNTER<=100) AND(CH1<™)

(BALANCE<100.0) OR (STATUS ='R’)

(Answer<0)OR((Answer>5.0) AND (Answer<10.0))

Note

Note that the logical addresses (in this case comparative expressions) are in
brackets in order to prevent any ambiguity with regard to the order in which
they are processed.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 15-3

Control Statements

15.2 IF Statement

Basic Principle ThelF statement is a conditional statement. It provides one or more options
and selects one (or none) of its statement components for execution.

IF Statement

H IF H ExpressionH THEN)i sce:((:)tciic?n

Condition

(ELSIF }— Expression | THEN }—— qooten

Condition

Code [))
ELSE section END_IF

Figure 15-1 Syntax of the IF Statement

Execution of the conditional statement forces analysis of the specified logical
expressions. If the value of an expression is TRUE then the condition is
satisfied, if it is FALSE the condition is not satisfied.

Execution An IF statement is processed according to the following rules:

1. If the value of the first expression is TRUE, the component of the
statement which follow$HENIs executed. Otherwise the statements in
theELSIF branches are processed.

2. If no Boolean expression in tB# SIF branches is TRUE, the sequence
of statements following ELSE (or no sequence of statements if there is no
ELSEbranch) is executed.

Any number of ELSIF statements can be used.

It should be noted that th& SIF branches and/or tHeL SE branch can be
omitted. In such cases, the program behaves as if those branches were present
but contained no statements.

Note

Note that the statemeBND _IF must be concluded with a semicolon.

Structured Control Language (SCL) for S7-300/S7-400, Programming
15-4 C79000-G7076-C522-01

Control Statements

Note

Using one or more ELSIF branches has the advantage that the logical
expressions following a valid expression are no longer evaluated in contrast
to a sequence of IF statements. The runtime of a program can therefore be
reduced.

Example Example 15-1 below illustrates the use of the IF statement.

IF11.1 THEN
N:=0;
SUM:= 0;
OK:= FALSE; // Set OK flag to FALSE
ELSIF START = TRUE THEN
N:=N +1;
SUM:= SUM + N;
ELSE
OK:= FALSE;
END_IF;

Example 15-1 IF Statements

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 15-5

Control Statements

15.3 CASE Statement

Basic Principle The CASEstatement selects one program section from a choice of n
alternatives. That choice is based on the current value of a selection
expression.

CASE Statement

Selection expression (Integer)

H CASEH Expression

Value

- Code
Value list section

ELSE) () Code END_CASE)—b

—-) \J section

Figure 15-2 Syntax of the CASE Statement

Execution The CASE statement is processed according to the following rules:

1. When a&CASEstatement is processed, the program checks whether the
value of the selection expression is contained within a specified list of
values. Each value in that list represents one of the permissible values for
the selection expression. The selection expression must return a value of
the type INTEGER.

2. If amatch is found, the statement component assigned to the list is
executed.

3. The ELSE branch is optional: it is executed if no match is found.

Note

Note that the statemeBND _CASHEnust be concluded with a semicolon.

Structured Control Language (SCL) for S7-300/S7-400, Programming
15-6 C79000-G7076-C522-01

Control Statements

Value List This contains the permissible values for the selection expression
Value List
Integer
Value |I
» »
| 4 | 4

Value ‘ Value

Figure 15-3 Syntax of Value List

Rules When creating the value list you must observe the following rules:

e Each value list must begin with a constant, a list of constants or a range of
constants.

e The values within the value list must be of the INTEGER type.
e Each value must only occur once.

Examples Example 15-2 below illustrates the use of the CASE statement. The variable
TW is usually of the INTEGER type.

CASE TW OF
1 DISPLAY := OVEN_TEMP;
2: DISPLAY = MOTOR_SPEED;

3: DISPLAY := GROSS TARE;
QW4 = 16#0003;
4.10:DISPLAY :=INT_TO_DINT (TW);
QW4 = 16#0004;
11,13,19:DISPLAY:= 99;
QW4 = 16#0005;
ELSE: DISPLAY :=0;
TW_ERROR :=1;
END_CASE;

Example 15-2 CASE Statement

Note

Take care to ensure that the running time of loops is not too long, otherwise
the CPU will register a time-out error and switch to STOP mode.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 15-7

Control Statements

15.4 FOR Statement

Basic Principle A FORstatement is used to repeat a sequence of statements in a loop while a
variable (the control variable) is continually assigned values. The control
variable must be the identifier of a local variable of the type INT or DINT.

FOR Statement

Initial Basic
FOR statement expression [

for initial value for final value

Basic Code
expression @7 section [|

for increment

BY }—
L{ END_FOR)

Figure 15-4 Syntax of FOR Statement

v

The definition of a loop using FOR includes the specification of an initial and
a final value. Both values must be the same type as the control variable.

Execution The FOR statement is processed according to the following rules:

1. At the start of the loop, the control variable is set to the initial value
(initial assignment) and each time the loop is run through it is increased
(positive increment) or decreased (negative increment) by the specified
increment until the final value is reached.

2. Following each run through of the loop, the condition
|initial value | <= |final value|

is checked to establish whether or not it is satisfied. If the condition is
satisfied, the sequence of statements is executed, otherwise the loop and
thereby the sequence of statements is skipped.

Note

Note that the statemeBND _FORnust be concluded with a semicolon.

Structured Control Language (SCL) for S7-300/S7-400, Programming
15-8 C79000-G7076-C522-01

Control Statements

Initial Assignment

Final Value and
Increment

Rules

Example

The initial assignment shown in Figure 15-5 can be used to create the initial
value of the control variable.

Initial Assignment

Simple (=) Basic
» variable \J expression |
of data type for initial value
INT/DINT

Figure 15-5 Syntax for Creating the Initial Value

Examples:
FORI :=1TO 20
FORI :=1TO (Init+J) DO

You can create a basic expression for creating the final value and the required
increment.
The following rules must be observed for the FOR statement:

e You can omit the statemeBtY [increment] . If no increment is
specified, it is automatically assumed totie

¢ Initial value, final value and increment are expressions (see Chapter 13).
They are processed once only at the start of execution BORe
statement.

e Alteration of the values for final value and increment is not permissible
while the loop is being processed.

Example 15-3 below illustrates the use of the FOR statement.

FUNCTION_BLOCK SEARCH

VAR

INDEX S INT;

KEYWORD : ARRAY [1..50] OF STRING;
END_VAR
BEGIN

FOR INDEX:= 1 TO 50 BY 2 DO
IF KEYWORD [INDEX] = 'KEY’ THEN
EXIT;
END_IF;

END_FOR;

END_FUNCTION_BLOCK

Example 15-3 FOR Statement

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

15-9

Control Statements

15.5 WHILE Statement

Basic Principle The WHILE statement allows the repeated execution of a sequence of
statements on the basis of an execution condition. The execution condition is
formed according to the rules of a logical expression.

WHILE Statement

> -(wie) Gt (00)| ot

Execution condition

Figure 15-6 Syntax of the WHILE Statement

The statement component which follol®is repeated as long as the value
of the execution condition remains TRUE.

Execution The WHILE statement is processed according to the following rules:

1. The execution condition is checkiegfore each execution of the
statement component.

2. If the value TRUES returned, the statement component is executed.

3. If the value FALSE is returned, execution of the WHILE statement is
terminated. It is possible for this to occur on the very first occasion the
execution condition is checked.

Note

Note that the statemeBND WHILEmMust be concluded with a semicolon.

Example Example 15-4 below illustrates the use of WiEILE statement.

FUNCTION_BLOCK SEARCH

VAR
INDEX S INT;
KEYWORD - ARRAY [1..50] OF STRING;
END_VAR
BEGIN
INDEX:= 1;

WHILE INDEX <= 50 AND KEYWORDI[INDEX] <> 'KEY’ DO
INDEX:= INDEX + 2;

END_WHILE;

END_FUNCTION_BLOCK

Example 15-4 WHILE Statement

Structured Control Language (SCL) for S7-300/S7-400, Programming
15-10 C79000-G7076-C522-01

Control Statements

15.6 REPEAT Statement

Basic Principle A REPEATstatement causes the repeated execution of a sequence of
statements betwed®EPEATandUNTIL until a break condition occurs. The
break condition is formed according to the rules of a logical expression.

REPEAT Statement

Code . m
REPEAT sodiey | UNTIL }—{Expression|{ END_REPEAT

Break condition

Figure 15-7 Syntax of the REPEAT Statement

The condition is checkeafter the loop has been executed. This means that
the loop must be executed at leasteeven if the break condition is
satisfied when the loop is started.

Note
Note that the statemeBND REPEAThust be concluded with a semicolon.

Example Example 15-5 below illustrates the use of the REPEAT statement

FUNCTION_BLOCK SEARCH

VAR
INDEX S INT;
KEYWORD : ARRAY [1..50] OF STRING;
END_VAR
BEGIN
INDEX:= 0;
REPEAT
INDEX:= INDEX + 2:
UNTIL
INDEX > 50 OR KEYWORD[INDEX] = 'KEY’
END_REPEAT;

END_FUNCTION_BLOCK

Example 15-5 REPEAT Statement

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 15-11

Control Statements

15.7 CONTINUE Statement

Basic Principle A CONTINUEstatement is used to terminate the execution of the current
iteration of a loop (initiated by BOR WHILE or REPEATstatement) and to
restart processing within the loop.

CONTINUE Statement

CONTINUE

Figure 15-8 Syntax of the CONTINUE Statement

In aWHILE loop, the initial condition determines whether the sequence of
statements is repeated and IREPEATIoop the terminal condition.

In aFORstatement, the control variable is increased by the specified
increment immediately after@ONTINUEstatement.

Example Example 15-6 below illustrates the use of the CONTINUE statement.

FUNCTION_BLOCK_CONTINUE
VAR
INDEX :INT;
ARRAY_1:ARRAY[1..100] OF INT;
END_VAR
BEGIN
INDEX:= 0;
WHILE INDEX <= 100 DO
INDEX:= INDEX + 1,
/I'If ARRAY_1[INDEX] equals INDEX,
/l then ARRAY_1 [INDEX] is not altered:
IF ARRAY_1[INDEX] = INDEX THEN
CONTINUE;
END_IF;
ARRAY_1[INDEX]:= 0;
Il Other statements..
...
END_WHILE;
END_FUNCTION_BLOCK

Example 15-6 CONTINUE Statement

Structured Control Language (SCL) for S7-300/S7-400, Programming
15-12 C79000-G7076-C522-01

Control Statements

15.8 EXIT Statement

Basic Principle

Example

An EXIT statement is used to exit a lodfOR WHILE or REPEATIoop) at
any point regardless of whether the break condition is satisfied.

EXIT Statement

EXIT

Figure 15-9 Syntax of the EXIT Statement

This statement causes the repetition statement immediately surrounding the
exit statement to be exited immediately.

Execution of the program is continued after the end of the loop (for example
afterEND_FOR

Example 15-7 below illustrates the use of the EXIT statement.

FUNCTION_BLOCK_EXIT

VAR
INDEX_1 = INT;
INDEX_2 = INT;
INDEX_SEARCH:= INT;
KEYWORD : ARRAY[1..51] OF STRING;
END_VAR
BEGIN
INDEX_2 = 0;

FOR INDEX_1:=1TO 51 BY 2 DO
/I Exit the FOR loop if
/I KEYWORDI[INDEX_1] equals 'KEY’:
IF KEYWORD[INDEX_1] ='KEY’ THEN
INDEX_2:= INDEX_1;
EXIT;
END_IF;
END_FOR;
/I The following value assignment is executed
/I after execution of EXIT or after the
/I normal termination of the FOR loop
INDEX_SEARCH:= INDEX_2;
END_FUNCTION_BLOCK

Example 15-7 EXIT Statement

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

15-13

Control Statements

15.9 GOTO Statement

Basic Principle

Rules

15-14

The GOTGstatement is used to implement a program jump. It effects an
immediate jump to the specified jump label and therefore to a different
statement within the same block.

GOTO statements should only be used in special circumstances; for example,
for error handling. According to the rules of structured programming, the
GOTO statement should not be used.

GOTO Statement

GOTO IDENTIFIER

Jump label

Figure 15-10 Syntax of the GOTO Statement

Jump label refers to a marker in th@BEL / END_LABEL declaration
subsection. That marker precedes the statement which is to be next executed
after theGOTGstatement.

The following rules should be observed when using the GOTO statement:
* The destination of a GOTO statement must be within the same block.
¢ The destination of the jump must be unambiguous.

e Jumping to a loop is not permitted. Jumping from a loop is possible.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Control Statements

Example

FUNCTION_BLOCK FB3//GOTO_BSP
VAR

INDEX : INT,;
A CINT,;
B CINT,;
C D INT,;

KEYWORD: ARRAY[1..51] OF STRING;
END_VAR
LABEL

LABEL1, LABEL2, LABEL3;
END_LABEL
BEGIN
IF A>B THEN GOTO LABELL;

ELSIF A > C THEN GOTO LABEL2;
END_IF;
..

LABEL1 : INDEX:= 1;
GOTO LABELS3;

LABEL2 : INDEX:= 2;

/...

LABEL3 : ;

...
END_FUNCTION_BLOCK

Example 15-8 GOTO Jump Statement

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Example 15-8 below illustrates the use of the GOTO statement.

15-15

Control Statements

15.10 RETURN Statement

Basic Principle

15-16

A RETURN statement causes the program to exit the block (OB, FB or FC)
currently being processed and to return to the calling block or the operating
system if the block being exited is an OB.

RETURN Instruction

RETURN

Figure 15-11 Syntax of the RETURN Statement

Note

A RETURN statement at the end of the code section of a logic block or the
declaration section of a data block is redundant, since the operation is
performed automatically at those points.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Calling Functions and Function Blocks 1

Introduction

Chapter
Overview

An SCL block can call the following:
¢ Other functions (FCs) and function blocks (FBs) created in SCL

¢ Functions and function blocks programmed in another STEP 7 language

(for example, Statement List or Ladder Logic)

e System functions (SFCs) and system function blocks (SFBs) in the

operating system of the CPU you are using.

Section Description Page
16.1 Calling and Transferring Parameters 16-2
16.2 Calling Function Blocks (FBs or SFBs) 16-3
16.2.1 FB Parameters 16-5
16.2.2 Input Assignment (FB) 16-7
16.2.3 In/Out Assignment (FB) 16-8
16.2.4 Example of Calling a Global Instance 16-10
16.2.5 Example of Calling a Local Instance 16-12
16.3 Calling Functions 16-13
16.3.1 FC Parameters 16-15
16.3.2 Input Assignment (FC) 16-16
16.3.3 Output and In/Out Assignment (FC) 16-17
16.3.4 Example of a Function Call 16-19
16.4 Implicitly Defined Parameters 16-20

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

16-1

Calling Functions and Function Blocks

16.1 Calling and Transferring Parameters

Parameter Transfer

Basic Principle

Formal Parameters

16-2

When functions or function blocks are called, data is exchanged between the
calling and the called block. The parameters that are to be transferred must
be specified in the function call in the form of a parameter list. The
parameters are enclosed in brackets. A number of parameters are separated
by commas.

In the example of a function call below, an input parameter, an infout
parameter and an output parameter are specified.

\ Parameter list 1

|
FC31 (I_Par:=3, I0_Par:=LENGTH, O_Par:=Digitsum);
\

Current input pa-)
rameter Current in/out

parameter Current output

. arameter
Function name P

Figure 16-1 Basic Principle of Parameter Transfer

As is shown in Figure 16-2, specification of parameters takes the form of a
value assignment. That value assignment assigns a value (actual parameter)
to the parameters defined in the declaration section of the called block
(formal parameters).

Formal Parameter Actual Parameter
|_Par = 3
I0_Par = LENGTH
O_Par = Digitsum

Figure 16-2 Value Assignment within the Parameter List

The formal parameters are those parameters expected by the block when
invoked. They are merely “placeholders” for the actual parameters that are
transferred to the block when called. Those parameters have been defined in
the declaration section of a block (FB or FC).

Table 16-1 Permissible Declaration Subsections for Formal Parameters

Declaration Subsections Data Keyword

VAR_INPUT
Input parameters | Declaration list

END_VAR

Parameter subsection VAR_OUTPUT
Output parameters| Declaration list
END_VAR

VAR_IN_OUT
In/Out parameters | Declaration list
END_VAR

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Calling Functions and Function Blocks

16.2 Calling Function Blocks (FB or SFB)

Global and Local
Instance

Calling as Global
Instance

When you call a function block in SCL you can use
e Global instance data blocks, and
e |Local instance areas of the active instance data block.

Calling an FB as a local instance differs from calling it as a global instance
by virtue of the way in which the data is stored. In this case, the data is not
stored in a special DB but is nested in the instance data block of the calling
FB.

Function Block Call

FB: Function block
SFB: System function block

FB
IDENTIFIER)
Global instance name _
DB
> DENTEIER IDENTIFIER FB parameters

see 16.2.1

IDENTIFIER

Local instance name

Figure 16-3 Syntax of an FB Call

The function call is made in a call instruction by specifying the following:

¢ the name of the function block or system function block (FB or SFB
identifier),

¢ the instance data block (DB identifier),
e the parameter assignment (FB parameters)

A function call for a global instance can be either absolute or symbolic.

Absolute function call:
FB10.DB20 (X1:=5,X2:=78,......);

Parameter assignment
Symbolic function call:

DRIVE.ON (X1:=5,X2:=78,......);

Figure 16-4 Calling FB10 Using Instance Data Block DB20

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

16-3

Calling Functions and Function Blocks

Calling as Local
Instance

16-4

The function call is made in a call instruction by specifying the following:
¢ the local instance name (IDENTIFIER),
¢ the parameter assignment (FB parameters).

A function call for a local instance is always symbolic, for example:

MOTOR (X1:=5,X2:=78,......);

Parameter assignment

Figure 16-5 Calling a Local Instance

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Calling Functions and Function Blocks

16.2.1 FB Parameters

Basic Principle When calling a function block — as a global or local instance — you must
make a distinction in the parameter list between

¢ the input parameters and
¢ the in/out parameters

of an FB. In both cases, you usdue assignmentgo assign the actual
parameters to the formal parameters as illustrated below:

Formal Parameter Actual Parameter
|_Par = 3 [lInput assignment
IO_Par = LENGTH //In/Out assignment

Figure 16-6 Value Assignment within the Parameters List

The output parameters do not have to be specified when an FB is called.

The syntax of the FB parameter specification is the same when calling both
global and local instances.

FB Parameters

Input

assignment
> —
In/out

assignment

‘N
o

Figure 16-7 Syntax of FB Parameters

Example A function call involving assignment of one input and one in/out parameter
might be as follows:

FB31.DB77(l_Par:=3, 10_Par:=LENGTH);

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 16-5

Calling Functions and Function Blocks

Rules

Results of
Function Call

16-6

The rules for assigning parameter values are as follows:

The assignments can be in any order.
Individual assignments are separated by commas.
The data type of formal and actual parameters must match.

Output assignments are not possible in FB calls. The value of a declared
output parameter is stored in the instance data. From there it can be
accessed by all FBs. To read an output parameter, you must define the
access from within an FB (see Section 14.8).

When the block has been run through once:

The actual parameters transferred are unchanged.

The transferred and altered values of the in/out parameters have been
updated; in/out parameters of an elementary data type are an exception to
this rule (see Section 16.2.3).

The output parameters can be read by the calling block from the global
instance area or the local instance area. For more precise details, refer to
Example 16-3.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Calling Functions and Function Blocks

16.2.2 Input Assignment (FB)

Basic Principle

Permissible Actual

Parameters

Input assignments are used to assign actual parameters to the formal input
parameters. The F8annot change these actual parameters. The assignment
of actual input parameters is optional. If no actual parameter is specified, the
values of the last call are retained.

Input Assignment

Actual parameter

Expression
TIMER
INDENTIFIER
IDENTIFIER e —Pp
COUNTER
Parameter name of the IDENTIFIER
input parameter
(formal parameter) BLOCK
IDENTIFIER

Figure 16-8 Syntax

The following actual

Table 16-2 Actual

of an Input Assignment

parameters are permitted in input assignments:

Parameters in Input Assignments

Actual Explanation
Parameter
Expression * Mathematical, logical or comparative expression

® (Constant
* Extended variable

TIMER/COUNTER
Identifier

Defines a specific timer or counter to be used when a blogk is

processed (see also Chapter 17).

BLOCK Identifier

Defines a specific block to be used as an input parameten.

block type (FB, FC or DB) is specified in the input parame
declaration.

When assigning parameter values you specify the block
number. You can use either the absolute or symbolic num
(see also Chapter 9).

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

16-7

The
ter

ber

Calling Functions and Function Blocks

16.2.3 In/Out Assignment (FB)

Basic Principle

Actual Parameters
of an In/out
Assignment

16-8

In/out assignments are used to assign actual parameters to the formal in/fout
parameters of the FB that has been called.

In contrast to input parameters, the called FB can change the infout
parameters. The new value of a parameter that results from processing the FB
is written back to the actual parameters. The original value is overwritten.

If in/out parameters are declared in the called FB, they must be assigned
values the first time the block is called. After that, the specification of actual
parameters is optional.

In/Out Assignment

Extended
IDENTIFIER (=) xended |)
Parameter name of the
in/out parameter

Actual parameter

(formal parameter)

Figure 16-9 Syntax of an In/out Assignment

Since the actual parameter assigned can be altered when the FB is processed
as it is an infout parameter, it has to be a variable. For that reason, input
parameters can not be assigned by means of in/out assignments (the new
value would not be capable of being written back).

Table 16-3 Actual Parameters in In/Out Assignments

Actual Explanation
Parameter
Extended The following types of extended variable are possible:
variable

Simple variables and parameters
Access to absolute variables
Access to data blocks

Function calls (see also Chapter 14).

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Calling Functions and Function Blocks

Special
Considerations

Note the following special considerations:

When the block is processed, the altered value of the in/out parameter is
updated. Infout parameters of @lementarydata type are an exception

to this rule. In the latter case, an update is only performed if an actual
parameter is specified in the function call.

The following can not be used as actual parameters for an in/out
parameter of aon elementarydata type:

— FB in/out parameters
— FC parameters

ANY parameters: the aforesaid applies in this case, too. In addition,
constants araot permissible as actual parameters.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

16-9

Calling Functions and Function Blocks

16.2.4 Example of Calling a Global Instance

Basic Principle An example of a function block with a FOR loop is shown in Example 16-1.
The examples given assume that the syriB@T has been declared in the
symbol table foFB17.

FUNCTION_BLOCK TEST
VAR_INPUT
FINALVAL: INT; //Input parameter
END_VAR
VAR_IN_OUT
IQ1: REAL; //In/Out parameter
END_VAR
VAR_OUTPUT
CONTROL: BOOL;//Output parameter
END_VAR
VAR
INDEX: INT;
END_VAR
BEGIN
CONTROL:= FALSE;
FOR INDEX:= 1 TO FINALVAL DO
1QL:=1Q1 * 2;
IF 1Q1 > 10000 THEN
CONTROL:= TRUE;
END_IF;
END_FOR;
END_FUNCTION_BLOCK

Example 16-1 Example of an FB

Calling To call the FB, you can choose one of the following options. It is assumed
thatVARIABLE1 has been declared in the calling block &AL variable.

//Absolute function call, global instance:
FB17.DB10 (FINALVAL:=10, 1Q1:= VARIABLE1);

//ISymbolic function call; global instance:
TEST.TEST_1 (FINALVAL:= 10, 1Q1:= VARIABLEL) ;

Example 16-2 Example of FB Call Using an Instance Data Block

Result After the block has been processed, the value calculated for the in/out
parameter IQ1 can be accessed fROARIABLEL.

Structured Control Language (SCL) for S7-300/S7-400, Programming
16-10 C79000-G7076-C522-01

Calling Functions and Function Blocks

Reading the The two examples below illustrate the two possible ways of reading the
Output Value output parameteEONTROL

/[The output parameter is
/laccessed by

RESULT:= DB10.CONTROL;

//[However, you can also use the output parameter
/ldirectly in another //FB call for assigning
/la value to an input parameter as follows:

FB17.DB12 (IN_1:= DB10.CONTROL);

Example 16-3 Result of FB Call with Instance Data Block

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 16-11

Calling Functions and Function Blocks

16.2.5 Example of Calling a Local Instance

Basic Principle Example 16-1 illustrates how a function block with a simple FOR loop could
be programmed assuming that the symitle6 T has been declared in the
symbol table foFB17.

Calling This FB can be invoked as shown below, assumingtARIABLEL has
been declared in the invoking block aRBAL variable.

/I Call local instance:

TEST_L (FINALVAL:= 10, 1Q1:= VARIABLEL1) ;

Example 16-4 Example of FB Call as Local Instance

TEST_L must have been declared in the variable declaration as follows:

VAR
TEST_L : TEST;
END_VAR

Reading Output The output paramet@ONTROIcan be read as follows:
Parameters

/I The output parameter is
I/l accessed by
RESULT:= TEST_L.CONTROL;

Example 16-5 Result of FB Call as Local Instance

Structured Control Language (SCL) for S7-300/S7-400, Programming
16-12 C79000-G7076-C522-01

Calling Functions and Function Blocks

16.3 Calling Functions

Return Value In contrast to function blocks, functions always return a result known as the
return value. For this reason, functions can be treated as addresses. Functions
with a return value of the typ€QOID are an exception to this rule.

In the following value assignment, for example, the function DISTANCE is
called with specific parameters:

LENGTH:= DISTANCE (X1:=-3, Y1:=2);
Return value is DISTANCE!

The function calculates the return value, which has the same name as the
function, and returns it to the calling block. There, the value replaces the
function call.

The return value can be used in the following elements of an FC or FB:
¢ avalue assignment,

¢ alogical, mathematical or comparative expression or

* as a parameter for a further function block/function call.

Functions of the type VOID are an exception. They have no return value and
can therefore not be used in expressions.

Figure 16-10 below illustrates the syntax of a function call.

Function Call

FC
IDENTIFIER

Y DR
IDENTIFIER Y FC parameter)

IDENTIFIER .
FC: Function
Standard function name SFC: System function

or symbolic name S . .
y Standard function implemented in compiler

Figure 16-10 Syntax of Function Call

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 16-13

Calling Functions and Function Blocks

Calling

Example

Results of the
Function Call

16-14

Note

If a function is called in SCL whose return value was not supplied, this can
lead to incorrect execution of the user program.

In an SCL function, this situation can occur when the return value was
supplied but the corresponding statement is not executed.

In an STL/LAD/FBD function, this situation can occur when the function
was programmed without supplying the return value or the corresponding
statement is not executed.

A function is called by specifying:
* the function name (FC IDENTIFIER, SFC IDENTIFIER, IDENTIFIER)

¢ the parameter list.

The function name which identifies the return value can be specified in
absolute or symbolic terms as shown in the following examples:

FC31 (X1:=5, Q1:= Digitsum)
DISTANCE (X1:=5, Q1:= Digitsum)

The results of a function call are available after execution of the call in the
form of

e areturn value or
e output or infout parameters (actual parameters)

For more detailed information on this subject, refer to Chapter 18.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Calling Functions and Function Blocks

16.3.1 FC Parameters

Basic Principle

Rules

In contrast to function blocks, functions do not have any memory in which to
store the values of parameters. Local data is only stored temporarily while
the function is active. For this reason, all formal input, in/out and output
parameters defined in the declaration section of a function must be assigned
actual parameters as part of the function call.

Figure 16-11 below shows the syntax for FC parameter assignment.

FC Parameter

Input

r assignment T
Output/
L In/Out J

assignment

()
o

A 4
v

Figure 16-11 Syntax of an FC Parameter

The example below illustrates a function call involving assignment of an
input parameter, an output parameter and an in/out parameter.

FC32 (I_Paraml1:=5,I0_Param1l:=LENGTH,
O_Paraml:=Digitsum)

The rules for assigning values to parameters are as follows:
e The value assignments can be in any order.

e The data type of the formal and actual parameter in each case must
match.

¢ The individual assignments must be separated by commas.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

16-15

Calling Functions and Function Blocks

16.3.2 Input Assignment (FC)

Basic Principle Input assignments assign values (actual parameters) to the formal input
parameters of the called FC. The FC can work with these actual parameters
but cannot change them. In contrast to an FB call, this assignnmet is
optional with an FC call. Input assignments have the follwing syntax:

Input Assignment

Actual parameters

Expression
TIMER
IDENTIFIER
IDENTIFIER e —p
COUNTER
Parameter name of the IDENTIFIER
input parameter
BLOCK
(formal parameter) IDENTIFIER
Figure 16-12 Syntax of an Input Assignment
Actual Parameters The following actual parameters can be assigned in input assignments:

in Input
Assignments

Table 16-4 Actual Parameters in Input Assignments

Actual Parameter

Explanation

Expression

An expression represents a value and consists of addresses

and operators. The following types of expression are
possible:

Mathematical, logical or comparative expressions
Constants
Extended variables

TIMER/COUNTER

Defines a specific timer or counter to be used when a blo

ckis

Identifier processed (see also Chapter 17).
BLOCK Defines a specific block to be used as an input parameter. The
Identifier block type (FB, FC or DB) is specified in the declaration|of
the input parameter. When assigning parameters, you specify
the block address. You can use either the absolute or the
symbolic address (see also Chapter 9).
Special Note that FB in/out parameters and FC parameters are not permissible as
Consideration actual parameters for formal FC input parameters of a non-elementary data
type.

Structured Control Language (SCL) for S7-300/S7-400, Programming

16-16

C79000-G7076-C522-01

Calling Functions and Function Blocks

16.3.3 Output and In/Out Assignment (FC)

Basic Principle In an output assignment, you specify where the output values resulting from
processing a function are to be written to. An in/out assignment is used to
assign an actual value to an infout parameter.

Figure 16-13 below shows the syntax of output and in/out assignments.

Output and In/Out Assignments

Extended
IDENTIFIER e variable —

Parameter name of the
output or infout Actual parameter
parameter

(formal parameter)

Figure 16-13 Syntax of Output and In/Out Assignments

Actual Parameters The actual parameters in output and infout assignments must be variables

in Output and since the FC writes values to the parameters. For this reason, input

In/Out parameters can not be assigned in infout assignments (the value could not be
Assignments written).

Thus, only extended variables can be assigned in output and in/out
assignments.

Table 16-5 Actual Parameters in Output and In/Out Parameters

Actual Parameter Explanation
Extended The following types of extended variable can be used:
variable

Simple variables and parameters
Access to absolute variables

Access to data blocks

Function calls (see also Chapter 14).

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 16-17

Calling Functions and Function Blocks

Special
Considerations

16-18

Note the following special considerations:

After the block is processed, the altered value of the in/out parameter is
updated.

The following are not permitted as actual parameters for infout
parameters of aon elemenatarydata type:

— FB input parameters
— FB in/out parameters and
— FC parameters

ANY parameters: The first point made above also applies here. The
following are not permitted as actual parameters for in/out parameters of
anon elemenatarydata type:

— FB input parameters
— FC input parameters

In addition, constants aret permitted as actual parameters.
If the ANY type is declared as a function result (return value), the
following also applies:

— Al ANY parameters must be supplied with addresses whose data
types are within a type class. By type class is meant the number of
numerical data types (INT, DNIT, REAL) or the number of bit data
types (BOOL, BYTE, WORD, DWORD) is meant. The other data
types each make up their own type class.

— The SCL Compiler assumes that the data type of the current function
result will be given as the highest-level type among the actual
parameters which are assigned to the ANY parameters.

With the function result, all operations are permitted which are
defined for this data type.

POINTER-parameter: The first point made above also applies here. The
following are not permitted as actual parameters for in/out parameters of
anon elemenatarydata type:

— FB input parameters

— FC input parameters

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Calling Functions and Function Blocks

16.3.4 Example of a Function Call

Basic Principle

A functionDISTANCEfor calculating the distance between two points
(X1,Y1) and (X2,Y2) in the same plane using the Cartesian system of
co-ordinates might take the following form (the examples assume that the
symbolDISTANCEhas been declared in a symbol tableH687).

FUNCTION DISTANCE: REAL
VAR_INPUT
X1: REAL;
X2: REAL;
Y1: REAL;
Y2: REAL;
END_VAR
VAR_OUTPUT
Q2: REAL;
END_VAR
BEGIN
DISTANCE:= SQRT
((X2-X1)**2 + (Y2-Y1)**2);
Q2:= X1+X2+Y1+Y2;
END_FUNCTION

Example 16-6 Distance Calculation

The examples below show further options for subsequent use of a function
value:

In a value assignment, for example

LENGTH:= DISTANCE (X1:=-3, Y1l:=2, X2:=8.9,
Y2:=7.4, Q2:=Digitsum);

In a mathematical or logical expression, for example

RADIUS + DISTANCE (X1:=-3, Y1:=2, X2:=8.9,
Y2:=7.4, Q2:=Digitsum)

When assigning values to parameters in a called block, for example

FB32 (DIST:= DISTANCE (X1:=-3, Y1l:=2, X2:=8.9,
Y2:=7.4, Q2:=Digitsum);

Example 16-7 Calculation of Values in an FC

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

16-19

Calling Functions and Function Blocks

16.4 Implicitly Defined Parameters

Overview Implicitly defined parameters are parameters that you can use without having
to declare them first in a block. SCL provides the following implicitly
defined parameters:

¢ the input parametétNand
¢ the output paramet&NO

Both parameters are of the data t{4#@OL and are stored in the temporary
block data area.

Input Parameter Every function block and every function has the implicitly defined input
EN parameter EN. If EN is TRUE, the called block is executed. Otherwise it is
not executed. Supplying a value for the parameter EN is optional.

Remember, however, that EN must not be declared in the declaration section
of a block or function.

Since EN is an input parameter, you cannot change EN within a block.

Note

The return value of a function is not defined if the function is not called
becaus&N:=FALSE.

Example The following example illustrates the use of the parameter EN:

FUNCTION_BLOCK FB57

VAR
RESULT - REAL;
MY _ENABLE :BOOL;

END_VAR

BEGIN

MY_ENABLE:= FALSE;
/l Function call
/I in which the parameter EN is assigned a value:

RESULT:= FC85 (EN:= MY_ENABLE, PAR_1:= 27);
/I FC85 not executed because MY_ENABLE

/l'is set to FALSE

/...

END_FUNCTION_BLOCK

Example 16-8 Use of EN

Structured Control Language (SCL) for S7-300/S7-400, Programming
16-20 C79000-G7076-C522-01

Calling Functions and Function Blocks

Output Parameter Every function block and every function has the implicitly defined output
ENO parameteENOwhich is of the data type BOOL. When the execution of a
block is completed, the current value of @€ variable is set iENO

Immediately after a block has been called you can check the vatiNGid
see whether all the operations in the block ran correctly or whether errors
occurred.

Example The following example illustrates the use of the parameter ENO:

FUNCTION_BLOCK FB57
/...
/...
BEGIN
/I Function block call:
FB30.DB30 (X1:=10, X2:=10.5);

/I Check to see if all
Il operations performed properly:

IF ENO THEN
I/l Everything OK
/...
ELSE
/I Error occurred,
I therefore error handling
/...
END_IF;
/...
/...
END_FUNCTION_BLOCK

Example 16-9 Use of ENO

Example The following example shows the combination of EN and ENO:

/I EN and ENO can also be combined
/I as shown here:

FB30.DB30(X1:=10, X2:=10.5);
/I The following function is only
/I to be executed if FB30 is

/I processed without errors

RESULT:= FC85 (EN:= ENO, PAR_1:= 27);

Example 16-10 Use of EN and ENO

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 16-21

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Counters and Timers 1 7

Introduction In SCL you can control the running of a program on the basis of a timer or
counter reading.

STEP 7 provides standard counter and timer functions for this purpose which
you can use in your SCL program without having to declare them

beforehand.

Chapter Section Description Page

Overview 17.1 Counter Functions 17-2
17.1.1 Input and Evaluation of the Counter Reading 17-6
17.1.2 Counter Up 17-7
17.1.3 Counter Down 17-7
17.1.4 Counter Up/Down 17-8
17.1.5 Example of the Function S_CD (Counter Down) 17-8
17.2 Timer Functions 17-10
17.2.1 Input and Evaluation of the Timer Reading 17-14
17.2.2 Pulse Timer 17-16
17.2.3 Extended Pulse Timer 17-17
17.2.4 On-Delay Timer 17-18
17.2.5 Retentive On-Delay Timer 17-19
17.2.6 Off-Delay Timer 17-20
17.2.7 Example of Program Using Extended Pulse Timer 17-21
17.2.8 Selecting the Right Timer Function 17-22

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 17-1

Counters and Timers

17.1 Counter Functions

Overview

Calling

Function Value

17-2

STEP 7 provides a series of standard counter functions. You can use these
counters in your SCL program without needing to declare them previously.
You must simply supply them with the required parameters. STEP 7 provides
the following counter functions:

e Counter Up
e Counter Down

e Counter Up/Down

Counter functions are called just like functions. The function identifier can
therefore be used as an address in an expression provided you make sure that
the data type of the function result is compatible with the address replaced.

Table 17-1 Function Name of Counter Functions

Function Name Description
S CU Counter Up
S CD Counter Down
S_CUD Counter Up/Down

The function value (return value) which is returned to the calling block is the
current counter readin@®CD format) in data typaVORD For more
information on this subject, refer to Section 17.1.1.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Counters and Timers

Function Call
Parameters

Example

The function call parameters for all three counter functions are listed in Table
17-2 together with their identifiers and descriptions. Basically, the following
types of parameters should be distinguished:

e Control parameters (for example, set, reset, counting direction)
¢ Initialization value for a counter reading
e Status output (shows whether a counter limit has been reached).

e Counter reading in binary form

Table 17-2 Counter Function Call Parameters

Identifier | Parameter | Data Type Description

C_NO COUNTER | Counter number (COUNTER
IDENTIFIERY);
the area depends on the CPU

CuU Input BOOL CU input: count up

CD Input BOOL CD input: count down

S Input BOOL Input for presetting the counter

PV Input WORD Value in the range between 0 and 999 fqr
initializing the counter (entered as
16#<value>, with the value in BCD format)

R Input BOOL Reset input

Q Output BOOL Status of the counter

(64Y) Output WORD Counter reading (binary)

The counter function call shown in Example 17-1 below causes a global
memory area of the type COUNTER with the name C12 to be reserved when
the function is configured.

Counter_Reading:= S_CUD (C_NO :=C12,
CD :=L.0,
Cu =11,
S =1.2 & 1.3,
PV =120,
R :=FALSE,
Cv :=binVal,
Q :=actFlag);

Example 17-1 Calling a Counter Down Function

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17-3

Counters and Timers

Calling
Dynamically

Rules

17-4

Instead of the absolute counter number (for exa@pEO=C1(), you can

also specify a variable of the data type COUNTER to call the function. The
advantage of this method is that the counter function call can be made
dynamic by assigning that variable a different absolute humber in each
function call.

Example:

Function_Block COUNTER,;
Var_Input

MyCounter: Counter;
End_Var

currVAL:=S_CD (C_NO:=MyCounter,........);

Since the parameter values (for example, CD:=1.0) are stored globally, under
certain circumstances specifying those parameters is optional. The following
general rules should be observed when supplying parameters with values:

* The parameter for the counter identifier C_NO must always be assigned a
value when the function is called.

¢ Either the parameter CU (up counter) or the parameter CD (down
counter) must be assigned a value, depending on the counter function
required.

e The parameters PV (initialization value) and S (set) can be omitted as a
pair.

¢ The result value in BCD format is always the function value.

Note

The names of the functions and parameters are the same in both SIMATIC
und IEC mnemonics. Only the counter identifier is mnemonic-dependent,
thus:SIMATIC: Z andIEC: C

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Counters and Timers

Example of
Counter Function
Call

Example 17-2 below illustrates various counter function calls:

Function_block FB1

VAR
currVal, binVal: word;
actFlag: bool;

END_VAR

BEGIN
currVal :=S_CD(C_NO:=C10, CD:=TRUE, S:=TRUE,

PV:=100, R:=FALSE, CV:=binVal,
Q:=actFlag);

currVal :=S_CU(C_NO:=C11, CU:=M0.0, S:=M0,1,
PV:=16#110, R:=M0.2, CV:=binVal,
Q:=actFlag);

currVal :=S_CUD(C_NO:=C12, CD:=E.0,
CuU:=I.1,S:=1.2 & I.3, PV:=120,
R:=FALSE,CV:=binVal, Q:=actFlag);

currVal :=S_CD(C_NO:=C10,CD:=FALSE,
S:=FALSE,
PV:=100, R:=TRUE, CV:=bVal,
Q:=actFlag);

END_FUNCTION_BLOCK

Example 17-2 Counter Function Calls

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17-5

Counters and Timers

17.1.1 Input and Evaluation of the Counter Reading

Overview To input the initialization value or to evaluate the result of the function, you
require the internal representation of the counter reading (see Figure 17-1).

When you set the counter (parameter S), the value you specify is written to
the counter. The range of values is between 0 and 999. You can change the
counter reading within this range by specifying the operations count up/down
or count up and down

Format Figure 17-1 below illustrates the bit configuration of the counter reading.

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
X\X\X\X‘O\O\O\l 0101110 0\1\1\1|

N A A A /
\ 1 2 7 /

Counter reading in BCD format (0 to 999)

These bits are irrelevant; that is, they are ignored when a counter is set.

Figure 17-1 Bit Configuration of Counter Reading

Input You can load a predefined counter reading using the following formats:

¢ Decimal integer: for example 295 if that value corresponds to a valid
BCD code

e BCD code (input as a hexadecimal constant): for example 16#127

Evaluation You can evaluate the result in two different formats:
¢ As afunction result (type WORD) in BCD format
¢ As the output parameter CV (type WORD) in binary code

Structured Control Language (SCL) for S7-300/S7-400, Programming
17-6 C79000-G7076-C522-01

Counters and Timers

17.1.2 Counter Up (CU)

Description

Method of
Operation

With the Counter Up function, you can only perform upward counting

operations.
Table 17-3 Counter Up Function
Operation Explanation
Counter up | The counter reading is increased by "1” when the signal status at

CU changes from "0” to "1” and the count value is less than 999.

Set counter

When the signal status at infaithanges from "0” to "1”, the counte

input

r

is set to the value of inpB. Such a signal change is always required

to set a counter.

to "0".

17.1.3 Counter Down (CD)

Description

Method of
Operation

Reset The counter is reset when infRit= 1 is set. Resetting the counter gets
the counter reading to "0”".

Query A signal status query at output Q returns "1” if the counter reading is

counter greater than "0”. The query returns "0" if the counter reading is equal

With the Counter Down function, you can only execute downward counting

operations.
Table 17-4 Counter Down Function
Function Explanation
Counter The counter reading is decreased by "1” if the signal status at@fp
down changes from "0” to "1” and the count value is greater than "0".

Set counter

If the signal status at inp&tchanges from "0” to "1”, the counter is get

to the value of inpuPV. Such a signal change is always required tq
a counter.

to "0".

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17-7

set

the

Reset The counter is reset if inpR = 1 is set. Resetting the counter sets|
count value to "0".

Query A signal status query at outp@Qtreturns "1” if the counter reading i$

counter greater than "0”. The query returns "0” if the counter reading is egual

Counters and Timers

17.1.4 Counter Up/Down (CUD)

Description With the Counter Up/Down function, you can execute both upward and
downward counting operations. If up and down count pulses are received
simultaneously, both operations are performed. The counter reading remains
unchanged.

Table 17-5 Up/Down Counter Function

Method of Function Function
Operation Counter up | The counter reading is increased by "1” if the signal status at@ipyt
changes from "0” to "1” and the counter reading is less than 999.
Counter The counter reading is decreased by "1” if the signal status at@iput
down changes from "0” to "1” and the counter reading is greater than "Q".

Set counter | If the signal status at inp&changes from "0” to "1”, the counter is set
to the value of inpuPV. Such a signal change is always required to set

a counter.

Reset The counter is reset if inp® = 1 is set. Resetting the counter sets|the
counter reading to "0".

Query A signal status query at output Q returns "1” if the counter reading is

counter greater than "0". The query returns "0” if the counter reading is equal
to 0",

17.1.5 Example of the Function S_CD (Counter Down)

Parameter Table 17-6 below illustrates parameter assignment for the function S_CD.
Assignment

Table 17-6 Function Call Parameters

Parameter Description
C_NO MyCounter

CD Input 10.0

S SET

PV Initiliazation 16#0089

R Reset

Q Q0.7

Ccv BIN_VAL

Structured Control Language (SCL) for S7-300/S7-400, Programming
17-8 C79000-G7076-C522-01

Counters and Timers

Example Example 17-3 illustrates use of the counter function S_CD:

FUNCTION_BLOCK COUNT
VAR_INPUT

MYCOUNTER: COUNTER,;
END_VAR

VAR_OUTPUT

RESULT: INT;

END_VAR

VAR

SET : BOOL;
RESET : BOOL,;

BCD_VALUE : WORD; //counter reading BCD
coded

BIN_VALUE : WORD; //counter reading
binary

INITIALIZATION : WORD;
END_VAR
BEGIN
Q0.0:=1;
SET:=10.2;
RESET:=10.3;
INITIALIZATION:= 16#0089;
BCD_VALUE:=S CD
(C_NO := MYCOUNTER,//COUNT UP.

CD =10,

S = SET,

PV := INITIALIZATION,
R .= RESET,

CVv := BIN_VALUE,
Q :=Q0.7);

RESULT := WORD_TO_INT (BIN_VALUE);//further
/lprocessing as an output
/lparameter

QW4 := BCD_VALUE //to output for display
END_FUNCTION_BLOCK

Example 17-3 Example of Counter Function

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 17-9

Counters and Timers

17.2 Timer Functions

Overview

Calling

Function Value

17-10

Timers are functional elements in your program that perform and monitor
timed processes. STEP 7 provides a series of standard timer functions which
you can access using SCL. You can use timer operations to

¢ setdelay periods
¢ enable monitoring periods
e generate pulses

* measure times

Timer functions are called in the same way as counter functions. The
function identifier can be used in any expression in place of an address
provided the data type of the function result is compatible with that of the
address replaced.

Table 17-7 STEP 7 Timer Functions

Function Name Description
S PULSE Pulse timer
S _PEXT Extended pulse timer
S ODT On-delay timer
S_ODTS Retentive on-delay timer
S _OFFDT Off-delay timer

The function value (return value) that is returned to the calling block is a
time value of the data ty@5TIME. For more information on this subject,
refer to Section 17.2.1

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Counters and Timers

Function Call
Parameters

Example

The parameters that have to be assigned values are listed in a table in the
description of the standard function concerned. The function names and
corresponding data types for all 5 timer functions are given in Table 17-8.

In general, the following types of parameter should be distinguished:

¢ Control parameters (for example, set, reset)

¢ |nitialization value for start time

e Status output (indicates whether timer is running)

¢ Remaining time in binary form

Table 17-8 Function Call Parameters
Parameter | Data Type Description
T_NO TIMER Identification number of the timer; the range depends|on
the CPU
S BOOL Start input
TV S5TIME Initialization of the timer reading (BCD format)
R BOOL Reset input
Q BOOL Status of the timer
BI WORD Time remaining (binary)

The timer function call shown in Example 17-4 causes a global memory area
of the type TIMER and with the name T10 to be reserved when the function
is processed.

DELAY:=

S_ODT (T_NO

S
TV
R
BI
Q
);

Example 17-4 Timer Function Call

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

T10,
TRUE,
T#1s,
FALSE,
bival,
actFlag

17-11

Counters and Timers

Calling
Dynamically

Rules

17-12

Instead of the absolute timer number (for example, T10), you can also
specify a variable of the data type TIMER in the function call. The advantage
of this is that the timer function call is made dynamic by assigning that
variable a different absolute number in every function call.

Example:

FUNCTION_BLOCK TIMERUNIT
VAR_INPUT

MyTimer: timer;

END_VAR

currTime:=S_ODT (T_NO:=MyTimer,.........)

Since the parameter values are stored globally, under certain circumstances
specifying those values is optional. The following general rules should be
observed when assigning values to parameters:

* The parameter for the timer identifier T_NO must be assigned a value in
symbolic or absolute form in the function call.

¢ The parameters TV (initialization value) and S (set) can be omitted as a
pair.

* Reading of parameter values is optional. You can access Q and Bl by
means of a value assignment.

¢ The result in SS5TIME format is always the function value.

Note

The names of the functions are the same in both SIMATIC and IEC
mnemonics.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Counters and Timers

Example Timer Example 17-5 below illustrates various timer function calls:
Function Call

FUNCTION_BLOCK FB2

VAR

currTime: S5time;
biVal: word;
actFlag: bool;
END VAR

BEGIN

currTime:= S_ODT (T_NO:=T10, S:=TRUE, TV:=T#ls,
R:=FALSE, Bl:=biVal,
Q:=actFlag);

currTime:=S_ODTS (T_NO:=T11, S:=M0,0, TV:=T#ls,
R:= MO0.1, Bl:=hiVal,
Q:= actFlag);

currTime:=S_OFFDT (T_NO:=T12, S:=10.1&actFlag,
TV:= T#1s,R:=FALSE,BIl:=biVal,
Q:= actFlag);

currTime:= S_PEXT (T_NO:=T13, S:=TRUE,
TV:=T#1s,R:=10.0, Bl:=biVal,
Q:=actFlag);

currTime:=S_PULSE (T_NO:=T14, S:=TRUE,
TV:=T#1s,R:=FALSE, Bl:=hiVal,
Q:=actFlag);
END_FUNCTION_BLOCK

Example 17-5 Timer Function Calls

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 17-13

Counters and Timers

17.2.1 Input and Evaluation of the Timer Reading

Overview To input the initialization value and to evaluate the function result in BCD
code, you require the internal representation of the timer reading (see Figure
17-2).

Updating the time decreases the timer reading by 1 unit in 1 interval as
specified by the time base. The timer reading is decreased until it reaches
"0”. The possible range of time is from 0 to 9,990 seconds.

Format Figure 17-2 shows the internal representation of the timer reading.
15... .8 7. ...0
XIXI1I0|0IOIOI1 0101110 0|1|1|1|
- A A A A v
\ 1 2 7 /
Time base Timer reading in BCD format (0 to 999)
1 second
Irrelevant: these bits are ignored when the timer is started.

Figure 17-2 Format of Timer Reading

Input You can load a predefined timer reading using the following formats:
¢ In composite time formafIME#aH_bbM_ccS_dddMS
¢ In simple formatTIME#2.4H

Evaluation You can evaluate the result in two different formats:
¢ As a function result (type S5TIME): in BCD format

* As an output parameter (time without time base in dataW@&P in
binary code

Structured Control Language (SCL) for S7-300/S7-400, Programming
17-14 C79000-G7076-C522-01

Counters and Timers

Time Base

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Bits 12 and 13 of the timer word contain the time base in binary code. The
time base defines the interval at which the time value is decreased by 1 unit
(see Table 17-9 and Figure 17-2). The shortest time base is 10 ms; the longest
is10s.

Table 17-9 Time Base and Binary Code

Time Base Binary Code for Time Base
10 ms 00
100 ms 01
1ls 10
10s 11

Note

Since timer readings can only be saved in one time interval, values that do
not represent an exact multiple of the time interval are truncated.

Values with a resolution too high for the required range are rounded down so
that the required range is achieved it the required resolution.

17-15

Counters and Timers

17.2.2 Pulse Timer

Description The maximum time for which the output signal remains set to "1” is the same
as the programmed timer reading.

If, during the runtime of the timer, the signal status 0 appears at the input, the
timer is set to "0”. This means a premature termination of the timer runtime.

Figure 17-3 shows how the "pulse timer” function works:

Input signal 121

Output signal Q4.0 S_PULSE

(pulse timer) = t >

Figure 17-3 Pulse Timer

Table 17-10 Method of Operation of Pulse Timer

Method of Function Explanation

Operation Start time The "pulse timer” operation starts the specified timer when the
signal status at the start inp&) ¢hanges from "0” to "1". To
enable the timer, a signal change is always required.

Specify runtime | The timer runs using the value at infi until the programmed
time expires and the input S = 1.

Abort runtime If input S changes from "1” to "0” before the time has expired, the
timer is stopped.

Reset The time is reset if the reset inp&)(changes from "0” to "1”
while the timer is running. With this change, both the timer reading

and the time base are reset to zero. The signal status "1” at input R
has no effect if the timer is not running.

Query signal As long as the timer is running, a signal status query following a
status "1” at outputQ produces the result "1”. If the timer is aborted, |a
signal status query at output Q produces the result "0".

Query current | The current timer reading can be queried at olBp@ind using the
timer reading function value S_PULSE.

Structured Control Language (SCL) for S7-300/S7-400, Programming
17-16 C79000-G7076-C522-01

Counters and Timers

17.2.3 Extended Pulse Timer

Description

Method of
Operation

The output signal remains set to "1” for the programmed time (t) regardless
of how long the input signal remains set to "1". Triggering the start pulse
again restarts the counter time so that the output pulse is extended

(retriggering).

Figure 17-4 shows how the "extended pulse timer” function works:

Input signal

Output signal
(extended pulse
timer)

12.1 4’—\—

Q40 S_PEXT | L

| t >

Figure 17-4 Extended pulse timer

Table 17-11 Method of Operation of Extended Pulse Timer

Function Explanation
Start time The "extended pulse timer” (S_PEXT) operation starts the
specified time when the signal status at the start irg)uthanges|
from "0” to "1". To enable the timer, a signal change is always
required.
Restart the If the signal status at inp&changes to "1” again while the time

h

=

input signal.

counter time is running, the timer is restarted with the specified timer reading.
Initialize The timer runs with the value at inpli¥ until the programmed
runtime time has expired.
Reset The time is reset if the reset inp&)(changes from "0” to "1”
while the timer is running. With this change, both the timer reading
and the time base are reset to zero. The signal status "1” at input R
has no effect if the timer is not running.
Query signal As long as the timer is running, a signal status query following "1”
status at outputQ produces the result "1” regardless of the length of the

Query current
timer reading

The current timer reading can be queried at olBpaind using the
function value S_PEXT.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17-17

Counters and Timers

17.2.4 On-Delay Timer

Description The output signal only changes from "0” to "1” if the programmed time has
expired and the input signal is still "1”. This means that the output is
activated following a delay. Input signals that remain active for a time that is
shorter than the programmed time do not appear at the output.

Figure 17-5 illustrates how the "on-delay timer” function works.

Input signal 121 4’—\—

Q4.0 S_ODT

t
Output signal ==t

(on-delay timer)

Figure 17-5 On-Delay Timer

Table 17-12 Method of Operation of On-Delay Timer

Method of Function Explanation

Operation Start time The "on-delay timer” starts a specified time if the signal status at
the start inputg) changes from "0” to "1". To enable the timer, |a
signal change is always required.

Stop timer If the signal status at input S changes from "1” to "0” while the
timer is running, it is stopped.

Specify the The timer continues to run with the value at inputas long as

runtime the signal status at input S = 1.

Reset The timer is reset if the reset inp&)(changes from "0” to "1”

while the timer is still running. With this signal change, the timer
reading and the time base are reset to zero. The time is also reset if
R =1 is set when the timer is not running.

Query signal A signal status query following "1" at output Q returns "1” if the
status time has expired without an error occurring and input S is still set
to "1".
If the timer is stopped, a signal status query following "1” always
returns "0".

A signal status query after "1” at output Q also returns "0” if the
timer is not running and the RLO at input S is still "1".

Query current | The current timer reading can be queried at olBp@ind using the
timer reading function value S_ODT.

Structured Control Language (SCL) for S7-300/S7-400, Programming
17-18 C79000-G7076-C522-01

Counters and Timers

17.2.5 Retentive On-Delay Timer

Description The output signal only changes from "0” to "1” if the programmed time has
expired regardless of how long the input signal remains set to "1".

Figure 17-6 shows how the "retentive on-delay timer” function works.

Input signal

Output signal

(retentive on-delay timer)

121 4’—\—

Q4.0 S_ODTS

Figure 17-6 Retentive On-Delay Timer

Table 17-13 Method of Operation of Retentive On-Delay Timer

Explanation

The "stored on-delay timer” function starts a specified timer iffthe
signal status at the start inp&) changes from "0” to "1". To
enable the timer, a signal change is always required.

Method of Function

Operation Start time
Restart
timer

The timer is restarted with the specified value if infpehanges
from "0” to "1” while the timer is running.

Specify runtime

The timer continues to run with the value at input even if the
signal status at inp8 changes to "0” before the time has expirpd.

Reset

If the reset inputR) changes from "0” to "1”, the timer is reset
regardless of the RLO at input S.

Query signal
status

A signal status query following "1” at outpQ returns the result
"1" after the time has expired regardless of the signal status at
input S.

Query current
timer reading

The current timer reading can be queried at output Bl and usjng
the function value S_ODTS.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

17-19

Counters and Timers

17.2.6 Off-Delay Timer

Description With a signal status change from "0” to "1” at start input S, output Q is set to
"1". If the start input changes from "1” to "0”, the timer is started. The
output only returns to signal status "0” after the time has expired. The output
is therefore deactivated following a delay.

Figure 17-7 shows how the "off-delay timer” function works.

Input signal 121 _,—\—

Q4.0 S_OFFDT

Output signal f——t ——»
(Off-delay timer)

Figure 17-7 Off-Delay Timer

Table 17-14 Method of Operation of Off-Delay Timer

Method of Function Explanation

Operation Start time The "off-delay timer” operation starts the specified timer if the
signal status at the start inp&) ¢changes from ”"1” to "0”. A signal
change is always required to enable the timer.

Restart The timer is restarted if the signal status at input S changes from

timer "1” to "0” again (for example following a reset).

Specify runtime | The timer runs with the value specified at input

Reset If the reset input (R) changes from "0” to "1” while the timer ig
running, the timer is reset.

Query signal A signal status query following "1” at output Q produces "1” if the

status signal status at input S = 1 or the timer is running.

Query current | The current timer reading can be queried at olBp@ind using the
timer reading function value S_OFFDT.

Structured Control Language (SCL) for S7-300/S7-400, Programming
17-20 C79000-G7076-C522-01

Counters and Timers

17.2.7 Example of Program Using Extended Pulse Timer Function

Example of Example 17-6 below illustrates a program using the extended pulse timer
S PEXT function.

FUNCTION_BLOCK TIMER
VAR_INPUT

MYTIME: TIMER;
END_VAR

VAR_OUTPUT

RESULT: S5TIME;
END_VAR

VAR

SET - BOOL;
RESET - BOOL;

BCD_VALUE : S5TIME;//time base and time
/[remaining
//BCD coded

BIN_VALUE WORD; //timer reading
binary

INITIALIZATION : S5TIME;
END_VAR

BEGIN

Q0.0:=1;

SET:=10.0;

RESET:=10.1;
INITIALIZATION:= T#25S;

BCD_VALUE:= S_PEXT(T_NO:= MYTIME,

S = SET,

TV = INITIALIZATION,
R := RESET,

Bl :=BIN_VALUE,

Q =Q0.7);

RESULT:=BCD_VALUE; //Further processing
/las output parameter

QW4:= BIN_VALUE //To output for display

END_FUNCTION_BLOCK

Example 17-6 Timer Function

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 17-21

Counters and Timers

17.2.8 Selecting the Right Timer Function

Figure 17-8 summarizes the five different timer functions described in this
chapter. This summary is intended to assist you in selecting the timer
function best suited to your particular purpose.

Input signal 12.1

Output signal Q40spPuSsE_____ | |
(Pulse timer) f——t——

The maximum time for which the output signal remains "1” is
equal to the programmed time t. The output signal remains on
1" for a shorter period if the input signal switches to "0".

Output signal Q40 S PEXT | L
(Extended f———t———

pulse timer))))
The output signal remains on "1” for the duration of the

programmed time regardless of how long the input signal
remains on "1”. The pulse is restarted if the start signal is
triggered again within "t”".

Output signal Q4.0 S _ODT
(On delay timer) et

The output signal only switches from "0” to "1” if the
programmed time has expired and the input signal is still "1".

Output signal Q4.0 S_ODTS
(Retentive f——t——

on-delay timer . . .
y) The output signal only switches from "0” to "1” if the
programmed time has expired regardless of how long the
input signal remains on "1”.

Output signal Q4.0 S_OFFDT

(Off-delay timer) f—— t ——

The output signal only switches from "0” to "1” if the input signal
changes from "1” to "0”. The output signal remains on "1” for
the duration of the programmed period. The timer is started
when the input signal switches from "0” to "1".

Figure 17-8 Selecting the Right Timer Function

Structured Control Language (SCL) for S7-300/S7-400, Programming
17-22 C79000-G7076-C522-01

SCL Standard Functions 1 8

Introduction SCL provides a series of standard functions for performing common tasks
which can be called by the SCL blocks you program.

Chapter Section Description Page

Overview 18.1 Converting Data Types 18-2
18.2 Standard Functions for Data Type Conversions 18-3
18.3 Numeric Standard Functions 18-¢
18.4 Bit String Standard Functions 18-11

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 18-1

SCL Standard Functions

18.1 Converting Data Types

Overview

Implicit Data Type
Conversions

18-2

When you link two addresses of differing data types or assign expressions to
variables, you must check the mutual compatibility of the data types involved
in each case. The following cases would produce incorrect results:

¢ achange to a different type class, for example, from a bit data type to a
numeric data type;

e achange within a type class if the destination data type is of a lower order
than the source data type.

Therefore, in such cases you must performilicit data type conversion.
The necessary details are given in Section 18.2.

If neither of the above cases applies, the compiler forces automatic
conversion to a common format. This type of conversion is referred to from
now on asmplicit data type conversion.

Within the classes of auxiliary data type listed in Table 18-1, the compiler
performs implicit data type conversions in the order indicated. The common
format of two addresses is taken to be the lowest common standard type
whose value range covers both addresses. Thus, the common format of Byte
and Integer is Integer.

Please note also that in the case of data type conversion within the class
ANY_BIT, leading bits are set th

Table 18-1 Order of Implicit Data Type Conversions

Class Conversion Order
ANY_BIT BOOLO BYTEO WORDI DWORD
ANY_NUM INT O DINT O REAL

Example 18-1 illustrates implicit conversion of data types.

FUNCTION_BLOCK FB10
VAR

PID_CONTROLLER_1:BYTE;
PID_CONTROLLER_2:WORD:
END_VAR

BEGIN
IF (PID_CONTROLLER_1 <> PID_CONTROLLER_2) THEN...

(* In the condition for the above IF/THEN
instruction, PID_ CONTROLLER_1 is implicitly
converted to a variable of data type WORD *)

END_FUNCTION_BLOCK

Example 18-1 Implicit Data Type Conversion

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

SCL Standard Functions

18.2 Standard Functions for Data Type Conversions

Explicit Data Type
Conversion

Function Call

List of Conversion
Functions
(Class A)

Explicit data type conversions are performed by means of standard functions.
These standard functions are listed in Tables 18-2 and 18-3.

For a detailed description of the function call, refer to Chapter 16.
* |nput parameter:

Each function for converting a data type has one input parameter only. This
parameter has the narié. Since this is a function with only one parameter,
you only need to specify the actual parameter.

e Function value

The result is always the function value. The two tables detail the rules
according to which the data is converted. Table 18-3 also indicates whether
or not the function affects th@Kflag.

e Names of the functions

Since the data types of the input parameter and the function value are derived
from the function name in each case, they are not separately itemized in
Tables 18-2 and 18-3. For example, for the fundB@OL_TO BYTE the

data type of the input parameteB®OLand the data type of the function
valueBYTE

Table 18-2 shows the data type conversion functions of Class A. These
functions are performed implicitly by the compiler or you can specify them
explicitly. The result is always defined.

Table 18-2 Data Type Conversion Functions, Class A

Function Name Conversion Rule
BOOL_TO BYTE
BOOL_TO_DWORD
BOOL_TO WORD
BYTE_TO DWORD
BYTE_TO_WORD

CHAR_TO_STRING | Transformation to a string (of length 1) containing the same
character.

Transformation t(REALaccording to the IEEE standard.
The value may change (due to the different resolution gf
REAL.

Adds leading zeros

DINT_TO_REAL

INT_TO_DINT The higher-order word of the function value is padded with
16#FFFF for a negative input parameter, otherwise it is
padded with zeros. The value remains the same.

INT_TO_REAL Transformation t(REALaccording to the IEEE standard.

The value remains the same.
WORD_TO_DWORD | Adds leading zeros

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

18-3

SCL Standard Functions

List of Conversion
Functions
(Class B)

18-4

Table 18-3 shows the data type conversion functions of Class B. These

functions must be specified explicitly. The result can also be undefined if the

size of the destination type is insufficient.

You can check for this situation yourself by including a limit check or you
can have the system make the check by selecting the "OK flag” option prior
to compilation. In situations where the result is undefined, the system then

sets the OK variable to FALSE. Evaluation must be done by yourself.

Table 18-3 Data Type Conversion Functions, Class B
Function name Conversion Rule OK
BYTE_TO_BOOL Copies the least significant bit Y
BYTE_TO_CHAR Copies the bit string N
CHAR_TO_BYTE Copies the bit string N
CHAR_TO_INT The bit string in the input parameter is entefed N
in the lower-order byte of the function value
The higher-order byte is padded with zeros.
DATE_TO_DINT Copies the bit string N
DINT_TO_DATE Copies the bit string Y
DINT_TO_DWORD Copies the bit string N
DINT_TO_INT Copies the bit for the sign.
The value in the input parameter is interpreted
in the data typéNT.
If the value is less thar32_768 or greater
than32_767 , the OK variable is set ffALSE
DINT_TO_TIME Copies the bit string N
DINT_TO_TOD Copies the bit string Y
DWORD_TO_BOOL Copies the least significant bit Y
DWORD_TO_BYTE Copies the 8 least significant bits Y
DWORD_TO_DINT Copies the bit string N
DWORD_TO_REAL Copies the bit string N
DWORD_TO_WORD Copies the 16 least significant bits Y
INT_TO_CHAR Copies the bit string Y
INT_TO_WORD Copies the bit string N
REAL_TO_DINT Rounds the IEERREALvalue toDINT. Y
If the value is less thar?2_147_483_648 or
greater thar2_147_483_647 , theOK
variable is set t6ALSE
REAL_TO_DWORD Copies the bit string N
REAL_TO_INT Rounds the IEERREALVvalue toINT. Y

If the value is less thaA32_768 or greater
than32_767 , theOKvariable is set t6ALSE

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

SCL Standard Functions

Table 18-3 Data Type Conversion Functions, Class B
Function name Conversion Rule OK

STRING_TO_CHAR Copies the first character of the string. Y
If the STRING does not have a length of 1, the
OKvariable is set t6ALSE

TIME_TO_DINT Copies the bit string N

TOD_TO_DINT Copies the hit string N

WORD_TO_BOOL Copies the least significant bit Y

WORD_TO_BYTE Copies the least significant 8 bits Y

WORD_TO_INT Copies the bit string N

WORD_TO_BLOCK_DB | The bit pattern of WORD is interpreted as the N
data block number

BLOCK_DB_TO_WORD | The data block number is interpreted as the| bitN
pattern of WORD

Note

You also have the option of usitgC functions for data type conversion. In
this case, you should copy the desired function from the STEP 7 library
STDLIBS\IEC to your program directory. For details of individual IEC

functions, refer td235/.

Examples of
Explicit
Conversions

FUNCTION_BLOCK FB10

VAR
SWITCH S INT;
CONTROLLER : DINT;

END_VAR

BEGIN

SWITCH := DINT_TO_INT (CONTROLLER);
(* INT is of a lower order than DINT *)

/...

END_FUNCTION_BLOCK

Example 18-2 Target Data Type does not Match Source Data Type

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

In Example 18-2 below, an explicit conversion is necessary since the
destination data type is of a lower order than the source data type.

18-5

SCL Standard Functions

In Example 18-3, an explicit data type conversion is necessary, since the data
type REAL is not permissible for a mathematical expression with the MOD

operator.

FUNCTION_BLOCK FB20

VAR
intval:INT:=17;
CONV2 := INT,;
END_VAR
BEGIN

CONV2 :=intval MOD REAL_TO_INT (2.3);

(* MOD may only be used for data of the types
INT or DINT. *)

..
END_FUNCTION_BLOCK

Example 18-3 Conversion due to Non-Permissible Data Type

In Example 18-4, conversion is hecessary because the data type is incorrect
for a logical operator. The NOT operator should only be used for data of the
types BOOL, BYTE, WORD or DWORD.

FUNCTION_BLOCK FB30

VAR
intval:INT:=17;
CONV1 :=WORD;
END_VAR
BEGIN

CONV1 := NOT INT_TO_WORD(intval);
(* NOT may only be used for data
of the type INT. *)

/...

END_FUNCTION_BLOCK

Example 18-4 Conversion due to Incorrect Data Type

Structured Control Language (SCL) for S7-300/S7-400, Programming
18-6 C79000-G7076-C522-01

SCL Standard Functions

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Example 18-5 illustrates data type conversion in the case of peripheral
inputs/outputs.

FUNCTION_BLOCK FB40

VAR
radius_on : WORD;
radius . INT,;
END_VAR
BEGIN
radius_on :=IBO;
radius := WORD_TO_INT(radius_on);

(* Conversion due to change to different type
class. Value comes from input and is converted for
subsequent processing. *)

radius := Radius(area:= circledata.area);
QB0 := WORD_TO_BYTE(INT_TO_WORD(radius));

(* Radius is recalculated from the area and is

present in integer format. For output purposes,

the value is first converted to a different type

class (INT_TO_WORD) and then to a lower-order type

(WORD_TO_BYTE). *)
/...
END_FUNCTION_BLOCK

Example 18-5 Conversion of Inputs and Outputs

18-7

SCL Standard Functions

Functions for
Rounding and
Truncating

18-8

The functions for rounding and truncating numbers are also classed as data
type conversion functions. Table 18-4 shows the names, data types (for the
input parameters and the function value) and purposes of these functions:

Table 18-4 Functions for Rounding and Truncating

Function Data Type of Data Type of Purpose
Name Input Parameter | Function Value
ROUND REAL DINT Rounds

(forms a DINT number)

TRUNC REAL DINT Truncates
(forms a DINT number)

The differences in the way the various functions work are illustrated by the
following examples:

e ROUND (3.14) // Rounding down,
/I Result: 3

¢ ROUND (3.56) // Rounding up,
// Result: 4

¢ TRUNC (3.14) /I Truncating,
// Result: 3

e TRUNC (3.56) /[Truncating,
/l Result: 3

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

SCL Standard Functions

18.3 Numeric Standard Functions

Function

List of General

Functions

List of Logarithmic
Functions

Each numeric standard function has one input parameter. The result is always
the function value. Each of the Tables 18-5, 18-6 and 18-7 details a group of
numeric standard functions together with their function names and data
types. The data type ANY_NUM stands for INT, DINT or REAL.

General functions are for calculating the absolute amount, the square or the
square root of an amount.

Table 18-5 General Functions

Function Name | Data Type of Input Data Type of Description
Parameter Function Value
ABS ANY_NUM1 ANY_NUM Number
SQR ANY_NUM? REAL Square
SQRT ANY_NUM? REAL Square root

1 Note that input parameters of the typ&'Y NUMre converted internally into real variables.

Logarithmic functions are for calculating an exponential value or the
logarithm of a number.

Table 18-6 Logarithmic Functions

Function Name | Data Type of Input Data Type of Description
Parameter Function Value

EXP ANY_NUM1 REAL e to the powelN

EXPD ANY_NUM1 REAL 10 to the power
IN

LN ANY_NUM!? REAL Natural logarithm

LOG ANY_NUM1 REAL Common
logarithm

1 Note that input parameters of the typA'Y NUMre converted internally into real variables.

Note

You also have the option of usitgC functions as humeric standard
functions. In that case, you should copy the desired function from the
STEP 7 library STDLIBS\IEC to your program directory. For details of the
individual IEC functions, refer #235/.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

18-9

SCL Standard Functions

List of

Trigonometrical

Functions

Examples

18-10

The trigonometrical functions listed in Table 18-7 expect and calculate
angles in radians.

Table 18-7 Trigonometrical Functions

Function Name | Data Type of Input Data Type of Description

Parameter Function Value

ACOS ANY_NUM1 REAL Arc cosine
ASIN ANY_NUM? REAL Arc sine
ATAN ANY_NUM? REAL Arc tangent
COs ANY_NUM? REAL Cosine
SIN ANY_NUM? REAL Sine
TAN ANY_NUM1 REAL Tangent

1 Note that input parameters of the typA'Y NUMre converted internally into real variables.

Table 18-8 shows possible function calls for standard functions and their
various results:

Table 18-8 Calling Numeric Standard Functions

Function Call Result
RESULT := ABS (-5); 5
RESULT := SQRT (81.0); 9
RESULT := SQR (23); 529
RESULT := EXP (4.1); 60.340 ...
RESULT := EXPD (3); 1_000
RESULT := LN (2.718_281); 1
RESULT := LOG (245); 2.389 166 ...
Pl := 3. 141 592; 0.5
RESULT := SIN (PI / 6);
RESULT := ACOS (0.5); 1.047_197

(=P1/3)

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

SCL Standard Functions

18.4 Bit String Standard Functions

Function

List of Functions

Each bit string standard function has two input parameters identifiidl by
andN. The result is always the function value. Table 18-9 lists the function

names and data types of the two input parameters in each case as well as the

data type of the function value. Explanation of input parameters:

¢ Input parameter IN: buffer in which bit string operations are performed.

e Input parameter N: number of cycles of the cyclic buffer functions ROL

and ROR or the number of places to be shifted in the case of SHL and

SHR.

Table 18-9 shows the possible bit string standard functions.

7]

Table 18-9 Bit String Standard Functions
Function |Data Type of | Data Type of | Data Type of Purpose
Name Input Input Function
Parameter | Parameter Value
IN N
ROL BOOL INT BOOL The value in the
parametetN is
BYTE INT BYTE rotated left by the
numbernfiiinreas
WORD INT WORD specified by the
conerrtorfparamestr
DWORD INT DWORD N.
ROR BOOI INT BOOL The value in the
parametetN is
BYTE INT BYTE rotated right by the
numbernfihiinreas
WORD INT WORD specified by the
conferttorfparameet
DWORD INT DWORD N.
SHL BOOL INT BOOL The value in the
parameteiN is
BYTE INT BYTE shifted as many’placs
left and as many bit
places wn.the
WORD INT WORD right-hand side
replaced by 0 as are
DWORD INT DWORD specified by the
parameter N.
SHR BOOL INT BOOL The value in the
parameteiN is
BYTE INT BYTE shifted as many placs
right and as many bit
WORD INT WORD places on the left-han|
side replaced by 0 as
DWORD INT DWORD are specified by the

(7]

o

parameter N.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

18-11

SCL Standard Functions

Note

You also have the option of usitgC functions for bit string operations. In
that case you should copy the desired function from the STEP 7 library

functions, refer td235/.

STDLIBS\IEC to your program directory. For details of individual IEC

Examples Table 18-10 shows possible function calls for bit string standard functions

and the results in each case.

Table 18-10

Calling Bit String Standard Functions

Function Call

RESULT

RESULT := ROL
(IN:=2#1101_0011, N:=5);
/I IN := 211 decimal

2#0111_1010
(= 122 decimal)

RESULT := ROR
(IN:=2#1101_0011, N:=2);
/I IN := 211 decimal

2#1111_0100
(= 244 decimal)

RESULT := SHL
(IN:=2#1101_0011, N:=3);
/I IN := 211 decimal

2#1001_1000
(= 152 decimal)

RESULT := SHR
(IN:=2#1101_0011, N:=2);
/I IN := 211 decimal

2#0011_0100
(= 52 decimal)

18-12

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Function Call Interface 19

Introduction S7 CPUs contain system and standard functions integrated in the operating
system which you can make use of when programming in SCL. Specifically,
those functions are the following:

¢ Organization blocks (OBs)
e System functions (SFCs)
e System function blocks (SFBs)

Chapter Section Description Page
Overview 19.1 Function Call Interface 19-2
19.2 Data Transfer Interface with OBs 19-4

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 19-1

Function Call Interface

19.1 Function Call Interface

Overview

Example of SFC 31

Conditional
Function Call

19-2

You can call blocks in symbolic or absolute terms. To do so, you require
either the symbolic name, which must have been declared in the symbol
table, or the number of the absolute identifier of the block.

In the function call, you must assign fleemal parameters, whose names
and data types have been specified when the configurable block was created,
actual parameterswith which the block works when the program is running.

All the information you require is given i235/ This manual provides a
general outline of the basic functions in S7 and, as reference information,
detailed interface descriptions for use in your programs.

The following command lines enable you to call the system function SFC 31
(query time of day interrupt):

FUNCTION_BLOCK FB20
VAR
Result:INT;
END_VAR

BEGIN
...
Result:= SFC 31 (OB_NR:= 10,STATUS:= MW100);
/...
...
END_FUNCTION_BLOCK

Example 19-1 Querying the Time-Of-Day Interrupt

Results

The data type of the function value is Integer. If its value is > = 0 this
indicates that the block has been processed without errors. If the value is < 0,
an error has occurred. After calling the function, you can check the implicitly
defined output parameter ENO.

For a conditional function call, you must set the predefinpdt parameter

EN to 0 (foe example, via input 10.3). The block is then not called. If EN is
set to 1, the function is called. Thatput parameter ENO is also set to "1”

in this case (otherwise "0”) if no error occurs during processing of the block.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Function Call Interface

Note

In the case of function blocks or system function blocks, the information that
can be passed over by means of the function value in the case of a function
must be stored in output parameters. These are then subsequently read via
the instance data block. For more detailed information, refer to Chapter 16.

Structured Control Language (SCL) for S7-300/S7-400, Programming 193

C79000-G7076-C522-01

Function Call Interface

19.2 Data Transfer Interface with OBs

Organization
Blocks

Available OBs

Additional
Information

19-4

Organization blocks form the interface between the CPU operating system
and the application program. OBs can be used to execute specific program
sections in the following situations:

¢ when the CPU is powered up

* as cyclic or timed operations

e at specific times or on specific days

* on expiry of a specified time period

e if errors occur

¢ if process or communications interrupts are triggered

Organization blocks are processed according to the priority they are assigned.

Not all CPUs can process all OBs provided by S7. Refer to the data sheets for
your CPU to find out which OBs you can use.

Additional information can be obtained from the on-line help and the
following manuals:

e /70/Manual:S7-300 Programmable Controller, Hardware and
Installation
This manual contains the data sheets which describe the performance
specifications of the various S7-300 CPUs. This also includes the possible
start events for each OB.

¢ /100/Manual:S7-400/M7-400 Programmable Controllekardware and
Installation
This manual contains the data sheets which describe the performance
specifications of the various S7-400 CPUs. This also includes the possible
start events for each OB.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Appendix

Formal Description of
Language

Lexical Rules

Syntax Rules

References

O ® >

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Formal Description of Language

Introduction

Chapter
Overview

The basic tool for the description of the language in the various chapters of
this manual is the syntax diagram. It provides a clear insight into the syntax
(that is, grammatical structure) of SCL. The complete set of syntax diagrams
and language elements is presented in Appendices B and C.

Section Description Page
Al Overview A-2
A.2 Overview of Terms A-5
A3 Terms for Lexical Rules A-6
A4 Formatting Characters, Delimiters and Operators A-7
A5 Keywords and Predefined Identifiers A-9
A.6 Address Identifiers and Block Keywords A-12
A7 Overview of Non Terms A-14
A.8 Overview of Tokens A-14
A9 Identifiers A-15
A.10 SCL Naming Conventions A-16
A1l Predefined Constants and Flags A-18

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Formal Description of Language

A.1 Overview

What is a Syntax The syntax diagram is a graphical representation of the structure of the
Diagram? language. That structure is defined by a series of rules. One rule may be
based on others at a more fundamental level.

Name of Rule

Sequence
.
e L] B
Iteration -

Alternative

Figure A-1 Example of a Syntax Diagram

The syntax diagram is read from left to right and should conform to the
following rule structures:

e Sequence: a sequence of blocks

¢ Option: a skippable branch

¢ lteration: repetition of branches

e Alternative: a split into multiple branches

What Types of A block is a basic element or an element made up of other blocks. The
Blocks Are There? diagram below shows the symbols that represent the various types of block.
Term Non Term

O) <Rule name> |

Basic element that requires no further Rule name may use upper

explanation or lower case letters
This refers to printing characters and Complex element described by
special characters, keywords and additional syntax diagrams.

predefined identifiers. The information K
in these blocks must be copied as it is Token

shown. <Rule name> |

Rule name must always be in
upper case letters!

Complex element used as a basic
element in the syntax rules and
explained in the lexical rules.

Figure A-2 Types of Symbols for Blocks

Structured Control Language (SCL) for S7-300/S7-400, Programming
A-2 C79000-G7076-C522-01

Formal Description of Language

Rules

Lexical Rules

Syntax Rules

The rules which you apply to the structure of your SCL program are
subdivided into the categoritsxical andsyntaxrules.

The lexical rules describe the structure of the elements (tokens) processed
during the lexical analysis performed by the Compiler. For this reason lexical
rules are not free-format; that is, they must be strictly observed. In particular,
this means that

¢ insertion of formatting characters is not permitted,
* insertion of remarks blocks and lines is not permitted,

* insertion of attributes for identifiers is not permitted.

IDENTIFIER

Letter

v s)y

Underscore
L{ Number }

Underscore

v

Figure A-3 Example of a Lexical Rule

The above example shows the lexical rule for IDENTIFIER. It defines the
structure of an identifier (name), for example:

MEAS_ARRAY_12
SETPOINT_B_1

The syntax rules are built up from the lexical rules and define the structure of
SCL. Within the limitations of those rules the structure of the your SCL
program is free-format.

SCL Program

free-format

Lexical Rules not free formal

Figure A-4 Rule Categories and Format Restrictions

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

A-3

Formal Description of Language

Formal
Considerations

Semantics

A-4

Each rule has a name which precedes the definition. If that rule is used in a
higher-level rule, that name appears in the higher-level rule as a non term. If
the rule name is written in upper case, it is a token that is described in the
lexical rules.

The rules can only represent the formal structure of the language. The
meaning; that is, the semantics, is not always obvious from the rules. For this
reason, where it is important, additional information is written next to the

rule. The following are examples of such situations:

¢ Where there are elements of the same type with different meanings, an
additional name is specified, for example, in the Date Specification rule
the explanatory names Year, Month or Day are added to the element
DECIMAL_DIGIT_STRING.

¢ Where there are important limitations, these are noted alongside the rule,
for example, in the case of Symbol, the fact that it has to be defined in the
symbol editor.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Formal Description of Language

A.2 Overview of Terms

Definition A term is a basic element that can not be explained by another rule but is
represented verbally. In a syntax diagram, it is represented by the following
symbol:

O :) A term is represented by an oblong with rounded
corners or a circle. The item is shown in literal
terms or as a name (in upper case letters).

This defines the range of ASCII characters that
can be used.

Figure A-5 Symbols for Terms

Summary In Sections A.3 to A.4 the types of use for different characters are explained.
The various types of character are as follows:

* letters, numbers, printing characters and special characters,
¢ formatting characters and delimiters in the lexical rules,

e prefixes for literals

e formatting characters and delimiters in the syntax rules

* operators

Sections A.5 and A.6 deal with keywords and predefined identifiers made up
of character strings. The tables are arranged in alphabetical order. In the
event of differences between SIMATIC and IEC mnemonics, the
corresponding IEC mnemonic is shown as well.

¢ Keywords and predefined identifiers

e Address identifiers and block keywords

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 A-5

Formal Description of Language

A.3 Lexical Rule Terms

Summary

the ASCII character set.

Letters and

The tables below define the terms on the basis of a range of characters from

Letters and numbers are the characters most commonly used. An

Numbers IDENTIFIER (see Section A.1), for example, can be made up of a
combination of letters, numbers and the underscore character.
Table A-1 Letters and Numbers
Character Subgroup Character Set Range
Letter Upper case letters A.Z
Lower case letters a.z
Number Decimal numbers 0..9
Octal number Octal numbers 0.7
Hexadecimal number Hexadecimal numbers |0.. 9, A.F a.f
Bit Binary numbers 0,1
Printing The complete extended ASCII character set can be used in strings, comments

Characters and
Special Characters

and symbols.

Table A-2

Printing Characters and Special Characters

Character

Subgroup

Character Set Range

Printing character

Depends on the chracter code
used. In the case of ASCII
code, for example, upwards o
decimal equivalent 31
excluding DEL and the

following substitute characters:

All printing characters

Substitute characters Dollar sign $
Apostrophe ’
Control characters $P or $p Page break
(form feed, page feed)
$L or 3l Line break
(line feed)
$R or $r Carriage return
$T or $t Tabulator

Substitute representation in
hexadecimal code

$hh

Any characters
capable of representation in
hexadecimal code (hh)

Structured Control Language (SCL) for S7-300/S7-400, Programming

A-6

C79000-G7076-C522-01

Formal Description of Language

A.4 Formatting Characters, Delimiters and Operators

In Lexical Rules

Table A-3 below defines the use of individual characters in the ASCII
character set as formatting characters and delimiters within lexical rules (see

Appendix B).

Table A-3

Formatting Characters and Delimiters in Lexical Rules

Character

Description

Delimiter between hours, minutes and seconds
Attribute

Delimiter for absolute addresses in real number or time period
representation

Characters and character strings

n oy

Introductory character for symbols according to symbol editor rul

es

_ Underscore

Delimiter for numbers in literals and can be uselDENTIFIERS

$

Alignment symbol for specifying control characters or substitute
characters

$> $<

String break, in case the string does not fit in one row, or if the

comments are to be inserted.

For Literals Table A-4 defines the use of individual characters and character strings in
lexical rules. The table applies to SIMATIC and IEC versions.
Table A-4 Mnemonics for Literals in Alphabetical Order
Prefix Represents Lexical Rule
2# INTEGER LITERAL Binary digit string
8# INTEGER LITERAL Octal digit string
16# INTEGER LITERAL Hexadecimaldigit string
D# Time specification DATE
DATE# Time specification DATE

DATE_AND_TIME#

Time specification

DATE AND TIME

DT#

Time specification

DATE AND TIME

E Delimiter for REAL NUMBER LITERAL Exponent

e Delimiter for REAL NUMBER LITERAL Exponent

D Delimiter for time unit (day) Days (rule: complex format)

H Delimiter for time unit (hours) Hours: (rule: complex format)

M Delimiter for time unit (minutes) Minutes : (rule: complex format)
MS Delimiter for time unit (milliseconds) Milliseconds: (rule: complex format)
S Delimiter for time unit (seconds) Seconds: (rule: complex format)
T# Time specification TIME PERIOD

TIME# Time specification TIME PERIOD

TIME_OF_DAY# Time specification TIME OF DAY

TOD# Time specification TIME OF DAY

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

A-7

Formal Description of Language

In Syntax Rules The table below defines the use of individual characters as formatting
characters and delimiters in the syntax rules and remarks and attributes (see
Appendices B.2 and B.3).

Table A-5 Formatting Characters and Delimiters in Syntax Rules
Character Description Syntax Rule, Remarks or Attribute
Delimiter for type specification Variable declaration, instance declaration,
in statement after jump label function code section, CASE statement

; Terminates a declaration or statement Constant and variable declarations, code section,
DB assignment section, constant subsection,
jump label subsection, component declaration

, Delimiter for lists and jump label subsectioiariable declaration, array data type specification,
array initialization list, FB parameters, FC
parameters, value list, instance declaration

Range specification Array data type specification, value list
Delimiter for FB and DB name, absolute |FB call, structure variables
address

) Function and function block calls bracketedrunction call, FB call, expression,
IN exXpressions array initialization list, simple multiplication,
Initialization list for arrays exponential expression

[] Array declaration, Array data type specification, STRING data type

array structured variable section, indexing 8P€cification
global variables and strings

** Block comment see Appendix B

1l Line comment see Appendix B

{} Attribute field For specifying attributes

% Introduction for direct descriptor In order to program in agreement with IEC, you

can use %M4.0 instead of M4.0.

Operators Table A-6 details all SCL operators, keywords, for example, AND, and the
usual operators as individual characters. The table applies for both SIMATIC
and IEC mnemonics.

Table A-6 SCL Operators

Operator Description Example, Syntax Rule

= Assignment operator, initial assignmentValue assignment, DB assignment section,
data type initialization constant subsection, output and in/out
assignments, input assignment

+, - Mathematical operators: unary operatorgxpression, simple expression,
plus and minus signs exponential expression
+, -, % Basic mathematical operators Basic mathematical operator, simple
MOD: DIV multiplication
*x Mathematical operators, exponent Expression
operator
NOT Logical operators; negation Expression
AND, &, OR; XOR, Basic logical operators Basic logical operator, expression
<> <=>==<> Comparator Comparator

Structured Control Language (SCL) for S7-300/S7-400, Programming
A-8 C79000-G7076-C522-01

Formal Description of Language

A.5 Keywords and Predefined Identifiers

Keywords and

Table A-7 lists SCL keywords and predefined identifiers in alphabetical

Predefined order. Alongside each one is a description and the syntax rule as per
Identifiers Appendix C in which they are used as a term. Keywords are generally
independent of the mnemonics.
Table A-7 SCL Keywords and Predefined Identifiers in Alphabetical Order
Keyword Description Syntax Rule
AND Logical operator Basic logical operator
ANY Identifier for data type ANY Parameter data type specification
ARRAY Introduces the specification of an array and |is Array data type specification
followed by the index list enclosed in "[* and
g
BEGIN Introduces code section in logic blocks or Organization block, function,
initialization section in data blocks function block, data block
BLOCK_DB Identifier for data type BLOCK_DB Parameter data type specification
BLOCK_FB Identifier for data type BLOCK_FB Parameter data type specification
BLOCK_FC Identifier for data type BLOCK_FC Parameter data type specification
BLOCK_SDB Identifier for data type BLOCK_SDB Parameter data type specification
BOOL Elementary data type for binary data Bit data type
BY Introduces increment specification FOR statement
BYTE Elementary data type Bit data type
CASE Introduces control statement for selection CASE statement
CHAR Elementary data type Character type
CONST Introduces definition of constants constant subsection
CONTINUE Control statement for FOR, WHILE and CONTINUE statement
REPEAT loops
COUNTER Data type for counters, useable in parameter Parameter data type specification
subsection only
DATA BLOCK Introduces a data block Data block
DATE Elementary data type for dates Time type
DATE_AND_TIME Composite data type for date and time see Table C-4

DINT

Elementary data type for whole numbers
(integers), double resolution

Numeric data type

DIV Operator for division Basic mathematical operator, simg
multiplication

DO Introduces code section for FOR statement| FOR statement, WHILE statemen

DT Elementary data type for date and time see Table C-4

DWORD Elementary data type for double word Bit data type

ELSE Introduces instructions to be executed if IF statement

condition is not satisfied
ELSIF Introduces alternative condition IF statement
EN Block clearance flag

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

e

Formal Description of Language

Table A-7 SCL Keywords and Predefined Identifiers in Alphabetical Order, continued
Keyword Description Syntax Rule

ENO Block error flag
END_CASE Terminates CASE statement CASE statement
END_CONST Terminates definition of constants constant subsection
END_DATA_BLOCK Terminates data block Data block
END_FOR Terminates FOR statement FOR statement
END_FUNCTION Terminates function Function

END_FUNCTION_BL
OCK

Terminates function block

Function block

END_IF Terminates IF statement IF statement

END_LABEL Terminates declaration of a jump label Jump label subsection
subsection

END_TYPE Terminates UDT User-defined data type

END_ORGANIZATIO
N_BLOCK

Terminates organization block

Organization block

END_REPEAT Terminates REPEAT statement REPEAT statement
END_STRUCT Terminates specification of a structure Structure data type specification
END_VAR Terminates declaration block Temporary variables subsection,
static variables ssubsection,
parameter subsection
END_WHILE Terminates WHILE statement WHILE statement
EXIT Executes immediate exit from loop EXIT
FALSE Predefined Boolean constant; logical condition
not satisfied, value equals 0
FOR Introduces control statement for loop FOR statement
processing
FUNCTION Introduces function Function

FUNCTION_BLOCK

Introduces function block

Function block

GOTO

Instruction for executing a jump to a jump labelProgram jump

IF Introduces control statement for selection IF statement

INT Elementary data type for whole numbers Numeric data type
(integers), single resolution

LABEL Introduces declaration of a jump label Jump label block
subsection

MOD Mathematical operator for division remainder Basic mathematical operator, simg
(modulus) multiplication

NIL Zero pointer

NOT Logical operator, one of the unary operators| Expression, address

OF Introduces data type specification Array data type specification,

CASE statement

OK Flag that indicates whether the instructions in a
block have been processed without errors

OR Logical operator Basic logical operator

ORGANIZATION_
BLOCK

Introduces an organization block

Organization block

A-10

Structured Control Language

(SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

le

Formal Description of Language

Table A-7 SCL Keywords and Predefined Identifiers in Alphabetical Order, continued
Keyword Description Syntax Rule
POINTER Pointer data type, only allowed in parameter See Chapter 10
declarations in parameter subsection, not
processed in SCL
REAL Elementary data type Numeric data type
REPEAT Introduces control statement for loop REPEAT statement
processing
RETURN Control statement which executes return from RETURN statement
subroutine
S5TIME Elementary data type for time specification, | Time type
special S5 format
STRING Data type for character string STRING data type specification
STRUCT Introduces specification of a structure and ig Structure data type specification
followed by a list of components
THEN Introduces resulting actions if condition is IF statement
satisfied
TIME Elementary data type for time specification | Time type
TIMER Data type of timer, useable only in parameter Parameter data type specification
subsection
TIME_OF_DAY Elementary data type for time of day Time type
TO Introduces the terminal value FOR statement
TOD Elementary data type for time of day Time type
TRUE Predefined Boolean constant; logical condition
satisfied, value not equal to 0
TYPE Introduces UDT User-defined data type
UNTIL Introduces break condition for REPEAT REPEAT statement
statement
VAR Introduces declaration subsection Static variables subsection
VAR_INPUT Introduces declaration subsection Parameter subsection
VAR_IN_OUT Introduces declaration subsection Parameter subsection
VAR_OUTPUT Introduces declaration subsection Parameter subsection
VAR_TEMP Introduces declaration subsection Temporary variables subsection
WHILE Introduces control statement for loop WHILE statement
processing
WORD Elementary data type Word Bit data type
VOID No return value from a function call See Chapter 8
XOR Logical operator Logical operator

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

A-11

Formal Description of Language

A.6 Address Identifiers and Block Keywords

Global System

Table A-8 details the SIMATIC mnemonics of SCL address identifiers

Data arranged in alphabetical order along with a description of each.
e Address identifier specification:
Memory prefix (Q, I, M, PQ, PI) or data block (D)
¢ Data element size specification:
Size prefix (optional or B, D, W, X)
The mnemonics represent a combination of the address identifier (memory
prefix or D for data block) and the size prefix. Both are lexical rules. The
table is arranged in order of SIMATIC mnemonics and the corresponding IEC
mnemonics specified in the second column.
Table A-8 Address ldentifiers for Global System Data
SIMATIC IEC Memory Prefix or Data Block Size Prefix
Mnemonics Mnemonics
A Q Qutput (via process image) Bit
AB 0B Output (via process image) Byte
AD QD Output (via process image) Double word
AW QW Output (via process image) Word
AX QX Output (via process image) Bit
D D Data block Bit
DB DB Data block Byte
DD DD Data block Double word
DW DW Data block Word
DX DX Data block Bit
E | Input (via process image) Bit
EB 1B Input (via process image) Byte
ED ID Input (via process image) Double word
EW W Input (via process image) Word
EX IX Input (via process image) Bit
M M Bit memory Bit
MB MB Bit memory Byte
MD MD Bit memory Double word
MW MW Bit memory Word
MX MX Bit memory Bit
PAB PQOB Output (Direct to peripherals) Byte
PAD PQD Output (Direct to peripherals) Double word
PAW PQW Output (Direct to peripherals) Word
PEB PIB Input (Direct from peripherals) Byte
PED PID Input (Direct from peripherals) Double word
PEW PIW Input (Direct from peripherals) Word
Structured Control Language (SCL) for S7-300/S7-400, Programming
A-12 C79000-G7076-C522-01

Formal Description of Language

Block Keywords Used for absolute addressing of blocks. The table is arranged in order of
SIMATIC mnemonics and the corresponding IEC mnemonics given in the
second column.

Table A-9 Block Keywords Plus Counters and Timers

SIMATIC IEC Memory Prefix or Data Block
Mnemonics Mnemonics

DB DB Data block

FB FB Function block

FC FC Function

OB OB Organization block
SDB SDB System data block
SFC SFC System function

SFB SFB System function block
T T Timer

ubDT ubDT User-defined data type
4 C Counter

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 A-13

Formal Description of Language

A.7 Overview of Non Terms

Definition A non term is a complex element that is described by another rule. A non
term is represented by an oblong box. The name in the box is the name of the
more specific rule.

Non term
<Rule name> |

Rule name may be in
upper or lower case!

Figure A-6 Non Term

This element occurs in lexical and syntax rules.

A.8 Overview of Tokens

Definition A token is a complex element used as a basic element in syntax rules and
explained in the lexical rules. A token is represented by an oblong box. The
NAME, written in upper case letters, is the name of the explanatory lexical
rule (not shown inside a box).

Token

<Rule name> |

Rule name must always be in
upper case letters!

Figure A-7 Token

Summary The defined tokens represent identifiers calculated as the result of lexical
rules. Such tokens describe:

e |dentifiers
e SCL names

¢ Predefined constants and flags

Structured Control Language (SCL) for S7-300/S7-400, Programming
A-14 C79000-G7076-C522-01

Formal Description of Language

A.9 Identifiers

Identifiers in SCL Identifiers are used to address SCL language objects. Table A-10 below
details the classes of identifier.

Table A-10 Types of

Identifier in SCL

Identifier Type

Comments, Examples

Keywords

For example, control stateme®&GIN, DO,WHILE

Predefined names

Names of

e standard data types (for example, BOOL, BYTE, INT|
* PREDEFINED STANDARD FUNCTIONS E.@BS

¢ STANDARD CONSTANTS TRUE and FALSE

Absolute address
identifiers

For global system data and data blocks:
for example]1.2, MW10, FC20, T5, DB30,
DB10.D4.5

User-defined names
based on the rule
IDENTIFIER

Names of

® declared variables

® structure components
® parameters

® declared constants

® jump labels

Symbol editor symbols

Conform either to the lexical rule IDENTIFIER or the
lexical rule Symbol, that is, enclosed in inverted commg

for example, "xyz”

Use of Upper and In the case of the keywords, use of upper and lower case is of no

Lower Case consequence. From SCL version 4.0 and higher, predefined names and
user-defined names, for example, for variables, and symbols defined in the
symbol table are no longer case-sensitive. Table A-11 summarises the

requirements.

Table A-11 Significance of Use of Upper and Lower Case for Identifiers

Identifier Type

Case-Sensitive?

Keywords

No

Predefined names for standard data types No

Names of standard functions No

Predefined names for standard constants No

Absolute address identifiers No
User-defined names No
Symbols in the symbol tyble No

The names of standard functions, for example, BYTE_TO_WORD and ABS
can also be written in lower case. The same applies to the parameters for
timer and counter functions, for example, SE, se or CU, cu.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

A-15

Formal Description of Language

A.10 Naming Conventions in SCL

User-Defined There are generally two options when creating user-defined names:

Names ¢ You can assignh names within SCL itself. Such names must conform to the

rule IDENTIFIER (see Figure A-8). IDENTIFIER is the general term you
can use for any name in SCL.

e Alternatively, you can assign the name via STEP 7 using the symbol
table. The rule to be applied in this case is also IDENTIFIER or, as an
additional option, Symbol. By putting your entry in inverted commas, you
can write the symbol with all printable characters (for example, spaces).

IDENTIFIER

Letter

Underscore Underscore

v

SYMBOL

Printable
» () 4 character () »

Figure A-8 Lexical Rules IDENTIFIER and Symbol

Naming Please observe the following rules:

nvention . .
Conventions ¢ Choose names that are unambiguous and self-explanatory and which

enhance the comprehensibility of the program.

* Check that the name is not already in use by the system, for example as
an identifier for a data type or standard function.

¢ Limits of applicability: names that apply globally are valid throughout the
whole program, locally valid names on the other hand apply only within a
specific block. This enables you to use the same names in different
blocks. Table A-12 details the various options available.

Structured Control Language (SCL) for S7-300/S7-400, Programming
A-16 C79000-G7076-C522-01

Formal Description of Language

Naming
Restrictions

Use of
IDENTIFIERS

When assigning names, you must observe the following restrictions:

A name must be unique within the limits of its own applicability, that is,
names already used within a particular block can not be used again within the
same block. In addition, the following names reserved by the system may not

be used:

* Names of keywords: for exampl@ONST, END_CONST, BEGIN

e Names of operators: for examphd\D, XOR

¢ Names of predefined identifiers: e.g. names of data types sBDQ@iLs,
STRING, INT

* Names of the predefined constaNnBUEandFALSE
e Names of standard functions: for examplBS, ACOS, ASIN, COS,

LN

¢ Names of absolute address identifiers for global system data: for example,
IB, IW, ID, QB, QW, QD MB, MD

Table A-12 shows in which situations you can use names that conform to the
rule for IDENTIFIERS.

Table A-12 Occurrences of IDENTIFIER
IDENTIFIER Description Rule
Block name Symbolic name for block BLOCK IDENTIFIER,
Function call

Name of timer
or counter

Symbolic name for timer or
counter

TIMER IDENTIFIER,
COUNTER IDENTIFIER

Attribute name

Name of an attribute

Attribute assignment

Constant name

Declaration/use of symbolic
constant

constant subsection
Constant

Jump label

Declaration of jump label, use @
jump label

flump labels subsection co
section GOTO statement

de

Variable name

Declaration of temporary or stat
variable

&/ariable declaration, simpl
variable,
Structured variable

1%

Local instance
name

Declaration of local instance

Instance declaration, FB c3
name

|

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

A-17

Formal Description of Language

BLOCK The ruleBLOCK IDENTIFIER is a case in which you have the choice of using
IDENTIFIERS either an IDENTIFIER or a symbol.

BLOCK IDENTIFIER

Figure A-9

DB, FB, FC, OB, SDB, SFC, SFC, UDT

IDENTIFIER

Block

Symbol

Lexical Rule BLOCK IDENTIFIER

v

The same applies to the rules TIMER IDENTIFIER and COUNTER
IDENTIFIER as with BLOCK IDENTIFIER.

A.11 Predefined Constants and Flags

Predefined The table applies for both SIMATIC and IEC mnemonics.

Constants and

Flags Table A-13

Predefined Constants

Mnemonic

Description

FALSE

Predefined Boolean constant (standard constant) with the val
Its logical meaning is that a condition has not been satisfied.

TRUE

Predefined Boolean constant (standard constant) with the va
Its logical meaning is that a condition has been satisfied.

Table A-14

Flags

Mnemonic

Description

EN

Block clearance flag

ENO

Block error flag

OK

processed.

Flag is set to FALSE if the statement has been incorrectly

A-18

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

ue 0.

ue 1.

Lexical Rules

Chapter Section Description Page

Overview B.1 Identifiers B-2
B.1.1 Literals B-4
B.1.2 Absolute addresses B-9
B.2 Comments B-11
B.3 Block Attributes B-12

Lexical rules The lexical rules describe the structure of the elements (tokens) processed

during lexical analysis performed by the Compiler. For this reason lexical
rules are not free-format; in other words, they must be strictly observed. In
particular, this means that:

¢ Insertion of formatting characters is not permitted.
¢ Insertion of comment blocks and lines is not permitted.

* Insertion of attributes for identifiers is not permitted.

Categories The lexical rules are subdivided into the following categories:
* |dentifiers
e Literals

e Absolute addresses

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 B-1

Lexical Rules

B.1 Identifiers

Table B-1

Identifiers

Rule

Syntax Diagram

IDENTIFIER

Underscore

Letter

Underscore

Letter

Number

BLOCK IDENTIFIER

The rule also applies to the following rule names:

DB IDENTIFIER
FB IDENTIFIER

FC IDENTIFIER
OB IDENTIFIER

4’7

UDT IDENTIFIER

Keyword

DB, FB, FC, OB, UDT

IDENTIFIER

v

TIMER IDENTIFIER

v

in SIMATIC
and IEC mnemonics

IDENTIFIER

v

B-2

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Lexical Rules

Table B-1 Identifiers, continued
Rule Syntax Diagram
COUNTER
IDENTIFIER > (z) |_Number |——
in SIMATIC mnemonics
'C’in IEC mnemonics
IDENTIFIER
(Y
| 4
Block Keyword
Organization block
Function
SFC System function
@ Function block N
SFB System function block
Data block
uDT User-defined data type
Symbol
Printing
) <) 4 character <) 4
Number
4 Number ,' 4

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 B-3

Lexical Rules

B.1.1 Literals
Table B-2 Literals
Rule Syntax Diagram

INTEGER LITERAL

: DECIMAL
DIGIT STRING
BN S <)1))
Binary digit string
Octal digit string
1) Hexadecimal digit string
Data types
INT andDINT only
REAL NUMBER DECIMAL 4@7 DECIMAL
LITERAL DIGIT STRING DIGIT STRING
DECIMAL DECIMAL
DIGIT STRING DIGIT STRING Exponent
el > pecinai))
<
Decimal number: 0 to 9 Underscore

Binary Digit String

Binary number: 0 or 1

s Binary number }

4
N

O

Underscore

v

Octal Digit String

Octal number: 0to 8

s Octal number }

4
Al

S

Underscore

v

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Lexical Rules

@ Alignment symbol $

P or

Control character]

Hexadecimal
number

Table B-2 Literals, continued
Rule Syntax Diagram
Hexadecimal 165 (Fexadecimal number)—
Digit String
4
Hexadecimal number: 0-9 O
A-F Underscore
Exponent e
DECIMAL
DIGIT STRING)
CHARACTER
STRING LITERAL
Strin P———)
Character Brea?(Character | Q}
Character
R Printing y
character | 4

$or’

LorRorT

Hexadecimal
number

Alternative representation in hexadecimal code

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

B-5

Lexical Rules

Table B-2 Literals, continued

Rule

Syntax Diagram

String Break

Space (blank),

Line break (line feed),

Carriage return,

Page break (form feed, page feed) or
Horizontal tabulator

Formatting
character

Comments

DATE
B 4‘ Date specification I—}
Time Period
Decimal format =
4}
Composite format ‘ Decimal format I—L
Each time unit (for example, hours, minutes) may only be specified once
The order days, hours, minutes, seconds, milliseconds must be adhered to.
Time of Day

TIME_OF_DAY#

Time of day specificationl—}

Date and Time

Date specificatior‘l—@ Time of day specification }—}

DATE_AND_TIME#
-

B-6

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Lexical Rules

Table B-2 Literals, continued

Rule

Syntax Diagram

Date Specification

Hours specification

Minutes specification

DECIMAL

DIGIT STRING

Seconds specification

©

DECIMAL

| DECIMAL () DECIMAL () DECIMAL
DIGIT STRING DIGIT STRING DIGITSTRING | *
Year Month Day
Time of Day DECIMAL DECIMAL
Specification » DIGIT STRING) DIGIT STRING

DIGIT STRING

Milliseconds specification

v

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Lexical Rules

Table B-2 Literals, continued

Rule Syntax Diagram

Decimal Format

| pECIMAL DECIMAL | ~(5) | Days
DIGIT STRING DIGIT STRING
DECIMAL DECIMAL LO
- - H
DIGIT STRING O DIGIT STRING ours
. DECIMAL | DECIMAL | Minutes
’ DIGIT STRING O DIGIT STRING O,)
DECIMAL DECIMAL
u L) Second
DIGIT STRING DIGIT STRING ()| seconds
DECIMAL DECIMAL ‘ .
L L) - (g Millsecond
DIGIT STRING DIGIT STRING riseconds

Use of decimal format is only possible in the case of previously undefined
time units.

Complex Format

p || DECIMAL @@ DECIMAL @LO -
DIGIT STRING - DIGIT STRING =

Days Hours

l DECIMAL @@ DECIMAL @@
DIGIT STRING - DIGIT STRING —

Minutes Seconds

DECIMAL @@;}
DIGIT STRING

Milliseconds

A value for at least one time unit must be specified!

Structured Control Language (SCL) for S7-300/S7-400, Programming
B-8 C79000-G7076-C522-01

Lexical Rules

B.1.2 Absolute Addresses
Table B-3 Absolute Addresses
Rule Syntax Diagram
SIMPLE ADDRESS
> IDENTIFIER Address
MEMORY ACCESS
absolute access
IDENTIFIER
4
SYMBOL symbolic access
INDEXED
Index

MEMORY ACCESS

—)—| ADDRESS Basi Basi

IDENTIFIER @ expr?esslscion expr%sslgion
in the case of bit access only

ADDRESS
IDENTIFIER M Si

> Vo prefix 4
FOR MEMORY
ABSOLUTE
DB ACCESS

$—‘ Address identifier DB Address | ————)
Absolute access

INDEXED Index
DB ACCESS

—)— Add Basi () Basi () 'Y

identifriz?SDB @ exp?esggion expfaesslgion]

in the case of bit access only

STRUCTURED DB
ACCESS

DB Identifier

N

Simple
variable

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

B-9

Lexical Rules

Table B-3

Absolute Addresses, continued

Rule

Syntax Diagram

Address
Identifier DB

4F

-— Address identifier

i

IDENTIFIER

Size
prefix

Memory Prefix

Input

Output

Bit Memory N

Pl

PQ

SIMATIC Mnemonic

IEC Mnemonic

Peripheral Input

Peripheral Output

Size Prefix

for Memory and DB

Bit

Byte

Word

v

Double word

Address
for Memory and DB

& _Number | ("

")

in the case of bit address only

Access to Local
Instance

IDENTIFIER ‘

Simple
variable

Local instance name

B-10

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Lexical Rules

B.2 Remarks

Points to Note The following are the most important points to be observed when inserting
remarks:

¢ Nesting of comments is not permitted

* They can be inserted at any point in the syntax rules but not in the lexical
rules.

Table B-4 Remarks

Rule Syntax Diagram

COMMENTS

Comment line |7

Comment block |7

Printing
character

COMMENT LINE

COMMENT BLOCK

U S IT] BTG S

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 B-11

Lexical Rules

B.3 Block Attributes

Points to Note Block attributes can be placed after the BLOCK IDENTIFIER and before the

declaration of the first variables or parameters subsection using the syntax

indicated.

Table B-5 Attributes
Rule Syntax Diagram
TITLE —
rintable
=0 O
VERSION DECIMAL DECIMAL
‘ ‘ DIGIT STRING Q DIGIT STRING O_’
015 015
BLOCK
PROTECTION —)—{(KNOW_HOW_PROTECT)—
AUTHOR max. 8 characters
©
NAME max. 8 characters

BLOCK FAMILY

max. 8 characters

System attributes for
blocks

max. 24 characters

%‘ IDENTIFIER e ‘ Printable ‘
characters

/A
2/

B-12

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Syntax Rules

Definition The syntax rules develop from the lexical rules and describe the structure of
SCL. Within the framework of these rules, you can create your SCL program
without format restrictions.

Chapter Section Description Page
Overview c.1 Subunits of SCL Source Files C-2
Cc.2 Structure of Declaration Sections C-4
C.3 Data Types in SCL C-§
Cc4 Code Section C-11
C5 Value Assighments C-13
C.6 Function and Function Block Calls C-16
Cc.7 Control Statements C-18
Formal Each rule has a name which precedes it. If a rule is used in a higher-level
Considerations rule, its name appears in an oblong box.

If the name in the oblong box is written in upper case letters, this means it is
a token, which is described in the lexical rules.

In Appendix A you will find information about rule names which appear in a
box with rounded corners or a circle.

Points to Note The free-format characteristic means the following:
* You can insert formatting characters at any point.

¢ You can insert comment blocks and lines (see Section 7.6).

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 C-1

Syntax Rules

C.1 Subunits of SCL Source Files

Table C-1 Syntax of SCL Source Files

Rule Syntax Diagram

SCL Program > | SCLprogramunit }———)

SCL Program Unit Organization block

Function

Data block

LLILL

Ii
F
Function block |—4}
|
|

User-defined data type

Organization Block

HORGANIZATION_BLOCK} IDEN(%'?FIER 4‘ OB declaration section

L BEGIN)L{ Code section | —{ END_ORGANIZATION_BLOCK })

Function

Note that in the case of
FC
functions without VOID IDENTIFIER
in the code section the
return value must be

Data type
specification

assigned to the function l
name. Fedecmaion] | BeGIN)| Codesection | (END_FUNCTION))

section

Function Block

FB FB declaration
—»{_FUNCTION_BLOCK }——— |pENTIFIER section

L '{ BEGIN)l'_{ Code section | (END_FUNCTION_BLOCK}))

Structured Control Language (SCL) for S7-300/S7-400, Programming
C-2 C79000-G7076-C522-01

Syntax Rules

Table C-1 Syntax of SCL Source Files, continued

Rule

Syntax Diagram

Data Block

DB
DATA_BLOCK IDENTIFIER

—{ DB declaration section |7

BEGIN)| | DBassignments section | END_DATA_BLOCK})

User-Defined
Data Type

TYPE

ubT
IDENTIFIER | |

STRUCT

Data type END_TYPE
specification —

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

C-3

Syntax Rules

C.2 Structure of Declaration Sections

Table C-2

Syntax of Declaration Section

Rule

Syntax Diagram

OB Declaration
Section

4‘ Constants subsection I—
4‘ Jump labels subsection I*

Each subsection may only
occur once in each
declaration section

) Temporary >
variables subsection
. Each subsection may only
FC Dedarat'on occur once in each
Section Constants subsection I declaration section
4‘ Jump labels subsection Ii
N Temporary N
4 variables subsection 4
4{ Parameters subsection Ii
Interface
FB Declaration Each subsection may only
Section occur once in each
4‘ Constants subsection Ii declaration section
—{ Jump labels subsection I—
. Temporary .
4 variables subsection 4
Static
variables subsection
—{ Parameters subsection I— Interface

DB Declaration
Section

ubnT
IDENTIFIER

Structure data type
specification

C-4

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Syntax Rules

Table C-3

Syntax of Declaration Subsections

Rule

Syntax Diagram

DB Assignment
Section

> Simple Variable

Constant Subsection

IDENTIFIER e

Constant name

Simple

ple @ END_CONST
expression =

Jump Label
Subsection
IDENTIFIER END_LABEL
Jump label

Static Variable
Subsection Variables

Declaration

VAR END_ VAR
Instance
declaration

Variable Declaration

[

| IDENTIFIER |- 1) |
Variable name,
Parameter name,
or
Component
name

()

. Data type
: specification

Data type
initialization

v

Los

o

T Not during

System attributes for parameters

max. 24 characters

Bas

IDENTIFIER e ‘ Printable ‘
character

Component name within structures

initialization

)
\J

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

C-5

Syntax Rules

Table C-3 Syntax of Declaration Subsections, continued
Rule Syntax Diagram
Initialization
D‘f’“j‘a _Typ_e of simple data
Initialization Constant
Array

Initialization list

Array Initialization List

Constant IT

Array J

initialization list

Constant
»&—DECIMAL DIGIT smwek@) 3
Repetition factor o Array
initialization list
()
o/
Instance Declaration FBs must
already exist
FB
IDENTIFIER
> IDENTIFIER
Local instance name SFB
IDENTIFIER
()
o/
Temporary Variable
Subsection -
VAR_TEMP declaration (_END_VAR } »
Initialization not possible
C-6 Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Syntax Rules

Table C-3 Syntax of Declaration Subsections, continued
Rule Syntax Diagram
Parameter
Subsection VAR_INPUT
Variable
VAR_OUTPUT declaration END_VAR
VAR_IN_OUT
Initialization only possible for VAR_INPUT and VAR_OUTPUT
Data Type
Specification] Elementary |
data type

v

DATE_AND_TIME

String data type
specification

ARRAY data type
specification

STRUCT data type
specification

ubT
IDENTIFIER

Parameter data type
specification

v

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

C-7

Syntax Rules

C3

Table C-4

Data Types in SCL

Syntax of Data Types in Declaration Section

Rule

Syntax Diagram

Elementary Data
Type

Bit data

type

Character type

v

Numeric

data type

Time type

v

Bit Data Type

Bit

Byte

Word

Double word

A 4

Character Type

CHAR

v

STRING Data Type
Specification

Simple
expression

-

Max. string length
Default: 254

(D)

v

Numeric Data Type

INT

Integer

Integer, double resolution

v

DINT

Real number

C-8

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Syntax Rules

Table C-4 Syntax of Data Types in Declaration Section, continued

Rule Syntax Diagram

. +SSTIME Time,
Time Type - S5 format
TIME Time
TIME_OF_DAY

TOD "

Date

DATE_AND_TIMEA
—

ARRAY Data Type Index specification
Specification /

[Index, 4@7 Index_ @
()
N

Max. 5 repetitions = 6 dimensions!

Time of day

A 4
v

see also Appendix B.1.1

DATE_AND_TIME

Date specification 0 Time of day specification H

Data type

@ specification

\ 4

STRUCT Data Type
Specification —p—{_STRUCT) Component END_STRUCT})

Remember that the
keyword END_STRUCT
must be terminated by a
semicolon.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 C-9

Syntax Rules

Table C-4 Syntax of Data Types in Declaration Section, continued
Rule Syntax Diagram
Component
Declaration

Data type
IDENTIFIER ‘ specification

v

_Data .
initialization ’

Component
name
Parameter Data Type TIMER Timer
Specification
COUNTER Counter
ANY Any type
POINTER Address
M »
| 4 | 4
BLOCK_FC Function
BLOCK_FB Function block
BLOCK_DB Data block
BLOCK_SDB System data block
Structured Control Language (SCL) for S7-300/S7-400, Programming
C-10 C79000-G7076-C522-01

Syntax Rules

C.4 Code section

Table C-5 Syntax of Code Section

Rule

Syntax Diagram

Code Section

v

IDENTIFIER I—(1)

Jump label

Instruction I—(: }

v

Statement

Value assignment

Subroutine

v

processing

Control statement

v

Value Assignment

4_‘ Absolute variable F

in CPU Memory areas

4—‘ Variable in DB F

4—‘ Variable in local instance F

4—{ Simple variable I—‘rp_@i

Expression

Extended Variable

74_{ Simple variable Hﬁi

4_‘ Absolute variable F

for CPU memory areas

) Variable in DB |-

4—‘ Variable in local instance F
. FC call |-

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

c-11

Syntax Rules

Table C-5 Syntax of Code Section, continued

Rule Syntax Diagram

Simple Variable

Variable name or
Parameter name

Structured
variable

v

v

Simple
array

Structured Variable IDENTIFIER First part of identifier is
variable name or
parameter name,

'S
| 4

v

array

and part following
I\ full stop is component name

Structured Control Language (SCL) for S7-300/S7-400, Programming

C-12 C79000-G7076-C522-01

Syntax Rules

C.5 Value Assignments

Table C-6 Syntax of Value Assignments
Rule Syntax Diagram
Expression —{ Operand I
logi Basic Expressionl—
ogical operator
Comparator
Basic mathematical
operator
Exponential
/4.\ Expression I—
U Unary plus
O Unary minus
NOT Negation
()
Simple Expression
Simple Simple
> expression multiplication 4
Simple Multiplication
> muﬁiigl}cpzla?tion ‘
II DIV II
MOD
())
\2J ,
Simple
expression

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 C-13

Syntax Rules

Table C-6 Syntax of Value Assignments, continued
Rule Syntax Diagram
Address] Constant . —
'S Extended variable F
4—{ (Expression) F
_» [NoOT H Address |
Extended Variable ——»__ Simplevariable |-z »—
'S Absolute variable F
for CPU memory areas
| Variable in DB -
%—‘ Variable in local instance F
%—‘ FC call F
Constant
Constant -
Exponer?tlal > l Extended variable !)
Expression
4@ DECIMAL DIGIT STRING |-
@—G—{ DECIMAL DIGIT STRING |—(1))
Basic Logical .
Operator 4
AND e xorR) [OR)
N
| 4
C-14 Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Syntax Rules

Table C-6 Syntax of Value Assignments, continued

Rule

Syntax Diagram

Basic Mathematical
Operator

EEETT

v

Comparator

BN

v

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

C-15

Syntax Rules

C.6 Function and Function Block Calls
Table C-7 Syntax of Function and Function Block Calls
Rule Syntax Diagram
FB: Function block
FB Call SFB: System function block
FB
IDENTIFIER
Global instance name
DB FB
> ,DEﬁ?ﬁ:'ER IDENTIFIER Parameter
Local instance name
Function Call

FC
IDENTIFIER

SFC
IDENTIFIER

IDENTIFIER

Standard
function name or
symbolic name

(O
Y

FC Parameter

¢ FC: Function

* SFC: System function
* Standard function implemented in compil

0)—

FB Parameter

Input
assignment

In/out
assignment

()

N

FC Parameter

Input
assignment

v

3
]

Output or
in/out
assignment

|
n

N

N

v

C-16

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Syntax Rules

Table C-7 Syntax of Function and Function Block Calls, continued

Rule Syntax Diagram

Input Assignment Actual parameter

Expression
TIMER
IDENTIFIER
IDENTIFIER e >
COUNTER
Parameter name of IDENTIFIER
input parameter
Formal parameter BLOCK
IDENTIFIER
Output or In/Out _ Extended
! IDENTIFIER e : N
Assignment variable
Parameter name of
output or Actual parameter

in/fout parameter
Formal parameter

In/Out Assignment

Extended
IDENTIFIER e variable [P
Parameter name of
in/out parameter

Actual parameter

Formal parameter

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 C-17

Syntax Rules

C.7 Control Statements

Table C-8

Syntax of Control Statements

Rule

Syntax Diagram

IF Statement

Do not forget that the
keyword END_IF must
be terminated by a
semicolon.

H IF H Expression |—(THEN)7 Sggﬁ'gn
Condition
(ELSIF)— | Bxpression | THEN)| ooope

Condition

ELSE

Code
section

END_IF

CASE Statement

H CASE HExpressio

Value
st) Code
Value list |) section
Do not forget that the
keyword END_CASE
must be terminated by a
semicolon.
) A Code
ELSE } () section END_CASEH
Value List Value ||

v

Value

Value

A4

C-18

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Syntax Rules

Table C-8

Syntax of Control Statements, continued

Rule

Syntax Diagram

Value

| INTEGER LITERAL |

v

IDENTIFIER

Constant name

v

PN

Iteration and Jump
Instructions

FOR

statement

WHILE

statement

REPEAT
statement

CONTINUE

v

statement

EXIT

statement

RETURN

statement

GOTO

statement

A 4

FOR Statement

Do not forget that the
keyword END_FOR
must be terminated by a
semicolon.

FOR

Initial

Basic

for increment size

assignment expression
for terminal value
Basic Code
@ expression @7 section

L END_FOR)

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

C-19

Syntax Rules

Table C-8

Syntax of Control Statements, continued

Rule

Syntax Diagram

Initial Assignment

Simple o) Basic,
» variable \J expression [P
of data type for initial value
INT/DINT

WHILE Statement

Do not forget that the
keyword END_WHILE
must be terminated by a
semicolon.

——{ WHILE }-{Expressio}—{ DO }—

Code
section

END_WHILE

REPEAT Statement

Do not forget that the
keyword END_REPEAT
must be terminated by a
semicolon.

Code
section

—{ UNTIL)}—Expressior}—{ END_REPEAT

CONTINUE
Statement

CONTINUE

RETURN Statement

RETURN

EXIT Statement

EXIT

Program Jump

IDENTIFIER

Jump label

C-20

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

References

112/

113/

114/

120/

125/

130/

70/

171/

172/
1100/

1101/

1102/
1231/

1232/

1233/

1234/

1235/

1236/

D

Technical OverviewS7-300 Programmable Controller
Configuration and Application

Technical OverviewS7-400 Programmable Controller
Configuration and Application

Technical OverviewM7-300/M7-400 Programmable Controllers
Configuration and Application

Technical OverviewS7-300/S7-400 Programmable Controllers
Programming

Technical OverviewM7 Programmable Controller
Programming

Primer:S7-300 Programmable Controller,
Quick Start

Manual:S7-300 Programmable Controller,
Hardware and Installation

Reference ManuaB7-300, M7-300 Programmable Controllers
Module Specifications

Instruction List:S7-300 Programmable Controller

Manual:S7-400/M7-400 Programmable Controllers,
Hardware and Installation

Reference ManuaB7-400/M7-400 Programmable Controllers
Module Specifications

Instruction List:S7-400 Programmable Controller

User ManualStandard Software for S7 and M7,
STEP 7

Manual:Statement List (STL) for S7-300 and S7-400,
Programming

Manual:Ladder Logic (LAD) for S7-300 and S7-400,
Programming

Programming ManuaBystem Software for S7-300 and S7-400
Program Design

Reference ManuaBystem Software f&7-300 and S7-400
System and Standard Functions

Manual: FBDfor S7-300 and 400,
Programming

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

D-1

References

D-2

12371
1251/

1252/

1253/

1254/

1290/

1291/

1800/

1803/

Master IndexSTEP 7

Manual:GRAPH for S7-300 and S7-400,
Programming Sequential Control Systems

Manual:HiGraph for S7-300 and S7-400,
Programming State Graphs

Manual:C Programming for S7-300 and S7-400,
Writing C Programs

Manual:Continuous Function Charts (CFC) for S7 and M7,
Programming Continuous Function Charts

User ManualProC/C++ for M7-300 and M7-400,
Writing C Programs

User ManualProC/C++ for M7-300 and M7-400,
Debugging C Programs

DOCPRO
Creating Wiring Diagramg¢CD only)

Reference ManuaBtandard Software for S7-300/400
STEP 7 Standard Functions, Part 2 (CD only)

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Glossary

A

Actual Parameter

Address

Addressing,
Absolute

Addressing,
Symbolic

Address |dentifier

Array

Actual parameters replace the formal parameters when a function block (FB)
or function (FC) is called.

Example: the formal parameter "Start” is replaced by the actual parameter
"l 3.6".

An address is a component of an instruction that specifies the data on which
an operation is to be performed. It can be addressed in both absolute and
symbolic terms.

With absolute addressing, the memory location of the address to be processed
is given. Example: The address Q 4.0 describes bit 0 in byte 4 of the
process-image output area.

Using symbolic addressing, the address to be processed is entered as a
symbol and not as an address. The assignment of a symbol to an address is
made in the symbol table.

An address identifier is that part of an address of an operation which contains
information, for example, the details of the memory area where the operation
can access a value (data object) with which it is to perform a logic operation,
or the value of a variable (data object) with which it is to perform a logic
operation. In the instruction "Value := IB10", "IB” is the address identifier

("I” designates the input area of the memory and "B” stands for a byte in that
area).

An array is a complex data type consisting of a number of data elements of
the same type. Those data elements in turn can be elementary or complex.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Glossary-1

Glossary

Attribute

BCD Format

Bit Memory (M)

Block

Block Call

Block Class

Block Protection

Block Comment

Block Status

Block Type

Glossary-2

An attribute is a characteristic which can be attached to a block identifier or
variable name, for example. In SCL there are attributes for the following
items of information: block title, release version, block protection, author,
block name, block family.

In STEP 7, internal specification of timers and counters is is done in BCD
format only. BCD stands for binary coded decimal.

A memory area in the system memory of a SIMATIC S7 CPU. This area can
be accessed using write or read access (bit, byte, word, and double word).
The bit memory area can be used by the user to store interim results.

Blocks are subunits of a user program delimited according to their function,
their structure or their purpose. In STEP 7 there are logic blocks (FBs, FCs,
OBs, SFCs and SFBs), data blocks (DBs and SDBs) and user-defined data
types (UDTSs).

A block call calls a block in a STEP 7 user program. Organization blocks are
only called by the operating system; all other blocks are called by the STEP 7
user program.

Blocks are subdivided according to the type of information they contain into
the following two classes:

Logic blocks and data blocks; user-defined data types (UDTs) can be
categorized as data blocks.

Block protection refers to the facility of protecting individual blocks against
decompilation. This is done by employing the keyword
"KNOW_HOW_PROTECTED” when the block source file is compiled.

Additional information about a block (for example, explanatory information
about the automated process) which can not be loaded into the RAM of the
SIMATIC S7 programmable controllers.

0 Continuous Monitoring

The block architecture of STEP 7 recognizes the following block types:
organization blocks, function blocks, functions, data blocks as well as system
function blocks, system functions, system data blocks and user-defined data
types.O0 Block

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Glossary

Breakpoint

C

Call Hierarchy

Call Interface

CASE Statement

Compilation

Compilation,
Incremental

Constant, Literal

Constant,

Symbolic

Container

CONTINUE
Statement

Continuous
Monitoring

This function can be used to switch the CPU to STOP mode at specific points
in the program. When the program reaches a breakpoint, debugging functions
such as single-step instruction processing or controlling/monitoring variables
can be performed.

Any block has to be called before it can be processed. The order and nesting
sequence of the operation calls by which blocks are called is referred to as
the operation call hierarchy.

The call interface is defined by the input, output and in/out parameters
(formal parameters) of a block in the STEP 7 user program. When the block
is called, those parameters are replaced by the actual parameters.

This statement is a selective branching statement. It is used to select a
specific program branch from a choice of n branches on the basis of the value
of a selection expression.

The process of generating a user program from a source file.

When using incremental input, the program is not checked for possible input
errors until it is compiled. Executable code is not generated until no more
errors are found.

Constants with symbolic names are placeholders for constant values in logic
blocks. Symbolic constants are used for improving the legibility of a
program.

Constants whose value and type are determined by their formal format. A
distinction is made between literals, character literals and time literals.

Object in the SIMATIC Manager user interface which can be opened and can
contain other folders and objects.

Exits a control loop and restarts it using the next value for that control
variable.

SCL debugging mode. When debugging a program in continuous monitoring
mode, you can test out a series of instructions. This series of instructions is
referred to as the monitoring range.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Glossary-3

Glossary

Conversion,
Explicit

Conversion,
Implicit

Counter

D

Data, Global

Data, Static

Data, Temporary

Data Block (DB)

Data Type

Glossary-4

Explicit conversion refers to inserting a conversion function in the source
file. When two addresses of differing data types are linked, the programmer
must perform an explicit conversion in the following cases: if data is being
changed into a different type class, for example, from a bit data type to a
numeric data type, and — if the destination data type is of a lower order than
the source data type — if data is changed to another type of the same class.

Implicit conversion refers to a conversion function being inserted
automatically by the compiler. When two addresses of differing data types
are linked, automatic conversion takes place if the operation does not involve
a change of type class and if the destination data type is not of a lower order
than the source data type.

Counters are components of the system memory of the CPU. The contents of
a counter are updated by the operating system asynchronously with the user
program. STEP 7 instructions are used to define the precise function of a
counter (for example, up counter) and to activate it (for example, start).

Global data refer to memory areas of the CPU that can be accessed from any
point in the program (for example, bit memory).

Static data are local data of a function block which are stored in the instance
data block and are thus retained until the next time the function block is
processed.

Temporary data are assigned to a logic block at local level andtadacupy
any static memory areas since they are stored in the CPU stack. Their value
is only retained while the block concerned is running.

Data blocks are areas in the user program which contain user data. There are
shared data blocks which can be accessed by all logic blocks, and there are
instance data blocks which are associated with a particular function block
(FB) call.

Data types are used to specify how the value of a variable or constant is to be
used in the user program. In SCL there are three classes of data type
available to the user, as follows:

¢ Elementary data types (data type, elementary)
e Complex data types (data type, complex)

e User-defined data types (UDTSs).

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Glossary

Data Type,
User-defined

Data Type
Declaration

Data Type,
Elementary

Data Type,

Complex

Declaration
Section

Declaration Type

Decompilation

Download to PLC

Enable (EN)

User-defined data types (UDTSs) are created by the user in the data type
declaration. Each one is assigned a unique name and can be used any number
of times. Thus, a user-defined data type can be used to generate a number of
data blocks with the same structure (for example, controller).

The data type declaration is where the user declares user-defined data types.

Elementary data types are predefined data types in accordance with IEC
1131-3. Examples: the data tyd@OOL defines a binary variable Bit ");
the data typeINT " defines a 16-bit fixed point variable.

A distinction is made between structures and arrays. "Structures” are made
up of various different data types (for example, elementary data types).
"Arrays” consist of a number of identical elements of a single data type. The
data typeSTRING andDATE_AND_TIMEare also complex data types.

This is where the local data of a logic block are declared.

The declaration type specifies how a parameter or a local variable is to be
used by a block. There are input parameters, output parameters and in/out
parameters as well as static and termporary variables.

Decompilation to STL enables a block downloaded to the CPU to be opened
and viewed on any programming device or PC. Certain components of the
block such as symbols and comments may be missing.

Transfer of loadable objects (for example, logic blocks) from the
programming device to the working memory of a programmable module.
This can be done either via a programming device directly connected to the
CPU or; for example via PROFIBUS.

In STEP 7 every block has an "Enable” input (EN) that can be set when a
block is called. If the signal present at EN is 1, the block is called. If the
signal is 0, it is not.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Glossary-5

Glossary

Enable Out (ENO)

EXIT Statement

Expression

FOR Statement

Formal Parameter

Free-Edit Mode

Function (FC)

Glossary-6

In STEP 7 every block has an "Enable Output” (ENO). Within the block, the
programmer can link the input "Enable” with an internal value (UND). The
result is automatically assigned to the output ENO. ENO enables the
processing of succeeding blocks in block call sequences to be made
dependent on correct processing of the preceding block.

Exits a control loop.

In SCL, an expression is a means of processing data. A distinction is made
between mathematical, logical and comparative expressions.

A FOR instruction is used to repeat a sequence of instructions for as long as a
control variable remains within a specified range.

A formal parameter is a placeholder for the "actual” parameter in
configurable logic blocks. In the case of FBs and FCs, the formal parameters
are declared by the programmer, in the case of SFBs and SFCs they already
exist. When a block is called, the formal parameters are assigned actual
parameters with the result that the called block works with the actual values.
The formal parameters count as local block data and are subdivided into
input, output and in/out parameters.

The free-edit mode is possible when programming with SCL. A program can
be written with the aid of any text editor. The actual program code is
generated only when the source file is compiled. At that point any errors are
detected as well. This mode is suited to symbolic programming of standard
programs.

In free-edit mode, the blocks or the complete user program are edited in text
file form. The syntax is not checked until the source file is compiled. SCL
uses free-edit mode.

According to the International Electrotechnical Commission’s IEC 1131-3
standard, functions are logic blocks that do not reference an instance data
block, meaning they do not have a 'memory’. A function allows you to pass
parameters in the user program, which means they are suitable for
programming complex functions that are required frequently, for example,
calculations.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Glossary

Function Block
(FB)

G

Global Data

GOTO Statement

H

HOLD Mode

Identifier

In/Out Parameter

Input Parameter

According to the International Electrotechnical Commission’s IEC 1131-3
standard, function blocks are logic blocks that reference an instance data
block, meaning they have static data. A function block allows you to pass
parameters in the user program, which means they are suitable for
programming complex functions that are required frequently, for example,
control systems, operating mode selection.

Global data is data that can be accessed from any logic block (FC, FB or
OB). Specifically it includes bit memory (M), inputs (), outputs (O), timers,
counters and elements of data blocks (DBs). Global data can be addressed in
either absolute or symbolic terms.

A GOTO statement executes an immediate jump to a specified label.

The HOLD state is reached from the RUN mode via a request from the
programming device. Special test functions are possible in this mode.

Identifiers are used to address SCL language objects. There are the following
classes of identifier: standard identifiers, predefined names and keywords,
absolute identifiers (or address identifiers), user-defined names, for example,
for variables and jump labels or symbolic names generated by a symbol
table.

In/out parameters are used in functions and function blocks. In/out
parameters are used to transfer data to the called block, where they are
processed, and to return the result to the original variable from the called
block.

Only functions and function blocks have input parameters. Input parameters
are used to transfer data to the called block for processing.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Glossary-7

Glossary

Instance

Instance Data
Block (Instance
DB)

Instance, Local

Instruction

Integer (INT)

Keyword

Lexical Rule

Local Data

Glossary-8

The term "instance” refers to a function block call. The function block
concerned is assigned an instance data block or a local instance. If a function
block in a STEP 7 user program is called n times, each time using different
parameters and a different instance data block name, then there are n
instances.

FB13.DB3 (P3:=...), FB13.DB4 (P4:=..)),
FB13.DB5 (P5:=...),FB13.DBn (Pn:=...).

An instance data block stores the formal parameters and static local data for a
function block. An instance data block can be assigned to an FB call or a
function block call hierarchy. It is generated automatically in SCL.

A local instance is defined in the static variable section of a function block.
Instead of a complete instance data block, only a local section is used as the
data area for the function block which is called using the local instance
name.

An instruction is a component of a statement specifying what action the
processor is to perform.

Integer (INT) is an elementary data type. Its format is 16-bit whole number.

Keywords are used in SCL to mark the beginning of a block, to mark
subsections in the declaration section and to identify instructions. They are
also used for attributes and comments.

The lower level of rules in the formal language description of SCL consists
of the lexical rules. When applied, they do not permit unrestricted format;
that is, addition of spaces and control characters is not permitted.

Local data refers to the data assigned to a specific logic block which is
declared in its declaration section. It consists of (depending on the particular
block) the formal parameters, static data and temporary data.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Glossary

Logic Block

M

Memory Area

Mnemonic

Multiple Instance

N

Non Term

O

Off-Line

OK Variable

On-Line

On-Line Help

A logic block in SIMAT IC S7 is a block that contains a section of a STEP 7
user program. In contrast, a data block contains only data. There are the
following types of logic blocks: organization blocks (OBs), function blocks
(FBs), functions (FCs), system function blocks (SFBs) and system functions
(SFCs).

A SIMATIC S7 CPU has three memory areas - the load area, the working
area and the system area.

A mnemonic is an abbreviation for an address or a programming operation
used in the program (for example, "I” stands for input). STEP 7 supports IEC
mnemonics (which are based on English terms) and SIMATIC mnemonics
(which are based on the German names of operations and the SIMATIC
addressing conventions).

When multiple instances are used, the instance data block holds the data for a
series of function blocks within a function call hierarchy.

A non term is a complex element that is described by another lexical or
syntax rule.

Off-line designates the operating mode whereby the programming device is
not connected (physically or logically) to the PLC.

The OK variable is used to indicate whether a sequence of block statements
has been executed correctly or not. It is a global variable of the type BOOL.

On-line designates the operating mode whereby the programming device is
connected (physically or logically) with the PLC.

STEP 7 provides the facility of obtaining context-sensitive help on the screen
while working with the programming software.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Glossary-9

Glossary

Organization Block
(OB)

Output Parameter

Parameter

Parameter Type

Process Image

Process-Image
Input Table (PII)

Process-Image
Output Table (PIQ)

Programming,
Structured

Programming,
Symbolic

Project

Glossary-10

Organization blocks form the interface between the CPU operating system
and the user program. The organization blocks specify the sequence in which
the user program is to be processed.

The output parameters of a block in a STEP 7 user program are used to
transfer results to the calling block.

In SCL, a parameter is a variable of a logic block (actual parameter or formal
parameter).

Parameter type is a special data type for timers, counters and blocks. It can
be used for input parameters of function bloakd functions, and for in/out
parameters of function blocks only in order to transfer timer and counter
readings and blocks to the called block.

The signal states of the digital input and output modules are stored in the
CPU in a process image. There is a process-image input table (PIl) and a
process-image output table (PIQ).

The process image of the inputs is read in from the input modules by the
operating system before the user program is processed.

The process image of the outputs is transferred to the output modules at the
end of the user program by the operating system.

To facilitate the implementation of complex automation tasks, a user
program is subdivided into separate, self-contained subunits (blocks).
Subdivision of a user program is based on functional considerations or the
technological structure of the system.

The programming language SCL permits the use of symbolic character
strings in place of addresses, for example, the address A1.1 might be
replaced by "Valve_17". The symbol table in STEP 7 creates the link
between the address and its assigned symbolic character string.

A folder for storing all objects relating to a particular automation concept
regardless of the number of stations, modules or how they are networked.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Glossary

R

Real Number

REPEAT Statement

RETURN
Statement

RUN Mode

RUN-P Mode

S7 User Program

Scan Cycle Time

Scan Cycle
Monitoring Time

SCL

SCL Compiler

A real number, also called a floating point number, is a positive or negative
number which contains a decimal fraction, for example, 0.339 or -11.1.

A REPEAT statement is used to repeat a sequence of statements until a break
condition is satisfied.

This statement causes the program to exit the active block.

In the RUN mode the user program is processed and the process image is
updated cyclically. In addition, all digital outputs are enabled.

The operating mode RUN-P is the same as RUN operating mode except that
in RUN-P mode, all programming device functions are permitted without
restriction.

The S7 user program is located in the “Blocks” folder. It contains blocks that
are uploaded to a programmable S7 module (for example CPU) and are
capable of being run on the module as part of the program controlling a
system or a process.

The scan cycle time is the time required by the CPU to process the user
program once.

If the user program processing time exceeds the set scan cycle monitoring
time, the operating system generates an error message and the CPU switches
to STOP mode.

PASCAL-based high-level language which conforms to the standard

DIN EN-61131-3 (IEC 1131-3) and is intended for programming complex
operations on a PLC, for example, algorithms and data processing tasks.
Abbreviation for "Structured Control Language”.

The SCL Compiler is a batch compiler which is used to translate a program
written using a text editor (SCL source file) into M7 machine code. The
blocks generated by the process are stored in the “Blocks” folder.

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Glossary-11

Glossary

SCL Debugger

SCL Editor

SCL Source File

Single Step

Source File

Statement

Statement List

Status Word

Structure
(STRUCT)

Symbol

Glossary-12

The SCL Debugger is a high-level language debugger used for finding
logical programming errors in user programs created with SCL.

The SCL Editor is a text editor specially adapted for use with SCL for
creating SCL source files.

An SCL source file is a file in which a program is written in SCL. The SCL
source file is translated into machine code by the SCL Compiler after it has
been written.

A single step is a step in a debugging operation carried out by the SCL
Debugger. In single-step debugging mode you can execute a program one
instruction at a time and view the results of each step in the Results window.

A source file (text file) contains source code (ASCII text) that can be created
with any text editor. A source file is translated into a user program file by a
compiler (STL, SCL). Source files are stored in the “Source Files” folder
under the name of the S7 program.

An instruction is the smallest indivisible unit of a user program written in a
text-based language. It represents an instruction to the processor to perform a
specific operation.

Statement List is a low-level text-based programming language.

The status word is a component of the CPU register. The status word contains
status information and error information in connection with the processing of
STEP 7 commands. The status bits can be read and written by the
programmer. The error bits can only be read.

A structure is a complex data type consisting of data elements of differing
types. Those data elements can be elementary or complex.

A symbol is a name defined by the user, taking syntax rules into
consideration. This name can be used in programming and in operating and
monitoring once you have defined it (for example, as a variable, a data type,
a jump label, or a block).

Example: Address: | 5.0, Data Type: BOOL, Symbol: Emer_Off_Switch

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Glossary

Symbol Table

Syntax Rule

System Function
(SFC)

System Function
Block (SFB)

System Data Block
(SDB)

System Memory

Term

Timer (T)

A table used to assign symbols (or symbolic names) to addresses for shared
data and blocks.
Examples: Emer_Off (Symbol), | 1.7 (Address)

Controller (Symbol), SFB24 (Block)

The higher level of rules in the formal description of SCL consists of the
syntax rules. When they are used they are not subject to format restrictions;
that is, spaces and control characters can be added.

A system function (SFC) is a function integrated in the CPU operating
system which can be called in the user program when required. Its associated
instance data block is found in the work memory.

A system function block (SFB) is a function block integrated in the CPU
operating system which can be called in the STEP 7 user program when
required.

System data blocks are data areas in the CPU which contain system settings
and module parameters. System data blocks are generated and edited by the
STEP 7 standard software.

The system memory is integrated in the CPU and executed in the form of
RAM. The address areas (timers, counters, bit memory etc.) and data areas
required internally by the operating system (for example, backup for
communication) are stored in the system memory.

A term is a basic element of a lexical or syntax rule that can not be explained
by another rule but is represented in literal terms. A term can be a keyword
or a single character, for example.

Timers are an area in the system memory of the CPU. The contents of these
timers is updated by the operating system asynchronously to the user
program. You can use STEP 7 instructions to define the exact function of the
timer (for example, on-delay timer) and start processing it (Start).

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Glossary-13

Glossary

ubT

Upload to PC

User Data

User Program

Vv

Variable

Variable
Declaration

Variable Table
(VAT)

Glossary-14

O Data Type, User-Defined

Transfer loadable objects (for example, logic blocks) from the load memory
of a programmable module to a programming device. This can be done either
via a programming device with a direct connection or, for example, via
PROFIBUS.

User data are exchanged between a CPU and a signal module, function
module and communications modules via the process image or direct access.
Examples of user data are: digital and analog input/output signals from signal
modules, control and status data from function modules.

The user program contains all the statements and declarations and the data
required for signal processing to control a plant or a process. The program is
linked to a programmable module (for example, CPU, FM) and can be
structured in the form of smaller units (blocks.)

A variable defines an item of data with variable content which can be used in
the STEP 7 user program. A variable consists of an address (for example,

M 3.1) and a data type (for example, BOOL), and can be identified by means
of a symbolic name (for example, TAPE_ON): Variables are declared in the
declaration section.

Variable declaration involves the specification of a symbolic name, a data
type and, if required, an initialization value, address and comments.

The variable table is used to collect together the variables that you want to
monitor and modify and set their relevant formats.

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01

Index

A Blocks, 1-3| 7-2, 7-18, A-2
mutual compatibility of, 1-4
programming, 2-10
symbolic programming, 2-10

Boolean expression, 13-10

Break criterion, 15-13, 15-15

Absolute access

to global data blocks, 12-9

to global system data, 12-4
Absolute identifiers, 12-4
Accessing, global data, 12-2, 12-3
Actual parameters, 16-2

input assignment, 16-16

output and in/out assignments, 16-17 C
Address, 12-5, 12-10, 13-5 Calling
Address identifier, 12+4 counter functions, 17-2
Alignment symbol, 11-8 counters, dynamically, 17-4
Alternatives, 15-1 function blocks, FBs or SFBs, 16-3
ARRAY functions| 16-13
multidimensional, 97 global instance:, 16-10
one-dimensional (vector), 9-7 local instance, 16-12
two-dimensional (matrix), 9-7 timer functions, 17-10
Array initialization list, 10-5 timers, dynamically, 17-12
ASCII source file, creating in SCL, 5-2, 5-3 CASE statement, 15-2, 15-6
Assignment, simple variables, 14-3 Character literals, printable characters, 11-8
Assignment section, DB, 8-18 Character types, 9-3
Attributes, 8-5 Code section, 8-10
Authorization, 3-2, 35 FB, 7-19
original disk| 3-3 rules, 8-10
retransferring details, 3-3 statements;, 8-10
AUTHORS.EXE, 3-3 syntax, 8-10

Comments, 7-20
incorporating, 7-21
B nesting/ 7-21
Basic structure, OB, 8-16 Comparative expression, 13410

Bit string standard functions, 18-12 ggmpﬁgsggs’rﬁ:i 5.7
BLOCK, 9-12 pra’ion process,

Block, ready-made, 1-4 Compiler . .
Block comment. 7-20 development _enylronment, 1-2
See aIscCom,meht block general description, 1-5, 1-6

] Compiler options, 56
Block parameters, 7-14, 10410
access. 10-11 Complete array, 14-6
- - . Complete structures, 14-4
Block structure, in source files, 8-3 Complex data tvpes. 9-4
Block structure of STEP 7, 1-3 bX 't YPEs, = i
Block type, 1-3 Conditional function call, 19-2

function, 1-3| 1-4

Structured Control Language (SCL) for S7-300/S7-400, Programming
C79000-G7076-C522-01 Index-1

Index

Conditions, 15-3

break, 15-13
Constants

declaring symbolic names, 11-2

string, 11-7

use of, 11-2
CONTINUE statement, 15-2, 1514
Continuity of a string, 1148
Control statements, 1541, 15-3
Conversion, implicit, 18-2
Conversion functions

class A| 18-3

class B, 18-4
COUNTER, 17-3

See als@Counter up and down (S_CUD)
Counter

Down, 17-7--17-9

Up, 17-7--17-9

Up and Down, 17-8
Counter Down (S_CD), 17-7-17-9
Counter functions, 17-2
Counter reading, 17-6

evaluation, 17-6

input, 17-6
Counter Up, (S_CU), 17-7-17-9
CPU memory areas, global data, 12-2
Creating

final value, 15-9

initial value, 15-9

organization block, 2-11

D

Data, global, 12-1
Data areas, declared, 12-2
Data block, 1-3
Data categories, 10-2
Data type
ARRAY, 9-7
BOOL,|16-20
specification, 9-7
STRUCT, 9-8
Data type conversion, implicit, 18-2
Data types
complex; 7-13, 9-4
elementary, 943
for formal parameters, 9-12
overview, 9-3-9-5
User-definedSeeUDT
user-defined (UDT), 8-19, 9-10

Debugger
debugging modes, 1-6
development environment, 1-2
general description, 1-6
Declaration section, 8-17
FB, 8-12
OB,|8-16
Declaration subsections, 3+7, 10-3
FB, 8-12, 8-14
OB, |8-16
Declared data areas, 12-2
Declaring
global data, 12-1
jump labels, 11-14
labels; 11-14
Decompilation, SCL blocks, 1-4
Description, of SCL, A-1
Development environment, 1-2
Batch Compiler, 142
Debugger, 1-2
Editor, 1-2
Digit string, 11-4
Dimension, 9-7
DIN EN 61131-3| 1-3
DIN Standard EN-61131-3, 1-2

E

Ease of learning, SCL_, 1-4
Editor
development environment, 1-2
general description, 1-5
Elementary data types, 9-3
EN, 16-20
EN-61131-3| 1-2
ENO,|[10-12, 16-20
Error and warning messages, causes, 5-8
Error detection, OB types, 19-4
Error OB, OB types, 19-4
Errors during installation, 3-5
Execution condition, 15-11
EXIT statement, 15-2, 15-15
Exponential expression, 13-3
Expression
boolean, 13-10
exponential, 13-9
exponential expressian, 13-3
logical, 13-10
mathematical, 13-7
rules, 13-4

Structured Control Language (SCL) for S7-300/S7-400, Programming

Index-2

C79000-G7076-C522-01

Index

Extended pulse timer (S_PEXT), 17-17

Extended variable, 13-6
Extensions, LAD, STL, 1-2

F

FB parameters
basic principle, 16-5
infout assignment, 16-8
input assignment, 16-7
FC call, not optional, 16-16
FC parameters, 16-15
input assignment, 16-16
Flag, OK flag, 10-12
Flow chart, SORT, 2-19
FOR statement, 15-2, 15-8
Formal parameters, 16-2
data types, 9-12
infout parameters, 10-10
input parameters, 10-10
output parameters, 10-10
Format, 11-2
date literal, 11-10
numeric literals, 114
time of day, 11-13
time period, 11-11
timer reading, 17-14
types of time data, 11-10
Free format, 7-3
Function, 1-3
block status, 644
block type; 1-3, 1-4
rounding/ 18-9
single-step mode, 6-5, 6-6
truncating, 18-9
Function block, 1-3, 19-3
calling, 16-3
RECORD| 2-12
Function call, 13-6, 16-19
return value, 16-14
results| 16-14

G

General description
Compiler, 1-5, 1-6
Debugger, 1{6
Editor,| 1-5

Global data
accessing, 12-2, 12-3
CPU memory areas, 12-2
declaring, 12-1
types of access, 12-2
user data, 12+2
Global data blocks
absolute access, 12-9
indexed access, 12-11
structured access, 1212
Global instance, calling, 16-3
Global system data
absolute access, 12-4
indexed access, 12-7
GOTO statement, 15-2, 15-16

H

High-level programming language, 1-3

Identifiers, 7-7
IF statement, 15-2, 15-4

Implicitly defined parameters, 16-20

In/out assignment, actual parameters, 16-8

In/out parameters, 10-10
Index, 9-7
Index specificatior, 9-7
Indexed access

rules, 12-7, 12-11

to global data blocks, 12-11

to global system data, 12-7
Indexing, rules, 1247
Initialization, 10-5

input parameters, 10-5

static variables, 10-5

Input assignment, actual parameters, 16-7

Input parameters, 10-10
Installation
of SCL software, 3-1, 3-4
requirements, 3+1
Installation requirements, 3-1

J
Jump labels, 11-14

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Index-3

Index

K
Keywords, 9-3, 9-5

L

Labels, declaring, 11-14
LAD, (Ladder Logic), 1-2
Language definition, aids to, 7-2
Language description, A-1
Line comment, 7-20

See alscComment line
Literals, 11-3

assigning data types, 11-3

character, 117

integer, 11-5

numeric| 11-6

real number, 116

string, 11-7

Loading a timer reading, format, 17:14

Local data, 7-14, 10-1
storage method, 10-2
Local instance, calling, 16-3

Logic operation, 13-10
Logical expressions, 13-12
Loop processing, 15-2
Loops/ 15-1

M

Mathematical, operators, 13-7
Mathematical expression, 13-7
Measured data, processing, 2-3
Memory prefix; 12-4

Menu bar, 4-3

Mutual compatiblity of blocks, 1:4

N

Name assignment, 7-7

Non terms, A-14-A-34

Non-printable characters, 11-7, 11-9

Numeric standard functiors, 18-10
general functions, 18-10
logarithmic functions, 18-10
trigonometric functions, 18-11

Numeric types, 9-3

Index-4

O

Off-delay timer (S_OFFDT), 17-20-17-22
OK flag,[10-2| 10-12
On-delay timer (S_ODT), 17-18-17422
Operations, alphabetical listing, A-5—-A-34
Operators
mathematical, 13-7
placing in parentheses, 13-4
priority, 13-8
Order of blocks, 8-2
Organization block, 13
OB1, 2-12| 2-13, 2-16, 2-17, 2420, 2-21
types, 19-4
Output parameters, 10-10
reading, 16-12
Output value, reading, 16-11

P

Parameter
assignment, 16-3
implicitly defined, 16-20
input parameter EN, 16-20
output parameter ENO, 16-21
Parameter type
BLOCK, 7-13, 9-12
COUNTER, 7-13, 9-12
POINTER, 7-13, 9-12
TIMER, 7-13/9-12
Parameter value assignment, 16-2
Priority, operators, 13-8
Priority class, OB types, 19-4
Product overview, 1:1
Program branching, 15-2
Program code
OB |1, 2-10, 2-11
RECORD, 2-13, 2-16
STANDARDIZATION, 2-21
Program file| 7-19
Program jump, 15-2
Programmable output, 2-4
Programming, 5-1
OB types| 19-4
Programming methods, 1-4
Pulse timer (S_PULSE), 17-16-17-22

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Index

R

Referenzdaten, erzeugen, 6-9

REPEAT statement, 15-2, 1513

Repetition instructior), 15-2

Repetition instructions, exiting, 15-15

ResolutionSeeTime base for S5 TIME

Retentive on-delay timer (S_ODTS),
17-19--17-22

RETURN statement, 15-2, 15-18

Return value, 16-13

Rule structures, 7-2, A-2

S

S_CD.SeeCounter Down (S_CD)
S _CU.SeeCounter Up (S_CU)
S_CUD.SeeCounter up and down (S_CUD)
S_ODT.SeeOn—delay timer (S_ODT)
S_ODTS . SeeRetentive olldelay timer
(S_ODTS)
S _OFFDT.SeeOfflégldelay timer (S_OFFDT)
S_PEXT.SeeExtended pulse timer (S_PEXT)
S_PULSE SeePulse timer (S_PULSE)
S5 TIME
time base, 17-15
timer reading, 17-14

Saving

a block, 5-5

an ASCII source file, 5+:5
SCL

block structure, 7-18
Debugger, 642
debugging functions, 6-2
definition, 1-2
ease of learning, 1-4
errors during installation, 3-5
extensions, LAD, STL, 1-2
high-level programming language, 1-2, 1-3
identifiers, 7-7
installing/uninstalling the software, 3-4
language definitior], 7-2
name assignment, 7-7
product overview, 1+1
program compilation, 5-6
programming, 541
software installation, 3-1
starting| 4-2

SCL installation
errors, 3-5
procedure, 3-4

SCL language functions, 2-2

SCL program, starting, 4-2
SCL programming language, 1-1
SCL user interface, 4-3
Selective instruction, 15-2
Size prefix| 12-5
Software engineering, programming methods,
1-4
Standard functions, 18-2
data type conversion, 18-2
explicit data type conversion, 18-2
implicit data type conversion, 18-2
Standards conformity, 1-2
Starting SCL, 4-2
Statement ListSeeSTL
Statements, 8-10
CASE, 15-6
CONTINUE, 15-14
EXIT, 15-15
FOR, 15-8
GOTO, 15-16
IF,|15-4
REPEAT, 15-13
RETURN, 15-18
WHILE, 15-11
Static variables, 7-14, 102, 10-8
Status bar, 43
STEP 7
block structure, 13
OB types, 19-4
STEP 7 block concept, 1-3
STEP 7 tools, S7 Information, 6410
STL
(Statement List), 1+2
decompiling SCL blocks, 1-4
String
continuity, 11-3
using the alignment symbol, 11-8
String breaks, 11-8
STRUCT,|9-8
component declaration, 9-8
variable declaration, 9-8
Structure
data block (DB), 8-17
function (FC)| 8-14
function block (FB), 8-12
organization block (OB), 8-16
Structured access, to global data blocks, 12-12
Structured Control Languag8eeSCL
Structured programming, 1-4, 2-5
Symbol table, creating, 12-6
Syntax diagram, 7-2, A-2
Syntax rules, 7:3

Structured Control Language (SCL) for S7-300/S7-400, Programming

C79000-G7076-C522-01

Index-5

Index

System attributes

for blocks, 8-6

for parameters, 8-8
System function (SFC), 1-4
System function block (SFB), 1-4, 19-3
System parameter ENO, 10:12
System requirements, 2-2

T

Temporary variables, 7-14, 10-2, 10-9
Testfunktion
Referenzdaten erzeugen, |6-9
Variablen beobachten/steuern,|6-8
Text files, structure, 8:1, 8-2
Time base, resolution, 17-15
Time base for S5 TIME, 17-15
Time resolutionSeeTime base for S5 TIME
Time types, 9-3
TIMER and COUNTER, 9-12
Timer functions, (TIMER), 17-10
Timer reading, syntax, 17-14
Timers
components, 17-14-17-22
summary, 17-22
timer operations
extended pulse timer (S_PEXT),
17-17-17-22
off-delay timer (S_OFFDT), 17-20
on-delay timer (S_ODT), 17-18
pulse timer (S_PULSE), 17-16-17-22
retentive on-delay timer (S_ODTS),
17-19
timer reading, 17-14
range, 17-14-17-22
syntax, 17-14
Title bar, 4-3
Tool bar, 4-3

Transfer of parameters, parameter types, 7-13,
9-12
Types of access, 12-2

U

UDT definition
calling, 8-19
elements, 8-19
Uninstalling SCL| 3-5
Upward compatibility, 1-4
User authorization, 3-2
User data, global, 12-2
User interface, 4-3
User program, 1-3, 7-18
Using SCL| 4-1

Vv

Value assignment, 14-1
array components, 14-6
arrays| 14-6
global system data, 14-10
global user data, 14-11
structures, 144
Variable declaration, 10-10
Variablen, beobachten/steuern, 6-8
Variables
static, 7-14, 102, 10-8
temporary, 7-14, 10-2, 10-9

wW

WHILE statement, 15-2, 15-11
Windows 95, 1-2
Workspace, 43

Structured Control Language (SCL) for S7-300/S7-400, Programming

Index-6

C79000-G7076-C522-01

Siemens AG
A&D AS E46

Ostliche Rheinbriickenstr. 50
D-76181 Karlsruhe
Federal Republic of Germany

From:

Your Name:._

Your Title:

Company Name:
Street:

Country:
Phone:

Please check any industry that applies to you:

Automotive Pharmaceutical

Chemical Plastic
Electrical Machinery
Food

Instrument and Control

Pulp and Paper
Textiles
Transportation

O 0O o0oo0ogo o

Nonelectrical Machinery

O Ooooogoogd

Petrochemical

Structured Control Language (SCL) for S7-300/S7-400, Programming
6ES7811-1CA02-8BA0-01 1

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness
of our publications. Please take the first available opportunity to fill out this questionnaire
and return it to Siemens.

Please give each of the following questions your own personal mark within the range
from 1 (very good) to 5 (poor).

1. Do the contents meet your requirements? D
2. Is the information you need easy to find? D
3. Is the text easy to understand? D
4, Does the level of technical detail meet your requirements? D
5. Please rate the quality of the graphics/tables: D

Additional comments:

Structured Control Language (SCL) for S7-300/S7-400, Programming
2 6ES7811-1CA02-8BA0-01

	Title
	Preface
	Contents
	Part 1: Designing Programs
	1 Product Overview
	1.1 What is SCL?
	1.2 What Are the Advantages of SCL?
	1.3 Performance Characteristics of the Development Environment

	2 Designing SCL Programs
	2.1 Overview
	2.2 Defining the Tasks
	2.3 Using SCL Blocks to Perform the Tasks
	2.3.1 Defining the Subtasks
	2.3.2 Selecting and Assigning the Available Block Types
	2.3.3 Defining the Interfaces Between the Blocks
	2.3.4 Defining the Input/Output Interface
	2.3.5 Programming the Blocks
	2.4 Creating the Organization Block
	2.5 Creating the Function Block
	2.6 Creating the Function Block
	2.7 Creating the Function
	2.8 Debugging Data

	Part 2: Operating and Debugging
	3 Installing the SCL Software
	3.1 User Authorization
	3.2 Installing / Uninstalling the SCL Software

	4 Using SCL
	4.1 Starting the SCL Program
	4.2 Customizing the User Interface
	4.3 Working with the SCL Editor

	5 Programming with SCL
	5.1 Creating User Programs Using SCL
	5.2 Creating and Opening an SCL Source File
	5.3 Entering Declarations, Statements and Comments
	5.4 Saving and Printing an SCL Source File
	5.5 The Compilation Process
	5.6 Transferring the Compiled User Program to the PLC
	5.7 Creating a Compilation Control File

	6 Debugging Programs
	6.1 Overview
	6.2 Monitor Continuously” Debugging Function
	6.3 “Breakpoints Active” Debugging Function
	6.4 “Monitoring/Modifying Variables” Debugging Function
	6.5 “Reference Data” Debugging Function
	6.6 Using the STEP 7 Debugging Functions

	Part 3: Language Description
	7 General Introduction to Basic SCL Terms
	7.1 Language Definition Aids
	7.2 The SCL Character Set
	7.3 Reserved Words
	7.4 Identifiers in SCL
	7.5 Standard Identifiers
	7.6 Numbers
	7.7 Data Types
	7.8 Variables
	7.9 Expressions
	7.10 Statements
	7.11 SCL Blocks
	7.12 Comments

	8 Structure of an SCL Source File
	8.1 Structure
	8.2 Beginning and End of a Block
	8.3 Block Attributes
	8.4 Declaration Section
	8.5 Code Section
	8.6 Statements
	8.7 Structure of a Function Block (FB)
	8.8 Structure of a Function (FC)
	8.9 Structure of an Organization Block (OB)
	8.10 Structure of a Data Block (DB)
	8.11 Structure of a User-Defined Data Type (UDT)

	9 Data Types
	9.1 Overview
	9.2 Elementary Data Types
	9.3 Complex Data Types
	9.3.1 DATE_AND_TIME Data Type
	9.3.2 STRING Data Type
	9.3.3 ARRAY Data Type
	9.3.4 STRUCT Data Type
	9.4 User-Defined Data Type (UDT)
	9.5 Parameter Types

	10 Declaring Local Variables and Block Parameters
	10.1 Overview
	10.2 Declaring Variables and Parameters
	10.3 Initialization
	10.4 Instance Declaration
	10.5 Static Variables
	10.6 Temporary Variables
	10.7 Block Parameters
	10.8 Flags (OK Flag)

	11 Declaring Constants and Jump Labels
	11.1 Constants
	11.2 Literals
	11.3 Formats for Integer and Real Number Literals
	11.4 Formats for Character and String Literals
	11.5 Formats for Times
	11.6 Jump Labels

	12 Declaring Global Data
	12.1 Overview
	12.2 CPU Memory Areas
	12.3 Absolute Access to CPU Memory Areas
	12.4 Symbolic Access to CPU Memory Areas
	12.5 Indexed Access to CPU Memory Areas
	12.6 Data Blocks
	12.7 Absolute Access to Data Blocks
	12.8 Indexed Access to Data Blocks
	12.9 Structured Access to Data Blocks

	13 Expressions, Operators and Addresses
	13.1 Operators
	13.2 Syntax of Expressions
	13.2.1 Addresses
	13.3 Mathematical Expressions
	13.4 Exponential Expressions
	13.5 Comparative Expressions
	13.6 Logical Expressions

	14 Value Assignments
	14.1 Overview
	14.2 Value Assignments Using Variables of Elementary Data Types
	14.3 Value Assignments Using Variables of the Types STRUCT or UDT
	14.4 Value Assignments Using Variables of the Type ARRAY
	14.5 Value Assignments Using Variables of the Type STRING
	14.6 Value Assignments Using Variables of the Type DATE_AND_TIME
	14.7 Value Assignments using Absolute Variables for Memory Areas
	14.8 Value Assignments using Global Variables

	15 Control Statements
	15.1 Overview
	15.2 IF Statement
	15.3 CASE Statement
	15.4 FOR Statement
	15.5 WHILE Statement
	15.6 REPEAT Statement
	15.7 CONTINUE Statement
	15.8 EXIT Statement
	15.9 GOTO Statement
	15.10 RETURN Statement

	16 Calling Functions and Function Blocks
	16.1 Calling and Transferring Parameters
	16.2 Calling Function Blocks (FB or SFB)
	16.2.1 FB Parameters
	16.2.2 Input Assignment (FB)
	16.2.3 In/Out Assignment (FB)
	16.2.4 Example of Calling a Global Instance
	16.2.5 Example of Calling a Local Instance
	16.3 Calling Functions
	16.3.1 FC Parameters
	16.3.2 Input Assignment (FC)
	16.3.3 Output and In/Out Assignment (FC)
	16.3.4 Example of a Function Call
	16.4 Implicitly Defined Parameters

	17 Counters and Timers
	17.1 Counter Functions
	17.1.1 Input and Evaluation of the Counter Reading
	17.1.2 Counter Up (CU)
	17.1.3 Counter Down (CD)
	17.1.4 Counter Up/Down (CUD)
	17.1.5 Example of the Function S_CD (Counter Down)
	17.2 Timer Functions
	17.2.1 Input and Evaluation of the Timer Reading
	17.2.2 Pulse Timer
	17.2.3 Extended Pulse Timer
	17.2.4 On-Delay Timer
	17.2.5 Retentive On-Delay Timer
	17.2.6 Off-Delay Timer
	17.2.7 Example of Program Using Extended Pulse Timer Function
	17.2.8 Selecting the Right Timer Function

	18 SCL Standard Functions
	18.1 Converting Data Types
	18.2 Standard Functions for Data Type Conversions
	18.3 Numeric Standard Functions
	18.4 Bit String Standard Functions

	19 Function Call Interface
	19.1 Function Call Interface
	19.2 Data Transfer Interface with OBs

	Appendix
	A Formal Description of Language
	A.1 Overview
	A.2 Overview of Terms
	A.3 Lexical Rule Terms
	A.4 Formatting Characters, Delimiters and Operators
	A.5 Keywords and Predefined Identifiers
	A.6 Address Identifiers and Block Keywords
	A.7 Overview of Non Terms
	A.8 Overview of Tokens
	A.9 Identifiers
	A.10 Naming Conventions in SCL
	A.11 Predefined Constants and Flags

	B Lexical Rules
	B.1 Identifiers
	B.1.1 Literals
	B.1.2 Absolute Addresses
	B.2 Remarks
	B.3 Block Attributes

	C Syntax Rules
	C.1 Subunits of SCL Source Files
	C.2 Structure of Declaration Sections
	C.3 Data Types in SCL
	C.4 Code section
	C.5 Value Assignments
	C.6 Function and Function Block Calls
	C.7 Control Statements

	D References

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

