
SIMATIC NET

S7 Programming Interface

Volume 1 of 1

1 The SAPI-S7 Interface

2 Principles of the Programming Interface

3 The Programming Interface

4 Trace and Mini-DB

5 Configuration

6 SAPI-S7 Under MS-DOS/Windows

7 Appendix

Glossary

Index

C79000-G8976-C077 Release 7

SIMATIC NET is a trademark of Siemens
Siemens Aktiengesellschaft

Wir haben den Inhalt der Druckschrift auf
Übereinstimmung mit der beschriebenen Hard- und
Software geprüft. Dennoch können Abweichungen
nicht ausgeschlossen werden, so daß wir für die
vollständige Übereinstimmung keine Gewähr
übernehmen. Die Angaben in der Druckschrift werden
jedoch regelmäßig überprüft. Notwendige Korrekturen
sind in den nachfolgenden Auflagen enthalten. Für
Verbesserungsvorschläge sind wir dankbar.
Technische Änderungen vorbehalten.

Weitergabe sowie Vervielfältigung dieser Unterlage,
Verwertung und Mitteilung ihres Inhalts nicht gestattet,
soweit nicht ausdrücklich zugestanden.
Zuwiderhandlungen verpflichten zu Schadenersatz.
Alle Rechte vorbehalten, insbesondere für den Fall der
Patenterteilung oder GM-Eintragung.

C79000-G8976-C077
Copyright © Siemens AG 1995 to 2001
All Rights Reserved

We have checked the contents of this manual for
agreement with the hardware described. Since
deviations cannot be precluded entirely, we cannot
guarantee full agreement. However, the data in this
manual are reviewed regularly and any necessary
corrections included in subsequent editions.
Suggestions for improvement are welcome.
Technical data subject to change.

The reproduction, transmission or use of this
document or its contents is not permitted without
express written authority. Offenders will be liable for
damages. All rights, including rights created by patent
grant or registration of a utility or design, are reserved.

C79000-G8976-C077
Copyright © Siemens AG 1995 to 2001
All Rights Reserved

Nous avons vérifié la conformité du contenu du
présent manuel avec le matériel et le logiciel qui y sont
décrits. Or, des divergences n'étant pas exclues, nous
ne pouvons pas nous porter garants pour la conformité
intégrale. Si l'usage du manuel devait révéler des
erreurs, nous en tiendrons compte et apporterons les
corrections nécessaires dès la prochaine édition.
Veuillez nous faire part de vos suggestions.

Nous nous réservons le droit de modifier les
caractéristiques techniques.

Toute communication ou reproduction de ce support
d'informations, toute exploitation ou communication de
son contenu sont interdites, sauf autorisation expresse.
Tout manquement à cette règle est illicite et expose
son auteur au versement de dommages et intérêts.
Tous nos droits sont réservés, notamment pour le cas
de la délivrance d'un brevet ou celui de l'enregistrement
d'un modèle d'utilité.

C79000-G8976-C077
Copyright © Siemens AG 1995 à 2001
All Rights Reserved

Siemens Aktiengesellschaft Elektronikwerk Karlsruhe
Printed in the Federal Republic of Germany

3

SIMATIC NET
S7 Programming Interface

Description C79000-B8976-C077/07

Note

We would point out that the contents of this product documentation shall not become a part of or modify any prior or existing
agreement, commitment or legal relationship. The Purchase Agreement contains the complete and exclusive obligations of Siemens.
Any statements contained in this documentation do not create new warranties or restrict the existing warranty.

We would further point out that, for reasons of clarity, these operating instructions cannot deal with every possible problem arising
from the use of this device. Should you require further information or if any special problems arise which are not sufficiently dealt with
in the operating instructions, please contact your local Siemens representative.

General
This device is electrically operated. In operation, certain parts of this device carry a dangerously high voltage.

WARNING !
Failure to heed warnings may result in serious physical injury and/or material damage.

Only appropriately qualified personnel may operate this equipment or work in its vicinity. Personnel must be
familiar with all warnings and maintenance measures in accordance with these operating instructions.

Correct and safe operation of this equipment requires proper transport, storage and assembly as well as careful
operator control and maintenance.

Personnel qualification requirements

Qualified personnel as referred to in the operating instructions or in the warning notes are defined as persons who are familiar with
the installation, assembly, startup and operation of this product and who possess the relevant qualifications for their work, e.g.:

− Training in or authorization for connecting up, grounding or labeling circuits and devices or systems in accordance with current
standards in safety technology;

− Training in or authorization for the maintenance and use of suitable safety equipment in accordance with current standards in
safety technology;

− First Aid qualification.

!

C79000-G8976-C077-07 S7 Programming Interface

5

S7 Programming Interface

SIMATIC S7 system components communicate with each other using the S7 communications
protocol. To allow programming device/PC application programs access to SIMATIC S7 system
components, the SAPI-S7 programming interface was developed. With its C programming
interface, you have flexible and simple access to the data of SIMATIC S7 system components.

This volume describes the S7 protocol and how to program it.

S7 Programming Interface C79000-G8976-C077-07

6

Notes

C79000-G8976-C077-07 S7 Programming Interface

7

1 The SAPI-S7 Interface..11

1.1 Advantages of S7 Compared With Other Protocols...12

1.2 Advantages of the SAPI-S7 Programming Interface..13

2 Principles of the Programming Interface..15

2.1 Synchronous and Asynchronous Job Handling..16

2.2 Advantages of Asynchronous Operation ...17

2.3 Receive Call and Processing Functions ..18

2.4 Handling S7 Connection Management Services..20

2.5 Error Message Concept ..21

2.6 The Trace ...22

2.7 The Mini-DB..23

2.8 Multi-CP and Multi-User Operation..24
2.8.1 Assigning VFDs and the S7 Connection List...25

2.9 Installation and Requirements for Operation ...26

3 The Programming Interface...27

3.1 Overview of the Programming Interface..28
3.1.1 Administrative Services ...29
3.1.2 Receive Service...30
3.1.3 S7 Connection Management Services ...30
3.1.4 Variable Services...32
3.1.5 Block-Oriented Services ..35
3.1.6 Message Services..36
3.1.7 VFD Services...37
3.1.8 Diagnostic Services for Fault-Tolerant Connections ...38

3.2 Administrative Services ..39
3.2.1 s7_get_device..43
3.2.2 s7_get_vfd ...45
3.2.3 s7_init ..47
3.2.4 s7_get_cref ..49
3.2.5 s7_get_conn ..50
3.2.6 s7_shut ..52

3.3 Receive service ..53
3.3.1 s7_receive ...55

3.4 S7 connection management services..58
3.4.1 s7_initiate_req ...63
3.4.2 s7_get_initiate_cnf ...64
3.4.3 s7_await_initiate_req ...65
3.4.4 s7_get_await_initiate_cnf ...66
3.4.5 s7_get_initiate_ind ...67
3.4.6 s7_initiate_rsp..68
3.4.7 s7_abort...70
3.4.8 s7_get_abort_ind ...71

3.5 Variable Services..72
3.5.1 s7_read_req...79

S7 Programming Interface C79000-G8976-C077-07

8

3.5.2 s7_get_read_cnf ..81
3.5.3 s7_write_req ..83
3.5.4 s7_write_long_req..86
3.5.5 s7_get_write_cnf..89
3.5.6 s7_multiple_read_req...90
3.5.7 s7_get_multiple_read_cnf ..93
3.5.8 s7_multiple_write_req ..96
3.5.9 s7_get_multiple_write_cnf..99
3.5.10 s7_cycl_read_init_req ..101
3.5.11 s7_get_cycl_read_init_cnf..104
3.5.12 s7_cycl_read_start_req ..105
3.5.13 s7_get_cycl_read_start_cnf..106
3.5.14 s7_get_cycl_read_ind ..107
3.5.15 s7_get_cycl_read_abort_ind...109
3.5.16 s7_cycl_read_stop_req ..110
3.5.17 s7_get_cycl_read_stop_cnf ..111
3.5.18 s7_cycl_read_delete_req ...112
3.5.19 s7_get_cycl_read_delete_cnf ...113
3.5.20 s7_cycl_read..114

3.6 Block-Oriented Services ...117
3.6.1 s7_bsend_req ..123
3.6.2 s7_get_bsend_cnf..125
3.6.3 s7_brcv_init ...126
3.6.4 s7_get_brcv_ind...128
3.6.5 s7_brcv_stop ...130

3.7 Message Services...131
3.7.1 s7_msg_initiate_req...135
3.7.2 s7_get_msg_initiate_cnf ..136
3.7.3 s7_msg_abort_req ...137
3.7.4 s7_get_msg_abort_cnf...138
3.7.5 s7_get_scan_ind ..139
3.7.6 s7_get_alarm_ind ..146

3.8 VFD Services..153
3.8.1 s7_vfd_state_req ...156
3.8.2 s7_get_vfd_state_cnf...157

3.9 Diagnostic Services for Fault-Tolerant Connections ..159
3.9.1 s7_diag_init..161
3.9.2 s7_get_diag_ind...162
3.9.3 s7_diag_stop..164

4 Trace and Mini-DB ...165

4.1 s7_trace..166

4.2 s7_write_trace_buffer..167

4.3 s7_mini_db_set...168

4.4 s7_mini_db_get ..174

4.5 s7_last_iec_err_no..176

4.6 s7_last_iec_err_msg ...178

4.7 s7_last_detailed_err_no ..179

4.8 s7_last_detailed_err_msg ...183

C79000-G8976-C077-07 S7 Programming Interface

9

4.9 s7_discard_msg..184

5 Configuration ...185

5.1 Significance of Configuration ..186

5.2 Services With Configuration Data ...187

5.3 Configuring with STEP 7 V5..188

6 SAPI-S7 Under MS-DOS/Windows ..189

6.1 General Information ..190

6.2 Translating and Linking for MS-DOS...192

6.3 Translating and Linking for Windows 3.x...194

6.4 Translating and Linking for Windows 95 and Windows NT197

6.5 Environment Variables..198

6.6 The Trace for MS-DOS or Windows..200

6.7 Special Features for Windows...201
6.7.1 s7_set_window_handle_msg..202

7 Appendix ..203

7.1 Range of Functions of SAPI-S7 ..204

7.2 Special Notes..206

7.3 Formulas for Calculating Data Lengths for the Variable Services207

7.4 Representation of S7 Variables...209

7.5 Representation of the Standard Data Types..210
7.5.1 Representation of the 'Boolean' Data Type...210
7.5.2 Representation of the Data Type 'Integer'...211
7.5.3 Representation of the 'Unsigned' Data Type...214
7.5.4 Representation of the 'Floating Point' Data Type..216
7.5.5 Representation of the 'Visible String' Data Type...218
7.5.6 Representation of the 'Octet String' Data Type...219
7.5.7 Representation of the 'Bit String' Data Type ...220

Glossary ..221

Index ..223

S7 Programming Interface C79000-G8976-C077-07

10

C79000-G8976-C077-07 S7 Programming Interface

11

1 The SAPI-S7 Interface

This chapter explains the advantages of the S7 communications protocol compared
with other protocols and the S7 programming interface for PC/programming devices
(SAPI-S7).

S7 Programming Interface C79000-G8976-C077-07

12

1.1 Advantages of S7 Compared With Other Protocols

The advantages of S7 compared with other protocols are as follows:

➢ Low load on the processor and bus.
The S7 protocol is optimized for SIMATIC communication.

➢ Simplicity
The S7 protocol elements are adapted to the requirements of
SIMATIC and are therefore simple to use.

➢ Speed
Compared with other layer 7 automation protocols, such as
MMS, S7 provides a high performance.

➢ Compatibility.
Fail-safe communication with S7 H systems with the same
programming interface as to the standard SIMATIC S7 systems.

Advantages of S7

C79000-G8976-C077-07 S7 Programming Interface

13

1.2 Advantages of the SAPI-S7 Programming Interface

The acronym SAPI-S7 stands for the following:

➢ SAPI - Simple Application Programmers Interface,

➢ S7 - the layer 7 communications protocol of SIMATIC S7
systems.

SAPI-S7

➢ is a simple C programming interface,

➢ provides access to the S7 services on PCs and PGs and

➢ is available as a C library and is operated with Siemens drivers
and communications processors.

What Does SAPI-S7
Mean?

What is SAPI-S7?

S7 Programming Interface C79000-G8976-C077-07

14

The SAPI-S7 programming interface has the following advantages:

➢ SAPI-S7 is a simple but nevertheless flexible and high-
performance interface that requires only one transferred
parameter field per job and allows simple buffer management.
SAPI-S7 is easy to learn.

➢ The SAPI-S7 programming interface is designed for
asynchronous operation since asynchronous calls are more
efficient (more jobs can be processed at the same time). It
allows status messages to be received at any time and is ideally
suited for creating event-driven programs, for example under
Windows.

➢ SAPI-S7 handles sequential services automatically, such as
active or passive connection establishment that consists of
several individual steps. The user does not need to worry about
sequences and error handling in the individual steps. Writing a
program is therefore made much simpler.

➢ SAPI-S7 supports troubleshooting with an integrated trace
function that writes the most important transfer parameters and
return values to a file. The trace can be activated and
deactivated for each individual service class.

➢ The SAPI-S7 programming interface is compatible with other
SAPI programming interfaces, in other words porting SAPI-S7
applications to applications of other SAPI programming
interfaces (for example SAPI-FMS) requires little effort.

➢ The structures of the SAPI-S7 programming interface are
designed so that user programs translated with byte or word
alignment can access the individual components without
problems.

➢ Consistent configuration of SIMATIC S7 and SAPI-S7 from
STEP 7 V5 and higher.

➢ Diagnostic interface for fail-safe communication so that the
application is informed at all times of the state of the redundant
connection.

Advantages of the
SAPI-S7
Programming
Interface

C79000-G8976-C077-07 S7 Programming Interface

15

2 Principles of the Programming Interface

This chapter introduces you to the principles of the SAPI-S7 programming interface, as
follows:

➢ Implementation of asynchronous calls for improved performance and the
creation of event-driven applications.

➢ Separation of receive calls and event-specific processing functions to simplify
the SAPI-S7 programming interface.

➢ Library-internal processing of sequential services to simplify the user programs.

➢ Introduction of a logon and logoff function allowing multi-CP and multi-user
operation.

➢ Implementation of a trace for debugging the program and to allow the functions
of the library and user programs to be checked.

When you have worked through this chapter, you will be familiar with the principles of
the S7 programming interface and will be in a position to understand the interface for
creating programs.

S7 Programming Interface C79000-G8976-C077-07

16

2.1 Synchronous and Asynchronous Job Handling

When jobs are handled synchronously (Figure 2.1), the user program is
blocked from the time of the request to the reception of the
confirmation. Events occurring in the meantime can only be processed
if the program is interrupt-driven. This mode is not implemented in
SAPI-S7.

Client Communication system Server

1. Call

2. Program
waits

3. Resume
program

Figure 2.1: Synchronous Operation

In asynchronous job handling (Figure 2.2) a user program is not
blocked following a request and can receive any event and react to it.
The confirmation is fetched explicitly with a receive call.

Client Communication system Server

Figure 2.2: Asynchronous Operation

Synchronous Job
Handling

Asynchronous Job
Handling

request

request

indication

indication

confirmation

confirmation

response

response

2. Continue
program

3. Receive
call

4. Continue
program

1. Call

C79000-G8976-C077-07 S7 Programming Interface

17

2.2 Advantages of Asynchronous Operation

The SAPI-S7 programming interface is designed for asynchronous
operation.

➢ Asynchronous calls allow a higher data throughput (several jobs
can be processed at the same time).

➢ An application is not blocked and is free for other tasks such as
receiving status messages.

➢ Asynchronous mechanisms are ideal for creating event-driven
programs, for example under Windows.

From the point of view of the application, you must decide whether or
not the services used are dependent on each other. If they are
interdependent, the execution of a job must be confirmed before the
next job can be sent. For example, a connection must be established
before data can be transferred on the connection.

Asynchronous
Jobs as a Basic
Principle of the
SAPI-S7
Programming
Interface

S7 Programming Interface C79000-G8976-C077-07

18

2.3 Receive Call and Processing Functions

A message received from the lower protocol layers is processed by the
user program in the two following steps (Figure 2.3):

➢ The 's7_receive()' function first fetches an existing message.
The return value provides information about the received event.
Per event, a constant is defined in the header file 'SAPI_S7.H',
such as 'S7_INITIATE_IND' that shows that the partner station
wants to establish an S7 connection. If 'S7_NO_MSG' is entered,
no message was received.

➢ In the next step, the user must call the appropriate processing
function for the received message: an event identified by
'S7_INITIATE_IND' requires the processing function
's7_get_initiate_ind()' to be called.

Using the receive function, the application program can poll an event.
However, between the reception of the event and calling the
processing function, no further event can be fetched from the
communications system.

SAPI-S7User program

s7_receive()

Remote partner

= S7_INITIATE_IND

s7_get_initiate_ind()

= S7_OK

Initiate connection

Process indication

Figure 2.3: Receiving and Processing Messages

How is a Received
Message
Processed?

C79000-G8976-C077-07 S7 Programming Interface

19

Separating the event processing into a receive function and an event-
specific processing function achieves the following:

➢ Allows a simpler and clearer programming interface. Only the
data and parameters relevant to the received event are
transferred to the processing functions.

➢ Allows the SAPI-S7 programming interface to be extended by
additional events by making appropriate processing functions
available.

➢ Separates the indication (receive call) and response (processing
function). This allows user data to be prepared for the response.

Advantages of
Separating the
Receive Call and
Processing
Function

S7 Programming Interface C79000-G8976-C077-07

20

2.4 Handling S7 Connection Management Services

The SAPI-S7 library supports you during active and passive connection
establishment that consists of several individual steps. Each step is
checked for success or failure. If an error occurs, the library makes
sure that steps that have already been executed are corrected. After
sending a request, you only need to call the receive function repeatedly
until the confirmation of completion is received (see Figure 2.4).

SAPI-S7User program

s7_initiate_req()

Remote partner

= S7_OK

s7_receive()

= S7_NO_MSG

s7_receive()

Repeat n times

= S7_INITIATE_CNF

s7_get_initiate_cnf()

= S7_OK

Initiate connection

Fetch confirmation

Message (confirmation) there!

Repeat n times

Repeat n times

Figure 2.4: Active Connection Establishment

Support by the S7
Library

C79000-G8976-C077-07 S7 Programming Interface

21

2.5 Error Message Concept

The SAPI-S7 programming interface supports a three-stage error
message concept:

➢ Success or failure is only indicated by the return value of the call
to simplify error handling.

➢ The causes of errors are standardized in compliance with IEC
1131 (International Electrotechnical Commission) and the
number of error identifiers has been reduced to a more practical
size

➢ For more precise error analyses, more detailed error codes and
messages are available.

Defines are located in the header file 'SAPI_S7.H' for the return values
of each SAPI-S7 call, as follows:

➢ The value 'S7_OK' indicates error-free execution of a job.

➢ The entry 'S7_ERR_RETRY' indicates that an error occurred
when executing a required service. This is a temporary problem
such as a brief memory shortage. The call can be repeated
without modifying the transferred parameters.

➢ The entry 'S7_ERR' also indicates an error in the execution of
the required service. In this case, however, the error does not
allow the service to be repeated. Here, steps must be taken to
eliminate the error such as assigning new parameters for the
call.

The S7 library provides the functions 's7_last_iec_err_no()' and
's7_last_iec_err_msg()' for reading out an error number and an error
message. The causes of the errors are standardized complying with
IEC 1131 (International Electrotechnical Commission) and reduce the
number of error identifiers necessary.

For more detailed error analyses, the functions
's7_last_detailed_err_no()' and 's7_last_detailed_err_msg()' functions
are implemented on the SAPI-S7 programming interface. These
describe the error sources in greater detail and also provide
information about eliminating the errors.

The Three-Stage
Error Message
Concept of the
SAPI-S7
Programming
Interface

The Return Values
of the SAPI-S7
Programming
Interface

The IEC Error
Identifiers

The Detailed Error
Codes

S7 Programming Interface C79000-G8976-C077-07

22

2.6 The Trace

The trace is a simple and yet effective aid to debugging for the S7
library. This function enters data and events in a ring buffer and a trace
file.

The trace can be adapted to a wide range of applications, as follows:

➢ The trace file can be given any name to suit your application.

➢ The service classes for which the trace will be activated can be
selected.

➢ The trace depth (trace off, trace only for negative events etc.)
can be selected.

➢ The target of the trace indicates whether a trace file should be
created, an old trace file used or whether the information should
be written to the internal ring buffer.

During operation, the S7 library writes important data to the trace file.
The content of the file

➢ is used as a log of all actions performed by the S7 library,

➢ permits the sequence of events to be checked both in the
application and the library itself,

➢ allows simple debugging and checking of the data and
parameters on the SAPI-S7 programming interface.

You can also write to the trace file yourself. With such entries, it is
possible to save important data for test purposes, to check the
sequence of the program or to synchronize it with the entries by the
library.

The trace and saving the data in the trace file slows down the user
program. For this reason, it is also possible to write the ring buffer to a
file as a “snapshot”.

What Does Trace
Mean?

Uses of the Trace

Time Required

C79000-G8976-C077-07 S7 Programming Interface

23

2.7 The Mini-DB

Using the mini-DB (mini-database), settings different from the standard
operating situation can be made and detailed information read out. The
mini-DB is a data area within the S7 library

➢ in which repeatedly required data (normally unchanged data) can
be stored,

➢ in which protocol-specific data can be stored or saved during
operation,

➢ in which identifiers of the last error to occur are saved,

➢ that can be read out and modified using functions such as
's7_mini_db_get()', 's7_mini_db_set()' etc.

The S7 library allows operation with default setting for the trace, the
establishment of S7 connections (active and passive), for uploading an
OD from the partner station etc. These default settings are adequate
for the majority of applications but can be modified and adapted to
special requirements at any time by calling the mini-DB.

The use of a mini-DB in the S7 library has the following advantages for
the user:

➢ The programming interface can be simplified to a few transfer
parameters. Values required (possibly always exactly the same
values) can be read from the mini-DB. This increases the
performance and simplifies the handling of the SAPI-S7
programming interface.

➢ The high degree of flexibility provided by the S7 protocol is
retained. Changes in the settings and adapting them to the
user’s requirements are possible at any time by calling a mini-DB.

Purpose of the
Mini-DB

Advantages of the
Mini-DB

S7 Programming Interface C79000-G8976-C077-07

24

2.8 Multi-CP and Multi-User Operation

Multi-CP operation means the capability of addressing

➢ several CPs

➢ the partner stations networked with the various CPs

In multi-user operation, the services and resources of a computer can
be used by several applications without interfering with each other.

The main condition for using multi-CP and multi-user operation is that
the requests and confirmations as well as indications and responses
must be unambiguously assigned to each other and to the
corresponding application.

This condition is achieved by a logon function implemented on the
SAPI-S7 programming interface. There is a logon for

➢ a CP and

➢ for a VFD of the CP.

The VFD provides VFD-specific S7 connections for the application
(Figure 2.5). A further logon for the VFD cannot be made either by the
same application or by a different application although multiple logons
for a CP are possible.

What is Multi-CP
Operation?

What Does Multi-
User Operation
Mean?

Requirements

C79000-G8976-C077-07 S7 Programming Interface

25

2.8.1 Assigning VFDs and the S7 Connection List

An application can log on at several VFDs on one or more CPs. multi-
CP and multi-user operation is, however, only possible when a VFD
can be assigned unequivocally to an application after the logon (1:n
assignment). When the application logs on at the CP and the selected
VFD, the connections assigned to the VFD during configuration are
available from the S7 connection list of the CP. For example, in the
following diagram, communication is possible on connections 'C1', 'C2'
and 'C3' after a logon at 'CP 1' and 'VFD 1'.

CP 1 CP 2

C6 C7 C8

S7 connection listS7 connection list

C1 C2 C3 C4 C5

Application 3Application 2

VFD 3 VFD 4

Application 1

VFD 1 VFD 2

Figure 2.5: Assignment of the S7 Connection List with a Logon at VFD 1 on CP 1

Relationship
between VFDs and
the S7 Connection
List

S7 Programming Interface C79000-G8976-C077-07

26

2.9 Installation and Requirements for Operation

The procedure for installation is described in the documentation for the
particular products and is not part of this manual.

To operate the S7 library, the communication system must be ready for
operation, for example, VFDs and S7 connections must be configured.
These tasks are not supported by the SAPI-S7 programming interface.

Installation

Requirements for
Operation

C79000-G8976-C077-07 S7 Programming Interface

27

3 The Programming Interface

This section introduces you to the practical use of the S7 programming interface for the
'C' programming language.

How to use the calls on the programming interface that provide you with access to S7
services and objects is described in the subsections based on example programs. The
examples

➢ clearly describe the order that must be maintained for successful
communication,

➢ introduce the programming interface step by step,

➢ supplement each other whereby new functions or modified program segments of
the previous example are printed in bold face,

➢ implement an error handling routine that you can adapt to your own
requirements.

The S7 functions are not called directly in the example programs but are separated into
their own functions (for example 'my_init()' for 's7_init()'). This is not mandatory, but
makes the program more suitable for debugging, error output and subsequent
extensions.

At the end of this chapter you will be familiar with the following:

➢ Which services are available on a host system,

➢ Which services are required for which tasks,

➢ Which communications sequences occur as a result of a service request and
service confirmation,

➢ Which call and sequence structure exists generally on the S7 programming
interface.

You will then be familiar with the basics of the S7 programming interface and be in a
position to start programming a SAPI-S7 application.

S7 Programming Interface C79000-G8976-C077-07

28

3.1 Overview of the Programming Interface

The S7 programming interface provides the following services:

➢ Administrative Services

➢ Receive Service

➢ S7 Connection Management Services

➢ Variable Services

➢ Block-oriented Services

➢ Message Services

➢ VFD Services

➢ Diagnostic Services for Fault-Tolerant Connections

Distribution of the
Services

C79000-G8976-C077-07 S7 Programming Interface

29

3.1.1 Administrative Services

The administrative services provide functions for reading out
configuration information and for logging on and logging off at the
communications system. There are also functions that provide the
references for symbolic S7 connection names:

The following table provides you with an overview of the administrative
services. For a more detailed description, refer to Section 3.2 page 43.

s7_get_device() With this function, the user program
can query the names of all the
installed CPs.

s7_get_vfd() With this function, the user program
can query all the configured VFDs of
a CP that were assigned
connections.

s7_init() With this function, the user program
logs on at the communications
system.

s7_get_cref() This function provides a reference to
a symbolic S7 connection name.
This identifier selects the real
connection on the network and is
easier to use than the symbolic
name.

s7_get_conn() This function returns all symbolic S7
connection names of the logged on
VFD and their references.

s7_shut() With this function, the user program
logs off at the communications
system.

Description

S7 Programming Interface C79000-G8976-C077-07

30

3.1.2 Receive Service

Service for fetching messages.

For a detailed description, refer to Section 3.3.1 page 55.

s7_receive() With this function, the user program
fetches received messages from the
communications system.

3.1.3 S7 Connection Management Services

The S7 connection management services are required to establish and
close S7 connections.

The following table provides you with an overview of the connection
management services for active connection establishment. For a more
detailed description refer to Section 3.4.1 page 63.

s7_initiate_req() This function passes a request for
the active establishment of an S7
connection to the communications
system.

s7_get_initiate_cnf() This function receives the result of
the above call.

Description

Description

Active Connection
Establishment

C79000-G8976-C077-07 S7 Programming Interface

31

The following table provides you with an overview of the connection
management services for passive connection establishment. For a
detailed description refer to Section 3.4.3 page 65.

s7_await_initiate_req() This function prepares the
communications system to receive a
passive S7 connection
establishment request.

s7_get_await_initiate_cnf() This function receives the result of
the above call.

s7_get_initiate_ind() This function completes the
reception of an initiate indication.

s7_initiate_rsp() The connection request can be
accepted or rejected with this
function.

The following table provides you with an overview of the connection
management services for aborting a connection. For a detailed
description refer to Section 3.4.7 page 70.

s7_abort() This function aborts an established
S7 connection.

s7_get_abort_ind() This function completes the
reception of an abort indication.

Passive
Connection
Establishment

Aborting a
Connection

S7 Programming Interface C79000-G8976-C077-07

32

3.1.4 Variable Services

The variable services contain functions for reading and writing one or
more variables.

The following table provides you with an overview of the variable
services for reading and writing a variable. For a detailed description
refer to Section 3.5.1 page 79.

s7_read_req() This function initiates a read
variable job.

s7_get_read_cnf() This function receives the value
of the variable that was read.

s7_write_req() This function initiates a write
variable job

s7_get_write_cnf() This function receives the result
of the above call.

The following table provides you with an overview of the variable
services for reading and writing more than one variable. For a detailed
description refer to Section 3.5.6 page 90.

s7_multiple_read_req() This function initiates a job to
read multiple variables.

s7_get_multiple_read_cnf() This function receives the value
of the variables that were read.

s7_multiple_write_req() This function initiates a job to
write multiple variables.

s7_get_multiple_write_cnf() This function receives the result
of the above call.

Description

Reading and
Writing a Variable

Reading and
Writing more than
One Variable

C79000-G8976-C077-07 S7 Programming Interface

33

The following table provides you with an overview of the variable
services for cyclic reading with multiple calls. For a detailed description
refer to Section 3.5.10 page 101.

s7_cycl_read_init_req() This function instructs the server
to prepare for the cyclic reading
of variables.

s7_get_cycl_read_init_cnf() This function receives the result
of the above call.

s7_cycl_read_start_req() This function instructs the server
to start the cyclic reading of
variables.

s7_get_cycl_read_start_cnf() This function receives the result
of the above call.

The following table provides you with an overview of the variable
services for receiving data cyclically. For a detailed description refer to
Section 3.5.14 page 107.

s7_get_cycl_read_ind() This function receives the data
sent by the server.

The following table provides you with an overview of the variable
services for stopping and aborting cyclic reading. For a detailed
description refer to Section 3.5.15 page 109.

s7_get_cycl_read_abort_ind() This function completes the
reception of a cyclic read abort
indication.

s7_cycl_read_stop_req() This function instructs the server
to stop cyclic reading of
variables.

s7_get_cycl_read_stop_cnf() This function receives the result
of the above call.

s7_cycl_read_delete_req() This function stops cyclic reading
and logs off at the server.

s7_get_cycl_read_delete_cnf() This function receives the result
of the above call.

Initiating Cyclic
Reading with
Multiple Calls

Receiving Data
Cyclically

Stopping and
Aborting Cyclic
Reading

S7 Programming Interface C79000-G8976-C077-07

34

The following table provides you with an overview of the variable
service "initiate cyclic reading with one call“. For a detailed description
refer to Section 3.5.20 page 114.

s7_cycl_read() This function instructs the
server to prepare for cyclic
reading of variables and to start
reading immediately.

Initiating Cyclic
Reading with one
Call

C79000-G8976-C077-07 S7 Programming Interface

35

3.1.5 Block-Oriented Services

The block-oriented services provide functions for data exchange of up
to 65534 bytes. With these services, the connection must be
configured at both ends (STEP 7, COML S7).

The following table provides an overview of block-oriented services.
For a detailed description refer to Section 3.6.1 page 123.

s7_bsend_req() With this function, a client
application can send up to
64 Kbytes of data to a remote
station.

s7_get_bsend_cnf() With this function, the result of
the BSEND job is received.

s7_brcv_init() This function provides a buffer
dynamically to be ready to
receive BSEND data sent by
the remote station.

s7_get_brcv_ind() This function copies the user
data sent by the partner to the
specified memory area.

s7_brcv_stop() This function releases the
buffers occupied by
s7_brcv_init, in other words,
communication with the remote
BSEND is no longer possible.

Description

S7 Programming Interface C79000-G8976-C077-07

36

3.1.6 Message Services

With these services, messages can be received from SIMATIC S7
programmable controllers and further processed.

The SCAN service belongs to the configured or symbol-related
message services, the ALARM service belongs the programmed or
block-related message services. For a detailed description refer to
Section 3.7 page 131.

The incoming frames have a time stamp, the message number (event
ID) as well as the event or acknowledgment status of the event. As an
option, associated values can be sent with the messages.

The following table provides an overview of the message services.

s7_msg_initiate_req() With this function, a client
application informs the remote
station that it wants to receive
messages.

s7_get_msg_initiate_cnf() The result of the
s7_msg_initiate_req job is
received with this function.

s7_msg_abort_req() With this function, a client
application informs the remote
station that it does not want to
receive any more messages.

s7_get_msg_abort_cnf() The result of the
s7_get_msg_abort_cnf job is
received with this function.

s7_get_scan_ind() This function receives the data
sent by the remote station if the
s7_receive call produced the
"S7_SCAN_IND“ indication.

s7_get_alarm_ind() This function receives the data
sent by the remote station if the
s7_receive call produced the
"S7_ALARM_IND“ indication.

Description

C79000-G8976-C077-07 S7 Programming Interface

37

3.1.7 VFD Services

The following table provides an overview of the VFD services. For a
detailed description refer to Section 3.8.1 page 156.

s7_vfd_state_req() This function queries the
device/user status.

s7_get_vfd_state_cnf() This function receives the
device/user status.

Description

S7 Programming Interface C79000-G8976-C077-07

38

3.1.8 Diagnostic Services for Fault-Tolerant Connections

A fault-tolerant connection is the communication connection between a
fault-tolerant system and another fault-tolerant or standard system.

In contrast to a standard connection, a fault-tolerant connection
consists of at least two redundant connections (depending on the
configuration, there can be up to four redundant connections).

The currently active connection is known as the productive connection
and the other connection or connections as the standby connection(s).

With the SAPI-S7 functions, not only standard S7 connections but also
fault-tolerant connections to SIMATIC S7 H systems can be
established provided that S7 H CPUs and approved SIMATIC NET
products are used. The fault-tolerant connections must be configured
with STEP 7, downloaded to the SIMATIC S7 PLC and copied to the
PC in the form of an XDB file.

The following table provides you with an overview of the diagnostic
services for fault-tolerant connections. For a detailed description refer
to Section 3.9 page 159.

s7_diag_init Logon for diagnostics
Diagnostic messages are
received.

s7_get_diag_ind Fetch diagnostic data

s7_diag_stop Logoff for diagnostics
No more diagnostic messages
are received.

The diagnostic services are also available on standard connections,
but are less useful.

Definition

Description

C79000-G8976-C077-07 S7 Programming Interface

39

3.2 Administrative Services

The following example describes the administrative services for
logging on ('s7_init()') and logging off ('s7_shut()') an S7 application
with the communications system.. Communication with a local CP and
therefore also with a remote CP is only possible after a successful
logon. When an application logs on at the local VFD, the VFD-specific
resources are reserved for the application so that before the program is
terminated, every logon must also be terminated by a logoff.

The transfer parameters required to log on such as the CP name and
the VFD name are queried by the communications system using the
functions 's7_get_device()' or 's7_get_vfd()'.

Description of the
Example

S7 Programming Interface C79000-G8976-C077-07

40

Example

#include "sapi_s7.h"

/* prototypings */
static void my_exit(ord32 cp_descr,char *msg,int32 ret);
static void my_get_cref(ord32 cp_descr,ord16 *cref_ptr);
static void my_init(ord32 *cp_descr_ptr);
static void my_shut(ord32 cp_descr);

/* exit application */
static void my_exit(ord32 cp_descr,char *msg,int32 ret)
{

printf("\n%s = %lx",msg,ret);
my_shut(cp_descr);

}

/* get reference for connection 'TEST' */
static void my_get_cref(ord32 cp_descr,ord16 *cref_ptr)
{ int32 ret;

ret=s7_get_cref(cp_descr,“TEST“,cref_ptr);
if(ret!=S7_OK)
{

my_exit(cp_descr,“Error s7_get_cref“,ret);
}

}

/* initialize s7 */
static void my_init(ord32 *cp_descr_ptr)
{ int32 ret;

char vfd_name[S7_MAX_NAMLEN+1];
char dev_name[S7_MAX_DEVICELEN+1];

 ord16 number;

/* only use first device */
 ret=s7_get_device(0,&number,dev_name);

if((ret!=S7_OK)||(number==0))
 { /* something has gone wrong */

printf("\ns7_get_device = %lx, number = %d", ret,number);
exit(-1);

}

/* only use first vfd of first device */
ret=s7_get_vfd(dev_name,0,&number,vfd_name);
if((ret!=S7_OK)||(number==0))

 { /* something has gone wrong */
printf("\ns7_get_vfd = %lx, number = %d", ret,number);
exit(-2);

}

/* initialize s7 */
ret=s7_init(dev_name,vfd_name,cp_descr_ptr);
if(ret!=S7_OK)
{ /* something has gone wrong */

printf("\ns7_init = %lx",ret);
exit(-3);

}
}

C79000-G8976-C077-07 S7 Programming Interface

41

/* end communication */
static void my_shut(ord32 cp_descr)
{ int32 ret;

ret=s7_shut(cp_descr);
if(ret!=S7_OK)
{ /* error has occurred -> exit */

printf("\ns7_shut = %lx",ret);
}

/* no error has occurred */
}

/* main */
void main(void)
{ ord32 cp_descr;

ord16 cref;

/* initialize s7 */
my_init(&cp_descr);

/* get reference for connection 'TEST' */
my_get_cref(cp_descr,&cref);

/* end communication */
my_shut(cp_descr);

}

S7 Programming Interface C79000-G8976-C077-07

42

SAPI-S7User program

s7_get_device()

Remote partner

= S7_OK,

s7_get_vfd()

 number!=0

s7_init()

= S7_OK

s7_shut()

= S7_OK

 number!=0

= S7_OK,

s7_get_cref()

= S7_OK

Figure 3.1: Flowchart of the Example

Flowchart

C79000-G8976-C077-07 S7 Programming Interface

43

3.2.1 s7_get_device

With this call, the user program can query all the configured names of
the communications processors installed in the communications
system. The names are relevant for logging on with 's7_init()'.

int32 s7_get_device(

ord16 index, /* In call */
ord16 *number_ptr, /* Returned */
char *dev_name /* Returned */

)

index The 'index' parameter selects one of the existing CPs
that are numbered continuously starting at 0.

number_ptr Address of a variable of the type 'ord16' provided by
the user program. The number of installed CPs is
returned here.

dev_name Start address of a memory area provided by the user
program in which the configured CP name is entered.
The memory area should be at least
(S7_MAX_DEVICELEN + 1) bytes long for the
maximum S7_MAX_DEVICELEN bytes long CP
name including the string end identifier.

To query all CPs, it is best to use a program loop. The 'index'
parameter is used as the loop variable and runs from 0 to
'*number_ptr-1'. The '*number_ptr' has the default 1.

Description

Declaration

Parameters

Querying All CPs

S7 Programming Interface C79000-G8976-C077-07

44

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Return Values

C79000-G8976-C077-07 S7 Programming Interface

45

3.2.2 s7_get_vfd

With this call, the user program can query all the configured VFDs of a
communications processor that were assigned connetions. The VFD
names are relevant for the logon with 's7_init()'.

int32 s7_get_vfd(

char *dev_name, /* In call */
ord16 index, /* In call */
ord16 *number_ptr, /* Returned */
char *vfd_name /* Returned */

)

dev_name Configured name of the communications processor
via which you want to communicate. For this
parameter a CP name read out with 's7_get_device()'
is usually used. It must match a configured CP name
(for example 'CP_L2_1:').

index The 'index' parameter selects one of the existing CPs
that are numbered continuously starting at 0.

number_ptr Address of a variable of the type 'ord16' provided by
the user program. The number of configured VFDs is
returned here.

vfd_name Start address of a memory area provided by the user
program in which the configured VFD name is
entered. The memory area should be at least
(S7_MAX_NAMLEN + 1) bytes long for the
maximum S7_MAX_NAMLEN byte long VFD name
including the string end identifier.

To query all VFDs, it is best to use a program loop. The 'index'
parameter is used as the loop variable and runs from 0 to
'*number_ptr-1'. The '*number_ptr' has the default 1.

Description

Declaration

Parameters

Querying All VFDs

S7 Programming Interface C79000-G8976-C077-07

46

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Return Values

C79000-G8976-C077-07 S7 Programming Interface

47

3.2.3 s7_init

With this call, the user program logs on at a VFD of an underlying
communications system.

As input parameters, the user program specifies the configured name
of the communications processor via which communication will take
place and the configured name of the VFD whose resources and
services will be used.

The user program receives a descriptor 'cp_descr' that must be
specified for all subsequent calls as an addressing parameter for the
selected CP and VFD until the application logs off.

When the program logs on, the configuration information (for example,
the list of all S7 connections) is read from a file with a name derived
from the name of the CP as follows: The colon completing the CP
name is removed and the name extension '.LDB' is added. This
assumes that the file exists in the current working directory. As an
alternative, the name of the configuration file can also be assigned
(using any name) in the environment variable.

If several VFDs are being used at the same time in one or more
communications processors by one application, a corresponding
number of 's7_init()' calls are necessary.

int32 s7_init(

char *cp_name, /* In call */
char *vfd_name, /* In call */
ord32 *cp_descr_ptr /* Returned */

)

Description

Declaration

S7 Programming Interface C79000-G8976-C077-07

48

cp_name Configured name of the communications
processor with which communication will take
place. To address a specific module, the user
program uses a CP name configured with the
SIMATIC NET installation tool (for example
'CP_L2_1:'). Normally a CP name read out with
's7_get_device()' is used.

vfd_name Configured name of the local VFD at which the
application logs on. To address a particular VFD,
the user program uses a VFD name specified with
the SIMATIC NET configuration tool. By selecting
the VFD, the configured S7 connections are also
selected. Here, a VFD name read out with
's7_get_vfd()' is normally used.

cp_descr_ptr Address of a variable of the type 'ord32' provided
by the user program. Here, a descriptor for
addressing the selected communications
processor and VFD is entered. This parameter
must be used for further communication via the
selected communications processor and VFD.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

49

3.2.4 s7_get_cref

From the communication system, the S7 application only sees the
symbolic name of the S7 connection that is cumbersome during
operation. For this reason, the application uses the 's7_get_cref()' call
to obtain a reference to a symbolic connection name.

int32 s7_get_cref(

ord32 cp_descr, /* In call */
char *conn_name, /* In call */
ord16 *cref_ptr /* Returned */

)

cp_descr Handle as return value of the 's7_init()' call.

conn_name Symbolic name of the S7 connection on which
communication will take place.

cref_ptr Address of a variable of the type 'ord16' provided
by the user program. The connection reference is
returned here.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

50

3.2.5 s7_get_conn

With this call, the user program can query all the configured S7
connections of a VFD and their references on a communications
processor. This identifier selects the real connection on the network
and is easier to use than the symbolic name.

int32 s7_get_conn(

ord32 cp_descr, /* In call */
ord16 index, /* In call */
ord16 *number_ptr, /* Returned */
ord16 *cref_ptr, /* Returned */
char *conn_name /* Returned */

)

cp_descr Handle as return value of the 's7_init()' call.

index The 'index' parameter selects one of the existing S7
connections that are numbered continuously starting
at 0.

number_ptr Address of a variable of the type 'ord16' provided by
the user program. The number of configured S7
connections is returned here.

cref_ptr Address of a variable of the type 'ord16' provided by
the user program. The connection reference is
returned here.

conn_name Start address of a memory area provided by the user
program in which the configured S7 connection name
is entered. The memory area should be at least
(S7_MAX_NAMLEN + 1) bytes long for the
maximum S7_MAX_NAMLEN byte long connection
name including string end identifier.

To query all S7 connections, it is best to use a program loop. The
'index' parameter is used as the loop variable and runs from 0 to
'*number_ptr-1'. The '*number_ptr' has the default 1.

Description

Declaration

Parameters

Querying all S7
Connections

C79000-G8976-C077-07 S7 Programming Interface

51

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Return Values

S7 Programming Interface C79000-G8976-C077-07

52

3.2.6 s7_shut

With the 's7_shut()' call, the application cancels the logon ('s7_init()') at
the communications processor identified by the CP descriptor. All the
resources of the communications system are returned and established
connections are terminated. This call must therefore be made once for
every logon before the program is terminated.

int32 s7_shut(

ord32 cp_descr /* In call */

)

cp_descr Handle as return value of the 's7_init()' call. This
identifies the logon to be canceled.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

53

3.3 Receive service

To extend the example in Section 3.2 the receive call 's7_receive()' is
used to check whether a message exists. In this simple case, a
message is not expected ('S7_NO_MSG' as return value); the example
is simply in preparation for programs coming later.

Example

:
:
/* additional prototypings */
static void my_receive(ord32 cp_descr,int32 last_event_expected);

/* receive any message from communication system */
static void my_receive(ord32 cp_descr,int32 last_event_expected)
{ ord16 cref,orderid;

int32 ret;

do
{ ret=s7_receive(cp_descr,&cref,&orderid);

switch(ret)
{ case S7_NO_MSG:

break;
default:

s7_discard_msg();
printf("\nEvent unexpected: %lx", ret);
break;

}
} while(ret!=last_event_expected);

}

/* main */
void main(void)
{ ord32 cp_descr;

ord16 cref;

/* initialize s7 */
my_init(&cp_descr);

/* get reference for connection 'TEST' */
my_get_cref(cp_descr,&cref);

/* receive message */
my_receive(cp_descr,S7_NO_MSG);

/* end communication */
my_shut(cp_descr);

}

Description of the
Example

S7 Programming Interface C79000-G8976-C077-07

54

SAPI-S7User program

s7_receive()

Remote partner

= S7_NO_MSG

Figure 3.2: Flowchart of the Example

Flowchart

C79000-G8976-C077-07 S7 Programming Interface

55

3.3.1 s7_receive

The receive function of the S7 library has the central task of analyzing
events received from the underlying communications system and to
report these directly to the application without any further processing.

The 's7_receive()' call is absolutely necessary when the client

➢ has sent acknowledged calls and is waiting for the
acknowledgment from the server,

➢ wishes to receive unacknowledged messages from the network,

➢ has sent sequential jobs (for example establishing an S7
connection) to ensure processing of the service sequence until it
is completed.

The return value of the 's7_receive()' function provides a service
identifier when a message is received. This identifies the type of
service of the received response (for example 'S7_READ_CNF' when
a variable was read). After receiving a message with 's7_receive()', the
call for the corresponding processing function is mandatory (for
example 's7_get_read_cnf()'). Further receive calls are otherwise
rejected with an error message.

int32 s7_receive(

ord32 cp_descr, /* In call */
 ord16 *cref_ptr, /* Returned */

ord16 *orderid_ptr /* Returned */

)

Description

Declaration

S7 Programming Interface C79000-G8976-C077-07

56

cp_descr Handle as return value of the 's7_init()' call. This
identifies the communications processor and the
VFD via which an event will be fetched.

cref_ptr Address of a variable of the type 'ord16' provided
by the user program. The reference of the S7
connection on which an indication or a
confirmation was received is entered here. This
corresponds to the S7 connection reference with
which the job was sent.

orderid_ptr Address of a variable of the type 'ord16' provided
by the user program. The job identifier of the
received acknowledgment is entered here. This
identifies the previously sent job for the user
program. The order ID is irrelevant for
unacknowledged services or services to establish
an S7 connection and is assigned a default value.

Parameters

C79000-G8976-C077-07 S7 Programming Interface

57

S7_NO_MSG No message was received.

S7_UNKOWN_MSG An invalid message was received; error on the
connection partner or a service not supported
in this version of the programming interface.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the
execution of the requested service. In this
case, however, the error does not allow the
service to be repeated. Here, steps must be
taken to eliminate the error such as assigning
new parameters for the call.

Apart from these values, further service
identifiers such as 'S7_READ_CNF' are also
returned depending on the message received.
You will find the definitions in the 'SAPI_S7.H'
file.

If unexpected values occur the s7_discard_msg function must be
called (for example, in the default branch of the corresponding switch
instruction).

In single-tasking operating systems such as MS-DOS, the receive
function is polled. In multitasking operating systems such as Windows,
it is possible to include the receive function at a central waiting point
allowing all the events to be received.

Return Values

Type of Call

S7 Programming Interface C79000-G8976-C077-07

58

3.4 S7 connection management services

To extend the example from Section 3.3, an S7 connection with the
symbolic name 'TEST' is established ('s7_initiate_req()') and then
aborted ('s7_abort()') after the confirmation ('s7_get_initiate_cnf()') is
received.

Example :
:
/* additional prototypings */
static void my_abort(ord32 cp_descr,ord16 cref);
static void my_get_abort_ind(ord32 cp_descr);
static void my_get_initiate_cnf(ord32 cp_descr);
static void my_initiate_req(ord32 cp_descr,ord16 cref);

/* abort connection */
static void my_abort(ord32 cp_descr,ord16 cref)
{ int32 ret;

if((ret=s7_abort(cp_descr,cref))!=S7_OK)
{

my_exit(cp_descr,"Error s7_abort",ret);
}

}

/* get abort indication */
static void my_get_abort_ind(ord32 cp_descr)
{ int32 ret;

if((ret=s7_get_abort_ind())!=S7_OK)
{

my_exit(cp_descr,
}

}

/* get initiate confirmation */
static void my_get_initiate_cnf(ord32 cp_descr)
{ int32 ret;

if((ret=s7_get_initiate_cnf())!=S7_OK)
{

my_exit(cp_descr,
}

}

/* initiate connection "TEST" */
static void my_initiate_req(ord32 cp_descr,ord16 cref)
{ int32 ret;

if((ret=s7_initiate_req(cp_descr,cref))!=S7_OK)
{

my_exit(cp_descr,"Error
s7_initiate_req",ret);

}
}

Description of the
Example

C79000-G8976-C077-07 S7 Programming Interface

59

/* receive any message from communication system */
static void my_receive(ord32 cp_descr,int32
last_event_expected)
{ ord16 cref,orderid;

int32 ret;

do
{ ret=s7_receive(cp_descr,&cref,&orderid);

switch(ret)
{

:
:
case S7_INITIATE_CNF:

my_get_initiate_cnf(cp_descr);
my_abort(cp_descr,cref);
break;

case S7_ABORT_IND:
my_get_abort_ind(cp_descr);
break;

default:
printf("Event

unexpected", ret);
break;

}
} while((ret!=last_event_expected)&&

}

/* main */
void main(void)
{ ord32 cp_descr;

ord16 cref;

/* initialize s7 */
my_init(&cp_descr);

/* get reference for connection 'TEST' */
my_get_cref(cp_descr,&cref);

/* initiate connection */
my_initiate_req(cp_descr,cref);

/* receive initiate confirmation */
my_receive(cp_descr,S7_INITIATE_CNF);

/* end communication */
my_shut(cp_descr);

}

S7 Programming Interface C79000-G8976-C077-07

60

SAPI-S7User program

s7_initiate_req()

Remote partner

= S7_OK

s7_receive()

= S7_NO_MSG

s7_receive()

Repeat several times

= S7_INITIATE_CNF

s7_get_initiate_cnf()

= S7_OK

S7 connection establishment
request

Fetch confirmation

Message (confirmation) there!

Repeat several times

Figure 3.3: Flowchart for Active S7 Connection Establishment

Flowchart for
Active Connection
Establishment

C79000-G8976-C077-07 S7 Programming Interface

61

SAPI-S7User program

s7_await_initiate_req()

Remote partner

= S7_OK

s7_receive()

= S7_NO_MSG

Repeat several times

Preparing for S7 connection
establishment

Fetch confirmation

Message (confirmation) there!

Repeat several times

s7_receive()

= S7_AWAIT_INITIATE_CNF

s7_get_await_initiate_cnf()

= S7_OK

Figure 3.4: Flowchart for Preparing for Passive S7 Connection Establishment

Flowchart for
Preparing for
Passive
Connection
Establishment (not
part of example)

S7 Programming Interface C79000-G8976-C077-07

62

SAPI-S7User program Remote partner

s7_receive()

= S7_INITIATE_IND

s7_get_initiate_ind()

= S7_OK

Fetch indication

Message (indication) there!

Repeat several times Repeat several times

s7_receive()

= S7_NO_MSG

Initiates S7 connection
establishment

s7_initiate_rsp()

= S7_OK

Figure 3.5: Flowchart for Passive S7 Connection Establishment

Flowchart for
Passive
Connection
Establishment (not
part of example)

C79000-G8976-C077-07 S7 Programming Interface

63

3.4.1 s7_initiate_req

The 's7_initiate_req()' call initiates the establishment of an S7
connection. The initiative for establishing a connection comes from the
user program, the required parameters are read from the mini-DB.
They can be read, modified and adapted to the current requirements
by the user program.

On the partner (passive side), the configured capability parameters are
compared with the received values of the job. The capability of the S7
connection (send credit, receive credit, PDU size..) that can be
implemented is determined by the lowest values of these parameters
on either station.

int32 s7_initiate_req(

ord32 cp_descr, /* In call */
ord16 cref /* In call */

)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference to the S7 connection that will be
established.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

64

3.4.2 s7_get_initiate_cnf

The 's7_get_initiate_cnf()' call, receives the result of the S7 connection
establishment.

With the 's7_receive()' call, the user program receives the
'S7_INITIATE_CNF' confirmation if the establishment request was
processed. Following this, the corresponding processing function
's7_get_initiate_cnf()' must be called for internal processing in the
library.

The negotiated capability parameters (send credit, receive credit, PDU
length) are entered in the mini-DB and can then be read out with mini-
DB calls.

int32 s7_get_initiate_cnf(void)

None

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

65

3.4.3 s7_await_initiate_req

The 's7_await_initiate_req()' call prepares the communications system
for connection requests from the remote partner. The initiative for
establishing the connection comes from the partner station and the
required parameters are read from the mini-DB. They can be read,
modified and adapted to the current requirements by the user program.

int32 s7_await_initiate_req(

ord32 cp_descr, /* In call */
ord16 cref /* In call */

)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference to the S7 connection that will be
established.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

66

3.4.4 s7_get_await_initiate_cnf

The 's7_get_await_initiate_cnf()' call receives the result of the
's7_await_initiate_req()' job .

With the 's7_receive()' call, the user program receives the confirmation
'S7_AWAIT_INITIATE_CNF' if the communications system was
prepared for a connection establishment. Following this, the
corresponding processing function 's7_get_initiate_cnf()' must be
called for internal processing in the library.

int32 s7_get_await_initiate_cnf(void)

None

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

67

3.4.5 s7_get_initiate_ind

The 's7_get_initiate_ind()' call receives a request to establish an S7
connection from the remote side.

With the 's7_receive()' call , the user program receives the
'S7_INITIATE_IND' indication if the remote partner wants to establish
an S7 connection. Following this, the corresponding processing
function 's7_get_initiate_ind()' must be called for internal processing in
the library.

The 's7_get_initiate_ind()' call enters the capability parameters of the
S7 connection in the mini-DB. Following this, further events can be
received from the communication system (for example via other S7
connections). An acceptance or rejection of the establishment request
can be delayed with the 's7_initiate_rsp()' call.

By dividing the passive establishment into two parts the following is
possible:

➢ With a simple call structure, the capability parameters can be
checked before the connection is established and

➢ The establishment request can be passed on to a different
application that decides whether or not the connection is
established (the application has gateway functions).

int32 s7_get_initiate_ind(void)

None

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

68

3.4.6 s7_initiate_rsp

Using the 's7_initiate_rsp()' call, the user program decides about a
passive establishment request.

The passive establishment of an S7 connection is in two parts as
follows:

➢ With the 's7_get_initiate_ind()' call, the capability parameters are
entered in the mini-DB and can be read out. It is then possible to
receive further events from the communications system (for
example via other S7 connections).

➢ The establishment request is granted or rejected with the
's7_initiate_rsp()' call.

int32 s7_initiate_rsp(

ord32 cp_descr, /* In call */
ord16 cref, /* In call */
ord16 accept /* In call */

)

cp_descr Descriptor of the CP with which the request to
establish an S7 connection was indicated.

cref Reference to the S7 connection that will be
established.

accept The establishment request can be accepted with
this parameter ('accept=S7_ACCEPT') or rejected
('accept= S7_NON_ACCEPT').

Description

Declaration

Parameters

C79000-G8976-C077-07 S7 Programming Interface

69

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Return Values

S7 Programming Interface C79000-G8976-C077-07

70

3.4.7 s7_abort

With the 's7_abort()' call, an existing S7 connection is aborted without
confirmation and without any negotiation.

Fetching a response with 's7_receive()' is unnecessary since this is an
unacknowledged service. You should also bear in mind that
acknowledgments may still arrive later or may not be received at all.

int32 s7_abort(

ord32 cp_descr, /* In call */
ord16 cref /* In call */

)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference of the S7 connection to be aborted.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

71

3.4.8 s7_get_abort_ind

The 's7_get_abort_ind()' call receives the abort of an S7 connection by
a remote station or the CP.

With the 's7_receive()' call , the user program receives the
'S7_ABORT_IND' indication from the remote partner station or from
the subordinate communications processor that the S7 connection was
aborted. Following this, the corresponding processing function
's7_get_abort_ind()' must be called for internal processing in the
library.

In S7, aborting an S7 connection is an unacknowledged service. Jobs
that have not yet been acknowledged on this S7 connection will no
longer be confirmed.

int32 s7_get_abort_ind(void)

None

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

72

3.5 Variable Services

To extend the example from Section 3.4, a job to read a variable
cyclically ('s7_cycl_read()') is sent on the established S7 connection.
The received data are copied to the user memory with the function
's7_get_cycl_read_ind()'. The cycle is completed with
's7_cycl_read_delete_req()'.

S7 variables are addressed symbolically. This type of access is
oriented on the notation of S7 tools. You do not need to learn different
notations for variable addresses.

Examples:

DB5,X12.1 data block 5, data byte 12, data bit 1

DB5,B12 data block 5, data byte 12

DB5,W10 data block 5, data word 10

MB9,3 3 memory bytes starting at memory byte 9

DB5,W10,9 9 words in data block 5 starting at data word 10

Syntax:

The syntax is defined as follows (upper and lower case irrelevant):

DB<no>, <typ> <index> ,<number>

DI<no>, <index>.<bitnr>

<range>

mandatory optional mandatory optional

Parameter Description:

DB or DI data block or instance block

<no> number of the data block or instance block

Description of the
Example

Symbolic Variable
Addressing

C79000-G8976-C077-07 S7 Programming Interface

73

<range> Q output

C Counter - Detailed information on this
parameter can be found below in a
separate paragraph.

I input

M memory bit

PQ peripheral output

PI peripheral input

T Timer - Detailed information on this
parameter can be found below in a
separate paragraph.

C Counter - Detailed information on this
parameter can be found below in a
separate paragraph.

<typ> B byte (unsigned), 1 byte

BYTE byte (unsigned), 1 byte

CHAR byte (signed), 1 byte

D double word (unsigned), 4 byte

DINT double word (signed), 4 byte

DWORD double word (unsigned), 4 byte

INT word (signed), 2 byte

REAL floating point, 4 byte

W word (unsigned), 2 byte

WORD word (unsigned), 2 byte

X byte for area DB and DI

All data blocks in S7 are byte-oriented (S5 is word-
oriented).

Example:
DB7,W10,5 DB8,REAL10,2

...
W10 10 11 REAL10 10 11
W12 12 13 12 13
W14 14 15 REAL14 14 15
W16 16 17 16 17
W18 18 19

... ...

<index> element number relative to start of block.

<bitno> bit within the element number.

<number> number of variables of one type, whose values are
addressed starting at <address> in the <area>.

S7 Programming Interface C79000-G8976-C077-07

74

The following table illustrates the meaning of the individual bits of the
result data of type 'T' of the 'area' parameter.

Bit no. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Meaning 0 0 x x t t t t t t t t t t t t

Symbol '0' not relevant

Symbol 'x' time resolution

The table below explains the meaning of the
possible values of bits 13 and 12.

Bit 13 and 12 Time resolution in seconds

00 0,01

01 0,1

10 1

11 10

Symbol 't' BCD-coded time value (0 to 999)

The following table illustrates the meaning of the individual bits of the
result data of type 'C' or 'Z' of the 'area' parameter.

Bit no. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Meaning 0 0 0 0 t t t t t t t t t t t t

Symbol '0' not relevant

Symbol 't' BCD-coded counter value (0 to 999)

Explanation of the
Type 'T' of the
'Area' Parameter

Explanantions of
the type 'C' or 'Z' of
the 'area'
parameter

C79000-G8976-C077-07 S7 Programming Interface

75

Example

:
:
/* additional prototypings */
static void my_cycl_read(ord32 cp_descr,ord16 cref,ord16 orderid);
static void my_cycl_read_delete_req(ord32 cp_descr,

ord16 cref,
ord16 orderid);

static void my_get_cycl_read_delete_cnf(ord32 cp_descr);
static void my_get_cycl_read_ind(ord32 cp_descr);

/* start cyclic read */
static void my_cycl_read(ord32 cp_descr,ord16 cref,ord16 orderid);
{ struct S7_READ_PARA read_para;

int32 ret;

read_para.access=S7_ACCESS_SYMB_ADDRESS;
strcpy(read_para.var_name,“e0,10“);

ret=s7_cycl_read(cp_descr,cref,orderid,200,1,&read_para);
if(ret!=S7_OK)
{

my_exit(cp_descr,
"Error s7_cycl_read",
ret);

}
}

/* delete cyclic read */
static void my_cycl_read_delete_req(ord32,cp_descr,ord16 cref,

ord16 orderid)
{ int32 ret;

ret=s7_cycl_read_delete_req(cp_descr,cref,orderid);
if(ret!=S7_OK)
{

my_exit(cp_descr,
"Error s7_cycl_read",
ret);

}
}

/* get cyclic read delete confirmation */
static void my_get_cycl_read_delete_cnf(ord32 cp_descr)
{ int32 ret;

if((ret=s7_get_cycl_read_delete_cnf())!=S7_OK)
{

my_exit(cp_descr,
"Error s7_get_cycl_read_delete_cnf",
ret);

}
}

S7 Programming Interface C79000-G8976-C077-07

76

/* get cyclic read indication */
static void my_get_cycl_read_ind(ord32 cp_descr)
{ int32 ret;

ord16 var_length=10,result;
char data_buffer[10];
char *value_array[1];

value_array[0]=data_buffer;

if((ret=s7_get_cycl_read_ind((void *)0,
&result,
&var_length,

(void *)value_array))!=S7_OK)
{

my_exit(cp_descr,
"Error s7_get_cycl_read_ind",
ret);

}
}

/* receive any message from communication system */
static void my_receive(ord32 cp_descr,int32 last_event_expected)
{ ord16 cref,orderid;

int32 ret;

do
{ ret=s7_receive(cp_descr,&cref,&orderid);

switch(ret)
{

:
:
case S7_INITIATE_CNF:

my_get_initiate_cnf(cp_descr);
my_cycl_read(cp_descr,cref,0);
break;

case S7_CYCL_READ_IND:
my_get_cycl_read_ind(cp_descr);
my_cycl_read_delete_req(

cp_descr,
cref,
orderid);

break;
case S7_CYCL_READ_DELETE_CNF:

my_get_cycl_read_delete_cnf(
cp_descr);

my_abort(cp_descr,cref);
break;

default:
printf("Event unexpected",

ret);
break;

}
} while((ret!=last_event_expected)&&
(ret!=S7_ABORT_IND));

}

C79000-G8976-C077-07 S7 Programming Interface

77

/* main */
void main(void)
{ ord32 cp_descr;

ord16 cref;

/* initialize s7 */
my_init(&cp_descr);

/* get reference for connection 'TEST' */
my_get_cref(cp_descr,&cref);

/* initiate connection */
my_initiate_req(cp_descr,cref);

/* receive cyclic read delete confirmation */
my_receive(cp_descr,S7_CYCL_READ_DELETE_CNF);

/* end communication */
my_shut(cp_descr);

}

S7 Programming Interface C79000-G8976-C077-07

78

SAPI-S7User program

s7_cycl_read()

Remote partner

= S7_OK

s7_receive()

= S7_NO_MSG

s7_receive()

Repeat several times

= S7_CYCL_READ_IND

s7_get_cycl_read_ind

= S7_OK

Initiates cyclic reading of
an S7 variable

Fetch indication

Message (indication) there!

Repeat several times

Figure 3.6: Flowchart of the Example

Flowchart

C79000-G8976-C077-07 S7 Programming Interface

79

3.5.1 s7_read_req

With the 's7_read_req()' call, a client application can read a variable on
the server. The variables can only be accessed using their symbolic
addresses. The data are transferred to the client in the confirmation
from the server and entered in the user buffer by the corresponding
processing function ('s7_get_read_cnf()').

int32 s7_read_req(

ord32 cp_descr, /* In call */
ord16 cref, /* In call */
ord16 orderid, /* In call */
struct S7_READ_PARA *read_para_ptr

/* In call */
)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference of the S7 connection on which the job will
be sent.

orderid Job identifier to identify the job to be sent and the
corresponding confirmation.

read_para_ptr Pointer to a buffer provided by the user program for
the following structure:

struct S7_READ_PARA
{
ord16 access;
char var_name[S7_MAX_NAMLEN+2];
ord16 index;
ord16 subindex;
ord16 address_len;
ord8 address[S7_MAX_ADDRESSLEN];
}

The 'access' parameter indicates the type of access.
With 'S7_ACCESS_SYMB_ADDRESS', the symbolic
address in the 'var_name' field is expected.

The 'var_name' parameter specifies the symbolic
address of the variable to be read and is evaluated if
the variable is to be accessed by its symbolic
address ('access=S7_ACCESS_SYMB_ADDRESS').
(Please refer to the general information about
variable addressing at the start of this section.)

Description

Declaration

Parameters

S7 Programming Interface C79000-G8976-C077-07

80

The 'index' parameter is irrelevant and only
implemented for reasons of compatibility with
other SAPI interfaces.

The 'subindex' parameter is irrelevant and only
implemented for reasons of compatibility with
other SAPI interfaces.

The 'address_len' parameter is irrelevant and
only implemented for reasons of compatibility with
other SAPI interfaces.

The 'address' parameter is irrelevant and only
implemented for reasons of compatibility with
other SAPI interfaces.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

The maximum length of the result data depends on the negotiated
PDU size. For details of the PDU size, refer to Section 3.4.2,
's7_get_initiate_cnf', page 64 (formulas for calculating intermediate
values in Section 7.3, page 207).

The following table shows examples:

PDU Size (bytes) Maximum Length of the Result Data
(bytes)

240 222

256 238

480 462

960 942

Return Values

Amounts of Data

C79000-G8976-C077-07 S7 Programming Interface

81

3.5.2 s7_get_read_cnf

The 's7_get_read_cnf()' call receives a variable value that has be read.

With the 's7_receive()' call, the user program receives the
'S7_READ_CNF' confirmation if the read job could be executed.
Following this, the corresponding processing function
's7_get_read_cnf()' must be called for internal processing in the library
so that the values can be copied to the user buffer.

int32 s7_get_read_cnf(

void *od_ptr, /* In call */
ord16 *var_length_ptr,/* Call and */

/* Returned */
void *value_ptr /* Returned */

)

od_ptr The 'od_ptr' parameter is implemented to ensure
compatibility with other SAPI interfaces and must be
assigned the NULL pointer, in other words, the
variable values are transferred on the SAPI-S7
programming interface in the network representation.

var_length_ptr Address of a variable of the type 'ord16' provided by
the user program. Here, the length of the data buffer
is specified. After the call, the parameter contains the
length of the variable that was read.

value_ptr Pointer to a buffer provided by the user program.
Here, the variable content that was read is saved in
the network representation. When evaluating the
content of the buffer, the data type of the variable
must be taken into account.

It is also important to take into account that the
variable values are saved byte aligned, in other
words without padding bytes between two
components.

Description

Declaration

Parameters

☞

S7 Programming Interface C79000-G8976-C077-07

82

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Return Values

C79000-G8976-C077-07 S7 Programming Interface

83

3.5.3 s7_write_req

With the 's7_write_req()' call, a client application can write to a variable
of a server. The variables can only be accessed using their symbolic
addresses. The data are transferred in the request from the client to
the server.

int32 s7_write_req(

ord32 cp_descr, /* In call */
ord16 cref, /* In call */
ord16 orderid, /* In call */
struct S7_WRITE_PARA *write_para_ptr

 /* In call */
void *od_ptr /* In call */

)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference of the S7 connection on which the job will
be sent.

orderid Job identifier to identify the job to be sent and the
corresponding confirmation.

write_para_ptr Pointer to a buffer provided by the user program for
the following structure:

struct S7_WRITE_PARA
{ ord16 access;

char var_name[S7_MAX_NAMLEN+2];
ord16 index;
ord16 subindex;
ord16 address_len;
ord8 address[S7_MAX_ADDRESSLEN];
ord16 var_length;
ord8 value[S7_MAX_BUFLEN];

}

The 'access' parameter indicates the type of access.
With 'S7_ACCESS_SYMB_ADDRESS', the symbolic
address in the 'var_name' field is expected.

The 'var_name' parameter specifies the symbolic
address of the variable to be written and is evaluated
if the variable is to be accessed by its symbolic
address ('access=S7_ACCESS_SYMB_ADDRESS').
(Please refer to the general information about
variable addressing at the start of this section.)

Description

Declaration

Parameters

S7 Programming Interface C79000-G8976-C077-07

84

The 'index' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'subindex' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'address_len' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'address' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'var_length' parameter specifies the number of
relevant and valid bytes in the data buffer 'value'.

The 'value' buffer contains the value of the variable
to be written in the network representation. When
evaluating the content of the buffer, the data type of
the variable must be taken into account.

It is also important to take into account that the
variable values are saved byte aligned, in other
words without padding bytes between two
components.

od_ptr The 'od_ptr' parameter is implemented to ensure
compatibility with other SAPI interfaces and must be
assigned the NULL pointer, in other words, the
variable values are transferred on the SAPI-S7
programming interface in the network representation.

☞

C79000-G8976-C077-07 S7 Programming Interface

85

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

The maximum length of the user data depends on the negotiated PDU
size. For details of the PDU size, refer to Section 3.4.2,
's7_get_initiate_cnf', page 64 (formulas for calculating intermediate
values in Section 7.3, page 207).

The following table shows examples:

PDU Size (bytes) Maximum Length of the User Data

240 212

256 228

480 256 *)

960 256 *)

*) Note
With the 's7_write_long_req' call, longer data are possible.

Return Values

Amounts of Data

S7 Programming Interface C79000-G8976-C077-07

86

3.5.4 s7_write_long_req

With the 's7_write_long_req()' call, a client application can write to a
variable of a server. The variables can only be accessed using their
symbolic addresses. The data are transferred in the request from the
client to the server.

int32 s7_write_long_req

(
ord32 cp_descr, /* In call */
ord16 cref, /* In call */
ord16 orderid, /* In call */
struct S7_WRITE_PARA_LONG *write_para_ptr

/* In call */
void *od_ptr /* In call */
)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference of the S7 connection on which the job will
be sent.

orderid Job identifier to identify the job to be sent and the
corresponding confirmation.

write_para_ptr Pointer to a buffer provided by the user program for
the following structure:

struct S7_WRITE_PARA
{ ord16 access;

char var_name[S7_MAX_NAMLEN+2];
ord16 index;
ord16 subindex;
ord16 address_len;
ord8 address[S7_MAX_ADDRESSLEN];
ord16 var_length;
ord8 value[S7_MAX_BUFLEN_LONG];

}

The 'access' parameter indicates the type of access.
With 'S7_ACCESS_SYMB_ADDRESS', the symbolic
address in the 'var_name' field is expected.

The 'var_name' parameter specifies the symbolic
address of the variable to be written and is evaluated
if the variable is to be accessed by its symbolic
address ('access=S7_ACCESS_SYMB_ADDRESS').
(Please refer to the general information about
variable addressing at the start of this section.)

Description

Declaration

Parameters

C79000-G8976-C077-07 S7 Programming Interface

87

The 'index' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'subindex' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'address_len' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'address' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'var_length' parameter specifies the number of
relevant and valid bytes in the data buffer 'value'.

The 'value' buffer contains the value of the variable
to be written in the network representation. When
evaluating the content of the buffer, the data type of
the variable must be taken into account.

It is also important to take into account that the
variable values are saved byte aligned, in other
words without padding bytes between two
components.

od_ptr The 'od_ptr' parameter is implemented to ensure
compatibility with other SAPI interfaces and must be
assigned the NULL pointer, in other words, the
variable values are transferred on the SAPI-S7
programming interface in the network representation.

☞

S7 Programming Interface C79000-G8976-C077-07

88

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

The maximum length of the user data depends on the negotiated PDU
size. For details of the PDU size, refer to Section 3.4.2,
's7_get_initiate_cnf', page 64 (formulas for calculating intermediate
values in Section 7.3, page 207).

The following table shows examples:

PDU Size (bytes) Maximum Length of the User Data

240 212

256 228

480 452

960 932

Return Values

Amounts of Data

C79000-G8976-C077-07 S7 Programming Interface

89

3.5.5 s7_get_write_cnf

The 's7_get_write_cnf()' call receives the result of the write variable
job.

With the 's7_receive()' call, the user program receives the
'S7_WRITE_CNF' confirmation if the write job was executed. Following
this, the corresponding processing function 's7_get_write_cnf()' must
be called for internal processing in the library.

int32 s7_get_write_cnf(void)

None

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

90

3.5.6 s7_multiple_read_req

With the 's7_multiple_read_req()' call, a client application can read one
or more variables on the server at the same time. The variables can
only be accessed using their symbolic addresses. The data are
transferred in the confirmation from the server to the client and
transferred to the user buffer by the corresponding processing function
('s7_get_multiple_read_cnf()').

int32 s7_multiple_read_req(

ord32 cp_descr, /* In call */
 ord16 cref, /* In call */
 ord16 orderid, /* In call */

ord16 number, /* In call */
struct S7_READ_PARA *read_para_array

/* In call */

)

Description

Declaration

C79000-G8976-C077-07 S7 Programming Interface

91

cp_descr Handle as return value of the 's7_init()' call.

cref Reference of the S7 connection via which the job will
be sent.

orderid Job identifier to identify the job to be sent and the
corresponding confirmation.

number Number of variables to be read.

read_para_array Pointer to an array provided by the user program with
a total of 'number' elements of the following
structure, where the nth element describes the nth
variable:

struct S7_READ_PARA
{ ord16 access;

char var_name[S7_MAX_NAMLEN+2];
ord16 index;
ord16 subindex;
ord16 address_len;
ord8 address[S7_MAX_ADDRESSLEN];

}

The 'access' parameter indicates the type of access.
With 'S7_ACCESS_SYMB_ADDRESS', the symbolic
address in the 'var_name' field is expected.

The 'var_name' parameter specifies the symbolic
address of the variable to be read and is evaluated if
the variable is to be accessed by its symbolic
address ('access=S7_ACCESS_SYMB_ADDRESS').
(Please refer to the general information about
variable addressing at the start of this section.)

The 'index' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'subindex' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'address_len' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'address' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

Parameters

S7 Programming Interface C79000-G8976-C077-07

92

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

The maximum length of the variable addresses and result data
depends on the negotiated PDU size. For details of the PDU size, refer
to Section 3.4.2, 's7_get_initiate_cnf', page 64 (formulas for calculating
intermediate values in Section 7.3, page 207).

The following table shows examples:

PDU Size
(bytes)

Maximum Number
of Variable
Addresses

Maximum Length of the
Result Data with the
Maximum Number of
Variable Addresses

240 19 150

256 20 162

480 39 310

960 79 630

Return Values

Amounts of Data

C79000-G8976-C077-07 S7 Programming Interface

93

3.5.7 s7_get_multiple_read_cnf

The 's7_get_multiple_read_cnf()' call receives the variable values that
have been read.

With the 's7_receive()' call, the user program receives the
'S7_MULTIPLE_READ_CNF' confirmation if the read job was
executed. Following this, the corresponding processing function
's7_get_multiple_read_cnf()' must be called for internal processing in
the library. The call copies the values that were read into the user
buffer.

int32 s7_get_multiple_read_cnf(

void *od_ptr, /* In call */
 ord16 *result_array, /* Returned */

ord16 *var_length_array,
/* Call and */
/* Returned */

void *value_array /* Returned */

)

od_ptr The 'od_ptr' parameter is implemented to ensure
compatibility with other SAPI interfaces and must be
assigned the NULL pointer, in other words, the
variable values are transferred on the SAPI-S7
programming interface in the network representation.

result_array Address of an array of the type 'ord16' provided by
the user program. The array must contain at least as
many elements as variables that were read. The
array elements contain the results of the read job in
the order in which the variables were specified in the
request. The following results are possible:

S7_RESULT_OK

This value indicates that the access was possible and
no error occurred.

S7_RESULT_HW_ERROR

A hardware problem occurred.

S7_RESULT_OBJ_ACCESS_DENIED

 Access to a variable was denied.

S7_RESULT_OBJ_ADDRESS_INVALID

The specified address is invalid.

Description

Declaration

Parameters

S7 Programming Interface C79000-G8976-C077-07

94

S7_RESULT_OBJ_TYPE_NOT_SUPPORTED

The server does not support the data type.

S7_RESULT_OBJ_TYPE_INCONSISTENT

The data type of the variable is not consistent.

S7_RESULT_OBJ_NOT_EXISTS

The variable does not exist.

var_length_array Address of an array of the type 'ord16' provided by
the user program. The array must contain at least as
many elements as variables that were read. The
individual array elements contain the length of the
data buffer. After the call, the elements of this array
contain the lengths of the variables that were read.
The value '0' means that the corresponding variable
could not be read.

value_array Pointer to buffers provided by the user program. The
variable values that were read are entered in the
buffers. Once again the order is the same as
specified in the request. When evaluating the buffer
contents, the data type must be taken into account.

It is also important to take into account that the
variable values are saved byte aligned, in other
words without padding bytes between two
components.

☞

C79000-G8976-C077-07 S7 Programming Interface

95

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Return Values

S7 Programming Interface C79000-G8976-C077-07

96

3.5.8 s7_multiple_write_req

With the 's7_multiple_write_req()' call, a client application can write to
one or more variables of a server at the same time. The variables can
only be accessed using their symbolic addresses. The data are
transferred in the request from the client to the server.

int32 s7_multiple_write_req(

ord32 cp_descr, /* In call */
 ord16 cref, /* In call */
 ord16 orderid, /* In call */

ord16 number, /* In call */
struct S7_MULTIPLE_WRITE_PARA
write_para_array, / In call */
void *od_ptr /* In call */

)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference of the S7 connection via which the job will
be sent.

orderid Job identifier to identify the job to be sent and the
corresponding confirmation.

number Number of variables to be written.

write_para_array Pointer to an array provided by the user program with
a total of 'number' elements of the following
structure, where the nth element describes the nth
variable:

struct S7_WRITE_PARA
{
ord16 access;
char var_name[S7_MAX_NAMLEN+2];
ord16 index;
ord16 subindex;
ord16 address_len;
ord8 address[S7_MAX_ADDRESSLEN];
ord16 var_length;
ord8 value[S7_MAX_BUFLEN_MULTIPLE];
}

The 'access' parameter indicates the type of access.
With 'S7_ACCESS_SYMB_ADDRESS', the symbolic
address in the 'var_name' field is expected.

Description

Declaration

Parameters

C79000-G8976-C077-07 S7 Programming Interface

97

The 'var_name' parameter specifies the symbolic
address of the variable to be read and is evaluated if
the variable is to be accessed by its symbolic
address ('access=S7_ACCESS_SYMB_ADDRESS').
(Please refer to the general information about
variable addressing at the start of this section.)

The 'index' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'subindex' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'address_len' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'address' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'var_length' parameter specifies the number of
relevant and valid bytes in the data buffer 'value'.

The 'value' buffer contains the value of the variable
to be written in the network representation. When
evaluating the content of the buffer, the data type of
the variable must be taken into account.

It is also important to take into account that the
variable values are saved byte aligned, in other
words without padding bytes between two
components.

od_ptr The 'od_ptr' parameter is implemented to ensure
compatibility with other SAPI interfaces and must be
assigned the NULL pointer; in other words, the
variable values are transferred on the SAPI-S7
programming interface in the network representation.

☞

S7 Programming Interface C79000-G8976-C077-07

98

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

The maximum number of variable addresses and maximum length of
the user data depends on the negotiated PDU size. For details of the
PDU size, refer to Section 3.4.2, 's7_get_initiate_cnf', page 64
(formulas for calculating intermediate values in Section 7.3, page 208).

The following table shows examples:

PDU Size
(bytes)

Maximum Number
of Variable
Addresses

Maximum Length of the User
Data with the Maximum

Number of Variable Addresses

240 12 36

256 13 36

480 26 52

960 52 116

Return Values

Amounts of Data

C79000-G8976-C077-07 S7 Programming Interface

99

3.5.9 s7_get_multiple_write_cnf

The 's7_get_multiple_write_cnf()' call receives the result of the write
variable job.

With the 's7_receive()' call, the user program receives the
'S7_MULTIPLE_WRITE_CNF' confirmation if the write job was
executed. Following this, the corresponding processing function
's7_get_multiple_write_cnf()' must be called for internal processing in
the library.

int32 s7_get_multiple_write_cnf(

ord16 *result_array /* Returned */

)

result_array Address of an array of the type 'ord16' provided by
the user program. The array must contain at least as
many elements as variables that were read. The
array elements contain the results of the read job in
the order in which the variables were specified in the
request. The following results are possible:

S7_RESULT_OK

This value indicates that the access was possible and
no error occurred.

S7_RESULT_HW_ERROR

A hardware problem occurred.

S7_RESULT_OBJ_ACCESS_DENIED

 Access to a variable was denied.

S7_RESULT_OBJ_ADDRESS_INVALID

The specified address is invalid.

S7_RESULT_OBJ_TYPE_NOT_SUPPORTED

The server does not support the data type.

S7_RESULT_OBJ_TYPE_INCONSISTENT

The data type of the variable is not consistent.

S7_RESULT_OBJ_NOT_EXISTS

The variable does not exist.

Description

Declaration

Parameters

S7 Programming Interface C79000-G8976-C077-07

100

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Return Values

C79000-G8976-C077-07 S7 Programming Interface

101

3.5.10 s7_cycl_read_init_req

With this request, an S7 application instructs the server to prepare for
cyclic reading of variables. The request contains the cycle time, the
number of variables and the variables to be read.

int32 s7_cycl_read_init_req(

ord32 cp_descr, /* In call */
ord16 cref, /* In call */
ord16 orderid, /* In call */
ord16 cycl_time, /* In call */
ord16 number, /* In call */
struct S7_READ_PARA *read_para_array

 /* In call */

)

cp_descr Handle as return value of the 's7_init()' call

cref Reference of the S7 connection via which the job will
be sent. The variable values are transferred on this
connection.

orderid Job identifier to identify the job to be sent and the
corresponding confirmation. This job identifier must
be used for further jobs such as start
('s7_cycl_read_start_req()'), stop
('s7_cycl_read_stop_req()') and delete
('s7_cycl_read_delete_req()') the cyclic reading.

cycl_time Cycle time as a multiple of 10ths of seconds. SAPI-
S7 rounds down to a permitted value
(1, 2 to 9 and 10, 20 to 90 and 100, 200 to 900.

number Number of variables whose values will be read
cyclically.

Description

Declaration

Parameters

S7 Programming Interface C79000-G8976-C077-07

102

read_para_array Pointer to an array provided by the user program with
a total of 'number' elements of the following
structure, where the nth element describes the nth
variable:

struct S7_READ_PARA
{ ord16 access;

char var_name[S7_MAX_NAMLEN+2];
ord16 index;
ord16 subindex;
ord16 address_len;
ord8 address[S7_MAX_ADDRESSLEN];

}

The 'access' parameter indicates the type of access.
With 'S7_ACCESS_SYMB_ADDRESS', the symbolic
address in the 'var_name' field is expected.

The 'var_name' parameter specifies the symbolic
address of the variable to be read and is evaluated if
the variable is to be accessed by its symbolic
address ('access=S7_ACCESS_SYMB_ADDRESS').
(Please refer to the general information about
variable addressing at the start of this section.)

The 'index' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'subindex' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'address_len' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'address' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

C79000-G8976-C077-07 S7 Programming Interface

103

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

The maximum length of the variable addresses and result data
depends on the negotiated PDU size. For details of the PDU size, refer
to Section 3.4.2, 's7_get_initiate_cnf', page 64 (formulas for calculating
intermediate values in Section 7.3, page 208).

The following table shows examples:

PDU
Size

(bytes)

Maximum Number
of Variable
Addresses

Maximum Length of the Result
Data with the Maximum Number

of Variable Addresses

240 17 144

256 19 152

480 37 304

960 77 624

Return Values

Amounts of Data

S7 Programming Interface C79000-G8976-C077-07

104

3.5.11 s7_get_cycl_read_init_cnf

The 's7_get_cycl_read_init_cnf()' call receives the result of a
's7_cycl_read_init_req()' job .

With the 's7_receive()' call, the user program receives the
'S7_CYCL_READ_INIT_CNF' confirmation if the remote partner
executed the job to prepare for cyclic reading of a variable. Following
this, the corresponding processing function
's7_get_cycl_read_init_cnf()' must be called for internal processing in
the library.

int32 s7_get_cycl_read_init_cnf(void)

None

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

105

3.5.12 s7_cycl_read_start_req

With this request, an S7 application instructs the server to start cyclic
reading of variables. The server must already have been prepared with
the 's7_cycl_read_init_req()' call.

int32 s7_cycl_read_start_req(

ord32 cp_descr, /* In call */
 ord16 cref, /* In call */
 ord16 orderid /* In call */

)

cp_descr Handle as return value of the 's7_init()' call. This
parameter must match the corresponding
parameter of the 's7_cycl_read_init_req()' call.

cref Reference of the S7 connection via which the job
will be sent. This parameter must match the
corresponding parameter of the
's7_cycl_read_init_req()' call.

orderid Job identifier to identify the job to be sent and the
corresponding confirmation. This parameter must
match the corresponding parameter of the
's7_cycl_read_init_req()' call.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

106

3.5.13 s7_get_cycl_read_start_cnf

The 's7_get_cycl_read_start_cnf()' call receives the result of a
's7_cycl_read_start_req()' job .

With the 's7_receive()' call, the user program receives the
'S7_CYCL_READ_START_CNF' confirmation if the remote partner
executed the job to start cyclic reading of the variable. Following this,
the corresponding processing function 's7_get_cycl_read_start_cnf()'
must be called for internal processing in the library.

int32 s7_get_cycl_read_start_cnf(void)

None

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

107

3.5.14 s7_get_cycl_read_ind

The 's7_get_cycl_read_ind()' call receives the data sent by the server.

With the 's7_receive()' call, the user program receives the
'S7_CYCL_READ_IND' indication if a remote partner read a variable
cyclically. Following this, the corresponding processing function
's7_get_cycl_read_ind()' is called to copy the values that were read into
the user buffer.

int32 s7_get_cycl_read_ind(

void *od_ptr, /* In call */
 ord16 *result_array, /* Returned */

ord16 *var_length_array,
/* Call and */
/* Returned */

void *value_array /* Returned */

)

od_ptr The 'od_ptr' parameter is implemented to ensure
compatibility with other SAPI interfaces and must be
assigned the NULL pointer, in other words, the
variable values are transferred on the SAPI-S7
programming interface in the network representation.

result_array Address of an array of the type 'ord16' provided by
the user program. The array must contain at least as
many elements as variables that were read. The
array elements contain the results of the read job in
the order in which the variables were specified in the
request. The following results are possible:

S7_RESULT_OK

This value indicates that the access was possible and
no error occurred.

S7_RESULT_HW_ERROR

A hardware problem occurred.

S7_RESULT_OBJ_ACCESS_DENIED

 Access to a variable was denied.

S7_RESULT_OBJ_ADDRESS_INVALID

The specified address is invalid.

Description

Declaration

Parameters

S7 Programming Interface C79000-G8976-C077-07

108

S7_RESULT_OBJ_TYPE_NOT_SUPPORTED

The server does not support the data type.

S7_RESULT_OBJ_TYPE_INCONSISTENT

The data type of the variable is not consistent.

S7_RESULT_OBJ_NOT_EXISTS

The variable does not exist.

var_length_array Address of an array of the type 'ord16' provided by
the user program. The array must contain at least
as many elements as variables that were read.
The individual array elements contain the length
of the data buffer. After the call, the elements of
this array contain the lengths of the variables that
were read. The value '0' means that the
corresponding variable could not be read.

value_array Pointer to buffers provided by the user program.
The variable values that were read are entered in
the buffers. Once again the order is the same as
specified in the request. When evaluating the
buffer contents, the data type must be taken into
account.

It is also important to take into account that
the variable values are saved byte aligned, in
other words without padding bytes between
two components.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

☞

Return Values

C79000-G8976-C077-07 S7 Programming Interface

109

3.5.15 s7_get_cycl_read_abort_ind

The 's7_get_cycl_read_abort_ind()' receives a cyclic read abort
indication.

With the 's7_receive()' call, the user program receives the
'S7_CYCL_READ_ABORT_IND' indication if the cyclic reading of the
variable was aborted. Following this, the corresponding processing
function 's7_get_cycl_read_delete_cnf()' must be called for internal
processing in the library.

Using the functions describes in the previous sections, cyclic reading of
variables can be initiated again.

int32 s7_get_cycl_read_abort_ind(void)

None

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

110

3.5.16 s7_cycl_read_stop_req

With this request, an S7 application instructs the server to stop cyclic
reading of variables. The server must already have been requested to
read variables cyclically.

int32 s7_cycl_read_stop_req(

ord32 cp_descr, /* In call */
 ord16 cref, /* In call */
 ord16 orderid /* In call */

)

cp_descr Handle as return value of the 's7_init()' call. This
parameter must match the corresponding
parameter of the 's7_cycl_read_init_req()'- or
's7_cycl_read()' call .

cref Reference of the S7 connection via which the job
will be sent. This parameter must match the
corresponding parameter of the
's7_cycl_read_init_req()'- or 's7_cycl_read()' call .

orderid Job identifier to identify the job to be sent and the
corresponding confirmation. This parameter must
match the corresponding parameter of the
's7_cycl_read_init_req()'- or 's7_cycl_read()' call .

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

111

3.5.17 s7_get_cycl_read_stop_cnf

The 's7_get_cycl_read_stop_cnf()' call receives the result of a
's7_cycl_read_stop_req()' call.

With the 's7_receive()' call, the user program receives the
'S7_CYCL_READ_STOP_CNF' confirmation if the remote partner
executed the job to stop cyclic reading of variables. Following this, the
corresponding processing function 's7_get_cycl_read_stop_cnf()' must
be called for internal processing in the library.

int32 s7_get_cycl_read_stop_cnf(void)

None

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

112

3.5.18 s7_cycl_read_delete_req

This function stops cyclic reading and logs off at the server.

int32 s7_cycl_read_delete_req(

ord32 cp_descr, /* In call */
 ord16 cref, /* In call */
 ord16 orderid /* In call */

)

cp_descr Handle as return value of the 's7_init()' call. This
parameter must match the corresponding
parameter of the 's7_cycl_read_init_req()'- or
's7_cycl_read()' call .

cref Reference of the S7 connection via which the job
will be sent. This parameter must match the
corresponding parameter of the
's7_cycl_read_init_req()'- or 's7_cycl_read()' call .

orderid Job identifier to identify the job to be sent and the
corresponding confirmation. This parameter must
match the corresponding parameter of the
's7_cycl_read_init_req()'- or 's7_cycl_read()' call .

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

113

3.5.19 s7_get_cycl_read_delete_cnf

The 's7_get_cycl_read_delete_cnf()' call receives the result of a
's7_cycl_read_delete_req()' job.

With the 's7_receive()' call, the user program receives the
'S7_CYCL_READ_DELETE_CNF' confirmation if the remote partner
executed the job to delete cyclic reading of variables. Following this,
the corresponding processing function 's7_get_cycl_read_delete_cnf()'
must be called for internal processing in the library.

int32 s7_get_cycl_read_delete_cnf(void)

None

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

114

3.5.20 s7_cycl_read

With this job, an S7 application instructs the server to read variables
cyclically. This job includes the sequence consisting of the calls
's7_cycl_read_init_req()' (logon at server) and
's7_cycl_read_start_req()' (start reading variables). The cycle time, the
number of variables and the variables to be read are specified.

Important: in S7, this is an unacknowledged service (in contrast to the
individual jobs that make up this call).

int32 s7_cycl_read(

ord32 cp_descr, /* In call */
ord16 cref, /* In call */
ord16 orderid, /* In call */
ord16 cycl_time, /* In call */
ord16 number, /* In call */
struct S7_READ_PARA *read_para_array

 /* In call */

)

cp_descr Handle as return value of the 's7_init()' call

cref Reference of the S7 connection via which the job will
be sent. The variable values are transferred on this
connection.

orderid Job identifier to identify the job to be sent and the
corresponding confirmation. This job identifier must
be used for further jobs such as stop
('s7_cycl_read_stop_req()'), start
('s7_cycl_read_start_req()') and delete
('s7_cycl_read_delete_req()') cyclic reading.

cycl_time Cycle time as a multiple of 10ths of seconds. SAPI-
S7 rounds down to a permitted value 1, 2 to 9 and
10, 20 to 90 and 100, 200 to 900.

number Number of variables whose values will be read
cyclically.

Description

Declaration

Parameters

C79000-G8976-C077-07 S7 Programming Interface

115

read_para_array Pointer to an array provided by the user program with
a total of 'number' elements of the following
structure, where the nth element describes the nth
variable:

struct S7_READ_PARA
{ ord16 access;

char var_name[S7_MAX_NAMLEN+2];
ord16 index;
ord16 subindex;
ord16 address_len;
ord8 address[S7_MAX_ADDRESSLEN];

}

The 'access' parameter indicates the type of access.
With 'S7_ACCESS_SYMB_ADDRESS', the symbolic
address in the 'var_name' field is expected.

The 'var_name' parameter specifies the symbolic
address of the variable to be read and is evaluated if
the variable is to be accessed by its symbolic
address ('access=S7_ACCESS_SYMB_ADDRESS').
(Please refer to the general information about
variable addressing at the start of this section.)

The 'index' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'subindex' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'address_len' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

The 'address' parameter is irrelevant and only
implemented for reasons of compatibility with other
SAPI interfaces.

S7 Programming Interface C79000-G8976-C077-07

116

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Return Values

C79000-G8976-C077-07 S7 Programming Interface

117

3.6 Block-Oriented Services

Block-oriented services are available to the application programmer
both on the programming device/PC and on the SIMATIC S7 PLC.

These services have the following advantages:

➢ Transfer of larger amounts of data

➢ The transfer can be triggered by SIMATIC S7 PLCs.

The block-oriented services are not available under MS-DOS and
Windows 3.x.

The blocks BSEND and BRCV are available on the SIMATIC S7 PLC.
This functionality takes the form of 'block-oriented services' on the
programming device/PC.

A connection must be configured to allow data exchange between two
communication partners. With the block-oriented services, the block
pair BSEND and BRCV belong together. The connection must be
configured at both ends (COML S7 and STEP 7 NETPRO).

From the SIMATIC NET CD, November 99 onwards, configuration with
COML S7 is no longer necessary. The configuration file for the PC is
created by STEP 7; see Installation Instructions of your product.

In contrast to the non block-oriented services, the configured
connection created with STEP 7 NETPRO must be downloaded to the
PLC. Several pairs of blocks can exchange data via one connection.

When configuring the connections, follow the instructions in the
relevant product information bulletins.

With this type of data transfer, up to 65534 bytes can be transferred
regardless of the size of the CPU. The data is segmented automatically
by the functions.

The address parameter R_ID is fixed for a block pair (BSEND/ BRCV)
and defined uniquely within a connection. This means that several
BSEND blocks can transmit via one connection with each using a
different R_ID. The same R_IDs can be used for other connections.

Description

Restrictions

Standard
Functions

Data Exchange

Amount of Data

Address Parameter

S7 Programming Interface C79000-G8976-C077-07

118

The following table divides the block-oriented services into two groups:

➢ The 'bsend' group

➢ The 'brcv' group

Block-Oriented Services Functions

bsend s7_bsend_req()

s7_get_bsend_cnf()

brcv s7_brcv_init()

s7_get_brcv_ind()

s7_brcv_stop()

The following sections describe the functions listed above.

Grouping of the
Functions

C79000-G8976-C077-07 S7 Programming Interface

119

Example of 'bsend'

void main(int argc,char **argv)
{ ord32 cp_descr;

ord16 cref;
ord16 orderid;
ord32 r_id=1;
int32 ret;
char send_buffer[100];
ord16 err_no;
const char *err_msg_ptr;

...
Connection established

...

/* first BSEND request*/
ret = s7_bsend_req(cp_descr,cref,orderid,r_id,

(void*)send_buffer,sizeof(send_buffer));
printf("s7_bsend_req =0x%x, r_id = 0x%x, len = %d Byte\n",

ret, r_id, sizeof(send_buffer));
while (ret == S7_NO_MSG)
{

ret = s7_receive(cp_descr,&cref,&orderid);
printf("s7_receive = 0x%x\n", ret);
switch(ret)
{

/* BSEND confirmation */
case S7_BSEND_CNF:
{

ret = s7_get_bsend_cnf();
printf("s7_get_bsend_cnf = 0x%x\n",ret);
if(ret == S7_OK)
{

/* next BSEND request */
ret = s7_bsend_req(cp_descr,cref,orderid,

r_id,
(void*)send_buffer,
sizeof(send_buffer));

printf("s7_bsend_req =0x%x,
r_id = 0x%x,

 len = %d Byte\n",ret,r_id,
sizeof(send_buffer));

}
break;

}
default:
{

...
break;

}
}

}

/* end communication */
my_shut(cp_descr);

}

S7 Programming Interface C79000-G8976-C077-07

120

s7_bsend_req()

= S7_OK

s7_receive()

= S7_NO_MSG

Repeat several times

s7_receive()

= S7_BSEND_CNF

s7_get_bsend_cnf

= S7_OK

User program SAPI-S7 Remote partner

Repeat several times

Figure 3.7: Flowchart for 'bsend'

Flowchart for
'bsend'

C79000-G8976-C077-07 S7 Programming Interface

121

Example of 'brcv'

void main(int argc,char **argv)
{ ord32 cp_descr;
 ord16 cref;

ord16 orderid;
 ord32 r_id=1;

int32 ret;
ord32 ret_id;
ord16 ret_len;
char receive_buffer[65540];
ord16 err_no;
const char *err_msg_ptr;

...
Connection established

...

/* BRCV initialize */
ret = s7_brcv_init(cp_descr,cref,r_id);
printf("s7_brcv_init =0x%x, r_id = 0x%x\n",ret, r_id;
while (ret == S7_NO_MSG)
{

ret = s7_receive(cp_descr,&cref,&orderid);
printf("s7_receive = 0x%x\n", ret);
switch(ret)
{

/* BRCV indication */
case S7_BRCV_IND:
{

ret = s7_get_brcv_ind(
receive_buffer,
(ord32)sizeof(receive_buffer),
&ret_id,&ret_len);

printf("s7_get_brcv_ind = 0x%x, r_id = 0x%x,
rec_len = %d Byte\n",ret, ret_id,
ret_len);

break;
}
default:
{

...
break;

}
}

}

/* BRCV stop */
ret = s7_brcv_stop(cp_descr,cref,r_id);
printf("s7_brcv_stop = 0x%x",ret);

/* end communication */
my_shut(cp_descr);

}

S7 Programming Interface C79000-G8976-C077-07

122

s7_brcv_init()

= S7_OK

s7_receive()

= S7_NO_MSG

Repeat several times

s7_receive()

= S7_BRCV_IND

s7_get_brcv_ind

= S7_OK

s7_brcv_stop

= S7_OK

User program SAPI-S7 Remote partner

Repeat several times

Receive all net data from
 Partner (BSEND)!

Stop brcv explicitly

Figure 3.8: Flowchart for 'brcv'

Flowchart for 'brcv'

C79000-G8976-C077-07 S7 Programming Interface

123

3.6.1 s7_bsend_req

With the s7_bsend_req call, a client application can send up to 65534
bytes of data to a remote station.

int32 s7_bsend_req (

ord32 cp_descr, /* In call
*/

ord16 cref, /* In call
*/

ord16 orderid, /* In call
*/

ord32 r_id, /* In call
*/

void *buffer_ptr, /* In call
*/

ord32 buffer_len /* In call
*/

)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference of the S7 connection on which the job
will be sent.

orderid Job identifier to identify the job to be sent and
the corresponding confirmation.

r_id Data are only sent to the partner on this
connection without problems when the address
parameter r_id is unique for the connection and
matches the remote R_ID of the BRCV .
Range of values (hexadecimal): 0 to FFFF FFFF

*buffer_ptr Pointer to the address area to be sent.

buffer_len Explicitly specified length of the net data in
bytes;
Range of values (hexadecimal): 1 to FFFE

Description

Declaration

Parameters

S7 Programming Interface C79000-G8976-C077-07

124

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the
execution of the requested service. In this case,
however, the error does not allow the service to
be repeated. Here, steps must be taken to
eliminate the error such as assigning new
parameters for the call.

Return Values

C79000-G8976-C077-07 S7 Programming Interface

125

3.6.2 s7_get_bsend_cnf

The s7_get_bsend_cnf receives the result of the BSEND job.

With the s7_receive call, the user program receives the
S7_BSEND_CNF confirmation when the send job has been executed.
Following this, the corresponding processing function
's7_get_bsend_cnf()' must be called for internal processing in the
library.

int32 s7_get_bsend_cnf (void)

None

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

126

3.6.3 s7_brcv_init

With this call, the application logs on to receive BSEND jobs from the
connection partner. Each BSEND job with a specific R_ID of the
connection partner must correspond to exactly one s7_brcv_init with
the same R_ID.

int32 s7_brcv_init

(
ord32 cp_descr, /* In call */
ord16 cref, /* In call */
ord32 r_id /* In call */
)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference of the S7 connection on which the job
will be sent.

r_id Data are only received from the partner on this
connection, when the address parameter r_id is
unique for the connection and matches the
remote R_ID in BSEND.

The content of the r_id parameter of your
application and the content of the r_id
parameter of the program of the connection
partner must be the same!

You can only receive BSEND data when the
r_id parameters of both partners are the
same.

Description

Declaration

Parameters

☞

C79000-G8976-C077-07 S7 Programming Interface

127

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the
execution of the requested service. In this case,
however, the error does not allow the service to
be repeated. Here, steps must be taken to
eliminate the error such as assigning new
parameters for the call.

Return Values

S7 Programming Interface C79000-G8976-C077-07

128

3.6.4 s7_get_brcv_ind

With the s7_get_brcv_ind call, the net data sent by the partner are
copied to the specified memory area.

int32 s7_get_brcv_ind

(
void *buffer_ptr, /* In call */
ord32 buffer_len, /* In call */
ord32 *r_id_ptr, /* Return */
ord32 *rec_buffer_len_ptr /* Return */
)

*buffer_ptr The pointer points to the destination address
where the received data will be entered.

buffer_len Maximum length of the receive buffer
(buffer_ptr); when the received data length is
greater than the buffer length specified here,
S7_ERR is returned. In this case, the required
buffer size is specified in the rec_buffer_len
parameter and the "detailed error" is set to
S7_ERR_INVALID_DATARANGE_OR_TYPE.

*r_id_ptr *r_id_ptr points to a variable of the type ord32
that contains the R_ID of the received BSEND
job after the function is called.

rec_buffer_len_ptr The entire received data length when the return
value is S7_OK or the required buffer size when
the receive buffer is too small and the return
value is S7_ERR.

S7_OK The function was processed without errors.

Description

Declaration

Parameters

C79000-G8976-C077-07 S7 Programming Interface

129

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the
execution of the requested service. In this case,
however, the error does not allow the service to
be repeated. Here, steps must be taken to
eliminate the error such as assigning new
parameters for the call.

Return Values

S7 Programming Interface C79000-G8976-C077-07

130

3.6.5 s7_brcv_stop

With this call, the application logs off at the connection partner.

int32 s7_brcv_stop (

ord32 cp_descr, /* In call */
ord16 cref, /* In call */
ord32 r_id /* In call */

)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference of the S7 connection on which the job
will be sent.

r_id The R_ID specified with the corresponding
brcv_init.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the
execution of the requested service. In this case,
however, the error does not allow the service to
be repeated. Here, steps must be taken to
eliminate the error such as assigning new
parameters for the call.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

131

3.7 Message Services

Using the message service, the application programmer can receive
messages from a SIMATIC S7 programmable controller.

These services have the following advantages:

➢ Transfer of monitored data only when changed!

➢ Any associated values can be added to the transferred data.

The message services are not available under MS-DOS and
Windows 3...

In SAPI S7, the following two types of message are processed:

➢ configured messages (SCAN)

➢ programmed messages (ALARM, ALARM_8, ALARM_8P,
NOTIFY)

With configured messages, data on the SIMATIC S7 programmable
controller are checked by its operating system at fixed intervals
(100 ms, 500 ms, or 16 ms), to see whether they have changed
compared with the last check.

If a change is detected, they are sent by the SIMATIC S7
programmable controller to the registered PC/PG. Here, they are
written to a buffer provided by the user.

A message is configured in the 'Symbol Editor' of STEP 7 by assigning
the special object property 'message' to a variable ('address').

The assignment of symbolic names of the monitored variables to the
message number is displayed in the 'Message Configuration' dialog
box. (The message configuration, of course, only becomes active after
it has been downloaded to the PLC.)

To use programmed messages, the user must include an S7 block
(ALARM, ALARM_8, ALARM_8P, NOTIFY) in the S7 user program.
This block queries signals every cycle to check whether or not they
have changed and then immediately sends a frame with the event
state of the signals, time of day and associated values. Messages can
also be received from PCS 7 blocks with message capability, for
example technological functions.

Description

Restrictions

Standard
Functions

Configured
Messages (SCAN)

Programmed
Messages (ALARM)

S7 Programming Interface C79000-G8976-C077-07

132

Before messages can be sent by the SIMATIC S7 PLC, a
PC/programming device must log on with the required SIMATIC S7
programmable controller. The function 's7_msg_initiate_req' can be
used for both types of message.

You can log on either for all SCAN or all ALARM, ALARM_8,
ALARM_8P or NOTIFY messages for specific connections.

Logon

C79000-G8976-C077-07 S7 Programming Interface

133

s7_msg_initiate_req()

=S7_OK

User program SAPI-S7 Remote partner

s7_receive()

=S7_NO_MSG

Repeat several times

s7_receive()

=S7_SCAN_IND

Receive messages from
partner!

s7_msg_abort_req()

=S7_OK

SCAN_to_all
Acyclic frames

s7_get_scan_ind()

=S7_OK

s7_receive()

=S7_MSG_INITIATE_CNF

Logon for SCAN

+ acknowledge

s7_get_msg_initiate_cnf()

s7_receive()

=S7_MSG_ABORT_CNF

s7_get_msg_abort_cnf()

Logoff for SCAN

+ acknowledge

ogon

Logoff

Receive messages

Repeat several times

Figure 3.9: Flowchart for 'SCAN'

Flowchart for
'scan'

S7 Programming Interface C79000-G8976-C077-07

134

s7_msg_initiate_req()

=S7_OK

User program SAPI-S7 Remote partner

s7_receive()

=S7_NO_MSG

Repeat several times

s7_receive()

=S7_ALARM_IND

Receive messages from
partner!

s7_msg_abort_req()

=S7_OK

ALARM_8P frames
acyclic

s7_get_alarm_ind()

=S7_OK

s7_receive()

=S7_MSG_INITIATE_CNF

Logon for
ALARM_8P

+ Acknowledge

s7_get_msg_initiate_cnf()

s7_receive()

=S7_MSG_ABORT_CNF

s7_get_msg_abort_cnf()

Logoff for
ALARM_8

+ Acknowledge

Logon

Receive messages

Logoff

Repeat several times

Figure 3.10: Flow diagram 'alarm'

Flow diagram for
'alarm'

C79000-G8976-C077-07 S7 Programming Interface

135

3.7.1 s7_msg_initiate_req

With this call, a client application logs on at a SIMATIC S7
programmable controller for one of the services SCAN or ALARM. The
result of the initiate request is received with the
s7_get_msg_initiate_cnf function.

int32 s7_msg_initiate_req(

ord32 cp_descr, /* In call
*/

ord16 cref, /* In call
*/

ord16 orderid, /* In call
*/

ord16 fct_code /* In call */

)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference of the S7 connection on which the job
will be sent.

orderid Job identifier to identify the job to be sent and
the corresponding confirmation.

fct_code Function code to log on for
S7_SCAN_ALL_INITIATE or
S7_ALARM_ALL_INITIATE; other codes are
ignored.

S7_OK The function was processed without errors.

S7_ERR This value indicates that an error occurred
executing the requested service. Here, steps
must be taken to eliminate the error such as
assigning new parameters for the call.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

136

3.7.2 s7_get_msg_initiate_cnf

With the 's7_receive' call, the user program receives the confirmation
S7_MSG_INITIATE_CNF when the logon is completed. The function
's7_get_msg_initiate_cnf' described here must then be called to obtain
the result of an ALARM or SCAN logon.

int32 s7_get_msg_initiate_cnf(void)

None

S7_OK The function was processed without errors.

S7_ERR This value indicates that an error occurred
executing the requested service. Here, steps must
be taken to eliminate the error such as assigning
new parameters for the call.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

137

3.7.3 s7_msg_abort_req

With this call, the application logs off for receiving message services.

int32 s7_msg_abort_req

(

ord32 cp_descr, /* In call */

ord16 cref, /* In call */

ord16 orderid, /* In call */

ord16 fct_code /* In call */

)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference of the S7 connection on which the job
will be sent.

orderid Job identifier to identify the job to be sent and
the corresponding confirmation.

fct_code function code for logging off for
S7_SCAN_ALL_ABORT or
S7_ALARM_ALL_ABORT.

S7_OK The function was processed without errors.

S7_ERR This value indicates that an error occurred
executing the requested service. Here, steps
must be taken to eliminate the error such as
assigning new parameters for the call.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

138

3.7.4 s7_get_msg_abort_cnf

With the 's7_receive' call, the user program receives the confirmation
S7_MSG_ABORT_CNF when the logoff is completed. The function
's7_get_msg_abort_cnf' described here must then be called to obtain
the result of an ALARM or SCAN logoff.

int32 s7_get_msg_abort_cnf(void)

None

S7_OK The function was processed without errors.

S7_ERR This value indicates that an error occurred
executing the requested service. Here, steps
must be taken to eliminate the error such as
assigning new parameters for the call.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

139

3.7.5 s7_get_scan_ind

The 's7_get_scan_ind' call copies the net data sent by the SIMATIC S7
programmable controller to the specified memory areas. When a
message is sent by the remote partner, the user program receives the
indication 'S7_SCAN_IND' using the 's7_receive()' call.

Acknowledgment of SCAN messages is not currently possible with
SAPI-S7.

int32 s7_get_scan_ind

(

void *od_ptr, /* In call */

ord16 *no_scan_objects_ptr, /* Returned */

struct S7_TIME_STAMP *time_stamp_ptr,
/* Returned */

struct S7_SCAN_OBJECT *scan_objects_array
/* Returned */

)

od_ptr This parameter is intended for later extensions
and must be assigned NULL at present.

no_scan_objects_ptr Address of the data value with the number of
received SCAN objects.

time_stamp_ptr Address of a buffer of a structure for the time
stamp of the event provided by the user
program. Detailed information on this parameter
can be found below in a separate paragraph.

scan_objects_array Address of an array of SCAN object structures
provided by the user program. Detailed
information on this parameter can be found
below in a separate paragraph.

Description

Declaration

Parameters

S7 Programming Interface C79000-G8976-C077-07

140

Address of a buffer of a structure for the time stamp of the event
provided by the user program; the time from the SIMATIC S7
programmable controller is used.

struct S7_TIME_STAMP

{

ord16 year;

ord16 month;

ord16 day;

ord16 week_day;

ord16 hour;

ord16 minute;

ord16 second;

ord16 millisecond;

}

year The parameter specifies the year (1950 to 2049);
Example: 1999 is represented as 1999.

month This parameter specifies the month;
Example: March is represented as 3.

day This parameter specifies the day;
Example: The 30th day of the month is
represented as 30.

week_day This parameter specifies the weekday.

The following table shows the assignment of the
parameter value to the weekday.

Parameter Value Weekday
1 Sunday

2 Monday

etc. to etc. to

7 Saturday

hour This parameter specifies the hour; the range is
from 0 to 23.

minute This parameter specifies the minutes; the range
is from 0 to 59.

second This parameter specifies the seconds; the range
is from 0 to 59.

millisecond This parameter specifies the milliseconds; the
range is from 0 to 999.

Explanation of the
'time_stamp_ptr'
Parameter

C79000-G8976-C077-07 S7 Programming Interface

141

Address of a buffer of an array provided by the user program with the
number of S7_MAX_SCAN_OBJECT elements. The number of
relevant elements is returned in the 'no_scan_objects_ptr' parameter.

struct S7_SCAN_OBJECT

{

ord16 state;

ord16 ack_state;

ord16 event_state;

ord32 event_id;

ord16 no_add_value;

struct

{

ord16 data_type;

ord16 add_value_len;

ord8 value
[S7_MAX_SCAN_ADD_VALUE_LEN+2];

} add_value[S7_MAX_ADD_VALUES];

}

state Indicates the general status whether or not the
message exists:

Parameter Value Description
S7_SCAN_MSG_EXIST OK

S7_SCAN_NO_MSG Message does not exist
)*

)* The object monitored with Scan does not
exist on the S7 CPU, for example, data block
with the data to be monitored was deleted.

ack_state Acknowledgment state of the Scan object:

Bit Description
0 Acknowledgment entered state

1 to 7 irrelevant

8 Acknowledgment left state

Examples of messages:
Temperature too high: message entering state
Temperature normal: message leaving state

Both state transitions can be acknowledged in-
dependently of each other. It is therefore practi-
cal to use two separate bits.

SAPI-S7 does not yet acknowledge
messages. It may be possible to
acknowledge messages using other systems.

Explanation of the
'scan_objects_
array' Parameter

☞

S7 Programming Interface C79000-G8976-C077-07

142

event_state Event state:

Bit Description
0 Current state of the event

1 to 15 irrelevant

event_id Normalized message number

no_add_value Number of associated values.

add_value Array of associated values - The associated
value is stored in the array 'value' with a length
of 'S7_MAX_SCAN_ADD_VALUE_LEN+2'.

The number of relevant bytes in this array
depends on the data type of the associated
value configured on the SIMATIC S7
programmable controller. It is specified in the
'add_value_len' parameter.

data_type Data type of the associated value:

Parameter Value Description
S7_DATATYPE_ERROR ERROR

S7_DATATYPE_BOOLEAN BOOLEAN

S7_DATATYPE_BITSTRING BITSTRING -
Note: Length
specified in
bytes instead
of bits!

S7_DATATYPE_INTEGER INTEGER

S7_DATATYPE_OCTET_STRING STRING

add_value_len Number of relevant bytes of the associated
value.

value Transferred associated value

S7_OK The function was processed without errors.

S7_ERR This value also indicates an error in the
execution of the requested service. In this case,
however, the error does not allow the service to
be repeated. Here, steps must be taken to
eliminate the error such as assigning new
parameters for the call.

Return Values

C79000-G8976-C077-07 S7 Programming Interface

143

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7 Programming Interface C79000-G8976-C077-07

144

Example of calling
the
's7_get_scan_ind'
function

void my_get_scan_ind(void)
{
int32 iRet; /* Return Value */
struct S7_SCAN_OBJECT

scan_objects[NO_SCAN_OBJ_PER_TG];
/* SCAN Objects, depends on TPDU size */

ord16 no_scan_objects = 0;
/* returns number of SCAN objects received */

/* NO_SCAN_OBJ_PER_TG depends on TPDU size */
struct S7_TIME_STAMP time_stamp; /* Time stamp */
int i,j,l,len; /* loop variables */

char TempBuffer[1024]; /* Buffer for output string */
char *TempBufferPtr;

/* SAPI-S7 call to get the SCAN data */

iRet = s7_get_scan_ind
(
NULL, /* IN: od_ptr */

&no_scan_objects, /* OUT: Number of SCAN objects */
&time_stamp, /* OUT: Time stamp */
(struct S7_SCAN_OBJECT*) &scan_objects

); /* OUT: SCAN objects */

MYPRINTF("s7_get_scan_ind = %04x",iRet);

/* ERROR? */
if(iRet != S7_OK)

my_error_handler();
else

{
MYPRINTF(" Number of received scan objects : %d ",

no_scan_objects);
/* loop over all scan objects received */
for (i = 0; i < no_scan_objects ; i++)

{
/* general info of scan object */
MYPRINTF(" %d. Scan object ",i);
MYPRINTF(" Ack state = %04x",scan_objects[i].ack_state);
MYPRINTF

(" event state = %04x",
scan_objects[i].event_state);

MYPRINTF(" event id = %04x",scan_objects[i].event_id);

MYPRINTF("Number of associated values = %d",
scan_objects[i].no_add_value);

/* loop over all associated values */
for (j= 0; j < scan_objects[i].no_add_value;j++)

{
/* prepare string buffer for associated value */
TempBufferPtr = TempBuffer;
TempBufferPtr += sprintf(TempBuffer,

" %d. associated value = ",j);

C79000-G8976-C077-07 S7 Programming Interface

145

/* Length of associated value */
len = scan_objects[i].add_value[j].add_value_len;

for (l = 0; l < len ; l++)
{
/* displaying associated value

as byte array */
TempBufferPtr += sprintf(TempBufferPtr,
" %02x",
scan_objects[i].add_value[j].value[l]);
}

/* Output the whole string */
MYPRINTF("%s",TempBuffer);
}

}

}

} /* End of my_get_scan_ind */

S7 Programming Interface C79000-G8976-C077-07

146

3.7.6 s7_get_alarm_ind

The 's7_get_alarm_ind' call copies the net data sent by the
SIMATIC S7 programmable controller to the specified memory areas.
When an alarm is sent by the remote partner, the user program
receives the indication 'S7_ALARM_IND' using the 's7_receive()' call.

Acknowledgment of alarms is not currently possible with SAPI-S7.

int32 s7_get_alarm_ind

(

void *od_ptr, /* In call */

ord16 *state_ptr, /* Returned */

ord16 *ack_state_ptr, /* Returned */

ord16 *event_state_ptr, /* Returned */

ord32 *event_id_ptr, /* Returned */

struct S7_TIME_STAMP *time_stamp_ptr,
/* Returned */

ord16 *no_add_value_ptr, /* Returned */

struct S7_ADD_VALUE *add_value_ptr,
/* Returned */

)

od_ptr This parameter is intended for later extensions
and must be assigned NULL at present.

state_ptr Pointer to the status - The status specifies the
general status:

Bit Description
0 Init startup
1 Overflow signal

2 Overflow instance
3 to 5 reserved

6 Associated value cannot be
entered (size)

7 Associated value not obtainable

Description

Declaration

Parameters

C79000-G8976-C077-07 S7 Programming Interface

147

ack_state_ptr Pointer to the acknowledgment state of the
alarm object:

Bit Description
0 to 7 Acknowledgment entered

state
8 to 15 Acknowledgment left state

Examples of messages:
Temperature too high: message entering state
Temperature normal: message leaving state

Both state transitions can be acknowledged in-
dependently of each other. It is therefore practi-
cal to use two separate bits.

SAPI-S7 does not yet acknowledge
messages. It may be possible to
acknowledge messages using other systems.

event_state_ptr Pointer to the event state of the 8 signals:

Signal Bit Description
1 0 Current state of the event
2 1 Current state of the event

etc. to etc. to etc. to

8 7 Current state of the event

event_id_ptr Pointer to the normalized message number.

time_stamp_ptr Pointer to the address of the structure for the
time stamp alarm message. Detailed information
on this parameter can be found below in a
separate paragraph.

no_add_value_ptr Pointer to an element describing the number of
received associated values.

add_value_ptr Pointer to an array of associated values;
Detailed information on this parameter can be
found below in a separate paragraph.

☞

S7 Programming Interface C79000-G8976-C077-07

148

S7_OK The function was processed without errors.

S7_ERR This value indicates that an error occurred
executing the requested service. Here, steps
must be taken to eliminate the error such as
assigning new parameters for the call.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

Return Values

C79000-G8976-C077-07 S7 Programming Interface

149

Address of a buffer of a structure for the time stamp of the event
provided by the user program.

struct S7_TIME_STAMP

{

ord16 year;

ord16 month;

ord16 day;

ord16 week_day;

ord16 hour;

ord16 minute;

ord16 second;

ord16 millisecond;

}

year The parameter specifies the year (1950 to 2049);
Example: 1999 is represented as 1999.

month This parameter specifies the month;
Example: March is represented as 3.

day This parameter specifies the day;
Example: The 30th day of the month is
represented as 30.

week_day This parameter specifies the weekday.

The following table shows the assignment of the
parameter value to the weekday.

Parameter Value Weekday
1 Sunday

2 Monday

etc. to etc. to

7 Saturday

hour This parameter specifies the hour; the range is
from 0 to 23.

minute This parameter specifies the minutes; the range
is from 0 to 59.

second This parameter specifies the seconds; the range
is from 0 to 59.

millisecond This parameter specifies the milliseconds; the
range is from 0 to 999.

Explanation of the
'time_stamp_ptr'
Parameter

S7 Programming Interface C79000-G8976-C077-07

150

Pointer to an array of associated values with the following structure.

Allocate memory for the number of elements specified in the
'S7_MAX_ADD_VALUE' constant.

The associated value is stored in the array 'value' with a length of
'S7_MAX_ALARM_ADD_VALUE_LEN+2'. The number of relevant
bytes in this array depends on the data type of the associated value
configured on the SIMATIC S7 programmable controller. It is specified
in the 'add_value_len' parameter.

struct S7_ADD_VALUE

{

ord16 data_type;

ord16 add_value_len;

ord8 value
[S7_MAX_ALARM_ADD_VALUE_LEN+2];

} add_value[S7_MAX_ADD_VALUES];

data_type This parameter specifies the data type of the
associated value:

Parameter Value Description
S7_DATATYPE_ERROR ERROR

S7_DATATYPE_BOOLEAN BOOLEAN

S7_DATATYPE_BITSTRING BITSTRING -
Note: Length
specified in
bytes instead
of bits!

S7_DATATYPE_INTEGER INTEGER

S7_DATATYPE_OCTET_STRING STRING

S7_DATATYPE_FLOAT Floating-point
number

S7_DATATYPE_DATE Number of
days since
1.1.1990

S7_DATATYPE_TIME_OF_DAY Milliseconds
since the day
began

S7_DATATYPE_TIME Duration in
milliseconds

S7_DATATYPE_S5_TIME S5 time format

add_value_len Number of relevant bytes of the associated
value.

value Transferred associated value

Explanation of the
'add_value_ptr'
Parameter

C79000-G8976-C077-07 S7 Programming Interface

151

Example of calling
the
's7_get_alarm_ind'
function

void my_get_alarm_ind(void)
{

int32 iRet; /* Return Value */
struct S7_ADD_VALUE

add_value[S7_MAX_ADD_VALUES]; /* Add value objects */
ord16 no_add_value = 0; /* returns number of SCAN objects

received */
ord16 state = 0; /* state of alarm object */
ord16 ack_state = 0; /* acknowledge state */
ord16 event_state = 0; /* event state */
ord32 event_id; /* event id */
struct S7_TIME_STAMP time_stamp; /* time stamp */
int j,l,len; /* loop variables */

char TempBuffer[1024]; /* Buffer for output string */
char *TempBufferPtr;

iRet = s7_get_alarm_ind
(
NULL, /* IN: od_ptr */

&state, /* OUT: Status */
&ack_state, /* OUT: acknowledge state */
&event_state,
&event_id, /* OUT: event id */
&time_stamp, /* OUT: time stamp */
&no_add_value, /* OUT: number of associated values */
add_value /* OUT: start address of associated values */

);
/* ERROR? */
if(iRet != S7_OK)

my_error_handler();
else

{
/* general info of alarm */
MYPRINTF(" Ack state = %04x",ack_state);
MYPRINTF(" event state = %04x",event_state);
MYPRINTF(" event id = %04x",event_id);

MYPRINTF("Number of associated values = %d",no_add_value);

/* loop over all associated values */
for (j= 0; j < no_add_value;j++)

{
/* prepare string buffer for associated value */
TempBufferPtr = TempBuffer;
TempBufferPtr += sprintf(TempBuffer,

" %d. associated value = ",j);

/* Length of associated value */
len = add_value[j].add_value_len;

S7 Programming Interface C79000-G8976-C077-07

152

for (l = 0; l < len ; l++)
{
/* displaying associated value as byte array */
TempBufferPtr += sprintf

(
TempBufferPtr," %02x",add_value[j].value[l]
);

}
/* Output the whole string */
MYPRINTF("%s",TempBuffer);

}
}

}

C79000-G8976-C077-07 S7 Programming Interface

153

3.8 VFD Services

To extend the example from Section 3.5, after stopping the cyclic
reading of variables, the status of the remote VFD is queried. The
status provides information about whether or not the remote
communication partner is ready for operation.

Example

:
:
/* additional prototypings */
static void my_get_vfd_state_cnf(ord32 cp_descr);
static void my_vfd_state_req(ord32 cp_descr,ord16 cref);

/* get vfd state confirmation */
static void my_get_vfd_state_cnf(ord32 cp_descr)
{ ord16 log_state,phy_state;

ord8 local_detail[3];
int32 ret;

ret=s7_get_vfd_state_cnf(&log_state,
&phy_state,
local_detail);

if(ret!=S7_OK)
{

my_exit(cp_descr,
"Error s7_get_vfd_state_cnf",
ret);

}
}

/* send vfd state request */
static void my_vfd_state_req(ord32 cp_descr,ord16 cref)
{ int32 ret;

ret=s7_vfd_state_req(
cp_descr, /* cp_descr */
cref,0 /* cref,orderid */);

if(ret!=S7_OK)
{

my_exit(cp_descr,
"Error s7_vfd_state_req",
ret);

}
}

Description of the
Example

S7 Programming Interface C79000-G8976-C077-07

154

/* receive any message from communication system */
static void my_receive(ord32 cp_descr,int32 last_event_expected)
{ ord16 cref,orderid;

int32 ret;

do
{ ret=s7_receive(cp_descr,&cref,&orderid);

switch(ret)
{

:
:
case S7_CYCL_READ_DELETE_CNF:

my_get_cycl_read_delete_cnf(
cp_descr);
my_vfd_state_req(cp_descr,cref);
break;

case S7_VFD_STATE_CNF:
my_get_vfd_state_cnf(cp_descr);
my_abort(cp_descr,cref);
break;

default:
printf("Event unexpected",

ret);
break;

}
} while((ret!=last_event_expected)&&
(ret!=S7_ABORT_IND));

}

/* main */
void main(void)
{ ord32 cp_descr;

ord16 cref;

/* initialize s7 */
my_init(&cp_descr);

/* get reference for connection 'TEST' */
my_get_cref(cp_descr,&cref);

/* initiate connection */
my_initiate_req(cp_descr,cref);

/* receive vfd state confirmation */
my_receive(cp_descr,S7_VFD_STATE_CNF);

/* end communication */
my_shut(cp_descr);

}

C79000-G8976-C077-07 S7 Programming Interface

155

SAPI-S7User program

s7_vfd_state_req()

Remote partner

= S7_OK

s7_receive()

= S7_NO_MSG

s7_receive()

Repeat several times

= S7_VFD_STATE_CNF

s7_get_vfd_state_cnf

= S7_OK

Request the reading of the
status of a remote VFD

Fetch confirmation

Message (confirmation) there!

Repeat several times

Figure 3.11: Flowchart of the Example

Flowchart

S7 Programming Interface C79000-G8976-C077-07

156

3.8.1 s7_vfd_state_req

With the 's7_vfd_state_req()' call, a client application can read the
logical and physical status of another (remote) virtual field device
(VFD).

int32 s7_vfd_state_req

(
ord32 cp_descr, /* In call */
ord16 cref, /* In call */
ord16 orderid /* In call */
)

cp_descr Handle as return value of the 's7_init()' call.

cref Reference of the S7 connection on which the job
will be sent.

orderid Job identifier to identify the job to be sent and the
corresponding confirmation.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

157

3.8.2 s7_get_vfd_state_cnf

The 's7_get_vfd_state_cnf()' call receives the result of a VFD status
job.

With the 's7_receive()' call, the user program receives the
'S7_VFD_STATE_CNF' confirmation if the status job was executed.
Following this, the corresponding processing function
's7_get_vfd_state_cnf()' must be called for internal processing in the
library.

With the 's7_get_vfd_state_cnf()' call, the values that were read (the
physical and logical status of the VFD and the local status of the
application) are copied to the user buffer.

int32 s7_get_vfd_state_cnf

(
ord16 *log_state_ptr, /* Returned */
ord16 *phy_state_ptr, /* Returned */
ord8 *local_detail_ptr /* Returned */
)

log_state_ptr Address of a variable of the type 'ord16' provided
by the user program. The logical status of the VFD
is entered here. This parameter specifies which
services can currently be used.
'S7_STATE_CHANGES_ALLOWED' is the only
possible state meaning that all services are
permitted.

phy_state_ptr Address of a variable of the type 'ord16' provided
by the user program. The physical status of the
VFD is entered here. The value of this parameter
is derived from the states of the resources. If
'S7_OPERATIONAL' is set, the VFD is completely
functional. In the status
'S7_NEEDS_COMMISSIONING' local intervention
is necessary to change to an operable status.

local_detail_ptr Pointer to a buffer provided by the user program
that must have a minimum size of 3 bytes. The
local status of the application and device are
entered here. The meaning of the 3 bytes depends
on the particular VFD and can be found in the
description of the VFD.

Description

Declaration

Parameters

S7 Programming Interface C79000-G8976-C077-07

158

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Return Values

C79000-G8976-C077-07 S7 Programming Interface

159

3.9 Diagnostic Services for Fault-Tolerant Connections

In conjunction with fault-tolerant SIMATIC S7 systems, it is possible to
establish fault-tolerant SAPI-S7 connections. These consist of more
than one redundant connections that lead to a fault-tolerant SIMATIC
S7 system via different routes. These fault-tolerant connections remain
established even when one of the redundant connections is no longer
functioning. The switchover is automatic.

If a further redundant connection fails, this can lead to termination of
the fault-tolerant connection.

With the diagnostic services, you can display the status of a fault-
tolerant connection and check the problem (partial or total failure). The
diagnostic services report every status change on a fault-tolerant
connection and indicate whether or not all redundant connections
(routes) are functioning

The diagnostic service also provide status information about standard
connections.

The diagnostic functions are only available with the S7-REDCONNECT
product.

The diagnostic services can only be used on connections that were
configured with STEP 7 to a station of the type SIMATIC PC station.

Description

Restrictions

S7 Programming Interface C79000-G8976-C077-07

160

The logon function 's7_diag_init()' starts the diagnostic services. If
there is diagnostic information available, the application receives a
Windows message.
This triggers the 's7_receive()' function that returns 'S7_DIAG_IND'.
The return parameter must be evaluated by the user program before it
can accept the diagnostic information with the 's7_get_diag_ind()' read
function. This provides all the required information (for example the
status of the configured connections, which routes are being used,
which have failed etc.) in a data area that must be made available by
the user.
The 's7_diag_stop()' function stops the diagnostic services and
releases the used resources.

SAPI-S7User program

s7_diag_init()

Remote partner

= S7_OK

s7_receive()

= S7_DIAG_IND

s7_get_diag_ind()

= S7_OK

Log on for diagnostics

Log off for diagnostics

Diagnostic info is there

Windows message

= S7_OK

Fetch diagnostic info

s7_diag_stop()

Windows message

Figure 3.12: Flowchart

Flowchart

C79000-G8976-C077-07 S7 Programming Interface

161

3.9.1 s7_diag_init

Logon for diagnostic messages.
All connections with the same cp_descr are monitored for changes. If
the status of one or more of these connections changes, a Windows
message defined by s7_set_window_handle_msg is generated. The
application must then call s7_receive to determine which event has
occurred.

int s7_diag_init

(
ord32 cp_descr, /* In call */
)

cp_descr The cp_descr returned at 's7_init()'. The diagnostic
data refer to all connections established with the
cp_descr obtained through 's7_init()'.

S7_OK The function was processed without errors.

S7_ERR Indicates an error requiring further steps before it can
be eliminated.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

162

3.9.2 s7_get_diag_ind

Read the diagnostic information, when a message was received with
s7_receive. This function displays relevant diagnostic information only
for the required VFD (in STEP 7 known as the "application“) and
transfers it to a data area made available for this purpose.

int s7_get_diag_ind

(
ord16 number, /* In call */
CONN_INFO *info_ptr /* Returned */
)

number Number of configured connections, as can be
obtained, for example, with 's7_get_conn()'.

*info_ptr pointer to an array of structures of the type
CONN_INFO. In the array, the user must provide the
number of elements transferred in the 'number'
parameter.

S7_OK The function was processed without errors.

S7_ERR Indicates an error requiring further steps before it can
be eliminated.

S7_ERR_INVALID_DATA_SIZE
Data buffer for diagnostic information too small.

Description

Declaration

Parameters

Return Values

Detailed ErrMsg

C79000-G8976-C077-07 S7 Programming Interface

163

typedef struct

{

ord16 cref; /* connection ID */

ord8 conn_type; /* connection type*/

ord8 conn_state; /* connection state*/

ord8 way state [S7_MAX_WEGE];
/* way state */

} CONN_INFO

Element of
the

CONN_INFO
Structure

Possible values Explanation

cref Reference (handle) of the
connection as already returned by
's7_get_cref()'.

conn_type Connection type

S7D_STD_TYPE
S7D_H_TYPE

Standard connection
fault-tolerant connection

conn_state Connection state (standard connection)
S7_DIAG_STD_DOWN
S7_DIAG_STD_ABORT

S7_DIAG_STD_NOT_USED
S7_DIAG_STD_OK

Connection terminated deliberately
Connection terminated due to
problem
Connection was never established
Connection established

Connection state (fault-tolerant connection)
Ideally, a fault-tolerant connection consists of a productive connection on
which data exchange is handled and a standby connection that acts as the
reserve if the productive connection fails. This is known as redundancy.

S7_DIAG_H_OK_RED
S7_DIAG_H_OK_RED_PATH_CHG

S7_DIAG_H_OK_NOT_RED

S7_DIAG_H_ABORT
S7_DIAG_H_NOT_USED
S7_DIAG_H_DOWN

Connection established (redundant)
Connection established (redundant
switchover was made)
Connection not established with
redundancy
Connection terminated due to
problem
Connection was never established
Connection terminated deliberately

way_state Status of the connection paths
S7_DIAG_HW_PROD
S7_DIAG_HW_STBY
S7_DIAG_HW_ABORT
S7_DIAG_HW_NOT_USED
S7_DIAG_HW_DOWN
S7_DIAG_HW_CN_BREAK

Path is productive connection
Path is standby connection
Path was terminated due to problem
Path was never established
Path was terminated deliberately
Path could not be established

Structure of the
CONN_INFO
Structure

S7 Programming Interface C79000-G8976-C077-07

164

3.9.3 s7_diag_stop

Logoff for Diagnostic Messages.

int s7_diag_stop

(
Ord32 cp_descr /* In call */
)

cp_descr The cp_descr returned at 's7_diag_init '.

S7_OK The function was processed without errors.

S7_ERR Indicates an error requiring further steps before it can
be eliminated.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

165

4 Trace and Mini-DB

In this chapter, you will learn how to use the trace and to call the mini-DB. You will
learn the following:

➢ How to enable entries in the library’s own trace.

➢ How to check or modify settings in the mini-DB.

➢ How to obtain information about the last error that occurred.

When you have worked through this chapter, you will be in a position to

➢ Use all the functions provided by S7 for your application while retaining a simple
SAPI-S7 programming interface.

➢ Recognize and eliminate errors using your application.

S7 Programming Interface C79000-G8976-C077-07

166

4.1 s7_trace

With this call, the user can make entries in the trace of the S7 library.
This makes it possible to save important data for analysis, to check the
program sequence or to synchronize with the trace entries.

void s7_trace

(
char *msg /* In call */
)

msg String with the user message to be entered in the
trace. A trace line can contain up to 78 characters of
which, however, 14 characters are reserved for the
time since the trace was initialized and the line
number. This leaves a net data length of 64
characters per trace call. Longer strings are
truncated.

None

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

167

4.2 s7_write_trace_buffer

With high-performance applications, writing the trace to a file is
inefficient. Nevertheless, entries should be available in the trace, for
example if errors occur. For this reason, it is possible to configure the
trace using the mini-DB so that all the trace entries are made in an
internal ring buffer. The total information can then be written to a file
with the 's7_write_trace_buffer()' function and is therefore available for
error analysis and evaluation.

void s7_write_trace_buffer

(
char *filename /* In call */
)

filename Name of the file to which the internal ring buffer will
be written.

None

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

168

4.3 s7_mini_db_set

With this call, settings in the mini-DB are overwritten to be able to
adapt the establishment of an S7 connection, the trace and querying
errors in a wide range of differing situations. There is a limited number
of combinations of data and values as described below.

int32 s7_mini_db_set

(
ord16 type, /* In call */
char *value /* In call */
)

type Identifier for the setting to be modified. The
possible transfer values are described below.

value New value for the setting to be modified. The
value is always transferred as a string. Defines are
available for this in the header file 'SAPI_S7.H'
that correspond to the numbers as ASCII
character strings. If you require combinations of
individual values, you must first convert the
individual defines into integers or perform logic
operations on them and then reconvert the result
to a string.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

169

The trace is a simple and yet effective aid to debugging for the S7
library. It can be adapted to an extremely wide range of applications.
The permitted combinations of values are described below starting with
the 'type' parameter.

With SAPI-S7 libraries from Version V 1.371.2002 onwards, it is
possible to distribute the trace output among several files. This
prevents the trace file growing too large. The number and size of the
files can be set with the parameters S7_MINI_DB_TRACE_MAXFILES
and S7_ MINI_DB _TRACE_MAXLINES.

S7_MINI_DB_TRACE_FILENAME

This parameter value specifies the name of the trace file. The file
name is transferred as 'value' (default: 'S7TRACE.TXT' in the current
working directory).

S7_MINI_DB_TRACE_TARGET

This value specifies the target for the trace.

Parameter 'value' Description

S7_TRACE_TARGET_BUFFER The trace entries are written to
an internal ring buffer (default
setting).

S7_TRACE_TARGET_OLD_FILE The trace entries are written to
a file. Any trace file that already
exists remains unmodified.
Trace entries that follow are
appended to the trace file.

S7_TRACE_TARGET_NEW_FILE The trace entries are written to
a file. A new file is created.
Subsequent trace entries are
appended. It is possible with
this setting to avoid the trace
file becoming far too large.

S7_TRACE_TARGET_CONSOLE The trace entries are passed on
to another application. What
then takes place depends on
the operating system.

Combinations of
Values for the
Trace

S7 Programming Interface C79000-G8976-C077-07

170

S7_ MINI_DB_TRACE_MAXFILES

The trace is a cyclic buffer with a number of files specified in the
S7_MINI_DB_TRACE_MAXFILES parameter. Once a file has reached
the maximum length, a new file is created. When all files have
reached the maximum length, the oldest is overwritten.

Values between 1 and 999 can be set. The default value is 2.

S7_MINI_DB_TRACE_MAXLINES

This sets the size of the S7_Trace files.

Values between 1 and 22-1 can be set. The size should be adapted to
the available memory.

The default value is 10.000.

S7_MINI_DB_TRACE_DEPTH

This sets the trace depth.

Parameter 'value' Description

S7_TRACE_DEPTH_OFF Switches the trace off.

S7_TRACE_DEPTH_USER With this setting (default) only
the strings specified by the user
program with the 's7_trace()'
function are entered in the
trace.

S7_TRACE_DEPTH_EXCEPT This setting only allows trace
entries following error events or
incorrect results.

S7_TRACE_DEPTH_INTERFACE With this setting, parameters
transferred to the SAPI-S7
programming interface are
entered in the trace. This allows
incorrect parameters to be
detected quickly and without
using a debugger.

S7_TRACE_DEPTH_OTHER This setting provides further
information.

C79000-G8976-C077-07 S7 Programming Interface

171

S7_MINI_DB_TRACE_SELECT

To be able to activate the trace for specific service classes, a define is
available in the header file 'SAPI_S7.H' for each service class. The
defines can be combined as explained above.

Parameter 'value' Description

S7_TRACE_SELECT_ADMIN_SERVICES Activates the trace for the
administrative services.

S7_TRACE_SELECT_CONN_SERVICES Activates the trace for the S7
connection management services.

S7_TRACE_SELECT_VAR_SERVICES Activates the trace for the variable
services.

S7_TRACE_SELECT_CYCL_VAR_SERVICES Activates the trace for the cyclic
variable services.

S7_TRACE_SELECT_RECEIVE_SERVICES Activates the trace for the receive
call.

S7_TRACE_SELECT_VFD_SERVICES Activates the trace for the VFD
services.

S7_TRACE_SELECT_OTHER_SERVICES Activates the trace for functions
accessing the mini-DB.

S7_TRACE_SELECT_PBK_SERVICES Activates the trace for the block-
oriented services.

S7_TRACE_SELECT_ALL Activates the trace for all service
classes.

S7_MINI_DB_TRACE_NO_LINES

This parameter is used to modify the number of lines in the internal
ring buffer. For applications that require a lot of memory, the ring
buffer can be reduced in size or increased in size to record the history
when errors occur. The function 's7_write_trace_buffer()' allows the
ring buffer to be written to a file.

Changing this parameter is only effective if the change precedes
the first S7 library call.☞

S7 Programming Interface C79000-G8976-C077-07

172

For the S7 connection establishment, it is possible to assign defaults
for various connection parameters negotiated by the stations. The
permitted combinations of values are described below starting with the
'type' parameter.

S7_MINI_DB_INIT_REQ_AMQ_CALLING

This value specifies how many acknowledged jobs can be received at
the same time on the connection by the active partner (default: '3').
The value is a proposal that can be accepted or reduced by the partner
station. The negotiated value can be read out by the function
's7_mini_db_get()'.

S7_MINI_DB_INIT_REQ_AMQ_CALLED

This value specifies how many acknowledged jobs can be sent at the
same time on the connection by the active partner (default: '3'). The
value is a proposal that can be accepted or reduced by the partner
station. The negotiated value can be read out by the function
's7_mini_db_get()'.

S7_MINI_DB_INIT_REQ_PDU_SIZE

This value specifies the maximum size of a PDU on this connection for
the active partner (default: '0x100'). The value is a proposal that can
be accepted or reduced by the partner station. The negotiated value
can be read out by the function 's7_mini_db_get()'.

S7_MINI_DB_INIT_RSP_AMQ_CALLING

This value specifies how many acknowledged jobs can be sent at the
same time on the connection by the passive partner (default: '3'). The
lower of the values set for the active or passive side is negotiated.

S7_MINI_DB_INIT_RSP_AMQ_CALLED

This value specifies how many acknowledged jobs can be received at
the same time on the connection by the passive partner (default: '3').
The lower of the values set for the active or passive side is negotiated.

Possible
Combinations of
Values for
Establishing S7
Connections

C79000-G8976-C077-07 S7 Programming Interface

173

S7_MINI_DB_INIT_RSP_PDU_SIZE

This value specifies the maximum size of a PDU on this connection for
the passive partner (default: '0x100'). The lower of the values set for
the active or passive side is negotiated.

S7_MINI_DB_PERSISTANCE_COUNT

This value sets the number of attempts at active connection
establishment (default: '5'). When the partner station has rejected the
establishment request this number of times, the establishment is
terminated and a negative acknowledgment sent to the user program.

This value can have a different meaning with certain SIMATIC NET
products. In this case, the meaning is explained in the relevant product
information.

S7_MINI_DB_ABORT_TIMEOUT

This value specifies how long a station can attempt to establish a
connection if the remote station does not respond. The value is set in
multiples of 51 ms (default: '3000'). The parameter applies both to the
connection establishment and to the data transfer phase.

This value can have a different meaning with certain SIMATIC NET
products. In this case, the meaning is explained in the relevant product
information.

This value is irrelevant for TCP/IP protocols.

S7 Programming Interface C79000-G8976-C077-07

174

4.4 s7_mini_db_get

With this call, the settings are read out of the mini-DB. The user
specifies an identifier for the setting to be read and receives a string
that must be interpreted depending on the identifier.

const char *s7_mini_db_get

(
ord16 type /* In call */
)

type Identifier for the data to be read. The possible values
are described below.

The mini-DB allows all the modifiable settings of the trace to be read at
any time. These are as follows:

S7_MINI_DB_TRACE_FILENAME

With this parameter, the name of the trace file is returned.

S7_MINI_DB_TRACE_TARGET

With this parameter, the target of the trace is output.

S7_MINI_DB_TRACE_DEPTH

With this parameter, the trace depth can be queried.

S7_MINI_DB_TRACE_SELECT

With this parameter, the service classes that were activated for the
trace are indicated.

The return values correspond to the specified values in the
's7_mini_db_set()' call.

Description

Declaration

Parameters

Return Values for
Trace Settings

C79000-G8976-C077-07 S7 Programming Interface

175

After receiving an initiate confirmation, the performance parameters
negotiated between client and server are entered in the mini-DB by the
corresponding processing function 's7_get_initiate_cnf()'.

S7_MINI_DB_INIT_IND_AMQ_CALLING

After receiving the initiate indication, this value informs the passive
partner how many jobs the active partner on the connection can
receive at the same time.

S7_MINI_DB_INIT_IND_AMQ_CALLED

After receiving the initiate indication, this value informs the passive
partner how many jobs the active partner on the connection can send
at the same time.

S7_MINI_DB_INIT_IND_PDU_SIZE

After receiving the initiate indication, this value informs the passive
partner how much data the active partner can receive on this
connection.

S7_MINI_DB_INIT_CNF_AMQ_CALLING

After active connection establishment, this value indicates the number
of acknowledged jobs that can be received at the same time on this
connection. The value was negotiated by the partners when the
connection was established.

S7_MINI_DB_INIT_CNF_AMQ_CALLED

After active connection establishment, this value indicates the number
of acknowledged jobs that can be sent at the same time on this
connection. The value was negotiated by the partners when the
connection was established.

S7_MINI_DB_INIT_CNF_PDU_SIZE

After active connection establishment, this value indicates the
maximum PDU size on this connection. The value was negotiated by
the partners when the connection was established.

Return Values for
Establishing an S7
Connection

S7 Programming Interface C79000-G8976-C077-07

176

4.5 s7_last_iec_err_no

The error identifiers are reduced to a practical number by the S7 library
to allow error handling to be implemented more simply in applications.
According to IEC 1131 (International Electrotechnical Commission),
there are standard error codes that can be read out with this call.

ord16 s7_last_iec_err_no(void)

None

The possible return values and their significance:

S7_ERR_IEC_NO

No error occurred.

S7_ERR_IEC_DATA_TYPE_MISMATCH

The data types do not match.

S7_ERR_IEC_INVALID_REF

The specified S7 connection reference does not exist.

S7_ERR_IEC_LOWER_LAYER

An error occurred in the lower layers.

S7_ERR_IEC_NEG_RESPONSE

The client has received a negative response from the communications
partner.

S7_ERR_IEC_NO_ACCESS_TO_REM_OBJECT

Access to an object was rejected.

S7_ERR_IEC_PARTNER_IN_WRONG_STATE

The partner station is in a status in which the requested job cannot be
processed.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

177

S7_ERR_IEC_RECEIVER_DISABLED

The server is not responding.

S7_ERR_IEC_RECEIVER_OVERRUN

The resources in the server are exhausted.

S7_ERR_IEC_RESET_RECEIVED

A reset request has been received.

S7 Programming Interface C79000-G8976-C077-07

178

4.6 s7_last_iec_err_msg

This call returns a string that describes the error indicated by the IEC
error code. This is an error string that can, for example, be displayed
on an operator console or written to a log file etc.

const char *s7_last_iec_err_msg(void)

None

Description

Declaration

Parameters

C79000-G8976-C077-07 S7 Programming Interface

179

4.7 s7_last_detailed_err_no

With this call, the caller receives an error number that provides more
detailed information about the cause of the error than the standard IEC
error codes.

ord16 s7_last_detailed_err_no(void)

None

The possible return values and their significance:

S7_ERR_NO_ERROR

No error occurred.

S7_ERR_CONN_ABORTED

The S7 connection was aborted.

S7_ERR_CONN_CNF

The S7 connection could not be established.

S7_ERR_CONN_NAME_NOT_FOUND

The specified S7 connection name was not found.

S7_ERR_FW_ERROR

A firmware error has occurred on the communications processor.

S7_ERR_INSTALL

When installing the SIMATIC NET driver or initializing the
communications processor an error occurred that makes
communication impossible.

S7_ERR_INTERNAL_ERROR

During communication, library-internal data were overwritten making it
impossible to continue operating the application.

Description

Declaration

Parameters

Return Values

S7 Programming Interface C79000-G8976-C077-07

180

S7_ERR_INVALID_CONN_STATE

The job that has been sent is not permitted in the current status of the
S7 connection.

S7_ERR_INVALID_CREF

The specified S7 connection reference is invalid.

S7_ERR_INVALID_CYCL_READ_STATE

The job is not permitted in the current status of the cyclic read job.

S7_ERR_INVALID_DATARANGE_OR_TYPE

Input parameter of the called function outside the valid range of
values.

S7_ERR_INVALID_DATA_SIZE

The data buffer provided by the user program is too small.

S7_ERR_INVALID_ORDERID

There is no job with the specified job identifier (parameter 'orderid').

S7_ERR_INVALID_PARAMETER

A transferred parameter or a specified value in a transferred structure
is invalid.

S7_ERR_MAX_REQ

The maximum number of acknowledged jobs negotiated during
connection establishment has already been sent.

S7_ERR_MINI_DB_TYPE

The 'type' parameter is not permitted in a mini-DB call.

S7_ERR_MINI_DB_VALUE

The 'value' parameter is not permitted in a mini-DB call.

C79000-G8976-C077-07 S7 Programming Interface

181

S7_ERR_NO_LICENCE

The license required for the product could not be found.

S7_ERR_NO_RESOURCE

The resources available are currently exhausted.

S7_ERR_NO_SIN_SERV

The SIMATIC NET server required for S7 applications under Windows
that sends messages to the relevant application could not be started.

S7_ERR_OBJ_ACCESS_DENIED

Access to the required object was rejected.

S7_ERR_OBJ_ATTR_INCONSISTENT

The OD or the attributes of the addressed object are inconsistent.

S7_ERR_OBJ_UNDEFINED

The object to be accessed does not exist.

S7_ERR_ORDERID_USED

The job identifier transferred with the call (parameter 'orderid') is
already being used.

S7_ERR_RECEIVE_BUFFER_FULL

A message was received however the corresponding processing
function has not yet been called.

S7_ERR_SERVICE_NOT_SUPPORTED

The requested service is not supported.

S7_ERR_SERVICE_VFD_ALREADY_USED

The application or a different process has already logged on at the
VFD.

S7 Programming Interface C79000-G8976-C077-07

182

S7_ERR_SYMB_ADDRESS

The symbolic address transferred in the job is incorrect.

S7_ERR_SYMB_ADDRESS_INCONSISTENT

The size of the user data contained in the symbolic address and the
size of the user buffer are contradictory.

S7_ERR_TOO_LONG_DATA

There are more data to be written than permitted by the standard.

S7_ERR_UNKNOWN_ERROR

An unknown error has occurred.

S7_ERR_WRONG_CP_DESCR

The CP descriptor in the call is incorrect.

S7_ERR_WRONG_IND_CNF

The wrong processing function was called for a received message.

C79000-G8976-C077-07 S7 Programming Interface

183

4.8 s7_last_detailed_err_msg

This call provides an error message about the detailed error number
that describes the error that has occurred and provides information
about eliminating the error. This is an error string that can, for
example, be displayed on an operator console or written to a log file
etc.

const char *s7_last_detailed_err_msg(void)

None

Description

Declaration

Parameters

S7 Programming Interface C79000-G8976-C077-07

184

4.9 s7_discard_msg

With this call, the user program can discard a received message
without having called the corresponding processing function.

Per S7 connection, there is a maximum number of acknowledged jobs
that can be processed simultaneously, this maximum number is
specified during configuration and is negotiated when the connection is
established. Ignoring (for example unexpected) events and the
consequent absence of responses therefore permanently reduces the
number of acknowledged jobs that can be used at the same time.

void s7_discard_msg(void)

None

Description

Declaration

Parameters

C79000-G8976-C077-07 S7 Programming Interface

185

5 Configuration

In this chapter

➢ you will learn the meaning of configuration,

➢ you will obtain an overview of the configuration parameters necessary for
operation,

➢ you will find a list of the services that use configuration parameters.

When you have worked through this chapter, you will be in a position to match your
SAPI-S7 application to the configuration.

S7 Programming Interface C79000-G8976-C077-07

186

5.1 Significance of Configuration

To avoid involving applications in adaptations made necessary by
changes in the communications system (network), the creation and
assignment of S7 connections is configured. Configuration is a
standardized method of setting address parameters etc. for all
applications. Generally, the installation of software and its integration in
the network is not done by the software developer.

When you reconfigure a system, you must make sure that the
configuration parameters relevant to the applications are retained. The
name of an S7 connection, for example, must continue to exist even if
a different partner station is addressed on this connection and under
certain circumstances even with a different S7 connection reference.
By keeping to these rules, modifications can be made using the
appropriate configuration tools at any time without needing to change
user programs.

Accessing the configuration is described in Section 6.5.

Configuration
Increases the
Flexibility of Your
Application

C79000-G8976-C077-07 S7 Programming Interface

187

5.2 Services With Configuration Data

The logon function 's7_init()' requires two items of information from the
administrative services:

➢ Firstly, the CP name that identifies a CP must be specified and
must match the name selected during installation. The
installation is performed with SIMATIC NET products. The
installation procedures are described in the documentation
accompanying these products.

➢ Secondly, the name of the local VFD at which the user wants to
log on is required. The logon makes the VFD-specific S7
connections and the VFD-specific objects accessible to the
application. The VFD name is specified during configuration.

The names of the installed CPs or the names of VFDs configured on a
CP that were assigned connetions can be queried with the
's7_get_device()' or 's7_get_vfd()' calls.

Only the 's7_get_cref()' call requires a configuration parameter from
the management services for S7 connection lists in the form of the S7
connection name. This function returns the configured reference for an
S7 connection. Once this reference has been obtained, the application
should continue to use the reference in future communication.

The names of all configured S7 connections can be read out with the
's7_get_conn()' call.

Administrative
Services

Management
Services for S7
Connection Lists

S7 Programming Interface C79000-G8976-C077-07

188

5.3 Configuring with STEP 7 V5

From STEP 7 V5 onwards, it is possible to configure the SAPI-S7
connections from PC to SIMATIC S7 PLC with STEP 7.

To use this function, select the station type SIMATIC PC station in
STEP 7.

The configuration file (XDB file) created by STEP 7 must be copied to
the PC. You can select the location of the XDB file using the program
'Setting the PG/PC Interface' (STEP 7 Configuration tab).

Fault-tolerant connections must be configured with STEP 7 V5. For
more information on configuring, refer to the STEP 7 V5
documentation.

Read the product information bulletins of your SIMATIC NET product
to check whether configuration with STEP 7 V5 is supported.

If you decide to configure connections using STEP 7, all S7
connections on a PC must be configured with STEP 7.

Fault-tolerant connections are only available with the
S7-REDCONNECT product.

Procedure

Restrictions

C79000-G8976-C077-07 S7 Programming Interface

189

6 SAPI-S7 Under MS-DOS/Windows

This chapter explains the characteristics of the SAPI-S7 programming interface specific
to MS-DOS and Windows. In this context Windows stands for the Microsoft operating
systems Windows 3.x (3.1 and 3.11) in enhanced 386 mode, Windows 95 and
Windows NT if not specified otherwise.

You will learn the following:

➢ The compilers and memory models for which the S7 library is available under
MS-DOS and Windows.

➢ Which compiler options are useful when translating your own applications.

➢ Which linker options are required when linking your program modules to the S7
library.

➢ How to control the trace using environment variables without having to change
your application.

When you have worked through this chapter, you will be in a position to

➢ translate your own program modules and to link them with the S7 library to form
an executable program,

➢ control the trace outputs of your application.

S7 Programming Interface C79000-G8976-C077-07

190

6.1 General Information

The SAPI-S7 programming interface is available to the user in the form
of libraries. The definitions required to use the programming interface
are located in the 'SAPI_S7.H' file. Libraries are available for MS-DOS,
Windows 3.x, Windows 95 and Windows NT for various compilers.

The names of the libraries for MS-DOS and Windows 3.x are as
follows:

<Memorymodel><Operatingsystem>s7<Compiler>.lib

The following table explains the components making up the library
names.

Format Name Format Entry Meaning

<Speichermodell> l Large model

h Huge model

<Betriebssystem> d MS DOS

w Windows 3.x

<Compiler> msc MSC compiler 7.0

tc Turbo C compiler 1.0

bc Borland C compiler 3.1

For example, the file 'LDS7TC.LIB' is the library translated with the
Turbo C compiler in the 'Large' memory model for the MS-DOS
operating system.

For the Windows 3.x operating system, the 'S7.DLL' file provides a
DLL version (Dynamic Link Library) with the import libraries
'S7MSC.LIB' and 'S7BC.LIB' for the Microsoft C- or Borland C
compilers.

For Windows 95 and Windows NT, a 32-bit DLL 'S732.DLL' and the
corresponding import library 'S7MSC.LIB' are available.

Memory Models

C79000-G8976-C077-07 S7 Programming Interface

191

Normally, compilers save variables in memory in a form that seems
the most suitable to the compiler. During this procedure, gaps can
occur between the components of a variable (padding bytes).

The structures available on the SAPI-S7 programming interface are
designed so that they can access the individual components of user
programs translated with byte or word alignment. Double word
alignment is not supported by the S7 library.

To allow communication, user programs must log on at the
communications system that occupies resources for management. If
an application is aborted with the key combination 'CTRL+C' the
resources still remain reserved for the process and the logon is still
effective. To avoid this, a 'CTRL+C' handler should be implemented in
the user program to handle all the logoffs at the communications
system if the program is aborted.

Alignment

Program Abort

S7 Programming Interface C79000-G8976-C077-07

192

6.2 Translating and Linking for MS-DOS

The following sections list compilation examples that illustrate the
required compiler and linker options for your applications.

You must adapt the compile instruction to suit the situation on your
system selecting the correct drive and path.

Under MS DOS, the S7 library for the MSC Compiler 7.0 has the name
'LDS7MSC.LIB'. The following example shows how a sample program
'EXP.C' is compiled and linked with the 'Large' memory model for MS
DOS:

cl /c /AL /Os /Iinc src\exp.c

link @exp.lnk

The instructions for the linker are in the file 'EXP.LNK' :

exp.obj,

exp.exe,

exp.map,

lds7msc.lib+

\msc70\lib\oldnames.lib+

\msc70\lib\llibce.lib

;

Requirements

Working with the
MSC Compiler 7.0

C79000-G8976-C077-07 S7 Programming Interface

193

If you want to use the MS Visual C++ Compiler 1.0 for your MS-DOS
applications, you can use the same S7 library as for the MSC Compiler
7.0. The compile instructions for the 'Large' memory model then
appear as follows under MS-DOS:

cl /c /AL /Os /Iinc src\exp.c

link @exp.lnk

The instructions for the linker are in the file 'EXP.LNK':

exp.obj,

exp.exe,

exp.map,

lds7msc.lib+

\msvc\lib\oldnames.lib+

\msvc\lib\llibce.lib

;

For the Turbo C Compiler 1.0, there are two versions of the S7 library
available for MS-DOS: 'LDS7TC.LIB' for the 'Large' memory model
and 'HDS7TC.LIB' for the 'Huge' memory model. The following
example shows how a typical program 'EXP.C' is translated and linked
with the 'Large' memory model for MS-DOS:

tcc -c -ml -Iinc src\exp.c

tlink @exp.lnk.

The instructions for the linker are in the file 'EXP.LNK':

\tc10\lib\c0l.obj exp.obj

exp.exe

exp.map

\tc10\lib\emu.lib \tc10\lib\mathl.lib \tc10\lib\cl.lib LDS7TC.LIB

Working with the
MS Visual C++
Compiler 1.0

Working With the
Turbo C
Compiler 1.0

S7 Programming Interface C79000-G8976-C077-07

194

6.3 Translating and Linking for Windows 3.x

The following sections list compilation examples that illustrate the
required compiler and linker options for your applications.

You must adapt the compile instruction to suit the situation on your
system selecting the correct drive and path.

Under Windows 3.x, the S7 library for the MSC Compiler 7.0 has the
name 'LWS7MSC.LIB'. The following example illustrates how a sample
program 'EXP.C' is translated and linked with the 'Large' memory
model for Windows 3.x:

cl /c /AL /Os /Iinc src\exp.c

link @exp.lnk

The instructions for the linker are in the file 'EXP.LNK':

exp.obj,

exp.exe,

exp.map,

lws7msc.lib+

\msc70\lib\oldnames.lib+

\msc70\lib\llibcew.lib+

\msc70\lib\libw.lib

exp.def;

The module definition file 'exp.def' appears as follows:

NAME EXP

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 1024

STACKSIZE 10240

EXPORTS

Requirements

Working with the
MSC Compiler 7.0

C79000-G8976-C077-07 S7 Programming Interface

195

If you want to use the MS Visual C++ Compiler 1.0 for your Windows
applications, you can use the same S7 library as for the MSC Compiler
7.0. The compile instructions for the 'Large' memory model then
appear as follows under MS-DOS:

cl /c /AL /Os /Iinc src\exp.c

link @exp.lnk

The instructions for the linker are in the file 'EXP.LNK':

exp.obj,

exp.exe,

exp.map,

lws7msc.lib+

\msvc\lib\oldnames.lib+

\msvc\lib\llibcew.lib+

\msvc\lib\libw.lib

exp.def;

The module definition file 'exp.def' appears as follows:

NAME EXP

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 1024

STACKSIZE 10240

EXPORTS

Working with the
MS Visual C++
Compiler 1.0

S7 Programming Interface C79000-G8976-C077-07

196

The S7 library for the Borland C Compiler 3.1 has the name
'LWS7BC.LIBF' under Windows 3.x . The following example shows
how a typical program 'EXP.C' is translated and linked with the 'Large'
memory model for Windows:

bcc -c -ml -Os -Iinc src\exp.c

tlink /Twe @exp.lnk

The instructions for the linker are in the file 'EXP.LNK':

\bc31\lib\c0wl.obj exp.obj

exp.exe

exp.map

lws7bc.lib \bc31\lib\mathwl.lib \bc31\lib\import.lib
\bc31\lib\cwl.lib

exp.def

The module definition file 'exp.def' appears as follows:

NAME EXP

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 1024

STACKSIZE 10240

EXPORTS

Under the Windows 3.x operating system, in addition to the libraries
listed above, there is a DLL version (Dynamic Link Library) available
(file 'S7.DLL') and the required import libraries for the MSC Compiler
7.0 and MS Visual C++ Compiler 1.0 (file 'S7MSC.LIB') or the Borland
C Compiler 3.1 (file 'S7BC.LIB').

The compilation rules for SAPI-S7 applications that are based on the
DLL version of SAPI-S7 are similar to those for applications that use
the SAPI-S7 libraries. The SAPI-S7 libraries above 'LWS7MSC.LIB'
and 'LWS7BC.LIB' must be replaced by the import libraries
'S7MSC.LIB' and 'S7BC.LIB. In addition to this, the define 'S7_DLL'
must be set when compiling source files that use the SAPI-S7
functions.

For using this DLL in other programming languages, such as BASIC or
Pascal, refer to the corresponding manuals.

Working with the
Borland C
Compiler 3.1

SAPI-S7 as DLL
Version

C79000-G8976-C077-07 S7 Programming Interface

197

6.4 Translating and Linking for Windows 95 and Windows NT

The following sections list compilation examples that illustrate the
required compiler and linker options for your applications.

You must adapt the compile instruction to suit the situation on your
system selecting the correct drive and path.

The S7 import library for the Microsoft Visual C++ compiler 2.2 has the
name 'S7MSC.LIB' under Windows 95 and Windows NT. The
corresponding DLL has the name 'S732.DLL'. The following Example
shows how a sample program 'EXP.C' is compiled and linked for
Windows 95. For Windows NT, simply replace the directory
'SAPI_S7.W95' with 'SAPI_S7.NT'.

cl /c /MT /W3 /GX /Zp1 /Od -DSTRICT -DWIN32
-DWINDOWS -I\sinec\sapi_s7.w95\include
-I\msvc20\include src\bsp.c

link /NODEFAULTLIB /OUT:"exp.exe" @exp.dat

The instructions for the linker are in the file 'exp.dat':

exp.obj,

\sinec\sapi_s7.w95\lib\s7msc.lib

\msvc20\lib\kernel32.lib

\msvc20\lib\user32.lib

\msvc20\lib\gdi32.lib

\msvc20\lib\libc.lib

/SUBSYSTEM:windows /MACHINE:I386

Requirements

Working with the
MSVC Compiler 2.2

S7 Programming Interface C79000-G8976-C077-07

198

6.5 Environment Variables

The term environment means a memory area in which the parameters
are saved that are set with the MS-DOS commands 'path', 'prompt' and
'set'. The area consists of a series of ASCII strings that are completed
by a NULL character. The area is used to hold information about the
entire computer system.

The values of the environment variables required for the SAPI-S7
library must be set using the configuration program "Setting the
PG/PC Interface“. This program sets the values under the key
"HKEY_LOCAL_MACHINE\SOFTWARE\SIEMENS\SINEC\SAPI_S7“
in the Windows 95/NT registry. The variable is only searched for in the
program environment when no entry with the required name exists in
the registry.

The S7 library can be controlled by a total of three environment
variables. Using the variables 'S7_TRACE_SELECT',
'S7_TRACE_DEPTH' and 'S7_TRACE_TARGET' the service classes
for which entries will be made in the trace, the trace depth and the
target of the trace can be set (see file 'SAPI_S7.H').

Example: set S7_TRACE_DEPTH=104

The existence of the environment variable is checked and evaluated
when the trace is initialized. Trace settings made earlier are then
overwritten.

It is advisable to set the trace using the environment variables and not
with mini-DB calls. This allows the default values to be overwritten for
debugging without the user having to modify his application and
retranslate it.

Under Windows 95 and Windows NT, you can also specify the value
of the variables by making entries with the names of the environment
variables in the registration database under the key
“HKEY_LOCAL_MACHINE\SOFTWARE\SIEMENS\SINEC\SAPI_S7”.

What Does
Environment
Mean?

Environment
Variables of the
SAPI-S7 Library
under Windows 95
and Windows NT

Controlling the
Trace

C79000-G8976-C077-07 S7 Programming Interface

199

In the configuration program "Setting the PG/PC Interface“, you can
set the drive name, the and name of the configuration file.

Step Procedure

1 Select a module parameter set from the "Module
Parameter Set Used" list box.

2 Click the "Properties" button.

3 Select the "S7 Protocol" tab.

4 Check the "Activate S7" option box.

5 In the "SAPI S7 Database" input field, enter the drive
name, the path, and the name of the configuration file.

Under MS-DOS and Windows 3.x, the SAPI-S7 library attempts to read
the path of the configuration file from an environment variable. The
name of the environment variable corresponds to the entry in the
registry under Windows 95 and Windows NT. For a CP with the name
'CP_L2_1:' this would be 'CP_L2_1:_S7LDB'.

If no corresponding environment variable is found either when the
's7_init()' function is called, the SAPI S7 library attempts to read out
the configuration data from a file in the currently active directory. |The
file name is obtained from the transfer parameter 'cp_name' by
removing the colon completing the CP name and appending the
extension '.LDB'. If a CP with the name CP 'CP_L2_1:' logs on, for
example, the file 'CP_L2_1.LDB' is read out.

How to Access the
Configuration

S7 Programming Interface C79000-G8976-C077-07

200

6.6 The Trace for MS-DOS or Windows

It is possible to make a setting for a specific operating system for the
trace of the SAPI-S7 programming interface. Using a mini-DB call, the
target of the trace can be modified to the value
'S7_TRACE_TARGET_CONSOLE'. The way in which the trace then
reacts depends on the specific operating system and is explained
below.

Under Windows, the trace setting described above means that the
entire trace is output on the monitor in its own window. You can then
adapt the window to suit your needs. How you configure the window
and the number of trace lines displayed can be found in the on-line
help texts.

With the trace setting above, no trace entries whatsoever are made
under the MS-DOS operating system. As a single-user operating
system, MS-DOS is not in a position to start a second application
parallel to the S7 user program that edits and represents the trace on
the monitor.

General

The Trace Setting
for Windows

The Trace Setting
for MS-DOS

C79000-G8976-C077-07 S7 Programming Interface

201

6.7 Special Features for Windows

One of the differences between Windows applications and MS-DOS
programs is that they receive events at a central point in the main
program and pass them on to a suitable Windows procedure
('WndProc') for further processing. This Windows procedure must be
made accessible to Windows management when the program is
started.

:
:
#define MY_MSG_ID 1500

WndProc(hWnd,msg,...)
{

:
:
switch(msg)
{

case: /* init code */

s7_init("CP_L2_1:","MY_VFD",&cp_descr);
s7_set_window_handle_msg(

cp_descr,hWnd,MY_MSG_ID);
break;

case:
s7_....(cp_descr,...);
break;

case MY_MSG_ID:
s7_receive(cp_descr,&cref,

&orderid);
break;

}
}
:
:

In a Windows application, following 's7_init()', the routine
's7_set_window_handle_msg()' must be called with a window handle
and a message ID so that the underlying communications system can
send a message to the application. When a frame is received, the
application is informed by a message. The Windows procedure that is
then called in turn calls 's7_receive()' and the appropriate processing
function.

Differences
Between MS-DOS
and Windows
Programs

Example of a
Typical Windows
Application

S7 Programming Interface C79000-G8976-C077-07

202

6.7.1 s7_set_window_handle_msg

In a Windows program, after a successful 's7_init()', the user must call
the routine 's7_set_window_handle_msg()'. This informs the underlying
communication system to which window and with which ID it should
send its messages.

int32 s7_set_window_handle_msg

(
ord32 cp_descr, /* In call */
ord32 hWnd, /* In call */
ord32 msgID /* In call */
)

cp_descr Handle as return value of the 's7_init()' call.

hWnd Handle of the window to which the SIMATIC NET
message will be sent.

msgID ID of the SIMATIC NET message to be sent to the
window specified above.

S7_OK The function was processed without errors.

S7_ERR_RETRY This value indicates that an error occurred
executing the requested service. This is a
temporary problem such as a brief memory
shortage. The call can be repeated without
modifying the transferred parameters.

S7_ERR This value also indicates an error in the execution
of the requested service. In this case, however,
the error does not allow the service to be
repeated. Here, steps must be taken to eliminate
the error such as assigning new parameters for
the call.

Description

Declaration

Parameters

Return Values

C79000-G8976-C077-07 S7 Programming Interface

203

7 Appendix

This chapter introduces you to the following:

➢ Which S7 subset is covered by the SAPI-S7 library,

➢ Which conditions must be adhered to when operating the SAPI-S7 library.

➢ How S7 variables and the standard data types are represented by S7 (both on
the host and on the network).

At the end of the chapter you will find a list of the most common abbreviations used in
this manual and a list of documentation available for further reading.

S7 Programming Interface C79000-G8976-C077-07

204

7.1 Range of Functions of SAPI-S7

The SAPI-S7 programming interface provides access to the following
services (abbreviation: 'req' for Request, 'ind' for Indication, 'con' for
Confirmation and 'rsp' for Response):

PICS Serial Number: 1

PICS Part 1

Implementation in the system

System Parameters Detail

Implementation's Vendor Name - (can be set by COML)

Implementation's Model Name VFD name (can be set by COML)

Implementation's Revision
Identifier

- (can be set by COML)

Vendor Name of S7 Siemens AG

Controller Type of S7 ASPC2

Hardware Release of S7 A_._ (can be found on type plate)

Software Release of S7 V_._

Profile Number 0

Calling S7 User
(enter 'YES' or 'NO')

YES

Called S7 User
(enter 'YES' or 'NO')

YES

PICS Part 2

Supported Services

Service Primitive

Initiate req, con, ind, rsp

Abort req, ind

Status req, con

Unsolicited-Status ind

Read req, con

Write req, con

SAPI-S7 as a
Subset of S7

C79000-G8976-C077-07 S7 Programming Interface

205

PICS Part 3

S7 Parameters and Options Detail

Addressing by names YES

Maximum length for names 32

Access-Protection Supported -

Maximum length for Extension 32

Maximum length for Extension
Arguments

0

PICS Part 4

Local Implementation Values Detail

Maximum length of S7-PDU 1024

Maximum number of Services
Outstanding Calling

-

Maximum number of Services
Outstanding Called

-

Syntax and semantics of the
Execution Argument

-

Syntax and semantics of
Extension

-

When operating the SAPI-S7 programming interface, remember the
following restrictions:

The number of possible jobs and connections can be found in the
product information of the relevant products (SIMATIC NET and
SIMATIC S7 CPU).

Conditions for
Operation

☞

S7 Programming Interface C79000-G8976-C077-07

206

7.2 Special Notes

For information about data consistency, user data size and cyclic
reading refer to the SIMATIC communication manual (order number
6ES7398-8EA00-8BA0).

Data Consistency,
User Data Size,
Cyclic Reading

C79000-G8976-C077-07 S7 Programming Interface

207

7.3 Formulas for Calculating Data Lengths for the Variable
Services

The following table shows the maximum length of the result/user data
depending on the PDU size as a formula.

In services with several variables, the maximum number of variables is
also shown dependent on the PDU size as a formula.

Service Formula Remark

S7_read_req Len = PDU size – 18

Len = The maximum length of
the result data dependent
on the negotiated PDU
size

s7_write_req Len = PDU size – 28

Len = The maximum length of
the user data dependent
on the negotiated PDU
size

The length of the user data
cannot exceed 256 bytes.

s7_write_long_req Len = PDU size - 28

Len = The maximum length of
the user data dependent
on the negotiated PDU
size

s7_multiple_read_req Nvar = (PDU size – 12) / 12

Nvar = Maximum number of
variables in one job

SumResData =
PDU size – 14 – Nvar * 4

SumResData = Maximum
length of the
result

data dependent on the PDU size
and the number of variables

Caution
Variables with an odd data length
count as having the next higher
even length in the job.

Example
PDU size = 112
Nvar = 8,3 becomes 8

SumResData =
(112 – 14 – 8 * 4) = 66
in other words, in one job, for
example, memory byte (MB) 1 to
33 can be read, since 1 memory
byte occupies 2 bytes (33 * 2 =
66).

Table continued on next page

S7 Programming Interface C79000-G8976-C077-07

208

Table continued from previous page

Service Formula Remark

s7_multiple_write_req Nvar = (PDU size – 12) / 18

Nvar = Maximum number of
variables in one job

SumResData =
(PDU size – 12 – Nvar * 16)

SumResData = Maximum
length of the
user

data dependent on the PDU size
and the number of variables

Caution
Variables with an odd data length
count as having the next higher
even length in the job.

Example
PDU size = 480
Nvar = 26

SumResData =
(480 – 12 – 26 * 16) = 52
in other words, in one job, for
example, memory byte (MB) 1 to
26 can be written, since 1
memory byte occupies 2 bytes (
26 * 2 = 52).

s7_cycl_read_init_req Nvar = (PDU size – 26) / 12

Nvar = Maximum number of
variables in one job

SumResData =
PDU size – 28 – Nvar * 4

SumResData = Maximum
length of the
user

data dependent on the PDU size
and the number of variables

Caution
Variables with an odd data length
count as having the next higher
even length in the job.

Example
PDU size = 480
Nvar = 37,83 i.e. 37

SumResData =
(480 – 28 – 37 * 4) = 304
in other words, in one job, for
example, memory word (MW) 1
to 152 can be written, since 1
memory word occupies 2 bytes
(152 * 2 = 304).

C79000-G8976-C077-07 S7 Programming Interface

209

7.4 Representation of S7 Variables

The SAPI-S7 programming interface requires that variables are saved
byte aligned in main memory. This means that there must be no
padding bytes, for example between the individual components of a
structure. This is achieved with suitable compiler options or by
pragmas.

The SAPI-S7 library supplies data that have been read or variable
values to be written in the network representation. A conversion
between the host and network representation is intended for future
versions of the library. For this reason, all the affected functions have
been extended by a transfer parameter 'od_ptr' that must be assigned
the NULL pointer in the current version of the library.

This parameter ('od_ptr') will control the representation of variables in a
later version of the library. The representation depends on the
following:

➢ Whether or not data should be converted from the host to the
network representation and vice versa (currently not
implemented in the SAPI-S7 library), or whether the network
representation is required on the host.

➢ Which host CPU is being used (for example Intel).

Byte Alignment

Network
Representation of
Variable Values

S7 Programming Interface C79000-G8976-C077-07

210

7.5 Representation of the Standard Data Types

7.5.1 Representation of the 'Boolean' Data Type

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 0 0 0 0 0 0 0 x

For 'FALSE', 'x' has the value '0', for 'TRUE' the value '1'.

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 x8 x7 x6 x5 x4 x3 x2 x1

If at least 1 bit of the bits 'x8' to 'x1' are set, the value 'TRUE' is
assumed. For 'FALSE', all bits must be '0’

Network
Representation
and Range of
Values

Host
Representation
and Range of
Values (Intel CPU)

C79000-G8976-C077-07 S7 Programming Interface

211

7.5.2 Representation of the Data Type 'Integer'

With the 'integer' data type, a distinction must be made according to
the length of the data type.

 Data Type Range of Values Length

 8-bit integer -128 ... 127 1 octet

 16-bit integer - 32768 ... 32767 2 octets

 32-bit integer -231 ... 231-1 4 octets

Network representation (2’s complement representation) for 8-bit
integers ('SI' represents the sign bit and has the value '1' for negative
numbers, otherwise the value '0'):

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 SI 26 25 24 23 22 21 20

Network representation (2’s complement representation) for 16-bit
integers ('SI' represents the sign bit and has the value '1' for negative
numbers, otherwise the value '0'):

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 SI 214 213 212 211 210 29 28

 2 27 26 25 24 23 22 21 20

 Range of Values

Network
Representation

S7 Programming Interface C79000-G8976-C077-07

212

Network representation (2’s complement representation) for 32-bit
integers ('SI' represents the sign bit and has the value '1' for negative
numbers, otherwise the value '0'):

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 SI 230 229 228 227 226 225 224

 2 223 222 221 220 219 218 217 216

 3 215 214 213 212 211 210 29 28

 4 27 26 25 24 23 22 21 20

Host representation (2’s complement representation) for 8-bit integers
('SI' represents the sign bit and has the value '1' for negative numbers,
otherwise the value '0'):

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 SI 26 25 24 23 22 21 20

Host representation (2’s complement representation) for 16-bit integers
('SI' represents the sign bit and has the value '1' for negative numbers,
otherwise the value '0'):

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 27 26 25 24 23 22 21 20

 2 SI 214 213 212 211 210 29 28

Host
Representation
(Intel CPU)

C79000-G8976-C077-07 S7 Programming Interface

213

Host representation (2’s complement representation) for 32-bit integers
('SI' represents the sign bit and has the value '1' for negative numbers,
otherwise the value '0'):

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 27 26 25 24 23 22 21 20

 2 215 214 213 212 211 210 29 28

 3 223 222 221 220 219 218 217 216

 4 SI 230 229 228 227 226 225 224

S7 Programming Interface C79000-G8976-C077-07

214

7.5.3 Representation of the 'Unsigned' Data Type

With the 'unsigned' data type, a distinction must be made according to
the length of the data type.

 Data Type Range of Values Length

 8-bit unsigned 0 ... 255 1 octet

 16-bit unsigned 0 ... 65535 2 octets

 32-bit unsigned 0 ... 232-1 4 octets

Network representation for 8-bit unsigned:

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 27 26 25 24 23 22 21 20

Network representation for 16-bit unsigned:

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 215 214 213 212 211 210 29 28

 2 27 26 25 24 23 22 21 20

Network representation for 32-bit unsigned:

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 231 230 229 228 227 226 225 224

 2 223 222 221 220 219 218 217 216

 3 215 214 213 212 211 210 29 28

 4 27 26 25 24 23 22 21 20

 Range of Values

Network
Representation

C79000-G8976-C077-07 S7 Programming Interface

215

Host representation for 8-bit unsigned:

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 27 26 25 24 23 22 21 20

Host representation for 16-bit unsigned:

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 27 26 25 24 23 22 21 20

 2 215 214 213 212 211 210 29 28

Host representation for 32-bit unsigned:

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 27 26 25 24 23 22 21 20

 2 215 214 213 212 211 210 29 28

 3 223 222 221 220 219 218 217 216

 4 231 230 229 228 227 226 225 224

Host
Representation
(Intel CPU)

S7 Programming Interface C79000-G8976-C077-07

216

7.5.4 Representation of the 'Floating Point' Data Type

 Range of Values Length

 -3.37*1038 ... -8.43*10-37 4 octets

 0

 8.43*10-37 ... 3.37*1038

Network representation ('SI' is the sign of the mantissa, the shaded
fields belong to the exponent, the remaining fields to the mantissa).

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 SI 27 26 25 24 23 22 21

 2 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7

 3 2-8 2-9 2-

10
 2-

11
 2-

12
 2-

13
 2-

14
 2-

15

 4 2-

16
 2-

17
 2-

18
 2-

19
 2-

20
 2-

21
 2-

22
 2-

23

Host representation ('SI' is the sign of the mantissa, the shaded fields
belong to the exponent, the remaining fields to the mantissa).

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 2-

16
 2-

17
 2-

18
 2-

19
 2-

20
 2-

21
 2-

22
 2-

23

 2 2-8 2-9 2-

10
 2-

11
 2-

12
 2-

13
 2-

14
 2-

15

 3 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7

 4 SI 27 26 25 24 23 22 21

 Range of Values

Network
Representation

Host
Representation
(Intel CPU)

C79000-G8976-C077-07 S7 Programming Interface

217

The variable value is calculated as follows:

 Exponent Variable Value

 0 (-1)SI*((0.mantissa)*2-126)

 not equal
to 0

 (-1)SI*((1.mantissa)*2(exponent-127))

Example of the representation of the variable value '0.5' in the host as
'C' data type 'float':

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 1 1 1 1 1 1

Value Calculation

S7 Programming Interface C79000-G8976-C077-07

218

7.5.5 Representation of the 'Visible String' Data Type

For variables of the type 'visible string', all letters (upper and lower
case), numbers, the underscore ('_') and the Dollar sign ('$') are
permitted.

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 1st character

 2 2nd character

 ..

 n nth character

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 1st character

 2 2nd character

 ..

 n nth character

 n+1 NULL terminator

A variable of the type 'visible string' corresponds to a string of the
programming language 'C in the host, in other words it is terminated
with NULL.

 Range of Values

Network
Representation

Host
Representation
(Intel CPU)

C79000-G8976-C077-07 S7 Programming Interface

219

7.5.6 Representation of the 'Octet String' Data Type

A variable of the type 'octet string' is represented on the network like a
'visible string'. In this case, however, all byte values are permitted.

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 1st character

 2 2nd character

 ..

 n nth character

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 Length information

 2 1st character

 ..

 n (n-1)th character

 n+1 nth character

The host representation differs from the network representation in that
the length information is stored in the first byte.

Network
Representation

Host
Representation
(Intel CPU)

S7 Programming Interface C79000-G8976-C077-07

220

7.5.7 Representation of the 'Bit String' Data Type

A variable of the type 'bit string' is represented on the network as
follows:

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 7 6 5 4 3 2 1 0

 2 15 14 13 12 11 10 9 8

 ..

Bit MSB LSB

Octet 8 7 6 5 4 3 2 1

 1 Length information

 2 7 6 5 4 3 2 1 0

 3 15 14 13 12 11 10 9 8

 ..

The host representation differs from the network representation in that
the length information is stored in the first byte.

Network
Representation

Host
Representation
(Intel CPU)

C79000-G8976-C077-07 S7 Programming Interface

221

Glossary

ASCII American Standard Code of Information Interchange - coding rules for
1-byte characters.

Communication
system

Underlying software and hardware for attachment to the
communications network.

CP Communications Processor - communications module for installation in
a computer or programmable controller.

CREF Connection Reference.

DB Data block

default Standard setting as shipped by Siemens.

IEC International Electrotechnical Commission - international standards
committee.

Multi-CP operation More than one CP can be operated at one time in a programming
device/PC.

Multi-user
operation

More than one application on a programming device/PC

PBC Programmed Block Communication; the S7 PBC services include, for
example, BSEND, BRCV, SEND, RCV, PUT, GET

PCS 7 Process Control System - process control system based on
SIMATIC S7.

PDU Protocol Data Unit - message on an ISO/OSI layer.

PG Programming device.

PMC The PMC services include: SCAN, ALARM, NOTIFY, ALARM_S

S7 Programming Interface C79000-G8976-C077-07

222

PROFIBUS Process Field Bus - Network for the cell and field area of the mid
performance range with its main application in an industrial
environment complying with EN 50 170, Volume 2. PROFIBUS.

S7 SIMATIC S7 is an automation system from Siemens AG.

SAPI Simple Application Programmers Interface - simple programming
interface for communications protocols on the PG/PC.

SIMATIC NET Product range for industrial communication from Siemens.

SINEC L2 Old name of -> PROFIBUS.

VFD Virtual Field Device - simulation of a real programmable controller
allowing a uniform view of any device.

B89077/07 S7 Programming Interface

223

Index

s7_abort() ...31; 70
s7_await_initiate_req()31; 65
s7_brcv_init()35; 126
s7_brcv_stop()35; 130
s7_bsend_req()35; 123
s7_cycl_read()34; 114
s7_cycl_read_delete_req()33; 112
s7_cycl_read_init_req()33; 101
s7_cycl_read_start_req().................33; 105
s7_cycl_read_stop_req()33; 110
s7_diag_init()38; 161
s7_diag_stop()38; 164
s7_discard_msg()..................................184
s7_get_abort_ind()31; 71
s7_get_alarm_ind()36; 146
s7_get_await_initiate_cnf()................31; 66
s7_get_brcv_ind()35; 128
s7_get_bsend_cnf().........................35; 125
s7_get_conn()29; 50
s7_get_cref().....................................29; 49
s7_get_cycl_read_abort_ind()33; 109
s7_get_cycl_read_delete_cnf()........33; 113
s7_get_cycl_read_ind()33; 107
s7_get_cycl_read_init_cnf().............33; 104
s7_get_cycl_read_start_cnf()33; 106
s7_get_cycl_read_stop_cnf()...........33; 111
s7_get_device()29; 43
s7_get_diag_ind()38; 162
s7_get_initiate_cnf()..........................30; 64
s7_get_initiate_ind()..........................31; 67
s7_get_msg_abort_cnf()..................36; 138

s7_get_msg_initiate_cnf()36; 136
s7_get_multiple_read_cnf()...............32; 93
s7_get_multiple_write_cnf()32; 99
s7_get_read_cnf()32; 81
s7_get_scan_ind()........................... 36; 139
s7_get_vfd()......................................29; 45
s7_get_vfd_state_cnf()....................37; 157
s7_get_write_cnf().............................32; 89
s7_init()...29; 47
s7_initiate_req()30; 63
s7_initiate_rsp()31; 68
s7_last_detailed_err_msg()183
s7_last_detailed_err_no()......................179
s7_last_iec_err_msg()...........................178
s7_last_iec_err_no()..............................176
s7_mini_db_get()174
s7_mini_db_set()168
s7_msg_abort_req() 36; 137
s7_msg_initiate_req()...................... 36; 135
s7_multiple_read_req()32; 90
s7_multiple_write_req().....................32; 96
s7_read_req()32; 79
s7_receive()......................................30; 55
s7_set_window_handle_msg()...............202
s7_shut()...29; 52
s7_trace()..166
s7_vfd_state_req() 37; 156
s7_write_long_req().................................86
s7_write_req()32; 83
s7_write_trace_buffer()167

S7 Programming Interface B89077/07

224

❑

	SIMATIC NET - S7 Programming Interface
	S7 Programming Interface
	Contents
	1 The SAPI-S7 Interface
	1.1 Advantages of S7 Compared With Other Protocols
	1.2 Advantages of the SAPI-S7 Programming Interface

	2 Principles of the Programming Interface
	2.1 Synchronous and Asynchronous Job Handling
	2.2 Advantages of Asynchronous Operation
	2.3 Receive Call and Processing Functions
	2.4 Handling S7 Connection Management Services
	2.5 Error Message Concept
	2.6 The Trace
	2.7 The Mini-DB
	2.8 Multi-CP and Multi-User Operation
	2.8.1 Assigning VFDs and the S7 Connection List

	2.9 Installation and Requirements for Operation

	3 The Programming Interface
	3.1 Overview of the Programming Interface
	3.1.1 Administrative Services
	3.1.2 Receive Service
	3.1.3 S7 Connection Management Services
	3.1.4 Variable Services
	3.1.5 Block-Oriented Services
	3.1.6 Message Services
	3.1.7 VFD Services
	3.1.8 Diagnostic Services for Fault-Tolerant Connections

	3.2 Administrative Services
	3.2.1 s7_get_device
	3.2.2 s7_get_vfd
	3.2.3 s7_init
	3.2.4 s7_get_cref
	3.2.5 s7_get_conn
	3.2.6 s7_shut

	3.3 Receive service
	3.3.1 s7_receive

	3.4 S7 connection management services
	3.4.1 s7_initiate_req
	3.4.2 s7_get_initiate_cnf
	3.4.3 s7_await_initiate_req
	3.4.4 s7_get_await_initiate_cnf
	3.4.5 s7_get_initiate_ind
	3.4.6 s7_initiate_rsp
	3.4.7 s7_abort
	3.4.8 s7_get_abort_ind

	3.5 Variable Services
	3.5.1 s7_read_req
	3.5.2 s7_get_read_cnf
	3.5.3 s7_write_req
	3.5.4 s7_write_long_req
	3.5.5 s7_get_write_cnf
	3.5.6 s7_multiple_read_req
	3.5.7 s7_get_multiple_read_cnf
	3.5.8 s7_multiple_write_req
	3.5.9 s7_get_multiple_write_cnf
	3.5.10 s7_cycl_read_init_req
	3.5.11 s7_get_cycl_read_init_cnf
	3.5.12 s7_cycl_read_start_req
	3.5.13 s7_get_cycl_read_start_cnf
	3.5.14 s7_get_cycl_read_ind
	3.5.15 s7_get_cycl_read_abort_ind
	3.5.16 s7_cycl_read_stop_req
	3.5.17 s7_get_cycl_read_stop_cnf
	3.5.18 s7_cycl_read_delete_req
	3.5.19 s7_get_cycl_read_delete_cnf
	3.5.20 s7_cycl_read

	3.6 Block-Oriented Services
	3.6.1 s7_bsend_req
	3.6.2 s7_get_bsend_cnf
	3.6.3 s7_brcv_init
	3.6.4 s7_get_brcv_ind
	3.6.5 s7_brcv_stop

	3.7 Message Services
	operating system
	3.7.1 s7_msg_initiate_req
	3.7.2 s7_get_msg_initiate_cnf
	3.7.3 s7_msg_abort_req
	3.7.4 s7_get_msg_abort_cnf
	3.7.5 s7_get_scan_ind
	3.7.6 s7_get_alarm_ind

	3.8 VFD Services
	3.8.1 s7_vfd_state_req
	3.8.2 s7_get_vfd_state_cnf

	3.9 Diagnostic Services for Fault-Tolerant Connections
	3.9.1 s7_diag_init
	3.9.2 s7_get_diag_ind
	3.9.3 s7_diag_stop

	4 Trace and Mini-DB
	4.1 s7_trace
	4.2 s7_write_trace_buffer
	4.3 s7_mini_db_set
	4.4 s7_mini_db_get
	4.5 s7_last_iec_err_no
	4.6 s7_last_iec_err_msg
	4.7 s7_last_detailed_err_no
	4.8 s7_last_detailed_err_msg
	4.9 s7_discard_msg

	5 Configuration
	5.1 Significance of Configuration
	5.2 Services With Configuration Data
	5.3 Configuring with STEP 7 V5

	6 SAPI-S7 Under MS-DOS/Windows
	6.1 General Information
	6.2 Translating and Linking for MS-DOS
	6.3 Translating and Linking for Windows 3.x
	6.4 Translating and Linking for Windows 95 and Windows NT
	6.5 Environment Variables
	6.6 The Trace for MS-DOS or Windows
	6.7 Special Features for Windows
	6.7.1 s7_set_window_handle_msg

	7 Appendix
	7.1 Range of Functions of SAPI-S7
	7.2 Special Notes
	7.3 Formulas for Calculating Data Lengths for the Variable Services
	7.4 Representation of S7 Variables
	7.5 Representation of the Standard Data Types
	7.5.1 Representation of the 'Boolean' Data Type
	7.5.2 Representation of the Data Type 'Integer'
	7.5.3 Representation of the 'Unsigned' Data Type
	7.5.4 Representation of the 'Floating Point' Data Type
	7.5.5 Representation of the 'Visible String' Data Type
	7.5.6 Representation of the 'Octet String' Data Type
	7.5.7 Representation of the 'Bit String' Data Type

	Glossary
	Index

