
 

 

Open Development Kit 1500S V2.0 
 

___________________ 

___________________ 

___________________ 

___________________ 

___________________ 

___________________ 

___________________ 

___________________ 

 

SIMATIC 

STEP 7 (TIA Portal) Options 
Open Development Kit 1500S V2.0 

Programming and Operating Manual 

 

  
09/2016 
A5E35253941-AC 

Preface 
  

 

Documentation guide 
 1 

 

Product overview 
 2 

 

Installation 
 3 

 

Developing ODK application 
for the Windows environment 

 4 
 

Developing ODK application 
for the realtime environment 

 5 
 

Using example projects 
 6 

 

Appendix 
 A 

 



 

   Siemens AG 
Division Digital Factory 
Postfach 48 48 
90026 NÜRNBERG 
GERMANY 

A5E35253941-AC 
Ⓟ 08/2016 Subject to change 

Copyright © Siemens AG 2014 - 2016. 
All rights reserved 

Legal information 
Warning notice system 

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent 
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert 
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are 
graded according to the degree of danger. 

 DANGER 
indicates that death or severe personal injury will result if proper precautions are not taken. 

 

 WARNING 
indicates that death or severe personal injury may result if proper precautions are not taken. 

 

 CAUTION 
indicates that minor personal injury can result if proper precautions are not taken. 

 

 NOTICE 
indicates that property damage can result if proper precautions are not taken. 

If more than one degree of danger is present, the warning notice representing the highest degree of danger will 
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to 
property damage. 

Qualified Personnel 
The product/system described in this documentation may be operated only by personnel qualified for the specific 
task in accordance with the relevant documentation, in particular its warning notices and safety instructions. 
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and 
avoiding potential hazards when working with these products/systems. 

Proper use of Siemens products 
Note the following: 

 WARNING 
Siemens products may only be used for the applications described in the catalog and in the relevant technical 
documentation. If products and components from other manufacturers are used, these must be recommended 
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and 
maintenance are required to ensure that the products operate safely and without any problems. The permissible 
ambient conditions must be complied with. The information in the relevant documentation must be observed. 

Trademarks 
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication 
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner. 

Disclaimer of Liability 
We have reviewed the contents of this publication to ensure consistency with the hardware and software 
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the 
information in this publication is reviewed regularly and any necessary corrections are included in subsequent 
editions. 



 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 3 

Preface  
 

Purpose of the documentation  
This document describes the special features of the Open Development Kit (ODK) V2.0. 

Definitions and naming conventions 
The following terms are used in this documentation: 

● CPU: Designates the products named under "Scope of documentation". 

● ODK: Open Development Kit 

● Windows: Designates the Microsoft operating systems supported by ODK. 

● STEP 7: For the designation of the configuring and programming software, we use "STEP 
7" as a synonym for the version "STEP 7 (TIA Portal) V13 SP1 and higher". 

● DLL: Dynamic Link Library 

● SO: Shared Object 

● Visual Studio: Microsoft Visual Studio 

 

Basic knowledge required 
This documentation is intended for engineers, programmers, and maintenance personnel 
with general knowledge of automation systems and programmable logic controllers.  

To understand this documentation, you need to have general knowledge of automation 
engineering. You also need basic knowledge of the following topics: 

● SIMATIC Industrial Automation System 

● PC-based automation 

● Using STEP 7 

● Use of Microsoft Windows operating systems 

● Programming with C++ 

Validity of the documentation 
This documentation applies to use of ODK with the following products: 

● CPU 1505SP (F) 

● CPU 1507S (F) 

● CPU 1518-4 PN/DP ODK (F) 



Preface  
 

 Open Development Kit 1500S V2.0 
4 Programming and Operating Manual, 09/2016, A5E35253941-AC 

Notes 
Please also observe notes labeled as follows: 

 

 Note 

A note contains important information on the product described in the documentation, on the 
handling of the product or on the section of the documentation to which particular attention 
should be paid. 

 

Security information 
Siemens provides products and solutions with industrial security functions that support the 
secure operation of plants, systems, machines and networks. 

In order to protect plants, systems, machines and networks against cyber threats, it is 
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial 
security concept. Siemens’ products and solutions only form one element of such a concept. 

Customer is responsible to prevent unauthorized access to its plants, systems, machines 
and networks. Systems, machines and components should only be connected to the 
enterprise network or the internet if and to the extent necessary and with appropriate security 
measures (e.g. use of firewalls and network segmentation) in place.  

Additionally, Siemens’ guidance on appropriate security measures should be taken into 
account. For more information about industrial security, please visit 
(http://www.siemens.com/industrialsecurity). 

Siemens’ products and solutions undergo continuous development to make them more 
secure. Siemens strongly recommends to apply product updates as soon as available and to 
always use the latest product versions. Use of product versions that are no longer supported, 
and failure to apply latest updates may increase customer’s exposure to cyber threats.  

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS 
Feed under (http://www.siemens.com/industrialsecurity). 

http://www.siemens.com/industrialsecurity
http://www.siemens.com/industrialsecurity


 Preface 
 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 5 

Siemens Industry Online Support 
You can find current information on the following topics quickly and easily here: 

● Product support 

All the information and extensive know-how on your product, technical specifications, 
FAQs, certificates, downloads, and manuals. 

● Application examples 

Tools and examples to solve your automation tasks – as well as function blocks, 
performance information and videos. 

● Services 

Information about Industry Services, Field Services, Technical Support, spare parts and 
training offers. 

● Forums 

For answers and solutions concerning automation technology. 

● mySupport 

Your personal working area in Industry Online Support for messages, support queries, 
and configurable documents. 

This information is provided by the Siemens Industry Online Support in the Internet 
(http://www.siemens.com/automation/service&support). 

Industry Mall 
The Industry Mall is the catalog and order system of Siemens AG for automation and drive 
solutions on the basis of Totally Integrated Automation (TIA) and Totally Integrated Power 
(TIP). 

Catalogs for all the products in automation and drives are available on the Internet 
(https://mall.industry.siemens.com). 

Information about third-party software updates 
This product contains third-party software. Siemens accepts liability with respect to 
updates/patches for the third-party software only when these are distributed by Siemens in 
the context of a Software Update Service contract or officially approved by Siemens. 
Otherwise, updates/patches are installed at the user's own risk. You can obtain more 
information on our software update service under (http://w3.siemens.com/mcms/automation-
software/en/software-update-service/Pages/Default.aspx). 
 

http://www.siemens.com/automation/service&support
https://mall.industry.siemens.com/
http://w3.siemens.com/mcms/automation-software/en/software-update-service/Pages/Default.aspx
http://w3.siemens.com/mcms/automation-software/en/software-update-service/Pages/Default.aspx


 

 Open Development Kit 1500S V2.0 
6 Programming and Operating Manual, 09/2016, A5E35253941-AC 

Table of contents  
 

 Preface ................................................................................................................................................... 3 

1 Documentation guide .............................................................................................................................. 8 

2 Product overview .................................................................................................................................... 9 

2.1 Introduction to ODK 1500S ...................................................................................................... 9 

2.2 Development environments ................................................................................................... 11 

2.3 Basic procedure ..................................................................................................................... 12 

3 Installation ............................................................................................................................................ 14 

3.1 System Requirements ............................................................................................................ 14 

3.2 Installing ODK ........................................................................................................................ 15 

3.3 Integrating ODK templates in Visual Studio after installation ................................................ 16 

3.4 Uninstalling ODK .................................................................................................................... 16 

4 Developing ODK application for the Windows environment ................................................................... 17 

4.1 Creating an ODK application ................................................................................................. 17 
4.1.1 Requirements ......................................................................................................................... 17 
4.1.2 Creating a project ................................................................................................................... 17 
4.1.2.1 Creating an ODK project with Visual Studio version older than 2015 ................................... 19 
4.1.3 Generating an ODK application ............................................................................................. 20 
4.1.4 Defining runtime properties of an ODK application................................................................ 21 
4.1.5 Environment for loading or running the ODK application ...................................................... 22 
4.1.6 Defining functions and structures of an ODK application ...................................................... 23 
4.1.6.1 Use of ODK_CLASSIC_DB as parameter ............................................................................. 26 
4.1.6.2 Handling strings ..................................................................................................................... 27 
4.1.6.3 Definition of the <Project>.odk file ......................................................................................... 28 
4.1.6.4 Modifying the <Project>.odk file ............................................................................................. 29 
4.1.6.5 Comments .............................................................................................................................. 29 
4.1.7 Implementing functions .......................................................................................................... 31 
4.1.7.1 General notes......................................................................................................................... 31 
4.1.7.2 Callback functions .................................................................................................................. 32 
4.1.7.3 Implementing custom functions ............................................................................................. 33 

4.2 Transferring an ODK application to the target system ........................................................... 35 

4.3 Importing and generating an SCL file in STEP 7 ................................................................... 36 

4.4 Executing a function ............................................................................................................... 37 
4.4.1 Loading functions ................................................................................................................... 37 
4.4.2 Calling functions ..................................................................................................................... 41 
4.4.3 Unloading functions ............................................................................................................... 43 

4.5 Remote debugging ................................................................................................................. 46 
4.5.1 Performing remote debugging ............................................................................................... 47 



 Table of contents 
 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 7 

5 Developing ODK application for the realtime environment ..................................................................... 49 

5.1 Creating an ODK application .................................................................................................. 49 
5.1.1 Requirements .......................................................................................................................... 49 
5.1.2 Creating a project .................................................................................................................... 49 
5.1.3 Generating an ODK application .............................................................................................. 52 
5.1.4 Defining runtime properties of an ODK application ................................................................ 52 
5.1.5 Environment for loading or running the ODK application ....................................................... 54 
5.1.6 Defining functions and structures of an ODK application ....................................................... 55 
5.1.6.1 Defining functions of an ODK application ............................................................................... 55 
5.1.6.2 Use of ODK_CLASSIC_DB as parameter .............................................................................. 58 
5.1.6.3 Handling strings ...................................................................................................................... 59 
5.1.6.4 Definition of the <Project>.odk file .......................................................................................... 60 
5.1.6.5 Modifying the <Project>.odk file .............................................................................................. 62 
5.1.6.6 Comments ............................................................................................................................... 62 
5.1.7 Implementing functions ........................................................................................................... 64 
5.1.7.1 General notes ......................................................................................................................... 64 
5.1.7.2 Callback functions ................................................................................................................... 64 
5.1.7.3 Implementing custom functions .............................................................................................. 65 
5.1.7.4 Dynamic memory management .............................................................................................. 66 
5.1.7.5 Debug (Test) ........................................................................................................................... 68 

5.2 Transferring an ODK application to the target system ............................................................ 72 

5.3 Importing and generating an SCL file in STEP 7 .................................................................... 74 

5.4 Executing a function................................................................................................................ 75 
5.4.1 Loading functions .................................................................................................................... 75 
5.4.2 Calling functions ...................................................................................................................... 77 
5.4.3 Unloading functions ................................................................................................................ 79 
5.4.4 Reading the trace buffer ......................................................................................................... 81 

5.5 Post Mortem analysis.............................................................................................................. 83 
5.5.1 Introduction ............................................................................................................................. 83 
5.5.2 Execute post mortem analysis ................................................................................................ 84 

6 Using example projects ......................................................................................................................... 88 

A Appendix............................................................................................................................................... 89 

A.1 General conditions of ODK applications ................................................................................. 89 
A.1.1 Number of loadable ODK applications.................................................................................... 89 
A.1.2 Compatibility ........................................................................................................................... 90 

A.2 Syntax interface file <Project>.odk ......................................................................................... 91 
A.2.1 Data types ............................................................................................................................... 91 
A.2.2 Parameters ............................................................................................................................. 93 

A.3 Error messages of the code generator ................................................................................... 94 

A.4 Helper functions ...................................................................................................................... 96 

A.5 "Load" instruction .................................................................................................................... 98 

A.6 "Unload" instruction ................................................................................................................. 98 

A.7 "GetTrace" instruction ............................................................................................................. 98 

 Index..................................................................................................................................................... 99 



 

 Open Development Kit 1500S V2.0 
8 Programming and Operating Manual, 09/2016, A5E35253941-AC 

 Documentation guide 1 
 

 

Introduction 
You can find all information required to use the software in this documentation for the Open 
Development Kit (ODK). 

Overview of the documentation for the CPU 
The following table lists additional documents which supplement this description and are 
available on the Internet. 

Table 1- 1 Documentation for the CPU 

Topic Documentation Most important contents 
Description of 
CPU 1505SP and 
CPU 1507S 

Operating manual CPU 1505SP and CPU 
1507S 
(http://support.automation.siemens.com/WW/vi
ew/en/90466248/133300)  

This documentation describes 
the complete functionality of the 
CPU 1505SP and CPU 1507S. 

Description of the 
CPU 1518-4 
PN/DP ODK 

Manual CPU 1518-4 PN/DP ODK 
(https://support.industry.siemens.com/cs/produ
cts?search=CPU%201518-
4%20PN%2FDP%20ODK&mfn=ps&o=Default
RankingDesc&lc=en-WW) 

This documentation describes 
the full functionality of the CPU 
1518-4 PN/DP ODK. 

Web server Function manual Web Server 
(http://support.automation.siemens.com/WW/vi
ew/en/59193560)  

Basics 
Function 
Operation 
Diagnostics via web server 

  

 
 

http://support.automation.siemens.com/WW/view/en/90466248/133300
http://support.automation.siemens.com/WW/view/en/90466248/133300
https://support.industry.siemens.com/cs/products?search=CPU%201518-4%20PN%2FDP%20ODK&mfn=ps&o=DefaultRankingDesc&lc=en-WW
https://support.industry.siemens.com/cs/products?search=CPU%201518-4%20PN%2FDP%20ODK&mfn=ps&o=DefaultRankingDesc&lc=en-WW
https://support.industry.siemens.com/cs/products?search=CPU%201518-4%20PN%2FDP%20ODK&mfn=ps&o=DefaultRankingDesc&lc=en-WW
https://support.industry.siemens.com/cs/products?search=CPU%201518-4%20PN%2FDP%20ODK&mfn=ps&o=DefaultRankingDesc&lc=en-WW
http://support.automation.siemens.com/WW/view/en/59193560
http://support.automation.siemens.com/WW/view/en/59193560


 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 9 

 Product overview 2 
2.1 Introduction to ODK 1500S 

Overview 
ODK is a development kit that allows you to program custom functions and generate files 
that STEP 7 can call directly. 

ODK provides an interface for: 

● Windows environment 

– Execution on your Windows PC 

– Use of resources of your Windows PC 

– Use of operating system functions and system resources with access to external 
hardware and software components 

● Realtime environment 

– Execution on your CPU 

– Synchronous function call (algorithmic, controllers) 

Calling multiple applications under Windows or in the realtime environment is possible. 

The ODK applications must be used in the STEP 7 program . 

Structure and design of an ODK application 
ODK supports the interface for calling custom high-level language programs from the 
controller program of the CPU. 

ODK supports the following templates: 

● A supplied template for programming in Microsoft Visual Studio. This allows you to 
generate a DLL file. 

● Another template for programming in Eclipse. This allows you to generate an SO file. 
ODK also supplies a class library for Eclipse. 

You create an ODK application with the C++ programming language. ODK applications can 
be created for both the Windows and the realtime environment. 

The ODK program can be executed in the following ways: 

● Synchronously, i.e. operates as part of the CPU cycle (execution in the real-time 
environment) 

● Asynchronously, i.e. started by the CPU program and finished in the background 
(execution in the Windows environment) 



Product overview  
2.1 Introduction to ODK 1500S 

 Open Development Kit 1500S V2.0 
10 Programming and Operating Manual, 09/2016, A5E35253941-AC 

The program that runs outside of the CPU is created with Microsoft Visual Studio or Eclipse 
and is generated as a DLL or SO file. ODK applications can run both under Windows (DLL) 
and in the realtime core of the CPU (SO). You call the functions of the DLL or SO file using 
instructions in the user program. 

The CPU can perform functions in libraries that can be loaded dynamically. There are 
several possible functions in an ODK application. There are specific function blocks for an 
ODK Application: 

● Loading and unloading of the ODK application 

● One function block each for calling a certain function 

The following illustration provides a schematic overview of how ODK applications run on a 
PC. This graphic applies to the S7-1500 Software Controller. 

 
Figure 2-1 Running an ODK application on a PC 



 Product overview 
 2.2 Development environments 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 11 

The following illustration provides a schematic overview of how ODK applications run on a 
hardware CPU. 

 
Figure 2-2 Running an ODK application on a hardware CPU 

2.2 Development environments 
An ODK application is written in a standard development environment. 

The following development environments for creating an ODK project are available for 
selection. 

● Microsoft Visual Studio for Windows applications (DLL file) 

● Eclipse for realtime applications (SO file) 

Microsoft Visual Studio as a development environment 
Use Microsoft Visual Studio. To help you develop an ODK application, a template for a 
Microsoft Visual Studio project is included in the installation of ODK 1500S . The ODK 
template can be found under the entry "Visual C++" when a new project is created. 

Eclipse as a development environment 
Use Eclipse. To help you develop an ODK application, a template for an Eclipse project is 
included in the installation of ODK 1500S . The ODK template can be found in the folder 
"ODK 1500S Templates". 

 



Product overview  
2.3 Basic procedure 

 Open Development Kit 1500S V2.0 
12 Programming and Operating Manual, 09/2016, A5E35253941-AC 

2.3 Basic procedure 
The following sections describe the development tasks and procedures for the development 
and execution of an ODK Application: 

● Developing ODK application for the Windows environment (Page 17) 

● Developing ODK application for the realtime environment (Page 49) 

 
Figure 2-3 Overview of the development steps 



 Product overview 
 2.3 Basic procedure 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 13 

Overview of the development steps 
To develop and execute a ODK application, follow these steps: 

1. Implement your function in Microsoft Visual Studio for Windows applications (DLL file) or 
in Eclipse for realtime applications (SO file). 

2. Create the DLL or SO file and the SCL file. 

3. Import the SCL file into STEP 7. 

4. Write your user application in STEP 7. 

5. Load the user program in the CPU and the DLL or SO file into the target system. 

Result 
Your ODK application is downloaded to the target system and is loaded and executed by the 
user program in STEP 7. 
 



 

 Open Development Kit 1500S V2.0 
14 Programming and Operating Manual, 09/2016, A5E35253941-AC 

 Installation 3 
3.1 System Requirements 

Requirements 
Your PC must meet the following system requirements in order to use the ODK:  

 
Category Requirements 
Operating system • Microsoft Windows 7, 64-bit 

• Microsoft Windows 8, 64-bit 
• Microsoft Windows 10, 64-bit 

Processor and memory PC system:  
• At least systems with Intel Core i5 processor 
• 1.2 GHz or higher 
• At least 4 GB of RAM 

Mass storage 1.6 GB of free space on the hard disk C:\ for the full installation. 
Note: The setup files are deleted when the installation is complete. 

Operator interface Color monitor, keyboard and mouse or another pointing device (optional) supported by 
Microsoft Windows 

SIMATIC software • SIMATIC STEP 7 Professional (TIA Portal) V14 or higher 

Supported PLCs All SIMATIC CPUs supporting ODK (see next table) 
Additional software Not included in the product package: 

• Java Runtime 32-bit as V1.6 (for Eclipse) 
• Microsoft Visual Studio C++ 2010 SP1 
• Microsoft Visual Studio C++ 2012 
• Microsoft Visual Studio C++ 2013 
• Microsoft Visual Studio express C++ 2013 
• Microsoft Visual Studio C++ 2015 
• Microsoft Visual Studio express C++ 2015 
Microsoft Development Tool: Download Center (http://www.microsoft.com/en-
us/download/developer-tools.aspx) 

ODK 1500S V2.0 is compatible with the following devices (support of loadable function 
libraries is device-dependent): 
 
 DLL  

(Windows) 
SO 
(Real-time) 

CPU 1505SP (F) V2.0 Yes Yes 
CPU 1507S (F) V2.0 Yes Yes 
CPU 1518-4 PN/DP ODK (F) V2.0 No Yes 

http://www.microsoft.com/en-us/download/developer-tools.aspx
http://www.microsoft.com/en-us/download/developer-tools.aspx


 Installation 
 3.2 Installing ODK 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 15 

3.2 Installing ODK 
To install the ODK, insert the Installation DVD. Follow the instructions of the setup program.  

If the setup program does not start automatically, open the "Start.exe" file on the Installation 
DVD manually with a double-click. 

Requirements 
You need administrator rights for this procedure. 

It is possible to operate different ODK versions on one PC at the same time. If the ODK 
version to be installed is already installed on the PC, you must first uninstall it or perform a 
repair installation. 

 

 Note 
Close applications before a repair installation/uninstall 

Close all applications (especially ODK-related applications), before performing the repair 
installation/uninstall. 

 

Procedure 
If you want to use the Microsoft Visual Studio development environment, we recommend that 
you install this before ODK. 

To install ODK, follow these steps: 

1. Start the "Start.exe" file from the Installation DVD manually with a double-click. 

2. Follow the instructions of the installation wizard. 

Result 
The installation is complete. All product languages are installed by default during the 
installation process. The installation creates a shortcut in the Start menu of Windows. 

The setup program installs the following components: 

● "Eclipse" for the development of ODK applications for the realtime environment 

● ODK templates for Visual Studio 

● Code generator 

● Online help 

 



Installation  
3.3 Integrating ODK templates in Visual Studio after installation 

 Open Development Kit 1500S V2.0 
16 Programming and Operating Manual, 09/2016, A5E35253941-AC 

3.3 Integrating ODK templates in Visual Studio after installation 
When Visual Studio is already installed, the ODK template is automatically installed during 
the ODK installation. If Visual Studio is installed later, you have the following options to 
integrate the ODK template: 

● Perform a repair installation of ODK. 

● Run the integration manually. Call your ODK installation file 
"ODK_VSTemplate_Integration.exe" in the "bin" folder. 

Result 
The ODK template for Visual Studio is installed. You can find this under the corresponding 
programming language. 

3.4 Uninstalling ODK 

Procedure 
To remove ODK from your PC, follow these steps: 

1. Close all running programs, especially ODK-related applications. 

2. Select the menu "Control Panel > Programs and Features", select the entry "SIMATIC 
ODK 1500S" and click "Uninstall". 

3. Select the "Uninstall" command in the shortcut menu. 

A dialog box for uninstalling appears. 

4. Follow the steps for uninstalling. 

Result 
ODK is removed. 
 



 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 17 

 Developing ODK application for the Windows 
environment 4 
4.1 Creating an ODK application 

4.1.1 Requirements 
The Microsoft Visual Studio development environment is not included in the scope of 
delivery of ODK. 

You can find the Download Center for Microsoft development tools in the Internet 
(http://www.microsoft.com/en-us/download/developer-tools.aspx). 

4.1.2 Creating a project 
To help you develop an ODK application, an ODK template for an ODK project in Visual 
Studio is included in the installation of ODK 1500S . The template supports 32-bit and 64-bit 
applications. 

Procedure  
To create an ODK project in Microsoft Visual Studio using the ODK template, follow these 
steps: 

1. Open Microsoft Visual Studio as a development environment. 

2. In the "File > New" menu, select the command "Project..." 

The "New Project" dialog opens. 

 
Figure 4-1 Creating a new project in Visual Studio 

3. Select your preferred programming language and the corresponding ODK template. 

4. Enter a project name. 

5. Click "OK" to confirm. 

http://www.microsoft.com/en-us/download/developer-tools.aspx


Developing ODK application for the Windows environment  
4.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
18 Programming and Operating Manual, 09/2016, A5E35253941-AC 

Result 
The ODK project is created using the ODK templates and sets the following project settings: 

● Project settings for generating the DLL file 

● Automates the generation of the DLL and SCL file 

The ODK template sets up the following file structure as standard: 
 
Folder / file Description 
<project path>    
  <project>.rc   
  <pro-

ject>.cpp 
 Function code: This file has always the suffix CPP, 

regardless of whether you are creating a C or C++ 
project. 

  dllmain.cpp   Implementation of the "dllmain" file 
  def    
   <Project>.odk ODK interface description 
   <Pro-

ject>.scl.additional 
S7 blocks that are appended to the <Project>.scl file. 
Although the file is not part of the project template, 
the code generator processes the file. 

  STEP7  Files from this folder may not be edited! 
    <project>.scl S7 blocks 
  cg_src_priv  Files from this folder may not be edited! 
   ODK_Types.h Definition of the ODK base types 
   ODK_Functions.h Function prototypes 
   ODK_Execution.cpp Implementation of the "Execute" method 
  

src_odk_helpe
rs 

 Files from this folder may not be edited! 

   
ODK_CpuReadData.h 

Definition: Help functions for reading the data blocks 

   
ODK_CpuReadData.cp
p 

Implementation: Help functions for reading the data 
blocks 

   
ODK_CpuReadWriteDa
ta.h 

Definition: Help functions for reading/writing the data 
blocks 

   
ODK_CpuReadWriteDa
ta.cpp 

Implementation: Help functions for reading/writing the 
data blocks 

   ODK_StringHelper.h Definition: Help functions S7 strings / W strings 
   

ODK_StringHelper.cpp 
Implementation: Help functions S7 strings / W strings 

  debug   
   <project>.dll ODK application binary (debug version) 
  release   
   <project>.dll ODK application binary (release version) 



 Developing ODK application for the Windows environment 
 4.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 19 

The ODK template supports the following applications: 
 
Configuration and platform Visual Studio Version older than 2015 Visual Studio 2015 
Debug Win32 Yes Yes 
Release Win32 Yes Yes 
Debug x64 to be manually created (Page 19) Yes 
Release x64 to be manually created (Page 19) Yes 

4.1.2.1 Creating an ODK project with Visual Studio version older than 2015 

Procedure 
To create an ODK template for a x64 platform with a Visual Studio version older than 2015, 
follow these steps: 

1. Open the "Configuration Manager". 

 
2. Create an x64 platform. 

 
The "New Solution Platform" dialog opens. 

 
Under "Copy settings from:" , select "Win32". 



Developing ODK application for the Windows environment  
4.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
20 Programming and Operating Manual, 09/2016, A5E35253941-AC 

3. Define a solution configuration for a x64 platform. 

 
4. Under "Active solution configuration, select "Debug" or "Release" and under "Platform", 

select "x64". 

4.1.3 Generating an ODK application 
The generation of the project data is divided into two automated steps. 

● Pre-Build: Generation of the files created by default based on the changed <Project>.odk 
file 

● Build: Generation of the DLL file 

Procedure 
To generate the project data, follow these steps: 

1. Save all edited files. 

2. In the "Build" menu, select the command "Build Solution". 

 

 Note 

The project data is only generated if the files have been changed. 
 

Result 
The generation of the project data is started. The automatically generated files are stored in 
the file system. 

● DLL file: Project directory\<Project>\<BuildConfiguration>\<Project>.dll 

● SCL file: Project directory\<Project>\STEP7\<Project>.scl 



 Developing ODK application for the Windows environment 
 4.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 21 

4.1.4 Defining runtime properties of an ODK application 
Next, define the interface description of the ODK application in the <Project>.odk file. The file 
contains the following elements: 

● Comments 

● Parameters 

● Definitions of functions and structures 

Procedure 
To define the interface description in the <Project>.odk file, follow these steps: 

1. Open the <Project>.odk file. 

2. Change the elements depending on your requirements. 

Description of the elements 

Comments 

You can use comments for explanation purposes. 

Parameters 

The definition of the parameters must be within a line of code.  
<parameter name>=<value> // optional comment 

 The interfaces file supports the following parameters: 
 
Parameter Value Description 
Context user Defines that the ODK application is loaded in a context of a Windows 

user (Page 22). 
system Defines that the ODK application is loaded in a context of the Windows 

system (Page 22). 
STEP7Prefix <String> Describes the string that precedes your functions and is shown after 

importing the SCL file in STEP 7. The following characters are allowed: 
{A...Z, a…z, 1…9, -, _} 
Umlauts are not permitted. 
The project name is entered without spaces by default. 

 

 

 Note 
Spaces in the project name 

Spaces in the STEP 7 prefix are replaced by an underscore. 
 



Developing ODK application for the Windows environment  
4.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
22 Programming and Operating Manual, 09/2016, A5E35253941-AC 

4.1.5 Environment for loading or running the ODK application 
When the SCL file is imported into STEP 7 as an external source, the ODK instructions are 
created in the selected directory in STEP 7. The ODK instructions enable you to control your 
ODK application regardless of the STEP 7 user program after programming and the initial 
loading. You can load up to 32 ODK applications. 

Depending on whether you have created the ODK application for a 32-bit or 64-bit system, 
this is loaded into a 32-bit or 64-bit ODK host process. 

You can choose one of two contexts for your ODK application: 

● "System" context 

Windows is started, a user can be logged on 

● "User" context 

Windows is started, a user must be logged on 

The following graphic shows you when an ODK application can be loaded depending on 
context. 

 

"System" context  
To use the ODK application in the system context (Session 0), change the following code 
line in the <Project>.odk file: 
Context=system 

In the system context, the ODK application is running without the logon of a Windows user. 
This means the ODK application cannot be actively controlled with user interface elements 
such as message dialogs. 



 Developing ODK application for the Windows environment 
 4.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 23 

"User" context 
To use the ODK application in the user context, change the following code line in the 
<Project>.odk file: 
Context=user 

When you load the ODK application in the user context, it automatically unloads as soon as 
the user logs off in Windows. The ODK application can be actively controlled by Windows 
user interface elements such as message dialogs and provides access to additional 
resources of the Windows environment. 

If multiple users are logged on to Windows, the ODK application loads or unloads for the 
user, who has the current screen rights until he logs off in Windows. 

4.1.6 Defining functions and structures of an ODK application 

Functions  
Functions are defined by the following general lines of code: 
ODK_RESULT <FunctionName> 
([<InOut identifier>] <data type> <tag name>, etc.); 

The <Project>.odk file contains an example function description by default. You can change 
this description and/or add more function descriptions. 
ODK_RESULT MyFunc1([IN] INT param1, [OUT] INT param2); 

Syntax rules for functions  
The following syntax rules apply to functions within the <Project>.odk file: 

● Note that the function names are case-sensitive. 

● You can divide function definitions into multiple lines. 

● End a function definition with a semicolon. 

● TAB and SPACE are allowed. 

● Do not define a tag name in a function twice. 

● Do not use keywords for the utilized programming language (e.g. "INT" as parameter 
name). 

● Use ODK_RESULT only for the return values of the function. 

● The tag name must start with a letter or an underscore. 

● Illegal function names are displayed during generation in the development environment. 

● The following names are not allowed in combination of <STEP7Prefix> and <function 
name>: ODK_Load, ODK_Unld, ODK_ExcA, ODK_ExcS 

<FunctionName> 

Function names are valid with the syntax and character restrictions of the used programming 
language. 



Developing ODK application for the Windows environment  
4.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
24 Programming and Operating Manual, 09/2016, A5E35253941-AC 

<InOut-Identifier> 

There are three defined InOut-Identifiers. Use these in the following order: [IN], [OUT], 
[INOUT] 

● [IN]: Defines an input tag. The tag is copied to the function when it is called. This is 
constant and cannot be changed. 

● [OUT]: Defines an output tag. The tag is copied back after the function has been 
completed. 

● [INOUT]: Defines an input and output tag. The tag is copied to the function when it is 
called. This is not constant and can be changed. The tag is copied back after the function 
has been completed. 

<DataType> 

The data type defines the type of a tag. The following tables define the possible data types 
and their method of representation in C++ or STEP 7: 

● Elementary data types: 

 

ODK data type SIMATIC data 
type 

C++ data type Description 

ODK_DOUBLE LREAL double 64-bit floating point, IEEE 754 
ODK_FLOAT REAL float 32-bit floating point, IEEE 754 
ODK_INT64 LINT long long 64-bit signed integer 
ODK_INT32 DINT long 32-bit signed integer 
ODK_INT16 INT short 16-bit signed integer 
ODK_INT8 SINT char 8-bit signed integer 
ODK_UINT64 ULINT unsigned long long 64-bit unsigned integer 
ODK_UINT32 UDINT unsigned long 32-bit unsigned integer 
ODK_UINT16 UINT unsigned short 16-bit unsigned integer 
ODK_UINT8 USINT unsigned char 8-bit unsigned integer 
ODK_LWORD LWORD unsigned long long 64-bit bit string 
ODK_DWORD DWORD unsigned long 32-bit bit string 
ODK_WORD WORD unsigned short 16-bit bit string 
ODK_BYTE BYTE unsigned char 8-bit bit string 
ODK_BOOL BOOL unsigned char 1-bit bit string, remaining bits 

(1..7) are empty 
ODK_LTIME LTIME unsigned long long 64-bit during in nanoseconds 
ODK_TIME TIME unsigned long 32-bit during in milliseconds 
ODK_LDT LDT unsigned long long 64-bit date and time of the day 

in nanoseconds 
ODK_LTOD LTOD unsigned long long 64-bit time of the day in nano-

seconds since midnight 
ODK_TOD TOD unsigned long 32-bit time of the day in milli-

seconds since midnight 
ODK_WCHAR WCHAR wchar_t 16-bit character 
ODK_CHAR CHAR char 8-bit character 



 Developing ODK application for the Windows environment 
 4.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 25 

● Complex data types: 

 

ODK data type SIMATIC data 
type 

C++ data type Description 

ODK_DTL DTL struct ODK_DTL Structure for date and time 
ODK_S7WSTRIN
G 

WSTRING unsigned short Character string (16-bit charac-
ter) with max. und act. length 
(2xUINT) 

ODK_S7STRING STRING unsigned char Character string (8-bit charac-
ter) with max. and act. length 
(2xUSINT) 

ODK_CLASSIC_D
B 

VARIANT struct 
ODK_CLASSIC_DB 

Classic DB (global or based on 
UDT) 

[ ] ARRAY [ ] Range of same data types. 
You can use all data types as 
an array except 
ODK_CLASSIC_DB. 

● User-defined data types: 

User-defined data types (UDT) include structured data, especially the names and data 
types of this component and their order. 

A user-defined data type can be defined in the ODK interface description with the 
keyword "ODK_STRUCT". 

Example 

ODK_STRUCT <StructName> 

{ 

 <DataType> <TagName>; 

 ... 

}; 

The following syntax rules apply to the structure:  

– You can divide the structure into multiple lines. 

– The structure definition must end with a semicolon. 

– Any number of tabs and spaces between the elements is permitted. 

– You must not use keywords for the generated language (e.g. "int" as tag name). 

You can create additional structures within a structure. 

<StructName> 

Structure names apply with the syntax and character restrictions of the programming 
language and as defined for tag definitions in STEP 7. 

In STEP 7, the structure name is extended by the STEP 7 prefix. 



Developing ODK application for the Windows environment  
4.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
26 Programming and Operating Manual, 09/2016, A5E35253941-AC 

<TagName> 

Tag names are subject to the syntax and character restrictions of the programming 
language. 

Example 

The following code example explains the definitions of functions and structures. Sort the 
parameters by: IN, OUT, INOUT. 
//INTERFACE 
… 
ODK_STRUCT MyStruct 
  { 
    ODK_DWORD myDword; 
    ODK_S7STRING myString; 
  }; 
ODK_RESULT MyFct([IN] MyStruct myInStruct 
                ,[OUT] MyStruct myOutStruct); 

4.1.6.1 Use of ODK_CLASSIC_DB as parameter 
The ODK_CLASSIC_DB data type may only be used with the InOut-Identifier [IN] and 
[INOUT]. If a parameter of data type ODK_CLASSIC_DB with InOut-Identifier [IN] or [INOUT] 
is used, no other parameters, regardless of the data type, can be used with the same InOut-
Identifier. 

Example 
// INTERFACE 
... 
// OK: 
ODK_RESULT MyFunc1([IN] ODK_CLASSIC_DB myDB); 
ODK_RESULT MyFunc2([IN] ODK_CLASSIC_DB myDB1, [INOUT] ODK_CLASSIC_DB 
myDB2);  
// 
// NOT OK (Code Generator will throw an error): 
// ODK_CLASSIC_DB not permitted for [OUT] 
ODK_RESULT MyFunc3([OUT] ODK_CLASSIC_DB myDB); 
// if ODK_CLASSIC_DB is used for [IN], no other [IN] parameter may 
be 
// defined in this function 
ODK_RESULT MyFunc4([IN] ODK_CLASSIC_DB myDB, [IN] ODK_INT32 myint); 



 Developing ODK application for the Windows environment 
 4.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 27 

Application example for C++ 
#include "ODK_CpuReadData.h" 
... 
ODK_RESULT MyFunc1 (const ODK_CLASSIC_DB& myDB) 
{ 
    CODK_CpuReadData myReader(&myDB); 
    ODK_INT32 myInt1, myInt2; 
 
    myReader.ReadS7DINT(0, myInt1); 
    myReader.ReadS7DINT(4, myInt2); 
 
    return myInt1 + myInt2; 
} 

In order to access the data type ODK_CLASSIC_DB within a user function, the helper 
functions (Page 96) of the following classes are available: 

● Class "CODK_CpuReadData" 

● Class "CODK_CpuReadWriteData" 

4.1.6.2 Handling strings 
You can define a maximum length for strings (String or WString). Define the maximum 
number of characters in square brackets directly after the data type: 

● ODK_S7STRING[30] or 

● ODK_S7WSTRING[1000] 

Without limitation, a string has a default length of 254 characters. 

In order to access the data types ODK_S7STRING or ODK_S7WSTRING within a user 
function, the string helper functions (Page 96) are available: 

Example 
//INTERFACE 
… 
ODK_RESULT MyFct( 
    [IN]    ODK_S7STRING      myStrHas254Chars 
  , [OUT]   ODK_S7STRING[10]  myStrHas10Chars 
  , [INOUT] ODK_S7STRING[20]  myStrArrayHas20Chars5Times[5]); 

If you use [INOUT], you can set the string with a length that differs from the [INOUT of the 
function block in STEP 7. 



Developing ODK application for the Windows environment  
4.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
28 Programming and Operating Manual, 09/2016, A5E35253941-AC 

4.1.6.3 Definition of the <Project>.odk file 
The function prototypes and function blocks are generated based on the selected 
parameters in the <Projekt>.odk file. Define the <Project>.odk file for this. 

By default, the <Project>.odk file contains the following: 

● Description 

The possible data types that are used for the interface are described in comment lines. 
This simplifies the definition of the correct tag type for your task. 

● Context=user 

The ODK application is loaded in the "User" context. You can change the parameter to 
Context=system. 

● STEP7Prefix="<Projekt>" 

Sets a string for the SCL generation in front of the functions of the ODK application. The 
string is visible in STEP 7. You can change the parameter. The string length of the prefix 
including function name must not exceed 125 characters (e.g. 
ODK_App_SampleFunction). 

● "SampleFunction" function definition 

You can change this default function as you wish in the <Project>.odk file and add more 
functions. The string length may not exceed a length of 125 characters. The associated 
function is located in the CPP file. 

Example 
//INTERFACE 
Context=user 
STEP7Prefix=ODK_App 
 
 /* 
* Elementary data types: 
*  ODK_DOUBLE      LREAL    64-bit floating point, IEEE 754 
*  ODK_FLOAT       REAL     32-bit floating point, IEEE 754 
*  ODK_INT64       LINT     64-bit signed integer 
*  ODK_INT32       DINT     32-bit signed integer 
*  ODK_INT16       INT      16-bit signed integer 
*  ODK_INT8        SINT     8-bit signed integer 
*  ODK_UINT64      ULINT    64-bit unsigned integer 
*  ODK_UINT32      UDINT    32-bit unsigned integer 
*  ODK_UINT16      UINT     16-bit unsigned integer 
*  ODK_UINT8       USINT    8-bit unsigned integer 
*  ODK_LWORD       LWORD    64-bit bit string 
*  ODK_DWORD       DWORD    32-bit bit string 
*  ODK_WORD        WORD     16-bit bit string 
*  ODK_BYTE        BYTE     8-bit bit string 
*  ODK_BOOL        BOOL     1-bit bit string 
*  ODK_LTIME       LTIME    64-bit duration in nanoseconds 
*  ODK_TIME        TIME     32-bit duration in milliseconds 
*  ODK_LDT         LDT      64 bit date and time of day  
*                           in nanoseconds 
*  ODK_LTOD        LTOD     64 bit time of day in nanoseconds  
*                           since midnight 



 Developing ODK application for the Windows environment 
 4.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 29 

*  ODK_TOD         TOD      32 bit time of day in milliseconds  
*                           since midnight 
*  ODK_CHAR        CHAR     8 bit character 
*  ODK_WCHAR       WCHAR    16 bit character 
* Complex Datatypes: 
*  ODK_DTL         DTL      structure for date and time 
*  ODK_S7STRING    STRING   character string with 8-bit characters 
*  ODK_CLASSIC_DB  VARIANT  classic DB (global or based on UDT 
*                           "optimized block access" must be 
unchecked) 
*  ODK_S7WSTRING   WSTRING  character string with 16 bit characters    
*  []              ARRAY    field of this datatype 
* User Defined Datatype: 
*  ODK_STRUCT      UDT      user defined structure 
* Return Datatype: 
*  ODK_RESULT      0x0000-0x6FFF function succeeded 
*                                (ODK_SUCCESS = 0x0000) 
*                  0xF000-0xFFFF function failed 
*                                (ODK_USER_ERROR_BASE = 0xF000) 
*/ 
 
// Basic function in order to show 
// how to create a function in ODK 1500S. 
ODK_RESULT SampleFunction([IN]   ODK_INT32   myInt   // integervalue 
                                                     // as input 
                        , [OUT]  ODK_BOOL    myBool  // bool value 
                                                     // as output 
                        , [INOUT] ODK_DOUBLE myReal);// double value 
                                                     // as input  
                                                     // and output 

4.1.6.4 Modifying the <Project>.odk file 
The following example shows how you can adapt the <Project>.odk file to your needs. 
//INTERFACE 
Context=user 
STEP7Prefix=ODK_SampleApp_ 
 
ODK_RESULT GetString ([OUT]    ODK_S7STRING myString); 
 
ODK_RESULT Calculate ([IN]     ODK_INT64   In1, 
                      [IN]     ODK_DOUBLE  In2, 
                      [OUT]    ODK_FLOAT   Out1, 
                      [OUT]    ODK_INT32   Out2, 
                      [INOUT]  ODK_BYTE    InOut1[64], 
                      [INOUT]  ODK_BYTE    InOut2[64]); 

4.1.6.5 Comments 
Comments are started with a double slash "//" and end automatically at the end of the line. 

Alternatively, you can limit comments by /* <comment> */, which enables new lines in a 
comment. Characters after the end of the comment identifier "*/" are further processed by 
the code generator. 



Developing ODK application for the Windows environment  
4.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
30 Programming and Operating Manual, 09/2016, A5E35253941-AC 

Comments for functions and structures 
You place comments on functions and structures directly in front of the functions/structures. 

These comments are transferred to the ODK_Functions.h and <Project>.scl files. 

In the <Project>.scl file, the comments are copied to the block properties and duplicated in 
the code area of the function. 

Observe the following rules: 

● Comments for functions and structures must be located directly in front of the 
functions/structures (without blank line). 

● The end of the comment is located in front of the ODK_RESULT or ODK_STRUCT 
keyword. 

● You can use both identifiers "//" and "/* */" but not in combination within a comment. 

Example 
// this comment did not appear in MyStruct, because of the empty 
line. 
  
// comment MyStruct 
// ... 
ODK_STRUCT MyStruct 
{ 
  ODK_DWORD     myDword; 
  ODK_S7STRING  myString; 
}; 
  
/* 
comment MyFct 
... 
*/ 
ODK_RESULT MyFct([IN] MyStruct myInStruct 
               ,[OUT] MyStruct myOutStruct); 

Comments for tags in functions and structures 
Comments for function and structure tags are placed directly in front of or behind the tag. 

These comments are transferred to the ODK_Functions.h and <Project>.scl files. 

The following rules apply to comments in front of tags: 

● Comments must be located directly in front of the tag (without blank line) 

● The end of the comment is the <InOut-Identifier> of the tag 

The following rules apply to comments after tags: 

● Comments must be located after the tag name (without blank line) 

The following general rules apply to comments for tags: 

● You can use both identifiers "//" and "/* */" but not in combination within a comment. 

● In the header file, the same comment identifier is used ("//" or "/* */"). 



 Developing ODK application for the Windows environment 
 4.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 31 

Example 
ODK_STRUCT MyStruct 
{ 
  // comment myDword BEFORE definition 
  ODK_DWORD    myDword; 
  
  ODK_S7STRING myString; /* comment myString AFTER definition */ 
}; 
  
ODK_RESULT MyFct([IN]  MyStruct myInStruct    // comment 
                                              // myInStruct ... 
                                              // ... "second line" 
               , [OUT] MyStruct myOutStruct); /* comment 
                                                 myOutStruct ... 
                                                 ... 
                                               */ 

4.1.7 Implementing functions 

4.1.7.1 General notes 
This section provides an overview of the basic topics relating to the implementation of 
functions in a Windows environment.  

● The function call is not limited in time, because the function is called asynchronously. 

● Traces are possible via OutputDebugString instructions 

● All asynchronous ODK functions are executed with equal priority – independent of the 
priority of the OBs 

● The complete Windows API (Application Programming Interface) and C++-Runtime 
library are available 



Developing ODK application for the Windows environment  
4.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
32 Programming and Operating Manual, 09/2016, A5E35253941-AC 

4.1.7.2 Callback functions 
The ODK project contains a CCP file (execute file: <Project>.cpp) to define your functions. 
This CCP file contains functions filled by default. This file does not necessarily need to be 
filled with additional user code to be usable. However, neither may the functions be deleted 
under any circumstances.  

The empty function has the following code (using the "OnLoad()" function as an example): 
ODK_RESULT OnLoad (void) 
{ 
  // place your code here 
  return ODK_SUCCESS; 
} 

You can define the following functions in the CCP file: 

● OnLoad(): Called after loading the ODK application 

● OnUnload(): Called before unloading the ODK application 

● OnRun(): Called when the CPU changes to RUN mode after the OnLoad() function 

● OnStop(): Called when the CPU changes to the STOP mode and before the function 
OnUnload() 

The following table provides an overview of the various actions to invoke the callback 
functions: 
 
Current operating state New operating state User action ODK action 
RUN RUN ODK_Load 1. OnLoad() 

2. OnRun() 

STOP RUN ODK_Load in 
startup OB (e.g. 
OB100) 

1. OnLoad() 
2. OnRun() 

RUN STOP <already loaded> OnStop() 
STOP RUN <already loaded> OnRun() 
RUN RUN ODK_Unload 1. OnStop() 

2. OnUnload() 

RUN SHUTDOWN / MRES <already loaded> OnStop() 
any any <already loaded> 

Exit ODK host 
1. OnStop() (optional, if 

not already execut-
ed) 

2. OnUnload() 



 Developing ODK application for the Windows environment 
 4.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 33 

"OnLoad()" and "OnUnload()" function  
The functions have a return value of type "ODK_RESULT" and typically provide information 
about the status of the "ODK_SUCCESS" value. 

The following return values are possible: 
 
Return value for "ODK_RESULT" Description 
ODK_SUCCESS = 0x0000 Return value following a successful execution of the "OnLoad()" or "OnUnload()" 

function 
0x0001 – 0xEFFF Invalid values (system-internal) 
0xF000 – 0xFFFF 
ODK_USER_ERROR_BASE = 0xF000 

You can define your own error values. 
The loading stops and the ODK application unloads for the "OnLoad()" function. 
The ODK application within the specified value range is still unloaded for the 
"OnUnload()" function. 

"OnRun()" and "OnStop()" function 
The functions have a return value of type "ODK_RESULT" and typically provide information 
about the status of the "ODK_SUCCESS" value. 

The following return values are possible: 
 
Return value for "ODK_RESULT" Description 
ODK_SUCCESS = 0x0000 Return value following a successful execution of the "OnRun()" or "OnStop()" 

function 
0x0001 – 0xFFFF No direct feedback to the user program is possible. 

The return value is sent to Windows (WindowsEventLog). 

4.1.7.3 Implementing custom functions 
Once you have defined the ODK interface in the <Project>.odk file, you must edit the ODK 
application functions in the CPP file. 

Procedure  
To edit the ODK application functions, follow these steps: 

1. Execute the build in order to update the header file <ODK_Functions.h>. 

2. Open the <Project>.cpp file or create your own source file if required. 

3. Transfer the function prototypes from <ODK_Functions.h> to the source file. 
 

 Note 

To skip step 3 in the future when function parameters are changed, use the define of the 
function prototype. 

 

4. Edit the code of your ODK application in the CPP file. 



Developing ODK application for the Windows environment  
4.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
34 Programming and Operating Manual, 09/2016, A5E35253941-AC 

ODK application 
The CCP file contains an schematically represented function description by default. You can 
change this description with corresponding changes in the <Project>.odk file and/or add 
more function descriptions. 
#include "ODK_Functions.h" 
 
EXPORT_API ODK_RESULT OnLoad (void) 
{ 
    return ODK_SUCCESS; 
} 
EXPORT_API ODK_RESULT OnUnload (void) 
{ 
    return ODK_SUCCESS; 
} 
EXPORT_API ODK_RESULT OnRun (void) 
{ 
    return ODK_SUCCESS; 
} 
EXPORT_API ODK_RESULT OnStop (void) 
{ 
    return ODK_SUCCESS; 
} 
ODK_RESULT SampleFunction( const ODK_INT32& myInt, 
                                 ODK_BOOL& myBool, 
                                 ODK_DOUBLE& myReal) 
{ 
    return ODK_SUCCESS; 
} 



 Developing ODK application for the Windows environment 
 4.2 Transferring an ODK application to the target system 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 35 

4.2 Transferring an ODK application to the target system 
Manually transfer the DLL file to a specific Windows folder on the target system (e.g. via a 
network share or USB stick). Use the standard Windows data transfer procedure to transfer 
of the ODK application. The storage location in Windows is specified by a registry key. When 
loading an ODK application, the ODK service automatically searches for the file in the path 
specified by the registry key.  

 

 Note 
ODK application in the debug configuration 

When the ODK application has been transferred to the debug configuration, you also need to 
transfer the debug DLLs of the development environment to the target system. 

 

The default value that describes the file path is: 

%ProgramData%\Siemens\Automation\ODK1500S\ 
 

 Note 
Administrator rights 

To access this folder, you need administrator rights. This prevents the import of ODK 
applications by unauthorized persons. 
Please note:  

The setup of the SIMATIC S7-1500 Software Controller checks whether the file path already 
exists and the required administrator rights are assigned. 

If not, the directory is renamed to "ODK1500S_OLD1" or "ODK1500S_OLD2" and a new 
directory with the correct access rights is created. 

 

The Windows file system can hide the folder based on your setting. You can view the folder 
using the Windows option "Show hidden files, folders, and drives" in the Explorer menu 
"Organize > Folder and search options > View". 

The registry key for 32-bit systems is: 
HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\Automation\ODK1500S\odk_app_path 

The registry key for 64-bit systems is: 
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Siemens\Automation\ODK1500S\od
k_app_path 

You can change the default value of the registry key and thus adapt to the expected location 
for the DLL file to suit your needs. 

 

 Note 
Changing the path in the registry key 

To protect the DLL file, select a storage location that is secured by access protection. 
 

 



Developing ODK application for the Windows environment  
4.3 Importing and generating an SCL file in STEP 7 

 Open Development Kit 1500S V2.0 
36 Programming and Operating Manual, 09/2016, A5E35253941-AC 

4.3 Importing and generating an SCL file in STEP 7 
The following files are created when the project map is created: 

● SCL file for importing into STEP 7 

● All files depending on the configuration, e.g. DLL file 

If STEP 7 is installed on another PC as the development environment, you must transfer the 
generated SCL file to the PC where the STEP 7 is installed. 

Requirements  
The project data were generated. 

Procedure 
To import and compile the SCL file, follow these steps: 

1. Start STEP 7. 

2. Open your project. 

3. Select the project view. 

4. Select the CPU in the project tree. 

5. Select the "External Sources" subfolder. 

The "Open" dialog box opens. 

6. Navigate in the file system to the SCL file that was created during the generation of the 
project data. 

7. Confirm your selection with "Open". 

The SCL file is imported. After completion of the import process, the SCL file is displayed 
in the "External Sources" folder. 

8. You need to compile the SCL file before you can use the blocks in your project. 

9. To do this, select the SCL file in "External sources" subfolder. 

10.Select the "Generate blocks from source" command in the shortcut menu. 

Result 
STEP 7 creates the S7 blocks based on the selected SCL file. 

The created blocks are now automatically displayed in the "Program blocks" folder below the 
selected CPU in the project tree. You can load the function blocks during the next download 
to the target device. 

 



 Developing ODK application for the Windows environment 
 4.4 Executing a function 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 37 

4.4 Executing a function 

4.4.1 Loading functions 

Introduction  
Regardless of the context in which the ODK application is running, the loading procedure 
consists of the following steps: 

● Call the "<STEP7Prefix>_Load" instruction in the STEP 7 user program. 

● In the Windows context, the loading process checks if a 32-bit or 64-bit process is 
required and starts the appropriate host. Each ODK application runs in its own Windows 
process (ODK_Host). 

● The host loads the ODK application and calls the "OnLoad()" function and then the 
"OnRun()" functions. 

 

 Note 
Loading the same ODK applications with a modified <Project>.odk file 

When you load an ODK application and subsequently change the <Project>.odk file, we 
recommend that you unload your ODK application first before you load the newly generated 
ODK application. If the "<STEP7Prefix>_Unload" instruction is not executed, both ODK 
applications are in the memory. This can lead to insufficient memory being available for the 
CPU. 

 

"<STEP7Prefix>_Load" instruction 
An ODK application is loaded by calling the "<STEP7Prefix>_Load" instruction in the STEP 7 
user program. 
 

<STEP7Prefix>_Load 
REQ DONE 
 BUSY 
 ERROR 
 STATUS 

The following table shows the parameters of the instruction "<STEP7Prefix>_Load": 
 
Section Declaration Data type Description 
Input REQ BOOL A rising edge activates the loading of the ODK application. 
Output DONE BOOL Indicates that the instruction has finished loading the ODK application. 
Output BUSY BOOL Indicates that the instruction is still loading the ODK application. 



Developing ODK application for the Windows environment  
4.4 Executing a function 

 Open Development Kit 1500S V2.0 
38 Programming and Operating Manual, 09/2016, A5E35253941-AC 

Section Declaration Data type Description 
Output ERROR BOOL Indicates that an error occurred during the loading of the ODK application. 

STATUS gives you more information about the possible cause. 
Output STATUS INT Provides information about possible sources of error, if an error occurs during 

the loading of the ODK application. 

Input parameters 
A edge transition (0 to 1) at the "REQ" input parameter starts the function. 

Output parameters 
The following table shows the information that is returned after loading. 

 
DONE BUSY ERROR STATUS Meaning 
0 0 0 0x7000 

=28672 
No active loading 

0 1 0 0x7001 
=28673 

Loading in progress, first call 

0 1 0 0x7002 
=28674 

Loading in progress, ongoing call 

1 0 0 0x7100 
=28928 

CPU 1500 V2.0 and later: 
ODK application has already been loaded. 

1 0 0 0x0000 
=0 

Loading was performed successfully. 

0 0 1 0x80A4 
=-32604 

ODK application could not be loaded. 
Start the ODK service manually or restart Windows. 

0x80C2 
=-32574 

ODK application could not be loaded. There is currently not enough 
memory available at the Windows end. 
Load the ODK application again after a few seconds. 

0x80C3 
=-32573 

ODK application could not be loaded. The CPU currently does not have 
enough memory. 
Load the ODK application again after a few seconds. 

0x8090 
=-32624 

ODK application could not be loaded. An exception occurred during 
execution of the "OnLoad()" function. 

0x8092 
=-32622 

ODK application could not be loaded because the library name is invalid. 

0x8093 
=-32621 

ODK application could not be loaded because the ODK application could 
not be found. Check the file name and path of the file. 

0x8094 
=-32620 

ODK application could not be loaded. The ODK application was created 
for the Windows user context, but no user is logged on. 



 Developing ODK application for the Windows environment 
 4.4 Executing a function 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 39 

DONE BUSY ERROR STATUS Meaning 
0x8095 
=-32619 

ODK application could not be loaded for the following reasons: 
• The DLL file is not an ODK application 
• An attempt has been made to load a 64-bit application into a 32-bit 

system 
• Dependencies on other Windows DLL files could not be resolved. 

– Check whether the release build of the ODK application is being 
used. 

– Check whether the "Visual C++ Redistributables" are installed for 
the Visual Studio version you are using. 

• The CPU does not support the utilized ODK version. 

0x8096 
=-32618 

The ODK application could not be loaded because the internal identifica-
tion is already being used by another loaded ODK application. 

0x8097 
=-32617 

CPU 1500 V1.8 and earlier: 
ODK application has already been loaded. 

0x8098 
=-32616 

ODK application could not be loaded because the ODK application is 
currently being unloaded. 

0x809B 
=-32613 

CPU 1500 V2.0 and later: 
The ODK application could not be loaded and returns an invalid value 
(the values 0x0000 and 0xF000 - 0xFFFF are permitted) 

0xF000 – 
0xFFFF 
=-4096 –  
-1 

CPU 1500 V2.0 and later: 
ODK application could not be loaded. An error occurred during execution 
of the "OnLoad()" function. 

Example 
This example describes how the loading and running of a Windows ODK application can be 
configured in order to start Windows again after communication disturbances. 

When Windows is available again, the ODK application is loaded and the functions can be 
executed again. 

A communication disturbance can be caused by the following: 

● Windows Restart (or Shut down) 

● Windows Log off (if application in user area) 

● TerminateProcess/ODK_Host crash 

A flag is necessary for this (here: ODK_Loaded), which is set after successful loading and is 
reset following a faulty execution of the ODK function. 

 
FUNCTION_BLOCK "ODK_AutoLoad" 
{ S7_Optimized_Access := 'TRUE' } 
VERSION: 0.1 
  VAR  
    ODK_Loaded : Bool; 
  END_VAL 
BEGIN 



Developing ODK application for the Windows environment  
4.4 Executing a function 

 Open Development Kit 1500S V2.0 
40 Programming and Operating Manual, 09/2016, A5E35253941-AC 

  //Load the Windows ODK application 
  IF NOT #ODK_Loaded THEN 
    // Toggle request flag if loading is not active 
    IF NOT "ODKProject_Load_DB".BUSY THEN 
           "ODKProject_Load_DB".REQ := NOT "ODKProject_Load_DB".REQ; 
    END_IF; 
  
    //Load the ODK application 
    "ODKProject_Load_DB"(); 
  
    // Set "Loaded" flag if loading is successful 
    IF "ODKProject_Load_DB".DONE THEN 
      #ODK_Loaded := true; 
    END_IF; 
  END_IF; 
  
  // Execute the ODK function(s) (only in loaded state) 
  IF #ODK_Loaded THEN 
    // Toggle request flag if function call is not active 
    IF NOT "ODKProjectSampleFunction_DB".BUSY THEN 
           "ODKProjectSampleFunction_DB".REQ := NOT  
           "ODKProjectSampleFunction_DB".REQ; 
    END_IF; 
  
    // Execute the function 
    "ODKProjectSampleFunction_DB"(); 
  
    // The "Loaded" flag must be reset when 
    // a) An error is present in the communication with Windows 
(0x80A4) 
    // b) The ODK application was already unloaded before this 
function call (0x8096) 
    IF "ODKProjectSampleFunction_DB".STATUS = 16#80A4 OR 
"ODKProjectSampleFunction_DB".STATUS = 16#8096 
    THEN 
    #ODK_Loaded := false; 
    END_IF; 
  END_IF; 
END_FUNCTION_BLOCK 



 Developing ODK application for the Windows environment 
 4.4 Executing a function 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 41 

4.4.2 Calling functions 

Introduction  
Once the ODK application is loaded, you can execute C functions via your STEP 7 user 
program. This call is made from the corresponding "<STEP7Prefix>SampleFunction" 
instruction. 

You can load up to 32 ODK applications at one time. 

"<STEP7Prefix>SampleFunction" instruction 
An ODK application is called by the "<STEP7Prefix>SampleFunction" instruction. 
 

<STEP7Prefix>SampleFunction 
REQ DONE 
myInt BUSY 
myReal ERROR 
 STATUS 
 myBool 

The following table shows the parameters of the instruction 
"<STEP7Prefix>SampleFunction": 

 
Section Declaration Data type Description 
Automatically generated parameters 
Input REQ BOOL A rising edge of this input value activates the execution of the ODK application. 
Output DONE BOOL This output value indicates that the instruction has finished execution of the 

ODK application. 
Output BUSY BOOL This output value indicates that the instruction is still unloading the ODK applica-

tion. 
Output ERROR BOOL This output value indicates that an error occurred during the execution of the 

ODK application. The STATUS output value provides more information on this. 
Output STATUS INT This output value provides information about possible sources of error, if an 

error occurs during the execution of the ODK application. 
User-defined parameter 
Input myInt  User-defined input tags 
InOut myReal  User-defined input-output tags 
Output myBool  User-defined output tags 

Input parameters 
A edge transition (0 to 1) at the "REQ" input parameter starts the function. 



Developing ODK application for the Windows environment  
4.4 Executing a function 

 Open Development Kit 1500S V2.0 
42 Programming and Operating Manual, 09/2016, A5E35253941-AC 

Output parameters 
The following table shows the information for the output parameters returned after execution. 

 
DONE BUSY ERROR STATUS Meaning 
0 0 0 0x7000 

=28672 
No active process 

0 1 0 0x7001 
=28673 

First call (asynchronous) 

0 1 0 0x7002 
=28674 

Continuous call (asynchronous) 

1 0 0 0x0000 – 
0x6FFF 
=0 – 
28671 

Function has been executed and returns a value between 0x0000 and 
0x6FFF. 
(ODK_SUCCESS = 0x0000) 

0 0 1 0x80A4 
=-32604 

ODK application could not be executed for the following reasons: 
• The "<STEP7Prefix>_Unload" instruction was executed during a 

function execution. The function execution was aborted at the CPU 
end. Windows terminates the execution of the function normally. No 
return value is sent to the CPU. 

Wait until the "<STEP7Prefix>_Unload" instruction has ended. Then load 
the ODK application again. 
• Windows is not available 
• ODK service is not running 
Start the ODK service manually or restart Windows. 

0x80C2 
=-32574 

ODK application could not be run. There is currently not enough memory 
available at the Windows end. 
Load the ODK application again after a few seconds. 

0x80C3 
=-32573 

ODK application could not be run. The CPU currently does not have 
enough memory. 
Load the ODK application again after a few seconds. 

0x8090 
=-32624 

ODK application could not be run. An error occurred during execution. 

0x8091 
=-32623 

ODK application could not be run. A "STOP" occurred during the function 
call. 

0x8096 
=-32618 

ODK application could not be executed because the ODK application 
was not loaded or unloading is not yet finished. 

0x8098 
=-32616 

ODK application could not be executed because the function is not sup-
ported. 

0x8099 
=-32615 

ODK application could not be executed because the maximum amount 
of input data (32 KB) was exceeded (declarations with "In" and "InOut") 

0x809A 
=-32614 

ODK application could not be executed because the maximum amount 
of output data (32 KB) was exceeded (declarations with "Out" and "In-
Out") 

0x809B 
=-32613 

The function returns an invalid value (a value between 0x0000 and 
0x6FFF; 0xF000 and 0xFFFF is permitted) 



 Developing ODK application for the Windows environment 
 4.4 Executing a function 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 43 

DONE BUSY ERROR STATUS Meaning 
0x809C 
=-32612 

Function uses an invalid data type: 
• IN_DATA 
• INOUT_DATA 
• OUT_DATA 
If you are using an ODK_CLASSIC_DB, disable the optimized block 
access. 

0xF000 – 
0xFFFF 
=-4096 – -
1 

CPU 1500 V2.0 and later: 
The function could not be executed and returns a value between 0xF000 
and 0xFFFF. 
(ODK_USER_ERROR_BASE = 0xF000) 

4.4.3 Unloading functions 

Introduction  
The ODK application is unloaded be calling the "<STEP7Prefix>_Unload" instruction. Call is 
made from the STEP 7 user program. 

In addition to this call, the ODK application is also automatically unloaded for the following 
reasons. 

● The CPU is switched off 

● The CPU is reset 

● Windows is restarted 

● Logoff off the Windows user (in the context of a Windows user) 

 

Regardless of the context in which the ODK application is running, the unloading procedure 
consists of the following steps: 

● Call the "<STEP7Prefix>_Unload" instruction in the STEP 7 user program. 

● From now on, no new executes can be carried out for these ODK application. Still active 
executes are terminated at the CPU end. Windows terminates the execution of the 
function normally ("Unload" waits). No return value is sent to the CPU. 

● The host calls the "OnStop()" and "OnUnload()" functions. 

● The ODK application is unloaded. 



Developing ODK application for the Windows environment  
4.4 Executing a function 

 Open Development Kit 1500S V2.0 
44 Programming and Operating Manual, 09/2016, A5E35253941-AC 

"<STEP7Prefix>_Unload" instruction 
An ODK application is unloaded by calling the "<STEP7Prefix>_Unload" instruction in the 
STEP 7 user program. 
 

<STEP7Prefix>_Unload 
REQ DONE 
 BUSY 
 ERROR 
 STATUS 

The following table shows the parameters of the instruction "<STEP7Prefix>_Unload": 
 
Section Declaration Data type Description 
Input REQ BOOL A rising edge activates the unloading of the ODK application. 
Output DONE BOOL Indicates that the instruction has finished unloading the ODK application. 
Output BUSY BOOL Indicates that the instruction is still unloading the ODK application. 
Output ERROR BOOL Indicates that an error occurred during the unloading of the ODK application. 

 STATUS gives you more information about the possible cause. 
Output STATUS INT Provides information about possible sources of error, if an error occurs during 

the unloading of the ODK application. 

Input parameters 
A edge transition (0 to 1) at the "REQ" input parameter starts the function. 



 Developing ODK application for the Windows environment 
 4.4 Executing a function 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 45 

Output parameter STATUS 
The following table shows the information that is returned after unloading. 

 
DONE BUSY ERROR STATUS Meaning 
0 0 0 0x7000 

=28672 
No active unloading 

0 1 0 0x7001 
=28673 

Unloading in progress, the first call 

0 1 0 0x7002 
=28674 

Unloading in progress, ongoing call 

1 0 0 0x0000 
=0 

Unloading was carried out successfully 

0 0 1 0x80A4 
=-32604 

ODK application could not be unloaded for the following reasons: 
• Windows is not available 
Start the ODK service manually or restart Windows. 

0x80C2 
=-32574 

ODK application could not be unloaded. There is currently not enough 
memory available at the Windows end. 
Load the ODK application again after a few seconds. 

0x80C3 
=-32573 

ODK application could not be unloaded. The CPU currently does not 
have enough memory. 
Load the ODK application again after a few seconds. 

0x8090 
=-32624 

ODK application could not be unloaded. An exception occurred during 
execution of the "OnUnload()" function. 

0x8096 
=-32618 

ODK application could not be unloaded because the ODK application 
was not loaded or unloading is not yet finished. 

0x809B 
=-32613 

CPU 1500 V2.0 and later:  
The ODK application could be unloaded and returns an invalid value (the 
values 0x0000 and 0xF000 - 0xFFFF are permitted) 

0xF000 – 
0xFFFF 
=-4096 –  
-1 

CPU 1500 V2.0 and later:  
ODK application could be unloaded. An error occurred in the CCX object 
during execution of the "OnLoad()" function. 



Developing ODK application for the Windows environment  
4.5 Remote debugging 

 Open Development Kit 1500S V2.0 
46 Programming and Operating Manual, 09/2016, A5E35253941-AC 

4.5 Remote debugging 
If you use Microsoft Visual Studio as a development environment, you can use the debugger 
for debugging.  

You can use the remote debugger to debug an ODK application on a target system without 
Visual Studio. It should be noted that the generated ODK applications (DLLs) are loaded into 
one of the following processes: 

● ODK_Host_x86.exe process (32-bit) 

● ODK_Host_x64.exe process (64-bit) 

The required remote debugger is dependent on the Visual Studio version used on the host 
system and on the system type (32-bit/64-bit) of the target system. 

 
Installed Visual Studio version Link to the Download Center for the remote debugger  
Microsoft Visual Studio 2010 Microsoft Visual Studio 2010 Remote Debugger 

(https://www.microsoft.com/en-
us/download/details.aspx?id=475) 

Microsoft Visual Studio 2012 Microsoft Visual Studio 2012 Remote Debugger 
(https://www.microsoft.com/en-
us/download/details.aspx?id=38184) 

Microsoft Visual Studio 2013 Microsoft Visual Studio 2013 Remote Debugger 
(https://www.microsoft.com/en-
us/download/details.aspx?id=44918) 

Microsoft Visual Studio 2015 Microsoft Visual Studio 2014 Remote Debugger 
(https://www.microsoft.com/en-
us/download/details.aspx?id=48155) 

After downloading, you can install the remote debugger on the target system. 

https://www.microsoft.com/en-us/download/details.aspx?id=475
https://www.microsoft.com/en-us/download/details.aspx?id=475
https://www.microsoft.com/en-us/download/details.aspx?id=38184
https://www.microsoft.com/en-us/download/details.aspx?id=38184
https://www.microsoft.com/en-us/download/details.aspx?id=44918
https://www.microsoft.com/en-us/download/details.aspx?id=44918
https://www.microsoft.com/en-us/download/details.aspx?id=48155
https://www.microsoft.com/en-us/download/details.aspx?id=48155


 Developing ODK application for the Windows environment 
 4.5 Remote debugging 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 47 

4.5.1 Performing remote debugging 

Procedure 
1. Start the Visual Studio remote debugger on the target system using "Start > All Programs 

> Visual Studio 20xx > Remote Debugger". 

2. Configure the authentication. 

Select the "No authentication" option and select the "Allow any user to debug" check box. 

Observe the security information. 

3. Copy the Visual Studio C++ debug DLLs from the "<InstallationPath 
VS>\VC\redist\Debug_NonRedist\<ApplicationType>\Microsoft.<VS version>.DebugCRT" 
folder to the destination folder. 

– Destination folder with 32-bit Windows and a 32-bit application: 

<windows install path>\System32 

– Destination folder with 64-bit Windows and a 64-bit application: 

<windows install path>\System32 

– Destination folder with 64-bit Windows and a 32-bit application: 

<windows install path>\SysWOW64 
 

  Note 

If you are using Visual Studio 2015, you also need the "ucrtbased.dll". 

If this DLL is not present in the target system, copy it from the host in the folder: 

With 32-bit Windows under Program Files\... 

With 64-bit Windows under Program Files (x86)\... 

...\Microsoft SDKs\Windows 
Kits\10\ExtensionSDKs\Microsoft.UniversalCRT.Debug\<Highest available version>\ 
Redist\Debug\<Application type (32/64-bit)> 

 

4. Copy the ODK application to the "C:\ProgramData\Siemens\Automation\ODK1500S" 
folder of the target system. 

 
  Note 

If the ODK application is loaded, unload (Page 43) it before copying. 
 



Developing ODK application for the Windows environment  
4.5 Remote debugging 

 Open Development Kit 1500S V2.0 
48 Programming and Operating Manual, 09/2016, A5E35253941-AC 

5. Load (Page 37) the ODK application on the target system. 

6. Set the break points in the source code and attach the debugger using "Debug > Attach 
to Process…". 

 

Debugging OnLoad/OnRun 
To attach the debugger to the OnLoad() or OnRun() function, incorporate a wait loop at the 
start of OnLoad(). 

Example of a wait loop: 
EXPORT_API ODK_RESULT OnLoad (void) 
{ 
#if defined _DEBUG  // available in debug configuration, only 
  while (!IsDebuggerPresent()) // wait for debugger 

    { 
    Sleep(100); 
  } 
#endif 
  // your code for OnLoad() ... 

Result 
The debugger stops the execution of the code after the activated breakpoint. 



 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 49 

 Developing ODK application for the realtime 
environment 5 
5.1 Creating an ODK application 

5.1.1 Requirements 
● ODK is installed. The Eclipse development environment is installed. 

● You need administrator rights to create and edit an ODK project. 

 

 Note 

If you have to move the workspace to a different storage location, make sure you copy the 
entire workspace. 

 

5.1.2 Creating a project 
To help you develop an ODK application, an ODK template for an ODK project is included in 
the installation of ODK 1500S . 

Procedure 
To create an ODK project in Eclipse using an ODK template, follow these steps: 

1. Start Eclipse as a development environment. 

2. In the "File > New" menu, select the command "Project..." 

The "New Project" dialog opens. 

 
Figure 5-1 Creating a new project with Eclipse 



Developing ODK application for the realtime environment  
5.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
50 Programming and Operating Manual, 09/2016, A5E35253941-AC 

3. Select your preferred programming language and the corresponding ODK template. 

 
Figure 5-2 Selecting a template 

4. Enter a project name. 

5. Click "OK" to confirm. 

Result 
The ODK project is created using the ODK templates and sets the following project settings: 

● Project settings for generating the SO file 

● Automates the generation of the SO and SCL file 



 Developing ODK application for the realtime environment 
 5.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 51 

The ODK template configures the following data structure by default: 
 
Folder / file Description 
<project path>    
  def   
   <Project>.odk ODK interface description 
   <Pro-

ject>.scl.additional 
S7 blocks that are appended to the <Project>.scl file. 
Although the file is not part of the project template, the 
code generator processes the file. 

  STEP7  Files from this folder may not be edited! 
   <project>.scl S7 blocks 
  cg_src_priv  Files from this folder may not be edited! 
   ODK_Types.h Definition of the ODK base types 
   ODK_Functions.h Function prototypes 
   ODK_Execution.cpp Implementation of the "Execute" method 
  src   
   <project>.cpp Function code: This file has always the suffix CPP, 

regardless of whether you are creating a C or C++ 
project. 

  release_so   
   <project>.so ODK Application Binary (release version) that must be 

transferred to the target system. 
   <Pro-

ject>.debuginfo.so 
ODK Application Binary (debug version) that is re-
quired for the post mortem analysis. 

   <Project>.symbols Symbol information that is required for the post mor-
tem analysis. 

  launches   
   <Pro-

ject>.gdb.launch 
Start for the post mortem analysis. 

 

 

 Note 
Spaces in the project name 

All spaces in the project name are automatically replaced by an underscore. 

In the example, "My first project" becomes "My_first_project". 
 



Developing ODK application for the realtime environment  
5.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
52 Programming and Operating Manual, 09/2016, A5E35253941-AC 

5.1.3 Generating an ODK application 
The generation of the project data is divided into two automated steps. 

● Pre-Build: Generation of the files created by default based on the changed <Project>.odk 
file 

● Build: Generation of the SO file 

Procedure  
To generate the project data, follow these steps: 

1. Save all edited files. 

2. In the "Build" menu, select the command "Build Project". 

 

 Note 

The project data is only generated if the files have been changed. 
 

Result 
The generation of the project data is started. The automatically generated files are stored in 
the file system. 

● SO file: Project directory\<Project>\<BuildConfiguration>\<Project>.so 

● SCL file: Project directory\<Project>\STEP7\<Project>.scl 

5.1.4 Defining runtime properties of an ODK application 
Next, define the interface description of the ODK application in the <Project>.odk file. The file 
contains the following elements: 

● Comments 

● Parameters 

● Definitions of functions and structures 

Procedure  
To define the interface description in the <Project>.odk file, follow these steps: 

1. Open the <Project>.odk file. 

2. Change the elements depending on your requirements. 



 Developing ODK application for the realtime environment 
 5.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 53 

Description of the elements 

Comments 

You can use comments for explanation purposes. 

Parameters 

The definition of the parameters must be within a line of code.  
<parameter name>=<value> // optional comment 

 The interfaces file supports the following parameters: 
 
Parameter Value Description 
Context realtime Defines that the ODK application is loaded in the context of the realtime 

environment (Page 54). 
Trace on Defines the trace function in the ODK application. In this case, the ODK 

application requires 32K if memory as an additional trace buffer. A "Get-
Trace" function block is created by default for use in a STEP 7. 

off A "GetTrace" function block is created. The trace buffer contains only one 
trace entry with the contents: trace is off. 

HeapSize [4…<Availabl
e CPU 
memory 
(Page 89)>]k 

Defines a memory in KB that can be used as heap for these realtime 
applications. 

HeapMaxBlockSize [8…<HeapSi
ze>] 

Defines the maximum memory size in bytes that can be allocated at one 
time. 

SyncCallParallelCount [1...9] 
Default=3 

Optional parameter that defines the maximum number of parallel calls in 
this ODK application. The size of the memory that is reserved for calls in 
this ODK application is: 
SyncCallParallelCount * (SyncCallStackSize + SyncCallDataSize) 

SyncCallStackSize [1...1024]k 
Default=32k 

Optional parameter that defines the size of the thread stack for one call in 
this ODK application. Each new call receives its own stack memory. 

SyncCallDataSize [1...1024]k 
 

Optional parameter that defines the size of the data area for one call in 
this ODK application. The data area contains IN, INOUT and OUT pa-
rameters. Each new call receives its own stack memory. 

Default=auto The required data size is automatically calculated by the code generator 
STEP7Prefix <String> Describes the string that precedes your functions and is shown after 

importing the SCL file in STEP 7. The following characters are allowed: 
{A...Z, a…z, 1…9, -, _} 
The project name is entered without spaces by default. 



Developing ODK application for the realtime environment  
5.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
54 Programming and Operating Manual, 09/2016, A5E35253941-AC 

5.1.5 Environment for loading or running the ODK application 
When the SCL file is imported into STEP 7 as an external source, the ODK instructions are 
created in the selected directory in STEP 7. The ODK instructions enable you to control your 
ODK application regardless of the STEP 7 user program after programming and the initial 
loading. You can load up to 32 ODK applications. 

You can load and run your ODK application in the context of the realtime environment: 

Realtime environment  
Add the following line of code in your <Projekt>.odk file to use the ODK application in the 
context of the realtime environment: 
Context=realtime 

In this context, the ODK application is running in the realtime environment instead of a host 
process at the Windows end. Because the ODK application is loaded synchronously, it 
should be loaded in a startup OB (e.g. OB 100). 

The number of loadable ODK applications (Page 89) is limited in the context of the realtime 
environment. 

Determining the size of the ODK application in the CPU memory 
To determine the required size of the ODK application in the CPU memory, follow these 
steps: 

1. Open a command line dialog. 

2. Enter the following path from the ODK installation folder (the appended option "-l" is a 
lower-case "L"): eclipse\ build_tools\x86_64_gcc_pc_elf_4.8.1-1\bin\x86_64-pc-elf-
readelf.exe “StorageLocation\File.so>” -l 

You can see the size of your ODK application under the heading "Program Headers" in 
the "MemSiz" column.  

In addition to the size specified here, additional administrative memory is needed for each 
ODK application. The administrative memory can be calculated as follows: 

Administrative memory = SyncCallParallelCount * (SyncCallStackSize + 
SyncCallDataSize) 

 



 Developing ODK application for the realtime environment 
 5.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 55 

5.1.6 Defining functions and structures of an ODK application 

5.1.6.1 Defining functions of an ODK application 

Functions  
Functions are defined by the following general lines of code: 
ODK_RESULT <FunctionName> 
([<InOut identifier>] <data type> <tag name>, etc.); 

The <Project>.odk file contains an example function description by default. You can change 
this description and/or add more function descriptions. 
ODK_RESULT MyFunc1([IN] INT param1, [OUT] INT param2); 

Syntax rules for functions  
The following syntax rules apply to functions within the <Project>.odk file: 

● Note that the function names are case-sensitive. 

● You can divide function definitions into multiple lines. 

● End a function definition with a semicolon. 

● TAB and SPACE are allowed. 

● Do not define a tag name in a function twice. 

● Do not use keywords for the utilized programming language (e.g. "INT" as parameter 
name). 

● Use ODK_RESULT only for the return values of the function. 

● The tag name must start with a letter or an underscore. 

● Illegal function names are displayed during generation in the development environment. 

● The following names are not allowed in combination of <STEP7Prefix> and <function 
name>: ODK_Load, ODK_Unld, ODK_ExcA, ODK_ExcS 

<FunctionName> 

Function names are valid with the syntax and character restrictions of the used programming 
language. 



Developing ODK application for the realtime environment  
5.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
56 Programming and Operating Manual, 09/2016, A5E35253941-AC 

<InOut-Identifier> 

There are three defined InOut-Identifiers. Use these in the following order: [IN], [OUT], 
[INOUT] 

● [IN]: Defines an input tag. The tag is copied to the function when it is called. This is 
constant and cannot be changed. 

● [OUT]: Defines an output tag. The tag is copied back after the function has been 
completed. 

● [INOUT]: Defines an input and output tag. The tag is copied to the function when it is 
called. This is not constant and can be changed. The tag is copied back after the function 
has been completed. 

<DataType> 

The data type defines the type of a tag. The following tables define the possible data types 
and their method of representation in C++ or STEP 7: 

● Elementary data types: 

 

ODK data type SIMATIC data 
type 

C++ data type Description 

ODK_DOUBLE LREAL double 64-bit floating point, IEEE 754 
ODK_FLOAT REAL float 32-bit floating point, IEEE 754 
ODK_INT64 LINT long long 64-bit signed integer 
ODK_INT32 DINT long 32-bit signed integer 
ODK_INT16 INT short 16-bit signed integer 
ODK_INT8 SINT char 8-bit signed integer 
ODK_UINT64 ULINT unsigned long long 64-bit unsigned integer 
ODK_UINT32 UDINT unsigned long 32-bit unsigned integer 
ODK_UINT16 UINT unsigned short 16-bit unsigned integer 
ODK_UINT8 USINT unsigned char 8-bit unsigned integer 
ODK_LWORD LWORD unsigned long long 64-bit bit string 
ODK_DWORD DWORD unsigned long 32-bit bit string 
ODK_WORD WORD unsigned short 16-bit bit string 
ODK_BYTE BYTE unsigned char 8-bit bit string 
ODK_BOOL BOOL unsigned char 1-bit bit string, remaining bits 

(1..7) are empty 
ODK_LTIME LTIME unsigned long long 64-bit during in nanoseconds 
ODK_TIME TIME unsigned long 32-bit during in milliseconds 
ODK_LDT LDT unsigned long long 64-bit date and time of the day 

in nanoseconds 
ODK_LTOD LTOD unsigned long long 64-bit time of the day in nano-

seconds since midnight 
ODK_TOD TOD unsigned long 32-bit time of the day in milli-

seconds since midnight 
ODK_CHAR CHAR char 8-bit character 



 Developing ODK application for the realtime environment 
 5.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 57 

● Complex data types: 

 

ODK data type SIMATIC data 
type 

C++ data type Description 

ODK_DTL DTL struct ODK_DTL Structure for date and time 
ODK_S7STRING STRING unsigned char Character string (8-bit charac-

ter) with max. and act. length 
(2xUSINT) 

ODK_CLASSIC_D
B 

VARIANT struct 
ODK_CLASSIC_DB 

Classic DB (global or based on 
UDT) 

[ ] ARRAY [ ] Range of same data types. 
You can use all data types as 
an array except 
ODK_CLASSIC_DB. 

● User-defined data types: 

User-defined data types (UDT) include structured data, especially the names and data 
types of this component and their order. 

A user-defined data type can be defined in the user interface description with the keyword 
"ODK_STRUCT". 

Example 

ODK_STRUCT <StructName> 

{ 

 <DataType> <TagName>; 

 ... 

}; 

The following syntax rules apply to the structure:  

– You can divide the structure into multiple lines. 

– The structure definition must end with a semicolon. 

– Any number of tabs and spaces between the elements is permitted. 

– You must not use keywords for the generated language (e.g. "int" as tag name). 

You can create additional structures within a structure. 

<StructName> 

Structure names apply with the syntax and character restrictions of the programming 
language and as defined for tag definitions in STEP 7. 

In STEP 7, the structure name is extended by the STEP 7 prefix. 

<TagName> 

Tag names are subject to the syntax and character restrictions of the programming 
language. 



Developing ODK application for the realtime environment  
5.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
58 Programming and Operating Manual, 09/2016, A5E35253941-AC 

Example 

The following code example explains the definitions of functions and structures. Sort the 
parameters by: IN, OUT, INOUT. 
//INTERFACE 
… 
ODK_STRUCT MyStruct 
  { 
    ODK_DWORD myDword; 
    ODK_S7STRING myString; 
  }; 
ODK_RESULT MyFct([IN] MyStruct myInStruct 
                ,[OUT] MyStruct myOutStruct); 

 

See also 
Reading the trace buffer (Page 81) 

Helper functions (Page 96) 

5.1.6.2 Use of ODK_CLASSIC_DB as parameter 
The ODK_CLASSIC_DB data type may only be used with the InOut-Identifier [IN] and 
[INOUT]. If a parameter of data type ODK_CLASSIC_DB with InOut-Identifier [IN] or [INOUT] 
is used, no other parameters, regardless of the data type, can be used with the same InOut-
Identifier. 

Example 
// INTERFACE 
... 
// OK: 
ODK_RESULT MyFunc1([IN] ODK_CLASSIC_DB myDB); 
ODK_RESULT MyFunc2([IN] ODK_CLASSIC_DB myDB1, [INOUT] ODK_CLASSIC_DB 
myDB2);  
// 
// NOT OK (Code Generator will throw an error): 
// ODK_CLASSIC_DB not permitted for [OUT] 
ODK_RESULT MyFunc3([OUT] ODK_CLASSIC_DB myDB); 
// if ODK_CLASSIC_DB is used for [IN], no other [IN] parameter may 
be 
// defined in this function 
ODK_RESULT MyFunc4([IN] ODK_CLASSIC_DB myDB, [IN] ODK_INT32 myint); 



 Developing ODK application for the realtime environment 
 5.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 59 

Application example for C++ 
#include "ODK_CpuReadData.h" 
... 
ODK_RESULT MyFunc1 (const ODK_CLASSIC_DB& myDB) 
{ 
    CODK_CpuReadData myReader(&myDB); 
    ODK_INT32 myInt1, myInt2; 
 
    myReader.ReadS7DINT(0, myInt1); 
    myReader.ReadS7DINT(4, myInt2); 
 
    return myInt1 + myInt2; 
} 

In order to access the data type ODK_CLASSIC_DB within a user function, the helper 
functions (Page 96) of the following classes are available: 

● Class "CODK_CpuReadData" 

● Class "CODK_CpuReadWriteData" 

5.1.6.3 Handling strings 
You can define a maximum length for strings (String or WString). Define the maximum 
number of characters in square brackets directly after the data type: 

● ODK_S7STRING[30] or 

● ODK_S7WSTRING[1000] 

Without limitation, a string has a default length of 254 characters. 

In order to access the data types ODK_S7STRING or ODK_S7WSTRING within a user 
function, the string helper functions (Page 96) are available: 

Example 
//INTERFACE 
… 
ODK_RESULT MyFct( 
    [IN]    ODK_S7STRING      myStrHas254Chars 
  , [OUT]   ODK_S7STRING[10]  myStrHas10Chars 
  , [INOUT] ODK_S7STRING[20]  myStrArrayHas20Chars5Times[5]); 

If you use [INOUT], you can set the string with a length that differs from the [INOUT of the 
function block in STEP 7. 



Developing ODK application for the realtime environment  
5.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
60 Programming and Operating Manual, 09/2016, A5E35253941-AC 

5.1.6.4 Definition of the <Project>.odk file 
The function prototypes and function blocks are generated based on the selected 
parameters in the <Projekt>.odk file. Define the <Project>.odk file for this. 

By default, the <Project>.odk file contains the following: 

● Description 

The possible data types that are used for the interface are described in comment lines. 
This simplifies the definition of the correct tag type for your task. 

● Context=realtime 

The ODK application is loaded in the context of the realtime environment. 

● Trace=on 

Defines the trace function in the ODK application. A "GetTrace" function block is created 
by default for use in a STEP 7. 

When you define the "ODK_TRACE" instruction (Page 81), it is also compiled and 
executed. When you define the parameter Trace=on in the <Project>.odk file, the 
instruction is automatically defined with the following code: 

#define ODK_TRACE(msg, ...); 

Example: ODK_TRACE("number=%d", 13); 

Calling the instruction creates an entry in the trace buffer. 

● HeapSize 

Defines a memory in KB that can be used as heap for these realtime applications. 

● HeapMaxBlockSize 

Defines the maximum memory size in bytes that can be allocated at one time. 

● STEP7Prefix="<Projekt>" 

Sets a string for the SCL generation in front of the functions of the ODK application. This 
is visible in STEP 7. You can change the parameter. The string length of the prefix 
including function name must not exceed 125 characters (e.g. 
ODK_App_SampleFunction). 

● "SampleFunction" function definition 

You can change this default function as you wish in the <Project>.odk file and add more 
functions. The string length may not exceed a length of 125 characters. The associated 
function is located in the CPP file. 



 Developing ODK application for the realtime environment 
 5.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 61 

Example 
//INTERFACE 
Context=realtime 
Trace=on 
HeapSize=4k 
HeapMaxBlockSize=1024 
STEP7Prefix=ODK_App 
 
 /* 
* Elementary data types: 
* 
*  ODK_DOUBLE      LREAL    64-bit floating point, IEEE 754 
*  ODK_FLOAT       REAL     32-bit floating point, IEEE 754 
*  ODK_INT64       LINT     64-bit signed integer 
*  ODK_INT32       DINT     32-bit signed integer 
*  ODK_INT16       INT      16-bit signed integer 
*  ODK_INT8        SINT     8-bit signed integer 
*  ODK_UINT64      ULINT    64-bit unsigned integer 
*  ODK_UINT32      UDINT    32-bit unsigned integer 
*  ODK_UINT16      UINT     16-bit unsigned integer 
*  ODK_UINT8       USINT    8-bit unsigned integer 
*  ODK_LWORD       LWORD    64-bit bit string 
*  ODK_DWORD       DWORD    32-bit bit string 
*  ODK_WORD        WORD     16-bit bit string 
*  ODK_BYTE        BYTE     8-bit bit string 
*  ODK_BOOL        BOOL     1-bit bit string 
*  ODK_LTIME       LTIME    64-bit duration in nanoseconds 
*  ODK_TIME        TIME     32-bit duration in milliseconds 
*  ODK_LDT         LDT      64 bit date and time of day  
*                           in nanoseconds 
*  ODK_LTOD        LTOD     64 bit time of day in nanoseconds  
                            since midnight 
*  ODK_TOD         TOD      32 bit time of day in milliseconds  
                            since midnight 
*  ODK_DTL         DTL      structure for date and time 
*  ODK_CHAR        CHAR     8 bit character 
*  ODK_S7STRING    STRING   character string with 8-bit characters 
*  ODK_CLASSIC_DB  VARIANT  classic DB (global or based on UDT) 
*  []              ARRAY    field of this datatype 
* User Defined Datatype: 
*  ODK_STRUCT      UDT      user defined structure 
* Return data type: 
*  ODK_RESULT      0x0000 - 0x6FFF function succeeded  
*                                  (ODK_SUCCESS = 0x0000) 
*                  0xF000 - 0xFFFF function failed 
*                                  (ODK_USER_ERROR_BASE = 0xF000) 
*/ 
 
ODK_RESULT SampleFunction([IN]    ODK_INT32    myInt 
                        , [OUT]   ODK_BOOL     myBool 
                        , [INOUT] ODK_DOUBLE   myReal); 



Developing ODK application for the realtime environment  
5.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
62 Programming and Operating Manual, 09/2016, A5E35253941-AC 

5.1.6.5 Modifying the <Project>.odk file 
The following example shows you how you can change the <Project>.odk file to suit your 
needs. 
//INTERFACE 
Context=realtime 
Trace=on 
HeapSize=4k 
HeapMaxBlockSize=1024 
STEP7Prefix=ODK_SampleApp_ 
 
ODK_RESULT GetString ([OUT]    ODK_S7STRING myString); 
 
ODK_RESULT Calculate ([IN]     ODK_INT64   In1, 
                      [IN]     ODK_DOUBLE  In2, 
                      [OUT]    ODK_FLOAT   Out1, 
                      [OUT]    ODK_INT32   Out2, 
                      [INOUT]  ODK_BYTE    InOut1[64], 
                      [INOUT]  ODK_BYTE    InOut2[64]); 

5.1.6.6 Comments 
Comments are started with a double slash "//" and end automatically at the end of the line. 

Alternatively, you can limit comments by /* <comment> */, which enables new lines in a 
comment. Characters after the end of the comment identifier "*/" are further processed by 
the code generator. 

Comments for functions and structures 
You place comments on functions and structures directly in front of the functions/structures. 

These comments are transferred to the ODK_Functions.h and <Project>.scl files. 

In the <Project>.scl file, the comments are copied to the block properties and duplicated in 
the code area of the function. 

Observe the following rules: 

● Comments for functions and structures must be located directly in front of the 
functions/structures (without blank line). 

● The end of the comment is located in front of the ODK_RESULT or ODK_STRUCT 
keyword. 

● You can use both identifiers "//" and "/* */" but not in combination within a comment. 



 Developing ODK application for the realtime environment 
 5.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 63 

Example 
// this comment did not appear in MyStruct, because of the empty 
line. 
  
// comment MyStruct 
// ... 
ODK_STRUCT MyStruct 
{ 
  ODK_DWORD     myDword; 
  ODK_S7STRING  myString; 
}; 
  
/* 
comment MyFct 
... 
*/ 
ODK_RESULT MyFct([IN] MyStruct myInStruct 
               ,[OUT] MyStruct myOutStruct); 

Comments for tags in functions and structures 
Comments for function and structure tags are placed directly in front of or behind the tag. 

These comments are transferred to the ODK_Functions.h and <Project>.scl files. 

The following rules apply to comments in front of tags: 

● Comments must be located directly in front of the tag (without blank line) 

● The end of the comment is the <InOut-Identifier> of the tag 

The following rules apply to comments after tags: 

● Comments must be located after the tag name (without blank line) 

The following general rules apply to comments for tags: 

● You can use both identifiers "//" and "/* */" but not in combination within a comment. 

● In the header file, the same comment identifier is used ("//" or "/* */"). 

Example 
ODK_STRUCT MyStruct 
{ 
  // comment myDword BEFORE definition 
  ODK_DWORD    myDword; 
  
  ODK_S7STRING myString; /* comment myString AFTER definition */ 
}; 
  
ODK_RESULT MyFct([IN]  MyStruct myInStruct    // comment 
                                              // myInStruct ... 
                                              // ... "second line" 
               , [OUT] MyStruct myOutStruct); /* comment 
                                                 myOutStruct ... 
                                                 ... 
                                               */ 



Developing ODK application for the realtime environment  
5.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
64 Programming and Operating Manual, 09/2016, A5E35253941-AC 

5.1.7 Implementing functions 

5.1.7.1 General notes 
This section provides an overview of the basic topics relating to the implementation of 
functions in a realtime environment.  

● The function call is limited in time 

Since the function is called synchronously, the function call must be adjusted to the timing 
of the cycle. 

● Trace functionality 

ODK provides a trace function (Page 81) to check variables or the execution of functions 
in the realtime environment. 

● The execution of synchronous ODK functions can be interrupted by higher priority OBs 
(Page 77) running in the same CPU. 

● Application size 

The number of loadable ODK applications (Page 54) is limited in the context of the 
realtime environment. 

● C++ Runtime library 

Functions that need operating system functionality (threading) cannot be used 

5.1.7.2 Callback functions 
The ODK project contains a CCP file (execute file: <Project>.cpp) to define your functions. 
This CCP file contains functions filled by default. You do not necessarily have to fill these 
with additional user code to be usable. However, neither may the functions be deleted under 
any circumstances.  

The empty function has the following code (using the "OnLoad()" function as an example): 
ODK_RESULT OnLoad (void) 
{ 
  // place your code here 
  return ODK_SUCCESS; 
} 

You can define the following functions in the CCP file: 

● OnLoad(): Called after loading the ODK application 

● OnUnload(): Called before unloading the ODK application 

● OnRun(): Called when the CPU changes to RUN mode after the OnLoad() function 

● OnStop(): Called when the CPU changes to the STOP mode and before the function 
OnUnload() 



 Developing ODK application for the realtime environment 
 5.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 65 

"OnLoad()" and "OnUnload()" function 
The functions have a return value of type "ODK_RESULT" and typically provide information 
about the status of the "ODK_SUCCESS" value. 

The following return values are possible: 
 
Return value for "ODK_RESULT" Description 
ODK_SUCCESS = 0x0000 Return value following a successful execution of the "OnLoad()" or "OnUnload()" 

function 
0x0001 – 0xEFFF Invalid values (system-internal) 
0xF000 – 0xFFFF 
ODK_USER_ERROR_BASE = 0xF000 

You can define your own return values. 
The loading stops and the ODK application unloads for the "OnLoad()" function. 
The ODK application within the specified value range is still unloaded for the 
"OnUnload()" function. 

"OnRun()" and "OnStop()" function 
The functions have a return value of type "ODK_RESULT" and typically provide information 
about the status of the "ODK_SUCCESS" value. 

The following return values are possible: 
 
Return value for "ODK_RESULT" Description 
ODK_SUCCESS = 0x0000 Default return value for a successful execution of the function "OnRun()" or 

"OnStop()" 
0x0001 – 0xFFFF Direct feedback to the user program is not possible because these functions are 

not called directly by the user at RUN/STOP mode transitions. 

5.1.7.3 Implementing custom functions 
Once you have defined the ODK interface in the <Project>.odk file, you must edit the ODK 
application functions in the CPP file. 

Procedure  
To edit the ODK application functions, follow these steps: 

1. Execute the build in order to update the header file <ODK_Functions.h>. 

2. Open the <Project>.cpp file or create your own source file if required. 

3. Transfer the function prototypes from <ODK_Functions.h> to the source file. 
 

 Note 

To skip step 3 in the future when function parameters are changed, use the define of the 
function prototype. 

 

4. Edit the code of your ODK application in the CPP file. 



Developing ODK application for the realtime environment  
5.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
66 Programming and Operating Manual, 09/2016, A5E35253941-AC 

ODK application 
The CCP file contains an schematically represented function description by default. You can 
change this description with corresponding changes in the <Project>.odk file and/or add 
more function descriptions. 
#include "ODK_Functions.h" 
 
EXPORT_API ODK_RESULT OnLoad (void) 
{ 
    return ODK_SUCCESS; 
} 
EXPORT_API ODK_RESULT OnUnload (void) 
{ 
    return ODK_SUCCESS; 
} 
EXPORT_API ODK_RESULT OnRun (void) 
{ 
    return ODK_SUCCESS; 
} 
EXPORT_API ODK_RESULT OnStop (void) 
{ 
    return ODK_SUCCESS; 
} 
ODK_RESULT SampleFunction( const ODK_INT32& myInt, 
                                 ODK_BOOL& myBool, 
                                 ODK_DOUBLE& myReal) 
{ 
    return ODK_SUCCESS; 
} 

5.1.7.4 Dynamic memory management 

Introduction  
ODK objects work with a dynamic memory management (heap). The following instructions 
and functionalities are supported by using the dynamic memory management: 

● The instructions newdelete or mallocfree 

● STL (StandardTemplateLibrary) 

● Software exceptions 

The default setting for the heap size is 4 KB. The heap size can be from 4 KB up to the 
available memory of the CPU (Page 89). You change the heap size in the <Project>.odk file 
using the following parameters: 

● HeapSize 

● HeapMaxBlockSize 



 Developing ODK application for the realtime environment 
 5.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 67 

Special features 
Because the used memory area (heap) has been optimized with regard to realtime and 
cyclic processing, it has some special features: 

● Blocks can only be allocated up to a specified size during the compiling time of the ODK 
object. 

 
  Note 

You can specify the maximum block size with the HeapMaxBlockSize parameter in 
<Project>.odk. However, this has an effect on the global memory use for ODK 
applications, because the management information of the following memories is required 
in addition to the actual heap: 

size_heap_admin_data = HeapMaxBlockSize * 3 

Example: Therefore, with a maximum block size of 100 KB, this project needs 300 KB of 
global data in addition to the heap. This data is used for heap administration. 

You can find additional information under Environment for loading or running the ODK 
application (Page 54). 

 

● Blocks can initially be requested in any size. When the blocks are released again, they 
are entered in free lists. There is a free list in each case for all possible block sizes (up to 
HeapMaxBlockSize) so that later allocations can be performed in constant time. 

There is, however, no merging of neighboring released blocks to form a larger block. 

This means continuously recurring requests can be met faster than constantly different 
requests. 

Example: The user allocates only blocks with 8 bytes until the heap is full. The user then 
releases everything again so that the heap is completely empty. An allocation of a block 
with 16 bytes is then no longer possible, however, because all free blocks are entered in 
the free list for 8 bytes and merging is not possible. 



Developing ODK application for the realtime environment  
5.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
68 Programming and Operating Manual, 09/2016, A5E35253941-AC 

Example 
#include <assert.h> 
#include <exception> 
#include <vector> 
… 
   // check parameter 
   assert (NULL != myPointer); 
 
   // allocate heap memory with malloc() 
   char* p1 = (char*) malloc(32); 
   if (NULL == p1) 
   {  
     ODK_TRACE("ERROR: malloc() failed"); 
   } 
   else 
   { 
     ODK_TRACE("malloc() done"); 
     // free allocated memory 
     free(p1); 
     ODK_TRACE("free() done"); 
   } 
 
   // allocate heap memory with new() 
   char* p2 = NULL; 
   try 
   {  
     p2 = new char [64]; 
     ODK_TRACE("new done"); 
     // delete allocated memory 
     delete[] p2; 
     ODK_TRACE("delete done"); 
   } 
   catch (std::exception& e) 
   { 
     ODK_TRACE("exception: %s", e.what()); 
   } 
   std::vector<int> vec; // empty vector of ints 

5.1.7.5 Debug (Test) 
You have the possibility to write a custom test to debug realtime algorithms in a Windows 
environment. This will ensure the quality of the code. 

Requirements  
You need an Internet connection for this procedure. 

You need administrator rights for this procedure. 



 Developing ODK application for the realtime environment 
 5.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 69 

Procedure before the first debug process 
To perform a test on a realtime application in a Windows environment, perform the following 
once: 

1. Close Eclipse. 

2. Open the "bin" folder of your ODK installation. 

3. Run the "MinGW32_Install.cmd" file with the "Run as administrator" command from the 
shortcut menu. 

A text editing dialog opens. The Windows prompt installs all necessary components. 

 
4. Click on any button. 

MinGW32 is installed. 

Basic procedure 
To perform the test, proceed as follows: 

1. Open your project in Eclipse. 

2. Change the debug environment to "Windows". To do this, select the "debug (win32)" 
option in menu "Project > Build Configurations > Set Active". 

 
3. Create the project as debug version. To do so, select the "Build Project" command in the 

"Project " menu. 

4. If you debug the project for the first time, you must now set the debug configuration. 
Otherwise, continue with step 8. 



Developing ODK application for the realtime environment  
5.1 Creating an ODK application 

 Open Development Kit 1500S V2.0 
70 Programming and Operating Manual, 09/2016, A5E35253941-AC 

5. To do this, select the "Debug Configurations" command in the "Run" menu. 

The "Debug Configurations" dialog opens. 

6. To create a new application, select the entry "C/C++ Application" and select the "New" 
command in the context menu. 

 
7. Configure your test environment. 

8. Click the "Search Project" button to select your application. 

 



 Developing ODK application for the realtime environment 
 5.1 Creating an ODK application 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 71 

9. Start the debug process by clicking the "Debug" button. 

10.If you want to debug your project again, select the "Local C/C++ Application" command in 
the menu "Run > Debug as". 

 

Result 
Eclipse suggests a change in the debug perspective. 

The test code is executed. The test code for the test is complied only in the debug 
environment and is implemented in the "main()" function. This function is located in the 
<project>.cpp file. 

The "main()" function offers you the following possibilities: 

● Test data are provided and results can be reviewed. 

● You can monitor tags of the function. 

● You can use breakpoints to check the execution. 



Developing ODK application for the realtime environment  
5.2 Transferring an ODK application to the target system 

 Open Development Kit 1500S V2.0 
72 Programming and Operating Manual, 09/2016, A5E35253941-AC 

Test code 
The following sample code shows the default contents of the "main()" function. 
/* 
 * main() is defined for windows debugging, only. 
 * Therefore all automatically invoked functions 
 * (OnLoad, OnRun, OnStop, OnUnload) have to be called manually. 
 */ 
#ifdef _DEBUG 
int main (int argc, char* argv[]) 
{ 
    ODK_RESULT ret = ODK_SUCCESS; 
    ret = OnLoad(); 
    // error handling 
    ret = OnRun(); 
    // error handling 
 
    // place your test code here 
 
    ret = OnStop(); 
    // error handling 
    ret = OnUnload(); 
    // error handling 
    return ret; 
} 
#endif // _DEBUG 

5.2 Transferring an ODK application to the target system 

Procedure  
Manually transfer the SO file to the target system. Use the file explorer of the web server of 
the CPU for transferring the ODK application. 

To transfer an SO file, follow these steps: 

1. Enable the Web server in your STEP 7 project. 

2. Open the web server of the CPU in the browser. 

3. Open the "Filebrowser" menu. 



 Developing ODK application for the realtime environment 
 5.2 Transferring an ODK application to the target system 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 73 

4. Open the following directory as the storage location for the ODK applications: 
\ODK1500S\ 

 
Figure 5-3 Transferring the SO file via the file explorer from the web server of the CPU 

5. Click the "Browse" button. 

6. Navigate in the file system to the SO file or copy the location from the properties of the 
SO file in Eclipse. 

7. Confirm the transfer of the SO file to the web server of the CPU by pressing the "Load 
File" button. 

Result 
The SO file is transferred to the load memory of the CPU. 

After a successful transfer, the SO file is loaded by calling the "<STEP7Prefix>_Load" 
instruction. 

 



Developing ODK application for the realtime environment  
5.3 Importing and generating an SCL file in STEP 7 

 Open Development Kit 1500S V2.0 
74 Programming and Operating Manual, 09/2016, A5E35253941-AC 

5.3 Importing and generating an SCL file in STEP 7 
When generating the project data, the following files are created: 

● SCL file for importing into STEP 7 

● All files depending on the configuration, e.g. SO file 

If STEP 7 is installed on another PC as the development environment, you must transfer the 
generated SCL file to the PC where the STEP 7 is installed. 

Requirements  
The project data were generated. 

Procedure 
To import and compile the SCL file, follow these steps: 

1. Start STEP 7. 

2. Open your project. 

3. Select the project view. 

4. Select the CPU in the project tree. 

5. Select the "External Sources" subfolder. 

The "Open" dialog box opens. 

6. Navigate in the file system to the SCL file that was created during generation of the 
project data or copy the storage location from the properties of the SCL file to Eclipse. 

7. Confirm your selection with "Open". 

The SCL file is imported. After completion of the import process, the SCL file is displayed 
in the "External Sources" folder. 

8. Compile the SCL file before you use the blocks in your project. 

9. To do this, select the SCL file in "External sources" subfolder. 

10.Select the "Generate blocks from source" command in the shortcut menu. 

Result 
STEP 7 creates the S7 blocks based on the selected SCL file. 

The "GetTrace" function block, which makes it possible to read the trace buffer, is created by 
default. 

The created blocks are now automatically displayed in the "Program blocks" folder below the 
selected CPU in the project tree. You can load the function blocks during the next download 
to the target device. 

 



 Developing ODK application for the realtime environment 
 5.4 Executing a function 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 75 

5.4 Executing a function 

5.4.1 Loading functions 

Introduction  
Regardless of the context in which the ODK application is running, the loading procedure 
consists of the following steps: 

● Call the "<STEP7Prefix>_Load" instruction in the STEP 7 user program. 

● The loading process takes place synchronously 

● As soon as the "<STEP7Prefix>_Load" instruction returns after the first call, the ODK 
application is loaded. 

 

 Note 
Loading the same ODK applications with a modified <Project>.odk file 

When you load an ODK application and subsequently change the <Project>.odk file, we 
recommend that you unload your ODK application first before you load the newly generated 
ODK application. If the "<STEP7Prefix>_Unload" instruction is not executed, both ODK 
applications are in the memory. This can lead to insufficient memory being available for the 
CPU. 

 

"<STEP7Prefix>_Load" instruction 
An ODK application is loaded by calling the "<STEP7Prefix>_Load" instruction in the STEP 7 
user program. 
 

<STEP7Prefix>_Load 
REQ DONE 
 BUSY 
 ERROR 
 STATUS 

The following table shows the parameters of the instruction "<STEP7Prefix>_Load": 
 
Section Declaration Data type Description 
Input REQ BOOL A rising edge activates the loading of the ODK application. 
Output DONE BOOL Indicates that the instruction has finished loading the ODK application. 
Output BUSY BOOL Indicates that the instruction is still loading the ODK application. 
Output ERROR BOOL Indicates that an error occurred during the loading of the ODK application. 

STATUS gives you more information about the possible cause of the error. 
Output STATUS INT Provides information about possible sources of error, if an error occurs during 

the loading of the ODK application. 



Developing ODK application for the realtime environment  
5.4 Executing a function 

 Open Development Kit 1500S V2.0 
76 Programming and Operating Manual, 09/2016, A5E35253941-AC 

Input parameters 
A edge transition (0 to 1) at the "REQ" input parameter starts the function. 

Output parameters 
The following table shows the information that is returned after loading. 

 
DONE BUSY ERROR STATUS Meaning 
0 0 0 0x7000 

=28672 
No active loading 

1 0 0 0x7100 
=28928 

CPU 1500 V2.0 and later:  
ODK application has already been loaded. 

1 0 0 0x0000 
=0 

Loading was performed successfully. 

0 0 1 0x80A4 
=-32604 

ODK application could not be loaded. 

0x80C3 
=-32573 

ODK application could not be loaded. The CPU currently does not have 
enough resources. 
Unload the ODK application before you load a new ODK application or 
restart the CPU. 

0x8090 
=-32624 

ODK application could not be loaded. An exception occurred during 
execution of the "OnLoad()" function. 

0x8092 
=-32622 

ODK application could not be loaded because the library name is invalid. 

0x8093 
=-32621 

ODK application could not be loaded because the ODK application could 
not be found. Check the file name and path of the file. 

0x8095 
=-32619 

ODK application could not be loaded for the following reasons: 
• The SO file is not an ODK application. 
• The CPU does not support the utilized ODK version. 

0x8096 
=-32618 

The ODK application could not be loaded because the internal identifica-
tion is already being used by another loaded ODK application. 

0x8097 
=-32617 

CPU 1500 V1.8 and earlier: 
ODK application has already been loaded. 

0x8098 
=-32616 

ODK application could not be loaded because the ODK application is 
currently being unloaded. 

0x8099 
=-32615 

Unable to load the ODK application because the instruction was not 
called in an OB with lowest priority. Use a Startup OB (e.g. OB100) or a 
Program cycle OB (e.g. OB1). 

0x809B 
=-32613 

CPU 1500 V2.0 and later:  
The ODK application could not be loaded and returns an invalid value 
(the values 0x0000 and 0xF000 - 0xFFFF are permitted) 

0xF000 – 
0xFFFF 
=-4096 – -
1 

CPU 1500 V2.0 and later:  
ODK application could not be loaded. An error occurred during execution 
of the "OnLoad()" function. 



 Developing ODK application for the realtime environment 
 5.4 Executing a function 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 77 

5.4.2 Calling functions 

Introduction  
Once the ODK application is loaded, you can execute C functions via your STEP 7 user 
program. This call is made from the corresponding "<STEP7Prefix>SampleFunction" 
instruction. 

 
Figure 5-4 Calling functions 

The execution of synchronous ODK functions can be interrupted by higher priority OBs 
running in the same CPU: 

● Call another ODK function 

● Call the same function ODK 

Therefore, pay attention when creating your ODK application on implementing the 
function calls re-entrant or avoid parallel execution. 

Implement a maximum of three parallel calls. If you implement more than three parallel calls, 
the ODK function returns following status: 0x80C3 

"<STEP7Prefix>SampleFunction" instruction 
An ODK application is called by the "<STEP7Prefix>SampleFunction" instruction. 
 

<STEP7Prefix>SampleFunction 
myInt STATUS 
myReal myBool 



Developing ODK application for the realtime environment  
5.4 Executing a function 

 Open Development Kit 1500S V2.0 
78 Programming and Operating Manual, 09/2016, A5E35253941-AC 

The following table shows the parameters of the instruction 
"<STEP7Prefix>SampleFunction": 

 
Section Declaration Data type Description 
Automatically generated parameters 
Output STATUS INT This output value provides information about possible sources of error, if an 

error occurs during the execution of the ODK application. 
User-defined parameter 
Input myInt  User-defined input tags 
InOut myReal  User-defined input-output tags 
Output myBool  User-defined output tags 

Output parameters 
The "<STEP7Prefix>SampleFunction" instruction only has the "STATUS" output parameter.  

The following table shows the information for the output parameter returned after execution. 
 
STATUS Meaning 
0x0000 – 
0x6FFF 
=0 – 28671 

Function has been executed and returns a value between 0x0000 and 0x6FFF. 
(ODK_SUCCESS = 0x0000) 

0x80A4 
=-32604 

ODK application could not be executed for the following reasons: 
• A stack overflow was detected after execution of the function. To prevent follow-on errors, unload 

the ODK application. The developer of the ODK application is responsible for preventing the stack 
overflow. 

• The "<STEP7Prefix>_Unload" instruction was executed during a function execution. The execution 
of the function was interrupted and terminated immediately. No return value is sent to the CPU. 

Wait until the "<STEP7Prefix>_Unload" instruction has ended. Then load the ODK application again. 
0x80C3 
=-32573 

ODK application could not be run. The CPU currently does not have enough memory. 
Pay attention to the maximum number of parallel calls (SyncCallParallelCount). 

0x8090 
=-32624 

ODK application could not be run. An exception occurred during execution. 
Each unhandled exception reduces the available heap size. An unhandled exception can damage the 
ODK application in such a way that it can no longer be used for additional calls. The ODK application 
must be unloaded. The developer of the ODK application is responsible for handling the exception and 
returning an application-specific error value. 

0x8091 
=-32623 

ODK application could not be run. A "STOP" occurred during the function call. 

0x8096 
=-32618 

ODK application could not be executed because the ODK application was not loaded or unloading is not 
yet finished. 

0x8098 
=-32616 

ODK application could not be executed because the ODK application is different than the ODK instruc-
tions (FBs) in STEP 7: 
• older 
• newer 
• different parameters 



 Developing ODK application for the realtime environment 
 5.4 Executing a function 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 79 

STATUS Meaning 
0x8099 
=-32615 

ODK application could not be executed because the maximum amount of input data (32 KB) was ex-
ceeded (declarations with "In" and "InOut") 

0x809A 
=-32614 

ODK application could not be executed because the maximum amount of output data (32 KB) was ex-
ceeded (declarations with "Out" and "InOut") 

0x809B 
=-32613 

The function returns an invalid value (a value between 0x0000 and 0x6FFF; 0xF000 and 0xFFFF is 
permitted) 

0xF000 – 
0xFFFF 
=-4096 – -1 

CPU 1500 V2.0 and later:  
The function could not be executed and returns a value between 0xF000 and 0xFFFF. 
(ODK_USER_ERROR_BASE = 0xF000) 

5.4.3 Unloading functions 

Introduction  
The ODK application is unloaded be calling the "<STEP7Prefix>_Unload" instruction. Call is 
made from the STEP 7 user program. 

In addition to this call, the ODK application is also automatically unloaded for the following 
reasons. 

● The CPU is switched off 

● The CPU is reset 

Regardless of the context in which the ODK application is running, the unloading procedure 
consists of the following steps: 

● Call the "<STEP7Prefix>_Unload" instruction in the STEP 7 user program. 

● From now on, no new executes can be carried out for these ODK application. Executions 
still running are aborted. The execution of the function is interrupted and terminated 
immediately. No return value is sent to the CPU. 

● The host calls the "OnStop()" and "OnUnload()" functions. 

● The ODK application is unloaded. 

"<STEP7Prefix>_Unload" instruction 
An ODK application is unloaded by calling the "<STEP7Prefix>_Unload" instruction in the 
STEP 7 user program. 
 

<STEP7Prefix>_Unload 
REQ DONE 
 BUSY 
 ERROR 
 STATUS 



Developing ODK application for the realtime environment  
5.4 Executing a function 

 Open Development Kit 1500S V2.0 
80 Programming and Operating Manual, 09/2016, A5E35253941-AC 

The following table shows the parameters of the instruction "<STEP7Prefix>_Unload": 
 
Section Declaration Data type Description 
Input REQ BOOL A rising edge activates the unloading of the ODK application. 
Output DONE BOOL Indicates that the instruction has finished unloading the ODK application. 
Output BUSY BOOL Indicates that the instruction is still unloading the ODK application. 
Output ERROR BOOL Indicates that an error occurred during the unloading of the ODK application. 

 STATUS gives you more information about the possible cause. 
Output STATUS INT Provides information about possible sources of error, if an error occurs during 

the unloading of the ODK application. 

Input parameters 
A edge transition (0 to 1) at the "REQ" input parameter starts the function. 

Output parameter STATUS 
The following table shows the information that is returned after unloading. 

 
DONE BUSY ERROR STATUS Meaning 
0 0 0 0x7000 

=28672 
No active unloading 

0 1 0 0x7001 
=28673 

Unloading in progress, the first call 

0 1 0 0x7002 
=28674 

Unloading in progress, ongoing call 

1 0 0 0x0000 
=0 

Unloading was carried out successfully 

0 0 1 0x80A4 
=-32604 

ODK application could not be unloaded. A communication error between 
the CPU and ODK occurred during the execution of the "OnUnload()" 
function. 

0x80C3 
=-32573 

ODK application could not be unloaded. The CPU currently does not 
have enough memory. 

0x8090 
=-32624 

ODK application could not be unloaded. An exception occurred during 
execution of the "OnUnload()" function. 

0x8096 
=-32618 

ODK application could not be unloaded because the ODK application 
was not loaded or unloading is not yet finished. 

0x809B 
=-32613 

CPU 1500 V2.0 and later:  
The ODK application could be unloaded and returns an invalid value (the 
values 0x0000 and 0xF000 - 0xFFFF are permitted) 

0xF000 – 
0xFFFF 
=-4096 – -
1 

CPU 1500 V2.0 and later:  
ODK application could be unloaded. An error occurred in the CCX object 
during execution of the "OnLoad()" function. 



 Developing ODK application for the realtime environment 
 5.4 Executing a function 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 81 

5.4.4 Reading the trace buffer 
ODK provides a trace function to check variables or the execution of functions in the realtime 
environment. The trace function supports the following elements: 

● An integrated trace buffer for each ODK application 

● An "ODK_TRACE" instruction that you can add to your code 

● A "GetTrace" function block, which makes it possible to read the trace buffer 

"ODK_TRACE" instruction  
If you define the "ODK_TRACE" instruction, it is also compiled and executed. When you 
define the parameter Trace=on in the <Project>.odk file, the instruction is automatically 
defined with the following code: 
#define ODK_TRACE(msg, ...); 

Example: ODK_TRACE("number=%d", 13); 

Calling the instruction creates an entry in the trace buffer. 

When you define the parameter Trace=on in the <Project>.odk file, no trace data is written. 

Trace data is written automatically when an exception occurs. 

Reading the trace buffer 
The "GetTrace" function block enables you to read the trace buffer. The entries of the trace 
buffer can be read in the following ways: 

● By a variable table in the web server of the CPU 

● By a variable table in STEP 7 (online) 

● On an HMI display 

The function block is included in default CCP file "<Project>.cpp". 
 

GetTrace 
TraceCount STATUS 



Developing ODK application for the realtime environment  
5.4 Executing a function 

 Open Development Kit 1500S V2.0 
82 Programming and Operating Manual, 09/2016, A5E35253941-AC 

The following table shows the parameters of the "GetTrace" function block: 
 
Section Declaration Data type Description 
Output STATUS INT Number of trace entries actually read 
Input TraceCount INT Number of trace entries to be read 
Output TraceBuffer Array 

[0..255] of 
String[125] 

Trace string array for the user 
Each trace string consists of: 
• Date 
• Time-of-day 
• OB number 
• File name 
• Line number 
• Trace text (trace implemented by the user) 

Define the function block in the SCL file as follows: 
#ret := "ODK_App_MyFct_DB_1"(myInt:=4); 
IF (#ret > 0) 
{ 
#ret := "ODK_App_GetTraces_DB_1"(TraceCount:=20); 
// ret_val = number of entries 
} 

When the "GetTrace" function block is called in STEP 7, the instance block appears as 
follows: 

 
 



 Developing ODK application for the realtime environment 
 5.5 Post Mortem analysis 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 83 

5.5 Post Mortem analysis 
 

5.5.1 Introduction 
You use the post mortem analysis to evaluate the system after an exception. The post 
mortem files map a snapshot at the time of the exception. 

You can analyze the dump with the post mortem analysis. It includes, for example: 

● Register 

● Stack 

● Local/global data 

● Transfer parameters 

An exception can be triggered by one of the following cases: 

● Execution of an illegal command 

– Division by zero 

– Access to protected memory 

● An exception triggered by the "throw" instruction but not handled by the "try...catch" 
instruction 

The objective of the post mortem analysis is to find the error within the ODK application that 
caused the exception. 

 

 NOTICE 

Exception influences the cycle time 

When an exception occurs in your application, the complete application memory is 
buffered. This may take some milliseconds and influence the cycle time. 

 

The post mortem files for the snapshot of the first exception are not created until the CPU 
changes from RUN to STOP. You can use it for the following post mortem analysis. They are 
stored in the following directory: <load memory>/ODK1500S 

The following files are created or overwritten during this process and can, for example, be 
downloaded via the web server: 

● <Project>.ed 

Binary dump of the shared object in which the exception has occurred 

● <Project>.es 

Stack at the time of the exception 

● <Project>.er 

Script for restoring the snapshot at the time of the exception 



Developing ODK application for the realtime environment  
5.5 Post Mortem analysis 

 Open Development Kit 1500S V2.0 
84 Programming and Operating Manual, 09/2016, A5E35253941-AC 

 

 NOTICE 

Insufficient load memory 

When there is not enough load memory, the post mortem files are not saved properly. 

Make sure that you have enough load memory for your applications. 
 

5.5.2 Execute post mortem analysis 

Procedure 
To run a post mortem analysis, follow these steps: 

1. Open Eclipse. 

2. Load the post mortem files to the engineering PC via the web server. Load these files to 
the same directory in which the SO file is stored. 

 
3. Select the required project. 



 Developing ODK application for the realtime environment 
 5.5 Post Mortem analysis 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 85 

4. Start the debugging in one of the following ways: 

– From Favorites: 

 
– Using "Debug Configurations" 

 
 

 
When you start a debug process for the first time, a dialog opens prompting you to select 
the required launch environment. 



Developing ODK application for the realtime environment  
5.5 Post Mortem analysis 

 Open Development Kit 1500S V2.0 
86 Programming and Operating Manual, 09/2016, A5E35253941-AC 

Select the item "GDB (DSF) Hardware Debugging Launcher". 

 
A dialog opens showing you the progress of the loading process for the post mortem 
image. The loading process can take several minutes, depending on the size of the post 
mortem image. 

5. Select the required debug view. 

 



 Developing ODK application for the realtime environment 
 5.5 Post Mortem analysis 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 87 

6. Run the debug process. 

  



 

 Open Development Kit 1500S V2.0 
88 Programming and Operating Manual, 09/2016, A5E35253941-AC 

 Using example projects 6 
 

 

To facilitate you introduction to the topic of ODK, ODK 1500S offers example projects for 
both development environments. The example projects consist of the following elements: 

● A project for Microsoft Visual Studio or Eclipse 

● A compiled binary and SCL source that enables you to immediately test the example 
projects 

● A STEP 7 example project 

Storage location of example projects 
The example projects are available for download on the Internet 
(https://support.industry.siemens.com/cs/document/106192387/simatic-odk-1500s-
examples?dti=0&lc=en-WW). 

Using example projects 
To open the example projects, follow these steps: 

1. Transfer the example projects onto the hard disk of your PC. 

2. Transfer the DLL or SO file to the target system. 
 

https://support.industry.siemens.com/cs/document/106192387/simatic-odk-1500s-examples?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/106192387/simatic-odk-1500s-examples?dti=0&lc=en-WW


 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 89 

 Appendix A 
A.1 General conditions of ODK applications 

A.1.1 Number of loadable ODK applications 
You can load a total of up to 32 ODK applications for the Windows and real-time 
environments. 

Configuration limits for ODK applications: 

● ODK applications for the Windows environment: 

– Up to 32 parallel function calls (total) 

– Up to 1 MB input or output data (total) 

– Up to 1 MB input data per function call 

– Up to 1 MB output data per function call 

 
  Note 

The memory for input and output parameters is allocated dynamically, depending on the 
quantity needed. The memory is allocated here in blocks of 8 KB each.  

 

● ODK applications for the real-time environment: 

– Parallel function calls in an ODK application are defined by the 
"SyncCallParallelCount" parameter. 

– Up to 26 parallel function calls (total) 

– Up to 1 MB input data and output data per function call 

The available memory for loading of ODK applications is limited in the context of the realtime 
environment. The table below provides an overview of the available memory of the different 
CPUs for loading ODK applications: 
 
CPU Available memory for loading ODK applications Maximum size of the SO 

file 
CPU 1505SP (F) 10 MB 3.8 MB 
CPU 1507S (F) 20 MB 5.8 MB 
CPU 1518-4 PN/DP 
ODK (F) 

20 MB 5.8 MB 

The following restrictions are also in effect in the context of the realtime environment: 

● SO file name may not exceed 56 characters. 



Appendix  
A.1 General conditions of ODK applications 

 Open Development Kit 1500S V2.0 
90 Programming and Operating Manual, 09/2016, A5E35253941-AC 

A.1.2 Compatibility 
If you are using ODK version V2.0, note the following: 

● An ODK project created with ODK version < V2.0 is not compatible. You must re-create 
your ODK project in version V2.0. 

● An ODK application created with ODK version < V2.0 is compatible with newer CPUs. 



 Appendix 
 A.2 Syntax interface file <Project>.odk 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 91 

A.2 Syntax interface file <Project>.odk 

A.2.1 Data types 
The data type defines the type of a tag. The following table defines the possible data types 
and their representation in C++ or STEP 7: 

● Elementary data types: 

 

ODK data type SIMATIC data 
type 

C++ data type Description 

ODK_DOUBLE LREAL double 64-bit floating point, IEEE 754 
ODK_FLOAT REAL float 32-bit floating point, IEEE 754 
ODK_INT64 LINT long long 64-bit signed integer 
ODK_INT32 DINT long 32-bit signed integer 
ODK_INT16 INT short 16-bit signed integer 
ODK_INT8 SINT char 8-bit signed integer 
ODK_UINT64 ULINT unsigned long long 64-bit unsigned integer 
ODK_UINT32 UDINT unsigned long 32-bit unsigned integer 
ODK_UINT16 UINT unsigned short 16-bit unsigned integer 
ODK_UINT8 USINT unsigned char 8-bit unsigned integer 
ODK_LWORD LWORD unsigned long long 64-bit bit string 
ODK_DWORD DWORD unsigned long 32-bit bit string 
ODK_WORD WORD unsigned short 16-bit bit string 
ODK_BYTE BYTE unsigned char 8-bit bit string 
ODK_BOOL BOOL unsigned char 1-bit bit string, remaining bits 

(1..7) are empty 
ODK_LTIME LTIME unsigned long long 64-bit during in nanoseconds 
ODK_TIME TIME unsigned long 32-bit during in milliseconds 
ODK_LDT LDT unsigned long long 64-bit date and time of the day 

in nanoseconds 
ODK_LTOD LTOD unsigned long long 64-bit time of the day in nano-

seconds since midnight 
ODK_TOD TOD unsigned long 32-bit time of the day in milli-

seconds since midnight 
ODK_WCHAR WCHAR wchar_t Only for Windows: 16-bit char-

acter 
ODK_CHAR CHAR char 8-bit character 



Appendix  
A.2 Syntax interface file <Project>.odk 

 Open Development Kit 1500S V2.0 
92 Programming and Operating Manual, 09/2016, A5E35253941-AC 

● Complex data types: 

 

ODK data type SIMATIC data 
type 

C++ data type Description 

ODK_DTL DTL struct ODK_DTL Structure for date and time 
ODK_S7STRING STRING unsigned char Character string (8-bit charac-

ter) with max. and act. length 
(2xUSINT) 

ODK_S7WSTRIN
G 

WSTRING unsigned short Only for Windows: Character 
string (16-bit character) with 
max. und act. length (2xUINT) 

ODK_CLASSIC_D
B 

VARIANT struct 
ODK_CLASSIC_DB 

Classic DB (global or based on 
UDT) 

[ ] ARRAY [ ] Range of same data types. 
The maximum number of array 
elements is 220 (=1,048,576). 
You can use all data types as 
an array except 
ODK_CLASSIC_DB. 

● User-defined data types: 

User-defined data types (UDT) include structured data, especially the names and the 
data types of this component and their order. 

A user-defined data type can be defined in the user interface description with the keyword 
"ODK_STRUCT". 

Example 

ODK_STRUCT <StructName> 

{ 

 <DataType> <TagName>; 

 ... 

}; 

The following syntax rules apply to the structure:  

– You can divide the structure into multiple lines. 

– The structure definition must end with a semicolon. 

– Any number of tabs and spaces between the elements is permitted. 

– You must not use keywords for the generated language (e.g. "int" as tag name). 

 

The ODK_CLASSIC_DB data type may only be used with the InOut-Identifier [IN] and 
[INOUT]. If a parameter of the ODK_CLASSIC_DB data type is used with the InOut-Identifier 
[IN] or [INOUT], no other parameter, regardless of the data type, may be used with the same 
InOut-Identifier. 



 Appendix 
 A.3 Error messages of the code generator 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 93 

A.2.2 Parameters 
The parameters of the <Project>.odk file are different: 

● Developing ODK application for the Windows environment 

● Developing ODK application for the realtime environment 

Parameters for the Windows environment 
The definition of the parameters must be within a line of code.  
<parameter name>=<value> // optional comment 

 The <Projekt>.odk file supports the following parameters: 
 
Parameter Value Description 
Context user Defines that the ODK application is loaded in a context of a Windows 

user. 
system Defines that the ODK application is loaded in a context of the Windows 

system. 
STEP7Prefix <String> Describes the string that precedes your functions and is shown after 

importing the SCL file in STEP 7. The following characters are allowed: 
{A...Z, a…z, 1…9, -, _} 

Parameters for the realtime environment 
The definition of the parameters must be within a line of code.  
<parameter name>=<value> // optional comment 

 The <Projekt>.odk file supports the following parameters: 
 
Parameter Value Description 
Context realtime Defines that the ODK application is loaded in the context of the realtime 

environment. 
Trace on Defines the trace function in the ODK application. In this case, the ODK 

application requires 32K if memory as an additional trace buffer. A "Get-
Trace" function block is created by default for use in a STEP 7. 

off A "GetTrace" function block is created. The trace buffer contains only one 
trace entry with the contents: trace is off. 

HeapSize [4…<Availabl
e CPU 
memory> 
(Page 89)]k 

Defines a memory in KB that is used as heap for realtime applications. 

HeapMaxBlockSize [8…<HeapSi
ze>] 

Defines the memory size in bytes that can be allocated at one time. 

STEP7Prefix <String> Describes the string that precedes your functions and is shown after 
importing the SCL file in STEP 7. The following characters are allowed: 
{A...Z, a…z, 1…9, -, _} 



Appendix  
A.3 Error messages of the code generator 

 Open Development Kit 1500S V2.0 
94 Programming and Operating Manual, 09/2016, A5E35253941-AC 

A.3 Error messages of the code generator 
The code generator generates the following error messages: 

File errors: 
 
Error 
number 

Error message Possible solution 

100 ‘<Project>.odk’ is missing Rename the file to <Project>x.odk. 
101 Context is missing in resorce file Error in the resource file (.rc). 
102 resource file ‘...’ is missing The resource file (.rc) is missing. 
103 ‘...’ write protected The indicated file is write protected. 

 

Parameter errors: 
 
Error 
number 

Error message Possible solution 

200 parameter ‘...’ is not allowed for current con-
text 

The indicated parameter is not allowed here. 

201 missing ‘...’ definition The indicated parameter (Page 52) is not defined. 
202 more than one defition for ‘...’ There is more than one definition for the indicated parameter 

(Page 52). 
203 Context has to be one of ‘user’ or ‘system’ for 

Microsoft Visual Studio 
Choose the context "system" or "user" for Visual Studio. 

204 Context has to be ‘realtime’ for Eclipse Choose the context "relatime" for Eclipse. 
205 Trace has to be on or off The "Trace" parameter must have the value "on" or "off" (only 

for realtime environment). 
206 STEP7Prefix must not be longer than 120 

characters 
The STEP 7 prefix must not exceed 120 characters. 

207 HeapSize has to be interval of [4…100000]k Ensure that the HeapSize parameter is within the value range 
[4…100000]k. 

208 HeapMaxBlockSize has to be interval of 
[8…<HeapSize>] 

Ensure that the HeapMaxBlockSize parameter is within the 
value range [8…<HeapSize>]. 

209 SyncCallDataSize must be interval of 
[1...1024]k 

Ensure that the SyncCallDataSize parameter is within the 
value range [1…1024]k. 

210 SyncCallStackSize must be interval of 
[1...1024]k 

Ensure that the SyncCallStackSize parameter is within the 
value range [1…1024]k. 

211 SyncCallParallelCount must be interval of 
[1...9] 

Ensure that the SyncCallParallelCount parameter is within the 
value range [1…9]. 



 Appendix 
 A.3 Error messages of the code generator 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 95 

Syntax errors: 
 
Error 
number 

Error message Possible solution 

500 unexpected end-of-file found Always end the file with a semicolon. 
501 ‘...’ should be alpha numeric The following characters are allowed: a - z, A - Z, 0 - 9, _ 

Umlauts are not permitted. 
502 ‘...’ should be numeric The following characters are allowed: 0 - 9 
503 ‘...’ undefined keyword Use only the keywords [IN], [OUT] and [INOUT] and the de-

fined data types. 
504 ... missing before ... Add the character displayed by the error message. 
 missing space Add a space. 
506 ‘...’ undefined type Use only the defined data types. 
507 ‘...’ type not allowed Observe the syntax rules in section Defining functions of an 

ODK application (Page 55) 
508 ‘...’ type redefinition The function or parameter name is already assigned. Choose a 

different name. 
509 ‘...’ variable redefinition The tag name is already assigned. Choose a different name. 
510 Structure ‘...’ must not be empty Fill the structure with a data type. 
511 ‘...’ no valid name Observe the syntax rules in section Defining functions of an 

ODK application (Page 55). 
512 unexpected variable order (must be [IN], 

[OUT], 
[INOUT] order) 

There are three defined InOut identifiers. Use these in the 
following order: [IN], [OUT], [INOUT] 

513 size of ODK_S7STRING could not be bigger 
than 254 

A string can have a maximum length of 254 characters. 

514 size of ODK_S7WSTRING could not be big-
ger than 16382 

A Wstring can have a maximum length of 16382 characters. 

515 Prefix + Function name ‘....’ exceeds 125 
characters 

Prefix and function name together are longer than 125 charac-
ters. 

516 variable name ‘…’ exceeds 128 characters The tag name is longer than 128 characters. 
517 '...' IN_BUFFER + INOUT_BUFFER could not 

be greater than 1 MB 
Altogether, the InOut identifiers [IN] and [INOUT] in a function 
must not exceed 1 MB. 

518 '...' INOUT_BUFFER + OUT_BUFFER could 
not be greater than 1 MB 

Altogether, the InOut identifiers [OUT] and [INOUT] in a func-
tion must not exceed 1 MB. 

519 '...' needs '...k', but data size (Sync-
CallDataSize) is limited to '...k' 

The amount of data is too high. 

520 '...' has an array size of '...', but max. array 
size is limited to '...' 

The maximum Array size is exceeded. 

521 no other variable in the same direction for 
ODK_CLASSIC_DB type 

As soon as the ODK_CLASSIC_DB is used, no other tag with 
the same InOut identifier may be defined. 

522 no array allowed for ODK_CLASSIC_DB type No Array may be defined for the ODK_CLASSIC_DB data type. 
523 no [OUT] direction allowed for 

ODK_CLASSIC_DB type 
The InOut identifier [OUT] may not be defined for the 
ODK_CLASSIC_DB data type. 

524 function declarations lead to identical hashes 
(change name of one parameter): ‘...’, ‘...’ 

Change a parameter name. 

 



Appendix  
A.4 Helper functions 

 Open Development Kit 1500S V2.0 
96 Programming and Operating Manual, 09/2016, A5E35253941-AC 

A.4 Helper functions 

String-helper functions for ODB application for Windows and real-time environment 
The following helper functions provide access to S7 strings: 
 
Helper functions Description 
Convert_S7STRING_to_SZSTR Convert PLC string types to C/C++ string types ("char" array, null-

terminated) 
Convert_SZSTR_to_S7STRING Convert C/C++ string types ("char" array, null-terminated) to PLC 

string types. 
Get_S7STRING_Length Returns the current length of a PLC string type. 
Get_S7STRING_MaxLength Returns the maximum length of a PLC string type. 

String-helper functions for ODB application for the Windows environment 
The following helper functions provide access to S7WStrings: 
 
Helper functions Description 
Con-
vert_S7WSTRING_to_SZWSTR 

Convert PLC WString types to C/C++ WString types ("wchar_t" 
array, null-terminated) 

Con-
vert_SZWSTR_to_S7WSTRING 

Convert C/C++ WString types ("wchar_t" array, null-terminated) 
to PLC WString types. 

Get_S7WSTRING_Length Returns the current length of a PLC WString type. 
Get_S7WSTRING_MaxLength Returns the maximum length of a PLC WString type. 

Class "CODK_CpuReadData" (Windows and real-time environment) 
The class "CODK_CpuReadData" allows read access to Classic DBs: 
 
Value Description 
CODK_CpuReadData Class constructor: Initializes the input data area and the data size. 
ReadS7BYTE Reads a "byte" (1 byte) from the data area. 
ReadS7WORD Reads a "word" (2 bytes) from the data area. 
ReadS7DWORD Reads a "double word" (4 bytes) from the data area. 
ReadS7LWORD Reads a "long word" (8 bytes) from the data area. 
ReadS7S5TIME Reads a "16-bit" (2 bytes) time value from the data area. 
ReadS7DATE Reads a date value (2 bytes) from the data area. 
ReadS7TIME_OF_DAY Reads the time of day (4 bytes) from the data area. 
ReadS7SINT Reads a "short integer" (1 byte) from the data area. 
ReadS7INT Reads a "integer" (2 bytes) from the data area. 
ReadS7DINT Reads a "double integer" (4 bytes) from the data area. 
ReadS7USINT Reads a "unsigned short integer" (1 byte) from the data area. 
ReadS7UINT Reads a "unsigned integer" (2 bytes) from the data area. 
ReadS7UDINT Reads a "unsigned double integer" (4 bytes) from the data area. 



 Appendix 
 A.4 Helper functions 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 97 

Value Description 
ReadS7REAL Reads a "real number" (4 bytes) from the data area. 
ReadS7LREAL Reads a "long real number" (8 bytes) from the data area. 
ReadS7LINT Reads a "long integer" (8 bytes) from the data area. 
ReadS7ULINT Reads a "unsigned long integer" (8 bytes) from the data area. 
ReadS7TIME Reads a time value (4 bytes) from the data area. 
ReadS7CHAR Reads a "char" (1 byte) from the data area. 
ReadS7BOOL Reads a "bool" (1 byte) from the data area. 
ReadS7STRING_LEN Reads the information of string length from an S7 string in the data 

area. 
ReadS7STRING Reads an S7 string from the data area and returns it as C++ charac-

ter string. 
ReadS7DATE_AND_TIME Reads the general data and time area. 

Class "CODK_CpuReadWriteData" (Windows and real-time environment) 
The class "CODK_CpuReadWriteData" also allows all access of "CODK_CpuReadData" to 
Classic-DBs, as well as the following write access: 
 
Value Description 
CODK_CpuReadWriteData Class constructor: Initializes the output data area and the data size. 
WriteS7BYTE Writes a "byte" (1 byte) to the data area. 
WriteS7WORD Writes a "word" (2 bytes) to the data area. 
WriteS7DWORD Writes a "double word" (4 bytes) to the data area. 
WriteS7LWORD Writes a "long word" (8 bytes) to the data area. 
WriteS7SINT Writes a "short integer" (1 byte) to the data area. 
WriteS7INT Writes a "integer" (2 bytes) to the data area. 
WriteS7DINT Writes a "double integer" (4 bytes) to the data area. 
WriteS7USINT Writes a "unsigned short integer" (1 byte) to the data area. 
WriteS7UINT Writes a "unsigned integer" (2 bytes) to the data area. 
WriteS7UDINT Writes a "unsigned double integer" (4 bytes) to the data area. 
WriteS7S5TIME Writes a 16-bit (2 bytes) time value to the data area. 
WriteS7TIME Writes a time value (4 bytes) to the data area. 
WriteS7DATE Writes a date value (2 bytes) to the data area. 
WriteS7TIME_OF_DAY Writes a time of day (4 bytes) to the data area. 
WriteS7CHAR Writes a "char" (1 byte) to the data area. 
WriteS7REAL Writes a "real number" (4 bytes) to the data area. 
WriteS7LREAL Writes a "long real number" (8 bytes) to the data area. 
WriteS7LINT Writes a "long integer" (8 bytes) to the data area. 
WriteS7ULINT Writes a "unsigned long integer" (2 bytes) to the data area. 
WriteS7BOOL Writes a "bool" (1 byte) to the data area. 
WriteS7STRING Writes a S7 string to the data area. 
WriteS7DATE_AND_TIME Write data and time data to the date and time area. 



Appendix  
A.5 "Load" instruction 

 Open Development Kit 1500S V2.0 
98 Programming and Operating Manual, 09/2016, A5E35253941-AC 

A.5 "Load" instruction 
The "<STEP7Prefix>_Load" instruction has different parameters that depending on the 
development environment: 

● Developing ODK application for the Windows environment (Page 37) 

● Developing ODK application for the realtime environment (Page 75) 

A.6 "Unload" instruction 
The "<STEP7Prefix>_Unload" instruction has different parameters that depending on the 
development environment: 

● Developing ODK application for the Windows environment (Page 43) 

● Developing ODK application for the realtime environment (Page 79) 

A.7 "GetTrace" instruction 
The function block (Page 81) "GetTrace" is included in the standard CPP file 
"<Projckt>.cpp". 
 

GetTrace 
TraceCount STATUS 

The following table shows the parameters of the "GetTrace" function block: 
 
Section Declaration Data type Description 
Output STATUS INT Number of trace entries actually read 
Input TraceCount INT Number of trace entries to be read 
Output TraceBuffer Array 

[0..255] of 
String[125] 

Trace string array for the user 
Each trace string consists of: 
• Date 
• Time-of-day 
• OB number 
• File name 
• Line number 
• Trace text (trace implemented by the user) 

 



 

Open Development Kit 1500S V2.0 
Programming and Operating Manual, 09/2016, A5E35253941-AC 99 

 Index  
 

C 
Callback functions 

Realtime, 64 
Windows, 32 

Calling functions 
Realtime, 77 
Windows, 41 

Context Application, 22, 54 
Context Realtime, 54 
Context System, 22 
Context User, 22 
Creating a project 

Realtime, 49 
Windows, 17 

Customer service, 3 

D 
Debug (Test), 68 
Debug (Windows), 46 
Defining functions, 23, 55 
Defining runtime properties 

Realtime, 52 
Windows, 21 

Definitions, 3 
Development environments, 11 
Development steps, 13 
Documentation, 3 
Dynamic memory, 66 

G 
Generating an application 

Realtime, 52 
Windows, 20 

I 
Implementing functions 

Custom functions, 33, 65 
Realtime, 64 
Windows, 31 

Installation, 15 
Internet Web sites (Siemens), 3 

K 
Knowledge required, 3 

L 
Loading functions 

Realtime, 75 
Windows, 37 

M 
Manuals, 3 

P 
Post Mortem analysis, 83 
Product overview, 9 

Basic procedure, 13 
How it works, 9 

S 
Siemens contact information, 3 
STEP 7 import 

Realtime, 74 
Windows, 36 

Support, 3 
Syntax rules, 23, 55 
System requirements, 14 



Index 
 

 Open Development Kit 1500S V2.0 
100 Programming and Operating Manual, 09/2016, A5E35253941-AC 

T 
Target group, 3 
Technical support, 3 
Trace buffer, 81 
Transfer to target system 

Realtime, 72 
Windows, 35 

U 
Uninstalling, 16 
Unloading functions 

Realtime, 79 
Windows, 43 

W 
Web sites (Siemens), 3 

 


	Open Development Kit 1500S V2.0
	Legal information
	Preface
	Table of contents
	1 Documentation guide
	2 Product overview
	2.1 Introduction to ODK 1500S
	2.2 Development environments
	2.3 Basic procedure

	3 Installation
	3.1 System Requirements
	3.2 Installing ODK
	3.3 Integrating ODK templates in Visual Studio after installation
	3.4 Uninstalling ODK

	4 Developing ODK application for the Windows environment
	4.1 Creating an ODK application
	4.1.1 Requirements
	4.1.2 Creating a project
	4.1.2.1 Creating an ODK project with Visual Studio version older than 2015

	4.1.3 Generating an ODK application
	4.1.4 Defining runtime properties of an ODK application
	4.1.5 Environment for loading or running the ODK application
	4.1.6 Defining functions and structures of an ODK application
	4.1.6.1 Use of ODK_CLASSIC_DB as parameter
	4.1.6.2 Handling strings
	4.1.6.3 Definition of the <Project>.odk file
	4.1.6.4 Modifying the <Project>.odk file
	4.1.6.5 Comments

	4.1.7 Implementing functions
	4.1.7.1 General notes
	4.1.7.2 Callback functions
	4.1.7.3 Implementing custom functions


	4.2 Transferring an ODK application to the target system
	4.3 Importing and generating an SCL file in STEP 7
	4.4 Executing a function
	4.4.1 Loading functions
	4.4.2 Calling functions
	4.4.3 Unloading functions

	4.5 Remote debugging
	4.5.1 Performing remote debugging


	5 Developing ODK application for the realtime environment
	5.1 Creating an ODK application
	5.1.1 Requirements
	5.1.2 Creating a project
	5.1.3 Generating an ODK application
	5.1.4 Defining runtime properties of an ODK application
	5.1.5 Environment for loading or running the ODK application
	5.1.6 Defining functions and structures of an ODK application
	5.1.6.1 Defining functions of an ODK application
	5.1.6.2 Use of ODK_CLASSIC_DB as parameter
	5.1.6.3 Handling strings
	5.1.6.4 Definition of the <Project>.odk file
	5.1.6.5 Modifying the <Project>.odk file
	5.1.6.6 Comments

	5.1.7 Implementing functions
	5.1.7.1 General notes
	5.1.7.2 Callback functions
	5.1.7.3 Implementing custom functions
	5.1.7.4 Dynamic memory management
	5.1.7.5 Debug (Test)


	5.2 Transferring an ODK application to the target system
	5.3 Importing and generating an SCL file in STEP 7
	5.4 Executing a function
	5.4.1 Loading functions
	5.4.2 Calling functions
	5.4.3 Unloading functions
	5.4.4 Reading the trace buffer

	5.5 Post Mortem analysis
	5.5.1 Introduction
	5.5.2 Execute post mortem analysis


	6 Using example projects
	A Appendix
	A.1 General conditions of ODK applications
	A.1.1 Number of loadable ODK applications
	A.1.2 Compatibility

	A.2 Syntax interface file <Project>.odk
	A.2.1 Data types
	A.2.2 Parameters

	A.3 Error messages of the code generator
	A.4 Helper functions
	A.5 "Load" instruction
	A.6 "Unload" instruction
	A.7 "GetTrace" instruction

	 Index
	C
	D
	G
	I
	K
	L
	M
	P
	S
	T
	U
	W


