Konfigurationssoftware ASIMON
für AS-Interface Sicherheitsmonitor
Allgemeines 1
Installation von Hardware und Software 2
Erste Schritte 3
Konfiguration des AS-Interface Sicherheitsmonitors 4
Inbetriebnahme des AS-Interface Sicherheitsmonitors 5
Diagnose und Fehlerbehandlung 6
Diagnose über AS-Interface 7

Konfigurationssoftware für Microsoft®-Windows®

Ausgabe 10/2006
GWA 4NEB 333 1558 01 DS01
Sicherheitshinweise

Gefahr

bedeutet, dass Tod oder schwere Körpervерletzung eintreten wird, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Warnung

bedeutet, dass Tod oder schwere Körpervерletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Vorsicht

mit Warndreieck bedeutet, dass eine leichte Körpervерletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Vorsicht

ohne Warndreieck bedeutet, dass Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Achtung

bedeutet, dass ein unerwünschtes Ergebnis oder Zustand eintreten kann, wenn der entsprechende Hinweis nicht beachtet wird.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

Qualifiziertes Personal

Bestimmungsgemäßer Gebrauch

Beachten Sie Folgendes:

Warnung

Marken

Alle mit dem Schutzrechtsvermerk ® gekennzeichneten Bezeichnungen sind eingetragene Marken der Siemens AG. Die übrigen Bezeichnungen in dieser Schrift können Marken sein, deren Benutzung durch Dritte für deren Zwecke die Rechte der Inhaber verletzen kann.

Haftungsausschluss

Siemens AG
Automation and Drives
Postfach 48 48
90437 NÜRNBERG
DEUTSCHLAND

Dokumentbestell-Nr. GWA 4NEB 333 1558 01 DS01
Ausgabe 10/2006

Copyright © Siemens AG 2006
Änderungen vorbehalten
Inhaltsverzeichnis

1 Allgemeines ... 7
 1.1 Zum Programm ASIMON .. 7
 1.2 Versionsinformationen ... 8
 1.3 Zeichenerklärung ... 9
 1.4 Begriffsdefinitionen .. 10
 1.5 Abkürzungen .. 11

2 Installation von Hardware und Software ... 13
 2.1 Hardware ... 13
 2.1.1 Voraussetzungen ... 13
 2.1.2 Verbindung zwischen dem AS-Interface Sicherheitsmonitor und dem PC .. 13
 2.2 Software ... 14
 2.2.1 Systemanforderungen .. 14
 2.2.2 Installation .. 14

3 Erste Schritte .. 15
 3.1 Start des Programms ... 16
 3.2 Beschreibung der Bedienoberfläche 25
 3.2.1 Die Menü-Leiste ... 25
 3.2.2 Die Symbol-Leiste .. 26
 3.2.3 Die Status-/Info-Zeile ... 26
 3.2.4 Die Fensterbereiche ... 27
 3.3 Programmeinstellungen .. 30
 3.3.1 Programmsprache einstellen .. 30
 3.3.2 Auswahl der seriellen Schnittstelle 30

4 Konfiguration des AS-Interface Sicherheits-monitors 31
 4.1 Arbeitsweise des AS-Interface Sicherheitsmonitors 31
 4.2 Prinzipielles Vorgehen .. 33
 4.3 Erstellen und Ändern einer Konfiguration 34
 4.3.1 Überwachungs-Bausteine .. 37
 4.3.2 Verknüpfungs-Bausteine ... 65
 4.3.3 Rückführkreis-Bausteine ... 79
 4.3.4 Start-Bausteine .. 88
 4.3.5 Ausgabe-Bausteine .. 96
 4.3.6 System-Bausteine ... 109
 4.3.7 Aktivieren und Deaktivieren von Bausteinen 110
 4.4 Speichern / Laden einer Konfiguration 113
5 Inbetriebnahme des AS-Interface Sicherheitsmonitors .. 115
 5.1 Vorgehensweise ... 115
 5.2 Abfrage einer Konfiguration vom AS-Interface Sicherheitsmonitor 118
 5.3 Übertragen einer Konfiguration zum AS-Interface Sicherheits-monitor 118
 5.4 Sichere Konfiguration lernen .. 119
 5.5 Konfiguration freigeben ... 122
 5.6 AS-Interface Sicherheitsmonitor starten ... 124
 5.7 AS-Interface Sicherheitsmonitor stoppen ... 125
 5.8 Dokumentation der Konfiguration ... 125
 5.9 Passwort eingeben und ändern ... 133
6 Diagnose und Fehlerbehandlung .. 135
 6.1 Diagnose ... 135
 6.2 Fehlersuche und Behebung ... 137
 6.3 Bekannte Probleme .. 138
7 Diagnose über AS-Interface .. 139
 7.1 Allgemeiner Ablauf ... 139
 7.2 Zuordnung der AS-Interface Diagnose-Indizes .. 141
 7.3 Telegramme .. 145
 7.3.1 Diagnose AS-Interface Sicherheitsmonitor ... 145
 7.3.2 Diagnose – Bausteine nach Freigabekreisen sortiert 148
 7.3.3 Diagnose – Bausteine unsortiert ... 150
 7.4 Beispiel: Abfrageprinzip bei nach Freigabekreisen sortierter Diagnose 152
Tabellen

Tabelle 1-1 Eigenschaften der Geräteversionen .. 8
Tabelle 1-2 Funktionsumfang "Basis" und "Erweitert" .. 8
Tabelle 3-1 Eigenschaften der Geräteversionen .. 19
Tabelle 7-1 Kodierung der Farben ... 147
Allgemeines

1.1 Zum Programm ASIMON

Das vorliegende Programm dient der Konfiguration und Inbetriebnahme des AS-Interface Sicherheitsmonitors über einen PC.

Auch die Inbetriebnahme und die Dokumentation Ihrer sicherheitsgerichteten Applikation wird durch ASIMON unterstützt.

Hinweis

Eine kurze Einführung in die sichere AS-Interface Übertragung finden Sie in der Betriebsanleitung des AS-Interface Sicherheitsmonitors.

1.2 Versionsinformationen

Der AS-Interface Sicherheitsmonitor und die zugehörige Konfigurationssoftware ASIMON wurden seit ihrem Produktstart im Jahr 2001 weiterentwickelt und in ihrer Funktionalität erweitert.

Dieses Handbuch beschreibt die Softwareversion 2.1. Nachfolgend erhalten Sie eine Übersicht über die Neuerungen gegenüber der Softwareversion 1.

Neuerungen der Softwareversion 2

Neben den alten Gerätetypen Typ 1 und Typ 2 der Version 1 werden die Gerätetypen der Version 2 Typ 1 bis Typ 4 des AS-Interface Sicherheitsmonitors unterstützt:

Tabelle 1-1 Eigenschaften der Geräteversionen

<table>
<thead>
<tr>
<th>Anzahl Ausgangskreise</th>
<th>"Basis"</th>
<th>"Erweitert"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Typ 1</td>
<td>Typ 3</td>
</tr>
<tr>
<td>2</td>
<td>Typ 2</td>
<td>Typ 4</td>
</tr>
</tbody>
</table>

Der Funktionsumfang "Basis" und "Erweitert" unterscheidet sich wie folgt:

Tabelle 1-2 Funktionsumfang "Basis" und "Erweitert"

<table>
<thead>
<tr>
<th>Funktion/Option</th>
<th>"Basis"</th>
<th>"Erweitert"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Funktionsbausteine in der Verknüpfungsebene</td>
<td>32</td>
<td>48</td>
</tr>
<tr>
<td>Oder-Gatter (Eingänge)</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Und-Gatter (Eingänge)</td>
<td>nein</td>
<td>6</td>
</tr>
<tr>
<td>Sichere Zeitfunktion, Ein- und Ausschaltverzögerung</td>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td>Funktion "Taste"</td>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td>Schutztür/Modul mit Entprellung</td>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td>Schutztür mit Zuhaltung</td>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td>Deaktivieren von Funktionsbausteinen</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Fehlerentriegelung</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Diagnose Halt</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Unterstützung von A/B-Technik bei nicht sicherheitsgerichteten Slaves</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td>Neue Funktionsbausteine (Flip-Flop, Impuls bei pos. Flanke etc.)</td>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td>Platzhalter-Baustein (NOP)</td>
<td>nein</td>
<td>ja</td>
</tr>
</tbody>
</table>
Neuerungen der Softwareversion 2.1

In der Version 2.1 der Konfigurationsssoftware ASIMON sind folgende Neuerungen enthalten:

• Neuer Überwachungsbaustein Nullfolgeerkennung
• Erweiterung des Ausgabenbausteins Türzuhaltung über Verzögerungszeit: optional jetzt Stoppkategorie 1 für den ersten Freigabekreis
• Erweiterung des Ausgabenbausteins Türzuhaltung über Stillstandswächter und Verzögerungszeit: optional jetzt Stoppkategorie 1 für den ersten Freigabekreis
• Neuer Startbaustein Aktivierung über Standardslave (Pegel-sensitiv)
• Neuer Startbaustein Aktivierung über Monitoreingang (Pegel-sensitiv)
• Neuer Überwachungsbaustein Betriebsmäßiges Schalten mittels Monitoreingang
• Erweiterung Überwachungsbaustein Zweikanalig abhängig mit Entprellung um Vorortquittierung und Anlaufstest
• Erweiterung Überwachungsbaustein Zweikanalig unabhängig um Vorortquittierung und Anlaufstest
• Schrittweises Einlernen der Codefolgen
• Baustein-Index-Zuordnung
• Darstellung Inverter-Icon bei invertiertem Standardslave
• Wählbare Anzahl simulierter Slaves
• Signalisierung der Relais- und Meldeausgänge über AS-Interface

Achtung
Die neuen Funktionen der Softwareversion 2.1 können erst in Verbindung mit AS-Interface Sicherheitsmonitoren der Version ≥ 2.12 eingesetzt werden.

Kompatibilität

Hinweis

1.3 Zeichenerklärung

Nachfolgend finden Sie die Erklärung der in dieser Beschreibung verwendeten Symbole.

Hinweis
Dieser Sicherheitshinweis kennzeichnet Textstellen, die wichtige Informationen enthalten.
1.4 Begriffsdefinitionen

Ausgangsschaltelement (Sicherheitsausgang) des AS-Interface Sicherheitsmonitors

Von der Logik des Monitors betätigtes Element, das in der Lage ist, die nachgeordneten Steuerungsteile sicher abzuschalten. Das Ausgangsschaltelement darf nur bei bestimmungsgemäßer Funktion aller Komponenten in den Ein-Zustand gehen oder dort verbleiben.

Ausgangskreis

Besteht aus den zwei logisch zusammenhängenden Ausgangsschaltelementen.

Freigabekreis

Die einem Ausgangskreis des AS-Interface Sicherheitsmonitors zugeordneten sicherheitsgerichteten AS-Interface Komponenten und Funktions-Bausteine, die für die Entriegelung des Maschinenteils verantwortlich sind, welches die gefahrbringende Bewegung erzeugt.

Integrierter Slave

Komponente, bei dem Sensor- und/oder Aktorfunktion zusammen mit dem Slave in einer Einheit zusammengefasst sind.

Konfigurationsbetrieb

Betriebszustand des Sicherheitsmonitors, in dem die Konfiguration geladen und geprüft wird.

Master

Komponente zur Datenübertragung, die das logische und zeitliche Verhalten auf der AS-Interface Leitung steuert.

Schutzbetrieb

Betriebszustand des Sicherheitsmonitors, in dem Sensoren überwacht und die Ausgangsschaltelemente geschaltet werden.

Sicherheitsausgang

Siehe Ausgangsschaltelement.

Sicherheitsgerichteter Eingangsslave

Slave, der den sicherheitsgerichteten Zustand Ein oder Aus des angeschlossenen Sensors oder Befehlsgeräts einliest und zum Master bzw. Sicherheitsmonitor überträgt.

Sicherheitsgerichteter Slave

Slave zum Anschluss sicherheitsgerichteter Sensoren, Aktoren und anderer Geräte.

Sicherheitsmonitor

Komponente, die die sicherheitsgerichteten Slaves und die korrekte Funktion des Netzes überwacht.

Slave

Komponente zur Datenübertragung, die vom Master zyklisch über ihre Adresse angesprochen wird und nur dann eine Antwort generiert.
Standslave

Slave zum Anschluss nicht sicherheitsgerichteter Sensoren, Aktoren und anderer Geräte.

Synchronisationszeit

Der maximal zulässige zeitliche Versatz zwischen dem Eintreten zweier voneinander abhängiger Ereignisse.

Zustand ON

Eingeschaltet, logisch "1", TRUE.
Dieser Zustand bedeutet die Zustimmung des Bausteins zur Freigabe des Kreises, d. h. zur Aktivierung der Sicherheitsschaltausgänge. Je nach Bausteintyp müssen dazu verschiedene Bedingungen erfüllt sein.

Zustand OFF

Ausgeschaltet, logisch "0", FALSE.
Dieser Zustand bedeutet, dass der Baustein der Freigabe des Kreises nicht zustimmt bzw. er führt zum Abschalten der Sicherheitsschaltausgänge.

1.5 Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-Interface</td>
<td>Aktor Sensor Interface</td>
</tr>
<tr>
<td>BWS</td>
<td>Berührungslos wirkende Schutzeinrichtung</td>
</tr>
<tr>
<td>EDM</td>
<td>External Device Monitoring</td>
</tr>
<tr>
<td>= Rückführkreis</td>
<td></td>
</tr>
<tr>
<td>SPS</td>
<td>Speicher Programmierbare Steuerung</td>
</tr>
</tbody>
</table>
Installation von Hardware und Software

2.1 Hardware

2.1.1 Voraussetzungen

Für die Konfiguration des AS-Interface Sicherheitsmonitors über einen PC benötigen Sie:

- einen AS-Interface Sicherheitsmonitor Typ 1, Typ 2, Typ 3, oder Typ 4
- das Schnittstellenkabel zur Verbindung von PC und AS-Interface Sicherheitsmonitor
- einen PC oder ein Notebook mit folgenden Mindestanforderungen:
 - Ein Pentium®- oder schnellerer Intel®-Prozessor (bzw. kompatible Modelle, z.B. AMD® oder Cyrix®)
 - Ein CD-ROM-Laufwerk für die Installation
 - Eine Maus (empfohlen)
 - Eine freie Schnittstelle RS 232 (seriell) mit 9-poligem SubD-Anschluss

2.1.2 Verbindung zwischen dem AS-Interface Sicherheitsmonitor und dem PC

Hinweis

Der Anschluss des AS-Interface Sicherheitsmonitors an den PC wird hier nur kurz beschrieben. Nähere Informationen finden Sie in der Betriebsanleitung des AS-Interface Sicherheitsmonitors.

Für die Konfiguration des AS-Interface Sicherheitsmonitors mit ASIMON müssen Sie Ihren PC und den AS-Interface Sicherheitsmonitor über das als Zubehör erhältliche serielle Schnittstellenkabel verbinden.

Vorsicht

Verwenden Sie ausschließlich das als Zubehör erhältliche Schnittstellenkabel. Die Verwendung eines anderen Kabels kann zu Datenverlust oder Beschädigungen des angeschlossenen AS-Interface Sicherheitsmonitors führen!

Stecken Sie dazu das eine Schnittstellenkabelende mit dem RJ45-Stecker in die Buchse ‘CONFIG’ an der Frontseite des AS-Interface Sicherheitsmonitors und das andere Ende mit dem 9-poligen SubD-Buchsenstecker auf einen freien COM-Port (serielle RS232-Schnittstelle) Ihres PCs.
Hierbei ist der Anschluss direkt an eine serielle Schnittstelle oder einen USB-Adapter möglich.

Achtung
Wenn die Verbindung zwischen dem AS-Interface Sicherheitsmonitor und dem PC besteht während der PC gestartet wird, dann springt der Maus-Zeiger eventuell unkontrolliert über den Bildschirm.

Abhilfe:
- Während des PC-Starts das Verbindungskabel zwischen PC und Sicherheitsmonitor ausstecken.
- Das Startverhalten des PCs umstellen (siehe Benutzerdokumentation des PC- oder Betriebssystem-Herstellers).

2.2 Software

2.2.1 Systemanforderungen
Softwareseitig bestehen für die Konfigurationssoftware des AS-Interface Sicherheitsmonitors folgende Systemanforderungen:
- Mindestens 32 MB freier Arbeitsspeicher (RAM)
- Mindestens 32 MB freier Festplatten-Speicher
- Microsoft® Windows 95/98/ME/NT/2000/XP® als Betriebssystem

2.2.2 Installation
Für die Installation der Konfigurationssoftware benötigen Sie die Installations-CD-ROM.

Bei einer Update-Installation überprüft das Setup-Programm, ob bereits eine ASIMON-Version 2 auf dem PC installiert ist und bietet die Möglichkeit, die bestehende Installation durch die Version 2.1 zu ersetzen oder alternativ ein zweites Unterverzeichnis anzulegen.
Erste Schritte

Hinweis

Schließen Sie das Schnittstellenkabel am PC und am Sicherheitsmonitor, wie in Kapitel 2.1.2 beschrieben, an und schalten Sie vor dem Start der Konfigurationsoftware die Stromversorgung des Sicherheitsmonitors ein, da ansonsten keine Daten übertragen werden können. Sie haben aber auch, ohne dass der Sicherheitsmonitor an den PC angeschlossen ist, die Möglichkeit, Gerätekonfigurationen zu definieren und diese auf Ihrem PC zu speichern bzw. bereits gespeicherte Konfigurationen zu bearbeiten.
3.1 Start des Programms

Wählen Sie zum Start der Konfigurationssoftware für den Sicherheitsmonitor im Menü **Start** den von Ihnen bei der Installation angegebenen Programmordner und dort den Eintrag **ASIMON**.

Nach dem Start erscheint das Fenster mit der Bedienoberfläche der Konfigurationssoftware **ASIMON** auf dem Bildschirm. Beim Start des Programms wird zusätzlich der **Startassistent** aufgerufen, der Sie durch die ersten Schritte nach dem Programmstart führt.

Bild 3-1 Bedienoberfläche der Konfigurationssoftware **ASIMON** nach dem Start der Software

1. **Startassistent-Fenster**
2. **Menü-Leiste**
3. **Symbol-Leiste**
4. **Status-/Info-Zeile**
Startassistent

Hinweis
Zur Abfrage der Diagnoseinformation muss sich der angeschlossene AS-Interface Sicherheitsmonitor im Schutzbetrieb befinden.

Falls beim Programmstart keine Verbindung zum AS-Interface Sicherheitsmonitor hergestellt werden kann (kein AS-Interface Sicherheitsmonitor angeschlossen, Anschluss an falsche Schnittstelle usw.) oder falls sich der angeschlossene AS-Interface Sicherheitsmonitor im Konfigurationsbetrieb befindet, ist die Option Diagnose deaktiviert.

Sie können dann nur eine neue Konfiguration erstellen, eine auf Datenträger gespeicherte Konfiguration laden und bearbeiten oder auf Fehlersuche gehen (siehe Kapitel 6.2).

Option Diagnose
Wenn Sie die Option Diagnose wählen, erscheint zunächst ein Fenster mit der folgenden Abfrage. Durch Klicken auf Neutral wird die Diagnoseinformation des angeschlossenen AS-Interface Sicherheitsmonitors abgefragt, auch ohne dass in ASIMON eine Konfiguration geladen ist.

Hinweis

Bild 3-2 Abfrage bei der Option Diagnose

Anschließend gelangen Sie direkt in das Diagnose-Fenster (siehe Kapitel 6.1).
Erste Schritte
3.1 Start des Programms

Option Konfiguration neu erstellen

Hinweis

Das Fenster Monitor-/Businformation kann jederzeit wieder aufgerufen werden. Wählen Sie dazu im Menü Bearbeiten den Menüpunkt Monitor-/Businformationen... oder klicken Sie auf die Schaltfläche .

Hinweis

Wurde eine gültige Konfiguration an oder von einem AS-Interface Sicherheitsmonitor geladen, wird im Fensterbereich Downloadzeit der Zeitpunkt angegeben, zu dem die aktuell im Programm vorliegende Konfiguration an den AS-Interface Sicherheitsmonitor übertragen wurde.

Im Register Monitorinformation müssen Sie einen Titel für die Konfiguration eingeben, den Betriebsmodus wählen und den Funktionsumfang "Basis" oder "Erweitert" des AS-Interface Sicherheitsmonitors angeben.

![Fenster Monitor-/Businformation, Registerkarte Monitorinformation]

Bild 3-3 Fenster Monitor-/Businformation, Registerkarte Monitorinformation

Titel der Konfiguration

Geben Sie in dieses Feld einen maximal 63 Zeichen langen Titel für die neue Konfiguration ein.
Betriebsmodus

Sie können zwischen drei Betriebsmodi wählen:

- ein Freigabekreis
 für AS-Interface Sicherheitsmonitore des Typ 1 oder Typ 3 mit einem Freigabekreis
 (ein redundanter Sicherheits-Relaisschaltausgang).

- zwei unabhängige Freigabekreise
 für AS-Interface Sicherheitsmonitore des Typ 2 oder Typ 4 mit zwei unabhängig voneinan-
 der arbeitenden Freigabekreisen (zwei redundante Sicherheits-Relaisschaltausgänge).
 Wählen Sie diese Betriebsart, wenn Sie zwei völlig unabhängige Abschaltmodi konfigurie-
 ren wollen.

- zwei abhängige Freigabekreise
 für AS-Interface Sicherheitsmonitore des Typ 2 oder Typ 4 mit zwei Freigabekreisen (zwei
 redundante Sicherheits-Relaisschaltausgänge), bei denen der zweite Freigabekreis ab-
 hängig vom ersten Kreis ist (siehe Kapitel 4.3.5).
 In diesem Betriebsmodus stehen besondere Ausschaltfunktionen zur Verfügung.

Hinweis

Vergewissern Sie sich vor einem nachträglichen Wechsel des Betriebsmodus, ob dieser mit
dem von Ihnen eingesetzten AS-Interface Sicherheitsmonitorotyp (siehe Tabelle 3-1) kompati-
bel ist.

Funktionsumfang

Geben Sie hier den Funktionsumfang des zu konfigurierenden AS-Interface Sicherheitsmoni-
tors an. Die folgende Tabelle zeigt, wie sich die vier Gerätetypen des AS-Interface Sicherheits-
monitors unterscheiden:

<table>
<thead>
<tr>
<th>Anzahl Ausgangskreise</th>
<th>"Basis"</th>
<th>"Erweitert"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Typ 1</td>
<td>Typ 3</td>
</tr>
<tr>
<td>2</td>
<td>Typ 2</td>
<td>Typ 4</td>
</tr>
</tbody>
</table>

Wenn Sie eine Konfiguration für einen AS-Interface Sicherheitsmonitor der Version 1 (Typ 1
oder Typ 2) erstellen oder bearbeiten wollen, klicken Sie unbedingt das Kontrollkästchen **Für
Monitorversion < 2.0** an.
Erste Schritte

3.1 Start des Programms

Im Register **Businformation** müssen Sie die AS-Interface Busadressen der benutzten Standard-Slaves und der in diesem AS-Interface Netz vorhandenen sicherheitsgerichteten AS-Interface Slaves eintragen.

![Businformation-Fenster](image)

Bild 3-4 Fenster **Monitor-/Businformation**, Registerkarte **Businformation**

Achtung

Wenn Sie zwei oder mehr AS-Interface Sicherheitsmonitore am gleichen AS-Interface Bus betreiben wollen, müssen Sie für alle AS-Interface Sicherheitsmonitore **alle** sicherer Slaves an diesem AS-Interface Bus in der Registerkarte Businformation eintragen, auch wenn Sie vom jeweiligen AS-Interface Sicherheitsmonitor nicht überwacht werden.

Über die Schaltfläche **Suchen** können Sie den AS-Interface Bus auch nach Slaves absuchen lassen, wenn sich der AS-Interface Sicherheitsmonitor im Konfigurationsbetrieb befindet.

Hinweis

Die beim Absuchen des AS-Interface Bus gefundenen AS-Interface Slaves werden in der Registerkarte **Businformation** zunächst alle als "standard" eingetragen. Die Zuordnung "sicher"/"standard" müssen Sie anschließend manuell durchführen!

Haben Sie auf der Registerkarte **Diagnose / Service** das Kontrollkästchen **Slaves simulieren** angeklickt, werden automatisch 2 bzw. 4 Busadressen für die simulierten Slaves vergeben und die entsprechenden Kontrollkästchen deaktiviert. Um **Slaves simulieren** aktivieren zu können, müssen die auf die Monitoradresse folgenden 1 bzw. 3 Adressen frei sein.
Im Register **Diagnose / Service** können Sie globale Einstellungen zum Diagnosehalt und zur Fehlerentriegelung vornehmen sowie die Diagnose über den AS-Interface Bus konfigurieren.

Bild 3-5 Fenster **Monitor-/Businformation**, Registerkarte **Diagnose / Service**
Globale Einstellungen, Unterregister **Diagnosehalt**

Bild 3-6 Unterregister **Diagnosehalt** der Registerkarte **Diagnose / Service**

Durch Anklicken des Kontrollkästchens **Aktivieren**: wird die Funktion Diagnosehalt aktiviert, d. h. bei erfüllter Haltbedingung (angegebener AS-Interface Standard-/A/B-Slave im Zustand ON) werden die Bausteine in einem Bereitzustand (Diagnose-LED gelb, Warten auf Bestätigung) gehalten. Dies geschieht nicht bei aktivierter Vorortquittierung. Der Diagnosehalt ist pеgelempfindlich und deaktiviert, wenn der angegebene Standard-/A/B-Slave keine Buskommunikation hat.

Diese Funktion ist sehr hilfreich, um z. B. bei sehr kurz auftretenden Abschaltvorgängen erkennen zu können, welcher Baustein, und somit welcher sichere Eingangsslave die Ursache für die Abschaltung war.

Hinweis
Für weitere Informationen zum Abrufen von Diagnoseinformationen siehe Kapitel 6 und Kapitel 7.
Globale Einstellungen, Unterregister **Fehlerentriegelung**

Bild 3-7 Unterregister **Fehlerentriegelung** der Registerkarte Diagnose / Service

Durch Anklicken des Kontrollkästchens **Aktivieren**: wird die globale Fehlerentriegelung über einen am AS-Interface Bus angeschlossenen Standard-/A/B-Slave aktiviert.

AS-Interface Diagnose

Monitor-Basisadresse

Unter Datenauswahl können Sie bei vergebener Monitor-Basisadresse einstellen, ob die Diagnosedaten über AS-Interface nach Freigabekreisen sortiert oder unsortiert (alle Devices) ausgegeben werden (siehe Kapitel 7).

Hinweis

Bei der Diagnose über AS-i wird der SPS der Index der abgeschalteten Bausteine signalisiert. Wurde in der Konfiguration ein Baustein eingefügt oder gelöscht, verschoben sich bisher alle nachfolgenden Indizes mit der Folge, dass der Anwender das Diagnose-Programm in der SPS modifizieren musste.

Im Menü **Bearbeiten** können sie daher in der Version 2.1 von **ASIMON** unter dem Menüpunkt **Bausteinindex-Zuordnung** den Bausteinen ihre Diagnose-Indizes für die AS-Interface Diagnose frei zuweisen (siehe Kapitel 7.2).
Slaves simulieren

Wenn weniger als vier sichere oder unsichere AS-Interface Slaves am AS-Interface Bus angeschlossen sind, müssen Sie **Slaves simulieren** ungleich Null setzen, damit der AS-Interface Sicherheitsmonitor ordnungsgemäß arbeitet.

Die Anzahl simulierter Slaves kann 1 (für große AS-Interface Netze) oder 3 (für kleine AS-Interface Netze) betragen.

Hinweis

Ist **Slaves simulieren** ungleich Null gesetzt, werden intern 1 bzw. 3 zusätzliche AS-Interface Slaves simuliert, die automatisch die 1 bzw. 3 auf den AS-Interface Sicherheitsmonitor folgenden Busadressen erhalten.

Ist die Funktion **Slaves simulieren** aktiviert (Anzahl simulierter Slaves: 1 oder 3), kann der Zustand der Relais- und Meldeausgänge vom AS-Interface Master (SPS) über AS-Interface an **Monitor-Basisadresse+1** Datenbits D3 … D0 abgefragt werden. Der Bitzustand 0 kennzeichnet dabei einen inaktiven Ausgang, der Bitzustand 1 einen aktiven Ausgang, entsprechend dem Ersatzwert im Prozessabbild des AS-Interface Masters.

<table>
<thead>
<tr>
<th>Datenbit</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>Zustand Relaisausgang 1</td>
</tr>
<tr>
<td>D1</td>
<td>Zustand Meldeausgang 1</td>
</tr>
<tr>
<td>D2</td>
<td>Zustand Relaisausgang 2</td>
</tr>
<tr>
<td>D3</td>
<td>Zustand Meldeausgang 2</td>
</tr>
</tbody>
</table>

Der AS-Interface Sicherheitsmonitor belegt demnach eine unterschiedliche Anzahl von Busadressen im AS-Interface Netz:

<table>
<thead>
<tr>
<th>Anzahl belegter Busadressen</th>
<th>Bedeutung</th>
</tr>
</thead>
</table>
Option **Konfiguration öffnen**

Mit der Option Konfiguration öffnen, können Sie eine auf Datenträger gespeicherte, vorhandene Konfigurationsdatei (*.asi) zum Bearbeiten oder Übertragen an einen AS-Interface Sicherheitsmonitor öffnen.

![Bild 3-8 Öffnen einer gespeicherten Konfigurationsdatei](image)

Hinweis

Option **Konfiguration vom AS-Interface Sicherheitsmonitor laden**

Hinweis

Falls beim Programmstart keine Verbindung zum AS-Interface Sicherheitsmonitor hergestellt werden kann (kein AS-Interface Sicherheitsmonitor angeschlossen, Anschluss an falsche Schnittstelle usw.) oder wenn sich der AS-Interface Sicherheitsmonitor im Schutzbetrieb befindet, ist die Option **Konfiguration vom AS-Interface Sicherheitsmonitor laden** deaktiviert.

Sie können dann nur eine neue Konfiguration erstellen, eine auf Datenträger gespeicherte Konfiguration laden und bearbeiten oder auf Fehlersuche gehen (siehe Kapitel 6.2).

Wenn Sie die Option **Konfiguration vom AS-Interface Sicherheitsmonitor laden** wählen, wird die Konfiguration des angeschlossenen AS-Interface Sicherheitsmonitors abgefragt und im Programmrahmenfenster dargestellt.

Kontrollkästchen Dialog beim Start anzeigen

Ist dieses Kontrollkästchen aktiviert, wird der Startassistent bei jedem Start des Programms ASIMON aufgerufen. Wenn Sie dieses Programmverhalten nicht wünschen, deaktivieren Sie ganz einfach dieses Kontrollkästchen und der Startassistent wird beim Programmstart nicht mehr automatisch aufgerufen.

Im Menü **Extras unter Startassistent verwenden** können Sie den automatischen Aufruf des Startassistenten beim Programmstart jederzeit wieder aktivieren oder deaktivieren.
3.2 Beschreibung der Bedienoberfläche

3.2.1 Die Menü-Leiste

Menü-Übersicht

<table>
<thead>
<tr>
<th>Hauptmenü-Leiste</th>
<th>Datei</th>
<th>Bearbeiten</th>
<th>Monitor</th>
<th>Extras</th>
<th>Hilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menü Datei</td>
<td>Im Anfang...</td>
<td>Speichern</td>
<td>Speichern unter...</td>
<td>Drucken</td>
<td>Drucker einrichtung...</td>
</tr>
<tr>
<td></td>
<td>Beenden</td>
<td></td>
<td></td>
<td></td>
<td>Befehle</td>
</tr>
</tbody>
</table>
| **Menü Bearbeiten** | Redigieren | Datei bearbeiten | Datei löschen | Datei auswählen | Datei öffnen | Datei verschieben | Datei verschieben
| | Datei löschen | Datei auf Datei verschieben | Datei löschen | Datei auswählen | Datei öffnen | Datei verschieben | Datei verschieben
| **Menü Monitor** | aktiviert | Monitor auf PC... | PC auf Monitor... | Monitor... | Monitor konfigurieren | Monitor... | Monitor... |
| | aktiviert | Monitor... | PC auf Monitor... | Monitor... | Monitor... | Monitor... | Monitor... |
| **Menü Extras** | Einstellungen... |
| **Menü Hilfe** | Info... |

Hinweis

Je nach Programmvzustand, insbesondere wenn keine Verbindung zu einem AS-Interface Sicherheitsmonitor besteht, sind nicht alle Menübefehle verfügbar.
3.2 Beschreibung der Bedienoberfläche

3.2.2 Die Symbol-Leiste

Über die Symbolleiste können Sie in von Windows\textsuperscript® bekannten Weise wichtige Funktionen mittels Schaltflächen direkt ausführen, ohne über das Menü zu gehen.

![Symbol-Leiste](image)

Bild 3-10 Symbol-Leiste

3.2.3 Die Status-/Info-Zeile

Die Status-/Info-Zeile liefert Ihnen wertvolle Hinweise zur Programmbedienung und macht Sie auf Probleme und Fehler während der Programmablaufung aufmerksam.

|---------------------------------|------------------------|--|

| Hilfe-Informationen: Druckereinstellungen | Monitor-Version: KY 02.00E 01.30 | Status- und Fehler-Informationen: Der Sicherheitsmonitor befindet sich in Konfigurationsbetrieb |

Bild 3-11 Status-/Info-Zeile
3.2.4 Die Fensterbereiche

Die Konfiguration eines AS-Interface Sicherheitsmonitors mit der Software ASIMON erfolgt grafisch interaktiv, d.h. aus einer nach Bausteinen geordneten Symbolbibliothek können Sie die zu überwachenden, sicheren AS-Interface Slaves sowie weitere Funktions-Bausteine auswählen und zu einer Konfiguration zusammensetzen.

Die Breite der einzelnen Fensterbereiche können Sie in von Windows® bekannter Weise mit der Maus Ihren Bedürfnissen anpassen.
Erste Schritte

3.2 Beschreibung der Bedienoberfläche

Fensterbereich Vorverarbeitung

Der Fensterbereich **Vorverarbeitung** unterscheidet sich von den Freigabekreisen nur darin, dass die einzelnen, hier konfigurierten Funktions-Bausteine nicht durch ein globales UND-Gatter verknüpft werden, sondern der Ausgang jeder logischen Verknüpfung getrennt weiterverarbeitet werden kann.

Hinweis

Sie können zur Verknüpfung Überwachungs-Bausteine aus dem anderen Freigabekreis auch direkt in den Verknüpfungs-Baustein einfügen. Bedingung hierfür ist jedoch, dass der Index dieses Überwachungs-Bausteins kleiner als der Index des Verknüpfungs-Bausteins ist, der Überwachungs-Baustein also vor der Verknüpfung bearbeitet wird.

Für AS-Interface Sicherheitsmonitore der Typen 1 und 2 mit Funktionsumfang "Basis" steht als einziger möglicher Verknüpfungs-Baustein nur die logische ODER-Funktion für die Verknüpfung von **zwei** Überwachungs- oder System-Bausteinen zu Verfügung.

In die Vorverarbeitung können Sie auch Verknüpfungs-Bausteine einfügen und dort System-Bausteine miteinander verknüpfen.

Fensterbereiche 1. Freigabekreis und 2. Freigabekreis

In den Fensterbereichen **1. Freigabekreis** und **2. Freigabekreis** werden die Überwachungs-Bausteine (sichere AS-Interface Slaves), Start-Bausteine, Rückführkreis-Bausteine und Ausgabe-Bausteine zur gewünschten Konfiguration zusammengesetzt und global miteinander durch die logische UND-Funktion verknüpft.

Zusätzlich können hier Bausteine aus der Vorverarbeitung und System-Bausteine über Verknüpfungs-Bausteine für die Realisierung komplexerer Funktionen miteinander verknüpft werden.

Bedienung

Für das Einfügen von Bausteinen aus der Symbolbibliothek in die anderen Fensterbereiche oder das Bearbeiten, Löschen, Verschieben und Kopieren von Bausteinen zwischen den Fensterbereichen stehen Ihnen je nach persönlicher Vorliebe mehrere Möglichkeiten zur Auswahl:

Mit der Maus:

- per Drag&Drop:

 Baustein mit linker Maustaste anklicken, Maustaste gedrückt halten und Baustein bewegen. Gleichzeitiges Drücken der Tasten <Umsch> oder <Strg> für weitere Optionen:

 - Werden Bausteine von der Auswahlliste mit der Maus in die Vorverarbeitung oder einen Freigabekreis gezogen, dann wird der Baustein automatisch eingefügt. Wird vor dem Loslassen der Maustaste die Taste <Strg> gedrückt, ersetzt der ausgewählte Baustein den vorher an dieser Position vorhandenen Baustein.

 - Werden Bausteine mit der Maus vom Freigabekreis 1 in den Freigabekreis 2 oder umgekehrt bewegt, wird standardmäßig kopiert. Wird zusätzlich die Taste <Umsch> gedrückt, wird der Baustein verschoben.
- Werden Bausteine innerhalb der Vorverarbeitung oder der Freigabekreise mit der Maus nach unten bewegt, werden die Bausteine standardmäßig verschoben. Wird zusätzlich die Taste <Strg> gedrückt, kann der Baustein einem Verknüpfungs-Baustein zugewiesen werden.

- **per rechte Maustaste:**

- **per Menübefeihl:**

Mit der Tastatur:

- mit Taste <Tab>: Wechseln der Fensterbereiche.
- mit den Pfeiltasten: Kreis, Baustein oder Position wählen.
- mit den folgenden Tastaturbefehlen Aktion ausführen:

 - `<Strg> + <D>` = Aktivieren/Deaktivieren
 - `<Strg> + <I>` = Invertieren
 - `<Entf>` = Löschen
 - `<Strg> + <C>` = Auswählen
 - `<Strg> + <V>` = Einfügen
 - `<Umsch> + <Strg> + <V>` = Verschieben
 - `<Strg> + <A>` = Zuweisen
 - `<Strg> + <R>` = Ersetzen

Anzeigeoptionen...

Sie können einstellen, mit welchem Informationsgehalt die Bausteine in den Fensterbereichen der Vorverarbeitung und der Freigabekreise dargestellt werden. Wählen Sie dazu im Menü Extras den Menüpunkt Anzeigeoptionen... oder klicken Sie auf die Schaltfläche .

Bild 3-13 Anzeigeoptionen
3.3 Programmeinstellungen

3.3.1 Programmsprache einstellen

Die Konfigurationsssoftware ASIMON unterstützt seitens der Benutzeroberfläche folgende Sprachen:

- Deutsch
- Englisch
- Französisch
- Spanisch
- Italienisch
- Japanisch

Zum Ändern der Sprache der Benutzeroberfläche wählen Sie im Menü Extras unter dem Menüpunkt Sprache die gewünschte Sprache. Im Anschluss daran ist kein Programmneustart erforderlich.

Bild 3-14 Programmsprache einstellen

Hinweis

Die japanischen Schriftzeichen können nur bei einer entsprechenden Unterstützung durch das Betriebssystem dargestellt werden.

3.3.2 Auswahl der seriellen Schnittstelle

Beim Programmsstart fragt ASIMON ab, ob und an welcher seriellen Schnittstelle (COM-Port) des PC ein AS-Interface Sicherheitsmonitor angeschlossen wird. Wird die Verbindung zwischen PC und Sicherheitsmonitor erst bei laufender ASIMON Software hergestellt, müssen Sie den richtigen COM-Port im Programm manuell einstellen, sonst kann keine Verbindung zum AS-Interface Sicherheitsmonitor aufgebaut werden.

Die Übertragungsparameter für die serielle Kommunikation mit dem AS-Interface Sicherheitsmonitor werden von ASIMON automatisch eingestellt.

Bild 3-15 Auswahl der serienen Schnittstelle
Konfiguration des AS-Interface Sicherheits-monitors

Der AS-Interface Sicherheitsmonitor ist eine universell einsetzbare Schutzeinrichtung und kann deshalb für die verschiedensten Anwendungen konfiguriert werden.

4.1 Arbeitsweise des AS-Interface Sicherheitsmonitors

Funktionale Aufgabe des AS-Interface Sicherheitsmonitors ist es, entsprechend der vom Anwender angegebenen Konfiguration aus den Zuständen der konfigurierten Bausteine fortwährend den Zustand des/der Freigabekreise(s) zu bestimmen und die zugeordneten Sicherheitsschaltausgänge zu aktivieren bzw. zu deaktivieren.

Die Software ASIMON ordnet die Bausteine während der Konfiguration selbständig in der folgenden Reihenfolge:
1. Überwachungs- und Verknüpfungs-Bausteine in beliebiger Reihenfolge
2. Rückführkreis-Bausteine (Schützkontrolle)
3. Start-Bausteine
4. Ausgabe-Baustein

Im Schutzbetrieb werden die Bausteine ebenfalls in dieser Reihenfolge zyklisch ausgewertet. Jeder Baustein kann den Zustände annehmen:

Zustand ON (eingeschaltet, logisch "1")

Dieser Zustand bedeutet die Zustimmung des Bausteins zur Freigabe des Kreises, d. h. zur Aktivierung der Sicherheitsschaltausgänge. Je nach Bausteintyp müssen dazu verschiedene Bedingungen erfüllt sein.

Zustand OFF (ausgeschaltet, logisch "0")

Dieser Zustand bedeutet, dass der Baustein der Freigabe des Kreises nicht zustimmt bzw. er führt zum Abschalten der Sicherheitsschaltausgänge.

Im ersten Schritt der Auswertung werden die Zustände aller Überwachungs-, Verknüpfungs- und Rückführkreis-Bausteine über eine logische UND-Funktion miteinander verknüpft, d. h. nur wenn alle konfigurierten Überwachungs-, Verknüpfungs- und Rückführkreis-Bausteine den Zustand ON haben, ist das Ergebnis der UND-Funktion gleich ON. Die Auswertung der Bausteinzustände erfolgt also im Prinzip wie bei einem elektrischen Sicherheitsschaltkreis, bei dem alle Sicherheitsschaltelemente in Reihe geschaltet sind und eine Freigabe nur erfolgen kann, wenn alle Kontakte geschlossen sind.

Im zweiten Schritt erfolgt die Auswertung der Start-Bausteine, die das Anlaufverhalten des Freigabekreises bestimmen. Ein Start-Baustein geht in den Zustand ON, wenn das Ergebnis der UND-Funktion aus dem ersten Auswertungsschritt gleich ON ist und wenn die jeweilige

Start-Bausteine

Überwachungs-Bausteine

Verknüpfungs-Bausteine

Rückführkreis-Bausteine

Bild 4-1 Ablauf der Auswertung der konfigurierten Bausteine

Im dritten Schritt wird schließlich der Ausgabe-Baustein ausgewertet. Ist die interne Freigabe des Kreises erfolgt (Ergebnis der ODER-Funktion aus dem zweiten Auswertungsschritt gleich ON) schaltet der Ausgabe-Baustein entsprechend seiner Funktion und seines Zeitverhaltens die Melde- und Sicherheitsschaltausgänge des Freigabekreises ein, d. h. die Relais ziehen an und die Schaltkontakte werden geschlossen.
4.2 Prinzipielles Vorgehen

Das Vorgehen ist für alle Gerätevarianten des AS-Interface Sicherheitsmonitors (1 oder 2 Freigabekreise, Funktionsumfang "Basis" oder "Erweitert") identisch.

Schritt 1 – Monitor-/Businformationen

Zum Anlegen einer neuen Konfiguration müssen Sie im Fenster Monitor-/Businformation zunächst alle erforderlichen Angaben, über den eingesetzten AS-Interface Sicherheitsmonitor und die zu überwachenden AS-Interface Slaves machen (siehe "Startassistent" auf Seite 17):

• Titel der Konfiguration vergeben
• Betriebsmodus des AS-Interface Sicherheitsmonitors angeben
 - ein Freigabekreis
 - zwei unabhängige Freigabekreise
 - zwei abhängige Freigabekreise
• Funktionsumfang des AS-Interface Sicherheitsmonitors angeben
 - Funktionsumfang "Basis" oder "Erweitert"
 - Monitorversion 2.0 oder < 2.0
• AS-Interface Busadressen der zu überwachenden sicheren und nicht sicheren AS-Interface Slaves eintragen
• Gegebenenfalls Diagnosehalt über Standard-Slave aktivieren
• Gegebenenfalls Fehlerentriegelung über Standard-Slave aktivieren
• Diagnose über AS-Interface aktivieren
 - AS-Interface Busadresse des AS-Interface Sicherheitsmonitors eintragen
 - Auswahl der Diagnose-Daten: nach Freigabekreisen sortiert oder alle Devices
 - Gegebenenfalls Option 1 oder 3 Slaves simulieren aktivieren

Schritt 2 – Konfiguration erstellen

Schritt 3 – Inbetriebnahme

Haben Sie eine gültige Konfiguration erstellt, können Sie den AS-Interface Sicherheitsmonitor inbetriebnehmen. Die Vorgehensweise bei der Inbetriebnahme ist in Kapitel 5 beschrieben.
4.3 Erstellen und Ändern einer Konfiguration

Eine gültige Konfiguration für den AS-Interface Sicherheitsmonitor muss für jeden unabhängigen Freigabekreis aus folgenden Bausteinen bestehen:

- Mindestens ein Überwachungs-Baustein
- Mindestens ein Start-Baustein (bei zwei abhängigen Abschalteinheiten nur für Freigabekreis 1)
- Genau ein Ausgabe-Baustein (bei zwei abhängigen Abschalteinheiten nur für Freigabekreis 1)

Die maximale Anzahl von Bausteinen ist vom Funktionsumfang des AS-Interface Sicherheitsmonitor-Typs abhängig:

- Funktionsumfang "Basis": maximal 32 Bausteine (Baustein-Index 32 … 63).
- Funktionsumfang "Erweitert": maximal 48 Bausteine (Baustein-Index 32 … 79).

Vorgehensweise

Wählen Sie einen Baustein aus der Symbolbibliothek im linken Fensterbereich aus und fügen Sie ihn in den Fensterbereich des gewünschten Freigabekreises ein (siehe "Bedienung" auf Seite 28).

Hinweis

Detailisierte Angaben, welche Bausteine bei welcher Konfiguration einsetzbar sind, finden Sie in der Beschreibung der einzelnen Bausteine.

Wenn Sie den Baustein im gewünschten Freigabekreis einfügen, öffnet sich zunächst die Eingabemaske des Bausteins, in der Sie alle erforderlichen Angaben für diesen Baustein machen. Dies sind Angaben, wie z. B.:

- Bezeichnung (Name) des Bausteins in Ihrer Applikation, z. B. "Schleuse Tür1"
- AS-Interface Busadresse
- zusätzlich aktivierbare Baustein-Optionen
- Überwachungs- und Verzögerungszeiten

Nach Bestätigen Ihrer Eingaben mit der Schaltfläche OK erscheint der Baustein im Fenster des jeweiligen Freigabekreises.

Beispiel:

1. Freigabekreis

[32]#1"NA 1" - NotAus

[33]#2"NA 3" - NotAus

[36]#3"BwS 1" - BwS

Bild 4-2 Grafische Abbildung der Bausteine

Der Index beginnt bei 32 und wird fortlaufend um 1 erhöht. Im Konfigurationsprotokoll kann jeder konfigurierte Baustein anhand des Index eindeutig identifiziert werden.

Hinweis

Die Darstellung der Bausteine kann angepasst werden.

Wählen Sie dazu im Menü Extras den Menüpunkt Anzeigeoptionen… oder klicken Sie auf die Schaltfläche (siehe Kapitel 3.2.4).

Hinweis

Bei der Diagnose über AS-i wird der SPS der Index der abgeschalteten Bausteine signalisiert. Wurde in der Konfiguration ein Baustein eingefügt oder gelöscht, verschoben sich bisher alle nachfolgenden Indizes mit der Folge, dass der Anwender das Diagnose-Programm in der SPS modifizieren musste.

Im Menü Bearbeiten können sie daher in der Version 2.1 von ASIMON unter dem Menüpunkt Bausteinindex-Zuordnung den Bausteinen ihren Diagnose-Indizes für die AS-Interface Diagnose frei zuweisen (siehe Kapitel 7). Dabei können Sie wählen, ob der Diagnose-Indexbereich 0 … 47 oder analog zu den Baustein-Indices 32 … 79 beträgt.
ASIMON ordnet alle Bausteine einer Konfiguration selbsttätig in der folgenden Reihenfolge:
1. Überwachungs- und Verknüpfungs-Bausteine in beliebiger Reihenfolge
2. Rückführkreis-Bausteine (Schützkontrolle)
3. Start-Bausteine
4. Ausgabe-Baustein

Beim Einfügen eines Bausteins werden alle Indizes entsprechend neu geordnet.

Hinweis

Wird ein Baustein nur in einem Freigabekreis konfiguriert, bleibt die Index-Position im anderen Freigabekreis unbesetzt.

Beispiel:

Bild 4-3 Struktur einer Konfiguration

Um einen Baustein aus der Konfiguration zu löschen, markieren Sie ihn mit der Maus und wählen den Befehl **Löschen** aus dem Menü **Bearbeiten** oder dem Kontext-Menü (rechte Maustaste) oder drücken Sie einfach die Taste <Ent>.

Zum Bearbeiten eines Bausteins öffnen Sie durch Doppelklick auf sein Symbol erneut seine Eingabemaske, in der Sie alle Bausteinparameter editieren können. Alternativ können Sie dazu den Befehl **Bausteinparameter ...** im Menü **Bearbeiten** oder den Befehl **Bearbeiten ...** im Kontextmenü verwenden.
4.3.1 Überwachungs-Bausteine

Über die Überwachungs-Bausteine werden die eigentlichen sicherheitsgerichteten Schaltkomponenten des/der Freigabekreise(s) in der Konfiguration abgebildet.

Bei den Überwachungs-Bausteinen wird unterschieden zwischen:

Zweikanalige, zwangsgeführte Komponenten

Der Funktions-Baustein für zweikanalige, zwangsgeführte Komponenten kann somit beispielsweise für
• NOT-AUS-Schalter
• Berührungslos wirkende Schutzeinrichtungen
• Stillstandswächter

genutzt werden. Hierbei ist sowohl der direkte Anschluss eines integrierten AS-Interface Slaves als auch der Anschluss eines konventionellen Bauteils über ein sicheres Koppelmodul möglich. Als Optionen sind die Vor-Ort-Quittierung und/oder der Anlauftest wählbar.

Zweikanalige, abhängige Komponenten

Die Überwachung, ob eine Schutztür geöffnet oder geschlossen ist, erfolgt über zwei Sicherheitsschalter. Öffnet oder schließt man diese Schutztür, so erfolgt die Betätigung der Sicherheitsschalter nicht gleichzeitig. Im zweikanalig abhängigen Funktions-Baustein kann deshalb eine Synchronisationszeit angegeben werden. Innerhalb dieser Synchronisationszeit müssen die beiden Schalter geschlossen sein. Die Überschreitung der Synchronisationszeit führt in den Zustand Anlauftestung.

Vom Sicherheitsmonitor wird ebenfalls überwacht, dass immer eine der beiden Endstellungen "beide Schalter offen" oder "beide Schalter geschlossen" erreicht wird.

Der Funktions-Baustein für zweikanalige, abhängige Komponenten kann somit beispielsweise für
• Schutztüren mit zwei Sicherheitsschaltern
• Zweihandbedienungen

eingesetzt werden. Hierbei ist sowohl der direkte Anschluss eines integrierten AS-Interface Slaves als auch der Anschluss eines konventionellen Bauteils über ein sicheres Koppelmodul möglich. Als Optionen sind die Vor-Ort-Quittierung und/oder der Anlauftest wählbar.
Zweikanalige, abhängige Komponenten mit Entprellung

Hinweis
Diese Komponenten sind nur für die Typen des AS-Interface Sicherheitsmonitors mit erweitertem Funktionsumfang (Typ 3 und Typ 4) verfügbar.

Vom Sicherheitsmonitor wird ebenfalls überwacht, dass immer eine der beiden Endstellungen "beide Schalter offen" oder "beide Schalter geschlossen" erreicht wird.

Der Funktions-Baustein für zweikanalige, abhängige Komponenten mit Entprellung kann somit beispielsweise für
- Schleichschalter
- Schalter mit hohen Prellzeiten
eingesetzt werden. Hierbei ist sowohl der direkte Anschluss eines integrierten AS-Interface Slaves als auch der Anschluss eines konventionellen Bauteils über ein sicheres Koppelmodul möglich. Als Optionen sind die Vor-Ort-Quittierung und/oder der Anlaufstest wählbar.

Zweikanalige, bedingt abhängige Komponenten

Hinweis
Diese Komponenten sind nur für die Typen des AS-Interface Sicherheitsmonitors mit erweitertem Funktionsumfang (Typ 3 und Typ 4) verfügbar.

Welcher Kontakt von welchem abhängig ist, kann im zweikanalig bedingt abhängigen Funktions-Baustein frei gewählt werden. Der unabhängige Kontakt kann beliebig geöffnet und geschlossen werden, solange der abhängige Kontakt nicht geöffnet wird.

Der Funktions-Baustein für zweikanalige, bedingt abhängige Komponenten kann somit beispielsweise für
- Türschalter mit Zuhaltung
eingesetzt werden. Hierbei ist sowohl der direkte Anschluss eines integrierten AS-Interface Slaves als auch der Anschluss eines konventionellen Bauteils über ein sicheres Koppelmodul möglich.

Achtung
Durch die zulässige unabhängige Betätigung wird ein Redundanzverlust nicht erkannt!
Zweikanalige, unabhängige Komponenten

Der Funktions-Baustein für zweikanalige, unabhängige Komponenten kann beispielsweise für
- Sicherheitsschalter für Tüüberwachung
eingesetzt werden. Hierbei ist sowohl der direkte Anschluss eines integrierten AS-Interface Slaves als auch der Anschluss eines konventionellen Bauteils über ein sicheres Koppelmodul möglich. Als Optionen sind die Vor-Ort-Quittierung und/oder der Anlauf test wählbar.

Achtung

Durch die zulässige unabhängige Betätigung wird ein Redundanzverlust nicht erkannt!

Standard-Slave

Innerhalb eines Freigabekreises können auch Standard-AS-Interface Slaves eingesetzt werden, um mit deren Schaltsignalen (Ein- oder Ausgänge) ausschließlich ein betriebsmäßiges Schalten des/der Sicherheitsschaltausgänge des AS-Interface Sicherheitsmonitors in einem Freigabekreis zu realisieren.

Achtung

Der Einsatz eines Standard-Slave-Bausteins für sicherheitsgerichtete Schaltaufgaben ist nicht zulässig!

Monitoreingang

Innerhalb der Freigabekreise oder der Vorverarbeitung können auch die 2 bzw. 4 Eingänge 1.Y1, 1.Y2 bzw. 2.Y1, 2.Y2 des AS-Interface Sicherheitsmonitors eingesetzt werden, um mit deren Eingangssignalen ausschließlich ein betriebsmäßiges Schalten des/der Sicherheitsschaltausgänge des AS-Interface Sicherheitsmonitors in einem Freigabekreis zu realisieren.

Achtung

Der Einsatz eines Monitoreingang-Bausteins für sicherheitsgerichtete Schaltaufgaben ist nicht zulässig!

Taste

Innerhalb der Freigabekreise oder der Vorverarbeitung kann der Baustein Taste eingebunden werden. Der Baustein Taste ermöglicht eine Quittierung auf Bausteinebene. Sobald die Freigabe für den mit der Taste verknüpften Baustein da ist, kann dieser Baustein durch die Betätigung der Taste freigegeben, d. h. quittiert, werden.

Mit Hilfe des Bausteins Taste können beispielsweise mehrere durch ein UND-Gatter verknüpfte Lichtgitter gemeinsam mit einer Vorortquittierung versehen werden.

NOP

Nullfolgeerkennung

Der Überwachungs-Baustein Nullfolgeerkennung kann zur Überwachung eingesetzt werden, ob bei einem sicheren Eingangslave beide Schalter geöffnet sind. Der Baustein geht in den Zustand ON, wenn dauerhaft der Wert 0000 vom sicheren Slave übertragen wird.

Achtung

Der Einsatz eines Nullfolgeerkennungs-Bausteins für sicherheitsgerichtete Schaltaufgaben ist nicht zulässig!

Anwendungs-Symbole

Die Darstellung der Überwachungs-Bausteine in einem Freigabekreis erfolgt immer mit beiden Symbolen, dem Bausteinsymbol und dem Anwendungssymbol.
Baustein-Optionen

Viele Überwachungs-Bausteine besitzen zusätzlich zu Ihrem Sicherheitsschaltverhalten Optionen, mit denen Sie auch komplexere Anwendungen realisieren können. Dazu gehören:

Anlauftest

Der Anlauftest wird z. B. dann verwendet, wenn die ordnungsgemäße Funktion einer Schutztür vor dem Anlaufen der Maschine überprüft werden soll. Der Anlauftest bewirkt in diesem Fall, dass die Tür vor dem Start der Maschine geöffnet und wieder geschlossen werden muss. Erst dann ist ein Maschinenstart möglich.

Vorortquittierung

Die Vorortquittierung findet dann ihre Verwendung, wenn z. B. eine Schutztür in einem nicht vom Schaltpult aus einsehbaren Bereich liegt. Mit der Vorortquittierung wird erreicht, dass eine Quittierung (d. h. eine Bestätigung, dass sich in diesem Maschinenteil keine Person befindet) nur vom Vor-Ort-Bedienpult gemacht werden kann.

Hinweis

Für das Eintreffen der Signale gelten bestimmte Zeitbedingungen, verdeutlicht am Beispiel Sicherheitslichtgitter:

2. Eine Betätigung der Vorortquittierung wird dann als gültig gewertet, wenn das Schaltsignal für minimal 50 ms und maximal 2 s ansteht.

Die verfügbaren Überwachungs-Bausteine sind nachfolgend im Einzelnen beschrieben.

Hinweis

Die in den folgenden Beschreibungen der Bausteine aufgeführten Funktions-Bausteine mit Ihren Varianten, z. B. double channel forced safety input mit startup test, finden Sie in dieser Form im Konfigurationsprotokoll des AS-Interface Sicherheitsmonitors wieder (siehe Kapitel 5.8 und Beispiele zu den jeweiligen Überwachungs-Bausteinen).
Zweikanalig zwangsgeführt

Symbol

Funktions-Baustein Zweikanalig zwangsgeführter Sicherheitseingang

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>double channel forced safety input</td>
</tr>
</tbody>
</table>

Varianten

<table>
<thead>
<tr>
<th>Varianten</th>
<th>SUBTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne Anlauffest</td>
<td>no startup test</td>
</tr>
<tr>
<td>mit Anlauffest</td>
<td>startup test</td>
</tr>
<tr>
<td>ohne Vorortquittierung</td>
<td>no local acknowledge</td>
</tr>
<tr>
<td>mit Vorortquittierung</td>
<td>local acknowledge</td>
</tr>
<tr>
<td>mit Vorortquittierung auch nach Hochlauf</td>
<td>local acknowledge always</td>
</tr>
</tbody>
</table>

Parameter

- Bezeichner: max. 29 ASCII-Zeichen Klartext
- Adresse: AS-Interface Busadresse (1 ... 31)
- Anlauffest: mit / ohne
- Vorortquittierung: mit / auch nach Hochlauf / ohne
- Slave-Typ: Standard-/A/B-Slave
- Adresse: AS-Interface Busadresse der Vorortquittierung (1 ... 31)
- Bitadresse: In-0 ... In-3 oder Out-0 ... Out-3, invertiert / nicht invertiert

Eingabemaske
Beschreibung

Achtung

Schließt/öffnet nur ein Kontakt, so geht der Baustein nach einer tolerierten Übergangszeit von 100 ms in den Zustand "Fehler".

Anwendungs-Symbole

- **NOT-AUS**
- Schutztür
- **BWS** Berührungslos wirkende Schutzeinrichtung
- **Modul** dient dazu, konventionelle Sicherheitsschaltelemente über ein sicherheitsgerichtetes AS-Interface Modul anzuschließen.
Konfiguration des AS-Interface Sicherheits-monitors

4.3 Erstellen und Ändern einer Konfiguration

Konfigurationsprotokoll

Beispiel ohne Anlauftest + ohne Vorortquittierung

<table>
<thead>
<tr>
<th>INDEX: 0018</th>
<th>32 = "Bezeichner"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE: 0019</td>
<td>20 = double channel forced safety input</td>
</tr>
<tr>
<td>SUBTYPE: 0020</td>
<td>no startup test</td>
</tr>
<tr>
<td>SUBTYPE: 0021</td>
<td>no local acknowledge</td>
</tr>
<tr>
<td>ASSIGNED: 0022</td>
<td>channel one</td>
</tr>
<tr>
<td>SAFE SLAVE: 0023</td>
<td>5</td>
</tr>
</tbody>
</table>

Beispiel mit Anlauftest + ohne Vorortquittierung

<table>
<thead>
<tr>
<th>INDEX: 0025</th>
<th>33 = "Bezeichner"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE: 0026</td>
<td>20 = double channel forced safety input</td>
</tr>
<tr>
<td>SUBTYPE: 0027</td>
<td>startup test</td>
</tr>
<tr>
<td>SUBTYPE: 0028</td>
<td>no local acknowledge</td>
</tr>
<tr>
<td>ASSIGNED: 0029</td>
<td>channel one</td>
</tr>
<tr>
<td>SAFE SLAVE: 0030</td>
<td>5</td>
</tr>
</tbody>
</table>

Beispiel ohne Anlauftest + mit Vorortquittierung

<table>
<thead>
<tr>
<th>INDEX: 0032</th>
<th>34 = "Bezeichner"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE: 0033</td>
<td>20 = double channel forced safety input</td>
</tr>
<tr>
<td>SUBTYPE: 0034</td>
<td>no startup test</td>
</tr>
<tr>
<td>SUBTYPE: 0035</td>
<td>local acknowledge ADDRESS: 21 BIT: In-0 noninv</td>
</tr>
<tr>
<td>ASSIGNED: 0036</td>
<td>channel one</td>
</tr>
<tr>
<td>SAFE SLAVE: 0037</td>
<td>5</td>
</tr>
</tbody>
</table>

Beispiel ohne Anlauftest + mit Vorortquittierung auch nach Hochlauf

<table>
<thead>
<tr>
<th>INDEX: 0039</th>
<th>35 = "Bezeichner"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE: 0040</td>
<td>20 = double channel forced safety input</td>
</tr>
<tr>
<td>SUBTYPE: 0041</td>
<td>no startup test</td>
</tr>
<tr>
<td>SUBTYPE: 0042</td>
<td>local acknowledge always ADDRESS: 21 BIT: In-0 invert</td>
</tr>
<tr>
<td>ASSIGNED: 0043</td>
<td>channel one</td>
</tr>
<tr>
<td>SAFE SLAVE: 0044</td>
<td>5</td>
</tr>
</tbody>
</table>

Beispiel: mit Anlauftest + mit Vorortquittierung

<table>
<thead>
<tr>
<th>INDEX: 0046</th>
<th>36 = "Bezeichner"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE: 0047</td>
<td>20 = double channel forced safety input</td>
</tr>
<tr>
<td>SUBTYPE: 0048</td>
<td>startup test</td>
</tr>
<tr>
<td>SUBTYPE: 0049</td>
<td>local acknowledge ADDRESS: 21 BIT: In-0 noninv</td>
</tr>
<tr>
<td>ASSIGNED: 0050</td>
<td>channel one</td>
</tr>
<tr>
<td>SAFE SLAVE: 0051</td>
<td>5</td>
</tr>
</tbody>
</table>
Zweikanalig abhängig

Symbol

Funktions-Baustein Zweikanalig abhängiger Sicherheitseingang

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>double channel dependent safety input</td>
</tr>
</tbody>
</table>

Variationen

ohne Anlaufstest	SUBTYPE: no startup test
mit Anlaufstest	SUBTYPE: startup test
ohne Vorortquittierung	SUBTYPE: no local acknowledge
mit Vorortquittierung	SUBTYPE: local acknowledge
mit Vorortquittierung auch nach Hochlauf	SUBTYPE: local acknowledge always

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext
Adresse: AS-Interface Busadresse (1 ... 31)
Anlaufstest: mit / ohne
Synchronisationszeit: 100 ms ... 30 s in Vielfachen von 100 ms oder ∞ (unendlich)
Vorortquittierung: mit / auch nach Hochlauf / ohne
Slave-Typ: Standard-/A/B-Slave
Adresse: AS-Interface Busadresse der Vorortquittierung (1 ... 31)
Bitadresse: In-0 ... In-3 oder Out-0 ... Out-3, invertiert / nicht invertiert

Eingabemaske
Beschreibung

Hinweis

Wird die vom Anwender definierte Synchronisationszeit überschritten, muss die Betätigung wiederholt werden. Ist für die Synchronisationszeit unendlich (∞) eingestellt, wartet der AS-Interface Sicherheitsmonitor mit der Freigabe solange, bis das zweite Schaltsignal eintrifft.

Anwendungs-Symbole

- NOT-AUS
- Schutztür
- BWS Berührungslos wirkende Schutzeinrichtung
- Modul dient dazu, konventionelle Sicherheitsschaltelemente über ein sicherheitsge richtetes AS-Interface Modul anzuschließen.
- Zweihand bedienung (nach EN 574: mit Anlaufstest, Synchronisationszeit max. 500 ms)

Vorsicht

Beim Einsatz als Zweihandbedienung sind die entsprechenden Anwendungshinweise in der Dokumentation des Herstellers unbedingt zu beachten!
Konfigurationsprotokoll

Beispiel: ohne Anlauftest + ohne Vorortquittierung

<table>
<thead>
<tr>
<th>Index</th>
<th>Bezeichner</th>
<th>Type</th>
<th>Subtype</th>
<th>Assigned</th>
<th>Safe Slave</th>
<th>Sync Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0018</td>
<td>32</td>
<td>"Bezeichner"</td>
<td>double channel dependent safety input</td>
<td>no startup test</td>
<td>no local acknowledge</td>
<td>channel one</td>
</tr>
<tr>
<td>0019</td>
<td>21</td>
<td>double channel dependent safety input</td>
<td>startup test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0020</td>
<td>0</td>
<td>no startup test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0021</td>
<td>1</td>
<td>no local acknowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0022</td>
<td>2</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0023</td>
<td>3</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0024</td>
<td>4</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beispiel mit Anlauftest + ohne Vorortquittierung

<table>
<thead>
<tr>
<th>Index</th>
<th>Bezeichner</th>
<th>Type</th>
<th>Subtype</th>
<th>Assigned</th>
<th>Safe Slave</th>
<th>Sync Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0025</td>
<td>33</td>
<td>"Bezeichner"</td>
<td>double channel dependent safety input</td>
<td>no startup test</td>
<td>no local acknowledge</td>
<td>channel one</td>
</tr>
<tr>
<td>0026</td>
<td>21</td>
<td>double channel dependent safety input</td>
<td>startup test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0027</td>
<td>7</td>
<td>startup test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0028</td>
<td>8</td>
<td>no local acknowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0029</td>
<td>9</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0030</td>
<td>0</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0031</td>
<td>1</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beispiel: ohne Anlauftest + mit Vorortquittierung

<table>
<thead>
<tr>
<th>Index</th>
<th>Bezeichner</th>
<th>Type</th>
<th>Subtype</th>
<th>Assigned</th>
<th>Safe Slave</th>
<th>Sync Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0032</td>
<td>34</td>
<td>"Bezeichner"</td>
<td>double channel dependent safety input</td>
<td>no startup test</td>
<td>local acknowledge</td>
<td>channel one</td>
</tr>
<tr>
<td>0033</td>
<td>21</td>
<td>double channel dependent safety input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0034</td>
<td>4</td>
<td>no startup test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0035</td>
<td>5</td>
<td>local acknowledge</td>
<td>ADDRESS: 21 BIT: In-0 noninv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0036</td>
<td>6</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0037</td>
<td>7</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0038</td>
<td>8</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beispiel: ohne Anlauftest + mit Vorortquittierung auch nach Hochlauf

<table>
<thead>
<tr>
<th>Index</th>
<th>Bezeichner</th>
<th>Type</th>
<th>Subtype</th>
<th>Assigned</th>
<th>Safe Slave</th>
<th>Sync Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0040</td>
<td>35</td>
<td>"Bezeichner"</td>
<td>double channel dependent safety input</td>
<td>no startup test</td>
<td>local acknowledge always</td>
<td>channel one</td>
</tr>
<tr>
<td>0041</td>
<td>21</td>
<td>double channel dependent safety input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0042</td>
<td>2</td>
<td>no startup test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0043</td>
<td>3</td>
<td>local acknowledge always</td>
<td>ADDRESS: 21 BIT: In-0 invert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0044</td>
<td>4</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0045</td>
<td>5</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0046</td>
<td>6</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beispiel: mit Anlauftest + mit Vorortquittierung

<table>
<thead>
<tr>
<th>Index</th>
<th>Bezeichner</th>
<th>Type</th>
<th>Subtype</th>
<th>Assigned</th>
<th>Safe Slave</th>
<th>Sync Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0048</td>
<td>36</td>
<td>"Bezeichner"</td>
<td>double channel dependent safety input</td>
<td>no startup test</td>
<td>local acknowledge</td>
<td>channel one</td>
</tr>
<tr>
<td>0049</td>
<td>21</td>
<td>double channel dependent safety input</td>
<td>startup test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0050</td>
<td>0</td>
<td>startup test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0051</td>
<td>1</td>
<td>local acknowledge</td>
<td>ADDRESS: 21 BIT: In-0 noninv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0052</td>
<td>2</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0053</td>
<td>3</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0054</td>
<td>4</td>
<td>channel one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Konfiguration des AS-Interface Sicherheits-monitors

4.3 Erstellen und Ändern einer Konfiguration

Zweikanalig abhängig mit Entprellung

Symbol

Funktions-Baustein Zweikanalig abhängiger Sicherheitseingang mit Entprellung

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>double channel dependent slow action safety input</td>
</tr>
</tbody>
</table>

Varianten

<table>
<thead>
<tr>
<th>Varianten</th>
<th>Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne Anlauftest</td>
<td>no startup test</td>
</tr>
<tr>
<td>mit Anlauftest</td>
<td>startup test</td>
</tr>
<tr>
<td>ohne Vorortquittierung</td>
<td>no local acknowledge</td>
</tr>
<tr>
<td>mit Vorortquittierung</td>
<td>local acknowledge</td>
</tr>
<tr>
<td>mit Vorortquittierung auch nach Hochlauf</td>
<td>local acknowledge always</td>
</tr>
</tbody>
</table>

Parameter

- Bezeichner: max. 29 ASCII-Zeichen Klartext
- Adresse: AS-Interface Busadresse (1 … 31)
- Anlauftest: mit / ohne
- Synchronisationszeit: 200 ms … 60 s in Vielfachen von 100 ms oder ∞ (unendlich), Default 0,5 s
- Prellzeit: 100 ms … 25 s in Vielfachen von 100 ms
- Vorortquittierung: mit / auch nach Hochlauf / ohne
- Slave-Typ: Standard-/A/B-Slave
- Adresse: AS-Interface Busadresse der Vorortquittierung (1 … 31)
- Bitadresse: In-0 … In-3 oder Out-0 … Out-3, invertiert / nicht invertiert

Eingabemaske
Beschreibung

Hinweis

Die eingestellte Prellzeit wird grundsätzlich immer abgewartet. Das heißt, wenn eine Prellzeit von 10 s eingestellt wird, dann wird der Baustein auch frühestens nach Ablauf dieser Zeitspanne freigegeben.

Öffnet nur ein Kontakt, muss der zweite Kontakt trotzdem noch öffnen, bevor beide Kontakte wieder geschlossen werden können.

Hinweis

Wird die vom Anwender definierte Synchronisationszeit überschritten, muss die Betätigung wiederholt werden. Ist für die Synchronisationszeit unendlich (∞) eingestellt, wartet der AS-Interface Sicherheitsmonitor mit der Freigabe solange, bis das zweite Schaltsignal eintrifft.

Anwendungs-Symbole

<table>
<thead>
<tr>
<th>Schalttür</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul dient dazu, konventionelle Sicherheitsschaltelelemente über ein sicherheitsgerichtetes AS-Interface Modul anzuschließen.</td>
</tr>
</tbody>
</table>
Konfigurationsprotokoll

Beispiel: Synchronisationszeit 0,3 s, Prellzeit 0,2 s

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>SUBTYPE</th>
<th>ASSIGNED</th>
<th>SAFE SLAVE</th>
<th>SYNC TIME</th>
<th>CHATTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>24</td>
<td>no startup test</td>
<td>both channels</td>
<td>1</td>
<td>0.300 Sec</td>
<td>0.200 Sec</td>
</tr>
</tbody>
</table>

Beispiel: Synchronisationszeit unendlich, Prellzeit 0,1 s

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>SUBTYPE</th>
<th>ASSIGNED</th>
<th>SAFE SLAVE</th>
<th>SYNC TIME</th>
<th>CHATTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>24</td>
<td>no startup test</td>
<td>channel one</td>
<td>2</td>
<td>infinite</td>
<td>0.100 Sec</td>
</tr>
</tbody>
</table>

Beispiel: mit Anlaufstest

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>SUBTYPE</th>
<th>ASSIGNED</th>
<th>SAFE SLAVE</th>
<th>SYNC TIME</th>
<th>CHATTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>24</td>
<td>startup test</td>
<td>channel one</td>
<td>3</td>
<td>0.500 Sec</td>
<td>0.100 Sec</td>
</tr>
</tbody>
</table>

Beispiel: mit Anlaufstest und Vorortquittierung

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>SUBTYPE</th>
<th>ADDRESS: 10 BIT: In-0 noninv</th>
<th>ASSIGNED</th>
<th>SAFE SLAVE</th>
<th>SYNC TIME</th>
<th>CHATTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>24</td>
<td>local acknowledge</td>
<td>5</td>
<td>channel one</td>
<td>0.500 Sec</td>
<td>0.100 Sec</td>
<td></td>
</tr>
</tbody>
</table>
Zweikanalig bedingt abhängig

Symbol

Funktions-Baustein Zweikanalig bedingt abhängiger Sicherheitseingang

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>double channel priority safety input</td>
</tr>
</tbody>
</table>

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext
Adresse: AS-Interface Busadresse (1 … 31)
Unabhängig: Bitadresse des unabhängigen Kontaktes (In-1 oder In-2)

Eingabemaske
Beschreibung

Vorsicht

Zweikanalig bedingt abhängige Überwachungs-Bausteine bieten nur eine eingeschränkte Sicherheit, da sie nicht auf Gleichzeitigkeit überprüft werden. Prüfen Sie sorgfältig, ob Sie durch Verwendung eines zweikanalig bedingt abhängigen Überwachungs-Bausteins die Anforderungen Ihrer gewünschten Sicherheitskategorie erfüllen.

Anwendungs-Symbole

Schutztür mit Zuhaltung

Modul dient dazu, konventionelle Sicherheitsschaltelemente über ein sicherheitsgerichtetes AS-Interface Modul anzuschließen.

Konfigurationsprotokoll

Beispiel: Kontakt mit Bitadresse In-1 ist der unabhängige Kontakt

<table>
<thead>
<tr>
<th>INDEX</th>
<th>33 = "Bezeichner"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>25 = double channel priority safety input</td>
</tr>
<tr>
<td>SUBTYPE</td>
<td>in-1 is independent</td>
</tr>
<tr>
<td>ASSIGNED</td>
<td>channel one</td>
</tr>
<tr>
<td>SAFE SLAVE</td>
<td>4</td>
</tr>
</tbody>
</table>

Beispiel: Kontakt mit Bitadresse In-2 ist der unabhängige Kontakt

<table>
<thead>
<tr>
<th>INDEX</th>
<th>32 = "Bezeichner"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>25 = double channel priority safety input</td>
</tr>
<tr>
<td>SUBTYPE</td>
<td>in-2 is independent</td>
</tr>
<tr>
<td>ASSIGNED</td>
<td>channel one</td>
</tr>
<tr>
<td>SAFE SLAVE</td>
<td>3</td>
</tr>
</tbody>
</table>
Konfiguration des AS-Interface Sicherheits-monitors

4.3 Erstellen und Ändern einer Konfiguration

Zweikanalig unabhängig

Symbol

Funktions-Baustein Zweikanalig unabhängiger Sicherheitseingang

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>double channel independent safety input</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Varianten</th>
<th>SUBTYPE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne Anlauftest</td>
<td>no startup test</td>
</tr>
<tr>
<td>mit Anlauftest</td>
<td>startup test</td>
</tr>
<tr>
<td>ohne Vorortquittierung</td>
<td>no local acknowledge</td>
</tr>
<tr>
<td>mit Vorortquittierung</td>
<td>local acknowledge</td>
</tr>
<tr>
<td>mit Vorortquittierung auch nach Hochlauf</td>
<td>local acknowledge always</td>
</tr>
</tbody>
</table>

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext
Adresse: AS-Interface Busadresse (1 … 31)
Anlauftest: mit / ohne
Vorortquittierung: mit / auch nach Hochlauf / ohne
Slave-Typ: Standard-/A/B-Slave
Adresse: AS-Interface Busadresse der Vorortquittierung (1 … 31)
Bitadresse: In-0 … In-3 oder Out-0 … Out-3, invertiert / nicht invertiert

Eingabemaske
Konfiguration des AS-Interface Sicherheits-monitors

4.3 Erstellen und Ändern einer Konfiguration

Beschreibung

Hinweis

Ist die Option Anlauffest gewählt, müssen beim Test immer beide Schalter geöffnet werden. Außerdem muss nach einer Fehlerentriegelung ein Anlauffest durchgeführt werden.

Vorsicht

Zweikanalig unabhängige Überwachungs-Bausteine bieten nur eine eingeschränkte Sicherheit, da sie nicht auf Gleichzeitigkeit überprüft werden. Prüfen Sie sorgfältig, ob Sie durch Verwendung eines zweikanaligen unabhängigen Überwachungs-Bausteins die Anforderungen Ihrer gewünschten Sicherheitskategorie erfüllen.

Anwendungs-Symbole

![NOT-AUS](image)

Schutztür

Modul dient dazu, konventionelle Sicherheitsschaltelemente über ein sicherheitsgerichtetes AS-Interface Modul anzuschließen.

Konfigurationsprotokoll

Beispiel: mit Anlauffest

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>SUBTYPE</th>
<th>ASSIGNED</th>
<th>SAFE SLAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>22</td>
<td>0</td>
<td>both</td>
<td>1</td>
</tr>
</tbody>
</table>

Beispiel: mit Vorortquittierung auch nach Hochlauf

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>SUBTYPE</th>
<th>ADDRESS</th>
<th>BIT</th>
<th>SAFE SLAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>22</td>
<td>no</td>
<td>10</td>
<td>In-0 noninv</td>
<td>2</td>
</tr>
</tbody>
</table>
Standard-Slave

<table>
<thead>
<tr>
<th>Symbol</th>
<th>oder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktions-Baustein</td>
<td>Standard-Slave</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>activation switch</td>
</tr>
</tbody>
</table>

Parameter

- Bezeichner: max. 29 ASCII-Zeichen Klartext
- Slave-Typ: Standard-/A/B-Slave
- Adresse: AS-Interface Busadresse (1 … 31)
- Bitadresse: In-0 … In-3 oder Out-0 … Out-3, invertiert / nicht invertiert

Eingabemaske

![Eingabemaske](image)
Beschreibung

Der Überwachungs-Baustein **Standard-Slave** dient dazu, ein Bit (Ein- oder Ausgang) eines nicht sicherheitsgerichteten Standard-AS-Interface Slave als zusätzliches Schaltsignal **zum betriebsmäßigen Schalten** des/der AS-Interface Sicherheitsmonitor-Relais in einen Freigabekreis einzubinden.

Hinweis

Bei den Eingangs- und Ausgangs-Bits eines nicht sicherheitsgerichteten Standard-AS-Interface Slaves wird immer das Prozessabbild ausgewertet, d. h. der Zustand **ON** bedeutet immer ein **aktives Signal im Prozessabbild**.

Ist der Parameter **Invertiert** aktiviert, wird dem Symbol für den Baustein Standard-Slave in der Konfiguration das Inverter-Symbol vorangestellt.

Achtung

Der Einsatz eines Standard-Slave-Bausteins für sicherheitsgerichtete Schaltaufgaben ist nicht zulässig!

Konfigurationsprotokoll

Beispiel:

```
0018 INDEX: 32 = "Bezeichner" 8
0019 TYPE: 23 = activation switch 9
0020 ASSIGNED: channel one 0
0021 ADDRESS: 21 BIT: In-0 noninv 1
```
Monitoreingang

Symbol
Funktions-Baustein

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>monitor input</td>
</tr>
</tbody>
</table>

Varianten

Keine

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext

Eingabemaske

[Image of the Monitor Input Eingabemaske]
Beschreibung
Der Überwachungs-Baustein **Monitoreingang** dient dazu, ein Signal an einem der Eingänge 1.Y1 bis 2.Y2 des AS-Interface Sicherheitsmonitors als zusätzliches Schaltsignal **zum be triebsmäßigen Schalten** des/der AS-Interface Sicherheitsmonitor-Relais in einen Freigabe kreis einzubinden.

Hinweis
Ist der Parameter **Invertiert** aktiviert, wird dem Symbol für den Baustein Monitoreingang in der Konfiguration das Inverter-Symbol vorangestellt.

Achtung
Der Einsatz eines Monitoreingang-Bausteins für sicherheitsgerichtete Schaltaufgaben ist nicht zulässig!

Konfigurationsprotokoll

Beispiel:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0018</td>
<td>INDEX: 32 = "Bezeichner"</td>
<td>8</td>
</tr>
<tr>
<td>0019</td>
<td>TYPE: 28 = monitor input</td>
<td>9</td>
</tr>
<tr>
<td>0020</td>
<td>ASSIGNED: channel one</td>
<td>0</td>
</tr>
<tr>
<td>0021</td>
<td>INPUT: 1.Y2 invert</td>
<td>1</td>
</tr>
</tbody>
</table>
4.3 Erstellen und Ändern einer Konfiguration

Taste

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Funktions-Baustein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taste</td>
<td>Taste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>button</td>
</tr>
</tbody>
</table>

Parameter

- **Bezeichner:** max. 29 ASCII-Zeichen Klartext
- **Slave-Typ:** Standard-/A/B-Slave
- **Adresse:** AS-Interface Busadresse (1 … 31)
- **Bitadresse:** In-0 … In-3 oder Out-0 … Out-3, invertiert / nicht invertiert
- **Pulslänge:** 5 ms … 300 s in Vielfachen von 5 ms oder ∞ (unendlich)

Eingabemaske

![Eingabemaske](image)
Konfiguration des AS-Interface Sicherheits-monitors

4.3 Erstellen und Ändern einer Konfiguration

Beschreibung

Innerhalb der Freigabekreise oder der Vorverarbeitung kann der Baustein **Taste** eingebunden werden. Der Baustein Taste ermöglicht eine Quittierung auf Bausteinebene. Sobald die Freigabe für den mit der Taste verknüpften Baustein da ist, kann dieser Baustein durch die Betätigung der Taste freigegeben, d. h. quittiert werden (Baustein geht in den Zustand ON). Fehlt die Bausteinreignung vor der Quittierung, geht der Baustein in den Zustand OFF.

Hinweis

Diese Funktion erfordert, dass die Taste nach Erfüllung der Freigabebedingung zunächst für mindestens 50 ms unbetätigt bleibt und danach für mindestens 50 ms und höchstens 2 s betätigt wird. Nach dem Wiederloslassen der Taste geht der Baustein nach weiteren 50 ms für die unter Pulslänge eingestellte Zeit in den Zustand ON.

Konfigurationsprotokoll

<table>
<thead>
<tr>
<th>Beispiel:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0020 INDEX:</td>
<td>32 = "Bezeichner"</td>
</tr>
<tr>
<td>0021 TYPE:</td>
<td>26 = button</td>
</tr>
<tr>
<td>0022 ASSIGNED:</td>
<td>channel one</td>
</tr>
<tr>
<td>0023 ADDRESS:</td>
<td>10 BIT: In-0 noninv</td>
</tr>
<tr>
<td>0024 ENABLE DEV:</td>
<td>8 = system device: dev before start one</td>
</tr>
<tr>
<td>0025 PULSE WIDTH:</td>
<td>0.005 Sec</td>
</tr>
</tbody>
</table>
NOP

Symbol

Funktions-Baustein Platzhalter

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>no operation</td>
</tr>
</tbody>
</table>

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext

Zustand: ON oder OFF

Eingabemaske
Beschreibung

Hinweis

Achten Sie bei NOP-Bausteinen auf die korrekte Zuweisung des Zustandswertes in der Konfiguration. In UND-Verknüpfungen sollten Sie NOP-Bausteinen den Zustand ON, in ODER-Verknüpfungen dagegen den Zustand OFF zuweisen.

Konfigurationsprotokoll

Beispiel: NOP-Baustein mit Zustand OFF

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>SUBTYPE</th>
<th>ASSIGNED</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>59 - no operation</td>
<td>device value is false</td>
<td>channel one</td>
</tr>
</tbody>
</table>

Beispiel: NOP-Baustein mit Zustand ON

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>SUBTYPE</th>
<th>ASSIGNED</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>59 - no operation</td>
<td>device value is true</td>
<td>channel one</td>
</tr>
</tbody>
</table>
Nullfolgeerkennung

Symbol
Funktions-Baustein
Nullfolgeerkennung

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>zero sequence detection</td>
</tr>
</tbody>
</table>

Varianten
Keine

Parameter
Bezeichner: max. 29 ASCII-Zeichen Klartext
Adresse: AS-Interface Busadresse (1 … 31)
Zustand: ON oder OFF

Eingabemaske
Beschreibung

Der Überwachungs-Baustein **Nullfolgeerkennung** kann zur Überwachung eingesetzt werden, ob bei einem sicheren Eingangsslave beide Schalter geöffnet sind. Er dient zur Realisierung betriebsbedingter Schaltaufgaben. Der Baustein geht in den Zustand ON, wenn dauerhaft der Wert 0000 vom sicheren Slave übertragen wird. Bei der Nullfolgeerkennung können auch sichere Eingangs-Slaves überwacht werden, die an anderer Stelle in der Konfiguration enthalten sind. Umgekehrt steht die für die Nullfolgeerkennung gewählte Adresse für Überwachungsbau steine weiter zur Verfügung.

Achtung

Im Fall eines Defekts oder Fehlers, z. B. zu geringe Spannung am Slave, kann der Zustand ON auch erreicht werden, wenn beide Schalter geschlossen sind. Daher ist der Einsatz eines Nullfolgeerkennungs-Bausteins für sicherheitsgerichtete Schaltaufgaben nicht zulässig!

Konfigurationsprotokoll

<table>
<thead>
<tr>
<th>Beispiel: Nullfolgeerkennungs-Baustein</th>
</tr>
</thead>
<tbody>
<tr>
<td>0020 INDEX: 32 = "Bezeichner"</td>
</tr>
<tr>
<td>0021 TYPE: 27 = zero sequence detection</td>
</tr>
<tr>
<td>0022 ASSIGNED: channel one</td>
</tr>
<tr>
<td>0023 SAFE SLAVE: 2</td>
</tr>
</tbody>
</table>
4.3.2 Verknüpfungs-Bausteine

In komplexeren Sicherheitsaufgaben ist eine über das globale UND hinausgehende Verknüpfung verschiedener Eingangssignale und Zwischenzustände erforderlich. Diese Verknüpfung geschieht in der Konfiguration des AS-Interface Sicherheitsmonitors derart, dass die Eingangssignale in der Vorverarbeitung oder im anderen Freigabekreis zunächst als interne Variablen berechnet und danach in Verknüpfungs-Bausteinen im Freigabekreis weiterverarbeitet werden (siehe "Fensterbereiche" auf Seite 28).

Hinweis

Für AS-Interface Sicherheitsmonitore der Typen 1 und 2 mit Funktionsumfang "Basis" steht als einzig möglicher Verknüpfungs-Baustein nur die logische ODER-Funktion für die Verknüpfung von zwei Überwachungs- oder System-Bausteinen zu Verfügung.

Beispiel 1:

1. Freigabekreis

\[\text{[33]["0R1"], ODER} \]

\[\text{[33]["LG1"], IvW} \]

\[\text{[3]: Zustand Ausgangsschaltsegment 2} \]

Bild 4-4 Beispiel Verknüpfungs-Baustein

Im gezeigten Beispiel geht der Verknüpfungs-Baustein ODER in den Zustand ON (eingeschaltet), wenn die berührungslos wirkende Schutzeinrichtung "LG1" im Zustand ON (eingeschaltet) ist oder der Sicherheitsschaltausgang des zweiten Freigabekreises durchgeschaltet (Relais angezogen) ist oder beides.
Beispiel 2:

1. Freigabekreis

Wie im zweiten Beispiel gezeigt, lassen sich Verknüpfungs-Bausteine auch verschachtern. Dazu muss im gezeigten Beispiel die untergeordnete Verknüpfung "OR2" mit dem Index 34 zunächst in der Vorverarbeitung erstellt werden. Danach lässt sie sich der Verknüpfung "OR1" zuweisen.
4.3 Erstellen und Ändern einer Konfiguration

Konfiguration des AS-Interface Sicherheits-monitors

Hinweis
Für AS-Interface Sicherheitsmonitore der Typen 1 und 2 mit Funktionsumfang "Basis" steht als einzig möglicher Verknüpfungs-Baustein nur die logische ODER-Funktion für die Verknüpfung von zwei Überwachungs- oder System-Bausteinen zu Verfügung.

Symbol

Funktions-Baustein ODER-Gatter

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>or gate</td>
</tr>
</tbody>
</table>

Varianten

<table>
<thead>
<tr>
<th>2 Eingänge 1)</th>
<th>SUBTYPE: number of inputs 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ... 6 Eingänge 2)</td>
<td></td>
</tr>
<tr>
<td>SUBTYPE: number of inputs 2 oder</td>
<td></td>
</tr>
<tr>
<td>SUBTYPE: number of inputs 3 oder</td>
<td></td>
</tr>
<tr>
<td>SUBTYPE: number of inputs 4 oder</td>
<td></td>
</tr>
<tr>
<td>SUBTYPE: number of inputs 5 oder</td>
<td></td>
</tr>
<tr>
<td>SUBTYPE: number of inputs 6</td>
<td></td>
</tr>
</tbody>
</table>

1) Nur AS-Interface Sicherheitsmonitor Typ 1/Typ 2 mit Funktionsumfang "Basis" (siehe Kapitel 1.2)!
2) Nur AS-Interface Sicherheitsmonitor Typ 3/Typ 4 mit Funktionsumfang "Erweitert" (siehe Kapitel 1.2)!

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext

Eingabemaske

[Image of Eingabemaske]
Konfiguration des AS-Interface Sicherheits-monitors

4.3 Erstellen und Ändern einer Konfiguration

Beschreibung

Mit dem Verknüpfungs-Baustein ODER werden bis zu sechs Überwachungs- oder System-Bausteine miteinander über die logische ODER-Funktion verknüpft.

Der Verknüpfungs-Baustein ODER ist im Zustand ON, wenn mindestens einer der verknüpften Bausteine im Zustand ON ist.

Achtung

In der Konfiguration des AS-Interface Sicherheitsmonitors können z. B. für ein Lichtgitter und einen NOT-AUS-Schalter die gleichen Funktions-Bausteine verwendet werden. Bei der Konfiguration müssen Sie darauf achten, welche Sicherheitsfunktionen überbrückt werden dürfen und welche nicht.

Ein Anwendungsfall für den Einsatz des Verknüpfungs-Bausteins ODER ist z. B. eine Materialschleuse, bei der die Maschine nur dann in Betrieb gehen darf, wenn mindestens eine der beiden Schleusentüren geschlossen ist.

Konfigurationsprotokoll

<table>
<thead>
<tr>
<th>Beispiel: ODER-Verknüpfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0062 INDEX: 38 = "Bezeichner"</td>
</tr>
<tr>
<td>0063 TYPE: 40 = or gate</td>
</tr>
<tr>
<td>0064 SUBTYPE: number of inputs 6</td>
</tr>
<tr>
<td>0065 ASSIGNED: channel one</td>
</tr>
<tr>
<td>0066 IN DEVICE: 32 = "Bezeichner Baustein 1"</td>
</tr>
<tr>
<td>0067 IN DEVICE: 33 = "Bezeichner Baustein 2"</td>
</tr>
<tr>
<td>0068 IN DEVICE: 34 = "Bezeichner Baustein 3"</td>
</tr>
<tr>
<td>0069 IN DEVICE: 35 = "Bezeichner Baustein 4"</td>
</tr>
<tr>
<td>0070 IN DEVICE: 36 = "Bezeichner Baustein 5"</td>
</tr>
<tr>
<td>0071 IN DEVICE: 37 = "Bezeichner Baustein 6"</td>
</tr>
</tbody>
</table>
Hinweis
Dieser Verknüpfungs-Baustein ist für AS-Interface Sicherheitsmonitore der Typen 1 und 2 mit Funktionsumfang "Basis" nicht verfügbar.

Symbol
UND
Funktions-Baustein
UND-Gatter

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>and gate</td>
</tr>
</tbody>
</table>

Variante
2 ... 6 Eingänge 1)

| SUBTYPE: number of inputs 2 oder |
| SUBTYPE: number of inputs 3 oder |
| SUBTYPE: number of inputs 4 oder |
| SUBTYPE: number of inputs 5 oder |
| SUBTYPE: number of inputs 6 |

1) Nur AS-Interface Sicherheitsmonitor Typ 3/Typ 4 mit Funktionsumfang "Erweitert" (siehe Kapitel 1.2)!

Parameter
Bezeichner: max. 29 ASCII-Zeichen Klartext

Eingabemaske

![Eingabemaske](image-url)
Beschreibung

Mit dem Verknüpfungs-Baustein **UND** werden bis zu sechs Überwachungs- oder System-Bau- steine miteinander über die logische UND-Funktion verknüpft.

Der Verknüpfungs-Baustein **UND** ist nur dann im Zustand **ON**, wenn **alle** verknüpften Bausteine im Zustand **ON** sind.

Konfigurationsprotokoll

<table>
<thead>
<tr>
<th>Beispiel: UND-Verknüpfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0073 INDEX: 39 = "Bezeichner"</td>
</tr>
<tr>
<td>0074 TYPE: 41 = and gate</td>
</tr>
<tr>
<td>0075 SUBTYPE: number of inputs 6</td>
</tr>
<tr>
<td>0076 ASSIGNED: channel one</td>
</tr>
<tr>
<td>0077 IN DEVICE: 32 = "Bezeichner Baustein 1"</td>
</tr>
<tr>
<td>0078 IN DEVICE: 33 = "Bezeichner Baustein 2"</td>
</tr>
<tr>
<td>0079 IN DEVICE: 34 = "Bezeichner Baustein 3"</td>
</tr>
<tr>
<td>0080 IN DEVICE: 35 = "Bezeichner Baustein 4"</td>
</tr>
<tr>
<td>0081 IN DEVICE: 36 = "Bezeichner Baustein 5"</td>
</tr>
<tr>
<td>0082 IN DEVICE: 37 = "Bezeichner Baustein 6"</td>
</tr>
</tbody>
</table>
FlipFlop

Hinweis
Dieser Verknüpfungs-Baustein ist für AS-Interface Sicherheitsmonitore der Typen 1 und 2 mit Funktionsumfang "Basis" nicht verfügbar.

Symbol

<table>
<thead>
<tr>
<th>Funktions-Baustein</th>
<th>R/S-FlipFlop</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>r/s - flipflop</td>
</tr>
</tbody>
</table>

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext

Eingabemaske
Beschreibung

Mit dem Verknüpfungs-Baustein **FlipFlop** werden zwei Überwachungs- oder System-Bausteine miteinander über die logische R/S-FlipFlop-Funktion verknüpft.

Der Zustand des Verknüpfungs-Baustein FlipFlop wird gemäß folgender Tabelle berechnet:

<table>
<thead>
<tr>
<th>Ausgang alt</th>
<th>Eingang Setzen (Set)</th>
<th>Eingang Halten (Hold)</th>
<th>Ausgang neu</th>
</tr>
</thead>
<tbody>
<tr>
<td>beliebig</td>
<td>eingeschaltet (ON)</td>
<td>eingeschaltet (ON)</td>
<td>eingeschaltet (ON)</td>
</tr>
<tr>
<td>eingeschaltet (ON)</td>
<td>beliebig</td>
<td>eingeschaltet (ON)</td>
<td>eingeschaltet (ON)</td>
</tr>
<tr>
<td>ausgeschaltet (OFF)</td>
<td>beliebig</td>
<td>ausgeschaltet (OFF)</td>
<td>ausgeschaltet (OFF)</td>
</tr>
<tr>
<td>sonst</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Konfigurationsprotokoll

Beispiel:

0084 INDEX: 40 = "Bezeichner" 4
0085 TYPE: 42 = r/s - flipflop 5
0086 ASSIGNED: channel one 6
0087 HOLD DEVICE: 34 = "Bezeichner Baustein 1" 7
0088 SET DEVICE: 36 = "Bezeichner Baustein 2" 8
Einschaltverzögerung

Hinweis
Dieser Verknüpfungs-Baustein ist für AS-Interface Sicherheitsmonitore der Typen 1 und 2 mit Funktionsumfang "Basis" nicht verfügbar.

Symbol

Funktions-Baustein Schaltverzögerung

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>delay timer</td>
</tr>
</tbody>
</table>

Varianten

| Einschaltverzögerung | SUBTYPE: on delay |

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext
Verzögerungszeit: 5 ms … 300 s in Vielfachen von 5 ms

Eingabemaske
Konfiguration des AS-Interface Sicherheits-monitors

4.3 Erstellen und Ändern einer Konfiguration

Beschreibung

Mit dem Verknüpfungs-Baustein **Einschaltverzögerung** kann das Einschalten eines Überwachungs- oder System-Bausteins um die einstellbare Verzögerungszeit verzögert werden.

Der Zustand des Verknüpfungs-Baustein Einschaltverzögerung wird gemäß folgender Tabelle berechnet:

<table>
<thead>
<tr>
<th>Verknüpfter Baustein</th>
<th>Ergebnis der Verknüpfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>eingeschaltet (ON) für (t \geq) Verzögerungszeit</td>
<td>eingeschaltet (ON) nach Ablauf der Verzögerungszeit</td>
</tr>
<tr>
<td>eingeschaltet (ON) für (t <) Verzögerungszeit</td>
<td>ausgeschaltet (OFF)</td>
</tr>
<tr>
<td>sonst</td>
<td>ausgeschaltet (OFF)</td>
</tr>
</tbody>
</table>

Konfigurationsprotokoll

Beispiel:

0090 INDEX: 41 = "Bezeichner"
0091 TYPE: 43 = delay timer
0092 SUBTYPE: on delay
0093 ASSIGNED: channel one
0094 IN DEVICE: 32 = "Bezeichner Baustein"
0095 DELAY TIME: 0.005 Sec
Ausschaltverzögerung

Hinweis
Dieser Verknüpfungs-Baustein ist für AS-Interface Sicherheitsmonitore der Typen 1 und 2 mit Funktionsumfang "Basis" nicht verfügbar.

Achtung
Beachten Sie, dass sich die Systemreaktionszeit durch den Einsatz des Bausteins Ausschaltverzögerung verlängern kann.

Symbol
Function-Block:

Funktions-Baustein
Schaltverzögerung

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>delay timer</td>
</tr>
</tbody>
</table>

Varianten

Ausschaltverzögerung SUBTYPE: off delay

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext
Verzögerungszeit: 5 ms … 300 s in Vielfachen von 5 ms

Eingabemaske

![Eingabemaske](image-url)
4.3 Erstellen und Ändern einer Konfiguration

Beschreibung
Mit dem Verknüpfungs-Baustein **Ausschaltverzögerung** kann das Ausschalten eines Überwachungs- oder System-Bausteins um die einstellbare Verzögerungszeit verzögert werden.

Der Zustand des Verknüpfungs-Baustein Ausschaltverzögerung wird gemäß folgender Tabelle berechnet:

<table>
<thead>
<tr>
<th>Verknüpfter Baustein</th>
<th>Ergebnis der Verknüpfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ausgeschaltet (OFF) für (t \geq) Verzögerungszeit</td>
<td>ausgeschaltet (OFF) nach Ablauf der Verzögerungszeit</td>
</tr>
<tr>
<td>ausgeschaltet (OFF) für (t <) Verzögerungszeit</td>
<td>eingeschaltet (ON)</td>
</tr>
<tr>
<td>sonst</td>
<td>eingeschaltet (ON)</td>
</tr>
</tbody>
</table>

Konfigurationsprotokoll

Beispiel:

<table>
<thead>
<tr>
<th>INDEX: 42 = "Bezeichner"</th>
<th>TYPE: 43 = delay timer</th>
<th>SUBTYPE: off delay</th>
<th>ASSIGNED: channel one</th>
<th>IN DEVICE: 33 = "Bezeichner Baustein"</th>
<th>DELAY TIME: 0.005 Sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0097</td>
<td>42</td>
<td>43</td>
<td>0099</td>
<td>0100</td>
<td>0102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3 Erstellen und Ändern einer Konfiguration

Konfiguration des AS-Interface Sicherheits-monitors

Impuls bei positiver Flanke

Hinweis
Dieser Verknüpfungs-Baustein ist für AS-Interface Sicherheitsmonitore der Typen 1 und 2 mit Funktionsumfang "Basis" nicht verfügbar.

Symbol

Funktions-Baustein Impulsgeber bei positiver Flanke

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>convert edge to pulse</td>
</tr>
</tbody>
</table>

Varianten
bei positiver Flanke SUBTYPE: on positive edge

Parameter
Bezeichner: max. 29 ASCII-Zeichen Klartext
Impulsdauer: 5 ms … 300 s in Vielfachen von 5 ms

Eingabemaske

![Eingabemaske](image-url)
Beschreibung

Mit dem Verknüpfungs-Baustein **Impuls bei positiver Flanke** kann bei einem Zustandswechsel von OFF nach ON eines Überwachungs- oder System-Bausteins ein ON-Impuls mit einstellbarer Impulsdauer erzeugt werden.

Der Zustand des Verknüpfungs-Baustein Impuls bei pos. Flanke wird gemäß folgender Tabelle berechnet:

<table>
<thead>
<tr>
<th>Verknüpfter Baustein</th>
<th>Ergebnis der Verknüpfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ausgeschaltet (OFF)</td>
<td>ausgeschaltet (OFF)</td>
</tr>
<tr>
<td>eingeschaltet (ON)</td>
<td>eingeschaltet (ON) für die unter Impulsdauer eingestellte Zeit</td>
</tr>
<tr>
<td>sonst</td>
<td>ausgeschaltet (OFF)</td>
</tr>
</tbody>
</table>

Achtung

Während der Abgabe des ON-Impulses am Ausgang wird der Eingang nicht überwacht, d.h. ein weiterer Zustandswechsel des Eingangs während des ON-Impulses wird nicht ausgewertet und hat keinen Einfluss auf den ON-Impuls. Die Funktion des Bausteins entspricht einem nicht nachtriggerbaren Monoflop.

Achtung

Auch eine kurzzeitige Kommunikationsstörung auf der AS-Interface Leitung führt zu einem ON-Impuls am Ausgang!

Konfigurationsprotokoll

Beispiel:

<table>
<thead>
<tr>
<th>INDEX: 43 = "Bezeichner"</th>
<th>TYPE: 44 = convert edge to pulse</th>
<th>SUBTYPE: on positive edge</th>
<th>ASSIGNED: channel one</th>
<th>IN DEVICE: 36 = "AOPD1"</th>
<th>PULSE WIDTH: 0.005 Sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0104</td>
<td>0105</td>
<td>0106</td>
<td>0107</td>
<td>0108</td>
<td>0109</td>
</tr>
</tbody>
</table>
4.3.3 Rückführkreis-Bausteine

Rückführkreis-Bausteine (auch als EDM bezeichnet - External Device Monitor) dienen zur Realisierung einer dynamischen Schützkontrolle für eine Konfiguration des AS-Interface Sicherheitsmonitors. Wenn kein Rückführkreis-Baustein konfiguriert wird, ist die Schützkontrolle deaktiviert.

Hinweis

In einen Freigabekreis können mehrere Rückführkreis-Bausteine eingebunden werden.

Hinweis

Nähere Angaben zur elektrischen Ausführung und zum Anschluss einer Schützkontrolle finden Sie in der Betriebsanleitung des AS-Interface Sicherheitsmonitors.

Fehlerentriegelung

Bei Softwareversionen > 2.0 des AS-Interface Sicherheitsmonitors ist eine Fehlerentriegelung (Reset) auf Bausteinebene getrennt nach Freigabekreisen möglich, d. h. über einen AS-Interface Standard-/A/B-Slave, z. B. einen Taster, kann die Fehlerverriegelung gelöst werden (siehe Kapitel 3.1).
Konfiguration des AS-Interface Sicherheits-monitors

4.3 Erstellen und Ändern einer Konfiguration

Rückführkreis

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Rückführkreis</th>
</tr>
</thead>
</table>

Funktions-Baustein

Parameter

<table>
<thead>
<tr>
<th>Bezeichner:</th>
<th>max. 29 ASCII-Zeichen Klartext</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltzeit:</td>
<td>10 ... 1000 ms, Schaltzeit des Schützes</td>
</tr>
<tr>
<td>Eingeschränkte Fehlerrverriegelung:</td>
<td>mit / ohne</td>
</tr>
</tbody>
</table>

Typ

<table>
<thead>
<tr>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
</tr>
<tr>
<td>external device monitor</td>
</tr>
</tbody>
</table>

Varianten

| SUBTYPE: none |
| SUBTYPE: limited error lock |

Beschreibung

Solange die Sicherheitsausgänge abgeschaltet sind, muss der Eingang Schützkontrolle am AS-Interface Sicherheitsmonitor aktiv = ON sein. Nach dem Einschalten der Sicherheitsausgänge (Freigabe) ist der Eingang Schützkontrolle für die eingestellte Schaltzeit nicht relevant. Danach muss der Eingang inaktiv = OFF sein. Der Zustand der Schützkontrolle ist aktiv = ON (eingeschaltet).

Nach dem Abschalten der Sicherheitsausgänge geht der Zustand der Schützkontrolle nach inaktiv = OFF (ausgeschaltet) und der Eingang Schützkontrolle wird für die eingestellte Schaltzeit nicht abgefragt. Danach muss der Eingang Schützkontrolle wieder aktiv = ON sein.

Die Schützkontrolle verhindert nach dem Abschalten des Monitors für die eingestellte Schaltzeit das Wiedereinschalten. Damit soll erreicht werden, dass alle nachgeschalteten Schütze den Ruhezustand erreicht haben, bevor die Schützkontrolle das Eingangssignal erneut abfragt, um eine Fehlerrverriegelung zu vermeiden.
Fehlerverriegelung

Ist der Eingang bei abgeschalteten Sicherheitsausgängen inaktiv oder bei eingeschalteten Sicherheitsausgängen aktiv, wird in den Fehlerzustand verzweigt und verriegelt.

Hinweis

Bei der dynamischen Schützkontrolle mit Fehlerverriegelung ist keine Reihenschaltung der Schützansteuerung mit betriebsmäßigen Schaltern möglich.

Eingeschränkte Fehlerverriegelung

Ist der Eingang bei abgeschalteten Sicherheitsausgängen inaktiv = OFF, wird in den Fehlerzustand verzweigt und verriegelt. Bleibt der Eingang nach Einschalten der Sicherheitsausgänge aktiv = ON, z. B. wenn wegen geschmolzener Sicherung der Schütz nicht anzieht, schaltet die Schützkontrolle die Sicherheitsausgänge des Freigabekreises wieder ab.

Achtung

Konfigurationsprotokoll

Beispiel: Fehlerverriegelung

<table>
<thead>
<tr>
<th>INDEX</th>
<th>32 = "Bezeichner"</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>60 = external device monitor</td>
<td>1</td>
</tr>
<tr>
<td>SUBTYPE</td>
<td>none</td>
<td>2</td>
</tr>
<tr>
<td>ASSIGNED</td>
<td>channel one</td>
<td>3</td>
</tr>
<tr>
<td>OFF TIME</td>
<td>0.100 Sec</td>
<td>4</td>
</tr>
</tbody>
</table>

Beispiel: Eingeschränkte Fehlerverriegelung

<table>
<thead>
<tr>
<th>INDEX</th>
<th>32 = "Bezeichner"</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>60 = external device monitor</td>
<td>1</td>
</tr>
<tr>
<td>SUBTYPE</td>
<td>limited error lock</td>
<td>2</td>
</tr>
<tr>
<td>ASSIGNED</td>
<td>channel one</td>
<td>3</td>
</tr>
<tr>
<td>OFF TIME</td>
<td>0.100 Sec</td>
<td>4</td>
</tr>
</tbody>
</table>
Konfiguration des AS-Interface Sicherheits-monitors

4.3 Erstellen und Ändern einer Konfiguration

Rückführkreis mit Standardslave

Symbol
Funktions-Baustein: Rückführkreis mit Standard-Slave

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>external device monitor standard slave</td>
</tr>
</tbody>
</table>

Variante

<table>
<thead>
<tr>
<th>Fehlerverriegelung</th>
<th>SUBTYPE: none</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingeschränkte Fehlerverriegelung</td>
<td>SUBTYPE: limited error lock</td>
</tr>
</tbody>
</table>

Parameter

- Bezeichner: max. 29 ASCII-Zeichen Klartext
- Schaltzeit: 10 … 1000 ms, Schaltzeit des Schützes
- Eingeschränkte Fehlerverriegelung: mit / ohne
- Slave-Typ: Standard-/A/B-Slave
- Adresse: AS-Interface Busadresse (1 … 31)
- Bitadresse: In-0 … In-3 oder Out-0 … Out-3, invertiert / nicht invertiert

Eingabemaske

Beschreibung

Der **Rückführkreis mit Standardslave** ist funktionsidentisch mit dem normalen Rückführkreis.

Die Schützkontrolle verhindert nach dem Abschalten des Monitors für die eingestellte Schaltzeit das Wiedereinschalten. Damit soll erreicht werden, dass alle nachgeschalteten Schütze den Ruhezustand erreicht haben, bevor die Schützkontrolle das Eingangssignal erneut abfragt, um eine Fehlerverriegelung zu vermeiden.

Fehlerverriegelung

Ist der Eingang bei abgeschalteten Sicherheitsausgängen inaktiv = OFF oder bei eingeschalteten Sicherheitsausgängen aktiv = ON, wird in den Fehlerzustand verzweigt und verriegelt.

Hinweis

Bei der dynamischen Schützkontrolle mit Fehlerverriegelung ist keine Reihenschaltung der Schützansteuerung mit betriebsmäßigen Schaltern möglich.

Eingeschränkte Fehlerverriegelung

Ist der Eingang bei abgeschalteten Sicherheitsausgängen inaktiv = OFF, wird in den Fehlerzustand verzweigt und verriegelt. Bleibt der Eingang nach Einschalten der Sicherheitsausgänge aktiv = ON, z. B. wenn wegen geschmolzener Sicherung der Schütz nicht anzieht, schaltet die Schützkontrolle die Sicherheitsausgänge des Freigabekreises wieder ab.

Achtung

Konfigurationsprotokoll

Beispiel: Fehlerverriegelung

<table>
<thead>
<tr>
<th>INDEX:</th>
<th>33 = "Bezeichner"</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE:</td>
<td>62 = external device monitor standard slave</td>
<td>7</td>
</tr>
<tr>
<td>SUBTYPE:</td>
<td>none</td>
<td>8</td>
</tr>
<tr>
<td>ASSIGNED:</td>
<td>channel one</td>
<td>9</td>
</tr>
<tr>
<td>ADDRESS:</td>
<td>10 BIT: In-0 noninv</td>
<td>0</td>
</tr>
<tr>
<td>OFF TIME:</td>
<td>0.100 Sec</td>
<td>1</td>
</tr>
</tbody>
</table>

Beispiel: Eingeschränkte Fehlerverriegelung

<table>
<thead>
<tr>
<th>INDEX:</th>
<th>33 = "Bezeichner"</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE:</td>
<td>62 = external device monitor standard slave</td>
<td>7</td>
</tr>
<tr>
<td>SUBTYPE:</td>
<td>limited error lock</td>
<td>8</td>
</tr>
<tr>
<td>ASSIGNED:</td>
<td>channel one</td>
<td>9</td>
</tr>
<tr>
<td>ADDRESS:</td>
<td>10 BIT: In-0 noninv</td>
<td>0</td>
</tr>
<tr>
<td>OFF TIME:</td>
<td>0.100 Sec</td>
<td>1</td>
</tr>
</tbody>
</table>
Konfiguration des AS-Interface Sicherheits-monitors

4.3 Erstellen und Ändern einer Konfiguration

Rückführkreis für abhängigen, zweiten Freigabekreis

Hinweis

Dieser Rückführkreis-Baustein kann nur im 1. Freigabekreis einer Konfiguration mit zwei abhängigen Abschalteinheiten eingesetzt werden.

Symbol

Funktions-Baustein Rückführkreis für abhängigen, zweiten Freigabekreis

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>external device monitor channel two</td>
</tr>
</tbody>
</table>

Varianten

Fehlervерriegelung SUBTYPE: none
Eingeschränkte Fehlervерriegelung SUBTYPE: limited error lock

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext
Schaltzeit: 10 ... 1000 ms, Schaltzeit des Schützes
Eingeschränkte Fehlervерriegelung: mit / ohne

Eingabemaske

Beschreibung

Der Rückführkreis für einen abhängigen, zweiten Freigabekreis ist funktionsidentisch mit dem normalen Rückführkreis. Dieser überwacht das am zweiten Kanal nachgeschaltete Schütz, wirkt aber auf die Freigabe von Kanal 1.

Solange die Sicherheitsausgänge abgeschaltet sind, muss der Eingang Schützkontrolle am AS-Interface Sicherheitsmonitor aktiv = ON sein. Nach dem Einschalten der Sicherheitsausgänge (Freigabe) ist der Eingang Schützkontrolle für die eingestellte Schaltzeit nicht relevant. Danach muss der Eingang inaktiv = OFF sein. Der Zustand der Schützkontrolle ist aktiv = ON (eingeschaltet).

Nach dem Abschalten der Sicherheitsausgänge geht der Zustand der Schützkontrolle nach inaktiv = OFF (ausgeschaltet) und der Eingang Schützkontrolle wird für die eingestellte Schaltzeit nicht abgefragt. Danach muss der Eingang Schützkontrolle wieder aktiv = ON sein.

Die Schützkontrolle verhindert nach dem Abschalten des Monitors für die eingestellte Schaltzeit das Wiedereinschalten. Damit soll erreicht werden, dass alle nachgeschalteten Schütze den Ruhezustand erreicht haben, bevor die Schützkontrolle das Eingangssignal erneut abfragt, um eine Fehlervерriegelung zu vermeiden.
Fehlerverriegelung

Ist der Eingang bei abgeschalteten Sicherheitsausgängen inaktiv oder bei eingeschalteten Sicherheitsausgängen aktiv, wird in den Fehlerzustand verzweigt und verriegelt.

Hinweis

Bei der dynamischen Schützkontrolle mit Fehlerverriegelung ist keine Reihenschaltung der Schützansteuerung mit betriebsmäßigen Schaltern möglich.

Eingeschränkte Fehlerverriegelung

Ist der Eingang bei abgeschalteten Sicherheitsausgängen inaktiv = OFF, wird in den Fehlerzustand verzweigt und verriegelt. Bleibt der Eingang nach Einschalten der Sicherheitsausgänge aktiv = ON, z. B. wenn wegen geschmolzener Sicherung der Schütz nicht anzieht, schaltet die Schützkontrolle die Sicherheitsausgänge des Freigabekreises wieder ab.

Achtung

Konfigurationsprotokoll

Beispiel: Fehlerverriegelung

<table>
<thead>
<tr>
<th>INDEX: 34</th>
<th>TYPE: 61</th>
<th>SUBTYPE: none</th>
<th>ASSIGNED: channel one</th>
<th>OFF TIME: 0.100 Sec</th>
</tr>
</thead>
</table>

Beispiel: Eingeschränkte Fehlerverriegelung

<table>
<thead>
<tr>
<th>INDEX: 34</th>
<th>TYPE: 61</th>
<th>SUBTYPE: limited error lock</th>
<th>ASSIGNED: channel one</th>
<th>OFF TIME: 0.100 Sec</th>
</tr>
</thead>
</table>
Rückführkreis mit Standardslave für abhängigen, zweiten Freigabekreis

Hinweis
Dieser Rückführkreis-Baustein kann nur im 1. Freigabekreis einer Konfiguration mit zwei abhängigen Abschalteinheiten eingesetzt werden.

Symbol

Funktions-Baustein Rückführkreis mit Standard-Slave für abhängigen, zweiten Freigabekreis

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>external device monitor channel two standard slave</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Varianten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlerverriegelung</td>
</tr>
<tr>
<td>Eingeschränkte Fehlerverriegelung</td>
</tr>
</tbody>
</table>

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext
Schaltzeit: 10 … 1000 ms, Schaltzeit des Schützes
Eingeschränkte Fehlerverriegelung: mit / ohne
Slave-Typ: Standard-/A/B-Slave
Adresse: AS-Interface Busadresse (1 … 31)
Bitadresse: In-0 … In-3 oder Out-0 … Out-3, invertiert / nicht invertiert

Eingabemaske
Beschreibung

Der Rückführkreis mit Standardslave für den abhängigen, zweiten Freigabekreis ist funktionsidentisch mit dem normalen Rückführkreis für den abhängigen, zweiten Freigabekreis.

Die Schützkontrolle verhindert nach dem Abschalten des Monitors für die eingestellte Schaltzeit das Wiedereinschalten. Damit soll erreicht werden, dass alle nachgeschalteten Schütze den Ruhezustand erreicht haben, bevor die Schützkontrolle das Eingangssignal erneut abfragt, um eine Fehlerverriegelung zu vermeiden.

Konfigurationsprotokoll

Beispiel: Fehlerverriegelung

<table>
<thead>
<tr>
<th>Index</th>
<th>Wert</th>
<th>Beschreibung</th>
<th>Zeile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0039</td>
<td>35</td>
<td>Bezeichner</td>
<td>9</td>
</tr>
<tr>
<td>0040</td>
<td>63</td>
<td>external device monitor channel two standard slave</td>
<td>0</td>
</tr>
<tr>
<td>0041</td>
<td>none</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0042</td>
<td>channel one</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>0043</td>
<td>10</td>
<td>BIT: In-0 noninv</td>
<td>3</td>
</tr>
<tr>
<td>0044</td>
<td>0.100</td>
<td>Sec</td>
<td>4</td>
</tr>
</tbody>
</table>

Beispiel: Eingeschränkte Fehlerverriegelung

<table>
<thead>
<tr>
<th>Index</th>
<th>Wert</th>
<th>Beschreibung</th>
<th>Zeile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0039</td>
<td>35</td>
<td>Bezeichner</td>
<td>9</td>
</tr>
<tr>
<td>0040</td>
<td>63</td>
<td>external device monitor channel two standard slave</td>
<td>0</td>
</tr>
<tr>
<td>0041</td>
<td>limited error lock</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0042</td>
<td>channel one</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>0043</td>
<td>10</td>
<td>BIT: In-0 noninv</td>
<td>3</td>
</tr>
<tr>
<td>0044</td>
<td>0.100</td>
<td>Sec</td>
<td>4</td>
</tr>
</tbody>
</table>
4.3.4 Start-Bausteine

Für jeden unabhängigen Freigabekreis wird mindestens ein Start-Baustein benötigt. Sind in einem Freigabekreis mehrere Start-Bausteine vorhanden, werden sie miteinander durch eine ODER-Funktion verknüpft. Es reicht also für die Freigabe eines Kreises aus, wenn einer der Start-Bausteine die Bedingung zur Freigabe erfüllt.

Mögliche Startbedingungen sind:

- Automatischer Start (keine zusätzliche Startbedingung)
- Überwachter Start mittels AS-Interface Standard-Slave
- Überwachter Start mittels Eingang Start am AS-Interface Sicherheitsmonitor
- Überwachter Start mittels sicherem AS-Interface Slave
- Aktivierung über Standard-Slave
- Aktivierung über Monitor-Eingang

Hinweis

Ein Start-Baustein kann nur einem Freigabekreis zugeordnet werden. Sollen beide Freigabe- kreise z. B. mit einer Taste gestartet werden, so ist für jeden Freigabekreis je ein Start-Bau- stein zu konfigurieren, die aber die gleiche Taste benutzen.
Automatischer Start

Symbol

Funktions-Baustein Automatischer Start

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>automatic start</td>
</tr>
</tbody>
</table>

Varianten

Keine

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext

Eingabemaske

Beschreibung

Der Start-Baustein **Automatischer Start** verlangt keine zusätzliche Startbedingung. Liefert die UND-Verknüpfung aller Überwachungs-, Verknüpfungs- und Rückführkreis-Bausteine eines Freigabekreises das Ergebnis ON, gibt der Start-Baustein Automatischer Start den Kreis über den jeweils konfigurierten Ausgabe-Baustein frei.

Gefahr

Bei einem automatischen Start schaltet der Freigabekreis ein, sobald alle Bedingungen erfüllt sind! Die Maschine kann somit unerwartet anlaufen!

Konfigurationsprotokoll

<table>
<thead>
<tr>
<th>Beispiel:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0106 INDEX: 45 = "Bezeichner"</td>
</tr>
<tr>
<td>0107 TYPE: 80 = automatic start</td>
</tr>
<tr>
<td>0108 ASSIGNED: channel one</td>
</tr>
</tbody>
</table>

Hinweis

Die Kombination des Start-Bausteins **Automatischer Start** mit anderen Start-Bausteinen ist nicht sinnvoll, da ein Start in jedem Fall erfolgt.
Überwachter Start – Standard-Slave

Symbol

Funktions-Baustein Überwachter Start – Standard-Slave

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>manual start standard slave</td>
</tr>
</tbody>
</table>

Varianten

Keine

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext
Slave-Typ: Standard-/A/B-Slave
Adresse: AS-Interface Busadresse (1 … 31)
Bitadresse: In-0 ... In-3 oder Out-0 ... Out-3

Eingabemaske

Beschreibung

Hinweis

Konfigurationsprotokoll

Beispiel:

0027 INDEX: 33 = "Bezeichner" 7
0028 TYPE: 81 = manual start standard slave 8
0029 ASSIGNED: channel one 9
0030 ADDRESS: 10 BIT: In-0 noninv 0
Überwachter Start – Monitoreingang

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Überwachter Start – Monitoreingang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktions-Baustein</td>
<td>Überwachter Start – Monitoreingang</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>manual start monitor input</td>
</tr>
</tbody>
</table>

| Varianten | Keine |

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext

Eingabemaske

Beschreibung

Der Start-Baustein **Überwachter Start – Monitoreingang** verlangt als zusätzliche Startbedingung die Aktivierung des Start-Eingangs des zugehörigen Freigabekreises. Liefert die UND-Verknüpfung aller Überwachungs-, Verknüpfungs- und Rückführkreis-Bausteine eines Freigabekreises das Ergebnis ON und ist die Startbedingung erfüllt, gibt der Start-Baustein Überwachter Start – Monitoreingang die Freigabeanforderung an den Ausgabe-Baustein.

Hinweis

Zwischen dem Eintreten des Zustands ON der UND-Verknüpfung aller Überwachungs-, Verknüpfungs- und Rückführkreis-Bausteine eines Freigabekreises und dem Aktivieren des Start-Eingangs müssen 50 ms liegen. Der Start-Eingang muss **mindestens 50 ms und maximal 2 s** aktiviert werden. Weitere 50 ms nach dem Deaktivieren des Eingangs erfolgt die Freigabeanforderung.

Konfigurationsprotokoll

<table>
<thead>
<tr>
<th>Beispiel:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0115 INDEX: 47 = "Bezeichner"</td>
</tr>
<tr>
<td>0116 TYPE: 82 = manual start monitor input</td>
</tr>
<tr>
<td>0117 ASSIGNED: channel one</td>
</tr>
</tbody>
</table>

AS-Interface Sicherheitsmonitor
Programmier- und Bedienhandbuch, Ausgabe 10/2006, GWA 4NEB 333 1558 01 DS01
Überwachter Start – Sicherer Eingangs-Slave

Symbol

Funktions-Baustein

Überwachter Start – Sicherer Eingangs-Slave

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>manual start safe input</td>
</tr>
</tbody>
</table>

Varianten

Keine

Parameter

Bezeichner: max. 29 ASCII- Zeichen Klartext
Adresse: AS-Interface Busadresse (1 ... 31)

Eingabemaske

Beschreibung

Hinweis

Zwischen dem Eintreten des Zustands ON der UND-Verknüpfung aller Überwachungs-, Verknüpfungs- und Rückführkreis-Bausteine eines Freigabekreises und dem Betätigen des sicheren Eingangs-Slaves müssen 50 ms liegen. Der sichere Eingangs-Slave muss **mindestens 50 ms und maximal 2 s** betätigt werden. Weitere 50 ms nach dem Betätigungsende des sicheren Eingangs-Slaves erfolgt die Freigabeanforderung.

Konfigurationsprotokoll

Beispiel:

```
0119 INDEX: 48 = "Bezeichner" 9
0120 TYPE: 83 = manual start safe input 0
0121 ASSIGNED: channel one 1
0122 SAFE SLAVE: 5 2
```
Aktivierung über Standard-Slave

Symbol

Funktions-Baustein Aktivierung über Standard-Slave

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>enable start standard slave</td>
</tr>
</tbody>
</table>

Varianten Keine

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext
Slave-Typ: Standard-/A/B-Slave
Adresse: AS-Interface Busadresse (1 ... 31)
Bitadresse: In-0 ... In-3 oder Out-0 ... Out-3

Eingabemaske

Beschreibung

Gefahr
Bei einer Aktivierung mittels Standard-Slave schaltet der Freigabekreis ein, sobald alle Bedingungen erfüllt sind und der aktivierende Pegel aufgeschaltet ist! Bei einem im aktivierten Zustand eingefrorenen Pegel kann die Maschine somit unerwartet anlaufen!

Hinweis
Die Kombination mit dem Start-Baustein **Automatischer Start** ist nicht zulässig.
Konfigurationsprotokoll

<table>
<thead>
<tr>
<th>Beispiel:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0027 INDEX:</td>
<td>33 = "Bezeichner"</td>
</tr>
<tr>
<td>0028 TYPE:</td>
<td>84 = enable start standard slave</td>
</tr>
<tr>
<td>0029 ASSIGNED:</td>
<td>channel one</td>
</tr>
<tr>
<td>0030 ADDRESS:</td>
<td>10 BIT: In-0 noninv</td>
</tr>
</tbody>
</table>
4.3 Erstellen und Ändern einer Konfiguration

Aktivierung über Monitoreingang

Symbol

Funktions-Baustein Aktivierung über Monitoreingang

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>enable start monitor input</td>
</tr>
</tbody>
</table>

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext

Eingabemaske

Beschreibung

Gefahr

Bei einer Aktivierung mittels Monitoreingang schaltet der Freigabekreis ein, sobald alle Bedingungen erfüllt sind und der aktivierende Pegel am Monitoreingang aufgeschaltet ist! Bei einem im aktivierenden Zustand eingefrorenen Pegel kann die Maschine somit unerwartet anlaufen!

Hinweis

Die Kombination mit dem Start-Baustein Automatischer Start ist nicht zulässig.

Konfigurationsprotokoll

Beispiel:

<table>
<thead>
<tr>
<th>0115 INDEX:</th>
<th>47 = "Bezeichner"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0116 TYPE:</td>
<td>05 = enable start monitor input</td>
</tr>
<tr>
<td>0117 ASSIGNED:</td>
<td>channel two</td>
</tr>
</tbody>
</table>

Konfiguration des AS-Interface Sicherheits-monitors
Programmier- und Bedienhandbuch, Ausgabe 10/2006, GWA 4NEB 333 1558 01 DS01
4.3.5 Ausgabe-Bausteine

Die Ausgabe-Bausteine setzen die Freigabe der Start-Bausteine entsprechend ihrer Funktion in den logischen Sollzustand der Ausgangskreise und Meldeausgänge um.

Im AS-Interface Sicherheitsmonitor besteht eine Abschaltgruppe aus einem redundant ausgeführten Relaisausgang und einem Meldeausgang. Falls in einem Monitor zwei Abschaltgruppen vorhanden sind, kann die zweite Abschaltgruppe abhängig oder unabhängig von der ersten betrieben werden. Die Ausgabe-Bausteine unterscheiden sich an dieser Stelle.

Hinweis

Bei zwei unabhängigen Freigabekreisen muss für jeden Freigabekreis genau ein Ausgabe-Baustein vorhanden sein.

Bei zwei abhängigen Freigabekreisen stellt genau ein Ausgabe-Baustein im 1. Freigabekreis die Abhängigkeit her.

Die Umsetzung der logischen in die physikalischen Schaltzustände für Relais, Meldeausgänge und LEDs erfolgt daraufhin in der Hardware des AS-Interface Sicherheitsmonitors. Ein beim Zurücklesen entdeckter falscher Schaltzustand der Hardware bewirkt auch das Umschalten des betroffenen Ausgabe-Bausteins in den Fehlerzustand.
Stoppkategorie 1 – Melde- und verzögerter Relaisausgang

Hinweis
Dieser Ausgabe-Baustein ist nur bei einem oder bei zwei unabhängigen Freigabekreisen verfügbar.

Symbol
Funktions-Baustein Stoppkategorie 1 – Melde- und verzögerter Relaisausgang

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>stop category 1 with delayed relay</td>
</tr>
</tbody>
</table>

Varianten
Keine

Parameter
Bezeichner: max. 29 ASCII-Zeichen Klartext
Abschaltverzögerung: 0 s … 300 s in Vielfachen von 100 ms

Eingabemaske

Beschreibung
Bei der Freigabe des Kreises, Zustand ON, werden der Meldeausgang und der Ausgangskreis durch den Ausgabe-Baustein **Stoppkategorie 1 – Melde- und verzögerter Relaisausgang** gleichzeitig aktiviert. Wird der Kreis abgeschaltet, Zustand OFF, wird der Meldeausgang unmittelbar und der Ausgangskreis mit der eingestellten Abschaltverzögerung abgeschaltet. Die Abschaltverzögerung kann zwischen 0 s und 300 s in Schritten von 100 ms eingestellt werden. Ein Wiedereinschalten ist erst möglich, wenn beide Ausgangskreise abgeschaltet sind.

Achtung
Der Meldeausgang ist nicht sicherheitsgerichtet. Eine sichere maximale Abschaltverzögerung ist nur für die Ausgangskreise gegeben.
Bei einem internen Fehler des AS-Interface Sicherheitsmonitors werden die Ausgangskreise unmittelbar abgeschaltet. Bei allen anderen Fehlern, z. B. Kommunikationsunterbrechung, bleibt die eingestellte Abschaltverzögerung erhalten.
Konfigurationsprotokoll

Beispiel:

<table>
<thead>
<tr>
<th>INDEX:</th>
<th>TYPE:</th>
<th>ASSIGNED:</th>
<th>DELAY TIME:</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 = "Bezeichner"</td>
<td>100 = stop category 1 with delayed relay</td>
<td>channel one</td>
<td>10.000 Sec</td>
</tr>
</tbody>
</table>
Konfiguration des AS-Interface Sicherheits-monitors

4.3 Erstellen und Ändern einer Konfiguration

Stoppkategorie 0

Hinweis
Dieser Ausgabe-Baustein ist nur bei einem oder bei zwei unabhängigen Freigabekreisen verfügbar.

Symbol
Funktions-Baustein Stoppkategorie 0

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>stop category 0</td>
</tr>
</tbody>
</table>

Varianten
Keine

Parameter
Bezeichner: max. 29 ASCII-Zeichen Klartext

Eingabemaske

Beschreibung
Bei der Freigabe des Kreises, Zustand ON, werden der Meldeausgang und der Ausgangskreis durch den Ausgabe-Baustein **Stoppkategorie 0** gleichzeitig aktiviert. Wird der Kreis abgeschaltet, Zustand OFF, werden der Meldeausgang und der Ausgangskreis unmittelbar ohne Verzögerung abgeschaltet.

Hinweis
Bei einem Fehler des AS-Interface Sicherheitsmonitors ist der Zustand des Meldeausgangs undefiniert. Der Ausgangskreis wird abgeschaltet.

Konfigurationsprotokoll

<table>
<thead>
<tr>
<th>Beispiel:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0129 INDEX: 50 = "Bezeichner"</td>
</tr>
<tr>
<td>0130 TYPE: 101 = stop category 0</td>
</tr>
<tr>
<td>0131 ASSIGNED: channel one</td>
</tr>
</tbody>
</table>
Stoppkategorie 1 – zwei Relaisausgänge

Hinweis
Dieser Ausgabe-Baustein ist nur bei zwei abhängigen Freigabekreisen verfügbar.

Symbol

Funktions-Baustein
Stoppkategorie 1 – zwei Relaisausgänge

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>stop category 1 with two relay</td>
</tr>
</tbody>
</table>

Parameter

- **Bezeichner:** max. 29 ASCII-Zeichen Klartext
- **Abschaltverzögerung:** 0 s … 300 s in Vielfachen von 100 ms

Eingabemaske

Beschreibung

Hinweis

Bei einem internen Fehler des AS-Interface Sicherheitsmonitors werden alle Ausgangskreise unmittelbar abgeschaltet. Bei allen anderen Fehlern, z. B. Kommunikationsunterbrechung, bleibt die eingestellte Abschaltverzögerung erhalten.

Konfigurationsprotokoll

Beispiel:

```
0042 INDEX:       36 = "Bezeichner"                      2
0043 TYPE:       102 = stop category 1 with two relay     3
0044 ASSIGNED:   channel one                               4
0045 DELAY TIME: 1.000 Sec                                 5
```
Türuhhaltung über Stillstandswächter und Verzögerungszeit

Hinweis
Dieser Ausgabe-Baustein ist nur bei zwei abhängigen Freigabkreisen verfügbar.

Symbol

Funktions-Baustein Türzuhaltung

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>door lock</td>
</tr>
</tbody>
</table>

Varianten

Stillstandswächter und Verzögerungszeit

| SUBTYPE: | input or time |

Parameter

- **Bezeichner:** max. 29 ASCII-Zeichen Klartext
- **Entriegelungszeit:** 1 s ... 300 s in Vielfachen von 1 s
- **Entriegelung:** mit / ohne
- **Slave-Typ:** Standard-/A/B-Slave
- **Adresse:** AS-Interface Busadresse (1 ... 31)
- **Bitadresse:** In-0 ... In-3 oder Out-0 ... Out-3, invertiert / nicht invertiert

Eingabemaske

![Eingabemaske für Türzuhaltung](image)
Beschreibung

Um auch bei Kommunikationsstörungen und anderen Fehlern ein Freischalten der Türzuhal tung zu ermöglichen, wird bei inaktiven Stillstandswächtern die eingestellte Entriegelungszeit zwischen dem Abschalten des ersten Ausgangskreises und dem Einschalten des zweiten eingehalten. Die Entriegelungszeit kann zwischen 1 s und 300 s in Schritten von 1 s eingestellt werden.

Vor dem Einschalten des ersten Ausgangskreises muss der zweite abgeschaltet sein. Erfolgt vor dem Einschalten des zweiten Ausgangskreises erneut die Freigabe, Zustand ON, wird der erste Ausgangskreis wieder eingeschaltet und der zweite bleibt abgeschaltet.

Hinweis

Nach dem Einschalten des AS-Interface Sicherheitsmonitors ist der zweite Ausgangskreis bis zum Stillstand der überwachten Bewegung, jedoch höchstens für die eingestellte Entriegelungszeit inaktiv.

Funktion Entriegelung

Konfigurationsprotokoll

Beispiel: mit Entriegelung

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>ASSIGNED</th>
<th>SUBTYPE</th>
<th>LOCK</th>
<th>DELAY TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0036</td>
<td>103</td>
<td>channel one</td>
<td>input or time</td>
<td>yes</td>
<td>20.000 Sec</td>
</tr>
</tbody>
</table>

Beispiel: ohne Entriegelung

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>ASSIGNED</th>
<th>SUBTYPE</th>
<th>LOCK</th>
<th>DELAY TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0036</td>
<td>103</td>
<td>channel one</td>
<td>input or time</td>
<td>no</td>
<td>20.000 Sec</td>
</tr>
</tbody>
</table>
Türzuhaltung über Stillstandswächter und Verzögerungszeit mit Stoppkategorie 1

Hinweis
Dieser Ausgabe-Baustein ist nur bei zwei abhängigen Freigabekreisen verfügbar.

Symbol

Funktions-Baustein Türzuhaltung

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>door lock and stop 1 with delayed relay</td>
</tr>
</tbody>
</table>

Varianten

| Verzögerungszeit | SUBTYPE: input or time |

Parameter

Bezeichner:	max. 29 ASCII-Zeichen Klartext
Entriegelungszeit:	1 s … 250 s in Vielfachen von 1 s
Entriegelung:	mit / ohne
Slave-Typ:	Standard-/A/B-Slave
Adresse:	AS-Interface Busadresse (1 … 31)
Bitadresse:	In-0 … In-3 oder Out-0 … Out-3, invertiert / nicht invertiert
Relais-Verzögerung:	0s … 300s in Vielfachen von 100ms

Eingabemaske

Beschreibung

Um auch bei Kommunikationsstörungen und anderen Fehlern ein Freischalten der Türzuhaltung zu ermöglichen, wird bei inaktiven Stillstandswächtern die eingestellte Entriegelungszeit zwischen dem Abschalten des ersten Ausgangskreises und dem Einschalten des zweiten gehalten. Die Entriegelungszeit kann zwischen 1 s und 250 s in Schritten von 1 s eingestellt werden.
Die Abschaltung des ersten Ausgangskreises erfolgt zeitverzögert mit der eingestellten Relais-Verzögerungszeit, der zugehörige Meldeausgang wird unmittelbar abgeschaltet (Stoppkategorie 1). Der Meldeausgang des zweiten Ausgangskreises wird parallel zum entsprechenden Relaisausgang geschaltet.

Achtung

Der Meldeausgang ist nicht sicherheitsgerichtet. Eine sichere maximale Abschaltverzögerung ist nur für die Ausgangskreise gegeben.

Bei einem internen Fehler des AS-Interface Sicherheitsmonitors werden die Ausgangskreise unmittelbar abgeschaltet. Bei allen anderen Fehlern, z. B. Kommunikationsunterbrechung, bleibt die eingestellte Abschaltverzögerung erhalten.

Vor dem Einschalten des ersten Ausgangskreises muss der zweite abgeschaltet sein. Erfolgt vor dem Einschalten des zweiten Ausgangskreises erneut die Freigabe, Zustand ON, wird der erste Ausgangskreis wieder eingeschaltet und der zweite bleibt abgeschaltet.

Hinweis

Nach dem Einschalten des AS-Interface Sicherheitsmonitors ist der zweite Ausgangskreis bis zum Stillstand der überwachten Bewegung, jedoch höchstens für die eingestellte Entriegelungszeit inaktiv.

Funktion Entriegelung

Nach Abschalten des ersten Ausgangskreises (z. B. durch NOT-AUS) wird nach der eingestellten Entriegelungszeit (oder durch Stillstandswächter) der zweite Ausgangskreis eingeschaltet und damit die Türen entriegelt. Diese Entriegelung wird nicht immer gewünscht. Durch die Angabe **Entriegelung** (Check-Box aktiviert) kann ein Standard-Slave festgelegt werden, dessen Zustand (LOCK-Signal) bestimmt, ob die Verriegelung auch nach Ablauf der Entriegelungszeit erhalten bleibt oder nicht. Bei abgeschalteter Maschine kann also mit dem LOCK-Signal die Türverriegelung beliebig ein- und ausgeschaltet werden.

Konfigurationsprotokoll

Beispiel: mit Entriegelung

0053 INDEX:	37 = "Bezeichner"	3
0054 TYPE:	104 = door lock and stop 1 with delayed relay	4
0055 ASSIGNED:	channel one	5
0056 SUBTYPE:	input or time	6
0057 STOP1 DELAY:	2.000 Sec	7
0058 UNLOCK DLY :	20.000 Sec	8
0059 LOCK:	yes ADDRESS: 10 BIT: In-0 noninv	9

Beispiel: ohne Entriegelung

0053 INDEX:	37 = "Bezeichner"	3
0054 TYPE:	104 = door lock and stop 1 with delayed relay	4
0055 ASSIGNED:	channel one	5
0056 SUBTYPE:	input or time	6
0057 STOP1 DELAY:	2.000 Sec	7
0058 UNLOCK DLY :	20.000 Sec	8
0059 LOCK:	no	9
Türzuhaltung über Verzögerungszeit

Hinweis
Dieser Ausgabe-Baustein ist nur bei zwei abhängigen Freigabekreisen verfügbar.

Symbol
Funktions-Baustein
Türzuhaltung

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>door lock</td>
</tr>
</tbody>
</table>

Varianten
Verzögerungszeit: SUBTYPE: time

Parameter
Bezeichner: max. 29 ASCII-Zeichen Klartext
Entriegelungszeit: 1 s ... 300 s in Vielfachen von 1 s
Entriegelung: mit / ohne
Slave-Typ: Standard-/A/B-Slave
Adresse: AS-Interface Busadresse (1 ... 31)
Bitadresse: In-0 ... In-3 oder Out-0 ... Out-3, invertiert / nicht invertiert

Eingabemaske
Beschreibung

Nach **Abschalten** des ersten Ausgangskreises wird der zweite Ausgangskreis nach der eingestellten Verzögerungszeit **eingeschaltet**. Die Verzögerungszeit kann zwischen 1 s und 300 s in Schritten von 1 s eingestellt werden. Vor Einschalten des ersten Ausgangskreises muss der zweite abgeschaltet sein.

Erfolgt vor dem Einschalten des zweiten Ausgangskreises erneut die Freigabe, Zustand ON, wird der erste Ausgangskreis wieder eingeschaltet und der zweite bleibt abgeschaltet.

Hinweis

Nach dem Einschalten des AS-Interface Sicherheitsmonitors ist der zweite Ausgangskreis mindestens für die eingestellte Entriegelungszeit inaktiv.

Funktion Entriegelung

Nach Abschalten des ersten Ausgangskreises (z. B. durch NOT-AUS) wird nach der eingestellten Entriegelungszeit (oder durch Stillstandswächter) der zweite Ausgangskreis eingeschaltet und damit die Türen entriegelt. Diese Entriegelung wird nicht immer gewünscht. Durch die Angabe **Entriegelung** (Check-Box aktiviert) kann ein Standard-Slave festgelegt werden, dessen Zustand (LOCK-Signal) bestimmt, ob die Verriegelung auch nach Ablauf der Verzögerungszeit erhalten bleibt oder nicht. Bei abgeschalteter Maschine kann also mit dem LOCK-Signal die Türverriegelung beliebig ein- und ausgeschaltet werden.

Konfigurationsprotokoll

Beispiel: mit Entriegelung

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>ASSIGNED</th>
<th>SUBTYPE</th>
<th>LOCK</th>
<th>DELAY TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>103</td>
<td>channel one</td>
<td>time</td>
<td>yes</td>
<td>20.000 Sec</td>
</tr>
</tbody>
</table>

Beispiel: ohne Entriegelung

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>ASSIGNED</th>
<th>SUBTYPE</th>
<th>LOCK</th>
<th>DELAY TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>103</td>
<td>channel one</td>
<td>time</td>
<td>no</td>
<td>20.000 Sec</td>
</tr>
</tbody>
</table>
Türzuhaltung über Verzögerungszeit mit Stoppkategorie 1

Hinweis
Dieser Ausgabe-Baustein ist nur bei zwei abhängigen Freigabekreisen verfügbar.

Symbol

Funktions-Baustein Türkzuhaltung

<table>
<thead>
<tr>
<th>Typ</th>
<th>Bezeichnung im Konfigurationsprotokoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>door lock and stop 1 with delayed relay</td>
</tr>
</tbody>
</table>

Varianten

| Verzögerungszeit | SUBTYPE: time |

Parameter

Bezeichner: max. 29 ASCII-Zeichen Klartext

Entriegelungszeit: 1 s ... 250 s in Vielfachen von 1 s

Entriegelung: mit / ohne

Slave-Typ: Standard-/A/B-Slave

Adresse: AS-Interface Busadresse (1 ... 31)

Bitadresse: In-0 ... In-3 oder Out-0 ... Out-3, invertiert / nicht invertiert

Relais-Verzögerung: 0 s ... 300 s in Vielfachen von 100 ms

Eingabemaske

[Image of Eingabemaske]
Beschreibung

Nach **Abschalten** des ersten Ausgangskreises wird der zweite Ausgangskreis nach der eingestellten Verzögerungszeit **eingeschaltet**. Die Verzögerungszeit kann zwischen 1 s und 250 s in Schritten von 1 s eingestellt werden. Vor Einschalten des ersten Ausgangskreises muss der zweite abgeschaltet sein.

Die Abschaltung des ersten Ausgangskreises erfolgt zeitverzögert mit der eingestellten Relais-Verzögerungszeit, der zugehörige Meldeausgang wird unmittelbar abgeschaltet (Stoppkategorie 1). Der Meldeausgang des zweiten Ausgangskreises wird parallel zum entsprechenden Relaisausgang geschaltet.

Achtung

Der Meldeausgang ist nicht sicherheitsgerichtet. Eine sichere maximale Abschaltverzögerung ist nur für die Ausgangskreise gegeben.

Bei einem internen Fehler des AS-Interface Sicherheitsmonitors werden die Ausgangskreise unmittelbar abgeschaltet. Bei allen anderen Fehlern, z. B. Kommunikationsunterbrechung, bleibt die eingestellte Abschaltverzögerung erhalten.

Erfolgt vor dem Einschalten des zweiten Ausgangskreises erneut die Freigabe, Zustand ON, wird der erste Ausgangskreis wieder eingeschaltet und der zweite bleibt abgeschaltet.

Hinweis

Nach dem Einschalten des AS-Interface Sicherheitsmonitors ist der zweite Ausgangskreis mindestens für die eingestellte Entriegelungszeit inaktiv.

Funktion Entriegelung

Nach Abschalten des ersten Ausgangskreises (z. B. durch NOT-AUS) wird nach der eingestellten Entriegelungszeit (oder durch Stillstandswächter) der zweite Ausgangskreis eingeschaltet und damit die Türen entriegelt. Diese Entriegelung wird nicht immer gewünscht. Durch die Angabe **Entriegelung** (Check-Box aktiviert) kann ein Standard-Slave festgelegt werden, dessen Zustand (LOCK-Signal) bestimmt, ob die Verriegelung auch nach Ablauf der Verzögerungszeit erhalten bleibt oder nicht. Bei abgeschalteter Maschine kann also mit dem LOCK-Signal die Türverriegelung beliebig ein- und ausgeschaltet werden.

Konfigurationsprotokoll

Beispiel: mit Entriegelung

<table>
<thead>
<tr>
<th>INDEX:</th>
<th>36 = “Bezeichner”</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE:</td>
<td>104 = door lock and stop 1 with delayed relay</td>
</tr>
<tr>
<td>ASSIGNED:</td>
<td>channel one</td>
</tr>
<tr>
<td>SUBTYPE:</td>
<td>time</td>
</tr>
<tr>
<td>STOP1 DELAY:</td>
<td>10.000 Sec</td>
</tr>
<tr>
<td>UNLOCK DLY:</td>
<td>20.000 Sec</td>
</tr>
<tr>
<td>LOCK:</td>
<td>yes</td>
</tr>
<tr>
<td>ADDRESS:</td>
<td>20</td>
</tr>
<tr>
<td>BIT: In-0 noninv</td>
<td></td>
</tr>
</tbody>
</table>

Beispiel: ohne Entriegelung

<table>
<thead>
<tr>
<th>INDEX:</th>
<th>36 = “Bezeichner”</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE:</td>
<td>104 = door lock and stop 1 with delayed relay</td>
</tr>
<tr>
<td>ASSIGNED:</td>
<td>channel one</td>
</tr>
<tr>
<td>SUBTYPE:</td>
<td>time</td>
</tr>
<tr>
<td>STOP1 DELAY:</td>
<td>10.000 Sec</td>
</tr>
<tr>
<td>UNLOCK DLY:</td>
<td>20.000 Sec</td>
</tr>
<tr>
<td>LOCK:</td>
<td>no</td>
</tr>
</tbody>
</table>
System-Bausteine

System-Bausteine sind interne Variablen, über die der Benutzer auf Zwischenergebnisse zugreifen kann. Innerhalb der Berechnungszeitspanne (Zykluszeit des Bussystems) sind ihre Werte konstant. Sie werden vor Berechnung der konfigurierten Bausteine bearbeitet, d. h. sie enthalten die Werte aus der vorangegangenen Berechnung.

Hinweis

<table>
<thead>
<tr>
<th>System-Baustein</th>
<th>Symbol</th>
<th>Index</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>![ON]</td>
<td>1 = static on</td>
<td>Zustand immer ON</td>
</tr>
<tr>
<td>FALSE</td>
<td>![OFF]</td>
<td>17 = static off</td>
<td>Zustand immer OFF</td>
</tr>
<tr>
<td>Zustand Ausgangsschaltelement 1</td>
<td>![1]</td>
<td>2 = main output one</td>
<td>Zustand des Ausgangsschaltelements von Freigabekreis 1</td>
</tr>
<tr>
<td>Negierter Zustand Ausgangsschaltelement 1</td>
<td>![1]</td>
<td>18 = not main output one</td>
<td>Negierter Zustand des Ausgangsschaltelements von Freigabekreis 1</td>
</tr>
<tr>
<td>Zustand Ausgangsschaltelement 2</td>
<td>![2]</td>
<td>3 = main output two</td>
<td>Zustand des Ausgangsschaltelements von Freigabekreis 2</td>
</tr>
<tr>
<td>Negierter Zustand Ausgangsschaltelement 2</td>
<td>![2]</td>
<td>19 = not main output two</td>
<td>Negierter Zustand des Ausgangsschaltelements von Freigabekreis 2</td>
</tr>
<tr>
<td>Zustand Meldeausgang 1</td>
<td>![1]</td>
<td>4 = notify output one</td>
<td>Zustand des Meldeausgangs von Freigabekreis 1</td>
</tr>
<tr>
<td>Negierter Zustand Meldeausgang 1</td>
<td>![1]</td>
<td>20 = not notify output one</td>
<td>Negierter Zustand des Meldeausgangs von Freigabekreis 1</td>
</tr>
<tr>
<td>Zustand Meldeausgang 2</td>
<td>![2]</td>
<td>5 = notify output two</td>
<td>Zustand des Meldeausgangs von Freigabekreis 2</td>
</tr>
<tr>
<td>Negierter Zustand Meldeausgang 2</td>
<td>![2]</td>
<td>21 = not notify output two</td>
<td>Negierter Zustand des Meldeausgangs von Freigabekreis 2</td>
</tr>
<tr>
<td>Zustand Freigabekreis 1</td>
<td>![1]</td>
<td>6 = devices started one</td>
<td>Ergebnis der ODER-Verknüpfung aller Start-Bausteine des Freigabekreises 1</td>
</tr>
<tr>
<td>Negierter Zustand Freigabekreis 1</td>
<td>![1]</td>
<td>22 = not devices started one</td>
<td>Negiertes Ergebnis der ODER-Verknüpfung aller Start-Bausteine des Freigabekreises 1</td>
</tr>
<tr>
<td>Zustand Freigabekreis 2</td>
<td>![2]</td>
<td>7 = devices started two</td>
<td>Ergebnis der ODER-Verknüpfung aller Start-Bausteine des Freigabekreises 2</td>
</tr>
<tr>
<td>Negierter Zustand Freigabekreis 2</td>
<td>![2]</td>
<td>23 = not devices started two</td>
<td>Negiertes Ergebnis der ODER-Verknüpfung aller Start-Bausteine des Freigabekreises 2</td>
</tr>
<tr>
<td>Zustand Bausteine vor Start 1</td>
<td>![1]</td>
<td>8 = dev before start one</td>
<td>Ergebnis der UND-Verknüpfung der Zustände aller Überwachungs-, Verknüpfungs- und Rückführkreise des Freigabekreises 1</td>
</tr>
<tr>
<td>Negierter Zustand Bausteine vor Start 1</td>
<td>![1]</td>
<td>24 = not dev before start one</td>
<td>Negiertes Ergebnis der UND-Verknüpfung der Zustände aller Überwachungs-, Verknüpfungs- und Rückführkreise des Freigabekreises 1</td>
</tr>
<tr>
<td>Zustand Bausteine vor Start 2</td>
<td>![2]</td>
<td>9 = dev before start two</td>
<td>Ergebnis der UND-Verknüpfung der Zustände aller Überwachungs-, Verknüpfungs- und Rückführkreise des Freigabekreises 2</td>
</tr>
</tbody>
</table>
4.3.7 Aktivieren und Deaktivieren von Bausteinen

Zustand der Bausteine ändern

Hinweis
Diese Funktionalität steht erst in AS-Interface Sicherheitsmonitoren ab der Version 2.0 zur Verfügung.

Deaktivieren von Bausteinen

Vorsicht
Beachten Sie alle Sicherheitsvorschriften, wenn Sie einen Baustein deaktivieren. Dies darf nur durch eine autorisierte Sicherheitsfachkraft durchgeführt werden.

Wenn Sie einen Baustein mit der Maus auswählen und mit der rechten Maustaste anklicken, öffnet sich das folgende Kontextmenü:

Wählen Sie den Punkt **Deaktivieren** aus. Im sich öffnenden Fenster legen Sie fest, mit welcher Wertigkeit der deaktivierte Baustein in der Konfiguration ersetzt werden soll. Wählen Sie dazu innerhalb eines UND-Bausteins, also auch in der obersten Konfigurationsebene, den Wert **TRUE** aus, innerhalb eines ODER-Bausteins dagegen den Wert **FALSE**.
Dieser Baustein liefert dann unabhängig davon, ob der sichere Slave am Bus installiert ist, immer den vorgewählten Wert.

Diese Option kann auch für eine Inbetriebnahme verwendet werden, wenn der sichere Slave noch nicht installiert ist, aber bereits Teile der Konfiguration in Betrieb genommen werden sollen.

Wird die sichere AS-Interface Adresse des zu deaktivierenden Bausteins in keinem anderen Baustein mehr verwendet 1), können Sie bei der Deaktivierung entscheiden, wie mit dieser Adresse verfahren werden soll:

1. **Businformation für Adresse ... Löschen:**
 Die Adresse soll aus der Businformation entfernt werden (ergibt für diese Adresse keinen Haken – weder unter "sicher" noch "standard"), wenn der sichere Slave auch physikalisch vom AS-Interface Bus entfernt wird.

2. **Businformation für Adresse ... Beibehalten:**
 Die Adresse bleibt als unbenutzte sichere Adresse stehen (ergibt für diese Adresse einen abwählbaren Haken in Spalte "sicher"), wenn der sichere Slave physikalisch im AS-Interface Bus verbleibt.

Hintergrund:
Solange auf dem Bus vorhanden, müssen die Codefolgen aller sicheren Slaves aus Sicherheitsgründen dem Monitor bekannt sein und deshalb auch beim Lernen der sicheren Konfiguration (Teach) abgefragt werden. Wird dagegen ein sicherer Slave zwar vom Bus, aber nicht aus der Businformation entfernt, so erhält man erst beim Lernen der sicheren Konfiguration eine Fehlermeldung, die einen erneuten Konfigurationsdurchlauf erfordert.

Bild 4-6 Darstellung deaktivierter Baustein

Hinweis
Wenn Sie einen Verknüpfungs-Baustein deaktivieren, können Sie die Bausteine, die innerhalb der Logikfunktion verwendet werden, nicht mehr sehen und Sie können den Verknüpfungs-Baustein auch nicht mehr aufblenden. Beim Bearbeiten eines deaktivierten Bausteins können Sie nur noch den Namen und die Wertigkeit verändern.

1) Eine solche Mehrfachverwendung ist aber nur mit dem Baustein "Nullfolgeerkennung" möglich.
Aktivieren von Bausteinen

Um einen deaktivierten Baustein wieder zu aktivieren, klicken Sie mit der rechten Maustaste auf den deaktivierten Baustein. Es öffnet sich das folgende Kontextmenü.

<table>
<thead>
<tr>
<th>Bausteine</th>
<th>Aktivieren</th>
<th>Löschen</th>
<th>Bewahren</th>
<th>Drucken</th>
<th>Abspeichern</th>
<th>Speichern</th>
<th>Löschen</th>
</tr>
</thead>
</table>

Wählen Sie den Punkt Aktivieren aus. Der Baustein wird wieder als vollfarbiges Bild angezeigt.

Die sichere Adresse wird beim Aktivieren in der Businformation wieder auf "sicher" gesetzt und in der Konfiguration als verwendet gekennzeichnet. Dies ist durch ausgegraute Felder und einen nicht abwählbaren Haken in der Spalte "sicher" dargestellt.

Wurde die sichere Adresse des deaktivierten Bausteines beim Deaktivieren aus der Businformation entfernt, so wird sie dabei zuvor wieder eingetragen.

Falls zwischenzeitlich die betreffende Adresse für einen anderen neu konfigurierten Baustein vergeben wurde, kann es zu einem Adresskonflikt kommen. In diesem Falle erscheint das Eingabefenster des zu aktivierenden Bausteins zusammen mit einem am Fensterrand angefügten Infofenster. Wählen Sie dann entweder eine andere verfügbare sichere Adresse oder sorgen Sie (nach Abbruch der Aktivierung) dafür, dass die Adresse des deaktivierten Bausteins wieder frei verfügbar ist.
4.4 Speichern / Laden einer Konfiguration

Mit dem Befehl Öffnen… im Menü Datei können Sie eine auf Datenträger gespeicherte Konfiguration in das Programm ASIMON laden. In ASIMON kann nur eine Konfiguration bearbeitet werden, nicht mehrere in verschiedenen Fenstern.

Wenn Sie eine nicht gespeicherte Konfiguration in Bearbeitung haben und mit dem Befehl Öffnen… eine andere Konfiguration von einem Datenträger laden wollen, werden Sie zunächst gefragt, ob Sie die aktuelle Konfiguration speichern möchten. Falls Sie hier nicht speichern, gehen diese Daten verloren.

Hinweis

Das Speichern einer Konfiguration auf Datenträger ist keine Gewähr für eine sinnvolle, korrekte und funktionierende Konfiguration. Lesen Sie dazu weiter im Kapitel 5.

Bild 4-7 Abfrage beim Öffnen einer Konfiguration
Inbetriebnahme des AS-Interface Sicherheitsmonitors

5

5.1 Vorgehensweise

Vorsicht

Da es sich bei der Inbetriebnahme des AS-Interface Sicherheitsmonitors um einen sicherheitstechnisch wichtigen Arbeitsschritt handelt, muss die Inbetriebnahme vom zuständigen Sicherheitsbeauftragten für die Applikation durchgeführt werden.

Die Inbetriebnahme des AS-Interface Sicherheitsmonitors erfolgt aus sicherheitstechnischen Gründen nach einem festen Ablauf Schritt für Schritt.

Schritt 1 - Konfiguration abfragen und ändern (optional)

Wenn Sie die Konfiguration eines bereits zuvor konfigurierten AS-Interface Sicherheitsmonitors ändern möchten, haben Sie die Möglichkeit, die im AS-Interface Sicherheitsmonitor gespeicherte Konfiguration in ASIMON einzulesen. Das ist insbesondere dann sinnvoll, wenn keine Konfigurationsdatei auf einem Datenträger gespeichert wurde, bzw. wenn eine Konfigurationsdatei z. B. durch einen Datenverlust verloren gegangen ist.

Wenn Sie einen AS-Interface Sicherheitsmonitor zum ersten Mal oder von Grund auf neu konfigurieren wollen, lesen Sie bei Schritt 2 weiter.

Gehen Sie zur Abfrage der Konfiguration wie folgt vor:

• Befinden sich der AS-Interface Sicherheitsmonitor im Schutzbetrieb, müssen Sie ihn zunächst mit dem Befehl Stopp (Passwortschutz) im Menü Monitor in den Konfigurationsbetrieb bringen (siehe Kapitel 5.7).

• Übertragen Sie anschließend die aktuelle Konfiguration des AS-Interface Sicherheitsmonitors mit dem Befehl Monitor → PC ... aus dem Menü Monitor nach ASIMON (siehe Kapitel 5.2).

• Ändern Sie die Konfiguration in ASIMON wie in Kapitel 4 beschrieben.

Hinweis

Über die Abfrage der Diagnoseinformation eines im Schutzbetrieb befindlichen AS-Interface Sicherheitsmonitors können Sie eine unbekannte Konfiguration rekonstruieren. Siehe “Option Diagnose” auf Seite 17.
Schritt 2 - Konfiguration zum AS-Interface Sicherheitsmonitor übertragen

Haben Sie eine gültige Konfiguration für den angeschlossenen AS-Interface Sicherheitsmonitor erstellt, müssen Sie diese zunächst an den AS-Interface Sicherheitsmonitor übertragen.

Achtung

Die vorhandene Konfiguration des AS-Interface Sicherheitsmonitors wird bei einer Neukonfiguration überschrieben. Wenn Sie sich nicht sicher sind, ob diese Konfiguration doch noch einmal benötigt wird, lesen Sie diese vor einer Neukonfiguration in ASIMON ein, und speichern Sie sie auf Datenträger ab.

Wenn Sie den AS-Interface Sicherheitsmonitor neu konfigurieren möchten, **müssen Sie das Default-Passwort zunächst in ein neues Passwort ändern**, dass nur Ihnen als Sicherheitsbeauftragter bekannt ist (siehe Kapitel 5.9).

Gehen Sie wie folgt vor:

- Befindet sich der AS-Interface Sicherheitsmonitor im Schutzbetrieb, müssen Sie ihn zunächst mit dem Befehl **Stopp** (Passwortschutz) im Menü **Monitor** in den Konfigurationsbetrieb bringen (siehe Kapitel 5.7).
- Übertragen Sie anschließend die aktuelle Konfiguration von ASIMON mit dem Befehl **PC → Monitor ...** zum AS-Interface Sicherheitsmonitor (siehe Kapitel 5.3).
- Nach der erfolgreichen Übertragung zum AS-Interface Sicherheitsmonitor muss die Konfiguration eingelernt werden (Einlernen der Codefolgen der zu überwachenden sicheren AS-Interface Slaves). Ein Abfragefenster fragt Sie im Anschluss an die Übertragung der Konfiguration, ob Sie dies jetzt tun möchten.

Schritt 3 - Sichere Konfiguration lernen

Haben Sie Ihre Konfiguration zum angeschlossenen AS-Interface Sicherheitsmonitor übertragen, müssen Sie diese im Anschluss daran einlernen.

Dies dient zur Verifizierung der übertragenen Konfiguration und zur Funktionsüberprüfung der zu überwachenden sicheren AS-Interface Slaves.

Gehen Sie wie folgt vor:

- Nehmen Sie den AS-Interface Bus inklusiv aller zu überwachenden sicheren AS-Interface Slaves in Betrieb.
- Bringen Sie soweit möglich alle zu überwachenden sicheren AS-Interface Slaves in den eingeschalteten Zustand (ON).

Hinweis

Zum Einlernen der sicheren Konfiguration muss der betroffene AS-Interface Bus vollständig in Betrieb sein und die zu überwachenden sicheren AS-Interface Slaves sollten sich soweit möglich im eingeschalteten Zustand (ON) befinden. Anderenfalls kann der AS-Interface Sicherheitsmonitor keine Codefolgen empfangen.

- Bestätigen Sie die Abfrage "**Möchten Sie die Codefolgen einlernen?**" mit der Schaltfläche **Ja** oder wählen Sie im Menü **Monitor** den Befehl **Sichere Konfiguration lernen** (siehe Kapitel 5.4).
- Die Codefolgen werden nun eingelernt. Können durch den Anlagenaufbau bedingt nicht alle zu überwachenden sicheren AS-Interface Slaves gleichzeitig in den eingeschalteten Zustand (ON) gehen, wird das Einlernen der Codefolgen schrittweise solange wiederholt, bis die Codefolgen aller zu überwachenden Slaves richtig gelesen wurden. Bringen Sie dazu nacheinander alle zu überwachenden sicheren AS-Interface Slaves in den eingeschalteten Zustand (ON).
Konnten die Codefolgen aller zu überwachenden sicheren AS-Interface Slaves zuverlässig gelesen werden, erfolgt im direkten Anschluss daran die Übertragung des vorläufigen Konfigurationsprotokolls an \textit{ASIMON} zur Überprüfung durch den für die Applikation zuständigen Sicherheitsbeauftragten.

\textbf{Schritt 4 - Überprüfung Konfigurationsprotokoll und Freigabe der Konfiguration}

Überprüfen Sie sorgfältig das vom AS-Interface Sicherheitsmonitor übertragene vorläufige Konfigurationsprotokoll. Sie können dieses Protokoll dazu ausdrucken oder als Textdatei abspeichern. Der Aufbau des Konfigurationsprotokolls ist in Kapitel 5.8 im Detail beschrieben. Im Anschluss daran müssen Sie die Konfiguration freigeben (Passwortschutz).

\textbf{Achtung}

Mit der Freigabe der Konfiguration bestätigen Sie als Sicherheitsbeauftragter den ordnungsgemäßen Aufbau und die Einhaltung aller sicherheitstechnischen Vorschriften und Normen für die Applikation. Wählen Sie dazu aus dem Menü \textit{Monitor} den Befehl \textit{Freigabe…} (siehe Kapitel 5.5).

Haben Sie die Konfiguration des AS-Interface Sicherheitsmonitors freigegeben, muss im Anschluss daran das endgültige Konfigurationsprotokoll an \textit{ASIMON} zur Dokumentation der Applikation durch den zuständigen Sicherheitsbeauftragten übertragen werden.

Drucken Sie dieses Protokoll aus und legen Sie es zusammen mit der übrigen sicherheitstechnischen Dokumentation Ihrer Applikation ab. Zusätzlich können Sie das Protokoll als Textdatei abspeichern. Der Aufbau des Konfigurationsprotokolls ist in Kapitel 5.8 im Detail beschrieben.

\textbf{Schritt 5 - AS-Interface Sicherheitsmonitor starten}

Im letzten Schritt der Inbetriebnahme müssen Sie den AS-Interface Sicherheitsmonitor noch starten, d. h. vom Konfigurationsbetrieb in den Schutzbetrieb bringen. Wählen Sie dazu aus dem Menü \textit{Monitor} den Befehl \textit{Start} (Passwortschutz, siehe Kapitel 5.6).

Sie müssen die Applikation nun auf ihre einwandfreie Funktion überprüfen (siehe Kapitel 6).
5.2 Abfrage einer Konfiguration vom AS-Interface Sicherheitsmonitor

Bringen Sie den AS-Interface Sicherheitsmonitor zunächst vom Schutzbetrieb in den Konfigurationsbetrieb (siehe Kapitel 5.7).

Nach dem erfolgreichen Abschluss der Datenübertragung vom AS-Interface Sicherheitsmonitor steht die Konfiguration in **ASIMON** zur weiteren Bearbeitung zur Verfügung.

Tritt während der Datenübertragung ein Fehler auf, erfolgt eine Fehlermeldung.

5.3 Übertragen einer Konfiguration zum AS-Interface Sicherheitsmonitor

Bringen Sie den AS-Interface Sicherheitsmonitor zunächst vom Schutzbetrieb in den Konfigurationsbetrieb (siehe Kapitel 5.7).

Nach dem erfolgreichen Abschluss der Datenübertragung zum AS-Interface Sicherheitsmonitor wird die Konfiguration im AS-Interface Sicherheitsmonitor abgespeichert.

Tritt während der Datenübertragung ein Fehler auf, erfolgt eine Fehlermeldung.
5.4 Sichere Konfiguration lernen

Hinweis

Nähere Informationen zu Codefolgen und der sicheren AS-Interface Übertragung finden Sie in der Betriebsanleitung des AS-Interface Sicherheitsmonitors.

Vor dem Lernen der sicheren Konfiguration müssen Sie den AS-Interface Bus inklusiv aller zu überwachenden sicheren AS-Interface Slaves inbetriebnehmen und alle zu überwachenden sicheren AS-Interface Slaves soweit möglich in den eingeschalteten Zustand (ON) bringen.

Können durch den Anlagenaufbau bedingt nicht alle zu überwachenden sicheren AS-Interface Slaves gleichzeitig in den eingeschalteten Zustand (ON) gehen (z. B. bei einer Pendeltüre an einer Materialschleuse, bei der sich jeweils an einer Endposition ein Schalter mit sicherem AS-Interface Slave befindet), wird das Einlernen der Codefolgen schrittweise solange wiederholt, bis die Codefolgen aller zu überwachenden Slaves richtig gelesen wurden. Bringen Sie dazu nacheinander alle zu überwachenden sicheren AS-Interface Slaves in den eingeschalteten Zustand (ON).

Zum Einlernen der Codetabellen wählen Sie im Menü **Monitor** den Befehl **Sichere Konfiguration lernen** bzw. bestätigen Sie die Abfrage "**Möchten Sie die Codefolgen einlernen?**" mit der Schaltfläche **Ja**.

Die Codetabellen werden daraufhin vom AS-Interface Sicherheitsmonitor eingelernt. Das Einlernen dauert einige Sekunden. Der Fortschritt wird in einem Fenster angezeigt.
Können nicht alle zu überwachenden sicheren AS-Interface Slaves gleichzeitig in den eingeschalteten Zustand (ON) gehen, erscheint folgendes Fenster, in dem der Fortschritt des Einlernvorgangs grafisch übersichtlich dargestellt wird.

Klicken Sie nach erfolgreichem Abschluss des Einlernvorgangs auf OK. Im direkten Anschluss daran erfolgt die Übertragung des vorläufigen Konfigurationsprotokolls an ASIMON.

Hinweis

Im Fenster **Schrittweiser Teach** werden außer dem Einlernzustand auch die Schalterzustände S1 und S2 der jeweiligen Slaves angezeigt. So können Sie auf einen Blick auch mögliche Gerätedefekte oder Kommunikationsstörungen erkennen.

Der schrittweise Teach der Codefolgen funktioniert auch mit AS-Interface Sicherheitsmonitoren älteren Typs, erfordert aber mehr Zeit, da zwischen zwei Teach-Vorgängen immer die gesamte Konfiguration in den Sicherheitsmonitor geladen werden muss.

Der Fortschritt der Übertragung des vorläufigen Konfigurationsprotokolls wird in einem Fenster angezeigt.

Ein Informationsfenster fordert Sie anschließend zur Überprüfung der Konfiguration durch den für die Applikation zuständigen Sicherheitsbeauftragten anhand des Konfigurationsprotokolls auf.
Das vorläufige Konfigurationsprotokoll wird in ASIMON in einem eigenen Fenster dargestellt.

Hinweis

Das Konfigurationsprotokoll ist immer einheitlich in Englisch abgefasst.

Sie können dieses vorläufige Konfigurationsprotokoll ausdrucken und/oder als Datei abspeichern, solange das Protokollfenster geöffnet ist. Wählen Sie dazu im Menü Monitor im Untermenü Konfigurationsprotokoll den entsprechenden Befehl.

Beim Befehl Speichern unter... öffnet sich das Windows®-Standard-Dialogfenster zum Speichern von Dateien, beim Befehl Drucken... wird direkt auf den eingestellten Drucker gedruckt.

Nachdem Sie die Konfiguration anhand des vorläufigen Konfigurationsprotokolls erfolgreich überprüft haben, können Sie die Konfiguration im AS-Interface Sicherheitsmonitor freigeben.
5.5 Konfiguration freigeben

Hinweis
Mit der Freigabe der Konfiguration bestätigen Sie als Sicherheitsbeauftragter den ordnungsgemäßen Aufbau und die Einhaltung aller sicherheitstechnischen Vorschriften und Normen für die Applikation.

Zur Freigabe einer Konfiguration wählen Sie aus dem Menü Monitor den Befehl Freigabe…. Es erscheint ein Fenster in dem Sie durch Eingabe Ihres Namens und des Passworts eine Konfiguration freigeben können.

Hinweis
Die Freigabe der Konfiguration ist, wie einige andere sicherheitsrelevante Befehle passwortgeschützt. Das Default-Passwort eines fabrikneuen AS-Interface Sicherheitsmonitors lautet "SIMON". Sie müssen dieses Default-Passwort in ein Passwort ändern, welches nur dem Sicherheitsbeauftragten für die Applikation bekannt ist (siehe Kapitel 5.9).

Bestätigen Sie Ihre Eingaben mit der Schaltfläche OK. Ein Informationsfenster bestätigt daraufhin die erfolgreiche Freigabe der Konfiguration.

Hinweis
Speichern Sie die Konfiguration nach der erfolgreichen Freigabe nochmals auf dem PC ab. So stellen Sie sicher, dass die Downloadzeit und die eingelernten Codefolgen auch in der Konfigurationdatei hinterlegt sind und die Diagnose von ASIMON die richtige Konfiguration erkennt.

Notieren Sie sich zusätzlich zum Passwort, jedoch an anderer Stelle, die Freigabe-Informationen. Mit ihrer Hilfe kann der Hersteller beim Verlust des Passwortes ein generisches Ersatzpasswort erzeugen, mit dem der AS-Interface Sicherheitsmonitor wieder freigeschaltet werden kann.

Sie finden die Freigabe-Information auch im endgültigen Konfigurationsprotokoll in der Zeile 10.
Im direkten Anschluss daran erfolgt die Übertragung des endgültigen Konfigurationsprotokolls an ASIMON. Der Fortschritt der Übertragung des endgültigen Konfigurationsprotokolls wird in einem Fenster angezeigt.

Das endgültige Konfigurationsprotokoll wird in ASIMON in einem eigenen Fenster dargestellt. Als Zeichen für eine freigegebene Konfiguration und zur Unterscheidung von einem vorläufigen Konfigurationsprotokoll steht in der Zeile 10 jetzt die Freigabeeinformation.

Hinweis

Das Konfigurationsprotokoll ist immer einheitlich in Englisch abgefasst.

"VALIDATED..." (Zeile 10):
Kennzeichen für endgültiges Konfigurationsprotokoll mit Freigabeeinformation
- Datum und Uhrzeit
- Name
- Code
- Laufende Nummer der Konfiguration
Sie können das endgültige Konfigurationsprotokoll ausdrucken und/oder als Datei abspeichern. Wählen Sie dazu im Menü Monitor im Untermenü Konfigurationsprotokoll den entsprechenden Befehl.

Beim Befehl Speichern unter... öffnet sich das Windows®-Standard-Dialogfenster zum Speichern von Dateien, beim Befehl Drucken... wird direkt auf den eingestellten Standarddrucker gedruckt.

Das endgültige Konfigurationsprotokoll dient zur sicherheitstechnischen Dokumentation der Applikation durch den zuständigen Sicherheitsbeauftragten.

Drucken Sie dieses Protokoll aus und legen Sie es zusammen mit der übrigen sicherheitstechnischen Dokumentation Ihrer Applikation ab. Der Aufbau des Konfigurationsprotokolls ist in Kapitel 5.8 im Detail beschrieben.

Nachdem Sie die Konfiguration erfolgreich freigegeben haben, können Sie den AS-Interface Sicherheitsmonitor starten, d. h. in den Schutzbetrieb bringen.

5.6 AS-Interface Sicherheitsmonitor starten

Ist im AS-Interface Sicherheitsmonitor eine gültige, freigegebene Konfiguration vorhanden, können Sie den AS-Interface Sicherheitsmonitor mit dem Befehl Start im Menü Monitor vom Konfigurationsbetrieb in den Schutzbetrieb bringen.

Nach dem Starten des Schutzbetriebs informiert Sie die Statuszeile über den Wechsel in die neue Betriebsart.

Der Wechsel vom Schutzbetrieb in den Konfigurationsbetrieb ist dann nur noch über einen Stopp-Befehl möglich (siehe Kapitel 5.7).
5.7 AS-Interface Sicherheitsmonitor stoppen

Befindet sich der AS-Interface Sicherheitsmonitor im Schutzbetrieb, kann er nur durch den Befehl **Stopp** im Menü **Monitor** von ASIMON in den Konfigurationsbetrieb gebracht werden.

Ein Stopp-Befehl wird vom AS-Interface Sicherheitsmonitor akzeptiert, wenn

- das gültige Passwort eingegeben wird.
- keine AS-Interface Telegramme auf dem Bus vorhanden sind auch ohne Passwort.

Hinweis

Ein Stopp-Befehl wird vergleichbar dem Betätigen (Abschalten) eines Überwachungs-Bausteins behandelt, d. h. es kann abhängig vom konfigurierten Ausgabe-Baustein bis zu einer Minute dauern, bis der AS-Interface Sicherheitsmonitor die Sicherheitsschaltausgänge abschaltet und in den Konfigurationsbetrieb wechselt.

Nach der Ausführung des Stopp-Befehls informiert Sie die Statuszeile über den Wechsel in den Konfigurationsbetrieb.

5.8 Dokumentation der Konfiguration

Konfigurationsprotokoll

Das Konfigurationsprotokoll dient zur sicherheitstechnischen Dokumentation der Applikation (siehe Kapitel 5.4 und Kapitel 5.5). Es enthält alle Informationen über die Konfiguration des AS-Interface Sicherheitsmonitors.

Das vorläufige Konfigurationsprotokoll dient zur Überprüfung der Konfiguration des AS-Interface Sicherheitsmonitors und der sicherheitstechnischen AS-Interface Applikation durch den Sicherheitsbeauftragten.

Das endgültige Konfigurationsprotokoll dient zur Dokumentation der Konfiguration des AS-Interface Sicherheitsmonitors und der sicherheitstechnischen ASi-Applikation durch den Sicherheitsbeauftragten. Es ist ein wichtiger Teil der sicherheitstechnischen Dokumentation Ihrer Anwendung und muss zusammen mit dieser abgelegt werden.

Hinweis

Das Konfigurationsprotokoll ist immer einheitlich in Englisch abgefasst.
Der Aufbau ist nachfolgend anhand eines Beispielprotokolls erläutert.

Beispiel endgültiges Konfigurationsprotokoll

<table>
<thead>
<tr>
<th>Zeile</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>***</td>
</tr>
<tr>
<td>0001</td>
<td>CONFIGURATION AS-INTERFACE SAFETY MONITOR</td>
</tr>
<tr>
<td>0002</td>
<td>IDENT: "Configuration 1"</td>
</tr>
<tr>
<td>0003</td>
<td>***</td>
</tr>
<tr>
<td>0004</td>
<td>MONITOR SECTION</td>
</tr>
<tr>
<td>0005</td>
<td>***</td>
</tr>
<tr>
<td>0006</td>
<td>MONITOR VERSION: 02.12 enhanced</td>
</tr>
<tr>
<td>0007</td>
<td>PC VERSION: 02.02</td>
</tr>
<tr>
<td>0008</td>
<td>DOWNLOAD TIME: 2005/08/05 18:42</td>
</tr>
<tr>
<td>0009</td>
<td>VALIDATED: 2005/08/05 18:43 BY: "SIMON" CODE: C141 COUNT: 0003</td>
</tr>
<tr>
<td>0010</td>
<td>MONITOR ADDRESS: 28 - 31 DIAGNOSIS: all devices</td>
</tr>
<tr>
<td>0011</td>
<td>MODE: two independent output groups</td>
</tr>
<tr>
<td>0012</td>
<td>DIAG FREEZE: no</td>
</tr>
<tr>
<td>0013</td>
<td>ERROR UNLOCK: no</td>
</tr>
<tr>
<td>0014</td>
<td>***</td>
</tr>
<tr>
<td>0015</td>
<td>DEVICE SECTION</td>
</tr>
<tr>
<td>0016</td>
<td>***</td>
</tr>
<tr>
<td>0017</td>
<td>NUMBER OF DEVICES: 8</td>
</tr>
<tr>
<td>0018</td>
<td>***</td>
</tr>
<tr>
<td>0019</td>
<td>INDEX: 32 = "NA 1"</td>
</tr>
<tr>
<td>0020</td>
<td>TYPE: 20 = double channel forced safety input</td>
</tr>
<tr>
<td>0021</td>
<td>SUBTYPE: no startup test</td>
</tr>
<tr>
<td>0022</td>
<td>SUBTYPE: no local acknowledge</td>
</tr>
<tr>
<td>0023</td>
<td>ASSIGNED: both channels</td>
</tr>
<tr>
<td>0024</td>
<td>SAFE SLAVE: 1</td>
</tr>
<tr>
<td>0025</td>
<td>***</td>
</tr>
<tr>
<td>0026</td>
<td>INDEX: 33 = "NA 3"</td>
</tr>
<tr>
<td>0027</td>
<td>TYPE: 20 = double channel forced safety input</td>
</tr>
<tr>
<td>0028</td>
<td>SUBTYPE: no startup test</td>
</tr>
<tr>
<td>0029</td>
<td>SUBTYPE: no local acknowledge</td>
</tr>
<tr>
<td>0030</td>
<td>ASSIGNED: channel one</td>
</tr>
<tr>
<td>0031</td>
<td>SAFE SLAVE: 2</td>
</tr>
<tr>
<td>0032</td>
<td>***</td>
</tr>
<tr>
<td>0033</td>
<td>INDEX: 34 = "NA 2"</td>
</tr>
<tr>
<td>0034</td>
<td>TYPE: 20 = double channel forced safety input</td>
</tr>
<tr>
<td>0035</td>
<td>SUBTYPE: no startup test</td>
</tr>
<tr>
<td>0036</td>
<td>SUBTYPE: no local acknowledge</td>
</tr>
<tr>
<td>0037</td>
<td>ASSIGNED: channel two</td>
</tr>
<tr>
<td>0038</td>
<td>SAFE SLAVE: 4</td>
</tr>
<tr>
<td>0039</td>
<td>***</td>
</tr>
<tr>
<td>0040</td>
<td>INDEX: 35 = "BWS 1"</td>
</tr>
<tr>
<td>0041</td>
<td>TYPE: 20 = double channel forced safety input</td>
</tr>
<tr>
<td>0042</td>
<td>SUBTYPE: no startup test</td>
</tr>
<tr>
<td>0043</td>
<td>SUBTYPE: no local acknowledge</td>
</tr>
<tr>
<td>0044</td>
<td>ASSIGNED: both channels</td>
</tr>
<tr>
<td>0045</td>
<td>SAFE SLAVE: 3</td>
</tr>
<tr>
<td>0046</td>
<td>***</td>
</tr>
</tbody>
</table>
5.8 Dokumentation der Konfiguration

<table>
<thead>
<tr>
<th>INDEX:</th>
<th>TYPE:</th>
<th>ASSIGNED:</th>
<th>ADDRESS:</th>
<th>BIT:</th>
<th>Code:</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 = "S 2"</td>
<td>81 = manual start standard slave</td>
<td>channel two</td>
<td>10</td>
<td>In-1 noninv</td>
<td>15 64 9E A7</td>
</tr>
<tr>
<td>37 = "S 1"</td>
<td>81 = manual start standard slave</td>
<td>channel one</td>
<td>10</td>
<td>In-0 noninv</td>
<td>36 8A BD 57</td>
</tr>
<tr>
<td>38 = "M 1"</td>
<td>stop category 0</td>
<td>channel one</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 = "M 2"</td>
<td>stop category 0</td>
<td>channel two</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 used safety input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 used safety input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 used safety input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 used safety input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 not used safety input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 used standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 not used standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 no entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUBDEVICE SECTION
Inbetriebnahme des AS-Interface Sicherheitsmonitors

5.8 Dokumentation der Konfiguration

<table>
<thead>
<tr>
<th>Zeile 0000 ... 0003:</th>
<th>Kopf-Information (Header) des Konfigurationsprotokolls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeile 0002:</td>
<td>Titel der Konfiguration in Hochkommata</td>
</tr>
<tr>
<td>Zeile 0004 ... 0015:</td>
<td>Informationen zum AS-Interface Sicherheitsmonitor</td>
</tr>
<tr>
<td>Zeile 0006:</td>
<td>Software-Version des AS-Interface Sicherheitsmonitors</td>
</tr>
<tr>
<td>Zeile 0007:</td>
<td>Version der Konfigurationsstruktur (Firmware)</td>
</tr>
<tr>
<td>Zeile 0008:</td>
<td>Version der PC-Software ASIMON</td>
</tr>
<tr>
<td>Zeile 0009:</td>
<td>Übertragungszeitpunkt der gespeicherten Konfiguration</td>
</tr>
<tr>
<td>Zeile 0010:</td>
<td>Freigabezeitpunkt der gespeicherten Konfiguration</td>
</tr>
<tr>
<td>Zeile 0011:</td>
<td>AS-Interface Busadresse(n) des Sicherheitsmonitors/Geräte-Diagnose</td>
</tr>
<tr>
<td>Zeile 0012:</td>
<td>Betriebsmodus (siehe "Betriebsmodus" auf Seite 19)</td>
</tr>
<tr>
<td>Zeile 0013:</td>
<td>Diagnosehalt ja/nein</td>
</tr>
<tr>
<td>Zeile 0014:</td>
<td>Fehlerentriegelung ja/nein</td>
</tr>
<tr>
<td>Zeile 0016 ... 0019:</td>
<td>Beginn der Baustein-Beschreibungen</td>
</tr>
<tr>
<td>Zeile 0018:</td>
<td>Anzahl der konfigurierten Bausteine</td>
</tr>
<tr>
<td>Zeile 0020 ... 0026:</td>
<td>Beschreibung des Bausteins mit dem Index 32</td>
</tr>
<tr>
<td>Zeile 0020:</td>
<td>Index und Bezeichner des Bausteins</td>
</tr>
<tr>
<td>Zeile 0021:</td>
<td>Typ des Bausteins</td>
</tr>
<tr>
<td>Zeile 0022:</td>
<td>Variante des Bausteins</td>
</tr>
<tr>
<td>Zeile 0023:</td>
<td>Variante des Bausteins</td>
</tr>
<tr>
<td>Zeile 0024:</td>
<td>Zuweisung zu Freigabekreis</td>
</tr>
<tr>
<td>Zeile 0025:</td>
<td>AS-Interface Busadresse des zugehörigen, sicheren AS-Interface Slaves</td>
</tr>
</tbody>
</table>

Hinweis
Die detaillierte Beschreibung der Bausteine mit einem Beispiel ihrer Abbildung im Konfigurationsprotokoll finden Sie in Kapitel 4.3.

Zeile 0027 ... 0033:	Beschreibung des Bausteins mit dem Index 33
Zeile 0034 ... 0040:	Beschreibung des Bausteins mit dem Index 34
Zeile 0062 ... 0065:	Beschreibung des Bausteins mit dem Index 39
Zeile 0066 ... 0099:	Informationen zum AS-Interface Bus
5.8 Dokumentation der Konfiguration

Erläuterung der Tabelleninträge zur Belegung AS-Interface Busadressen

- **no entry**: Kein Eintrag vorhanden.
- **not used standard**: Busadresse ist von einem AS-Interface Standard-Slave belegt, der jedoch nicht vom AS-Interface Sicherheitsmonitor überwacht wird.
- **used standard**: Busadresse ist von einem AS-Interface Standard-Slave belegt, der vom AS-Interface Sicherheitsmonitor überwacht wird, z. B. Vorortquit-tierung, manueller Start etc.
- **not used safety input**: Busadresse ist von einem sicheren AS-Interface Slave belegt, der jedoch nicht vom AS-Interface Sicherheitsmonitor überwacht wird. Angegeben ist zusätzlich die Codetabelle dieses sicheren AS-Interface Slaves.
- **used safety input**: Busadresse ist von einem sicheren AS-Interface Slave belegt, der vom AS-Interface Sicherheitsmonitor überwacht wird, z. B. NOT-AUS, BWS, Schutztür usw. Angegeben ist zusätzlich die Codetabelle dieses sicheren AS-Interface Slaves.

Beispiel vorläufiges Konfigurationsprotokoll (Ausschnitt)

```
0000 ***************************************************************************0
0001 CONFIGURATION AS-INTERFACE SAFETY MONITOR                                 1
0002 IDENT: "Configuration 1"                                                  2
0003 ***************************************************************************3
0004 MONITOR SECTION                                                           4
0005 ***************************************************************************5
0006 MONITOR VERSION:  02.12 enhanced                                          6
0007 CONFIG STRUCTURE: 02.01                                                   7
0008 PC VERSION:       02.02                                                   8
0009 DOWNLOAD TIME:    2005/08/05 19:07                                        9
0010 NOT VALIDATED                                                             0
0011 MONITOR ADDRESS:   28 - 31  DIAGNOSIS: all devices                        1
0012 MODE:             two independent output groups                           2
0013 DIAG FREEZE:      no                                                      3
0014 ERROR UNLOCK:     no                                                      4
0015 ***************************************************************************5
                        
```

Ein vorläufiges Konfigurationsprotokoll erkennen Sie am Eintrag "NOT VALIDATED" in Zeile 10.
Das Konfigurationsprotokoll einer fehlerhaften Konfiguration enthält Fehlereinträge.

In obigem Beispiel enthält Zeile 79 die Fehlermeldung, dass die Codetabelle des sicheren AS-Interface Slaves fehlerhaft ist. Der Code ”00 00 00 00“ ist ein Zeichen dafür, dass dieser sichere AS-Interface Slave beim Einlernen der sicheren Konfiguration nicht eingeschaltet (Zustand ON) war. Zeile 115 am Ende des Konfigurationsprotokolls enthält zusätzlich die Fehlermeldung, dass die Konfiguration fehlerhaft ist.
AS-Interface Diagnose-Indizes

Hinweis

Wird die Standard-Zuordnung der Diagnose-Indizes verändert (siehe Kapitel 7.2) und diese Konfiguration in den AS-Interface Sicherheitsmonitor geladen, wird die aktuelle Zuordnung der Bausteinindizes zu den AS-i-Diagnoseindizes als Zuordnungsliste mit in das Konfigurationsprotokoll aufgenommen.

Beispiel Konfigurationsprotokoll mit AS-i-Diagnoseindex-Zuordnung

```
0101 **********************************************************
0102 INACTIVE: none
0103 ------------------------------------------------------
0104 AS-INTERFACE DIAGNOSIS REFERENCE LIST
0105 DIAG INDEX: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
0106 DEVICE:  -- 32 33 35 34 -- -- -- -- -- -- -- -- --
0107
0108 DIAG INDEX: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0109 DEVICE:  -- -- -- -- -- -- -- -- -- -- -- -- --
0110
0111 DIAG INDEX: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
0112 DEVICE:  -- -- -- -- -- -- -- -- -- -- -- --
0113 **********************************************************
```
Konfiguration drucken

Mit dem Befehl **Drucken** im Menü **Datei** können Sie die aktuell in **ASIMON** vorliegende Konfiguration auch ausdrucken.

Hinweis

Der Ausdruck der Konfiguration mit dem Befehl **Drucken** aus dem Menü **Datei** ersetzt nicht das Konfigurationsprotokoll. Er stellt lediglich eine Dokumentationshilfe in der eingestellten Programm-Sprache dar.

Nachfolgend finden Sie ein Beispiel für einen solchen Konfigurationsausdruck.

<table>
<thead>
<tr>
<th>Konfigurationsausdruck</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum: 04.08.2005 14:56:40</td>
<td></td>
</tr>
<tr>
<td>Titel der Konfiguration: Configuration 1</td>
<td></td>
</tr>
<tr>
<td>Downloadzeit: 04 August 2005 14:45</td>
<td></td>
</tr>
<tr>
<td>Monitoradresse: 28 / 29 / 30 / 31</td>
<td></td>
</tr>
<tr>
<td>AS-Interface Diagnose: alle Devices</td>
<td></td>
</tr>
<tr>
<td>Betriebsmodus: zwei unabhängige Freigabekreise</td>
<td></td>
</tr>
<tr>
<td>Diagnosehalt: -</td>
<td></td>
</tr>
<tr>
<td>Fehlerentriegelung: -</td>
<td></td>
</tr>
<tr>
<td>[32] Not-Aus</td>
<td></td>
</tr>
<tr>
<td>Bezeichner: "NA 1"</td>
<td></td>
</tr>
<tr>
<td>Bezeichnung: zweikanalig zwangsgeführt</td>
<td></td>
</tr>
<tr>
<td>Auslaufzeit: kein</td>
<td></td>
</tr>
<tr>
<td>Vorortquittierung: kein</td>
<td></td>
</tr>
<tr>
<td>Freigabekreise: 1 / 2</td>
<td></td>
</tr>
<tr>
<td>Adresse: 1</td>
<td></td>
</tr>
<tr>
<td>[33] Not-Aus</td>
<td></td>
</tr>
<tr>
<td>Bezeichner: "NA 3"</td>
<td></td>
</tr>
<tr>
<td>Bezeichnung: zweikanalig zwangsgeführt</td>
<td></td>
</tr>
<tr>
<td>Auslaufzeit: kein</td>
<td></td>
</tr>
<tr>
<td>Vorortquittierung: kein</td>
<td></td>
</tr>
<tr>
<td>Freigabekreise: 1</td>
<td></td>
</tr>
<tr>
<td>Adresse: 2</td>
<td></td>
</tr>
<tr>
<td>[34] Not-Aus</td>
<td></td>
</tr>
<tr>
<td>Bezeichner: "NA 2"</td>
<td></td>
</tr>
<tr>
<td>Bezeichnung: zweikanalig zwangsgeführt</td>
<td></td>
</tr>
<tr>
<td>Auslaufzeit: kein</td>
<td></td>
</tr>
<tr>
<td>Vorortquittierung: kein</td>
<td></td>
</tr>
<tr>
<td>Freigabekreise: 2</td>
<td></td>
</tr>
<tr>
<td>Adresse: 4</td>
<td></td>
</tr>
<tr>
<td>[35] BWS</td>
<td></td>
</tr>
<tr>
<td>Bezeichner: "BWS 1"</td>
<td></td>
</tr>
<tr>
<td>Bezeichnung: zweikanalig zwangsgeführt</td>
<td></td>
</tr>
<tr>
<td>Auslaufzeit: kein</td>
<td></td>
</tr>
<tr>
<td>Vorortquittierung: kein</td>
<td></td>
</tr>
<tr>
<td>Freigabekreise: 1 / 2</td>
<td></td>
</tr>
<tr>
<td>Adresse: 3</td>
<td></td>
</tr>
<tr>
<td>[36] Überwachter Start - Standard-Slave</td>
<td></td>
</tr>
<tr>
<td>Bezeichner: "S 2"</td>
<td></td>
</tr>
<tr>
<td>Freigabekreise: 3</td>
<td></td>
</tr>
<tr>
<td>Adresse: 10 In-1 nicht invertiert</td>
<td></td>
</tr>
<tr>
<td>[37] Überwachter Start - Standard-Slave</td>
<td></td>
</tr>
<tr>
<td>Bezeichner: "S 1"</td>
<td></td>
</tr>
<tr>
<td>Freigabekreise: 1</td>
<td></td>
</tr>
<tr>
<td>Adresse: 10 In-0 nicht invertiert</td>
<td></td>
</tr>
<tr>
<td>[38] Stoppkategorie 0</td>
<td></td>
</tr>
<tr>
<td>Bezeichner: "M 1"</td>
<td></td>
</tr>
<tr>
<td>Freigabekreise: 1</td>
<td></td>
</tr>
<tr>
<td>Abschaltverzögerung: 0.000 s</td>
<td></td>
</tr>
<tr>
<td>[39] Stoppkategorie 0</td>
<td></td>
</tr>
<tr>
<td>Bezeichner: "M 2"</td>
<td></td>
</tr>
<tr>
<td>Freigabekreise: 2</td>
<td></td>
</tr>
<tr>
<td>Abschaltverzögerung: 0.000 s</td>
<td></td>
</tr>
</tbody>
</table>
5.9 Passwort eingeben und ändern

Folgende sicherheitstechnisch wichtigen Befehle sind in ASIMON durch ein Passwort geschützt:

- PC → Monitor…
- Sichere Konfiguration lernen
- Freigabe…
- Stopp
- Passwortänderung…

Nach dem Aufruf des passwortgeschützten Befehls erscheint ein Passwort-Dialogfenster, in dem durch Eingabe des Passwortes die Berechtigung zur Ausführung des Befehls überprüft wird.

Wird ein falsches Passwort eingegeben, erfolgt eine Fehlermeldung und die Befehlausführung wird unterbrochen.

Hinweis

Das Default-Passwort (Werkseinstellung) des AS-Interface Sicherheitsmonitors lautet "SIMON". Wenn Sie den AS-Interface Sicherheitsmonitor neu konfigurieren möchten, müssen Sie dieses Default-Passwort zunächst in ein neues Passwort ändern, dass nur Ihnen als Sicherheitsbeauftragter bekannt ist.
5.9 Passwort eingeben und ändern

Mit dem Befehl **Passwortänderung**... im Menü **Monitor** können Sie das Passwort des angeschlossenen AS-Interface Sicherheitsmonitors im Konfigurationsbetrieb ändern.

Es erscheint folgendes Dialogfenster:

Bestätigen Sie Ihre Eingaben mit der Schaltfläche **OK**. Das neue Passwort ist nun im AS-Interface Sicherheitsmonitor gespeichert und muss von jetzt an für alle passwortgeschützten Befehle verwendet werden.

4 ... 8 alphanumerische Zeichen; A ... Z, a ... z, 0 ... 9
Groß-/Kleinschreibung beachten!
6.1 Diagnose

Mit dem Befehl **Diagnose** im Menü **Monitor** rufen Sie die Diagnoseansicht der im AS-Interface Sicherheitsmonitor gespeicherten Konfiguration auf.

Hinweis
Der Befehl Diagnose ist nur im Schutzbetrieb des AS-Interface Sicherheitsmonitors verfügbar!

Im Schutzbetrieb sendet der AS-Interface Sicherheitsmonitor permanent Diagnoseinformationen über die Konfigurationsschnittstelle an **ASIMON**. Sie erkennen dies an den in der Statuszeile der Diagnoseansicht durchlaufenden Daten.

Für die Diagnoseansicht werden diese Daten für jeden Baustein der Konfiguration in virtuelle LEDs umgesetzt, die einen schnellen Überblick über den Zustand des/der Freigabekreise(s) geben.

Beispiel 1: beide Freigabekreise sind freigegeben

Jedem konfigurierten Baustein ist eine LED zugeordnet, die seinen Zustand angibt.

Zusätzlich besitzt jeder Freigabekreis jeweils drei LEDs, die den Geräte-LEDs 1, 2 und 3 am AS-Interface Sicherheitsmonitor entsprechen (Beschreibung der Zustände siehe Betriebsanleitung des AS-Interface Sicherheitsmonitors).
6.1 Diagnose

Die Baustein-LEDs können folgende Zustände annehmen:

<table>
<thead>
<tr>
<th>Darstellung</th>
<th>Farbe</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>grün, dauerleuchtend</td>
<td>Baustein ist im Zustand ON (eingeschaltet)</td>
</tr>
<tr>
<td></td>
<td>grün, blinkend</td>
<td>Baustein ist im Zustand ON (eingeschaltet), aber bereits im Übergang zum Zustand OFF, z. B. Abschaltverzögerung</td>
</tr>
<tr>
<td></td>
<td>gelb, dauerleuchtend</td>
<td>Baustein ist bereit, wartet aber noch auf eine weitere Bedingung, z. B. Vorortquittierung, Diagnosehalt oder Start-Taste</td>
</tr>
<tr>
<td></td>
<td>gelb, blinkend</td>
<td>(Anlauf-)Test erforderlich</td>
</tr>
<tr>
<td></td>
<td>rot, dauerleuchtend</td>
<td>Baustein ist im Zustand OFF (ausgeschaltet)</td>
</tr>
</tbody>
</table>
| ![Rot, blinkend](image) | rot, blinkend | Die Fehlerverriegelung ist aktiv, Freischalten durch eine der folgenden Aktionen:
 • Fehlerentriegelung mit der Service-Taste
 • Slave zur Fehlerentriegelung betätigen
 • Power OFF/ON
 • AS-Interface Bus OFF/ON |
| ![Grau, aus](image) | grau, aus | keine Kommunikation mit dem AS-Interface Slave |

Hinweis

Es folgen weitere Beispiele für typische Diagnosezustände.

Beispiel 2:

Beispiel 3:

6.2 Fehlersuche und Behebung

Die Software **ASIMON** informiert Sie über die meisten Fehler und Betriebszustände über

- die Statuszeile
- Meldungs- und Informationsfenster
- die Diagnose

Weitere Hinweise für die Fehlersuche erhalten Sie

- durch die Diagnose über den AS-Interface Bus (siehe Kapitel 7).
- durch die Geräte-LEDs des AS-Interface Sicherheitsmonitors (siehe Bedienungsanleitung des AS-Interface Sicherheitsmonitors).
- durch die Geräte-LEDs der beteiligten AS-Interface Slaves (soweit vorhanden).

Sollten Sie dennoch Probleme bei der Fehlersuche haben, konsultieren Sie bitte zunächst die Online-Hilfe und die Handbücher/Betriebsanleitungen der beteiligten Geräte.

Überprüfen Sie ggf. die Busadressen und Kabelverbindungen der beteiligten Geräte.
6.3 Bekannte Probleme

Problem:

Der Maus-Zeiger springt unkontrolliert über den PC-Bildschirm

Die Microsoft® Windows® Betriebssysteme prüfen beim Start standardmäßig, ob an einer seriellen Schnittstelle (COM1, COM2, ...) eine Maus angeschlossen ist. Wenn nun die serielle Verbindung zwischen dem Sicherheitsmonitor und dem PC beim Start besteht, dann wird der AS-Interface Sicherheitsmonitor vom Betriebssystem eventuell als Maus interpretiert.

Die Folge: der Maus-Zeiger springt unkontrolliert über den PC-Bildschirm.

Abhilfe:

Diagnose über AS-Interface

7.1 Allgemeiner Ablauf

Hinweis

Für eine zuverlässige Übertragung und effiziente Auswertung der Diagnosedaten müssen jedoch eine Reihe von Forderungen erfüllt sein:

- Die Diagnosedaten müssen konsistent sein, d.h. die vom AS-Interface Sicherheitsmonitor gesendeten Zustandsinformationen müssen zu den tatsächlichen Baustein-Zuständen passen, insbesondere wenn die Laufzeit zur SPS größer ist als die Aktualisierungszeit im AS-Interface Sicherheitsmonitor (ca. 30 ... 150 ms).

- Es hängt von der Betriebsart des AS-Interface Sicherheitsmonitors ab, ob ein abgeschaltetes Relais eines Ausgangskreises den Normalzustand darstellt. Die Diagnose in der SPS soll aber nur bei einer Abweichung vom Normalzustand aufgerufen werden.

Der nachfolgend beschriebene Diagnoseablauf erfüllt diese Forderungen und sollte daher unbedingt eingehalten werden.

Ablauf der Diagnose

Die SPS fragt den AS-Interface Sicherheitsmonitor immer abwechselnd mit zwei Datenauf- rufen (0) und (1) ab, die die Grundinformation (Zustand der Ausgangskreise, Schutz-/Konfigura- tionsbetrieb) für eine Diagnose liefern. Der AS-Interface Sicherheitsmonitor antwortet auf beide Aufrufe mit den gleichen Nutzdaten (3 Bit, D2 ... D0). Bit D3 ist ein Steuerbit, ähnlich, aber nicht gleich einem Toggle-Bit. Bei allen geraden Datenaufuren (0) ist D3 = 0, bei allen ungeraden (1) ist D3 = 1. So kann die SPS eine Änderung in der Antwort erkennen.

Datenaufun (0) und (1) liefern als Antwort X000, wenn der Normalzustand (Schutzbetrieb, alles ok) vorliegt. Bei Geräten mit nur einem Ausgangskreis und bei zwei abhängigen Ausgangskreisen wird Ausgangskreis 2 immer als ok gekennzeichnet. Bei zwei unabhängigen Ausgangskreisen wird ein nicht konfigurierter Kreis ebenfalls als ok dargestellt. Für eine Inter-
Diagnose über AS-Interface

7.1 Allgemeiner Ablauf

pretation, was ok und was nicht ok ist, muss der Anwender seine Konfiguration kennen.

Beim Wechsel des Datenauftrags von (0) nach (1) wird der Datensatz im AS-Interface Sicherheitsmonitor gespeichert. Bit D3 in der Antwort bleibt aber solange rückgesetzt, bis der Vorgang abgeschlossen ist. Die SPS meint daher, sie würde noch Antworten auf Datenauftrag (0) erhalten. Bei gesetztem D3 ist dann ein konsistentes Datensatz vorhanden.

Meldet die Antwort des AS-Interface Sicherheitsmonitors bei gesetztem Bit D3 das Abschalten eines Ausgangskreises, können im gespeicherten Zustand jetzt mit den gezielten Datenauftragen (2) … (B) detaillierte Diagnoseinformationen abgefragt werden. Je nach Einstellung in der Konfiguration des AS-Interface Sicherheitsmonitors liefern die Datenaufträge (4) … (B) Baustein-Diagnoseinformationen nach Ausgangskreisen sortiert (siehe Kapitel 7.3.2) oder unsortiert (siehe Kapitel 7.3.3).

Hinweis

Befindet sich der AS-Interface Sicherheitsmonitor im Konfigurationsbetrieb, ist eine Abfrage der detaillierten Diagnoseinformationen über die Datenaufträge (2) … (B) nicht möglich.

Ein erneuter Datenauftrag (0) hebt den gespeicherten Zustand wieder auf.
7.2 Zuordnung der AS-Interface Diagnose-Indizes

Bei der Diagnose über AS-i wird der SPS der Index der abgeschalteten Bausteine signalisiert. Wurde in früheren Versionen des AS-Interface Sicherheitsmonitors in der Konfiguration ein Baustein eingefügt oder gelöscht, verschoben sich bisher alle nachfolgenden Indizes mit der Folge, dass der Anwender das Diagnose-Programm in der SPS modifizieren musste.

Im Menü **Bearbeiten** können sie daher in der Version 2.1 von **ASIMON** unter dem Menüpunkt **Bausteinindex-Zuordnung** den Bausteinen ihre Diagnose-Indizes für die AS-Interface Diagnose frei zuweisen.

![Bausteinindex-Zuordnung für die AS-i-Diagnose](image)

Hinweis

Sie können das Fenster der Bausteinindex-Zuordnung auch aufrufen, wenn Sie bei der Neu- anlage oder Bearbeitung eines Bausteins auf die Schaltfläche **Diagnoseindex** klicken. Bei der Bearbeitung eines Bausteins wird Ihnen der aktuelle Diagnoseindex des Bausteins außerdem unter der Schaltfläche **Diagnoseindex** angezeigt.

Im Fenster **Bausteinindex-Zuordnung für die AS-i-Diagnose** können Sie rechts unten zunächst definieren, ob der Diagnoseindex den Bereich von 0 … 47 (Standardeinstellung) oder analog zu den Baustein-Indizes den Bereich von 32 … 79 umfasst.

Durch Aktivierung des Kästchens **Warnung vor Überschreiben** werden Sie von **ASIMON** durch folgendes Hinweisfenster gewarnt, wenn Sie einem bereits vergebenen Diagnoseindex einen anderen Baustein zuweisen wollen.
7.2 Zuordnung der AS-Interface Diagnose-Indizes

Zuordnung bearbeiten

Standardmäßig werden alle konfigurierten Bausteine aufsteigend den Diagnoseindizes zugeordnet. Der Baustein mit Index 32 erhält den Diagnoseindex 0, der Baustein mit Index 33 erhält den Diagnoseindex 1, usw.

Hinweis

Mit der Schaltfläche **Bausteinsortierung** können Sie diese ursprüngliche Zuordnung jederzeit wiederherstellen.

Wird die Standard-Zuordnung der Diagnoseindizes verändert, wechselt die Farbe der Tabellenüberschriften von grau nach grün.

Wird ein Baustein nicht einem Diagnoseindex zugeordnet, teilt sich das Bausteinindex-Zuordnungsfenster horizontal, und die nicht zugeordneten Bausteine erscheinen im unteren Fensterbereich.
Bei der Bearbeitung der Zuordnungstabelle stehen Ihnen grundsätzlich folgende Möglichkeiten zur Auswahl:

- **Zuordnung per Drag&Drop** mit der Maus.
- **Direktes Editieren** der Baustein-Indizes im oberen Fensterbereich in der Spalte **Baustein-Index**.
- **Direktes Editieren** der Diagnose-Indizes im unteren Fensterbereich in der Spalte **Diagnoseindex**.
- Bearbeitung über die Schaltflächen **AS-i-Sortierung**, **Zuordnung löschen**, **Ausschneiden**, **Kopieren**, **Einfügen**, **Zeile löschen** und **Zeile einfügen**.
- Bearbeitung mit Tastaturbefehlen:
 - Cursor-Tasten und <Tab> (Navigation)
 - <Alt>+ (Bausteinsortierung),
 - <Alt>+<A> (AS-i-Sortierung),
 - <Alt>+<F> (Zuordnung löschen),
 - <Strg>+<X> (Ausschneiden),
 - <Strg>+<C> (Kopieren),
 - <Strg>+<V> (Einfügen),
 - <Entf> (Zeile löschen),
 - <Einfg> (Zeile einfügen),
 - <Strg>+<Z> (Rückgängig),
 - <Strg>+<Y> (Wiederherstellen),

Über die Schaltflächen Rückgängig und Wiederherstellen können Sie vorgenommene Änderungen schrittweise rückgängig machen bzw. wiederherstellen.

Bausteinsortierung
Die ursprüngliche Zuordnung aller konfigurierten Bausteine aufsteigend zu den Diagnoseindizes wird wiederhergestellt.

AS-i-Sortierung

Zuordnung löschen
Die Zuordnung der Bausteine zu den Diagnoseindizes wird komplett gelöscht und alle Bausteine werden im unteren Fensterbereich aufsteigend nach Baustein-Index eingetragen.

Ausschneiden
Der Inhalt der markierten Zeile wird ausgeschnitten und im unteren Fensterbereich einsortiert, die Zeile bleibt leer.

Kopieren
Der Inhalt der markierten Zeile wird in die Zwischenablage kopiert.

Einfügen
Der Inhalt der Zwischenablage wird in die markierten Zeile eingefügt.
7.2 Zuordnung der AS-Interface Diagnose-Indizes

Zeile löschen

Die markierte Zeile wird gelöscht und der Baustein wird im unteren Fensterbereich einsortiert, die nachfolgenden Zeilen werden nach oben verschoben (Diagnoseindex minus eins).

Zeile einfügen

Über der markierten Zeile wird eine leere Zeile eingefügt, die nachfolgenden Zeilen werden nach unten verschoben (Diagnoseindex plus eins).

Nachdem Sie alle Änderungen vorgenommen haben klicken Sie auf die Schaltfläche OK, um die neue Bausteinindex-Zuordnung für die AS-Interface Diagnose zu übernehmen.

Hinweis

Wird die Standard-Zuordnung der Diagnoseindizes verändert (Wechsel der Farbe der Tabelleüberschriften von grau nach grün) und diese Konfiguration in den AS-Interface Sicherheitsmonitor geladen, wird die aktuelle Zuordnung der Bausteinindizes zu den AS-i-Diagnoseindizes als Zuordnungsliste mit in das Konfigurationsprotokoll aufgenommen.

Beispiel Konfigurationsprotokoll mit AS-i-Diagnoseindex-Zuordnung

<table>
<thead>
<tr>
<th>Zeile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
</tr>
<tr>
<td>0102</td>
</tr>
<tr>
<td>0103</td>
</tr>
<tr>
<td>0104</td>
</tr>
<tr>
<td>0105</td>
</tr>
<tr>
<td>0106</td>
</tr>
<tr>
<td>0107</td>
</tr>
<tr>
<td>0108</td>
</tr>
<tr>
<td>0109</td>
</tr>
<tr>
<td>0110</td>
</tr>
<tr>
<td>0111</td>
</tr>
<tr>
<td>0112</td>
</tr>
<tr>
<td>0113</td>
</tr>
</tbody>
</table>
7.3 Telegramme

7.3.1 Diagnose AS-Interface Sicherheitsmonitor

Zustand der Ausgangskreise, Betriebsart

Hinweis

Das abwechselnde Senden der Datenauftrufe (0) und (1) ist für eine konsistente Datenübertragung unerlässlich. Siehe “Ablauf der Diagnose” auf Seite 139.

Die Binärwerte der Datenauftrufe beziehen sich auf **AS-Interface Level** und können auf SPS-Level unter Umständen invertiert sein.

<table>
<thead>
<tr>
<th>Datenauftrag / Wert</th>
<th>Antwort D3 ... D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0) / 1111 Zustand Monitor</td>
<td>0000</td>
<td>Schutzbetrieb, alles ok (nicht vorhandene, nicht konfigurierte bzw. abhängige Ausgangskreise werden als ok angezeigt).</td>
</tr>
<tr>
<td></td>
<td>0001</td>
<td>Schutzbetrieb, Ausgangskreis 1 aus.</td>
</tr>
<tr>
<td></td>
<td>0010</td>
<td>Schutzbetrieb, Ausgangskreis 2 aus.</td>
</tr>
<tr>
<td></td>
<td>0011</td>
<td>Schutzbetrieb, beide Ausgangskreise aus.</td>
</tr>
<tr>
<td></td>
<td>0100</td>
<td>Konfigurationsbetrieb: Power On.</td>
</tr>
<tr>
<td></td>
<td>0101</td>
<td>Konfigurationsbetrieb</td>
</tr>
<tr>
<td></td>
<td>0110</td>
<td>Reserviert / nicht definiert</td>
</tr>
<tr>
<td></td>
<td>0111</td>
<td>Konfigurationsbetrieb: fataler Gerätefehler, RESET oder Geräteausstausch erforderlich.</td>
</tr>
<tr>
<td></td>
<td>1XXX</td>
<td>Keine aktuelle Diagnoseinformation vorhanden, bitte warten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenauftrag / Wert</th>
<th>Antwort D3 ... D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) / 1111 Diagnose-Information (Zustand Monitor) speichern</td>
<td>1000</td>
<td>Schutzbetrieb, alles ok (nicht vorhandene, nicht konfigurierte bzw. abhängige Ausgangskreise werden als ok angezeigt).</td>
</tr>
<tr>
<td></td>
<td>1001</td>
<td>Schutzbetrieb, Ausgangskreis 1 aus.</td>
</tr>
<tr>
<td></td>
<td>1010</td>
<td>Schutzbetrieb, Ausgangskreis 2 aus.</td>
</tr>
<tr>
<td></td>
<td>1011</td>
<td>Schutzbetrieb, beide Ausgangskreise aus.</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>Konfigurationsbetrieb: Power On.</td>
</tr>
<tr>
<td></td>
<td>1101</td>
<td>Konfigurationsbetrieb</td>
</tr>
<tr>
<td></td>
<td>1110</td>
<td>Reserviert / nicht definiert</td>
</tr>
<tr>
<td></td>
<td>1111</td>
<td>Konfigurationsbetrieb: fataler Gerätefehler, RESET oder Geräteausstausch erforderlich.</td>
</tr>
</tbody>
</table>
Zustand Geräte-LEDs

Die Datenaufrufe (2) und (3) liefern ein vereinfachtes Abbild der Ausgangskreis-LEDs am AS-Interface Sicherheitsmonitor.

Wenn Antwort auf Datenaufruf (1) = 10XX:

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 ... D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) / 1101 Zustand LEDs Ausgangskreis 1</td>
<td>0000</td>
<td>Grün = Kontakte des Ausgangskreises geschlossen</td>
</tr>
<tr>
<td></td>
<td>0001</td>
<td>Gelb = Anlauf-/Wiederanlaufsperr aktiv</td>
</tr>
<tr>
<td></td>
<td>0010</td>
<td>Gelb blinkend bzw. Rot = Kontakte des Ausgangskreises offen</td>
</tr>
<tr>
<td></td>
<td>0011</td>
<td>Rot blinkend = Fehler auf Ebene der überwachten AS-Interface Komponenten</td>
</tr>
<tr>
<td></td>
<td>01XX</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 ... D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) / 1100 Zustand LEDs Ausgangskreis 2</td>
<td>1000</td>
<td>Grün = Kontakte des Ausgangskreises geschlossen</td>
</tr>
<tr>
<td></td>
<td>1001</td>
<td>Gelb = Anlauf-/Wiederanlaufsperr aktiv</td>
</tr>
<tr>
<td></td>
<td>1010</td>
<td>Gelb blinkend bzw. Rot = Kontakte des Ausgangskreises offen</td>
</tr>
<tr>
<td></td>
<td>1011</td>
<td>Rot blinkend = Fehler auf Ebene der überwachten AS-Interface Komponenten</td>
</tr>
<tr>
<td></td>
<td>11XX</td>
<td>Reserviert</td>
</tr>
</tbody>
</table>
Kodierung der Farben

Hinweis
Die Farbe eines Bausteins entspricht der Farbe der virtuellen LEDs in der Diagnoseansicht der Konfigurationssoftware ASIMON. Ein Baustein, der keinem Ausgangskreis zugeordnet ist, wird immer als grün dargestellt.

<table>
<thead>
<tr>
<th>Code CCC (D2 … D0)</th>
<th>Farbe</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>grün, dauerleuchtend</td>
<td>Baustein ist im Zustand ON (eingeschaltet)</td>
</tr>
<tr>
<td>001</td>
<td>grün, blinkend</td>
<td>Baustein ist im Zustand ON (eingeschaltet), aber bereits im Übergang zum Zustand OFF, z. B. Abschaltverzögerung</td>
</tr>
<tr>
<td>010</td>
<td>gelb, dauerleuchtend</td>
<td>Baustein ist bereit, wartet aber noch auf eine weitere Bedingung, z. B. Vorortquittierung, Diagnosehalt oder Start-Taste</td>
</tr>
<tr>
<td>011</td>
<td>gelb, blinkend</td>
<td>Zeitbedingung überschritten, Aktion muss wiederholt werden, z. B. Synchronisationszeit überschritten</td>
</tr>
<tr>
<td>100</td>
<td>rot, dauerleuchtend</td>
<td>Baustein ist im Zustand OFF (ausgeschaltet)</td>
</tr>
<tr>
<td>101</td>
<td>rot, blinkend</td>
<td>Die Fehlerverriegelung ist aktiv, Freischalten durch eine der folgenden Aktionen:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Quittieren mit der Service-Taste</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Power OFF/ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AS-Interface Bus OFF/ON</td>
</tr>
<tr>
<td>110</td>
<td>grau, aus</td>
<td>keine Kommunikation mit dem AS-Interface Slave</td>
</tr>
</tbody>
</table>

Hinweis

Da sich die Bausteinnummern bei Änderungen der Konfiguration verschieben können, empfiehlt sich die Nutzung der Diagnoseindex-Zuordnung.
7.3.2 Diagnose – Bausteine nach Freigabekreisen sortiert

Die Datenaufrufe (4) … (B) liefern bei entsprechender Einstellung in der Konfiguration Baustein-Diagnoseinformationen nach Ausgangskreisen sortiert.

Hinweis

Beachten Sie die richtige Einstellung der Diagnoseart im Fenster **Monitor-/Businformation** der Konfigurationssoftware **ASIMON** für den AS-Interface Sicherheitsmonitor.

Die in den Aufrufen (5) und (6) sowie (9) und (A) gelieferten Werte beziehen sich auf den Baustein-Diagnose-Index aus dem Konfigurationsprogramm und nicht auf eine AS-Interface Adresse.

Führen Sie die Datenaufrufe (4) … (7) bzw. (8) … (B) jeweils immer zusammenhängend nacheinander für jeden Baustein aus.

Sortierte Baustein-Diagnose Ausgangskreis 1

Wenn Antwort auf Datenaufruf (1) = 10X1:

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 … D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) / 1011</td>
<td>XXX = 0:</td>
<td>keine Bausteine, Antworten der Datenaufrufe (5) … (7) nicht relevant</td>
</tr>
<tr>
<td></td>
<td>XXX = 1 … 6:</td>
<td>Anzahl Bausteine im Ausgangskreis 1</td>
</tr>
<tr>
<td></td>
<td>XXX = 7:</td>
<td>Anzahl Bausteine ist > 6 im Ausgangskreis 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 … D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) / 1010</td>
<td>1HHH</td>
<td>Diagnose-Index des Bausteins im Ausgangskreis 1 der Konfiguration (HHHLLL = Diagnose-Index)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 … D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) / 1001</td>
<td>0LLL</td>
<td>Diagnose-Index des Bausteins im Ausgangskreis 1 der Konfiguration (HHHLLL = Diagnose-Index)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 … D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7) / 1000</td>
<td>1CCC</td>
<td>CCC = Farbe (siehe Tabelle 7-1 auf Seite 147)</td>
</tr>
</tbody>
</table>
Sortierte Baustein-Diagnose Ausgangskreis 2

Wenn Antwort auf Datenaufruf (1) = 101X:

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 ... D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8) / 0111</td>
<td>0XXX</td>
<td>XXX = 0: keine Bausteine, Antworten der Datenaufrufe (5) ... (7) nicht relevant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XXX = 1 ... 6: Anzahl Bausteine im Ausgangskreis 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XXX = 7: Anzahl Bausteine ist > 6 im Ausgangskreis 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 ... D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9) / 0110</td>
<td>1HHH</td>
<td>HHH = I5,I4,I3: Diagnose-Index des Bausteins im Ausgangskreis 2 der Konfiguration (HHHLLL = Diagnose-Index)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 ... D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) / 0101</td>
<td>0LLL</td>
<td>LLL = I2,I1,I0: Diagnose-Index des Bausteins im Ausgangskreis 2 der Konfiguration (HHHLLL = Diagnose-Index)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 ... D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B) / 0100</td>
<td>1CCC</td>
<td>CCC = Farbe (siehe Tabelle 7-1 auf Seite 147)</td>
</tr>
</tbody>
</table>

Hinweis

Die Datenaufrufe (C) 0011 bis (F) 0000 sind reserviert.
7.3.3 Diagnose – Bausteine unsortiert

Die Datenaufträge (4) … (B) liefern bei entsprechender Einstellung in der Konfiguration unsortierte Baustein-Diagnoseinformationen für alle Bausteine.

Hinweis

Beachten Sie die richtige Einstellung der Diagnoseart im Fenster Monitor-/Businformation der Konfigurationsoftware ASIMON für den AS-Interface Sicherheitsmonitors.

Die in den Aufrufen (5) und (6) sowie (9) und (A) gelieferten Werte beziehen sich auf den Baustein-Diagnose-Index aus dem Konfigurationsprogramm und nicht auf eine AS-Interface Adresse.

Führen Sie die Datenaufträge (4) … (7) bzw. (8) … (B) jeweils immer zusammenhängend nacheinander für jeden Baustein aus.

Unsortierte Baustein-Diagnose alle Bausteine

Wenn Antwort auf Datenauftruf (1) = 1001, 1010 oder 1011:

<table>
<thead>
<tr>
<th>Datenauftrag / Wert</th>
<th>Antwort D3 ... D0</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) / 1011</td>
<td>XXX</td>
<td>XXX = 0: keine Bausteine, Antworten der Datenaufträge (5) … (7) nicht relevant. XXX = 1 … 6: Anzahl Bausteine ungleich Farbe Grün. XXX = 7: Anzahl Bausteine ungleich Farbe Grün ist > 6 (Farben siehe Tabelle 7-1 auf Seite 147).</td>
</tr>
<tr>
<td>(5) / 1010</td>
<td>1HHH</td>
<td>HHH = I5,I4,I3: Diagnose-Index des Bausteins der Konfiguration (HHHLLL = Diagnose-Index).</td>
</tr>
<tr>
<td>(6) / 1001</td>
<td>0LLL</td>
<td>LLL = I2,I1,I0: Diagnose-Index des Bausteins der Konfiguration (HHHLLL = Diagnose-Index).</td>
</tr>
<tr>
<td>(7) / 1000</td>
<td>1CCC</td>
<td>CCC = Farbe (siehe Tabelle 7-1 auf Seite 147)</td>
</tr>
<tr>
<td>(8) / 0111</td>
<td>0XXX</td>
<td>nicht verwendet</td>
</tr>
</tbody>
</table>
7.3 Telegramme

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 ... D0</th>
<th>Bedeutung</th>
</tr>
</thead>
</table>
| (9) / 0110 | 1HHH | Baustein-Adresse HIGH
| | | HHH = I5,I4,I3: Diagnose-Index des Bausteins der Konfiguration (HHHLLL = Diagnose-Index) |

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 ... D0</th>
<th>Bedeutung</th>
</tr>
</thead>
</table>
| (A) / 0101 | 0LLL | Baustein-Adresse LOW
| | | LLL = I2,I1,I0: Diagnose-Index des Bausteins der Konfiguration (HHHLLL = Diagnose-Index) |

<table>
<thead>
<tr>
<th>Datenaufruf / Wert</th>
<th>Antwort D3 ... D0</th>
<th>Bedeutung</th>
</tr>
</thead>
</table>
| (B) / 0100 | 10XX | Zuordnung zum Ausgangskreis
| | | XX = 00: Baustein aus der Vorverarbeitung
| | | XX = 01: Baustein aus Ausgangskreis 1
| | | XX = 10: Baustein aus Ausgangskreis 2
| | | XX = 11: Baustein aus beiden Ausgangskreisen |

Hinweis

Die Datenaufträge (C) 0011 bis (F) 0000 sind reserviert.
7.4 Beispiel: Abfrageprinzip bei nach Freigabekreisen sortierter Diagnose

Zustand der Ausgangskreise, Betriebsart

- Anfang
 - Datenauftrag (0) Zustand
 - Antwort auf (0) = 0X00
 - Datenauftrag (1) Abfrage einfrieren
 - Antwort auf (1) = 1X00
 - Diagnose

Zustand Geräte-LEDs

- Diagnose
 - optional
 - Datenauftrag (2) LEDs Kreis 1
 - Datenauftrag (3) LEDs Kreis 2
 - Diagnose oder Anfang

Baustein-Diagnose Ausgangskreis 1

- Diagnose
 - Antwort auf (1) = 10X1
 - Datenauftrag (4) Anzahl
 - Datenauftrag (5) Adresse HIGH
 - Datenauftrag (6) Adresse LOW
 - Datenauftrag (7) Farbe
 - Diagnose-Index < vorheriger Diagnose-Index
 - Diagnose oder Anfang

Baustein-Diagnose Ausgangskreis 2

- Diagnose
 - Antwort auf (1) = 101X
 - Datenauftrag (8) Anzahl
 - Datenauftrag (9) Adresse HIGH
 - Datenauftrag (A) Adresse LOW
 - Datenauftrag (B) Farbe
 - Diagnose-Index < vorheriger Diagnose-Index
 - Diagnose oder Anfang

Bild 7-1 Abfrageprinzip bei nach Ausgangskreisen sortierter Diagnose