SIEMENS

SIMOTION

SIMOTION SCOUT
SIMOTION LAD/FBD

Programming and Operating Manual

05/2009

Preface

Description

LAD/FBD editor

LAD/FBD programming

Functions

Commissioning (software)

Debugging Software / Error
Handling

Application Examples

Appendix

> 0o N O o b~ (W DD

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert

symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

/\DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

/\WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

/\CAUTION

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the corresponding information is not taken into
account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will

be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The device/system may only be set up and used in conjunction with this documentation. Commissioning and
operation of a device/system may only be performed by qualified personnel. Within the context of the safety notes

in this documentation qualified persons are defined as persons who are authorized to commission, ground and
label devices, systems and circuits in accordance with established safety practices and standards.

Proper use of Siemens products
Note the following:

/\WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be adhered to. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this

publication may be trademarks whose use by third parties for their own purposes could violate the rights of the
owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent

editions.

Siemens AG Copyright © Siemens AG 2009.
Industry Sector Technical data subject to change
Postfach 48 48

90026 NURNBERG
GERMANY

Table of contents

1 [(=1 =T = PSPPSR 11
1.1 RS TeT o] o1 ST RP 11
1.2 Information in this MaNUAL...........cociiiiii e e 12
1.3 SIMOTION DOCUMENTATIONuiiiieeiiiiee ettt e e s e e st e e e snte e e e sbeeeeesnbeeaeseaeans 13
1.4 Hotline and Internet addreSSES ... oo e e e e 14

2 [1= 1 01T) o 1SS UPUTRRR 17
2.1 91 o] 1o o OSSR 17
22 WAL IS LADT ...ttt et h e a et b e bt b et et enr e 17
23 LA LT LS S =T I O TP U PP PP OPPPPON 18
24 Unit, program organization unit (POU) and program SOUICEcccuereiruireeniieeeeniieeeeieeee e 19

3 I I 7 o = 0 =T 1 o 21
3.1 The LAD/FBD editor in the WOrkbenCheviiiiiie e 21
3.2 Maximizing working area and detail VIEWcccuuiiiiiiiiiee e 22
3.3 Enlarging and reducing the editor area for the graphical displayccccccveeiiiiciiieiee i, 22
3.4 Bringing the LAD/FBD editor to the foreground................ooiiioiiiiiin e 22
3.5 Hiding and displaying the declaration table e 23
3.6 Enlarging/reducing the declaration tableocueviiiiii 23
3.7 L0 01T = 1o o HE SRR 24
3.7.1 Operating the LAD/FBD €QIOrccoiiiiiiiiiiee ettt e et e et e e e sneee eeeeeens 24
3.7.2 Y oY T I = | ST URTR 24
3.7.3 L070] 01 (=) (A 141 o U SRR 24
3.74 1o T o = S 25
3.7.5 KeY COMDBINATIONS.eeiiieie ettt e ettt e e e b e e s e e e anbeeeeennees 26
3.7.6 Drag&Drop Of Variables.............uveiiiiie e a e e e e e e e aaes 26
3.7.7 Drag&drop from the declaration tablesooo i s 26
3.7.8 Drag&drop within the declaration table.............coooiiiiiiii e e 27
3.7.9 Using Drag&Drop for LAD/FBD €lemMents...........ooiiiiiiiiiiiii s 27
3.7.10 Command Call Arag&arOPceioiuiiiiiiiii ettt e e e e e e 27
3.7.11 Drag&Drop of COMMANA NAMESccuuiiiiiiiiie it ettt e e e e e s e eeas 28
3.7.12 Using drag&drop for elements in @ NEIWOIK.............oovviiiiiiiiiii e 28
3.7.13 Using drag&drop for functions and function blocks from other sourcescccoccovivviiiinnnnenn. 28
3.8 ST 1110 L3RRS 29
3.8.1 Settings iN the LAD/FBD €aItOroiuuiiiiiiiie ettt e e 29
3.8.2 Activating automatic symbol check and type update............ocoeeiiiiiiiiiii e 29
3.8.3 Example of @ type UPAALEoviiiiiiiecceee e e e e e e 31
3.84 Example of @ SYMDOI ChECKoeiiiie e e e 33
3.8.5 Deactivating automatic symbol check and type update............cccoieiiiii e 33
3.8.6 Perform symbol check and type update at a specified timeccoooii i 34
3.8.7 Setting the data type list of the declaration table..............ccccr i, 34
3.8.8 Modifying the operand and comment fieldsS ... 34

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 3

Table of contents

3.8.9 107 o= ol [TaTo I8 o] 1= PRSP 35
S N O O o =T a e ool e (o £~ PSSP OUPRR 36
3.8.11 Activating on-the-fly variable declaration ..o 37
3.8.12 Setting the default IaNQUAGEcoooiiiii e e 37
3.8.13 Calling online help in the LAD/FBD €ditOr..........coiii ittt 37
IANB 7210 o) (oo = Ta T 41 oo [T 39
4.1 Programming SOfWEAIEueiiiiiiii et e e e 39
4.2 Managing LAD/FBD SOUICE file........coiuuiiiiiiiiee e s 39
4.2.1 Inserting @ Nnew LAD/FBD SOUICE ilccoiuiiiiiiiie e s 40
422 Opening an existing LAD/FBD SOUICE fil€.........ooiiiiiiiieiiie e 42
423 Saving and compiling @ LAD/FBD SOUICE fil©cc.coiiiiiiiiiiiiei e 42
424 Closing @ LAD/FBD SOUICE fil©cccouuiiiiiiiiii ittt n e 43
425 Cut/copy/delete operations in @ LAD/FBD source file............cceeiiiiiiiiii e 43
4.2.6 Inserting a cut or copied LAD/FBD SoUICe fileccooueiiiiiiiiiee e 43
4.2.7 Know-how protection for LAD/FBD SOUICE fil€S.......ccoiiiiiiiiiiieee et 43
4.3 Exporting and importing LAD/FBD SOUICe fil€S.........ccueiiiiiiiiiieciiee e 44
4.3.1 Exporting a LAD/FBD source file in XML format..........cccooiiiiiiiiiiiieeceiee e 44
4.3.2 Importing LAD/FBD source files as XML dataccoooviiiiiiiiiie e 44
4.3.3 Exporting @ POU in XML fOrMaL.........ueiiiiiii e s 45
4.3.4 Importing @ POU from XML formatcoooueiiii e s 45
4.3.5 Exporting a LAD/FBD source file in EXP format............coooviiiiiiii e 45
4.3.6 Importing EXP data into @ LAD/FBD SOUrCe fileccoiiiiiiiiiiiiii e 46
4.4 LAD/FBD source files - defining Properties..........ccuvveiiiiiiie it 47
441 Defining the properties of a LAD/FBD source fileoooeiiiiiiee e 47
442 Renaming a LAD/FBD SOUICE fil@eeiiiiiiiiiiiie e s 47
443 Making settings for the COMPIIEToviiiiiii e e s 48
4.4.3.1 Global COMPIlEr SEHINGSciiiiiiiieeie e e e e e e e s e rreaae s 48
R G T2 o Tor= | I oo 0] o1 [T 1= 1] o LSRR 49
4.5 Managing LAD/FBD PrOgramSc.oiuuiiiiiiiieeiiieie ettt ettt e s ae e snae e e eas 52
4.5.1 Inserting @ New LAD/FBD PrOgramcoooiiiiiiiiiee ettt 52
45.2 Opening an existing LAD/FBD PrOgram.........cceeeiiieie ettt et s 54
45.3 Defining the order of the LAD/FBD programs in the LAD/FBD source filecccocveeiiinnne 54
454 Copying the LAD/FBD PrOGramccueeiieeaieeartiees ettt esieeesiteesbeeesieeesbeeesseeesmbeesbeessneeenbeeesnnee eens 54
45.5 Saving and compiling @ LAD/FBD PrOgramcooueieiieeariee e enieeesieee s sneesbeessseeesaneesinee e 55
4.5.6 Closing @ LAD/FBD PIrOGIamM.....ccciiuiiiieiiiieeeitiee ettt ettt e it e aabe e e sbae e e e st e e e s enne e e e e e eanes 56
457 Deleting the LAD/FBD PrOGramooueeii it ee ettt s st e sne e e snneeeesnneee eeeas 56
4.6 LAD/FBD programs - defining Properties...........oocueeeiiiiiiei e 57
4.6.1 Renaming @ LAD/FBD PrOGIamueeiii oottt ettt e e e e e e e e s e es 57
46.2 Changing the LAD/FBD program €reation typecccoueeeiiieiieeiiee e 58
4.7 Printing source files and Programso..eeiiiiiie e e 59
4.7.1 Printing a declaration table.............coo e 60
4.7.2 Printing @ NEtWOIK @reaooiiiiiii e e e 60
4.7.3 Printing COMMIENES ... e e e e e e e e e e e e e e saarae sennrraneaaeeas 60
4.7.4 DefiNing PriNt VAIANTSccveiiiiiiiie et e et e st e e s e e snseeeesnns snaeeesnnneeens 61
4.7.5 Placing NEIWOTKS ... ettt ettt e e s s aane e e e snneee s 62
4.7.6 BIANK PAGES ..ottt e e e e e e e 62
4.8 LAD/FBD networks and €lemMentS..........cooiuiiiiiiiiiie e e 63
4.8.1 INSEIING NEIWOTKS ...t e e e e e e e e e e e e e e s et b e e e e e e e e e aass seennnrraneaaeeas 64
4.8.2 SEIECHNG NEIWOTKS ...ttt et e e et e e e et e e e st e e e e nee e e e aeesnreeeeennees 64
4.8.3 NUMDENNG the NEIWOIKScoiiiiiie et e e e e e et e e e eeeeeeee s 65
484 Enter title/COMMENT et e e e e e e e e e e e ee s e eeaee s 66
SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Table of contents

4.8.5 Showing/hiding @ JUMP [aDE1coiiiiii e e 67
4.8.6 Copying/cutting/pasting NEIWOIKScoiiiiiiiiiie e e 68
4.8.7 8T o] {=To (o JR=Ted o] - TSR OTRR 68
4.8.8 Deleting NEIWOTKSooiiiiii ettt et e e et e e e bee e e s eeeeanbeeeeennes 68
4.9 Displaying LAD/FBD €lemMENTS......ccoii it et e e nee e 69
4.91 [B o 1= To | =1 o S O SSRTRN 69
49.2 Meaning Of ENJENOoooiiiii ettt e e e et e e abe sbee e e aes 70
493 =T e 1= To | r=1 o o [P PSP PP PP 71
494 Converting between LAD and FBD representation.............ccccoiiiiiiiie e 72
4.10 Editing LAD/FBD €IEMENTSot e 74
4.10.1 Inserting LAD/FBD €IEMENTSccoiiuiiiiiiiiiie ittt e 74
4.10.2 SYNtaX ChECK IN LAD ...ttt ettt e e ettt e e et e e e et e e e e snte e e e esteeeesaeeanteeeeannees 75
4.10.3 Selecting LAD/FBD €IEMENLSccoiuiiiiiiiiiie et e e e 75
4.10.4 Copy/cut/delete operations in LAD/FBD €lementscccueiiiiiiiiniiiie e 76
4.10.5 LAD/FBD elements - defining parameters (Iabeling)coooiiiiiiiii e, 76
4.10.6 Labeling LAD/FBD elements with the symbol input help dialogccoooiiiiiiiii e, 77
4.10.7 Setting the LAD/FBD element diSPlayc.cooiiiiiiiiiiie et 77
4.10.8 Setting the call parameter for an individual parameter ... 78
4.10.9 Setting Call PAramMELErs ... e 79
4.10.10 Searching in the PrOJECLcouuiiii e e et ee e e e e enneas 80
4.10.11 Find and replace iN @ PrOJECL........ueiii i ittt e e e e e e et e e e e s s e sarb e e e e e e reeeaeeeaaanes 81
4.1 (070) 0010 aF= T lo l 11T x= T YO UURRSRRR 83
4.11.1 LAD/FBD functions in the command liBrary............ccceooiiiiiiiii e 83
4.11.2 Inserting elements/functions from the command librarycccoooiii e, 84
4.11.3 Unusable command library fUNCHONS...........ooiuiiiiii e e 84
4.11.4 Special features of the command lIbraryccco oo s 85
4.12 General information about variables and data typescoveeiiiiiiiiiii e 86
4121 Overview of Variable fyPES........cooi i e e 86
4.12.2 Scope of the declarationso e e e e e e 89
4.12.3 RUIES TOr IdENIFIEIS ..ot e et b e e et e e e 89
4.12.4 Frequently used arrays in declarations.............cooo oo 90
4.12.4.1 Array length and array €IEMENL............ccuuiiiiiiiiiii e a e e 90
4.12.4.2 NG VAIUE ..ot ettt e oottt et e e e e ettt e e e e e e e eeeaeesannbeeeeeaeeeaannee 91
D T T O o 43 4 1=T 01 £ OSSR 91
413 D= = T Y o1 S PO PP PP 92
g 1 Ty B € 7Y o1 - | SERRt 92
4.13.2 Elementary data tyPeSccooiiiiiii ettt e e e e s e e e areeaaeaaane 93
4.13.2.1 Value range limits of elementary data types.........cooooiiiiiie i 95
4.13.2.2 GeENEral data Iy PES.....ceei i ittt e et e e e e e e et e e e et nrreeeennreeeeannees 96
4.13.2.3 Elementary system data tyPes.........eeii i e 97
4.13.3 Derived data tYPESooe i e e e e e anes 98
4.13.3.1 Defining user-defined data types (UDT)oouiiiiii i e 98
4.13.3.2 Scope of the data type declarationooiiiiiiiii i e 98
4.13.3.3 DEfiNING SITUCLUIESccoiiiiie et ettt e e et e e et e e e e ntee e e e snte e e e ante sneeeeenteeeeanneas 99
4.13.3.4 Defining ENUMETAtIONScooiiiiii it e e e ee e e rabe e e aanes 99
4.13.4 Technology ObJECt data tYPEScoiuiiiiiiiiiii e 101
4.13.4.1 Description of the technology object data types ..o 101
4.13.4.2 Inheritance of the Properties fOr @XESuiiiiiiiii i e e e e 102
4.13.5 SyStemM daf@ fYPES .uveiiiiiiiie et e et e e e e ante e e eeeanraeaean 102
4.14 RV 2 1=][PP 103
4.14.1 Keywords for variable tyPesS.........oooiiii e e 103
4.14.2 Defining VAri@bIESooueiiiiiiiie ettt b e e e e sbeee e e 104

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 5

Table of contents

Use of global device VariabIescueiiiiiiiiiece et e 104
Declaring a unit variable in the source file ... 105
Declaring local Variablesooueii e e 107
Defining global user variables and local variables in the variable declaration dialog box........ 108
Time of the variable initialization ... e 110
Initialization of retentive global variables ..o 110
Initialization of non-retentive global variables ... 112
Initialization of l0cal vVariabIeso e 114
Initialization of static program variables ... 115
Initialization of instances of function bIOCKS (FBS)cc.uvviiiiiiiiiieeeee e 116
Initialization of system variables of technology ObjJecCtScocciiiiiiiiiiii e 116
Version ID of global variables and their initialization during download...............c.cccoceiiiiiinen. 117
Access to inputs and outputs (process image, /O variables)...........cccccviiiiiiiiiiiiiieciieee 119
Overview of access to inputs and OULPULScoouiiiiiiiiiiiii e 119
Important features of direct access and process image aCCessS.........ccuvvvreeeeeiiieeeeniieeeiieenns 120
Direct access and process image Of CYCliC tasks..........ccccveeiiiiiiicciiiiee e 122
Rules for I/0 addresses for direct access and the process image of the cyclical tasks............ 124
Creating I/O variables for direct access or process image of cyclic tasks.............cccceeviieeennen 125
Syntax for entering 1/O addreSSESoc.uiiiiiiiiii e e 127
Possible data types of I/O variables. ... 128
Access to fixed process image of the BackgroundTaskcccovviiiiiiiiiiieee e 128
Absolute access to the fixed process image of the BackgroundTask (absolute Pl access)..... 130
Syntax for the identifier for an absolute process image access........c.cccvcveevieveeiciee e, 130
Defining symbolic access to the fixed process image of the BackgroundTaskc.......... 131
Possible data types for SymboliC Pl 8CCESSuiiiiiiiiiiiiiec e 132
Example: Defining symbolic access to the fixed process image of the BackgroundTask........ 133
Creating an I/O variable for access to the fixed process image of the BackgroundTask......... 133
ACCESSING 1/O VAITADIES. ... ettt ettt e 134
Connections to other program source files or libraries ..o 135
(D= T a T g Yo I eTo] g1 V=Y ot i o) o - 136
Procedure for defining connections to other units (program source files)ccocceevienrnne 136
Procedure for defining connections to libraries............cccvvveiiiii i, 137
USING the NAME SPACEeeiiiiie i et e e e e et e e e e e e anee s e nneees 137
T8 o] (o0 11101 SRR 139
Inserting a function (FC) or function bloCk (FB)ccoiiiiiiee e 141
Inserting a subroutine call into the LAD/FBD program and assigning parameters................... 142
OVerview Of PArameEters fOr........ooii i e e e e e e e e s eeaaeeeaaes 143
Example: FUNCHON (FC)uiiiiiiiee e et e et a e e e e e e e e e e e nnre e ennnreees 145
Creating and programming the fuNCHioN (FC)c.oiiiiiiiiiiie e 145
Subroutine call of FUNCLON (FC)oiiiiiiee e e 147
Example: FUuNction BIOCK (FB)ooi i e 150
Creating and programming the function block (FB)ccooi i 150
Subroutine call of FUNCON DIOCK (FB)coviiiiiii e e 151
Creating a function bIOCK INSTANCEcuuiiiiiiiiiiie e e 152
Programming the subroutine call of the function blocK ... 154
Accessing the output parameters of the function block retrospectively.............cccoocoioiiiiies 156
Limitations with advance signal SWItChing..............ouiiiiiii e 157
Interface adjustment With FB/FC..........ooo i e e 158
Y=Y (= g Lot =N L= | - R STRR 161
CroSS rEfEIENCE lIST...oiiiiiiie i et e e et e e e st e e s snteee eeeesreeaeaans 161
Creating @ Cross-referenCe liSt.........ooo i e e 161
Content of the cross-reference list............ooo i e 162
Working with @ cross-reference list.............oooiiiii e e 164

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Table of contents

4.18.1.4 Filtering the Cross-referenCe liSt...........oooiiiiii oo ee e ereee e 164
4.18.2 Program SITUCLUIEoiueiiiiiieie ettt ettt sttt e e e bttt e e st et e e s abbe e eeeeabeeeeaans 165
4.18.2.1 Content of the program SITUCLUIEoiii i e 165
4.18.3 €A AttriDULIES ... e e e e s e nrrareaeeeaaanne 166
4.18.3.1 Code attribute CONENTSoiiiiiiiii e e 167
5 0o (T o PR 169
5.1 LAD Dit l0giC INSHUCHONS ...ttt et e e sn s earee e 169
511 el I R 1 (@ I o T o) =T RS 170
51.2 2= == NC CONTACE ... et e e e et e e 171
5.1.3 XOR LIinking EXCLUSIVE ORoiiiiiiiiitii ettt e e e 172
514 === [NOT[--- INVert SigNal STAteoiiiiiiiie e e e e e e 173
5.1.5 ===(() Relay COil, QUIPULoiiiiiii et e e e e st ee e e e e e e nnnee e e enes 174
5.1.6 e () el 070 o g T=Ter (o i (Y I PP PPP 175
51.7 -—-(R) ReSet OUIPUL (LAD).....eeiiiiieie ettt st e et e e bee e e e e 176
51.8 e S I IS L1 10 o TU (I SRS 177
51.9 RS Prioritize reset flipflop.......ccuviiiiiieec e e 178
5110 SR Prioritize Set flipflop.......uuiiiiiie e e 179
5111 --(N)--Scan €dge 1 > 0 (LAD) .. .oii ettt ettt ee e seee e s meeeeteeesaeeenaee e eenneeans 180
5112 (P)--Scan €dge 0 -> 1 (LAD) ...eoi ittt ettt smee e e e e e sneeennee e e enneeans 181
5.1.13 NEG edge detection (falling)c..oeiiiiiiiiiiie e e 182
5.1.14 POS edge deteCtion (FSING)cieeiiiiiieiiee e et e e e e e e e e e e e e e e e eanee seennreees 183
LT B T O o1 o I o) =1 o o o KO RO UERRRRRRT 184
L0t I £ T O o Y= o = T o PRSP RR 184
5.2 FBD Dit 10GIC INSIFUCLIONS ..ttt st e e sne srareee e 185
5.2.1 < N1 N oo S 186
5.2.2 ST OR DOX ettt e e e bt n et e nr e 187
5.2.3 XOR EXCLUSIVE OR DOX...uttiitiieittteitit ettt ettt ettt ane e nne e nnnee e 188
5.24 -] Inserting @ binary INPUL ... e e 189
5.2.5 --0| Negating @ binary INPUL...........oiii e e 190
5.2. sl AN TS 1o T2 1T o | SRS 191
5.2.7 [Ez3 [OTe gL aT=Tex CoT (=1) PSR 192
5.2.8 [R] Reset assignment (FBD)c..uuiiiiiii ittt e e e eeaa s 193
5.2.9 [S] Set assigNMENE (FBD)ccoiiiiiiiiiiiee et s et e et e e s e e e snsee e e snneeeean e esnnneens 194
5210 RS Prioritize reSet flipflop.......coii i 195
5211 SR Priofitize set flipflop ... e e 196
5212 [N]Scan €dge 1 -> 0 (FBD)ooiiiiiiieiie e ettt seee e smte e st eenne e e ne e e e enneeans 197
5213 [P]Scan €dge 0 => 1 (FBD) ..ocoiiiiiiiieiiee e ettt e e et a e e et a e e e e e 198
5.2.14 NEG edge detection (falling)........cccocriiiieieii et e e e anae e ennree s 199
5.2.15 POS edge deteClion (FISING)cceieuereeiiiiee et iee et e e e see e e st e e e e ste e e st e e e s nteeeesnteeeesnees sreeeennees 200
5.3 N1 ToT F= o] oT=Y = (o = SRR 201
5.3.1 Overview of cOMPariSON OPEratioNScocuiiiiiiiii i e 201
5.3.2 CMP COmMPAre NUIMDEISooiiiiiiie it et e et e s e e e e s annte e e e s e eenees 201
54 CONVErSION INSIIUCHIONS. ...ttt et e 205
5.4.1 TRUNC GENErate iNtEOETveiiiiiiee ettt et e e e tee e e et e e e snbee e e entee e e e e ennees 205
54.2 Generating numeric data types and bit data types ... 206
543 Generating date and tIMEueiiiiiii e s 210
5.5 [T 0 1= (= o1 1 (] o 1RSSR 211
5.5.1 Detection of rising €dge R_TRIGoiiiiiiii e s 211
5.5.2 Detection of falling €dge F_TRIG.........cooiiiiiiiee et e s saree e ee e 212
5.6 (0700 01 (= g o] o1=T =1 i o] F- TN 213
5.6.1 Overview Of COUNtEr OPEratioNSoooi i e e e e e eeeee s 213
5.6.2 (62 U U] I w010 o (=T PRSP 213

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 7

Table of contents

5.6.3 CTU_DINT UP COUNTET ...ttt ettt e ettt e e e e e ettt e e e e e e et e e e e e e e e esantas sannnseees 214
5.6.4 CTU_UDINT UP COUNEETtttiiiiiiiiiteeeeeeeeeeeeeeeeeeeetaaatavabssassssssssssssesessesseseeeeesesaaaaaaasaaaaaasaeassrssnnns 215
5.6.5 (ORI D I (o111 g o010 [} (= SN 216
5.6.6 CTD_DINT AOWN COUNEET ...ttt e e e e e e e e et e e e e e e e e eeeaaaa s eeeaeseeesanannn sernnns 217
5.6.7 CTD_UDINT JOWN COUNLETevvvevivereeeeeeeeeeeeeeeeeeeeeasasasasasesssssssssssseseesereseeeeeeeeeeaeaeraaasaaeaeaeeesnnns 218
5.6.8 CTUD UP/AOWN COUNEET........uiiiieiiee ettt ettt e e e e e e e e e e et e e e e e e aenaeeeenns 219
5.6.9 CTUD_DINT UP/AOWN COUNLETeviiiiiiiiieieeieeieeeeeeeeteatatababatasassssesessssseeeeeeeeeeeeeeeaasasaaaaaaaaaasanenns 221
56.10 CTUD_UDINT Up/dOWN COUNEET ...t 222
5.7 JUMP INSTTUCHIONS ... ettt e e eeesenneeeas 223
5.71 OVverview Of JUMP OPEIatiONS.oiii it e e e e e e e e e e e e e e e e eann e e e enns 223
5.7.2 -—-(JMP) Jump in block if 1 (CONItIONAI)cueveiiiiiiiie e 224
5.7.3 -—-(JMPN) Jump in block if 0 (conditional)............ccceeiiiiiiiiiiiie e 225
574 (I T I U]] o = o 1= RS 226
5.8 [\ o7 o] 0 F=1 V2N (oo | o PRSP 227
59 ArtNMELIC OPEIAtOrSeeieieii et e s e e e ennneeas 228
5.10 Numeric standard FUNCLIONSoooiiiiiiiieeee ettt e e e e 230
5.10.1 General numeric standard fUNCLIONS ... 230
5.10.2 Logarithmic standard FUNCHONSooiiiiiiii e s 231
5.10.3 Trigonometric standard FUNCHONS..........ooi e e 232
511 1Yo Y7 TSP 233
L0 e e B |V (@ AV i I = T a1 =T 7= [1SR 233
512 ST aT11] le o] o 1= T = 110 o PR PRRRPRR 234
5.12.1 Overview of shifting OPEratioNS...........cooiiiiii i e 234
512.2 SHL Shift DIt to the [te e e 234
5.12.3 SHR Shift bit to the FigNt........cccviiiiiee e 235
5.13 (0] c= [aTo o] o 1=T = 1110 o 1= USSR 236
5.13.1 Overview of rotating OPEratioNsccccuiiiiiiie e e e e eeaa s 236
5.13.2 ROLRotate bit tothe left..........ccooiiiiiiii e 236
5.13.3 RORRotate bittothe right....... ... e 238
5.14 Program control iNSrUCHIONSoiiiiiiiie e e 239
5141 Calling UP @n @MPLY DOX......eiiiiiiieii ettt e e e et e e e e e anneeeas 239
5142 RET JUMP DACK. ... ettt sttt e ettt e e e e e e e e e e e e e ae b ae e e e e e e essnsres sennraaneaaeeas 240
5.15 TIMEI INSIIUCHIONS ...ttt e e e e e e e e e e e eeeeeeeaevaaas 241
70t o T N I o 16] = PP PPPPRRRI 241
5.15.2 TON ON AEIAY....coiiiiuiiieiiiiieeeeieie ettt et e st e e e sttt eessae e e e sssaeeesanseeeeansseeesssseeeanss snnseaesnnnneeas 242
B5.15.3 TOF OFF AEIAY ..cocteiieeieieie ettt ettt s et e e e et e e st et e e et e e e s aseeesensaenreaesnnneeas 243
5.16 ST =Yed (oY TR {0 g Tod o] o T 244
5.16.1 SEL BiNAry SEIECHONcccciiiiiiieee ettt e e e e e e e e e e e e e st e ee snrraneaaaeas 244
516.2 MAX Maximum fUNCHONcoooiiiii e e 245
5.16.3 MIN Minimum fUNGLON ..ot e e e e e e e e e e e e e e eeaan e eennannns 246
5.16.4 LIMIT Limiting FUNCHONeiiiiee et e e neeee s 247
516.5 MUX MURIPIEX FUNCHIONeiiiiiiiieee et e e e aaneeeas 248
CommisSioNiNG (SOMWAIE)uiiiiiiiii i et e e s s s es e nsane e e e saan 249
6.1 1070] 0 01001577 To] a1 oo TSRS 249
6.2 AssigNIng programs 10 @ tASK.........oii i e 249
6.3 Execution levels and tasks in SIMOTION ..ot e e eeeeens 251
SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Table of contents

6.4 TASK SEAMt SEQUENCE........eeiiieiiieeeeeeeeeee ettt ee e e e e e eeeeeeeeeeeaeeaaaaaaaaaaaaaaaaaeas snrnsnrnens 253
6.5 Downloading programs to the target System ... 254
7 Debugging Software / Error HandliNgc.co oottt e e e 255
71 Modes for Program tESHINGiii e eee e 255
711 Modes of the SIMOTION dEVICESc.ueiiiiiieiiii it 255
71.2 Important information about the life-sign Monitoring............ccooocii i 257
71.3 Life-sign monitoring Parametersoooiiiiiiiiiee e 259
7.2 SYMDOI BIOWSET ...t e e b e e e e 260
7.2.1 (O g F= T = o3 12T 4] 17 SR 260
7.2.2 Using the SYMBDOI DrOWSET..........eoiiiiii e a e e e e e e e e 260
7.3 LTz Lo g1 €=)[R 264
7.31 Monitoring variables in watCh table.......... ..o 264
7.4 L= 1o OSSR 266
7.5 L reTo | =0 o T8 U o ISP OURPRPIRR 267
7.5.1 Program run: Display code location and call path ... 267
7.5.2 Parameter call stack program FUN...........c.oviiiii i e e e e 268
7.5.3 Program run t00IDAYoooi e e e eeee e e e 268
7.6 Program status (monitoring program eXeCULION)ooccuiiiiiiiiiieiiiee e 269
7.6.1 Starting and stopping the program execution MONItOriNGcceeiiiiiiiiiiiie e 269
7.7 Breakpoints (WS) ... ettt et e e e nnnnee s 272
7.71 General procedure for setting breakpointscoooiiiiiiiiiiie e 272
7.7.2 Setting the debUg MOE.........couiiii e ree e e e e snnaeens 273
7.7.3 Define the debug task GrOUDocuiiiiiiiiie et e e e st e e e stee e e s snseereeaeans 274
7.7.4 Setting DreakPOINTSooiieiie e e 276
7.7.5 Breakpoints t00IDA ... e e 278
7.7.6 Defining the call path for a single breakpoint............cccoeiiiiiiiii e 279
7.7.7 Defining the call path for all breakpoints............coooiiiiiiii e s 281
7.7.8 Activating breakpointS ... e 283
7.7.9 DiISPlay Call STACKcoiiiiieiiiiie ettt e e e e 285
8 PN o o] [Toz= LiToT T = Ty yT o) =TT 287
8.1 e 4]][PSPPSRI 287
8.2 Creating SAMPIE PrOGraMIS.ottt e e e e e e e et e e e e e e e st e e e e e e sanbsreeeaeeaeeeeaens 287
8.3 =TT =T g o] o o | =1 o o PP PURRT 288
8.3.1 Insert LAD/FBD SOUICE fil©ueiiiiiiiie ittt ettt e e e nte e e e st e e e enae snneeeeans 289
8.3.2 INSErt LAD/FBD PrOGIAMcooiiiiiiiiitiee ittt ettt sttt ettt e e ra e e st e e e aabe e e e sabe e e e sabbee reeeeaas 292
8.3.3 Entering variables in the declaration table...............ccci i 295
8.3.4 Entering @ program title..........cuuriiiiii e e e e e e 296
8.3.5 TaTST=Y o g o TR = Y] PP 296
8.3.6 INserting an @MPLY DOX ... e a e 297
8.3.7 SelECHNG DOX TY P e e 298
8.3.8 Parameterizing the ADD Call-UP.........cooiiiiiiiiiie e 299
8.3.9 INSErtING COMPAIATON ... eeiiiiitiiie ettt ettt ettt e e eab et e e st e e e e sabeee e s eeesbeeeeeans 300
8.3.10 Labeling the COMPAratorcoooi oo e e e e e e 301
< TR Tt I I [T1 (=114 o = T oo | PR 302
8.3.12 InSerting NEXt NEIWOIKcoi i e e e 302
S TR Tt B B = =] LS 1= OSSR 303
SR N S 0o o1 o 1 T USRS 303
8.3.15 Assigning a sample program to an execution Ievelcccooeeeii i, 305

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 9

Table of contents

10

8.3.16 Starting Sample PrOgram.........cc.uiiiiiiiiie et e e e e s e e st e e e ensee e e aneeee e aeeanneeeas 306
8.4 POSItION @XIS PrOGIaIM.....eiiiiiiiie ettt ettt e e bt e e e aa e e e e abee e reeeennes 308
8.4.1 Insert LAD/FBD SOUICE filE.......o ettt e e e e e e e e e eae e e e neeeeaeas 309
8.4.2 INSErt LAD/FBD PrOGraM.......ccieiiiiieeieeiteaieee e ettt e ettt sttt e e et e e st e e e enbe e e e anneee e eeeennnes 310
8.4.3 Inserting @ TO-sSPeCiIfic COMMANGcoiiiiiiiiie e e e 312
8.4.4 Connecting the €Nable INPULSoooiiiii ettt e e e snaee e aeeeans 315
8.4.5 Entering variables in the declaration table ... 318
8.4.6 Parameterization of the NO CONtactsoooeeiiiiie e 319
8.4.7 Setting call parameters for the _mc_power command...........cccceerieriiiiiiiire e 320
8.4.8 Setting call parameters for the _mc_moverelative commandcccccceveiiiiiiiieee e, 322
8.4.9 DEtAIlS VIBW ... e ettt e e e e et e e e e e e e e e e e ee e e e e e e nrnneeas 324
S e 0 I ' 1 o1 1 13T SRR 324
8.4.11 Assigning a sample program to an execution levelcccoooiiiiiiiii e 324
8.4.12 Starting Sample PrOgram.........ocuuiiii ittt e e e e e e aneeeas 325
LY o 1= o[TP 327
A.1 NGV oo] 1] o] 1 g T= 11T] I PP 327
A2 Protected and reserved identifiersoouuiii i 329
] T 1= PSPPI 331

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Preface

1.1 Scope

This document is part of the SIMOTION Programming documentation package.

This document is valid for product version V4.1, Service Pack 4 of SIMOTION SCOUT (the
engineering system of the SIMOTION product family) in conjunction with:

® a SIMOTION device with the following versions of the SIMOTION kernel:

V4.1 SP4
V4.1 SP2
V4.1 SP1
V4.0
V3.2
V3.1
V3.0

® The relevant version of the following SIMOTION Technology Packages, depending on the
kernel

SIMOTION LAD/FBD

Cam

Path (kernel V4.1 and higher)

Cam_ext (kernel V3.2 and higher)

TControl

Gear, Position and Basic MC (only for kernel V3.0).

Programming and Operating Manual, 05/2009 11

Preface

1.2 Information in this manual

1.2

12

Information in this manual

The following is a list of chapters included in this manual along with a description of the
information presented in each chapter.

Description (Chapter 1)
This chapter shortly defines the LAD and FBD programming languages.
LAD/FBD Editor (Chapter 2)

In this chapter you can learn about the various operator control options in the LAD/FBD
Editor.

Software Programming (Chapter 3)
This chapter shows how to proceed during programming.
Functions (Chapter 4)

This chapter describes how to apply individual LAD/FBD commands and gives an outline
of their function.

Debugging Software / Error Handling (Chapter 5)
This chapter describes how to test a program and find errors in created programs.
Application Examples (Chapter 6)

You will be given an introduction to the LAD and FBD programming languages using
some simple examples.

Appendix
— Key combinations

This appendix contains the keystroke combinations for frequently used commands.
Index

Keyword index for locating information.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Preface
1.3 SIMOTION Documentation

1.3 SIMOTION Documentation

An overview of the SIMOTION documentation can be found in a separate list of references.

This documentation is included as electronic documentation with the supplied SIMOTION
SCOUT.

The SIMOTION documentation consists of 9 documentation packages containing
approximately 80 SIMOTION documents and documents on related systems (e.g.
SINAMICS).

The following documentation packages are available for SIMOTION V4.1 SP4:
e SIMOTION Engineering System

e SIMOTION System and Function Descriptions

e SIMOTION Service and Diagnostics

e SIMOTION Programming

e SIMOTION Programming - References

e SIMOTIONC

e SIMOTION P350

e SIMOTION D4xx

e SIMOTION Supplementary Documentation

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 13

Preface

1.4 Hoftline and Internet addresses

14 Hotline and Internet addresses

Siemens Internet address

The latest information about SIMOTION products, product support, and FAQs can be found
on the Internet at:

® General information:
— hitp://lwww.siemens.de/simotion (German)
— hitp://lwww.siemens.com/simotion (international)

® Downloading documentation
Further links for downloading files from Service & Support.
http://support.automation.siemens.com/WW/view/en/108054 36

® Individually compiling documentation on the basis of Siemens contents with the My
Documentation Manager (MDM), refer to http://www.siemens.com/mdm

My Documentation Manager provides you with a range of features for creating your own
documentation.

® FAQs
You can find information on FAQs (frequently asked questions) by clicking
http://support.automation.siemens.com/WW/view/en/10805436/133000.

Additional support
We also offer introductory courses to help you familiarize yourself with SIMOTION.

For more information, please contact your regional Training Center or the main Training
Center in 90027 Nuremberg, Germany.

Information about training courses on offer can be found at:

www.sitrain.com

SIMOTION LAD/FBD
14 Programming and Operating Manual, 05/2009

Preface

Technical support

1.4 Hotline and Infernet addresses

If you have any technical questions, please contact our hotline:

Europe / Africa

Phone

+49 180 5050 222 (subject to charge)

Fax

+49 180 5050 223

€0.14/min from German wire-line network, mobile phone prices may differ.

Internet

http://www.siemens.com/automation/support-request

Americas

Phone

+1 423 262 2522

Fax

+1 423 262 2200

E-mail

mailto:techsupport.sea@siemens.com

Asia / Pacific

Phone

+86 1064 757575

Fax

+86 1064 747474

E-mail

mailto:support.asia.automation@siemens.com

Note

Country-specific telephone numbers for technical support are provided under the following
Internet address:

http://www.automation.siemens.com/partner

Questions about this documentation

If you have any questions (suggestions, corrections) regarding this documentation, please
fax or e-mail us at:

Fax

+49 9131- 98 2176

E-mail

mailto:docu.motioncontrol@siemens.com

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

15

Description 2

2.1 Description

This chapter will give you a brief overview of ladder logic (LAD) and function block diagram
(FBD).

2.2 What is LAD?

LAD stands for ladder logic. LAD is a graphical programming language. The statement
syntax corresponds to a circuit diagram. LAD enables simple tracking of the signal flow
between conductor bars via inputs, outputs and operations.

LAD statements consist of elements and boxes which are graphically connected to networks
(which are displayed in conformity with the IEC 61131-3 standard). LAD operations follow
the rules of Boolean logic.

WAR_TML WAR 2 VAR_TIMNZ VAR_OUT
| | | | f |
I | | I |
VARL

i

Figure 2-1 Representation of a network in LAD

The LAD program can also be displayed as an FBD program.

The LAD programming language

The LAD programming language features all the elements required for the creation of a
complete user program. LAD features an extensive command set. This includes the various
basic operations with a comprehensive range of operands and how to address them. The
design of the functions and function blocks enables you to structure the LAD program

clearly.

The program package

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

The LAD programming package is an integral part of the basic SIMOTION software, so that
after your SIMOTION software has been installed, all editor, compiler and test functions for
LAD are available for use.

17

Description

2.3 What is FBD?

23 What is FBD?

FBD stands for function block diagram. FBD is a graphics-based programming language that
uses the same type of boxes used in boolean algebra to represent logic (networks are
displayed in conformity with the IEC 61131-3 standard). In addition, complex functions (e.g.
mathematical functions) can be represented directly in conjunction with the logic boxes.

VAR_INL— &
VAR 2| o

WAR _OUT

WART—C]

WAR_T M2 —

L]

Figure 2-2 Representation of a network in FBD

The FBD program can usually also be displayed as an LAD program.

The FBD programming language

The FBD programming language features all the elements required for the creation of a
complete user program. FBD features an extensive command set. This includes the various
basic operations with a comprehensive range of operands and how to address them. The
design of the functions and function blocks enables you to structure the FBD program

clearly.

The program package

The FBD programming package is an integral part of the basic SIMOTION software, so that
after your SIMOTION software has been installed, all editor, compiler and test functions for

FBD are available for use.

18

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Description
2.4 Unit, program organization unit (POU) and program source

24 Unit, program organization unit (POU) and program source
The term "unit" represents a program source.

The terms "program organization unit (POU)" and "LAD/FBD program" are generic terms and
may refer to a program, a function (FC), or a function block (FB).

The term "program source file" is a generic term and may refer to a LAD/FBD unit, an MCC
unit or an ST source file.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 19

LAD/FBD editor

3.1 The LAD/FBD editor in the workbench

The workbench represents the framework for SIMOTION SCOUT. Using the workbench
tools, you can carry out all the steps required to configure, optimize, and program a machine
in order to complete a required task.

; P / BEIE

-|- Project LAD/FED program Edit Inse) Targatsysten View Optiorfs Window Hfp METE|

| Dl|eiz]| 8] k||l o] x| =]]| sl sl ||| 22le|||)| BslE)| = [om =] Tl
| Iﬂﬂl\ilﬂ'_lﬁl_ll_rlﬁlﬁlhliﬂ_u\

=B e P | e/ symbols | E
#) Creats new dvice [Hame [variable type Data type Array length Intial value Comment -
Insert single drive unit 1__lenDiim var [DINT 100
1R Cza0 P] VAR DINT 1
* @] EXECUTION SYSTEM 3 |outUsint VAR USINT
g 1r 4 Jon VAR BOOL
B GLOBAL DEYICE VARIABLES |_5 ol_countdint_|VAR DINT 100 ~|
[AXES - == ===
{1 EXTERNAL ENCODERS p_&link - Blinker
' PATH OBJECTS
- CAMS Comment
() TECHNOLOGY 00l - hochzashlen
=+ PROGRAMS comment
) Insert 5T program
) Insert MCC unit | ADD on
-8 Insert DCC charts b ENO) anp —
% Insert LADIFED unit X) X »=
=4k Q_Bink ei nDINT—{IML QUT|—einDINT 21 nDINT:
i 4k p_blink() -
©.®) Insert LADJFBD program 1—IH2 g1_-
o BBl C230_2 countdint
+] {_] LIBRARIES
1] MONITOR 0oz - output
*® Insert watch table comment
TSINT_TO_
an TOVE ADD BYTE
‘—H EN EN EN
O—IN OUT|—einDINT outUSint—IND OUT|-outUsint outUSint—IN OUT|—io_var
1—{Inz
< / | |

Project [Command lbray 4 o8k [4k 0_Birk /

x

= Symbal browser g Declaration table output

Press F1 to open Help display. : ; Offline mode =

Figure 3-1 Elements of the workbench in a LAD/FBD program

The workbench contains the following elements:
® (1) Project navigator

The project navigator shows the entire project and its elements as a tree structure.
® (2) Menu bar

The menu bar contains menu commands which you can use to control the workbench,
call up tools, etc.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 21

LAD/FBD editor

3.2 Maximizing working area and detail view

® (3) Toolbars

Many of the available menu commands can be executed by clicking the appropriate icon
in one of the toolbars.

® (4) Declaration tables

Declaration tables are used for LAD/FBD units and programs. You define variables and
constants in the declaration tables.

® (5) Working area

In this area, you carry out job-specific operations. The working area contains an
LAD/FBD program, a declaration table, and an editor for graphical displays.

® (6) Detail view

More detailed information about the elements selected in the project navigator are
displayed, e.g. the windows Symbol browsers, Compile/check output.

3.2 Maximizing working area and detail view

The windows working area and detail view can be set to maximum zoom.
The selection is made under the following menu items:
® View > Maximize working area (e.g., when creating programs)

or

® View > Maximized detail view (e.g., monitoring global variables)

3.3 Enlarging and reducing the editor area for the graphical display

The size of the graphical area of the LAD/FBD editor (i.e. the size of the elements in this
area) can be changed using the Zoom list on the Zoom factor toolbar or using the View >
Zoom in or View > Zoom out menu commands.

Select a factor from the Zoom list, or enter an integer value of your own choice. This change
always applies to the active LAD/FBD editor.

This setting is not saved when a save operation is performed.

3.4 Bringing the LAD/FBD editor to the foreground

22

If several LAD/FBD editors are open in the working area, these are usually overlaid. This
means that only the top LAD/FBD editor is visible. There are several ways to bring the
concealed editors to the foreground.

To bring the editor to the foreground, proceed as follows:
1. Select the appropriate tab below the working window
or

Select the appropriate program name in the Window menu.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD editor
3.5 Hiding and displaying the declaration table

3.5 Hiding and displaying the declaration table

If you need more space, you can hide the Interface (exported declaration) declaration area
and/or the declaration area for a LAD/FBD program completely

To hide and display the declaration table, proceed as follows:
1. Double-click the separation line to hide the declaration table.

2. In order to display the declaration line again, double-click the separation line again.

3.6 Enlarging/reducing the declaration table
To change the size of the declaration table, proceed as follows:

1. Move the mouse cursor onto the separation line until the mouse pointer changes to a
double line.

2. Hold down the left mouse button and drag the separation line upwards in order to reduce
the size of the declaration area.
- Or -
In order to enlarge the declaration area, move the separation line downwards.

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009 23

LAD/FBD editor

3.7 Operation
3.7 Operation
3.71 Operating the LAD/FBD editor

3.7.2

3.7.3

24

The LAD/FBD editor provides the programmer with a variety of different operator input
options. Alternatives for executing individual operator inputs include the following:

The menu bar
Context menus
Toolbars

Key combinations

Text and variables can be dragged from the project navigator, declaration tables, symbol
browser or command library and dropped into the input fields.

Menu bar

You can start all of the programming functions from the menu bar.

The LAD/FBD program item only appears if a LAD/FBD editor is active in the working area.

Context menu

To use the context menu for an object, proceed as follows:

1. Select the appropriate object with the left mouse button (left click).

2.

Briefly click the right mouse button.

3. Left-click the appropriate menu item.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD editor

3.7 Operation

3.74 Toolbars

The dynamic toolbars contain icons for important, frequently used functions, e.g. for inserting
or saving elements.

The "dynamic toolbar" changes depending on which workspace is active/selected,
e.g., MCC chart, ST program or LAD/FBD program.

The toolbars can be positioned as required within the Workbench. Once moved, they can be
shown or hidden using View > Toolbars.

The LAD/FBD editor toolbar contains the full range of LAD/FBD commands. The command
list is displayed whenever the workspace for a program is active or open.

VIR

®/e

@ Insert LAD/FBD unit
® Accept and compile
® Insert LAD/FBD program

Figure 3-2 Picture of the toolbar for a LAD/FBD unit

O e T) e

LALLLd

Insert LAD/FBD program
Accept and compile

Insert NO contact
Insert NC contact
Program status Insert coil
Symbol check and type update
Switch to FBD
Insert network

Jump label ON/OFF
Figure 3-3 View of the LAD editor toolbar

Open branch
Close branch
Insert comparator

CSHCNCNCNCNCONC)
CHONCNCONCNONC)

Insert an empty box

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 25

LAD/FBD editor

3.7 Operation
T =] [

©) Insert LAD/FBD program Insert AND box
® Accept and compile ® Insert OR box
® Program status Insert assignment
® Symbol check and type update @ Binary input
® Switch to LAD ® Negate binary input
® Insert network ® Insert comparator
@) Jump label ON/OFF Insert an empty box
Figure 3-4 View of the FBD editor toolbar

3.7.5 Key combinations

Use the key combinations for fast operation in the LAD/FBD editor. The shortcuts
(Page 327) available in the LAD/FBD editor are listed in the Appendix.

3.7.6 Drag&Drop of variables

Variables can be moved from the detail view (Symbol browser tab) to the input field using a
drag-and-drop operation.

To insert variables using drag&drop, proceed as follows:

1. Left-click the line number of the variable you wish to move.
The line with the variables is highlighted.

2. Keeping the left mouse button depressed, drag the line number into the input field of the
parameter screen form.

3. Release the left mouse button. The variable is inserted at the selected position.

3.7.7 Drag&drop from the declaration tables

Variable names can be dragged from a declaration table and dropped into an LAD/FBD
network.

To insert variable names using drag&drop, proceed as follows:
1. Left-click the line number with the name of the variable you wish to move.
The line is shown on a black background.
2. Continue to press the left mouse button as you drag the variable name to any input field.
3. Release the left mouse button.

The variable name is inserted at the selected position.

SIMOTION LAD/FBD
26 Programming and Operating Manual, 05/2009

LAD/FBD editor

3.7.8

3.7.9

3.7.10

See also

3.7 Operation

Drag&drop within the declaration table

You can change the order of the variable declaration in the declaration table.

To change the order using drag&drop, proceed as follows:

1.

Left-click the line number of the variable you wish to move.
The line is shown on a black background.

Press the Shift key and continue to press the left mouse button as you drag the line to the
desired position in the declaration table.

A red line indicates the point of insertion.

. Release the left mouse button.

The line moves to the corresponding position.

Note

To move several adjacent lines together, hold the Shift key down as you select the lines
you wish to move.

Using Drag&Drop for LAD/FBD elements

LAD/FBD elements can be inserted into the LAD/FBD network from the project navigator
(Command library tab) using drag-and-drop.

To insert LAD/FBD elements using drag&drop, proceed as follows:

1.
2.

Left-click the required LAD/FBD element.

Hold the left mouse button down and drag the LAD/FBD element into the ladder diagram
line of the LAD/FBD network.

Release the left mouse button.
The LAD/FBD element is inserted at the selected position.

Command call drag&drop

Most commands in the command library can be inserted in LAD/FBD programs.

For exceptions, see "Unusable command library functions (Page 84)".

To insert command calls using drag&drop, proceed as follows:

1.
2.

Left-click the required command call.

Continue to hold the left mouse button down as you drag the command call to the
LAD/FBD program.

. Release the left mouse button.

The command call is inserted at the selected position.

Unusable command library functions (Page 84)

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 27

LAD/FBD editor
3.7 Operation

3.7.11 Drag&Drop of command names

Command names can be moved using Drag&Drop from the project navigator (tab Command
library) into the input field of an empty box that has already been generated.

To insert command names using drag&drop, proceed as follows:
1. Left-click the required command name.

2. Holding the left mouse button down, drag the command name into the input field of an
empty box.

3. Release the left mouse button.

The command name is inserted at the selected position.

3.7.12 Using drag&drop for elements in a network
To insert elements in a network using drag&drop, proceed as follows:
1. Left-click the required LAD element.

2. To move an element, proceed as follows:
Holding the left mouse button down, drag the element to the required position in the
ladder diagram line.

3. To copy an element, proceed as follows:
Keeping the CTRL key depressed, drag the element with the left mouse button to the
required position in the ladder diagram line.

4. Release the left mouse button.
The LAD element is inserted at the selected position.

3.7.13 Using drag&drop for functions and function blocks from other sources

Successfully compiled functions and function blocks from other units can be inserted into a
ladder diagram line from the project navigator. The connection to the "original source" is
automatically entered in the Connections tab of the current source file.

To insert functions and function blocks using drag&drop, proceed as follows:
1. Left-click the required FC/FB.
2. Holding the left mouse button down, drag the FC/FB into the input field of an empty box.
3. Release the left mouse button.
An FC/FB call box is inserted.

SIMOTION LAD/FBD
28 Programming and Operating Manual, 05/2009

LAD/FBD editor

3.8 Settings

3.8 Settings

3.8.1 Settings in the LAD/FBD editor

You can define the layout for creating a program in the LAD/FBD programming language.
The automatic symbol check and type update are set by default in the LAD/FBD editor.

1.

To change the settings, select the Options > Settings > LAD/FBD editor menu command.

3.8.2 Activating automatic symbol check and type update

To enable automatic symbol check and type update, follow these steps:

1.

Select the Options > Settings menu item.

2. Select the tab LAD/FBD editor.
3.
4. Confirm with OK.

Activate the checkbox Automatic symbol check and type update.

Note
The automatic symbol check and type update is activated by default in the LAD/FBD editor.

If the symbol check is activated, the automatic symbol check and type update is performed
for an LAD/FBD program if the following requirements are met:

changes are made in the project (see list below) which impact upon the LAD/FBD
program

the focus is on the LAD/FBD program, i.e. it is opened in the KOP/FUP editor, or the
LAD/FBD editor from the LAD/FBD program which is already open appears in the
foreground (Page 22)

In the event of subsequent changes within a project, automatic symbol check and type
update is performed for an LAD/FBD program if the change affects the LAD/FBD program:

SIMOTION LAD/FBD

A program source is changed, e.g. deleted or renamed.

The changes are only identified for associated program sources and their LAD/FBD
programs when the changed program source is compiled. In other words, to enable the
automatic symbol check and type update to take place, the changed program source
must be compiled before the focus changes to an LAD/FBD program from an associated
program source.

Programming and Operating Manual, 05/2009 29

LAD/FBD editor

3.8 Settings

30

The declaration tables in the LAD/FBD unit and/or from LAD/FBD programs within the
LAD/FBD unit are changed.

The symbol check/type update takes place for an LAD/FBD program belonging to the
LAD/FBD unit if the changes affect that LAD/FBD program.

The following cases are possible:
— A declaration table is changed within an LAD/FBD program.

The automatic symbol check and type update only takes place after changing from the
declaration table to the network.

— The change within a declaration table takes place within an LAD/FBD program and
affects another LAD/FBD program within the same program source.

The automatic symbol check and type update takes place when the focus is on that
other LAD/FBD program.

— Changes within a declaration table take place within a program source and affect an
LAD/FBD program in another program source.

The automatic symbol check and type update for the LAD/FBD program from another
program source can only take place once the changed program source has been
compiled.

A technology object (such as an axis) used by the LAD/FBD program is changed.

The automatic symbol check and type update takes place when the focus is on the
LAD/FBD program.

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),
or a function block (FB).

If you click the mouse on the relevant place in the network (box parameter, input field,
symbol highlighted in red) following a symbol check/type update, the tool tip indicates the
following:

the expected data type among the box parameters
The data type of the variable with labeled input fields

the cause of trouble in symbols which are highlighted in red whereby the symbol errors
may have the following reasons:

— The specified symbol does not exist

— The specified symbol is not visible in the current context (incorrect or missing entry of
the connections in the declaration table)

— The specified variable does not have the appropriate type

Note

The symbol check is automatically updated as soon as the declaration table has been edited
and left.
All errors, including errors in the declaration table, are displayed in the detail view.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD editor

3.8 Settings

3.8.3 Example of a type update

Introduction

During the type update all the data types used are updated:

the list of permitted data types in an input field

an LAD/FBD program's box type, i.e. in terms of the creation type (program, FB or FC)
selected for the LAD/FBD program

a box's interface in terms of the list of permitted data types per box parameter

other data types (structures, enumerations, etc.)

For example, a structure AAA {a : BOOL} is used in an LAD/FBD program. If this structure is
changed, e.g. AAA {a : BOOL, b : LREAL}, this change is applied by the LAD/FBD program
during the type update.

Initial situation

The following are present:

SIMOTION LAD/FBD

an ST source ST_1 with a function block FB_1
an ST source ST_2 with a function block FB_2
an LAD/FBD unit LADFBD_1 with an LAD/FBD program PROGRAM_1

FB_1 is called within ST_2, i.e. a connection (Page 135) to ST_1 has to be declared in
the ST_2 declaration table

FB_1 is called within PROGRAM_1, i.e. a connection (Page 135) to ST_1 has to be
declared in the LADFBD_1 declaration table

FB_2 is called within PROGRAM_1, i.e. a connection (Page 135) to ST_2 has to be
declared in the LADFBD_1 declaration table

Programming and Operating Manual, 05/2009 31

LAD/FBD editor

3.8 Settings

How the type update works

This is a special scenario where a program source (in this case LADFBD_1) imports another
program source (in this case ST_1) both explicitly and by means of inheritance. Inheritance
takes place via another imported program source (in this case ST_2) which, in turn, imports
other sources (in this case ST_1).

ST_1 source file

|— FB_1
@ ST_2 source file
|— FB_2
LAD/FBD unit LADFBD_1 FB_1 call
|— PROGRAM_1
FB_1 call
FB_2 call

©O) LADFBD_1 explicitly imports ST_1
® LADFBD_1 imports ST_1 by means of inheritance (ST_1 - ST_2 - LADFBD_1)

Figure 3-5 Special scenario of explicit import and inheritance

Changes are now made at the interface of the FB_1, for example one or more input/output
parameters are added (see also interface adjustment in FB/FC (Page 158)) and ST_1 is
recompiled.

When PROGRAM_1 is opened in the LAD/FBD editor, the FB_1 call is automatically
updated, i.e. a type update occurs via which the changed interface is updated.

Despite the fact that the type update runs error-free, the compiler issues an error message
during the compilation of LADFBD_1 because the import of ST_1 by inheritance via the
imported ST_2 presupposes that ST_2 is also recompiled.

In order to recompile ST_2 without errors, the changed interface of the FB_1 call must be
updated manually within ST_2.

Note

If program sources are imported which import other program sources themselves
(inheritance), an error message may be output by the compiler during the compilation of the
program source which is being imported, even if the type update runs error-free.

SIMOTION LAD/FBD
32 Programming and Operating Manual, 05/2009

LAD/FBD editor
3.8 Settings

3.84 Example of a symbol check

Introduction
During the symbol check, the symbols used in the network are checked in context.

For example, the network includes a box with a BOOL-type input. An LREAL-type variable is
now assigned to this input. The symbol check determines that this variable cannot be used in
this context and, therefore, flags up this variable in red.

Initial situation
The following are present:
® an ST source ST_1 with the unit variable VAR _1
e an LAD/FBD unit LADFBD_1 with an LAD/FBD program PROGRAM_1

® the unit variable VAR_1 is used within PROGRAM_1, i.e. a connection (Page 136) to
ST_1 has to be declared in the LADFBD_1 declaration table

How the symbol check works
The unit variable VAR_1 is now changed, e.g. the name is changed.
If ST_1 is recompiled after this change, the unit variable VAR _1 is invalid in LADFBD_1.

When PROGRAM_1 is opened in the LAD/FBD editor, an automatic symbol check is
performed, i.e. the changed variable is highlighted in red lettering.

The changed variable must be updated manually in PROGRAM_1.

3.8.5 Deactivating automatic symbol check and type update

The automatic update of the symbol check and type database should only be deactivated if
computation speed is unduly reduced, e.g. if a large project is being processed on a slow
computer and the hourglass is displayed after any change in the declaration table or in
referenced external source files.

To deactivate automatic symbol check and type update, proceed as follows:
1. Select the Options > Settings menu item.

2. Select the tab LAD/FBD editor.

3. Deactivate the checkbox Automatic symbol check and type update.

4. Confirm with OK.

Note

If the automatic symbol check is deactivated, the display may sometimes be inaccurate,
e.g. after an external call-up has been inserted, the call-up box interface may be
incorrectly displayed (i.e. not updated), or not displayed at all. This is because the current
information only becomes available to the LAD/FBD editor after the Symbol check and
type update symbol has been clicked, or the corresponding menu selected.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 33

LAD/FBD editor

3.8 Settings

3.8.6

3.8.7

3.8.8

34

Perform symbol check and type update at a specified time

To perform a symbol check at a specified time, proceed as follows:

1.

Select the LAD/FBD program > Automatic symbol check and type update menu item.
or

Click the Check symbols icon.

Setting the data type list of the declaration table

In the declaration area, all function blocks of the project not used in the program are stated in
the list of data types by default.

To improve clarity, it is possible to set that only those function blocks are displayed for which
an entry in the Connections tab exists.

To set the data type display, proceed as follows:

1.

Select the Options > Settings menu item.

2. Select the tab LAD/FBD editor.
3.
4. Confirm with OK.

Click the Only known types if type lists exist check box.

Modifying the operand and comment fields

Use the following procedure to modify the display options for the operand and comments:

1.

o M~ Db

Select the Options > Settings menu command.

Select the LAD/FBD editor tab.

Enter the Number of characters per line for the operand and comment fields.
Enter the Number of lines for the operand and comment fields.

Confirm withOK.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD editor

3.8 Settings

3.8.9 Changing fonts
Use the following procedure to change the font of the LAD/FBD editor:

1.
2.
3.

5.

SIMOTION LAD/FBD

Select the Options > Settings menu command.
Select the LAD/FBD editor tab.

Click the Fonts and colors button.
The Fonts and colors dialog box with the Fonts tab appears.

Select the font, font size, type, or display you require.

Fonts and colors Ei

Fants | Colors I

Froperties: Fant; Font size:
ComrientFont Lucida Congole - |9 hd
GraphicFont I J I J
TitleFant Type:

INormaI vI

— Reprezentation
[Strikeout ™ Underline
— Sample text
- AaBbYyZz
Default zetting |

oK. I Caticel Apply

Figure 3-6 Fonts and colors dialog box

Confirm with OK.

Programming and Operating Manual, 05/2009 35

LAD/FBD editor

3.8 Settings

3.8.10

36

Changing colors

Use the following procedure to change the colors of the LAD/FBD editor:

1. Select the Options > Settings menu command.
2. Select the LAD/FBD editor tab.

3. Click the Fonts and colors button.
The Fonts and colors dialog box appears.

4. Click the Colors tab.

5. Select the required color.

Fantz Eolorsl
Properties: Coolor set;
e a ISlandardcoIors j
I FoeColor Color palette:
1 FilColor
, I Gleck -
I :ctivatedColor)
) [white
[1 aActiveBackCalor
wesas N e
[OrnlinesctiveColor
B OrirelnactiveCol Green
nlinglnactiveCalor
— =] |- e =
Edit uger-defined color ... |
0K I Cancel | Apply |

Figure 3-7 Fonts and colors dialog box

6. Confirm with OK.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD editor

3.8 Settings

3.8.11 Activating on-the-fly variable declaration

When variable declaration is activated, a dialog box appears when an unknown symbol is
entered in the LAD or FBD diagram.

To activate on-the-fly variable declaration, proceed as follows:

1.

Select the Options > Settings menu command.

2. Select the LAD/FBD editor tab.
3.
4. Confirm with OK.

Activate the on-the-fly variable declaration checkbox.

3.8.12 Setting the default language

To set the default language, proceed as follows:

1.

Select the Options > Settings menu item.

2. Select the tab LAD/FBD editor.
3.
4. Confirm with OK.

Select the default language, e.g. LAD.

When a new LAD/FBD program is created, the selected LAD language is set.

3.8.13 Calling online help in the LAD/FBD editor

The online help can provide assistance for many of the operating steps. Call up the online
help using either the:

SIMOTION LAD/FBD

Help menu

— Help topics

— Context-sensitive help

— Getting Started

General help with the F1 key

Help button, which appears in an open dialog box

Context-sensitive help with the Shift+F1 key combination or the arrow with question mark
icon (also for LAD/FBD elements in a network).

Programming and Operating Manual, 05/2009 37

LAD/FBD programming 4

4.1 Programming software

This chapter describes the various operator control options in the LAD/FBD editor and the
basic procedure for LAD/FBD programming.

4.2 Managing LAD/FBD source file

The LAD/FBD units are assigned to the SIMOTION device on which they will subsequently
be run (e.g. SIMOTION C230). They are stored in the project navigator under the SIMOTION
device in the PROGRAMS folder or in libraries.

The individual program organization units (POU) are stored under a LAD/FBD source file.

Note
ST source files or MCC source files are also stored.

There is a description of the programming languages ST (Structured Text) and MCC (Motion
Control Chart) in the SIMOTION ST and SIMOTION MCC Programming Manuals.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 39

LAD/FBD programming

4.2 Managing LAD/FBD source file

4.21

40

Inserting a new LAD/FBD source file

There are several ways of how to insert a new LAD/FBD source file.

To insert a LAD/FBD source file, proceed as follows:

1.

In the project navigator, double-click the Insert LAD/FBD source file element in the
PROGRAMS folder.

- Or -
Select the Insert > Program > Insert LAD/FBD source file menu item.
- Or -

In the context menu (PROGRAM folder must be selected), select Insert new object >
Insert LAD/FBD unit.

Enter the name of the LAD/FBD unit.

The names of program sources must comply with the rules for identifiers: They consist of
letters (A to Z, a to z), numbers (0 to 9), or single underscores (_) in any order, whereby
the first character must be a letter or an underscore. No distinction is made between
uppercase and lowercase letters.

The permissible length of the name depends on the SIMOTION Kernel version:
— SIMOTION Kernel Version V4.1 and higher: maximum 128 characters.
— SIMOTION Kernel Version V4.0 and lower: maximum 8 characters.

Names must be unique within the SIMOTION device. Protected or reserved identifiers
(Page 329) are not allowed. The LAD/FBD programs already available are displayed.

In the Compiler tab, activate checkbox Permit program status to use the online status
display.

4. You can also enter an author, version, and a comment.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

5. Select the Open editor automatically checkbox.

4.2 Managing LAD/FBD source file

Insert LAD/FBD unit EHE
{F Marme: LFunit_1
General | Cnmpilerl Additional settingsl
Authar: I
Wersion: I
Exizting Programs
Comment;
¥ Open editor automatically
Cancel Help

Figure 4-1 Insert LAD/FBD source file dialog box

6. Confirm with OK.
The Declaration tables dialog box is displayed.

LAD/FBD unit - [C240.LFunit_1]

INTERFACE [exported declaration]

Parameter | 170 symholsl Structuresl Enumerationsl Connections

Hame

Variable type

Hame Variable type Data type Array length Initial value Comment
1
IMPLEMENTATION [source-internal declaration])
Parameter | [0 symhulsl Structures Enumeratiunsl Connections
Data type Array length Initial value Comment

1

Figure 4-2 Declaration tables for exported and source-internal declarations

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

41

LAD/FBD programming

4.2 Managing LAD/FBD source file

422 Opening an existing LAD/FBD source file

All existing LAD/FBD source files are stored in the PROGRAMS folder in the project
navigator.

To open an existing LAD/FBD source file, proceed as follows:

1.

Double-click the name of the source file
or
Select the LAD/FBD source file and select the Open menu item in the context menu.

The LAD/FBD source file (declaration tables) is opened in the workspace. Several
LAD/FBD source files can be opened at the same time.

423 Saving and compiling a LAD/FBD source file

Prerequisites:

42

Ensure that the LAD/FBD source file or one of the associated LAD/FBD programs is the
active window in the workbench.

To save a LAD/FBD source file and all its associated LAD/FBD programs in the project and
start the compiler:

1.

Select the Save and compile symbol in the LAD/FBD editor toolbar.
- or -

Select the LAD/FBD source file > Save and compile menu item.

- or -

Select the LAD/FBD source file or a LAD/FBD program in the project navigator and select
Save and compile in the context menu.

Note

Save and compile only applies the changes to LAD/FBD source files and associated
LAD/FBD programs in the project. The data are not saved to disk, together with the
project, unless you select Project > Save or Project > Save and compile all.

A LAD/FBD source file can also be saved outside the project (exported).

Error messages and warnings relating to compilation are displayed in the Compile/check
output tab in the detail view.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

424

4.2.5

See also

4.2.6

4.2.7

SIMOTION LAD/FBD

4.2 Managing LAD/FBD source file

Closing a LAD/FBD source file

To close a LAD/FBD source file opened in the working window, proceed as follows:
1. Click the x button (cross) in the title bar of the dialog box of the LAD/FBD source file
or
Select the LAD/FBD source file > Close menu item.
or
Select Windows > Close all windows menu item.

If the changes have not yet been saved in the project, you can save or cancel them, or
abort the close operation.

Cut/copy/delete operations in a LAD/FBD source file

A LAD/FBD source file can be cut or copied together with all its associated LAD/FBD
programs and inserted in the same or another SIMOTION device.

It is not possible to insert a LAD/FBD source file that has been deleted.
To cut, copy or delete, proceed as follows:

1. In the project navigator, select the required LAD/FBD source file.

2. In the context menu, select the appropriate item (Cut, Copy, or Delete).

3. Change the name, if necessary (refer to "See also").

Renaming a LAD/FBD source file (Page 47)

Inserting a cut or copied LAD/FBD source file

To insert a cut or copied LAD/FBD source file:
1. Under the SIMOTION device, select the PROGRAMS folder.
2. In the context menu, select Insert.

The LAD/FBD source file is inserted under a new name.

3. Ifrequired, amend the name.

Know-how protection for LAD/FBD source files

You can protect LAD/FBD units against being accessed by unauthorized third parties.
Protected LAD/FBD units and all associated LAD/FBD programs can only be opened or
viewed with a password.

The SIMOTION online help provides additional information on know-how protection.

Programming and Operating Manual, 05/2009 43

LAD/FBD programming
4.3 Exporting and importing LAD/FBD source files

4.3 Exporting and importing LAD/FBD source files

The export and import functions offer you the option of saving a LAD/FBD source file outside
the project on your hard disk so that you can copy it from there into another project.

431 Exporting a LAD/FBD source file in XML format

Note

Structures (e.g. several POUs in one unit, advance binary switching) can be used with
SIMOTION Kernel Version V4.1 and higher. These structures may not be supported by
previous versions.

You can use an XML export to save an LAD/FBD unit in a directory outside the project,
independently of any particular version or platform.

To export a LAD/FBD source file in XML format:
1. In the project navigator, select the required LAD/FBD source file.

2. In the context menu, select Experts > Save project and export object or the Project >
Save and export menu.

3. Select the directory for the XML export and confirm with OK.

Note

LAD/FBD units with know-how protection can also be exported in XML format. The know-
how protection is retained during the import.

43.2 Importing LAD/FBD source files as XML data
To import a LAD/FBD source file in XML format:
1. In the project navigator, select the PROGRAMS entry or a LAD/FBD source file.
2. In the context menu, select Import object or Expert > Import object.

3. Select the XML data to be imported and click OK to confirm.
The LAD/FBD source file is inserted.

SIMOTION LAD/FBD
44 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.3 Exporting and importing LAD/FBD source files

43.3 Exporting a POU in XML format

Note

Structures (e.g. several POUs in one unit, advance binary switching) can be used with
SIMOTION Kernel Version V4.1 and higher. These structures may not be supported by
previous versions.

You can use an XML export to save individual program organization units in a directory
outside the project, independently of any particular version or platform.

To export a POU in XML format, proceed as follows:

1.
2.
3.

In the project navigator in the LAD/FBD unit, select the POU you want to export.
In the context menu, select Export as XML.

Select the directory for the XML export and confirm with OK.

434 Importing a POU from XML format

To import a POU in XML format, proceed as follows:

1.
2.
3.

In the project navigator, select the PROGRAMS entry or a LAD/FBD unit.
In the context menu, select Import object.

Select the XML data to be imported and click OK to confirm.
The POU is inserted.

435 Exporting a LAD/FBD source file in EXP format
To export an LAD/FBD unit in EXP format, proceed as follows:

1.

SIMOTION LAD/FBD

In the project navigator, select the required LAD/FBD unit.

2. Select the context menu Experts > Export as .EXP.
3.
4. Click Save.

Enter the path and the name for the EXP export.

An EXP file is saved under the specified name in the specified path.

Programming and Operating Manual, 05/2009 45

LAD/FBD programming
4.3 Exporting and importing LAD/FBD source files

4.3.6 Importing EXP data into a LAD/FBD source file
To import EXP data into a LAD/FBD source:
1. In the project navigator, select the required LAD/FBD program.
2. Select the context menu Expert > Import from .EXP.
3. Select the EXP file to be imported.

Note

Note the following when importing EXP data:
e |tis possible to import from XOR to FBD
e Preconnection with simple data types (signal connection) is not generally supported.

e The original structure is retained when you import data from EXP files. If the structure
cannot be compiled due to type conflicts, the relevant parameters are highlighted in
red.

A type conflict can be resolved by manual revision.

SIMOTION LAD/FBD
46 Programming and Operating Manual, 05/2009

LAD/FBD programming
4.4 LAD/FBD source files - defining properties

44 LAD/FBD source files - defining properties

441 Defining the properties of a LAD/FBD source file
The properties of a LAD/FBD source file are specified when it is inserted.
However, the properties can be viewed and modified by doing the following:
1. In the project navigator, select the required LAD/FBD source file.

2. From the context menu, select Properties.

LAD,FBD unit properties EHE

{F Marme: LFunit_1 |

General | Cnmpilerl Additional settingsl Compilation | Object addressl

Author: I

Wersion:
Eddnt/ | I

ereated |V4.1.3.D-4?.59.DD.DD

Time stamp

Lazt modified an:

Praject memary location: d:program fileshziemenshstep s 7proftest]

Comment;

Cancel Help

Figure 4-3 Properties of a LAD/FBD source file

442 Renaming a LAD/FBD source file

To rename a LAD/FBD source file:
1. Open the Properties window of the LAD/FBD source file.

2. Click .

3. Confirm the message with OK and enter the new name in the New name input field of the
Change Name dialog box.

4. Acknowledge the entries with Apply.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 47

LAD/FBD programming

4.4 LAD/FBD source files - defining properties

443 Making settings for the compiler
You can define the compiler settings as follows:

® globally for the SIMOTION project, applicable to all programming languages, see Global
compiler settings (Page 48)

® Jocally for an individual LAD/FBD source within the SIMOTION project, see Local
compiler settings (Page 49)

4431 Global compiler settings
The global setting are valid for all programming languages within the SIMOTION project.

Procedure

. Select the menu Tools > Settings.

. Select the Compiler tab.

Define the settings according to the following table.
. Confirm with OK.

Dowrload | CPUdownlbad | L&D/FEDedior | MCCedior | Sawe |
Wiorkbench I Access point Compiler | ST editor / zoripting I ST external editor

A w N =~

— Project optiong

7
-

<o
=
ra
£
U
A
Am

wharning classes:

v Selective linking

¥ Usze preprocessar

[Permit program status

™ Permit language extensions

[Only create program instance data once

Standard setting

[Display all messages with 'Save and compile all

Cancel Apply Help

Figure 4-4 Global compiler settings

Parameters

For more information about the parameter description of global compiler settings, see the
SIMOTION ST Programming and Operating Manual.

SIMOTION LAD/FBD
48 Programming and Operating Manual, 05/2009

LAD/FBD programming

4432 Local compiler settings

Procedure

SIMOTION LAD/FBD

4.4 LAD/FBD source files - defining properties

Local settings are configured individually for each LAD/FBD source file; local settings

overwrite global settings.

To select the compiler options, proceed as follows:

1. Open the property view for the LAD/FBD unit (see Defining the properties of an LAD/FBD

unit (Page 47)).
2. Select the Compiler tab.
3. Enter settings.
4. Confirm with OK.

General Eompilerl."-‘-.dditional zeftings | Compilation | Object addiess

" Ignore global zettings
[Suppress warings

Warning clazses:

[Selective linking

v Permit program status
I Peimit language extensions
[Only put in program instance data once

¥ Enable OPCHML [load symbols ta BT)

o
=
Ao
e
q -~
Qe
Ao
®m

Figure 4-5 Local compiler settings for LAD/FBD source files in the Properties window

The current compiler options (the combination of global and local compiler settings which
currently applies) for the program source are displayed on the Additional settings tab. The
compiler options used the last time the program source was compiled can be seen on the

Compilation tab.

The SIMOTION ST Programming and Operating Manual contains additional information on

what the compiler options mean.

Programming and Operating Manual, 05/2009

49

LAD/FBD programming

4.4 LAD/FBD source files - defining properties

Table 4- 1 Local compiler settings

Parameters

Description

Ignore global settings

See the description under Effectiveness of global or local compiler settings.

Suppress warnings

In addition to error messages, the compiler can output warnings. You can set the scope of
the warning messages to be output:

Active: The compiler outputs the warning messages according to the selection in the global
settings of the warning classes. The checkboxes of the warning classes can no longer be
selected.

Inactive: The compiler outputs the warning messages according to the warning classes
selected.

Warning classes'

Only for Suppress warnings = inactive.
Active: The compiler outputs warning messages of the selected class.
Inactive: The compiler suppresses warning messages of the respective class.

Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).

For the meanings of warning classes, see the SIMOTION ST Programming and Operating
Manual.

Note: If "Suppress warnings" is active, the checkboxes can no longer be selected and show
as activated against a gray background.

Selective linking?

Active: Unused code is removed from the executable program.
Inactive: Unused code is retained in the executable program.

Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).

Use preprocessor?

Active: The preprocessor is used (see SIMOTION ST Programming Manual).
Inactive: Preprocessor is not used.

Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).

Enable program status'’

Active: Additional program code is generated to enable monitoring of program variables
(including local variables) (see Program status (monitor program execution) (Page 269)).

Inactive: Program status not possible.

Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).

Permit language extensions'

Active: Language elements are permitted that do not comply with IEC 61131-3.

e Direct bit access to variables of a bit data type (see example for ST programming
language)

e Accessing the input parameter of a function block when outside the function block (see
example for ST programming language).

e Calling a program while in a different program (see example for ST programming
language)

Inactive: Only language elements are permitted that comply with IEC 61131-3.

Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).

50

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.4 LAD/FBD source files - defining properties

Parameters

Description

Only create program
instance data once'

unit. This setting is required for calling a program while inside a different program.
the user memory of the respective task.

inactive).
See Memory areas of the variable types.

Active: The local variables of a program are only stored once in the user memory of the
Inactive: The local variables of a program are stored according to the task assignment in

Grey background: The displayed global setting is adopted (only for Ignore global settings =

Enable OPC-XML

see the SIMOTION Basic Functions Function Manual).
Inactive: Symbol information is not created.

Active: Symbol information for the unit variables of the ST source file is available in the
SIMOTION device (required for the _exportUnitDataSet and _importUnitDataSet functions,

1 Global setting is also possible (Options > Settings > Compiler menu), see Global compiler settings (Page 48). Please

also refer to the description of the effectiveness of global or local compiler settings.

See also

SIMOTION LAD/FBD

Meaning of warning classes

Defining the properties of a LAD/FBD source file (Page 47)

Program status (monitoring program execution) (Page 269)

Global compiler settings (Page 48)

Direct bit access to variables of a bit data type

Effectiveness of global or local compiler settings

Accessing the input parameter of a function block when outside the function block
Calling a program while in a different program

Memory ranges of the variable types

Programming and Operating Manual, 05/2009

51

LAD/FBD programming

4.5 Managing LAD/FBD programs

4.5 Managing LAD/FBD programs

LAD/FBD programs are the individual program organization units (program, function,
function block) in a LAD/FBD source file. They are stored under the LAD/FBD source file in
the project navigator.

451 Inserting a new LAD/FBD program

To insert a new LAD/FBD program, proceed as follows: :

1.

9.

Open the appropriate SIMOTION device in the project navigator.

2. Open the PROGRAMS folder and a LAD/FBD source file.
3.
4. Enter the name of the program in the Insert LAD/FBD program dialog box.

Double-click the entry Insert LAD/FBD program.

The names must be unique within a source file. Protected or reserved identifiers
(Page 329) are not allowed. LAD/FBD programs already available in the same source are
displayed.

Select Program, Function, or Function block as the Creation type. See also Changing the
LAD/FBD program creation type (Page 58).

Enter the name of the LAD/FBD program.

The name of an LAD/FBD program can contain a maximum of 25 characters. The name
of the program organization unit (POU) implemented in the LAD/FBD program object can,
therefore, also be entered in accordance with this same restriction. Only one program
organization unit per program object is permissible in the LAD/FBD program.

For the Function creation type only:
Select Return value data type as the Return type
(<--> for no return value).

Activate Exportable if you want the LAD/FBD program to be accessible from other
program sources (LAD/FBD, MCC or ST sources) or from the execution system.

Select the Open editor automatically checkbox.

10.Confirm with OK.

52

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.5 Managing LAD/FBD programs

Insert LAD/FBD program EHE
*:l Mame: | ISTE=IO]
General |
Creation type: I Pragrar ﬂ Authar: I
Wersion: I
Expartable v

Enisting PO names

Cormment:

v Open editor automatically

Cancel Help

Figure 4-6 Insert LAD/FBD program dialog box

E1-_] EXTERMAL ENCODERS
-] PATH OBJECTS
- CaMS

-] TECHNOLOGY

=0 PROGRAMS

----- P_'| Insert ST program
- Tnsert MCC unit
™ Insert DCC charts

%] Insert LADYFED unit

O)
®

=B SIMAMICS Inteqrated
-7 LIBRARIES
F-{27] MONITOR

0] Name of the LAD/FBD unit
® Name of the LAD/FBD program

Figure 4-7 Displaying the source file and program name in the project navigator

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009 53

LAD/FBD programming
4.5 Managing LAD/FBD programs

45.2 Opening an existing LAD/FBD program

All LAD/FBD programs belonging to a LAD/FBD source file are located in the project
navigator underneath the LAD/FBD source file.

To open an available program, proceed as follows:

1. Open the subtree of the appropriate SIMOTION device in the project navigator.
2. Open the PROGRAMS folder and the desired LAD/FBD source file.

3. Select the required LAD/FBD program.

4. Select Open from the context menu.

The LAD/FBD program opens in the working area. Several LAD/FBD programs can be
opened at the same time.

45.3 Defining the order of the LAD/FBD programs in the LAD/FBD source file

LAD/FBD programs in the LAD/FBD unit are compiled and executed in the order in which
they are displayed in the project navigator. It is thus sometimes necessary to change the
order of the LAD/FBD programs. A POU (e.g., a function) must be defined before it is used.

To change the order:
1. Select a LAD/FBD program in the project navigator.

2. In the context menu, select Up / Down

454 Copying the LAD/FBD program
To copy a LAD/FBD program: .
1. In your LAD/FBD source file, select the POU you want to copy.
2. In the context menu, select Copy.
3. Select the LAD/FBD source file which is to be inserted in the POU.
4

. In the context menu, select Paste.
The LAD/FBD program is inserted.

SIMOTION LAD/FBD
54 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.5 Managing LAD/FBD programs

455 Saving and compiling a LAD/FBD program

SIMOTION LAD/FBD

An asterisk is appended in the title bar of the project to the name of a program which has
been modified but not yet saved.

Note

The entire source file and its POUs are saved and compiled

To save the LAD/FBD program and start the compilation:
. Click the Save and compile icon in the LAD/FBD editor toolbar.

-0r -
Select the LAD/FBD program > Save and compile menu item.
- or -

Select the LAD/FBD program in the project navigator and select Save and compile in the
context menu.

-0r-

If you want to save and compile all available LAD/FBD programs, select the Project >
Save and compile all menu item.

If any errors occur during compilation, the error locations are displayed in the Detail view.

. To fix an error, double-click an error message in the detail view in the Compile / check

output tab.
The faulty element is selected and positioned in the window.

Note
Backward compatibility

The present SCOUT program version supports structures (e.g. several POUs in one
source file, advance binary switching) which may not be supported by previous versions.

Programming and Operating Manual, 05/2009 55

LAD/FBD programming
4.5 Managing LAD/FBD programs

45.6 Closing a LAD/FBD program
To close a LAD/FBD program opened in the working window, proceed as follows:
1. Click the x button (cross) in the title bar of the dialog box of the LAD/FBD program.
or
Select the LAD/FBD program > Close menu item.
or
Select the Windows > Close all menu item.

If the changes have not yet been saved, you can save or cancel them, or abort the close
operation.

45.7 Deleting the LAD/FBD program
To delete a LAD/FBD program:
1. In the project navigator, select the required LAD/FBD program.

2. In the context menu, select Delete.

Note
It is not possible to insert a LAD/FBD program that has been deleted.

SIMOTION LAD/FBD
56 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.6 LAD/FBD programs - defining properties

4.6 LAD/FBD programs - defining properties

The properties of a LAD/FBD program are specified when it is inserted.

However, these properties can be viewed and modified by doing the following:

1.

Open the PROGRAMS folder and the desired LAD/FBD source file under the SIMOTION
device.

2. Select the required LAD/FBD program.

3. From the context menu, select Properties.

The Object properties dialog box opens.

4.6.1 Renaming a LAD/FBD program
To rename a LAD/FBD program:

1.
2.
3.

SIMOTION LAD/FBD

Open the property view for the LAD/FBD program.
Click 1.

Confirm the message with OK and enter the new name in the New name input field of the
Change Name dialog box.

Acknowledge the entries with Apply.

Programming and Operating Manual, 05/2009 57

LAD/FBD programming

4.6 LAD/FBD programs - defining properties

4.6.2

58

Changing the LAD/FBD program creation type
To change the LAD/FBD program creation type:

1. Select the new creation type:

Program

Programs can be compared with function blocks. Local variables can be stored here
either statically or temporarily. In contrast to FBs or FCs, programs can be assigned to a
task or an execution level in SIMOTION SCOUT.

Programs cannot be called up with parameters. Therefore, unlike FBs and FCs, programs
do not have any formal parameters.

Function block (FB)

A function block (FB) is a program with static data, i.e. all local variables retain their
values after the function block has been executed. Only variables explicitly declared as
temporary variables lose their value between two calls.

Before an FB is used, an instance must be defined: Define a variable (VAR or
VAR_GLOBAL) and enter the name of the FB as data type. The FB static data is saved in
this instance. You can define multiple instances of an FB, with each instance being
independent of the others.

The static data of an FB instance are retained until the next time the instance is called;
the static data are reinitialized when the variable type of the FB instance is reinitialized.
Data transfer to the FB takes place via input or input/output parameters, and the data
return from the FB takes place via input/output parameters or output parameters.

Function (FC)

A function (FC) is a function block without static data, that is, all local variables lose their
value when the function has been executed. They are reinitialized the next time the
function is started.

Data transfer to the function takes place by means of input parameters; output of a
function value (return value) is possible.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming
4.7 Printing source files and programs

4.7 Printing source files and programs

You can print general information about the LAD/FBD source files and programs. Various
print options can be set for the printout.

To print LAD/FBD units and programs, proceed as follows:
1. Select a LAD/FBD source file or program in the project navigator.
2. From the context menu, select Print or Print preview.

The Print dialog box will appear, enabling you to set various print options.

Option Comment Selection
Print declarstion table Default column width
Print netwoark range Al networks
Print comments
[®Fit graphics to page width
CIFit graphics to page height
CIFit graphics to one page
OGraphics st 100%
O Accept zoom tactor from &

-
-

OREE

Position netwarks Continually
Empty pages Print all

am

la |l

| Print I Print presview Cancel Help

Figure 4-8 Dialog box for setting print options

3. Click the Print button.

The source file or LAD/FBD program is printed with the selected options. General
information, the declaration table and diagram all appear in the printout.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 59

LAD/FBD programming

4.7 Printing source files and programs

4.71 Printing a declaration table
To print a declaration table, proceed as follows:
1. Activate the Print declaration table check box.
2. Select Column widths by screen.
The contents of the declaration table are printed with the set column widths.
-or-

Select Default column widths.

4.7.2 Printing a network area
To print a network area, proceed as follows:
1. Activate the Print network area check box.
2. Select All networks.
-or-
Select Selected networks only.

Prints only the networks selected in the editor (blue selection mark on the left side).

4.7.3 Printing comments
You can only select this option if you have already selected the Print network area option.
To print comments, proceed as follows:
1. Activate the Print comments check box.

2. To obtain a shorter, more concise print image, unselect the Print comments option.

SIMOTION LAD/FBD
60 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.7 Printing source files and programs

474 Defining print variants

SIMOTION LAD/FBD

To define the print variant, proceed as follows:
1. Activate the check box.

2. Select Scale graphics to page width.

The print image is scaled so that the widest LAD/FBD network fits on one page width.
The print image is one page in width and one or more pages in length, depending on the
size of the program.

- or -
Select Scale graphics to page height.

The print image is scaled so that the entire graphic fits on one page height. The print
image is one page in length and takes up one or more page widths, depending on the
width of the networks.

-or-
Select Scale graphics to one page.

The print image is reduced so that all networks fit on one page.
-or-

Select Graphic at 100%.

The image is printed in its original size. The print image can consist of more than one
page vertically or horizontally.

- or -
Select Save screen zoom factor.

The image is printed according to the zoom factor set in the editor. The print image can
consist of more than one page vertically or horizontally.

Note

If the print image consists of more than one page, an index page is printed to give an
overview.

Programming and Operating Manual, 05/2009 61

LAD/FBD programming

4.7 Printing source files and programs

4.7.5 Placing networks

With Placing networks you define how the networks are distributed over the pages for
printing.

To place networks, proceed as follows:
1. Activate the Place networks check box.
2. Select Continuous.

The networks are printed one after another. Page breaks are not taken into account in
this case.

- Or -
Select All on new page.

All networks are printed beginning on a new page. If a network is longer than one page, it
is printed on the next page.

- or -
Select Optimized.

This minimizes the horizontal break between networks to save more space. E.g.: If a
network does not fit on the current page and is not longer than one page, this network will
be printed on the next page. If the network is longer, then a page break must be inserted.

4.7.6 Blank pages

You can select how blank pages are printed out. The layout is displayed on the index page.
Pages marked with an X are omitted.

To set the printing of blank pages, proceed as follows:
1. Activate the Blank pages checkbox.
2. Select Print all.
All blank pages are printed.
-or-
Select Omit at end.
Blank pages at the end are not printed. Blank pages in the middle are retained.
-or-
Select Omit all.

Blank pages in the middle and at the end are omitted.

SIMOTION LAD/FBD
62 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.8 LAD/FBD networks and elements

4.8 LAD/FBD networks and elements
The LAD/FBD program is organized in networks which are displayed in the editor area. A
network contains a logic circuit representing the ladder diagram line.
The rules for the structure of a network according to IEC standard 61131-3 apply to the
display of a network. Several LAD/FBD elements and boxes can be inserted, copied or
deleted in a network.
P_Elink - Title
Commen t @ /
00l - Title
Comment (—Qa>w /
- @) k3 i
2inDINT—INL OUT —eirDINT &1 nOINT—| B
il
muntd?:ﬁ:_
00z - Title
Comment @) /
OEINT_TO_
an MOWE RO [BYTE
f it N END EN EWD e LU | S
O—IN OUT|—=inDINT outlUSint—IML OUT—outlSint &utusintéj IN ouT T;‘io_\rar
1—IM2 \
®
@ Name of program and comment field ® Network 2
® Call box ® Selected LAD element
® LAD element @ Name of network and comment field
@ Network 1 Selected network
Figure 4-9 Display of the networks in the LAD/FBD editor
See also

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Numbering the networks (Page 65)

63

LAD/FBD programming

4.8 LAD/FBD networks and elements

4.8.1 Inserting networks
To insert a network:
1. Select an existing network or click in the working window of the open LAD/FBD program.
2. From the context menu, select Insert network.
-or-
Select the LAD/FBD program > Insert network.
-or-
Click the Insert network icon.

The new network is inserted directly after the network which is currently selected. If no
network is selected, the new network is inserted at the front.

See also
LAD/FBD networks and elements (Page 63)

48.2 Selecting networks

The relevant networks have to be selected before they can be copied.
To select networks:
1. Select the desired network.

The network is selected (see figure).

-or-

If you want to select several adjacent networks, click the first required network and then,
keeping the Shift key depressed, click the last one required.

-0r -

If you want to select several networks which are not adjacent to one another, hold the Ctrl
key down and click each network you need.

Selected networks are indicated by a light blue edge on their left-hand side. You can choose
the selection color in the LAD/FBD editor tab of the Settings dialog box.

SIMOTION LAD/FBD
64 Programming and Operating Manual, 05/2009

LAD/FBD programming
4.8 LAD/FBD networks and elements

001l - Title
Cormment
ADD on
‘— EM ENO cmp {3 |
1! X]
=
ginbint— IN1L OQUT|—einbint ainod nt—
J_1—In2
gl_—
countdint

Figure 4-10 Selected network

See also
Settings in the LAD/FBD editor (Page 29)

4.8.3 Numbering the networks

When a network is inserted, it is automatically given the next consecutive number. This
number is unique and is used to identify the network.

Note

You cannot change the numbering. When a network is deleted, the numbering is
automatically adjusted.

See also
LAD/FBD networks and elements (Page 63)

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 65

LAD/FBD programming

4.8 LAD/FBD networks and elements

4.8.4 Enter title/comment

Titles and comments

By default, the LAD/FBD program and/or the network contain a title and a comment field.
The title and comment texts are language-dependent.

Language-dependent texts

Assigning a title

You can use the Project > Language-dependent texts menu item to import and export ASCII
files containing translations of LAD/FBD network comments and symbol browser comments
(/O variables, global device variables).

The exported files (Export button) can be re-imported into the project using the import
function (Import button) once they have been translated.

After a language change, the user-defined comments in the project are available in the
respective compiled languages.

The title/name is used for the documentation of the LAD/FBD program or network. It is
initialized with the name "Title".

To enter a title, proceed as follows:
1. Click in the title line.
2. Enter a different title/name in the window which appears.

There is no maximum text length. The length of text visible on the screen depends on the
font, font size and screen resolution.

Entering/modifying comments

66

You can enter a comment in every program or network.

To enter a comment, proceed as follows:

1. Click in the comment line.

2. Enter the text of the comment in the window which appears.

3. To change an existing comment, double-click the existing comment.
4

. Overwrite the now selected text.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.8 LAD/FBD networks and elements

Showing/hiding a comment line

In every program/network, you can hide a comment that has been entered:

To hide and show comments, proceed as follows:

1.
2.

Click in the working window of the open LAD/FBD program.

From the context menu, select Display > Comments on/off.

-or-

Select the LAD/FBD program > Display > Comments on/off menu item.

This setting is also saved when storing.

48.5 Showing/hiding a jump label

See also

SIMOTION LAD/FBD

You can insert a jump label in every network.

To insert or hide jump labels, proceed as follows:

1.
2.
3.

Select the network in which the jump label is to be inserted.
From the network context menu, select Jump label ON/OFF.

Enter the text of the jump label in the window that appears.
Only alphanumeric characters and underscores are allowed during input. The text length
of a label must not exceed 480 characters.

Note
The jump label is deleted if it contains an error and cannot be corrected.

If you want to hide a jump label, select the required jump label and select Jump label
ON/OFF in the context menu.

Overview of jump operations (Page 223)

Programming and Operating Manual, 05/2009 67

LAD/FBD programming

4.8 LAD/FBD networks and elements

4.8.6

48.7

48.8

68

Copying/cutting/pasting networks

If a network is copied or cut, and then inserted again, all LAD/FBD elements in the network
are taken with it.

To copy a network, proceed as follows:
1. Select the required network.
2. In the context menu, select Copyor Cut.
-or-
Select the Edit > Copy or Edit > Cut menu item.

The copied network can be inserted again at any place or even in other LAD/FBD
programs.

A new/copied or cut network is always inserted after the selected network. If no network
is selected, the new network is placed as the first network.

Undo/redo actions

Note
The following actions cannot be undone:
- Save

- Save and compile

To undo or redo actions, proceed as follows:

1. Select the Edit > Undo menu command or the Undo symbol.
The actions are undone in reverse order.

2. If you want to redo one or more undone actions, select the Edit > Redo menu item or the
Redo icon.

Deleting networks

To delete a network:
1. Click in a network in the open LAD/FBD program.

2. From the context menu, select Delete network.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming
4.9 Displaying LAD/FBD elements

4.9 Displaying LAD/FBD elements

4.9.1 LAD diagram

LAD diagram

The LAD diagram complies with Standard IEC 61131-3 and is organized around the binary
ladder diagram line. The ladder diagram line begins with a vertical line (conductor bar) and
ends with a coil, call-up (box) or with a jump to another network. In between, there are
special LAD elements (NO contacts, NC contacts, connectors), general logical elements
(SR, RS flipflop), system components call-ups (e.g arithmetic operations), and user functions
or function blocks.

Rules for entering LAD statements
e Start of a LAD network

The left conductor bar is the network's starting point. Crossed lines are not permitted in a
LAD diagram. The following elements are not permitted at the beginning of a network:

(P), (N), (#).
® | AD network termination
Every LAD network must terminate with a coil or a box. Multiple outputs are possible.
The following LAD elements may not be used to terminate a network:
- (P),
- (N),
- POS,
- NEG,
— Comparator.
® Placement of empty boxes

Empty boxes can be placed anywhere in a network except on the right-hand edge or in a
parallel branch. Preconnection at binary inputs is supported.

® Placement of coils

Coils are automatically placed on the right-hand edge of the network, where they are
used to terminate a branch.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 69

LAD/FBD programming

4.9 Displaying LAD/FBD elements

49.2

Parallel branches

Parallel branches are

— opened downward and closed upward.

— opened behind the selected LAD element.

— closed behind the selected LAD element.

Another branch can be inserted between two parallel branches.

To delete a parallel branch, you must delete all LAD elements of this branch.

When the last LAD element is removed from the branch, the rest of the branch is also
removed.

The following elements are not permitted in the parallel branch:
- (P,

- (N),

- (#),

Empty box.

The following elements are permitted in the parallel branch:
— Contacts,

— Comparators,

— Edge detection (POS, NEG).

Parallel branches which branch directly off the power rail are an exception to these
placement rules: All elements can be placed in these branches.

Constants and enums
Binary operations can also be assigned constants (e.g. TRUE or FALSE).
FB/FC parameters can be connected with constants that reflect the parameter data type.

If a parameter is connected with an enum value that is not unique project-wide, preface
the enum value with the enum type separated by #.

Meaning of EN/ENO

Enable input (EN) and enable output (ENO) of the LAD box

The LAD box enable input (EN) and enable output (ENO) parameters function according to
the following principles: . .

70

If EN is not enabled (i.e., the signal is set to "0"), then the box will not execute its function,
and ENO is not enabled (i.e., the signal is also "0").

If EN is enabled (i.e., the signal is set to "1"), then the appropriate box executes its
function, and then ENO is also enabled (i.e., the signal is also "1").

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.9 Displaying LAD/FBD elements

493 FBD diagram

FBD diagram

An FBD diagram complies with IEC standard 61131-3.

The main binary signal line begins with a logic box (top left) and ends with an assignment,
call (box), or with a jump to another network. In between, there are logic elements (AND, OR
box), general logic elements (SR, RS flip-flop), system component call-ups (e.g. arithmetic
operations), and user function or function block call-ups.

Rules for entering FBD statements

SIMOTION LAD/FBD

Placement of boxes

Empty boxes (flipflops, counters, timers, arithmetic operations, device-specific
commands, TO-specific commands, etc.) can be attached to boxes with binary
connections (&, =1, XOR).

Preconnections on binary inputs (e.g. S input on flipflop) are allowed.

Separate connections with separate outputs cannot be programmed in a network.
Junctions are not supported.

=rl
varl— &
SR
war 2 —| | {1
varl— ==L wars
ward— | ol

Figure 4-11 FBD with binary preconnection

&, >=1, XOR boxes

Binary inputs can be inserted, deleted, or negated in these boxes.

Enable input/enable output

Connection of the enable input EN and/or the enable output ENO of boxes is possible.
Constants and enums

Binary operations can also be assigned constants (e.g. TRUE or FALSE).

FB/FC parameters can be connected with constants that reflect the parameter data type.

If a parameter is connected with an enum value that is not unique project-wide, preface
the enum value with the enum type separated by #.

Programming and Operating Manual, 05/2009 71

LAD/FBD programming
4.9 Displaying LAD/FBD elements

494 Converting between LAD and FBD representation

Converting from LAD to FBD representation
To switch from LAD to FBD representation, proceed as follows:
1. Open an existing LAD project.
2. Select the LAD/FBD program > Switch to FBD menu item.
-or-
Click the ﬂl button for "Switch to FBD" (Ctrl+3 shortcut) in the LAD editor toolbar.

The project is now displayed in the FBD programming language.

1di] on
I EN EMD T —{
sm

ginpint—{Inl o f—sinpint einpint

111Nz

gl_
countdint

il

o= EN

efinpint— 1M1
ouT f—einpint

f1—1n2

cmp

einpint— *=

al_—
countdint

Figure 4-12 Switching from LAD to FBD

Note
A conversion sequence of LAD - FBD - LAD always produces the original network.

Anything generated in LAD can always be displayed in FBD.

SIMOTION LAD/FBD
72 Programming and Operating Manual, 05/2009

LAD/FBD programming
4.9 Displaying LAD/FBD elements

Converting from FBD to LAD representation
To switch from FBD to LAD representation, proceed as follows:

1. Open an existing FBD project.

2. Select the LAD/FBD program > Switch to LAD menu command.
-or-
Click the EI button for "Switch to LAD" (Ctrl+1 shortcut) in the FBD editor toolbar.
The project is now displayed in the LAD programming language.

jtpl
TR

Lr

ET v w1l ==l
= —|PT
Q

vl w2

| 11
itpl
TF
IN Q

« o —PT ETI...

f

Figure 4-13 Switching from FBD to LAD, example with OR box

Note

A conversion sequence of FBD- LAD- FBD only produces the original LAD network if the
FBD structure can be converted to LAD.

Something generated in FBD cannot always be displayed in LAD.

Example of a non-convertible FBD structure

varl—{ XOR

var2— RET

Figure 4-14 FBD structure with binary XOR box

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 73

LAD/FBD programming
4.10 Editing LAD/FBD elements

4.10 Editing LAD/FBD elements

4.10.1 Inserting LAD/FBD elements
LAD/FBD elements are usually inserted to the right of the selected position in the network.
FBD elements are usually inserted at a boolean input of a block or at an assignment (left).
Special case:

If the right-hand edge of a network or a coil (LAD) or an assignment (FBD) is selected, the
next element is added in the network on the left-hand side of it.

To insert LAD/FBD elements:
1. Select the position in a network behind which you want to insert a LAD/FBD element.
2. Insert the LAD/FBD element:
— Viathe icons on the toolbar
— Using the menu item, e.g., LAD/FBD program > Insert element > Empty box
— With a drag&adrop operation from the Command library tab
— By double-clicking the element in the Command library tab
— By selecting the element in the Command library tab and confirming with the Enter key

The selected LAD/FBD element is inserted and the placeholders and ... are inserted for
variables and parameters.

Note
A red ??? symbol indicates mandatory parameters that must be connected.
A black ... symbol indicates optional parameters that can be connected.

Move the cursor over the parameter name to display the expected data type.

SIMOTION LAD/FBD
74 Programming and Operating Manual, 05/2009

LAD/FBD programming

Syntax check in LAD

4.10 Editing LAD/FBD elements

An automatic syntax check during input prevents the incorrect placement of elements.

NOT in parallel branch
FB/FC call in parallel branch

Connector in parallel branch

Check 0 -> 1 edge and 1 -> 0 edge in parallel branch

XOR in parallel branch

__| |..
A

o NOTI-
=0
------ (RET}-|
(5
------ R)-1
------ [P

001 - syntaxcheck

Comment
222 222 z2z
| | | | {0 |
B [1 x]

------ [IMPHN-
o]

Figure 4-15 Syntax check

4.10.2
[]
[]
[
[]
[
4.10.3

Selecting LAD/FBD elements

LAD/FBD networks must be selected before they can be deleted, for example.

To select LAD elements, proceed as follows:
1.

SIMOTION LAD/FBD

Click the required LAD/FBD element.

The LAD/FBD element is selected (see following Fig.).

-0r -

If you want to select several LAD/FBD elements, click the required LAD/FBD elements

keeping the Shift key depressed.

Selected LAD/FBD elements are shown with a thick blue outline. You can choose the
selection color in the LAD/FBD editor tab of the Settings dialog box.

__| |..
A

o NOTI-
=0
------ (RET}-|
(5
------ R)-1
------ [P

001 - syntaxcheck

------ WP
o [H]-
Figure 4-16 Selected LAD/FBD elements

Programming and Operating Manual, 05/2009

75

LAD/FBD programming
4.10 Editing LAD/FBD elements

4104 Copy/cut/delete operations in LAD/FBD elements
To copy/cut/delete, proceed as follows:
1. Select a LAD/FBD element.
2. In the context menu or in the Edit menu, select e.g. Copy.
The copied/cut LAD/FBD element can be inserted into other LAD/FBD programs.

If you delete an FB/FC box with binary preconnections, this results in several open
branches (in LAD) or sub-networks (in FBD) which can be further connected.

4.10.5 LAD/FBD elements - defining parameters (labeling)
To label the elements, proceed as follows:
1. Click the parameter.
2. Label the parameter:
— Select the corresponding parameter from the pull-down menu (for box-type only).
-or-
— Enter the appropriate variable.
-or-

— Drag the corresponding variable from the declaration table using a drag-and-drop
operation.

3. Confirm the entry with the Return key.

See also
Setting call parameters (Page 79)

Defining global user variables and local variables in the variable declaration dialog box
(Page 108)

SIMOTION LAD/FBD
76 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.10 Editing LAD/FBD elements

4.10.6 Labeling LAD/FBD elements with the symbol input help dialog

To label the element with the Symbol input help, proceed as follows:

1.
2.
3.

Select the parameter you want to label.

Right-click to open the context menu.

Click the Symbol input help menu.

-or-

Select the symbol input help with the key shortcut CTRL+H.

The Symbol input help dialog box opens. The tree structure shows all variables which
exist in the project and which can be used.

. Select the desired variable and click OK to confirm.

The label is entered in the selected parameter.

410.7 Setting the LAD/FBD element display

In order to ensure a manageable view of relatively large call boxes, you can set the display
mode of LAD/FBD elements.

To set the LAD/FBD element display, proceed as follows:

1.
2.

SIMOTION LAD/FBD

Click in the editor area of the LAD/FBD program.
Select the required display mode:

— In the context menu, select View > No box parameters or the LAD/FBD program >
View > No box parameters menu item.

-0r -

— In the context menu, select View > Only assigned box parameters or the LAD/FBD
program > View > Only assigned box parameters menu item.

-0r -

— In the context menu, select View > Mandatory and assigned box parameters or the
LAD/FBD program > View > Mandatory and assigned box parameters menu item.

-0r -

— In the context menu, select View > All box parameters or the LAD/FBD program >
View > All box parameters menu item.

This box parameter setting is also saved when storing.

Note

If a call box has non-represented parameters, this is indicated by ... at the bottom of
the box.

Programming and Operating Manual, 05/2009 77

LAD/FBD programming

4.10 Editing LAD/FBD elements

4.10.8 Setting the call parameter for an individual parameter

To set an individual call parameter, proceed as follows:

1. Double-click the parameter input/output you want to set.

The Enter call parameter for individual parameter dialog box appears.

72z _pos 72z
| {1 |
| 1 EN EHO S
225 axis ouT —222
Enter call parameter for single parameter { _pos) E3
Hame OH/OFF Data type Value Default value
axis WAR_IMPUT POSANIS =l

WDUE

Figure 4-17 Dialog box for setting an individual call parameter

2. Assign a variable or value to the parameter from the Values list.

3. Confirm your selection twice with the Enter key to close the dialog box again.

78

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.10 Editing LAD/FBD elements

4.10.9 Setting call parameters
To set the call parameters, proceed as follows:
1. Label the type parameters of the box.
2. Double-click the box.
-or-
In the context menu, select Call parameters

The Enter call parameters dialog box appears.
Only variables which have already been declared and symbols/variables offered by the
system are displayed.

Enter Call Parameter Ei

Function I_IDDS
Returr walue [OUT) I??? j
Type IDINT
Hame OH/OFF Data type Value Default ualutﬂ
1 axis WAR_INPUT POSAKIS Azis_1
2 direction WAR_INPUT EMURDIRECTION USER:_DEF ALUL
& positioningmode [AR_INPUT EMURPCOSITIONINGMODE ABSCLUTE
4 position WAR_INPUT LREAL T
5 welocitytype WAR_INPUT EMURYELOCITY USER:_DEF ALUL
B welocity WAR_INPUT LREAL 1000
7 positiveaccetype [V AR_INPUT EMURMACCELERATION USER:_DEF ALUL
i) positiveaccel AR _IMPUT LREAL 100.0
9 negstiveacceltyp [WAR_INPUT EMURMACCELERATION USER:_DEF ALUL
10 |negativeaccel AR _IMPUT LREAL 100.0
11 |postiveaccelstart WY AR_INPUT EMURJERK USER:_DEF ALUL
12 |postiveaccelstart v AR_INPUT LREAL 100.0
13 |postiveaccelend \WAR_INPUT EMURJERK USER:_DEF ALUL
lﬂl_ mnetivascralendi WAR IKPHIT | RE &l 100 n _}lLI
Cancel | Help |

Figure 4-18 Dialog box for setting call parameters

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 79

LAD/FBD programming

4.10 Editing LAD/FBD elements

3. Enter:

— Return value

Here you assign the function return value to a variable of the calling program.
— Instance

Here, you enter the instance of the function block.
— Value

Here, you can assign current variables or values to the parameters.

4. Confirm with OK.

Note

The Value list includes all symbols which are visible in the current target (variables, enum
values, etc.) whose type matches the data type of the parameter. Implicit data type
conversion is taken into consideration here. You can select a symbol from the list or type
one in yourself.

The value of string constants must be entered in inverted commas
(e.g. 'st_until')

4.10.10 Searching in the project

Searching for elements in the project

To search for elements in a project, proceed as follows:

1.

o M Db

80

Select the Search in Project menu item in the Edit menu.

The Search in Project dialog box opens.

Enter your search term.

Limit your search, if necessary, using a filter or restrict it to specific objects.
Click on the Search button to start your search.

The search result is displayed in the Search results table in the workbench.

If you double-click on a search result, the located element is displayed in the editor.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.10 Editing LAD/FBD elements

4.10.11 Find and replace in a project

Finding and replacing elements in a project
In LAD/FBD, you can replace the following:
® Variable names
® All elements that appear in the Properties dialog box (e.g. an FC return value, etc.)
To search for and replace elements in a project, proceed as follows:
Select the Replace in Project menu item in the Edit menu.
The Replace in Project dialog box opens.
Enter your search term.
Enter the expression that should replace the term you are searching for.

Limit your search, if necessary, using a filter or restrict it to specific objects.

2N O

Click on the Search button to start your search.

The search result is displayed in the Search result table in the workbench.
The elements which can be replaced are identified by a check mark.

7. If you wish to replace all marked elements, click on the Replace button in the search
results.

All elements are replaced with the expression you entered.

8. If you only wish to replace specific elements, unmark the other elements and then click
on the Replace button.

Only the marked elements are replaced.

Note

If you wish to replace an element with an invalid element, LAD/FBD outputs an error
message in the output list, which means the element was located and displayed in the
list, but not replaced.

You cannot place a checkmark in the checkbox.

Constraints

In general, you cannot replace an element with a new element if the new element cannot be
entered (e.g., in the declaration table, you cannot replace VAR_GLOBAL with VAR because
you cannot manually enter VAR there).

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 81

LAD/FBD programming

4.10 Editing LAD/FBD elements

Constraints in the declaration table:
® VAR, VAR_TEMP and VAR_GLOBAL cannot be freely exchanged for one another

Constraints in the POUs:
e The LAD and FBD elements listed in the command library cannot be freely replaced.

e Comparators can only be exchanged among one another (e.g., "less equal" can be
replaced with "more equal" or "equal", but not with a "XOR box", etc.).

® The type of user FBs/FCs can only be replaced with another existing type of user
FBs/FCs.

e Mathematic functions can only be replaced with those that can also be entered manually
(e.g., sin can be replaced with cos, but not with cmp)

e " "and "???" are generally not replaced.

SIMOTION LAD/FBD
82 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.11 Command library

4.11 Command library

4111 LAD/FBD functions in the command library

The command library appears automatically as a tab in the project navigator. The command
library stays open after the programming window is closed.

Bem]—-=-

|<Search temte j
Crmds valid for; Sorting:
[Da3s =] dfiE

- Additional system Functions
Alarms and messages
Bit string

Character strings
Cammunication
Carversion

Dirives

10 modules

Liogic

Mathemnatical Functions
PLCopen

Task syskem
Technology

System Function blocks
LaD elements

e |-

S

(-8 -8

. NE5
- Emply box
[+ FBD elemants

Project Command library |

Figure 4-19 Command library tab of the project navigator

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 83

LAD/FBD programming

4.11 Command library

4.11.2

411.3

84

Inserting elements/functions from the command library

To insert elements/functions in a programming window, proceed as follows:

1. Left-click the desired function in the command library, drag the function onto the editor
window while keeping the left mouse button depressed and then release the left mouse
button.

- or -

Double-click the desired function.

- Or -

Select the desired function and press the Enter key.

LAD/FBD elements are usually inserted to the right of the selected position in the network.
FBD elements are usually inserted at a boolean input of a block or at an assignment (left).

Unusable command library functions

Not all of the ST programming functions are used in the same way in the LAD/FBD
programming language. For this reason, new functions with different parameters have been
added ("Taskld" is used instead of "Task") and these are shown in the table below. The new
commands are also library-capable. :

The functions in the left column can be used in ST and LAD/FBD. (Extension of the ST
function name with "id". Example: _alarmsc becomes _alarmscid).

The ST functions in the right column cannot be used in the LAD/FBD programming
language.

These functions are grouped according to call syntax.

Table 4- 2 List of compatible functions

ST and LAD/FBD functions ST functions
Functions for task control

_getstateoftaskid _getstateoftask
_resettaskid _resettask
_restarttaskid _restarttask
_resumetaskid _resumetask

Functions for runtime measurement

_getmaximaltaskidruntime _getmaximaltaskruntime
_getminimaltaskidruntime _getminimaltaskruntime
_getcurrenttaskidruntime _getcurrenttaskruntime

_getaveragetaskidruntime _getaveragetaskruntime

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.11 Command library

Functions for message configuration

_retriggertaskidcontroltime _retriggertaskcontroltime
_starttaskid _starttask
_suspendtaskid _suspendtask

_alarmsid _alarms

_alarmsqid _alarmsq

_alarmscid _alarmsc

4114 Special features of the command library

Special features

The following ST commands have no corresponding function that can be used with
LAD/FBD:

® BOOL := _checkequaltask([IN]TASK, [IN]TASK)

Two StructTaskID or two StructAlarmID can be compared to one comparator.
e StructAlarmID := _getalarmid([INJALARM)

These alarm commands can be found in the _alarm name space (_alarm.myalarm).
® StructTaskID := _gettaskid([IN]JTASK id:=TaskldThis)

The task commands can be found in the _task name space (_task.backgroundtask).

Examples for parameters of type _alarmid and _starttaskid

_alarmsTd
‘—EN EMNO ————
true—sig

Figure 4-20 Examples for StructAlarmID

QUT |—rT

_STarttask

id
EM EMOp——
id OUT —rt

Figure 4-21 Example for StructTaskID

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 85

LAD/FBD programming

4.12 General information about variables and data types

4.12 General information about variables and data types

4121 Overview of variable types

The following table shows all the variable types available for programming with ST.

e System variables of the SIMOTION device and the technology objects

® Global user variables (I/O variables, device-global variables, unit variables)

® | ocal user variables (variables within a program, a function or a function block)

System variables

Variable type

Meaning

System variables of the
SIMOTION device

System variables of
technology objects

Each SIMOTION device and technology object has specific system variables. These can be
accessed as follows:

e Within the SIMOTION device from all programs
e From HMI devices
You can monitor system variables in the symbol browser.

86

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

Global user variables

4.12 General information about variables and data types

Variable type

Meaning

1/0 variables

You can assign symbolic variable names to the 1/0 addresses of the SIMOTION device or
the peripherals. This allows you to have the following direct accesses to the 1/0:

e Within the SIMOTION device from all programs
e From HMI devices

You create these variables in the symbol browser after you have selected the 1/0 element
in the project navigator.

You can monitor I/O variables in the symbol browser.

Global device variables

User-defined variables which can be accessed by all SIMOTION device programs and HMI
devices.

You create these variables in the symbol browser after you have selected the GLOBAL
DEVICE VARIABLES element in the project navigator.

Global device variables can be defined as retentive. This means that they will remain stored
even when the SIMOTION device power supply is disconnected.

You can monitor global device variables in the symbol browser.

Unit variables

User-defined variables that all programs (programs, function blocks, and functions) can
access within a unit (source file).

You declare these variables in the declaration table of the source file:

¢ In the interface section:
After connection (see Define connections (Page 136)), these variables are also
available in other units (e.g. MCC units, ST source files, and LAD/FBD source files), as
well as on HMI devices (maximum size of the interface section: 64 Kbytes).
¢ In the implementation section:
You can access these variables only within the source file.
You can declare unit variables as retentive. This means that they will remain stored even
when the SIMOTION device power supply is disconnected.

You can monitor unit variables in the symbol browser.

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009 87

LAD/FBD programming

4.12 General information about variables and data types

Local user variables

Variable type

Meaning

User-defined variables that can only be accessed within the program/chart (program,
function, function block) in which they were defined.

Variable of a program
(program variable)

Variable is declared in a program. The variable can only be accessed within this program. A
differentiation is made between static and temporary variables:

e Static variables are initialized according to the memory area in which they are stored.
Specify this memory area by means of a compiler option. By default, the static variables
are initialized depending on the task to which the program is assigned (see SIMOTION
Basic Functions Function Manual).

You can monitor static variables in the symbol browser.

e Temporary variables are initialized every time the program in a task is called.

Temporary variables cannot be monitored in the symbol browser.

Variable of a function
(FC variable)

Variable is declared in a function (FC). The variable can only be accessed within this
function.

FC variables are temporary; they are initialized each time the FC is called. They cannot be
monitored in the symbol browser.

Variable of a function block
(FB variable)

Variable is declared in a function (FB). The variable can only be accessed within this

function block. A differentiation is made between static and temporary variables:

e Static variables retain their value when the FB terminates. They are initialized only when
the instance of the FB is initialized; this depends on the variable type with which the
instance of the FB was declared.

You can monitor static variables in the symbol browser.

e Temporary variables lose their value when the FB terminates. The next time the FB is
called, they are reinitialized.

Temporary variables cannot be monitored in the symbol browser.

88

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.12.2

4.12 General information about variables and data types

Scope of the declarations

Scope of variable and data type declarations according to location of declaration

Location of declaration

What can be declared here

Scope

Symbol browser

Global device variables
1/0 variables

The declared variables are valid in all units (e.g., ST
source files, MCC source files, LAD/FBD source files)
of the SIMOTION device. All programs, function
blocks, and functions in all units of the device can
access the variables.

Interface section of the unit?

Unit variables
Data types

Symbolic accesses to the fixed
process image of the
BackgroundTask

The declared variables, data types, etc., are valid in
the entire unit (e.g., ST source file, MCC source file,
LAD/FBD source file); all programs, function blocks,
and functions within the unit can access them.

In addition, they are also available in other units after
connection (see Define connections (Page 136)).

Implementation section of
the unit!

Unit variables
Data types

Symbolic accesses to the fixed
process image of the
BackgroundTask

The declared variables, data types, etc., are valid in
the entire unit (e.g., ST source file, MCC source file,
LAD/FBD source file); all programs, function blocks,
and functions within the source file can access them.

POU (program/
function block/
function)?

Local variables
Data types

Symbolic accesses to the fixed
process image of the
BackgroundTask

The declared variables, data types, etc., can only be
accessed within the POU in which they were
declared.

1 MCC and LAD/FBD programming languages: in the declaration table of the respective source file.

2 MCC and LAD/FBD programming languages: in the declaration table of the respective chart/program.

4.12.3

Rules for identifiers

Names for variables, data types, charts/programs must comply with the following rules for
identifiers:

1. They are made up of letters (A to Z, a to z), numbers (0 to 9), and underscores (_).

o > 0N

The first character must be a letter or underscore.
This can be followed by as many letters, digits or underscores as needed in any order.
Exception: You must not use more than one underscore in a row

Both upper and lower case letters are allowed. No distinction is made between upper and

lower case notation (thus, for example, Anna and AnNa are regarded as identical).

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

89

LAD/FBD programming

4.12 General information about variables and data types

412.4

41241

Frequently used arrays in declarations

Array length and array element

An array is a chain of variables of the same type that can be addressed with the same name
and different indices. ::

You can define the variable as an array [0...N-1] by entering an array length N.

You have the following options for entering the array length:

® You can enter a constant positive integer value.

® You can enter a value range with ".." separating the min. and max. values.

® You can enter a constant expression of data type DINT (or of a data type that is implicitly
convertible to DINT).

If the array is empty, a single variable is set up rather than an array.

Example definition of an array in the declaration table

Hame Variable type Data type Array length Initial value Comment
1 const_1 |VAR_GLOBAL CONSTANT IMT 1 constant
2 const_2 |VAR_GLOBAL CONSTANT IMT 5 constant
5 array_4 [WAR_GLOBAL INT 1M 105 specification of the array length by value
4 atray_S |VAR_GLOBAL IMT const_1 11(5) specification of the array length by constart expression
g array_6 |[WAR_GLOBAL INT 5.5 105 specification of the array lencgth by range of values
[array_7 |WAR_GLOBAL INT const_2 . 3 *const_2 |[1105) specification of the array lencgth by range of values as constant expression
7

Figure 4-22 Defining the length of a field

Example of use of field elements in a variable assignment

90

]

4—

MOWVE
EM EMNO
In ouT

F—array_1[0]

Figure 4-23 Use of array elements in a variable assignment

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming
4.12 General information about variables and data types

4.12.4.2 |Initial value

You can specify an initialization value in this column. You can specify this initialization value
as a constant or an expression. The following are permissible:

e (Constants
® Arithmetic operations

e Bit slice and data conversion functions

Table 4- 3 Preassignment of array elements

10(1) 10 array elements [0 to 9] are preset to the same value "1".
1,2,3,4,5 5 array elements [0..4] are preset to different values "1", "2", "3", "4" and "5".
5(3), 5 array elements [0..4] are preset to the same value "3".

10(99),3(7),2(1) 10 array elements [5..14] are preset to the same value "99".
3 array elements [15..17] are preset to the same value "7".
2 array elements [18..19] are preset to the same value "1".

Definition of these initialization values in the declaration table:

Hame Variable type | Datatype | Array length Initial value Comment
1 array _1 VAR _GLOBAL IMT 10 10017 all array elements equal
2 array_2 WAR_GLOBAL INT 5 12345 all array elemernts diverse
3 array_3 WAR_GLOBAL INT 20 S031,10099),3(70,2010 |several array elements respectively egqual
4

Figure 4-24 Definition of the initialization values of an array

Variables with technology object data types are always initialized with TO#NIL.

For variables of data type followingAxis, select the associated synchronous object (variable
of data type followingObjectType).

4.12.4.3 Comments

A comment can be entered in this column. It may contain any characters or special
characters.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 91

LAD/FBD programming
4.13 Data Types

4.13 Data Types

4.13.1 General

A data type is used to determine how the value of a variable or constant in a program source
file is to be used.

The following data types are available to the user:
e Elementary data types
® User-defined data types (UDT)
— Enumerators
— Structures (Struct)
® Technology object data types
e System data types

SIMOTION LAD/FBD
92 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.13 Data Types

4.13.2 Elementary data types

Elementary data types define the structure of data that cannot be broken down into smaller
units. An elementary data type describes a memory area with a fixed length and stands for
bit data, integers, floating-point numbers, duration, time, date and character strings.

All the elementary data types are listed in the table below:

Table 4- 4 Bit widths and value ranges of the elementary data types

Type Reserv. word Bit width Range of values
Bit data type
Data of this type uses either 1 bit, 8 bits, 16 bits, or 32 bits. The initialization value of a variable of this data type is 0.
Bit BOOL 1 0, 1 or FALSE, TRUE
Byte BYTE 8 16#0 to 16#FF
Word WORD 16 16#0 to 16#FFFF
Double word DWORD 32 16#0 to 16#FFFF_FFFF
Numeric types

These data types are available for processing numeric values. The initialization value of a variable of this data type is 0 (all
integers) or 0.0 (all floating-point numbers).

Short integer SINT 8 -128 to 127 (-2**7 to 2**7-1)
Unsigned short integer | USINT 8 0 to 255 (0 to 2**8-1)
Integer INT 16 -32_768 to 32_767 (-2**15 to 2**15-1)
Unsigned integer UINT 16 0 to 65_535 (0 to 2**16-1)
Double integer DINT 32 -2_147_483_648 to 2_147_483_647 (-2**31 to 2**31-1)
Unsigned double UDINT 32 0to4_294_96_7295 (0 to 2**32-1)
integer
Floating-point number | REAL 32 -3.402_823_466E+38 to -1.175_494_351E-38,
(per IEEE -754) 0.0,
+1.175_494_351E-38 to +3.402_823_466E+38
Accuracy:

23-bit mantissa (corresponds to 6 decimal places), 8-bit
exponent, 1-bit sign.

Long floating-point LREAL 64 -1.797_693_134_862_315_8E+308 to

number -2.225_073_858_507_201_4E-308,

(in accordance with 0.0,

IEEE-754) +2.225_073_858_507_201_4E-308 to
+1.797_693_134_862_315_8E+308
Accuracy:

52-bit mantissa (corresponds to 15 decimal places), 11-bit
exponent, 1-bit sign.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 93

LAD/FBD programming

4.13 Data Types

Type Reserv. word Bit width Range of values

Time types

These data types are used to represent various date and time values.
Duration in increments | TIME 32 T#0d_0Oh_Om_0Os_Oms to T#49d_17h_2m_47s_295ms
of 1 ms Maximum of two digits for the values day, hour, minute,

second and a maximum of three digits for milliseconds
Initialization with T#0d_0h_Om_0s_Oms
Date in increments of 1 | DATE 32 D#1992-01-01 to D#2200-12-31

day Leap years are taken into account, year has four digits,
month and day are two digits each

Initialization with D#0001-01-01
Time of day in steps of | TIME_OF_DAY |32 TOD#0:0:0.0 to TOD#23:59:59.999

1ms (TOD) Maximum of two digits for the values hour, minute, second
and maximum of three digits for milliseconds

Initialization with TOD#0:0:0.0

Date and time DATE_AND_TI |64 DT#1992-01-01-0:0:0.0 to DT#2200-12-31-23:59:59.999
ME DATE_AND_TIME consists of the data types DATE and
(DT) TIME

Initialization with DT#0001-01-01-0:0:0.0

String type
Data of this type represents character strings, in which each character is encoded with the specified number of bytes.

The length of the string can be defined at the declaration. Indicate the length in "[" and "]", e.g. STRING[100]. The default
setting consists of 80 characters.

The number of assigned (initialized) characters can be less than the declared length.
String with 1 STRING 8 All characters with ASCII code $00 to $FF are permitted.
byte/character Default’* (empty string)

NOTICE

During variable export to other systems, the value ranges of the corresponding data types
in the target system must be taken into account.

See also
Value range limits of elementary data types (Page 95)
General data types (Page 96)
Elementary system data types (Page 97)

SIMOTION LAD/FBD
94 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.13.2.1

SIMOTION LAD/FBD

Value range limits of elementary data types

4.13 Data Types

The value range limits of certain elementary data types are available as constants.

Table 4- 5 Symbolic constants for the value range limits of elementary data types
Symbolic constant Data type Value Hex notation

SINT#MIN SINT -128 16#80
SINT#MAX SINT 127 16#7F
INT#MIN INT -32768 16#8000
INT#EMAX INT 32767 16#7FFF
DINT#MIN DINT -2147483648 16#8000_0000
DINT#MAX DINT 2147483647 16#7FFF_FFFF
USINT#MIN USINT 0 16#00
USINT#MAX USINT 255 16#FF
UINT#MIN UINT 0 16#0000
UINT#MAX UINT 65535 16#FFFF
UDINT#MIN UDINT 0 16#0000_0000
UDINT#MAX UDINT 4294967295 16#FFFF_FFFF
T#MIN TIME T#0ms 16#0000_0000"
TIME#MIN
THMAX TIME T#49d_17h_2m_47s_295ms 16#FFFF_FFFF1
TIME#MAX
TOD#MIN TOD TOD#00:00:00.000 16#0000_0000"
TIME_OF_DAY#MIN
TOD#MAX TOD TOD#23:59:59.999 16#0526_5BFF1

TIME_OF_DAY#MAX

1 Internal display only

Programming and Operating Manual, 05/2009

95

LAD/FBD programming
4.13 Data Types

4.13.2.2 General data types

General data types are often used for the input and output parameters of system functions
and system function blocks. The subroutine can be called with variables of each data type
that is contained in the general data type.

The following table lists the available general data types:

Table 4- 6 General data types

General data type Data types contained

ANY_BIT BOOL, BYTE, WORD, DWORD

ANY_INT SINT, INT, DINT, USINT, UINT, UDINT

ANY_REAL REAL, LREAL

ANY_NUM ANY_INT, ANY_REAL

ANY_DATE DATE, TIME_OF_DAY (TOD), DATE_AND_TIME (DT)

ANY_ELEMENTARY ANY_BIT, ANY_NUM, ANY_DATE, TIME, STRING

ANY ANY_ELEMENTARY, user-defined data types (UDT), system data types,
data types of the technology objects

Note
You cannot use general data types as type identifiers in variable or type declarations.

The general data type is retained when a user-defined data type (UDT) is derived directly
from an elementary data type (only possible with the SIMOTION ST programming language).

SIMOTION LAD/FBD
96 Programming and Operating Manual, 05/2009

LAD/FBD programming

413.2.3 Elementary system data types

4.13 Data Types

In the SIMOTION system, the data types specified in the table are treated similarly to the
elementary data types. They are used with many system functions.

Table 4- 7 Elementary system data types and their use

Identifier Bit width

Use

StructAlarmlid 32

Data type of the alarmld for the project-wide unique identification of
the messages. The alarmld is used for the message generation.

See Function Manual SIMOTION Basic Functions.
Initialization with STRUCTALARMID#NIL

StructTaskld 32

Data type of the taskld for the project-wide unique identification of the
tasks in the execution system.

See Function Manual SIMOTION Basic Functions.
Initialization with STRUCTTASKID#NIL

Table 4- 8 Symbolic constants for invalid values of elementary system data types

Symbolic constant

Data type

Significance

STRUCTALARMID#NIL

StructAlarmlid

Invalid Alarmld

STRUCTTASKID#NIL

StructTaskld

Invalid Taskld

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

97

LAD/FBD programming
4.13 Data Types

4.13.3 Derived data types

4.13.3.1 Defining user-defined data types (UDT)
You can create derived data types in source files and programs:
e Structures
® Enumerations

The scope of the data type declaration depends on the location of the declaration.

4.13.3.2 Scope of the data type declaration

You create derived data types in the declaration tables of the source file or the
program/chart. The scope of the data type declaration depends on the location of the
declaration.

® In the Interface (exported declaration) source file section of the declaration table:

The data type is valid for the entire source file; all programs/charts (programs, function
blocks, and functions) within the source file can access the data type.

These variables are also available, if appropriately connected (see Define connections
(Page 136)), in other source files (or other units).

¢ |n the Implementation (source-internal declaration) source file section of the declaration
table:

The data type is valid in the source file; all programs/charts (programs, function blocks,
and functions) within the source file can access the data type.

® |n the declaration table of the program:

The data type can only be accessed within the program/chart in which it is declared.

SIMOTION LAD/FBD
98 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.13 Data Types

4.13.3.3 Defining structures

You define structures in the declaration tables of the source file or the program/chart. The
scope (Page 98) of the structures depends on the location of the declaration.

To define structures, proceed as follows:

1.

Select the declaration table and, if applicable, the section of the declaration table for the
desired scope.

2. Select the Structures tab.

3. Enter the name of the structure.

4. In the same line, enter:

— The name of the first element
— Data type of element

— Additional characteristics (array length, start value).

. Enter additional elements of the structure in the following lines; leave the Structure name

field empty.

Begin the definition of the new structure by entering a new name in the Structure name
field.

4.13.3.4 Defining enumerations

You define enumerations in the declaration tables of the source file or the program/chart.
The scope (Page 98) of the enumerations depends on the location of the declaration.

To define enumerations, proceed as follows:

1.

Select the declaration table and, if applicable, the section of the declaration table for the
desired scope.

2. Select the Enumerations tab.

3. Enter the name of the enumeration.

4. In the same line, enter:

SIMOTION LAD/FBD

— The name of the first element
— Optionally, the initialization value of the enumeration data type

Enter additional elements of the enumeration in the following lines; leave the
Enumeration name field empty.

You begin the definition of the new enumeration by entering a new name in the
Enumeration name field.

Programming and Operating Manual, 05/2009 99

LAD/FBD programming

4.13 Data Types

Example

100

This example shows the definition of an enumeration data type with the name Color and the
enumeration elements Red, Blue, and Green, as well as the initialization value (initial value)

Green.

If there is no initialization entered during the enumeration definition (data type declaration),
the first value of the enumeration is assigned to the data type. In this example, Red would be
used for the initialization because it is defined as the first enumeration element.

Parametersf\rariablesl [0 symbnlsl Structures Enumerations

Enumeration name

Element name

Initialization value

Comment

color

red

green

blue

green

o e =

Figure 4-25 Definition of an enumeration data type

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

LAD/FBD programming

413.4

4.13.4.1

See also

SIMOTION LAD/FBD

Technology object data types

Description of the technology object data types

4.13 Data Types

You can declare variables with the data type of a technology object (TO). The following table
shows the data types for the available technology objects in the individual technology

packages.

For example, you can declare a variable with the data type posaxis and assign it an
appropriate instance of a position axis. Such a variable is often referred to as a reference.

Table 4- 9 Data types of technology objects (TO data type)
Technology object Data type Contained in the technology
package
Drive axis driveAxis CAM'2, PATH, CAM_EXT

External encoder

externalEncoderType

CAM'2, PATH, CAM_EXT

Measuring input

measuringlnputType

CAM'2, PATH, CAM_EXT

Output cam outputCamType CAM'2 PATH, CAM_EXT
Cam track (as of V3.2) _camTrackType CAM, PATH, CAM_EXT
Position axis posAxis CAM'3 PATH, CAM_EXT

Following axis

followingAxis

CAM'"4, PATH, CAM_EXT

Following object

followingObjectType

CAM'4, PATH, CAM_EXT

Cam camType CAM, PATH, CAM_EXT
Path axis (as of V4.1) _pathAxis PATH, CAM_EXT

Path object (as of V4.1) _pathObjectType PATH, CAM_EXT

Fixed gear (as of V3.2) _fixedGearType CAM_EXT

Addition object (as of V3.2) | _additionObjectType CAM_EXT

Formula object (as of V3.2) | _formulaObjectType CAM_EXT

Sensor (as of V3.2) _sensorType CAM_EXT

Controller object (as of V3.2) | _controllerObjectType CAM_EXT

Temperature channel temperatureControllerType TControl

General data type,
to which every TO can be
assigned

ANYOBJECT

1) As of Version V3.1, the BasicMC, Position and Gear technology packages are no longer contained.
2) For Version V3.0, also contained in the BasicMC, Position and Gear technology packages.

3) For Version /3.0, also contained in the Position and Gear technology packages.

4) For Version V3.0, also contained in the Gear technology package.

You can access the elements of technology objects (configuration data and system
variables) via structures (see SIMOTION Basic Functions Function Manual).

Table 4- 10 Symbolic constants for invalid values of technology object data types

Symbolic constant

Data type

Meaning

TO#NIL

ANYOBJECT

Invalid technology object

Inheritance of the properties for axes (Page 102)

Programming and Operating Manual, 05/2009

101

LAD/FBD programming

4.13 Data Types

41342

4.13.5

102

Inheritance of the properties for axes

Inheritance for axes means that all of the data types, system variables and functions of the
TO driveAxis are fully included in the TO positionAxis. Similarly, the position axis is fully
included in the TO followingAxis, the following axis in the TO pathAxis. This has, for
example, the following effects:

If a function or a function block expects an input parameter of the driveAxis data type, you
can also use a position axis or a following axis or a path axis when calling.

If a function or a function block expects an input parameter of the posAxis data type, you
can also use a following axis or a path axis when calling.

System data types

There are a number of system data types available that you can use without a previous
declaration. And, each imported technology packages provides a library of system data

types.
Additional system data types (primarily enumerator and STRUCT data types) can be found

In parameters for the general standard functions (see SIMOTI/ON Basic Functions
Function Manual)

In parameters for the general standard function modules (see SIMOTION Basic
Functions Function Manual)

In system variables of the SIMOTION devices (see relevant parameter manuals)

In parameters for the system functions of the SIMOTION devices (see relevant parameter
manuals)

In system variables and configuration data of the technology objects (see relevant
parameter manuals)

In parameters for the system functions of the technology objects (see relevant parameter
manuals)

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

414 Variables

4. 14 Variables

Variables are an important component of programming and provide structure to programs.
They are placeholders which can be assigned values that can be accessed several times in
the program.

Variables have:

® A specific initialization behavior and scope of validity

e A data type and operations which are defined for that data type

User and system variables are differentiated. User variables can be defined by the user.
System variables are provided by the system.

4141 Keywords fo

r variable types

The various keywords for variable types are shown in the following table.

Description of keywords for variable types

Keyword

| Description

Application

Global user variables (declare

d in the interface or implementation section of the unit")

VAR_GLOBAL

Unit variable; can be accessed by all POUs within the source file.

If the variable was declared in the interface section, it can be used in
another source file once a connection has been defined in its declaration
table (see Define connections (Page 136)).

FB, FC, program

VAR_GLOBAL RETAIN

Retentive unit variable; retained during power outage.

FB, FC, program

VAR_GLOBAL CONSTANT

Unit constant; cannot be changed from the program.

FB, FC, program

Local user variables (declared

within a POUZ)

VAR

Local variable (static for FB and program, temporary for FC)

FB, FC, program

VAR_TEMP Temporary local variable FB, program
VAR_INPUT Input parameters: Local variable; value is supplied from external source |FB, FC
and can only be read in the FB or FC.
VAR_OUTPUT Output parameters: Local variable; value is sent to an external FB
destination by the FB. It can be read as an instance variable after being
called by the FB (FB instance name.variable name).
VAR_IN_OUT In/out parameter; the FB or FC accesses this variable directly (by means | FB, FC
of a reference) and can change it directly.
VAR CONSTANT Local constant; cannot be changed from the program. FB, FC, program

1 MCC and LAD/FBD program
2 MCC and LAD/FBD program

ming languages: in the declaration table of the respective source file.
ming languages: in the declaration table of the respective chart/program.

SIMOTION LAD/FBD
Programming and Operating Manu

al, 05/2009

103

LAD/FBD programming

4. 14 Variables

4.14.2 Defining variables

Variables are defined in the symbol browser or in the declaration table of the source file or
chart/program. The following table provides an overview of where the relevant variable is
defined.

Definition of variables

Variable type Defined in...

Global device user Symbol browser

variables

unit variable Declaration table of the source file as VAR_GLOBAL, VAR_GLOBAL
RETAIN or VAR_GLOBAL CONSTANT

Local variable Declaration table of the program/chart as:

e VAR, VAR_TEMP, or VAR CONSTANT

e Additionally for function blocks as VAR_INPUT, VAR_OUTPUT,
VAR_IN_OUT

e Additionally for functions as VAR_INPUT, VAR_IN_OUT

1/O variable Symbol browser

Symbolic access to the | ¢ Declaration table of the source file

fixed process image of |e Declaration table of the program/chart (programs and FB only)
the BackgroundTask

41421 Use of global device variables

Global device variables are user-defined variables that you can access from all program
sources (e.g. ST source files, MCC units) of a SIMOTION device.

Global device variables are created in the symbol browser tab of the detail view; to do this,
you must be working in offline mode.

Here is a brief overview of the procedure:

1. In the project navigator of SIMOTION SCOUT, select the GLOBAL DEVICE VARIABLES
element in the SIMOTION device subtree.

2. In the detail view, select the Symbol browser tab and scroll down to the end of the
variable table (empty row).

3. In the last (empty) row of the table, enter or select the following:

— Name of variable

— Data type of variable (only elementary data types are permitted)
4. Optionally, you can make the following entries:

— Selection of Retain checkbox (This declares the variable as retentive, so that its value
will be retained after a power failure.)

— Array length (array size)
— Initial value (if array, for each element)

— Display format (if array, for each element)

SIMOTION LAD/FBD
104 Programming and Operating Manual, 05/2009

LAD/FBD programming

4. 14 Variables

You can now access this variable using the symbol browser or any program of the
SIMOTION device.

In ST source files, you can use a global device variable, just like any other variable.

Note

If you have declared unit variables or local variables of the same name (e.g. var-name),
specify the global device variable with _device.var-name.

An alternative to global device variables is the declaration of unit variables in a separate unit,
which is imported into other units. This has the following advantages:
1. Variable structures can be used.

2. The initialization of the variables during the STOP-RUN transition is possible (via
Program in StartupTask).

3. For newly created global unit variables, a download in RUN is also possible.

Please refer to the SIMOTION Basic Functions Function Manual.

4.14.2.2 Declaring a unit variable in the source file

SIMOTION LAD/FBD

The unit variable is declared in the source file. The valid range (scope) of the variable is
dependent on the section of the declaration table in which the variable is declared:

® |n the interface section of the declaration table (INTERFACE):

The unit variable is valid for the entire source file; all programs/charts (programs, function
blocks, and functions) within the source file can access the unit variable.

In addition, these variables are available on HMI devices and, once connected (see
Define connections (Page 136)), in other source files (or other units), as well.

The total size of all unit variables in the interface section is limited to 64 Kbytes.
® |n the implementation section of the declaration table (IMPLEMENTATION):

The unit variable is valid in the source file only; all programs/charts (programs, function
blocks, and functions) within the source file can access the unit variable.

Programming and Operating Manual, 05/2009 105

LAD/FBD programming

4. 14 Variables

Proceed as follows; the source file (declaration table) is open (see Open existing program
source file (Page 42)):

1. In the declaration table, select the section for the desired scope.

2. Then select the Parameters tab.
3. Enter:

Name of the variable

Variable type
See also: Keywords for variable types (Page 103)

Data type of the variable

You can select elementary data types (see Elementary data types (Page 93)); other
data types must be entered in the appropriate field.

See also:

Defining structures (Page 99)

Defining enumerations (Page 99)

Optional array length (to define the array size)
See also: Array length and array element (Page 90)

Optional initial value (initialization value

See also: Initial value (Page 91)

The variable is now declared and can be used immediately.

INTERFACE [exported declaration]

Parameter | /0 symbnlsl Structuresl Enumeratinnsl Cnnnectinnsl

Hame Variable type Data type Array length Initial value Comment
1 var_ini WAR_GLOBAL REAL
2
IMPLEMENTATION [source-internal declaration]
Parameter | /0 symbnlsl Structures Enumeratinnsl Connections
Hame Variable type Data type Array length Initial value Comment
1 var_in2 WAR_GLOBAL BCOL
2 war_out WAR_GLOBAL IMT 10

3

Figure 4-26 Example: Declaring a unit variable in the source file

Note

The declaration table of the source file is read each time parameters are assigned for a
command. Inconsistent data within the declaration table can therefore cause unexpected
error messages during parameter assignment.

106

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

LAD/FBD programming
4.14 Variables

4.14.2.3 Declaring local variables

A local variable can only be accessed within the program/chart (program, function, function
block) in which it is declared.

Proceed as follows; the program/chart with the declaration table is open (see Open existing
program source file (Page 42)):

1. In the declaration table, select the Parameter/Variables tab.
2. Enter:
— Name of the variable

— Variable type for variables
See also: Keywords for variable types (Page 103)

— You can select elementary data types (see Elementary data types (Page 93)); other
data types must be entered in the appropriate field.

See also:
Defining structures (Page 99)
Defining enumerations (Page 99)

— Optional array length (to define the array size)
See also: Array length and array element (Page 90)

— Optional initial value (initialization value
See also: Initial value (Page 91)

The variable is now declared and can be used immediately.

Parametersivariables | 110 symbols | Structures | Enumerations |
Hame Variable type Data type Array length Initial value Comment

1 int WAR BOOL
2

Figure 4-27 Example: Declaring a local variable in the chart/program

Note

The declaration table of the program/chart is read each time parameters are assigned for a
command. Inconsistent data within the declaration table can therefore cause unexpected
error messages during parameter assignment.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 107

LAD/FBD programming

4. 14 Variables

41424 Defining global user variables and local variables in the variable declaration dialog box

As soon as you enter an unknown variable in a LAD/FBD diagram, the Variable Declaration
dialog box appears.

Yariables Declaration

Hame Abzolute identifier Yariable twpe

Ivaﬂ I IV.-’-‘«FE j

Array length Iritial walue

= |

Drata type
[EoC

Comment

I ™| Exportable (with GLOBEL variables)
oK I

Figure 4-28 Variable declaration dialog box

LCancel | Help |

To define variables in the Variable Declaration dialog box, proceed as follows:
1. Enter the name of the variable in the LAD or FBD diagram.

2. Press the Return key.
The Variable Declaration dialog box appears.

3. Enter:
— Another variable name, if required

— Absolute identifier
The absolute name you entered appears in the I/O symbols tab of the declaration
table. As soon as you have entered the Absolute name, you can no longer select the
Variable type, Array length, or Initial value fields in the Variable Declaration dialog
box.

— Data type of the variables
Select the data type from the pull-down menu. If the data type of an 1/O symbol is not
ANY_BIT or ANY_INT, you may enter an absolute name.
If you select a global variable (e.g. VAR_GLOBAL) as the type, the Exportable check
box is activated.

¥ariables Declaration

M ame

Abzolute identifier

Wariable type

Ivar'l

[ata type

|°/o|n_u

Array lenagth

[vaR |

Iritial walue

|EDDL

Cornmment

=

[Exportable [with GLEBAL waniables]

Ok LCancel |

Help

Figure 4-29 Example: Variable declaration (absolute name)

108

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming
4.14 Variables

¥ariables Declaration

MHame Abzolute identifier Wariable type

Ivar'l I IW'\H j
Data bype Array lenagth Initial walue

=] |

Cornrmert

I [Exportable [with GLEBAL waniables]

Ok LCancel | Help

Figure 4-30 Example: Variable declaration

Confirm with OK.

The variable is defined and entered in the declaration table of the source file or the program,
depending on the selected variable type and Exportable.

Note

In order for the Variable declaration dialog box to appear, the on-the-fly variable declaration
check box must be selected in the Settings dialog box.

If you leave the Variable declaration dialog box by clicking Cancel, your input remains as it
is, and the variable is not created.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 109

LAD/FBD programming

4. 14 Variables

4.14.3 Time of the variable initialization

The timing of the variable initialization is determined by:

® Memory area to which the variable is assigned

® Operator actions (e.g. source file download to the target system)

e Execution behavior of the task (sequential, cyclic) to which the program was assigned.

All variable types and the timing of their variable initialization are shown in the following
tables. You will find basic information about tasks in the SIMOTION Basic Functions
Function Manual.

The behavior for variable initialization during download can be set: To do this, as a default
setting select the Options > Settings menu and the Download tab or define the setting during
the current download.

Note

You can upload values of unit variables or global device variables from the SIMOTION
device into SIMOTION SCOUT and save them in XML format.

1. Save the required data segments of the unit variables or global device variables as a data
set with the function _saveUnitDataSet.

2. Use the Save variables function in SIMOTION SCOUT.

You can use the Restore variables function to download these data sets and variables back
to the SIMOTION device.

For more information, refer to the SIMOTION SCOUT Configuration Manual.

This makes it possible, for example, to obtain this data, even if it is initialized by a project
download or if it becomes unusable (e.g. due to a version change of SIMOTION SCOUT).

4.14.3.1 Initialization of retentive global variables

110

Retentive variables retain their last value after a loss of power. All other data is reinitialized
when the device is switched on again.

Retentive global variables are initialized:

e When the backup or buffer for retentive data fails.

® When the firmware is updated.

® \When a memory reset (MRES) is performed.

e With the restart function (Del. SRAM) in SIMOTION P350.

e By applying the _resetUnitData function (as of kernel V3.2), possible selectively for
different data segments of the retentive data.

® When a download is performed according to the following description.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming
4.14 Variables

Table 4- 11 Initializing retentive global variables during download

Variable type Time of the variable initialization
Retentive global The behavior when downloading depends on the /nitialization of all retentive global device
device variables variables and program data setting':

e Yes?: All retentive global device variables are initialized.

e No3:

— As of version V3.2 of the SIMOTION Kernel:

Separate version ID for retentive global device variables. If the version ID is changed, the
retentive global device variables are initialized.
— Up to Version V3.1 of the SIMOTION kernel:
Joint version ID for all global device variables (retentive and non-retentive). If the version
ID is changed, all global device variables are initialized.
See: Version ID of global variables and their initialization during download (Page 117).

Retentive unit The behavior when downloading depends on the /nitialization of all retentive global device
variables variables and program data setting':

e Yes?: All retentive unit variables (all units) are initialized.

e Nod

— As of version V3.2 of the SIMOTION Kernel:

Separate version ID for each individual data block (= declaration block)* of the retentive
unit variables in the interface or implementation section. If the version identification is
changed, only the associated data block will be initialized®.

— Up to Version V3.1 of the SIMOTION kernel:
Common version ID for all unit variables (retentive and non-retentive, in the interface and

implementation section) of a unit. If the version ID is changed, all unit variables of this unit
are initialized.

See: Version ID of global variables and their initialization during download (Page 117).

1 Default setting in the Options > Settings menu, Download tab,
or the current setting for the download.

2 The corresponding checkbox is active.
3 The corresponding checkbox is inactive.

4 Several data blocks for retentive unit variables in the interface or implementation section can be declared only in the
SIMOTION ST programming language. For the SIMOTION MCC and SIMOTION LAD/FBD programming languages, only
one data block for retentive unit variables will be created in the interface or implementation section.

5 Also for the download in RUN, provided the associated prerequisites have been satisfied and the following attribute has
been specified in the associated declaration block within a pragma (only for the SIMOTION ST programming language):
{ BlocklInit_OnChange := TRUE; }.

For the download in RUN, see the SIMOTION Basic Functions Function Manual.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 111

LAD/FBD programming
4.14 Variables

4.14.3.2 Initialization of non-retentive global variables
Non-retentive global variables lose their value during power outages. They are initialized:

® For the Initialization of retentive global variables (Page 110), e.g. during a firmware
update or general reset (MRES).

® During power up.

® By applying the _resetUnitData function (as of kernel V3.2), possible selectively for
different data segments of the non-retentive data.

® During the download in accordance with the description on the following table.
® Only as of Version V4.1 of the SIMOTION Kernel and for non-retentive unit variables:

For transition to the RUN mode when the associated declaration block within a pragma
specifies the following attribute (only for SIMOTION ST programming language): {
BlocklInit_OnDeviceRun := ALWAYS; }

SIMOTION LAD/FBD
112 Programming and Operating Manual, 05/2009

LAD/FBD programming
4.14 Variables

Table 4- 12 Initializing non-retentive global variables during download

Variable type Time of the variable initialization
Non-retentive global The behavior when downloading depends on the /nitialization of all non-retentive global device
device variables variables and program data setting':

e Yes?2: All non-retentive global device variables are initialized.
e No3:
— As of version V3.2 of the SIMOTION Kernel:
Separate version ID for non-retentive global device variables. If the version ID is changed,
the non-retentive global device variables are initialized.
— Up to Version V3.1 of the SIMOTION kernel:
Joint version ID for all global device variables (retentive and non-retentive). If the version
ID is changed, all global device variables are initialized.
See: Version ID of global variables and their initialization during download (Page 117).

Non-retentive unit The behavior when downloading depends on the /nitialization of all non-retentive global device
variables variables and program data setting':

e Yes?2 All non-retentive unit variables (all units) are initialized.

e Nod

— As of version V3.2 of the SIMOTION Kernel:

Separate version ID for each individual data block (= declaration block)* of the non-
retentive unit variables in the interface or implementation section. If the version
identification is changed, only the associated data block will be initialized®.

— Up to Version V3.1 of the SIMOTION kernel:
Common version ID for all unit variables (retentive and non-retentive, in the interface and

implementation section) of a unit. If the version ID is changed, all unit variables of this unit
are initialized.

See: Version ID of global variables and their initialization during download (Page 117).

1 Default setting in the Options > Settings menu, Download tab,
or the current setting for the download.

2 The corresponding checkbox is active.

3 The corresponding checkbox is inactive.

4 Several data blocks for non-retentive unit variables in the interface or implementation section can be declared only in the
SIMOTION ST programming language. For the SIMOTION MCC and SIMOTION LAD/FBD programming languages, only
one data block for non-retentive unit variables will be created in the interface or implementation section.

5 Also for the download in RUN, provided the associated prerequisites have been satisfied and the following attribute has
been specified in the associated declaration block within a pragma (only for the SIMOTION ST programming language):

{ BlocklInit_OnChange := TRUE; }.

For the download in RUN, see the SIMOTION Basic Functions Function Manual.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 113

LAD/FBD programming

4. 14 Variables

4.14.3.3 Initialization of local variables
Local variables are initialized:
® For the initialization of retentive unit variables (Page 110).
e For the initialization of non-retentive unit variables (Page 112).

® Also, according to the following description:

Table 4- 13 Initialization of local variables

Variable type Time of the variable initialization
Local program Local variables of programs are initialized differently:
variables e Static variables (VAR) are initialized according to the memory area in which they are stored.

See: Initialization of static program variables (Page 115).
e Temporary variables (VAR_TEMP) are initialized every time the program of the task is called.

Local variables of Local variables of function blocks are initialized differently:
function blocks (FB) |4 Static variables (VAR, VAR_IN, VAR_OUT) are only initialized when the FB instance is
initialized.

See: Initialization of instances of function blocks (FBs) (Page 116).
e Temporary variables (VAR_TEMP) are initialized every time the FB instance is called.

Local variables of Local variables of functions are temporary and are initialized every time the function is called.
functions (FC)

Note

You can obtain information about the memory requirements of a POU in the local data stack
using the Program Structure (Page 165) function.

SIMOTION LAD/FBD
114 Programming and Operating Manual, 05/2009

LAD/FBD programming
4.14 Variables

4.14.3.4 Initialization of static program variables
The following versions affect the following static variables:
® | ocal variables of a unit program declared with VAR

® Function block instances declared with VAR within a unit program, including the
associated static variables (VAR, VAR_INPUT, VAR_OUTPUT).

The initialization behavior is determined by the memory area in which the static variables are
stored. This is determined by the "Create program instance data only once" (Page 48)
compiler option.

® [or the deactivated "Create program instance data only once" compiler option (default):

The static variables are stored in the user memory of each task, which is assigned to the
program.

The initialization of the variables thus depends on the execution behavior of the task to
which the program is assigned (see SIMOTION Basic Functions Function Manual):

— Sequential tasks (MotionTasks, UserinterruptTasks, SysteminterruptTasks,
StartupTask, ShutdownTask): The static variables are initialized every time the task is
started.

— Cyclic tasks (BackgroundTask, SynchronousTasks, TimerInterruptTasks): The static
variables are initialized only during transition to RUN mode.

® For the activated "Create program instance data only once" compiler option:
This setting is necessary, for example, if a program is to be called within a program.

The static variables of all programs from the program source (unit) involved are only
stored once in the user memory of the unit.

— They are thus initialized together with the non-retentive unit variables, see Initialization
of non-retentive global variables (Page 112).

— Only as of Version V4.1 of the SIMOTION Kernel:

In addition, they can be initialized during transition to RUN mode. To do this, the
following attribute must be specified in the associated declaration block within a
pragma (only SIMOTION ST programming language):

{ Blocklnit_OnDeviceRun := ALWAYS; }.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 115

LAD/FBD programming

4. 14 Variables

41435

4.14.3.6

116

Initialization of instances of function blocks (FBs)

The initialization of a function block instance is determined by the location of its declaration:

® Global declaration (within VAR_GLOBAL/END_VAR in the interface of implementation
section):

Initialization as for a non-retentive unit variable, see Initialization of non-retentive global
variables (Page 112).

® | ocal declaration in a program (within VAR / END_VAR):

Initialization as for static variables of programs, see Initialization of static variables of
programs (Page 115).

® | ocal declaration in a function block (within VAR / END_VAR):
Initialization as for an instance of this function block.

® Declaration as in/fout parameter in a function block or a function (within
VAR_IN_OUT / END_VAR):

For the initialization of the POU, only the reference (pointer) will be initialized with the
instance of the function block remaining unchanged.

Note

You can obtain information about the memory requirements of a POU in the local data
stack using the Program Structure (Page 165) function.

Initialization of system variables of technology objects

The system variables of a technology object are usually not retentive. Depending on the
technology object, a few system variables are stored in the retentive memory area (e.g.
absolute encoder calibration).

The initialization behavior (except in the case of download) is the same as for retentive and
non-retentive global variables. See Initialization of retentive global variables (Page 110) and
Initialization of non-retentive global variables (Page 112).

The behavior during the download is shown below for:
® Non-retentive system variables

® Retentive system variables

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4. 14 Variables

Table 4- 14 Initializing technology object system variables during download

Variable type Time of the variable initialization

Non-retentive system
variables

Behavior during download, depending on the /nitialization of all non-refentive data for technology
objects setting':
e Yes?: All technology objects are initialized.
— All technology objects are restructured and all non-retentive system variables are
initialized.
— All technological alarms are cleared.
¢ No3: Only technology objects changed in SIMOTION SCOUT are initialized.

— The technology objects in question are restructured and all non-retentive system variables
are initialized.

— All alarms that are pending on the relevant technology objects are cleared.

— If an alarm that can only be acknowledged with Power Onis pending on a technology
object that will not be initialized, the download is aborted.

Retentive system
variables

Only if a technology object was changed in SIMOTION SCOUT, will its retentive system variables
be initialized.

The retentive system variables of all other technology objects are retained (e.g. absolute encoder
calibration).

1 Default setting in the Options > Settings menu, Download tab,
or the current setting for the download.

2 The corresponding checkbox is active.

3 The corresponding checkbox is inactive.
4.14.3.7 Version ID of global variables and their initialization during download

Table 4- 15 Version ID of global variables and their initialization during download

Data segment As of Version V3.2 of the SIMOTION kernel Up to Version V3.1 of the

SIMOTION kernel

Global device variables

Retentive global
device variables

Non-retentive
global device
variables

Separate version ID for each data segment of the global
device variables.

The version identification of the data segment changes
for:

— Add or remove a variable within the data segment

— Change of the identifier or the data type of a variable
within the data segment

This version ID does not change on:

— Changes in the other data segment

— Changes to initialization values®

During downloading?, the rule is: Initialization of a data
segment only if its version ID has changed.

Use of the functions for data backup and initialization
possible.

Common version ID for all data
segments of the global device
variables.

This version ID changes when
the variable declaration is
changed in a data segment.

During downloading?, the rule
is: Initialization of all data
segments if the version ID
changes.

Use of the functions for data
backup not possible.

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

117

LAD/FBD programming

4. 14 Variables

Data segment As of Version V3.2 of the SIMOTION kernel Up to Version V3.1 of the
SIMOTION kernel

Unit variables of a unit

Retentive unit e Several data blocks (= declaration blocks)? in each data | e One data block in each data
variables in the segment possible. segment (also for several
interface section |« Own version ID for each data block. declaration blocks)3
Retentive unit « The version identification of the data block changes for: |* €ommon version ID for all
variables in the - Add or remove a variable in the associated glo_bal de_claratlons na u_n|t.
implementation declaration block e This verS|ct>ntIrI13 c]:chﬁng(.es in
section — Change of the identifier or the data type of a variable Lizegfse_ 0 the foflowing
Non-retentive unit in the associated declaration block Vari 'bI declaration i
variables in the — Change of a data type definition (from a separate or - d:tr;aseZmeeztara ionih a
interface section imported# unit) used in the associated declaration

block — Declaration of global data

Non-retentive unit types in the unit

variables in the — Add or remove declaration blocks within the same o)
implementation data segment before the associated declaration block - Dec;l'aran?n in the 'Qt%fface_t
section e This version ID does not change on: b .seccljon OI and!mr;ot: L:m ’
. . o uring downloading?, the rule
— Addor r?move declaration blocks in other data is: Initialization of all data
segments segments if the version ID
— Add or remove declaration blocks within the same changes.
data segment after the associated declaration block | | Use of the functions for data
— Changes in other data blocks backup only possible for: Non-
— Changes to initialization values' retentive unit variables in the

— Changes to data type definitions that are not used in interface section

the associated data block
— Changes to functions
e During downloading?, the rule is: Initialization of a data
block only if its version ID has changed.?

e Functions for data backup and initialization take into
account the version ID of the data blocks.

1 Changed initialization values are not effective until the data block or data segment in question is initialized.

21f Initialization of all retentive global device variables and program data= No and /nitialization of all non-retentive global
device variables and program data = No.

In the case of other settings: See the sections "Initialization of retentive global variables (Page 110)" and "Initialization of
non-retentive global variables (Page 112)".

3 Several declaration blocks per data segment are possible only in the SIMOTION ST programming language. For the
SIMOTION MCC and SIMOTION LAD/FBD programming languages, only one declaration block per data segment will be
created.

4 The import of units depends on the programming language, refer to the associated section (Page 136).

5 Also for the download in RUN, provided the associated prerequisites have been satisfied and the following attribute has
been specified in the associated declaration block within a pragma (only for the SIMOTION ST programming language): {
Blocklnit_OnChange := TRUE; }.

For the download in RUN, see the SIMOTION Basic Functions Function Manual.

SIMOTION LAD/FBD
118 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.15 Access fto inputs and outputs (process image, I/O variables)

4.15 Access to inputs and outputs (process image, 1/O variables)

4.15.1 Overview of access to inputs and outputs

SIMOTION LAD/FBD

You can access the SIMOTION device inputs and outputs as well as the central and
distributed 1/O:

® \Via direct access with I/O variables

You define an 1/O variable (name and I/O address). The entire address range can be
used.

It is preferable to use direct access with sequential programming (in MotionTasks);
access to current input and output values at a particular point in time is especially
important in this case. (

Via the process image of cyclic tasks using 1/O variables

A memory area in the RAM of the SIMOTION device, on which the address space of the
SIMOTION device is mapped. The mirror image is refreshed with the assigned task and
is consistent throughout the entire cycle. It is used preferentially when programming the
assigned task (cyclic programming).

Define an 1/0O variable (name and 1/O address) and assign a task to it. The entire address
area of the SIMOTION device can be used.

Direct access to this 1/O variable is still possible: Specify direct access with _dlirect. var-
name.

Using the fixed process image of the BackgroundTask

A memory area in the RAM of the SIMOTION device on which a subset of the I/O
address space is mapped. The mirror image is refreshed with the BackgroundTask and is
consistent throughout the entire cycle. It is used preferentially when programming the
BackgroundTask (cyclic programming).

The address range 0 .. 63 can be used, except for the process image of the cyclic tasks.

Note
An access via the process image is more efficient than direct access.

Programming and Operating Manual, 05/2009 119

LAD/FBD programming

4.15 Access to inputs and outputs (process image, I/O variables)

4.15.2

Table 4- 16

Important features of direct access and process image access

Important features of direct access and process image access

Direct access

Access to process image of
cyclic tasks

Access to fixed process image
of the BackgroundTask

Permissible address
range

Entire address range of the SIMOTION device

Exception: I/O variables comprising more than one byte must not
contain addresses 63 and 64 contiguously (example: PIW63 or

PQD62 are not permitted).

The addresses used must be present in the I/O and appropriately

0..63,

except for the addresses used
in the process image of cyclic
tasks

Addresses that are not present

configured. in the 1/0O or have not been
configured can also be used.
Assigned task None. Cyclic task for selection: BackgroundTask.

e SynchronousTasks,
e TimerlInterruptTasks,
e BackgroundTask.

Updating

e Onboard I/O of SIMOTION
devices C230-2, C240, and
P350:

Update occurs in a cycle
clock of 125 ps.

e |/O via PROFIBUS DP,
PROFINET, P-Bus, and
DRIVE-CLIQ as well as
Onboard I/O of the D4xx
SIMOTION devices:

Update occurs in the
position control cycle clock.

Inputs are read at the start of
the cycle clock.

Outputs are written at the end
of the cycle clock.

Update occurs with the
assigned task:

e Inputs are read before the
assigned task is started and
transferred to the process
input image.

e Process output image is
written to the outputs after
the assigned task has been
completed.

An update is made with the
BackgroundTask.

e Inputs are read before the
BackgroundTask is started
and is transferred to the
process input image.

e Process output image is
written to the outputs when
the BackgroundTask is
complete.

Consistency

During the entire cycle of the
assigned task.

Exception: Direct access to
output occurs.

Consistency is only ensured for elementary data types.

When using arrays, the user is responsible for ensuring data

consistency.

During the entire cycle of the
BackgroundTask.

Exception: Direct access to
output occurs.

Use

Preferred in MotionTasks

Preferred in the assigned task

Preferred in the
BackgroundTask

Declaration as

Necessary, for the entire device in the symbol browser

Possible, but not necessary:

variable e For the entire device in the
symbol browser,
e As unit variable,
e As local variable in a
program.
SIMOTION LAD/FBD
120 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.15 Access fto inputs and outputs (process image, I/O variables)

Direct access

Access to process image of

Access to fixed process image

cyclic tasks of the BackgroundTask
Write protection for | pogsible; Read only status can | Not supported. Not supported.
outputs be selected.
Declaration of arrays | Possible. Not supported.

Responses in the
event of an error

Error during access from user
program, alternative reactions
available:

e CPU stop!
e Substitute value
e Lastvalue

Error during generation of
process image, alternative
reactions available:

e CPU stop!
e Substitute value
e Lastvalue

Error during generation of
process image, reaction: CPU
stop?.

Exception: If direct access has
been set up at the same
address, the behavior set there
applies.

See Description of Functions SIMOTION Basic Functions

Use the absolute
address

Not supported.

Supported

Access

¢ In RUN mode

Without any restrictions.

Without any restrictions.

Without any restrictions.

e During Possible with restrictions: Possible with restrictions: Possible with restrictions:
StartupTask e Inputs can be read. e Inputs are read at the start | Inputs are read at the start
« Outputs are not written until of the StartupTask. of the StartupTask.
StartupTask is complete. e Outputs are not written until | e Outputs are not written until
StartupTask is complete. StartupTask is complete.
e During Without any restrictions. Possible with restrictions: Possible with restrictions:
ShutdownTask

¢ Inputs retain status of last
update

e Outputs are no longer
written.

¢ Inputs retain status of last
update

e Outputs are no longer
written.

1 Call of PeripheralFaultTask.

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

121

LAD/FBD programming

4.15 Access to inputs and outputs (process image, I/O variables)

4.15.3 Direct access and process image of cyclic tasks

Properties

Direct access

Direct access to inputs and outputs and access to the process image of the cyclic task
always take place via I/O variables. The entire address range of the SIMOTION device (see
table below) can be used.

A comparison of the most important properties, also in comparison to the fixed process
image of the BackgroundTask (Page 128) is contained in "Important properties of direct
access and process image (Page 120)".

The direct access is used to directly access the corresponding I/O address. Direct access is
used primarily for sequential programming (in MotionTasks). The access to the current value
of the inputs and outputs at a specific time is particularly important.

For direct access, you define an I/O variable (Page 125) without assigning it a task.

Note
An access via the process image is more efficient than direct access.

Process image of the cyclic task

122

The process image of the cyclic tasks is a memory area in the RAM of the SIMOTION
device, on which the whole I/O address space of the SIMOTION device is mirrored. The
mirror image of each I/0O address is assigned to a cyclic task and is updated using this task.
The task remains consistent throughout the whole cycle. This process image is used
preferentially when programming the assigned task (cyclic programming). The consistency
during the complete cycle of the task is particularly important.

For the process image of the cyclical task you define an 1/O variable (Page 125) and assign
it a task.

Direct access to this 1/O variable is still possible: Specify direct access with _ direct.var-name.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.15 Access fto inputs and outputs (process image, I/O variables)

Address range of the SIMOTION devices

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

The address range of the SIMOTION devices depending on the version of the
SIMOTION kernel is contained in the following table. The complete address range can be
used for direct access and process image of the cyclical tasks.

Table 4- 17 Address range of the SIMOTION devices depending on the version of the
SIMOTION kernel

SIMOTION device Address range for SIMOTION Kernel version
V3.0 V3.1,V3.2 As of V4.0
C230-2 0..1023 0..20474 0..20474
C240 - - 0..4096+4
C240 PN - - 0..40965
D4102 - - 0..1638345
D4253 - 0..40954 0.. 1638345
D435 0..1023 0..40954 0.. 1638345
D4453 - 0..40954 0.. 1638345
D445-11 - - 0.. 1638345
P350 0..1023 0..20474 0..40954
1 Available with V4.1 SP2 HF4 and higher
2 Available with V4.1 and higher
3 Available with V3.2 and higher
4 For distributed 1/0 (over PROFIBUS DP), the transmission volume is restricted to 1024 bytes per
PROFIBUS DP line.
5 For distributed 1/0 (over PROFINET), the transmission volume is restricted to 4096 bytes per
PROFINET segment.

Note

Observe the rules for 1/0 addresses for direct access and the process image of the cyclical
tasks (Page 124).

123

LAD/FBD programming

4.15 Access to inputs and outputs (process image, I/O variables)

4.15.3.1 Rules for I/O addresses for direct access and the process image of the cyclical tasks

NOTICE

2.

3.

4.

You must observe the following rules for the I/O variable addresses for direct access and
the process image of the cyclic task (Page 122). Compliance with the rules is checked
during the consistency check of the SIMOTION project (e.g. during the download).

1.

Addresses used for I/O variables must be present in the I/O and configured
appropriately in the HW Config.

I/O variables comprising more than one byte must not contain addresses 63 and 64
contiguously.

The following I/O addresses are not permitted:

— Inputs: PIW63, PID61, PID62, PID63

— Outputs: PQW63, PQD61, PQD62, PQD63

All addresses of an 1/O variable comprising more than one byte must be within an
address area configured in HW-config.

An I/O address (input or output) can only be used by a single I/O variable of data type
BYTE, WORD or DWORD or an array of these data types. Access to individual bits with
I/0O variables of data type BOOL is possible.

If several processes (e.g. /O variable, technology object, PROFIdrive telegram) access

an I/O address, the following applies:

— Only a single process can have write access to an I/O address of an output (BYTE,
WORD or DWORD data type).

Read access to an output with an /O variable that is used by another process for
write access, is possible.

— All processes must use the same data type (BYTE, WORD, DWORD or ARRAY of
these data types) to access this 1/0 address. Access to individual bits is possible
irrespective of this.

Please be aware of the following, for example, if you wish to use an I/O variable to
read the PROFIdrive telegram transferred to or from the drive: The length of the I/O
variables must match the length of the telegram.

— Write access to different bits of an address is possible from several processes;
however, write access with the data types BYTE, WORD or DWORD is then not
possible.

Note

These rules do not apply to accesses to the fixed process image of the BackgroundTask
(Page 128). These accesses are not taken into account during the consistency check of the
project (e.g. during download).

124

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.15 Access fto inputs and outputs (process image, I/O variables)

4.15.3.2 Creating I/O variables for direct access or process image of cyclic tasks

You create I/O variables for direct access and a process image of the cyclic tasks in the
symbol browser in the detail view; you must be in offline mode to do this.

Here is a brief overview of the procedure:

1. In the project navigator of SIMOTION SCOUT, select the I/O element in the subtree of the
SIMOTION device.

2. In the detail view, select the "Symbol browser" tab and scroll down to the end of the
variable table (empty row).

3. In the last (empty) row of the table, enter or select the following:

Name of variable.

I/O address according to the "syntax for entering 1/0 addresses (Page 127)".
Optional for outputs:

Activate the "Read only" checkbox if you only want to have read access to the output.

You can then read an output that is already being written by another process (e.g.
output of an output cam, PROFIdrive telegram).

A read-only output variable cannot be assigned to the process image of a cyclic task.

Data type of the variables in accordance with "Possible data types of the I/O variables
(Page 128)".

4. Optionally, you can also enter or select the following (not for data type BOOL):

Array length (array size).
Process image or direct access:
Can only be assigned if the "Read only" checkbox is cleared.

For process image, select the cyclic task to which you want to assign the 1/O variable.
To select a task, it must have been activated in the execution system.

For direct access, select the blank entry.

Strategy for the behavior in an error situation (see SIMOTION Basic Functions
Function Manual).

Substitute value (if array, for each element).

Display format (if array, for each element), when you monitor the variable in the
symbol browser.

You can now access this variable using the symbol browser or any program of the
SIMOTION device.

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009 125

LAD/FBD programming

4.15 Access to inputs and outputs (process image, I/O variables)

126

NOTICE

Note the following for the process image for cyclic tasks:
e A variable can only be assigned to one task.
e Each byte of an input or output can only be assigned to one I/O variable.

In the case of data type BOOL, please note:

e The process image for cyclic tasks and a strategy for errors cannot be defined. The
behavior defined via an 1/O variable for the entire byte is applicable (default: direct
access or CPU stop).

¢ The individual bits of an I/O variable can also be accessed using the bit access
functions.

Take care when making changes within the 1/0O variables (e.g. inserting and deleting 1/0

variables, changing names and addresses):

¢ In some cases the internal addressing of other I/O variables may change, making all 1/0
variables inconsistent.

o If this happens, all program sources that contain accesses to I/O variables must be

recompiled.

Note

I/O variables can only be created in offline mode. You create the 1/O variables in SIMOTION
SCOUT and then use them in your program sources (e.g. ST sources, MCC sources,
LAD/FBD sources).

Outputs can be read and written to, but inputs can only be read.

Before you can monitor and modify new or updated 1/O variables, you must download the
project to the target system.

You can use I/O variables like any other variable, see "Access I/O variables (Page 134)".

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.15 Access fto inputs and outputs (process image, I/O variables)

4.15.3.3 Syntax for entering 1/0 addresses
For the input of the 1/0 address for the definition of an 1/O variable for direct access or
process image of cyclical tasks (Page 122), use the following syntax. This specifies not only
the address, but also the data type of the access and the mode of access (input/output).
Table 4- 18 Syntax for the input of the 1/0 addresses for direct access or process image of the cyclic tasks
Data type Syntax for Permissible address range
Input Output Direct access Process image e.g. direct access
D435 V4.1
BOOL PIn.x PQn.x n: | 0. MaxAdadr -1 n: |0..16383
x: 0.7 X: 0.7
BYTE PIBn PQBn n: |0.. MaxAdadr 0 .. MaxAdadr n: 0..16383
WORD PIWn PQWn n: |0..62 0..62 n: 0..62
64 .. MaxAdadr-1 64 .. MaxAddr-1 64 .. 16382
DWORD PIDn PQDn n: |0..60 0..60 n: 0..60
64 .. MaxAddr- 3 64 .. MaxAddr- 3 64 .. 16380

n = logical address
x = bit number

MaxAddr=

Maximum 1/O address of the SIMOTION device depending on the version of the SIMOTION kernel, see
address range of the SIMOTION devices in "direct access and process image of the cyclical tasks
(Page 122)".

" For data type BOOL, it is not possible to define the process image for cyclic tasks. The behavior defined via an 1/0
variable for the entire byte is applicable (default: direct access).

Examples:

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Input at logic address 1022, WORD data type: PIW1022.
Output at logical address 63, bit 3, BOOL data type: PQ63.3.

Note

Observe the rules for 1/0 addresses for direct access and the process image of the cyclical

tasks (Page 124).

127

LAD/FBD programming

4.15 Access to inputs and outputs (process image, I/O variables)

41534

4154

128

Possible data types of I/O variables

The following data types can be assigned to the 1/O variables for direct access and process
image of the cyclical tasks (Page 122). The width of the data type must correspond to the
data type width of the 1/0O address.

If you assign a numeric data type to the I/O variables, you can access these variables as
integer.

Table 4- 19 Possible data types of the 1/O variables for direct access and the process image of the
cyclical tasks

Data type of I/O address Possible data types for 1/O variables
BOOL (PIn.x, PQn.x) BOOL

BYTE (PIBn, PQBn) BYTE, SINT, USINT

WORD (PIWn, PQWn) WORD, INT, UINT

DWORD (PIDn, PQDn) DWORD, DINT, UDINT

For details of the data type of the I/0 address, see also "Syntax for entering 1/O addresses
(Page 127)".

Access to fixed process image of the BackgroundTask

The process image of the BackgroundTask is a memory area in the RAM of the SIMOTION
device, on which a subset of the 1/0 address space of the SIMOTION device is mirrored.
Preferably, it should be used for programming the BackgroundTask (cyclic programming) as
it is consistent throughout the entire cycle.

The size of the fixed process image of the BackgroundTask for all SIMOTION devices is 64
bytes (address range O ... 63).

A comparison of the most important properties in comparison to the direct access and
process image of the cyclical tasks (Page 122) is contained in "Important properties of direct
access and process image (Page 120)".

NOTICE

I/O addresses that are accessed with the process image of the cyclic tasks must not be
used. These addresses cannot be read or written to with the fixed process image of the
BackgroundTask.

Note

The rules for 1/0 addresses for direct access and the process image of the cyclical tasks
(Page 124) do not apply. The accesses to the fixed process image of the BackgroundTask
are not taken into account during the consistency check of the project (e.g. during
download).

Addresses not present in the 1/0 or not configured in HW Config are treated like normal
memory addresses.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

SIMOTION LAD/FBD

4.15 Access fto inputs and outputs (process image, I/O variables)

You can access the fixed process image of the BackgroundTask by means of:

Using an absolute Pl access (Page 130): The absolute Pl access identifier contains the
address of the input/output and the data type.

Using a symbolic Pl access (Page 131): You declare a variable that references the
relevant absolute Pl access.

— A unit variable
— A static local variable in a program.

Using an 1/O variable (Page 133): In the symbol browser, you define a valid I/O variable
for the entire device that references the corresponding absolute Pl access.

NOTICE

Please note that if the inputs and outputs work with the little-endian byte order (e.g. the
integrated digital inputs of SIMOTION devices C230-2, C240, or C240 PN) and the
following conditions are fulfilled:

1.
2.

3.

then the following is valid:

For information on the order of the bytes Little Endian and Big Endian: Please refer to the

SIMOTION Basic Functions Function Manual.

The inputs and outputs are configured to an address 0 .. 62.

An 1/O variable for direct access (data type WORD, INT or UINT) has been created for
these inputs and outputs.

You also access these inputs and outputs via the fixed process image of the
BackgroundTask.

Access with the data type WORD supplies the same result via the 1/0 variable and the
fixed process image of the BackgroundTask.

The access to the individual bytes with the _gefinOutByte function (see SIMOTION
Basic Functions Function Manual) supplies these in the Little Endian order.

Access to the individual bytes or bits with the fixed process image of the
BackgroundTask supplies these in the Big Endian order.

Programming and Operating Manual, 05/2009 129

LAD/FBD programming
4.15 Access to inputs and outputs (process image, I/O variables)

4.15.4.1 Absolute access to the fixed process image of the BackgroundTask (absolute Pl access)

You make absolute access to the fixed process image of the BackgroundTask (Page 128) by
directly using the identifier for the address (with implicit data type). The syntax of the
identifier (Page 130) is described in the following section.

You can use the identifier for the absolute Pl access in the same manner as a normal
variable.

Note
Outputs can be read and written to, but inputs can only be read.

4.15.4.2 Syntax for the identifier for an absolute process image access

For the absolute access to the fixed process image of the BackgroundTask (Page 130), use
the following syntax. This specifies not only the address, but also the data type of the access
and the mode of access (input/output).

You also use these identifiers:

® For the declaration of a symbolic access to the fixed process image of the
BackgroundTask (Page 131).

® For the creation of an 1/O variables for accessing the fixed process image of the
BackgroundTask (Page 133).

Table 4-20 Syntax for the identifier for an absolute process image access

Data type Syntax for Permissible address range
Input Output

BOOL %In.x %Qn.x n: 0..632

or or X: 0.7

%IXn.x! %QXn.x!
BYTE %I1Bn %QBn n: 0..632
WORD %IWn %QWn n: 0..632
DWORD %IDn %QDn n: 0..632
n = logical address
X = bit number
" The syntax %IXn.x or %QXn.x is not permitted when defining 1/O variables.
2 Except for the addresses used in the process image of the cyclic tasks.

SIMOTION LAD/FBD
130 Programming and Operating Manual, 05/2009

LAD/FBD programming

Examples

4.15.4.3

SIMOTION LAD/FBD

4.15 Access fto inputs and outputs (process image, I/O variables)

Input at logic address 62, WORD data type: %IW62.
Output at logical address 63, bit 3, BOOL data type: %Q63.3.

NOTICE

Addresses that are accessed with the process image of the cyclic tasks must not be used.
These addresses cannot be read or written to with the fixed process image of the
BackgroundTask.

Note

The rules for 1/0 addresses for direct access and the process image of the cyclical tasks
(Page 124) do not apply. The accesses to the fixed process image of the BackgroundTask
are not taken into account during the consistency check of the project (e.g. during
download).

Addresses not present in the 1/0 or not configured in HW Config are treated like normal
memory addresses.

Defining symbolic access to the fixed process image of the BackgroundTask

You create symbolic access to the fixed process image of the Background Task in the
declaration table of the source file or the MCC chart or LAD/FBD program (only in the case
of programs). The scope of the symbolic process image access is dependent on the location
of the declaration:

® |n the interface section of the declaration table of the source file INTERFACE):

Symbolic process image access behaves like a unit variable; it is valid for the entire
source file; all MCC charts or LAD/FBD programs (programs, function blocks, and
functions) within the source file can access the process image.

In addition, these variables are available on HMI devices and, once connected, in other
source files (or other units), as well.

The total size of all unit variables in the interface section is limited to 64 Kbytes.

¢ In the implementation section of the declaration table of the source file
(IMPLEMENTATION):

Symbolic process image access behaves like a unit variable; it is only valid in the source
file; all MCC charts or LAD/FBD programs (programs, function blocks, and functions)
within the source file can access it.

® |n the declaration table for the MCC chart or LAD/FBD program (only in the case of
programs):

Symbolic process image access behaves like a local variable; it can only be accessed
within the MCC chart or LAD/FBD program in which it is declared.

No symbolic process image access can be declared in functions or function blocks.

Programming and Operating Manual, 05/2009 131

LAD/FBD programming

4.15 Access to inputs and outputs (process image, I/O variables)

41544

132

Proceed as follows; the source file or the MCC chart or LAD/FBD program (programs only)

with the declaration table is opened:

1. Select the declaration table and, if applicable, the section of the declaration table for the

desired scope.
2. Select the I1/0 Symbols tab.

3. Enter:

— Name of symbol (variable name)

— For Absolute ID, the identifier of the absolute process image access (Page 130).

— Data type of symbol (Page 132) (this must agree with the length of the process image

access).

Possible data types for symbolic Pl access

In the following cases, a data type that differs from that of the absolute Pl access can be
assigned to the fixed process image of the BackgroundTask (Page 128). The data type width
must correspond to the data type width of the absolute Pl access.

® For the declaration of a symbolic Pl access (Page 131).

® For the creation of an |/O variable (Page 133).

If you assign a numeric data type to the symbolic Pl access or to the I/O variables, you can

access these variables as integer.

Table 4- 21 Possible data types for symbolic Pl access

Data type of the
absolute Pl access

Possible data types of the
symbolic Pl access

BOOL (%In.x, %IXn.x, %Qn.x. %QXn.x)

BOOL

BYTE (%IBn, %QBn)

BYTE, SINT, USINT

WORD (%IWn, %QWn)

WORD, INT, UINT

DWORD (%IDn, %PQDn)

DWORD, DINT, UDINT

For the data type of the absolute Pl access, see also "Syntax for the identifier for an absolute

Pl access (Page 130)".

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming
4.15 Access fto inputs and outputs (process image, I/O variables)

41545 Example: Defining symbolic access to the fixed process image of the BackgroundTask

Parametersfariables 10 symbals |Structures| Enumeratinnsl

Hame Absolute identifier Data type Comment
1 input_1 “lBE2 SINT
2 output_1 FinBE2 BYTE
i

Figure 4-31 Example: Defining symbolic access to the fixed process image of the BackgroundTask

4.15.4.6 Creating an I/O variable for access to the fixed process image of the BackgroundTask

You create 1/O variables for access to the fixed process image for the background task in the
symbol browser in the detail view; you must be in offline mode to do this.

Here is a brief overview of the procedure:

1. In the project navigator of SIMOTION SCOUT, select the "I/O" element in the subtree of
the SIMOTION device.

2. In the detail view, select the Symbol browser tab and scroll down to the end of the
variable table (empty row).

3. In the last (empty) row of the table, enter or select the following:
— Name of variable.

— Under I/O address, the absolute Pl access according to the "syntax for the identifier
for an absolute Pl access (Page 130)"
(exception: The syntax %IXn.x or %QXn.x is not permitted for data type BOOL).

— Data type of the I/O variables according to the "possible data types of the symbolic PI
access (Page 132)".

4. Select optionally the display format used to monitor the variable in the symbol browser.

You can now access this variable using the symbol browser or any program of the
SIMOTION device.

Note

I/O variables can only be created in offline mode. You create the 1/O variables in SIMOTION
SCOUT and use them in your program sources.

Note that you can read and write outputs but you can only read inputs.

Before you can monitor and modify new or updated 1/O variables, you must download the
project to the target system.

You can use I/O variables like any other variable, see "Access I/O variables (Page 134)".

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 133

LAD/FBD programming

4.15 Access to inputs and outputs (process image, I/O variables)

4.15.5

134

Accessing I/O variables

You have created an I/O variable for:
® Direct access or process image of the cyclic tasks (Page 122).
® Access to the fixed process image of the BackgroundTask (Page 128).

You can use this I/O variable just like any other variable.

NOTICE

Consistency is only ensured for elementary data types.

When using arrays, the user is responsible for ensuring data consistency.

Note

If you have declared unit variables or local variables of the same name (e.g. var-name),
specify the 1/O variable using _device.var-name (predefined namespace, see the
"Predefined namespaces" table in "Namespaces").

It is possible to directly access an I/O variable that you created as a process image of a
cyclic task. Specify direct access with _direct.var-name or _device._dlirect.var-name.

If you want to deviate from the default behavior when errors occur during variable access,
you can use the _gefSafeValue and _setSafeValue functions (see SIMOTION Basic
Functions Function Manual).

For errors associated with access to 1/O variables, see SIMOT/ON Basic Functions Function
Manual.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.16 Connections fo other program source files or libraries

4.16 Connections to other program source files or libraries
In the declaration table of a source file, you can define connections to:

LAD/FBD units under the same SIMOTION device

MCC source files under the same SIMOTION device

ST source files under the same SIMOTION device

Libraries

This will then allow you to access the following in this source file:

In the case of connected program sources, the following items which are defined there

Functions

Function blocks

Programs (optional)

Unit variables

User-defined data types (structures, enumerations)

Symbolic accesses to the fixed process image of the BackgroundTask

In the case of connected libraries, the following items which are defined there

Functions
Function blocks
Programs (optional)

User-defined data types (structures, enumerations)

Program source files and libraries must be compiled beforehand.

For information about the library concept, see also the SIMOTION ST Programming Manual.

Note

Libraries can be created in all programming languages (MCC, ST, or LAD/FBD).

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009 135

LAD/FBD programming
4.16 Connections fo other program source files or libraries

4.16.1 Defining connections

4.16.1.1 Procedure for defining connections to other units (program source files)

Connections to other units (program sources) are defined in the declaration table of the
source file. The mode of action of a connection is dependent on the section of the
declaration table in which it is defined.

® |n the interface section of the declaration table:

The imported functions, variables, etc., will continue to be exported to other units and to
HMI devices. This can lead to name conflicts.

This setting is necessary, for example, if unit variables are declared in the interface
section of the source file with a data type that is defined in the imported program source
file.

® In the implementation section of the declaration table:
The imported functions, variables, etc. will no longer be exported.
This setting is usually sufficient.

Proceed as follows; the source file (declaration table) is open (see Open existing program
source files (Page 42)):

1. In the declaration table, select the section for the desired mode of action.
2. Select the Connections tab.

3. For the connection type, select: Program/Unit

4. In the same line, select the name of the unit to be connected:

Units (program sources) must be compiled beforehand.

SIMOTION LAD/FBD
136 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.16 Connections fo other program source files or libraries

4.16.1.2 Procedure for defining connections to libraries
Connections to libraries are defined in the declaration table of the source file.

Proceed as follows; the source file (declaration table) is open (see Open existing program
source files (Page 42)):

1. In the interface section of the declaration table, select the Connections tab.
2. For the connection type, select: Library.
3. In the same line, select the name of the library to be connected.

Libraries must be compiled beforehand.

4. Optionally, you can define a name space for libraries (see Using name space
(Page 137)):

To do this, enter a name under Name space.

Note

When programming the subroutine call command (see Inserting and parameterizing
subroutine calls (Page 142)) with a library function or a library function block, the
connection to the library is automatically entered into the declaration table of the program
source file; the name of the library is assigned as the name space. You can also change
the designation of the name space at a later point in time.

4.16.2 Using the name space

You can optionally assign a name space to every connected library. You define the
designation of the name space when connecting the library (see How to define connections
to libraries (Page 137)).

It is important to specify the name space if the current LAD/FBD program/MCC chart or
program source file contains variables, data types, functions, or function blocks with the
same name as the connected library. The name space will then allow you to specifically
access the variables, data types, functions, or function blocks in the library. This can also
resolve naming conflicts between connected libraries.

If you wish to use variables, data types, functions, or function blocks from the connected
library in a command in the LAD/FBD program/MCC chart, then insert the designation of the
name space in front of the variable name, etc., from the library, separated by a period (for
example, namespace.var_name, namespace.fc_name).

Name spaces are predefined for device-specific and project-specific variables, direct
accesses to I/0 variables, and variables of Taskld and Alarmld in the following table: If
necessary, write their designation before the variable name, separated by a period, e.g.
_device.var_name or _lask.task_name.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 137

LAD/FBD programming

4.16 Connections fo other program source files or libraries

138

Table 4- 22 Predefined name spaces

Name space Description

_alarm For Alarmld: The _alarm.name variable contains the Alarmld of the message with
the name identifier — see SIMOTION ST Programming Manual.

_device For device-specific variables (global device user variables, 1/O variables, system
variables, and system variables of the SIMOTION device)

_direct By means of direct access to I/O variables.
Local name space for _device. Nesting as in _device._direct. name is permitted.

_project For names of SIMOTION devices in the project; only used with technology objects
on other devices.
With unique project-wide names of technology objects, used also for these names
and their system variables

_task For TasklID: The _task.name variable contains the Taskld of the task with the name
identifier — see SIMOTION ST Programming and Operating Manual.

_to For technology objects as well as their system variables and configuration data —

see SIMOTION ST Programming and Operating Manual.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.17 Subroutine

417 Subroutine

Universal, reusable sections of a program can be created in the form of subroutines.

When a subroutine is called, the program branches from the current task into the subroutine.
The commands in the subroutine are executed. The program then jumps back to the
previously active task.

Subroutines can be called repeatedly, as required, by one or more LAD/FBD programs of the
SIMOTION device.

Subroutine as a function (FC), function block (FB), or program

SIMOTION LAD/FBD

The creation type of a subroutine can be a function (FC), a function block (FB) or, as an
option, a program ("program in program").

® Function

A function (FC) is a subroutine without static data, that is, all local variables lose their
value when the function has been executed. They are re-initialized when the function is
next started.

Data are transferred to the function using input or infout parameters; the output of a
function value (return value) is also possible.

Function block

A function block (FB) is a subroutine with static data, that is, local variables retain their
value after the function block has been executed. Only variables that have been explicitly
declared as temporary lose their value.

An instance has to be defined before using an FB: Define a variable (VAR or
VAR_GLOBAL) and enter the name of the FB as data type. The FB static data is saved in
this instance. You can define several FB instances; each instance is independent from
the others.

The static data of an FB instance remain stored until the instance is next called; they are
reinitialized when the variable type of the FB instance is initialized again (see Initialization
of instances of function blocks (FB) (Page 116)).

Data are transferred to the FB using input parameters or in/out parameters; the data are
returned from the FB using in/out or output parameters.

Programming and Operating Manual, 05/2009 139

LAD/FBD programming

4.17 Subroutine

® Program ("program in program")
You also have the option of calling a program within a different program or a function
block. This requires the following compiler options to be activated (see Global compiler
settings (Page 48) and Local compiler settings (Page 49)):

"Permit language extensions" for the program source of the calling program or
function block and

"Only create program instance data once" for the program source of the called
program. The static data of the called program is stored in the user memory of the
program source (unit) of said called program.

Most of the programming work involved in assigning the programs to the tasks can be
performed by calling up programs within another program. In the execution system, only
one associated calling program needs to be assigned to the tasks concerned.

A program is called without parameters or return values.

Further information on calling a program within a program can be found in the ST
Programming and Operating Manual.

NOTICE

The activated "Only create program instance data once" compiler option causes:

e The static variables of the programs (program instance data) to be stored in the user
memory of the program source (unit) (see the SIMOTION ST Programming and
Operating Manual). This also causes the initialization behavior to change (see the
SIMOTION ST Programming and Operating Manual).

o All called programs with the same name to use the same program instance data.

Exchange of information between the subroutine and calling program

Function (FC) and function block (FB) as a subroutine

140

Information is exchanged between the subroutine and the calling program using transfer
parameters or global variables (e.g. unit variables).

Transfer parameters can be input, input/output or output parameters. They are defined in the
declaration table for the subroutine:

® |nput parameters: As variable type VAR_INPUT
® In/out parameter: As variable type VAR_IN_OUT
® Qutput parameter (for FB only): As variable type VAR_OUTPUT

For functions, a function value can be returned; you specify the data type of the return value
when you insert (create) the function (see Insert function (FC) or function block (FB)
(Page 141)).

You assign current values to the input and/or in/out parameters when you call the subroutine
(FC or FB instance). You may only assign user-defined variables to the in/out parameters of
an FB because the called FB accesses the assigned variables directly and can therefore
change them.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.17 Subroutine

The output parameters of an FB can be read-accessed as often as required in the calling
program.

A function does not formally contain any output parameters, since the result of the function
can in this case be assigned to the return value of the function.

See also the examples of functions (Page 145) and function blocks (Page 150).

Program as subroutine ("program in program")

A program is called without parameters or return values. This means that information can
only be exchanged between the calling program and the called program (subroutine) using
global variables (e.g. unit variables).

See also

Inserting a subroutine call into the LAD/FBD program and assigning parameters (Page 142)

4171 Inserting a function (FC) or function block (FB)

The creation dialog is similar to that of an LAD/FBD program:

1. LAD/FBD unit must already exist (see Managing LAD/FBD programs (Page 52)).

2. In the project navigator, open the relevant LAD/FBD unit.
3. Double-click the entry Insert LAD/FBD program.

The input screen form opens.

Enter the name of the LAD/FBD program (see Rules for identifiers (Page 89)).

For the creation type, select Function or Function block.

With creation type Function only:

Select the data type of the return value as the return type (<--> for no return value).

Check the Exportable option if the function or function block is to be used in other
program source files (LAD/FBD, MCC or ST source files).

When the checkbox is cleared, the LAD/FBD program can only be used in the
associated LAD/FBD unit.

You can also enter an author, version, and a comment.
Confirm with OK.

4. Program the instructions in the function or function block.

Assign an expression to the return value of a function (= function name) or to the output
parameters of a function block.

5. Accept and compile the LAD/FBD unit. The subroutine you have created will then be
displayed in the list.

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009 141

LAD/FBD programming
4.17 Subroutine

4.17.2 Inserting a subroutine call into the LAD/FBD program and assigning parameters

In order to execute a call of a subroutine (function, function block, or program), the relevant
subroutine must have been inserted into the network of an LAD/FBD program from the
project navigator using drag-and-drop. When the subroutine inserted into the network is
reached during a program run, the subroutine is called and the program branches from the
current task into the subroutine.

You can use drag-and-drop to insert the following FCs, FBs, and programs into an LAD/FBD
program and call them as a subroutine:

® Functions, function blocks, or programs of the same LAD/FBD unit or a different program
source (e.g. MCC unit, ST source file).

e Library functions or library function blocks from a program library.

The subroutine call is parameterized, i.e. specifications are made as to which variables are
to be transferred when the subroutine is called and returned once it has been executed, in
the Enter Call Parameter parameter screen form.

Enter Call Parameter E3

Function Icircumference
Retumn value (OUT) Imycircumference j
Type [REAL
Hame OH/OFF Data type Value Default value
1 radius AR _IMPUT REAL myradius

Cancel | Help |

Figure 4-32 Parameterization of a function's subroutine call

SIMOTION LAD/FBD
142 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.17 Subroutine

NOTICE

Pay attention to the order of the LAD/FBD programs in an LAD/FBD unit. A subroutine
(function, function block, or program) must be defined before it is used. This is the case
when the subroutine appears above the LAD/FBD program in which it is used in the project
navigator. If necessary, reorder the LAD/FBD programs.

See also: Subroutine call of the function (FC) (Page 147)

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),
or a function block (FB).

4.17.21 Overview of parameters for

You can set the following parameters when parameterizing the subroutine call:

Overview of Subroutine call parameters

Field/Button

Explanation/instructions

Subroutine type/
Subroutine

The type and name of the subroutine are displayed here:

Function(default value)

A function is a calculation subroutine that supplies a defined result as a return
value based on the parameter entered. Functions have no memory beyond the
call.

Function block

A function block is a subroutine that can have several return values. A function
block corresponds to a data type. Instances are defined. They have a memory,
that is, they retain instance data of a function block extending over several calls.
Return values of the call can also be scanned in the instance.

Program ("program in program")

You also have the option of calling a program within a different program or a
function block.

This requires the following compiler options to be activated (see Global compiler
settings (Page 48) and Local compiler settings (Page 49)):

¢ "Permit language extensions" for the program source of the calling program
or function block and

e "Only create program instance data once" for the program source of the
called program. The static data of the called program is stored in the user
memory of the program source (unit) of said called program. The same
program instance data is used every time the program is called.

A program is called without parameters or return values.

Return value

In the case of a function-type subroutine:

Here, you enter the variable in which the return value is to be stored. The type of
variable must match the return value type.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

143

LAD/FBD programming

4.17 Subroutine

Field/Button

Explanation/instructions

Type

In the case of a function-type subroutine:
The data type of the return value is displayed.

Instance

In the case of a function block-type subroutine:

Here, enter the name of the function block instance. The instance contains the
memory of the function block in the form of instance data.

You define the instance as a variable whose data type is the name of the
function block in one of the following ways:

e In the declaration table of the LAD/FBD unit as VAR_GLOBAL
¢ In the declaration table of the LAD/FBD program as VAR

List of transfer parameters

Name

The name of the transfer parameter is displayed here.

On / Off

The variable type of the transfer parameter is displayed here.
VAR_INPUT

Input parameter (for functions and function blocks)
VAR_IN_OUT

Infout parameter (for functions and function blocks)
VAR_OUTPUT

Output parameter (for function blocks only)

Data type

The data type of the transfer parameter is displayed here.

Value

Here, you can assign current variables or values to the transfer parameters:
e Input parameter (variable type VAR_IN):

Here, you enter a variable name or an expression. The assignment of
system variables or I/O variables is permissible; type transformations are
possible.

e In/out parameter (variable type VAR_IN):

Enter a variable name; the variable must be directly writable and readable.
System variables of SIMOTION devices and technology objects are not
permitted nor are I/O variables. The data type of the in/out parameter must
correspond to that of the assigned variables; application of type
transformation functions is not possible.

e Output parameter (variable type VAR_OUTPUT - for FB only):

The assignment of an output parameter to a variable in this parameter
screen form is optional; you can also access an output parameter after
executing the function block.

When assigned in this parameter screen form: Enter a variable name. The
data type of the output parameter must correspond to that of the assigned
variables; the application of type transformation functions is not possible.

144

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.17.3

4.17.3.1

SIMOTION LAD/FBD

Example: Function (FC)

4.17 Subroutine

You want to create a subroutine with a circumference calculation for a circle. The calculation
is performed in a function (FC). This is named Circumference.

The circle circumference calculation can thus be called as a subroutine by any task.

Formula for circumference calculation: Circumference = Pl * 2 * radius

You define the Radius and Pl variables in the declaration table of the function.

Creating and programming the function (FC)

1. In the project navigator, open the LAD/FBD unit in which you want to create the function.
2. Double-click the entry Insert LAD/FBD program.

— Enter the name Circumference.

— For creation type, select Function.

— For return type (data type of return value), select REAL.
— Confirm with OK.

3. In the declaration table, define the Radius input parameters, the Diameter parameter, and
the PI constant.

Parametersivariables | /0 symbnlsl Structuresl Enumeratinnsl

Hame Variable type Data type Array length Initial value Comment
1 radiuz WAR_INPUT FRE&L
2 Pl WAR CONSTANT REAL 344159
3 distmeter WAR FRE&L
4

Figure 4-33 Declaring variables (e.g. input parameters) in the LAD/FBD program

4. Click the Insert network button on the LAD editor toolbar.

A network is inserted into the Circumference function.

5. Drag the LAD/FBD element MUL from the command library and drop it into the network of
the Circumference function twice.

Programming and Operating Manual, 05/2009

145

LAD/FBD programming

4.17 Subroutine

146

6. Program the circumference calculation for the return value by assigning the variables
accordingly to the input/output parameters of the two MUL LAD/FBD elements.

circumference - Title

radius— In2

Comment
o0l - Title
Comment
MUL MLUL
[EM EMO EM EMND |
2—IML OUT —diameter diameter—IML oUT |—circumference

PI—INZ

Figure 4-34 Programming the Circumference subroutine (e.g. assignment to a return value)

7. Accept and compile the LAD/FBD unit.

You have now finished programming the Circumference function.

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),

or a function block (FB).

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.17 Subroutine

4.17.3.2 Subroutine call of function (FC)

The function (FC) is called from a program in the example.

SIMOTION LAD/FBD

1.

Create an LAD/FBD program as a program in the same LAD/FBD unit (see Inserting a
new LAD/FBD program (Page 52)):

— Enter the name Program_circumference.
— For creation type, select Program.
— Confirm with OK.

. Declare the following in the LAD/FBD unit or the LAD/FBD program:

— The mycircum variable.
The return value of the "Circumference" function is assigned to this variable.

— The myradius variable.
This variable contains the radius and is assigned to the input parameter Radius of the
Circumference function.

Note that the validity range of the variables is dependent on the declaration location (see
Define variables (Page 104)).

| Hame | Variable type | Data type | Array length | Initial value | Comment |
1 |mycircum VAR REAL
2 |myradius VAR REAL
3|

@ You can continue to use the myumfang (mycircum) variable in the program.
Figure 4-35 Declaring a variable in the LAD/FBD program

. Click the Insert network button on the LAD editor toolbar.

A network is inserted into the Program_circumference program.

Drag the Circumference function from the project navigator and drop it into the network of
the Program_circumference program.

Select the inserted function, Circumference, followed by the Parameterize call command
from the context menu.

Programming and Operating Manual, 05/2009 147

LAD/FBD programming

4.17 Subroutine

148

4. Assign parameters to the subroutine call in the Enter Call Parameter parameter screen

form.

Comment

program_circumference - Title

Camment

001 - Title

myradius—

Circumference

ER

radius

EMNO

ouT

—mycircumference

Enter Call Parameter E3

Function

Type

Return walue [OUT]

Icircumference

Imycircumference

[

|HEAL

Hame

OHIOFF

Data type

Value

Default value

1 radius

WAR_IMPUT

REAL

myradiuz

Figure 4-36 Opened parameter screen form for assigning parameters to the subroutine call

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

LAD/FBD programming
4.17 Subroutine

5. Pay attention to the order of the LAD/FBD programs in the LAD/FBD unit. The LAD/FBD
program with the function (FC) must appear in the project navigator above the LAD/FBD
program containing the subroutine call.

In other words, the Circumference function must be positioned in the project navigator
above the Program_circumference program.

If necessary, reorder the LAD/FBD programs by selecting the relevant LAD/FBD program
in the project navigator, then selecting the Down or Up command in the context menu.

F""‘:SIMDTIDN SCOUT - example_FC_FB - [LAD,/FBD - [C230.circumference][ci

4 Froject Edit Insert Targetsystem Wiew Options Window Help
| D= (@)% S| # 5] o] 8] | <o |] X]|| =
J|<anilter> =] J| i | T R [=

=

—

E--% example_FC_FB
----- ® | Create new device
----- ®) Insert single drive unit
=-EH <230
----- @ EXECUTION SYSTEM
g 1[.'0
g— GLOEBAL DEYICE YARIABLES
-] A¥ES
[]---;] EXTERMAL ENCODERS
[-_] PATH OBJECTS
-] cams
-] TECHNOLOGY
=1 PROGRAMS
-9 Tnsert ST source file
- Insert MCC unit
- Insert DCC charts
%) Insert LADJFED unit
El-4F circumference
----- ™ Insert LADYFED program
@ circumferences[OUT] REAL circumference, [IM] REAL radiusD’/@
Gl- program_circurmferenced) s
-] LIERARIES
-] MONITOR

® Circumference function

® Program_circumference program, which contains the subroutine call of the Circumference
function

Order of LAD/FBD programs

6. Accept and compile the LAD/FBD unit.

You have now finished programming the subroutine call.

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),
or a function block (FB).

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 149

LAD/FBD programming

4.17 Subroutine

4.17.4

41741

150

Example: Function block (FB)

You want to calculate a following error. The calculation is performed in a function block (FB)
named FollError. The following error calculation can thus be called as a subroutine by any
task.

Formula for following error calculation: Difference = Specified position — Actual position

Define the required input and output parameters Set position, Actual position, and Difference
(with the other variables, if necessary) in the LAD/FBD program (function block) or LAD/FBD
unit.

Creating and programming the function block (FB)

1.

In the project navigator, open the LAD/FBD unit in which you want to create the function
block.

Double-click the entry Insert LAD/FBD program.
— Enter the name FollError.

— For creation type, select Function block.

— Confirm with OK.

In the declaration table, define the variables (e.g. input and output parameters).

Hame Variable type Data type Array length | Initial value Comment |
1 |Setpoint_position [WAR_NMPUT LREAL
2 | Actual_position WAR_IMPUT LREAL
3 |Difference WAR_CQUTPUT LREAL
4

Figure 4-37 Declaring variables (e.g. input and output parameters) in the LAD/FBD program

. Click the Insert network button on the LAD editor toolbar.

A network is inserted into the FollError function block.

Drag the LAD/FBD element SUB from the command library and drop it into the network of
the FollError function block.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

6.

4.17 Subroutine

Program the following error calculation by assigning the variables accordingly to the
input/output parameters of the SUB LAD/FBD element.

Follerror - Title
Comment

001 - Title

Comment

SUB
ER EMNO |

Setpoint_position—INL oUT |—Difference

Actual_position—INZ

Figure 4-38 Programming the following error calculation

7.

Accept and compile the LAD/FBD unit.

You have now finished programming the FollError function block.

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),
or a function block (FB).

4.17.4.2 Subroutine call of function block (FB)

In this example, the function block (FB) is called from a program.

1.

5.

Create an LAD/FBD program as a program (see Inserting a new LAD/FBD program
(Page 52)).

Create a function block instance.

— In the LAD/FBD unit or LAD/FBD program, declare the instances of the function block
along with the variables.

Note that the validity range of the instance and variables is dependent on the declaration
location (see Define variables (Page 104)).

Call the function block:
— Program the subroutine call.

After executing an instance of the function block, you can access the output parameters
at any location in the calling program.

— Program the MOVE command.

Accept and compile the program.

You have now finished programming the subroutine call.

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009 151

LAD/FBD programming

4.17 Subroutine

41743

152

Creating a function block instance

Before you can use a function block, you must define an instance. Each instance of an FB is
independent of the others; once an instance has ended, its static variables remain stored.

Instances of an FB are defined in the declaration tables of the LAD/FBD unit or of the
LAD/FBD program. The scope of the instance declaration is dependent on the location of the
declaration:

In the interface section of the declaration table of the LAD/FBD unit:

The instance behaves like a unit variable; it is valid for the entire LAD/FBD unit; all
LAD/FBD programs (programs, function blocks, and functions) within the LAD/FBD unit
can access the instance.

In addition, the instance is available on HMI devices and, once connected (see How to
define connections to other units (program source files) (Page 136)), in other LAD/FBD
units (or other units), as well.

The total size of all unit variables in the interface section is limited to 64 Kbytes.
In the implementation section of the declaration table of the LAD/FBD unit:

The instance behaves like a unit variable which is only valid in the LAD/FBD unit; all
LAD/FBD programs (programs, function blocks, and functions) within the LAD/FBD unit
can access the instance.

In the declaration table of the LAD/FBD program (for programs and function blocks only):

The instance behaves like a local variable; it can only be accessed within the LAD/FBD
program in which it is declared.

Proceed as follows; the LAD/FBD unit or the LAD/FBD program with the declaration table is
open (see Open existing LAD/FBD unit (Page 42) or Open existing LAD/FBD program
(Page 54)):

1.

Select the declaration table and, if applicable, the section of the declaration table for the
desired scope.

Select the Parameter tab.

3. Enter or select the following:

— Name of instance (variable name — see Rules for identifiers (Page 89))

— Variable type VAR or VAR_GLOBAL, depending on the declaration location (in
LAD/FBD program or LAD/FBD unit, respectively)

— Designation of the function block as data type.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4. Declare the other variables.

4.17 Subroutine

Hame ariable type Data type Array length Initial value Comment
1 myFollErrar AR follerrar
2 result WAR LREAL
3 |resut_2 VAR LREAL
4
OO O,
©) The output parameter Difference is assigned to the variable Result_2 during subsequent
program runtime. You can use the Result_2 variable for other purposes in the program.
® The output parameter Difference is assigned to the variable Result in the subroutine call. You
can use the Result variable for other purposes in the program.
® Creating an instance
@ Select the required FB as the data type.

The created function blocks are offered as data types in the drop-down list box depending on
the LAD/FBD editor settings (Page 34):

e Only function blocks with the same program source or from connected program sources or
libraries

o All function blocks defined in the project

Figure 4-39 Defining an instance of the function block and variables in the LAD/FBD program or the

SIMOTION LAD/FBD

LAD/FBD unit

Programming and Operating Manual, 05/2009

153

LAD/FBD programming

4.17 Subroutine

41744 Programming the subroutine call of the function block

1.

Drag the FollError function block from the project navigator and drop it into the network of
the program_FollError LAD/FBD program.

Select the inserted function block, FollError, followed by the Display > All Box Parameters
command from the context menu.

All the input/output parameters of the inserted function block FollError are shown.

Select the inserted function block, FollError, followed by the Parameterize call command
from the context menu.

Assign parameters to the subroutine call in the Enter Call Parameter parameter screen
form:

— In the Value column, select the Result variable for the Difference output parameter.

— Enter the instance myfollerror, defined in the declaration table, in the Instance field.
The input and in/out parameters of the FB are displayed.

Enter Call Parameter E3

Function block Ifollerror
Instance ImyFoIIError j
Hame QHOFF Data type Value Default value
1 zetpoint_position |WAR_IMPUT LREAL
2 actual_position | WAR_IMPUT LREAL
3 difference WAR_CUTPUT LREAL result

Figure 4-40 Opened parameter screen form for assigning parameters to the subroutine call

5. Confirm with OK.

6. Assign the current values to the transfer parameters:

154

— Input parameters: Variable or expression
— In/out parameter: Directly readable/writable variable
— Output parameter (optional): Variable

You can use drag-and-drop to assign unit variables and system variables from the detail
view to the input, output, or in/out parameters of the instance of the FollError function
block inserted into the LAD/FBD network.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

SIMOTION LAD/FBD

4.17 Subroutine

Comment

program_Fol1Error - Title

001 - Title

Camment

myFol1Error

EM

1.positioningstate
.commandposition

1.positioningstate
.actualposition

Axis_—

i AXTEl Jactual_position

follerraor

setpoint_position

EMNO

differencel—result

linear_axis:

Hame

Plain text

Data type

Initial value Unit | =

31 B’userdefaurtpnsitioning

User defaults for positioning

‘structaxizpostioningdefault

[-] positioningstste
ualposition

Status data for position axis

Actus n of

‘structaxizpostioningstate’

0 |mm

Feommandposition

Set position of the axis

34 LREAL 0 |mm

5 Feuperimpozedcommandyalue |Set position in the coordinater |LREAL 0 mm J
36 Fdifferencecommandtoactual |Difference betvween the setpd |LREAL 0 mm

37 Fhaomed Axis homing status ‘enumyesno’ noa |-

38 “homeposition Home position coordinate LREAL 0 mm

39 pozcommand

Execution status of '_pos mc

‘structaxisposcommand'

Figure 4-41

and-drop

Assigning system variables from the detail view to the transfer parameters using drag-

7. Pay attention to the order of the LAD/FBD programs in the LAD/FBD unit. The LAD/FBD

program with the function block must appear in the project navigator above the LAD/FBD
program containing the program with the subroutine call.
In other words, the FollError function block must be positioned in the project navigator
above the Program_FollError program.
If necessary, reorder the LAD/FBD programs by selecting the relevant LAD/FBD program
in the project navigator, then selecting the Down or Up command in the context menu.

See also: Subroutine call of the function (FC) (Page 147)

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),
or a function block (FB).

Programming and Operating Manual, 05/2009

155

LAD/FBD programming

4.17 Subroutine

4.17.4.5 Accessing the output parameters of the function block retrospectively

After an instance of the function block has been executed, the static variables of the function
block (including the output parameters) are retained. You can access the output parameters
at any point in the calling program.

If you have defined the FB instance as VAR_GLOBAL, you can also access the output
parameter in other LAD/FBD programs.

1. Insert the MOVE command into the LAD/FBD program.

2. Program the command (see figure).

program_Fol 1Error - Title

Comment

0ol - Title

Comment

myFol1Error
foTTerror

[EM EMNO |

axis_setpoint_position differencef—result
l.positioningstate
.commandposition

... Awis_Hactual_position
1l.positioningstate
.actualposition

0oz - Title

Camment

MCWVE
[EM EMO |

myFolT1Error.differ—{IN oOUT|—result_2
ence

@ @
O] Name of the FB instance @) Output parameter

Figure 4-42 Programming a variable assignment

SIMOTION LAD/FBD

156 Programming and Operating Manual, 05/2009

LAD/FBD programming
4.17 Subroutine

417.5 Limitations with advance signal switching

An output from an LAD/FBD element can only be connected in advance of an LAP/FBD
element input if both the input and output are of data type BOOL. As a result, only Boolean
advance signal switching is possible in a network.

An output parameter from an FB or a return value from an FC cannot be switched to an input
parameter of a different FB/FC, i.e. Boolean advance signal switching is not possible here
either.

Non-Boolean advance signal switching and output/input parameter switching with the FB/FC
can be implemented with the aid of an additional network and a temporary variable. If the
output from an LAD/FBD element cannot be assigned directly to the input of the other
LAD/FBD element, then the former LAD/FBD element is added to this additional network.
The same temporary variable is assigned to both output and input, and so the output and
input are switched via the temporary variable.

Alternatively, this can also be implemented with just one network and a temporary variable,
with the result that both LAD/FBD elements are in the same network.

Example of output/input parameter switching with FB/FC

In the ST programming language, with TO commands from the commands library the
"commandid" input parameter can be assigned directly with the _ gefcommandlid function.

This output/input parameter switch with FB/FC can be implemented in the LAD/FBD
programming language with an additional network for the _gefcommandid function and a
temporary variable.

The _gefcommandid function is added to the upper network, and the temporary variable
"var_commandid" is assigned to its output "OUT". The TO command _pos is added to the
lower network, and the temporary variable "var_commandid" is likewise assigned to its input
"commandid". The switching of the output "OUT" of _gefcommandid and of the input
"commandid" of _pos is thus effected using the temporary variable.

GetCommandID -

001 - MWetwork with FC "_getcommandid”

GETCOMMARN
oID ®xI6.1l
FEn ENO T

OUT—var_
commandid

002 - Metwork with To-specific Command "_pos"

—Pos BIT.1
n ENO |
wvar_—axis OUT|—war_
posaxis posResult

1o0position

war_—commandid
commandid

Figure 4-43 Output/input parameter switching with FB/FC

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 157

LAD/FBD programming

4.17 Subroutine

4.17.6 Interface adjustment with FB/FC

If the properties of an FB/FC that has been added to the network are modified, then in the
following cases there will be an interface adjustment:

1. One or more new input/output parameters are added
2. One or more unused input/output parameters are deleted
3. One or more used input/output parameters are deleted

In cases 1 and 2 the network is updated immediately when it is opened in the LAD/FBD
editor, or immediately after it is opened.

In case 3 the FB/FC call is shown in red in the network, and a manual update must be
carried out. An existing Boolean advance switching of a deleted input parameter is not
deleted; instead it is merely separated off and, for instance, shown in the LAD display as an
as an open ladder diagram in the network.

Manual update of a specific FB/FC call

To manually update a particular FB/FC call, follow these steps:
1. Click on the desired FB/FC call.
2. Select the Update call command in the context menu.

The FB/FC call is shown with the input/output parameters which are currently present, i.e.
without the deleted input/output parameters.

Manually updating all FB/FC calls

158

To manually update all the FB/FC calls for the program organization unit (POU) currently
displayed in the work area, follow these steps:

1. Click on an empty position in the network.

2. Select the Update all calls for all networks command in the context menu.
The FB/FC calls are shown with the input/output parameters which are currently present,
i.e. without the deleted input/output parameters.

For the following cases there is no interface adjustment available, and so updating must be
performed entering data manually or with Find/Replace (see restrictions under Find/Replace
in a Project (Page 81)):

e (Changing the name of the instance variable (only for FBs)

e (Changing the name, the data type of the box type of the FB/FC call

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming

4.17 Subroutine

B SIMOTION SCOUT - Interface_alignment - [LAD,/FBD - [C240.LAD_FBD_Unit_1][program_1]]

4 Project Edit Insert Target system View Options Window Help

=&]

| D|=|D%|| S| $[5e[] -]« K| <] x|

| a0 |] 3 [

| 98|

)

e I e e R e T e T
/.
= P
i Parametersf\raﬁbles |IIO symbnlsl Structu%sl Enumerationsl
E--% Interface_alignment -
_____ .IJ Create new device Nam% Variable type / Data type |
----- ™ Insert single drive unit 1 thinst 7 WAR tht 7
=-EE 240 2 i VAR Bl
..... @ EXECITION SYSTEM E i2 AR BCOL —
8= 1O 4 o VAR BOOL .
~[E= GLOBAL DEVICE WARIABLES 1 | _,|_I
-] A¥ES
[]'"_‘l EXTERMAL ENCODERS program_l - Title
[+-{_] PATH OBJECTS
[]..._‘l CAMS COomment
-] TECHNOLOGY ;
-0 PROGRAMS 001 - Title
.-® Insert ST program Comment
- Insert MCC unit .
-® Insert DCC charts /'Fbl-' nst
% Insert LAD{FED unit il
=4} LAD_FBD_Unit_L EM ENO
o FBLEIM] BOOL int, [IN] BOOL in2, [OUT] BOOL out) 14l out ol
12—z
1 b L | o)
Project |/Command library + i1 prn%am_yl 4k L&D _FED Unit_1 I
[PG/PC interface UM

Press F/ ko open Help display.

/l Yotfline mode

0] Instance variable (instance name)
Only used with FBs.
In the declaration table an FB instance is declared by specifying the instance variable with the name of the FB as
the data type. This instance variable (instance name) is used for calling up the FB.
® Data type
The relevant FB is assigned to the instance variable as its data type.
In order for an FB call to work correctly, the data type and box type must be identical, otherwise the FB call will be
displayed in red in the network.
® Box type, consisting of:
¢ the type name, e.g. MOVE, ADD etc. or the names of user programs/FBs/FCs
e the type, i.e. the selected creation type (program, FB or FC) of the LAD/FBD program
@ Instance variable (instance name)
Only for FBs.
® Name of the FB/FC (type of a (user-defined) FB/FC)

FB: The name of the FB is used as the data type in the FB instance declaration in the declaration table.

FC: The name of the FC is used as the box type.
Figure 4-44 Overview of FB/FC terms used

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

159

LAD/FBD programming
4.17 Subroutine

Display in the Detail view
Only in case 3 are the deleted input/output parameters and the deleted variables assigned to
them displayed in the Detail view in the Compile/check output window immediately after a
manual update. Deleted input parameters with Boolean advance switching are not displayed
because the advance switching is merely separated off and therefore continues to exist in
the network.

SIMOTION LAD/FBD
160 Programming and Operating Manual, 05/2009

LAD/FBD programming
4.18 Reference data

4.18 Reference data
The reference data provide you with an overview of:

® on utilized identifiers with information about their declaration and use
(Cross-reference list (Page 161)).

® on function calls and their nesting
(Program structure (Page 165))

e on the memory requirement for various data areas of the program sources
(Code attributes (Page 166))

4.18.1 Cross reference list

The cross-reference list shows all identifiers in program sources (e.g. ST source files, MCC
source files):

e Declared as variables, data types, or program organization units (program, function,
function block)

® Used as previously defined types in declarations

® Used as variables in the statement section of a program organization unit.

You can generate the cross-reference list selectively for:

® An individual program source (e.g. ST source file, MCC source file, LAD/FBD source)
® All program sources of a SIMOTION device

® All program sources and libraries of the project

® Libraries (all libraries, single library)

4.18.1.1 Creating a cross-reference list
To create the cross-reference list:

1. In the project navigator, select the element for which you want to create a cross-reference
list.

2. Select the menu Edit > Reference data > Create.

The cross-reference list is displayed in its own tab in the detail view.

Note

The generated cross-reference list is saved automatically and can be displayed selectively
after selecting the appropriate element in the project navigator. To display the cross-
reference list, select the Edit > Reference data > Display > Cross-Reference List menu
command.

When a cross-reference list is recreated, it is updated selectively (corresponding to the
selected element in the project navigator). Other existing cross-reference data are retained
and displayed, if applicable.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 161

LAD/FBD programming

4. 18 Reference data

4.18.1.2 Content of the cross-reference list

The cross-reference list contains all the identifiers assigned to the element selected in the
project navigator. The applications for the identifiers are also listed in a table:

Details of how to work with the cross-reference list are described in the section "Working with
the cross-reference list (Page 164)".

Table 4- 23 Meanings of columns and selected entries in the cross-reference list

Column Entry in column Meaning
Name Identifier name
Type Identifier type
Name ¢ Data type of variable (e.g. REAL, INT)
¢ POU type (e.g. PROGRAM, FUNCTION)
DERIVED Derived data type
DERIVED ANY_OBJECT TO data type
ARRAY ... ARRAY data type
ENUM ... Enumerator data type
STRUCT ... STRUCT data type
Declaration Location of declaration
Name (unit) Declaration in the program source name
Name (LIB) Declaration in the library name
Name (TO) System variable of the technology object name
Name (TP) Declaration in the default library specified:

e Technology package name
o std_fct = IEC library
e device = device-specific library

Name (DV) Declaration on the SIMOTION device name (e.g. I/O variable or global device
variable)
_project Declaration in the project (e.g. technology object)
_device Internal variable on the SIMOTION device (e.g. TaskStartinfo)
_task Task in the execution system
Usage Use of identifier
CALL Call as subroutine
ENUM name As element when declaring the enumerator data type name
I/0 Declaration as 1/O variable
R Read access
R (TYPE) As data type in a declaration
R/W Read and write access
STRUCT name As component when declaring the structure name
TYPE Declaration as data type or POU
Variable type (e.g. VAR, Declaration as variable of the variable type specified
VAR_GLOBAL)
w Write access

SIMOTION LAD/FBD
162 Programming and Operating Manual, 05/2009

LAD/FBD programming

4.18 Reference data

Column Entry in column

Meaning

Path specification

Path specification for the SIMOTION device or program source

Name SIMOTION device name
Name 1| Name2 e Program source nameZ2on SIMOTION device name?
e Program source nameZin library name1
Nameltaskbind.hid Execution system of the SIMOTION device name
Range Range within the SIMOTION device or program source
IMPLEMENTATION Implementation section of the program source
INTERFACE Interface section of the program source
POU type name (e.g. Program organization unit (POU) name within the program source (also MCC
FUNCTION name, chart, LAD/FBD program)
PROGRAM name)
/O address 1/O variable
TASK name Assignment for the task name
_device Global device variable
Language Programming language of the program source
Line/Block Line number of the program source (e.g. ST source file)
With MCC units or MCC charts, the following is also shown:
e Number: serial numbers for the command (block numbers) or
e DT: declaration table
Note

Activated single-step monitoring in MCC programming

Each task is assigned two variables TSI#dwuser_1 and TSl#dwuser_2, which can be written

and read.

When single step monitoring is activated, the compiler uses these variables to control single
step monitoring if at least one MCC chart is assigned to the relevant task. The user then
cannot use these variables, because their contents are overwritten by single step monitoring
and may cause undesirable side effects.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

163

LAD/FBD programming

4. 18 Reference data

4.18.1.3

41814

164

Working with a cross-reference list

In the cross-reference list you are able to:

Sort the column contents alphabetically:

— To do this, click the header of the appropriate column.
Search for an identifier or entry:

— Click the "Search" button and enter the search term.
Filter (Page 164) the identifiers and entries displayed.

Copy contents to the clipboard in order, for example, to paste them into a spread-sheet
program

— Select the appropriate lines and columns.
— Press the CTRL+C shortcut.
Print the contents ("Project" > "Print" menu).

Open the referenced program source and position the cursor on the relevant line of the
ST source file (or MCC command or LAD/FBD element):

— Double-click on the corresponding line in the cross-reference list.
or

— Place the cursor in the corresponding line of the cross-reference list and click the "Go
to application" button.

Further details about working with cross-reference lists can be found in the online help.

Filtering the cross-reference list

You can filter the entries in the cross-reference list so that only relevant entries are
displayed:

1.

Click the "Filter settings" button.

The "Filter Setting for Cross References" window will appear.

2. Activate the "Filter active" checkbox.

3. If you also want to display system variables and system functions:

5.

— Deactivate the "Display user-defined variables only" checkbox.

. Set the desired filter criterion for the relevant columns:

— Select the relevant entry from the drop-down list box or enter the criterion.

— If you want to search for a character string within an entry: Deactivate the "Whole
words only" checkbox.

Confirm with "OK."

The contents of the cross-reference list will reflect the filter settings selected.

Note
A filter is automatically activated after the cross-reference list has been created.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming
4.18 Reference data

4.18.2 Program structure

The program structure contains all the function calls and their nesting within a selected
element.

When the cross-reference list has been successfully created, you can display the program
structure selectively for:

® An individual program source (e.g. ST source file, MCC source file, LAD/FBD source)
® All program sources of a SIMOTION device

® All program sources and libraries of the project

® Libraries (all libraries, single library, individual program source within a library)

Follow these steps:

1. In the project navigator, select the element for which you want to display the program
structure.

2. Select the menu Edit > Reference data > Display > Program structure.

The cross-reference tab is replaced by the program structure tab in the detail view.

4.18.2.1 Content of the program structure
A tree structure appears, showing:
® as base respectively

— the program organization units (programs, functions, function blocks) declared in the
program source, or

— the execution system tasks used

® below these, the subroutines referenced in this program organization unit or task.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 165

LAD/FBD programming

4. 18 Reference data

4.18.3

166

For structure of the entries, see table:

Table 4- 24 Elements of the display for the program structure

Element

Description

Base
(declared POU or
task used))

List separated by a comma

Identifier of the program organization unit (POU) or task

Identifier of the program source in which the POU or task was declared,
with add-on [UNIT]

Minimum and maximum stack requirement (memory requirement of the
POU or task on the local data stack), in bytes [Min, Max]

Minimum and maximum overall stack requirement (memory requirement of

the POU or task on the local data stack including all called POUs), in bytes
[Min, Max]

Referenced POU

List separated by a comma:

Identifier of called POU

Optionally: Identifier of the program source / technology package in which
the POU was declared:

Add-on (UNIT): User-defined program source
Add-on (LIB): Library
Add-on (TP): System function from technology package

Only for function blocks: Identifier of instance

Only for function blocks: Identifier of program source in which the instance
was declared:

Add-on (UNIT): User-defined program source

Add-on (LIB): Library

Line of (compiled) source in which the POU is called; several lines are
separated by "|".

Code attributes

You can find information on or the memory requirement of various data areas of the program
sources under code attribute.

When the cross-reference list has been successfully created, you can display the code

attributes selectively for:

e An individual program source (e.g. ST source file, MCC source file, LAD/FBD source)

® All program sources of a SIMOTION device

® All program sources and libraries of the project

® Libraries (all libraries, single library, individual program source within a library)

Follow these steps:

1. In the project navigator, select the element for which you want to display the code

attributes.

2. Select the Edit > Reference data > Display > Code attributes menu.

The Cross-references tab is now replaced by the Code attributes tab in the detail view.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

LAD/FBD programming
4.18 Reference data

4.18.3.1 Code attribute contents
The following are displayed in a table for all selected program source files:
® [dentifier of program source file,
¢ Memory requirement, in bytes, for the following data areas of the program source file:

— Dynamic data: All unit variables (retentive and non-retentive, in the interface and
implementation sections),

— Retain data: Retentive unit variables in the interface and implementation section,

— Interface data: Unit variables (retentive and non-retentive) in the interface section,

o Number of referenced sources.

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009 167

Functions 5

This chapter provides a detailed description of the commands with the parameters. The
commands described are applicable to both the LAD editor and the FBD editor. Examples
are provided to illustrate individual commands in the LAD and FBD editors. Where there are
differences such as bit logic, you should refer to the relevant LAD bit logic instructions
(Page 169) editor.

Note

Functions not described in this section can be found in the Function Descriptions of the ST
programming language.

5.1 LAD bit logic instructions

Bit logic operations work with the numbers 1 and 0. These numbers form the basis of the
binary system and are called binary digits or bits. In connection with AND, OR, XOR and
outputs, a 1 stands for logic YES and a 0 for logic NO.

The bit logic operations interpret the signal states 1 and 0 and link them according to
boolean logic.

The following bit logic operations are available:

® | |--- NO contact

® —|/]--- NC contact

e XOR Linking EXCLUSIVE OR

® () Relay coil, output

® - (#)--- Connector

® - |NOT]|--- Invert signal state

The following operations react to a signal state of 1:
® - (S) Setoutput

® ——(R) Reset output

SR Prioritize set flip-flop

RS Prioritize reset flipflop

Some operations react to a rising or falling edge change, so that you can perform one of the
following operations:

® —(N)-Scanedge1->0
® —(P)-Scanedge0->1
® NEG edge detection (falling)
® POS edge detection (rising)

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 169

Functions

5.1 LAD bit logic instructions

5.1.1

Symbol

Description

Example

170

---| |--- NO contact
<Operand>
| |-
Parameters Data type Description
<Operand> BOOL Scanned bit

—| |- (NO contact) is closed if the value of the scanned bit, saved at the specified
<Operand>, is equal to 1.

Otherwise, if the signal state at the specified <address> is "0", the contact is open.

With series connections, the ---| |--- contact is linked by AND. With parallel connections, the
contact is linked by OR.

EI0.0

%I0.1

| ']
[[
%I0.2

Current can flow if:

The state at the inputs %I 0.0 AND %I 0.1 = 1 OR the state at input %Il 0.2 = 1.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.1 LAD bit logic instructions

5.1.2 ---| / |--- NC contact
Symbol
<Operand>
—|/|—
Parameters Data type Description
<Operand> BOOL Scanned bit
Description

-—| / |- (NC contact) is closed if the value of the scanned bit, saved at the specified
<Operand>, is equal to 0.

Otherwise, if the signal state at the specified <address> is "1", the contact is open.

With series connections, the ---| / |- contact is linked bit for bit by AND. With parallel
connections, the contact is linked by OR.

Example

Current can flow if:

The state at the inputs %I 0.0 AND %I 0.1 = 1 OR the state at input %l 0.2 = 0.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

171

Functions

5.1 LAD bit logic instructions

5.1.3

Symbol

Description

Example

172

<Operand 1>

XOR Linking EXCLUSIVE OR

<Operand 2>

Vi

<Operand 1>
||

<Operand 2>
|

i

For the function XOR, a network of NC contacts and NO contacts must be created:

Parameters Data type Description
<Operand> BOOL Scanned bit
<Operand> BOOL Scanned bit

‘ %I10.0 x¥I10.1 04,0
| | | Foo |
[VA| [LI I
%I0.0 HI0.1

The value of an XOR (Link EXCLUSIVE OR) link is 1 if the signal states of both specified bits
are different.

Output %Q 4.0 is 1 if (%I 0.0 = 0 AND %I 0.1 = 1) OR (%! 0.0 = 1 AND %l 0.1 = 0).

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions
5.1 LAD bit logic instructions

514 ---|NOT|--- Invert signal state

Symbol
- INOT|---

Description
-—|NOT|--- (Invert signal state) inverts the signal bit.

Example

Output %Q 4.0 is O if:

The state at input %I 0.0 = 1 OR the state at %I 0.1 AND
%1 0.2 =1.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 173

Functions

5.1 LAD bit logic instructions

5.1.5

Symbol

Description

Example

174

---() Relay coil, output

<Operand>

—()
Parameters Data type Description
<Operand> BOOL Assigned bit

—- () (Relay coil, output) works like a coil in a circuit diagram. If current flows to the coil, the
bit at the <Operand>is set to 1. If no current flows to the coil, the bit at the <Operand> is set
to 0. An output coil can only be positioned at the right-hand end of a ladder diagram line in a
ladder logic. A negated output can be created with the operation ---|NOT|---.

Output %Q 4.0 is 1 if:
(The state at input %I 0.0 AND %I 0.1 = 1) OR the state at input %1 0.2 = 0.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.1 LAD bit logic instructions

5.1.6 ---(#)--- Connector (LAD)
Symbol
<Operand>
—(#)
Parameters Data type Description
<Operand> BOOL Assigned bit
Description

---(#)-— (Connector) is an interposed element with assignment function which saves the
current signal state of the signal flow at a specified <Operand>. This assignment element
saves the bit logic of the last opened branch in front of the assignment element. If connected
in series with other elements, the ——(#)—-operation is inserted as a contact. The ---(#)--
element can never be connected to the conductor bar, nor positioned directly behind a
branch, nor used as the end of a branch. A negated element ---(#)--- can be created with
the element ---|[NOT]|--- (Invert signal state).

Example
‘ %I1.0 %11.1 waARL %I1.2 VARZ %04, 0
[[[o# [e | [#0 [o | [[
| i i ") 1 [MOT | LT [MOT | L R
%I1.0 %I1.1
[l
i
%I11.0 %¥11.1 varl %11. 2 %11. 3
[l P [l |
11 *) 1 noT

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

175

Functions

5.1 LAD bit logic instructions

5.1.7

Symbol

Description

Example

176

---(R) Reset output (LAD)

<Operand>

—(R)
Parameters Data type Description
<Operand> BOOL Assigned bit

—(R) (Reset output) is executed only if the signal state of the previous operations is 1
(signal flow at the coil). If current flows to the coil (signal state is 1), the specified <Operand>

of the element is then set to 0.

A signal state of 0 (no signal flow at the coil) has no effect, so that the signal state of the
operand of the specified element is not changed.

Output %Q 4.0 is only reset if:

(The state at input %I 0.0 AND at input %I 0.1= 1) OR the state at input %I 0.2 = 0.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions
5.1 LAD bit logic instructions

5.1.8 —(S) Set output (LAD)
Symbol
<Operand>
—(S)
Parameters Data type Description
<Operand> BOOL Set bit
Description

-—(S) (Set output) is executed only if the signal state of the previous operations is 1 (signal
flow at the coil). If the signal state is 1, the specified <Operand> of the element is set to 1.

A signal state = 0 has no effect, so that the current signal state of the specified element's
operand is not changed.

Example

Output %Q 4.0 is only set to 1 if:
(The state at input %1 0.0 AND %I 0.1 = 1) OR the state at input %1 0.2 = 0.

If the signal state is 0, the signal state of output %Q 4.0 remains the same.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 177

Functions

5.1 LAD bit logic instructions

5.1.9 RS Prioritize reset flipflop

Symbol
<Operand
of the RS type>
RS
—1Ss Ql—
— R1
Parameters Data type Description
<Operand> RS Instance variable of FB type RS
S BOOL Enable set
R1 BOOL Enable reset
Q1 BOOL Signal state of <address>
Description
RS (Prioritize reset flipflop) is reset if the state at input R1 is 1, and 0 at input S. Otherwise, if
input R1 has state 0 and input S has state 1, the flipflop is set.
The operations S (set) and R1 (reset) are executed only if the pending signal = 1. If the
pending signal = 0, these operations are not affected and the specified operand is not
changed. If the pending signal at both inputs is 1, the RS is reset.
Example
vaprl
%I0.0 RE %04 . 0
— 5 ar—
%10.1—{rl

If the state at input %I 0.0 = 1 and at input %l 0.1 = 0, the state flag VAR1 is set and %Q 4.0
is 1. Otherwise, if the signal state at input %I 0.0 = 0 and the state at input %I 0.1 =1, the
state flag VAR1 is reset and %Q 4.0 is 0. If both signal states are 0, nothing is changed. If
both signals are 1, the reset operation has priority. VAR1 is reset and %Q 4.0 is 0.

SIMOTION LAD/FBD
178 Programming and Operating Manual, 05/2009

Functions

5.1.10 SR Prioritize set flipflop

Symbol

<Operand
of the SR type>

SR
— st Qlf—
—R

5.1 LAD bit logic instructions

Parameters Data type

Description

<Operand> SR

Instance variable from FB type SR

S1 BOOL

Enable set

R BOOL

Enable reset

Q1 BOOL

Signal state of <address>

Description

SR (Prioritize set flipflop) is set if input S1 has state 1 and input R has state 0. Otherwise, if
input S1 has state 0 and input R has state 1, the flipflop is reset.

The operations S1 (set) and R (reset) are executed only if the pending signal = 1. If the
pending signal = 0, these operations are not affected and the specified operand is not
changed. If the pending signal at both inputs is 1, then SR is set.

Example

VARL

EI0.0

%I0.1

s1

Sk

al

040

—

If the state at input %I 0.0 is 1 and at input %I 0.1 = 0, the state flag VAR1 is set and %Q 4.0
is 1. Otherwise, if the state at input %I 0.0 = 0 and the state at input %I 0.1 = 1, the state flag
VAR1 is reset and %Q 4.0 is 0. If both signal states are 0, nothing is changed. If both signals
are 1, the set operation has priority. VAR1 is set and %Q 4.0 is 1.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

179

Functions

5.1 LAD bit logic instructions

5.1.11 --(N)-- Scan edge 1 -> 0 (LAD)

Symbol
<Operand>
(N)---
Parameters Data type Description
<Operand> BOOL N connector bit, saves the previous signal state
Description
—(N)--- (Scan edge 1 -> 0) recognizes a signal state change in the operand from 1 to 0 and
displays this after the operation with signal state = 1. The current signal state is compared to
the signal state of the operand, the N connector. If the signal state of the operand is 1 and
the signal state before the operation is 0, then the signal after the operation is 1 (pulse), in all
other cases 0. The signal before the operation is saved in the operand.
Example

¥I0.0 x¥I0.1 VAR casl

| | | | foMo IJMP)
[I I L J L

The N-connector saves the signal state of the result of the entire bit logic.

If the signal state changes from 1 to 0 the jump to the CAS1 jump label is performed.

SIMOTION LAD/FBD
180 Programming and Operating Manual, 05/2009

Functions

5.1.12 --(P)-- Scan edge 0 -> 1 (LAD)

5.1 LAD bit logic instructions

Symbol
<Operand>
(P)--
Parameters Data type Description
<Operand> BOOL P connector bit, saves the previous signal state
Description
-—(P)--- (Scan edge 0 -> 1) recognizes a signal state change in the operand from 0 to 1 and
displays this after the operation with signal state = 1. The current signal state is compared to
the signal state of the operand, the P connector. If the signal state of the operand is 0 and
the signal state before the operation is 1, then the signal after the operation is 1 (pulse), in all
other cases 0. The signal before the operation is saved in the operand.
Example
%I0.0 %T0.1 Casl
—| | P
%I10.2

The P-connector saves the signal state of the result of the entire bit logic. If the signal state
changes from 0 to 1 the jump to the CAS1 jump label is performed.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

181

Functions

5.1 LAD bit logic instructions

5.1.13 NEG edge detection (falling)

Symbol
<Operand 1>
NEG
u— Q —
<Operand 2> —— M_Bit
Parameters Data type Description
<Operand1> BOOL Scanned signal
<Operand2> BOOL Connector bit, saves the previous signal state from
<Operand1>
Q BOOL Signal change detection
Description
NEG (edge detection) compares the signal state of <Operand1> with the signal state of the
previous scan, which is saved in <Operand2>. If the current state of the signal is 0 and the
previous state was 1 (detection of a falling edge), output Q is 1 after this function, in all other
cases 0.
Example
WARL
%10.0 %I10.1 %I0.2 NEG %I0.4 %04.0
[| [l | Q [| {0 |
| [[N] Lo |

WARZ —M_BIT

Output %Q 4.0 is 1 if:

(The state at %I 0.0 AND at %l 0.1 AND at %l 0.2 = 1) AND VAR1 has a falling edge AND
the state at %1 0.4 = 1.

SIMOTION LAD/FBD
182 Programming and Operating Manual, 05/2009

Functions

5.1 LAD bit logic instructions

5.1.14 POS edge detection (rising)

Symbol
<Operand 1>
POS
J— Q —
<Operand 2> — M_Bit
Parameters Data type Description
<Operand1> BOOL Scanned signal
<Operand2> BOOL Connector bit, saves the previous signal state from
<Operand1>
Q BOOL Signal change detection
Description
POS (edge detection) compares the signal state of <Operand1> with the signal state of the
previous scan, which is saved in <Operand2>. If the current state of the signal is 1 and the
previous state was 0 (detection of a rising edge), output Q is 1 after this operation, in all
other cases 0.
Example
WaR1
%10.0 %¥10.1 %¥10.2 PGS %10.4 %04, 0
[| Il |l Q [| P |
|] i [11 Vo |

VARZ—M_BIT

Output %Q 4.0 is 1 if:

(The state at %I 0.0 AND at %l 0.1 AND at %l 0.2 = 1) AND VAR1 has a rising edge AND
the state at %1 0.4 = 1.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 183

Functions
5.1 LAD bit logic instructions

5.1.15 Open branch

Parallel branches are opened downward.
Parallel branches are always opened behind the selected LAD element.

Procedure
To open a parallel branch downward, follow these steps:

1. Use the cursor to select the position where the branch is to be opened.

| 77 7
|
|

2. Click the hl button (shortcut F8) on the LAD editor toolbar.

The branch is opened behind the selected element.

e

! g 4 ’

5.1.16 Close branch

Parallel branches are closed upward.

Parallel branches are always closed behind the selected LAD element.

Procedure
To close a parallel branch upward, follow these steps:

1. Use the cursor to select the position where the branch is to be closed.

‘ 777
|
1

2. Click the il button (shortcut F9) on the LAD editor toolbar.

The branch is closed behind the selected element.

‘ 777
| | |
| 1

v

SIMOTION LAD/FBD
184 Programming and Operating Manual, 05/2009

Functions

5.2 FBD bit logic instructions

5.2 FBD bit logic instructions

FBD bit logic instructions

Bit logic operations work with the numbers 1 and 0. These numbers form the basis of the
binary system and are called binary digits or bits. In connection with AND, OR, XOR and
outputs, a 1 stands for logic YES and a 0 for logic NO.

The bit logic operations interpret the signal states 1 and 0 and link them according to
boolean logic.

The following bit logic operations are available in the FBD editor:
e & AND box

o >=1 OR box

® XOR Exclusive OR box

® [=] Assignment

® [#] Connector

The following operations react to a signal state of 1:

® [R] Reset assignment

® [S] Set assignment

RS Prioritize reset flipflop
® SR Prioritize set flip-flop

Some operations react to a rising or falling edge change, so that you can perform one of the
following operations:

® [N]Scanedge1->0

® [P] Scan edge 0 -> 1

® NEG edge detection (falling)

® POS edge detection (rising)

The other operations directly affect the signal states:
® | Inserting a binary input

® --0| Negating a binary input

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 185

Functions

5.2 FBD bit logic instructions

5.2.1 & AND box

Symbol
&
<Operand> — —
<Operand> —
Parameters Data type Description
<Operand> BOOL Scanned bit
Description
With the AND operation, you can scan the signal states of two or more specified operands at
the inputs of an AND box. If the signal status of all operands is 1, the condition is fulfilled and
the result of the operation is 1. If the signal status of one operand is 0, the condition is not
fulfilled and the operation returns a result of 0.
Example
%I1. 0—| #4.0
%I1.1 =
Output %Q 4.0 is set when the signal state at input %I 1.0 AND %l 1.1 is 1.
SIMOTION LAD/FBD
186 Programming and Operating Manual, 05/2009

Functions

5.2.2 >=1 OR box

5.2 FBD bit logic instructions

Symbol
>=1
<Operand> —
<Operand> —
Parameters Data type Description
<Operand> BOOL Scanned bit
Description
With the OR operation, you can scan the signal states of two or more specified operands at
the inputs of an OR box. If the signal status of one of the operands is 1, the condition is
fulfilled and the result of the operation is 1. If the signal status of all operands is 0, the
condition is not fulfilled and the operation returns a result of 0.
Example
%11, 0—] »=1 #0d. 0
%I1.1— =

Output %Q 4.0 is set when the signal state at input %I 1.0 OR %l 1.1 is 1.

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

187

Functions

5.2 FBD bit logic instructions

5.2.3 XOR EXCLUSIVE OR box

Symbol
XOR
<Operand> — —
<Operand> —
Parameters Data type Description
<Operand> BOOL Scanned bit
Description
In an EXCLUSIVE OR box, the signal state is 1 if the signal state of one of the two specified
operands is 1.
Example

%711, 0—] YOR .0

%I1.1— =

At output %Q 4.0, the signal state is 1 if the signal state is 1 either EXCLUSIVELY at input

%! 0.0 OR at input %I 0.1.

188

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.2 FBD bit logic instructions

524 --| Inserting a binary input
Symbol
<Operand>
—|
Parameters Data type Description
<Operand> BOOL Scanned bit
Description

The Insert binary input operation inserts a binary input in an AND, OR, or XOR box behind
the selection mark.

Example

¥11.0—] &
%11, 1] %4, 0

%I1.2— =

Output % Q 4.0 is 1 when the state %I 1.0 AND %I 1.1 AND %Il 1.2 = 1.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 189

Functions

5.2 FBD bit logic instructions

5.2.5

Symbol

Description

Example

190

--0| Negating a binary input

<Operand>

_Ol

Parameters Data type Description
<Operand> BOOL Scanned bit

The Negate binary input operation negates the signal state.

All binary inputs of any elements can be negated.

%¥11.0 &
%I1.1 Lz
%¥11.2 &
%I1.3
o ==1
%I1.4— ||

S

Output %Q 4.0 is 1 if:
® The signal state at %I 1.0 AND %l 1.1 is NOT 1

e AND the signal state at %l 1.2 AND %l 1.3 is NOT 1
® OR the signal state at %l 1.4 = 1.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.2.6 [=] Assignment

Symbol

<Operand>

— =]

5.2 FBD bit logic instructions

Parameters

Data type Description

<Operand>

BOOL Assigned bit

Description

The Assignment operation supplies the value. The box at the end of the logic operation
carries a signal of 1 or 0 according to the following criteria:

® The output carries a signal of 1 when the conditions of the logic operation are fulfilled
before the output box.

e The output carries a signal of 0 when the conditions of the logic operation are not fulfilled
before the output box.

The FBD logic operation assigns the signal state to the output that is addressed by the
operation. If the conditions of the FBD logic operation are fulfilled, the signal state at the
output box is 1. Otherwise, the signal state is 0.

Example

¥I0.0— &

%I0.1-

040

BIO0. 2~

L]

Output %Q 4.0is 1if:
e Atinputs %I 0.0 AND %l 0.1, the signal state is 1,

® OR%l0.2=0.

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

191

Functions

5.2 FBD bit logic instructions

5.2.7 [#] Connector (FBD)

Symbol

<Operand>

—]

Parameters

Data type

Description

<Operand1>

BOOL

Assigned bit

Description

The Connector operation is an intermediate assignment element that stores the signal state.
Specifically, this assignment element saves the bit logic of the last opened branch in front of
the assignment element.

Example

¥11.0— & VAR4

*I1.1—

4>| : L &

%11.2 &

¥I1. 3

VARL

#
43| L =1

%11.4_l #

VARZ2

VARS 4.0

1

Connectors store the following logic operation results:

VAR4 saves the negated signal state of

%I11.0
%I11.1

VAR1 saves the negated signal state of

%I1.2
%I1.3

VAR?2 saves the negated signal state of %l 1.4.

VARS saves the negated signal state of the entire bit logic operation.

192

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.2.8 [R] Reset assignment (FBD)

5.2 FBD bit logic instructions

Symbol
<Operand>
Parameters Data type Description
<Operand> BOOL Assigned bit
Description
The Reset assignment operation then is only performed when the signal state = 1. If the
signal state = 1, the specified operand is reset to 0 by the operation. If the signal state = 0,
the operation does not affect the specified operand. The operand remains unchanged.
Example
%¥10.0— &
%10.1— *od. 0
— »=1
%10, 2-of R

The signal state at output %Q 4.0 is only reset to 0 if:
® The signal state is 1 at inputs %I 0.0 AND %]l 0.1

® OR the signal state at input %1 0.2 =0

If the signal state of the branch = 0, the signal state at output %Q 4.0 is not changed.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

193

Functions

5.2 FBD bit logic instructions

5.2.9

Symbol

Description

Example

194

[S] Set assignment (FBD)

<Operand>

Parameters

Data type

Description

<Operand>

BOOL

Set bit

The Set assignment operation is only performed when the signal state = 1. If the signal state
=1, the specified operand is reset to 1 by the operation. If the signal state = 0, the operation
does not affect the specified operand. The operand remains unchanged.

¥I0.0— &
%10, 1—

BIO0. 2~

040

S

The signal state at output %Q 4.0 is only reset to 1 if:
® The signal state is 1 at inputs %! 0.0 AND %l 0.1

® OR the signal state at input %1 0.2 =0
If the signal state of the branch = 0, the signal state of %Q 4.0 is not changed.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.2 FBD bit logic instructions

5.2.10 RS Prioritize reset flipflop

Symbol
<Operand
of the RS type>
RS
—S Ql—
— R1
Parameters Data type Description
<Operand> RS Instance variable of FB type RS
S BOOL Enable set
R1 BOOL Enable reset
Q1 BOOL Signal state of <address>
Description
The Prioritize reset flipflop operation only performs operations such as Set assignment (S) or
Reset assignment (R) only if the signal state = 1. A signal state of 0 does not affect these
operations: The operand specified in the operation is not changed.
Prioritize reset flipflop is reset when the signal state at input R = 1 and the signal state at
input S = 0. The flipflop is set when input R = 0 and input S = 1. If the signal state at both
inputs is 1, the flipflop is reset.
Example
WARL
%10.0— &
R=
IO 1o ||z
%I10.0 & %04 . 0
%I0.1— e ol =

If %1 0.0 =1 and %l 0.1 = 0, the VAR1 variable is set and output %Q 4.0 is 1. If %1 0.0 =0
and %I 0.1 = 1, the VAR1 variable is reset and output %Q 4.0 is 0.

If both signal states are 0, a change occurs. If both signal states are 1, the reset operation
has priority due to the sequence. VAR1 is reset and %Q 4.0 is 0.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 195

Functions

5.2 FBD bit logic instructions

5.2.11 SR Prioritize set flipflop

Symbol
<Operand
of the SR type>
SR
—1 51 Q1}—
—R
Parameters Data type Description
<Operand> SR Instance variable from FB type SR
S1 BOOL Enable set
R BOOL Enable reset
Q1 BOOL Signal state of <address>
Description
The Prioritize set flipflop operation performs operations such as Set (S) or Reset (R) only if
the signal state = 1. A signal state of 0 has no effect on these operations; the operand
specified in the operation is not changed.
Prioritize set flipflop is set when the signal state at input S = 1 and the signal state at input R
= 0. The flipflop is reset when input S = 0 and input R = 1. If the signal state at both inputs is
1, the flipflop is set.
Example
vaprl
¥10.0— &
SR
IO, 1 =
%I0.0 & %04 . 0
%I0.1 e o =

If %1 0.0 =1 and %I 0.1 = 0, the VAR1 variable is set and %Q 4.0 is 1. If %I 0.0 = 0 and %I
0.1 =1, the VAR1 is reset and %Q 4.0 is 0. If both signal states are 0, nothing is changed. If
both signals are 1, the set operation has priority. VAR1 is set and %Q 4.0 is 1.

SIMOTION LAD/FBD
196 Programming and Operating Manual, 05/2009

Functions

5.2.12 [N] Scan edge 1 -> 0 (FBD)

Symbol

<Operand>

— v]

5.2 FBD bit logic instructions

Parameters

Data type

Description

<Operand>

BOOL

N connector bit, saves the previous signal state

Description

The Scan edge 1 -> 0 recognizes a signal state change in the specified operands from 1 to 0
(falling edge) and displays this after the operation with signal state = 1. The current signal
state is compared to the signal state of the operand, the edge variable. If the signal state of
the operand is 1 and the signal state before the operation is 0, then the signal after the
operation is 1 (pulse), in all other cases 0. The signal state before the operation is saved in

the operand.

Example

%I1. 0—
%I1.1

¥1l.2— &

M
%I1.3— P

%11.4% & I_I

N

VAR 04,0

S SRS

The VAR4 variable saves the signal state.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

197

Functions

5.2 FBD bit logic instructions

5.2.13

Symbol

Description

Example

198

[P] Scan edge 0 -> 1 (FBD)

<Operand>

— r]

Parameters

Data type

Description

<Operand>

BOOL

P connector bit, saves the previous signal state

The Scan edge 0 -> 1 recognizes a signal state change in the specified operands from 0 to1
(rising edge) and displays this after the operation with signal state = 1. The current signal
state is compared to the signal state of the operand, the edge variable. If the signal state of
the operand is 0 and the signal state before the operation is 1, then the signal state after the
operation is 1, in all other cases 0. The signal state before the operation is saved in the

operand.
%¥11.0— & VARL
FI
%I1.1—
&
¥11.2—| & VARZ

M
%I1.3— P

%11.4% & I_I

N

VAR 04,0

S SRS

The VAR1 variable saves the signal state.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.2 FBD bit logic instructions

5.2.14 NEG edge detection (falling)

Symbol
<QOperand>
NEG
J— Q —
— M_BIT
Parameters Data type Description
<Operand1> BOOL Scanned signal
M_BIT BOOL The M-BIT operand indicates the variable in which the
previous signal state of NEG is saved.
Q BOOL Signal change detection
Description
The Edge detection (falling) operation compares the signal state of <Operand1> with the
signal state of the previous scan, which is saved in M_BIT. If a change has occurred from 1
to 0, then output Q = 1, in all other cases 0.
Example
%I0.3
NEG
_ %04 . 0
WVARL—{M_BIT alr—=

%10, 4— =

Output %Q 4.0is 1if:
® |nput %l 0.3 has a falling edge
e AND the signal state at input %l 0.4 = 1.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 199

Functions
5.2 FBD bit logic instructions

5.2.15 POS edge detection (rising)

Symbol
<Operand>
POS
J— Q —
— M_BIT
Parameters Data type Description
<Operand1> BOOL Scanned signal
M_BIT BOOL The M-BIT operand indicates the variable in which the
previous signal state of POS is saved.
Q BOOL Signal change detection
Description
The Edge detection (rising) operation compares the signal state of <Operand1> with the
signal state of the previous scan, which is saved in M_BIT. If a change has occurred from 0
to 1, then output Q = 1, in all other cases 0.
Example
%10.3
FOS
_| %04.0
VARL—|M_BIT Az

%I0.4— =

Output %Q 4.0 is 1 if:
® Input %I 0.3 has a rising edge
e AND the signal state at input %l 0.4 = 1.

SIMOTION LAD/FBD
200 Programming and Operating Manual, 05/2009

Functions
5.3 Relational operafors

5.3 Relational operators
5.3.1 Overview of comparison operations
Description

The inputs IN1 and IN2 are compared using the following comparison methods:

=IN1 is equal to IN2

<> IN1 is not equal to IN2

> IN1 is greater than IN2

< IN1 is less than IN2

>=IN1 is greater than or equal to IN2
<= IN1 is less than or equal to IN2

The following comparison operation is available:

® CMP comparator

5.3.2 CMP Compare numbers

Icons
CMP CMP CMP
= > >=
IN1T— IN1T— IN1T—
IN2— - IN2— - IN2— —
CMP CMP CMP
<> < <=
IN1T— IN1T— IN1T—
IN2— - IN2— - IN2— —

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 201

Functions

5.3 Relational operafors

202

Table 5-1 Parameters for CMP <, CMP > CMP >=, CMP <=
Parameter Data type Description
Box output BOOL Result of the comparison,
processing is only continued if the signal state at
the box input = 1.
IN1 ANY_NUM' First comparison value
ANY_BIT
DATE
TIME_OF_DAY (TOD)
DATE_AND_TIME (DT)
TIME
STRING?2
IN2 ANY_NUM' Second comparison value
ANY_BIT
DATE

TIME_OF_DAY (TOD)
DATE_AND_TIME (DT)
TIME

STRING?

string.

The first and second comparison values must be of the same data type, e.g. ANY_NUM and
ANY_NUM, DATE and DATE, STRING and STRING.

"It must be possible to convert both comparison values into the most powerful data type by means of
implicit conversion.

2Variables of the STRING data type can be compared irrespective of the declared length of the

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

Table 5- 2 Parameter for CMP =, CMP <>

5.3 Relational operafors

Parameter

Data type

Description

Box output

BOOL

Result of the comparison,
processing is only continued if the signal state at
the box input = 1.

IN1

ANY_NUM'

ANY_BIT

DATE

TIME_OF_DAY (TOD)
DATE_AND_TIME (DT)
TIME

STRING?2
Enumeration3

Array3

Structure3
STRUCTTASKID
STRUCTALARMID
ANYOBJECT

First comparison value

IN2

ANY_NUM'

ANY_BIT

DATE

TIME_OF_DAY (TOD)
DATE_AND_TIME (DT)
TIME

STRING?2
Enumeration3

Array?

Structure?
STRUCTTASKID
STRUCTALARMID
ANYOBJECT

Second comparison value

string.

The first and second comparison values must be of the same data type, e.g. ANY_NUM and
ANY_NUM, DATE and DATE, STRING and STRING.

1t must be possible to convert both comparison values into the most powerful data type by means of
implicit conversion.

2Variables of the STRING data type can be compared irrespective of the declared length of the

3The data type specifications (see the SIMOTION ST Programming and Operating Manual) must be
identical for both comparison values.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

203

Functions

5.3 Relational operafors

Description

Example

204

CMP (Compare numbers) can be used like a normal contact. The box can be used at the
positions where a normal contact can also be positioned. IN1 and IN2 are compared with the
comparison method selected by you.

If the comparison is true, then the value of the operation is 1. The value of the whole ladder
diagram line is linked by AND if the comparison element is connected in series or by OR if

the box is connected in parallel.

%I0.0 %10.1 %I10.2 %4, 0
[
| I cmp || {
=
WARL —|
WARZ —
Representation in the LAD editor
Chp
VARL— 7T %10, 0
%T10.1—
VARZ %4 0
%I0.2— =

Representation in the FBD editor
%Q 4.0 is set when:
e VAR1 >=VAR2

e AND the signal state at input %I 0.0 is (1).
AND the signal state at input %I 0.1 is (1).
AND the signal state at input %I 0.2 is (1).

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.4 Conversion instructions

54 Conversion instructions
541 TRUNC Generate integer
Symbol
TRUNC
— EN ENO —
— IN OuT —
Parameters Data type Description
EN BOOL Enable input
ENO BOOL Enable output
IN ANY_REAL Number which is to be converted
ouT ANY_INT Integral part of the value from IN
Description
TRUNC (generate integer) reads the contents of the IN parameter as a floating-point number
and converts this value to an integer (32-bit). The result is the integral part of the floating-
point number which is output by the OUT parameter.
Example

SIMOTION LAD/FBD

%I0.0 TRUNC 4.0

| | | | {0

| [EN ENO {noT | {
VARL—IN OUT [vARZ

Representation in the LAD editor

TR.UM

*I0.0—EN

VARL—IN

EMG

iZ

OUT |—waR?2

Representation in the FBD editor

If %1 0.0 = 1, the contents of VAR1 are read as a floating-point number and converted to an
integer (32-bit). The result is the integral part of the floating-point number which is saved in

VAR2.

Output %Q 4.0 is 1 if an overflow occurs or the statement is not processed (%! 0.0 = 0).

Programming and Operating Manual, 05/2009

205

Functions

5.4 Conversion instructions

5.4.2

Symbol

Description

206

Generating numeric data types and bit data types

e.g. BOOL_TO_TYPE

BOOL_TO_BYTE
EN ENO —

You can carry out the explicit data type conversion with the standard functions listed in the
tables below.

Input parameters
Each function for the conversion of a data type has exactly one input parameter.

Function value
The function value is always the return value of the function. The table shows the rules
with which a data type can be converted.

Naming

Because the data types of the input parameter and the function value come from the
respective function name, they are not listed specially in the table "Functions for
conversion of numerical data types and bit data types™: E.g. with function
BOOL_TO_BYTE, the data type of the input parameter is BOOL, the data type of the
function value BYTE.

Table 5- 3 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay
BOOL_TO_BYTE Accept as least significant bit and fill the rest with 0. yes
BYTE_TO_BOOL Accept the least significant bit. no
BYTE_TO_SINT Accept bit string as SINT value. no
BYTE_TO_USINT Accept bit string as USINT value. no
BYTE_TO_WORD Accept least significant bit and fill the rest with 0. yes

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

5.4 Conversion instructions

Table 5- 4 Functions for conversion of numerical data types and bit data types
Function name Conversion rule Implicit
okay
DINT_TO_DWORD Accept value as bit string. no
DINT_TO_INT Cut off two most significant bytes. no
DINT_TO_LREAL Accept value. yes
DINT_TO_REAL Accept value (accuracy may be lost). no
DINT_TO_UDINT Accept value as bit string. no
DINT_TO_UINT Cut off two most significant bytes. no
DINT_TO_WORD Cut off two most significant bytes. no
Table 5-5 Functions for conversion of numerical data types and bit data types
Function name Conversion rule Implicit
okay
DWORD_TO_DINT Accept bit string as DINT value. no
DWORD_TO_INT Accept the two least significant bytes as INT value. no
DWORD_TO_REAL Accept bit string as REAL value (validity check of the no
REAL number is not carried out!).
DWORD_TO_UDINT Accept bit string as UDINT value. no
DWORD_TO_UINT Accept the two least significant bytes as UINT value. no
DWORD_TO_WORD Accept the two least significant bytes of the bit string. no
Table 5- 6 Functions for conversion of numerical data types and bit data types
Function name Conversion rule Implicit
okay
INT_TO_DINT Accept value. yes
INT_TO_LREAL Accept value. no
INT_TO_REAL Accept value. yes
INT_TO_SINT Cut off the most significant byte. no
INT_TO_UDINT Accept value as bit string; the two most significant bytes | no
are filled with the most significant bit of the input
parameter.
INT_TO_UINT Accept value as bit string. no
INT_TO_WORD Accept value as bit string. no
207

5.4 Conversion instructions

Table 5- 7 Functions for conversion of numerical data types and bit data types
Function name Conversion rule Implicit
okay
LREAL_TO_DINT Round off to integer part. no
LREAL_TO_INT Round off to integer part. no
LREAL_TO_REAL Accept value (accuracy may be lost). no
LREAL_TO_UDINT Round off to integer part. no
LREAL_TO_UINT Round off to integer part. no
Table 5- 8 Functions for conversion of numerical data types and bit data types
Function name Conversion rule Implicit
okay
REAL_TO_DINT Round off to integer part. no
REAL_TO_DWORD Accept bit string. no
REAL_TO_INT Round off to integer part. no
REAL_TO_LREAL Accept value. yes
REAL_TO_UDINT Round off to integer part. no
REAL_TO_UINT Round off to integer part. no
Table 5- 9 Functions for conversion of numerical data types and bit data types
Function name Conversion rule Implicit
okay
SINT_TO_BYTE Accept bit string. no
SINT_TO_INT Accept value. yes
SINT_TO_USINT Accept bit string. no
Table 5- 10 Functions for conversion of numerical data types and bit data types
Function name Conversion rule Implicit
okay
UDINT_TO_DINT Accept bit string. no
UDINT_TO_INT Cut off numerical sequence (2 most significant bytes). no
UDINT_TO_DWORD Accept bit string. no
UDINT_TO_LREAL Accept value. yes
UDINT_TO_REAL Accept value (accuracy may be lost). no
UDINT_TO_UINT Cut off numerical sequence (2 most significant bytes). no
UDINT_TO_WORD Cut off numerical sequence (2 most significant bytes). no

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Functions

5.4 Conversion instructions

Table 5- 11 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay
UINT_TO_DINT Accept value. yes
UINT_TO_DWORD Accept bit string, fill rest with zeros. no
UINT_TO_INT Accept bit string. no
UINT_TO_LREAL Accept value (accuracy may be lost). no
UINT_TO_REAL Accept value. yes
UINT_TO_UDINT Accept value. yes
UINT_TO_USINT Cut off numerical sequence (most significant byte). no
UINT_TO_WORD Accept bit string. no
Table 5- 12 Functions for conversion of numerical data types and bit data types
Function name Conversion rule Implicit
okay
USINT_TO_BYTE Accept bit string. no
USINT_TOL_INT Accept value. yes
USINT_TO_DINT Accept value. no
USINT_TO_SINT Accept bit string. no
USINT_TO_UINT Accept value. yes
Table 5- 13 Functions for conversion of numerical data types and bit data types
Function name Conversion rule Implicit
okay
WORD_TO_BYTE Cut off most significant byte. no
WORD_TO_DINT Accept bit string, fill rest with zeros. no
WORD_TO_DWORD Accept the two least significant bytes and fill the rest with | yes
0.
WORD_TO_INT Accept bit string and interpret this as an integer. no
WORD_TO_UDINT Accept bit string, fill rest with zeros. no
WORD_TO_UINT Accept bit string. no
SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 209

Functions

5.4 Conversion instructions

543 Generating date and time
Symbol
CONCAT
— EN ENO —
— IN1 OouT —
—IN2
Description
The table below shows the standard functions for date and time data types:
Table 5- 14 Standard functions for date and time
Function Data type of Data type of function | Description
name input parameter value
CONCAT 1: DATE DATE_AND_TIME Compress DATE and
2: TIME_OF_DAY TIME_OF_DAY to
DATE_AND_TIME.
DT_TO_TOD DATE_AND_TIME TIME_OF_DAY Accept time of day.
DT_TO_DATE DATE_AND_TIME DATE Accept date.
Note
Data type TIME can be converted to numerical data types as follows:
® To data type UDINT:
Divide it by a standardization factor of data type TIME.
Multiply the reconversion by the same standardization factor.
SIMOTION LAD/FBD
210 Programming and Operating Manual, 05/2009

Functions

5.5 Edge detection

5.5 Edge detection

System function block R_TRIG can be used to detect a rising edge; F_TRIG can detect a
falling edge. You can use this function, for example, to set up a sequence of your own
function blocks.

5.5.1 Detection of rising edge R_TRIG

Symbol

R_TRIG
— CLK Qr—

Description

If a rising edge (R_TRIG, Rising Trigger), i.e. a status change from 0 to 1, is present at the
input, 1 is applied at the output for the duration of one cycle.

L L.

- > - - - -
TA TA TA

CLK

TA Cycle time
Figure 5-1 Mode of operation of R_TRIG (rising edge) function block

Table 5- 15 Call parameters for R_TRIG

Identifier Parameters Data type Description
CLK Input BOOL Input for edge detection
Q Output BOOL Status of edge

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 211

Functions

5.5 Edge detection

5.5.2

Symbol

Description

212

Detection of falling edge F_TRIG

F_TRIG

— CLK

When a falling edge (F_TRIG, falling trigger), i.e. a status change from 1 to 0, occurs at the
input, the output is set to 1 for the duration of one cycle time.

CLK ——

[

TA Cycle time

Figure 5-2

TA

TA

Table 5- 16 Call parameters for F_TRIG

Mode of operation of F_TRIG (falling edge) function block

Identifier Parameters Data type Description
CLK Input BOOL Input for edge detection
Q Output BOOL Status of edge

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Functions

5.6 Counter operations

5.6 Counter operations

5.6.1 Overview of counter operations

Every call-up of the function block and the function should be recorded in a counter.

5.6.2 CTU up counter

Symbol
<Instance variable
of the CTU type>
CTU
— CU Qr—
—R
— PV CVI—
Description

The CTU counter allows you to perform upward counting operations:
e |fthe input is R = TRUE when the FB is called up, then the CV output is reset to 0.

e |f the CU input changes from FALSE to TRUE (0 to 1) when the FB is called (positive
edge), then the CV output is incremented by 1.

e Qutput Q specifies whether CV is greater than or equal to comparison value PV.

The CV and PV parameters are both INT data types, which means that the maximum
counter reading possible is 32767 (= 16#7FFF).

Table 5- 17 Parameters for CTU

Identifier Parameters Data type Description

Ccu Input BOOL Count up if value changes from FALSE to
TRUE
(positive edge)

R Input BOOL Reset the counter to 0

PV Input INT Comparison value

Q Output BOOL Status of counter (CV >= PV)

cv Output INT Counter value

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 213

Functions

5.6 Counter operations

5.6.3 CTU_DINT up counter

Symbol
<Instance variable
of the CTU_DINT type>
CTU_DINT
— CU Q—
—R
— PV CVI—
Description
The method of operation is the same as for the CTU incrementer except for the following:
The CV and PV parameters are both DINT data types, which means that the maximum
counter reading possible is 2147483647 (= 16#7FFF_FFFF).
Table 5- 18 Parameters for CTU_DINT
Identifier Parameters Data type Description
CuU Input BOOL Count up if value changes from FALSE to
TRUE
(positive edge)
R Input BOOL Reset the counter to 0
PV Input DINT Comparison value
Q Output BOOL Status of counter (CV >= PV)
Ccv Output DINT Counter value
SIMOTION LAD/FBD
214 Programming and Operating Manual, 05/2009

Functions

5.6.4 CTU_UDINT up counter

Symbol
<Instance variable
of the CTU_UDINT type>
CTU_UDINT

— CU QF—

—R

— PV CVi—
Description

5.6 Counter operations

The method of operation is the same as for the CTU incrementer except for the following:

The CV and PV parameters are both UDINT data types, which means that the maximum
counter reading possible is 4294967295 (=16# FFFF_FFFF).

Table 5- 19 Parameters for CTU_UDINT

Identifier Parameters Data type Description

CuU Input BOOL Count up if value changes from FALSE to
TRUE (positive edge)

R Input BOOL Reset the counter to 0

PV Input UDINT Comparison value

Q Output BOOL Status of counter (CV >= PV)

cv Output UDINT Counter value

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

215

Functions

5.6 Counter operations

5.6.5

Symbol

Description

216

CTD down counter

<Instance variable
of the CTD type>

—CD
—Lv
— PV

CTD

CVI—

The CTD counter allows you to perform downward counting operations.
e |[f the LD input = TRUE when the FB is called, then the CV output is reset to start value

PV.

e |f the CD input changes from FALSE to TRUE (0 to 1) when the FB is called (positive

edge), then the CV output is decremented by 1.

e OQutput Q specifies whether CV is less than or equal to 0.

The CV and PV parameters are both INT data types, which means that the minimum counter
reading possible is -32,768 (= 16#8000).

Table 5-20 Parameters for CTD

Identifier Parameters Data type Description

CD Input BOOL Count down if value changes from FALSE to
TRUE
(positive edge)

LD Input BOOL Reset the counter to start value

PV Input INT Start value of counter

Q Output BOOL Status of counter (CV <= 0)

Ccv Output INT Counter value

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.6.6 CTD_DINT down counter

Symbol

<Instance variable

of the CTD_DINT type>

CD
LV
PV

CTD_DINT

Ql—

CVI—

Description

5.6 Counter operations

The method of operation is the same as for the CTD up counter except for the following:

The CV and PV parameters are both DINT data types, which means that the minimum
counter reading possible is -2147483648 (= 16#8000_0000).

Table 5-21 Parameters for CTD_DINT

Identifier Parameters Data type Description

CD Input BOOL Count down if value changes from FALSE to
TRUE
(positive edge)

LD Input BOOL Reset the counter to start value

PV Input DINT Start value of counter

Q Output BOOL Status of counter (CV <= 0)

Ccv Output DINT Counter value

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

217

Functions

5.6 Counter operations

5.6.7 CTD_UDINT down counter

Symbol
<Instance variable
of the CTD_UDINT type>
CTD_UDINT
— CD Qr—
—Lv
—] PV CVl—
Description
The method of operation is the same as for the CTD up counter except for the following:
The CV and PV parameters are both UDINT data types, which means that the minimum
counter value possible is 0.
Table 5- 22 Parameters for CTD_DINT
Identifier Parameters Data type Description
CD Input BOOL Count down if value changes from FALSE to
TRUE
(positive edge)
LD Input BOOL Reset the counter to start value
PV Input UDINT Start value of counter
Q Output BOOL Status of counter (CV <= 0)
cv Output UDINT Counter value
SIMOTION LAD/FBD
218 Programming and Operating Manual, 05/2009

Functions

5.6 Counter operations

5.6.8 CTUD up/down counter

Symbol
<Instance variable
of the CTUD type>
CTUD
— CU QUI—
— CD QD—
—R
— LD
—1 PV CViI—
Description

The CTUD counter allows you to perform both upward and downward counting operations.
® Reset the CV count variable:
— Ifthe input is R = TRUE when the FB is called up, then the CV output is reset to 0.

— Ifthe LD input = TRUE when the FB is called, then the CV output is reset to start value
PV.

e Count:

— If the CU input changes from FALSE to TRUE (0 to 1) when the FB is called (positive
edge), then the CV output is incremented by 1.

— If the CD input changes from FALSE to TRUE (0 to 1) when the FB is called up
(positive edge), then the CV output is decremented by 1.

e Counter status QU or QD:
— Output Q specifies whether CV is greater than or equal to comparison value PV.

— Output QD specifies whether CV is less than or equal to 0.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 219

Functions

5.6 Counter operations

220

Table 5-23 Parameters for CTUD

Identifier Parameters Data type Description

CuU Input BOOL Count up if value changes from FALSE to
TRUE
(positive edge)

CD Input BOOL Count down if value changes from FALSE to
TRUE
(positive edge)

R Input BOOL Reset the counter to 0 (up counter)

LD Input BOOL Reset the counter to PV start value (down
counter)

PV Input INT Comparison value (for up counter)
Start value (for down counter)

QU Output BOOL Status as up counter (CV >= PV)

QD Output BOOL Status as down counter (CV <= 0)

Ccv Output INT Counter value

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.6.9 CTUD_DINT up/down counter

Symbol
<Instance variable
of the CTUD_DINT type>
CTUD_DINT

— CU QUI—

— CD QD—

—R

— LD

—1 PV CViI—
Description

5.6 Counter operations

The method of operation is the same as for the CTUD up counter except for the following:
The CV and PV parameters are both DINT data types.

Table 5- 24 Parameters for CTD_DINT

Identifier Parameters Data type Description

CuU Input BOOL Count up if value changes from FALSE to
TRUE
(positive edge)

CD Input BOOL Count down if value changes from FALSE to
TRUE
(positive edge)

R Input BOOL Reset the counter to 0 (up counter)

LD Input BOOL Reset the counter to PV start value (down
counter)

PV Input DINT Comparison value (for incrementer) Start
value (for decrementer)

QU Output BOOL Status as up counter (CV >= PV)

QD Output BOOL Status as down counter (CV <= 0)

cv Output DINT Counter value

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

221

Functions

5.6 Counter operations

5.6.10 CTUD_UDINT up/down counter

Symbol
<Instance variable
of the CTUD_UDINT type>
CTUD_UDINT
— CU QU—
— CD QD —
—R
— LD
— PV CViI—
Description
The method of operation is the same as for the CTUD up counter except for the following:
The CV and PV parameters are both UDINT data types.
Table 5- 25 Parameters for CTD_DINT
Identifier Parameters Data type Description
CuU Input BOOL Count up if value changes from FALSE to
TRUE
(positive edge)
CD Input BOOL Count down if value changes from FALSE to
TRUE
(positive edge)
R Input BOOL Reset the counter to 0 (up counter)
LD Input BOOL Reset the counter to PV start value (down
counter)
PV Input UDINT Comparison value (for incrementer) Start
value (for decrementer)
QU Output BOOL Status as up counter (CV >= PV)
QD Output BOOL Status as down counter (CV <= 0)
cv Output UDINT Counter value
SIMOTION LAD/FBD
222 Programming and Operating Manual, 05/2009

Functions
5.7 Jump instructions

5.7 Jump instructions
5.71 Overview of jump operations
Description

Jump operations can be used in all logic blocks, e.g. programs, function blocks (FBs), and
functions (FCs).

Jump label as operand

The operand of a jump operation is a jump label. The jump label specifies the point to where
the program is to jump.

Enter the jump label via the JMP coil. The jump label consists of up to 480 characters. The
first character must be a letter, the other characters can be either letters or numbers (e.g.
SEG3).

Jump label as target

The target jump label can be at the start of a network.

See also
Showing/hiding a jump label (Page 67)

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 223

Functions

5.7 Jump instructions
5.7.2 -—-(JMP) Jump in block if 1 (conditional)
Symbol

<jump label>
--(JMP)

Description

—(JMP) (Jump in block if 1) functions as a conditional jump if the pending signal of the
previous logic operation is 1.

There must also be a target (LABEL) for every ---(JMP).

The operations between the jump operation and the jump label are not executed!

Note
An unconditional jump is created by hanging the --(JMP) element directly on the power rail.

SIMOTION LAD/FBD
224 Programming and Operating Manual, 05/2009

Functions

5.7 Jump instructions

5.7.3 ---(JMPN) Jump in block if 0 (conditional)

Symbol
<jump label>
---(JMPN)

Description

-—(JMPN) (Jump in block if 0) functions as a conditional jump if the pending signal of the
previous logic operation is 0.

There must also be a target (LABEL) for every ---(JMPN).

The operations between the jump operation and the jump label are not executed!

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 225

Functions
5.7 Jump instructions

5.7.4 LABEL Jump label

Symbol

LABEL

Description

LABEL marks the target of a jump operation. It can have a maximum of 80 characters. The
first character must be a letter, the other characters can be letters or numbers, e.g. CAS1.

There must be a target (LABEL) for every ---(JMP) or ---(JMPN).

Note

Only alphanumeric characters are allowed during input. The jump label is deleted if it
contains an error and cannot be corrected.

SIMOTION LAD/FBD
226 Programming and Operating Manual, 05/2009

Functions
5.8 Non-binary logic

5.8 Non-binary logic

Symbol
e.g. AND
AND
— EN ENO —
— IN1 ouT —
— IN2
e.g. NOT
NOT
— EN ENO —
— IN1 ouT |—
Description

Logic operations (AND, OR, XOR, NOT) are also provided as boxes with EN/ENO for non-
binary values in the LAD/FBD editor.

The logical operations are listed in the table below.

There is only one operand for NOT.

Note

In the Command library tab of the project navigator, the elements AND, XOR, and OR, NOT
are represented in the Logic entry.

Table 5-26 Non-binary logic

Operator AND XOR OR NOT
Parameters

IN1 ANY_BIT ANY_BIT ANY_BIT ANY_BIT
IN2 ANY_BIT ANY_BIT ANY_BIT

EN BOOL BOOL BOOL BOOL
ENO BOOL BOOL BOOL BOOL
ouT ANY_BIT ANY_BIT ANY_BIT ANY_BIT

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 227

Functions

5.9 Arithmetic operators

5.9

Symbol

Description

Arithmetic operators

e.g. addition

ADD
— EN ENO —

<Operand 1> — — <Result>

<Operand 2> —

An arithmetic expression is composed of arithmetic operators. These expressions allow
numerical data types to be processed.

The divide operators DIV and MOD require that the second operand is not equal to zero.

Note

In the Command library tab of the project navigator, the elements ADD, SUB, MUL, and DIV
are represented as +, -, *, and /.

The execution of a network, for example, is simply aborted in the event of an overflow, and
the relevant/assigned event-triggered task (ExecutionFaultTask) is started.

The table below contains a list of the arithmetic operators:

Table 5- 27 Arithmetic operators

Instruction Operator 1. Operand (IN1) 2. Operand (IN2) Result (OUT)
Addition ADD ANY_NUM ANY_NUM ANY_NUM'
BYTE BYTE BYTE
WORD WORD WORD
DWORD DWORD DWORD
TIME TIME TIMEZ
TOD TIME TOD?
DT TIME DT3
Multiplication MUL ANY_NUM ANY_NUM ANY_NUM'
BYTE BYTE BYTE
WORD WORD WORD
DWORD DWORD DWORD
TIME ANY_INT TIME
Subtraction SUB ANY_NUM ANY_NUM ANY_NUM'
BYTE BYTE BYTE
WORD WORD WORD
DWORD DWORD DWORD
TIME TIME TIME
SIMOTION LAD/FBD
228 Programming and Operating Manual, 05/2009

Functions

5.9 Arithmetic operators

Instruction Operator 1. Operand (IN1) 2. Operand (IN2) Result (OUT)
TOD TIME# TOD
TOD TOD TIMES
DT TIME DT
DT DT TIMES

Division DIV ANY_NUM ANY_NUM®é ANY_NUM!?
BYTE BYTES BYTE
WORD WORDS® WORD
DWORD DWORDS DWORD
TIME ANY_INT® TIME
TIME TIMES UDINT

Modulo division. MOD ANY_INT ANY_INT® ANY_INT?
BYTE BYTES® BYTE
WORD WORDS® WORD
DWORD DWORDS DWORD

1 The data types of the operands and of the result must be identical.

2 Addition, possibly with overflow.

3 Addition with date correction.

4 Restriction of TIME to TOD before calculation.

5 These operations are based on the modulo of the maximum value of the TIME data type.

6 The second operand must not be equal to zero.

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

229

Functions

5. 10 Numeric standard functions

5.10

5.10.1

Symbol

Description

230

Numeric standard functions

Every numeric standard function has an input parameter. The result is always the function

value.

e.g. absolute val

ue

General numeric standard functions

<Operand> —

ABS
EN ENO

— <Result>

General numeric standard functions are used for:

e (Calculation of the absolute value of a variable

e (Calculation of the square root of a variable

The table below shows the general numeric standard functions:

Table 5- 28 General numeric standard functions

Function name | Input parameter Function value Description
data type (IN) data type (OUT)

ABS ANY_NUM ANY_NUM? Absolute value

SQRT ANY_REAL ANY_REAL' Square root

1 |dentical to the data type of the input parameter IN

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Functions

5.10.2

Symbol

Description

SIMOTION LAD/FBD

Logarithmic standard functions

e.g. exponential value

<Operand> —

Logarithmic standard functions are functions for calculating an exponential value or a

EXP

EN ENO —

logarithm of a value.

— <Result>

5. 10 Numeric standard functions

The table below shows the logarithmic standard functions:

Table 5-29 Logarithmic standard functions

Function name

Input parameter

Data type of

Description

data type (IN) function value
(OUT)

EXP ANY_REAL ANY_REAL' eX (natural exponential function)
EXPD ANY_REAL ANY_REAL! 10% (decimal exponential function)
EXPT ANY_REAL (IN1) | ANY_REAL? Exponentiation

ANY_NUM (IN2)
LN ANY_REAL ANY_REAL! Natural logarithm
LOG ANY_REAL ANY_REAL' Common logarithm

1 Identical to the data type of the input parameter IN
2 |dentical to the data type of the input parameter IN1

Programming and Operating Manual, 05/2009

231

Functions

5. 10 Numeric standard functions

5.10.3

Symbol

Description

232

e.g. COS

Trigonometric standard functions

<Operand> —

COSs
EN ENO

<Result>

Table 5- 30 Trigonometric standard functions

The trigonometric standard functions listed in the table expect and calculate variables of
angles in radian measure.

Function name | Input parameter Data type of Description
data type function value
ACOS ANY_REAL ANY_REAL Arc cosine (main value)
ASIN ANY_REAL ANY_REAL Arc sine (main value)
ATAN ANY_REAL ANY_REAL Arc tangent (main value)
COSs ANY_REAL ANY_REAL Cosine (radian measure input)
SIN ANY_REAL ANY_REAL Sine (radian measure input)
TAN ANY_REAL ANY_REAL Tangent (radian measure input)

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.11 Move

5111 MOVE Transfer value

5.11 Move

Symbol
MOVE
— EN ENO —
— IN OuUT —
Parameters Data type Description
EN BOOL Enable input
ENO BOOL Enable output
IN ANY Source value
ouT ANY Destination address
Description

MOVE (Assign a value) is activated by the enable input EN. The value specified by the IN
input is copied to the value specified in the OUT output. ENO has the same signal state as

EN.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

233

Functions

5. 12 Shifting operations

5.12

5.121

Description

5.12.2

Symbol

Description

234

Shifting operations

Overview of shifting operations

The contents of input IN can be moved bit-by-bit to the left or right using shifting operations.
A shift of n bits to the left multiplies the contents of input IN by 2 to the power of n; a shift of n
bits to the right divides the contents of input IN by 2 to the power of n. If, for example, you
move the binary equivalent of the decimal value 3 by 3 bits to the left, this gives the binary
equivalent of the decimal value 24. Shift the binary equivalent of the decimal value 16 by 2
bits to the right, this gives the binary equivalent of the decimal value 4.

The number that you specify at input N indicates the number of bits by which to shift. The
places which become free as a result of the shifting operation are filled up with zeroes.

The following shifting operations are available:
e shift bit to the left
e shift bit to the right

SHL Shift bit to the left

SHL
— EN ENO |—
— IN OUT —
—N
Parameters Data type Description
EN BOOL Enable input
ENO BOOL Enable output
IN ANY_BIT Value to be shifted
N USINT Number of bit positions to be shifted
ouT ANY_BIT Result of shifting operation

SHL (e.g. shift left by 32 bits) is activated if the enable input (EN) has the signal state 1. The
operation SHL shifts the bits 0 to 31 of the input IN bit-by-bit to the left. Input N specifies the
number of bit positions to be shifted. If N is greater than 32, the command writes a 0 in the
OUT output. The same number (N) of zeros is shifted from the right in order to occupy the
positions which have become free. The result of the shifting operation can be queried at
output OUT.

ENO has the same signal state as EN.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.12.3 SHR Shift bit to the right

5. 12 Shifting operations

Symbol
SHR
— EN ENO —
—1IN ouT |—
—N
Parameters Data type Description
EN BOOL Enable input
ENO BOOL Enable output
IN ANY_BIT Value to be shifted
N USINT Number of bit positions to be shifted
ouT ANY_BIT Result of shifting operation
Description

SHR (e.g. shift right by 32 bits) is activated if the enable input (EN) has the signal state 1.
The operation SHR shifts the bits 0 to 31 of the input IN bit-by-bit to the right. Input N
specifies the number of bit positions to be shifted. If N is greater than 32, the command
writes a 0 in the OUT output. The same number (N) of zeros is shifted from the left in order
to occupy the positions which have become free. The result of the shifting operation can be
queried at output OUT.

ENO has the same signal state as EN.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

235

Functions

5. 13 Rotating operations

5.13 Rotating operations

5.13.1 Overview of rotating operations

Description

The entire contents of input IN can be rotated bit-by-bit to the left or right using rotating
operations. The positions which become free are filled up with the signal states of the bits
which have been moved out of the IN input.

At the input N you can specify the number of bits for the rotation.

5.13.2 ROL Rotate bit to the left

Symbol
ROL
— EN ENO |—
— IN OuUT —
—N
Parameters Data type Description
EN BOOL Enable input
ENO BOOL Enable output
IN ANY_BIT Value to be rotated
N USINT Number of bit positions to be rotated
ouT ANY_BIT Result of rotation operation
Description

ROL (e.g. rotate left by 32 bits) is activated if the enable input (EN) has the signal state 1.
The operation ROL rotates the entire contents of the IN input bit-by-bit to the left. Input N
specifies the number of bit positions by which to rotate. If N is greater than 32, the double
word IN is rotated by ((N-1) modulo 32)+1 positions. The bit positions coming from the right
are occupied with the signal state of the bits which have been rotated to the left (left
rotation). The result of the rotation operation can be queried at output OUT.

ENO has the same signal state as EN.

SIMOTION LAD/FBD
236 Programming and Operating Manual, 05/2009

Functions

5. 13 Rotating operations

Example
ROL
*I0.0—EN
WARL—{IM
4.0
CUT —vARZS
WARZ — M EMO

Figure 5-3 Representation in the FBD editor

®IO. 0 ROL o4, 0
| s i) |
| 1 EM EMNO (R !

VARL —IN OQUT[—VARZ

VARZ — M

Figure 5-4 Representation in the LAD editor

The ROL box is executed if %1 0.0 = 1. VAR1 is loaded and rotated to the left by the number
of bits specified in VAR2. The result is written to VAR3. %Q 4.0 is set.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 237

Functions

5. 13 Rotating operations

5.13.3

Symbol

Description

Example

238

ROR Rotate bit to the right
ROR

— EN ENO —

— IN OouT —

—N
Parameter Data type Description
EN BOOL Enable input
ENO BOOL Enable output
IN ANY_BIT Value to rotate
N USINT Number of bit positions to rotate
ouT ANY_BIT Result of rotation operation

ROR (e.g. rotate right by 32 bits) is activated if the enable input (EN) has the signal state 1.
The operation ROR rotates the entire contents of the IN input bit-by-bit to the right. Input N
specifies the number of bit positions by which to rotate. If N is greater than 32, the double
word IN is rotated by ((N-1) modulo 32)+1 positions. The bit positions coming from the left
are occupied by the signal state of the bits which have been rotated to the right (right
rotation). The result of the rotation operation can be queried at output OUT.

ENO has the same signal state as EN.

®IO0.0 ROR.
EM EMO

WARL—IN OUT —WARS

VARZ —N

Figure 5-5 Representation in the LAD editor

ROR

%I0.0—EN

WARLT — TN

OUT [(—wARS

WARZ — N ENG

Figure 5-6 Representation in the FBD editor

The ROR box is executed if %1 0.0 = 1. VAR1 is loaded and rotated to the right by the
number of bits specified in VAR2. The result is written to VAR3. %Q 4.0 is set.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.14 Program control instructions

5.141 Calling up an empty box

Symbol

<Instance variable>

<Typ>
— EN ENO

5. 14 Program control instructions

Parameters

Data type

Description

EN

BOOL

Enable input

ENO

BOOL

Enable output

<Type>

FB/FC

FC/FB type

<Instance variable>

FB

FB instance variable

Description

The symbol for an empty box depends on the function block/function (according to how
many parameters there are). EN, ENO and the name of the FB/FC must be available.

You do not have to specify EN/ENO in the variable declaration. The input and output are

automatically allocated by the system.

The EN input can be used to inhibit a block call and redirect the block of the EN input to the

ENO output.

It is not possible to control the ENO output in the block itself.

Note

You can use an empty box to insert a call (Page 74). As soon as you enter the type, the box
transforms and displays the parameters of the specified FB/FC call.

See also

Inserting LAD/FBD elements (Page 74)

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

239

Functions

5. 14 Program control instructions

5.14.2 RET Jump back

RET (jump back) is used for the conditional exit from blocks. A preceding logic operation is

Symbol

---(RET)
Description

necessary for this output.
Example

%10.0
("
Figure 5-7 Representation in the LAD editor
10,0 7 |

Figure 5-8 Representation in the FBD editor

The operation is executed if %1 0.0 = 1.
240

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Functions

5.15 Timer instructions

5.15.1 TP pulse

Symbol
<Instance variable
of the TP type>
TP
— IN Qr—
— PT ET—
Description

5. 15 Timer instructions

With a signal state change from 0 to 1 at the IN input, time ET is started. Output Q remains
at 1 until elapsed time ET is equal to programmed time value PT. As long as time ET is

running, the IN input has no effect.

Figure 5-9 Mode of operation of TP pulse timer

Table 5- 31 Call parameters for TP
Identifier Parameters Data type Description
IN Input Input Start input
PT Input TIME Duration of pulse
Q Output BOOL Status of time
ET Output TIME Elapsed time

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

241

Functions

5. 15 Timer instructions

5.156.2 TON ON delay
Symbol
<Instance variable
of the TON type>
TON
—IN Q—
— PT ETI—
Description
With the signal state change from 0 to 1 at the IN input, time ET is started. The output signal
Q only changes from 0 to 1 if the time ET = PT has elapsed and the input signal IN still has
the value 1, i.e. the output Q is switched on with a delay. Input signals of shorter durations
than programmed time PT do not appear at the output.
Figure 5-10 Mode of operation of TON on delay timer
Table 5- 32 Call parameters for TON
Identifier Parameters Data type Description
IN Input BOOL Start input
PT Input TIME Duration for which the rising edge at input IN
is delayed.
Q Output BOOL Status of time
ET Output TIME Elapsed time
SIMOTION LAD/FBD
242 Programming and Operating Manual, 05/2009

Functions
5. 15 Timer instructions

5.15.3 TOF OFF delay

Symbol
<Instance variable
of the TOF type>
TOF
— IN Q—
— PT ET—
Description

With a signal state change from 0 to 1 at start input IN, state 1 appears at output Q. If the
state at the start input IN changes from 1 to 0, then time ET is started. If a change occurs at
input IN from 0 to 1 before time ET has elapsed, then the timer operation is reset. A start is
initiated again when the state at input IN changes from 1 to 0. Only after the duration ET =
PT has elapsed does output Q adopt a signal state of 0. This means that the output is
switched off with a delay.

Figure 5-11 Mode of operation of TOF off delay timer

Table 5- 33 Call parameters for TOF

SIMOTION LAD/FBD

Identifier Parameters Data type Description

IN Input BOOL Start input

PT Input TIME Duration for which the falling edge at input IN
is delayed.

Q Output BOOL Status of time

ET Output TIME Elapsed time

Programming and Operating Manual, 05/2009

243

Functions

5. 16 Selection functions

5.16 Selection functions

5.16.1 SEL Binary selection

Symbol
SEL
— EN ENO —
— G ouT |—
—1 INO
—1 IN1
Parameters Input parameter Description
data type
EN BOOL Enable input
ENO BOOL Enable output
G BOOL Input parameter
INO ANY Input parameter
IN1 ANY Input parameter
Description
The function value is one of the input parameters INO or IN1, depending on the value of the
input parameter G.
The input parameters INO and IN1 must be the same data type or must be capable of implicit
conversion into the same data type.
The return value is data type ANY.
Selected input parameter
INO if G = 0 (FALSE)
IN1if G =1 (TRUE)
The data type corresponds to the common data type of the input parameters INO and IN1.
SIMOTION LAD/FBD
244 Programming and Operating Manual, 05/2009

Functions

5.16.2 MAX Maximum function

5. 16 Selection functions

Symbol
MAX
— EN ENO —
—1 INO ouT —
—1 IN1
Parameter Input parameter Description
data type
EN BOOL Enable input
ENO BOOL Enable output
INO ANY_ELEMENTARY Input parameter
IN1 ANY_ELEMENTARY Input parameter
Description

The function value is the maximum value of both input parameters INO and IN1.

The input parameters INO and IN1 must be the same data type or must be capable of implicit

conversion into the most powerful data type.

The return value is of data type ANY_ELEMENTARY.

Maximum of the input parameters.

The data type corresponds to the most powerful data type of the input parameters INO and

INT.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

245

Functions

5. 16 Selection functions

5.16.3 MIN Minimum function

Symbol
MIN
— EN ENO —
— INO ouT —
— IN1
Parameter Input parameter Description
data type
EN BOOL Enable input
ENO BOOL Enable output
INO ANY_ELEMENTARY Input parameter
IN1 ANY_ELEMENTARY Input parameter
Description

The function value is the minimum value of both input parameters INO and IN1.

All'INO and IN1 input parameters must be the same data type or capable of implicit
conversion into the most powerful data type.

The return value is of data type ANY_ELEMENTARY.
Minimum of the input parameters.

The data type corresponds to the most powerful data type of the input parameters INO and
IN1.

SIMOTION LAD/FBD
246 Programming and Operating Manual, 05/2009

Functions

5.16.4

Symbol

Description

SIMOTION LAD/FBD

LIMIT Limiting function

5. 16 Selection functions

LIMIT
— EN ENO |—
—1 MN OuUT —
— IN
— MX
Parameters Input parameter Description
data type
EN BOOL Enable input
ENO BOOL Enable output
MN ANY_ELEMENTARY Input parameter
Lower limiting value
IN ANY_ELEMENTARY Input parameter
Value to be limited
MX ANY_ELEMENTARY Input parameter

Upper limiting value

The input parameter IN is limited to values lying between the lower limit value MN and the
upper limit value MX.

All input parameters must be the same data type or capable of conversion into the most

powerful data type by implicit conversion.

The return value is of data type ANY_ELEMENTARY.
MIN (MAX (IN, MN), MX)
The data type corresponds to the most powerful data type of the input parameters.

Programming and Operating Manual, 05/2009

247

Functions

5. 16 Selection functions

5.16.5 MUX Multiplex function

Symbol
MUX
—] EN ENO —
—K ouT |—
— INO
—1 IN1
Parameters Input parameter Description
data type
EN BOOL Enable input
ENO BOOL Enable output
C ANY_INT Input parameter
INO ANY Input parameter
IN1 ANY Input parameter
Description
The function value is one of the two input parameters INO or IN1, depending on the value of
the input parameter K.
The input parameters INO and IN1 must be the same data type or must be capable of implicit
conversion into the same data type.
The return value is data type ANY.
The data type corresponds to the common data type of the input parameters INO and IN1.
SIMOTION LAD/FBD
248 Programming and Operating Manual, 05/2009

Commissioning (software)

6.1 Commissioning

This chapter describes how to assign created programs to the task system of a control unit
and how to download them to the target system.

6.2 Assigning programs to a task

Programs must be assigned to a task before they can be downloaded to the target system
(the SIMOTION device).

Various tasks are made available by SIMOTION, each with different priorities or system
responses (e.g. during initialization).

Further information can be found in the SIMOTION SCOUT Basic Functions Function
Manual, and in SIMOTION online help.

Assigning programs to a task:

1.

o o M 0w DN

SIMOTION LAD/FBD

In the project navigator, double-click under the corresponding SIMOTION device the
EXECUTION SYSTEM element.
The configuration window for the execution system opens.

Select the required task (e.g. MotionTask_1) from the left pane.
Select the Program assignment tab.

Select the program to be assigned from the Programs list.
Click the button >>.

Select the Task configuration tab to specify additional settings for the task if required.

Programming and Operating Manual, 05/2009

6

249

Commissioning (software)

6.2 Assigning programs fto a task

D435 - EXECUTION SYSTEM* =]

— OperationLevel

B- Cperation levels

= MakionTasks ('RUN StarbupT ask |
STOP

MationT azks |
- MokionTask_1

- MotionTask_2
- MotionTask_3
- MotionTask_4
- MationTask_5
- MationTask_6
- MotionTask_7
- MotionTask_8
- MotionTask_9 —
- MotionTask_10
- MotionTask_11
- MotionTask_12
- MotionTask_13

- MokionTask_14
- MaotionTask_15 RUN SystemlntemuptT azks |

- MokionTask_16 T O.P ShutdownT ask |

- MotionTask_17
- MotionTask_1&
- MokionTask_19
- MokionTask_z0
- MokionTask_21 Cloze |
- MotionTask_22
- MationTask_23 ~ e | »

B ackgroundT ask. |

TimerlntermuptT agks |

SynchronousT asks |

|| 5

cLH

UserlnterruptT azk s |

Help |

Figure 6-1 Configure execution system

|D435 - EXECUTION SYSTEM*

Execution levels -
tartupTask I otionT agks
[=]- Cperation levels : _
£ MotionTasks MationTask: [MotionT ask_10 B [z YeotskinemsuEn
- MokionTask_1 sl

- MotionTask_2
- MotionTask_3
- MokionTask_4 Program assignment | T azk configuration |
- MokionTask_5
- MokionTask_é&
- MakionTask 7 Q_Blink.p_blink (1] (_Blink.p_blink.

- MotionTask_g&
- MokionTask_2 —

- MokionTask_10 ﬂ

. _Blink. p_blink

- MokionTask_11
- MotionTask_12
- MotionTask_13
- MokionTask_14
- MokionTask_15
- MokionTask_16
- MokionTask_17
- MotionTask_18
- MotionTask_19
- MationTask_z20 Cloze Help I

- MokionTask_21
- Motion Task_22 Raj kN | »

Programs [number of applications): Programs used:

[1]
[

[«

Figure 6-2 Assigning a program to a motion task

SIMOTION LAD/FBD
250 Programming and Operating Manual, 05/2009

Commissioning (software)

6.3

SIMOTION LAD/FBD

6.3 Execution levels and tasks in SIMOTION

Execution levels and tasks in SIMOTION

Table 6- 1
Execution level Description
Time-controlled Cyclic tasks:

automatically restarted once assigned programs have been executed.

e SynchronousTasks

Tasks are started periodically, synchronous with specified system cycle
clock.

e ServoSynchronousTask: Synchronous with position-control cycle
clock

e |POsynchronousTask: Synchronous with interpolator cycle clock
IPO

e |POsynchronousTask_2: Synchronous with interpolator cycle clock
IPO_2

e PWNMsynchronousTask: Synchronous with PWM cycle clock
(for TControl technology package)

e InputSynchronousTask_1: Synchronous with Input1 cycle clock
(for TControl technology package)

e InputSynchronousTask_2: Synchronous with Input2 cycle clock
(for TControl technology package)

e PostControlTask_1: Synchronous with Control1 cycle clock
(for TControl technology package)

e PostControlTask_2: Synchronous with Control2 cycle clock
(for TControl technology package)

o TimerlnterruptTasks

Tasks are started periodically in a fixed time frame. This time frame
must be a multiple of interpolator cycle clock IPO.

Interrupts

Sequential tasks:
executed once after start and then terminated.

e SysteminterruptTasks

Started when a system event occurs:

e ExecutionFaultTask: Error processing a program

e PeripheralFaultTask: Error on 1/O

e TechnologicalFaultTask: Error on the technology object
o TimeFaultBackgroundTask: BackgroundTask timeout

e TimeFaultTask: TimerInterruptTask timeout

e UserInterruptTasks

They are started when a user-defined event occurs.

Programming and Operating Manual, 05/2009

251

Commissioning (software)

6.3 Execution levels and tasks in SIMOTION

Execution level Description

Round robin MotionTasks and BackgroundTasks share the free time remaining after
execution of the higher-priority system and user tasks. The proportion
of the two levels can be assigned.

e MotionTasks Sequential tasks:

executed once after start and then terminated. Start takes place:

e Explicitly via a task control command in a program assigned to
another task.

e Automatically when RUN mode is attained if the corresponding
attribute was set during task configuration.

The priority of a MotionTask can be temporarily increased using the

Wait for... functions (see Wait for axis , Wait for signal , Wait for

condition).

e BackgroundTask Cyclic task:
automatically restarted once assigned programs have been executed.
The task cycle time depends on the runtime.

StartupTask Task is executed once when there is a transition from STOP or STOP
U mode to RUN mode.

SysteminterruptTasks are started by their triggering system event.

ShutdownTask Task is executed once when there is a transition from RUN mode to
STOP or STOP U mode.

STOP or STOP U mode is reached by:
e Activating the operating mode switch

e Calling the relevant system function, for example, MCC Change
operating mode command

e Occurrence of a fault with the appropriate error response

SystemlnterruptTasks and PeripheralFaultTasks are started by their
triggering system event.

For information on behavior of sequential and cyclic tasks:

¢ During initialization of local program variables:
See Initialization of local variables (Page 114).
¢ In the event of processing errors in the program:
Please refer to the SIMOTION Basic Functions Function Manual.
For information about access options for the process image and I/O variables:
Please refer to Important features of direct access and process image (Page 120).

SIMOTION LAD/FBD
252 Programming and Operating Manual, 05/2009

Commissioning (software)

6.4 Task start sequence

6.4 Task start sequence
When the StartupTask is completed, RUN mode is reached.

The following tasks are then started:

SynchronousTasks
TimerlnterruptTasks
BackgroundTask

MotionTasks with startup attribute.

Note

The sequence in which these tasks are first started after RUN mode has been reached does
not conform to the task priorities.

]| D435 - EXECUTION SYSTEM™ =]

Exection levels — —_—
i StartupTask MotionT asks

=) Operation levels

£ MotionTasks MationT ask: |MotionT ask_10 j v Use task in execution
- MotionTask_1 spstem
- MotionTask_Z
- MotionTask_3
- MationTask_4 Program agsignment T ask configuration |
- MotionTask_5
- MotionTask_6&
- MotionTask_7
mst:s:::z::g - Range limit far dynamic data [stack size]: lw Eyte
- MationTask_10

- Q_Blirk.p_blink
- MotionTask_11
- MotionTask_12 [&ctivation after StartupT ask
- MotionTask_13
-~ MationTask_14 Tirne allocation... |
- MationTask_15
- MotionTask_16
- MotionTask_17
- MotionTask_1&
- MotionTask_19
- MationTask_20 Close | Help |
- MationTask_21
- MationTask_22 a1 K1l | »

1]
L

Error reaction with program errar: ICF'U in 5TOF j

Figure 6-3 Task configuration of a motion task

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009 253

Commissioning (software)

6.5 Downloading programs to the target system

6.5

254

Downloading programs to the target system

The program has to be downloaded into the target system, together with the technology
objects etc., before being executed.

To download the program to the target system, proceed as follows:

1.

Select Project > Save and compile all

The project is locally saved on the hard disk and compiled, with due regard for all
dependencies.

. Select the Project > Check consistency menu command to check the project for

consistency.

This is not necessary if the option Check consistency before loading is activated in menu
option Options > Settings in the Download tab (the default for this option is to be
activated). This means that the consistency check is performed automatically during
Download.

Select the Project > Connect to target system menu command or click "m
The Online mode is activated.
Select the Target system > Connect to target system menu command or click |

The project data (including the sample program) and the data of the hardware
configuration are downloaded to the RAM of the target system.

For more information about downloading a program to the target system, see the SIMOTION
Basic Functions Function Manual.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

71 Modes for program testing

711 Modes of the SIMOTION devices

Various SIMOTION device modes are available for program testing.
How to select the mode of a SIMOTION device:

SIMOTION LAD/FBD

1.
2.
3.

Highlight the SIMOTION device in the project navigator.
Select the "Test mode" context menu.

Select the required mode (see following table).

If you have selected "Debug mode":

— Accept the safety information.

— Parameterize the sign-of-life monitoring.

Observe the following section: Important information about the life-sign monitoring
(Page 257).

Confirm with "OK".
The SIMOTION device switches to the selected mode.
When the SIMOTION device switches to "Debug mode":

— A connection to the target system will be established automatically (online mode) if
SIMOTION SCOUT is currently in offline mode.

— The activated debug mode is indicated in the status bar.

— The breakpoints toolbar (Page 278) is displayed.

Programming and Operating Manual, 05/2009

255

Debugging Software / Error Handling

7.1 Modes for program testing

Table 7- 1 Modes of a SIMOTION device

Setting

Meaning

Process mode

Program execution on the SIMOTION device is optimized for maximum system performance.

The following diagnostic functions are available, although they may have only restricted
functionality because of the optimization for maximum system performance:

e Monitor variables in the symbol browser or a watch table.
e Program status (only restricted):

— Restricted monitoring of variables (e.g. variables in loops, return values for system
functions).

— As of version V4.0 of the SIMOTION kernel:
No more than one program source (e.g. ST source, MCC source, LAD/FBD source) can
be monitored per task.

— Up to version V3.2 of the SIMOTION kernel:
No more than one program source (e.g. ST source, MCC source, LAD/FBD source) can
be monitored.

e Trace tool (only restricted) with measuring functions for drives and function generator, see
online help:

— No more than one trace on each SIMOTION device.

Test mode The diagnostic functions of the process mode are available to the full extent:
e Monitor variables in the symbol browser or a watch table.
e Program status:
— Monitoring of all variables possible.
— As of version V4.0 of the SIMOTION kernel:
Several program sources (e.g. ST sources, MCC sources, LAD/FBD sources) can be
monitored per task.
— Up to version V3.2 of the SIMOTION kernel:
No more than one program source (e.g. ST source, MCC source, LAD/FBD source) can
be monitored per task.
e Trace tool with measuring functions for drives and function generator, see online help:
— No more than four traces on each SIMOTION device.
Note
Runtime and memory utilization increase as the use of diagnostic functions increases.
Debug mode This mode is available in SIMOTION kernel as of V3.2.
In addition to the diagnostic functions of the test mode, you can use the following functions:
e Breakpoints
Within a program source file, you can set breakpoints (Page 272). When an activated
breakpoint is reached, selected tasks will be stopped.
e Controlling MotionTasks
In the "Task Manager" tab of the device diagnostics, you can use task control commands for
MotionTasks, see the SIMOTION Basic Functions Function Manual.
No more than one SIMOTION device of the project can be switched to debug mode.
SIMOTION SCOUT is in online mode, i.e. connected with the target system.
Observe the following section: Important information about the life-sign monitoring (Page 257).
SIMOTION LAD/FBD
256 Programming and Operating Manual, 05/2009

Debugging Software / Error Handling
7.1 Modes for program testing

7.1.2 Important information about the life-sign monitoring.

/I\WARNING

You must observe the appropriate safety regulations.

Use the debug mode or a control panel only with the life-sign monitoring function activated
with a suitably short monitoring time! Otherwise, if problems occur in the communication
link between the PC and the SIMOTION device, the axis may start moving in an
uncontrollable manner.

The function is released exclusively for commissioning, diagnostic and service purposes.
The function should generally only be used by authorized technicians. The safety
shutdowns of the higher-level control have no effect.

Therefore, there must be an EMERGENCY STOP circuit in the hardware. The appropriate
measures must be taken by the user.

Accept safety notes

After selecting the debug mode or a control panel, you must accept the safety notes. You
can set the parameters for the life-sign monitoring.

Proceed as follows:
1. Click the Settings button.
The "Debug settings" window opens.

2. Read there, as described in the following section, the safety notes and parameterize the
life-sign monitoring.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 257

Debugging Software / Error Handling

7.1 Modes for program testing

Parameterizing the life-sign monitoring

258

In the Life-sign monitoring parameterization window, proceed as described below:
1. Read the warning!

2. Click the Safety notes button to open the window with the detailed safety notes.
3. Do not make any changes to the defaults for life-sign monitoring.

Changes should only be made in special circumstances and in observance of all danger
warnings.

4. Click Accept to confirm you have read the safety notes and have correctly parameterized
the life-sign monitoring.

NOTICE

Pressing the spacebar or switching to a different Windows application causes:
¢ In debug mode for activated breakpoints:
— The SIMOTION device switches to STOP mode.
— The outputs are deactivated (ODIS).
e For controlling an axis or a drive using the control panel (control priority for the PC):
— The axis or the drive is brought to a standstill.
— The enables are reset.

/I\WARNING

This function is not guaranteed in all operating modes. Therefore, there must be an
EMERGENCY STORP circuit in the hardware. The appropriate measures must be taken by
the user.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

7.1 Modes for program testing

713 Life-sign monitoring parameters

Table 7- 2 Life-sign monitoring parameter description

Field Description

Life-sign monitoring The SIMOTION device and SIMOTION SCOUT regularly exchange life-sign
signals to ensure a correctly functioning connection. If the exchange of the
life-sign is interrupted longer than the set monitoring time, the following
response occurs:

¢ In debug mode for activated breakpoints:
— The SIMOTION device switches to STOP mode.
— The outputs are deactivated (ODIS).

e For controlling an axis or a drive using the control panel (control priority
for the PC):

— The axis is brought to a standstill.
— The enables are reset.

The following parameterizations are possible:
e Active check box:

If the check box is selected, life-sign monitoring is active.

The deactivation of the life-sign monitoring is not always possible.
¢ Monitoring time:

Enter the timeout.

Prudence
Do not make any changes to the defaults for life-sign monitoring, if possible.

Changes should only be made in special circumstances and in observance
of all danger warnings.

Safety information Please observe the warning!
Click the button to obtain further safety information.

See: Important information about the life-sign monitoring (Page 257)

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 259

Debugging Software / Error Handling

7.2 Symbol Browser

7.2 Symbol Browser

7.21 Characteristics

In the symbol browser, you can view and, if necessary, change the name, data type, and
variable values. In particular, you can: see the following variables:

e Unit variables and static variables of a program or function block
e System variables of a SIMOTION device or a technology object
® |/O variables or global device variables.

For these variables, you can:

® View a snapshot of the variable values

® Monitor variable values as they change

® (Change (modify) variable values

However, the symbol browser can only display/modify the variable values if the project has
been loaded in the target system and a connection to the target system has been
established.

7.2.2 Using the symbol browser

Enabling symbol browser
To enable the symbol browser, proceed as follows:

1. Make sure that a connection to the target system has been established and that the
sample program has been downloaded to the target system (see Download programs to
the target system (Page 254)). You can run the program, but you don't have to. If the
program is not run, you only see the initial values of the variables.

2. If you have not already done so, select a LAD/FBD unit in the project navigator.
3. Click the Symbol browser tab.
All of the unit variables used in the program are displayed.

In the Status value column, the current variable values are displayed and periodically
updated.

SIMOTION LAD/FBD
260 Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

7.2 Symbol Browser

Variables in the user memory of the unit or in the retentive memory

SIMOTION LAD/FBD

In the symbol browser, you can monitor the variables contained in the user memory of the
unit or in the retentive memory:

® Retentive and non-retentive unit variables of the interface section of a program source
(unit)

® Retentive and non-retentive unit variables of the implementation section of a program
source (unit)

e Static variables of the function blocks whose instances are declared as unit variables.

® |n addition, if the program source (unit) has been compiled with the "Create program
instance data only once" compiler option (Page 48):

— Static variables of the programs.

— Static variables of the function blocks whose instances are declared as static variables
of programs.

Follow these steps:
1. Select the program source file in the project navigator.
2. In the detail view, click the Symbol browser tab.

In the symbol browser, you can see all the variables of the program source contained in the
user memory of the unit or in the retentive memory.

e All unit variables of the program source.

® Only if the program source has been compiled with the "Create program instance data
only once" compiler option: The programs of the program source file and below their
static variables (including instances of function blocks).

Programming and Operating Manual, 05/2009 261

Debugging Software / Error Handling

7.2 Symbol Browser

Variables in the user memory of the task

You can use the symbol browser to monitor the variables contained in the user memory of
the associated task:

If the program source (unit) was compiled without the compiler option (Page 48) "Create
program instance data only once" (default), the user memory of the task to which the
program was assigned contains the following variables:

e Static variables of the programs.

e Static variables of the function blocks whose instances are declared as static variables of
programs.

Follow these steps:

1. In the project navigator of SIMOTION SCOUT, select the EXECUTION SYSTEM element
in the subtree of the SIMOTION device.

2. In the detail view, click the Symbol browser tab.

The symbol browser shows all tasks used in the execution system together with the
assigned programs. The associated variables contained in the user memory of the task are
listed below.

Note

You can monitor temporary variables (together with unit variables and static variables) with
Program status (see Program status (Page 269)).

System variables and global device variables
You can also monitor the following variables in the symbol browser:
e System variables of SIMOTION devices
e System variables of technology objects
® |/O variables
® Global device variables
Follow these steps:
1. Select the appropriate element in the SIMOTION SCOUT project navigator.
2. In the detail view, click the Symbol browser tab.

The corresponding variables are displayed in the symbol browser.

SIMOTION LAD/FBD
262 Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

7.2 Symbol Browser

Status and controlling variables

In the Status value column, the current variable values are displayed and periodically
updated.

You can change the value of one or several variables. Proceed as follows for the variables to

be changed:

1. Enter a value in the Control value column.

2. Activate the check box in this column

3. Click the Immediate control button.

The values you entered are written to the selected variables.

NOTICE

Note when you change the values of several variables:

The values are written sequentially to the variables. It can take several milliseconds until
the next value is written. The variables are changed from top to bottom in the symbol
browser. There is therefore no guarantee of consistency.

Fixing the display

You can fix the display of the symbol browser for the active object:

1. To do so, click the Maintain display *= symbol in the right upper corner of the symbol
browser. The displayed symbol changes to '*

The variables of this object are still displayed and updated in the symbol browser even if
another object is selected in the project navigator.

2. To remove the display, click the ‘¥ symbol again. The displayed symbol changes back
to *.

Display invalid floating-point numbers

SIMOTION LAD/FBD

Invalid floating-point numbers are displayed as follows in the symbol browser (independently

of the SIMOTION device):

Table 7- 3 Display invalid floating-point numbers

Display Meaning

1.#QNAN Invalid bit pattern in accordance with IEEE 754 (NaN Not a Number) There is no
-1.#QNAN distinction between signaling NaN (NaNs) and quiet NaN (NaNq).

1.#INF Bit pattern for + infinity in accordance with IEEE 754

-1.#INF Bit pattern for — infinity in accordance with IEEE 754

-1.#IND Bit pattern for indeterminate

Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

7.3 Watch tables

7.3 Watch tables
7.3.1 Monitoring variables in watch table
Watch table options

With the symbol browser you can view the variables belonging to one object in your project;
with the program status you can view the variables belonging to a selected monitoring area
in the program. With watch tables, by contrast, you can monitor selected variables from
different sources as a group (e.g. program sources, technology objects, SINAMICS drives -
even on different devices).

You can see the data type of the variables in offline mode. You can view and also modify the
value of the variables in online mode.

Creating a watch table
Procedure for creating a watch table and assigning variables:

1.
2.

7.

In the project navigator, open the Monitor folder.

Double-click the Insert watch table entry to create a watch table and enter a name for it. A
watch table with this name appears in the Monitor folder.

In the project navigator, click the object from which you want to move variables to the
watch table.

In the symbol browser, select the corresponding variable line by clicking its number in the
left column.

From the context menu, select Add to watch table and the appropriate watch table, e.g.
Watch table_1.

If you click the watch table, you will see in the detail view of the Watch table tab that the
selected variable is now in the watch table.

Repeat steps 3 to 6 to monitor the variables of various objects.

If you are connected to the target system, you can monitor the variable contents.

264

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

7.3 Waftch tables

Status and controlling variables

In the Status value column, the current variable values are displayed and periodically
updated.

You can change the value of one or several variables. Proceed as follows for the variables to
be changed:

1. Enter a value in the Control value column.

2. Activate the checkbox in this column

3. Click the Immediate control button.

The values you entered are written to the selected variables.

NOTICE

Note when you change the values of several variables:

The values are written sequentially to the variables. It can take several milliseconds until
the next value is written. The variables are changed from top to bottom in the watch table.
There is therefore no guarantee of consistency.

Fix the display of the watch table

SIMOTION LAD/FBD

You can fix the display of the active watch table:

® To do so, click the Retain displays- icon in the right upper corner of the Watch table tab in
the detail view. The displayed symbol changes to ¢ .

This watch table is still displayed even if another one is selected in the project navigator.

e To remove the display, click the ‘¥ icon again. The displayed symbol changes back
to *= .

Programming and Operating Manual, 05/2009 265

Debugging Software / Error Handling

7.4 Trace

7.4 Trace

Trace options

Trace allows you to record and save signal characteristics of inputs/outputs or the variable
values. This allows you to document the optimization, for example, of axes.

You can set the recording time, display up to four channels with eight values each in the test
or debug mode, select trigger conditions, parameterize timing adjustments, select between
different curve displays and scalings, etc.

The SIMOTION online help provides additional information on the trace tool.

SIMOTION LAD/FBD
266 Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

7.5 Program run

7.5 Program run

7.5.1 Program run: Display code location and call path

You can display the position in the code (e.g. line of an ST source file) that a MotionTask is
currently executing along with its call path.

Follow these steps:

1. Click the "Show program run" button on the Program run toolbar.
The "Program run call stack (Page 268)" window opens.

2. Select the desired MotionTask.

3. Click the "Update" button.

The window shows:

® The position in the code being executed (e.g. line of the ST source file) stating the
program source and the POU.

® Recursively positions in the code of other POUs that call the code position being
executed.

The following names are displayed for the SIMOTION RT program source files:

Table 7- 4 SIMOTION RT program source files

Name Meaning
taskbind.hid Execution system
stdfunc.pck IEC library
device.pck Device-specific library
fp-name.pck Library of the {p-name technology package,
e.g. cam.pck for the library of the CAM technology package

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 267

Debugging Software / Error Handling

7.5 Program run
7.5.2 Parameter call stack program run
You can display the following for all configured tasks:
® the current code position in the program code (e.g. line of an ST source file)
® the call path of this code position
Table 7- 5 Parameter description call stack program run

Field Description

Selected CPU The selected SIMOTION device is displayed.

Refresh Clicking the button reads the current code positions from the
SIMOTION device and shows them in the open window.

Calling task Select the task for which you want to determine the code position
being executed.

All configured tasks of the execution system.

Current code position The position being executed in the program code (e.g. line of an ST
source file) is displayed (with the name of the program source file,
line number, name of the POU).

is called by The code positions that call the code position being executed within
the selected task are shown recursively (with the name of the
program source file, line number, name of the POU, and name of the
function block instance, if applicable).

For names of the SIMOTION RT program sources, refer to the table in "Program run

(Page 267)".
753 Program run toolbar

You can display the position in the code (e.g. line of an ST source file) that a MotionTask is
currently executing along with its call path with this toolbar.

Table 7- 6 Program run toolbar

Symbol Meaning
EI Display program run

Click this button to open the Program run call stack window. In this window, you can
display the currently active code position with its call path.

See: Program run: Display code position and call path (Page 267)

SIMOTION LAD/FBD
268 Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

7.6 Program status (monitoring program execution)

7.6 Program status (monitoring program execution)

Monitoring the program execution

Monitoring the program execution does not affect the actual execution of the program, but
does increase the communication load. This has an impact on the execution of MotionTasks
and the BackgroundTask.

Program status can be switched on and off during all modes of a SIMOTION device.

Note

In the process mode, the program status can be called only once for a LAD/FBD program,
FB or FC.

In the test mode, the program status can be called for a maximum of four LAD/FBD
programs, FB or FC.

If you do not observe the restriction, error message 25023 "No resources in the runtime" will
appear.

7.6.1 Starting and stopping the program execution monitoring

Starting and stopping program status
You can call up information on network status in two different ways using the program status:

® You can select specific networks to display their status. Multiple selection (shift key) and
the selection of all networks (Ctrl+a) is possible. The boxes will be displayed in the same
color as the corresponding output.

The left-hand border of a selected network is highlighted in blue.

e |f you do not select a network, the status is displayed for those networks that are visible
on the screen. If you scroll down, the status of those visible networks is now displayed.

To start/stop Program status, proceed as follows:

1. Make sure that the LAD/FBD unit generates the additional debug code during
compilation:

Select the LAD/FBD unit in the project navigator and select the Edit > Object properties
menu command.

Select the Compiler tab, activate the Permit program status checkbox and confirm with
OK.

2. Open the LAD/FBD unit and recompile it with LAD/FBD unit > Save and compile.

3. Download and start the program in the usual way. Make sure that the target system is in
STOP mode.

4. Click the Program status button to start the test mode.

5. To stop the program execution monitoring, click the Program status icon.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 269

Debugging Software / Error Handling

7.6 Program status (monitoring program execution)

270

If the program execution monitoring is activated, the ladder diagram lines/signal paths of the
selected networks or the networks displayed on the screen are colored according to the

current values:

r r P |

Parameters/yariables 7IIEI symbols | Stuctures | Enwmerstions |
Mams variable tpe Dats tpe [Amay lsngth nit/ vaiue Comment
eNDINT AR DINT A 1m
2] [wer DINT I 1 |
[[|wer USINT | /
[[uer BOOL Ji I
gl ot [[uaR DINT [m
| A

/ / |

1.

1.
F_Elink - Tfitle
Comment

ool - Tifdle
camment)
ADD on

EN END [« —
12 20 | T
eiMDINT—{INL OUT —einDINT &4nDINT
1
il-{INZ 100
a1
countdint
00z - Title
Comment
TEINT_TO_
on FOVE DT BYTE
| EN END EM END EN EWO—————— [RET } |
O—{IN OUT | —=inDINT oUtUSInt—{INL OUT | outlSint outlSink—{IN OUT [_var
1{INZ
D435 : Dperating mode ... [x|
O svoC
O muN STOPU ~
O sToPU
O stop STOF
MRES |
Close | Help |
‘]|
4 P_Bink

@ Green: 1, True
® Gray background: Non-binary value
® Red: 0, False

Figure 7-1 Online display in the LAD/FBD editor

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Debugging Software / Error Handling
7.6 Program status (monitoring program execution)

Note

When a constant is used in a network, the current value of the constant is also displayed
during program execution.

A constant which is not included is colored turquoise.
Monitoring of the program execution is started by means of the Program status icon.

In order to be able to monitor several programs simultaneously with the program status, the
following conditions must be fulfilled:

e Mark the required LAD/FBD unit in the project navigator, select the Properties command
in the context menu and mark the Permit program statuscheckbox in the Compiler tab.

e Mark the required SIMOTION device in the project navigator, select the Test mode
command in the context menu and enable the Test mode option.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 271

Debugging Software / Error Handling

7.7 Breakpoints (WS)

7.7 Breakpoints (WS)

7.71 General procedure for setting breakpoints

Requirement:

Proceed as follows

272

You can set breakpoints within a POU of a program source (e.g. ST source, MCC chart,
LAD/FBD source). On reaching an activated breakpoint, the task in which the POU with the
breakpoint is called is stopped. If the breakpoint that initiated the stopping of the tasks is
located in a program or function block, the values of the static variables for this POU are
displayed in the "Variables status" tab of the detail display. Temporary variables (also in/out
parameters for function blocks) are not displayed. You can monitor static variables of other
POUs or unit variables in the symbol browser.

The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is
open.

Follow these steps:

1

o M DN

. Select "Debug mode" for the associated SIMOTION device, see Set debug mode

(Page 273).

Specify the debug task group, see Specifying the debug task group (Page 274).
Set breakpoints, see Setting breakpoints (Page 276).

Define the call path, see Defining a call path for a single breakpoint (Page 279).
Activate the breakpoints, see Activating breakpoints (Page 283).

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Debugging Software / Error Handling
7.7 Breakpoints (WS)

71.7.2 Setting the debug mode

/I\WARNING

You must observe the appropriate safety regulations.

Use the debug mode only with activated life-sign monitoring (Page 257) with a suitably
short monitoring time! Otherwise, if problems occur in the communication link between the
PC and the SIMOTION device, the axis may start moving in an uncontrollable manner.

The function is released exclusively for commissioning, diagnostic and service purposes.
The function should generally only be used by authorized technicians. The safety
shutdowns of the higher-level control have no effect!

Therefore, there must be an EMERGENCY STOP circuit in the hardware. The appropriate
measures must be taken by the user.

To set the debug mode, proceed as follows:

1. Highlight the SIMOTION device in the project navigator.
Select Test mode from the context menu.

Select Debugmode (Page 255).

Accept the safety information

o > 0N

Parameterize the sign-of-life monitoring.
See also section: Important information about the life-sign monitoring (Page 257).
6. Confirm with OK.

If no connection has been established with the target system (offline mode), the online
mode will be established automatically.

The activated debug mode is indicated in the status bar.

The breakpoints toolbar (Page 278) is displayed.

Note
You cannot change the program sources in debug mode!

NOTICE

Pressing the spacebar or switching to a different Windows application causes in debug
mode for activated breakpoints:

e The SIMOTION device switches to STOP mode.
e The outputs are deactivated (ODIS).

AWARNING

This function is not guaranteed in all operating modes. Therefore, there must be an
EMERGENCY STOP circuit in the hardware. The appropriate measures must be taken by
the user.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 273

Debugging Software / Error Handling
7.7 Breakpoints (WS)

7.7.3 Define the debug task group

On reaching an activated breakpoint, all tasks that are assigned to the debug task group are
stopped.

Requirement
® The relevant SIMOTION device is in debug mode.

Proceed as follows
How to assign a task to the debug task group:
1. Highlight the relevant SIMOTION device in the project navigator.
2. Select Debug task group from the context menu.
The Debug Task group window opens.
3. Select the tasks to be stopped on reaching the breakpoint:

— If you only want to stop individual tasks (in RUN mode): Activate the Debug task group
selection option.

Assign all tasks to be stopped on reaching a breakpoint to the Tasks to be stopped
list.

— If you only want to stop individual tasks (in HALT mode): Activate the All tasks
selection option.

In this case, also select whether the outputs and technology objects are to be released
again after resumption of program execution.

NOTICE

Note the different behavior when an activated breakpoint is reached, see the following
table.

SIMOTION LAD/FBD
274 Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

7.7 Breakpoints (WS)

Table 7-7 Behavior at the breakpoint depending on the tasks to be stopped in the debug task group.

Properties Tasks to be stopped
Single selected tasks All tasks
(debug task group)
Behavior on reaching the breakpoint
Operating mode RUN STOP
Stopped tasks Only tasks in the debug task group All tasks
Outputs Active Deactivated (ODIS activated)
Technology Closed-loop control active No closed-loop control (ODIS activated)
Runtime measurement of the | Active for all tasks Deactivated for all tasks
tasks
Time monitoring of the tasks Deactivated for tasks in the debug task Deactivated for all tasks
group
Real-time clock Continues to run Continues to run

Behavior on resumption of program execution

Operating mode RUN RUN

Started tasks All tasks in the debug task group All tasks

Outputs Active The behavior of the outputs and the
Technology Closed-loop control active technology objects depends on the

'Continue’ activates the outputs (ODIS
deactivated) checkbox.

e Active: ODIS will be deactivated. All
outputs and technology objects are
released.

¢ Inactive: ODIS remains activated. All
outputs and technology objects are
only released after another download
of the project.

Note
You can only make changes to the debug task group if no breakpoints are active.

Proceed as follows:
1. Set breakpoints (see Setting breakpoints (Page 276)).
2. Define the call path (see Defining a call path for a single breakpoint (Page 279)).
3. Activate the breakpoints (see Activating breakpoints (Page 283)).

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 275

Debugging Software / Error Handling

7.7 Breakpoints (WS)
7.74 Setting breakpoints

Requirements:

1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is
open.

2. The relevant SIMOTION device is in debug mode,
see Setting debug mode (Page 273).

3. The debug task group is defined, see Defining the debug task group (Page 274).

Proceed as follows
How to set a breakpoint:
1. Select the code location where no breakpoint has been set:

— SIMOTION ST: Place the cursor on a line in the ST source file that contains a
statement.

— SIMOTION MCC: Select an MCC command in the MCC chart (except module or
comment block).

— SIMOTION LAD/FBD: Set the cursor in a network of the LAD/FBD program.
2. Alternative:
— Select the Debug > Set/remove breakpoint menu command (shortcut F9).
— Click the ll button in the Breakpoints toolbar.
To remove a breakpoint, proceed as follows:
1. Select the code position with the breakpoint.
2. Alternative:
— Select the Debug > Set/remove breakpoint menu command (shortcut F9).
— Click the il button in the Breakpoints toolbar.

To remove all breakpoints (in all program sources) of the SIMOTION device, proceed as
follows:

e Alternative:
— Select the Debug > Remove all breakpoints menu command (shortcut CTRL+F5).
— Click the ﬁl button in the Breakpoints toolbar.

SIMOTION LAD/FBD
276 Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

7.7 Breakpoints (WS)

Note

You cannot set breakpoints:

e For SIMOTION ST: In lines that contain only comment.

e For SIMOTION MCC: On the module or comment block commands.

e For SIMOTION LAD/FBD: Within a network.

e At code locations in which other debug points (e.g. trigger points) have been set.

You can list the debug points in all program sources of the SIMOTION device in the debug
table:

o Click the button for "debug table" in the Breakpoints toolbar.

In the debug table, you can also remove all breakpoints (in all program sources) of the
SIMOTION device:

¢ Click the button for "Clear all breakpoints".

Set breakpoints remain saved also after leaving the "debug mode", they are displayed only
in debug mode.

You can use the program status (Page 269) diagnosis functions and breakpoints together in
a program source file or POU. However, the following restrictions apply depending on the
program languages:

® SIMOTION ST: For Version V3.2 of the SIMOTION Kernel, the (marked) ST source file
lines to be tested with program status must not contain a breakpoint.

® SIMOTION MCC and LAD/FBD: The commands of the MCC chart (or networks of the
LAD/FBD program) to be tested with program status must not contain a breakpoint.

Proceed as follows

SIMOTION LAD/FBD

1. Define the call path, see Defining a call path for a single breakpoint (Page 279).
2. Activate the breakpoints, see Activating breakpoints (Page 283).

Programming and Operating Manual, 05/2009 277

Debugging Software / Error Handling

7.7 Breakpoints (WS)

7.7.5 Breakpoints toolbar

This toolbar contains important operator actions for setting and activating breakpoints:

Table 7- 8

Breakpoints toolbar

Symbol

Meaning

El

Set/remove breakpoint

Click this icon to set at breakpoint for the selected code position or to remove an
existing breakpoint.

See: Setting breakpoints (Page 276).

|

Activate/deactivate breakpoint
Click this icon to activate or deactivate the breakpoint at the selected code position.
See: Activating breakpoints (Page 283).

Edit the call path
Click this icon to define the call path for the breakpoints:
e If a code position with breakpoint is selected: The call path for this breakpoint.

e If a code position without breakpoint is selected: The call path for all breakpoints
of the POU.

See: Defining the call path for a single breakpoint (Page 279), Defining the call path
for all breakpoints (Page 281).

Activate all breakpoints

Click this icon to activate all breakpoints in the current program source or POU (e.g.
ST source file, MCC chart, LAD/FBD program).

See: Activating breakpoints (Page 283).

Deactivate all breakpoints

Click this icon to deactivate all breakpoints in the current program source or POU
(e.g. ST source file, MCC chart, LAD/FBD program).

See: Activating breakpoints (Page 283).

Remove all breakpoints

Click this icon to remove all breakpoints in the current program source or POU (e.g.
ST source file, MCC chart, LAD/FBD program).

See: Setting breakpoints (Page 276).

Debug table
Click this icon to display the debug table.
See: Debug table parameters.

Display call stack
Click this icon after reaching an activated breakpoint to:
e View the call path at the current breakpoint.

¢ View the code positions at which the other tasks of the debug task group have
been stopped together with their call path.

See: Displaying the call stack (Page 285).

:I

Resume

Click this icon to continue the program execution after reaching an activated
breakpoint.

See: Activating breakpoints (Page 283), Displaying the call stack (Page 285).

278

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Debugging Software / Error Handling
7.7 Breakpoints (WS)

7.7.6 Defining the call path for a single breakpoint

Requirements:

1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is
open.

2. The relevant SIMOTION device is in debug mode,
see Setting debug mode (Page 273).

3. The debug task group is defined, see Defining the debug task group (Page 274).
4. Breakpoint is set, see Setting breakpoints (Page 276).

Proceed as follows
To define the call path for a single breakpoint, proceed as follows:
1. Select the code location where a breakpoint has already been set:
— SIMOTION ST: Set the cursor in an appropriate line of the ST source.
— SIMOTION MCC: Select an appropriate command in the MCC chart.

— SIMOTION LAD/FBD: Set the cursor in an appropriate network of the LAD/FBD
program.

2. Click the ﬁl button for "edit call path" in the Breakpoints toolbar.

In the Call path / task selection breakpoint window, the marked code position is displayed
(with the name of the program source file, line number, name of the POU).

3. Select the task in which the user program (i.e. all tasks in the debug task group) will be
stopped when the selected breakpoint is reached.

The following are available:
— All calling locations starting at this call level

The user program will always be started when the activated breakpoint in any task of
the debug task group is reached.

— The individual tasks from which the selected breakpoint can be reached.

The user program will be stopped only when the breakpoint in the selected task is
reached. The task must be in the debug task group.

The specification of a call path is possible.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 279

Debugging Software / Error Handling

7.7 Breakpoints (WS)

4. Only for functions and function blocks: Select the call path, i.e. the code position to be
called (in the calling POU).

The following are available:
— All calling locations starting at this call level

No call path is specified. The user program is always stopped at the activated
breakpoint if the POU in the selected tasks is called.

— Only when a single task is selected: The code positions to be called within the
selected task (with the name of the program source, line number, name of the POU).

The call path is specified. The user program will be stopped at the activated
breakpoint only when the POU is called from the selected code position.

If the POU of the selected calling code position is also called from other code
positions, further lines are displayed successively in which you proceed similarly.

5. If the breakpoint is only to be activated after the code position has been reached several
times, select the number of times.

Note

You can also define the call path to the individual breakpoints in the debug table:
1. Click the button for "debug table" in the Breakpoints toolbar.
The "Debug table" window opens.
2. Click the appropriate button in the "Call path" column.
3. Proceed in the same way as described above:
— Specify the task.
— Define the call path (only for functions and function blocks).
— Specify the number of passes after which the breakpoint is to be activated.

Proceed as follows:
® Activate the breakpoints, see Activating breakpoints (Page 283).

Note

You can use the "Display call stack (Page 285)" function to view the call path at a current
breakpoint and the code positions at which the other tasks of the debug task group were
stopped.

See also
Defining the call path for all breakpoints (Page 281)

SIMOTION LAD/FBD
280 Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

7.7 Breakpoints (WS)

7.7.7 Defining the call path for all breakpoints

With this procedure, you can:

Requirements

Proceed as follows

Select a default setting for all future breakpoints in a POU (e.g. MCC chart, LAD/FBD
program or POU in an ST source file).

Accept and compare the call path for all previously set breakpoints in this POU.

The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is
open.

The relevant SIMOTION device is in debug mode,
see Setting debug mode (Page 273).

The debug task group is defined, see Defining the debug task group (Page 274).

To define the call path for all future breakpoints of a POU, proceed as follows:

1.

2.

SIMOTION LAD/FBD

Select the code location where no breakpoint has been set:
— SIMOTION ST: Set the cursor in an appropriate line of the ST source.
— SIMOTION MCC: Select an appropriate command in the MCC chart.

— SIMOTION LAD/FBD: Set the cursor in an appropriate network of the LAD/FBD
program.

Click the ﬁl button for "edit call path" in the Breakpoints toolbar.

In the "Call path / task selection all breakpoints for each POU" window, the marked code
position is displayed (with the name of the program source file, line number, name of the
POU).

Select the task in which the user program (i.e. all tasks in the debug task group) will be
stopped when a breakpoint in this POU is reached.

The following are available:
— All calling locations starting at this call level

The user program will always be started when an activated breakpoint of the POU in
any task of the debug task group is reached.

— The individual tasks from which the selected breakpoint can be reached.

The user program will be stopped only when a breakpoint in the selected task is
reached. The task must be in the debug task group.

The specification of a call path is possible.

Programming and Operating Manual, 05/2009 281

Debugging Software / Error Handling

7.7 Breakpoints (WS)

4. Only for functions and function blocks: Select the call path, i.e. the code position to be
called (in the calling POU).

The following are available:
— All calling locations starting at this call level

No call path is specified. The user program is always stopped at an activated
breakpoint when the POU in the selected tasks is called.

— Only when a single task is selected: The code positions to be called within the
selected task (with the name of the program source, line number, name of the POU).

The call path is specified. The user program will be stopped at an activated breakpoint
only when the POU is called from the selected code position.

If the selected calling code position is in turn called by other code positions, further
lines are displayed successively in which you proceed similarly.

5. If a breakpoint is only to be activated after the code position has been reached several
times, select the number of times.

6. If you want to accept and compare this call path for all previously set breakpoints in this
POU:

— Click Accept.

Proceed as follows:
e Activate the breakpoints, see Activating breakpoints (Page 283).

Note

You can use the "Display call stack (Page 285)" function to view the call path at a current
breakpoint and the code positions at which the other tasks of the debug task group were
stopped.

See also
Defining the call path for a single breakpoint (Page 279)

SIMOTION LAD/FBD
282 Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

7.7 Breakpoints (WS)

7.7.8 Activating breakpoints

Breakpoints must be activated if they are to have an effect on program execution.

Requirements

1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is
open.

2. The relevant SIMOTION device is in debug mode,
see Setting debug mode (Page 273).

3. The debug task group is defined, see Defining the debug task group (Page 274).
4. Breakpoints are set, see Setting breakpoints (Page 276).

5. Call paths are defined, see Defining a call path for a single breakpoint (Page 279).

Activating breakpoints
How to activate a single breakpoint:
1. Select the code location where a breakpoint has already been set:
— SIMOTION ST: Set the cursor in an appropriate line of the ST source.
— SIMOTION MCC: Select an appropriate command in the MCC chart.

— SIMOTION LAD/FBD: Set the cursor in an appropriate network of the LAD/FBD
program.

2. Alternative:
— Select the Debug > Activate/deactivate breakpoint menu command (shortcut F12).
— Click the _.l button in the Breakpoints toolbar.

To activate all breakpoints (in all program sources) of the SIMOTION device, proceed as
follows:

e Alternative:
— Select the Debug > Activate all breakpoints menu command.
— Click the 3' button in the Breakpoints toolbar.

Note
Breakpoints of all program sources of the SIMOTION device can also be activated and
deactivated in the debug table:
1. Click the button for "debug table" in the Breakpoints toolbar.
The "Debug table" window opens.

2. Perform the action below, depending on which breakpoints you want to activate or
deactivate:

— Single breakpoints: Check or clear the corresponding checkboxes.
— All breakpoints (in all program sources): Click the corresponding button.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 283

Debugging Software / Error Handling

7.7 Breakpoints (WS)

Behavior at the activated breakpoint

On reaching an activated breakpoint (possibly using the selected call path (Page 279)), all
tasks assigned to the debug task group will be stopped. The behavior depends on the tasks
in the debug task group and is described in "Defining a debug task group (Page 274)". The
breakpoint is highlighted.

If the breakpoint that initiated the stopping of the tasks is located in a program or function
block, the values of the static variables for this POU are displayed in the "Variables status”
tab of the detail display. Temporary variables (also in/out parameters for function blocks) are
not displayed. You can monitor static variables of other POUs or unit variables in the symbol
browser (Page 260).

You can use the "Display call stack (Page 285)" function to:
e View the call path at the current breakpoint.

® View the code positions with the call path at which the other tasks of the debug task
group have been stopped.

Resuming program execution
How to resume program execution:
e Alternative:
— Select the Debug > Continue menu command (shortcut CTRL+F8).
— Click the :l button on the Breakpoint toolbar to "Continue".

Deactivate breakpoints
To deactivate a single breakpoint, proceed as follows:
1. Select the code position with the activated breakpoint.
2. Alternative:
— Select the Debug > Activate/deactivate breakpoint menu command (shortcut F12).
— Click the _.l button in the Breakpoints toolbar.

To deactivate all breakpoints (in all program sources) of the SIMOTION device, proceed as
follows:

e Alternative:
— Select the Debug > Deactivate all breakpoints menu command.
— Click the ﬁl button in the Breakpoints toolbar.

SIMOTION LAD/FBD
284 Programming and Operating Manual, 05/2009

Debugging Software / Error Handling

7.7 Breakpoints (WS)

7.7.9 Display call stack

You can use the "Display call stack" function to:

® \iew the call path at the current breakpoint.

Requirement

View the code positions with the call path at which the other tasks of the debug task
group have been stopped.

The user program is stopped at an activated breakpoint, i.e. the tasks of the debug task
group (Page 274) have been stopped.

Proceed as follows

To call the "Display call stack" function, proceed as follows:

Click the El button for "display call stack" in the Breakpoints toolbar.

The "Breakpoint call stack" dialog opens. The current call path (including the calling task
and the number of the set passes) is displayed.

The call path cannot be changed.

To use the "Display call stack" function, proceed as follows:

1.
2.

4.

Keep the "Breakpoint call stack" dialog open.
To display the code position at which the other task was stopped, proceed as follows:
— Select the appropriate task. All tasks of the debug task group can be selected.

The code position, including the call path, is displayed. If the code position is contained in
a user program, the program source with the POU (e.g. ST source file, MCC chart,
LAD/FBD program) will be opened and the code position marked.

How to resume program execution:
— Click the :I button for "resume" (Ctrl+F8 shortcut) in the Breakpoint toolbar.

When the next activated breakpoint is reached, the tasks of the debug task group will be
stopped again. The current call path, including the calling task, is displayed.

Click "OK" to close the "Breakpoint call stack" dialog.

For names of the SIMOTION RT program sources, refer to the table in "Program run
(Page 267)".

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009 285

Application Examples 8

8.1 Examples

You will be given an introduction to the LAD and FBD programming languages using two
simple examples.

8.2 Creating sample programs

Requirements for program creation

The project is the highest level in the data management hierarchy. SIMOTION SCOUT
saves all data which belongs, for example, to a production machine, in the project directory.

This means that the project therefore brackets together all SIMOTION devices, drives, etc.,
belonging to one machine.

Within the project, the hardware used must be made known to the system, including:

e SIMOTION device

® Centralized I/O (with I/O addresses)

e Distributed I/O (with I/O addresses)

A SIMOTION device must be configured before you can insert and edit LAD/FBD sources.

Sample programs

We will create two short programs (position blinker program, axis program) that demonstrate
all the work steps from the creation through to the start and testing of a program.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 287

Application Examples

8.3 Blinker program

8.3 Blinker program

Prerequisites

A project must have been created and the hardware used in the project must be known to
the system.

Task specification
Output of a cyclically changing bit pattern after exceeding a limit value.
This task is divided into the following parts:
® [nsert LAD/FBD source file
® [nsert LAD/FBD program

Network one
A program variable is incremented and compared to a reference value

Network two
When the reference value is exceeded, the program variable is reset and a bit pattern is
output

e Compiling

® Insert program in a task

e Download program onto target device

You can observe the result of your program at the outputs of your target system.

This example deals only with the LAD programming aspect.

SIMOTION LAD/FBD
288 Programming and Operating Manual, 05/2009

Application Examples
8.3 Blinker program

8.3.1 Insert LAD/FBD source file

To insert a new LAD/FBDsource file using the shortcut menu:
1. Select the PROGRAMS folder of the relevant SIMOTION device in the project navigator.
2. Double-click the entry Insert LAD/FBD unit.

NV STMOTION SCOUT - Blinker

Projeck Edit Insert Target swstem View Options Window Help
| D=8 S| & 5| @] || %l)| <=l | X% | sl
|[aiomeo =])] =) |

E--@ Pragramm Blinker

----- ™| Create new device

----- ™| Insert single drive unit

=-EH D435

----- ﬂ ERECUTION S¥STEM

g I[,'o

8— GLOBAL DEVICE WARIABLES
-] A¥ES

[]'"2 EXTERMAL ENCODERS
-] PATH OBJECTS
[
[

q-_] CaM3
d-_] TECHMOLOGY

21 PROGRAMS

® =T-Quelle einfiigen

® | MCC-Quelle einfiigen

™| Insert DCC charts

LM KOPJFUP-Quelle einfiigen
=B SINAMICS Inteqrated

-_] LIERARIES
-] MONITOR

Figure 8-1 Project folder

The Insert LAD/FBD unit dialog box appears.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 289

Application Examples
8.3 Blinker program

Insert LAD/FBD unit EHE

{F [Eeom (L Fuinit 1

General | Cnmpilerl Additional settingsl

Authar: I

Wersion: I

Enisting Programs

Cormment:

v Open editor automatically

Cancel Help

Figure 8-2 Insert LAD/FBD unit dialog box

3. Enter the name of the LAD/FBD unit.

The names of program sources must comply with the rules for identifiers: They consist of
letters (A to Z, a to z), numbers (0 to 9), or single underscores (_) in any order, whereby
the first character must be a letter or an underscore. No distinction is made between
uppercase and lowercase letters.

The permissible length of the name depends on the SIMOTION Kernel version:
— SIMOTION Kernel Version V4.1 and higher: maximum 128 characters.
— SIMOTION Kernel Version V4.0 and lower: maximum 8 characters.

Names must be unique within the SIMOTION device. Protected or reserved identifiers
(Page 329) are not allowed. The LAD/FBD programs already available are displayed.

4. In the Compiler tab, activate checkbox Permit program status, to use the online status
display later.

5. You can also enter an author, version, and a comment.

SIMOTION LAD/FBD
290 Programming and Operating Manual, 05/2009

Application Examples
8.3 Blinker program

6. Select the Open editor automatically checkbox.
7. Confirm with OK.

The declaration tables for exported and source-internal variables appear in the working
area.

No variables are defined here in the sample program.

LAD/FBD unit - [C240.LFunit_1]

INTERFACE [exported declaration]

Parameter | [0 symbals | Structures | Enumerations | Connections |
Hame Variable type Data type Array length Initial value Comment

1

IMPLEMENTATION [source-internal declaration]

Parameter [[f0 symholsl Structures Enumerationsl Connections
Hame Variable type Data type Array length Initial value Comment

Figure 8-3 Declaration tables for exported and source-internal declarations

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 291

Application Examples

8.3 Blinker program

8.3.2

Insert LAD/FBD program

To insert an LAD/FBD program, proceed as follows:
1. In the PROGRAMS folder within the project navigator, open the LAD/FBD unit you just

inserte

d.

2. Double-click the entry Insert LAD/FBD program in the LAD/FBD unit.

HE STMOTION SCOUT - Blinker

Project Edit Insert Target system ‘iew Opbions window Help

| O]| 2| | 2| =] <= W2

| =

| 1] sl % |

J [<N fiter> -] ¥

I

|

=3

Figure 8-4

Programm Elinker
W Create new device
™| Insert single drive unit

=58 D435

----- EXECUTION S¥STEM
e R il
(B GLOBAL DEVICE WARIABLES
-] AXES
#-_] EXTERMAL ENCODERS
#-_] PATH OBIECTS
-] CAMS
-] TECHMOLOGY
=] PROGRAMS
L. ST-Cuelle einfiigen
| MCC-Quelle einfiigen
®) Insert DCC charts
L) KOPJFUP-Guells infiigen
=-4F _Blink
.8 Insert LADJFED program
[]--E SINAMICS_Inkeqgrated

-_] LIBRARIES
-] MONITOR

Opening a project folder

=

The Insert LAD/FBD program dialog box appears.

292

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Application Examples

8.3 Blinker program

Insert LAD/FBD program EHE

ndl

General |
Creation type: I Pragram ﬂ Authar: I
Wersion: I
Expartable v

Enisting PO names

Cormment:

v Open editor automatically

Cancel | Help |

Figure 8-5 Insert LAD/FBD program dialog box

Enter the name of the program in the Insert LAD/FBD program dialog box.

The names must be unique within a source file. Protected or reserved identifiers
(Page 329) are not allowed.

The following appear:
— all POUs from its own program source

— the exportable POUs (e.g. LAD/FBD programs, MCC charts) from other program
sources

w

For Creation type, select program.

IN

. Where necessary, activate Exportable if you want the LAD/FBD program to be accessible
from other program sources (LAD/FBD, MCC or ST source files) or from the execution
system.

()]

. Select the Open editor automatically checkbox.
. Confirm with OK.
A blank LAD/FBD program is opened.

(o2}

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 293

Application Examples

8.3 Blinker program

SASTMOTION SCOUT - Blinker - [LAD,/FBD - [D435.0_Blink]J[P_Blink]]

4 Project LADIFED program Edit Insect Targetsystem Miew Opbions Window Help

= e o g e T T = T _1_1_|uu|

J |<Nolier

=] 7| | |0

=l *Iiill 0 e T o e |

= & Programm Blnker

® | Create new device

| Insert single drive unit
1=l D435

] EXECUTION SYSTEM
S 1f0
B— GLOBAL DEVICE VARIASLES

W AES

) EXTERMAL ENCODERS

& _] PATH OBIECTS

) CAMS

) TECHNOLOGY

= PROGRAMS

% 5T-Cuelle sinfligen
* | MCC-Quelle einfiigen
%) Insert DCC charks
* | KOPJFUP-Quelle einfigen
-4k ©_Blink

& ffB SINAMICS Integrated
] LIERARIES
-] MOMITOR

Parametersivariables]ll‘O symbols | Structures I Enumaralmn-s]
Variable type

Data type

| Arraylength | initial value |

1

P_Elink - Title
Comment

|

J ¥

Project | Command library

& Pk |

Press F1 to open Help display,

[PC Adapter(PROFIELIS)

Offinemode__ I NI

Figure 8-6

294

Open LAD/FBD program

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Application Examples
8.3 Blinker program

8.3.3 Entering variables in the declaration table
To enter variables, proceed as follows:
1. Select the Parameters/variables tab.
2. Enter name, variable type, data type and/or start value in the declaration table (as shown
in the figure below).

Parametersivariables |IIO symbnlsl Structuresl Enumeratinnsl

Hame Variable type Data type Array length Initial value Comment
1 einDIMT WAR DIMT 100
2 i1 WAR DIMT 1
i outlSint WAR USIMT
4 an WAR BCOL
5 gl_courtdint [WAR DIMT 100
g

Figure 8-7 Variables in the declaration table

3. Select the I/O Symboils tab.
4. Enter the name and absolute identifier (in accordance with the figure below).
The data type is entered automatically.

Farametersfvariables 0 symbals |Structures| Enumeratinnsl

Hame Absolute identifier Data type Comment

1 io_war FB4 BYTE
2

Figure 8-8 1/0 symbols in the declaration table

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 295

Application Examples

8.3 Blinker program

8.3.4 Entering a program title
To enter a program title, proceed as follows:
1. Click in the title line.

2. Enter the program name in the window.

P_Blink - [BTinker
Camment

Figure 8-9 Program title

8.3.5 Inserting network

To insert a network:

1. Select LAD/FBD program > Insert network menu item.

LADFED prograrm
Close CTRL+F4
Properties. .. Alt+Enter
Accept and compile CTRL+E

Insert nekwork k CTRL+R

Jumnp label O OFE CTRL+L

Display 3

Symbol check and bype update CTRLAT

Prograrn skatus CTRLERET
Insert element k
Switch ko FED CTRL+3

Up

oW

Figure 8-10 Menu selection

2. Click in the title line.

3. Enter the network name in the window.

P_ETink - Blinker
Commeant

001 - [hachzaehTen|

Camment

S

Figure 8-11 Network with entered name

4. Click the power rail to the left of the coil.

SIMOTION LAD/FBD
296 Programming and Operating Manual, 05/2009

Application Examples

8.3.6

SIMOTION LAD/FBD

Inserting an empty box

To insert an empty box, proceed as follows:

8.3 Blinker program

1. From the menu, select the LAD/FBD program > Insert element > Empty box menu item.

H SIMOTION SCOUT - Blinker - [KOP/FUP - [D435.0_Blink][P_Blink]]

4 Project LADJFBD program Edit Imsert Target system Miew Ophions wWindow Help

------ 4 p_blink{}

[

Figure 8-12

0B SINAMICS Integrated

-] LIBRARIES
-] MOMITOR

Insert an empty box

An empty box is inserted.

Programming and Operating Manual, 05/2009

J mlI=l Close CTRL+F4 EI J XI|XE| J gﬁlml%l *lﬁlﬁl.;lml J %,%l@l |
[o PEEEE e T T T o e e
E Accept and compile CTRL+E
£ Prog Insert netuork CTRLAR ametersfvariables | [f0 symbnlsl Structuresl Enumeratinnsl
----- ®) Jump label ONJOFF CTRL+L Hame Variable type
..... 1') einDIMT WAR DIMT
oEm Disrlay P i VAR DINT
""" Symbol check and bype update. CTRLHT outt1Sint VAR LISINT
4 Sratus progrann oy off CEF+F7 on VAR BOoL
{ gl _courtdint AR DIMT
Bl Insert element MO conkack F2
[+, Switch to FED CTRL+3 MC contack F3
[+l Meqation
[, U
B Dt open branch &
[_]_l PROGRAMS cC Close branch Fa
*_| Insert ST source file MI
®) Insert MCC unit a Ly
*_| Insert DCC charts C Comparatar 4
- Insert LAD{FED unit Coils r
=4k E_B“nk Connector and edge detection »
® | Insert LADJFED program ;

Mandatory parameters in a network are identified by ???, optional parameters by

297

Application Examples

8.3 Blinker program

8.3.7

298

Selecting box type

p_Elink - Blinker

Comment

001 - hochzaehlen

Comment

e

L’%IN OUT —— ;

—Mdatnry pararmeker

Figure 8-13 Empty box

To select a box type, proceed as follows:
1.

Press the Enter key in the selected empty box.

A drop-down menu appears.

2. Select the appropriate box type from the drop-down menu and confirm your selection by
pressing the Enter key.

CoOmment

p_EBTink - Blinker

Comment

001 - hochzaehlen

Llﬁ

—— | MOT | —-
<
==
£

>

=
ABS
ACOS

ASTIM
AT AN

BYTE_TO
BYTE_TO

CONCAT
o5

CTD
CTD_DINT
CTD_UDINT
_Tu
CTU_DINT
CTU_UDINT
CTuD
CTUD_DINT
CTUD_UDINT

AND m

BOOL_TO_BYTE
_BOCL

BYTE_TO_SIMNT
_USTINT

BYTE_TO_WORD

DINT_TO_DWORD
1k pro

DINT_TO_INT

DINT_TO

[T

DINT_TO_LREAL
_REAL
DINT_TO_UDINT =

OP_1

1|k pt

Figure 8-14 Selection of box type

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Application Examples

8.3 Blinker program

8.3.8 Parameterizing the ADD call-up
To parameterize the ADD call-up, proceed as follows:

1. Click in the other mandatory input fields ???.

p_Elink - Blinker
Comment

00l - hochzaehlen
Commeant

200 ez
‘—EN ERO {3 |

IML oOUT|—777

FERAINZ

Figure 8-15 ADD box

2. Enter the appropriate values.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 299

Application Examples

8.3 Blinker program

8.3.9

Inserting comparator

To insert a comparator, proceed as follows:
1. Select the ADD box.

P_B1ink - Title

Comment

001 - hochzaehlen
Comment

ADD B
(—
E"InDINTi—INl ouT
1_1i{In2

Figure 8-16 Selected ADD box

2. Select LAD/FBD program > Insert element >Comparator > > =.

X SIMOTION SCOUT - Blinker - [KOP/FUP - [D435.Q_Blink][P_Blink]]

4 Project LADJFBD program Edit Imsert Target system Wiew Options Window Help

J

—

E

D|(8
I <Mo filker:
E--E@ Proc

E p_blink(
E]--g SINAMICS_Integrated

-1 LIERARIES
-1 MONITOR

-] Insert LAD/FED program

1 rn ol

2inDINT—

i1

InL

InNZ

ouT

an

<_

Rl Bh

Close CTRL+F4 .
||| 260%]| | w5 | -l sia a5 |27 | 28] | B3] | &=
Properties. .. Alb+Enter
e - W [T R TR P
Accept and compile CTRL+E !
fametersivariables | i
F— J— 10 Symhnlsl Structuresl Enumeratlonsl
Jump label ONJOFF CTRL+HL Hame Variable type Data type
einDIMNT AR DIMT
Display P i WAR DINT
""" Symbal check and bype update. CTRLET outlsint VAR LISINT
4 status program onjafh ChHlHFT an VAR BOOL
{ gl_countdint AR DIMT
SR Insert element MO contack Fz
*-, Switch to FBD CTRL+3 MC conkack F3
=g Megation
m{ P
G- Down Open branch Fa
|:_:|_| PROGRAMS B Clase bramch =
» '
™ | Insert 5T source file et e AlELFa
‘_| Insert DCC charts Comparator » =
®) Insert LADYFBD unit Cails [299
=4k Q_Biink Connector and edge detection > > Alk4Fs

Figure 8-17 Select comparator

300

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Application Examples

8.3 Blinker program

p_Elink - Title
Comment

001 - hochzaehlen

Comment

ADD 77?7
T T S G
EN ENO . cmp]

eiNDINT—INL OUT |—2inDINT 7o

i 1—In2

Figure 8-18 Inserted comparator

8.3.10 Labeling the comparator
To label the comparator, proceed as follows:
1. Click each comparator input field individually.

2. Enter the appropriate values for the comparator.

p_Elink - Title
Comment

001 - hochzaehlen

Comment

EN ENO cmp |

eTNDINT—INL QUT —einDINT einDIMT—]

i 1—In2

7
cnuntd?nt

Figure 8-19 Labeled comparator

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 301

Application Examples

8.3 Blinker program

8.3.11 Initializing a coil

To initialize a coil, proceed as follows:

1. Click in the input field ??? of the coil.

2. Enter the appropriate variable.

P_ETink - Title
Commeant

001 - hochzaehlen

Comment
ADD an
‘— EN ENO —mp { } |
=
giNDINT—IML OUT [—einDINT ainDTNT—
1INz
91—
countdint
Figure 8-20 Initialized coil
8.3.12 Inserting next network

To insert another network, proceed as follows:
1. To insert the second network, repeat the steps used to insert the first network.
P_Elink - Title
Comment

001 - hochzashlen

Comment

AOO on
I EN END w {
2inDINT—INL OUT—einDINT 2 1nDINT.
1_1—INZ 1
countd?n?
002 - output
Comment
TETHT_TO_
on HOWVE AOO BYTE
} || EM ENO EN ENOD EN ENO {RET 3]
O0—IN OUT|—einbint outlUSint—INL OUT[—outldSint outlUSint—IN ouT —ja_var
1—INz

Figure 8-21 Project with two networks

302

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Application Examples

8.3.13 Details view

To show the detail view, proceed as follows:

1. Select the View > Detail view menu command.

8.3 Blinker program

Information, e.g. compiler messages, will be displayed during the compilation of a

program.

View

v Project navigakor

Maxinize working area Crl+F11 &

Maximize detail view Ctr+F12
v Skatus bar

Toolbars. ..

Zoom in Chrl+-Mum +
Zoar auk kel -
Filter 2
Refresh F5

Figure 8-22 Detail view menu selection

8.3.14 Compiling

SIMOTION LAD/FBD

To compile the created program, proceed as follows:
1. Select the program in the project navigator.
2. Open the LAD/FBD program menu and select Accept and compile.

The source file and its POUs are saved and compiled.

During the compilation process, messages on the successful compilation status are
displayed in the detail view. Should any error occur during compilation, they will be

displayed in plain text there.

LADFED progran
Close CTRL+F4
Properties. .. Alt+Enter
Accepk and compile CTRL+E
Inserk network CTRL+R
Jurmp |abel O EER CTRL+L
Display

Symbol check and Eype update CTRLET

Program status CTRLERET
Inserk element

Switch to FBD CTRL+3
Up

Lo

Figure 8-23 Save and compile menu selection

Programming and Operating Manual, 05/2009

303

Application Examples

8.3 Blinker program

BV SIMOTION SCOUT - Blinker - [KOP/FUP - [D435.0_Blink][P_Blink]]
4 Project Edit Insert Targetsystem View Options Window Help

| Dles||8| & %|%e)e]| || Wl|| <ol 1% |]l oic|sal el |7 | 3810 | 29| 2 | EB| G | 2l
J|<Nuliller> =] |H| ﬂ| H!”M| | o]] | A | 3|01 | =
-

=181 |

- Paramaters fvariables | 1 symbols | Stuctures | Enumeraiions
= % Programm Blinker Ham+ ariabls bps Dot tps ey lengih itial valus Comment
) Create new device N DINT AR DINT m
- Insert single drive unit Uw - ::s E'S"I:T !
ot
= 03 5
EXECUITION SYSTEM g contint AR DINT m
b ile] B
EF GLOBAL DEVICE YARTABLES
1 AXES
] EXTERMAL ENCODERS P_Elink - Title
] PATH OBIECTS Comment
1 cams
1 TECHMOLOGY 0oL - Title
=1 PROGRAMS Comment
-
’j inser: ;Tczourie File: o on
nser uni e
I EN EWD [}
®) Insert DCC charts =
%3 Inserk LAD/FBD unit 2inDINT—INL OUT [—ein0INT e inDINT
=-4F Q_Biink i
® | Insert LAD/FED program i1—IN2 .
countdint
TS SINAMICS Integrated
-] LIBRARIES 00z - Title
B MONITOR Comment
TEINT T
|—?n FTE AT BYTE
I
| EN ENO EN END EN ENO RET 3
O—{IN OUT |- inDINT outUSint—INL OUT outlisint outlsint—|IN OUT |—io_var
1Nz
Project [Command library 4§ F_Bink [@] pa3s |
x
Lewel | Meszage
Information START of the compilation of '0_Blink' at 17:27:04
Information END of the compilation of '0_Blink' st 17:27:05
Infarmation Compilation of "0_Blink": 0 errar(s). 0 warningls)
< I+
yrmbal browser g Compile/check output |
Press F1 to open Help display. [PaipC interface [T

Figure 8-24 Compiled project with compiler information in the detail view

SIMOTION LAD/FBD
304 Programming and Operating Manual, 05/2009

Application Examples
8.3 Blinker program

8.3.15 Assigning a sample program to an execution level
To assign a program to an execution level, proceed as follows:
1. Double-click the EXECUTION SYSTEM folder in the project navigator.
Click BackgroundTask.

Select the program Q_blink.p_blink.

2
3. Click the Program assignment tab.
4
5. Click the button >>.

BXSIMOTION SCOUT - Blinker - [D435 - EXECUTION SYSTEM] [_T7]x]
Project Edit Insert Targetsystem Wiew Options ‘Window Help —|&®1 x|

D@z S| b || o]~ |||]| X[a5 | |l ca| s ||| 2210 2| 2| | E(ES/EE | <

J|<Nnhlter) = 7]I =l ‘

-] MotionT asks -
-2 Programm Blinker MationTask_{ = R R
- Create new device MotionTask_2
) Insert single drive unit ~MotionTask_3
- D435 MationTask_4
-] EXECUTION SYSTEM MationTask_5
1o . 5
g GJLOBAL DEWICE VARIABLES m;i:;:i:zc:g S DU””QU'GHDV‘I
-0 WS MotionTask_8 Programs [number of applications): Programs used,
1 EXTERNAL EHCODERS - MotionTask_9 Q_Blink.p_birk (1] 0_Blink.p_blink
'] PATH OBIECTS MationTask_1L0
-0 CAMS MetionTask_11
2 TECHRNOLOGY - MotionTask_12
1 PROGRAMS MotionTask_L3
%] Insert ST source file MotionTask_14
®) Insert MCC unit ~MotionTask_15
® | Insert DCC charts MotionTask_L&
-] Insert LAD/FED unit MotioniTask_17 j A
B4} _Bink - MotionTask_18
) Insert LAD/FED program MotionTask_19
4 p_blink() MotionTask_20 hil
B SINAMICS Integrated - MotionTask_21 ﬁ
+] LIBRARIES MotionTask_22
-1 MONITOR MotionTask_23
- MotionTask_24
MotionTask_25
- MotionTask_26
MotionTask_27
MationTask_28
- MotionTask_29
MotionTask_30
MotionTask_31 _
- MotionTask_32

=¥ o

*q_Blnk.p_blnk Close Help
). ServaSynchranousTasks
- ServosynchronausTask
-} SynchronousTask

= IPOsynchronousTask
TCPWM_Tasks
-} SynchronousTask_2
= IPOsynchronousTask_2

TCTnnuk Tasks 1 LI
Project | Command library & P Birk] D435
Level | Message
Information START of the campilation of ‘0_Blink' at 11:32:00
Information EMD of the compilation of _Bilink' at 11:32:01
Information Compiation of '5_Blirk" 0 errorfs]. 0 warmingls)
<]

£ Symbol browser_ [F5] Compledcheck outpul [

[PGIPC interface: Offline mode [um
distart|) (5) » [T SIMOTIONSCOUT -Pr... || Pusteingang - Marasot .. | 4 18 Enmnerungen | 28 _8-24 | @ Editor - Photoshop Eleme... | B« oSEE® 1153

Figure 8-25 Assigning a program to the BackgroundTask

6. Click Close and acknowledge the message saying the execution system has changed by
clicking Yes.

The changes are accepted into the project.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 305

Application Examples

8.3 Blinker program

8.3.16

306

Starting sample program

To start a program, proceed as follows:

1.

Select Project > Save and compile all

The project is locally saved on the hard disk and compiled.

. Select the Project > Connect to target system menu command or click ",

The Online mode is activated.
Select the Target system > Connect to target system menu command or click @

The project data (including the sample program) and the data of the hardware
configuration are downloaded to the RAM of the target system.

Mark both networks and click the Program status button (shortcut CTRL+F7) in the LAD
editor toolbar (Page 25) to confirm.

Monitoring the program execution (Page 269) is switched on.

Mark the SIMOTION device in the project navigator and select Target device > Operating
mode in the context menu.

The Operating mode window with the software switch for modes opens.
Click the RUN button in the software switch.

The SIMOTION device is in RUN mode. The sample program is run and the current
paths/signal paths are color-coded in accordance with the current signal values
(Page 269).

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Application Examples
8.3 Blinker program

BIXSIMOTION SCOUT - Blinker - [LAD/FBD - [D435.0_Blink][P_Blink]]
18] x|

4 Project LADJFED program Edit Insert Targetsystem Wiew Options ‘Window Help
|| D]l @] (| o] | 2| |]| 2] |5 e 1ol]| 200 | B8] | 2| | EIRIGE | 5 [<] Tl
| | =

(B 1| g 2 Bale=l] AE#[-01 =]
—_——————,—,.,.

= Parameters ivariables | 10 symbols | Smustures | Enumerstions |
=3 Blinker name \srtabis £ps ot s w3 ngtn nibal v Commant
‘_| Create new device «WOINT VAR DINT [l
-7 Insert single drive unit ‘O—I‘NSI.[xﬁ: E:;T 1
= =5 D435 o iR w00
@ EXECUTION SYSTEM alcondht VAR DINT m
&= 1o
- [S GLOBAL DEVICE VARIABLES
] axEs
1Z1) EXTERMAL EMCODERS Comment
] PATH OBJECTS 0L - Title D Op g mode X
| cams Comment AUN
] TECHMOLOGY
B PROGRAMS A an O svoc
®) Insert ST source File I EN END ’_‘C:l:p } O R STOPU .
] Tnsert MCC unit €5 & 3 O sTorU
2iMDINT—|INL OUT [—einOINT = inDINT.
®) Insert DCC charts 1 O storP STOP -
%) Insert LADJFED unit i_1-|Inz 100
- i _-
=r<fi=4k Q_Blink countdonE MRES
-7 Insert LAD/FED program
. + pbinio) 002 - Title Clase Help
HHTE sInaMICS Integrated —I —I
B LIBRARIES Comment
B] MONITOR USINT_TOC
on FVE LT BYTE
|
| EM ENO EN ENO EN END RET 4
0—{IN OUT |- inDINT outlSint—INL OUT —outUsint outUsint—|IN OUT |—io_var
1Nz
Project [Command ibrans & PBink [&] p435]
x
all = [Display information Acknowledae all Acknowledge Help for event
Level | Time | Source | Message
Inlormat\on (PG) 27.04.2009 18:07:34 D435 oK
mWaming 24,0170 00:34:01:504 SINAMICS _Integrated : CU_|_003 1416 Topology: Comparison additional component in actual topology(Component number: 3, Component class: 4, Connection number: 2]
| | i
. Alarms = Symbol browser I E Target system output
|CPEE1 1{PROFIBUS) [Online mode [HUM

Press Fi to open Help display.

Figure 8-26 Sample program is started

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009 307

Application Examples
8.4 Position axis program

8.4 Position axis program

Prerequisites
A project, a CPU and a virtual position axis must be created.

Task specification

An axis is to be traversed at a velocity of 100 mm/s from the current position 1000 mm in the
negative direction.

This task is divided into the following parts:
® [nsert LAD/FBD unit
® [nsert LAD/FBD program

Insert network

Set axis enable signals

Traverse axis to position

Remove axis enable

® Compile program
® Insert program in a task
e Download program onto target device

PLCopen blocks are used for the programming. The PLCopen blocks are designed for use in
cyclic programs/tasks and enable motion control programming in a PLC environment. They
are used primarily in the LAD/FBD programming language.

PLCopen blocks are available as standard functions (directly from the command library).

You can find further information about PLCopen blocks in the SIMOTION PLCopen Blocks
Function Manual.

There is a TO-specific command available for the aforementioned subtasks Set axis enable
and Traverse axis to position/Remove axis enable. Each command is represented by a box
in LAD/FBD. The parameters for individual commands (position = 1000, speed = 100 etc.)
are entered

via the Variable declaration dialog box.

-or-

via the Enter call parameters dialog box

-or-

by entering the values in the input fields on each connector.

The task is implemented using LAD programming.

SIMOTION LAD/FBD
308 Programming and Operating Manual, 05/2009

Application Examples

8.4 Position axis program

8.4.1 Insert LAD/FBD source file

See also

SIMOTION LAD/FBD

To insert an LAD/FBD unit (for details of how to insert the unit and program, see also the
blinker program (Page 288) example), proceed as follows:

. Open the PROGRAMS folder of the relevant SIMOTION device in the project navigator.
. Double-click the entry Insert LAD/FBD unit.

The Insert LAD/FBD unit dialog box appears.

. Enter the name of the LAD/FBD unit.

The names of program sources must comply with the rules for identifiers: They consist of
letters (A to Z, a to z), numbers (0 to 9), or single underscores (_) in any order, whereby
the first character must be a letter or an underscore. No distinction is made between
uppercase and lowercase letters.

The permissible length of the name depends on the SIMOTION Kernel version:
— SIMOTION Kernel Version V4.1 and higher: maximum 128 characters.
— SIMOTION Kernel Version V4.0 and lower: maximum 8 characters.

Names must be unique within the SIMOTION device. Protected or reserved identifiers
(Page 329) are not allowed.

Existing program sources (e.g. ST source files, MCC units) are displayed.

. In the Compiler tab, activate checkbox Permit program status, to use the online status

display later.

5. You can also enter an author, version, and a comment.
6. Select the Open editor automatically checkbox.
7. Confirm with OK.

The declaration tables for global and unit-local variables appear in the working area.

Blinker program (Page 288)

Programming and Operating Manual, 05/2009 309

Application Examples
8.4 Position axis program

8.4.2 Insert LAD/FBD program
To insert an LAD/FBD program, proceed as follows:

1. In the PROGRAMS folder within the project navigator, open the LAD/FBD unit you just
inserted.

2. Double-click the entry Insert LAD/FBD program in the LAD/FBD unit.
The Insert LAD/FBD program dialog box appears.

3. Enter the name of the program in the Insert LAD/FBD program window.
The names must be unique within the SIMOTION device. Protected or reserved
identifiers (Page 329) are not allowed.

The following appear:
— all POUs from its own program source

— the exportable POUs (e.g. LAD/FBD program, MCC charts) from other program
sources

4. For Creation type, select program.
5. Select the Open editor automatically checkbox.
6. Confirm with OK.

A blank LAD/FBD program is opened.

7. Click the working area and select LAD/FBD program > Insert network from the menu to
insert a new network.

Parametersivariables | 110 symbols | Structures | Enumerations |
Hame Variable type Data type Array length Initial value Comment

1

drive - Title
Comment

001 - Title

Comment

Figure 8-27 Inserted network

Note
Mandatory parameters in a network are identified by ???, optional parameters by

SIMOTION LAD/FBD
310 Programming and Operating Manual, 05/2009

Application Examples

8.4 Position axis program

8. Mark the inserted box and select Delete in the context menu.

The box is removed from the network.

Parametersfvariables | /0 symhulsl Structuresl Enurnerations
Hame Variable type Data type Array length Initial value Comment

1

drive - Title

Camment

ool - Title
Comment

Figure 8-28 Inserted network without a box

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 311

Application Examples

8.4 Position axis program

8.4.3

312

Inserting a TO-specific command

To insert a TO-specific command, proceed as follows:

1.

To enhance the display in the working area, open the shortcut menu of the network and
select Display > Mandatory and assigned box parameters.

Select the Command Library tab in the project navigator.

The command groups appear.

3. Click the relevant plus sign to open the PLCopen > SingleAxis command group.

4. Drag&drop the _mc_power command into the network (see Network with RET

assignment).

This command serves to enable the command.

F'\"':SIMIJTIDN SCOUT - posachse - [LAD/FBD - [D435.KFQuelle_2][drive *]]

+

Project Edit Imsert Target system Wiew Options ‘Window Help

| D[&% S| 4 |5%[@| =]~ X

—

<o | 20| X || 2] | ~i«|sala]®s ||| 38| |

| e

J [<No fiter> = J |

=

|<Search temte j

Crmds valid for; Sorting:

{0435 4 a_bEIE

(-8

- Additional system Functions

-Alarms and messages

- Bit skring

-Character strings

- Carmrmunication

-Canversion

- Drives

I/0 modules

- Longic

-Mathematical Funckions
-PLCopen

¥ Further Functions
Multi-axis

B- Single axis

- _mc_home[FE]

- _mc_moveabsolute[FEB]
- _mic_rmioveadditive[FE]
- _mc_rmioverelative FE]
- _mic_rmiovesuperimposed[FE]
- _mic_rmovevelocity[FE]
- _mc_positionprofile[FE]

=

080 e O o e

I

Parametersivariables ||,fo Symbnlsl Structures

Enumerations |

Hame Variable type

Data type

1

drive - Title
Commeant

001 - Title

Camment

-

Pt -~

_power([IN] _axis_ref axis,

Figure 8-29 TO-specific command (_mc_power) from the command library

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Application Examples

8.4 Position axis program

drive - Titel

Kammentar

001 - Titel
Kommentar

72z

_MC_power
—En) — |

Figure 8-30 Network with inserted _mc_power box

5. Mark the network and select LAD/FBD program > Insert network from the menu to insert
a second network.

6. Mark the inserted box from the second network and select Delete in the context menu.
The box is removed from the network.

7. Drag&drop the _mc_moverelative command from the command library to the marked
position in the second network.

The axis is positioned at the specified speed with this command.

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 313

Application Examples

8.4 Position axis program

F'\"':SIMIJTIDN SCOUT - posachse - [LAD/FBD - [D435.KFQuelle_2][drive *]]
4 Project Edit Insert Target system Wiew Options Window Help

| DI =% 8] s |20 =] || <] x| 5l | -]l]| 220]| 2
|[omer =] ||| | e e
———————————————————)
Parametersfvatiables | IO symbols | Structures | Enumerations |
|<Search text> j Hame Variable type Data type
Crds valid for: Soiting: 1
{0435 4 a_bcl E
- Additional svstem Functions
-- Alarms and messages
-- Bit string
-- Character strings } }
- Communication drive - Title
[+ Corversion camment
[+ Drives
-- I/ modules o0l - Title
& Lagic Commerrt
[+ Mathematical functions
=l PLCopen EE-E]
[Further Functions —Me_power
B Multi-axis L EN ENG
= Single axis
- _mc_home[FE]
- _mc_moveabsolute[FEB]
- _mic_rmioveadditive[FE] 002 - Title
B riiC_| ivel
_ _movesupetimposed[FE] Camment
_me_mowerelative{[IM] _axis_ref axis,
[IMN] BOOL execute:=0, : _____]
[IN]LREAL diskance:=0.0,
[TMTLREAL welocityv:=-1.0,

Figure 8-31 TO-specific command (_mc_moverelative) from the command library

drive - Example for axis movement
Example for axis movement by usage of PLC-open function blocks

001 - Enable Axis

with _mc_power an axis enable is possible

22z

_mMC_power
EN EMO |

002 - Mowe relative

PLC-open function block _mc_moverelative allows to move the axis

22z

_mC_moverea lat e
— EN =(o] : !

Figure 8-32 Network with inserted _mc_moverelative box

SIMOTION LAD/FBD
314 Programming and Operating Manual, 05/2009

Application Examples

844 Connecting the enable inputs

8.4 Position axis program

The enable input for the _mc_power command and the execute enable input for the
_mc_moverelative command still have to be connected to NO contacts.

How to insert the NO contacts:

1. Click the working area and select Display > Alle Box Parameters in the context menu.

All the inputs and outputs of the boxes are shown.

2. Select the Command Library tab in the project navigator.

The command groups appear.

3. Click the plus symbol to open the command group LAD elements.

4. Drag&drop the NO contact LAD element to the enable input of the _mc¢_power function

block.

F""ISIMDTIDH SCOUT - posachse - [LAD/FBD - [D435.KFQuelle_2][drive *]]

'I- Project Edit Insert Target swskem iew

Ophions window Help

| D|=|R% & 4= o] X)) <l XX | %a|®fEs | 2 |dala®s] | 520 | 23] =

J [<Na fier> Ra J | =l

=

|<Sealch teuts ﬂ

Crids walid far: Sorting:
[D435 =] ==

- Additional syskem functions
Alarms and messages
Eit string

Characker skrings
Communication
Conwersion

Drives

I modules

Logic

IMathematical functions
PLCopen

Task swstem
Technology

System Function blocks
-LAD elements

0EEEEEEEEEEEEEE

..... -1l

..... _|NOT|_.
el |
..... -(RET)—|
..... (5]
..... (R |
..... -(IMP)—-|
----- ~(IMPH--|
..... (@)
..... -(P)--

..... (M)

Erambin biee

| 1 29]) il m]] AH (-0 |] 2]

I

Parametersfvariablas |IJ‘O symhulsl Structures Enumeratiunsl
Hame Variable type Data type Array length
1
drive - Title
Comment
ool - Title
COomment
ez
_MC_pOwer
| ERN EMNO
status f—. ..
cea—laxis busyl—. ..
...:'{%enab'le activel—...
error—. ..
. . —{Mode
erroridf—...
. .—stopmode
ooz - Title
Caomment
ez
me_
mov erelat fve
| EN E RO

Figure 8-33 Drag&drop the NO contact LAD element to the connector of the enable input

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

315

Application Examples

8.4 Position axis program

HVESTMOTION SCOUT - posachse - [LAD/FBD - [D435.KFQuelle_2][drive *]]

4 Froject LADJFED program Edit Insert Target syskem Wiew Options Window Help
| D= (@)% S| * 5| o]]| <f|| XXl | Za]duf5 | +i|da]sa]%]
J|<anilter> -] J|muz -] “!” e e (s R T T T e e e

x

—

TﬁI@iJEIJ'EI
|

Parametersivariables |IfO symholsl Structures Enumerationsl
Hame Variable type Data type Array length

|<Search test: j

Crmds valid for: Sorting: 1
[D435 =] =

- Additional syskem Funckions
-- Blarms and messages

- Bit skring

-- Characker strings

- Communication drive - Title
--Conversion Camment

[#- Drives
E- /0 modules 00l - Title
-- Logic

-- Mathematical Functions
-- PLCapen 77

" Task system _mc_paower
-- Technology N

- System function blocks
El-LAD elements go9

Comment

=t
..... - |- ce.—{axis

I | I '
..... -1il-- T 11 enahble ac

..... - -] ... —{mode
..... -(RET)--| err
..... (5] . ..—|stopmode

002 - Title
..... -(#)-- Zomment
72z

POS mow eFrgEI:Et Jue
- NEG

- Emply box [EN _ENO

Figure 8-34 Network with a NO contact LAD element inserted

SIMOTION LAD/FBD
316 Programming and Operating Manual, 05/2009

Application Examples

8.4 Position axis program

5. Drag&drop two NO contact LAD elements to the execute enable input of the
_mc_moverelative function block.

drive - Example for ax<is mowvement
Example for axis mowement by usage of PLC-open function blocks
001 - Enable Axis
wWith _mc_power an axis enable is possible
2z
_MC_power
EM EMND
statust—...
Ly o—axis busyf—. ..
I I enable active—. ..
Errar —. ..
.. —{mode]
erroridf—. ..
.. —|stopmode
002 - Mowve relative
PLC-open function block _mc_mowverelative allows to mowve the axis
777
_mc_mowerelatiwve
EN END
donef—. ..
777 77 co—axis busy—. ..
I I I I execute activel—...
commandaborted—. ..
.—{distance errori—...
.. —|welocity erraridi—...
..—|accel eration
..—{decel eration
..—jerk

Figure 8-35 Networks with NO contacts inserted

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 317

Application Examples

8.4 Position axis program

8.4.5

318

Entering variables in the declaration table

To enter variables, proceed as follows:

1. Select the Parameters/variables tab.

2. Enter name, variable type, data type and/or start value in the declaration table (as shown
in the figure below).

In order to use PLCopen blocks, you must create one block instance for each being used
(Umc_power and _mc_moverelative). The data type of the instance corresponds to the
block name. The variables i_mc_power and i_mc_moverelative are instance variables for
the two function blocks _mc_power and _mc_moverelative.

You can find further information about the declaration and use of instance variables in
Example: Function block (FB) (Page 150).

Parametersivariables | /0 symbnlsl Structuresl Enumeratinnsl

Hame Variable type Data type Array length Initial value Comment
1 enshle WAR BOoL
] 2 masve WAR BOoL
5 i_mc_power AR _MWIC_POWER
4 i_mc_moverelative |WAR _WIC_WMOVERELATIVE
5 o_enabled AR BOOL
B

Figure 8-36 Variables in the declaration table

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Application Examples

8.4 Position axis program

8.4.6 Parameterization of the NO contacts
How to parameterize each of the NO contacts:
1. Click in the input field ??7? for the NO contact.
2. Enter the appropriate variable.

3. Press Enter.

drive - Example for axis mowement
Example for axis mowvement by usage of PLC-open function bhlocks
001 - Enable Axis
With _mc_power an axis enahle 15 possibhle
s
_MC_poOwWer
EN EMNO
statust—...
enable e—laxis busyi—. ..
I I enable activel—. ..
BrrOr —. ..
.« —tmod e
erroridi—. ..
. . —{stopmode
002 - Mowve relatiwve
PLZ-open function block _mc_moverelatiwve allows to mowe the axis
27
_mc_moverelative
EN END
donef—...
moe o_enahled o—{axis busy |—. ..
I I I I execute activel—. ..
conmandaborted—. ..
..—distance Errari—...
. .—{velocity erroridf—...
..—{accel eration
. .—decel eration
..—{jerk

Figure 8-37 Parameterization of the NO contacts

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 319

Application Examples

8.4 Position axis program

8.4.7

Setting call parameters for the _mc_power command

Note

The Enter call parameters dialog box displayed below is available for each Simotion
command.

To set the call parameters, proceed as follows:

1.
2.

Double-click the box.

Select the instance, the homing axis, the axis enables to be set, stop mode and enable
mode for the axis.

If you print the project, your parameters appear in the printout according to your settings,
e.g. only allocated box parameters.

. Confirm with OK.

Comment

drive - Example for axis mowement

001l - Enable Axis

enable
||

002 - Move relat”
PLC-open fuctionk

Enter Call Parameter

with _mc_power an axis enable is possihle

Function black

Instance

I_mc_power

[oo

Hame QHOFF Data type Value Default value
1 axis WAR_IMPUT _AXIS_REF Achze_1
2 mode WAR_IMPUT _MWC_EMABLEMODE ALL ALL
3 stopmoade WAR_IMPUT _MWC_STOPMODE WITH_MAXIMAL_DE WITH_COmbARN —
4 status WAR_CQUTPUT BOOL o_enabled
5 husy WAR_CQUTPUT BOOL
B active WAR_CQUTPUT BOOL
7 errar WAR_CQUTPUT BOOL
g errarid WAR_CQUTPUT DWORD

Cancel |

Help |

Figure 8-38 Set call parameters for the PLCopen block _mc_power

320

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Application Examples

8.4 Position axis program

drive - Example for axis mowement
Example for axis mowvement by usage of PLC-open function bhlocks
001 - Enable Axis
With _mc_power an axis enahle 15 possibhle
1_mic_power
_MC_poOwWer
EN EMNO
status{—o_enahled
enabl e posachse—axi s busy—. ..
I I enable activel—. ..
BrrOr —. ..
AlLL—mode
erroridi—. ..
WITH_MAXxIMAL_— stopmode
DECELERATION
002 - Mowve relative
PLZ-open function block _mc_moverelatiwve allows to mowe the axis
777
_mc_mowerelatiwve
EN END
donef—. ..
more o_enabled vea—laxis busy —. ..
I I I I execute activel—. ..
conmandaborted—. ..
.—{distance errori—...
. .—{velocity erroridf—...
. .—jaccel eration
. .—decel eration
..—jerk

Figure 8-39 Labeled _mc_power box

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 321

Application Examples
8.4 Position axis program

8.4.8 Setting call parameters for the _mc_moverelative command
To set the call parameters, proceed as follows:
1. Double-click the _mc_moverelative box.

2. Select the instance and the homing axis. Enter values for the difference in distance
traveled and for the maximum speed of the axis.

If you print the project, your parameters appear in the printout according to your settings,
e.g. only allocated box parameters.

3. Confirm with OK.

drive - Example for axis mowement

Comment

001 - Enable axis
with _mc_power an axis enable is possihle

Enter Call Parameter E3

Function block. I_mc_moverelative

enable Instance i o mioverelative j

———

Hame OH/OFF Data type Value Default value
1 axis WAR_INPUT _AKIS_FEF Achze_1
2 distance WAR_INPUT LREAL 100.0 oo
002 - Move rel i welocity WAR_INPUT LREAL 100 -1.0
4 acceleration AR _IMPUT LREAL -1.0
PLC-open fucti |[5 |deceleration VAR INPUIT LREAL 10
- g jerk WAR_INPUT LREAL -1.0
7 done WAR_OUTRUT BCOL
g husy WAR_OUTRUT BCOL
9 active WAR_OUTRUT BCOL
10 |commandaborted |WAR_OLUTRPUT BOOL -
11 |error WAR_OUTRUT BCOL [
move 12 |errorid WAR_OUTRUT CWWioRD 4

Cancel | Help |

acceleration

deceleration

0 I A

jerk

Figure 8-40 Set call parameters for the PLCopen block _mc_moverelative

SIMOTION LAD/FBD
322 Programming and Operating Manual, 05/2009

Application Examples

8.4 Position axis program

drive - Example for axis mowement

Example for axis mowvement by usage of PLC-open function bhlocks

001 - Enable Axis

With _mc_power an axis enahle 15 possibhle

1_me_power
_MC_poOwWer
EN EMNO
status{—o_enahled
enabl e posachse—axi s busy—. ..
I I enable activel—. ..
BrrOr —. ..
AlLL—mode
erroridi—. ..
WITH_MAXxIMAL_— stopmode
DECELERATION

002 - Mowve relative

PLZ-open function block _mc_moverelatiwve allows to mowe the axis

i_mc_moverelative

_mc_mowerelatiwve

EN END
donef—. ..
manwe a_enabled posachse— axi s busy t—...
I I I I execute activel—. ..
conmandaborted—. ..
100.0—{distance Errori—. ..
10.0—{velocity erroridi—...

. .—jaccel eration

. .—decel eration

..—jerk

Figure 8-41 Network with entered variables

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 323

Application Examples

8.4 Position axis program

8.4.9 Details view
To show the detail view, proceed as follows:
1. Select the View > Detail view menu item.

Information, e.g. compiler messages, will be displayed during the compilation of a
program.

8.4.10 Compiling

To compile the program, proceed as follows:
1. Select the program in project navigation.
2. Open the LAD/FBD program menu and select Accept and compile.

During the compilation process, messages on the successful compilation status are
displayed in the detail view. Should any error occur during compilation, they will be displayed
in plain text there.

8.4.11 Assigning a sample program to an execution level

Before you can run the sample program, you must assign it to an execution level or a task.
When you have done this, you can establish the connection to the target system, download
the program to the target system, and then start it.

To assign the program to an execution level (see also the blinker program (Page 305)
example), proceed as follows:

Double-click the EXECUTION SYSTEM folder in the project navigator.
Mark the BackgroundTask.

Click the Program assignment tab.

Select the program.

Click the button >>.

Click Close.

o gk~ o N =

See also

Assigning a sample program to an execution level (Page 305)

SIMOTION LAD/FBD
324 Programming and Operating Manual, 05/2009

Application Examples

8.4 Position axis program

8.4.12 Starting sample program

To start a program, proceed as follows:

1.

SIMOTION LAD/FBD

Select Project > Save and compile all

The project is locally saved on the hard disk and compiled.

. Select the Project > Connect to target system menu command or click "m,

The Online mode is activated.
Select the Target system > Connect to target system menu command or click @

The project data (including the sample program) and the data of the hardware
configuration are downloaded to the RAM of the target system.

. Mark both networks and click the k| button for program status (shortcut CTRL+F7) in the

LAD editor toolbar (Page 25) to confirm.

Monitoring the program execution (Page 269) is switched on.

. Mark the SIMOTION device in the project navigator and select Target device > Operating

mode in the context menu.
The Operating mode window with the software switch for modes opens.
Click the RUN button in the software switch.

The SIMOTION device is in RUN mode. The sample program is run and the current
paths/signal paths are color-coded in accordance with the current signal values
(Page 269).

Programming and Operating Manual, 05/2009 325

Application Examples

8.4 Position axis program

IMOTION SCOUT - posachse - [LAD/FBI

4 Project Edit Insert Target system View Options Window Help

=181 x|

| Dl] |l o] a2 | ol | X [P] ol s | 28] || B0 | 2]

]

G| | |

-]

=l |

=3P posachse

i) Create new device

#) Insert single drive unit

- <f-{E D435

~] EXECUTION SYSTEM
&=1/0

B GLOBAL DEVICE VARIABLES

] axEs

] EXTERNAL ENCODERS

_] PATH OBIECTS

1 cams

[#-_] TECHNOLOGY

-] PROGRAMS

) Insert ST source File

) Insert MCC unit

B Insert DCC charts

® Insert LAD{FED unit

==} Drive

] Insert LADJFED program

& drive()

SINAMICS Integrated

-] LIERARIES

E-_] MONITOR.

x

[

Parametersivariables |10 symbols | Structures | Enumerations |

Name

o_enabled

posachse—|

100.0—

10.0—

mc
moverelative

EN END
done

axis busy
execute active
commandaborted

distance error
velocity errorid

acceleration

deceleration

ariable type Data typs array length Initial value Commerit -
1 |enatle R BOOL
i |move VAR BOOL
3 |imcpower |\eR _MC_POWER
4 |i_me_mowersl [\ER _MC_MOVERELATIVE
5 |o_enabled |\ER BOOL
: =
drive - Example for axis movement =
Commernt
001 - Enable Axis
With _mc_power an axis enable is possible

1_mc_power
mc_power
EN END |
status—o_enabled
=nable posachse— axis busy D435 : Opera e e
} I enable active
error RN I
ALL— mode B 5vOC
errorid—...
o
WITH_MARTMAL _— stopmode RLIN STORU S
DECELERATION O sTOPU
O sTop _STOP | -
002 - Mowe relative
PLC-open fuctionblock _me_mowerelative allows to mowe the axis hES
ime_
movere | ative Close Help

| 3erk
=
Praject | Command library J dive I
D435 Immediate control =
| | Hame | Datatype | Statusvalue | Display format| Control value

K

Symbal brawzer E Compiledcheck output | E Target system output 9@ Diagnostics overview

Displays the operating mode of the selected devics for changing (RUM, STOR).

Figure 8-42 Sample program is started

326

[cPS&11PROFIELISY

[Online mode

[|

SIMOTION LAD/FBD

Programming and Operating Manual, 05/2009

Appendix

A1 Key combinations

The following key combinations are available:

With LAD/FBD editor open

Cursor keys With a selected operator: Navigation between the individual operators

Ctrl+CursorUp Select previous network

Ctrl+CursorDn Select next network

Page up Select the network at the start of the visible editor area

Page down Select the network at the end of the visible editor area

Del Deletes an operator

Tab / Shift+Tab Jumps forward to next button / input field / jumps back to previous button / input field
Return Opens the edit field of the current operand or confirms the entry made in the edit field
Esc Aborts the entry while edit field is open

Window menu

Ctrl+Shift+F5 Rearranges all windows opened in this application in horizontal tiled format.
Ctrl+Shift+F3 Rearranges all windows opened in this application in vertical tiled format.
Alt+F4 Closes all windows and ends the application.

View menu

Ctrl+F11 Maximizes the working area

Ctrl+F12 Maximizes the detail view

Ctrl+Num+ Enlarges the contents of the working area.

Ctrl+Num- Reduces the contents of the working area.

F5 Updates the view

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 327

Appendix

A. 1 Key combinations

Edit menu

Ctrl+Z Undoes the last action (except: Save)

Ctrl+Y Redoes the last action which was undone.
Ctrl+X Cuts a command

CtrlI+C Copies a command

Ctrl+V Inserts a command

Del Deletes selected commands in the LAD editor
Alt+Enter Displays the properties of the active/selected object for editing.
Enter Opens the selected object.

Ctrl+B Saves and compiles the active/selected object.
CtrlI+A Selects all objects in the current window
Alt+F8 Insert comparator

Alt+F9 Insert an empty box

Ctrl+R Inserts a new network

Ctrl+L Jump label ON/OFF

Ctrl+Shift+K Show/hide comment line

Ctrl+Z Undo

Ctrl+Y Repeat

Ctrl+1 Switches to LAD

Ctrl+3 Switches to FBD

Ctri+T Symbol check and type update

Ctrl+Shift+B Display options for boxes

Shift+F6 Switches between declaration table and editor area

LAD elements

F2 Insert NO contact
F3 Insert NC contact
F7 Insert coil

F8 Open branch

F9 Close branch

FBD elements

F2 Insert AND box

F3 Insert OR box

F4 Insert XOR box

F7 Assignment

F8 Insert binary input
F9 Negate binary input

Symbol input help

Ctrl+H

Opens the symbol input help dialog window

328

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Appendix
A.2 Protected and reserved identifiers

A.2 Protected and reserved identifiers

Reserved identifiers may only be used as predefined. You may not declare a variable or data
type with the name of a reserved identifier.

There is no distinction between upper and lower case notation.

The ST programming language includes protected and reserved identifiers (see the
SIMOTION ST Programming and Operating Manual). The same list also applies to the
LAD/FBD programming languages. The LAD/FBD programming language also includes the
protected and reserved identifiers listed in the table.

You can find a list of all the identifiers whose meanings are predefined in SIMOTION in the
SIMOTION Basic Functions Function Manual.

Table A-1 Protected identifiers applicable only to the LAD/FBD programming language

A
ANDN
C
CAL CALCN
CALC

JMP JMPCN
JMPC

LD | LDN

ORN |

RET RETCN
RETC

ST [STN

XORN |

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 329

Index

_additionObjectType, 101
_camTrackType, 101
_controllerObjectType, 101
_device, 134
_direct, 119, 122, 134
_fixedGearType, 101
_formulaObjectType, 101
_getcommandid

Advance signal switching, 157
_getSafeValue

Application, 134
_sensorType, 101
_setSafeValue

Application, 134

A

Activate

Automatic symbol check, 30

Symbol browser, 260

Type update, 30
Activating

On-the-fly variable declaration, 37
Advance signal switching

_getcommandid, 157

Boolean, 157

Non-Boolean, 157
Advance switching, 157
AND box, 186
ANY, 96
ANY_BIT, 96
ANY_DATE, 96
ANY_ELEMENTARY, 96
ANY_INT, 96
ANY_NUM, 96
ANY_REAL, 96
ANYOBJECT, 101
Arithmetic operators, 228
Array element

Initial value, 91

Initialization value, 91
Array length

Variables, 90
Assignment, 191

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Resetting, 193
Setting, 194

Automatic symbol check

Activating, 30
Deactivating, 33
LAD/FBD editor, 29

Automatic syntax check

B

LAD/FBD elements, 75

Backward compatibility, 55
Binary input

Inserting, 189
Negate, 190

Bit data types, 93, 206

BOOL, 93

Boolean advance signal switching, 157
Box type

Interface adjustment, 158
Selecting, 298

Breakpoint, 272

Activating, 283
Call path, 279, 281
Call stack, 285
Deactivating, 284
remove, 276

Set, 276

Toolbar, 278

BYTE, 93

C

Call parameters

Making individual settings for LAD/FBD
elements, 78

Making settings for LAD/FBD elements, 79, 320,

322

Call path

Breakpoint, 279, 281
Call stack, 285
Program run, 267

camType, 101
Change

Colors, 36
Fonts, 35
LAD/FBD program creation type, 58

331

Index

Operand and comment fields, 34
Variable values in the symbol browser, 263
Changing
LAD/FBD network comments, 66
LAD/FBD program comments, 66
Close
LAD/FBD program, 56
LAD/FBD source file, 43
Close parallel branch, 184
Code attributes, 166
Colors
Changing, 36
Command call
Drag&Drop, 27
Command library, 83
Inserting functions, 84
Inserting LAD/FBD elements, 84
Special features, 85
Unusable functions, 84
Command name
Drag&Drop, 28
Comment
Print, 60
Commissioning
Execution levels and tasks, 251
Commissioning (software)
Assigning programs to a task, 249
Downloading the project to the target system, 254
Task start sequence, 253
Comparator, 201
Comparison operations
Comparator, 201
Overview, 201
Compile
Defining the order of the POU, 54
Detail view, 42, 55
LAD/FBD program, 55, 303, 324
LAD/FBD unit, 42
Compiler
Global settings, 48
Local settings, 49
CONCAT, 210
Conductor bar
LAD/FBD elements, 69
Connections
Defining, 135
to LAD/FBD programs, 135
To libraries, 135
to MCC charts, 135
to ST source files, 135
Connector, 175, 192
CONSTANT, 103
Constants

332

Time specifications, 94
Context menu
LAD/FBD editor, 24
Conversion functions
Bit data types, 206
Date and time, 210
Numeric data types, 206
TRUNC, 205
Converting
LAD to FBD representation, 72
Converting FBD to LAD representation, 73
Copy
LAD/FBD elements, 76
LAD/FBD network, 68
LAD/FBD program, 54
LAD/FBD unit, 43
Counter instructions
CTD down counter, 216
CTD_DINT down counter, 217
CTD_UDINT down counter, 218
CTU up counter, 213
CTU_DINT up counter, 214
CTU_UDINT up counter, 215
CTUD up/down counter, 219
CTUD_DINT up/down counter, 221
CTUD_UDINT up/down counter, 222
Overview, 213
Creation type, 58
Cross-reference list, 161
Displayed data, 162
Filtering, 164
Generating, 161
Single step monitoring (MCC), 162
Sorting, 164
TSl#dwuser_1, 162
TSl#dwuser_2, 162
Cut
LAD/FBD elements, 76
LAD/FBD network, 68
LAD/FBD unit, 43
Cyclic program execution
Effect on I/O access, 119
Effect on variable initialization, 110
Cyclic program processing
Effect on I/O access, 122, 128

D

Data type list

Setting in declaration tables, 34
Data types

Bit data type, 93

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Index

elementary, 93
Inheritance, 102
Interface adjustment, 158
Numeric, 93
STRING, 94
Technology object, 101
Time, 94
DATE, 94
Date and time, 210
DATE_AND_TIME, 94
Deactivate
Automatic symbol check, 33
Type update, 33
Debug mode, 256, 273
Declaration
Scope, 89
declaration table
Comment, 91
Defining enumerations, 99
Defining structures, 99
Implementation section, 98
Initial value, 91
Initialization value, 91
Interface section, 98
Scope of derived data types, 98
Declaration table
Array length and field element, 90
Declaring variables, 295, 318
Drag&drop, 26, 27
Enlarging/reducing, 23
Printing, 60
Setting the data type list, 34
show/hide, 23
Workbench, 21
Default language
LAD/FBD editor, 37
Delete
LAD/FBD elements, 76
LAD/FBD network, 68
LAD/FBD program, 56
LAD/FBD unit, 43
Derived data type
Defining enumerations, 99
Defining structures, 99
Scope, 98
uUDT, 98
Detail view
Compiling, 42, 55
Displaying, 303, 324
Workbench, 21
Detail View
Maximize, 22
DINT, 93

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

DINT#MAX, 95
DINT#MIN, 95
Direct access, 119, 122
Properties, 120
Display
Detail view, 303, 324
Down counter
CTD, 216
CTD_DINT, 217
CTD_UDINT, 218
Download
Effect on variable initialization, 110
Drag&drop
from the declaration tables, 26

Function blocks from other sources, 28

Functions from other sources, 28
within the declaration table, 27
Drag&Drop
Command call, 27
Command name, 28
Elements in a network, 28
LAD/FBD elements, 27
Variables, 26
driveAxis, 101
DT, 94
DT_TO_DATE, 210
DT_TO_TOD, 210
DWORD, 93

E

Edge detection
F_TRIG, 212
Falling, 182, 199
Overview, 211
R_TRIG, 211
Rising, 183, 200
Scan edge 0 -> 1, 181, 198
Scan edge 1 -> 0, 180, 197
Editor area, 63
Elementary data types
Overview, 93
Empty box
Calling, 239
Inserting, 297
Selecting the box type, 298
Enumerations
Defining, 99
Example, 100
Error location, 55
Exclusive OR
Exclusive OR box, 188

333

Index

Linking, 172 Workbench, 21
Execution system Function block (FB), 58
Assigning programs to a task, 249, 305, 324 Inserting, 141
Execution levels and tasks, 251 Using drag&drop for function blocks from other
Task start sequence, 253 units, 28
EXP format, 45, 46 Function block diagram, 18
Export
Exporting a LAD/FBD source file in XML format, 44
LAD/FBD unit in EXP format, 45 G

POU in XML format, 45

externalEncoderType, 101 General numeric standard functions, 230

Global device user variables

Defining, 104
F
FBD, 18 |
FBD bit instructions /O variable

AND box, 186

Assignment, 191
Connector, 192

Edge detection (falling), 199
Edge detection (rising), 200
Exclusive OR box, 188
Insert binary input, 189

create, 125, 133

Creating, 125, 133

Direct access, 119, 122

Process image, 119, 122

Process image of the BackgroundTask, 129
Identifiers

Negate binary input, 190
OR box, 187
Overview, 185
Prioritize reset flip-flop, 195
Prioritize set flip-flop, 196
Reset assignment, 193
Scan edge 0 -> 1, 198
Scan edge 1 -> 0, 197
Set assignment, 194
Field element
Variables, 90
Flip-flop
Priority reset, 178, 195
Priority set, 179, 196
Floating-point number
Data types, 93
followingAxis, 101
followingObjectType, 101
Fonts
Changing, 35
Function (FC), 58
Example, 145
Inserting, 141

Using drag&drop for functions from other units, 28

Function bar
FBD editor, 25
LAD editor, 25
LAD/FBD editor, 25
LAD/FBD unit, 25

334

Reserved LAD/FBD, 329
Rules for assigning names, 89

Import

LAD/FBD unit in EXP format, 46

Importing

Importing a LAD/FBD source file from XML data, 44

POU in XML format, 45

Inheritance

For technology objects, 102

Initialization

Relay cail, output, 302

Time of the variable initialization, 110

Insert

Empty box, 297

LAD/FBD elements, 74, 300, 312, 315

LAD/FBD network, 64, 296, 302
LAD/FBD program, 52, 292, 310
LAD/FBD unit, 40, 289, 309

Technology-object-specific command, 312

TO-specific command, 315

Instance variable

Interface adjustment, 158

INT, 93
INT#MAX, 95
INT#MIN, 95
Integer

Data types, 93

Interface adjustment

Constraints, 158
Detail view, 158

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Index

Manual update FB/FC call, 158 Settings, 29
Invert signal, 173 Shortcut, 26
Toolbars, 25
Type update, 29
J Workbench, 21

LAD/FBD elements, 63
Automatic syntax check, 75
Conductor bar, 69
Converting LAD to FBD representation, 72
Converting: FBD to LAD representation, 73
Copying, 76
Cutting, 76
Deleting, 76
Display of box parameters, 77
K Drag&Drop, 27
Enable input (EN) of the LAD box, 70
Know-how protection, 43 Enable output (ENO) of the LAD box, 70
Entering parameters using Symbol Input Help, 77
FBD diagram definition, 71
L Inserting, 74, 300, 312, 315
LAD diagram definition, 69
tﬁg,tji:instructions Ladder diagram line, 69
Parameter input, 76, 299, 301, 319
Close parallel branch, 184 S .
Replacing in the project, 81
Connector, 175
) . Rules for FBD statements, 71
Edge detection (falling), 182
: o Rules for LAD statements, 69
Edge detection (rising), 183 o .
. Searching in the project, 80
Invert signal, 173 .
. . Selecting, 75
Link exclusive OR, 172 :
Setting call parameters, 79, 320, 322
NC contact, 171 Setting individual call parameters, 78
NO contact, 170 9 P ’

LAD/FBD network, 63
Open _parallel branch, 184 Comment field, 66
Overview, 169

Jump label, 226

Showing/hiding in the LAD/FBD network, 67
Jump operations

Jump in block if 0, 225

Jump in block if 1, 224

Jump label, 226

Overview, 223

Prioritize reset flip-flop, 178 Copying, 68
Prioritize set flip-flop, 179 Cutting, 68
’ Deleting, 68

Relay coll, output, 174
Reset output, 176
Scan edge 0 -> 1, 181
Scan edge 1 -> 0, 180
Set output, 177
LAD/FBD editor

Entering a title, 66, 296
Entering/modifying comments, 66
Inserting, 64, 296, 302
Language-dependent texts, 66
Numbering, 65

Activating on-the-fly variable declaration, 37 Pastlpg, 68 .
; Redoing an action, 68
Automatic symbol check, 29 .
Selecting, 64

Calling up the online help, 37

Changing colors, 36

Changing fonts, 35

Context menu, 24

Display of networks, 63

Enlarging/reducing the view, 22

Menu bar, 24

Modifying the operand and comment fields, 34
moving to the foreground, 22

Setting the default language, 37

Showing/hiding a comment line, 67
Showing/hiding a jump label, 67
Title field, 66
Undoing an action, 68
LAD/FBD program, 19, 52, 58
Accept, 55
Accepting, 303, 324
Assigning to an execution level, 305, 324
Changing the creation type, 58
Close, 56

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 335

Index

Compile, 55
Compiling, 303, 324
Copying, 54
Define order, 54
Deleting, 56
Entering a title, 66, 296
Entering/modifying comments, 66
Inserting, 52, 292, 310
Open, 54
Printing, 59
Properties, 57
Rename, 57
RUN, 306, 325
Showing/hiding a comment line, 67
Starting, 306, 325
LAD/FBD sample programs
"Blinker" LAD program, 288
"Position axis" FBD program, 308
Prerequisites, 287
LAD/FBD source file
Accept, 42
Close, 43
Compile, 42
Copying, 43
cutting, 43
Deleting, 43
Export, 44
Importing, 44
Importing from XML data, 44
Inserting, 43
Open, 42
Printing, 59
Properties, 47
Rename, 47
LAD/FBD unit
Define order, 54
Exporting in EXP format, 45
Exporting in XML format, 44
Importing in EXP format, 46
Inserting, 40, 289, 309
Know-how protection, 43
Local compiler settings, 49
Program organization unit (POU), 39
SIMOTION device, 39
Toolbars, 25
Ladder diagram line
LAD/FBD elements, 69
Ladder logic, 17
Language-dependent texts
LAD/FBD network, 66
LIMIT Limiting function, 247
Logarithmic standard functions, 231
Logical operations

336

Non-binary logic, 227
LREAL, 93

M

MAX Maximum function, 245
measuringlnputType, 101
Menu bar
LAD/FBD editor, 24
Workbench, 21, 24
MIN Minimum function, 246
Mode
Debug mode, 256, 273
Test mode, 256
MOVE (Assign a value), 233
Move instructions
MOVE (Assign a value), 233

N

Name space, 137
NC contact, 171
Network, 63
Network range
Printing, 60
New
I/0O variable, 125, 133
LAD/FBD program, 52
LAD/FBD source file, 40
NO contact, 170
Numeric data types, 93, 206
Numeric standard functions
General standard numeric functions, 230
Logarithmic standard functions, 231
Trigonometric standard functions, 232

O

Offline mode
Watch table, 264
Online help
LAD/FBD editor, 37
Online module
Watch table, 264
On-the-fly variable declaration
Activating, 37
Open
LAD/FBD program, 54
LAD/FBD source file, 42
Open parallel branch, 184
Operand and comment fields

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Index

Modifying, 34
Operating mode
Process mode, 256
OR box, 187
Output
Resetting, 176
Setting, 177
outputCamType, 101

P

Parameter input
LAD/FBD elements, 76, 299, 301, 319
Technology-object-specific command, 319
Paste
LAD/FBD network, 68
LAD/FBD unit, 43
posAxis, 101
Preprocessor
Activating, 50
Using, 50
Print
Comments, 60
Declaration tables, 60
Defining print variants, 61
Empty pages, 62
LAD/FBD program, 59
LAD/FBD unit, 59
Network range, 60
Position networks, 62
Process image
BackgroundTask, 119
Cyclic tasks, 119, 122
principle and use, 119, 128
Properties, 120
Process mode, 256
Program control
Calling up an empty box, 239
RET Jump back, 240
Program execution, 269
Program organization unit (POU), 19
Exporting in XML format, 45
Function (FC), 19
Function block (FB), 19
Importing in XML format, 45
LAD/FBD unit, 39
Program, 19
Program run, 267
Toolbar, 268
Program source, 19
LAD/FBD unit, 19
MCC source file, 19

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

ST source file, 19
Program status
Overview, 269
Starting and stopping, 269
Tracking program execution, 269
Program structure, 165
Project
Download, 254
Project navigator
SIMOTION device, 39
Workbench, 21
Properties
LAD/FBD program, 57
LAD/FBD source file, 47

R

REAL, 93
Reference, 101
Reference data, 161
References, 13
Relay coll, output, 174
Initialization, 302
Rename
LAD/FBD program, 57
LAD/FBD source file, 47
Replace
LAD/FBD elements in the project, 81
Reserved identifiers, 329
RET Jump back, 240
RETAIN, 103
ROL Rotate bit to the left, 236
ROR Rotate bit to the right, 238
Rotation operations
Overview, 236
ROL Rotate bit to the left, 236
ROR Rotate bit to the right, 238
RUN
Effect on variable initialization, 110
LAD/FBD program, 306, 325

S

Scope of the declarations, 89
Search
LAD/FBD elements in the project, 80
SEL Binary selection, 244, 248
Select
LAD/FBD elements, 75
LAD/FBD network, 64
Selection functions
LIMIT Limiting function, 247

337

Index

MAX Maximum function, 245

MIN Minimum function, 246

MUX Multiplex function, 248

SEL Binary selection, 244
Sequential program execution

Effect on 1/0O access, 119, 122

Effect on variable initialization, 110
Settings

LAD/FBD editor, 29
Shifting operations

Overview, 234

SHL Shift bit to the left, 234

SHR Shift bit to the right, 235
SHL Shift bit to the left, 234
Shortcut

LAD/FBD editor, 26, 327
SHR Shift bit to the right, 235
SIMOTION device

LAD/FBD unit, 39

Project navigator, 39
SINT, 93
SINT#MAX, 95
SINT#MIN, 95
ST

_alarm, 138

_device, 138

_direct, 138

_project, 138

_task, 138

_to, 138
Start

LAD/FBD program, 306, 325
STOP to RUN

Effect on variable initialization, 110
STRING, 94
StructAlarmid, 97
STRUCTALARMID#NIL, 97
StructTaskld, 97
STRUCTTASKID#NIL, 97
Structures

Defining, 99
Subroutine, 139

information exchange, 140
Symbol browser, 260

Activate, 260

Changing variable values, 263

Fixing the display, 263
Symbol Input Help

Labeling LAD/FBD elements, 77
System data types, 102
System functions

Inheritance, 102
System variables

338

Inheritance, 102

T

T#MAX, 95
T#MIN, 95
Task
Assigning programs to a task, 249
Cyclic tasks, 251
Effect on variable initialization, 110
Execution levels, 251
Sequential tasks, 251
Start sequence, 253
Technology object
Data type, 101
Inheritance, 102
Technology-object-specific command
Inserting, 312
Parameter input, 319
Test mode, 256
TIME, 94
Time types
Overview, 94
TIME#MAX, 95
TIME#MIN, 95
TIME_OF_DAY, 94
TIME_OF_DAY#MAX, 95
TIME_OF_DAY#MIN, 95
Timer instructions
TOF Switch-off delay, 243
TON Switch-on delay, 242
TP Pulse, 241
TO#NIL, 101
TOD, 94
TOD#MAX, 95
TOD#MIN, 95
TOF Switch-off delay, 243
TON Switch-on delay, 242
TO-specific command
Inserting, 315
TP Pulse, 241
Trace, 266
Trigonometric standard functions, 232
TRUNC, 205
TSl#dwuser_1
Cross-reference list, 162
TSl#dwuser_2
Cross-reference list, 162
Type update
Activating, 30
Deactivating, 33
LAD/FBD editor, 29

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Index

U

UDINT, 93
UDINT#MAX, 95
UDINT#MIN, 95
UINT, 93
UINT#MAX, 95
UINT#MIN, 95
Unit, 19
Up counter
CTU, 213
CTU_DINT, 214
CTU_UDINT, 215
Up/down counter
CTUD, 219
CTUD_DINT, 221
CTUD_UDINT, 222
USINT, 93
USINT#MAX, 95
USINT#MIN, 95

\Y

VAR, 103
VAR CONSTANT, 103
VAR_GLOBAL, 103
VAR_GLOBAL CONSTANT, 103
VAR_GLOBAL RETAIN, 103
VAR_IN_OUT, 103
VAR_INPUT, 103
VAR_OUTPUT, 103
VAR_TEMP, 103
Variable types, 86
Keywords, 103
Variables, 103
Array length and field element, 90
Defining, 104, 295, 318
Drag-and-drop, 26
Initial value, 91
Initialization value, 91
Local, 107
Process image, 119, 128
timing of initialization, 110
unit variable, 105

w

Watch table
Creating, 264
Fixing the display, 265
Offline mode, 264
Online mode, 264

SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009

Status and controlling variables, 265
Watch tables
Overview, 264
WORD, 93
Work Area
Enlarging/reducing the view, 22
Maximize, 22
Workbench, 21
Workbench
Declaration tables, 21
Detail view, 21
LAD/FBD editor, 21
Menu bar, 21, 24
Project navigator, 21
Toolbars, 21, 25
Work Area, 21

339

SIMOTION SIMOTION SCOUT SIMOTION LAD/FBD
Programming and Operating Manual, 05/2009 340

	SIMOTION LAD/FBD
	Legal information
	Table of contents
	1 Preface
	1.1 Scope
	1.2 Information in this manual
	1.3 SIMOTION Documentation
	1.4 Hotline and Internet addresses

	2 Description
	2.1 Description
	2.2 What is LAD?
	2.3 What is FBD?
	2.4 Unit, program organization unit (POU) and program source

	3 LAD/FBD editor
	3.1 The LAD/FBD editor in the workbench
	3.2 Maximizing working area and detail view
	3.3 Enlarging and reducing the editor area for the graphical display
	3.4 Bringing the LAD/FBD editor to the foreground
	3.5 Hiding and displaying the declaration table
	3.6 Enlarging/reducing the declaration table
	3.7 Operation
	3.7.1 Operating the LAD/FBD editor
	3.7.2 Menu bar
	3.7.3 Context menu
	3.7.4 Toolbars
	3.7.5 Key combinations
	3.7.6 Drag&Drop of variables
	3.7.7 Drag&drop from the declaration tables
	3.7.8 Drag&drop within the declaration table
	3.7.9 Using Drag&Drop for LAD/FBD elements
	3.7.10 Command call drag&drop
	3.7.11 Drag&Drop of command names
	3.7.12 Using drag&drop for elements in a network
	3.7.13 Using drag&drop for functions and function blocks from other sources

	3.8 Settings
	3.8.1 Settings in the LAD/FBD editor
	3.8.2 Activating automatic symbol check and type update
	3.8.3 Example of a type update
	3.8.4 Example of a symbol check
	3.8.5 Deactivating automatic symbol check and type update
	3.8.6 Perform symbol check and type update at a specified time
	3.8.7 Setting the data type list of the declaration table
	3.8.8 Modifying the operand and comment fields
	3.8.9 Changing fonts
	3.8.10 Changing colors
	3.8.11 Activating on-the-fly variable declaration
	3.8.12 Setting the default language
	3.8.13 Calling online help in the LAD/FBD editor

	4 LAD/FBD programming
	4.1 Programming software
	4.2 Managing LAD/FBD source file
	4.2.1 Inserting a new LAD/FBD source file
	4.2.2 Opening an existing LAD/FBD source file
	4.2.3 Saving and compiling a LAD/FBD source file
	4.2.4 Closing a LAD/FBD source file
	4.2.5 Cut/copy/delete operations in a LAD/FBD source file
	4.2.6 Inserting a cut or copied LAD/FBD source file
	4.2.7 Know-how protection for LAD/FBD source files

	4.3 Exporting and importing LAD/FBD source files
	4.3.1 Exporting a LAD/FBD source file in XML format
	4.3.2 Importing LAD/FBD source files as XML data
	4.3.3 Exporting a POU in XML format
	4.3.4 Importing a POU from XML format
	4.3.5 Exporting a LAD/FBD source file in EXP format
	4.3.6 Importing EXP data into a LAD/FBD source file

	4.4 LAD/FBD source files - defining properties
	4.4.1 Defining the properties of a LAD/FBD source file
	4.4.2 Renaming a LAD/FBD source file
	4.4.3 Making settings for the compiler
	4.4.3.1 Global compiler settings
	4.4.3.2 Local compiler settings

	4.5 Managing LAD/FBD programs
	4.5.1 Inserting a new LAD/FBD program
	4.5.2 Opening an existing LAD/FBD program
	4.5.3 Defining the order of the LAD/FBD programs in the LAD/FBD source file
	4.5.4 Copying the LAD/FBD program
	4.5.5 Saving and compiling a LAD/FBD program
	4.5.6 Closing a LAD/FBD program
	4.5.7 Deleting the LAD/FBD program

	4.6 LAD/FBD programs - defining properties
	4.6.1 Renaming a LAD/FBD program
	4.6.2 Changing the LAD/FBD program creation type

	4.7 Printing source files and programs
	4.7.1 Printing a declaration table
	4.7.2 Printing a network area
	4.7.3 Printing comments
	4.7.4 Defining print variants
	4.7.5 Placing networks
	4.7.6 Blank pages

	4.8 LAD/FBD networks and elements
	4.8.1 Inserting networks
	4.8.2 Selecting networks
	4.8.3 Numbering the networks
	4.8.4 Enter title/comment
	4.8.5 Showing/hiding a jump label
	4.8.6 Copying/cutting/pasting networks
	4.8.7 Undo/redo actions
	4.8.8 Deleting networks

	4.9 Displaying LAD/FBD elements
	4.9.1 LAD diagram
	4.9.2 Meaning of EN/ENO
	4.9.3 FBD diagram
	4.9.4 Converting between LAD and FBD representation

	4.10 Editing LAD/FBD elements
	4.10.1 Inserting LAD/FBD elements
	4.10.2 Syntax check in LAD
	4.10.3 Selecting LAD/FBD elements
	4.10.4 Copy/cut/delete operations in LAD/FBD elements
	4.10.5 LAD/FBD elements - defining parameters (labeling)
	4.10.6 Labeling LAD/FBD elements with the symbol input help dialog
	4.10.7 Setting the LAD/FBD element display
	4.10.8 Setting the call parameter for an individual parameter
	4.10.9 Setting call parameters
	4.10.10 Searching in the project
	4.10.11 Find and replace in a project

	4.11 Command library
	4.11.1 LAD/FBD functions in the command library
	4.11.2 Inserting elements/functions from the command library
	4.11.3 Unusable command library functions
	4.11.4 Special features of the command library

	4.12 General information about variables and data types
	4.12.1 Overview of variable types
	4.12.2 Scope of the declarations
	4.12.3 Rules for identifiers
	4.12.4 Frequently used arrays in declarations
	4.12.4.1 Array length and array element
	4.12.4.2 Initial value
	4.12.4.3 Comments

	4.13 Data Types
	4.13.1 General
	4.13.2 Elementary data types
	4.13.2.1 Value range limits of elementary data types
	4.13.2.2 General data types
	4.13.2.3 Elementary system data types

	4.13.3 Derived data types
	4.13.3.1 Defining user-defined data types (UDT)
	4.13.3.2 Scope of the data type declaration
	4.13.3.3 Defining structures
	4.13.3.4 Defining enumerations

	4.13.4 Technology object data types
	4.13.4.1 Description of the technology object data types
	4.13.4.2 Inheritance of the properties for axes

	4.13.5 System data types

	4.14 Variables
	4.14.1 Keywords for variable types
	4.14.2 Defining variables
	4.14.2.1 Use of global device variables
	4.14.2.2 Declaring a unit variable in the source file
	4.14.2.3 Declaring local variables
	4.14.2.4 Defining global user variables and local variables in the variable declaration dialog box

	4.14.3 Time of the variable initialization
	4.14.3.1 Initialization of retentive global variables
	4.14.3.2 Initialization of non-retentive global variables
	4.14.3.3 Initialization of local variables
	4.14.3.4 Initialization of static program variables
	4.14.3.5 Initialization of instances of function blocks (FBs)
	4.14.3.6 Initialization of system variables of technology objects
	4.14.3.7 Version ID of global variables and their initialization during download

	4.15 Access to inputs and outputs (process image, I/O variables)
	4.15.1 Overview of access to inputs and outputs
	4.15.2 Important features of direct access and process image access
	4.15.3 Direct access and process image of cyclic tasks
	4.15.3.1 Rules for I/O addresses for direct access and the process image of the cyclical tasks
	4.15.3.2 Creating I/O variables for direct access or process image of cyclic tasks
	4.15.3.3 Syntax for entering I/O addresses
	4.15.3.4 Possible data types of I/O variables

	4.15.4 Access to fixed process image of the BackgroundTask
	4.15.4.1 Absolute access to the fixed process image of the BackgroundTask (absolute PI access)
	4.15.4.2 Syntax for the identifier for an absolute process image access
	4.15.4.3 Defining symbolic access to the fixed process image of the BackgroundTask
	4.15.4.4 Possible data types for symbolic PI access
	4.15.4.5 Example: Defining symbolic access to the fixed process image of the BackgroundTask
	4.15.4.6 Creating an I/O variable for access to the fixed process image of the BackgroundTask

	4.15.5 Accessing I/O variables

	4.16 Connections to other program source files or libraries
	4.16.1 Defining connections
	4.16.1.1 Procedure for defining connections to other units (program source files)
	4.16.1.2 Procedure for defining connections to libraries

	4.16.2 Using the name space

	4.17 Subroutine
	4.17.1 Inserting a function (FC) or function block (FB)
	4.17.2 Inserting a subroutine call into the LAD/FBD program and assigning parameters
	4.17.2.1 Overview of parameters for

	4.17.3 Example: Function (FC)
	4.17.3.1 Creating and programming the function (FC)
	4.17.3.2 Subroutine call of function (FC)

	4.17.4 Example: Function block (FB)
	4.17.4.1 Creating and programming the function block (FB)
	4.17.4.2 Subroutine call of function block (FB)
	4.17.4.3 Creating a function block instance
	4.17.4.4 Programming the subroutine call of the function block
	4.17.4.5 Accessing the output parameters of the function block retrospectively

	4.17.5 Limitations with advance signal switching
	4.17.6 Interface adjustment with FB/FC

	4.18 Reference data
	4.18.1 Cross reference list
	4.18.1.1 Creating a cross-reference list
	4.18.1.2 Content of the cross-reference list
	4.18.1.3 Working with a cross-reference list
	4.18.1.4 Filtering the cross-reference list

	4.18.2 Program structure
	4.18.2.1 Content of the program structure

	4.18.3 Code attributes
	4.18.3.1 Code attribute contents

	5 Functions
	5.1 LAD bit logic instructions
	5.1.1 ---| |--- NO contact
	5.1.2 ---| / |--- NC contact
	5.1.3 XOR Linking EXCLUSIVE OR
	5.1.4 ---|NOT|--- Invert signal state
	5.1.5 ---() Relay coil, output
	5.1.6 ---(#)--- Connector (LAD)
	5.1.7 ---(R) Reset output (LAD)
	5.1.8 ---(S) Set output (LAD)
	5.1.9 RS Prioritize reset flipflop
	5.1.10 SR Prioritize set flipflop
	5.1.11 --(N)-- Scan edge 1 -> 0 (LAD)
	5.1.12 --(P)-- Scan edge 0 -> 1 (LAD)
	5.1.13 NEG edge detection (falling)
	5.1.14 POS edge detection (rising)
	5.1.15 Open branch
	5.1.16 Close branch

	5.2 FBD bit logic instructions
	5.2.1 & AND box
	5.2.2 >=1 OR box
	5.2.3 XOR EXCLUSIVE OR box
	5.2.4 --| Inserting a binary input
	5.2.5 --o| Negating a binary input
	5.2.6 [=] Assignment
	5.2.7 [#] Connector (FBD)
	5.2.8 [R] Reset assignment (FBD)
	5.2.9 [S] Set assignment (FBD)
	5.2.10 RS Prioritize reset flipflop
	5.2.11 SR Prioritize set flipflop
	5.2.12 [N] Scan edge 1 -> 0 (FBD)
	5.2.13 [P] Scan edge 0 -> 1 (FBD)
	5.2.14 NEG edge detection (falling)
	5.2.15 POS edge detection (rising)

	5.3 Relational operators
	5.3.1 Overview of comparison operations
	5.3.2 CMP Compare numbers

	5.4 Conversion instructions
	5.4.1 TRUNC Generate integer
	5.4.2 Generating numeric data types and bit data types
	5.4.3 Generating date and time

	5.5 Edge detection
	5.5.1 Detection of rising edge R_TRIG
	5.5.2 Detection of falling edge F_TRIG

	5.6 Counter operations
	5.6.1 Overview of counter operations
	5.6.2 CTU up counter
	5.6.3 CTU_DINT up counter
	5.6.4 CTU_UDINT up counter
	5.6.5 CTD down counter
	5.6.6 CTD_DINT down counter
	5.6.7 CTD_UDINT down counter
	5.6.8 CTUD up/down counter
	5.6.9 CTUD_DINT up/down counter
	5.6.10 CTUD_UDINT up/down counter

	5.7 Jump instructions
	5.7.1 Overview of jump operations
	5.7.2 ---(JMP) Jump in block if 1 (conditional)
	5.7.3 ---(JMPN) Jump in block if 0 (conditional)
	5.7.4 LABEL Jump label

	5.8 Non-binary logic
	5.9 Arithmetic operators
	5.10 Numeric standard functions
	5.10.1 General numeric standard functions
	5.10.2 Logarithmic standard functions
	5.10.3 Trigonometric standard functions

	5.11 Move
	5.11.1 MOVE Transfer value

	5.12 Shifting operations
	5.12.1 Overview of shifting operations
	5.12.2 SHL Shift bit to the left
	5.12.3 SHR Shift bit to the right

	5.13 Rotating operations
	5.13.1 Overview of rotating operations
	5.13.2 ROL Rotate bit to the left
	5.13.3 ROR Rotate bit to the right

	5.14 Program control instructions
	5.14.1 Calling up an empty box
	5.14.2 RET Jump back

	5.15 Timer instructions
	5.15.1 TP pulse
	5.15.2 TON ON delay
	5.15.3 TOF OFF delay

	5.16 Selection functions
	5.16.1 SEL Binary selection
	5.16.2 MAX Maximum function
	5.16.3 MIN Minimum function
	5.16.4 LIMIT Limiting function
	5.16.5 MUX Multiplex function

	6 Commissioning (software)
	6.1 Commissioning
	6.2 Assigning programs to a task
	6.3 Execution levels and tasks in SIMOTION
	6.4 Task start sequence
	6.5 Downloading programs to the target system

	7 Debugging Software / Error Handling
	7.1 Modes for program testing
	7.1.1 Modes of the SIMOTION devices
	7.1.2 Important information about the life-sign monitoring.
	7.1.3 Life-sign monitoring parameters

	7.2 Symbol Browser
	7.2.1 Characteristics
	7.2.2 Using the symbol browser

	7.3 Watch tables
	7.3.1 Monitoring variables in watch table

	7.4 Trace
	7.5 Program run
	7.5.1 Program run: Display code location and call path
	7.5.2 Parameter call stack program run
	7.5.3 Program run toolbar

	7.6 Program status (monitoring program execution)
	7.6.1 Starting and stopping the program execution monitoring

	7.7 Breakpoints (WS)
	7.7.1 General procedure for setting breakpoints
	7.7.2 Setting the debug mode
	7.7.3 Define the debug task group
	7.7.4 Setting breakpoints
	7.7.5 Breakpoints toolbar
	7.7.6 Defining the call path for a single breakpoint
	7.7.7 Defining the call path for all breakpoints
	7.7.8 Activating breakpoints
	7.7.9 Display call stack

	8 Application Examples
	8.1 Examples
	8.2 Creating sample programs
	8.3 Blinker program
	8.3.1 Insert LAD/FBD source file
	8.3.2 Insert LAD/FBD program
	8.3.3 Entering variables in the declaration table
	8.3.4 Entering a program title
	8.3.5 Inserting network
	8.3.6 Inserting an empty box
	8.3.7 Selecting box type
	8.3.8 Parameterizing the ADD call-up
	8.3.9 Inserting comparator
	8.3.10 Labeling the comparator
	8.3.11 Initializing a coil
	8.3.12 Inserting next network
	8.3.13 Details view
	8.3.14 Compiling
	8.3.15 Assigning a sample program to an execution level
	8.3.16 Starting sample program

	8.4 Position axis program
	8.4.1 Insert LAD/FBD source file
	8.4.2 Insert LAD/FBD program
	8.4.3 Inserting a TO-specific command
	8.4.4 Connecting the enable inputs
	8.4.5 Entering variables in the declaration table
	8.4.6 Parameterization of the NO contacts
	8.4.7 Setting call parameters for the _mc_power command
	8.4.8 Setting call parameters for the _mc_moverelative command
	8.4.9 Details view
	8.4.10 Compiling
	8.4.11 Assigning a sample program to an execution level
	8.4.12 Starting sample program

	A Appendix
	A.1 Key combinations
	A.2 Protected and reserved identifiers

	Index
	_
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

