

Open Controller

Ready4Linux,

OPC UA via virtual

interface

Open Controller, Ready4Linux, OPC UA

https://support.industry.siemens.com/cs/ww/en/view/109779253

Siemens
Industry
Online
Support

https://support.industry.siemens.com/cs/ww/en/view/109779253

Legal information

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 2

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Legal information
Use of application examples

Application examples illustrate the solution of automation tasks through an interaction of several
components in the form of text, graphics and/or software modules. The application examples are

a free service by Siemens AG and/or a subsidiary of Siemens AG (“Siemens”). They are non-
binding and make no claim to completeness or functionality regarding configuration and
equipment. The application examples merely offer help with typical tasks; they do not constitute
customer-specific solutions. You yourself are responsible for the proper and safe operation of the
products in accordance with applicable regulations and must also check the function of the
respective application example and customize it for your system.
Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the
application examples used by technically trained personnel. Any change to the application
examples is your responsibility. Sharing the application examples with third parties or copying the
application examples or excerpts thereof is permitted only in combination with your own products.
The application examples are not required to undergo the customary tests and quality inspections
of a chargeable product; they may have functional and performance defects as well as errors. It is
your responsibility to use them in such a manner that any malfunctions that may occur do not
result in property damage or injury to persons.

Disclaimer of liability
Siemens shall not assume any liability, for any legal reason whatsoever, including, without

limitation, liability for the usability, availability, completeness and freedom from defects of the
application examples as well as for related information, configuration and performance data and
any damage caused thereby. This shall not apply in cases of mandatory liability, for example
under the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of
life, bodily injury or damage to health, non-compliance with a guarantee, fraudulent
non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for
damages arising from a breach of material contractual obligations shall however be limited to the
foreseeable damage typical of the type of agreement, unless liability arises from intent or gross
negligence or is based on loss of life, bodily injury or damage to health. The foregoing provisions
do not imply any change in the burden of proof to your detriment. You shall indemnify Siemens

against existing or future claims of third parties in this connection except where Siemens is
mandatorily liable.
By using the application examples you acknowledge that Siemens cannot be held liable for any
damage beyond the liability provisions described.

Other information
Siemens reserves the right to make changes to the application examples at any time without
notice. In case of discrepancies between the suggestions in the application examples and other
Siemens publications such as catalogs, the content of the other documentation shall have
precedence.
The Siemens terms of use (https://support.industry.siemens.com) shall also apply.

Security information
Siemens provides products and solutions with industrial security functions that support the secure
operation of plants, systems, machines and networks.
In order to protect plants, systems, machines and networks against cyber threats, it is necessary
to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept.
Siemens’ products and solutions constitute one element of such a concept.
Customers are responsible for preventing unauthorized access to their plants, systems, machines
and networks. Such systems, machines and components should only be connected to an
enterprise network or the Internet if and to the extent such a connection is necessary and only
when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.
For additional information on industrial security measures that may be implemented, please visit
https://www.siemens.com/industrialsecurity.
Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they are available

and that the latest product versions are used. Use of product versions that are no longer
supported, and failure to apply the latest updates may increase customer’s exposure to cyber
threats.
To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed
at: https://www.siemens.com/industrialsecurity.

https://support.industry.siemens.com/
https://www.siemens.com/industrialsecurity
https://www.siemens.com/industrialsecurity

Table of contents

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 3

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of contents
Legal information ... 2

1 Introduction .. 4

1.1 Introduction ... 4
1.2 Overview of the automation task .. 4
1.3 Principle of operation ... 5
1.4 Components used ... 6

2 Engineering .. 7

2.1 Engineering of the program for the CPU .. 7
2.1.1 Functional description OB main ... 7
2.1.2 OPC UA server settings ... 8
2.2 Engineering of the program for the C/C++ application 9
2.2.1 Create a C/C++ project .. 9
2.2.2 Development of the C/C++ application ... 12
2.3 Integration into the user project .. 14
2.3.1 Loading the TIA Portal project into the target system........................ 14
2.3.2 C/C++ Application .. 14

3 Operation .. 15

3.1 Execute TIA Portal project ... 15
3.2 Executing the C/C++ application .. 15
3.3 OPC UA client and connection to OPC UA server 16
3.4 Reading the system time ... 17
3.5 Reading the counter value ... 18
3.6 Resetting the counter value ... 19
3.7 Writing the counter value ... 20
3.8 Closing the OPC UA Client .. 22
3.9 Use “Ready4LinuxProj”-“binary” ... 23

4 Appendix ... 24

4.1 Service and support ... 24
4.2 Links and literature .. 25
4.3 Change documentation .. 25

1 Introduction

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 4

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1 Introduction

1.1 Introduction

The integration of PC functionality into the control program is often advantageous
to the overall automation task. For example, compact automation solutions are
implemented on a single device. In addition, complex functions and solutions for
automation tasks are already available in high-level languages or are created in
high-level languages.

For this purpose, for example, high-level language programs must communicate
with the control program via defined interfaces or be integrated. A combination of
both worlds – high-level language and PLC – is achieved with the CPU 1515SP
PC2 Ready4Linux (referred to as Open Controller) and CPU 1505SP (F) (referred
to as CPU).

1.2 Overview of the automation task

The task is to integrate high-level language applications in the SIMATIC PLC.
Besides the STEP 7 blocks of the customary user program, the CPU can also
execute functions (blocks) and applications that were programmed with C/C++.

The CPU gives you to option of having C/C++ code executed synchronously during
the CPU cycle (via the CPU function library). Additionally, C/C++ applications can
be executed on the Open Controller as separate applications parallel to the CPU.

It may be necessary to exchange data between both applications, the C/C++
application, and the CPU. This data exchange may be used, for example, to trigger
responses on the other side or to provide necessary information. An initial step in
the application example shows the configuration for the CPU in the TIA Portal. The
creation of the C/C++ application with Eclipse is then shown. OPC UA is selected
here as the communication mode.

You can find additional application examples can be found in Industry Online
Support:

• Internal and external OPC-UA connection via the virtual Ethernet interface of
the Software Controller from V2.5
https://support.industry.siemens.com/cs/ww/en/view/109760541

• Setting up communication between CPU and C/C++ runtime for a
multifunctional platform using OPC UA
https://support.industry.siemens.com/cs/ww/en/view/109749176

• Establishment of Open User Communication between CPU runtime and C/C++
runtime of a multifunctional platform
https://support.industry.siemens.com/cs/ww/en/view/109756757

https://support.industry.siemens.com/cs/ww/en/view/109760541
https://support.industry.siemens.com/cs/ww/en/view/109749176
https://support.industry.siemens.com/cs/ww/en/view/109756757

1 Introduction

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 5

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1.3 Principle of operation

Principle of communication between CPU and C/C++ application via OPC UA

The following Figure shows the communication between CPU and C/C++
application on the Open Controller. This relies on the client-server principle. In the
application example the C/C++ application starts actively with the connection
request and thus responds to the client. The Open Source OPC UA-Client
(“open62541”) used in included in the C-program. The CPU provides the server
and can, in this case, respond to requests from multiple clients. The OPC UA
server is parameterized accordingly on the CPU through the TIA Portal.

Figure 1-1

Open Controller

CPU Linux OS

OPC UA

Server

C++ Application

OPC UA

ClientRead

&

Write

If a connection to the server was successfully established, values can be read and
written. This is done in the C program using the appropriate “read” and “write”
functions. Then the connection is terminated again by the client, whereby the
“session” is released to be re-used. For simple handling in the application, it is also
recommended to integrate error handling in the C program.

1 Introduction

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 6

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1.4 Components used

The Application Example has been created with the following hardware and
software components:

Table 1-1: Hardware and software components

Component Quantity Article number Note

CPU 1515SP PC2 F
(Ready4Linux)

1 6ES7677-2SB40-
0GB0

The use of a CPU
1515SP PC2
(Ready4Linux)
(6ES7677-2DB40-0GB0)
is also possible

CPU 1505SP F 1 6ES7672-5SC11-
0YA0

The use of a CPU
1505SP (6ES7672-
5DC11-0YA0) is also
possible

STEP7 Prof V16 6ES7822-1A.06-..

Enables the
programming for the
CPU

This application example consists of the following components:

Table 1-2: Documents and projects included

File name Note

109779253_CPU1515SP_Ready4LinuxOpcUa_CODE_V10.zip TIA Portal project
and C program

109779253_CPU1515SP_Ready4LinuxOpcUa_DOC_V10_en.pdf This document

2 Engineering

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 7

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2 Engineering

2.1 Engineering of the program for the CPU

This section describes the structure of the TIA Portal project for implementation of
the application example for the CPU. More complex components will be specified
in greater detail here.

2.1.1 Functional description OB main

OB main consists of 2 networks which clarify the two central functions of reading
and writing for two variables in the application example.

Figure 2-1

“Network 1” continuously increments a counter value.

“Network 2” reads the CPU system time and saves this in an instance of a UDT
“typeRdSysT” created for this purpose.

Both variables are saved in the “Data” data block and can be read via the OPC UA
client.

2 Engineering

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 8

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.1.2 OPC UA server settings

Note The OPC UA Server is already activated in the supplied TIA Portal sample
project.

The CPU provides the OPC UA server, this is parameterized in advance via the
TIA Portal.

To do this, proceed as follows:

1. Select the CPU in “Device configuration”.

2. In the “Properties” tab, click on “OPC US” in the area navigation.

3. Under “Server > General”, activate the OPC UA server by checking the box for
“Activate OPC UA server”.

4. Under “Server > Options > General”, set the port to “4840”.

5. Under “Server > General”, set “Max session timeout” to “600000” s.

Note The parameter “Max session timeout” can also be reduced, but this will cause
the session to terminate more quickly if no request is sent via the OPC UA client.
This procedure is recommended in case resources need to be released again.

2 Engineering

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 9

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.2 Engineering of the program for the C/C++ application

The preparation and the handling of the development environment are explained in
this section. Building on this, the core elements of the C program are described.

In this application example, the following is assumed:

• Linux OS is installed on the Open Controller (e.g. Debian 9)

• Virtual interface is set up in Linux OS (e.g. IP: 192.168.73.73)

• Eclipse IDE is installed (optional)

Note You can find additional information about the Open Controller Ready4Linux
under https://support.industry.siemens.com/cs/ww/en/view/109769991

Note You can find a description of how to install Eclipse on a Linux system in this
forum post, for example:
https://support.industry.siemens.com/tf//ww/en/posts/how-to-use-iot2050-sdk-
with-eclipse/239070/?page=0&pageSize=10

Note You can also develop the C program on another system and just run your
application on the Open Controller. In this case, Eclipse does not need to be
installed on the Open Controller.

How to run an application, such as the supplied “Ready4LinuxProj”-“binary”, on
the Open Controller is described below.

2.2.1 Create a C/C++ project

Requirement

• Linux OS is installed

• Eclipse is installed

Procedure

Start Eclipse and create a new C++ project e.g. by clicking “Create a new C or C++
project”.

https://support.industry.siemens.com/cs/ww/en/view/109769991
https://support.industry.siemens.com/tf/ww/en/posts/how-to-use-iot2050-sdk-with-eclipse/239070/?page=0&amp;pageSize=10
https://support.industry.siemens.com/tf/ww/en/posts/how-to-use-iot2050-sdk-with-eclipse/239070/?page=0&amp;pageSize=10

2 Engineering

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 10

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 2-2

Select the “C++Managed Build” template and click “Next”.

Figure 2-3

Enter the project name and click “Next”.

2 Engineering

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 11

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 2-4

In the following dialogs, you can keep the default settings and use “Next” and
“Finish” buttons to create your project.

Use included sources

Import the supplied files into your C++ project, e.g. via the menu “File > Import”.

Select “File System” and click “Next”.

Figure 2-5

2 Engineering

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 12

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Select the “src” directory and click “Finish”.

Figure 2-6

The files are displayed in the Project Explorer.

Note Depending on the type of programming in the C/C++ application, the CPU
performance may be affected by jitter.

The customer is responsible for the C/C++ application and its know-how
protection.

2.2.2 Development of the C/C++ application

Sources for the C/C++ application

The following Figure presents an overview of the central components of the C/C++
application for implementing an OPC UA client. E.g. the used sources are listed
under “src”.

Figure 2-7

2 Engineering

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 13

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The following table gives you an overview of the individual source files:

Table 2-1: Components contained in “src”

File Meaning

opc_client.cpp Contains the primary elements of the C
program and is further specified in the next
section.

opc_client.h Header file for “opc_client.cpp”

open62541.c Open Source components “open62541”.

Contains the implementation of the OPC
UA client “open61541” in C.

open62541.h Open Source components “open62541”.
Header file for “open62541.c”

Basic framework of the C/C++ application

In the C program, the OPC UA client is implemented using the Open Source
components “open62541”. Methods which are required accordingly, such as
access to certain nodes, reading, writing, enabling and disabling connections, are
made available in this way.

You can find the basic program flow under “opc_client.cpp”. Refer to the following
table for the meaning of the various methods:

Table 2-2: Central methods of the program execution

Method Meaning

main() Forms the starting point of the C program. The start()
method is called from here.

start() The method checks the status of the OPC UA client
instantiated and brings up the command prompt for the
user. Then the run() method is called.

main_menu()

run_Menu()

Both methods serve to display the command prompt to the
user. All available options in the application example are
shown here.

run() The run() method is run in the form of a loop until the end
of the program. The input entered previously by the user is
processed at this point and further methods are invoked as
appropriate.

read_continuous_counter() This method reads the “counter” variable. The string
“Data”.counter is used here as OPC UA Node.

reset_continuous_counter() The method resets the “counter” variable to 0. The string
from the “data.counter” variable is used as the OPC UA
node here.

write_continuous_counter() The method sets the “counter” variable to a value entered
by the user. The string from the “data.counter” variable is
used as the OPC UA node here.

read_tod() The method reads the system time. The constant is used
here as the OPC UA node:
UA_NS0ID_SERVER_SERVERSTATUS_CURRENTTIME.

2 Engineering

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 14

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3 Integration into the user project

This section explains how to download the respective program components to the
CPU.

The following IP addresses are used in the application example:

• CPU:

• PROFINET: 192.168.1.130

• virtual interface
“Runtime communication interface”: 192.168.73.1

• Linux OS:

• virtual interface
“Siemens AG Ethernet”: e.g. 192.168.73.73

2.3.1 Loading the TIA Portal project into the target system

Deploy the TIA Portal project onto the CPU using the specified IP address via the
PROFINET interface.

2.3.2 C/C++ Application

Note The following describes how to run the supplied “Ready4LinuxProj”-“binary” on
the Open Controller. In this case, it is not necessary to create the application with
Eclipse.

Creating a C/C++ application

Requirement

• Eclipse is open

Procedure

For example, you can create your application by clicking on “Build ‘Debug’ for
project ……”

Figure 2-8

3 Operation

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 15

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3 Operation
To use the application example, we will start with the TIA Portal. Then the C/C++
application will be executed and all functions tested.

3.1 Execute TIA Portal project

Requirement

• TIA Portal project was loaded onto the CPU.

Procedure

You can monitor the variables in the TIA Portal: Proceed as follows:

1. Go online on the CPU by selecting the CPU and clicking “GoOnline”.

2. Navigate to the “data” data block and click “Monitor all”. Alternatively, you can
also perform the observation using the Observation Table.

3. Observe how the “counter” variable is constantly incremented.

4. Observe how the “sysTime” variable is updated with each cycle.

Figure 3-1

3.2 Executing the C/C++ application

Start the C/C++ application in Eclipse e.g. by clicking “Launch in ‘Run’ mode”.

Figure 3-2

3 Operation

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 16

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The C/C++ runtime application starts, reports the status of the OPC UA client, and
gives options for subsequent program continuation. Then it waits for user input.

Figure 3-3

3.3 OPC UA client and connection to OPC UA server

Requirement

• The C/C++ application has been executed

Procedure

1. After executing the C/C++ application enter “0” in the console.

Figure 3-4

3 Operation

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 17

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2. Observe how a submenu for subsequent program continuation opens up.

Figure 3-5

Result

The OPC UA client connects with the OPC UA server. The submenu remains open

Note After executing the command to connect the OPC UA client and OPC UA server,
the execution sequence for subsequent commands is irrelevant. The same
command may also be executed several times in turn.

3.4 Reading the system time

Requirement

• The C/C++ application has been executed

• The OPC UA client status is “ready”

• The OPC UA client is connected

Procedure

1. Enter “5” at the console, which issues the command to read the system time.

2. View the system time via the console “Date and Time are”

3. View the system time at the TIA Portal in the “data” component under the
variable “sysTime” in parallel to the previous step.

4. Observe how the submenu is redisplayed and further user input is awaited.

3 Operation

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 18

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-6

Note Since only a snapshot of the system time is displayed via the console, this only
shows an identical value to the “sysTime” variable at the TIA Portal for a brief
period.

Result

A snapshot of the system time is displayed.

3.5 Reading the counter value

Requirement

• The C/C++ application has been executed

• The status of the OPC UA client is “ready”

• The OPC UA client is connected

Procedure

1. Enter “6” in the console, which issues the command to read the counter value.

2. View the counter value via the console “ContinuousCount”.

3. View the counter value in the TIA Portal in the “data” block under the variable
“counter” in parallel to the previous step.

4. Observe how the submenu is redisplayed and further user input is awaited.

3 Operation

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 19

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-7

Result

A snapshot of the counter value is displayed.

3.6 Resetting the counter value

Requirement

• The C/C++ application has been executed

• The status of the OPC UA client is “ready”

• The OPC UA client is connected

Procedure

1. Enter “7” in the console, which issues the command to reset the counter value.

2. View the reset counter value via the console “ContinuousCount”.

3. View the counter value in the TIA Portal in the “data” block under the variable
“counter” in parallel to the previous step.

4. Observe how the submenu is redisplayed and further user input is awaited.

3 Operation

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 20

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-8

Result

A snapshot of the reset counter value is displayed.

3.7 Writing the counter value

Requirement

• The C/C++ application has been executed

• The OPC UA client status is “ready”

• The OPC UA client is connected

Procedure

1. Enter “8” in the console, which issues the command to write the counter value.

2. Enter any integer counter value, in the example this is “44”, and confirm by
selecting “Enter”.

3 Operation

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 21

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-9

3. View the reset counter value via the console “New ContinuousCount” in
comparison to the old counter value of “Previous ContinuousCount”.

4. View the written counter value in the TIA Portal in the “data” block under the
variable “counter” in parallel to the previous step.

5. Observe how the submenu is redisplayed and further user input is awaited.

Figure 3-10

Result

A snapshot is displayed of the entered, old and written counter values.

3 Operation

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 22

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.8 Closing the OPC UA Client

Requirement

• The C/C++ application has been executed

• The OPC UA client status is “ready”

Procedure

1. Enter “x” in the console, which issues the command to end the OPC UA client.

2. Observe how the connection to the OPC UA server and the C/C++ application
is terminated.

Figure 3-11

Result

The C/C++ application has been ended.

3 Operation

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 23

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.9 Use “Ready4LinuxProj”-“binary”

You can run the supplied “binary” without Eclipse on the Open Controller. E.g. drag
& drop the file “Ready4LinuxProj” into the terminal window and confirm with
“Enter”.

Figure 3-12

The operation and calling of the functions are as described above.

4 Appendix

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 24

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4 Appendix

4.1 Service and support

Industry Online Support

Do you have any questions or need assistance?

Siemens Industry Online Support offers round the clock access to our entire
service and support know-how and portfolio.

The Industry Online Support is the central address for information about our
products, solutions and services.

Product information, manuals, downloads, FAQs, application examples and videos
– all information is accessible with just a few mouse clicks:

support.industry.siemens.com

Technical Support

The Technical Support of Siemens Industry provides you fast and competent
support regarding all technical queries with numerous tailor-made offers
– ranging from basic support to individual support contracts.

Please send queries to Technical Support via Web form:

support.industry.siemens.com/cs/my/src

SITRAIN – Digital Industry Academy

We support you with our globally available training courses for industry with
practical experience, innovative learning methods and a concept that’s tailored to
the customer’s specific needs.

For more information on our offered trainings and courses, as well as their
locations and dates, refer to our web page:

siemens.com/sitrain

Service offer

Our range of services includes the following:

• Plant data services

• Spare parts services

• Repair services

• On-site and maintenance services

• Retrofitting and modernization services

• Service programs and contracts

You can find detailed information on our range of services in the service catalog
web page:

support.industry.siemens.com/cs/sc

Industry Online Support app

You will receive optimum support wherever you are with the "Siemens Industry
Online Support" app. The app is available for iOS and Android:

support.industry.siemens.com/cs/ww/en/sc/2067

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/my/src
https://www.siemens.com/sitrain
https://support.industry.siemens.com/cs/sc
support.industry.siemens.com/cs/ww/en/sc/2067

4 Appendix

Open Controller, Ready4Linux
Article ID: 109779253, V1.0, 10/2020 25

©
 S

ie
m

e
n

s
 A

G
 2

0
2

0
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.2 Links and literature

Table 4-1

No. Subject

\1\ Siemens Industry Online Support

https://support.industry.siemens.com

\2\ Link to the article page of the application example

https://support.industry.siemens.com/cs/ww/en/view/109779253

\3\

4.3 Change documentation

Table 4-2

Version Date Change

V1.0 10/2020 First edition

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/109779253

	Open Controller Ready4Linux,
	Legal information
	1 Introduction
	1.1 Introduction
	1.2 Overview of the automation task
	1.3 Principle of operation
	1.4 Components used

	2 Engineering
	2.1 Engineering of the program for the CPU
	2.1.1 Functional description OB main
	2.1.2 OPC UA server settings

	2.2 Engineering of the program for the C/C++ application
	2.2.1 Create a C/C++ project
	2.2.2 Development of the C/C++ application

	2.3 Integration into the user project
	2.3.1 Loading the TIA Portal project into the target system
	2.3.2 C/C++ Application

	3 Operation
	3.1 Execute TIA Portal project
	3.2 Executing the C/C++ application
	3.3 OPC UA client and connection to OPC UA server
	3.4 Reading the system time
	3.5 Reading the counter value
	3.6 Resetting the counter value
	3.7 Writing the counter value
	3.8 Closing the OPC UA Client
	3.9 Use “Ready4LinuxProj”-“binary”

	4 Appendix
	4.1 Service and support
	4.2 Links and literature
	4.3 Change documentation

