

Programming

Guideline Safety for

SIMATIC S7-1200/1500

SIMATIC Safety Integrated

https://support.industry.siemens.com/cs/ww/en/view/109750255

Siemens

Industry

Online

Support

https://support.industry.siemens.com/cs/ww/en/view/109750255

Legal information

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 2

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Legal information
Use of application examples

Application examples illustrate the solution of automation tasks through an interaction of several
components in the form of text, graphics and/or software modules. The application examples are
a free service by Siemens AG and/or a subsidiary of Siemens AG ("Siemens"). They are
non-binding and make no claim to completeness or functionality regarding configuration and
equipment. The application examples merely offer help with typical tasks; they do not constitute
customer-specific solutions. You yourself are responsible for the proper and safe operation of the
products in accordance with applicable regulations and must also check the function of the
respective application example and customize it for your system.
Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the
application examples used by technically trained personnel. Any change to the application
examples is your responsibility. Sharing the application examples with third parties or copying the
application examples or excerpts thereof is permitted only in combination with your own products.
The application examples are not required to undergo the customary tests and quality inspections
of a chargeable product; they may have functional and performance defects as well as errors. It is
your responsibility to use them in such a manner that any malfunctions that may occur do not
result in property damage or injury to persons.

Disclaimer of liability
Siemens shall not assume any liability, for any legal reason whatsoever, including, without
limitation, liability for the usability, availability, completeness and freedom from defects of the
application examples as well as for related information, configuration and performance data and
any damage caused thereby. This shall not apply in cases of mandatory liability, for example
under the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of
life, bodily injury or damage to health, non-compliance with a guarantee, fraudulent
non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for
damages arising from a breach of material contractual obligations shall however be limited to the
foreseeable damage typical of the type of agreement, unless liability arises from intent or gross
negligence or is based on loss of life, bodily injury or damage to health. The foregoing provisions
do not imply any change in the burden of proof to your detriment. You shall indemnify Siemens
against existing or future claims of third parties in this connection except where Siemens is
mandatorily liable.
By using the application examples you acknowledge that Siemens cannot be held liable for any
damage beyond the liability provisions described.

Other information
Siemens reserves the right to make changes to the application examples at any time without
notice. In case of discrepancies between the suggestions in the application examples and other
Siemens publications such as catalogs, the content of the other documentation shall have
precedence.
The Siemens terms of use (https://support.industry.siemens.com) shall also apply.

Security information
Siemens provides products and solutions with Industrial Security functions that support the secure
operation of plants, systems, machines and networks.
In order to protect plants, systems, machines and networks against cyber threats, it is necessary
to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept.
Siemens’ products and solutions constitute one element of such a concept.
Customers are responsible for preventing unauthorized access to their plants, systems, machines
and networks. Such systems, machines and components should only be connected to an
enterprise network or the Internet if and to the extent such a connection is necessary and only
when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.
For additional information on industrial security measures that may be implemented, please visit
https://www.siemens.com/industrialsecurity
Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they are available
and that the latest product versions are used. Use of product versions that are no longer
supported, and failure to apply the latest updates may increase customer’s exposure to cyber
threats.
To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed
at: https://www.siemens.com/industrialsecurity.

https://support.industry.siemens.com/
https://www.siemens.com/industrialsecurity
https://www.siemens.com/industrialsecurity

Table of contents

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 3

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of contents
Legal information ... 2

1 Introduction .. 4

Warning notice system ... 5

2 Configuring Fail-Safe Controllers .. 6

2.1 Selecting the suitable F-CPU ... 6
2.2 F-change history ... 8

Advantages .. 8
2.3 Consistently uploading F-CPUs ... 8
2.4 Know-how protection .. 9

3 Methods for Safety Programming .. 10

3.1 Program structures ... 10
Recommendation ... 10

3.1.1 Defining the program structure ... 10
3.1.2 Call levels of F-FBs/F-FCs ... 12
3.1.3 Call sequence of the blocks in the Main Safety 12
3.1.4 F-compliant PLC data types ... 13
3.1.5 Block information and comments ... 14
3.2 Functional identifiers of tags .. 15
3.3 Standardizing blocks .. 16
3.4 Programming logic operations ... 17
3.5 Programming operating mode-dependent safety functions 17
3.6 Connection of global data... 18
3.7 Data exchange between standard user program and safety

program .. 19
3.7.1 Data exchange with the help of F-UDTs .. 19
3.7.2 Reading tags from the standard user program which can

change during the runtime of an F-runtime group 22
3.7.3 Reading diagnostic and message information from the safety

program .. 22
3.7.4 Transferring operational information to the safety program 23
3.7.5 Using non-safe inputs in the safety program...................................... 24
3.7.6 Transferring HMI signals to the safety program 25
3.8 Resetting operational switching ... 27
3.9 Reintegrating fail-safe I/O modules/channels 28
3.9.1 Evaluating passivated modules/channels .. 28
3.9.2 Automatic re-integration ... 30
3.9.3 Manual reintegration ... 31

4 Optimizing Safety Programs .. 32

4.1 Optimizing the compilation duration and runtime 32
4.1.1 Jumps in the safety program .. 33
4.1.2 Timer blocks ... 35
4.1.3 Multi-instances ... 35
4.2 Avoiding data corruption... 37

5 Glossary ... 39

6 Appendix .. 41

6.1 Service and support ... 41
6.2 Industry Mall ... 42
6.3 Links and literature ... 42
6.4 Change documentation .. 42

1 Introduction

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 4

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1 Introduction

The controller generation SIMATIC S7-1200 and S7-1500 has a modern system
architecture and, together with the TIA Portal, offers efficient possibilities for
programming and configuration options.

If the programming is sloppy, the many options provided by STEP 7 can also
produce negative results:

• CPU stop

• Long compilation process

• Additional, comprehensive acceptance testing

This document provides you with many recommendations and notes for the optimal
configuration and programming of S7-1200/1500 controllers. This helps you create
standardized and optimal programming of your automation solutions.

The examples described can be universally used on the S7-1200 and S7-1500
controllers.

Advantages

Following the recommendations given here provides you with many advantages:

• Reusability of program components

• Easier acceptance (code review, error detection and correction)

• Increased flexibility in case of program changes

• Reduction of programming errors

• Increased plant availability by avoiding CPU stops

• Easier readability for third parties

• Reduced runtime of the safety program

Note Not all the recommendations provided in this document can be applied at the
same time. In these cases, it is up to you as the user to decide on the
prioritization of the recommendations (e.g., standardization or runtime
optimization of the safety program).

1 Introduction

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 5

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Programming guideline and styleguide

The same recommendations given in the programming guideline and the
programming style guide always apply to programming safety programs.

Programming Guideline for SIMATIC S7-1200/1500:

https://support.industry.siemens.com/cs/ww/en/view/90885040

Programming Style Guide for SIMATIC S7-1200/1500:

https://support.industry.siemens.com/cs/ww/en/view/109478084

Guideline on Library Handling in TIA Portal:

https://support.industry.siemens.com/cs/ww/en/view/109747503

This document is a supplement to the documents above and deals with special
aspects of programming safety programs with STEP 7.

Note Independent of this document, the statements in the manual "SIMATIC Safety -
Configuring and Programming" must be observed – especially warnings
contained therein must be strictly observed. Non-compliance means that death
or serious injury may occur if proper precautions are not taken.

Warning notice system

This document contains notices you have to observe in order to ensure your
personal safety, as well as to prevent damage to property. Notices relating to your
personal safety are highlighted by a warning triangle; notices relating to material
damage only do not have a warning triangle. Depending on the hazard level, the
warnings are displayed in descending order as follows.

DANGER

Indicates that death or severe personal injury will result if proper precautions are
not taken.

WARNING

Indicates that death or severe personal injury may result if proper precautions
are not taken.

CAUTION

Indicates that minor personal injury may result if proper precautions are not
taken.

NOTICE Indicates that material damage may result if proper precautions are not taken.

If more than one level of danger exists, the warning notice for the highest level of
danger is used. A notice warning of injury to persons with a safety alert symbol
may also include a warning relating to property damage.

https://support.industry.siemens.com/cs/ww/en/view/90885040
https://support.industry.siemens.com/cs/ww/en/view/109478084
https://support.industry.siemens.com/cs/ww/en/view/109747503

2 Configuring Fail-Safe Controllers

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 6

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2 Configuring Fail-Safe Controllers

2.1 Selecting the suitable F-CPU

Selecting the F-CPU depends on the following factors:

• Runtime of the safety program

• PROFIsafe communication time

• Response time of the safety function

• Number of required inputs and outputs

• Number of connected I/O devices

• Memory requirements of the program

Estimate of the response time

If you already have a rough idea of the automation system you want to use, you
can estimate the response time of your safety program using the SIMATIC STEP 7
Reaction Time Table or go through various scenarios to select the suitable F-CPU:

https://support.industry.siemens.com/cs/ww/en/view/93839056

Figure 2-1: Reaction time wizard of the SIMATIC STEP 7 Reaction Time Table

Influence of the safety program's cycle time on the standard user program

A long cycle time of the safety program slows down the response time of your
safety functions but allows more time for processing the standard user program.

A short cycle time of the safety program increases the response time of your safety
functions but allows less time for processing the standard user program.

https://support.industry.siemens.com/cs/ww/en/view/93839056

2 Configuring Fail-Safe Controllers

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 7

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The following figure shows the influence of the cycle time of the safety program of
the event class cyclic interrupt on the time that is available for processing the
standard user program.

Figure 2-2 Influence of the safety program's cycle time on the standard user program

10 20 30 40 50 60

Update of Outputs

Case 1:

F-Cycle Time

10ms

10 20 30 40 50 60

Update of Outputs

Case 1:

F-Cycle Time

20ms

10 20 30 40 50 60

Update of Outputs

Case 1:

F-Cycle Time

30ms

Duration of standard user program: 30ms

Priority: ≤11

Duration of safety program: 5ms

Priority: 12

Note Please note that higher-priority organization blocks (e.g., cyclic interrupt OBs or
motion control OBs) can interrupt the safety program in the same way as shown
in Figure 2-2.

To make sure that the safety program cannot be interrupted, you can customize
the priorities in the properties of the appropriate OBs.

Note The cycle time must be longer than the execution duration of the safety program
as otherwise the CPU would change to the STOP state.

Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – 5.2

2 Configuring Fail-Safe Controllers

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 8

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.2 F-change history

F-change history acts like the standard user program's change history. In the
project tree, "Common data > Logs", one F-change history is created for each
F-CPU.

Recommendation

Activate change history when you start configuring or at the latest when you have
defined the final project-specific CPU name as the change history is linked to the
CPU name.

Advantages

• Ensures that the last change was loaded by comparing the online and offline
status of the CRC.

• Which user changed or downloaded the safety program can be tracked in
multi-user projects.

• Matching of online and offline status without an online connection between
CPU and PG/PC.

NOTICE F-change history must not be used to detect changes in the safety program or
when accepting changes in the F-I/O configuration.

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 11

2.3 Consistently uploading F-CPUs

TIA Portal V14 SP1 and higher allows you to consistently upload fail-safe SIMATIC
S7-1500 CPUs from the automation system to TIA Portal.

Recommendation

An upload from the automation system is only possible if the project has been
released for it.

When you start configuring, check the "Consistent upload" check box in Safety
Administration in TIA Portal.

Advantages

A programmer on the system can load the respective program onto his PG and
thus reduce the service effort.

Note The activation of the option for the consistent upload from the F-CPU extends
the time for loading the safety-related project data. Additionally,
more load memory is needed on the F-CPU.

2 Configuring Fail-Safe Controllers

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 9

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.4 Know-how protection

STEP 7 Safety V14 or higher allows you to activate know-how protection for fail-
safe blocks (FCs and FBs).

Know-how protection protects specific program parts against access by
unauthorized persons, regardless of the F-CPU's and the safety program's access
protection. The contents of an FC or FB cannot be viewed or modified without a
password.

Recommendation

During the project phase, determine to what extent it makes sense to protect the
blocks of a safety program against third-party access.

Advantages

• Protects your know-how across contents of program parts.

• Accepted blocks cannot be modified.

Additional information

The following documentation provides instructions for using know-how protection
for different scenarios:

https://support.industry.siemens.com/cs/ww/en/view/109742314

https://support.industry.siemens.com/cs/ww/en/view/109742314

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 10

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3 Methods for Safety Programming

3.1 Program structures

Recommendation

When creating a program, make sure that your program is designed to be
reusable. Rules and recommendations for programming can be found in the
document Programming Style Guide for SIMATIC S7-1200/S7-1500
https://support.industry.siemens.com/cs/ww/en/view/109478084.

3.1.1 Defining the program structure

Recommendation

• Divide the program code into modules, e.g.

– into sub-areas for sensing, evaluating, reacting or

– by safety functions or

– by plant units

• Create a specification for each module in advance (based on the requirements
of the risk assessment).

• Avoid complex signal paths.

Advantages

• Complexity is minimized.

• Programming errors are reduced.

• Allows the program code to be analyzed/tested without running the program
(e.g., code review or PLCSIM).

• Easier expandability and simplification of repeated acceptance.

• Reusability of program sections without repeated acceptance.

• Finished program parts can be tested and accepted in advance.

Example

The following figure shows a safety application that is divided into three machine
areas (safety zones).

As some of the sensor signals are interconnected across areas (e.g., emergency
stop functions that act globally), they are grouped into a "Sensors" FB (they could
also be split up into physical or logical areas). The respective sensors are
evaluated using standardized function blocks (e.g., "GuardDoor").

The Mobile Panels' blocks are also called here.

Separate logic and actuator FBs are created for each machine area. The
respective actuators are controlled using standardized function blocks (e.g.,
"ContactorControl").

https://support.industry.siemens.com/cs/ww/en/view/109478084

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 11

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-1: Example of a program structure

Note The structure shown here is an example. Depending on the size and complexity
of the safety program, you can also choose a different structure. In smaller
applications, it would, for example, also be possible to implement the logic and
actuator control in a shared function block.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 12

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.2 Call levels of F-FBs/F-FCs

For safety programs, you can use a maximum of eight call levels. A warning
appears when this limit is exceeded and an error message is displayed for pure FC
and multi-instance call chains.

Note On the system side, functions are mapped as FBs with a multi-instance call in
the protection program; this is the reason why an error message is also
displayed for FC call chains with more than eight call levels.

The program structure in Figure 3-1 shows one way of keeping the call levels
relatively flat so that the safety program remains within the limits specified here.

3.1.3 Call sequence of the blocks in the Main Safety

Recommendation

Within the Main Safety, call blocks in the following sequence:

1. Receive blocks from other CPUs (F-CPU-F-CPU communication)

2. Error acknowledgment/reintegration of F-modules/F-channels

3. Evaluation block of the sensors

4. Operating mode evaluation

5. Logic operations, calculations, evaluations, etc.

6. Control blocks for safe actuators

7. Send blocks to other CPUs (F-CPU-F-CPU communication)

Advantages

• The CPU always uses the latest values

• Facilitates orientation in the Main Safety

Note Additionally, with pre-processing/post-processing, you have the option of calling
standard blocks (FCs) directly before or after an F-runtime group, e.g. for data
transfer during fail-safe communication using Flexible F-Link.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 13

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.4 F-compliant PLC data types

For safety programs, too, it is possible to optimally structure data using PLC data
types.

Recommendation

• Create F-compliant PLC data types to also structure data in the safety
program.

• Use F-compliant PLC data types to transfer large numbers of tags to blocks.

• Make use of the possibility to nest F-compliant PLC data types.

Advantages

• A change in a PLC data type is automatically updated in all points of use in the
user program.

• Greater transparency by structuring of the data.

Note Try to design the F-compliant PLC data types as modular as possible to achieve
reusability of the data types as well as of the blocks.

Please also observe the information iin the manual SIMATIC Safety - Configuring
and Programming – chapter 5.1.5

Example

The example below shows the use of two F-compliant PLC data types. The F-UDT
"typeMachine" (Figure 2-1) contains machine-related data. The data is structured
by the use of the other F-UDTs "typeInterface", "typeParameter" as well as
"typeDiag" and nesting. Figure 3-3 shows how to access the respective data.

Figure 3-2 Nested F-compliant PLC data type

Figure 3-3 Use of nested F-UDTs

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 14

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.5 Block information and comments

General

In SIMATIC Safety, the Function Block Diagram (FBD) and Ladder Diagram (LAD)
programming languages are available to you. Both languages provide the option to
store block and network comments.

Comments have no influence on the signature of F-FBs/F-FCs and can therefore
also be edited after acceptance.

Recommendation

In the block comment of your block, enter formal information about the block with
the aid of the following template.

If you implement diagnostic functions relevant to the PL / SILCL of another
subsystem (Detect or Evaluate) in an F-FB, also enter normative parameters such
as PL / SILCL and category (according to ISO 13849-1), DC measures, CCF
measures, etc. in the block comment.

After successful acceptance of the block, also enter the signature in the block
comment. This makes it easier to track functional changes of the block.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 15

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2 Functional identifiers of tags

Safety often uses the terms 'shutdown' or 'shutdown signals'. In practice, a safety
function is described using this terminology:

"When a safety door is opened, drive XY must be safely shut down."

However, release signals are generally programmed in the technical
implementation as a safety program. This is due to the fact that safety
interconnections are designed based on the closed-circuit principle.

If, for example, a safety door is closed, it gives the enable to switch on a safe
actuator.

Recommendation

Before the start of the project, define a uniform identifier for the tags with the
appropriate suffixes. The identifier reflects the meaning and purpose of the tags in
the source code context.

Choose the tag identifier such that it reflects the logic "1" state ("true").

For example, "maintDoorEnable" or "conveyorSafetyRelease".

Note Please note that the standardized names of the drive functions (e.g., STO and
SLS) according to IEC 61800-5-2 do not comply with the above
recommendation.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 16

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3 Standardizing blocks

Aside from the actual evaluation of a sensor / control of an actuator, the same
conditioning of input and output parameters is often necessary (e.g., edge
evaluation, time functions, acknowledgment, etc.).

To this end, it is useful to create and reuse modular blocks.

Siemens Industry Online Support provides block libraries you can use in your
project, for example "LDrvSafe":

https://support.industry.siemens.com/cs/ww/en/view/109485794

Recommendation

Create modular blocks you can reuse:

• Blocks for typical fail-safe sensors

• Blocks for typical fail-safe actuators

• Blocks for frequently used functions (e.g., reintegration, operating mode)

Advantages

• Reused blocks only have to be accepted once

• Faster programming of further functions and projects

• Versioning with the TIA Portal library concept possible

• Standardization of formal parameters across projects and programmers,
resulting in easy readability and testability

Note The following block programming shows examples. The actual function depends
on the application's risk assessment or the project requirements.

https://support.industry.siemens.com/cs/ww/en/view/109485794

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 17

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.4 Programming logic operations

Task of the blocks

• Generate release signals to control the safety-related actuators based on the
relevant safety functions

• Link the sensor enables, operating mode enables, etc. to the control signals of
the actuators

Recommendation

• Use mainly ADD and OR logic elements

• Avoid jumps to binary logic

3.5 Programming operating mode-dependent safety
functions

Recommendation

Divide the logic into different levels:

• Level 1: All safety functions that are independent of modes and plant statuses.

– Logic ANDing of all safety functions that are always active.

– These are typically emergency stop facilities.

• Level 2: All safety functions that are dependent on operating modes.

– Logic ORing of safety functions that are only active in certain modes.

– For example, safety doors in automatic mode, alternating with enabling
buttons in service mode.

Example

Three safety functions are implemented on a machine: The "estop" emergency
stop function is active in each mode. The "guardDoor" safety door monitoring and
the "enablingSwitch" enabling function are only active in one mode.

Figure 3-4: Programming modes

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 18

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6 Connection of global data

Recommendation

• Connect global data (inputs, outputs, data blocks) in the highest level of the
block hierarchy (Main Safety).

• Use the block interfaces to pass signals to lower levels.

Advantages

• Modular block concept

• Reuse of program parts in other projects without modifications

• Programming errors are reduced.

• The overall program is easier to read because the general function of a block
can already be deduced based on the interfaces.

Figure 3-5: Connection of global data

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 19

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.7 Data exchange between standard user program and
safety program

The safety program's task is to execute all the functions that represent a risk-
reducing action. All other operational functions and functions for operation and
maintenance are part of the standard user program.

As in practice, information for the diagnostic and signaling concept is also
generated in the safety program and operational information is also relevant to the
safety program, it is not possible to completely separate both program parts.

In order to move non-safety-related functions to the standard user program, a
clearly defined interface is recommended. Global data blocks are best suited for
this purpose.

3.7.1 Data exchange with the help of F-UDTs

Recommendation

• Use global standard data blocks to exchange data between the standard user
program and the safety program.

• To ensure a good overview of which program part reads and which one writes,
it is recommended to create two data blocks for the two directions.

• For better handling, the use of F-compliant PLC data types (F-UDT) is
recommended (see chapter 3.1.4). Create an F-UDT for each direction and
instantiate them as global data blocks (see Figure 3-6 and Figure 3-8).
Through the use of F-UDTs, changing the interface between the standard and
safety program is reserved for users with the Safety password. Changes to the
interface by the standard user is therefore not possible. Unintentional changes
which would necessitate loading of the standard user program via the system
state STOP can be prevented by this.

• The compiler carries out separate coding whenever the safety program
accesses standard tags. This also applies if there are multiple accesses to the
same standard tag. For performance reasons it may therefore make sense to
copy the standard data at the beginning of the safety user program once to a
fail-safe data area and then to access this copied data (see Figure 3-7).

• Use separate data blocks if there are several runtime groups.

Advantages

• Lean F-runtime group

• Better overview of the exchanged data

• Changes of the diagnostic and signaling concept in the standard user
program do not affect the signature of the safety program

• Simplified typification of F-blocks

• Changes to the standard user program can be loaded without stopping the
CPU

• Standard user program and safety program can be created independently
of each other and changed if interfaces have already been defined

• Protection of the interface

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 20

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Restrictions

• The use of F-UDTs for data exchange between standard and safety program
with arrays is not supported.

Figure 3-6: Data exchange between standard user program and safety program

Figure 3-7 Data exchange with intermediate buffer "DataFromStandard"

Main

Standard

F

MainSafety

InstMainSafety

Safety rogramStandard ser Program

 ataToSafety

 ataFromSafety

 ata buffer

ty e ataToSafety

F T

ty e ataFromSafety

F T

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 21

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note Interoperation of programmers with and without authorization for the
safety program

Changes in standard blocks that are read- or write-accessed by the safety
program cause the F-program to lose its consistency. An additional compile of
the safety program is needed and the next download to the CPU is only possible
via system state STOP.

If such standard blocks are changed, you will be requested to enter the
F-password as of TIA Portal V16.

With the help of F-compliant PLC data types (F-UDTs) you can protect the
interface against changes without a Safety password.

Figure 3-8 Creating a global data block as an instance of an F-compliant PLC data type

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 22

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.7.2 Reading tags from the standard user program which can change
during the runtime of an F-runtime group

If you want to read tags from the standard user program in the safety program, and
these tags can be changed by the standard user program during runtime of the F-
runtime group in which they are read, for example, because your standard user
program is being processed by a higher-priority cyclic interrupt, you must use own
tags of a standard DB for this purpose.

Recommendation

Use a standard DC for preprocessing in the F-runtime group to copy the data from
the standard user program to a data area accessed by the safety program.

Advantages

• Data consistency is retained.

• Prevention of data corruption in the safety program and the CPU stop it causes

Figure 3-9 Reading standard data which can change during runtime of the safety program

3.7.3 Reading diagnostic and message information from the safety program

A frequent application for data exchange between the standard user program and
the safety program is the visualization of diagnostic and message information such
as:

• Acknowledgment requests of errors

• Reset requests of safety functions

• Error messages

• States of safety functions

Transfer the "raw data" from the safety program. The logic operation then takes
place in the standard user program. This has the advantage that the safety
program is kept lean and is independent of changes in the standard user program.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 23

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Small changes at a later stage (e.g., changes to the control of an indicator light) are
made in the standard user program. This does not change accepted F-blocks.

If you transfer a large amount of diagnostic data from the safety program, create an
F-data type for this purpose. A tag with a self-defined data type keeps the block
interface compact and clear. For data always to be transferred in a similar way, it is
recommended to standardize these F-compliant PLC data types across all F-
function blocks.

Figure 3-10: Reading diagnostic and message information from the safety program

Status DataFromSafety Sensors

Standard user program Safety program

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 8.1

3.7.4 Transferring operational information to the safety program

In many applications, it is essential that specific non-safety-related results of logic
operations are transferred from the standard user program to the safety program.
These are typically operational switch-on conditions (e.g., operational and fail-safe
switching of a motor starter) or machine states for mode preselection.

Prepare the data in the standard user program to the greatest possible extent. The
more non-safety-related logic is implemented in the standard user program, the
easier it is to implement changes to the logic relevant to the process.

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 8.2

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 24

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.7.5 Using non-safe inputs in the safety program

Recommendation

Standard inputs that are required directly in the safety program must be read
directly in the safety program. A "detour" via the standard user program should be
avoided.

The background to this is that non-safety-related signals are also included in the
application's systematic integrity. Typical examples are the acknowledgment/reset
button and operating mode selector switch. Which button switch is allowed to reset
which safety function is a direct result of the risk assessment. A change of the
command devices must therefore influence the signature and must be made only
accompanied by a reassessment and an acceptance test for changes.
Furthermore, this is the only way to detect possible data corruption in the standard
signal.

Recommendation

Under certain conditions, contrary to the previous recommendation, it may make
sense to read standard inputs required in the safety program in the standard
program and transfer them to the safety program via a standard data block (as
described in chapter. 3.7.1). The aim is to achieve a higher level of independence
between hardware and software. This is required in particular for standard
machines and modular machine concepts.

Advantage

• Better modularization and reusability

• Decoupling of hardware and software

WARNING

In general, because all tags from the standard program are not protected,
only fail-safe data or fail-safe signals of F-I/O and of other safety programs
(in other F-CPUs) are permitted to be processed in the safety program.

Due to the decoupling of hardware and software, interconnection errors
cannot be detected by changes to the signature.

In addition, the information in the respective manuals applies.

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 8.2

NOTICE The assessment of the specific signals that influence an application's systematic
integrity and, depending on this, are evaluated in the standard user program or in
the safety program depends on the risk assessment of an application.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 25

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.7.6 Transferring HMI signals to the safety program

Human-machine interfaces (HMIs) are convenient, essential components in a
machine operator's daily work. In order to make use of this convenience for
operator control and monitoring of processes and plants even in safety-related
applications, additional measures are required.

Writing tags from the HMI to the safety program is a problem for the following
reasons:

• Signals from the HMI panel are not safety-related and not monitored. An error
can result in forbidden changes of safety-related values, which increases the
risk.

• Communication between the HMI and the CPU is acyclic. As a result, the
HMI's write access may take place while processing the safety program.
The first program run then still uses the original value. The encoded user
program uses the value that has been updated in the meantime. This causes
data corruption in the safety program and therefore a stop of the CPU (see
chapter 5).

Recommendation

Use another data block for communication with the HMI and copy the safety-
related data in the standard user program to the data buffer.

Figure 3-11: Data exchange between HMI and safety program

Create a data type for the data from the HMI to the safety program. Use this data
type in the HMI tags, in the data buffer for the safety program and in the standard
user program where the data is copied.
To add more tags to be written from the HMI to the safety program, merely modify
this data type.

Main

Standard

F

MainSafety

InstMainSafety

Safety rogramStandard ser Program

 ataToSafety

 ataFromSafety

 ata buffer

ty e ataToSafety

F T

ty e ataFromSafety

F T

 ata MI

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 26

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-12: Copying data from the HMI to the safety program in the standard user program

Safe signal transmission

Communication between the HMI and the CPU is not safe. Transferring safety-
related data requires measures that ensure the safe transfer.

This application example shows a suitable safety concept:

https://support.industry.siemens.com/cs/ww/en/view/109780314

Resetting safety functions

For resetting safety functions or acknowledging errors using an HMI, TIA Portal
provides the "ACK_OP" system block.

An acknowledgment consists of two steps:

1. Change of IN input/output to the value "6" for exactly one cycle.

2. Change of IN input/output to the value at the ACK_ID input within one minute
for exactly one cycle.

This system block is an exception to the recommended data exchange.

In each cycle, the system block resets the "IN" InOut parameter to "0". If the data
from the HMI is copied in the standard user program, "0" is overwritten with the
value from the HMI in each cycle and the condition that the values are present for
exactly one cycle is not met.

Therefore, write the tag at the "IN" input directly from the HMI and set the safety
program priority higher than that of communication to avoid potential data
corruption.

Figure 3-13: System block "ACK_OP"

https://support.industry.siemens.com/cs/ww/en/view/109780314

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 27

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.8 Resetting operational switching

Safe actuators are often also used for operational switching. The relevant safety
standards require that a reset of the safety function does not trigger restart of the
machine. When the safety function is triggered, the operational switching must
therefore be reset and a new switch-on signal must be required.

Recommendation

• Interlock the process control in the standard user program with the enable
signal from the safety program. As a result of this, a safe shutdown also resets
the process control.

• Transfer the enable signal from the safety program using a global data block
(see also chapter 3.7).

Figure 3-14: Locking process control with the release signal

Standard user program Safety program

Safety

release

ProcessControl

start

stop

DataFromSafety

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 28

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.9 Reintegrating fail-safe I/O modules/channels

If the F-CPU detects an error relevant to safety, it passivates the relevant fail-safe
channel or the entire module. Once the error has been corrected, the passivated
channel must be reintegrated (depassivated).

As long as a channel is passivated, it uses substitute values. An input provides the
process image with the substitute value "0". The substitute value "0" is assigned to
an output, regardless of whether or not the program controls the output.

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 6.5

3.9.1 Evaluating passivated modules/channels

General

Whether a channel is passivated can be evaluated as follows:

• The channel's value status is "false"

• The "QBAD" tag of the module's F-I/O data block is "true"

• LEDs of channel and module light up red

• Entry in diagnostics buffer

Reintegration can be either manual or automatic. Define the acknowledgment
behavior depending on the risk assessment.

Once an error has been corrected, 'ready for acknowledgment' is indicated as
follows:

• The "ACK_REQ" tag of the module's F-I/O data block is "true"

• LEDs of channel and module flash alternately between red and green

Globally evaluating the status of F-I/Os / F-channels

STEP 7 V14 SP1 or higher allows you to have a block generated by the system to
globally evaluate the status of all F-I/Os / F-channels of an F-runtime group.

This block evaluates whether instead of the process values, substitute values are
output for at least one F-I/O or at least one channel of an F-I/O of an F-runtime
group. The "QSTATUS" output shows the result of the evaluation. This process
does not consider F-I/Os you disabled using the DISABLE tag in the F-I/O DB.

Figure 3-15: System-generated block for global evaluation of F-I/Os

Generate the block in Safety Administration in the settings of the appropriate F-
runtime group.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 29

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-16: Generating the block for global evaluation of F-I/Os

Note Please also observe the information iin the manual SIMATIC Safety - Configuring
and Programming – chapter 3.3.1

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 30

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.9.2 Automatic re-integration

Depending on whether the respective module supports the "RIOforFA" standard
(see chapter 5), you can implement automatic reintegration in different ways.

WARNING

Automatic reintegration can lead to dangerous situations

Whether automatic reintegration is permissible for a certain process depends in
terms of safety depends on the risk assessment.

Note Automatic reintegration concerns F-I/O / channel faults (e.g., discrepancy faults,
short-circuits). Communication faults require manual reintegration (see chapter
0).

Modules that support "RIOforFA"

For modules that support "RIOforFA", you can parameterize automatic
reintegration either for the entire module or for single channels.

Figure 3-17: Parameterizing automatic reintegration

Modules that do not support "RIOforFA"

For modules that do not support "RIOforFA", program automatic reintegration in the
safety program. To do this, set the "ACK_REQ" tag of the respective F-I/O data
block to "false":

Figure 3-18: Programming automatic reintegration

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 31

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.9.3 Manual reintegration

Global reintegration of all passivated F-modules

To reintegrate all passivated F-modules / F-channels of an F-runtime group, use
the "ACK_GL" instruction:

Figure 3-19: "ACK_GL" instruction

Separate reintegration of modules (or of a group of modules)

In distributed plants, it may be required that only local reintegration is allowed (e.g.,
separate command devices on the control cabinet). To do this, interconnect the
"ACK_REI" tags of the respective F-I/O data blocks:

Figure 3-20: Separate reintegration of modules

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 32

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4 timizing Safety Programs

4.1 Optimizing the compilation duration and runtime

Introduction

User programming protection by coded processing is an important part of a safety
program (see chapter 5). The objective is to detect any data corruption in the safety
program and thus prevent non-safe states.

This protection program is generated during the compilation, which extends the
compilation duration. The protection program also extends the F-CPU's runtime as
the F-CPU additionally processes this program and compares the results with the
user program.

You will find the protection program that is automatically generated by the system
in the system block folder of your F-CPU.

Figure 4-1: Protection program

User-generated
F-blocks

System generated
F-blocks

Some of the instructions that can be used in the safety program influence a fail-
safe controller's performance to a greater extent than others.

This chapter shows different options for reducing the compilation and program
runtime.

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 33

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note Depending on the application, it is not always possible to use all the suggestions.
However, they show why certain programming methods cause shorter
compilation and program runtimes than a non-optimized program.

Determining runtime

TIA Portal automatically creates a data block, "RTGxSysInfo", for each F-runtime
group. Among other things, this block contains the current and the longest runtime
of this F-runtime group.

 You will find this system-generated block in the project tree ("Program blocks >
System blocks > STEP 7 Safety").

Figure 4-2: System-generated DB "RTGxSysInfo"

4.1.1 Jumps in the safety program

In a standard user program, a jump from one network to another (jump to label) or
from the block (return) is a simple program branch that is recalculated for each
cycle but not additionally protected. This means there is no check whether or not,
for example due to a memory error caused by EMC, a jump takes place despite the
"false" condition.

This is not allowed in a fail-safe program as it must be ensured at all times that the
program is in the correct branch.

This requires that both alternatives (jump to label is "true" or "false") be calculated
in their entirety in the protection program.

The more jumps you use in a safety program, the greater the influence on the
controller's performance.

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 34

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

• Avoid jumps in the safety program.

• Use state machines instead of jumps in FBs with binary logic.

Figure 4-3: Avoiding jumps

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 35

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.1.2 Timer blocks

Timers are an integral part of a safety program as many of the system functions
such as "ESTOP1" internally use these timers. Despite this fact, generating a
failsafe time value requires considerable effort and regeneration for each single
timer block.

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 5.2

Recommendation

Reduce the number of timer blocks to a minimum.

The following blocks use a timer:

• EV1oo2DI

• TWO_H_EN

• ACK_OP

• ESTOP1

• FDBACK

• MUT_P

• TOF

• TON

• TP

4.1.3 Multi-instances

Recommendation

Use multi-instances for fail-safe function blocks. This means that the block-internal
tags are integrated into the block interface of the calling block.

Advantages

• Standardization of safety programs:
No global data is used for block tags. This allows reuse of the calling block
(including the integrated blocks).

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 36

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example

Two drives are safely controlled with the same "LDrvSafe_CtrlT30SinaS" function
block. The data is stored in multi-instances with unique names.

Figure 4-4: Multi-instances

The "LDrvSafe" library for controlling the safety functions of SINAMICS drives is
available in Industry Online Support:

https://support.industry.siemens.com/cs/ww/en/view/109485794

https://support.industry.siemens.com/cs/ww/en/view/109485794

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 37

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.2 Avoiding data corruption

The protection mechanisms within the scope of coded processing (see chapter 5)
cyclically analyze the program's execution for data corruption. In case of data
corruption, a special system function block triggers an F-STOP of the CPU.

The purpose of this mechanism is to detect influences such as EMC, defective
components, etc. and bring the system to a safe state before the machine
becomes a risk for humans and the environment.

Aside from external influences, data corruption can also be caused by incorrect
programming. The most frequent cause of data corruption is that the standard user
program or an external device (e.g., HMI) writes data while the safety program
reads that data.

This can occur in the following situations:

– Write access by higher-priority alarms

– Write access by HMI/communication

– Using clock memories

Update of a partial PPI by higher-priority alarms

For information about how to correctly program access from the standard user
program to the safety program, see chapter 3.7.

Arithmetic functions can cause a overflow or a underflow of the used data type.
You then must use a suitable substitute value to finish your calculation. The error-
free calculation is displayed at the output ENO for the following functions:

• ADD

• SUB

• MUL

• DIV

• NEG

• ABS

• DWORD_TO_WORD

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 38

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Checklist

The following checklist allows you to identify and correct user-generated STOP
causes.

Table 4-1: Checklist

Possible causes Checked

Overflow

Underflow or overflow can occur in math functions. This must be caught by the user in the
program. Therefore, interconnect the ENO output of the arithmetic functions

Division by 0

If a division by 0 occurs in the safety program, the F-CPU goes to STOP. Therefore,
interconnect the ENO output of the arithmetic functions

Access via HMI

An HMI is used to write (modify) data (bit memories, DBs) that is read in the safety
program. As by default, communication has a higher priority than Safety, this can result in
data corruption. Information on this can be found in chapter 3.7.

Standard access to F-data

The standard user program modifies data of fail-safe tags or parts of their protection. Write
access to F-data is only allowed in the safety program.

Pointer access to F-data

Identical to standard access; access can occur at runtime when there are unfavorable
defaults for generating a pointer to F-areas (inputs, outputs, data blocks, etc.).

Additional information

For more information and causes of data corruption, visit Siemens Industry Online
Support:

https://support.industry.siemens.com/cs/ww/en/view/19183712

https://support.industry.siemens.com/cs/ww/en/view/19183712

5 Glossary

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 39

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5 Glossary

Coded Processing

To meet the normative requirements in terms of redundancy and diversity, all
SIMATIC F-CPUs use the "coded processing" principle. In coded processing, the
safety program is processed twice by a single processor.

To this end, the compiler generates during the compile a diverse (encoded) safety
program that is referred to as the protection program.

The first program run processes the unmodified safety program of the user. After
that, the protection program is processed. The F-CPU then compares the results. If
processed correctly, the safe outputs are written. If the test fails, (e.g., due to data
corruption), the F-CPU goes to stop and generates an entry in the diagnostics
buffer.

(Main Safety)

F-runtime group

Edit F-user program

Edit coded F-user program

Read F-PII

Check results

Write F-PIQ

T
im

e

Figure 5-1 Safety program processing sequence

Data corruption

Data corruption means that data of the safety program has been tampered with by
external influences (e.g., EMC influences) or illegal write access.

F-CPU

An F-CPU is a controller suitable for safety-related tasks.

PROFIsafe

PROFIsafe is a protocol for fail-safe communication via PROFINET or PROFIBUS.

Cross-circuit

Cross-circuit detection is a diagnostic function of an evaluation unit that detects
short-circuits or cross-circuits between two input channels (sensor circuits).

A cross-circuit can be caused, for example, by a cable casing being squashed. In
devices without cross-circuit detection, this can mean that a two-channel
emergency stop circuit does not trip even though only one NC contact is faulty
(secondary error).

5 Glossary

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 40

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

RIOforFA

RIOforFA (Remote IO for Factory Automation) is a standard from the PROFIBUS &
PROFINET International organization and describes the following functions, among
others:

• Synchronous provision of channel-specific diagnostics of remote IOs for high
performance

• Channel-specific passivation and reintegration of PROFIsafe remote IOs

Feedback circuit

A feedback circuit is used for monitoring controlled actuators (e.g., relays or load
contactors) with positive-action contacts or mirror contacts. The outputs can only
be activated when the feedback circuit is closed. When using a redundant
shutdown path, the feedback circuit of both actuators must be evaluated. These
may also be connected in series.

Reset function/resetting

When a safety function has been triggered, the system must remain in stop until it
returns to a safe state for restarting.

Restoring the safety function and clearing the stop command is referred to as the
reset function / resetting.

In this context, "acknowledging the safety function" is another frequently used
phrase.

Safety program

Part of the safety program that processes safety-related tasks.

STEP 7 Safety Basic/Advanced

STEP 7 Safety Basic and Advanced are STEP 7 option packages that allow you to
configure F-CPUs and create a safety program.

• STEP 7 Safety Basic allows you to configure the fail-safe SIMATIC S7-1200
controllers.

• STEP 7 Safety Advanced allows you to configure all fail-safe SIMATIC
controllers.

6 Appendix

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 41

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6 A endix

6.1 Service and support

Industry Online Support

Do you have any questions or need assistance?

Siemens Industry Online Support offers round the clock access to our entire
service and support know-how and portfolio.

The Industry Online Support is the central address for information about our
products, solutions and services.

Product information, manuals, downloads, FAQs, application examples and videos
– all information is accessible with just a few mouse clicks:

support.industry.siemens.com

Technical Support

The Technical Support of Siemens Industry provides you fast and competent
support regarding all technical queries with numerous tailor-made offers
– ranging from basic support to individual support contracts.

Please send queries to Technical Support via Web form:

siemens.com/SupportRequest

SITRAIN – Digital Industry Academy

We support you with our globally available training courses for industry with
practical experience, innovative learning methods and a concept that’s tailored to
the customer’s specific needs.

For more information on our offered trainings and courses, as well as their
locations and dates, refer to our web page:

siemens.de/sitrain

Service offer

Our range of services includes the following:

• Plant data services

• Spare parts services

• Repair services

• On-site and maintenance services

• Retrofitting and modernization services

• Service programs and contracts

You can find detailed information on our range of services in the service catalog
web page:

support.industry.siemens.com/cs/sc

Industry Online Support app

You will receive optimum support wherever you are with the "Siemens Industry
Online Support" app. The app is available for iOS and Android:

support.industry.siemens.com/cs/ww/de/sc/2067

https://support.industry.siemens.com/
http://www.siemens.com/SupportRequest
https://www.siemens.de/sitrain
https://support.industry.siemens.com/cs/sc
https://support.industry.siemens.com/cs/ww/de/sc/2067

6 Appendix

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry ID: 109750255, V1.2, 09/2021 42

©
 S

ie
m

e
n

s
 A

G
 2

0
2

1
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6.2 Industry Mall

The Siemens Industry Mall is the platform on which the entire siemens Industry
product portfolio is accessible. From the selection of products to the order and the
delivery tracking, the Industry Mall enables the complete purchasing processing –
directly and independently of time and location:
mall.industry.siemens.com

6.3 Links and literature

Table 6-1

No. Topic

\1\ Siemens Industry Online Support

https://support.industry.siemens.com

\2\ Link to this entry page of this application example

https://support.industry.siemens.com/cs/ww/en/view/109750255

\3\ Programming Guideline for SIMATIC S7-1200/1500

https://support.industry.siemens.com/cs/ww/en/view/90885040

\4\ Programming Styleguide for SIMATIC S7-1200/1500

https://support.industry.siemens.com/cs/ww/en/view/109478084

\5\ SIMATIC Industrie Software SIMATIC Safety – Configuring and Programming

https://support.industry.siemens.com/cs/ww/en/view/54110126

\6\ Topic page "Safety Integrated – Safety in Factory Automation"

https://support.industry.siemens.com/cs/ww/en/view/109747812

6.4 Change documentation

Table 6-2

Version Date Modifications

V1.0.1 10/2017 First edition

V1.1.0 09/2020 Adaptations and corrections

V1.2.0 09/2021 Adaptations and corrections

https://mall.industry.siemens.com/
https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/109750255
https://support.industry.siemens.com/cs/ww/en/view/90885040
https://support.industry.siemens.com/cs/ww/en/view/109478084
https://support.industry.siemens.com/cs/ww/en/view/54110126
https://support.industry.siemens.com/cs/ww/en/view/109747812

	Programming Guideline Safety for SIMATIC S7-1200/1500
	Legal information
	1 Introduction
	2 Configuring Fail-Safe Controllers
	2.1 Selecting the suitable F-CPU
	2.2 F-change history
	2.3 Consistently uploading F-CPUs
	2.4 Know-how protection

	3 Methods for Safety Programming
	3.1 Program structures
	3.1.1 Defining the program structure
	3.1.2 Call levels of F-FBs/F-FCs
	3.1.3 Call sequence of the blocks in the Main Safety
	3.1.4 F-compliant PLC data types
	3.1.5 Block information and comments

	3.2 Functional identifiers of tags
	3.3 Standardizing blocks
	3.4 Programming logic operations
	3.5 Programming operating mode-dependent safety functions
	3.6 Connection of global data
	3.7 Data exchange between standard user program and safety program
	3.7.1 Data exchange with the help of F-UDTs
	3.7.2 Reading tags from the standard user program which can change during the runtime of an F-runtime group
	3.7.3 Reading diagnostic and message information from the safety program
	3.7.4 Transferring operational information to the safety program
	3.7.5 Using non-safe inputs in the safety program
	3.7.6 Transferring HMI signals to the safety program

	3.8 Resetting operational switching
	3.9 Reintegrating fail-safe I/O modules/channels
	3.9.1 Evaluating passivated modules/channels
	3.9.2 Automatic re-integration
	3.9.3 Manual reintegration

	4 Optimizing Safety Programs
	4.1 Optimizing the compilation duration and runtime
	4.1.1 Jumps in the safety program
	4.1.2 Timer blocks
	4.1.3 Multi-instances

	4.2 Avoiding data corruption

	5 Glossary
	6 Appendix
	6.1 Service and support
	6.2 Industry Mall
	6.3 Links and literature
	6.4 Change documentation

