

Programming

Guideline Safety for

SIMATIC S7-1200/1500

SIMATIC Safety Integrated

https://support.industry.siemens.com/cs/ww/en/view/109750255

Siemens

Industry

Online

Support

https://support.industry.siemens.com/cs/ww/en/view/109750255

Legal information

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 2

©
 S

ie
m

e
n

s
 A

G
 2

0
2

3
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Legal information
Use of application examples

Application examples illustrate the solution of automation tasks through an interaction of several
components in the form of text, graphics and/or software modules. The application examples are
a free service by Siemens AG and/or a subsidiary of Siemens AG ("Siemens"). They are
non-binding and make no claim to completeness or functionality regarding configuration and
equipment. The application examples merely offer help with typical tasks; they do not constitute
customer-specific solutions. You yourself are responsible for the proper and safe operation of the
products in accordance with applicable regulations and must also check the function of the
respective application example and customize it for your system.
Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the
application examples used by technically trained personnel. Any change to the application
examples is your responsibility. Sharing the application examples with third parties or copying the
application examples or excerpts thereof is permitted only in combination with your own products.
The application examples are not required to undergo the customary tests and quality inspections
of a chargeable product; they may have functional and performance defects as well as errors. It is
your responsibility to use them in such a manner that any malfunctions that may occur do not
result in property damage or injury to persons.

Disclaimer of liability
Siemens shall not assume any liability, for any legal reason whatsoever, including, without
limitation, liability for the usability, availability, completeness and freedom from defects of the
application examples as well as for related information, configuration and performance data and
any damage caused thereby. This shall not apply in cases of mandatory liability, for example
under the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of
life, bodily injury or damage to health, non-compliance with a guarantee, fraudulent
non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for
damages arising from a breach of material contractual obligations shall however be limited to the
foreseeable damage typical of the type of agreement, unless liability arises from intent or gross
negligence or is based on loss of life, bodily injury or damage to health. The foregoing provisions
do not imply any change in the burden of proof to your detriment. You shall indemnify Siemens
against existing or future claims of third parties in this connection except where Siemens is
mandatorily liable.
By using the application examples you acknowledge that Siemens cannot be held liable for any
damage beyond the liability provisions described.

Other information
Siemens reserves the right to make changes to the application examples at any time without
notice. In case of discrepancies between the suggestions in the application examples and other
Siemens publications such as catalogs, the content of the other documentation shall have
precedence.
The Siemens terms of use (https://support.industry.siemens.com) shall also apply.

Security information
Siemens provides products and solutions with industrial security functions that support the secure
operation of plants, systems, machines and networks.
In order to protect plants, systems, machines and networks against cyber threats, it is necessary
to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept.
Siemens’ products and solutions constitute one element of such a concept.
Customers are responsible for preventing unauthorized access to their plants, systems, machines
and networks. Such systems, machines and components should only be connected to an
enterprise network or the internet if and to the extent such a connection is necessary and only
when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.
For additional information on industrial security measures that may be implemented, please visit
https://www.siemens.com/industrialsecurity.
Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they are available
and that the latest product versions are used. Use of product versions that are no longer
supported, and failure to apply the latest updates may increase customer’s exposure to cyber
threats.
To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed
under https://www.siemens.com/cert.

https://support.industry.siemens.com/
https://www.siemens.com/industrialsecurity
https://www.siemens.com/cert

Table of contents

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 3

©
 S

ie
m

e
n

s
 A

G
 2

0
2

3
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of contents
Legal information ... 2

1 Introduction .. 4

2 Configuring fail-safe controllers .. 6

2.1 Selecting the suitable F-CPU ... 6
2.2 F-change history ... 8
2.3 Consistent uploading of F-CPUs .. 8
2.4 Know-how protection .. 9

3 Methods for Safety Programming .. 10

3.1 Program structures ... 10
3.1.1 Defining the program structure ... 10
3.1.2 Safety Unit .. 12
3.1.3 Call levels of F-FBs/F-FCs ... 12
3.1.4 Call sequence of the blocks in the Main Safety 12
3.1.5 F-compliant PLC data types ... 14
3.1.6 Block information and comments ... 15
3.2 Functional identifiers of tags .. 16
3.3 Standardizing blocks .. 17
3.4 Programming logic operations ... 18
3.5 Programming operating mode-dependent safety functions 18
3.6 Connection of global data... 19
3.7 Data exchange between standard user program and safety

program .. 20
3.7.1 Data exchange with the help of F-UDTs .. 20
3.7.2 Reading tags from the standard user program which can

change during the runtime of an F-runtime group 22
3.7.3 Reading diagnostic and message information from the safety

program .. 23
3.7.4 Transferring operational information to the safety program 24
3.7.5 Using non-safe inputs in the safety program...................................... 25
3.7.6 Transferring HMI signals to the safety program 26
3.7.7 Data exchange between Safety Unit and Software Units 27
3.8 F-signatures ... 29
3.9 Resetting operational switching ... 30
3.10 Reintegrating fail-safe I/O modules/channels 31
3.10.1 Evaluating passivated modules/channels .. 31
3.10.2 Automatic reintegration .. 33
3.10.3 Manual reintegration ... 34

4 Optimizing Safety Programs .. 35

4.1 Optimizing the compilation duration and runtime 35
4.1.1 Jumps in the safety program .. 36
4.1.2 Timer blocks ... 38
4.1.3 Multi-instances ... 38
4.2 Avoiding data corruption... 40

5 Glossary ... 42

6 Appendix .. 44

6.1 Service and support ... 44
6.2 Industry Mall ... 45
6.3 Links and literature ... 45
6.4 Change documentation .. 45

1 Introduction

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 4

1 Introduction
The controller generation SIMATIC S7-1200 and S7-1500 has a modern system architecture
and, together with TIA Portal, offers efficient possibilities for programming and configuration.

This programming guideline enables you to:

• Reduce the CPU stops

• Reduce compilation times

• Effect fewer and easier acceptances

This document provides you with many recommendations and information for the optimal
configuration and programming of S7-1200/1500 controllers. This helps you create standardized
and optimal programming of your automation solutions.

The examples described can be used universally on the S7-1200 and S7-1500 controllers.

Advantages

Following the recommendations given here provides you with many advantages:

• Reusability of program components

• Easier acceptance (code review, error detection and correction)

• Increased flexibility in case of program changes

• Reduction of programming errors

• Increased plant availability by avoiding CPU stops

• Easier readability for third parties

• Reduced runtime of the safety program

Note Not all the recommendations provided in this document can be applied at the
same time. In these cases, it is up to you as the user to decide on the
prioritization of the recommendations (e.g., standardization or runtime
optimization of the safety program).

1 Introduction

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 5

Programming guideline and style guide

The same recommendations given in the programming guideline and the programming style
guide always apply to programming safety programs.

Programming Guideline for SIMATIC S7-1200/1500:

https://support.industry.siemens.com/cs/ww/en/view/90885040

Programming Style Guide for SIMATIC S7-1200/1500:

https://support.industry.siemens.com/cs/ww/en/view/109478084

Guideline on Library Handling in TIA Portal:

https://support.industry.siemens.com/cs/ww/en/view/109747503

This document is a supplement to the documents above and deals with special aspects of
programming safety programs with STEP 7.

Note Independent of this document, the statements in the manual "SIMATIC Safety -
Configuring and Programming" must be observed – especially warnings
contained therein must be strictly observed. Non-compliance means that death
or serious injury may occur if proper precautions are not taken.

Warning notice system

This document contains notices that you have to observe in order to ensure your personal
safety, as well as to prevent damage to property. Notices relating to your personal safety are
highlighted by a warning triangle; notices relating to material damage only do not have a
warning triangle. Depending on the hazard level, the warnings are displayed in descending
order as follows.

DANGER

Indicates that death or severe personal injury will result if proper precautions are
not taken.

WARNING

Indicates that death or severe personal injury may result if proper precautions
are not taken.

CAUTION

Indicates that minor personal injury may result if proper precautions are not
taken.

NOTICE Indicates that material damage may result if proper precautions are not taken.

If more than one level of danger exists, the warning notice for the highest level of danger is
used. A notice warning of injury to persons with a safety alert symbol may also include a
warning relating to property damage.

https://support.industry.siemens.com/cs/ww/en/view/90885040
https://support.industry.siemens.com/cs/ww/en/view/109478084
https://support.industry.siemens.com/cs/ww/en/view/109747503

2 Configuring fail-safe controllers

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 6

2 Configuring fail-safe controllers

2.1 Selecting the suitable F-CPU

The selection of the F-CPU depends on the following factors:

• Runtime of the safety program

• PROFIsafe communication time

• Response time of the safety function

• Number of required inputs and outputs

• Number of connected I/O devices

• Memory requirements of the program

Estimate of the response time

If you already have a rough idea of the automation system you want to use, you can estimate
the response time of your safety program using the SIMATIC STEP 7 Response Time Table or
go through various scenarios to select the suitable F-CPU:

https://support.industry.siemens.com/cs/ww/en/view/93839056

Figure 2-1: Response time wizard of the SIMATIC STEP 7 Response Time Table

Influence of the safety program's cycle time on the standard user program

A long cycle time of the safety program slows down the response time of your safety functions
but allows more time for processing the standard user program.

A short cycle time of the safety program increases the response time of your safety functions
but allows less time for processing the standard user program.

https://support.industry.siemens.com/cs/ww/en/view/93839056

2 Configuring fail-safe controllers

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 7

The following figure shows the influence of the cycle time of the safety program of the event
class "Cyclic interrupt" on the time that is available for processing the standard user program.

Figure 2-2 Influence of the safety program's cycle time on the standard user program

10 20 30 40 50 60

Update of Outputs

Case 1:

F-Cycle Time

10ms

10 20 30 40 50 60

Update of Outputs

Case 1:

F-Cycle Time

20ms

10 20 30 40 50 60

Update of Outputs

Case 1:

F-Cycle Time

30ms

Duration of standard user program: 30ms

Priority: ≤11

Duration of safety program: 5ms

Priority: 12

Note Please note that higher-priority organization blocks (e.g., cyclic interrupt OBs or
Motion Control OBs) can also interrupt the safety program in the same way as
shown in Figure 2-2.

To make sure that the safety program cannot be interrupted, you can customize
the priorities in the properties of the appropriate OBs.

Note If the cycle time is lower than the operating duration of the safety program, the
CPU switches into the STOP state.

Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 5.2 - Defining F-runtime groups.

2 Configuring fail-safe controllers

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 8

2.2 F-change history

F-change history acts like the standard user program's change history. In the project tree,
"Common data > Logs", one F-change history is created for each F-CPU.

Recommendation

Activate the change history when you start configuring or, at the latest, when you have defined
the final project-specific CPU name as the change history is linked to the CPU name.

Advantages

• Ensures that the last change was loaded by comparing the online and offline status of the
CRC (Cyclic Redundancy Check).

• Which user changed or downloaded the safety program can be tracked in multi-user
projects.

• Synchronization of online and offline status without an online connection between CPU and
PG/PC.

NOTICE F-change history must not be used to detect changes in the safety program or
when accepting changes in the F-I/O configuration.

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 10.8 – F-change history

2.3 Consistent uploading of F-CPUs

TIA Portal V14 SP1 and higher allows you to consistently upload fail-safe SIMATIC S7-1500
CPUs from the automation system to TIA Portal.

Recommendation

An upload from the automation system is only possible if the project has been released for it.

When you start configuring, select the "Consistent upload" check box in Safety Administration in
TIA Portal.

Advantages

A programmer on the system can load the respective program onto their PG and thus reduce
the service effort.

Note The activation of the option for the consistent upload from the F-CPU extends
the time for loading the safety-related project data. In addition,
more load memory is required on the F-CPU.

2 Configuring fail-safe controllers

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 9

2.4 Know-how protection

STEP 7 Safety V14 or higher allows you to activate know-how protection for fail-safe blocks
(FCs and FBs).

Know-how protection protects specific program parts against access by unauthorized persons,
regardless of the F-CPU's and the safety program's access protection. The contents of an FC or
FB cannot be viewed or modified without a password.

Recommendation

During the project phase, determine to what extent it makes sense to protect the blocks of a
safety program against third-party access.

Advantages

• Protects your know-how relating to contents of program parts.

• Accepted blocks cannot be modified.

Additional information

The following documentation provides instructions for using know-how protection for different
scenarios:

Know-how protection in fail-safe programs:
https://support.industry.siemens.com/cs/ww/en/view/109742314

https://support.industry.siemens.com/cs/ww/en/view/109742314

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 10

3 Methods for Safety Programming

3.1 Program structures

Recommendation

When creating a program, make sure that your program is designed to be reusable. Rules and
recommendations for programming can be found in the document Programming Style Guide for
SIMATIC S7-1200/S7-1500 https://support.industry.siemens.com/cs/ww/en/view/109478084.

3.1.1 Defining the program structure

Recommendation

• Structure the program code modularly, e.g.

– into sub-areas for sensing, evaluating, responding or

– By safety functions or

– By plant units

• Create a specification for each module in advance (based on the requirements of the risk
assessment).

• Avoid complex signal paths.

Advantages

• Complexity is minimized.

• Programming errors are reduced.

• Allows the program code to be analyzed/tested without running the program (e.g., code
review or PLCSIM).

• Easier expandability and simplification of repeated acceptance.

• Reusability of program sections without repeated acceptance.

• Finished program parts can be tested and accepted in advance.

Example

The following figure shows a safety application that is divided into three machine areas (safety
zones).

As some of the sensor signals are interconnected across areas (e.g., emergency stop functions
that act globally), they are grouped into a "Sensors" FB (they could also be split up into physical
or logical areas). The respective sensors are evaluated using standardized function blocks (e.g.,
"GuardDoor").

The Mobile Panels' blocks are also called here.

Separate logic and actuator FBs are created for each machine area. The respective actuators
are controlled using standardized function blocks (e.g., "ContactorControl").

https://support.industry.siemens.com/cs/ww/en/view/109478084

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 11

Figure 3-1: Example of a program structure

Note The structure shown here is an example. Depending on the size and complexity
of the safety program, you can also choose a different structure. In smaller
applications, it would also be possible to implement the logic and actuator control
in a shared function block, for example.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 12

3.1.2 Safety Unit

Software Units offer a convenient way to structure your TIA Portal project. By using the Safety
Unit, the safety program can be part of this structure.

The following requirements must be fulfilled in order to use a Safety Unit:

• As of TIA Portal V18/STEP 7 V18

• F-CPU S7-1500 as of FW V2.6

• Under "Extras/Settings/STEP 7 Safety" the option box "Manages safety program in the
'Safety Unit' environment" is selected.

• The F-CPU is recreated.

You receive information on the data exchange between Safety Unit and Standard Units in
chapter 3.7.7 3.7.7 Data exchange between Safety Unit and Software Units.

Recommendation

We recommend using the Safety Unit.

Advantages

• Better clarity

• Time reduction thanks to standardization

• Easy assurance of data integrity

3.1.3 Call levels of F-FBs/F-FCs

For safety programs, you can use a maximum of eight call levels. A warning appears when this
limit is exceeded and an error message is displayed for pure FC and multi-instance call chains.

Note On the system side, functions are mapped as FBs with a multi-instance call in
the protection program; this is the reason why an error message is also
displayed for FC call chains with more than eight call levels.

The program structure in Figure 3-1 shows one way of keeping the call levels flat so that the
safety program remains within the limits specified here.

3.1.4 Call sequence of the blocks in the Main Safety

Recommendation

Within the Main Safety, call blocks in the following sequence:

1. Receive blocks from other CPUs (F-CPU-to-F-CPU communication)

2. Error acknowledgment/reintegration of F-modules/F-channels

3. Evaluation block of the sensors

4. Operating mode evaluation

5. Logic operations, calculations, evaluations, etc.

6. Control blocks for safe actuators

7. Send blocks to other CPUs (F-CPU-to-F-CPU communication)

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 13

Advantages

• The CPU always uses the latest values

• Facilitates orientation in the Main Safety

Note Additionally, with pre-processing/post-processing, you have the option of calling
standard blocks (FCs) directly before or after an F-runtime group, e.g. for data
transfer during fail-safe communication using Flexible F-Link.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 14

3.1.5 F-compliant PLC data types

For safety programs, too, it is possible to optimally structure data using PLC data types.

Recommendation

• Create F-compliant PLC data types (F-UDTs) to also structure data in the safety program.

• Use F-compliant PLC data types to transfer large numbers of tags to blocks.

• Make use of the possibility of nesting F-compliant PLC data types.

Advantages

• A change in a PLC data type is automatically updated in all points of use in the user
program.

• Greater transparency through structuring of the data.

Note Try to design the F-compliant PLC data types as modularly as possible to
achieve reusability of the data types as well as of the blocks.

Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 5.1.5 – F-compliant PLC data types

Example

The example below shows the use of F-compliant PLC data types. The F-UDT "typeMachine"
(Figure 3-2) contains machine-related data. The data is structured through the use of the further
F-UDTs "typeInterface", "typeParameter" as well as "typeDiag" and nesting. Figure 3-3 shows
how to access the respective data.

Figure 3-2 Nested F-compliant PLC data type

Figure 3-3 Use of nested F-UDTs

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 15

3.1.6 Block information and comments

General

In SIMATIC Safety, the Function Block Diagram (FBD) and Ladder Diagram (LAD) programming
languages are available to you. Both languages provide the option to store block and network
comments.

Comments have no influence on the signature of F-FBs/F-FCs and can therefore also be edited
after acceptance.

Recommendation

In the block comment of your block, enter formal information about the block with the aid of the
following template.

 (*Add your company*) / (c)Copyright 2022

--

Title:

Comment/Function:

Library/family:

Author:

Tested with:

Engineering:

Restrictions:

Requirements:

DC: |

Category:

--

Change log table:

Version | Date | Expert in charge | Changes applied

---------|------------|------------------------|------------------------------

01.00.00 | 10.10.2022 | *add your Signature here* | *add the expert's name*

|First released

If you implement diagnostic functions relevant to the PL or SILCL of another subsystem (Detect
or Evaluate) in an F-FB, also enter normative parameters such as PL or SILCL and category
(according to ISO 13849-1), DC measures, CCF measures, etc. in the block comment.

After successful acceptance of the block, also enter the signature in the block comment. This
makes it easier to track functional changes of the block.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 16

3.2 Functional identifiers of tags

Safety often uses the terms 'shutdown' or 'shutdown signals'. In practice, a safety function is
described using this terminology:

"When a safety door is opened, drive XY must be safely shut down."

However, release signals are generally programmed in the technical implementation as a safety
program. This is due to the fact that safety interconnections are designed based on the closed-
circuit principle.

If, for example, a safety door is closed, it gives the enable to switch on a safe actuator.

Recommendation

Before the start of the project, define a uniform identifier for the tags with the appropriate
suffixes. The identifier reflects the meaning and purpose of the tags in the context of source
code.

Choose the tag identifier so that it reflects the logic state "1" ("true").

For example, "maintDoorEnable" or "conveyorSafetyRelease".

Note Please note that the standardized names of the drive functions (e.g., STO and
SLS) according to IEC 61800-5-2 do not comply with the above
recommendation.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 17

3.3 Standardizing blocks

Aside from the actual evaluation of a sensor / control of an actuator, the same conditioning of
input and output parameters is often necessary (e.g., edge evaluation, time functions,
acknowledgment, etc.).

To this end, it is useful to create and reuse modular blocks.

Block libraries

Siemens Industry Online Support provides block libraries you can use in your project

• LSafe, TÜV-checked library for basic safety functions.
https://support.industry.siemens.com/cs/ww/en/view/109793462

• LDrvSafe offers fail-safe blocks in interaction between CPU, SINUMERIK ONE; SINAMICS
via PROFIsafe and SIMATIC Micro-Drive.
https://support.industry.siemens.com/cs/ww/en/view/109485794

Recommendation

Create modular blocks that you can reuse:

• Blocks for typical fail-safe sensors

• Blocks for typical fail-safe actuators

• Blocks for frequently used functions (e.g., reintegration, operating mode)

Advantages

• Reused blocks only have to be accepted once

• Faster programming of further functions and projects

• Versioning with the TIA Portal library concept possible

• Standardization of formal parameters across projects and programmers, resulting in easy
readability and testability

Note The following block programming shows examples. The actual function depends
on the application's risk assessment or the project requirements.

https://support.industry.siemens.com/cs/ww/en/view/109793462
https://support.industry.siemens.com/cs/ww/en/view/109485794

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 18

3.4 Programming logic operations

Task of the blocks

• Generate release signals to control the safety-related actuators based on the relevant
safety functions

• Link the sensor enables, operating mode enables, etc. to the control signals of the actuators

Recommendation

• Use mainly AND and OR logic elements

• Avoid jumps to binary logic

3.5 Programming operating mode-dependent safety functions

Recommendation

Divide the logic into different levels:

• Level 1: All safety functions that are independent of operating modes and plant statuses.

– Logic ANDing of all safety functions that are always active.

– These are typically emergency stop facilities.

• Level 2: All safety functions that are dependent on operating modes.

– Logic ORing of safety functions that are only active in certain operating modes.

– For example, safety doors in automatic mode, alternating with enabling buttons in
service mode.

Example

Three safety functions are implemented on a machine: The "estop" emergency stop function is
active in each mode. The "guardDoor" safety door monitoring and the "enablingSwitch" enabling
function are only active in one operating mode.

Figure 3-4: Programming operating modes

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 19

3.6 Connection of global data

Recommendation

• Connect global data (inputs, outputs, data blocks) in the highest level of the block hierarchy
(Main Safety).

• Use the block interfaces to pass signals to lower levels.

Advantages

• Modular block concept

• Reuse of program parts in other projects without modifications

• Programming errors are reduced

• The overall program is easier to read because the general function of a block can already
be deduced based on the interfaces.

Figure 3-5: Connection of global data

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 20

3.7 Data exchange between standard user program and safety
program

The safety program's task is to execute all the functions that represent a risk-reducing action. All
other operational functions and functions for operation and maintenance are part of the
standard user program.

As, in practice, information for the diagnostic and signaling concept is also generated in the
safety program and operational information is also relevant to the safety program, it is not
possible to completely separate both program parts.

In order to move non-safety-related functions to the standard user program, a clearly defined
interface is recommended. Global data blocks are best suited for this purpose.

3.7.1 Data exchange with the help of F-UDTs

Recommendation

• Use global standard data blocks to exchange data between the standard user program and
the safety program.

• To ensure a good overview of which program part reads and which one writes, it is
recommended to create two data blocks for the two directions.

• For better handling, the use of F-compliant PLC data types (F-UDT) is recommended (see
chapter 3.1.5 F-compliant PLC data types). Create an F-UDT for each direction and
instantiate them as global data blocks (see Figure 3-6 and Figure 3-8).
Through the use of F-UDTs, changing the interface between the standard and safety
program is reserved for users with the Safety password. Changes to the interface by the
standard user are therefore not possible. Unintentional changes which would necessitate
loading of the standard user program via the system state STOP can be prevented by this.

• The compiler carries out separate coding whenever the safety program accesses standard
tags. This also applies if there are multiple access operations to the same standard tag. For
performance reasons, it may therefore make sense to copy the standard data at the
beginning of the safety user program once to a fail-safe data area and then to access this
copied data (see Figure 3-7).

• Use separate data blocks if there are several runtime groups.

Advantages

• Lean F-runtime group

• Better overview of the exchanged data

• Changes to the diagnostics or signaling concept in the standard user program do not
have any effect on the signature of the safety program

• Simplified typification of F-blocks

• Changes to the standard user program can be loaded without stopping the CPU

• Standard user program and safety program can be created independently of each other
and changed if interfaces have already been defined

• Protection of the interface

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 21

Restrictions

• The use of F-UDTs for data exchange between standard and safety program with arrays is
not supported.

Figure 3-6: Data exchange between standard user program and safety program

Figure 3-7 Data exchange with intermediate buffer "DataFromStandard"

Main

Standard

MainSafety

InstMainSafety

Safety rogramStandard ser Program

 ataToSafety

 ata romSafety

 ata buffer

ty e ataToSafety

 T

ty e ata romSafety

 T

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 22

Note Interoperation of programmers with and without authorization for the
safety program

Changes in standard blocks that are read- or write-accessed by the safety
program cause the F-program to lose its consistency. Renewed compiling of the
safety program is required and the next download to the CPU is only possible via
the system state STOP.

If such standard blocks are changed, you will be requested to enter the F-
password as of TIA Portal V16.

With the help of F-compliant PLC data types (F-UDTs), you can protect the
interface against changes without a Safety password.

Figure 3-8 Creating a global data block as an instance of an F-compliant PLC data type

3.7.2 Reading tags from the standard user program which can change during the
runtime of an F-runtime group

If you want to read tags from the standard user program in the safety program, and these tags
can be changed by the standard user program during runtime of the F-runtime group in which
they are read, for example, because your standard user program is being processed by a
higher-priority cyclic interrupt, you must use own tags of a standard DB for this purpose.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 23

Recommendation

Use a standard FC for preprocessing in the F-runtime group to copy the data from the standard
user program to a data area accessed by the safety program.

Advantages

• Data consistency is retained

• Prevention of data corruption in the safety program and the CPU stop it causes

Figure 3-9 Reading standard data which can change during runtime of the safety program

3.7.3 Reading diagnostic and message information from the safety program

A frequent application for data exchange between the standard user program and the safety
program is the visualization of diagnostic and message information such as:

• Acknowledgment requests of errors

• Reset requests of safety functions

• Error messages

• States of safety functions

Transfer the "raw data" from the safety program. The logic operation then takes place in the
standard user program. This has the advantage that the safety program is kept lean and is
independent of changes in the standard user program. Small changes at a later stage (for
example changes to the control of an indicator light) are made in the standard user program.
This does not change accepted F-blocks.

If you transfer a large amount of diagnostic data from the safety program, create an F-data type
for this purpose. A tag with a self-defined data type keeps the block interface compact and
clear. For data always to be transferred in a similar way, it is recommended to standardize these
F-compliant PLC data types across all F-function blocks.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 24

Figure 3-10: Reading diagnostic and message information from the safety program

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 8.1 - Data transfer from the safety program to the
standard user program

3.7.4 Transferring operational information to the safety program

In many applications, it is essential that specific non-safety-related results of logic operations
are transferred from the standard user program to the safety program. These are typically
operational switch-on conditions (e.g., operational and fail-safe switching of a motor starter) or
machine states for mode preselection.

Prepare the data in the standard user program to the greatest possible extent. The more non-
safety-related logic is implemented in the standard user program, the easier it is to implement
changes to the logic relevant to the process.

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 8.2 - Data transfer from standard user program to
safety program

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 25

3.7.5 Using non-safe inputs in the safety program

Recommendation

Standard inputs that are required directly in the safety program should be read directly in the
safety program. A "detour" via the standard user program should be avoided.

The background to this is that non-safety-related signals are also included in the application's
systematic integrity. Typical examples are the acknowledgment/reset button and operating
mode selector switch. Which button switch is allowed to reset which safety function is a direct
result of the risk assessment. A change of the command devices must therefore influence the
signature and must be made only accompanied by a reassessment and an acceptance test for
changes. Furthermore, this is the only way to detect possible data corruption in the standard
signal.

Recomme

ndation

Under
certain conditions, contrary to the previous recommendation, it may make sense to read
standard inputs required in the safety program in the standard program and transfer them to the
safety program via a standard data block (as described in chapter 3.7.1). The aim is to achieve
a higher level of independence between hardware and software. This is required in particular for
standard machines and modular machine concepts.

Advantages

• Better modularization and reusability

• Decoupling of hardware and software

WARNING

In general, because all tags from the standard program are not protected,
only fail-safe data or fail-safe signals of F-I/O and of other safety programs
(in other F-CPUs) are permitted to be processed in the safety program.

Due to the decoupling of hardware and software, interconnection errors
cannot be detected by changes to the signature.

In addition, the information in the respective manuals applies.

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 8.2 - Data transfer from standard user program to
safety program

NOTICE The assessment of the specific signals that influence an application's systematic
integrity and, depending on this, are evaluated in the standard user program or in
the safety program depends on the risk assessment of an application.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 26

3.7.6 Transferring HMI signals to the safety program

Human-machine interfaces (HMIs) are convenient, essential components in a machine
operator's daily work. In order to make use of this convenience for operator control and
monitoring of processes and plants even in safety-related applications, additional measures are
required.

Writing tags from the HMI to the safety program is a problem for the following reasons:

• Signals from the HMI are not safety-related and are not monitored. An error can result in
forbidden changes of safety-related values, which increases the risk.

• Communication between the HMI and the CPU is acyclic. As a result, the HMI's write
access may take place while processing the safety program.
The first program run then still uses the original value. The encoded user program uses the
value that has been updated in the meantime. This causes data corruption in the safety
program and therefore a stop of the CPU (see chapter 5).

Recommendation

Use another data block for communication with the HMI and copy the safety-related data in the
standard user program to the data buffer.

Figure 3-11: Data exchange between HMI and safety program

Create a data type for the data from the HMI to the safety program. Use this data type in the
HMI tags, in the data buffer for the safety program and in the standard user program where the
data is copied.
To add more tags to be written from the HMI to the safety program, merely modify this data
type.

Figure 3-12: Copying data from the HMI to the safety program in the standard user program

Main

Standard

MainSafety

InstMainSafety

Safety rogramStandard ser Program

 ataToSafety

 ata romSafety

 ata buffer

ty e ataToSafety

 T

ty e ata romSafety

 T

 ata MI

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 27

Safe signal transmission

Communication between the HMI and the CPU is not safe. Transferring safety-related data
requires measures that ensure the safe transfer. This application example shows a suitable
safety concept.

Fail-safe transmission of safety-related parameters via web server / HMI:

https://support.industry.siemens.com/cs/ww/en/view/109780314

Resetting safety functions

For resetting safety functions or acknowledging errors using an HMI, TIA Portal provides the
"ACK_OP" system block.

An acknowledgment consists of two steps:

1. Change of IN input/output to the value "6" for exactly one cycle.

2. Change of IN input/output to the value at the "ACK_ID" input within one minute for exactly
one cycle.

This system block is an exception to the recommended data exchange.

In each cycle, the system block resets the "IN" InOut parameter to "0". If the data from the HMI
is copied in the standard user program, "0" is overwritten with the value from the HMI in each
cycle and the condition that the values are present for exactly one cycle is not met.

Therefore, write the tag at the "IN" input directly from the HMI and set the safety program priority
higher than that of communication to avoid potential data corruption.

Figure 3-13: System block "ACK_OP"

3.7.7 Data exchange between Safety Unit and Software Units

The data exchange between Safety Unit and standard Software Units is performed similarly to
the exchange without Safety Unit.

You can find more information on the Safety Unit in the chapter: 3.1.2 Safety Unit.

https://support.industry.siemens.com/cs/ww/en/view/109780314

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 28

Figure 3-14: Overview diagram for data exchange between Safety Unit and Standard Unit

Recommendation

1. Create two standard data blocks in the Safety Unit ("DataToSafety", "DataFromSafety").
One data block for receiving and a second data block for sending the data. Also create two
F-UDTs for the structuring of the data. These are used in the data blocks.

2. Publish both database blocks and F-UDTs in the Safety Unit. Other Units can only access
published blocks - the rights assignment takes place in the Safety Unit.

3. Create a relation between the Safety Unit and the Units that are to exchange data with the
Safety Unit. The blocks to be enabled accordingly are marked with green boxes in
Figure 3-6, as well as in TIA Portal.

If you want to transmit data which can change during the safety program, create another data
block in the safety program equivalent to chapter: 3.7.2. Call an FC that copies the data into an
F-DB (e.g. "DataToSafety") in the preprocessing of the safety program.

Advantages

• Clear structuring of the safety program on a global project level.

• Clearly defined and controllable interfaces between Safety and Standard program through
the publishing of data blocks.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 29

3.8 F-signatures

The F-signatures are used for unambiguous identification of the safety-oriented program
information. They are displayed in the Safety Administration Editor (SAE) and are part of the
safety printout. When the signature is changed, the safety program has to be validated again
and accepted.

The following signatures are provided in the safety part:

Table 3-1: Overview of F-signatures

Designation Meaning

Collective F-signature Identifies a unique state of the fail-safe project data

Collective F-HW
signature

In case of changes to fail-safe HW configuration

Collective F-SW
signature

In case of changes in the safety program

F-communication
address signature

When changes are made to the name or F-communication
UUID of communication connections with Flexible F-Link

Recommendation

In contrast to the F-change history, you can reliably detect changes in the safety program
through the F signatures. Use the signatures to document block states safely.

Advantages

• Unambiguous identification of fail-safe hardware, software and communication

• More reliable tracking of possible changes and clear documentation

• After a hardware replacement, you can easily prove that the software is unchanged via the
collective F-SW signature

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 30

3.9 Resetting operational switching

Safe actuators are often also used for operational switching. The relevant safety standards
require that a reset of the safety function does not trigger a restart of the machine. When the
safety function is triggered, the operational switching must therefore be reset and a new switch-
on signal must be required.

Recommendation

• Interlock the process control in the standard user program with the enable signal from the
safety program. As a result of this, a safe shutdown also resets the process control.

• Transfer the enable signal from the safety program using a global data block (see also
chapter 3.7).

Figure 3-15: Locking process control with the release signal

Standard user program Safety program

Safety

release

ProcessControl

start

stop

DataFromSafety

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 31

3.10 Reintegrating fail-safe I/O modules/channels

If the F-CPU detects an error relevant to safety, it passivates the relevant fail-safe channel or
the entire module. Once the error has been corrected, the passivated channel must be
reintegrated (depassivated).

As long as a channel is passivated, it uses substitute values. An input provides the process
image with the substitute value "0". The substitute value "0" is assigned to an output, regardless
of whether or not the program controls the output.

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 6.5 - Passivation and reintegration of F-I/O

3.10.1 Evaluating passivated modules/channels

General

Whether a channel is passivated can be evaluated as follows:

• The channel's value status is "false"

• The "QBAD" tag of the module's F-I/O data block is "true"

• LEDs of the channel and module light up red

• Entry in the diagnostics buffer

Reintegration can be either manual or automatic. Define the acknowledgment behavior
depending on the risk assessment.

Once an error has been corrected, 'ready for acknowledgment' is indicated as follows:

• The "ACK_REQ" tag of the module's F-I/O data block is "true"

• LEDs of channel and module flash alternately between red and green

Globally evaluating the status of F-I/Os / F-channels

STEP 7 V14 SP1 or higher allows you to have a block generated by the system to globally
evaluate the status of all F-I/Os / F-channels of an F-runtime group.

This block evaluates whether substitute values instead of the process values are output for at
least one F-I/O or at least one channel of an F-I/O of an F-runtime group. The "QSTATUS"
output shows the result of the evaluation. This process does not consider F-I/Os you disabled
using the DISABLE tag in the F-I/O DB.

Figure 3-16: System-generated block for global evaluation of F-I/Os

Generate the block in Safety Administration in the settings of the appropriate F-runtime group.

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 32

Figure 3-17: Generating the block for global evaluation of F-I/Os

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 3.3.1 – "F-runtime group" area

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 33

3.10.2 Automatic reintegration

Depending on whether the respective module supports the "RIOforFA" standard (see
chapter 5), you can implement automatic reintegration in different ways.

WARNING

Automatic reintegration can lead to dangerous situations

Whether automatic reintegration is permissible for a certain process with respect
to safety depends on the risk assessment.

Note Automatic reintegration applies to F-I/O / channel faults (e.g., discrepancy faults,
short-circuits). Communication faults require manual reintegration (see chapter
0).

Modules that support "RIOforFA"

For modules that support "RIOforFA", you can parameterize automatic reintegration either for
the entire module or for single channels.

Figure 3-18: Parameterizing automatic reintegration

Modules that do not support "RIOforFA"

For modules that do not support "RIOforFA", program automatic reintegration in the safety
program. To do this, set the "ACK_REQ" tag of the respective F-I/O data block to "false":

Figure 3-19: Programming automatic reintegration

3 Methods for Safety Programming

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 34

3.10.3 Manual reintegration

Global reintegration of all passivated F-modules

To reintegrate all passivated F-modules / F-channels of an F-runtime group, use the "ACK_GL"
instruction:

Figure 3-20: "ACK_GL" instruction

Separate reintegration of modules (or of a group of modules)

In distributed plants, it may be required that only local reintegration is allowed (e.g., separate
command devices on the control cabinet). To do this, interconnect the "ACK_REI" tags of the
respective F-I/O data blocks:

Figure 3-21: Separate reintegration of modules

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 35

4 timizing Safety Programs

4.1 Optimizing the compilation duration and runtime

Introduction

User programming protection by means of Coded Processing is an important part of a safety
program (see chapter 5). The objective is to detect any data corruption in the safety program
and thus prevent non-safe states.

This protection program is generated during the compilation, which extends the compilation
duration. The protection program also extends the F-CPU's runtime as the F-CPU additionally
processes this program and compares the results with the user program.

You will find the protection program that is automatically generated by the system in the system
block folder of your F-CPU.

Figure 4-1: Protection program

Anwendererstellte
F-Bausteine

Systemerstellte
F-Bausteine

Some of the instructions that can be used in the safety program influence a fail-safe controller's
performance to a greater extent than others.

This chapter shows different options for reducing the compilation and program runtime.

Note Depending on the application, it is not always possible to use all the suggestions.
However, they show why certain programming methods cause shorter
compilation and program runtimes than a non-optimized program.

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 36

Determining runtime

TIA Portal automatically creates a data block, "RTGxSysInfo", for each F-runtime group. Among
other things, this block contains the current and the longest runtime of this F-runtime group.

You will find this system-generated block in the project tree ("Program blocks > System blocks >
STEP 7 Safety").

Figure 4-2: System-generated DB "RTGxSysInfo"

4.1.1 Jumps in the safety program

In a standard user program, a jump from one network to another (jump to label) or from the
block (return) is a simple program branch that is recalculated for each cycle but not additionally
protected. This means there is no check as to whether a jump takes place despite the "false"
condition, for example due to a memory error caused by EMC.

This is not allowed in a fail-safe program as it must be ensured at all times that the program is in
the correct branch.

This requires that both alternatives (jump to label is "true" or "false") be calculated in their
entirety in the protection program.

The more jumps you use in a safety program, the greater the influence on the controller's
performance.

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 37

Recommendation

• Avoid jumps in the safety program.

• Use state machines instead of jumps in FBs with binary logic.

Figure 4-3: Avoiding jumps

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 38

4.1.2 Timer blocks

Timers are an integral part of a safety program as many of the system functions such as
"ESTOP1" internally use these timers. Despite this fact, generating a fail-safe time value
requires considerable effort and regeneration for each individual timer block.

Note Please also observe the information in the manual SIMATIC Safety - Configuring
and Programming – chapter 5.2 - Defining F-runtime groups

Recommendation

Reduce the number of timer blocks to a minimum.

The following blocks use a timer:

• EV1oo2DI

• TWO_H_EN

• ACK_OP

• ESTOP1

• FDBACK

• MUT_P

• TOF

• TON

• TP

4.1.3 Multi-instances

Recommendation

Use multi-instances for fail-safe function blocks. This means that the block-internal tags are
integrated into the block interface of the calling block.

Advantages

• Standardization of safety programs:
No global data is used for block tags. This allows reuse of the calling block (including the
integrated blocks).

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 39

Example

Two drives are safely controlled with the same "LDrvSafe_CtrlT30SinaS" function block. The
data is stored in multi-instances with unique names.

Figure 4-4: Multi-instances

The "LDrvSafe" library for controlling the safety functions of SINAMICS drives is available in
Industry Online Support:

SIMATIC - Fail-safe library LDrvSafe to control the Safety Integrated Functions of the
SINAMICS drive family:

https://support.industry.siemens.com/cs/ww/en/view/109485794

https://support.industry.siemens.com/cs/ww/en/view/109485794

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 40

4.2 Avoiding data corruption

The protection mechanisms within the scope of coded processing (see chapter 5) cyclically
analyze the program's execution for data corruption. In case of data corruption, a special
system function block triggers an F-STOP of the CPU.

The purpose of this mechanism is to detect influences such as EMC, defective components, etc.
and bring the system to a safe state before the machine becomes a risk for humans and the
environment.

Aside from external influences, data corruption can also be caused by incorrect programming.
The most frequent cause of data corruption is that the standard user program or an external
device (e.g., HMI) writes data while the safety program reads that data.

This can occur in the following situations:

– Write access by higher-priority alarms

– Write access by HMI/communication

– Using clock memories

Update of a partial PPI (process image input) by higher-priority alarms

For information about how to correctly program access from the standard user program to the
safety program, see chapter 3.7.

Arithmetic functions can cause an overflow or an underflow of the used data type. You then
must use a suitable substitute value to finish your calculation. The error-free calculation is
displayed at the output ENO for the following functions:

• ADD

• SUB

• MUL

• DIV

• NEG

• ABS

• DWORD_TO_WORD

OPC UA

Deactivate the option "Writable from HMI/OPC UA" for all fail-safe tags in all organization
blocks, function blocks, data blocks and functions to prevent data corruption.

4 Optimizing Safety Programs

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 41

Checklist

The following checklist allows you to identify and correct user-generated STOP causes.

Table 4-1: Checklist

Possible causes Checked

Overflow

Underflow or overflow can occur in mathematical functions. This must be intercepted by the
user in the program. Therefore, interconnect the ENO output of the mathematical functions

Division by 0

If a division by 0 occurs in the safety program, the F-CPU goes to STOP. Therefore,
interconnect the ENO output of the mathematical functions

Access via HMI

An HMI is used to write (modify) data (bit memories, DBs) that is read in the safety
program. As communication has a higher priority than safety by default, this can result in
data corruption. Possible solutions can be found in chapter 3.7.

Standard access to F-data

The standard user program modifies data of fail-safe tags or parts of their protection. Write
access to F-data is only allowed in the safety program.

Pointer access to F-data

Like standard access, access can occur in runtime when there are unfavorable defaults for
generating a pointer to F-areas (inputs, outputs, data blocks, etc.).

Additional information

For additional information and causes of data corruption, visit Siemens Industry Online Support:

How do you proceed if the F-CPU goes into STOP and the message "Data corruption in the
safety program ..." is displayed in the diagnostics buffer?

https://support.industry.siemens.com/cs/ww/en/view/19183712

https://support.industry.siemens.com/cs/ww/en/view/19183712

5 Glossary

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 42

5 Glossary

Coded Processing

To meet the normative requirements in terms of redundancy and diversity, all SIMATIC F-CPUs
use the "coded processing" principle. In coded processing, the safety program is processed
twice by a single processor.

To this end, the compiler generates during a diverse (encoded) safety program during
compilation, which is referred to as the protection program.

The first program run processes the unmodified safety program of the user. After that, the
protection program is processed. The F-CPU then compares the results. If processed correctly,
the safe outputs are written. If the test fails, (e.g., due to data corruption), the F-CPU goes to
stop and generates an entry in the diagnostics buffer.

Figure 5-1 Safety program processing sequence

(Main Safety)

F-runtime group

Edit F-user program

Edit coded F-user program

Read F-PII

Check results

Write F-PIO

T
im

e

Data corruption

Data corruption means that data of the safety program has been corrupted by external
influences (e.g., EMC influences) or illegal write access.

F-CPU

An F-CPU is a controller suitable for safety-related tasks.

PROFIsafe

PROFIsafe is a protocol for fail-safe communication via PROFINET or PROFIBUS.

Cross-circuit

Cross-circuit detection is a diagnostic function of an evaluation unit that detects short-circuits or
cross-circuits between two input channels (sensor circuits).

A cross-circuit can be caused, for example, by a sheathed cable being pinched. In devices
without cross-circuit detection, this can mean that a two-channel emergency stop circuit does
not trip even though only one NC contact is faulty (secondary error).

RIOforFA

RIOforFA (Remote IO for Factory Automation) is a standard from the PROFIBUS & PROFINET
International Organization and describes the following functions, among others:

• Synchronous provision of channel-specific diagnostics of remote IOs for high performance

• Channel-specific passivation and reintegration of PROFIsafe remote IOs

5 Glossary

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 43

Feedback circuit

A feedback circuit is used for monitoring controlled actuators (e.g., relays or load contactors)
with positive-action contacts or mirror contacts. The outputs can only be activated when the
feedback circuit is closed. When using a redundant shutdown path, the feedback circuit of both
actuators must be evaluated. These may also be connected in series.

Reset function/resetting

When a safety function has been triggered, the system must remain in stop until it returns to a
safe state for restarting.

Restoring the safety function and clearing the stop command is referred to as the reset function
/ resetting.

In this context, "acknowledging the safety function" is another frequently used phrase.

Safety program

Part of the safety program that processes safety-related tasks.

STEP 7 Safety Basic/Advanced

STEP 7 Safety Basic and Advanced are STEP 7 option packages that allow you to configure
F-CPUs and create a safety program.

• STEP 7 Safety Basic allows you to configure the fail-safe SIMATIC S7-1200 controllers.

• STEP 7 Safety Advanced allows you to configure all fail-safe SIMATIC controllers.

6 Appendix

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 44

6 A endix

6.1 Service and support

Industry Online Support

Do you have any questions or need assistance?

Siemens Industry Online Support offers round the clock access to our entire service and support
know-how and portfolio.

The Industry Online Support is the central address for information about our products, solutions
and services.

Product information, manuals, downloads, FAQs, application examples and videos – all
information is accessible with just a few mouse clicks:

support.industry.siemens.com

Technical Support

The Technical Support of Siemens Industry provides you fast and competent support regarding
all technical queries with numerous tailor-made offers
– ranging from basic support to individual support contracts. Please send queries to Technical
Support via Web form:

siemens.com/SupportRequest

SITRAIN – Digital Industry Academy

We support you with our globally available training courses for industry with practical
experience, innovative learning methods and a concept that’s tailored to the customer’s specific
needs.

For more information on our offered trainings and courses, as well as their locations and dates,
refer to our web page:

siemens.com/sitrain

Service offer

Our range of services includes the following:

• Plant data services

• Spare parts services

• Repair services

• On-site and maintenance services

• Retrofitting and modernization services

• Service programs and contracts

You can find detailed information on our range of services in the service catalog web page:

support.industry.siemens.com/cs/sc

Industry Online Support app

You will receive optimum support wherever you are with the "Siemens Industry Online Support"
app. The app is available for iOS and Android:

support.industry.siemens.com/cs/ww/en/sc/2067

https://support.industry.siemens.com/
http://www.siemens.com/SupportRequest
https://www.siemens.com/sitrain
https://support.industry.siemens.com/cs/sc
https://support.industry.siemens.com/cs/ww/en/sc/2067

6 Appendix

Programming Guideline Safety for SIMATIC S7-1200/1500
Entry-ID: 109750255, V1.3, 03/2023 45

6.2 Industry Mall

The Siemens Industry Mall is the platform on which the entire siemens Industry product portfolio
is accessible. From the selection of products to the order and the delivery tracking, the Industry
Mall enables the complete purchasing processing – directly and independently of time and
location:
mall.industry.siemens.com

6.3 Links and literature

Table 6-1: Links and literature

No. Topic

\1\ Siemens Industry Online Support

https://support.industry.siemens.com

\2\ Link to the entry page of the application example

https://support.industry.siemens.com/cs/ww/en/view/109750255

\3\ Programming Guideline for SIMATIC S7-1200/1500

https://support.industry.siemens.com/cs/ww/en/view/90885040

\4\ Programming Style Guide for SIMATIC S7-1200/1500

https://support.industry.siemens.com/cs/ww/en/view/109478084

\5\ SIMATIC Industrial Software SIMATIC Safety - Configuring and Programming

https://support.industry.siemens.com/cs/ww/en/view/54110126

\6\ Topic page "Safety Integrated - Safety technology in factory automation"

https://support.industry.siemens.com/cs/ww/en/view/109747812

6.4 Change documentation

Table 6-2: Change documentation

Version Date Change

V1.0.1 10/2017 First edition

V1.1.0 09/2020 Adaptations and corrections

V1.2.0 09/2021 Adaptations and corrections

V1.3.0 03/2023 Addition of Safety Unit and adaptations

https://mall.industry.siemens.com/
https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/109750255
https://support.industry.siemens.com/cs/ww/en/view/90885040
https://support.industry.siemens.com/cs/ww/en/view/109478084
https://support.industry.siemens.com/cs/ww/en/view/54110126
https://support.industry.siemens.com/cs/ww/en/view/109747812

	Programming Guideline Safety for SIMATIC S7-1200/1500
	Legal information
	1 Introduction
	2 Configuring fail-safe controllers
	2.1 Selecting the suitable F-CPU
	2.2 F-change history
	2.3 Consistent uploading of F-CPUs
	2.4 Know-how protection

	3 Methods for Safety Programming
	3.1 Program structures
	3.1.1 Defining the program structure
	3.1.2 Safety Unit
	3.1.3 Call levels of F-FBs/F-FCs
	3.1.4 Call sequence of the blocks in the Main Safety
	3.1.5 F-compliant PLC data types
	3.1.6 Block information and comments

	3.2 Functional identifiers of tags
	3.3 Standardizing blocks
	3.4 Programming logic operations
	3.5 Programming operating mode-dependent safety functions
	3.6 Connection of global data
	3.7 Data exchange between standard user program and safety program
	3.7.1 Data exchange with the help of F-UDTs
	3.7.2 Reading tags from the standard user program which can change during the runtime of an F-runtime group
	3.7.3 Reading diagnostic and message information from the safety program
	3.7.4 Transferring operational information to the safety program
	3.7.5 Using non-safe inputs in the safety program
	3.7.6 Transferring HMI signals to the safety program
	3.7.7 Data exchange between Safety Unit and Software Units

	3.8 F-signatures
	3.9 Resetting operational switching
	3.10 Reintegrating fail-safe I/O modules/channels
	3.10.1 Evaluating passivated modules/channels
	3.10.2 Automatic reintegration
	3.10.3 Manual reintegration

	4 Optimizing Safety Programs
	4.1 Optimizing the compilation duration and runtime
	4.1.1 Jumps in the safety program
	4.1.2 Timer blocks
	4.1.3 Multi-instances

	4.2 Avoiding data corruption

	5 Glossary
	6 Appendix
	6.1 Service and support
	6.2 Industry Mall
	6.3 Links and literature
	6.4 Change documentation

