

SIEMENS

SIEMENS	Prólogo	
	Guía de la documentación	1
SIMATIC	Introducción	2
S7-1500	Principios básicos	3
Funciones de cinemática de S7-1500T V4.0 en el TIA Portal V15	Resumen de versiones	4
Manual de funciones	Configurar	5
	Programación	6
	Puesta en marcha	7
	Diagnóstico	8
	Instrucciones	9
	Anexo	Α

TIA Portal V15

Notas jurídicas

Filosofía en la señalización de advertencias y peligros

Este manual contiene las informaciones necesarias para la seguridad personal así como para la prevención de daños materiales. Las informaciones para su seguridad personal están resaltadas con un triángulo de advertencia; las informaciones para evitar únicamente daños materiales no llevan dicho triángulo. De acuerdo al grado de peligro las consignas se representan, de mayor a menor peligro, como sigue.

♠PELIGRO

Significa que, si no se adoptan las medidas preventivas adecuadas **se producirá** la muerte, o bien lesiones corporales graves.

Significa que, si no se adoptan las medidas preventivas adecuadas **puede producirse** la muerte o bien lesiones corporales graves.

⚠PRECAUCIÓN

Significa que si no se adoptan las medidas preventivas adecuadas, pueden producirse lesiones corporales.

ATENCIÓN

Significa que si no se adoptan las medidas preventivas adecuadas, pueden producirse daños materiales.

Si se dan varios niveles de peligro se usa siempre la consigna de seguridad más estricta en cada caso. Si en una consigna de seguridad con triángulo de advertencia de alarma de posibles daños personales, la misma consigna puede contener también una advertencia sobre posibles daños materiales.

Personal cualificado

El producto/sistema tratado en esta documentación sólo deberá ser manejado o manipulado por **personal cualificado** para la tarea encomendada y observando lo indicado en la documentación correspondiente a la misma, particularmente las consignas de seguridad y advertencias en ella incluidas. Debido a su formación y experiencia, el personal cualificado está en condiciones de reconocer riesgos resultantes del manejo o manipulación de dichos productos/sistemas y de evitar posibles peligros.

Uso previsto de los productos de Siemens

Considere lo siguiente:

⚠ADVERTENCIA

Los productos de Siemens sólo deberán usarse para los casos de aplicación previstos en el catálogo y la documentación técnica asociada. De usarse productos y componentes de terceros, éstos deberán haber sido recomendados u homologados por Siemens. El funcionamiento correcto y seguro de los productos exige que su transporte, almacenamiento, instalación, montaje, manejo y mantenimiento hayan sido realizados de forma correcta. Es preciso respetar las condiciones ambientales permitidas. También deberán seguirse las indicaciones y advertencias que figuran en la documentación asociada.

Marcas registradas

Todos los nombres marcados con ® son marcas registradas de Siemens AG. Los restantes nombres y designaciones contenidos en el presente documento pueden ser marcas registradas cuya utilización por terceros para sus propios fines puede violar los derechos de sus titulares.

Exención de responsabilidad

Hemos comprobado la concordancia del contenido de esta publicación con el hardware y el software descritos. Sin embargo, como es imposible excluir desviaciones, no podemos hacernos responsable de la plena concordancia. El contenido de esta publicación se revisa periódicamente; si es necesario, las posibles correcciones se incluyen en la siguiente edición.

Prólogo

Finalidad de la documentación

La presente documentación proporciona información importante para configurar y poner en servicio las funciones Motion Control integradas del sistema de automatización S7-1500.

Conocimientos básicos necesarios

Para una mejor comprensión de la presente documentación se precisan los siguientes conocimientos:

- Conocimientos generales de automatización
- Conocimientos generales de accionamientos y control de movimientos

Ámbito de validez de la documentación

La presente documentación es válida para la familia de productos S7-1500.

Convenciones

 Para indicar rutas en el árbol del proyecto se presupone que en el árbol parcial de la CPU está abierto el objeto "Objetos tecnológicos". El comodín "Objeto tecnológico" representa el nombre del objeto tecnológico correspondiente.

Ejemplo: "Objeto tecnológico > Configuración > Parámetros básicos".

 Al especificar variables, el comodín <TO> representa el nombre del objeto tecnológico correspondiente.

Ejemplo: <TO>.Actor.Type

 La presente documentación contiene figuras de los dispositivos descritos. Las figuras pueden diferir del dispositivo suministrado en algunos detalles.

Preste atención también a las notas marcadas del modo siguiente:

Nota

Una indicación contiene datos importantes acerca del producto descrito en la documentación, del manejo de dicho producto o de la parte de la documentación a la que debe prestarse especial atención.

Soporte adicional

- Encontrará nuestra oferta en documentación técnica para los diferentes productos y sistemas SIMATIC en Internet (http://www.siemens.com/simatic-tech-doku-portal).
- Encontrará el catálogo online y el sistema de pedidos online en Internet (http://mall.industry.siemens.com).

Información de seguridad

Siemens ofrece productos y soluciones con funciones de seguridad industrial con el objetivo de hacer más seguro el funcionamiento de instalaciones, sistemas, máquinas y redes.

Para proteger las instalaciones, los sistemas, las máquinas y las redes de amenazas cibernéticas, es necesario implementar (y mantener continuamente) un concepto de seguridad industrial integral que sea conforme a la tecnología más avanzada. Los productos y las soluciones de Siemens constituyen únicamente una parte de este concepto.

El cliente es responsable de impedir el acceso no autorizado a sus instalaciones, sistemas, máquinas y redes. Los sistemas, las máquinas y los componentes solo deben estar conectados a la red corporativa o a Internet cuando y en la medida que sea necesario y siempre que se hayan tomado las medidas de protección adecuadas (p. ej. uso de cortafuegos y segmentación de la red).

Adicionalmente, deberán observarse las recomendaciones de Siemens en cuanto a las medidas de protección correspondientes. Encontrará más información sobre seguridad industrial en (https://www.siemens.com/industrialsecurity).

Los productos y las soluciones de Siemens están sometidos a un desarrollo constante con el fin de mejorar todavía más su seguridad. Siemens recomienda expresamente realizar actualizaciones en cuanto estén disponibles y utilizar únicamente las últimas versiones de los productos. El uso de versiones anteriores o que ya no se soportan puede aumentar el riesgo de amenazas cibernéticas.

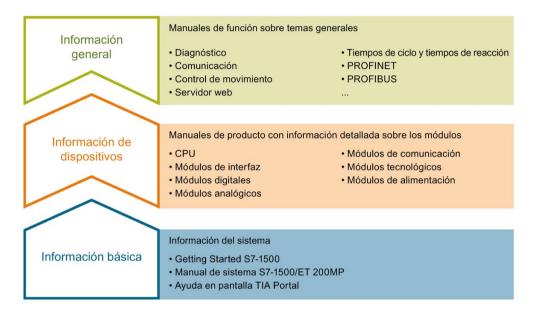
Para mantenerse informado de las actualizaciones de productos, recomendamos que se suscriba al Siemens Industrial Security RSS Feed en (https://www.siemens.com/industrialsecurity).

Índice

	Prólogo		4
1	Guía de la	a documentación	12
2	Introducc	ión	17
	2.1	Relación entre los distintos documentos	17
	2.2	Cinemáticas para tareas de manipulación	18
	2.3	Definición de conceptos	18
	2.4	Funciones	20
3	Principios	s básicos	21
	3.1	Objeto tecnológico Cinemática	21
	3.2	Reglas de interconexión	23
	3.3	Recursos disponibles para cinemáticas	23
	3.4	Unidades de medida	
	3.5	Ajuste de módulo	
	3.6	Sistemas de coordenadas y frames	
	3.6.1	Resumen de los sistemas de coordenadas y frames	
	3.6.2	Frames	31
	3.6.3	Variables, sistemas de coordenadas y frames	34
	3.7	Cinemática	35
	3.7.1	Descripción abreviada de los tipos de cinemática	
	3.7.2	Leyenda de la representación de las cinemáticas	
	3.7.3	Portal cartesiano	
	3.7.3.1	Portal 2D	37
	3.7.3.2	Portal 2D con orientación	39
	3.7.3.3	Portal 3D	
	3.7.3.4	Portal 3D con orientación	44
	3.7.3.5	Variables del portal	
	3.7.4	Roller-picker	
	3.7.4.1	Roller-picker 2D	
	3.7.4.2	Roller-picker 2D con orientación	
	3.7.4.3	Roller-picker 3D (vertical)	
	3.7.4.4	Roller-picker 3D con orientación (vertical)	
	3.7.4.5	Roller-picker 3D con orientación (horizontal)	
	3.7.4.6	Variables del Roller-picker	
	3.7.5	SCARA	
	3.7.5.1	SCARA 3D con orientación	
	3.7.5.2	Variables de SCARA	70

3.7.6	Brazo articulado	71
3.7.6.1	Brazo articulado 2D	
3.7.6.2	Brazo articulado 2D con orientación	74
3.7.6.3	Brazo articulado 3D	77
3.7.6.4	Brazo articulado 3D con orientación	83
3.7.6.5	Variables del brazo articulado	88
3.7.7	Delta-picker	
3.7.7.1	Delta-picker 2D	
3.7.7.2	Delta-picker 2D con orientación	93
3.7.7.3	Delta-picker 3D	96
3.7.7.4	Delta-picker 3D con orientación	99
3.7.7.5	Posición de la articulación admisible para Delta-picker	102
3.7.7.6	Variables del Delta-picker	103
3.7.8	Robot cilíndrico	104
3.7.8.1	Robot cilíndrico 3D	104
3.7.8.2	Robot cilíndrico 3D con orientación	108
3.7.8.3	Variables del robot cilíndrico	113
3.7.9	Trípode	114
3.7.9.1	Trípode 3D	114
3.7.9.2	Trípode 3D con orientación	118
3.7.9.3	Variables de Trípode	
3.7.10	Cinemáticas definidas por el usuario	122
3.7.10.1	Resumen de cinemáticas definidas por el usuario	
3.7.10.2	Variables de las cinemáticas definidas por el usuario	122
3.8	Transformación de la cinemática	123
3.8.1	Descripción abreviada de la transformación de la cinemática	
3.8.2	Transformación con cinemáticas predefinidas	
3.8.2.1	Puntos de referencia	
3.8.2.2	Zona de desplazamiento y zona de transformación	
3.8.2.3	Espacios de posición de la articulación (dependen de la cinemática)	
3.8.2.4	Posiciones singulares	
3.8.2.5	Acoplamientos mecánicos (dependen de la cinemática)	
3.8.3	Transformación para cinemáticas definidas por el usuario	
3.8.3.1	Transformación de usuario	
3.8.3.2	MC-Transformation [OB98]	
3.8.3.3	Ejemplo de programa de transformación de usuario	134
3.8.4	Variables de transformación de la cinemática	136
3.9	Movimientos de la cinemática	137
3.9.1	Descripción abreviada de los movimientos de la cinemática	
3.9.2	Tipos de movimiento	
3.9.2.1	Movimiento lineal	
3.9.2.2	Movimiento circular	
3.9.3	Dinámica del movimiento	
3.9.3.1	Dinámica del movimiento de cinemática y de orientación	
3.9.3.2	Corrección (override)	
3.9.4	Variables del control de movimiento v dinámica	143

	3.10	Vigilancia de zonas	145
	3.10.1	Descripción abreviada de la vigilancia de zonas	
	3.10.2	Zonas del espacio de trabajo	
	3.10.3	Zonas de la cinemática	
	3.10.4	Geometría de la zona	
	3.10.5	Variables de la vigilancia de zonas	
4		de versiones	
5	Configura	r	157
	5.1	Agregar el objeto tecnológico Cinemática	157
	5.2	Configuración del objeto tecnológico Cinemática	158
	5.2.1	Configuración: parámetros básicos	
	5.2.2	Configuración - Interconexiones	
	5.2.3	Configuración - Geometría	
	5.2.3.1	Configuración: geometría (portal cartesiano)	
	5.2.3.2	Configuración: geometría (Roller-picker)	
	5.2.3.3	Configuración: geometría (SCARA)	
	5.2.3.4	Configuración: geometría (brazo articulado)	
	5.2.3.5	Configuración: geometría (Delta-picker)	
	5.2.3.6	Configuración: geometría (robot cilíndrico)	
	5.2.3.7	Configuración: geometría (trípode)	
	5.2.3.8	Configuración: geometría (definida por el usuario)	
	5.2.4	Parámetros avanzados	
	5.2.4.1	Configuración: dinámica	
	5.2.4.2	Configuración - Sistema de coordenadas de la cinemática	
	5.2.4.3	Configuración: sistemas de coordenadas de objetos	
	5.2.4.4	Configuración - Herramientas	
	5.2.4.5	Configuración: zonas	
	5.3	Copiar el objeto tecnológico Cinemática	
	5.4	Borrar el objeto tecnológico Cinemática	180
	5.5	Barra de herramientas de la configuración	180
6	Programa	ción	181
	6.1	Introducción a la programación de los movimientos de la cinemática	181
	6.2	Cadena de órdenes	182
	6.3	Estado del movimiento y recorrido residual	183
	6.4	Interrupción, reanudación y detención de movimientos de la cinemática	184
	6.5	Preparación del movimiento con varias órdenes	185
	6.5.1	Conexión de varios movimientos de la cinemática con transiciones geométricas	
	6.5.2	Comportamiento dinámico en el encadenamiento/transición suave de movimientos	
	6.6	Interacción entre movimientos de la cinemática y movimientos de ejes individuales	190


7	Puesta en	marcha	191
	7.1	Función y estructura del panel de mando de la cinemática	191
	7.2	Uso del panel de mando de la cinemática	197
	7.3	Trace de la cinemática	198
	7.3.1	Descripción abreviada del Trace de la cinemática	
	7.3.2	Visualización 3D	
	7.3.3	Registro y reproducción de movimientos de la trayectoria	
	7.3.4	Configuración	
	7.3.5	Importación y exportación de registros	
8	Diagnóstic	co	208
	8.1	Introducción al diagnóstico	208
	8.2	Objeto tecnológico Cinemática	209
	8.2.1	Bits de estado y de error	
	8.2.2	Estado del movimiento	
	8.2.3	Zonas y herramientas	
9	Instruccio	nes	
	9.1	Movimientos de la cinemática	
	9.1.1	MC_GroupInterrupt V4	
	9.1.1.1	MC_GroupInterrupt: Interrumpir ejecución de movimiento V4	
	9.1.2	MC_GroupContinue V4	
	9.1.2.1	MC_GroupContinue: Continuar la ejecución del movimiento V4	
	9.1.2.2	MC_GroupContinue: Diagrama de función V4	
	9.1.3	MC_GroupStop V4	
	9.1.3.1	MC_GroupStop: Parar movimiento V4	
	9.1.3.2	MC_GroupStop: Diagrama de función V4	
	9.1.4	MC_MoveLinearAbsolute V4	
	9.1.4.1	MC_MoveLinearAbsolute: Posicionamiento de la cinemática con movimiento de	
		trayectoria lineal V4	224
	9.1.4.2	MC_MoveLinearAbsolute: Diagrama de función V4	
	9.1.5	MC_MoveLinearRelative V4	
	9.1.5.1	MC_MoveLinearRelative: Posicionamiento relativo de la cinemática con movimiento	
		de trayectoria lineal V4	230
	9.1.5.2	MC_MoveLinearRelative: Diagrama de función V4	
	9.1.6	MC_MoveCircularAbsolute V4	236
	9.1.6.1	MC_MoveCircularAbsolute: Posicionamiento de la cinemática con movimiento de	
		trayectoria circular V4	
	9.1.6.2	MC_MoveCircularAbsolute: Diagrama de función V4	
	9.1.7	MC_MoveCircularRelative V4	245
	9.1.7.1	MC_MoveCircularRelative: Posicionamiento relativo de la cinemática con movimiento	
		de trayectoria circular V4	
	9.1.7.2	MC_MoveCircularRelative: Diagrama de función V4	251
	9.2	Zonas	
	9.2.1	MC_DefineWorkspaceZone V4	
	9.2.1.1	MC_DefineWorkspaceZone: Definir zona del espacio de trabajo V4	
	9.2.2	MC_DefineKinematicsZone V4	
	9.2.2.1	MC_DefineKinematicsZone: Definir zona de la cinemática V4	
	9.2.3	MC_SetWorkspaceZoneActive V4	
	9.2.3.1	MC_SetWorkspaceZoneActive: Activar zona del espacio de trabajo V4	∠၁೪

	9.2.4	MC_SetWorkspaceZoneInactive V4	261
	9.2.4.1	MC_SetWorkspaceZoneInactive: Desactivar zona del espacio de trabajo V4	261
	9.2.5	MC_SetKinematicsZoneActive V4	263
	9.2.5.1	MC_SetKinematicsZoneActive: Activar zona de la cinemática V4	263
	9.2.6	MC_SetKinematicsZoneInactive V4	
	9.2.6.1	MC_SetKinematicsZoneInactive: Desactivar zona de la cinemática V4	265
	9.3	Herramientas	
	9.3.1	MC_DefineTool V4	
	9.3.1.1	MC_DefineTool: Redefinir herramienta V4	
	9.3.2	MC_SetTool V4	
	9.3.2.1	MC_SetTool: Cambiar herramienta activa V4	269
	9.4	Sistemas de coordenadas	
	9.4.1	MC_SetOcsFrame V4	
	9.4.1.1	MC_SetOcsFrame: Redefinir el sistema de coordenadas de objeto V4	271
	9.5	Comportamiento de relevo de las órdenes de Motion Control V4	
	9.5.1	Comportamiento de relevo V4: Órdenes de movimiento de cinemática	273
Α	Anexo		275
	A.1	Variables del objeto tecnológico Cinemática	275
	A.1.1	Leyenda	275
	A.1.2	Variable Tcp (cinemática)	276
	A.1.3	Variable Kinematics (cinemática)	277
	A.1.4	Variable KcsFrame (cinemática)	279
	A.1.5	Variable OcsFrame (cinemática)	280
	A.1.6	Variable Tool (cinemática)	281
	A.1.7	Variable DynamicDefaults (cinemática)	282
	A.1.8	Variable DynamicLimits (cinemática)	283
	A.1.9	Variable MotionQueue (cinemática)	284
	A.1.10	Variable Override (cinemática)	284
	A.1.11	Variable WorkspaceZone (cinemática)	285
	A.1.12	Variable KinematicsZone (cinemática)	286
	A.1.13	Variable StatusPath (cinemática)	287
	A.1.14	Variable TcpInWcs (cinemática)	288
	A.1.15	Variable TcpInOcs (cinemática)	289
	A.1.16	Variable StatusOcsFrame (cinemática)	290
	A.1.17	Variable StatusKinematics (cinemática)	291
	A.1.18	Variable FlangeInKcs (cinemática)	292
	A.1.19	Variable StatusTool (cinemática)	293
	A.1.20	Variable StatusWorkspaceZone (cinemática)	294
	A.1.21	Variable StatusKinematicsZone (cinemática)	295
	A.1.22	Variable StatusZoneMonitoring (cinemática)	296
	A.1.23	Variable StatusMotionQueue (cinemática)	297
	A.1.24	Variable KinematicsAxis (cinemática)	297
	A.1.25	Variable Units (cinemática)	
	A.1.26	Variable StatusWord (cinemática)	
	A.1.27	Variable ErrorWord (cinemática)	301
	A.1.28	Variable ErrorDetail (cinemática)	302
	A.1.29	Variable WarningWord (cinemática)	
	A.1.30	Variable ControlPanel (cinemática)	

A.2	Alarmas tecnológicas	305
A.2.1	Sinopsis	
A.2.2	Alarmas tecnológicas 101	
A.2.3	Alarmas tecnológicas 201 - 204	
A.2.4	Alarmas tecnológicas 304 - 306	310
A.2.5	Alarmas tecnológicas 501 - 563	311
A.2.6	Alarmas tecnológicas 801 - 808	313
A.3	Identificación del error (cinemática)	316
Índice al	lfabético	319

Guía de la documentación

La documentación del sistema de automatización SIMATIC S7-1500 y del sistema de periferia descentralizada SIMATIC ET 200MP se divide en tres partes. Esta división le permite acceder específicamente al contenido deseado.

Información básica

En el manual de sistema y el Getting Started (primeros pasos) se describen detalladamente la configuración, montaje, cableado y puesta en marcha de los sistemas SIMATIC S7-1500 y ET 200MP. La Ayuda en pantalla de STEP 7 le asiste en la configuración y programación.

Información de dispositivos

Los manuales de producto contienen una descripción sintética de la información específica de los módulos, como características, esquemas de conexiones, curvas características o datos técnicos.

Información general

En los manuales de funciones encontrará descripciones detalladas sobre temas generales relacionados con los sistemas SIMATIC S7-1500 y ET 200MP, p. ej., diagnóstico, comunicación, control de movimiento, servidor web, OPC UA.

La documentación se puede descargar gratuitamente de Internet (https://support.industry.siemens.com/cs/ww/es/view/109742691).

En la información del producto se documentan los cambios y ampliaciones de los manuales.

La información del producto se puede descargar gratuitamente de Internet (https://support.industry.siemens.com/cs/es/es/view/68052815).

Manual Collection S7-1500/ET 200MP

La Manual Collection contiene la documentación completa del sistema de automatización SIMATIC S7-1500 y del sistema de periferia descentralizada ET 200MP recogida en un archivo.

Encontrará la Manual Collection en Internet (https://support.industry.siemens.com/cs/ww/es/view/86140384).

Comparativa de SIMATIC S7-1500 para lenguajes de programación

La comparativa ofrece una visión de conjunto de las instrucciones y funciones que se pueden emplear con qué familias de controladores.

Encontrará la comparativa en Internet (https://support.industry.siemens.com/cs/ww/es/view/86630375).

"mySupport"

Con "mySupport", su área de trabajo personal, podrá aprovechar al máximo el Industry Online Support.

En "mySupport" se pueden guardar filtros, favoritos y etiquetas, solicitar datos CAx y elaborar una librería personal en el área Documentación. Asimismo, en las consultas que realice con el Support Request (solicitud de soporte), este ya estará cumplimentado con sus datos, y en todo momento podrá ver una relación de las solicitudes pendientes.

Para usar todas las funciones de "mySupport" es necesario registrarse una sola vez.

Encontrará "mySupport" en Internet (https://support.industry.siemens.com/My/ww/es).

"mySupport": "Documentación"

En "MySupport", bajo "Documentación", se pueden combinar manuales completos o partes de ellos para elaborar un manual propio.

Este manual se puede exportar como archivo PDF o a un formato editable.

Encontrará "mySupport", "Documentación" en Internet (http://support.industry.siemens.com/My/ww/es/documentation).

"mySupport": "Datos CAx"

En el área "Datos CAx" de "mySupport" puede acceder a datos de producto actualizados para su sistema CAx o CAe.

Con solo unos clics configurará su propio paquete de descarga.

Puede elegir lo siguiente:

- Imágenes de producto, croquis acotados 2D, modelos 3D, esquemas de conexiones, archivos de macros EPLAN
- Manuales, curvas características, instrucciones de uso, certificados
- Datos característicos de productos

Encontrará "mySupport", "Datos CAx" en Internet (http://support.industry.siemens.com/my/ww/es/CAxOnline).

Ejemplos de aplicación

Los ejemplos de aplicación le asisten con diferentes herramientas y ejemplos a la hora de resolver las tareas de automatización. Las soluciones de los ejemplos interactúan siempre con varios componentes del sistema sin centrarse en productos concretos.

Encontrará los ejemplos de aplicación en Internet (https://support.industry.siemens.com/sc/ww/es/sc/2054).

TIA Selection Tool

TIA Selection Tool permite seleccionar, configurar y pedir aparatos (dispositivos) para Totally Integrated Automation (TIA).

Es el sucesor de SIMATIC Selection Tool y recoge en una misma herramienta los configuradores de automatización ya conocidos.

TIA Selection Tool permite generar un lista de pedido completa a partir de la selección o configuración de productos realizada.

Encontrará TIA Selection Tool en Internet (http://w3.siemens.com/mcms/topics/en/simatic/tia-selection-tool).

SIMATIC Automation Tool

SIMATIC Automation Tool permite realizar tareas de puesta en marcha y servicio técnico como operación masiva simultáneamente en distintas estaciones SIMATIC S7, independientemente del TIA Portal.

Resumen de funciones:

- Escanear la red y crear una tabla que represente los dispositivos accesibles de la red.
- Hacer parpadear los LED de los dispositivos o pantallas HMI para facilitar su localización
- Cargar direcciones (IP, subred, pasarela) en un dispositivo
- Cargar el nombre PROFINET (nombre de estación) en un dispositivo
- Pasar una CPU al estado operativo RUN o STOP
- Ajustar la hora de una CPU a la hora actual de la programadora o PC
- Cargar un programa nuevo en una CPU o un dispositivo HMI
- Cargar desde la CPU, cargar en la CPU o borrar datos de recetas de una CPU
- Cargar desde la CPU o borrar datos de registros de datos de una CPU
- Crear una copia de seguridad de los datos en un archivo de backup o restaurarlos desde este para CPU y dispositivos HMI
- Cargar datos de mantenimiento desde una CPU
- Leer el búfer de diagnóstico de una CPU
- Realizar un borrado total de la memoria de una CPU
- Restablecer la configuración de fábrica de dispositivos
- Cargar una actualización del firmware en un dispositivo

Encontrará SIMATIC Automation Tool en Internet (https://support.industry.siemens.com/cs/ww/es/view/98161300).

PRONETA

SIEMENS PRONETA ("análisis de red PROFINET") permite analizar la red de la instalación durante la puesta en marcha. PRONETA cuenta con dos funciones centrales:

- La vista topológica general escanea automáticamente la red PROFINET y todos los componentes conectados a ella.
- La comprobación E/S permite comprobar rápidamente el cableado y la configuración de los módulos de una instalación.

Encontrará SIEMENS PRONETA en Internet (https://support.industry.siemens.com/cs/ww/es/view/67460624).

SINETPLAN

SINETPLAN, el Siemens Network Planner, es una ayuda para planificadores de instalaciones y redes de automatización basada en PROFINET. La herramienta facilita, incluso en la fase de planificación, el dimensionamiento profesional y anticipativo de la instalación de PROFINET. SINETPLAN le ayuda también a optimizar la red así como a aprovechar al máximo los recursos en la red y planificar reservas. De esta forma se evitan problemas en la puesta en marcha o fallos durante el funcionamiento productivo antes de iniciar la aplicación programada. Esto aumenta la disponibilidad de la producción y contribuye a mejorar la seguridad de operación.

Resumen de las ventajas

- Optimización de la red mediante el cálculo puerto a puerto de las cargas de red.
- Mayor disponibilidad de producción mediante escaneo online y verificación de las instalaciones existentes
- Transparencia antes de la puesta en marcha mediante la importación y simulación de proyectos STEP 7 existentes
- Eficiencia mediante la protección a largo plazo de las inversiones existentes y el aprovechamiento óptimo de los recursos

Encontrará SINETPLAN en Internet (https://www.siemens.com/sinetplan).

Introducción

2.1 Relación entre los distintos documentos

Para obtener una mejor visión de conjunto de las funciones de Motion Control, la documentación correspondiente se divide de la siguiente forma:

- Uso de S7-1500T Motion Control
- Uso de las funciones de cinemática del S7-1500T

La documentación "Uso de S7-1500 Motion Control" describe las funciones de Motion Control para los siguientes objetos tecnológicos:

- Eje de velocidad de giro
- Eje de posicionamiento
- Eje sincronizado
- Encóder externo
- Detector
- Leva
- Pista de levas
- Perfil de levas (S7-1500T)

La documentación "Uso de las funciones de cinemática del S7-1500T" describe las funciones de Motion Control para el objeto tecnológico Cinemática. Esta documentación da por conocidas las funciones de Motion Control que se describen en "Uso de S7-1500 Motion Control".

Consulte también

Manual de funciones "S7-1500T Motion Control V4.0 en el TIA Portal V15" (https://support.industry.siemens.com/cs/ww/es/view/109749263)

2.2 Cinemáticas para tareas de manipulación

Las cinemáticas son sistemas mecánicos de programación libre en los que varios ejes acoplados mecánicamente provocan el movimiento de un punto de operación. Gracias al objeto tecnológico Cinemática, las CPU tecnológicas S7-1500T proporcionan funciones para controlar cinemáticas, por ejemplo, para las tareas de manipulación. Entre las aplicaciones típicas se encuentran:

- Pick & Place
- Montaje
- Paletizado

El panel de mando de la cinemática y las numerosas funciones online y de diagnóstico facilitan una puesta en marcha sencilla de las cinemáticas. El objeto tecnológico Cinemática está totalmente integrado en el diagnóstico de sistema de la CPU S7-1500.

2.3 Definición de conceptos

Cinemática

Las cinemáticas son sistemas mecánicos de programación libre en los que varios ejes acoplados mecánicamente provocan el movimiento de un punto de operación.

Ejes de la cinemática

Los ejes de la cinemática son los ejes que mueven una cinemática. Cada eje de la cinemática se interconecta con un objeto tecnológico Eje de posicionamiento/Eje sincronizado.

Punto cero (origen) de la cinemática (KNP)

El origen de las coordenadas del sistema de coordenadas de la cinemática (KCS) es el KNP. A partir del KNP se configuran los parámetros de geometría de la cinemática.

Origen del sistema de coordenadas de la brida (FNP)

El origen del sistema de coordenadas de la brida (FCS) es el FNP. A partir del FNP se definen, p. ej., las zonas de la brida de la cinemática.

Punto de operación de la herramienta (TCP)

El origen del sistema de coordenadas de la herramienta (TCS) es el punto de operación de la herramienta o TCP. El TCP es el punto de operación de la cinemática.

Grados de libertad de una cinemática

Los grados de libertad de una cinemática son las dimensiones en las que puede moverse la herramienta. Las cinemáticas 2D mueven la herramienta por el plano xz y tienen por tanto dos grados de libertad de translación. Las cinemáticas 3D mueven la herramienta por el espacio xyz y tienen por tanto tres grados de libertad de translación. La orientación opcional de la herramienta es un grado de libertad adicional (rotación de la herramienta en torno al eje z).

Sistema de coordenadas de la máquina (MCS)

El MCS contiene los datos de posición de los ejes de la cinemática interconectados y combina hasta cuatro sistemas unidimensionales en un sistema.

Cadena de órdenes

La cadena de órdenes del objeto tecnológico Cinemática es la memoria en la que se registran las órdenes de Motion Control relevantes para el movimiento como órdenes pendientes e inactivas. Durante la preparación del movimiento se tienen en cuenta todas las órdenes de la cadena de órdenes.

AxesGroup

Las instrucciones de Motion Control relacionadas con la cinemática tienen el parámetro de entrada "AxesGroup". El objeto tecnológico Cinemática agrupa los ejes interconectados de la cinemática. Por este motivo, puede asignar directamente el objeto tecnológico Cinemática al parámetro de entrada "AxesGroup".

2.4 Funciones

Las funciones del objeto tecnológico Cinemática se ejecutan en el programa de usuario o el TIA Portal (en "Objeto tecnológico > Puesta en marcha") mediante instrucciones de Motion Control.

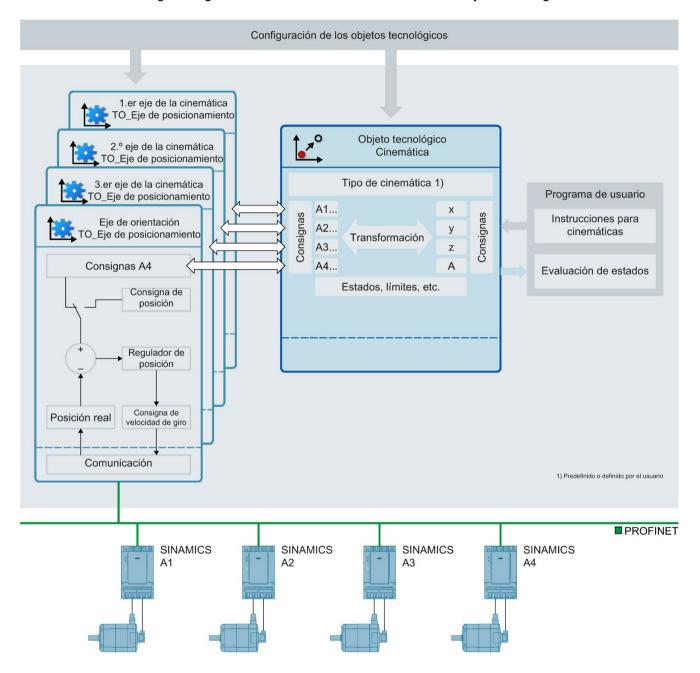
La tabla siguiente muestra las funciones que admite el objeto tecnológico:

Función	Descripción breve
Instruccion	es de Motion Control (programa de usuario)
"MC_GroupInterrupt (Página 215)"	Interrumpir la ejecución del movimiento
"MC_GroupContinue (Página 217)"	Continuar la ejecución del movimiento
"MC_GroupStop (Página 221)"	Parar el movimiento
"MC_MoveLinearAbsolute (Página 224)"	Posicionamiento de la cinemática con movimiento lineal de la trayectoria
"MC_MoveLinearRelative (Página 230)"	Posicionamiento relativo de la cinemática con movimiento lineal de la trayectoria
"MC_MoveCircularAbsolute (Página 236)"	Posicionamiento de la cinemática con movimiento circular de la trayectoria
"MC_MoveCircularRelative (Página 245)"	Posicionamiento relativo de la cinemática con movimiento circular de la trayectoria
"MC_DefineWorkspaceZone (Página 253)"	Definir la zona del espacio de trabajo
"MC_DefineKinematicsZone (Página 256)"	Definir la zona de la cinemática
"MC_SetWorkspaceZoneActive (Página 259)"	Activar la zona del espacio de trabajo
"MC_SetWorkspaceZoneInactive (Página 261)"	Desactivar la zona del espacio de trabajo
"MC_SetKinematicsZoneActive (Página 263)"	Activar la zona de la cinemática
"MC_SetKinematicsZoneInactive (Página 265)"	Desactivar la zona de la cinemática
"MC_DefineTool (Página 267)"	Redefinir la herramienta
"MC_SetTool (Página 269)"	Cambiar la herramienta activa
"MC_SetOcsFrame (Página 271)"	Redefinir los sistemas de coordenadas de objetos
	TIA Portal
"Panel de mando de la cinemática (Página 191)"	Referenciado de ejes de cinemática y desplazamiento de cinemáticas o ejes de cinemática independientes mediante el TIA Portal

Principios básicos 3

3.1 Objeto tecnológico Cinemática

El objeto tecnológico Cinemática calcula una cinemática teniendo en cuenta las consignas de movimiento de las especificaciones dinámicas para el punto de operación de la herramienta (TCP). Mediante la transformación de la cinemática, el objeto tecnológico Cinemática calcula tanto las consignas de movimiento para los distintos ejes como, a la inversa, el movimiento de la cinemática a partir de los valores actuales de los ejes. El objeto tecnológico Cinemática envía las consignas de movimiento específicas de los ejes a los ejes de posicionamiento interconectados.


El objeto tecnológico Cinemática proporciona la transformación de la cinemática (Página 123) del sistema para los tipos de cinemática predefinidos. En el caso de las cinemáticas definidas por el usuario, es este quien debe proporcionar la transformación de usuario (Página 129) en un programa propio.

Los distintos ejes de la cinemática se crean en el TIA Portal como objetos tecnológicos de tipo "Eje de posicionamiento" o "Eje sincronizado". En la configuración del objeto tecnológico Cinemática se interconectan los ejes conforme al tipo de cinemática configurada.

Encontrará un resumen de las funciones del objeto tecnológico Cinemática en el capítulo "Funciones" (Página 20).

3.1 Objeto tecnológico Cinemática

El siguiente gráfico ilustra el funcionamiento básico del objeto tecnológico Cinemática:

3.2 Reglas de interconexión

Un objeto tecnológico Cinemática se puede interconectar con ejes de posicionamiento y ejes sincronizados. La referencia entre el objeto tecnológico Cinemática y los ejes interconectados debe ser unívoca. No se puede utilizar un segundo objeto tecnológico Cinemática con ejes ya interconectados.

No se prevé una nueva interconexión de los ejes durante el funcionamiento.

Eje virtual/simulación

El objeto tecnológico Cinemática puede interconectarse también con ejes en simulación y ejes virtuales.

3.3 Recursos disponibles para cinemáticas

Recursos de Motion Control

Cada CPU ofrece una cierta cantidad de "Recursos de Motion Control". Encontrará todos los recursos de Motion Control disponibles en los datos técnicos de la CPU empleada.

Encontrará una vista general de los recursos de Motion Control de una CPU en el TIA Portal, en "Herramientas > Carga de la memoria".

Recursos de Extended Motion Control (S7-1500T)

Además de los recursos de Motion Control de los ejes interconectados, un objeto tecnológico Cinemática ocupa 30 "Recursos de Extended Motion Control". El número máximo de cinemáticas utilizables se indica en los datos técnicos de la CPU empleada.

Encontrará los datos técnicos de las CPU S7-15xxT en el correspondiente manual de producto.

Ciclo de aplicación

A medida que aumenta el número de objetos tecnológicos utilizados, la CPU necesita más tiempo de cálculo para procesar los objetos tecnológicos. El ciclo de aplicación de Motion Control puede modificarse en función del número de objetos tecnológicos utilizados.

3.4 Unidades de medida

El objeto tecnológico Cinemática admite las siguientes unidades de medida para la posición y la velocidad de los ejes lineales:

Posición	Velocidad
nm, µm, mm, m, km	mm/s, mm/min, mm/h, m/s, m/min, m/h, km/min, km/h
in, ft, mi	in/s, in/min, ft/s, ft/min, mi/h

El objeto tecnológico Cinemática admite las siguientes unidades de medida para el ángulo y la velocidad angular de los ejes rotatorios:

Ángulo	Velocidad angular
°, rad	°/s, °/min, rad/s, rad/min

La aceleración se ajusta en correspondencia como unidad de medida de la posición/s² (ángulo/s²).

El tirón se ajusta en correspondencia como unidad de medida de la posición/s³ (ángulo/s³).

Nota

Al ajustar o modificar las unidades de medida, tenga en cuenta su repercusión en la indicación de los valores de parámetros y en el programa de usuario:

- Indicación de los valores de parámetros en el bloque de datos tecnológico
- Transferencia de valores a los parámetros en el programa de usuario
- Entrada e indicación de la posición y velocidad en el TIA Portal
- Especificaciones de consigna mediante ejes maestros en marcha síncrona

Todos los datos y todas las indicaciones se muestran conforme a la unidad de medida seleccionada.

Las unidades ajustadas se muestran en la variable estructurada del objeto tecnológico <TO>.Units. La variable estructurada se describe en el Anexo (Página 298).

Unidades de medida de los ejes y del objeto tecnológico Cinemática

Los objetos tecnológicos siempre transfieren valores sin unidades de medida.

Por ejemplo, si se ajusta [mm] en un eje y [m] en el objeto tecnológico Cinemática, el objeto tecnológico Cinemática calculará los valores de posición del eje lineal en [m]. En este ejemplo, si el objeto tecnológico Cinemática proporciona una consigna para un movimiento de un metro, el eje se desplazará únicamente un milímetro.

El objeto tecnológico Cinemática proporciona consignas lineales y rotatorias a los ejes interconectados de acuerdo con el tipo de cinemática. El objeto tecnológico Cinemática no comprueba el tipo de eje interconectado (lineal o rotatorio).

A la hora de configurar las unidades de medida, tenga en cuenta las siguientes especificaciones:

- Configure los objetos tecnológicos interconectados como ejes lineales o rotatorios de acuerdo con el tipo de cinemática.
- En los ejes interconectados conforme al tipo de cinemática, configure las mismas unidades de medida lineales/rotatorias que en el objeto tecnológico Cinemática.

3.5 Ajuste de módulo

El objeto tecnológico Cinemática en sí no tiene ajuste de módulo. Si se interconectan ejes con ajuste de módulo activo en el objeto tecnológico Cinemática, la zona módulo de los ejes debe cubrir al menos la zona de desplazamiento de la cinemática. La posición cero del eje debe coincidir con la posición cero del eje de la cinemática. A excepción del eje de orientación, durante un movimiento de la cinemática no puede cambiarse la zona módulo de los ejes.

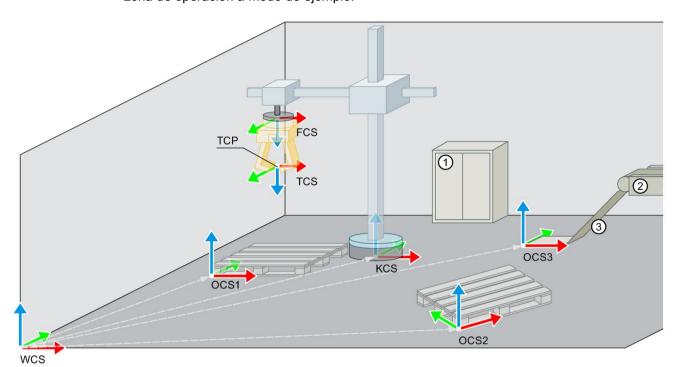
El ajuste de módulo suele utilizarse en el eje de orientación. En el eje de orientación (eje A4 en la cinemática) la transformación de la cinemática abarca toda la zona de desplazamiento del eje. El eje de orientación se desplaza sin limitaciones derivadas de un ajuste de módulo activado.

Para la orientación cartesiana, puede especificarse un ángulo mayor de 360°. Un movimiento relativo sobrepasa este ángulo. Un movimiento absoluto representa este ángulo en el rango de 0° a 360°. Para la coordenada A del punto de operación de la herramienta (TCP), se determina fundamentalmente el rango de -180° a +180°.

3.6 Sistemas de coordenadas y frames

3.6.1 Resumen de los sistemas de coordenadas y frames

En una tarea de manipulación hay muchos objetos implicados, como cinemáticas, herramientas, paletas y productos. Estos objetos y la posición relativa entre ellos se describen mediante sistemas de coordenadas y frames. El objeto tecnológico Cinemática calcula todos los movimientos para el punto de operación de la herramienta (TCP).


Frames

Los frames indican el decalaje y rotación de un sistema de coordenadas con respecto a otro sistema de coordenadas.

Sistemas de coordenadas

El objeto tecnológico Cinemática utiliza los siguientes sistemas de coordenadas con rotación a la derecha y rectangulares conforme a DIN 66217:

- Sistema de coordenadas universal (WCS)
- Sistema de coordenadas de la cinemática (KCS)
- Sistema de coordenadas de la brida (FCS)
- Sistema de coordenadas de la herramienta (TCS)
- Sistema de coordenadas del objeto (OCS)

El siguiente gráfico muestra la posición relativa de los sistemas de coordenadas en una zona de operación a modo de ejemplo:

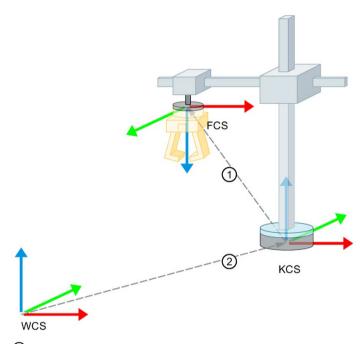
- Armario eléctrico
- ② Cinta transportadora
- 3 Tobogán
- WCS Sistema de coordenadas universal
- KCS Sistema de coordenadas de la cinemática
- FCS Sistema de coordenadas de la brida
- TCS Sistema de coordenadas de la herramienta
- TCP Punto de operación de la herramienta
- OCS Sistema de coordenadas del objeto

Sistema de coordenadas universal (WCS, World Coordinate System)

El WCS es el sistema de coordenadas fijo del entorno o espacio de trabajo de una cinemática. El punto cero u origen del WCS es el punto de referencia de los objetos y movimientos del objeto tecnológico Cinemática. A partir del origen del WCS (p. ej., la esquina de una zona de operación) se define la posición de los objetos mediante frames.

Sistema de coordenadas de la cinemática (KCS, Kinematic Coordinate System)

El KCS está asociado a la cinemática. La posición del KCS dentro de la cinemática está predefinida para cada tipo de cinemática. El origen de las coordenadas del KCS es el punto cero u origen de la cinemática (KNP). A partir del KNP se configuran los parámetros de geometría de la cinemática.

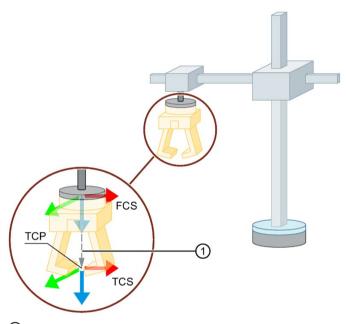

La posición del KCS en el WCS se configura mediante el frame KCS.

Sistema de coordenadas de la brida (FCS, Flange Coordinate System)

El FCS está suspendido del portaherramientas (brida) de la cinemática. Por esta razón, la posición del FCS cambia con los movimientos de la cinemática.

La ubicación del FCS en la posición cero u origen de la cinemática se deriva de la configuración de los parámetros de la geometría de la cinemática. El objeto tecnológico Cinemática calcula el frame de transformación a partir de los parámetros de geometría. El frame de transformación describe la posición del FCS en el KCS. El eje z del FCS señala siempre en sentido z negativo del KCS.

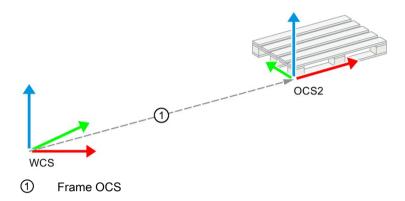
El gráfico siguiente muestra, a partir del ejemplo de la cinemática "Robot cilíndrico", las posiciones del FCS y el KCS y el frame de transformación:



- 1 Frame de transformación
- (2) Frame KCS

Sistema de coordenadas de la herramienta (TCS, Tool Coordinate System) y punto de operación de la herramienta (TCP, Tool Center Point)

El TCS está suspendido del FCS y define el punto de operación de la herramienta (TCP) en el origen de las coordenadas. El TCP es el punto de operación de la herramienta. Los movimientos de cinemática se refieren siempre al TCP (con referencia a WCS/OCS). La posición del TCS en el FCS se determina por medio del frame de herramienta activo. El eje z del TCS señala siempre en sentido z negativo del KCS. Pueden definirse frames de herramienta para un máximo de tres herramientas; de ellas, solo una herramienta y, por lo tanto, solo un frame puede estar activo al mismo tiempo.


El siguiente gráfico muestra la posición del TCS y el TCP en el espacio de trabajo:

1 Frame de la herramienta

Sistema de coordenadas de objeto (OCS, Object Coordinate System)

El OCS es un sistema de coordenadas definido por el usuario. Con un OCS se define, por ejemplo, la posición de una paleta en el espacio de trabajo. La posición del OCS en el WCS se define con un frame OCS. Pueden especificarse hasta tres frames OCS, que están activos simultáneamente.

3.6.2 Frames

La tabla siguiente muestra los frames para el objeto tecnológico Cinemática:

Frame	Descripción
Frame KCS	Posición del sistema de coordenadas de la cinemática (KCS) en el sistema de coordenadas universal (WCS)
Frame de	Posición del sistema de coordenadas de la brida (FCS) en el KCS
transformación	El frame de transformación se obtiene a partir de la transformación de la cinemática y se muestra en la variable " <to>.FlangeInKcs" del objeto tecnológico.</to>
Frame de la herramienta	Posición del sistema de coordenadas de la herramienta (TCS) en el FCS
Frame OCS[13]	Posición de los sistemas de coordenadas de objetos de 1 a 3 (OCS[13]) en el WCS
Posición de destino	Posición de destino en un movimiento de la cinemática

Definición de frame

Los frames definen el decalaje y rotación de un sistema de coordenadas respecto a otro sistema de coordenadas con los siguientes valores:

Valor en el frame	Descripción	
x	Decalaje en sentido x en el sistema de coordenadas de referencia	
у	Decalaje en sentido y en el sistema de coordenadas de referencia	
Z	Decalaje en sentido z en el sistema de coordenadas de referencia	
Α	Rotación en torno al eje z	
В	Rotación en torno al eje y	
С	Rotación en torno al eje x	

3.6 Sistemas de coordenadas y frames

La tabla siguiente muestra las limitaciones para los frames en función del tipo de cinemática. "x", "y" y "z" significa que es posible un decalaje en el sentido correspondiente. "A", "B" y "C" significa que es posible una rotación en el sentido correspondiente. La indicación "= 0.0" significa que no está permitido un decalaje o una rotación en el sentido correspondiente o bien no es relevante para el tipo de cinemática.

Tipo de cinemática		Frame del KCS/frame del OCS		Frame de la herramienta		Posición de destino	
2D	Decalaje	Rotación	Decalaje	Rotación	Decalaje	Rotación	
	х	A = 0.0	х	A = 0.0	х	A = 0.0	
	y = 0.0	В	y = 0.0	B = 0.0	y = 0.0	B = 0.0	
	Z	C = 0.0	z	C = 0.0	z	C = 0.0	
2D con orientación	Decalaje	Rotación	Decalaje	Rotación	Decalaje	Rotación	
	х	A = 0.0	x = 0.0	Α	х	Α	
	y = 0.0	B = 0.0	y = 0.0	B = 0.0	y = 0.0	B = 0.0	
	Z	C = 0.0	z	C = 0.0	z	C = 0.0	
3D	Decalaje	Rotación	Decalaje	Rotación	Decalaje	Rotación	
	х	Α	х	A = 0.0	х	A = 0.0	
	у	В	у	B = 0.0	у	B = 0.0	
	Z	С	z	C = 0.0	z	C = 0.0	
3D con orientación	Decalaje	Rotación	Decalaje	Rotación	Decalaje	Rotación	
	х	Α	х	Α	×	Α	
	у	B = 0.0	у	B = 0.0	у	B = 0.0	
	Z	C = 0.0	z	C = 0.0	z	C = 0.0	

x, y, z, A, B, C: Decalaje/rotación posible

Valor = 0.0: Decalaje/rotación no admisible o no relevante

La tabla siguiente muestra los rangos de valores para los frames de KCS, OCS y herramienta según el tipo de cinemática:

Tipo de cinemática	Rangos de valores					
2D	Frame	del KCS/frame del OCS	Frame de la herramienta			
	Α	0.0	Α	0.0		
	В	-180.0° a 180.0°	-	-		
	С	0.0	-	-		
2D con orientación	А	0.0	Α	-180.0° a 180.0°		
	В	0.0	-	-		
	С	0.0	-	-		
3D	А	-180.0° a 180.0°	Α	0.0		
	В	-90.0° a 90.0°	-	-		
	С	-180.0° a 180.0°	-	-		
3D con orientación	А	-180.0° a 180.0°	А	-180.0° a 180.0°		
	В	0.0	-	-		
	С	0.0	-	-		

Valor = 0.0: Rotación no admisible

Ninguna indicación (-): parámetro no existente

3.6.3 Variables, sistemas de coordenadas y frames

Para los sistemas de coordenadas y frames son relevantes las siguientes variables del objeto tecnológico Cinemática:

Variable	Descripción
Configuración	
<to>.KcsFrame</to>	Frame KCS
	x, y, z, A, B, C
<to>.OcsFrame[13]</to>	Frame OCS
	x, y, z, A, B, C
<to>.Tool[13]</to>	Frame de la herramienta
	x, y, z, A
Valores de estado	
<to>.Tcp</to>	Punto de destino de un movimiento de la cinemática en el sistema de coordenadas universal
	x, y, z, A
<to>.TcpInWcs</to>	Frame de herramienta actual (con dinámica) en el sistema de coordenadas universal (referencia de consigna)
	x, y, z, A
<to>.TcplnOcs[13]</to>	Frame de herramienta actual (con dinámica) en un sistema de coordenadas de objeto (referencia de consigna)
	x, y, z, A
<to>.FlangeInKcs</to>	Frame FCS actual (con dinámica, referencia de consigna)
	x, y, z, A
<to>.StatusOcsFrame</to>	Visualización de los frames OCS
	x, y, z, A, B, C

3.7 Cinemática

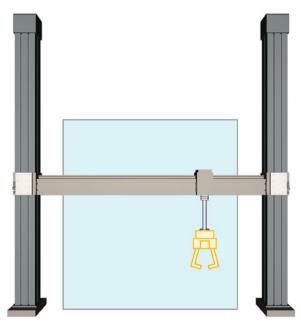
3.7.1 Descripción abreviada de los tipos de cinemática

El tipo de sistema mecánico y el número de ejes determinan el tipo de cinemática. Los ejes acoplados mecánicamente provocan el movimiento del punto de operación de la herramienta (TCP). La cinemática se configura mediante los parámetros de geometría correspondientes, en función del tipo de cinemática.

El objeto tecnológico Cinemática admite los siguientes tipos de cinemáticas:

Categoría	Tipo de cinemática			
Cinemáticas predefinidas				
Portal cartesiano (Página 37)	Portal cartesiano 2D			
	Portal cartesiano 2D con orientación			
	Portal cartesiano 3D			
	Portal cartesiano 3D con orientación			
Roller-picker (Página 48)	Roller-picker 2D			
	Roller-picker 2D con orientación			
	Roller-picker 3D (vertical)			
	Roller-picker 3D con orientación (vertical)			
	Roller-picker 3D con orientación (horizontal)			
SCARA (Página 65)	SCARA 3D con orientación			
Brazo articulado (Página 71)	Brazo articulado 2D			
	Brazo articulado 2D con orientación			
	Brazo articulado 3D			
	Brazo articulado 3D con orientación			
Delta-picker (Página 90)	Delta-picker 2D			
	Delta-picker 2D con orientación			
	Delta-picker 3D			
	Delta-picker 3D con orientación			
Robot cilíndrico (Página 104)	Robot cilíndrico 3D			
	Robot cilíndrico 3D con orientación			
Trípode (Página 114)	Trípode 3D			
	Trípode 3D con orientación			
Cinemáticas definidas por el usuario				
Cinemáticas definidas por el usuario	2D definido por el usuario			
(Página 122)	2D definido por el usuario con orientación			
	3D definido por el usuario			
	3D definido por el usuario con orientación			

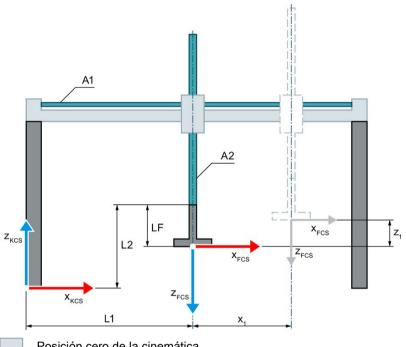
3.7.2 Leyenda de la representación de las cinemáticas


La tabla siguiente muestra los elementos gráficos y los símbolos empleados para representar las cinemáticas:

Elemento gráfico	Significado
	Base de la cinemática
	Brazo de la cinemática
[22]	Cinemática elongada de la posición cero
	Eje rotatorio activo
	Articulación pasiva
	Guiado de un eje
•	Eje lineal activo
\Leftrightarrow	Eje rotatorio en el portaherramientas (eje de orientación)
	Portaherramientas
月	Herramienta (pinza)
⊙ ⊙ ⊙	Eje de coordenadas fuera del plano representado
⊗ ⊗ ⊗	Eje de coordenadas dentro del plano representado
	Color del eje x
	Color del eje y
	Color del eje z

3.7.3 Portal cartesiano

3.7.3.1 Portal 2D


La cinemática "Portal 2D" soporta dos ejes y dos grados de libertad. El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

La cinemática consta de dos ejes lineales ortogonales A1 y A2. Los ejes encierran un área de operación rectangular.

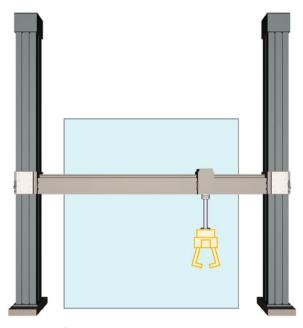
El gráfico siguiente muestra en la vista frontal:

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva de la cinemática

- Posición cero de la cinemática
 - En la posición cero del eje A1: Distancia del FCS con respecto al KNP en sentido x del KCS
 - L2 En la posición cero del eje A2: Distancia del FCS con respecto al KNP y longitud de la brida LF en sentido z del KCS
 - LF Longitud de la brida antes del FCS en sentido z del FCS
- Elongación de la cinemática
 - Elongación del eje A1 en sentido x positivo
 - Elongación del eje A2 en sentido z positivo Z1

Leyenda de la representación de las cinemáticas (Página 36)

El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. El sistema de coordenadas de la brida (FCS) se encuentra a la distancia LF de la posición cero del eje A2.


La posición 0.0 en el objeto tecnológico interconectado en cada caso define las posiciones cero de los ejes A1 y A2 en el KCS. Mediante las longitudes L1 y L2 se definen las distancias de las posiciones cero de los ejes con respecto al origen de la cinemática.

Zona de transformación

La transformación de la cinemática abarca toda la zona de desplazamiento (Página 125) de los ejes.

3.7.3.2 Portal 2D con orientación

La cinemática "Portal 2D con orientación" soporta tres ejes y tres grados de libertad. El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

La cinemática consta de los ejes siguientes:

- Dos ejes lineales ortogonales A1 y A2
- Un eje rotatorio A4 (eje de orientación)

Los ejes lineales encierran un área de operación rectangular. El eje de orientación A4 permite la rotación de la herramienta.

El gráfico siguiente muestra en la vista frontal:

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva de la cinemática

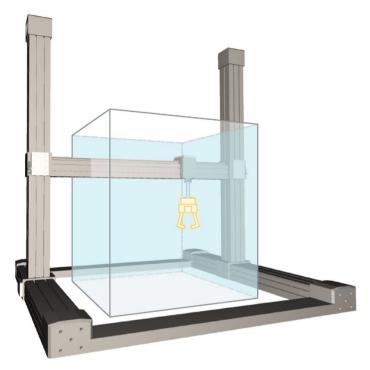
Posición cero de la cinemática

- L1 En la posición cero del eje A1:
 - Distancia del FCS con respecto al punto cero (origen) de la cinemática (KNP) en sentido x del KCS
- L2 En la posición cero del eje A2:

 Distancia del FCS con respecto al KNP y longitud de la brida LF en sentido z del KCS
- LF Longitud de la brida antes del FCS en sentido z del FCS
- Elongación de la cinemática
 - x₁ Elongación del eje A1 en sentido x positivo
 - z₁ Elongación del eje A2 en sentido z positivo

Leyenda de la representación de las cinemáticas (Página 36)

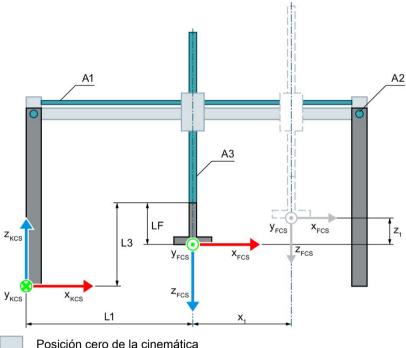
El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. El sistema de coordenadas de la brida (FCS) se encuentra a la distancia LF de la posición cero del eje A2.


La posición 0.0 en el objeto tecnológico interconectado en cada caso define las posiciones cero de los ejes A1 y A2 en el KCS. Con las longitudes L1 y L2 se definen las distancias de las posiciones cero de los ejes A1 y A2 con respecto al punto cero (origen) de la cinemática. En la posición cero del eje A4, el eje x del FCS señala en dirección al eje x del KCS.

Zona de transformación

La transformación de la cinemática abarca toda la zona de desplazamiento (Página 125) de los ejes.

3.7.3.3 Portal 3D

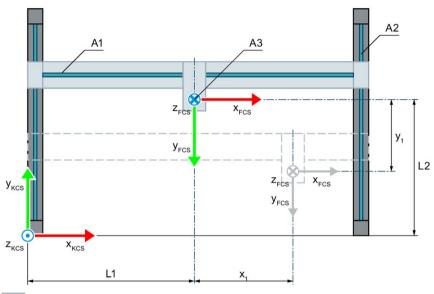

La cinemática "Portal 3D" soporta tres ejes y tres grados de libertad. El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

La cinemática consta de tres ejes lineales ortogonales A1, A2 y A3. Los ejes lineales encierran una zona de operación cuadrada.

El gráfico siguiente muestra en la vista frontal (plano xz):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva/negativa de los ejes A1 y A3

Posición cero de la cinemática


En la posición cero del eje A1:

Distancia del FCS con respecto al punto cero (origen) de la cinemática (KNP) en sentido x del KCS

- L3 En la posición cero del eje A3:
 - Distancia del FCS con respecto al KNP y longitud de la brida LF en sentido z del KCS
- LF Longitud de la brida antes del FCS en sentido z del FCS
- Elongación de la cinemática
 - \mathbf{X}_1 Elongación del eje A1 en sentido x positivo
 - Elongación del eje A3 en sentido z positivo

El gráfico siguiente muestra en la vista en planta (plano xy):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva/negativa de los ejes A1 y A2

Posición cero de la cinemática

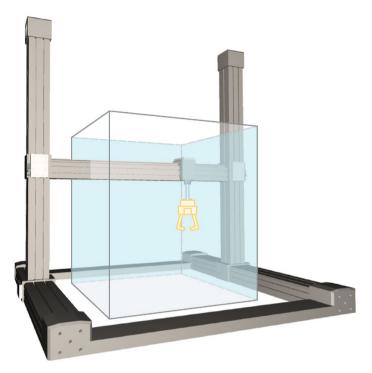
- L1 En la posición cero del eje A1:
 - Distancia del FCS con respecto al KNP en sentido x del KCS
- L2 En la posición cero del eje A2:

Distancia del FCS con respecto al KNP en sentido y del KCS

- Elongación de la cinemática
 - x₁ Elongación del eje A1 en sentido x positivo
 - y₁ Elongación del eje A2 en sentido y negativo

Leyenda de la representación de las cinemáticas (Página 36)

El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. El sistema de coordenadas de la brida (FCS) se encuentra a la distancia LF de la posición cero del eje A2.

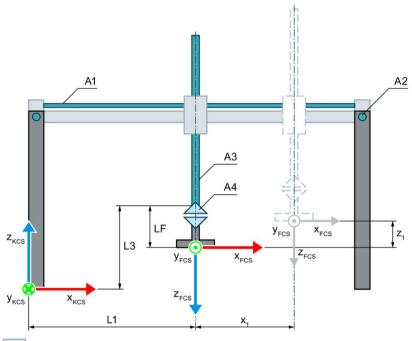

La posición 0.0 en el objeto tecnológico interconectado en cada caso define las posiciones cero de los ejes A1, A2 y A3 en el KCS. Con las longitudes L1, L2 y L3 se definen las distancias de las posiciones cero de los ejes con respecto al punto cero (origen) de la cinemática.

Zona de transformación

La transformación de la cinemática abarca toda la zona de desplazamiento (Página 125) de los ejes.

3.7.3.4 Portal 3D con orientación

La cinemática "Portal 3D con orientación" soporta cuatro ejes y cuatro grados de libertad. El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

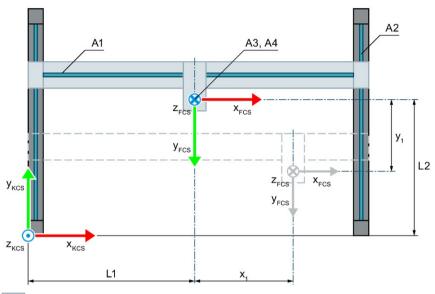

La cinemática consta de los ejes siguientes:

- Tres ejes lineales ortogonales A1, A2 y A3
- Un eje rotatorio A4 (eje de orientación)

Los ejes lineales encierran una zona de operación cuadrada. El eje de orientación A4 permite la rotación de la herramienta.

El gráfico siguiente muestra en la vista frontal (plano xz):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva/negativa de los ejes A1 y A3



- Posición cero de la cinemática
 - L1 En la posición cero del eje A1:
 - Distancia del FCS con respecto al punto cero (origen) de la cinemática (KNP) en sentido x del KCS
 - En la posición cero del eje A3:
 Distancia del FCS con respecto al KNP y longitud de la brida LF en sentido z del KCS
 - LF Longitud de la brida antes del FCS en sentido z del FCS
- Elongación de la cinemática
 - x₁ Elongación del eje A1 en sentido x positivo
 - z₁ Elongación del eje A3 en sentido z positivo

3.7 Cinemática

El gráfico siguiente muestra en la vista en planta (plano xy):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva/negativa de los ejes A1 y A2

Posición cero de la cinemática

- L1 En la posición cero del eje A1:
 - Distancia del FCS con respecto al KNP en sentido x del KCS
- L2 En la posición cero del eje A2:

Distancia del FCS con respecto al KNP en sentido y del KCS

- Elongación de la cinemática
 - x₁ Elongación del eje A1 en sentido x positivo
 - y₁ Elongación del eje A2 en sentido y negativo

Leyenda de la representación de las cinemáticas (Página 36)

El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. El sistema de coordenadas de la brida (FCS) se encuentra a la distancia LF de la posición cero del eje A2.

La posición 0.0 en el objeto tecnológico interconectado en cada caso define las posiciones cero de los ejes A1, A2 y A3 en el KCS. Con las longitudes L1, L2 y L3 se definen las distancias de las posiciones cero de los ejes A1, A2 y A3 con respecto al punto cero (origen) de la cinemática. En la posición cero del eje A4, el eje x del FCS señala en dirección al eje x del KCS.

Zona de transformación

La transformación de la cinemática abarca toda la zona de desplazamiento (Página 125) de los ejes.

3.7.3.5 Variables del portal

Portal 2D

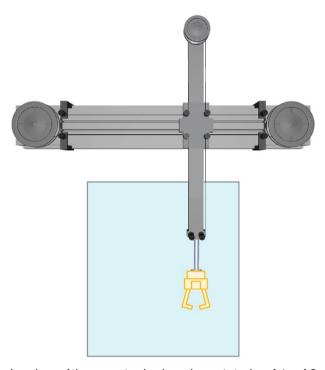
Las cinemáticas Portal 2D se definen mediante las siguientes variables del objeto tecnológico:

Variables	Valores	Descripción
<to>.Kinematics.TypeOfKinematics</to>	1	Portal 2D
	2	Portal 2D con orientación
<to>.Kinematics.Parameter[1]</to>	de -1.0E12 a 1.0E12	Distancia L1 de la posición cero del eje A1 con respecto al punto cero (origen) de la cinemática (KNP) en sentido x del sistema de coordenadas de la cinemática (KCS)
<to>.Kinematics.Parameter[2]</to>	de -1.0E12 a 1.0E12	Distancia del sistema de coordenadas de la brida con respecto al eje A2 en sentido z negativo del KCS
<to>.Kinematics.Parameter[3]</to>	de -1.0E12 a 1.0E12	Distancia L2 de la posición cero del eje A2 con respecto al KNP en sentido z del KCS

Portal 3D

Las cinemáticas Portal 3D se definen mediante las siguientes variables del objeto tecnológico:

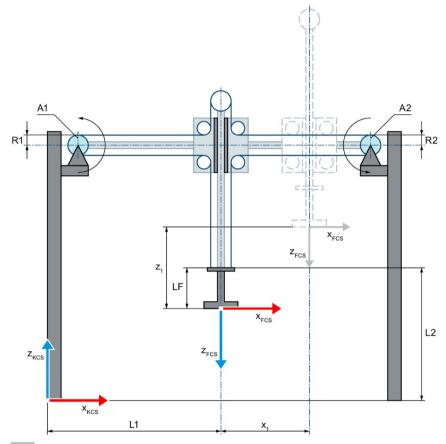
Variables	Valores	Descripción
<to>.Kinematics.TypeOfKinematics</to>	3	Portal 3D
	4	Portal 3D con orientación
<to>.Kinematics.Parameter[1]</to>	de -1.0E12 a 1.0E12	Distancia L1 de la posición cero del eje A1 con respecto al KNP en sentido x del KCS
<to>.Kinematics.Parameter[2]</to>	de -1.0E12 a 1.0E12	Distancia L2 de la posición cero del eje A2 con respecto al KNP en sentido y del KCS
<to>.Kinematics.Parameter[3]</to>	de -1.0E12 a 1.0E12	Distancia del sistema de coordenadas de la brida con respecto al eje A3 en sentido z negativo del KCS
<to>.Kinematics.Parameter[4]</to>	de -1.0E12 a 1.0E12	Distancia L3 de la posición cero del eje A3 con respecto al KNP en sentido z del KCS


Consulte también

Variables del objeto tecnológico Cinemática (Página 275)

3.7.4 Roller-picker

3.7.4.1 Roller-picker 2D


La cinemática "Roller-picker 2D" soporta dos ejes y dos grados de libertad. El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

La cinemática consta de dos ejes rotatorios A1 y A2 y un sistema de rodillos de reenvío. Cuando los ejes A1 y A2 giran en el mismo sentido, la brida se desplaza horizontalmente en sentido x del KCS. Cuando los ejes A1 y A2 giran en sentido opuesto, la brida se desplaza verticalmente en sentido z del KCS. La cinemática hace posible una zona de operación rectangular.

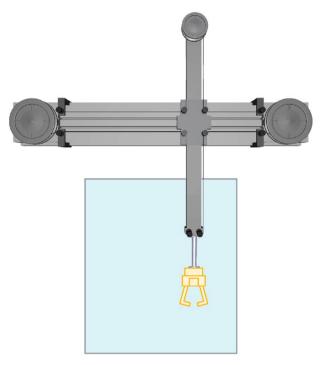
El gráfico siguiente muestra en la vista frontal:

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación de la cinemática

- Posición cero de la cinemática
 - L1 Con posición cero de los ejes A1 y A2:Distancia del FCS con respecto al KNP en sentido x del KCS
 - L2 Con posición cero de los ejes A1 y A2:
 Distancia del FCS con respecto al KNP y longitud de la brida LF en sentido z del KCS
 - LF Longitud de la brida antes del FCS en sentido z del FCS
 - R1 Radio de disco para el eje A1
 - R2 Radio de disco para el eje A2
- Elongación de la cinemática
 - x₁ Elongación de la cinemática en sentido x positivo
 - z₁ Elongación de la cinemática en sentido z positivo

3.7 Cinemática

El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. El sistema de coordenadas de la brida (FCS) está entre los ejes A1 y A2.

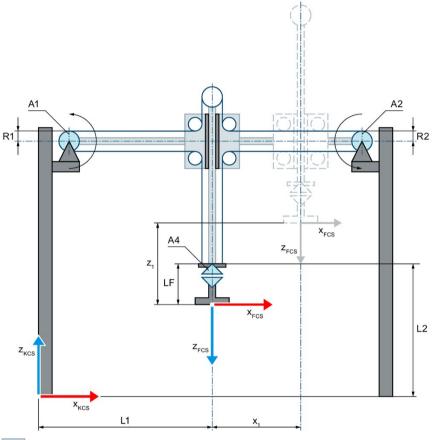

La posición 0.0 en el objeto tecnológico interconectado en cada caso define la posición cero de los ejes A1 y A2. Con las distancias L1 y L2 se define la posición del FCS con posición cero de los ejes A1 y A2. El FCS se desplaza en sentido z negativo del KCS en toda la longitud LF.

Zona de transformación

La transformación de la cinemática abarca toda la zona de desplazamiento (Página 125) de los ejes.

3.7.4.2 Roller-picker 2D con orientación

La cinemática "Roller-picker 2D con orientación" soporta tres ejes y tres grados de libertad. El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:


La cinemática consta de un sistema de rodillos de reenvío y los siguientes ejes:

- Dos ejes rotatorios A1 y A2
- Un eje rotatorio A4 (eje de orientación) con rotación en torno a z en el KCS

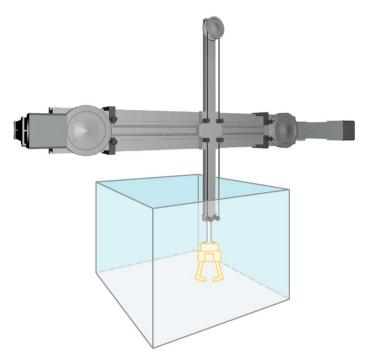
Cuando los ejes A1 y A2 giran en el mismo sentido, la brida se desplaza horizontalmente en sentido x del KCS. Cuando los ejes A1 y A2 giran en sentido opuesto, la brida se desplaza verticalmente en sentido z del KCS. La cinemática hace posible una zona de operación rectangular. El eje de orientación A4 permite la rotación de la herramienta.

El gráfico siguiente muestra en la vista frontal:

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación de la cinemática

- Posición cero de la cinemática
 - Con posición cero de los ejes A1 y A2:
 Distancia del FCS con respecto al KNP en sentido x del KCS
 - L2 Con posición cero de los ejes A1 y A2:
 Distancia del FCS con respecto al KNP y longitud de la brida LF en sentido z del KCS
 - LF Longitud de la brida antes del FCS en sentido z del FCS
 - R1 Radio de disco para el eje A1
 - R2 Radio de disco para el eje A2
- Elongación de la cinemática
 - x₁ Elongación de la cinemática en sentido x positivo
 - z₁ Elongación de la cinemática en sentido z positivo

El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. El sistema de coordenadas de la brida (FCS) está entre los ejes A1 y A2.

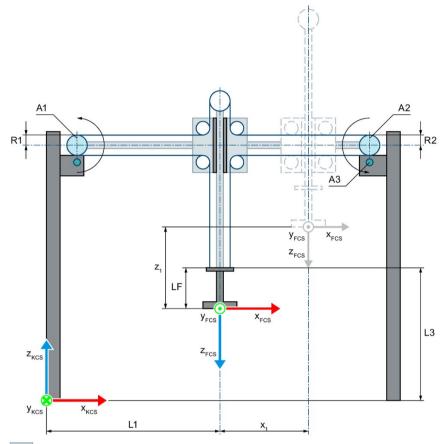

La posición 0.0 en el objeto tecnológico interconectado en cada caso define la posición cero de los ejes A1 y A2. Con las longitudes L1 y L2 se define la posición del FCS con posición cero de los ejes A1 y A2. El FCS se desplaza en sentido z negativo del KCS en toda la longitud LF. En la posición cero del eje A4, el eje x del FCS señala en dirección al eje x del KCS.

Zona de transformación

La transformación de la cinemática abarca toda la zona de desplazamiento (Página 125) de los ejes.

3.7.4.3 Roller-picker 3D (vertical)

La cinemática "Roller-picker 3D (vertical)" admite tres ejes y tres grados de libertad. El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

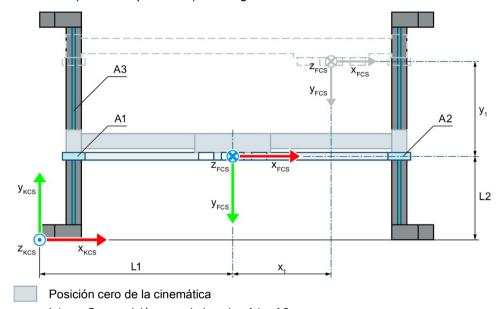

La cinemática consta de un sistema de rodillos de reenvío y los siguientes ejes:

- Dos ejes rotatorios A1 y A2
- Un eje lineal A3 en sentido y del KCS

Cuando los ejes A1 y A2 giran en el mismo sentido, la brida se desplaza horizontalmente en sentido x del KCS. Cuando los ejes A1 y A2 giran en sentido opuesto, la brida se desplaza verticalmente en sentido z del KCS. El eje lineal de portal A3 desplaza horizontalmente el sistema de rodillos de reenvío en sentido y del KCS. La cinemática hace posible una zona de operación rectangular.

El gráfico siguiente muestra en la vista frontal (plano xz):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación de la cinemática



- Posición cero de la cinemática
 - L1 Con posición cero de los ejes A1 y A2:Distancia del FCS con respecto al KNP en sentido x del KCS
 - L3 Con posición cero de los ejes A1 y A2:
 Distancia del FCS con respecto al KNP y longitud de la brida LF en sentido z del KCS
 - LF Longitud de la brida antes del FCS en sentido z del FCS
 - R1 Radio de disco para el eje A1
 - R2 Radio de disco para el eje A2
- Elongación de la cinemática
 - x₁ Elongación de la cinemática en sentido x positivo
 - z₁ Elongación de la cinemática en sentido z positivo

3.7 Cinemática

El gráfico siguiente muestra en la vista en planta (plano xy):

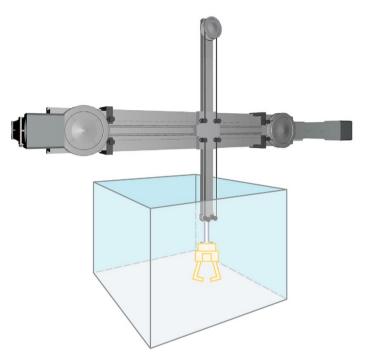
- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación de la cinemática

- Con posición cero de los ejes A1 y A2:
 Distancia del FCS con respecto al KNP en sentido x del KCS
- L2 En la posición cero del eje A3:Distancia del FCS con respecto al KNP en sentido y del KCS
- R1 Radio de disco para el eje A1
- R2 Radio de disco para el eje A2
- Elongación de la cinemática
 - x₁ Elongación de la cinemática en sentido x positivo
 - y₁ Elongación de la cinemática en sentido y positivo

Leyenda de la representación de las cinemáticas (Página 36)

El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. El sistema de coordenadas de la brida (FCS) está entre los ejes A1 y A2.

La posición 0.0 en el objeto tecnológico interconectado en cada caso define la posición cero de los ejes A1, A2 y A3 en el KCS. Mediante la longitud L2 se define la distancia de la posición cero del eje A3 con respecto al KNP en sentido y del KCS.

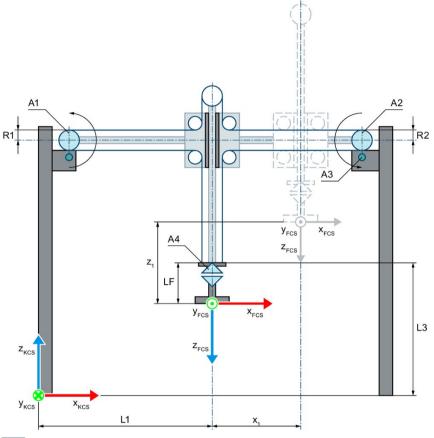

Con las longitudes L1 y L3 se define la posición del FCS con posición cero de los ejes A1 y A2. El FCS se desplaza en sentido z negativo del KCS en toda la longitud LF.

Zona de transformación

La transformación de la cinemática abarca toda la zona de desplazamiento (Página 125) de los ejes.

3.7.4.4 Roller-picker 3D con orientación (vertical)

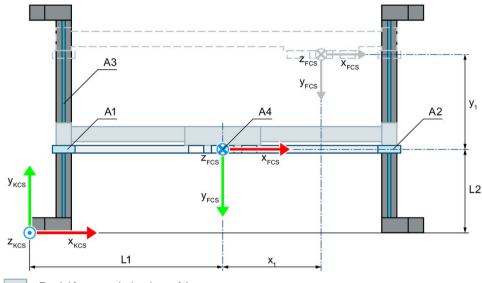
La cinemática "Roller-picker 3D con orientación (vertical)" admite cuatro ejes y cuatro grados de libertad. El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:


La cinemática consta de un sistema de rodillos de reenvío y los siguientes ejes:

- Dos ejes rotatorios A1 y A2
- Un eje lineal A3 en sentido y del KCS
- Un eje rotatorio A4 (eje de orientación) con rotación en torno a z en el KCS

Cuando los ejes A1 y A2 giran en el mismo sentido, la brida se desplaza horizontalmente en sentido x del KCS. Cuando los ejes A1 y A2 giran en sentido opuesto, la brida se desplaza verticalmente en sentido z del KCS. El eje lineal de portal A3 desplaza horizontalmente el sistema de rodillos de reenvío en sentido y del KCS. La cinemática hace posible una zona de operación rectangular. El eje de orientación A4 permite la rotación de la herramienta.

El gráfico siguiente muestra en la vista frontal (plano xz):


- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación de la cinemática

- Posición cero de la cinemática
 - L1 Con posición cero de los ejes A1 y A2:Distancia del FCS con respecto al KNP en sentido x del KCS
 - L3 Con posición cero de los ejes A1 y A2:
 Distancia del FCS con respecto al KNP y longitud de la brida LF en sentido z del KCS
 - LF Longitud de la brida antes del FCS en sentido z del FCS
 - R1 Radio de disco para el eje A1
- R2 Radio de disco para el eje A2
- Elongación de la cinemática
 - x₁ Elongación de la cinemática en sentido x positivo
 - z₁ Elongación de la cinemática en sentido z positivo

El gráfico siguiente muestra en la vista en planta (plano xy):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación de la cinemática

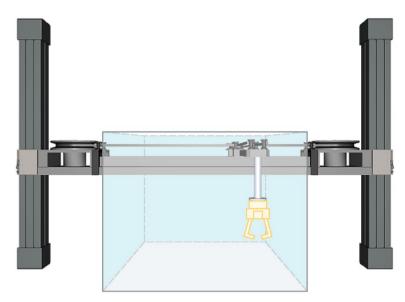
Posición cero de la cinemática

- L1 Con posición cero de los ejes A1 y A2:
 - Distancia del FCS con respecto al KNP en sentido x del KCS
- L2 En la posición cero del eje A3:
 - Distancia del FCS con respecto al KNP en sentido y del KCS
- R1 Radio de disco para el eje A1
- R2 Radio de disco para el eje A2
- Elongación de la cinemática
 - x₁ Elongación de la cinemática en sentido x positivo
 - y₁ Elongación de la cinemática en sentido y positivo

Leyenda de la representación de las cinemáticas (Página 36)

El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. El sistema de coordenadas de la brida (FCS) está entre los ejes A1 y A2.

La posición 0.0 en el objeto tecnológico interconectado en cada caso define la posición cero de los ejes A1, A2 y A3 en el KCS. Mediante la longitud L2 se define la distancia de la posición cero del eje A3 con respecto al KNP en sentido y del KCS.

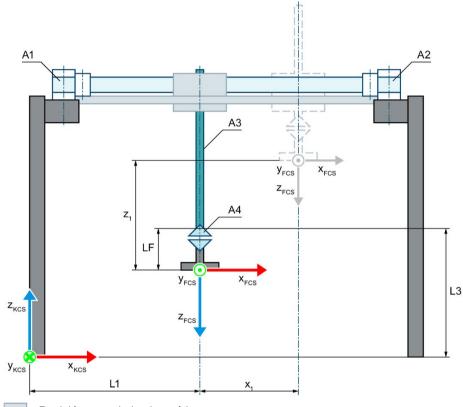

Con las longitudes L1 y L3 se define la posición del FCS con posición cero de los ejes A1 y A2. El FCS se desplaza en sentido z negativo del KCS en toda la longitud LF. En la posición cero del eje A4, el eje x del FCS señala en dirección al eje x del KCS.

Zona de transformación

La transformación de la cinemática abarca toda la zona de desplazamiento (Página 125) de los ejes.

3.7.4.5 Roller-picker 3D con orientación (horizontal)

La cinemática "Roller-picker 3D con orientación (horizontal)" admite cuatro ejes y cuatro grados de libertad. El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

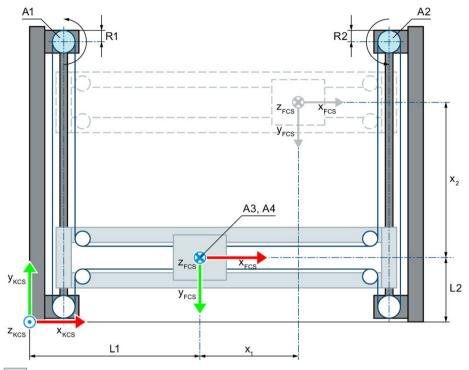

La cinemática consta de un sistema de rodillos de reenvío y los siguientes ejes:

- Dos ejes rotatorios A1 y A2
- Un eje lineal A3 en sentido z del KCS
- Un eje rotatorio A4 (eje de orientación) con rotación en torno a z en el KCS

Cuando los ejes A1 y A2 giran en el mismo sentido, la brida se desplaza horizontalmente en sentido x del KCS. Cuando los ejes A1 y A2 giran en sentido opuesto, la brida se desplaza horizontalmente en sentido y del KCS. El eje lineal de portal A3 desplaza verticalmente el sistema de rodillos de reenvío en sentido z del KCS. La cinemática hace posible una zona de operación rectangular. El eje de orientación A4 permite la rotación de la herramienta.

El gráfico siguiente muestra en la vista frontal (plano xz):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación de la cinemática



- Posición cero de la cinemática
 - L1 Con posición cero de los ejes A1 y A2:
 Distancia del FCS con respecto al KNP en sentido x del KCS
 - L3 En la posición cero del eje A3:
 Distancia del FCS con respecto al KNP y longitud de la brida LF en sentido z del KCS
 - LF Longitud de la brida antes del FCS en sentido z del FCS
 - R1 Radio de disco para el eje A1
 - R2 Radio de disco para el eje A2
- Elongación de la cinemática
 - x₁ Elongación de la cinemática en sentido x positivo
 - z₁ Elongación de la cinemática en sentido z positivo

3.7 Cinemática

El gráfico siguiente muestra en la vista en planta (plano xy):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación de la cinemática

- Posición cero de la cinemática
 - L1 Con posición cero de los ejes A1 y A2:
 Distancia del FCS con respecto al KNP en sentido x del KCS
 - L2 Con posición cero de los ejes A1 y A2:
 Distancia del FCS con respecto al KNP en sentido y del KCS
 - R1 Radio de disco para el eje A1
 - R2 Radio de disco para el eje A2
- Elongación de la cinemática
 - x₁ Elongación de la cinemática en sentido x positivo
 - y₁ Elongación de la cinemática en sentido y positivo

Leyenda de la representación de las cinemáticas (Página 36)

El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. El sistema de coordenadas de la brida (FCS) está entre los ejes A1 y A2.

La posición 0.0 en el objeto tecnológico interconectado en cada caso define la posición cero de los ejes A1, A2 y A3 en el KCS. Mediante la longitud L2 se define la distancia de la posición cero del eje A3 con respecto al KNP en sentido y del KCS.

Con las longitudes L1 y L3 se define la posición del FCS con posición cero de los ejes A1 y A2. El FCS se desplaza en sentido z negativo del KCS en toda la longitud LF.

Zona de transformación

La transformación de la cinemática abarca toda la zona de desplazamiento (Página 125) de los ejes.

3.7.4.6 Variables del Roller-picker

Roller-picker 2D

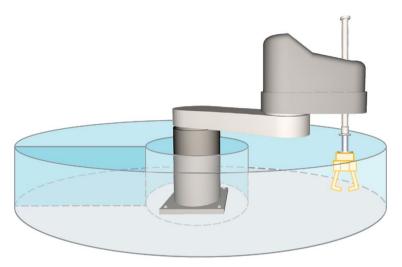
Las cinemáticas Roller-picker 2D se definen mediante las siguientes variables del objeto tecnológico:

Variables	Valores	Descripción
<to>.Kinematics.TypeOfKinematics</to>	5	Roller-picker 2D
	6	Roller-picker 2D con orientación
<to>.Kinematics.Parameter[1]</to>	de -1.0E12 a 1.0E12	Con posición cero de los ejes A1 y A2:
		Distancia L1 del FCS con respecto al KNP en sentido x del sistema de coordenadas de la cinemática (KCS)
<to>.Kinematics.Parameter[2]</to>	de 0.001 a 1.0E12	Radio de disco R1 para eje 1
<to>.Kinematics.Parameter[3]</to>	de 0.001 a 1.0E12	Radio de disco R2 para eje 2
<to>.Kinematics.Parameter[4]</to>	de -1.0E12 a 1.0E12	Longitud de la brida LF antes del sistema de coordenadas de brida (FCS) en sentido z negativo del KCS
<to>.Kinematics.Parameter[5]</to>	de -1.0E12 a 1.0E12	Con posición cero de los ejes A1 y A2:
		Distancia L2 del FCS con respecto al KNP en sentido z del KCS

3.7 Cinemática

Roller-picker 3D

Las cinemáticas Roller-picker 3D se definen mediante las siguientes variables del objeto tecnológico:

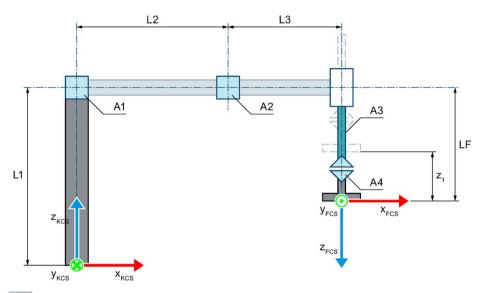

Variables	Valores	Descripción		
<to>.Kinematics.TypeOfKinematics</to>	7	Roller-picker 3D (vertical)		
	8	Roller-picker 3D con orientación (vertical)		
	9	Roller-picker	Roller-picker 3D con orientación (horizontal)	
<to>.Kinematics.Parameter[1]</to>	de -1.0E12 a 1.0E12	Con posiciór	n cero de los ejes A1 y A2:	
		Distancia L1 x del KCS	del FCS con respecto al KNP en sentido	
<to>.Kinematics.Parameter[2]</to>	de 0.001 a 1.0E12	Radio de disco R1 para eje 1		
<to>.Kinematics.Parameter[3]</to>	de 0.001 a 1.0E12	Radio de dis	sco R2 para eje 2	
<to>.Kinematics.Parameter[4]</to>	de -1.0E12 a 1.0E12	Longitud de la brida LF antes del FCS en sentido z negativo del KCS		
<to>.Kinematics.Parameter[5]</to>	de -1.0E12 a 1.0E12	Roller- picker vertical	Distancia L2 de la posición cero del eje A3 con respecto al KNP en sentido y del KCS	
		Roller- picker horizontal	Con posición cero de los ejes A1 y A2: Distancia L2 del FCS con respecto al punto cero (origen) de la cinemática (KNP) en sentido y del KCS	
<to>.Kinematics.Parameter[6]</to>	de -1.0E12 a 1.0E12	Roller-	Con posición cero de los ejes A1 y A2:	
		picker vertical	Distancia L3 del FCS con respecto al KNP en sentido z del KCS	
		Roller- picker horizontal	Distancia L3 de la posición cero del eje A3 con respecto al KNP en sentido z del KCS	

3.7.5 SCARA

3.7.5.1 SCARA 3D con orientación

La cinemática "SCARA (Selective Compliance Assembly Robot Arm) 3D con orientación" soporta cuatro ejes y cuatro grados de libertad. Los ejes están diseñados como cinemática serial.

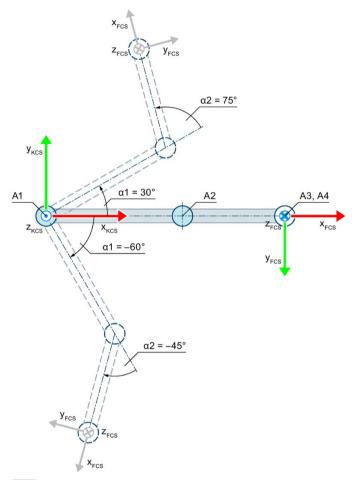
El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:


La cinemática consta de los ejes siguientes:

- Un eje rotatorio A1 con rotación en torno al eje z del sistema de coordenadas de la cinemática (KCS)
- Un eje rotatorio A2 a la distancia L2 con respecto a A1 con una rotación en torno a z del KCS
- Un eje lineal A3 a la distancia L3 con respecto a A2 con movimiento en sentido z del KCS
- Un eje rotatorio A4 (eje de orientación) con rotación en torno a z en el KCS

La cinemática consta de una base y de dos palancas para la alineación horizontal, unidas mediante articulaciones rotativas (ejes A1 y A2). Al final de este brazo articulado se fija un eje lineal (eje A3) para la alineación vertical. La herramienta está fijada al final del eje lineal. El eje de orientación A4 permite el movimiento rotatorio de la herramienta.

El gráfico siguiente muestra en la vista lateral (plano xz):


- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática

- Posición cero de la cinemática
 - L1 Distancia del eje A1 con respecto al KNP en sentido z del KCS
 - L2 Distancia del eje A2 con respecto al eje A1 en sentido x del KCS
 - L3 Distancia del eje A3 con respecto al eje A2 en sentido x del KCS
 - LF Distancia del FCS con respecto al eje A2 en sentido z del FCS
- Elongación de la cinemática
 - z₁ Elongación del eje A3 en sentido positivo

El gráfico siguiente muestra en la vista en planta (plano xy):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva/negativa de la cinemática

Posición cero de la cinemática

Elongación de la cinemática en sentido positivo con $\alpha 1 = 30.0^{\circ}$ con posición positiva de la articulación con $\alpha 2 = 75.0^{\circ}$

Elongación de la cinemática en sentido negativo con $\alpha 1$ = -60.0° y posición negativa de la articulación con $\alpha 2$ = -45.0°

- α 1 Elongación del eje A1 en sentido positivo con α 1 = 30.0° Elongación del eje A1 en sentido negativo con α 1 = -60.0°
- α2 La elongación del eje A2 en sentido positivo con α2 = 75.0° da como resultado una posición de la articulación positiva.

La elongación del eje A2 en sentido negativo con α 2 = -45.0° da como resultado una posición de la articulación negativa.

Leyenda de la representación de las cinemáticas (Página 36)

El KCS con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. El sistema de coordenadas de la brida (FCS) se encuentra al final del eje A3.

3.7 Cinemática

La tabla siguiente muestra la posición cero de los ejes:

Eje	Posición cero
A1 y A2	La cinemática se extiende en sentido x _{KCS} .
A3	El FCS está a una distancia L1-LF del KCS en sentido z.
A4	En la posición cero de los ejes A1 y A2, el eje x del FCS señala en el sentido del eje x del KCS.

Compensación de acoplamientos mecánicos de los ejes

Para la cinemática existe la posibilidad de configurar los siguientes acoplamientos mecánicos de los ejes:

- Acoplamiento mecánico del eje A1 al eje A2
- Acoplamiento mecánico del eje A4 al eje A3

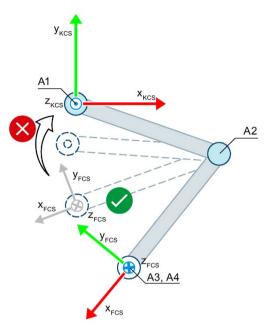
La transformación de la cinemática compensa los acoplamientos mecánicos configurados de los ejes. Con un factor de acoplamiento >0.0 la transformación de la cinemática supone que un movimiento positivo del eje A1 provoca un movimiento negativo en el eje A2. El acoplamiento entre el eje A4 y el eje A3 se implementa como paso del husillo. Un factor de acoplamiento de 1.0 significa que 360.0° en el eje A4 se corresponden con un trayecto de -1.0 mm en el eje A3.

Zona de transformación

La transformación de la cinemática abarca la siguiente zona de desplazamiento (Página 125) de los ejes:

- Eje A1: $-180.0^{\circ} \le \alpha 1 \le 180.0^{\circ}$
- Eje A2: $-180.0^{\circ} \le \alpha 2 \le 180.0^{\circ}$
- Eje A3: sin limitación
- Eje A4: sin limitación

Para la orientación puede especificarse un ángulo mayor de 360°. No obstante, la coordenada A del punto de operación de la herramienta (TCP) se representa en el rango de -180° a +180°.


Nota

Posiciones singulares

La cinemática tiene posiciones singulares (Página 128).

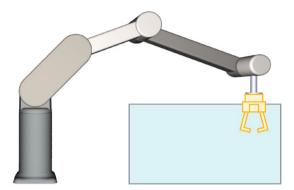
Existe una posición singular cuando el origen del sistema de coordenadas de la brida (FCS) se encuentra en el eje z del sistema de coordenadas de la cinemática (KCS). En esta zona no es posible la transformación hacia atrás. Esta posición puede obtenerse, p. ej., en una estructura suspendida cuando las longitudes L2 y L3 son idénticas.

El gráfico siguiente muestra, a modo de ejemplo, un movimiento en dirección a la posición singular de la articulación:

- Posición de la articulación admisible
- Posición de la articulación no válida para la transformación cuando L2 = L3

3.7.5.2 Variables de SCARA

La cinemática de SCARA se define mediante las siguientes variables del objeto tecnológico:


Variables	Valores	Descripción	
<to>.Kinematics.TypeOfKinematics</to>	25	SCARA 3D con orientación	
<to>.Kinematics.Parameter[1]</to>	de -1.0E12 a 1.0E12	Distancia del eje A1 con respecto al punto cero (origen) de la cinemática en sentido z del sistema de coordenadas de la cinemática (KCS)	
<to>.Kinematics.Parameter[2]</to>	de 0.001 a 1.0E12	Distancia L2 del eje A2 con respecto al eje A1 en sentido x del KCS	
<to>.Kinematics.Parameter[3]</to>	-	Acoplamiento mecánico del eje A1 al eje A2 existente/no existente	
	0	No existe	
	1	Existe	
<to>.Kinematics.Parameter[4]</to>	de -1.0E12 a 1.0E12	Factor de acoplamiento mecánico del eje A1 al eje A2	
<to>.Kinematics.Parameter[5]</to>	de 0.001 a 1.0E12	Distancia L3 del eje A3 con respecto al eje A2 en sentido x del KCS	
<to>.Kinematics.Parameter[6]</to>	-	Acoplamiento mecánico del eje A4 al eje A3 existente/no existente	
	0	No existe	
	1	Existe	
<to>.Kinematics.Parameter[7]</to>	de -1.0E12 a 1.0E12	Factor de acoplamiento mecánico del eje A4 al eje A3	
<to>.Kinematics.Parameter[8]</to>	de -1.0E12 a 1.0E12	Distancia del sistema de coordenadas de la brida con respecto al eje A2 en sentido z negativo del KCS	

3.7.6 Brazo articulado

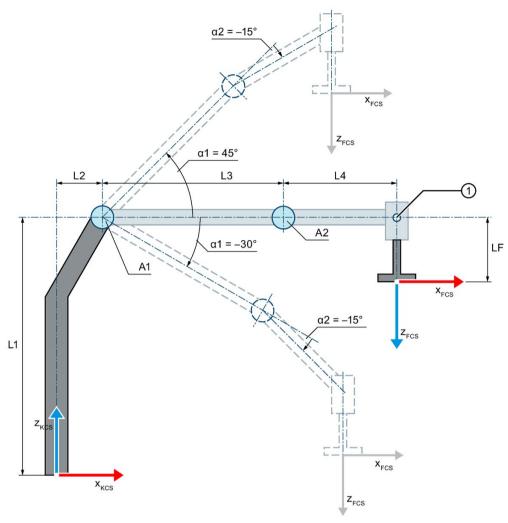
3.7.6.1 Brazo articulado 2D

La cinemática "Brazo articulado 2D" soporta dos ejes y dos grados de libertad. Los ejes están diseñados como cinemática serial con acoplamiento forzado del sistema de brida.

El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

La cinemática consta de los ejes siguientes:

- Un eje rotatorio A1 a las distancias L1 en sentido z del KCS y L2 en sentido x del KCS con respecto al origen de la cinemática
- Un eje rotatorio A2 a la distancia L3 con respecto al eje A1


La cinemática consta de una base y de brazos articulados unidos mediante articulaciones rotativas (ejes A1 y A2). Los ejes A1 y A2 desplazan verticalmente los brazos articulados. Mediante el acoplamiento forzado entre el eje A2 y el sistema de brida, el eje z del FCS señala siempre en sentido z negativo del KCS.

Sistemas de coordenadas y posición cero

El gráfico siguiente muestra en la vista lateral:

- La posición de los ejes y del punto de acoplamiento forzado
- La posición de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva/negativa de la cinemática

3.7 Cinemática

- ① Punto de acoplamiento forzado
- Posición cero de la cinemática
 - L1 Distancia del eje A1 con respecto al origen de la cinemática (KNP) en sentido z del KCS
 - L2 Distancia del eje A1 con respecto al KNP en sentido x del KCS
 - L3 Distancia del eje A2 con respecto al eje A1 en sentido x del KCS
 - L4 Distancia del punto de acoplamiento forzado con respecto al eje A2 en sentido x del KCS
 - LF Distancia del FCS con respecto al punto de acoplamiento forzado en sentido z del FCS
- Elongación de la cinemática
 - α1 Elongación positiva del eje A1 con α1 = 45.0° Elongación negativa del eje A1 con α1 = -30.0°
 - α2 Elongación negativa del eje A2 con α2 = -15.0°

Leyenda de la representación de las cinemáticas (Página 36)

El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. Con las longitudes L1 y L2 se define la posición del eje A1 con respecto al KNP. El eje A2 se encuentra a la distancia L3 en sentido x del KCS con respecto al eje A1.

El sistema de coordenadas de brida (FCS) se encuentra a las siguientes distancias del eje A2 y del punto de acoplamiento forzado:

- Distancia L4 del eje A2 en sentido x del KCS
- Distancia LF del punto de acoplamiento forzado en sentido z negativo del KCS

El eje A2 y el sistema de brida están acoplados de forma forzada. Con el acoplamiento forzado, el eje z del FCS señala siempre en sentido z negativo del KCS. El punto de acoplamiento forzado se encuentra a la distancia L4 en sentido x del KCS con respecto al eje A2.

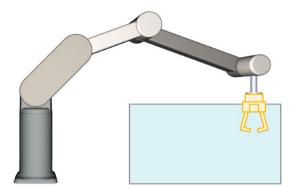
La tabla siguiente muestra la posición cero de los ejes:

Eje	Posición cero
A1	La longitud L3 señala en sentido x del KCS.
A2	En la posición cero del eje A1, la longitud L4 señala en sentido x del KCS.

Compensación de acoplamientos mecánicos de los ejes

Para la cinemática existe la posibilidad de configurar un acoplamiento mecánico del eje A1 al eje A2. La transformación de la cinemática compensa el acoplamiento mecánico configurado de los ejes. Con un factor de acoplamiento >0.0 la transformación de la cinemática supone que un movimiento positivo del eje A1 provoca un movimiento negativo en el eje A2.

Zona de transformación


La transformación de la cinemática abarca la siguiente zona de desplazamiento (Página 125) de los ejes:

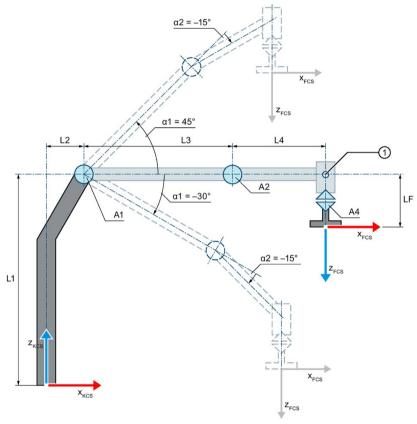
- Eje A1: $-180.0^{\circ} \le \alpha 1 < 180.0^{\circ}$
- Eje A2: $-180.0^{\circ} \le \alpha 2 < 180.0^{\circ}$

3.7.6.2 Brazo articulado 2D con orientación

La cinemática "Brazo articulado 2D con orientación" soporta tres ejes y tres grados de libertad. Los ejes están diseñados como cinemática serial con acoplamiento forzado del sistema de brida.

El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

La cinemática consta de los ejes siguientes:


- Un eje rotatorio A1 a las distancias L1 en sentido z del KCS y L2 en sentido x del KCS con respecto al origen de la cinemática
- Un eje rotatorio A2 a la distancia L3 con respecto al eje A1
- Un eje rotatorio A4 (eje de orientación) a la distancia L4 en sentido x del KCS con respecto al eje A2

La cinemática consta de una base y de brazos articulados unidos mediante articulaciones rotativas (ejes A1 y A2). Los ejes A1 y A2 desplazan verticalmente los brazos articulados. Mediante el acoplamiento forzado entre el eje A2 y el sistema de brida, el eje z del FCS señala siempre en sentido z negativo del KCS. El eje de orientación A4 permite la rotación de la herramienta.

Sistemas de coordenadas y posición cero

El gráfico siguiente muestra en la vista lateral:

- La posición de los ejes y del punto de acoplamiento forzado
- La posición de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva/negativa de la cinemática

- 1 Punto de acoplamiento forzado
- Posición cero de la cinemática
 - L1 Distancia del eje A1 con respecto al origen de la cinemática (KNP) en sentido z del KCS
 - L2 Distancia del eje A1 con respecto al KNP en sentido x del KCS
 - L3 Distancia del eje A2 con respecto al eje A1 en sentido x del KCS
 - L4 Distancia del punto de acoplamiento forzado con respecto al eje A2 en sentido x del KCS
 - LF Distancia del FCS con respecto al punto de acoplamiento forzado en sentido z del FCS Elongación de la cinemática
- Elongación positiva del eje A1 con α 1 = 45.0° Elongación negativa del eje A1 con α 1 = -30.0°
 - α2 Elongación negativa del eje A2 con α2 = -15.0°

El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. Con las longitudes L1 y L2 se define la posición del eje A1 con respecto al KNP. El eje A2 se encuentra a la distancia L3 en sentido x del KCS con respecto al eje A1.

El sistema de coordenadas de brida (FCS) se encuentra a las siguientes distancias del eje A2 y del punto de acoplamiento forzado:

- Distancia L4 del eje A2 en sentido x del KCS
- Distancia LF del punto de acoplamiento forzado en sentido z negativo del KCS

El eje A2 y el sistema de brida están acoplados de forma forzada. Con el acoplamiento forzado, el eje z del FCS señala siempre en sentido z negativo del KCS. El punto de acoplamiento forzado se encuentra a la distancia L4 en sentido x del KCS con respecto al eje A2.

La tabla siguiente muestra la posición cero de los ejes:

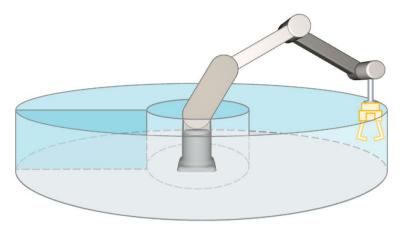
Eje	Posición cero
A1	La longitud L3 señala en sentido x del KCS.
A2	En la posición cero del eje A1, la longitud L4 señala en sentido x del KCS.
A4	En la posición cero de los ejes A1 y A2, el eje x del FCS señala en el sentido del eje x del KCS.

Compensación de acoplamientos mecánicos de los ejes

Para la cinemática existe la posibilidad de configurar un acoplamiento mecánico del eje A1 al eje A2. La transformación de la cinemática compensa el acoplamiento mecánico configurado de los ejes. Con un factor de acoplamiento >0.0 la transformación de la cinemática supone que un movimiento positivo del eje A1 provoca un movimiento negativo en el eje A2.

Zona de transformación

La transformación de la cinemática abarca la siguiente zona de desplazamiento (Página 125) de los ejes:


- Eje A1: $-180.0^{\circ} \le \alpha 1 < 180.0^{\circ}$
- Eje A2: $-180.0^{\circ} \le \alpha 2 < 180.0^{\circ}$
- Eje A4: sin limitación

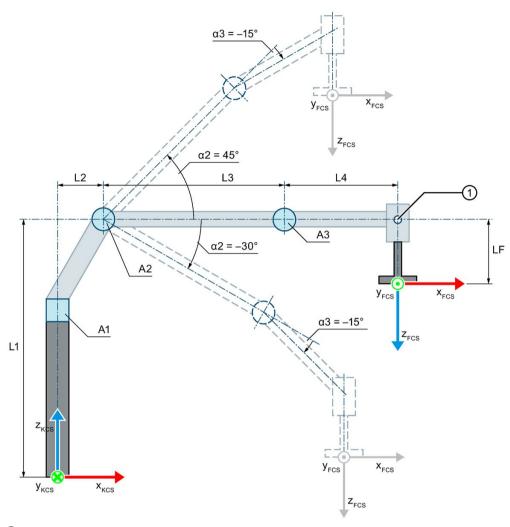
Para la orientación puede especificarse un ángulo mayor de 360°. No obstante, la coordenada A del punto de operación de la herramienta (TCP) se representa en el rango de -180° a +180°.

3.7.6.3 Brazo articulado 3D

La cinemática "Brazo articulado 3D" soporta tres ejes y tres grados de libertad. Los ejes están diseñados como cinemática serial con acoplamiento forzado del sistema de brida.

El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

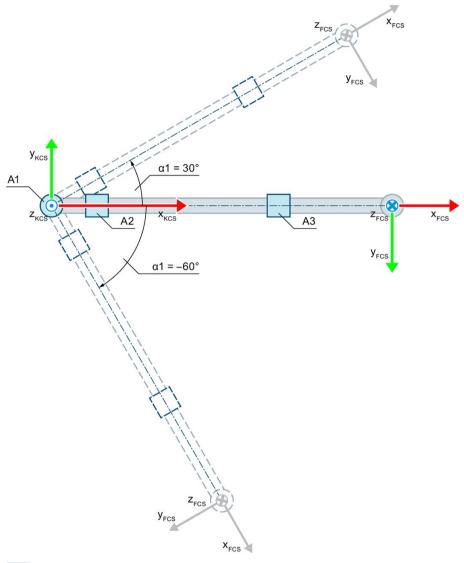
La cinemática consta de los ejes siguientes:


- Un eje rotatorio A1 con rotación en torno al eje z del sistema de coordenadas de la cinemática (KCS)
- Un eje rotatorio A2 a las distancias L1 en sentido z del KCS y L2 en sentido x del KCS con respecto al origen de la cinemática
- Un eje rotatorio A3 a la distancia L3 con respecto al eje A2

La cinemática consta de una base y de brazos articulados unidos mediante articulaciones rotativas (ejes A1, A2 y A3). El eje A1 gira la cinemática horizontalmente en torno a la base. Los ejes A2 y A3 desplazan los brazos articulados en vertical. La cinemática hace posible una zona de operación prácticamente esférica. Mediante el acoplamiento forzado entre el eje A2 y el sistema de brida, el eje z del FCS señala siempre en sentido z negativo del KCS.

Sistemas de coordenadas y posición cero

El gráfico siguiente muestra en la vista lateral (plano xz):


- La posición de los ejes y del punto de acoplamiento forzado
- La posición de los sistemas de coordenadas KCS y FCS
- La posición cero de los ejes
- Esbozada (con línea punteada) la elongación positiva/negativa de los ejes A2 y A3

- ① Punto de acoplamiento forzado
- Posición cero de la cinemática
 - L1 Distancia del eje A2 con respecto al origen de la cinemática (KNP) en sentido z del KCS
 - L2 Distancia del eje A2 con respecto al KNP en sentido x del KCS
 - L3 Distancia del eje A3 con respecto al eje A2 en sentido x del KCS
 - L4 Distancia del punto de acoplamiento forzado del eje A3 en sentido x del KCS
 - LF Distancia del FCS con respecto al punto de acoplamiento forzado en sentido z del FCS
- Elongación de la cinemática
 - α2 Elongación positiva del eje A2 con $α2 = 45.0^{\circ}$ Elongación negativa del eje A2 con $α2 = -30.0^{\circ}$
 - α 3 Elongación negativa del eje A3 con α 3 = -15.0°

El gráfico siguiente muestra en la vista en planta (plano xy):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva/negativa de la cinemática

Posición cero de la cinemática

Elongación de la cinemática

α1 Elongación positiva del eje A1 con $α1 = 30.0^{\circ}$ Elongación negativa del eje A1 con $α1 = -60.0^{\circ}$

El KCS con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. Con las longitudes L1 y L2 se define la posición del eje A2 con respecto al KNP. El eje A3 se encuentra a la distancia L3 en sentido x del KCS con respecto al eje A2.

El sistema de coordenadas de la brida (FCS) se encuentra a las siguientes distancias del eje A3 y del punto de acoplamiento forzado:

- Distancia L4 del eje A3 en sentido x del KCS
- Distancia LF del punto de acoplamiento forzado en sentido z negativo del KCS

El eje A3 y el sistema de brida están acoplados de forma forzada. Con el acoplamiento forzado, el eje z del FCS señala siempre en sentido z negativo del KCS. El punto de acoplamiento forzado se encuentra a la distancia L4 en sentido x del KCS con respecto al eje A3.

La tabla siguiente muestra la posición cero de los ejes:

Eje	Posición cero
A1	Los brazos articulados de la cinemática señalan en sentido x del KCS.
A2	En la posición cero del eje A1, la longitud L3 señala en sentido x del KCS.
A3	En la posición cero de los ejes A1 y A2, la longitud L4 señala en sentido x del KCS.

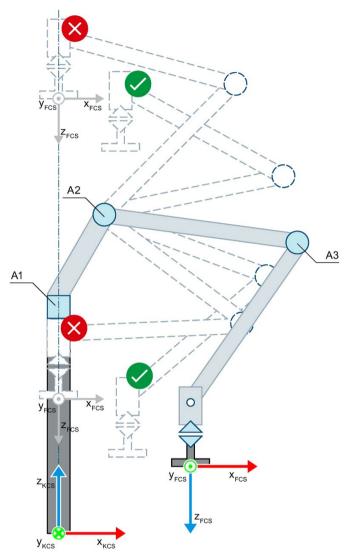
Compensación de acoplamientos mecánicos de los ejes

Para la cinemática existe la posibilidad de configurar un acoplamiento mecánico del eje A2 al eje A3. La transformación de la cinemática compensa el acoplamiento mecánico configurado de los ejes. Con un factor de acoplamiento >0.0 la transformación de la cinemática supone que un movimiento positivo del eje A2 provoca un movimiento negativo en el eje A3.

Zona de transformación

La transformación de la cinemática abarca la siguiente zona de desplazamiento (Página 125) de los ejes:

- Eje A1: $-180.0^{\circ} \le \alpha 1 < 180.0^{\circ}$
- Eje A2: $-180.0^{\circ} \le \alpha 2 < 180.0^{\circ}$
- Eje A3: $-180.0^{\circ} \le \alpha 3 < 180.0^{\circ}$

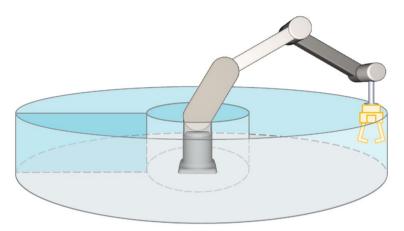

Nota

Posiciones singulares

La cinemática tiene posiciones singulares (Página 128).

Existe una posición singular cuando el origen del sistema de coordenadas de la brida (FCS) se encuentra en el eje z del sistema de coordenadas de la cinemática (KCS). En esta zona no es posible la transformación hacia atrás.

El gráfico siguiente muestra, a modo de ejemplo, posiciones de la articulación admisibles y no válidas para la transformación:



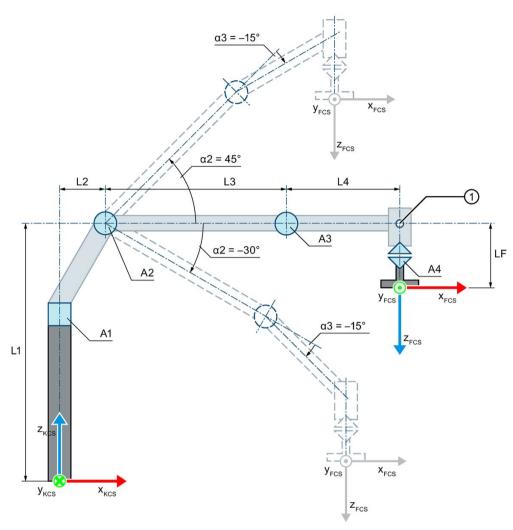
- Posición de la articulación admisible
- Posición de la articulación no válida para la transformación

3.7.6.4 Brazo articulado 3D con orientación

La cinemática "Brazo articulado 3D con orientación" soporta cuatro ejes y cuatro grados de libertad. Los ejes están diseñados como cinemática serial con acoplamiento forzado del sistema de brida.

El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

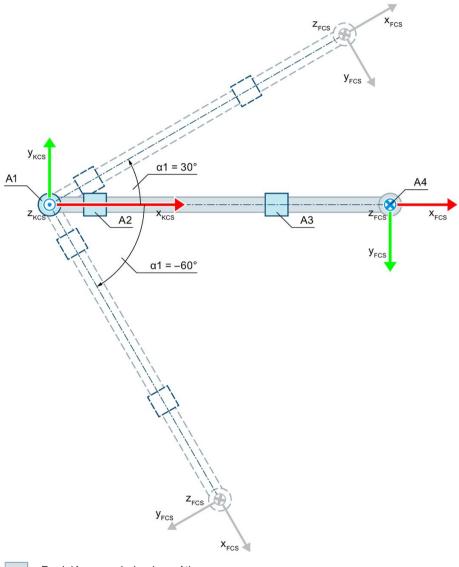
La cinemática consta de los ejes siguientes:


- Un eje rotatorio A1 con rotación en torno al eje z del sistema de coordenadas de la cinemática (KCS)
- Un eje rotatorio A2 a las distancias L1 en sentido z del KCS y L2 en sentido x del KCS con respecto al origen de la cinemática
- Un eje rotatorio A3 a la distancia L3 con respecto al eje A2
- Un eje rotatorio A4 (eje de orientación) a la distancia L4 en sentido x del KCS con respecto al eje A3

La cinemática consta de una base y de brazos articulados unidos mediante articulaciones rotativas (ejes A1, A2 y A3). El eje A1 gira la cinemática horizontalmente en torno a la base. Los ejes A2 y A3 desplazan los brazos articulados en vertical. La cinemática hace posible una zona de operación prácticamente esférica. Mediante el acoplamiento forzado entre el eje A2 y el sistema de brida, el eje z del FCS señala siempre en sentido z negativo del KCS. El eje de orientación A4 permite la rotación de la herramienta.

Sistemas de coordenadas y posición cero

El gráfico siguiente muestra en la vista lateral (plano xz):


- La posición de los ejes y del punto de acoplamiento forzado
- La posición de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva/negativa de la cinemática

- ① Punto de acoplamiento forzado
- Posición cero de la cinemática
 - L1 Distancia del eje A2 con respecto al origen de la cinemática (KNP) en sentido z del KCS
 - L2 Distancia del eje A2 con respecto al KNP en sentido x del KCS
 - L3 Distancia del eje A3 con respecto al eje A2 en sentido x del KCS
 - L4 Distancia del punto de acoplamiento forzado del eje A3 en sentido x del KCS
 - LF Distancia del FCS con respecto al punto de acoplamiento forzado en sentido z del FCS
- Elongación de la cinemática
 - α2 Elongación positiva del eje A2 con $α2 = 45.0^{\circ}$ Elongación negativa del eje A2 con $α2 = -30.0^{\circ}$
 - α 3 Elongación negativa del eje A3 con α 3 = -15.0°

El gráfico siguiente muestra en la vista en planta (plano xy):

- La posición de los ejes
- La posición de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva/negativa de la cinemática

Posición cero de la cinemática

Elongación de la cinemática

α1 Elongación positiva del eje A1 con $α1 = 30.0^{\circ}$ Elongación negativa del eje A1 con $α1 = -60.0^{\circ}$

El KCS con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. Con las longitudes L1 y L2 se define la posición del eje A2 con respecto al KNP. El eje A3 se encuentra a la distancia L3 en sentido x del KCS con respecto al eje A2.

El sistema de coordenadas de la brida (FCS) se encuentra a las siguientes distancias del eje A3 y del punto de acoplamiento forzado:

- Distancia L4 del eje A3 en sentido x del KCS
- Distancia LF del punto de acoplamiento forzado en sentido z negativo del KCS

El eje A3 y el sistema de brida están acoplados de forma forzada. Con el acoplamiento forzado, el eje z del FCS señala siempre en sentido z negativo del KCS. El punto de acoplamiento forzado se encuentra a la distancia L4 en sentido x del KCS con respecto al eje A3.

La tabla siguiente muestra la posición cero de los ejes:

Eje	Posición cero
A1	Los brazos articulados de la cinemática señalan en sentido x del KCS.
A2	En la posición cero del eje A1, la longitud L3 señala en sentido x del KCS.
A3	En la posición cero de los ejes A1 y A2, la longitud L4 señala en sentido x del KCS.
A4	En la posición cero de los ejes A1, A2 y A3, el eje x del FCS señala en el sentido del eje x del KCS.

Compensación de acoplamientos mecánicos de los ejes

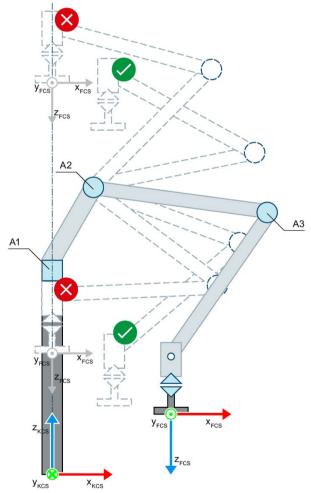
Para la cinemática existe la posibilidad de configurar un acoplamiento mecánico del eje A2 al eje A3. La transformación de la cinemática compensa el acoplamiento mecánico configurado de los ejes. Con un factor de acoplamiento >0.0 la transformación de la cinemática supone que un movimiento positivo del eje A2 provoca un movimiento negativo en el eje A3.

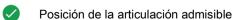
Zona de transformación

La transformación de la cinemática abarca la siguiente zona de desplazamiento (Página 125) de los ejes:

- Eie A1: $-180.0^{\circ} \le \alpha 1 < 180.0^{\circ}$
- Eje A2: $-180.0^{\circ} \le \alpha 2 < 180.0^{\circ}$
- Eje A3: $-180.0^{\circ} \le \alpha 3 < 180.0^{\circ}$
- Eje A4: sin limitación

Para la orientación puede especificarse un ángulo mayor de 360°. No obstante, la coordenada A del punto de operación de la herramienta (TCP) se representa en el rango de -180° a +180°.


Nota


Posiciones singulares

La cinemática tiene posiciones singulares (Página 128).

Existe una posición singular cuando el origen del sistema de coordenadas de la brida (FCS) se encuentra en el eje z del sistema de coordenadas de la cinemática (KCS). En esta zona no es posible la transformación hacia atrás.

El gráfico siguiente muestra, a modo de ejemplo, posiciones de la articulación admisibles y no válidas para la transformación:

Posición de la articulación no válida para la transformación

3.7.6.5 Variables del brazo articulado

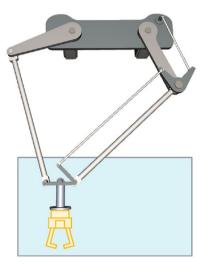
Brazo articulado 2D

Las cinemáticas Brazo articulado 2D se definen mediante las siguientes variables del objeto tecnológico:

Variables	Valores	Descripción
<to>.Kinematics.TypeOfKinematics</to>	11	Brazo articulado 2D
	12	Brazo articulado 2D con orientación
<to>.Kinematics.Parameter[1]</to>	de -1.0E12 a 1.0E12	Distancia L1 del eje A1 con respecto al punto cero (ori- gen) de la cinemática en sentido z del sistema de coorde- nadas de la cinemática (KCS)
<to>.Kinematics.Parameter[2]</to>	de -1.0E12 a 1.0E12	Distancia L2 del eje A1 con respecto al origen de la cinemática en sentido x del KCS
<to>.Kinematics.Parameter[3]</to>	de 0.001 a 1.0E12	Longitud del lado L3 entre los ejes A1 y A2
<to>.Kinematics.Parameter[4]</to>	-	Acoplamiento mecánico del eje A1 al eje A2 existente/no existente
	0	No existe
	1	Existe
<to>.Kinematics.Parameter[5]</to>	de -1.0E12 a 1.0E12	Factor de acoplamiento mecánico del eje A1 al eje A2
<to>.Kinematics.Parameter[6]</to>	de 0.001 a 1.0E12	Longitud del lado L4 entre el eje A2 y el punto de acoplamiento forzado
<to>.Kinematics.Parameter[7]</to>	de -1.0E12 a 1.0E12	Distancia LF del sistema de coordenadas de la brida (FCS) respecto al punto de acoplamiento forzado en sentido z negativo del KCS

Brazo articulado 3D

Las cinemáticas de brazo articulado 3D se definen mediante las siguientes variables del objeto tecnológico:

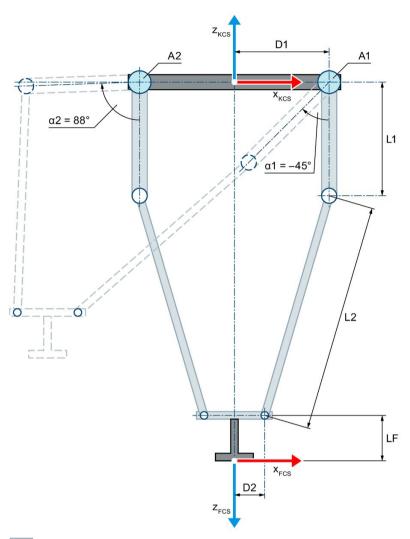

Variables	Valores	Descripción
<to>.Kinematics.TypeOfKinematics</to>	13	Brazo articulado 3D
	14	Brazo articulado 3D con orientación
<to>.Kinematics.Parameter[1]</to>	de -1.0E12 a 1.0E12	Distancia L1 del eje A2 con respecto al punto cero (origen) de la cinemática en sentido z del KCS
<to>.Kinematics.Parameter[2]</to>	de 0.0 a 1.0E12	Distancia L2 del eje A2 con respecto al punto cero (origen) de la cinemática en sentido x del KCS
<to>.Kinematics.Parameter[3]</to>	de 0.001 a 1.0E12	Longitud del lado L3 entre los ejes A2 y A3
<to>.Kinematics.Parameter[4]</to>	-	Acoplamiento mecánico del eje A2 al eje A3 existente/no existente
	0	No existe
	1	Existe
<to>.Kinematics.Parameter[5]</to>	de -1.0E12 a 1.0E12	Factor de acoplamiento mecánico del eje A2 al eje A3
<to>.Kinematics.Parameter[6]</to>	de 0.001 a 1.0E12	Longitud del lado L4 entre el eje A3 y el punto de acoplamiento forzado
<to>.Kinematics.Parameter[7]</to>	de -1.0E12 a 1.0E12	Distancia LF del FCS con respecto al punto de acoplamiento forzado en sentido z negativo del KCS

3.7.7 Delta-picker

3.7.7.1 Delta-picker 2D

La cinemática "Delta-picker 2D" soporta dos ejes y dos grados de libertad. Los ejes están diseñados como cinemática paralela.

El gráfico siguiente muestra la estructura básica y el espacio de trabajo típico de la cinemática:


La cinemática consta de dos ejes rotatorios A1 y A2.

La cinemática está modelada de forma suspendida y consta de una placa de unión superior, dos brazos superiores y una placa de unión inferior. Los ejes para mover los brazos (ejes A1 y A2) están fijados a la placa de unión superior. Los brazos superiores y las juntas de unión unen la placa de unión superior con la inferior. La herramienta cuelga de la placa de unión inferior. Las estructuras en forma de paralelogramo de las juntas de unión sostienen la placa de unión inferior en paralelo al plano xy del KCS.

Sistemas de coordenadas y posición cero

El gráfico siguiente muestra en la vista frontal:

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación de la cinemática

- Posición cero de la cinemática
 - D1 Distancia de los ejes al centro de la placa de unión superior (radio de la placa de unión superior)
 - D2 Distancia de los puntos de articulación de las juntas de unión con respecto a la placa de unión inferior (radio de la placa de unión inferior)
 - L1 Longitud de los brazos superiores
 - L2 Longitud de los brazos de unión
 - D1, D2, L1 y L2 son idénticas en ambos brazos de la cinemática.
 - LF Longitud de la brida antes del FCS en sentido z del FCS
- Elongación de la cinemática

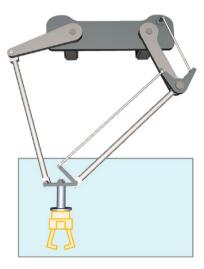
El movimiento de los ejes en sentido positivo es la rotación de los brazos superiores hacia fuera.

- α 1 Elongación del eje A1 en sentido negativo con α 1 = -45.0°
- α2 Elongación del eje A2 en sentido positivo con α2 = 88.0°

El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en el centro de la placa de unión superior. Los ejes A1 y A2 están separados del punto medio común (origen de la cinemática) en la distancia D1 respectivamente.

El sistema de coordenadas de la brida (FCS) está en el centro de la parte inferior de la placa de unión inferior a la misma distancia D2 con respecto a cada uno de los puntos de articulación de los brazos. El FCS se desplaza en sentido z negativo del KCS en toda la longitud LF.

En la posición cero de los ejes A1 y A2, los brazos superiores señalan en el sentido z negativo del KCS.


Zona de transformación

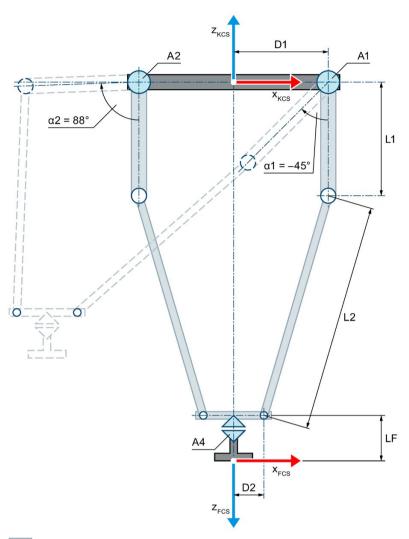
Para los brazos de la cinemática solo es admisible la posición de la articulación (Página 102) con flexión hacia fuera. No se pueden desplazar los ejes más allá de la extensión de los brazos.

3.7.7.2 Delta-picker 2D con orientación

La cinemática "Delta-picker 2D con orientación" soporta tres ejes y tres grados de libertad. Los ejes están diseñados como cinemática paralela.

El gráfico siguiente muestra la estructura básica y el espacio de trabajo típico de la cinemática:

La cinemática consta de los ejes siguientes:


- Dos ejes rotatorios A1 y A2
- Un eje rotatorio A4 (eje de orientación)

La cinemática está modelada de forma suspendida y consta de una placa de unión superior, dos brazos superiores y una placa de unión inferior. Los ejes para mover los brazos (ejes A1 y A2) están fijados a la placa de unión superior. Los brazos superiores y las juntas de unión unen la placa de unión superior con la inferior. La herramienta cuelga de la placa de unión inferior. Las estructuras en forma de paralelogramo de las juntas de unión sostienen la placa de unión inferior en paralelo al plano xy del KCS. El eje de orientación A4 permite la rotación de la herramienta.

Sistemas de coordenadas y posición cero

El gráfico siguiente muestra en la vista frontal:

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- Las posiciones cero de los ejes A1 y A4
- Esbozada (con línea punteada) la elongación de la cinemática

- Posición cero de la cinemática
 - D1 Distancia de los ejes al centro de la placa de unión superior (radio de la placa de unión superior)
 - D2 Distancia de los puntos de articulación de las juntas de unión con respecto a la placa de unión inferior (radio de la placa de unión inferior)
 - L1 Longitud de los brazos superiores
 - L2 Longitud de los brazos de unión
 - D1, D2, L1 y L2 son idénticas en ambos brazos de la cinemática.
 - LF Longitud de la brida antes del FCS en sentido z del FCS
- Elongación de la cinemática

El movimiento de los ejes en sentido positivo es la rotación de los brazos superiores hacia fuera.

- α 1 Elongación del eje A1 en sentido negativo con α 1 = -45.0°
- α2 Elongación del eje A2 en sentido positivo con α2 = 88.0°

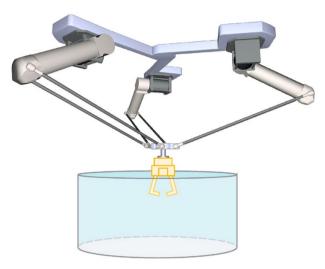
Leyenda de la representación de las cinemáticas (Página 36)

El sistema de coordenadas de la cinemática (KCS) con el punto cero (origen) de la cinemática (KNP) está en el centro de la placa de unión superior. Los ejes A1 y A2 están

separados del punto medio común (origen de la cinemática) en la distancia D1 respectivamente.

El sistema de coordenadas de la brida (FCS) está en el centro de la parte inferior de la placa de unión inferior a la misma distancia D2 con respecto a cada uno de los puntos de articulación de los brazos. El FCS se desplaza en sentido z negativo del KCS en toda la longitud LF.

En la posición cero de los ejes A1 y A2, los brazos superiores señalan en el sentido z negativo del KCS. En la posición cero del eje A4, el eje x del FCS señala en dirección al eje x del KCS.

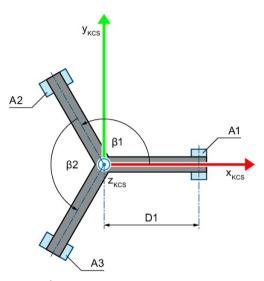

Zona de transformación

Para los brazos de la cinemática solo es admisible la posición de la articulación (Página 102) con flexión hacia fuera. No se pueden desplazar los ejes más allá de la extensión de los brazos.

3.7.7.3 Delta-picker 3D

La cinemática "Delta-picker 3D" soporta tres ejes y tres grados de libertad. Los ejes están diseñados como cinemática paralela.

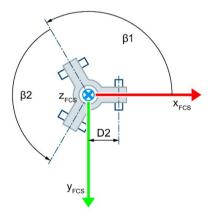
El gráfico siguiente muestra la estructura básica y el espacio de trabajo típico de la cinemática:


La cinemática consta de tres ejes rotatorios A1, A2 y A3.

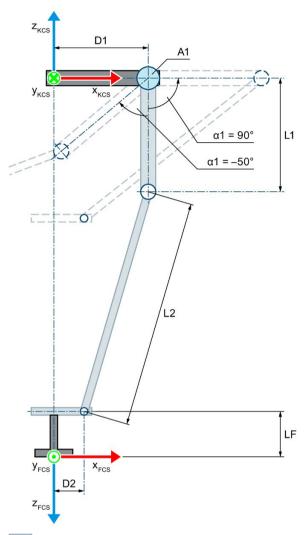
La cinemática está modelada de forma suspendida y consta de una placa de unión superior, tres brazos superiores y una placa de unión inferior. Los ejes para mover los brazos (ejes A1, A2 y A3) están fijados a la placa de unión superior. Los brazos superiores y las juntas de unión unen la placa de unión superior con la inferior. La herramienta cuelga de la placa de unión inferior. Las estructuras en forma de paralelogramo de las juntas de unión sostienen la placa de unión inferior en paralelo al plano xy del KCS.

Sistemas de coordenadas y posición cero

El gráfico siguiente muestra en la vista en planta (plano xy):


- La posición del sistema de coordenadas de la cinemática (KCS)
- Los ángulos entre los ejes A1, A2 y A3

- β1 Ángulo entre los ejes A1 y A2
- β2 Ángulo entre los ejes A2 y A3


Leyenda de la representación de las cinemáticas (Página 36)

El gráfico siguiente muestra en la vista en planta la posición del sistema de coordenadas de la brida (FCS) en el plano xy de la placa de unión inferior:

El gráfico siguiente muestra en la vista frontal (plano xz):

- La posición del eje A1 y de los sistemas de coordenadas KCS y FCS
- La posición cero del eje A1
- Esbozada (con línea punteada) la elongación positiva/negativa del eje A1

Posición cero de la cinemática

- D1 Distancia de los ejes al centro de la placa de unión superior (radio de la placa de unión superior)
- D2 Distancia de los puntos de articulación de las juntas de unión con respecto a la placa de unión inferior (radio de la placa de unión inferior)
- L1 Longitud de los brazos superiores
- L2 Longitud de los brazos de unión
- D1, D2, L1 y L2 son idénticas en los tres brazos de la cinemática.
- LF Longitud de la brida antes del FCS en sentido z del FCS
- Elongación de la cinemática

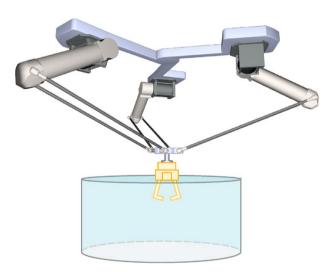
El movimiento de los ejes en sentido positivo es la rotación de los brazos superiores hacia fuera.

α1 Elongación del eje A1 en sentido negativo con $α1 = -50.0^{\circ}$ Elongación del eje A1 en sentido positivo con $α1 = 90.0^{\circ}$

El KCS con el punto cero (origen) de la cinemática (KNP) está en el centro de la placa de unión superior. Los ejes A1, A2 y A3 están separados del centro común (punto cero de la cinemática) en la distancia D1 respectivamente.

El FCS está en el centro del lado inferior de la placa de unión inferior a la misma distancia D2 con respecto a cada uno de los puntos de articulación de los brazos. El FCS se desplaza en sentido z negativo del KCS en toda la longitud LF.

En la posición cero de los ejes A1, A2 y A3, los brazos superiores señalan en el sentido z negativo del KCS.


Zona de transformación

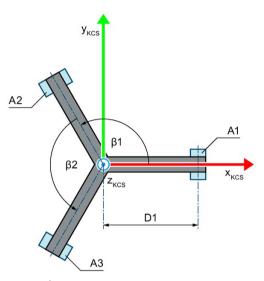
Para los brazos de la cinemática solo es admisible la posición de la articulación (Página 102) con flexión hacia fuera. No se pueden desplazar los ejes más allá de la extensión de los brazos.

3.7.7.4 Delta-picker 3D con orientación

La cinemática "Deltal-picker 3D con orientación" soporta cuatro ejes y cuatro grados de libertad. Los ejes están diseñados como cinemática paralela.

El gráfico siguiente muestra la estructura básica y el espacio de trabajo típico de la cinemática:

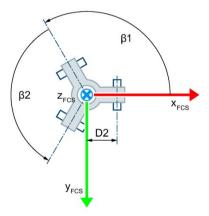
La cinemática consta de los ejes siguientes:


- Tres ejes rotatorios A1, A2 y A3
- Un eje rotatorio A4 (eje de orientación)

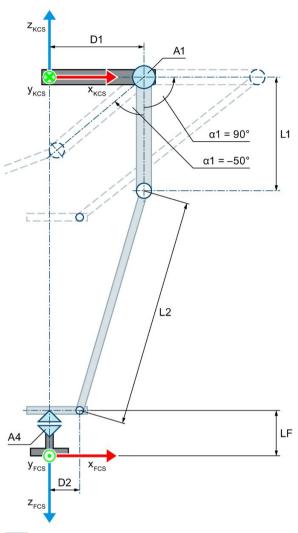
La cinemática está modelada de forma suspendida y consta de una placa de unión superior, tres brazos superiores y una placa de unión inferior. Los ejes para mover los brazos (ejes A1, A2 y A3) están fijados a la placa de unión superior. Los brazos superiores y las juntas de unión unen la placa de unión superior con la inferior. La herramienta está fijada a la placa de unión inferior. Las estructuras en forma de paralelogramo de las juntas de unión sostienen la placa de unión inferior en paralelo al plano xy del KCS. El eje de orientación A4 permite la rotación de la herramienta.

Sistemas de coordenadas y posición cero

El gráfico siguiente muestra en la vista en planta (plano xy):


- La posición del sistema de coordenadas de la cinemática (KCS)
- Los ángulos entre los ejes A1, A2 y A3

- β1 Ángulo entre los ejes A1 y A2
- β2 Ángulo entre los ejes A2 y A3


Leyenda de la representación de las cinemáticas (Página 36)

El gráfico siguiente muestra en la vista en planta la posición del sistema de coordenadas de la brida (FCS) en el plano xy de la placa de unión inferior:

El gráfico siguiente muestra en la vista frontal (plano xz):

- La posición del eje A1 y de los sistemas de coordenadas KCS y FCS
- Las posiciones cero de los ejes A1 y A4
- Esbozada (con línea punteada) la elongación positiva/negativa del eje A1

Posición cero de la cinemática

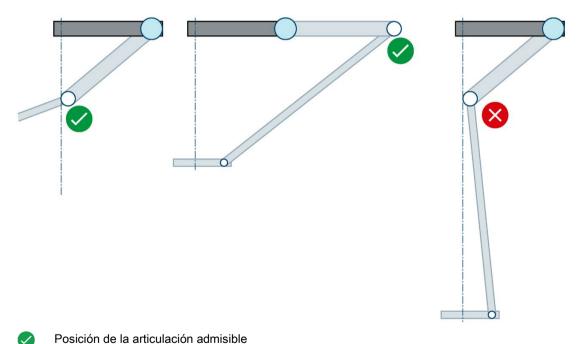
- D1 Distancia de los ejes al centro de la placa de unión superior (radio de la placa de unión superior)
- D2 Distancia de los puntos de articulación de las juntas de unión con respecto a la placa de unión inferior (radio de la placa de unión inferior)
- L1 Longitud de los brazos superiores
- L2 Longitud de los brazos de unión
- D1, D2, L1 y L2 son idénticas en los tres brazos de la cinemática.
- LF Longitud de la brida antes del FCS en sentido z del FCS
- Elongación de la cinemática

El movimiento de los ejes en sentido positivo es la rotación de los brazos superiores hacia fuera.

α1 Elongación del eje A1 en sentido negativo con $α1 = -50.0^{\circ}$ Elongación del eje A1 en sentido positivo con $α1 = 90.0^{\circ}$

El KCS con el punto cero (origen) de la cinemática (KNP) está en el centro de la placa de unión superior. Los ejes A1, A2 y A3 están separados del centro común (punto cero de la cinemática) en la distancia D1 respectivamente.

El FCS está en el centro del lado inferior de la placa de unión inferior a la misma distancia D2 con respecto a cada uno de los puntos de articulación de los brazos. El FCS se desplaza en sentido z negativo del KCS en toda la longitud LF.


En la posición cero de los ejes A1, A2 y A3, los brazos superiores señalan en el sentido z negativo del KCS. En la posición cero del eje A4, el eje x del FCS señala en dirección al eje x del KCS.

Zona de transformación

Para los brazos de la cinemática solo es admisible la posición de la articulación (Página 102) con flexión hacia fuera. No se pueden desplazar los ejes más allá de la extensión de los brazos.

3.7.7.5 Posición de la articulación admisible para Delta-picker

Para los brazos de las cinemáticas Delta-picker solo es admisible la posición de la articulación con flexión hacia fuera. El gráfico siguiente muestra, a modo de ejemplo, posiciones de la articulación admisibles y no válidas para la transformación:

Posición de la articulación no válida para la transformación

3.7.7.6 Variables del Delta-picker

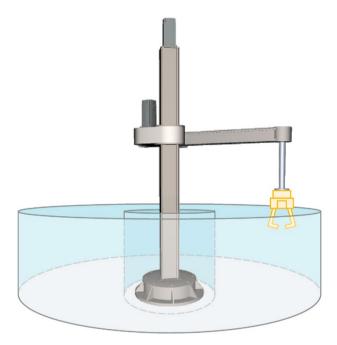
Delta-picker 2D

Las cinemáticas Delta-picker 2D se definen mediante las siguientes variables del objeto tecnológico:

Variables	Valores	Descripción
<to>.Kinematics.TypeOfKinematics</to>	15	Delta-picker 2D
	16	Delta-picker 2D con orientación
<to>.Kinematics.Parameter[1]</to>	de 0.0 a 1.0E12	Distancia D1 (radio de la placa de unión superior)
<to>.Kinematics.Parameter[2]</to>	de 0.001 a 1.0E12	Longitud L1 de los brazos superiores
<to>.Kinematics.Parameter[3]</to>	de 0.001 a 1.0E12	Longitud L2 de las juntas de unión
<to>.Kinematics.Parameter[4]</to>	de 0.0 a 1.0E12	Distancia D2 (radio de la placa de unión inferior)
<to>.Kinematics.Parameter[5]</to>	de -1.0E12 a 1.0E12	Distancia LF del FCS con respecto a la placa de unión inferior en sentido z negativo del KCS

Delta-picker 3D

Las cinemáticas Delta-Picker 3D se definen mediante las siguientes variables del objeto tecnológico:


Variables	Valores	Descripción
<to>.Kinematics.TypeOfKinematics</to>	17	Delta-picker 3D
	18	Delta-picker 3D con orientación
<to>.Kinematics.Parameter[1]</to>	de 0.0 a 1.0E12	Distancia D1 (radio de la placa de unión superior)
<to>.Kinematics.Parameter[2]</to>	de 0.001 a 1.0E12	Longitud L1 de los brazos superiores
<to>.Kinematics.Parameter[3]</to>	de 0.001 a 1.0E12	Longitud L2 de las juntas de unión
<to>.Kinematics.Parameter[4]</to>	de 0.0 a 1.0E12	Distancia D2 (radio de la placa de unión inferior)
<to>.Kinematics.Parameter[5]</to>	90.001° a 179.998°	Ángulo β1 entre los ejes A1 y A2
<to>.Kinematics.Parameter[6]</to>	90.001° a 179.998°	Ángulo β2 entre los ejes A2 y A3
<to>.Kinematics.Parameter[7]</to>	de -1.0E12 a 1.0E12	Distancia LF del FCS con respecto a la placa de unión inferior en sentido z negativo del KCS

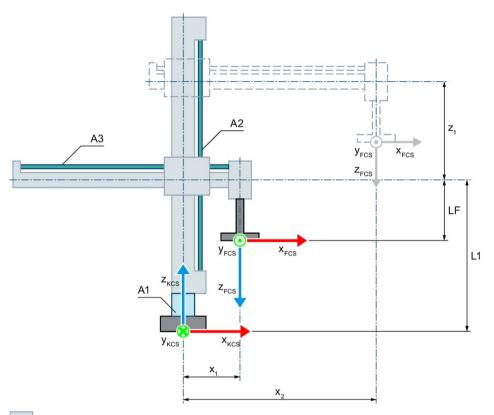
3.7.8 Robot cilíndrico

3.7.8.1 Robot cilíndrico 3D

La cinemática "Robot cilíndrico 3D" soporta tres ejes y tres grados de libertad. Los ejes están diseñados como cinemática serial.

El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

La cinemática consta de los ejes siguientes:


- Un eje rotatorio A1 con rotación en torno al eje z del sistema de coordenadas de la cinemática (KCS)
- Un eje lineal A2 en sentido z del KCS
- Un eje lineal A3 en sentido x del KCS

La cinemática consta de una base, una columna de soporte y un pescante. El eje A1 gira la columna de soporte con el pescante horizontalmente en torno a la base. El eje A2 desplaza el pescante verticalmente. El eje A3 desplaza el sistema de brida horizontalmente sobre el pescante. La cinemática hace posible una zona de operación cilíndrica.

Sistemas de coordenadas y posición cero

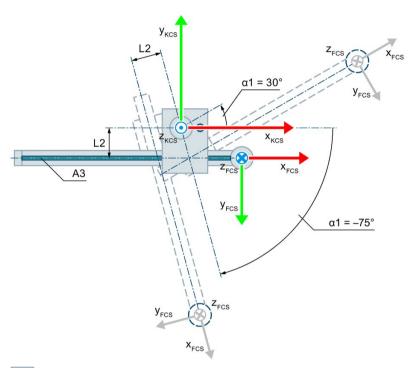
El gráfico siguiente muestra en la vista lateral (plano xz):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- Las posiciones cero de los ejes A1 y A2
- Esbozada (con línea punteada) la elongación de la cinemática

Posición cero de los ejes A1 y A2

L1 En la posición cero del eje A2:

Distancia del FCS con respecto al origen de la cinemática (KNP) y longitud de la brida LF en sentido z del KCS


- LF Longitud de la brida antes del FCS en sentido z del FCS
- x₁ Elongación positiva del eje A3

En la posición cero del eje A3, el eje z del FCS se encuentra en el eje z del KCS. La cinemática representada no puede alcanzar la posición cero del eje A3 por las condiciones mecánicas.

- ___ Elongación de la cinemática
 - x₂ Elongación positiva del eje A3
 - z₁ Elongación positiva del eje A2

El gráfico siguiente muestra en la vista en planta (plano xy):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva/negativa de la cinemática

Posición cero de la cinemática

L2 Distancia del eje A3 del KNP en sentido y del KCS (en este caso, valor negativo)

Elongación de la cinemática

 α 1 Elongación positiva del eje A1 con α 1 = 30° Elongación negativa del eje A1 con α 1 = -75°

Leyenda de la representación de las cinemáticas (Página 36)

El KCS con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. Mediante la longitud L1 se define la distancia de la posición cero del eje A2 con respecto al KNP en sentido z del KCS. Mediante la longitud L2 se define la distancia del eje A3 con respecto al KNP en sentido y del KCS.

El sistema de coordenadas de brida (FCS) se encuentra en el eje A3 con un decalaje correspondiente a la longitud LF en sentido z negativo del KCS.

La tabla siguiente muestra la posición cero de los ejes:

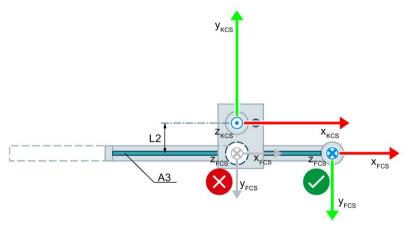
Eje	Posición cero
A1	El pescante con el eje A3 señala en sentido x _{KCS} .
A2	El eje A2 está en la posición 0.0 del objeto tecnológico interconectado.
A3	El eje A3 está en la posición 0.0 del objeto tecnológico interconectado.

Zona de transformación

La transformación de la cinemática abarca la siguiente zona de desplazamiento (Página 125) de los ejes:

• Eje A1: $-180.0^{\circ} \le \alpha 1 < 180.0^{\circ}$

Eje A2: sin limitaciónEje A3: sin limitación

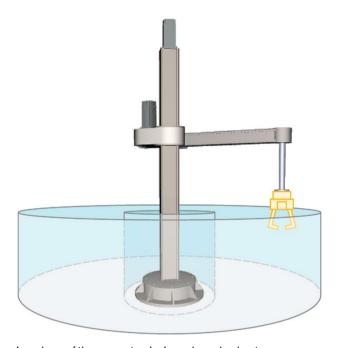

Nota

Posiciones singulares

La cinemática tiene posiciones singulares (Página 127).

Existe una posición singular cuando el origen del sistema de coordenadas de la brida (FCS) se encuentra en el eje z del sistema de coordenadas de la cinemática (KCS). En esta zona no es posible la transformación hacia atrás. Esta posición puede obtenerse si la longitud L2 es 0.0 por motivos de diseño.

El gráfico siguiente muestra, a modo de ejemplo, posiciones de la articulación admisibles y no válidas para la transformación:



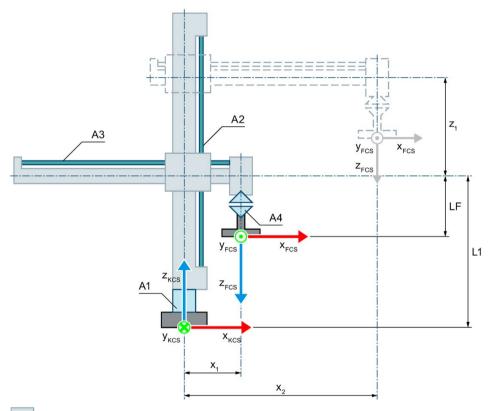
- Posición de la articulación admisible
- Posición de la articulación no válida para la transformación cuando L2 = 0.0

3.7.8.2 Robot cilíndrico 3D con orientación

La cinemática "Robot cilíndrico 3D con orientación" soporta cuatro ejes y cuatro grados de libertad. Los ejes están diseñados como cinemática serial.

El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

La cinemática consta de los ejes siguientes:

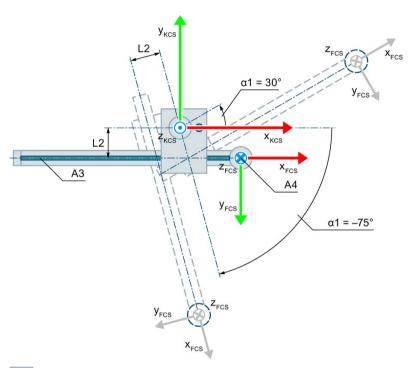

- Un eje rotatorio A1 con rotación en torno al eje z del sistema de coordenadas de la cinemática (KCS)
- Un eje lineal A2 en sentido z del KCS
- Un eje lineal A3 en sentido x del KCS
- Un eje rotatorio A4 (eje de orientación)

La cinemática consta de una base, una columna de soporte y un pescante. El eje A1 gira la columna de soporte con el pescante horizontalmente en torno a la base. El eje A2 desplaza el pescante verticalmente. El eje A3 desplaza el sistema de brida horizontalmente sobre el pescante. La cinemática hace posible una zona de operación cilíndrica. El eje de orientación A4 permite el movimiento rotatorio de la herramienta.

Sistemas de coordenadas y posición cero

El gráfico siguiente muestra en la vista lateral (plano xz):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- Las posiciones cero de los ejes A1 y A2
- Esbozada (con línea punteada) la elongación de la cinemática


- Posición cero de la cinemática
 - L1 En la posición cero del eje A2:
 - Distancia del FCS con respecto al origen de la cinemática (KNP) y longitud de la brida LF en sentido z del KCS
 - LF Longitud de la brida antes del FCS en sentido z del FCS
 - x₁ Elongación positiva del eje A3
 - En la posición cero del eje A3, el eje z del FCS se encuentra en el eje z del KCS. La cinemática representada no puede alcanzar la posición cero del eje A3 por las condiciones mecánicas.
- Elongación de la cinemática
 - x₂ Elongación positiva del eje A3
 - z₁ Elongación positiva del eje A2

Leyenda de la representación de las cinemáticas (Página 36)

3.7 Cinemática

El gráfico siguiente muestra en la vista en planta (plano xy):

- La posición de los ejes y de los sistemas de coordenadas KCS y FCS
- La posición cero u origen de la cinemática
- Esbozada (con línea punteada) la elongación positiva/negativa de la cinemática

- Posición cero de la cinemática
 - L2 Distancia del eje A3 con respecto al KNP en sentido y del KCS (en este caso, valor negativo)
- Elongación de la cinemática
 - α1 Elongación positiva del eje A1 con α1 = 30° Elongación negativa del eje A1 con α1 = -75°

Leyenda de la representación de las cinemáticas (Página 36)

El KCS con el punto cero (origen) de la cinemática (KNP) está en la base de la cinemática. Mediante la longitud L1 se define la distancia de la posición cero del eje A2 con respecto al KNP en sentido z del KCS. Mediante la longitud L2 se define la distancia del eje A3 con respecto al KNP en sentido y del KCS.

El sistema de coordenadas de brida (FCS) se encuentra en el eje A3 con un decalaje correspondiente a la longitud LF en sentido z negativo del KCS.

La tabla siguiente muestra la posición cero de los ejes:

Eje	Posición cero
A1	El pescante con el eje A3 señala en sentido x _{KCS} .
A2	El eje A2 está en la posición 0.0 del objeto tecnológico interconectado.
A3	El eje A3 está en la posición 0.0 del objeto tecnológico interconectado.
A4	En la posición cero del eje A1, el eje x del FCS señala en el sentido del eje x del KCS.

Compensación de acoplamientos mecánicos de los ejes

Para la cinemática existe la posibilidad de configurar un acoplamiento mecánico del eje A4 al eje A2. La transformación de la cinemática compensa el acoplamiento mecánico configurado de los ejes. El acoplamiento entre el eje A4 y el eje A2 se implementa como paso del husillo. Un factor de acoplamiento de 1.0 significa que 360.0° en el eje A4 se corresponden con un trayecto de -1.0 mm en el eje A2.

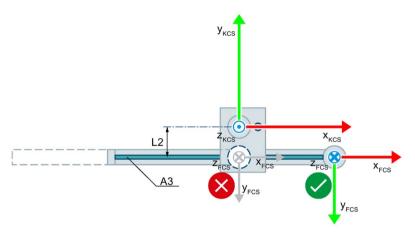
Zona de transformación

La transformación de la cinemática abarca la siguiente zona de desplazamiento (Página 125) de los ejes:

- Eje A1: $-180.0^{\circ} \le \alpha 1 < 180.0^{\circ}$
- Eje A2: sin limitación
- Eje A3: sin limitación
- Eje A4: sin limitación

Para la orientación puede especificarse un ángulo mayor de 360°. No obstante, la coordenada A del punto de operación de la herramienta (TCP) se representa en el rango de -180° a +180°.

Nota


Posiciones singulares

La cinemática tiene posiciones singulares (Página 128).

Existe una posición singular cuando el origen del sistema de coordenadas de la brida (FCS) se encuentra en el eje z del sistema de coordenadas de la cinemática (KCS). En esta zona no es posible la transformación hacia atrás. Esta posición puede obtenerse si la longitud L2 es 0.0 por motivos de diseño.

3.7 Cinemática

El gráfico siguiente muestra, a modo de ejemplo, posiciones de la articulación admisibles y no válidas para la transformación:

- Posición de la articulación admisible
- Posición de la articulación no válida para la transformación cuando L2 = 0.0

3.7.8.3 Variables del robot cilíndrico

Robot cilíndrico 3D

La cinemática "Robot cilíndrico 3D" se define mediante las siguientes variables del objeto tecnológico:

Variables	Valores	Descripción
<to>.Kinematics.TypeOfKinematics</to>	21	Robot cilíndrico 3D
<to>.Kinematics.Parameter[1]</to>	de -1.0E12 a 1.0E12	Distancia L1 de la posición cero del eje A2 con respecto al punto cero (origen) de la cinemática en sentido z del sistema de coordenadas de la cinemática (KCS)
<to>.Kinematics.Parameter[2]</to>	de -1.0E12 a 1.0E12	Distancia L2 entre los ejes A2 y A3 en sentido y del KCS
<to>.Kinematics.Parameter[3]</to>	de -1.0E12 a 1.0E12	Distancia del sistema de coordenadas de la brida con respecto al eje A3 en sentido z negativo del KCS

Robot cilíndrico 3D con orientación

La cinemática "Robot cilíndrico 3D con orientación" se define mediante las siguientes variables del objeto tecnológico:

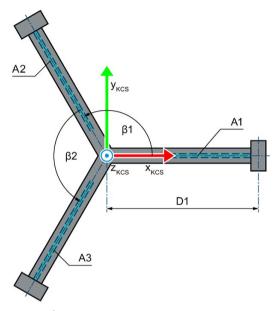
Variables	Valores	Descripción
<to>.Kinematics.TypeOfKinematics</to>	22	Robot cilíndrico 3D con orientación
<to>.Kinematics.Parameter[1]</to>	de -1.0E12 a 1.0E12	Distancia L1 de la posición cero del eje A2 con respecto al punto cero (origen) de la cinemática en sentido z del KCS
<to>.Kinematics.Parameter[2]</to>	de -1.0E12 a 1.0E12	Distancia L2 entre los ejes A2 y A3 en sentido y del KCS
<to>.Kinematics.Parameter[3]</to>	de -1.0E12 a 1.0E12	Distancia del sistema de coordenadas de la brida con respecto al eje A3 en sentido z negativo del KCS
<to>.Kinematics.Parameter[4]</to>	-	Acoplamiento mecánico del eje A4 al eje A2 existente/no existente
	0	No existe
	1	Existe
<to>.Kinematics.Parameter[5]</to>	de -1.0E12 a 1.0E12	Factor de acoplamiento mecánico del eje A4 al eje A2

3.7.9 Trípode

3.7.9.1 Trípode 3D

La cinemática "Trípode 3D" admite tres ejes y tres grados de libertad. Los ejes están diseñados como cinemática paralela.

El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:


La cinemática consta de tres ejes lineales A1, A2 y A3.

La cinemática está modelada de forma suspendida y consta de una placa de unión superior, tres brazos y una placa de unión inferior. Los ejes para mover los brazos están formados por carriles con carros de desplazamiento. Los carriles con los carros están fijados a la placa de unión superior. Unas varillas de unión unen los carros con la placa de unión inferior. La herramienta cuelga de la placa de unión inferior. Las estructuras en forma de paralelogramo de las juntas de unión sostienen la placa de unión inferior en paralelo al plano xy del KCS.

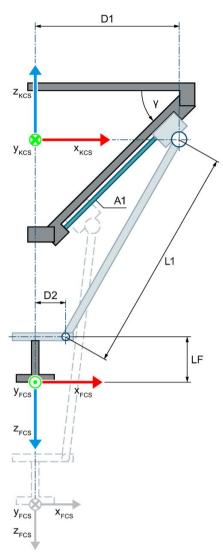
Sistemas de coordenadas y posición cero

El gráfico siguiente muestra en la vista en planta (plano xy):


- La posición del sistema de coordenadas de la cinemática (KCS)
- Los ángulos entre los ejes A1, A2 y A3

- β1 Ángulo entre los ejes A1 y A2
- β2 Ángulo entre los ejes A2 y A3

Leyenda de la representación de las cinemáticas (Página 36)


El gráfico siguiente muestra en la vista en planta la posición del sistema de coordenadas de la brida (FCS) en el plano xy de la placa de unión inferior:

El gráfico siguiente muestra en la vista frontal (plano xz):

- La posición del eje A1 y de los sistemas de coordenadas KCS y FCS
- La posición cero del eje A1
- Esbozada (con línea punteada) la elongación positiva del eje A1

3.7 Cinemática

- Posición cero de la cinemática
 - D1 Distancia de los puntos de articulación superiores de las juntas de unión al centro de la placa de unión superior
 - D2 Distancia de los puntos de articulación inferiores de las juntas de unión al centro de la placa de unión inferior
 - L1 Longitud de los brazos de unión
 - LF Longitud de la brida antes del FCS en sentido z del FCS
 - \dot{A} Ángulo entre la placa de unión superior (plano xy del KCS) y el carril del eje A1 (0.0° ≤ γ < 90.0°)
 - D1, D2, L1 y "γ" son idénticas en los tres brazos de la cinemática.
- Elongación de la cinemática con elongación del eje A1 en sentido positivo

Leyenda de la representación de las cinemáticas (Página 36)

El KCS con el punto cero (origen) de la cinemática (KNP) está en el centro de la placa de unión superior. El origen de la cinemática está en el centro de las posiciones cero de los ejes A1, A2 y A3.

El FCS está en el centro de la placa de unión inferior a la misma distancia D2 con respecto a los puntos de articulación de las juntas de unión, respectivamente. El FCS se desplaza en sentido z negativo del KCS en toda la longitud LF.

En la posición cero, los ejes A1, A2 y A3 están en el plano x-y del KCS.

Zona de transformación

La transformación de la cinemática abarca la siguiente zona de desplazamiento (Página 125) de los ejes:

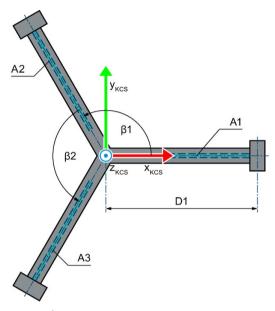
• Ejes A1, A2 y A3: 0.0 ≤ recorrido

3.7.9.2 Trípode 3D con orientación

La cinemática "Trípode 3D con orientación" admite cuatro ejes y cuatro grados de libertad. Los ejes están diseñados como cinemática paralela.

El gráfico siguiente muestra la estructura básica y el área de operación típica de la cinemática:

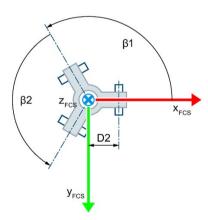
La cinemática consta de los ejes siguientes:


- Tres ejes lineales A1, A2 y A3
- Un eje rotatorio A4 (eje de orientación)

La cinemática está modelada de forma suspendida y consta de una placa de unión superior, tres brazos y una placa de unión inferior. Los ejes para mover los brazos están formados por carriles con carros de desplazamiento. Los carriles con los carros están fijados a la placa de unión superior. Unas varillas de unión unen los carros con la placa de unión inferior. La herramienta cuelga de la placa de unión inferior. Las estructuras en forma de paralelogramo de las juntas de unión sostienen la placa de unión inferior en paralelo al plano xy del KCS. El eje de orientación A4 permite el movimiento rotatorio de la herramienta.

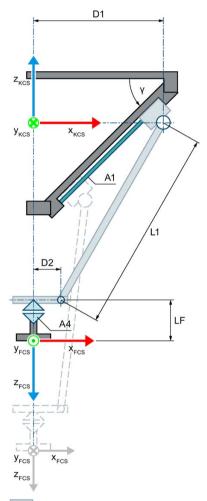
Sistemas de coordenadas y posición cero

El gráfico siguiente muestra en la vista en planta (plano xy):


- La posición del sistema de coordenadas de la cinemática (KCS)
- Los ángulos entre los ejes A1, A2 y A3

- β1 Ángulo entre los ejes A1 y A2
- β2 Ángulo entre los ejes A2 y A3

Leyenda de la representación de las cinemáticas (Página 36)


El gráfico siguiente muestra en la vista en planta la posición del sistema de coordenadas de la brida (FCS) en el plano xy de la placa de unión inferior:

3.7 Cinemática

El gráfico siguiente muestra en la vista lateral:

- La posición del eje A1 y de los sistemas de coordenadas KCS y FCS
- La posición cero del eje A1
- Esbozada (con línea punteada) la elongación positiva del eje A1

- Posición cero de la cinemática
 - D1 Distancia de los puntos de articulación superiores de las juntas de unión al centro de la placa de unión superior
 - D2 Distancia de los puntos de articulación inferiores de las juntas de unión al centro de la placa de unión inferior
 - L1 Longitud de los brazos de unión
 - LF Longitud de la brida antes del FCS en sentido z del FCS
 - γ Ángulo entre la placa de unión superior (plano xy del KCS) y el carril del eje A1 $(0.0^{\circ} \le γ < 90.0^{\circ})$
 - D1, D2, L1 y "γ" son idénticas en los tres brazos de la cinemática.
- Elongación de la cinemática con elongación del eje A1 en sentido positivo

Leyenda de la representación de las cinemáticas (Página 36)

El KCS con el punto cero (origen) de la cinemática (KNP) está en el centro de la placa de unión superior. El origen de la cinemática está en el centro de las posiciones cero de los ejes A1, A2 y A3.

El FCS está en el centro de la placa de unión inferior a la misma distancia D2 con respecto a los puntos de articulación de las juntas de unión, respectivamente. El FCS se desplaza en sentido z negativo del KCS en toda la longitud LF.

En la posición cero, los ejes A1, A2 y A3 están en el plano x-y del KCS. En la posición cero del eje A4, el eje x del FCS señala en dirección al eje x del KCS.

Zona de transformación

La transformación de la cinemática abarca la siguiente zona de desplazamiento (Página 125) de los ejes:

- Ejes A1, A2 y A3: 0.0 ≤ recorrido
- Eje A4: sin limitación

Para la orientación puede especificarse un ángulo mayor de 360°. No obstante, la coordenada A del punto de operación de la herramienta (TCP) se representa en el rango de -180° a +180°.

3.7.9.3 Variables de Trípode

La cinemática Trípode se define mediante las siguientes variables del objeto tecnológico:

Variables	Valores	Descripción
<to>.Kinematics.TypeOfKinematics</to>	23	Trípode 3D
	24	Trípode 3D con orientación
<to>.Kinematics.Parameter[1]</to>	de 0.0 a 1.0E12	Distancia D1 (radio de la placa de unión superior)
<to>.Kinematics.Parameter[2]</to>	de 0.001 a 1.0E12	Longitud L1 de las varillas de unión
<to>.Kinematics.Parameter[3]</to>	0.0° a 89.999°	Ángulo γ entre los ejes lineales y el plano x-y del sistema de coordenadas de la cinemática
<to>.Kinematics.Parameter[4]</to>	de 0.0 a 1.0E12	Distancia D2 (radio de la placa de unión inferior)
<to>.Kinematics.Parameter[5]</to>	90.001° a 179.998°	Ángulo β1 entre los ejes A1 y A2
<to>.Kinematics.Parameter[6]</to>	90.001° a 179.998°	Ángulo β2 entre los ejes A2 y A3
<to>.Kinematics.Parameter[7]</to>	de -1.0E12 a 1.0E12	Distancia del sistema de coordenadas de brida con respecto a la placa de unión inferior en sentido z negativo del sistema de coordenadas de la cinemática

3.7.10 Cinemáticas definidas por el usuario

3.7.10.1 Resumen de cinemáticas definidas por el usuario

Puede configurar las siguientes cinemáticas definidas por el usuario con las interconexiones de ejes correspondientes:

- 2D definido por el usuario
- 2D definido por el usuario con orientación
- 3D definido por el usuario
- 3D definido por el usuario con orientación

En una cinemática definida por el usuario, la configuración le ayuda a interconectar los ejes de posicionamiento. Además, el sistema le ofrece hasta 32 variables para definir la geometría de su cinemática.

El usuario debe programar la transformación de usuario (Página 129) de las posiciones cartesianas, así como de las posiciones y la dinámica de los ejes. Para ello, el sistema pone a su disposición interfaces predefinidas.

Consulte también

Transformación de usuario (Página 129)

3.7.10.2 Variables de las cinemáticas definidas por el usuario

Las cinemáticas definidas por el usuario se configuran mediante las siguientes variables del objeto tecnológico:

Variable	Valo-	Descripción
	res	
<to>.Kinematics.TypeOfKinematics</to>	31	2D definido por el usuario
	32	2D definido por el usuario con orientación
	33	3D definido por el usuario
	34	3D definido por el usuario con orientación
<to>.Kinematics.Parameter[132]</to>	-	Hasta 32 parámetros específicos del usuario

3.8 Transformación de la cinemática

3.8.1 Descripción abreviada de la transformación de la cinemática

Por transformación de la cinemática se entiende la conversión entre las coordenadas cartesianas del movimiento de la cinemática y las consignas de los distintos ejes de la cinemática:

Transformación hacia delante

Cálculo de las coordenadas cartesianas a partir de las posiciones de los ejes de la cinemática

Transformación hacia atrás

Cálculo de las posiciones de los ejes de la cinemática a partir de las coordenadas cartesianas

La transformación de la cinemática convierte los valores de posición y los valores dinámicos (velocidad, aceleración).

El objeto tecnológico Cinemática proporciona la transformación de la cinemática del sistema para los tipos de cinemática predefinidos. En el caso de las cinemáticas definidas por el usuario, es este quien debe calcular la transformación de usuario (Página 129) en un programa propio.

3.8.2 Transformación con cinemáticas predefinidas

3.8.2.1 Puntos de referencia

La transformación de la cinemática utiliza los siguientes puntos de referencia:

- Punto cero (origen) de la cinemática (KNP)
- Posiciones cero de los ejes de la cinemática
- Punto de operación de la herramienta (TCP)

El sentido positivo de los ejes para la transformación de la cinemática depende del tipo de cinemática (Página 35). Configure el sentido positivo en el objeto tecnológico Eje de posicionamiento/Eje sincronizado de acuerdo con el sentido positivo del eje en la cinemática.

Punto cero (origen) de la cinemática (KNP)

El origen de las coordenadas del sistema de coordenadas de la cinemática (KCS) es el KNP. A partir del KNP se configuran los parámetros de geometría de la cinemática.

Posiciones cero de los ejes de la cinemática

La posición 0.0 en el objeto tecnológico Eje de posicionamiento/Eje sincronizado define la posición cero del eje de cinemática. Referencie los ejes de forma que estos indiquen la posición 0.0 en el origen de la cinemática. El origen de la cinemática depende del tipo de cinemática (Página 35).

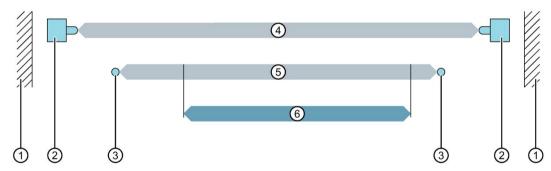
Punto de operación de la herramienta (TCP)

La posición del TCP se deriva de los parámetros de la geometría y el frame de herramienta.

3.8.2.2 Zona de desplazamiento y zona de transformación

La zona de transformación es el rango de las posiciones del eje que cubre la transformación de la cinemática. El tipo de cinemática define la zona de transformación de los distintos ejes de la cinemática. Encontrará los datos de la zona de transformación en la descripción de las distintas cinemáticas (Página 35).

Los finales de carrera por hardware y por software de un eje definen la zona de desplazamiento máxima y la zona de operación. La zona de operación de un eje de la cinemática puede ser mayor o menor que la zona de transformación, en función de la configuración del eje:


Zona de operación > zona de transformación

Si un eje de la cinemática abandona la zona de transformación durante un movimiento de la cinemática, el objeto tecnológico Cinemática emite la alarma tecnológica 803. Se interrumpe el movimiento de la cinemática y se detienen los ejes con los valores dinámicos máximos configurados en ellos (reacción a alarma: parada con valores dinámicos máximos de los ejes).

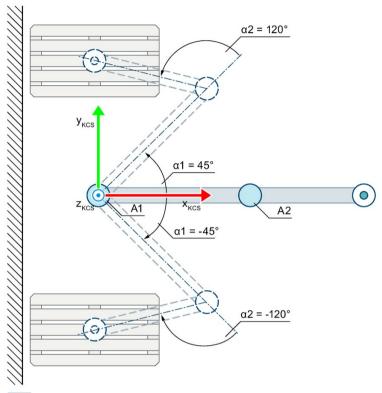
Zona de operación ≤ zona de transformación

Cuando un eje de la cinemática se desplaza hacia el final de carrera por software, el objeto tecnológico Eje de posicionamiento/Eje sincronizado emite la alarma tecnológica 533. El eje se detiene con los valores dinámicos máximos configurados en el eje (reacción a alarma: parada con valores dinámicos máximos). Con la parada del eje, el objeto tecnológico Cinemática emite la alarma tecnológica 801. Se interrumpe el movimiento de la cinemática y se detienen los ejes con los valores dinámicos máximos configurados en ellos (reacción a alarma: parada con valores dinámicos máximos de los ejes).

El siguiente gráfico ilustra la relación entre la zona de operación del eje y la zona de transformación:

- 1 Tope mecánico
- ② Final de carrera por hardware en el objeto tecnológico Eje de posicionamiento/Eje sincronizado
- ③ Final de carrera por software en el objeto tecnológico Eje de posicionamiento/Eje sincronizado
- Zona de desplazamiento máxima del eje
- (5) Zona de operación del eje
- Zona de transformación
 (en este caso, zona de operación > zona de transformación)

3.8.2.3 Espacios de posición de la articulación (dependen de la cinemática)


En función del tipo de cinemática, una cinemática puede alcanzar coordenadas cartesianas desde distintas posiciones de la articulación: El tipo de cinemática (Página 35) define las posiciones posibles de la articulación, así como el espacio de articulación positivo y negativo. Los espacios de posición de la articulación están limitados por las zonas de transformación respectivas. Asimismo, se producen otras limitaciones por posiciones de la articulación no admisibles en el tipo de cinemática "Delta-picker" y por posiciones singulares (Página 128) en los tipos de cinemática "Brazo articulado", "SCARA" y "Robot cilíndrico". Tenga en cuenta también las limitaciones constructivas propias del lugar de instalación de la cinemática.

El objeto tecnológico Cinemática indica la posición de la articulación actual en la variable "<TO>.StatusKinematics.LinkConstellation".

Una cinemática no puede abandonar el espacio de articulación durante un movimiento de la cinemática. El espacio de articulación se puede modificar mediante movimientos individuales de los ejes.

Ejemplo: Tipo de cinemática "SCARA"

Una cinemática "SCARA" tiene que mover un objeto de una paleta a otra. Por culpa de una pared, la cinemática no puede alcanzar la segunda paleta a menos que el eje A2 cambie el espacio de articulación.

- Posición cero de la cinemática
- Elongación de la cinemática en sentido positivo con α 1 = 45.0° con posición positiva de la articulación con α 2 = 120.0°

Elongación de la cinemática en sentido negativo con $\alpha 1$ = -45.0° con posición negativa de la articulación con $\alpha 2$ = -120.0°

- α1 Elongación del eje A1 en sentido positivo con $α1 = 45.0^{\circ}$ Elongación del eje A1 en sentido negativo con $α1 = -45.0^{\circ}$
- α 2 La elongación del eje A2 en sentido positivo con α 2 = 120.0° da como resultado una posición de la articulación positiva.

La elongación del eje A2 en sentido negativo con $\alpha 2$ = -120.0° da como resultado una posición de la articulación negativa.

Leyenda de la representación de las cinemáticas (Página 36)

3.8.2.4 Posiciones singulares

En función del tipo de cinemática, en la transformación hacia atrás son posibles coordenadas cartesianas que no pueden convertirse con precisión a posiciones de los ejes de la cinemática. Esto sucede cuando el origen del sistema de coordenadas de la brida (FCS) se encuentra en el eje z del sistema de coordenadas de la cinemática (KCS). Las coordenadas cartesianas en las que se produce este comportamiento se denominan posiciones singulares.

Tienen posiciones singulares los siguientes tipos de cinemáticas del objeto tecnológico Cinemática:

- Brazo articulado 3D
- Brazo articulado 3D con orientación
- SCARA 3D con orientación
- Robot cilíndrico 3D
- Robot cilíndrico 3D con orientación

Comportamiento en posiciones singulares

No es posible un movimiento de trayectoria a una posición singular ni a su través. Al alcanzarse la posición singular, se emite la alarma tecnológica 803 "Error al calcular la transformación" (reacción a alarma: parada con valores dinámicos máximos de los ejes).

Exceso de dinámica cerca de posiciones singulares

Si el movimiento de trayectoria se desarrolla cerca de posiciones singulares, los ejes de la cinemática pueden acelerar o decelerar bruscamente y moverse a gran velocidad. Esto puede provocar que se rebasen los límites dinámicos de los ejes. Si se rebasan los límites dinámicos de velocidad, aceleración o deceleración de los ejes, esto se indica en el bloque de datos del objeto tecnológico del eje correspondiente, y se emite la alarma tecnológica 511 "El límite dinámico se infringe por el movimiento de la cinemática". Es una advertencia y no incluye ninguna reacción a alarma. El movimiento de la cinemática no se detiene.

El tamaño de la zona en la que puede producirse este comportamiento depende de la cinemática utilizada.

Posibles medidas

Para evitar un desplazamiento a posiciones singulares o cerca de estas, adopte las siguientes medidas:

- 1. Planifique los movimientos de trayectoria de tal modo que la cinemática no se desplace a posiciones singulares ni cerca de estas.
- 2. Compruebe si en su cinemática puede evitarse un desplazamiento a posiciones singulares o cerca de estas mediante zonas de bloqueo o finales de carrera por software.

3.8.2.5 Acoplamientos mecánicos (dependen de la cinemática)

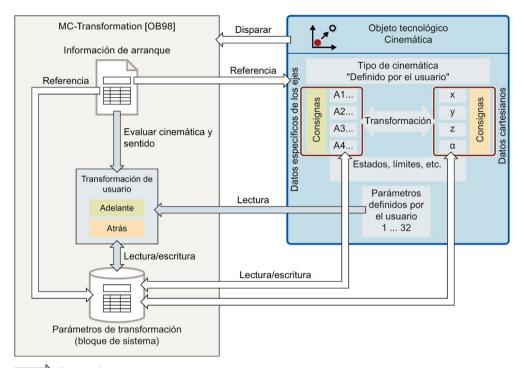
Si se modifica la posición de un eje por el movimiento de otro eje de la cinemática, significa que ambos ejes están acoplados mecánicamente. Pueden crearse acoplamientos mecánicos entre dos ejes de cinemática debido al diseño constructivo. Por ejemplo, si en la cinemática "SCARA" el eje de orientación está fijado al husillo de un eje lineal, con el movimiento de este eje lineal cambiará la orientación.

La transformación de la cinemática compensa los acoplamientos mecánicos con un factor de acoplamiento. En la configuración de la cinemática deben especificarse los acoplamientos mecánicos y los factores de acoplamiento en función del tipo de cinemática.

3.8.3 Transformación para cinemáticas definidas por el usuario

3.8.3.1 Transformación de usuario

A diferencia de los tipos de cinemática predefinidos, en las cinemáticas definidas por el usuario es este quien debe calcular la transformación en un programa propio. Como en los tipos de cinemática predefinidos, el objeto tecnológico Cinemática asume las siguientes tareas:


- Ejecución de las instrucciones de Motion Control
- Funciones de vigilancia
- Comunicación con los ejes interconectados

La transformación de usuario de las coordenadas cartesianas y las consignas específicas de los ejes se programan en el bloque de organización MC-Transformation [OB98]. La programación abarca la transformación de las posiciones y los valores dinámicos (velocidad, aceleración, tirón). Los parámetros de una cinemática definida por el usuario se definen libremente en las variables del objeto tecnológico Cinemática "<TO>.Kinematics.Parameter[1..32]" o en "Objeto tecnológico > Configuración > Geometría".

Si agrega el MC-Transformation [OB98] en el TIA Portal, se creará automáticamente el bloque de datos de sistema "TransformationParameter" en "Bloques de programa > Bloques de sistema > Recursos de sistema". En las propiedades del bloque de organización, en "General > Transformación", MC-Transformation [OB98] indica el número del bloque de datos del sistema "TransformationParameter". En el bloque de datos del sistema "TransformationParameter", escriba y lea los datos específicos de los ejes o los datos cartesianos de la cinemática que vaya a transformarse.

Programación

El gráfico siguiente muestra las interfaces y la interacción entre rendimiento del sistema y transformación de usuario:

Ejecución por el programa del usuario

Rendimiento del sistema

El objeto tecnológico Cinemática llama automáticamente al MC-Transformation [OB98]. El MC-Transformation [OB98] contiene la siguiente información de arranque:

- Objeto tecnológico Cinemática que llama al MC-Transformation [OB98]
- Sentido requerido de la transformación (transformación hacia delante o hacia atrás)
- Contexto de ejecución de la transformación (movimiento actual o planificación del movimiento)
- Puntero hacia el bloque de datos de sistema "TransformationParameter" (VARIANT).

Esta información de arranque se evalúa en el programa de usuario. En el MC-Transformation [OB98] se programan los algoritmos para el cálculo de los datos específicos de los ejes, o los datos cartesianos de todas las cinemáticas definidas por el usuario. Los parámetros necesarios de la cinemática se leen de las variables del objeto tecnológico "<TO>.Kinematics.Parameter[1..32]". Introduzca el resultado del cálculo en la interfaz "TransformationParameter".

A continuación, los parámetros de transformación se aplican automáticamente en el objeto tecnológico Cinemática y siguen procesándose. El objeto tecnológico Cinemática genera las consignas para los ejes de la cinemática.

Limitaciones en la transformación de varias cinemáticas

Cada objeto tecnológico Cinemática llama al MC-Transformation [OB98]. En el MC-Transformation [OB98] solo puede transformarse una cinemática en cada caso. En cada ciclo del servo solo puede llamarse a un MC-Transformation [OB98].

3.8.3.2 MC-Transformation [OB98]

Declaración de referencia para el bloque de datos de sistema "TransformationParameter"

En MC-Transformation [OB98], debe especificarse una referencia al tipo de datos para el bloque de datos de sistema "TransformationParameter". Para ello, cree una variable con el siguiente tipo de datos en la sección "Temp" de la interfaz del bloque:

"REF TO TO Struct TransformationParameter V1"

Para poder acceder al bloque de datos de sistema "TransformationParameter", asigne el tipo de datos "TO_Struct_TransformationParameter_V1" mediante el siguiente comando Casting:

#P ?= #TransformationParameters;

La declaración se describe en un ejemplo de programa (Página 134).

Llamada de bloque

MC-Transformation [OB98] se llama en el ciclo de aplicación de Motion Control de acuerdo con la prioridad configurada. Con la llamada, el objeto tecnológico Cinemática suministra valores a los parámetros de MC-Transformation [OB98]:

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Desc	cripción			
KinematicsObject	INPUT	DB_ANY	-	MC-	to tecnológico Cinemática para el que Transformation [OB98] calcula la transformación do es llamado.			
ExecutionContext	INPUT	DINT	-	Cont	exto de ejecución del OB MC-Transformation			
				0	MOTION_EXECUTION			
								Cálculo de las consignas del eje al ejecutar el movimiento en MC-Interpolator [OB92]. Los valores calculados se necesitan para el control de actual del movimiento.
				1	NON_MOTION_EXECUTION			
					La transformación se necesita para la planificación del movimiento (ningún movimiento actualmente).			

3.8 Transformación de la cinemática

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Desc	cripción
TransformationType	INPUT	DINT	-	Cálc	ulo solicitado
				0	Transformación hacia delante
					Cálculo de los parámetros cartesianos a partir de las posiciones de los ejes
				1	Transformación hacia atrás
					Cálculo de los parámetros específicos de los ejes a partir de los parámetros cartesianos
Transformation- Parameters	InOut	VARIANT	-		ero hacia el bloque de datos de sistema nsformationParameter"
FunctionResult	ctionResult OUTPUT DINT -		-	Valor de retorno del MC-Transformation [OB98] objeto tecnológico Cinemática	
				0	Cálculo realizado y parámetros generados
				< 0	Error en el cálculo (definido por el usuario).
					Si se produce un error en el cálculo, el objeto tecnológico Cinemática detiene el movimiento. El objeto tecnológico Cinemática emite una alarma tecnológica con la identificación del error como valor asociado y borra la cadena de órdenes.

Prioridad

La prioridad de MC-Transformation [OB98] se configura en las propiedades del bloque de organización, en "General > Atributos > Prioridad". Se pueden configurar valores de 17 a 25 para la prioridad (ajuste predeterminado 25):

- La prioridad de MC-Transformation [OB98] debe estar al menos un nivel por debajo de la prioridad de MC-Servo [OB91].
- La prioridad de MC-Transformation [OB98] debe estar al menos un nivel por encima de la prioridad de MC-Interpolator [OB92].

Variables del bloque de datos de sistema "TransformationParameter"

La tabla siguiente muestra las variables en el bloque de datos de sistema "TransformationParameter":

ariable	Tipo de datos	Descripción
AxisData.	STRUCT_ Transformation AxisData_V1	Parámetros específicos de los ejes
a1Position	LREAL	Consigna de posición del eje A1
a1Velocity	LREAL	Consigna de velocidad lineal del eje A1
a1Acceleration	LREAL	Consigna de aceleración del eje A1
a2Position	LREAL	Consigna de posición del eje A2
a2Velocity	LREAL	Consigna de velocidad lineal del eje A2
a2Acceleration	LREAL	Consigna de aceleración del eje A2
a3Position	LREAL	Consigna de posición del eje A3
a3Velocity	LREAL	Consigna de velocidad lineal del eje A3
a3Acceleration	LREAL	Consigna de aceleración del eje A3
a4Position	LREAL	Consigna de posición del eje A4
a4Velocity	LREAL	Consigna de velocidad lineal del eje A4
a4Acceleration	LREAL	Consigna de aceleración del eje A4
CartesianData	STRUCT_ Transformation CartesianDa- ta_V1	Parámetros cartesianos y posición de la articulación
xPosition	LREAL	Posición x
xVelocity	LREAL	Velocidad x
xAcceleration	LREAL	Aceleración x
yPosition	LREAL	Posición y
yVelocity	LREAL	Velocidad y
yAcceleration	LREAL	Aceleración y
zPosition	LREAL	Posición z
zVelocity	LREAL	Velocidad z
zAcceleration	LREAL	Aceleración z
aPosition	LREAL	Posición A (orientación)
aVelocity	LREAL	Velocidad A (orientación)
aAcceleration	LREAL	Aceleración A (orientación)
LinkConstellation	DWORD	Constelación de la articulación

3.8.3.3 Ejemplo de programa de transformación de usuario

A continuación se describe un ejemplo sencillo de transformación de usuario en el MC-Transformation [OB98] de una cinemática 2D con el nombre "KinematicsUserDefined2D". Para esta cinemática se han definido dos parámetros de transformación en "Objeto tecnológico > Configuración > Geometría".

La tabla siguiente muestra la declaración de las variables utilizadas:

Variable	Declaración	Tipo de datos	Descripción
KinematicsObject	Input	DB_ANY	Referencia al objeto tecnológico
TransformationType	Input	DInt	Sentido de transformación
			0: Transformación hacia delante
			1: Transformación hacia atrás
FunctionResult	Output	DInt	Resultado de la transformación
			0: Correcto
			< 0: Error
Transformation- Parameters	InOut	Variant	Referencia al bloque de datos de sistema "TransformationParameter"
Р	Temp	REF_TO TO_Struct_Transformation Parameter_V1	Variable temporal para el comando Casting
GearRatioA1	Temp	LReal	Variable temporal para leer los parámetros de transformación definidos
GearRatioA2	Temp	LReal	Variable temporal para leer los parámetros de transformación definidos
InvalidCast	Constant	DInt	Valor de retorno para Casting incorrecto

El ejemplo de programa tiene la siguiente estructura:

- Comando Casting para acceder al bloque de datos de sistema "TransformationParameter"
- Evaluación del objeto tecnológico
- Lectura de los parámetros de transformación definidos
- Evaluación del sentido de transformación
- Cálculo de las coordenadas cartesianas a partir de las posiciones de los ejes de la cinemática (transformación hacia delante)
- Cálculo de las posiciones de los ejes de la cinemática a partir de las coordenadas cartesianas (transformación hacia atrás)

SCL

```
//Caste of the variant "TransformationParameters" to the referenced datatype
//"TO Struct TransformationParameter V1".
//This has to be done in order to access the variant pointer, which references
//the "TransformationParameters" where the "AxisData" and "CartesianData" for
//the calculation of user transformation are stored.
#P ?= #TransformationParameters;
//Check if cast of "TransformationParameters" was successfull. Otherwise abort calcula-
IF #P = NULL THEN
    #FunctionResult := #InvalidCast;
END IF;
//Check if "KinematicsUserDefined2D" needs transformation.
IF #KinematicsObject = "KinematicsUserDefined2D" THEN
    //Read the user defined cartesian parameters.
    #GearRatioA1 := "KinematicsUserDefined2D".Kinematics.Parameter[1];
    #GearRatioA2 := "KinematicsUserDefined2D".Kinematics.Parameter[2];
    //Calculate the forward transformation "AxisData" -> "CartesianData".
    //The system fills the "AxisData" of "TransformationParameters" with values.
    //To calculate the "CartesianData" evaluate "AxisData".
    IF #TransformationType = 0 THEN
        //Calculate the position, velocity and acceleration component for the x-vector.
        #P^.CartesianData.xPosition := #P^.AxisData.alPosition * #GearRatioA1;
        #P^.CartesianData.xVelocity := #P^.AxisData.a1Velocity * #GearRatioA1;
        #P^.CartesianData.xAcceleration := #P^.AxisData.alAcceleration * #GearRatioA1;
        //Calculate the position, velocity and acceleration component for the z-vector.
        #P^.CartesianData.zPosition := #P^.AxisData.a2Position * #GearRatioA2;
        #P^.CartesianData.zVelocity := #P^.AxisData.a2Velocity * #GearRatioA2;
        #P^.CartesianData.zAcceleration := #P^.AxisData.a2Acceleration * #GearRatioA2;
        //Link constellation can be set to 0 here, hence it is not needed.
        #P^.CartesianData.LinkConstellation := 16#0000;
        //Transformation was successfull.
        #FunctionResult := 0;
    //Calculate the backward transformation "CartesianData" -> "AxisData".
    //The system fills the "CartesianData" of "TransformationParameters" with values.
    //To calculate the "AxisData" evaluate "CartesianData".
    ELSIF #TransformationType = 1 THEN
        //Calculate the position, velocity and acceleration component for the first axis.
        #P^.AxisData.alPosition := #P^.CartesianData.xPosition / #GearRatioA1;
        #P^.AxisData.a1Velocity := #P^.CartesianData.xVelocity / #GearRatioA1;
        #P^.AxisData.alAcceleration := #P^.CartesianData.xAcceleration / #GearRatioA1;
```

3.8 Transformación de la cinemática

SCL

```
//Calculate the position, velocity and acceleration component for the second axis.
#P^.AxisData.a2Position := #P^.CartesianData.zPosition / #GearRatioA2;
#P^.AxisData.a2Velocity := #P^.CartesianData.zVelocity / #GearRatioA2;
#P^.AxisData.a2Acceleration := #P^.CartesianData.zAcceleration / #GearRatioA2;

//Transformation was successfull.
#FunctionResult := 0;

END_IF;
END_IF;
```

Consulte también

MC-Transformation [OB98] (Página 131)

3.8.4 Variables de transformación de la cinemática

Para la transformación de la cinemática son relevantes las siguientes variables del objeto tecnológico Cinemática:

Variable	Descripción		
Valores de estado			
<to>.StatusKinematics.Valid</to>	TRUE	Transformación/valores cartesianos válidos	
	FALSE	Transformación/valores cartesianos no válidos	
<to>.StatusKinematics.LinkConstellation</to>	Posición	de la articulación	
<to>.FlangeInKcs</to>		e transformación actual (con dinámica, a de consigna)	

3.9 Movimientos de la cinemática

3.9.1 Descripción abreviada de los movimientos de la cinemática

Los movimientos de la cinemática son los que mueven la cinemática a través del espacio tridimensional. Planifique el movimiento de la cinemática con antelación. Tenga en cuenta lo siguiente:

- Puntos alcanzables por la cinemática
- Zonas
- Zonas de transformación
- Espacios de posición de la articulación
- Final de carrera por software de los ejes

El movimiento de orientación es el movimiento de la orientación cartesiana y se desarrolla de forma simultánea al movimiento de la cinemática. Si se suaviza la transición entre los movimientos, lo mismo ocurrirá con el movimiento de orientación. Si se detiene el movimiento de la cinemática, se detendrá también el movimiento de orientación.

Sistema de referencia

La posición de destino y la orientación de destino que se especifiquen para un movimiento de la cinemática pueden estar referidas al sistema de coordenadas universal (WCS) o a un sistema de coordenadas de objeto (OCS).

3.9.2 Tipos de movimiento

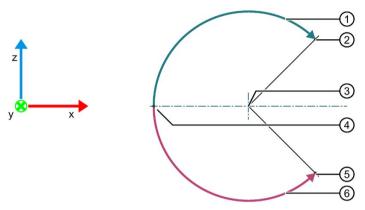
3.9.2.1 Movimiento lineal

Una cinemática puede desplazarse con un movimiento lineal. El movimiento lineal se define mediante las instrucciones de Motion Control "MC_MoveLinearAbsolute" (Página 224) y "MC_MoveLinearRelative" (Página 230). Mientras que con una orden "MC_MoveLinearAbsolute", la cinemática se desplaza hasta una posición absoluta, con una orden "MC_MoveLinearRelative", la cinemática se desplaza con respecto a la posición actual. La cinemática se desplaza desde la posición actual hasta la posición de destino definida con un movimiento lineal.

3.9.2.2 Movimiento circular

Una cinemática puede desplazarse con un movimiento circular. El movimiento circular se define mediante las instrucciones de Motion Control "MC_MoveCircularAbsolute" (Página 236) y "MC_MoveCircularRelative" (Página 245). Mientras que con una orden "MC_MoveCircularAbsolute", la cinemática se desplaza hasta una posición absoluta, con una orden "MC_MoveCircularRelative", la cinemática se desplaza con respecto a la posición actual.

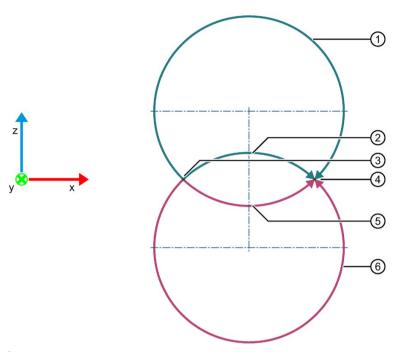
Definición de la trayectoria circular ("CircMode")


Con el parámetro "CircMode" se especifica la definición de la trayectoria circular. En función del valor de este parámetro, la trayectoria circular se calcula como sigue:

- Con un punto intermedio y el punto final ("CircMode" = 0)
 - Con el punto intermedio se especifica un punto en la trayectoria circular por el que debe pasarse para llegar al punto final. A partir del punto inicial, intermedio y final se calcula la trayectoria circular. Solo es posible realizar trayectorias circulares de menos de 360°.
- Con el centro del círculo y el ángulo de un plano principal ("CircMode" = 1)
 - Con el centro del círculo y el ángulo se calcula el punto final de la trayectoria circular. Con el parámetro "PathChoice" se especifica si la trayectoria circular debe ser en sentido de rotación positivo o negativo. Adicionalmente, con el parámetro "CirclePlane" se especifica el plano principal por el que debe pasar la trayectoria circular.
- Con el radio del círculo y el punto final de un plano principal ("CircMode" = 2)
 - Con el radio del círculo y el punto final se calcula la trayectoria circular. Así pueden generarse hasta cuatro trayectorias circulares. Con el parámetro "PathChoice" se especifica cuál de las cuatro trayectorias circulares debe recorrerse. Adicionalmente, con el parámetro "CirclePlane" se especifica el plano principal por el que debe pasar la trayectoria circular.

A la hora de definir el punto intermedio y el punto final, el centro del círculo y el ángulo, o el radio del círculo y el punto final, asegúrese de que los datos sean coherentes entre sí.

Sentido de la orientación de la trayectoria circular ("PathChoice")


Si la trayectoria circular debe calcularse con el centro del círculo y el ángulo, defina con el parámetro "PathChoice" si la trayectoria circular debe recorrerse en sentido de rotación positivo o negativo.

- ① Sentido de rotación positivo ("PathChoice" = 0)
- 2 Punto final
- 3 Centro del círculo
- 4 Punto de inicio
- (5) Punto final
- 6 Sentido de rotación negativo ("PathChoice" = 1)

3.9 Movimientos de la cinemática

Si la trayectoria circular debe calcularse con el radio del círculo y el punto final, defina con el parámetro "PathChoice" cuál de las cuatro trayectorias circulares posibles debe recorrerse. Se hace distinción entre el sentido de rotación positivo y negativo y entre el segmento circular más largo y el más corto.

- ① Segmento circular positivo más largo ("PathChoice" = 2)
- ② Segmento circular positivo más corto ("PathChoice" = 0)
- 3 Punto de inicio
- 4 Punto final
- 5 Segmento circular negativo más corto ("PathChoice" = 1)
- 6 Segmento circular negativo más largo ("PathChoice" = 3)

3.9.3 Dinámica del movimiento

3.9.3.1 Dinámica del movimiento de cinemática y de orientación

Los valores dinámicos (velocidad, aceleración, tirón) de un movimiento de cinemática se especifican en la instrucción de Motion Control correspondiente.

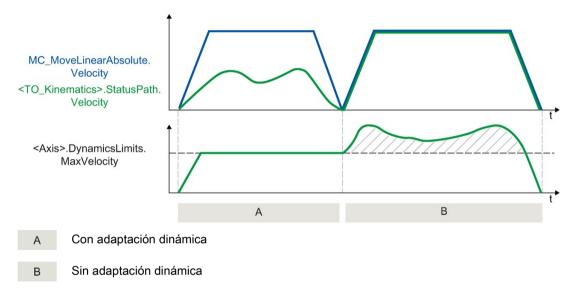
Ajustes predeterminados de dinámica

Si no especifica valores dinámicos para las órdenes de movimiento (valor predeterminado "-1.0"), se utilizarán los ajustes predeterminados de dinámica configurados en "Objeto tecnológico > Configuración > Parámetros avanzados > Dinámica" para el movimiento de cinemática. Para el movimiento de orientación, los valores dinámicos solo pueden especificarse mediante los ajustes predeterminados de dinámica.

Si se modifican los ajustes predeterminados de dinámica durante un movimiento activo, los valores modificados serán efectivos a partir de la siguiente orden de movimiento.

Límites dinámicos de la cinemática

En el control de movimiento se tienen en cuenta los límites dinámicos de la cinemática configurados en "Objeto tecnológico > Configuración > Parámetros avanzados > Dinámica". Si es necesario, se limita la dinámica de un movimiento de modo que no se rebasen los límites dinámicos de la cinemática. Si se modifican los límites dinámicos de la cinemática, las modificaciones del movimiento de la cinemática y de orientación serán efectivas inmediatamente.


Límites dinámicos de los ejes

Al dar una orden de movimiento, los límites dinámicos de los ejes configurados en "Objeto tecnológico > Configuración > Parámetros avanzados > Límites > Límites dinámicos" solo se tienen en cuenta si está activada la adaptación dinámica. Si es necesario, se limita la dinámica del movimiento de modo que no se rebasen los límites dinámicos de los ejes. Si se modifican los límites dinámicos de los ejes durante un movimiento activo, los valores modificados serán efectivos a partir de la siguiente orden de movimiento.

Adaptación dinámica

La adaptación dinámica se ajusta en "Objeto tecnológico > Configuración > Parámetros avanzados > Dinámica". Con la adaptación dinámica activada, se calcula un perfil de velocidad para todo el movimiento que tenga en cuenta los límites dinámicos de los ejes y de la cinemática (<TO>.StatusPath.DynamicAdaption). En la adaptación dinámica se incluyen la velocidad y la aceleración. En el caso de la aceleración, se tienen en cuenta las aceleraciones radial y tangencial de la trayectoria. El tirón no se limita en la adaptación dinámica.

El gráfico siguiente muestra, a modo de ejemplo, una curva de velocidad con y sin adaptación dinámica:

En la adaptación dinámica sin segmentación de la trayectoria, se calcula el perfil de velocidad teniendo en cuenta los límites dinámicos de los ejes válidos para todo el movimiento.

En la adaptación dinámica con segmentación, la trayectoria se divide en segmentos equidistantes. Para cada uno de dichos segmentos se calcula el perfil de velocidad teniendo en cuenta los límites dinámicos de los ejes válidos para los distintos tramos del movimiento. De este modo, la dinámica se adapta a los distintos tramos de un movimiento.

3.9.3.2 Corrección (override)

Con el bloque de datos del objeto tecnológico puede establecerse una corrección de la velocidad para la cinemática (<TO>.Override.Velocity). Puede especificarse un valor entre 0 % y 200 %. La corrección de la velocidad actúa sobre la velocidad del punto de operación de la herramienta (TCP) a lo largo de la trayectoria. Si se modifica la corrección de la velocidad de la cinemática, la modificación será efectiva inmediatamente para el movimiento de la cinemática.

La consigna de velocidad del movimiento es la velocidad especificada en la instrucción de Motion Control multiplicada por el valor porcentual de la corrección de la velocidad.

Los valores de corrección de la velocidad específicos de los ejes no son efectivos en los movimientos de la cinemática.

3.9.4 Variables del control de movimiento y dinámica

Las variables siguientes del objeto tecnológico son relevantes para el control de movimiento:

Variable	Descripe	Descripción		
Valores de estado				
<to>.StatusWord</to>	Indicado	Indicador de estado para un movimiento activo		
<to>.StatusPath.CoordSystem</to>	Sistema de coordenadas de la orden de movimiento activ			
	0	Sistema de coordenadas universal		
	1, 2, 3	Sistema de coordenadas de objeto 1, 2, 3		
<to>.Tcp</to>		nadas de destino del movimiento de cinemática en na de coordenadas universal		
	x, y, z, A	A		
<to>.StatusPath.Velocity</to>	Velocida	ad de la trayectoria actual (referencia de consigna)		
<to>.StatusPath.Acceleration</to>	Acelera	ción de la trayectoria actual (referencia de consigna)		
<to>.StatusPath.DynamicAdaption</to>	Adaptac	ión dinámica		
	0	Sin adaptación dinámica		
	1	Adaptación dinámica con segmentación de la trayectoria		
	2	Adaptación dinámica sin segmentación de la trayectoria		
<to>.StatusMotionQueue.NumberOfCommands</to>	Número de órdenes en la cadena de órdenes			
Solapamiento	•			
<to>.Override.Velocity</to>	Correcc	ión de velocidad		
Valores límite de dinámica				
<to>.DynamicLimits.Path.Velocity</to>	Limitacio	ón dinámica para la velocidad máxima de la trayectoria		
<to>.DynamicLimits.Path.Acceleration</to>	Limitacio	ón dinámica para la aceleración máxima de la trayectoria		
<to>.DynamicLimits.Path.Deceleration</to>	Limitacio	ón dinámica para la deceleración máxima de la trayectoria		
<to>.DynamicLimits.Path.Jerk</to>	Limitacio	ón dinámica para el tirón máximo de la trayectoria		
<to>.DynamicLimits.Orientation.Velocity</to>	Limitación dinámica para la velocidad máxima de la orientació cartesiana			
<to>.DynamicLimits.Orientation.Acceleration</to>	Limitación dinámica para la aceleración máxima de la orientacio cartesiana			
<to>.DynamicLimits.Orientation.Deceleration</to>	Limitación dinámica para la deceleración máxima de la orientac cartesiana			
<to>.DynamicLimits.Orientation.Jerk</to>	Limitación dinámica para el tirón máximo de orientación cartesiana			

3.9 Movimientos de la cinemática

Variable	Descrip	Descripción		
Ajustes predeterminados de dinámica				
<to>.DynamicDefaults.Path.Velocity</to>	Preajus	ste de velocidad de la trayectoria		
<to>.DynamicDefaults.Path.Acceleration</to>	Preajus	ste de aceleración de la trayectoria		
<to>.DynamicDefaults.Path.Deceleration</to>	Preajus	ste de deceleración de la trayectoria		
<to>.DynamicDefaults.Path.Jerk</to>	Preajus	ste de tirón de la trayectoria		
<to>.DynamicDefaults.Orientation.Velocity</to>	Preajus	ste de velocidad de la orientación cartesiana		
<to>.DynamicDefaults.Orientation.Acceleration</to>	Preajuste de aceleración de la orientación cartesiana			
<to>.DynamicDefaults.Orientation.Deceleration</to>	Preajuste de deceleración de la orientación cartesiana			
<to>.DynamicDefaults.Orientation.Jerk</to>	Preajus	ste de tirón de la orientación cartesiana		
<to>.DynamicDefaults.DynamicAdaption</to>	Preajuste de la adaptación dinámica			
	0	Sin adaptación dinámica		
	1	Adaptación dinámica con segmentación de la trayectoria		
	2	Adaptación dinámica sin segmentación de la trayectoria		

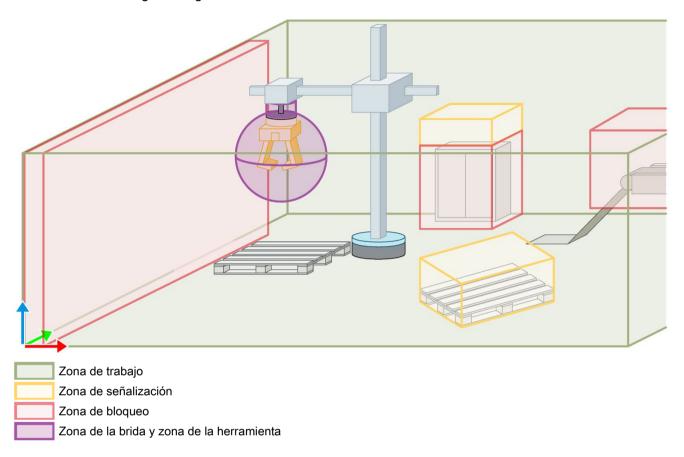
3.10 Vigilancia de zonas

3.10.1 Descripción abreviada de la vigilancia de zonas

La vigilancia de zonas se encarga de las siguientes tareas:

- Protección frente a colisiones con componentes mecánicos
- Disparo de acciones condicionadas por el proceso (zonas de señalización)

Ninguna protección para las personas


La vigilancia de zonas no es adecuada para la protección de las personas.

Para proteger a las personas, tome medidas de protección adecuadas, como colocación de vallas de seguridad, instalación de puertas de seguridad, etc.

Las zonas son cuerpos geométricos que permiten describir y dividir el espacio de trabajo de una cinemática. En el objeto tecnológico Cinemática pueden configurarse las zonas del espacio de trabajo y las zonas de la cinemática. Las zonas del espacio de trabajo describen el entorno de una cinemática. Las zonas de la cinemática envuelven el punto final de una cinemática (brida o herramienta).

3.10 Vigilancia de zonas

El gráfico siguiente ilustra las zonas de una cinemática:

Configuración de zonas

Las zonas se pueden especificar y activar/desactivar mediante configuración del objeto tecnológico Cinemática o desde el programa de usuario, utilizando instrucciones de Motion Control (Página 253).

Vigilancia de zonas

La vigilancia de zonas comprueba todas las zonas del espacio de trabajo (zonas de operación, señalización, bloqueo) activadas para evitar colisiones con todas las zonas activadas de la cinemática (zonas de la brida, zonas de la herramienta). La vigilancia de zonas vigila las zonas en todos los movimientos de la cinemática:

- Movimientos de la cinemática mediante el programa de usuario o el panel de mando de la cinemática
- Movimientos de un eje individual mediante el programa de usuario o el panel de mando del eje

El estado de la vigilancia de zonas se indica en el diagnóstico (Página 214) y en las variables (Página 155) del objeto tecnológico Cinemática.

Si la vigilancia de zona detectas la infracción de una zona por parte de un movimiento de la cinemática, se producen las siguientes reacciones:

Infracción de zona	Reacción	Descripción	
Abandono de la zona de operación	Alarma con paro	El objeto tecnológico Cinemática emite una alarma tecnológica. El movimiento de la cinemática se detiene.	
Penetración en una zona de señalización	Alarma sin paro	El objeto tecnológico Cinemática emite una alarma tecnológica. El movimiento de la cinemática continúa.	
Penetración en una zona de bloqueo	Alarma con paro	El objeto tecnológico Cinemática emite una alarma tecnológica. El movimiento de la cinemática se detiene. La cinemática infringe la zona al menos en la distancia de frenado.	

En las infracciones de zona de los movimientos de un eje individual, el objeto tecnológico Cinemática emite una alarma tecnológica. El objeto tecnológico Eje de posicionamiento/Eje sincronizado no emite ninguna alarma tecnológica. El movimiento de un eje individual no se interrumpe. Es posible interrumpir el movimiento de un eje individual por aplicación.

Además de las zonas del objeto tecnológico Cinemática, el espacio de desplazamiento de la cinemática puede limitarse también con los finales de carrera por software de los ejes.

3.10 Vigilancia de zonas

Retirada de un tope tras infracción de zona

Una vez que haya confirmado la alarma tecnológica en el objeto tecnológico Cinemática, puede reanudarse el movimiento de la cinemática.

ATENCIÓN

Vigilancia de zonas desactivada para zona infringida tras confirmación

Una vez confirmada la alarma tecnológica en el objeto tecnológico Cinemática, la vigilancia de zonas permanece desactivada para la zona infringida hasta que la cinemática abandone la zona de bloqueo/señalización infringida o vuelva a entrar en la zona de trabajo infringida. La cinemática puede moverse en todas las direcciones, incluso penetrar más en la zona de bloqueo/señalización infringida o retirarse más de la zona de trabajo.

Para la retirada de un tope de la cinemática, tenga en cuenta el sentido de desplazamiento.

Vigile la retirada por aplicación. El estado de la vigilancia de zonas sigue mostrándose en el bloque de datos del objeto tecnológico.

Una vez que la cinemática abandona la zona de bloqueo/señalización infringida o vuelve a entrar en la zona de trabajo infringida, la vigilancia de dicha zona vuelve a activarse. En consecuencia, si vuelve a infringirse la zona, se emite una nueva alarma tecnológica.

Consulte también

Variables de la vigilancia de zonas (Página 155)

3.10.2 Zonas del espacio de trabajo

Las zonas del espacio de trabajo describen el entorno de una cinemática. Las zonas del espacio de trabajo se describen en el sistema de coordenadas universal (WCS) o en el sistema de coordenadas de objeto (OCS). Es posible configurar y activar/desactivar un máximo de diez zonas del espacio de trabajo. La tabla siguiente muestra las zonas del espacio de trabajo en el objeto tecnológico Cinemática:

Zona del espacio de trabajo	Descripción	
Zona de trabajo	Las zonas de trabajo u operación definen las áreas en las que se pueden mover las zonas de la cinemática.	
Zona de señalización	Las zonas de señalización indican lo siguiente:	
	La zona de la cinemática penetra en las zonas de señalización	
	La zona de la cinemática se encuentra en la zona de señalización	
Zona de bloqueo	Las zonas de bloqueo definen las áreas en las que no debe penetrar una zona de la cinemática.	

Zona de trabajo

Con las zonas de trabajo se restringe el espacio de desplazamiento posible para la cinemática o se definen varias zonas de trabajo n posibles. Pueden especificarse varias zonas de trabajo. No puede haber varias zonas de trabajo activadas simultáneamente. Si no hay ninguna zona de trabajo activada, todo el espacio de desplazamiento de la cinemática se considerará zona de trabajo.

Las zonas de la cinemática deben circunscribirse a las zonas de trabajo. Si una zona de la cinemática abandona una zona de trabajo, el objeto tecnológico Cinemática emitirá la alarma tecnológica 806 (reacción a alarma: parada con valores dinámicos máximos de la cinemática). Los ejes implicados en el movimiento de la cinemática se detienen con los valores dinámicos máximos configurados en el objeto tecnológico Cinemática. Se cancelan todas las órdenes de la cadena de órdenes.

3.10 Vigilancia de zonas

Zona de señalización

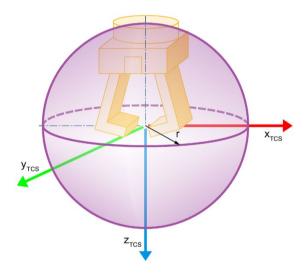
Las zonas de señalización son áreas dentro del espacio de desplazamiento de la cinemática. Las zonas de señalización indican una infracción por una zona de la cinemática, pero no detienen el movimiento de la cinemática. Las zonas de señalización pueden estar parcialmente fuera de la zona de trabajo.

Si una zona de la cinemática infringe una zona de señalización, el objeto tecnológico Cinemática emite la alarma tecnológica 807 (sin reacción a alarma).

Zona de bloqueo

Las zonas de bloqueo son áreas dentro del espacio de desplazamiento de la cinemática en las que no puede penetrar una zona de la cinemática (p. ej., un armario eléctrico o panel de protección). Las zonas de bloqueo pueden estar parcialmente fuera de la zona de trabajo.

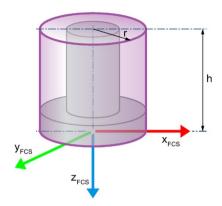
Si una zona de la cinemática infringe una zona de bloqueo, el objeto tecnológico Cinemática emite la alarma tecnológica 806 (reacción a alarma: parada con valores dinámicos máximos de la cinemática). Los ejes implicados en el movimiento de la cinemática se detienen con los valores dinámicos máximos configurados en el objeto tecnológico Cinemática. Se cancelan todas las órdenes de la cadena de órdenes.


3.10.3 Zonas de la cinemática

Las zonas de la cinemática están referidas al punto de operación/la brida de una cinemática y se mueven con esta. La vigilancia de zonas comprueba si las zonas de la cinemática penetran en las zonas del espacio de trabajo. Con las zonas de la cinemática puede ampliarse el área vigilada más allá del punto de operación de la herramienta (TCP). Pueden configurarse y activarse/desactivarse hasta nueve zonas de cinemática. La tabla siguiente muestra las zonas de la cinemática en el objeto tecnológico Cinemática:

Zona de la cinemática	Sistema de referencia	Descripción
Zona de la herramienta	TCS	Las zonas de la herramienta envuelven la herramienta o una parte de ella.
Zona de la brida	FCS	Las zonas de la brida envuelven la brida o una parte de ella.

Zona de la herramienta


Las zonas de la herramienta se definen en el sistema de coordenadas de herramienta (TCS). El gráfico siguiente muestra una zona de herramienta de forma esférica:

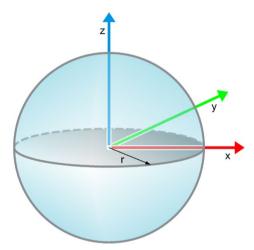
3.10 Vigilancia de zonas

Zona de la brida

Las zonas de la brida se definen en el sistema de coordenadas de la brida (FCS). El gráfico siguiente muestra una zona de brida cilíndrica:

En este ejemplo, se ha definido un decalaje equivalente a la altura de la zona de la brida en sentido z negativo del FCS.

3.10.4 Geometría de la zona

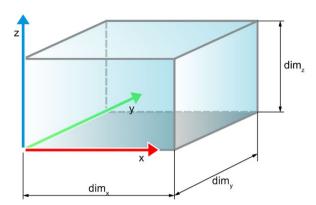

Las zonas se pueden configurar con los siguientes cuerpos geométricos:

- Esfera
- Cubo
- Cilindro

En el sistema de coordenadas de referencia, especifique la posición del punto cero del sistema de coordenadas de la zona. Indique las dimensiones y la rotación del cuerpo a partir de ese punto cero.

Esfera

Una esfera se define a partir del punto cero y el radio:

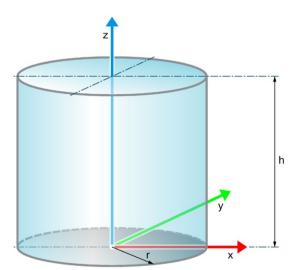


r Radio de la esfera

3.10 Vigilancia de zonas

Cubo

Un cubo se define a partir del punto cero y las aristas en sentido x, y, z:


dim_x Arista en sentido x del sistema de coordenadas de zonas

dimy Arista en sentido y del sistema de coordenadas de zonas

dimz Arista en sentido z del sistema de coordenadas de zonas

Cilindro

Un cilindro se define a partir del punto cero y el radio de la base y la altura del cilindro:

- r Radio de la base del cilindro
- h Altura del cilindro en sentido z del sistema de coordenadas de zonas

3.10.5 Variables de la vigilancia de zonas

Para la vigilancia de zonas son relevantes las siguientes variables del objeto tecnológico Cinemática:

Variable	Descripción
Configuración de zonas	
<to>.WorkspaceZone[110]</to>	Configuración de las zonas del espacio de trabajo
<to>.KinematicsZone[210]</to>	Configuración de las zonas de la cinemática
	La zona <to>.KinematicsZone[1] es el punto de operación de la herramienta (TCP) y siempre está activada.</to>
Valores de estado	
<to>.StatusWorkspaceZone[110]</to>	Estado de las zonas del espacio de trabajo
<to>.StatusKinematicsZone[210]</to>	Estado de las zonas de la cinemática
<to>.StatusZoneMonitoring.WorkingZones</to>	Indicación de las zonas de trabajo infringidas
	Los números de bit 1 a 10 se corresponden con los números de zona configurados.
<to>.StatusZoneMonitoring.BlockedZones</to>	Indicación de las zonas de bloqueo infringidas
	Los números de bit 1 a 10 se corresponden con los números de zona configurados.
<to>.StatusZoneMonitoring.SignalizingZones</to>	Indicación de las zonas de señalización alcanzadas
	Los números de bit 1 a 10 se corresponden con los números de zona configurados.
<to>.StatusZoneMonitoring.KinematicsZones</to>	Indicación de zonas de la cinemática que infringen las zonas del espacio de trabajo
	El número de bit 1 señala el estado de vigilancia del TCP. Los números de bit 2 a 10 se corresponden con los números de zona configurados.

Resumen de versiones

En S7-1500T Motion Control se distingue entre la versión de la tecnología, de los objetos tecnológicos y de las instrucciones de Motion Control.

La versión de un objeto tecnológico o una instrucción de Motion Control se muestra en las propiedades del objeto tecnológico en la ficha "General > Información", en el campo "Versión".

Lista de compatibilidad

La siguiente tabla muestra la compatibilidad de la versión tecnológica con la versión de la CPU:

CPU	Tecnología	Objeto tecnológico	Instrucción de Motion Control
V2.5	V4.0	Cinemática V4.0	MC_GroupInterrupt V4.0
			MC_GroupContinue V4.0
			MC_GroupStop V4.0
			MC_MoveLinearAbsolute V4.0
			MC_MoveLinearRelative V4.0
			MC_MoveCircularAbsolute V4.0
			MC_MoveCircularAbsolute V4.0
			MC_DefineWorkspaceZone V4.0
			MC_DefineKinematicsZone V4.0
			MC_SetWorkspaceZoneActive V4.0
			MC_SetWorkspaceZoneInactive V4.0
			MC_SetKinematicsZoneActive V4.0
			MC_SetKinematicsZoneInactive V4.0
			MC_DefineTool V4.0
			MC_SetTool V4.0
			MC_SetOcsFrame V4.0

Configurar

5.1 Agregar el objeto tecnológico Cinemática

A continuación se explica cómo agregar el objeto tecnológico Cinemática al árbol del proyecto.

Requisitos

Se ha creado un proyecto con una CPU S7-1500T.

Procedimiento

Para agregar un objeto tecnológico Cinemática, proceda del siguiente modo:

- 1. Abra la carpeta de la CPU en el árbol del proyecto.
- 2. Abra la carpeta "Objetos tecnológicos".
- Haga doble clic en "Agregar objeto".
 Se abre el cuadro de diálogo "Agregar objeto".
- 4. Seleccione "TO_Kinematics". En la descripción que aparecerá puede consultar la función del objeto tecnológico.
- 5. Adapte el nombre de la cinemática a sus necesidades en el campo de entrada "Nombre".
- 6. Para modificar el número del bloque de datos propuesto, seleccione la opción "Manual".
- 7. Para añadir información propia sobre el objeto tecnológico, haga clic en "Más información".
- 8. Para abrir la configuración después de agregar el objeto tecnológico, active la casilla de verificación "Agregar y abrir".
- 9. Para agregar el objeto tecnológico, haga clic en el botón "Aceptar".

Resultado

Se ha generado el nuevo objeto tecnológico Cinemática y se ha creado en la carpeta "Objetos tecnológicos" del árbol del proyecto.

5.2 Configuración del objeto tecnológico Cinemática

5.2.1 Configuración: parámetros básicos

Configure las propiedades básicas del objeto tecnológico Cinemática en la ventana de configuración "Parámetros básicos".

Nombre de la cinemática

Defina en este campo el nombre de la cinemática. El objeto tecnológico aparecerá con ese nombre en el árbol del proyecto. Las variables del objeto tecnológico pueden utilizarse en el programa de usuario con este nombre.

Tipo de cinemática

Seleccione el tipo de cinemática (Página 35) deseado en esta lista desplegable.

Unidades de medida

En las listas desplegables, seleccione las Unidades de medida (Página 24) deseadas para la posición, la velocidad, el ángulo y la velocidad angular de la cinemática.

5.2.2 Configuración - Interconexiones

Configure los ejes de la cinemática en la ventana de configuración "Interconexiones".

Ejes de la cinemática

Un objeto tecnológico Cinemática puede interconectarse con ejes de posicionamiento y ejes sincronizados ya creados en el proyecto. Seleccione los ejes deseados en función del tipo de cinemática (Página 35) en las listas desplegables. El botón permite abrir directamente la configuración del objeto tecnológico seleccionado. Configure los objetos tecnológicos interconectados como ejes lineales o rotatorios de acuerdo con el tipo de cinemática.

En función del tipo de cinemática, son relevantes los siguientes ejes de la cinemática:

Tipo de cinemática	Eje de la cinemática A1	Eje de la cinemática A2	Eje de la cinemática A3	Eje de orientación A4
2D	х	х	-	-
2D con orientación	х	х	-	х
3D	х	х	х	-
3D con orientación	Х	Х	Х	х

x Relevante

- Irrelevante

5.2.3 Configuración - Geometría

5.2.3.1 Configuración: geometría (portal cartesiano)

Configure los parámetros geométricos de la cinemática en la ventana de configuración "Geometría".

Parámetros de transformación

En estos campos, defina los parámetros de transformación de la cinemática en el sistema de coordenadas de la cinemática (KCS) en función del tipo de cinemática:

• Tipos de cinemática "Portal cartesiano 2D" y "Portal cartesiano 2D con orientación"

Campo	Descripción
Longitud L1	En este campo, defina la distancia de la posición cero del eje A1 con respecto al origen de la cinemática (KNP) en sentido x del KCS.
Longitud L2	En este campo, defina la distancia de la posición cero del eje A2 con respecto al origen de la cinemática en sentido z del KCS.
Longitud de la brida LF	En este campo, defina la distancia del sistema de coordenadas de la brida (FCS) con respecto al eje A2 en sentido z negativo del KCS.

• Tipos de cinemática "Portal cartesiano 3D" y "Portal cartesiano 3D con orientación"

Campo	Descripción
Longitud L1	En este campo, defina la distancia de la posición cero del eje A1 con respecto al origen de la cinemática en sentido x del KCS.
Longitud L2	En este campo, defina la distancia de la posición cero del eje A2 con respecto al origen de la cinemática en sentido y del KCS.
Longitud L3	En este campo, defina la distancia de la posición cero del eje A3 con respecto al origen de la cinemática en sentido z del KCS.
Longitud de la brida LF	En este campo, defina la distancia del sistema de coordenadas de la brida con respecto al eje A3 en sentido z negativo del KCS.

Representación en el Trace de la cinemática

En estos campos, defina la escala en la que se mostrará la cinemática en el Trace de la cinemática en función del tipo de cinemática:

• Tipos de cinemática "Portal cartesiano 2D" y "Portal cartesiano 2D con orientación"

Campo	Descripción
x mínima	En este campo, defina el dimensionamiento de la cinemática en sentido x negativo.
x máxima	En este campo, defina el dimensionamiento de la cinemática en sentido x positivo.
z mínima	En este campo, defina el dimensionamiento de la cinemática en sentido z negativo.
z máxima	En este campo, defina el dimensionamiento de la cinemática en sentido z positivo.

• Tipos de cinemática "Portal cartesiano 3D" y "Portal cartesiano 3D con orientación"

Campo	Descripción
x mínima	En este campo, defina el dimensionamiento de la cinemática en sentido x negativo.
x máxima	En este campo, defina el dimensionamiento de la cinemática en sentido x positivo.
y mínima	En este campo, defina el dimensionamiento de la cinemática en sentido y negativo.
y máxima	En este campo, defina el dimensionamiento de la cinemática en sentido y positivo.
z mínima	En este campo, defina el dimensionamiento de la cinemática en sentido z negativo.
z máxima	En este campo, defina el dimensionamiento de la cinemática en sentido z positivo.

Consulte también

Portal cartesiano (Página 37)

5.2.3.2 Configuración: geometría (Roller-picker)

Configure los parámetros geométricos de la cinemática en la ventana de configuración "Geometría".

Parámetros de transformación

En estos campos, defina los parámetros de transformación de la cinemática en el sistema de coordenadas de la cinemática (KCS) en función del tipo de cinemática:

• Tipo de cinemática "Roller-picker 2D" y "Roller-picker 2D con orientación"

Campo	Descripción
Radio R1	En este campo, defina el radio del disco para el eje A1.
Radio R2	En este campo, defina el radio del disco para el eje A2.
Longitud L1	En este campo, defina la distancia del sistema de coordenadas de la brida (FCS) con respecto al origen de la cinemática (KNP) en sentido x del KCS en la posición cero de los ejes A1 y A2.
Longitud L2	En este campo, defina la distancia del FCS con respecto al origen de la cinemática, incluida la longitud de la brida LF, en sentido z del KCS en la posición cero de los ejes A1 y A2.
Longitud de la brida LF	En este campo, defina la longitud de la brida antes del FCS en sentido z negativo del KCS.

 Tipo de cinemática "Roller-picker 3D (vertical)", "Roller-picker 3D con orientación (vertical)" y "Roller-picker 3D con orientación (horizontal)"

Campo	Descripción
Radio R1	En este campo, defina el radio del disco para el eje A1.
Radio R2	En este campo, defina el radio del disco para el eje A2.
Longitud L1	En este campo, defina la distancia del FCS con respecto al origen de la cinemática en sentido x del KCS.
Longitud L2	Para el tipo de cinemática "Roller-picker 3D (vertical)" y "Roller-picker 3D con orientación (vertical)":
	En este campo, defina la distancia del eje A3 con respecto al origen de la cinemática en sentido y del KCS.
	Para el tipo de cinemática "Roller-picker 3D con orientación (horizontal)":
	En este campo, defina la distancia del FCS con respecto al origen de la cinemática en sentido y del KCS.
Longitud L3	Para el tipo de cinemática "Roller-picker 3D (vertical)" y "Roller-picker 3D con orientación (vertical)":
	En este campo, defina la distancia del FCS con respecto al origen de la cinemática en sentido z del KCS.
	Para el tipo de cinemática "Roller-picker 3D con orientación (horizontal)":
	En este campo, defina la distancia del eje A3 con respecto al origen de la cinemática en sentido z del KCS.
Longitud de la brida LF	En este campo, defina la longitud de la brida antes del FCS en sentido z negativo del KCS.

5.2 Configuración del objeto tecnológico Cinemática

Representación en el Trace de la cinemática

En estos campos, defina la escala en la que se mostrará la cinemática en el Trace de la cinemática en función del tipo de cinemática:

• Tipo de cinemática "Roller-picker 2D" y "Roller-picker 2D con orientación"

Campo	Descripción
x mínima	En este campo, defina el dimensionamiento de la cinemática en sentido x negativo.
x máxima	En este campo, defina el dimensionamiento de la cinemática en sentido x positivo.
z mínima	En este campo, defina el dimensionamiento de la cinemática en sentido z negativo.
z máxima	En este campo, defina el dimensionamiento de la cinemática en sentido z positivo.

• Tipo de cinemática "Roller-picker 3D (vertical)", "Roller-picker 3D con orientación (vertical)" y "Roller-picker 3D con orientación (horizontal)"

Campo	Descripción
x mínima	En este campo, defina el dimensionamiento de la cinemática en sentido x negativo.
x máxima	En este campo, defina el dimensionamiento de la cinemática en sentido x positivo.
y mínima	En este campo, defina el dimensionamiento de la cinemática en sentido y negativo.
y máxima	En este campo, defina el dimensionamiento de la cinemática en sentido y positivo.
z mínima	En este campo, defina el dimensionamiento de la cinemática en sentido z negativo.
z máxima	En este campo, defina el dimensionamiento de la cinemática en sentido z positivo.

Consulte también

Roller-picker (Página 48)

5.2.3.3 Configuración: geometría (SCARA)

Configure los parámetros geométricos de la cinemática en la ventana de configuración "Geometría".

Parámetros de transformación

En estos campos, defina los parámetros de transformación de la cinemática en el sistema de coordenadas de la cinemática (KCS):

Campo	Descripción
Longitud L1	En este campo, defina la distancia del eje A1 con respecto al origen de la cinemática (KNP) en sentido z del KCS.
Longitud L2	En este campo, defina la distancia del eje A1 con respecto al eje A2 en sentido x del KCS.
Longitud L3	En este campo, defina la distancia del eje A2 con respecto al eje A3 en sentido x del KCS.
Longitud de la brida LF	En este campo, defina la distancia del sistema de coordenadas de la brida (FCS) con respecto al eje A3 en sentido z negativo del KCS.

Acoplamiento mecánico de ejes

La transformación de la cinemática compensa los acoplamientos mecánicos configurados de los ejes. Para la cinemática existe la posibilidad de configurar los siguientes acoplamientos mecánicos de los ejes:

- Acoplamiento mecánico del eje A1 al eje A2
- Acoplamiento mecánico del eje A4 al eje A3

En cada uno de los campos "Factor de compensación", introduzca el factor de acoplamiento deseado.

Representación en el Trace de la cinemática

En estos campos, defina la escala en la que se mostrará la cinemática en el Trace de la cinemática:

Campo	Descripción
z mínima	En este campo, defina el dimensionamiento de la cinemática en sentido z negativo.
z máxima	En este campo, defina el dimensionamiento de la cinemática en sentido z positivo.

Consulte también

SCARA (Página 65)

5.2.3.4 Configuración: geometría (brazo articulado)

Configure los parámetros geométricos de la cinemática en la ventana de configuración "Geometría".

Parámetros de transformación

En estos campos, defina los parámetros de transformación de la cinemática en el sistema de coordenadas de la cinemática (KCS) en función del tipo de cinemática:

• Tipo de cinemática "Brazo articulado 2D" y "Brazo articulado 2D con orientación"

Campo	Descripción
Longitud L1	En este campo, defina la distancia del eje A1 con respecto al origen de la cinemática (KNP) en sentido z del KCS.
Longitud L2	En este campo, defina la distancia del eje A1 con respecto al origen de la cinemática en sentido x del KCS.
Longitud L3	En este campo, defina la distancia del eje A2 con respecto al eje A1.
Longitud L4	En este campo, defina la distancia del punto de acoplamiento forzado con respecto al eje A2.
Longitud de la brida LF	En este campo, defina la distancia del sistema de coordenadas de la brida (FCS) con respecto al punto de acoplamiento forzado en sentido z negativo del KCS.

• Tipo de cinemática "Brazo articulado 3D" y "Brazo articulado 3D con orientación"

Campo	Descripción
Longitud L1	En este campo, defina la distancia del eje A2 con respecto al origen de la cinemática en sentido z del KCS.
Longitud L2	En este campo, defina la distancia del eje A2 con respecto al origen de la cinemática en sentido x del KCS.
Longitud L3	En este campo, defina la distancia del eje A3 con respecto al eje A2.
Longitud L4	En este campo, defina la distancia del punto de acoplamiento forzado con respecto al eje A3.
Longitud de la brida LF	En este campo, defina la distancia del FCS con respecto al punto de acoplamiento forzado en sentido z negativo del KCS.

Acoplamiento mecánico de ejes

La transformación de la cinemática compensa los acoplamientos mecánicos configurados de los ejes. En función del tipo de cinemática, pueden configurarse los siguientes acoplamientos mecánicos de los ejes:

- Tipo de cinemática "Brazo articulado 2D" y "Brazo articulado 2D con orientación":
 Acoplamiento mecánico del eje A1 al eje A2
- Tipo de cinemática "Brazo articulado 3D" y "Brazo articulado 3D con orientación":
 Acoplamiento mecánico del eje A2 al eje A3

En el campo "Factor de compensación", indique el factor de acoplamiento deseado.

Consulte también

Brazo articulado (Página 71)

5.2 Configuración del objeto tecnológico Cinemática

5.2.3.5 Configuración: geometría (Delta-picker)

Configure los parámetros geométricos de la cinemática en la ventana de configuración "Geometría".

Parámetros de transformación

En estos campos, defina los parámetros de transformación de la cinemática en el sistema de coordenadas de la cinemática (KCS) en función del tipo de cinemática:

• Tipo de cinemática "Delta-picker 2D" y "Delta picker 2D con orientación"

Campo	Descripción
Longitud L1	En este campo, defina la longitud de los brazos superiores.
Longitud L2	En este campo, defina la longitud de los brazos de unión.
Longitud de la brida LF	En este campo, defina la distancia del sistema de coordenadas de la brida (FCS) con respecto a la placa de unión inferior en sentido z negativo del KCS.
Distancia D1	En este campo, defina la distancia de los ejes con respecto al centro de la placa de unión superior (radio de la placa de unión superior).
Distancia D2	En este campo, defina la distancia de los puntos de articulación de los brazos de unión con respecto a la placa de unión inferior (radio de la placa de unión inferior).

• Tipo de cinemática "Delta-picker 3D" y "Delta-picker 3D con orientación"

Campo	Descripción
Longitud L1	En este campo, defina la longitud de los brazos superiores.
Longitud L2	En este campo, defina la longitud de los brazos de unión.
Longitud de la brida LF	En este campo, defina la distancia del FCS con respecto a la placa de unión inferior en sentido z negativo del KCS.
Distancia D1	En este campo, defina la distancia de los ejes con respecto al centro de la placa de unión superior (radio de la placa de unión superior).
Distancia D2	En este campo, defina la distancia de los puntos de articulación de los brazos de unión con respecto a la placa de unión inferior (radio de la placa de unión inferior).
Ángulo entre A1 y A2	En este campo, defina el ángulo entre los ejes A1 y A2.
Ángulo entre A2 y A3	En este campo, defina el ángulo entre los ejes A2 y A3.

Consulte también

Delta-picker (Página 90)

5.2.3.6 Configuración: geometría (robot cilíndrico)

Configure los parámetros geométricos de la cinemática en la ventana de configuración "Geometría".

Parámetros de transformación

En estos campos, defina los parámetros de transformación de la cinemática en el sistema de coordenadas de la cinemática (KCS):

Campo	Descripción
Longitud L1	En este campo, defina la distancia de la posición cero del eje A2 con respecto al origen de la cinemática (KNP) en sentido z del KCS.
Longitud L2	En este campo, defina la distancia del eje A3 con respecto al origen de la cinemática en sentido y del KCS.
Longitud de la brida LF	En este campo, defina la distancia del sistema de coordenadas de la brida (FCS) con respecto al eje A3 en sentido z negativo del KCS.

Acoplamiento mecánico de ejes

La transformación de la cinemática compensa los acoplamientos mecánicos configurados de los ejes. Para el tipo de cinemática "Robot cilíndrico 3D con orientación", puede configurarse el siguiente acoplamiento mecánico de los ejes:

Acoplamiento mecánico del eje A4 al eje A2

En el campo "Factor de compensación", indique el factor de acoplamiento deseado.

Representación en el Trace de la cinemática

En estos campos, defina la escala en la que se mostrará la cinemática en el Trace de la cinemática:

Campo	Descripción
z mínima	En este campo, defina el dimensionamiento de la cinemática en sentido z negativo.
z máxima	En este campo, defina el dimensionamiento de la cinemática en sentido z positivo.
A3 máximo	En este campo, defina la longitud de desplazamiento máxima del eje A3.

Consulte también

Robot cilíndrico (Página 104)

5.2 Configuración del objeto tecnológico Cinemática

5.2.3.7 Configuración: geometría (trípode)

Configure los parámetros geométricos de la cinemática en la ventana de configuración "Geometría".

Parámetros de transformación

En estos campos, defina los parámetros de transformación de la cinemática en el sistema de coordenadas de la cinemática (KCS):

Campo	Descripción
Longitud L1	En este campo, defina la longitud de los brazos de unión.
Longitud de la brida LF	En este campo, defina la distancia del sistema de coordenadas de la brida (FCS) con respecto a la placa de unión inferior en sentido z negativo del KCS.
Distancia D1	En este campo, defina la distancia de los puntos de articulación superiores de los brazos de unión con respecto al centro de la placa de unión superior.
Distancia D2	En este campo, defina la distancia de los puntos de articulación inferiores de los brazos de unión con respecto al centro de la placa de unión inferior.
Ángulo entre el eje A1 y el plano xy del KCS	En este campo, defina el ángulo entre la placa de unión superior (plano xy del KCS) y el carril del eje A1 $(0.0^{\circ} \le \gamma < 90.0^{\circ})$.
Ángulo entre A1 y A2	En este campo, defina el ángulo entre los ejes A1 y A2.
Ángulo entre A2 y A3	En este campo, defina el ángulo entre los ejes A2 y A3.

Consulte también

Trípode (Página 114)

5.2.3.8 Configuración: geometría (definida por el usuario)

Configure los parámetros geométricos de la cinemática en la ventana de configuración "Geometría".

Parámetros de transformación

En esta tabla, defina los valores iniciales de los parámetros 1 a 32 de la cinemática (<TO>.Kinematics.Parameter[1..32]).

Representación en el Trace de la cinemática

En estos campos, defina la escala en la que se mostrará la cinemática en el Trace de la cinemática en función del tipo de cinemática:

 Tipos de cinemática "2D definido por el usuario" y "2D definido por el usuario con orientación"

Campo	Descripción
x mínima	En este campo, defina el dimensionamiento de la cinemática en sentido x negativo.
x máxima	En este campo, defina el dimensionamiento de la cinemática en sentido x positivo.
z mínima	En este campo, defina el dimensionamiento de la cinemática en sentido z negativo.
z máxima	En este campo, defina el dimensionamiento de la cinemática en sentido z positivo.

 Tipo de cinemática "3D definido por el usuario" y "3D definido por el usuario con orientación"

Campo	Descripción
x mínima	En este campo, defina el dimensionamiento de la cinemática en sentido x negativo.
x máxima	En este campo, defina el dimensionamiento de la cinemática en sentido x positivo.
y mínima	En este campo, defina el dimensionamiento de la cinemática en sentido y negativo.
y máxima	En este campo, defina el dimensionamiento de la cinemática en sentido y positivo.
z mínima	En este campo, defina el dimensionamiento de la cinemática en sentido z negativo.
z máxima	En este campo, defina el dimensionamiento de la cinemática en sentido z positivo.

Consulte también

Cinemáticas definidas por el usuario (Página 122)

5.2.4 Parámetros avanzados

5.2.4.1 Configuración: dinámica

En la ventana de configuración "Dinámica", configure los valores predeterminados de la dinámica, los límites dinámicos y la adaptación dinámica del movimiento de la cinemática y del movimiento de orientación.

Ajustes predeterminados y límites

Para establecer los valores predeterminados del movimiento de la cinemática, seleccione la entrada "Movimiento de cinemática" en la lista desplegable "Ajustes para". Para establecer los valores predeterminados del movimiento de orientación, seleccione la entrada "Movimiento de orientación" en la lista desplegable "Ajustes para".

En los campos "Velocidad", "Aceleración", "Deceleración" y "Tirón", defina los valores predeterminados de la dinámica. Las órdenes de movimiento de la cinemática iniciadas en el programa de usuario se ejecutan con estos valores predeterminados cuando no se especifican valores dinámicos especiales.

En los campos "Velocidad máxima", "Aceleración máxima", "Deceleración máxima" y "Tirón máximo", defina los valores predeterminados de los límites dinámicos.

Adaptación dinámica

Seleccione el ajuste predeterminado de adaptación dinámica en la lista desplegable. Con la adaptación dinámica activa, se calcula un perfil de velocidad para todo el movimiento que tiene en cuenta los límites dinámicos de los ejes y de la cinemática.

Modo	Descripción
No limitar	No se tienen en cuenta los límites dinámicos de los ejes.
Limitar con segmentación de la trayectoria	La trayectoria se divide en segmentos. Para cada uno de estos segmentos, la dinámica se adapta de modo que no se rebasen los límites dinámicos de los ejes.
Limitar sin segmentación de la trayectoria	La dinámica se adapta de modo que no se rebasen los límites dinámicos de los ejes en toda la trayectoria.

Consulte también

Dinámica del movimiento de cinemática y de orientación (Página 141)

5.2.4.2 Configuración - Sistema de coordenadas de la cinemática

En la ventana de configuración "Sistema de coordenadas de la cinemática", configure la frame KCS (Página 31) y, con ello, la posición del sistema de coordenadas de la cinemática (KCS) en el sistema de coordenadas universal (WCS).

Punto cero (origen) de la cinemática en el WCS

En estos campos, defina la posición del sistema de coordenadas de la cinemática:

Campo	Descripción
Posición x	En este campo, defina el decalaje del KCS en sentido x del WCS.
Posición y	En este campo, defina el decalaje del KCS en sentido y del WCS.
Posición z	En este campo, defina el decalaje del KCS en sentido z del WCS.

Rotación del KCS

En estos campos, defina la rotación del sistema de coordenadas de la cinemática:

Campo	Descripción	
Rotación A	En este campo, defina la rotación del KCS en torno al eje z.	
Rotación B	En este campo, defina la rotación del KCS en torno al eje y.	
Rotación C	En este campo, defina la rotación del KCS en torno al eje x.	

Consulte también

Resumen de los sistemas de coordenadas y frames (Página 26)

5.2 Configuración del objeto tecnológico Cinemática

5.2.4.3 Configuración: sistemas de coordenadas de objetos

En la ventana de configuración "Sistema de coordenadas del objeto", configure los frames OCS (Página 31) y, con ello, la posición de los sistemas de coordenadas de objetos (OCS) en el sistema de coordenadas universal (WCS).

Sistema de coordenadas del objeto (OCS)

Seleccione en esta lista desplegable el sistema de coordenadas de objeto que deba definirse. Pueden definirse hasta tres sistemas de coordenadas de objetos.

OCS en el sistema de coordenadas universal (WCS)

En estos campos, defina la posición del sistema de coordenadas de objeto seleccionado:

Campo	Descripción
Posición x	En este campo, defina el decalaje del OCS en sentido x del WCS.
Posición y	En este campo, defina el decalaje del OCS en sentido y del WCS.
Posición z	En este campo, defina el decalaje del OCS en sentido z del WCS.
Rotación A	En este campo, defina la rotación del OCS en torno al eje z.
Rotación B	En este campo, defina la rotación del OCS en torno al eje y.
Rotación C	En este campo, defina la rotación del OCS en torno al eje x.

Consulte también

Resumen de los sistemas de coordenadas y frames (Página 26)

5.2.4.4 Configuración - Herramientas

En la ventana de configuración "Herramientas", configure los frames de herramienta (Página 31) y, con ello, la posición del punto de operación de cada una de las herramientas (TCP) en el sistema de coordenadas de la brida (FCS).

Herramienta

Seleccione en esta lista desplegable la herramienta que deba definirse. Pueden definirse hasta tres herramientas.

Punto de operación de la herramienta en el FCS

En estos campos, defina la posición del punto de operación de la herramienta seleccionada:

Campo	Descripción
Posición x	En este campo, defina el decalaje del TCP en sentido x del FCS.
Posición y	En este campo, defina el decalaje del TCP en sentido y del FCS.
Posición z	En este campo, defina el decalaje del TCP en sentido z del FCS.
Rotación A	En este campo, defina la rotación del TCP en torno al eje z.

Consulte también

Resumen de los sistemas de coordenadas y frames (Página 26)

5.2.4.5 Configuración: zonas

En la ventana de configuración "Zonas", configure las zonas del espacio de trabajo y las zonas de la cinemática del objeto tecnológico.

La ventana de configuración está dividida en las siguientes áreas:

- Vista gráfica
- Editor tabular
 - Zonas del espacio de trabajo
 - Zonas de la cinemática

Vista gráfica

En la vista gráfica se muestran las zonas del espacio de trabajo o las zonas de la cinemática que se definen en el editor tabular correspondiente. Con el ratón puede girarse, acercarse o alejarse la vista.

La barra de herramientas, situada en el borde superior de la vista gráfica, ofrece distintas funciones de los botones, dependiendo del editor tabular:

Botón	Función	Descripción
100%	Adaptar al tamaño de la pantalla	La vista se muestra adaptada al tamaño de la ventana.
#	Mostrar/ocultar cuadrícula	Se muestran/ocultan las líneas de la cuadrícula del sistema de coordenadas.
WCS ▼	Seleccionar el sistema de coor- denadas	Seleccione un sistema de coordenadas.
Herramienta 1 ▼	Seleccionar he- rramienta	Seleccione una herramienta.
20	Visualizar repre- sentación 2D	Se muestra la representación 2D.
₹ 0	Visualizar representación 3D	Se muestra la representación 3D.
Ţ _A x	Mostrar plano xy	Se muestra el plano xy.
Î _y x	Mostrar plano xy girado	Se muestra el plano xy girado en torno al eje x.
‡² _x	Mostrar plano xz	Se muestra el plano xz.
x ^z î	Mostrar plano xz girado	Se muestra el plano xz girado en torno al eje z.
Ţ ^x	Mostrar plano xz girado	Se muestra el plano xz girado en torno al eje x.
x̄ _z 1	Mostrar plano xz girado	Se muestra el plano xz girado en torno al eje x y al eje z.
1 ²y	Mostrar plano yz	Se muestra el plano yz.

5.2 Configuración del objeto tecnológico Cinemática

Botón	Función	Descripción
y ^z †	Mostrar plano yz girado	Se muestra el plano yz girado en torno al eje z.
‡ _z ÿ	Mostrar plano yz girado	Se muestra el plano yz girado en torno al eje y.
ý _z 1	Mostrar plano yz girado	Se muestra el plano yz girado en torno al eje y y al eje z.

Zonas del espacio de trabajo

Las zonas del espacio de trabajo (Página 149) describen el entorno de una cinemática. En la tabla es posible configurar un máximo de diez zonas del espacio de trabajo:

Columna	Descripción		
Visible	Con el símbolo de esta columna se muestra y oculta la zona en la vista superior.		
Número	En esta columna se muestra el número de zona.		
Estado	En esta columna, se	eleccione el estado de activación de la zona.	
	Activo	La vigilancia de zonas permanece activada para la zona.	
		Puede desactivar la zona en el programa de usuario mediante una orden "MC_SetWorkspaceZoneInactive" (Página 261).	
	Inactivo	La vigilancia de zonas permanece desactivada para la zona.	
		Puede activar la zona en el programa de usuario mediante una orden "MC_SetWorkspaceZoneActive" (Página 259).	
	No válido	La zona no está definida.	
		Puede definir la zona en el programa de usuario mediante una orden "MC_DefineWorkspaceZone" (Página 253).	
Tipo de zona	En esta columna, se	eleccione el tipo de zona.	
	Zona de trabajo	Las zonas de trabajo u operación definen las áreas en las que se pueden mover las zonas de la cinemática.	
		Pueden especificarse varias zonas de trabajo. Sin embargo, solo puede estar activada una zona de trabajo. Si no hay ninguna zona de trabajo activada, todo el espacio de desplazamiento de la cinemática se considerará zona de trabajo.	
	Zona de bloqueo	Las zonas de bloqueo definen las áreas en las que no debe penetrar una zona de la cinemática.	
	Zona de señaliza- ción	Las zonas de señalización son áreas dentro del espacio de desplazamiento de la cinemática. Las zonas de señalización indican una infracción por una zona de la cinemática, pero no detienen el movimiento de la cinemática.	
Geometría	En esta columna, se	eleccione la Geometría de la zona (Página 153).	
		Esfera	
	•	Cubo	
		Cilindro	
Longitud	En una zona cúbica, defina la longitud de la zona en sentido x en esta columna.		
Anchura	En una zona cúbica	, defina la anchura de la zona en sentido y en esta columna.	
Altura	En una zona cúbica	, defina la altura de la zona en sentido z en esta columna.	
	En una zona cilíndrica, defina la altura de la zona en sentido z en esta columna.		

Columna	Descripción	
Radio	En una zona esfério	ca, defina el radio de la zona en esta columna.
	En una zona cilíndr	ica, defina el radio de la zona en esta columna.
KS	En esta columna, seleccione el sistema de coordenadas de referencia.	
	WCS	Sistema de coordenadas universal
	OCS 1	Sistema de coordenadas del objeto 1
	OCS 2	Sistema de coordenadas del objeto 2
	OCS 3	Sistema de coordenadas del objeto 3
х	Defina la posición de la zona en sentido x en esta columna.	
у	Defina la posición de la zona en sentido y en esta columna.	
z	Defina la posición de la zona en sentido z en esta columna.	
А	Defina la rotación de la zona en torno al eje z en esta columna (irrelevante para una zona esférica).	
В	Defina la rotación de la zona en torno al eje y en esta columna (irrelevante para una zona esférica).	
С	Defina la rotación de la zona en torno al eje x en esta columna (irrelevante para una zona esférica).	

Zonas de la cinemática

Las zonas de la cinemática (Página 151) están referidas al punto de operación/la brida de una cinemática y se mueven con esta. La vigilancia de zonas comprueba si las zonas de la cinemática penetran en las zonas del espacio de trabajo. En la tabla es posible configurar un máximo de nueve zonas de la cinemática:

Columna	Descripción		
Visible	Con el símbolo de esta columna se muestra y oculta la zona en la vista superior.		
Número	En esta columna se muestra el número de zona.		
Estado	En esta columna, se	eleccione el estado de activación de la zona.	
	Activo	La vigilancia de zonas permanece activada para la zona.	
		Puede desactivar la zona en el programa de usuario mediante una orden "MC_SetKinematicsZoneInactive" (Página 265).	
	Inactivo	La vigilancia de zonas permanece desactivada para la zona.	
		Puede activar la zona en el programa de usuario mediante una orden "MC_SetKinematicsZoneActive" (Página 263).	
	No válido	La zona no está definida.	
		Puede definir la zona en el programa de usuario mediante una orden "MC_DefineKinematicsZone" (Página 256).	
Tipo de zona	En esta columna, se	eleccione el tipo de zona.	
	Zona de la brida	Las zonas de la brida envuelven la brida o una parte de ella.	
	Zona de la herra- mienta	Las zonas de la herramienta envuelven la herramienta o una parte de ella.	
Geometría	En esta columna, seleccione la Geometría de la zona (Página 153).		
		Esfera	
		Cubo	
		Cilindro	
Longitud	En una zona cúbica	i, defina la longitud de la zona en sentido x en esta columna.	
Anchura	En una zona cúbica	, defina la anchura de la zona en sentido y en esta columna.	
Altura En una zona cúbica, defina la altura de la zona en sentido z en es		, defina la altura de la zona en sentido z en esta columna.	
	En una zona cilíndri	ica, defina la altura de la zona en sentido z en esta columna.	
Radio	En una zona esférica, defina el radio de la zona en esta columna.		
	En una zona cilíndrica, defina el radio de la zona en esta columna.		
KS	En esta columna, se	eleccione el sistema de coordenadas de referencia.	
	FCS	Sistema de coordenadas de la brida	
	TCS	Sistema de coordenadas de la herramienta	
х	Defina la posición d	e la zona en sentido x en esta columna.	
у	Defina la posición de la zona en sentido y en esta columna.		
z	Defina la posición de la zona en sentido z en esta columna.		

Columna	Descripción
А	Defina la rotación de la zona en torno al eje z en esta columna (irrelevante para una zona esférica).
В	Defina la rotación de la zona en torno al eje y en esta columna (irrelevante para una zona esférica).
С	Defina la rotación de la zona en torno al eje x en esta columna (irrelevante para una zona esférica).

Consulte también

Descripción abreviada de la vigilancia de zonas (Página 145)

5.3 Copiar el objeto tecnológico Cinemática

A continuación se explica cómo copiar el objeto tecnológico Cinemática al árbol del proyecto.

Requisitos

- Se ha creado un proyecto con una CPU S7-1500T.
- Se ha creado un objeto tecnológico Cinemática en el proyecto.

Procedimiento

Para copiar un objeto tecnológico Cinemática, proceda del siguiente modo:

- 1. Abra la carpeta de la CPU en el árbol del proyecto.
- 2. Abra la carpeta "Objetos tecnológicos".
- 3. Marque el objeto tecnológico Cinemática que desee copiar.
- 4. Para que se copien también los ejes asociados, márquelos igualmente. Para seleccionar varios elementos, mantenga pulsada la tecla < Ctrl>.
- 5. Elija el comando "Copiar" del menú contextual.
- 6. Marque la carpeta "Objetos tecnológicos".
- 7. Elija el comando "Pegar" del menú contextual.

Resultado

Se ha copiado el objeto tecnológico Cinemática seleccionado junto con los ejes asociados que se hayan marcado y se ha creado en la carpeta "Objetos tecnológicos" del árbol del proyecto.

5.4 Borrar el objeto tecnológico Cinemática

A continuación se explica cómo borrar el objeto tecnológico Cinemática del árbol del proyecto.

Requisitos

- Se ha creado un proyecto con una CPU S7-1500T.
- Se ha creado un objeto tecnológico Cinemática en el proyecto.

Procedimiento

Para borrar un objeto tecnológico Cinemática, proceda del siguiente modo:

- 1. Abra la carpeta de la CPU en el árbol del proyecto.
- 2. Abra la carpeta "Objetos tecnológicos".
- 3. Marque el objeto tecnológico Cinemática que desee borrar.
- Elija el comando "Borrar" del menú contextual.
 Se abre el cuadro de diálogo "Confirmar borrado".
- 5. Para borrar el objeto tecnológico, haga clic en el botón "Sí".

Resultado

Se ha borrado el objeto tecnológico Cinemática seleccionado. Los ejes asociados al objeto tecnológico Cinemática se conservan.

5.5 Barra de herramientas de la configuración

En la barra de herramientas de la vista de funciones dispone de las siguientes funciones:

Símbolo	Función	Explicación
1	Mostrar los valores online	Muestra los valores leídos en la CPU en el momento actual.
+	Acopla las vistas de funciones y parámetros de los objetos marcados en la navegación.	Permite cambiar directamente de la vista de parámetros a la vista orientada a funciones.
	Contraer/expandir todos los nodos y objetos	Contrae o expande todos los nodos y objetos de la navegación o la estructura de datos en la vista que se encuentre activa en cada momento.
Ē	Contraer/expandir los nodos por debajo del nodo seleccionado	Contrae o expande los nodos y objetos seleccionados de la navegación o la vista de datos en la vista que se encuentre activa en cada momento.

Programación

6.1 Introducción a la programación de los movimientos de la cinemática

El capítulo "Programación" contiene información general sobre la asignación de valores y la evaluación de las instrucciones de Motion Control.

Encontrará un resumen de las instrucciones de Motion Control para el objeto tecnológico Cinemática en el capítulo "Funciones" (Página 20).

Las instrucciones de Motion Control permiten dar órdenes al objeto tecnológico desde el programa de usuario. La orden se define con los parámetros de entrada de la instrucción de Motion Control. El estado actual de la orden se muestra en los parámetros de salida.

Dado que el objeto tecnológico Cinemática agrupa los ejes de la cinemática, puede asignar directamente el objeto tecnológico Cinemática al parámetro de entrada "AxesGroup".

El objeto tecnológico Cinemática en sí no puede habilitarse mediante una orden "MC_Power" ni referenciarse con una orden "MC_Home". En lugar de eso, para los movimientos de la cinemática deben habilitarse ("MC_Power.Enable" = TRUE) o referenciarse los ejes interconectados.

Los errores del objeto tecnológico Cinemática pueden confirmarse con una orden "MC Reset" o bien puede reiniciarse el objeto tecnológico.

6.2 Cadena de órdenes

En la cadena de órdenes del objeto tecnológico Cinemática se introducen órdenes relevantes para el movimiento.

Las siguientes órdenes se incorporan a la cadena de instrucciones:

Orden	Descripción breve		
Movimientos de la cinemática			
"MC_MoveLinearAbsolute (Página 224)"	Posicionamiento de la cinemática con movimiento lineal de la trayectoria		
"MC_MoveLinearRelative (Página 230)"	Posicionamiento relativo de la cinemática con movimiento lineal de la trayectoria		
"MC_MoveCircularAbsolute (Página 236)"	Posicionamiento de la cinemática con movimiento circular de la trayectoria		
"MC_MoveCircularRelative (Página 245)"	Posicionamiento relativo de la cinemática con movimiento circular de la trayectoria		
Zona	as		
"MC_DefineWorkspaceZone (Página 253)"	Definir la zona del espacio de trabajo		
"MC_DefineKinematicsZone (Página 256)"	Definir la zona de la cinemática		
"MC_SetWorkspaceZoneActive (Página 259)"	Activar la zona del espacio de trabajo		
"MC_SetWorkspaceZoneInactive (Página 261)"	Desactivar la zona del espacio de trabajo		
"MC_SetKinematicsZoneActive (Página 263)"	Activar la zona de la cinemática		
"MC_SetKinematicsZoneInactive (Página 265)"	Desactivar la zona de la cinemática		
Sistemas de coordenadas			
"MC_SetOcsFrame (Página 271)"	Redefinir los sistemas de coordenadas de objetos		

Las órdenes se procesan en la misma secuencia en la que se introducen en la cadena de órdenes. La secuencia de las órdenes no puede modificarse posteriormente. Cuando se agrega otra orden de movimiento a la cadena de órdenes, todas las órdenes de la cadena de órdenes se calculan de nuevo. Las órdenes de movimiento de la cinemática no se anulan mutuamente. Puesto que para preparar el movimiento y para calcular el perfil de velocidad se tienen en cuenta todas las órdenes de la cadena de órdenes, las órdenes con longitudes de desplazamiento pequeñas y suavizado de transiciones a altas velocidades también pueden procesarse del mismo modo que para los movimientos individuales. Al realizar el nuevo cálculo, también se incluye la orden en curso, de modo que puede suavizarse la transición desde esta orden a la siguiente.

También puede interrumpirse el procesamiento de las órdenes con una orden "MC_GroupInterrupt", llenarse la cadena de órdenes y, a continuación, reanudarlo con una orden "MC_GroupContinue".

De forma predeterminada, la cadena de órdenes puede contener hasta cinco órdenes. Puede modificar el número máximo de órdenes (Página 284) en la vista de parámetros. La cadena de órdenes puede contener un máximo de diez órdenes.

Consulte también

Variable MotionQueue (cinemática) (Página 284)

6.3 Estado del movimiento y recorrido residual

Puede consultar el estado y el recorrido residual de una orden de movimiento en los parámetros de la instrucción de Motion Control correspondiente.

Estado de una orden de movimiento

Puede identificar el estado de una orden de movimiento con los parámetros "Busy" y "Active". Cuando se envía la orden, el parámetro "Busy" se ajusta a TRUE y la orden se agrega a la cadena de órdenes. Mientras la orden se encuentre en la cadena de órdenes, el parámetro "Active" se ajustará a FALSE. En cuanto la orden tenga efecto en el control de movimiento, el parámetro "Active" se ajustará a TRUE. Una vez finalizada la orden de movimiento, los parámetros "Busy" y "Active" se ajustan a FALSE, y el parámetro "Done", a TRUE.

Si se agrega otra orden de movimiento a la cadena de órdenes, todas las órdenes inactivas de la cadena de órdenes se calcularán de nuevo. Al realizar el nuevo cálculo, también se incluye la orden en curso, de modo que puede suavizarse la transición desde esta orden a la siguiente. Cuando un control de movimiento es interrumpido por una orden "MC_GroupInterrupt", las órdenes de la cadena de órdenes se calculan cuando se reanuda el control de movimiento mediante una orden "MC_GroupContinue".

Recorrido residual de una orden de movimiento

Puede consultar el recorrido residual de una orden de movimiento en el parámetro "RemainingDistance". Si el movimiento no se transforma suavemente, el parámetro "RemainingDistance" contiene la distancia de la trayectoria por recorrer hasta la posición de destino. Si el movimiento se transforma suavemente hasta el siguiente movimiento, el parámetro "RemainingDistance" contendrá la distancia de la trayectoria por recorrer hasta el segmento de suavizado de transición. Si en una orden de movimiento se mueve exclusivamente el eje de orientación (reorientación), el parámetro "RemainingDistance" contendrá el valor "-1.0".

6.4 Interrupción, reanudación y detención de movimientos de la cinemática

Los movimientos activos de la cinemática se pueden interrumpir, reanudar o detener, y cancelar así también las órdenes de movimiento en espera.

Interrupción de movimientos de la cinemática

Con la instrucción de Motion Control "MC_GroupInterrupt" (Página 215) se interrumpe la ejecución de un movimiento en el objeto tecnológico Cinemática. Con el parámetro "Mode" se especifica el comportamiento dinámico. La cinemática puede pararse con la dinámica de la orden de movimiento que debe interrumpirse o con la dinámica máxima. Con la detención no se abandona la trayectoria actual. Si la cinemática ya está parada, el control de movimiento también queda interrumpido para las órdenes de movimiento posteriores.

El objeto tecnológico Cinemática se encuentra en el estado "Interrupted" (<TO>.StatusWord.X17).

Para planificar una trayectoria, puede interrumpirse el procesamiento de las órdenes, llenarse la cadena de órdenes (Página 182) y, a continuación, seguir con el procesamiento de las órdenes.

Reanudación de movimientos de la cinemática

Con la instrucción de Motion Control "MC_GroupContinue" (Página 217) se reanuda un movimiento de la cinemática interrumpido previamente con una orden "MC_GroupInterrupt". El movimiento de la cinemática puede reanudarse aunque la cinemática todavía no se haya parado con la orden "MC_GroupInterrupt".

La orden "MC_GroupContinue" solo tiene un efecto si el objeto tecnológico se encuentra en estado "Interrupted" (<TO>.StatusWord.X17).

Detención de movimientos de la cinemática

Con la instrucción "MC_GroupStop" de Motion Control (Página 221) se detiene el control de movimiento en el objeto tecnológico Cinemática. Se interrumpen así tanto la orden de movimiento activa como todas las órdenes pendientes en la cadena de órdenes, y se vacía dicha cadena. Si el movimiento de la cinemática ya se había interrumpido con una orden "MC_GroupInterrupt", también se interrumpe. Mientras el parámetro "Execute" esté ajustado en TRUE, se rechazarán también las órdenes de cinemática siguientes ("ErrorID" = 16#80CD).

Con el parámetro "Mode" se especifica el comportamiento dinámico. La cinemática puede pararse con la dinámica de la orden de movimiento que debe detenerse o con la dinámica máxima. Con la detención no se abandona la trayectoria actual.

6.5 Preparación del movimiento con varias órdenes

6.5.1 Conexión de varios movimientos de la cinemática con transiciones geométricas

Es posible unir varios movimientos entre sí de forma que la cinemática se detenga entre los distintos movimientos. Para lograr un control de movimiento ininterrumpido, se pueden transformar suavemente los distintos movimientos mediante transiciones geométricas. Los parámetros correspondientes se definen en la nueva orden de movimiento (A2); para acceder a ella, debe suavizarse la transición desde la orden anterior (A1).

Transiciones de movimientos lineales

Con las instrucciones de Motion Control "MC_MoveLinearAbsolute" (Página 224) y "MC_MoveLinearRelative" (Página 230) se recorre una cinemática con un movimiento lineal. Con el parámetro "BufferMode" puede establecerse el tipo de transición del movimiento y con el parámetro "TransitionParameter[1]" la distancia de suavizado de transición. Tomando dos movimientos lineales como ejemplo, la siguiente tabla muestra el efecto de estos parámetros en la transición del movimiento:

Distancia de suavizado de transición ("Transition- Parameter[1]")	Transición del movimiento ("BufferMode")	Descripción
Irrelevante	"BufferMode" = 1	Encadenar el movimiento El movimiento lineal en curso continúa hasta el final y la cinemática se para.
	A A1 P3	A continuación, se ejecuta el siguiente movimiento lineal.
d > 0.0	"BufferMode" = 2, 5	Suavizar la transición del movimiento
	A Zo	Cuando se alcanza la distancia de suavizado de transición hasta la posición de destino, el movimiento lineal en curso se transforma suavemente hasta el siguiente movimiento lineal.
	A	Con "BufferMode" = 2 se transforman suavemente ambas órdenes de movimiento a menor velocidad y con "BufferMode" = 5 lo hacen a mayor velocidad.

6.5 Preparación del movimiento con varias órdenes

Distancia de suavizado de transición ("Transition- Parameter[1]")	Transición del movimiento ("BufferMode")	Descripción
d = 0.0	"BufferMode" = 2, 5 d = 0.0 d = 0.0	Suavizar la transición del movimiento Como la distancia de suavizado de transición es 0.0, el desplazamiento se realiza como con "BufferMode" = 1.
	A A1 C	El movimiento lineal en curso continúa hasta el final y la cinemática se para. A continuación, se ejecuta el siguiente movimiento lineal.
d < 0.0	"BufferMode" = 2, 5	Suavizar la transición del movimiento Como la distancia de suavizado de transición es negativa, se utiliza la distancia de suavizado de transición máxima. Cuando se alcanza la distancia de suavizado de transición hasta la posición de destino, el movimiento lineal en curso se trans- forma suavemente hasta el siguiente movimiento lineal. Con "BufferMode" = 2 se transforman suavemente ambas órdenes de movimiento a menor velocidad y con
		"BufferMode" = 5 lo hacen a mayor velocidad.

Transiciones de movimientos circulares

Con las instrucciones de Motion Control "MC_MoveCircularAbsolute" (Página 236) y "MC_MoveCircularRelative" (Página 245) se recorre una cinemática con un movimiento circular. Con el parámetro "BufferMode" puede establecerse el tipo de transición del movimiento y con el parámetro "TransitionParameter[1]" la distancia de suavizado de transición. Tomando un movimiento lineal y otro circular como ejemplo, la siguiente tabla ilustra el efecto de estos parámetros en la transición del movimiento:

Distancia de suavizado de transición ("Transition- Parameter[1]")	Transición del movimiento ("BufferMode")	Descripción
Irrelevante	"BufferMode" = 1 A A2 C	Encadenar el movimiento El movimiento lineal en curso continúa hasta el final y la cinemática se para. Seguidamente se ejecuta el movimiento circular.
d > 0.0	"BufferMode" = 2, 5	Suavizar la transición del movimiento Cuando se alcanza la distancia de suavizado de transición hasta la posición de destino, el movimiento lineal en curso se transforma suavemente en el movimiento circular. Con "BufferMode" = 2 se transforman suavemente ambas órdenes de movimiento a menor velocidad y con "BufferMode" = 5 lo hacen a mayor velocidad.

Distancia de suavizado de transición ("Transition- Parameter[1]")	Transición del movimiento ("BufferMode")	Descripción
d = 0.0	"BufferMode" = 2, 5 d = 0.0 A A2 C	Suavizar la transición del movimiento Como la distancia de suavizado de transición es 0.0, el desplazamiento se realiza como con "BufferMode" = 1. El movimiento lineal en curso continúa hasta el final y la cinemática se para. Seguidamente se ejecuta el movimiento circular.
d < 0.0	"BufferMode" = 2, 5 L1 d = 0.5L2 A2 L1 > L2 C	Suavizar la transición del movimiento Como la distancia de suavizado de transición es negativa, se utiliza la distancia de suavizado de transición máxima. Cuando se alcanza la distancia de suavizado de transición hasta la posición de destino, el movimiento lineal en curso se transforma suavemente en el movimiento circular. Con "BufferMode" = 2 se transforman suavemente ambas órdenes de movimiento a menor velocidad y con "BufferMode" = 5 lo hacen a mayor velocidad.

Distancia máxima de suavizado de transición

Se utiliza la distancia máxima de suavizado de transición cuando el valor del parámetro "TransitionParameter[1]"< 0.0. La distancia máxima de suavizado de transición se calcula a partir de la mitad del tramo más corto de ambos movimientos.

Requisitos	Distancia máxima de suavizado de transición
L1 > L2	$d_{máx} = \frac{1}{2} \cdot L2$
L1 < L2	$d_{máx} = \frac{1}{2} \cdot L1$

- L1 Longitud del tramo de la primera orden
- L2 Longitud del tramo de la segunda orden

6.5.2 Comportamiento dinámico en el encadenamiento/transición suave de movimientos

Con los parámetros "BufferMode", y "DynamicAdaption" se especifica el comportamiento dinámico en la transición de movimientos de la cinemática.

Es posible unir varios movimientos entre sí de forma que la cinemática entre los distintos movimientos se detenga ("BufferMode" = 1). Para obtener un movimiento ininterrumpido, se pueden transformar suavemente los distintos movimientos mediante un segmento de suavizado de transición. La transición suave entre los dos movimientos consecutivos puede realizarse a velocidad más baja ("BufferMode" = 2) o velocidad más alta ("BufferMode" = 5).

Adaptación dinámica

Cuando está activada la adaptación dinámica con segmentación, la trayectoria que incluye el segmento de suavizado de transición se divide en más segmentos ("DynamicAdaption" = 1). Para cada uno de dichos segmentos se calcula el perfil de velocidad teniendo en cuenta los límites dinámicos de los ejes válidos para los distintos tramos del movimiento. De este modo, la dinámica se adapta a los distintos tramos de un movimiento.

Cuando está activada la adaptación dinámica sin segmentación de la trayectoria, el perfil de velocidad se calcula teniendo en cuenta los límites dinámicos de los ejes, que son válidos para todo el movimiento ("DynamicAdaption" = 2).

En la adaptación dinámica se incluyen la velocidad y la aceleración. En el caso de la aceleración, se tienen en cuenta las aceleraciones radial y tangencial de la trayectoria. El tirón no se limita en la adaptación dinámica.

Si la adaptación dinámica está desactivada, no se tienen en cuenta los límites dinámicos de los ejes ("DynamicAdaption" = 0).

6.6 Interacción entre movimientos de la cinemática y movimientos de ejes individuales

Los movimientos de la cinemática solo son posibles si no hay movimientos de ejes individuales activos en los ejes de cinemática. Los movimientos de los ejes individuales relevan a los movimientos de la cinemática. El movimiento del eje correspondiente es relevado por el movimiento del eje individual, y se vacía la cadena de órdenes. El resto de los ejes de la cinemática se detienen con la dinámica máxima.

Son admisibles las siguientes funciones durante un movimiento de cinemática en curso:

- Reducción de par en los ejes/desplazamiento a tope fijo ("MC_TorqueLimiting").
 Al alcanzar el tope fijo, se interrumpe el movimiento de la cinemática.
- Especificación de un par aditivo ("MC_TorqueAdditive")
- Especificación de los límites de par superior e inferior ("MC_TorqueRange")
- Conmutación del encóder ("MC_SetSensor")

Durante un movimiento de cinemática en curso se rechazan las siguientes funciones:

- Movimiento superpuesto en los ejes ("MC MoveSuperimposed")
- Referenciado de los ejes ("MC_Home")

Puesta en marcha

7.1 Función y estructura del panel de mando de la cinemática

El panel de mando de la cinemática permite asumir el control de un objeto tecnológico Cinemática y controlar los movimientos de la cinemática o de los distintos ejes.

ADVERTENCIA

Movimientos descontrolados de los ejes

Cuando se opera con el panel de mando de la cinemática, es posible que la cinemática ejecute movimientos descontrolados (p. ej., debido a una configuración errónea del accionamiento o del objeto tecnológico). Además, al desplazar un eje maestro con el panel de mando de la cinemática, se desplaza también el eje esclavo sincronizado, si lo hay.

Por consiguiente, tome las medidas de protección siguientes antes de operar el eje con el panel de mando de la cinemática:

- Asegúrese de que el interruptor de parada de emergencia esté al alcance del operador.
- Active los finales de carrera por hardware.
- · Active los finales de carrera por software.
- Asegúrese de que esté activada la vigilancia de errores de seguimiento.
- Asegúrese de que no haya ningún eje esclavo acoplado al eje que se va a desplazar.

En el árbol del proyecto encontrará el panel de mando de la cinemática del objeto tecnológico Cinemática en "Objeto tecnológico > Puesta en marcha".

El panel de mando de la cinemática está dividido en las siguientes áreas:

- Control maestro
- Cinemática
- Modo de operación
- Controlar
- Estado
- Valores de posición actuales

Elementos del panel de mando de la cinemática

La tabla siguiente muestra los elementos del panel de mando de la cinemática:

Área	Elemento	Descripción	
Control maestro		El área "Control maestro" le permite asumir el control maestro del objeto tecnológico o devolverlo al programa de usuario.	
	Botón "Activar"	Con en el botón "Activar" se establece una conexión online con la CPU y se asume el control del objeto tecnológico seleccionado.	
		 Para que sea posible asumir el control, el objeto tecnológico tiene que estar bloqueado en el programa de usuario. 	
		 Al asumir el control de la cinemática, se asume también automáticamente el control de todos los ejes conectados a la cinemática. 	
		El control solo puede asumirse con el panel de mando de la cinemática si no está activo ningún panel de mando de los ejes interconectados.	
		 Al desplazar un eje maestro con el panel de mando de la cinemática, se desplaza también el eje esclavo sincronizado, si lo hay. 	
		 Al hacer clic en el botón "Activar" aparece una advertencia. En la advertencia puede modificarse la vigilancia de señal de vida (de 100 a 60000 ms). 	
		Si el control del panel de mando de la cinemática se pierde repetidamente sin un mensaje de error directo, puede que la conexión online con la CPU falle debido a una sobrecarga en la comunicación. En este caso, en el fichero del visor de avisos aparece el mensaje "Error durante la puesta en marcha. Fallo de la señal de vida entre control y TIA Portal".	
		Para eliminar este error, modifique la vigilancia de señal de vida en la advertencia.	
		 Hasta que no se devuelve el control, el programa de usuario no puede influir en las funciones del objeto tecnológico. Las órdenes de Motion Control del programa de usuario al objeto tecnológico se rechazarán con un error ("ErrorID" = 16#8012: panel de mando de la cinemática activado). 	
		 Al tomar el control, se aplica la configuración del objeto tecnológico. Los cambios en la configuración del objeto tecnológico no son efectivos hasta que no se de- vuelve el control maestro. Por lo tanto, realice los cambios que sean necesarios antes de asumir el control maestro. 	
		 Una vez que se ha asumido el control del objeto tecnológico, los paneles de mando de la cinemática y los paneles de mando de los ejes interconectados están bloqueados para el acceso desde otra instancia del TIA Portal (Team Engineering a partir de CPU V1.5). 	
		 Si la conexión online con la CPU falla mientras se opera el eje con el panel de mando de la cinemática, la cinemática o el eje se detendrán con la deceleración máxima una vez transcurrida la vigilancia de señal de vida. En este caso aparece un mensaje de error ("ErrorID" = 16#8013) y el control se devuelve al programa de usuario. 	
		 Si mientras se opera con el panel de mando de la cinemática aparece un cuadro de diálogo superpuesto al panel de mando de la cinemática (p. ej., "Guardar co- mo"), se detendrá la cinemática o el eje con la deceleración máxima y se devol- verá el control al programa de usuario. 	

7.1 Función y estructura del panel de mando de la cinemática

Área	Elemento	Descripción
		Si mientras se opera con el panel de mando de la cinemática se cambia a otra ventana del TIA Portal (p. ej., al árbol del proyecto), se mantendrá el control y el movimiento de la cinemática o el eje, siempre que el panel de mando de la cinemática esté insertado en el TIA Portal. Si el panel de mando de la cinemática está desacoplado del TIA Portal y se cambia a otra ventana del TIA Portal (p. ej., al árbol del proyecto), se mantiene el control, pero la cinemática o el eje se detienen con la deceleración máxima.
		Si durante el funcionamiento se cambia a otra ventana estando el panel de man- do de la cinemática fuera del TIA Portal, se mantiene el control, pero la cinemática o el eje se detienen con la deceleración máxima.
	Botón "Desactivar"	Con el botón "Desactivar" se devuelve el control al programa de usuario.
Cinemática		En el área "Cinemática" se habilita o bloquea el objeto tecnológico.
	Botón "Habilitar"	Con el botón "Habilitar" se habilitan los ejes interconectados del objeto tecnológico Cinemática seleccionado.
	Botón "Bloquear"	Con el botón "Bloquear" se bloquean los ejes interconectados del objeto tecnológico Cinemática seleccionado.
Modo de operación		Seleccione el modo de operación deseado para el panel de mando de la cinemática en la lista desplegable "Modo de operación".

7.1 Función y estructura del panel de mando de la cinemática

Área	Elemento	Descripción
Controlar		En el área "Controlar" se muestran los parámetros para el desplazamiento con el panel de mando de la cinemática de acuerdo con el modo de operación seleccionado.
	Sistema de coordenadas	En la lista desplegable "Sistema de coordenadas" seleccione el sistema de coordenadas con el que desee mover la cinemática.
		(Solo modos de operación "Modo Jog" y "Modo Jog a la posición de destino")
	Herramienta activa	En la lista desplegable "Herramienta activa" se selecciona la herramienta deseada.
	Casilla de verificación "Per-	Si activa la casilla de verificación, puede modificar los valores de aceleración, deceleración y tirón.
	sonalizar dinámica"	(Solo modos de operación "Modo Jog" y "Modo Jog a la posición de destino")
	Aceleración	Aceleración con la que se desplaza la cinemática según el tipo de cinemática en sentido x, y, z y la orientación.
		Ajuste predeterminado: 10 % del valor predeterminado
		Solo puede editar estos valores si está activada la casilla de verificación "Personalizar dinámica".
		(Solo modos de operación "Modo Jog" y "Modo Jog a la posición de destino")
	Deceleración	Deceleración con la que se desplaza la cinemática según el tipo de cinemática en sentido x, y, z y la orientación.
		Ajuste predeterminado: 100 % del valor predeterminado
		Solo puede editar estos valores si está activada la casilla de verificación "Personalizar dinámica".
		(Solo modos de operación "Modo Jog" y "Modo Jog a la posición de destino")
	Tirón	Tirón con el que se desplaza la cinemática según el tipo de cinemática en sentido x, y, z y la orientación.
		Ajuste predeterminado: 100 % del valor predeterminado
		Solo puede editar estos valores si está activada la casilla de verificación "Personalizar dinámica".
		(Solo modos de operación "Modo Jog" y "Modo Jog a la posición de destino")
	Velocidad	Velocidad a la que se desplaza la cinemática según el tipo de cinemática en sentido x, y, z y la orientación.
		Ajuste predeterminado: 10 % del valor predeterminado
		El deslizador le permite ajustar un valor porcentual con respecto a los valores de velocidad ajustados de entre el 0 % y el 200 % (valor estándar 100 %).
		(Solo modos de operación "Modo Jog" y "Modo Jog a la posición de destino")
	Posición de	Posición a la que se desplaza la cinemática o un eje.
	destino	(Solo modos de operación "Modo Jog a la posición de destino" y "Ejes individuales: Establecer punto de referencia")
		Posición en la que se establece el punto de referencia.
		(Solo modo de operación "Eje individual: Establecer punto de referencia")
	Botón "Activar"	Con el botón "Activar" se establece un punto de referencia.
		(Solo modo de operación "Eje individual: Establecer punto de referencia")
	Botón "Iniciar"	Con el botón "Iniciar" se inicia un movimiento conforme al modo de operación seleccionado.
		(Solo modo de operación "Eje individual: Referenciado")

Área	Elemento	Descripción
	Botón "Adelante"	Con el botón "Adelante" se inicia un movimiento en sentido positivo conforme al modo de operación seleccionado.
	Botón "Atrás"	Con el botón "Atrás" se inicia un movimiento en sentido negativo conforme al modo de operación seleccionado.
Estado		En el área "Estado eje" se muestra el estado del eje y del accionamiento.
	Habilitado	El objeto tecnológico está habilitado. El eje puede desplazarse con órdenes de movimiento.
	Referenciado	El objeto tecnológico está referenciado.
	Error	Ha ocurrido un error en el objeto tecnológico.
		Los mensajes de error se muestran en la ventana de inspección, en "Diagnóstico > Visor de avisos".
Valores de		En el área "Valores de posición actuales" se muestran los valores reales del eje.
posición	Sistema de coor-	Sistema de coordenadas en el que se mueve actualmente la cinemática o un eje.
actuales	denadas	En la lista desplegable de la derecha puede seleccionar otro sistema de coordenadas para que se muestre la posición real de la herramienta activa de acuerdo con ese sistema de coordenadas.
	Posición x	Posición actual y rotación del punto de operación de la herramienta en el sistema de
	Posición y	coordenadas ajustado.
	Posición z	
	Rotación A	

Nota

Los parámetros no se aplican

Los valores de parámetros ajustados se rechazan al devolver el control. En caso necesario, transfiera los valores a la configuración.

Si mientras opera con el panel de mando de la cinemática se modifican valores de la configuración, estos cambios no afectarán al funcionamiento del panel de mando de la cinemática.

7.1 Función y estructura del panel de mando de la cinemática

Modo de operación

La tabla siguiente explica los modos de operación del panel de mando de la cinemática:

Modo de operación	Descripción
Modo Jog	Con el botón "Adelante" se desplaza un eje en sentido positivo en el modo Jog. Con el botón "Atrás" se desplaza un eje en sentido negativo en el modo Jog. El eje correspondiente se desplazará mientras se mantenga pulsado el botón "Adelante" o "Atrás".
Modo Jog a la posición de destino	Con el botón "Adelante" se desplazará la cinemática o un eje mediante pulsación (modo Jog) hasta la posición especificada en "Posición de destino". La cinemática se desplazará mientras se mantenga pulsado el botón "Adelante". Al alcanzar la posición de destino, la cinemática se detiene automáticamente.
	La posición se refiere al sistema de coordenadas que se haya seleccionado en la lista desplegable "Sistema de coordenadas".
Ejes individuales: Establecer punto de referencia	Con el botón "Activar" se establece el punto de referencia del eje correspondiente al valor especificado en "Posición de destino". Para el eje correspondiente se ajusta el estado "Referenciado".
	La posición se refiere al sistema de coordenadas de la máquina (MCS) preajustado con ese modo de operación en la lista desplegable "Sistema de coordenadas".
	Esta función equivale al referenciado directo (absoluto).
	El referenciado no es posible con un encóder absoluto. En caso de utilizar este modo de operación con un encóder absoluto, el objeto tecnológico no se referenciará.
Ejes individuales: Referenciado	Con el botón "Inicio" se desplaza un eje mediante pulsación (modo Jog) hasta la posición de referencia establecida. El eje correspondiente se desplaza mientras se mantenga pulsado el botón "Inicio". Al alcanzar la posición de destino, el eje se detiene automáticamente.

7.2 Uso del panel de mando de la cinemática

El panel de mando de la cinemática permite asumir el control de un objeto tecnológico Cinemática y controlar los movimientos de la cinemática o de los distintos ejes.

Requisitos

- El proyecto está creado y cargado en la CPU.
- La CPU está en estado operativo RUN.
- Los ejes interconectados de la cinemática están bloqueados por su programa de usuario ("MC_Power.Enable" = FALSE).
- El panel de mando de la cinemática para el objeto tecnológico no es utilizado por ninguna otra instancia del TIA Portal (Team Engineering a partir de CPU V1.5).
- Los accionamientos están operativos.

Procedimiento

Para controlar la cinemática o los ejes de la cinemática con el panel de mando de la cinemática, proceda del siguiente modo:

- 1. Para asumir el control maestro del objeto tecnológico y establecer una conexión online con la CPU, haga clic en el botón "Activar" en el área "Control maestro".
 - Se muestra una advertencia.
- Modifique la vigilancia de señal de vida en caso necesario y haga clic en el botón "Aceptar".
- Para habilitar el objeto tecnológico, haga clic en el botón "Habilitar" del área "Cinemática".
- 4. Seleccione la función deseada del panel de mando de la cinemática en la lista desplegable del área "Modo de operación".
- 5. En función del modo de operación ajustado, seleccione el sistema de coordenadas de referencia en la lista desplegable "Sistema de coordenadas" del área "Controlar".
- 6. Indique los valores de los parámetros correspondientes a la orden en el área "Controlar".
- 7. Para iniciar la orden, haga clic en el botón "Activar", "Inicio", "Adelante" o "Atrás", en función del modo de operación elegido.
- 8. Repita los pasos 4 a 7 para otras órdenes.
- 9. Para bloquear el objeto tecnológico, haga clic en el botón "Bloquear" del área "Eje".
- 10.Para devolver el control maestro al programa de usuario, haga clic en el botón "Desactivar" del área "Control maestro"

7.3 Trace de la cinemática

7.3.1 Descripción abreviada del Trace de la cinemática

El Trace de la cinemática ofrece básicamente las siguientes funciones:

- Visualización 3D del movimiento actual del punto de operación de la herramienta (TCP)
- Registro del movimiento de la trayectoria de la cinemática y ejecución como traza luminosa
 - El usuario puede configurar parámetros, como, p. ej., la duración del registro, la velocidad de muestreo o el disparador para el registro.
- Almacenamiento de registros de movimientos de trayectoria como medición o exportación e importación en forma de archivo

En el árbol del proyecto encontrará la función "Trace de la cinemática" del objeto tecnológico Cinemática en "Objeto tecnológico > Trace de la cinemática".

7.3.2 Visualización 3D

La "Visualización 3D" está dividida en dos áreas:

- La vista gráfica del área superior sirve para mostrar el movimiento del punto de operación de la herramienta como traza luminosa.
- En el área inferior está dispuesto el editor tabular con los registros actuales y los registros almacenados.

Si no se ha seleccionado ningún movimiento de trayectoria o traza luminosa en la tabla, en la visualización gráfica se muestra la cinemática offline seleccionada actualmente.

Nota

La escala en la que se muestra la cinemática en Trace de la cinemática se ajusta en "Configuración del objeto tecnológico Cinemática (Página 159)" para el tipo de cinemática que corresponda.

Barra de herramientas

La barra de herramientas del Trace de la cinemática ofrece las siguientes funciones por medio de botones:

Botón	Función	Descripción
00	Activar visualización	Establecer una conexión online
		La función Trace de la cinemática establece una conexión online con el dispositivo. Si la configuración del Trace online/offline es distinta, se carga la configuración del Trace en el dispositivo.
	Desactivar visualización	Deshacer la conexión online existente
%	Iniciar registro	Ver Registro y reproducción de movimientos de la trayectoria (Página 201)
~	Finalizar registro	
•	Importar registro del archivo	Ver Importación y exportación de registros (Página 206)
→	Exportar registro marcado a archivo	
~ }	Agregar registro marcado a mediciones	Se agregan registros a las mediciones en Trace. Ver Importación y exportación de registros (Página 206)

7.3 Trace de la cinemática

La barra de herramientas asignada a la visualización gráfica ofrece las siguientes funciones por medio de botones:

Botón	Función	Descripción
-	Monitor en vivo	Activar/desactivar la visualización en vivo de la cinemática
		La visualización en vivo permite ver cómo se está moviendo actualmente la cinemática. Esta función solo está disponible en modo online.
*	Brillo	Ajustar el brillo de la vista gráfica
100 ▼		
20	2D	Conmutar la vista a representación 2D
₹3 D	3D	Conmutar la vista a representación 3D
130	Enfocar TCP	Conmutar la vista a "Enfocar TCP"
430		Durante el movimiento de la trayectoria de la cinemática, el foco siempre está en el TCP. En parada, puede desplazar o rotar la vista con el ratón.
100% Q	Mostrar todo	Se centra la vista y se representa toda la cinemática.
#	Cuadrícula	Mostrar/ocultar las líneas de la cuadrícula del sistema de coordenadas representado
WCS ▼	Sistema de coordenadas	Seleccionar el sistema de coordenadas
Ţz*	Mostrar plano xz	Se muestra el plano xz.
x ^z ↑	Mostrar plano xz girado	Se muestra el plano xz girado en torno al eje z.
↑ ^z y	Mostrar plano yz	Se muestra el plano yz.
y ^z †	Mostrar plano yz girado	Se muestra el plano yz girado en torno al eje z.
Ţ <u>x</u> x	Mostrar plano xy	Se muestra el plano xy.
Ţ y x	Mostrar plano xy girado	Se muestra el plano xy girado en torno al eje x.
5	Representación de la cinemática	Representación simplificada de la cinemática o mostrar/ocultar cinemática
Ф	Resaltar TCS	Resaltar el sistema de coordenadas de la herramienta

Manejo con el ratón en la visualización gráfica

Dentro de la visualización gráfica, existen las siguientes posibilidades de manejo con el ratón:

- Girar y acercar/alejar el sistema de coordenadas
- Al pasar con el ratón por la traza luminosa, en la posición del cursor se muestran los siguientes valores:
 - Valores de x, y y z
 - Número del punto de medición
 - Valores del eje de orientación

7.3.3 Registro y reproducción de movimientos de la trayectoria

Registro de un movimiento de la trayectoria

Para registrar un movimiento de la trayectoria de la cinemática, haga clic en el botón 3. Si aún no se ha establecido una conexión online, se establece una automáticamente.

El registro tiene lugar con los valores predeterminados guardados en "Configuración" (Página 204).

Durante el registro, la visualización gráfica muestra una imagen en vivo de la cinemática. En las transformaciones de usuario, la visualización gráfica muestra en su lugar el TCP (punto de operación de la herramienta) movido.

El "Registro actual" y la configuración se conservan hasta que se cierra la interfaz de usuario "Trace de la cinemática".

Si se inicia un nuevo registro, se sobrescribe el "Registro actual".

7.3 Trace de la cinemática

Almacenamiento del registro actual

- 1. En "Registro actual", edite las entradas correspondientes al nombre de la traza luminosa, color de la traza luminosa y comentario de acuerdo con sus necesidades.
- 2. Para guardar el "Registro actual", utilice el símbolo 🔒 en la tabla o en el menú contextual.

El registro se inserta en el editor tabular. Un registro guardado contiene los siguientes datos de la cinemática:

- Coordenadas de la cinemática
- Tipo de cinemática
- Geometría online válida en el momento del registro

Nota

El editor tabular puede guardar como máximo 20 registros. Si desea guardar más registros, no hace falta que borre los registros que no necesite.

Barra de herramientas para registros

La barra de herramientas para registros ofrece las siguientes posibilidades de manejo:

• Barra de tiempo con deslizador

Para detener la reproducción en una posición determinada, haga clic directamente en la posición deseada de la barra de tiempo.

- Botones para reproducir y detener el registro
- Un punto de medición adelante o atrás
- Salto al principio o al final del registro
- Deslizador para ajustar la velocidad de reproducción

Visualización y reproducción del movimiento de la trayectoria como traza luminosa

- 1. Si está activado el monitor live de la cinemática, desactívelo con el botón de la barra de herramientas.
- 2. Para activar la traza luminosa, haga clic en el botón del registro que desee reproducir.
 - Con ello se selecciona el registro. La visualización gráfica muestra el movimiento completo de la trayectoria del registro.
- 3. Haga clic en el botón "Reproducir" de la barra de herramientas.
 - Se reproduce el registro seleccionado. El registro muestra:
 - La trayectoria registrada en la vista gráfica como traza luminosa
 - La cinemática con la geometría online válida en el momento del registro
 Si hay varias trazas luminosas visibles, solo se muestra la cinemática del registro seleccionado en la visualización gráfica.

7.3 Trace de la cinemática

7.3.4 Configuración

En "Configuración" se definen los valores de los parámetros para el registro.

El registro de los movimientos de trayectoria puede iniciarse con el botón 3 de la barra de herramientas.

Muestreo

Parámetro	Descripción
Momento del registro	Selección entre los siguientes OB:
	MC-Servo
	MC-Interpolator
Registrar todos	Indicación del valor para el intervalo de registro. En MC-Servo, se dispone de las siguientes opciones en una lista desplegable:
	Indicación en "Ciclos"
	Indicación en "Segundos"
Duración máx. de registro	Visualización de la duración máxima de registro calculada.
	Si el número máximo de puntos de medición está predeterminado, la duración máxima de registro depende del intervalo de registro indicado.
Utilizar la duración máx. de registro	Al activar la casilla de verificación, la duración de registro se ajusta a la duración de registro máxima posible.
Duración del registro (a)	Indicación de la duración del registro:
	En segundos
	Número de puntos de medición

Disparador

Parámetro	Descripción
Modo de disparo	 Registrar inmediatamente El registro se inicia nada más cargarse la configuración. Disparo en variable El sistema espera un evento de disparo que inicie el registro.
Variable de disparo	Para el modo "Disparo en variable", se necesita una variable vinculada de tipo BOOL.
Evento	Seleccione el evento que deba utilizarse como disparador:
	Flanco ascendente
	Flanco descendente
Predisparo	Con el "Predisparo" se definen los puntos de medición que se registran antes de que se cumpla la condición de disparo propiamente dicha. Se indica:
	En segundos
	Número de puntos de medición

7.3.5 Importación y exportación de registros

Existen diferentes posibilidades de exportación e importación de los registros actuales o guardados.

Exportación o importación de un registro como archivo

La exportación contiene los valores de posición TCP y la configuración del objeto tecnológico Cinemática.

Para exportar un registro, proceda del siguiente modo:

- 1. Seleccione el registro que desee exportar.
- 2. Haga clic en el botón].
- 3. Seleccione el formato de archivo deseado: "*.csv" o "*.ltr".
- 4. Seleccione la carpeta deseada.
- 5. Haga clic en "Exportar archivo".

Un archivo *.ltr exportado puede volver a importarse al objeto tecnológico Cinemática.

Para importar un registro, proceda del siguiente modo:

- Abra la carpeta "Objeto tecnológico Cinemática > Trace de la cinemática" en el árbol del proyecto.
- 2. Haga clic en el botón H.
- 3. Seleccione la carpeta deseada.
- 4. Haga clic en "Importar archivo".

Tras la importación, en Visualización 3D se muestra lo siguiente:

- la cinemática importada
- los movimientos de la trayectoria

Almacenamiento del registro como medición

Para guardar el registro como medición, proceda del siguiente modo:

- 1. Seleccione el "Registro actual" o un "Registro guardado".
- 2. Guarde el registro con el botón 3 de la barra de herramientas.

El registro queda almacenado en "Traces > Mediciones".

El archivo contiene las coordenadas TCP (x, y, z, A) y las posiciones de los ejes vinculados.

Los registros guardados en "Mediciones" pueden cargarse y visualizarse en el Trace. Con el Trace, se dispone de posibilidades de evaluación avanzadas para analizar los movimientos de trayectoria al detalle.

Nota

Los registros guardados en "Mediciones" no pueden volver a importarse al Trace de la cinemática.

Diagnóstico

8.1 Introducción al diagnóstico

El capítulo "Diagnóstico" se limita a describir el visor de diagnóstico de los diferentes objetos tecnológicos en el TIA Portal.

Encontrará una descripción completa del diagnóstico de sistema de la CPU S7-1500 en el manual de funciones "Diagnóstico"

(http://support.automation.siemens.com/WW/view/es/59192926).

Encontrará la descripción del sistema de diagnóstico de Motion Control en el capítulo "Sistema de diagnóstico".

Consulte también

Manual de funciones "S7-1500T Motion Control V4.0 en TIA Portal V15", capítulo "Sistema de diagnóstico" (https://support.industry.siemens.com/cs/ww/es/view/109749263)

8.2 Objeto tecnológico Cinemática

8.2.1 Bits de estado y de error

La función de diagnóstico "Objeto tecnológico > Diagnóstico > Bits de estado y de error" permite vigilar los mensajes de estado y error del objeto tecnológico en el TIA Portal. La función de diagnóstico está disponible en modo online.

En las tablas siguientes se explica el significado de los mensajes de estado y de error. Entre paréntesis se indica la variable correspondiente del objeto tecnológico.

Estado de la cinemática

La tabla siguiente muestra los posibles estados de la cinemática:

Estado	Descripción
Error	Ha ocurrido un error en el objeto tecnológico. Encontrará información detallada sobre el error en el área "Errores" y en las variables del objeto tecnológico " <to>.ErrorDetail.Number" y "<to>.ErrorDetail.Reaction".</to></to>
	(<to>.StatusWord.X1 (Error))</to>
Reinicio activo	El objeto tecnológico se reinicializa.
	(<to>.StatusWord.X2 (RestartActive))</to>
Panel de mando de la cinemática activo	El panel de mando de la cinemática está activado. El panel de mando de la cinemática tiene el control del objeto tecnológico. La cinemática no puede ser controlada por el programa de usuario.
	(<to>.StatusWord.X4 (ControlPanelActive))</to>
Reinicio necesario	Se han modificado datos relevantes para el reinicio. Los cambios solo se aplican cuando se reinicia el objeto tecnológico.
	(<to>.StatusWord.X3 (OnlineStartValuesChanged))</to>

Estado del movimiento

La tabla siguiente muestra los posibles estados del movimiento de la cinemática:

Estado	Descripción
Done (no hay orden activa)	No hay ninguna orden de movimiento activa en el objeto tecnológico.
	(<to>.StatusWord.X6 (Done))</to>
Movimiento lineal activo	Hay una orden de movimiento lineal activa en el objeto tecnológico.
	(<to>.StatusWord.X8 (LinearCommand))</to>
Movimiento circular activo	Hay una orden de movimiento circular activa en el objeto tecnológico.
	(<to>.StatusWord.X9 (CircularCommand))</to>
Velocidad constante	La cinemática avanza a velocidad constante o está parada.
	(<to>.StatusWord.X12 (ConstantVelocity))</to>
Aceleración	La cinemática se acelera.
	(<to>.StatusWord.X13 (Accelerating))</to>
Deceleración	La cinemática se frena.
	(<to>.StatusWord.X14 (Decelerating))</to>
Movimiento interrumpido	El movimiento activo de la cinemática se cancela mediante una orden "MC_GroupStop".
	(<to>.StatusWord.X16 (Stopping))</to>
Movimiento de orientación	Hay un movimiento de orientación activo en el objeto tecnológico.
activo	(<to>.StatusWord.X15 (OrientationMotion))</to>

Error

La tabla siguiente muestra los posibles errores:

Error	Descripción
Sistema	Ha ocurrido un error interno del sistema.
	(<to>.ErrorWord.X0 (SystemFault))</to>
Configuración	Se ha producido un error de configuración.
	Hay uno o varios parámetros de configuración incoherentes o inadmisibles.
	El objeto tecnológico se ha configurado erróneamente o bien se han modificado incorrectamente datos de configuración modificables durante el tiempo de ejecución del programa de usuario.
	(<to>.ErrorWord.X1 (ConfigFault))</to>
Transformación	Se ha producido un error de transformación.
	(<to>.ErrorWord.X4 (TransformationFault))</to>
Programa de usuario	Se ha producido un error en una instrucción de Motion Control o en su utilización en el programa de usuario.
	(<to>.ErrorWord.X2 (UserFault))</to>
Orden rechazada	Una orden no puede ejecutarse.
	No es posible ejecutar una instrucción de Motion Control porque no se cumplen los requisitos necesarios (p. ej. no se ha hecho referencia a un objeto tecnológico).
	(<to>.ErrorWord.X3 (CommandNotAccepted))</to>
Limitación de la dinámica	Los valores dinámicos están restringidos por los límites dinámicos.
	(<to>.ErrorWord.X6 (DynamicError))</to>

Advertencias

La tabla siguiente muestra las posibles advertencias:

Advertencia	Descripción
Configuración	Uno o varios parámetros de configuración se modifican internamente de modo temporal.
	(<to>.WarningWord.X1 (ConfigWarning))</to>
Orden rechazada	Una orden no puede ejecutarse.
	No es posible ejecutar una instrucción de Motion Control porque no se cumplen los requisitos necesarios.
	(<to>.WarningWord.X3 (CommandNotAccepted))</to>
Limitación de la dinámica	Los valores dinámicos están restringidos por los límites dinámicos.
	(<to>.WarningWord.X6 (DynamicWarning))</to>

Consulte también

Variable StatusWord (cinemática) (Página 299)

Variable ErrorWord (cinemática) (Página 301)

Variable WarningWord (cinemática) (Página 303)

8.2.2 Estado del movimiento

La función de diagnóstico "Objeto tecnológico > Diagnóstico > Estado movimiento" permite vigilar el estado del movimiento de la cinemática en el TIA Portal. La función de diagnóstico está disponible en modo online.

Área "Punto de operación herramienta (TCP)"

La tabla siguiente describe el significado de los datos de posición del punto de operación de la herramienta:

Estado	Descripción
Sistema de coordenadas	Sistema de coordenadas de referencia
	En este campo está preajustado el sistema de coordenadas universal (WCS).
Posición x	Coordenada x del TCP en el WCS
	(<to>.TcpInWcs.x.Position)</to>
Posición y	Coordenada y del TCP en el WCS
	(<to>.TcpInWcs.y.Position)</to>
Posición z	Coordenada z del TCP en el WCS
	(<to>.TcpInWcs.z.Position)</to>
Rotación A	Coordenada A del TCP en el WCS
	(<to>.TcpInWcs.a.Position)</to>
Sistema de coordenadas	Sistema de coordenadas de referencia
	En la lista desplegable puede seleccionar otro sistema de coordenadas para que se muestre la posición real de la herramienta activa de acuerdo con este sistema de coordenadas.
Posición x	Coordenada x de la herramienta activa en el sistema de coordenadas ajustado
Posición y	Coordenada y de la herramienta activa en el sistema de coordenadas ajustado
Posición z	Coordenada z de la herramienta activa en el sistema de coordenadas ajustado
Rotación A	Coordenada A de la herramienta activa en el sistema de coordenadas ajustado

Área "Valores dinámicos de la cinemática"

La tabla siguiente describe el significado de la información de dinámica:

Estado	Descripción
Limitar la dinámica de la trayectoria a la dinámica del eje	Indicación de los valores dinámicos con o sin la adaptación dinámica configurada
Velocidad	Velocidad de la trayectoria
	(<to>.StatusPath.Velocity)</to>
Aceleración	Aceleración de la trayectoria
	(<to>.StatusPath.Acceleration)</to>
Corrección (override)	Corrección porcentual de la velocidad especificada
	La consigna de velocidad especificada por instrucciones de Motion Control o por el panel de mando de la cinemática se corrige con override y se modifica porcentualmente. Como corrección de velocidad se admiten valores desde 0.0 % hasta 200.0 %.
	(<to>.Override.Velocity)</to>

Área "Cadena de órdenes"

La tabla siguiente describe el significado de la información de las órdenes:

Estado	Descripción
Órdenes en la cadena de	Número actual de órdenes para el objeto tecnológico Cinemática en la cadena de órdenes
órdenes	(<to>.StatusMotionQueue.NumberOfCommands)</to>

8.2.3 Zonas y herramientas

La función de diagnóstico "Objeto tecnológico > Diagnóstico > Zonas y herramientas" permite vigilar el estado de las zonas y herramientas de la cinemática en el TIA Portal. La función de diagnóstico está disponible en modo online.

Área "Zonas"

Las tablas "Zonas del espacio de trabajo" y "Zonas de cinemática" muestran el estado de las distintas zonas. Para ello se muestran los siguientes símbolos:

Símbolo	Descripción
	La zona no es válida.
	La zona está inactiva.
	La zona está activa.
	Se ha infringido la zona.

Área "Parámetros de herramienta activos"

La tabla siguiente describe el significado de la información de la herramienta:

Estado	Descripción
Herramienta activa	Herramienta efectiva actualmente
	(<to>.StatusTool.ActiveTool)</to>
Punto de operación de la herramienta en el FCS	En el área "Punto de operación de herramienta en el FCS" se muestran los valores de la trama de herramienta actual en el sistema de coordenadas de la brida (FCS).
Posición x	Coordenada x
	(<to>.StatusTool.Frame[1].x)</to>
Posición y	Coordenada y
	(<to>.StatusTool.Frame[1].y)</to>
Posición z	Coordenada z
	(<to>.StatusTool.Frame[1].z)</to>
Rotación A	Coordenada A
	(<to>.StatusTool.Frame[1].a)</to>

Instrucciones

9.1 Movimientos de la cinemática

9.1.1 MC_GroupInterrupt V4

9.1.1.1 MC_GroupInterrupt: Interrumpir ejecución de movimiento V4

Descripción

Con la instrucción "MC_GroupInterrupt" de Motion Control se interrumpe la ejecución de un movimiento en el objeto tecnológico Cinemática. El movimiento de cinemática interrumpido puede reanudarse con una orden "MC_GroupContinue".

Si la cinemática ya está parada, la ejecución del movimiento también queda interrumpida para las órdenes de movimiento posteriores. En este caso, las nuevas órdenes de movimiento se incorporan a la cadena de órdenes como órdenes pendientes.

Con el parámetro "Mode" se especifica el comportamiento dinámico de la parada.

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.

Comportamiento de relevo

El comportamiento de relevo para órdenes "MC_GroupInterrupt" se describe en el capítulo "Comportamiento de relevo V4: Órdenes de movimiento de cinemática (Página 273)".

9.1 Movimientos de la cinemática

Parámetro

La tabla siguiente muestra los parámetros de la instrucción "MC_GroupInterrupt" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor predeter- minado	Descripción	
AxesGroup	INPUT	TO_Kinematics	-	Objeto tecnológico	
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco ascendente
Mode	INPUT	DINT	0	Modo para el comportamiento dinámico	
				0	Detener con la dinámica de la orden de movimiento que debe interrumpirse
				1	Detener con la dinámica máxima del movimiento de cinemática
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.
Active	OUTPUT	BOOL	FALSE	TRUE	Las consignas se calculan.
CommandAborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".
ErrorID	OUTPUT	WORD	16#0000	Identificador de error (Página 316) del parámetro "ErrorID"	

Consulte también

Identificación del error (cinemática) (Página 316)

Interrupción, reanudación y detención de movimientos de la cinemática (Página 184)

Comportamiento de relevo V4: Órdenes de movimiento de cinemática (Página 273)

9.1.2 MC_GroupContinue V4

9.1.2.1 MC_GroupContinue: Continuar la ejecución del movimiento V4

Descripción

Con la instrucción "MC_GroupContinue" de Motion Control se reanuda un movimiento de cinemática interrumpido previamente con una orden "MC_GroupInterrupt". El movimiento de la cinemática puede reanudarse aunque la cinemática todavía no se haya parado con la orden "MC_GroupInterrupt".

La orden "MC_GroupContinue" solo tiene un efecto si el objeto tecnológico está en estado "Interrupted".

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.

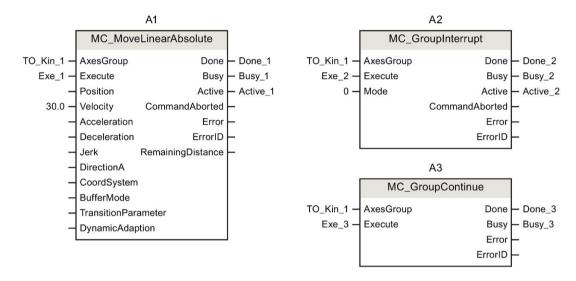
Comportamiento de relevo

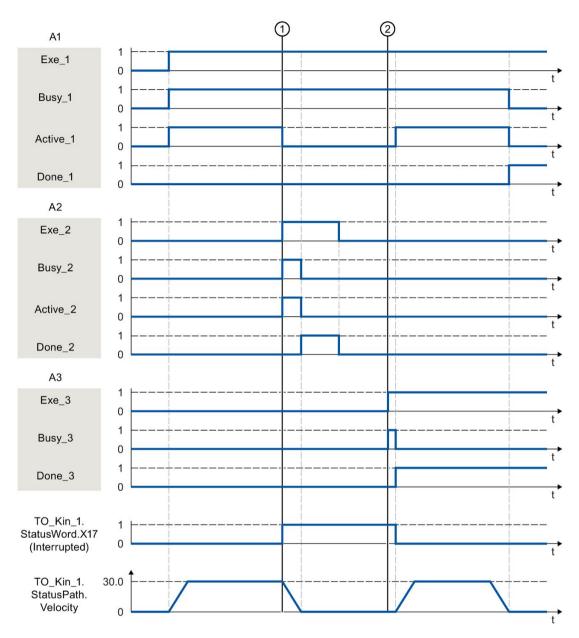
- Una orden "MC_GroupContinue" no se cancela con ninguna otra orden de Motion Control.
- Una nueva orden "MC_GroupContinue" cancela una orden "MC_GroupInterrupt" en curso.
- El comportamiento de relevo para órdenes "MC_GroupContinue" se describe en el capítulo "Comportamiento de relevo V4: Órdenes de movimiento de cinemática (Página 273)".

Parámetros

La tabla siguiente muestra los parámetros de la instrucción "MC_GroupContinue" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor predeter- minado	Descripe	Descripción	
AxesGroup	INPUT	TO_Kinematics	-	Objeto t	ecnológico	
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco ascendente	
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.	
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.	
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".	
ErrorID	OUTPUT	WORD	16#0000		Identificador de error (Página 316) del parámetro "ErrorID"	


Consulte también


Identificación del error (cinemática) (Página 316)

Interrupción, reanudación y detención de movimientos de la cinemática (Página 184)

9.1.2.2 MC_GroupContinue: Diagrama de función V4

Diagrama de función: Continuar la ejecución del movimiento

Una cinemática se mueve con una orden "MC_MoveLinearAbsolute" (A1).

En el instante ① la orden "MC_MoveLinearAbsolute" es interrumpida por una orden "MC_GroupInterrupt" (A2^). La cinemática se encuentra en el estado "Interrupted". El movimiento se detiene con "Mode = 0" con la dinámica de la orden "MC_MoveLinearAbsolute". Cuando finaliza la orden "MC_GroupInterrupt" el sistema lo notifica mediante "Done_2".

En el instante ② la orden "MC_MoveLinearAbsolute" continúa por una orden "MC_GroupContinue" (A3).

9.1.3 MC_GroupStop V4

9.1.3.1 MC_GroupStop: Parar movimiento V4

Descripción

La instrucción "MC_GroupStop" de Motion Control permite parar y cancelar un movimiento activo en el objeto tecnológico Cinemática. Si el movimiento ya se había interrumpido con una orden "MC_GroupInterrupt", se cancela. Con una orden "MC_GroupStop" se cancelan también todas las órdenes presentes en la cadena de órdenes. Mientras el parámetro "Execute" esté ajustado a TRUE, se rechazarán las órdenes de cinemática ("ErrorID" = 16#80CD).

Con el parámetro "Mode" se especifica el comportamiento dinámico del movimiento de parada.

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.

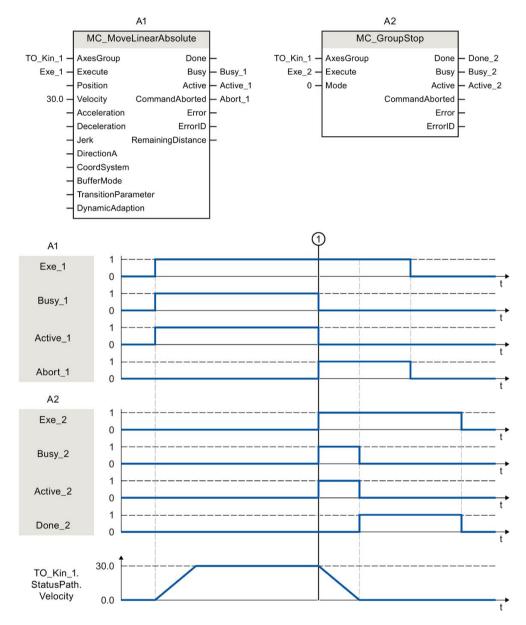
Comportamiento de relevo

El comportamiento de relevo para órdenes "MC_GroupStop" se describe en el capítulo "Comportamiento de relevo V4: Órdenes de movimiento de cinemática (Página 273)".

Parámetros

La tabla siguiente muestra los parámetros de la instrucción "MC_GroupStop" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor predeterminado	Descripción	
AxesGroup	INPUT	TO_Kinematics	-	Objeto te	cnológico
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco ascendente
Mode	INPUT	DINT	0	Modo par	ra el comportamiento dinámico
				0	Detener con la dinámica de la orden de movimiento que debe interrumpirse
				1	Detener con la dinámica máxima del movimiento de cinemática
					Con la adaptación dinámica activada, la dinámica se reduce en caso necesario para que no se rebasen los límites dinámicos de los ejes.
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.
Active	OUTPUT	BOOL	FALSE	TRUE	Las consignas se calculan.
CommandAborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".
ErrorID	OUTPUT	WORD	16#0000	Identificador de error (Página 316) del parámetro "ErrorID"	


Consulte también

Identificación del error (cinemática) (Página 316)

Interrupción, reanudación y detención de movimientos de la cinemática (Página 184)

9.1.3.2 MC_GroupStop: Diagrama de función V4

Diagrama de función: Parar movimiento

Una cinemática se mueve con una orden "MC_MoveLinearAbsolute" (A1).

En el instante ① la orden "MC_MoveLinearAbsolute" es cancelada por una orden "MC_GroupStop" (A2). La cancelación de la orden se notifica mediante "Abort_1". El movimiento se detiene con "Mode = 0" con la dinámica de la orden "MC_MoveLinearAbsolute". Cuando finaliza la orden "MC_GroupStop" el sistema lo notifica mediante "Done_2".

9.1.4 MC_MoveLinearAbsolute V4

9.1.4.1 MC_MoveLinearAbsolute: Posicionamiento de la cinemática con movimiento de trayectoria lineal V4

Descripción

La instrucción "MC_MoveLinearAbsolute" de Motion Control desplaza una cinemática hasta una posición absoluta con un movimiento lineal. También se desplaza la orientación cartesiana de forma absoluta.

Con los parámetros "Velocity", "Acceleration", "Deceleration" y "Jerk" se especifica el comportamiento dinámico del movimiento. Para la dinámica del movimiento de orientación se utilizan los valores estándar configurados en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica":

- <TO>.DynamicDefaults.Orientation.Velocity
- <TO>.DynamicDefaults.Orientation.Acceleration
- <TO>.DynamicDefaults.Orientation.Deceleration
- <TO>.DynamicDefaults.Orientation.Jerk

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- Los ejes interconectados están referenciados.
- Ninguno de los ejes interconectados tiene activada una orden de eje individual (p. ej. "MC_MoveVelocity").

Comportamiento de relevo

Con el parámetro "TransitionParameter[1]" se especifica a qué distancia del punto de destino de la orden de movimiento anterior se suaviza la transición a la nueva orden de movimiento.

El comportamiento de relevo para órdenes "MC_MoveLinearAbsolute" se describe en el capítulo "Comportamiento de relevo V4: Órdenes de movimiento de cinemática (Página 273)".

Parámetros

La tabla siguiente muestra los parámetros de la instrucción "MC_MoveLinearAbsolute" de Motion Control:

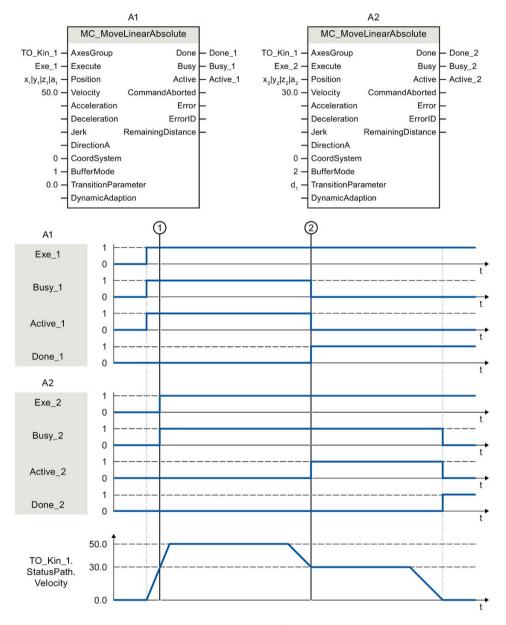
Parámetro	Declaración	Tipo de datos	Valor predeterminado	Descripe	ción
AxesGroup	INPUT	TO_Kinematics	-	Objeto t	ecnológico
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco ascendente
Position	INPUT	ARRAY [14] OF LREAL	-		nada de destino absoluta en el sistema de cia indicado
Position[1]	INPUT	LREAL	0.0	Coorder	nada x
Position[2]	INPUT	LREAL	0.0	Coorder	nada y
Position[3]	INPUT	LREAL	0.0	Coorder	nada z
Position[4]	INPUT	LREAL	0.0	Coorder	nada A
Velocity	INPUT	LREAL	-1.0	Velocida	ad
				> 0.0	Se utiliza el valor indicado.
				= 0.0	No admisible
				< 0.0	Se utiliza el valor configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica". (<to>.DynamicDefaults.Path.Velocity)</to>
Acceleration	INPUT	LREAL	-1.0	Acelera	
71000101011011				> 0.0	Se utiliza el valor indicado.
				= 0.0	No admisible
				< 0.0	Se utiliza el valor configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica".
					(<to>.DynamicDefaults.Path. Acceleration)</to>
Deceleration	INPUT	LREAL	-1.0	Decelera	ación
				> 0.0	Se utiliza el valor indicado.
				= 0.0	No admisible
				< 0.0	Se utiliza el valor configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica".
					(<to>.DynamicDefaults.Path. Deceleration)</to>

Parámetro	Declaración	Tipo de datos	Valor predeterminado	Descrip	ción
Jerk	INPUT	LREAL	-1.0	Tirón	
				> 0.0	Se utiliza el valor indicado.
				= 0.0	Sin limitación de tirones
				< 0.0	Se utiliza el valor configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica".
					(<to>.DynamicDefaults.Path.Jerk)</to>
DirectionA	INPUT	DINT	3	Sentido cartesia	de movimiento de la orientación ana
				1	Sentido positivo
				2	Sentido negativo
				3	Trayecto más corto
CoordSystem	INPUT	DINT	0		a de referencia de la posición de destino y tación de destino indicadas
				0	Sistema de coordenadas universal (WCS)
				1	Sistema de coordenadas de objeto 1 (OCS[1])
				2	Sistema de coordenadas de objeto 2 (OCS[2])
				3	Sistema de coordenadas de objeto 3 (OCS[3])
BufferMode	INPUT	DINT	1	Transic	ión del movimiento
				1	Encadenar el movimiento
					El movimiento en curso continúa hasta el final y la cinemática se para. Seguidamente se ejecuta el movimiento de esta orden.
				2	Suavizar la transición a la velocidad menor
					Cuando se alcanza la distancia de suavizado de transición, el movimiento en curso se suaviza con el movimiento de esta orden. Para ello se utiliza la velocidad más baja de las dos órdenes.
				5	Suavizar la transición a la velocidad mayor
					Cuando se alcanza la distancia de suavizado de transición, el movimiento en curso se suaviza con el movimiento de esta orden. Para ello se utiliza la velocidad más alta de las dos órdenes.

Parámetro	Declaración	Tipo de datos	Valor predeterminado	Descripción	
Transition- Parameter	INPUT	ARRAY [15] OF LREAL		Parámet	ros de transición
Transition-	INPUT	LREAL	-1.0	Distancia	a de suavizado de transición
Parameter[1]				≥ 0.0	Se utiliza el valor indicado.
				< 0.0	Se utiliza la máxima distancia posible de suavizado de transición.
Transition- Parameter[2]	INPUT	LREAL	-	Reserva	do
Transition- Parameter[3]	INPUT	LREAL	-	Reserva	do
Transition- Parameter[4]	INPUT	LREAL	-	Reserva	do
Transition- Parameter[5]	INPUT	LREAL	-	Reserva	do
Dynamic-	INPUT	DINT	-1	Adaptac	ión dinámica
Adaption		< 0	Se utiliza el ajuste configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Dinámica". (<to>.DynamicDefaults.DynamicAdapti on)</to>		
				0	Sin adaptación dinámica
				1	Adaptación dinámica con segmentación de la trayectoria
				2	Adaptación dinámica sin segmentación de la trayectoria
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.
Active	OUTPUT	BOOL	FALSE	TRUE	Las consignas se calculan.
				FALSE	Si "Busy" = TRUE:
					La orden espera. (Normalmente: hay una orden previa aún activa).
Command- Aborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".

Parámetro	Declaración	Tipo de datos	Valor predeterminado	Descripción
ErrorID	OUTPUT	WORD	16#0000	Identificador de error (Página 316) del parámetro "ErrorID"
Remaining- Distance	OUTPUT	LREAL	0.0	Recorrido residual de la orden actual

Consulte también


Identificación del error (cinemática) (Página 316)

Movimiento lineal (Página 138)

Conexión de varios movimientos de la cinemática con transiciones geométricas (Página 185)

9.1.4.2 MC_MoveLinearAbsolute: Diagrama de función V4

Diagrama de función: Posicionamiento de la cinemática con movimiento lineal de la trayectoria

Una cinemática se mueve con una orden "MC_MoveLinearAbsolute" (A1).

En el instante ① se inicia otra orden "MC_MoveLinearAbsolute" (A2). Puesto que las órdenes "MC_MoveLinearAbsolute" no se relevan unas a otras, la orden A2 se incorpora a la cadena de órdenes.

En el instante ② se notifica la finalización de la orden A1 mediante "Done_1" y se inicia la orden A2. Puesto que para la orden A2 está puesto "BufferMode = 2", la transición del movimiento se suaviza a la velocidad más baja de ambas órdenes. En cuanto se alcanza la posición de destino se notifica la finalización de la orden A2 mediante "Done_2".

9.1.5 MC_MoveLinearRelative V4

9.1.5.1 MC_MoveLinearRelative: Posicionamiento relativo de la cinemática con movimiento de trayectoria lineal V4

Descripción

La instrucción "MC_MoveLinearRelative" de Motion Control desplaza una cinemática con un movimiento lineal con respecto a la posición existente al iniciar la ejecución de la orden. También se desplaza la orientación cartesiana de forma relativa.

Con los parámetros "Velocity", "Acceleration", "Deceleration" y "Jerk" se especifica el comportamiento dinámico del movimiento. Para la dinámica del movimiento de orientación se utilizan los valores estándar configurados en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica":

- <TO>.DynamicDefaults.Orientation.Velocity
- <TO>.DynamicDefaults.Orientation.Acceleration
- <TO>.DynamicDefaults.Orientation.Deceleration
- <TO>.DynamicDefaults.Orientation.Jerk

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- Ninguno de los ejes interconectados tiene activada una orden de eje individual (p. ej. "MC_MoveVelocity").

Comportamiento de relevo

Con el parámetro "TransitionParameter[1]" se especifica a qué distancia del punto de destino de la orden de movimiento anterior se suaviza la transición a la nueva orden de movimiento.

El comportamiento de relevo para órdenes "MC_MoveLinearRelative" se describe en el capítulo "Comportamiento de relevo V4: Órdenes de movimiento de cinemática (Página 273)".

Parámetro

La tabla siguiente muestra los parámetros de la instrucción "MC_MoveLinearRelative" de Motion Control:

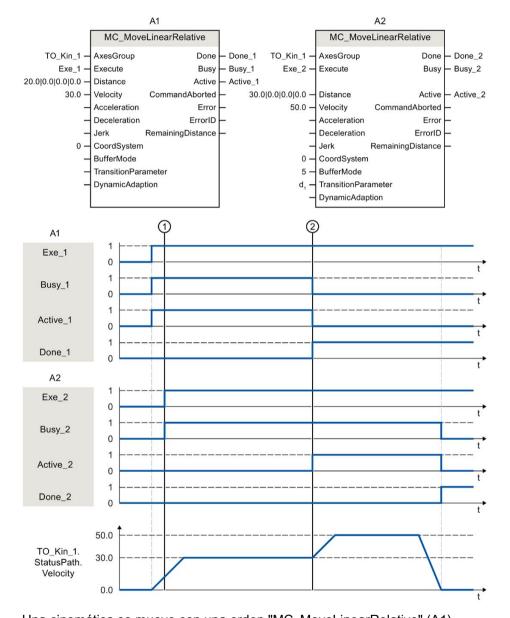
Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripción	
AxesGroup	INPUT	TO_Kinematics	-	Objeto	tecnológico
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco ascendente
Distance	INPUT	ARRAY [14] OF LREAL	-		enadas de destino relativas en el sistema erencia indicado
Distance[1]	INPUT	LREAL	0.0	Coord	enada x
Distance[2]	INPUT	LREAL	0.0	Coord	enada y
Distance[3]	INPUT	LREAL	0.0	Coord	enada z
Distance[4]	INPUT	LREAL	0.0	Coord	enada A
Velocity	INPUT	LREAL	-1.0	Veloci	dad
				> 0.0	Se utiliza el valor indicado.
				= 0.0	No admisible
				< 0.0	Se utiliza el valor configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica". (<to>.DynamicDefaults.Path.Velocity)</to>
Acceleration	INPUT	LREAL	-1.0	Acelei	
Acceleration	INFOI	LNEAL	-1.0	> 0.0	Se utiliza el valor indicado.
				= 0.0	No admisible
				< 0.0	Se utiliza el valor configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica". (<to>.DynamicDefaults.Path. Acceleration)</to>
Deceleration	INPUT	LREAL	-1.0	Decel	eración
				> 0.0	Se utiliza el valor indicado.
				= 0.0	No admisible
				< 0.0	Se utiliza el valor configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica".
					(<to>.DynamicDefaults.Path. Deceleration)</to>

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripción		
Jerk	INPUT	LREAL	-1.0	Tirón		
				> 0.0	Se utiliza el valor indicado.	
				= 0.0	Sin limitación de tirones	
				< 0.0	Se utiliza el valor configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica".	
					(<to>.DynamicDefaults.Path.Jerk)</to>	
CoordSystem	INPUT	DINT	0		a de referencia de la posición de destino y tación de destino indicadas	
				0	Sistema de coordenadas universal (WCS)	
				1	Sistema de coordenadas de objeto 1 (OCS[1])	
				2	Sistema de coordenadas de objeto 2 (OCS[2])	
				3	Sistema de coordenadas de objeto 3 (OCS[3])	
BufferMode	INPUT	DINT	1	Transic	ión del movimiento	
				1	Encadenar el movimiento	
					El movimiento en curso continúa hasta el final y la cinemática se para. Seguidamente se ejecuta el movimiento de esta orden.	
				2	Suavizar la transición a la velocidad menor	
					Cuando se alcanza la distancia de suavizado de transición, el movimiento en curso se suaviza con el movimiento de esta orden. Para ello se utiliza la velocidad más baja de las dos órdenes.	
				5	Suavizar la transición a la velocidad mayor	
					Cuando se alcanza la distancia de suavizado de transición, el movimiento en curso se suaviza con el movimiento de esta orden. Para ello se utiliza la velocidad más alta de las dos órdenes.	

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripción	
Transition- Parameter	INPUT	ARRAY [15] OF LREAL	-	Parámet	ros de transición
Transition-	INPUT	LREAL	-1.0	Distancia	a de suavizado de transición
Parameter[1]				≥ 0.0	Se utiliza el valor indicado.
				< 0.0	Se utiliza la máxima distancia posible de suavizado de transición.
Transition- Parameter[2]	INPUT	LREAL	-	Reserva	do
Transition- Parameter[3]	INPUT	LREAL	-	Reserva	do
Transition- Parameter[4]	INPUT	LREAL	-	Reserva	do
Transition- Parameter[5]	INPUT	LREAL	-	Reserva	do
Dynamic-	INPUT	DINT	-1.0	Adaptac	ión dinámica
Adaption		< 0	Se utiliza el ajuste configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Dinámica". (<to>.DynamicDefaults.DynamicAdapti on)</to>		
				0	Sin adaptación dinámica
				1	Adaptación dinámica con segmentación de la trayectoria
				2	Adaptación dinámica sin segmentación de la trayectoria
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.
Active	OUTPUT	BOOL	FALSE	TRUE	Las consignas se calculan.
				FALSE	Si "Busy" = TRUE:
					La orden espera. (Normalmente: hay una orden previa aún activa).
Command- Aborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripción
ErrorID	OUTPUT	WORD	16#0000	Identificador de error (Página 316) del parámetro "ErrorID"
Remaining- Distance	OUTPUT	LREAL	0.0	Recorrido residual de la orden actual

Consulte también


Identificación del error (cinemática) (Página 316)

Movimiento lineal (Página 138)

Conexión de varios movimientos de la cinemática con transiciones geométricas (Página 185)

9.1.5.2 MC_MoveLinearRelative: Diagrama de función V4

Diagrama de función: Posicionamiento relativo de la cinemática con movimiento lineal de la trayectoria

Una cinemática se mueve con una orden "MC_MoveLinearRelative" (A1).

En el instante ① se inicia otra orden "MC_MoveLinearRelative" (A2). Puesto que las órdenes "MC_MoveLinearRelative" no se relevan unas a otras, la orden A2 se incorpora a la cadena de órdenes.

En el instante ② se notifica la finalización de la orden A1 mediante "Done_1" y se inicia la orden A2. Puesto que para la orden A2 está ajustado "BufferMode = 5", la transición del movimiento se suaviza con la velocidad más alta de ambas órdenes. En cuanto se alcanza la posición de destino se notifica la finalización de la orden A2 mediante "Done_2".

9.1.6 MC_MoveCircularAbsolute V4

9.1.6.1 MC_MoveCircularAbsolute: Posicionamiento de la cinemática con movimiento de trayectoria circular V4

Descripción

La instrucción "MC_MoveCircularAbsolute" de Motion Control desplaza una cinemática hasta una posición absoluta con un movimiento circular. También se desplaza la orientación cartesiana de forma absoluta.

Con el parámetro "CircMode" se especifica la definición de la trayectoria circular:

• Pasando por un punto intermedio y el punto final

Con el parámetro "AuxPoint" se especifica un punto intermedio en la trayectoria circular por el que debe pasarse para llegar al punto final definido en el parámetro "EndPoint". Entre el punto inicial, intermedio y final se calcula la trayectoria circular. Solo es posible realizar trayectorias circulares de menos de 360°.

• Pasando por el centro del círculo y el ángulo de un plano principal

Con el parámetro "AuxPoint" se define el centro del círculo. Mediante el ángulo indicado en el parámetro "Arc" se calcula el punto final de la trayectoria circular. Con el parámetro "PathChoice" se especifica si la trayectoria circular debe ser en sentido de rotación positivo o negativo. Con el parámetro "CirclePlane" se especifica el plano principal que debe recorrer la trayectoria circular.

• Pasando por el radio del círculo y el punto final de un plano principal

Con el parámetro "EndPoint" se indica el punto final y con "Radius", el radio de la trayectoria circular. En función del radio pueden darse hasta cuatro trayectorias circulares posibles en el plano definido con el parámetro "CirclePlane". Con el parámetro "PathChoice" se especifica cuál de las trayectorias circulares debe recorrerse.

Con los parámetros "Velocity", "Acceleration", "Deceleration" y "Jerk" se especifica el comportamiento dinámico del movimiento de cinemática. Para la dinámica del movimiento de orientación se utilizan los valores estándar configurados en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica":

- <TO>.DynamicDefaults.Orientation.Velocity
- <TO>.DynamicDefaults.Orientation.Acceleration
- <TO>.DynamicDefaults.Orientation.Deceleration
- <TO>.DynamicDefaults.Orientation.Jerk

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- Los ejes interconectados están referenciados.
- En los ejes interconectados del objeto tecnológico no hay ninguna orden de eje individual (p. ej. "MC_MoveVelocity") activa.

Comportamiento de relevo

Con el parámetro "TransitionParameter[1]" se especifica a qué distancia del punto de destino de la orden de movimiento anterior se suaviza la transición a la nueva orden de movimiento

El comportamiento de relevo para órdenes "MC_MoveCircularAbsolute" se describe en el capítulo "Comportamiento de relevo V4: Órdenes de movimiento de cinemática (Página 273)".

Parámetro

La tabla siguiente muestra los parámetros de la instrucción "MC_MoveCircularAbsolute" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor predeterminado	Desci	ripción
AxesGroup	INPUT	TO_Kinematics	-	Objet	o tecnológico
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco ascendente
CircMode	INPUT	DINT	0	Defin	ición de la trayectoria circular
				0	El vector de posición indicado en el parámetro "AuxPoint" define un punto en la trayectoria circular.
				1	La posición indicada en el parámetro "AuxPoint" define el centro del círcu- lo.
				2	Los parámetros "Radius" y "EndPoint" definen el segmento circular.
AuxPoint	INPUT	ARRAY [13]	-	Punto	auxiliar de la trayectoria circular
		OF LREAL			"CircMode" = 0: punto en la trayectoria rcular
					"CircMode" = 1: punto medio de la ayectoria circular
				• Si	"CircMode" = 2: Irrelevante
AuxPoint[1]	INPUT	LREAL	0.0	Coord	denada x
AuxPoint[2]	INPUT	LREAL	0.0	Coord	denada y
AuxPoint[3]	INPUT	LREAL	0.0	Coord	denada z
EndPoint	INPUT	ARRAY [14] OF LREAL	-		ión de destino en el sistema de referendicado
					ircMode" = 1: Solo es relevante oint[4] (eje de orientación)
EndPoint[1]	INPUT	LREAL	0.0	Coord	denada x
EndPoint[2]	INPUT	LREAL	0.0	Coord	denada y
EndPoint[3]	INPUT	LREAL	0.0	Coord	denada z
EndPoint[4]	INPUT	LREAL	0.0	Coord	denada A
PathChoice	INPUT	DINT	0	Orien	tación de la trayectoria circular
				Si "Ci	rcMode" = 0: Irrelevante
				Si "Ci	ircMode" = 1:
				0	Sentido de giro positivo
				1	Sentido de giro negativo
				Si "Ci	rcMode" = 2:
				0	Segmento circular positivo más corto
				1	Segmento circular negativo más corto
				2	Segmento circular positivo más largo
				3	Segmento circular negativo más largo

Parámetro	Declaración	Tipo de datos	Valor predeterminado	Descrip	oción
CirclePlane	INPUT	DINT	0	Plano p	orincipal de la trayectoria circular
				Si "Circ	:Mode" = 0: Irrelevante
				Si "Circ	:Mode" = 1 y 2:
				0	Plano x-z
				1	Plano y-z
				2	Plano x-y
Radius	INPUT	LREAL	0.0	Si "Circ	:Mode" = 2:
				Radio d	del movimiento circular
Arc	INPUT	LREAL	0.0	Si "Circ	:Mode" = 1:
				Ángulo	del movimiento circular
Velocity	INPUT	LREAL	-1.0	Velocid	lad
				> 0.0	Se utiliza el valor indicado.
				= 0.0	No admisible
				< 0.0	Se utiliza el valor configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica".
					(<to>.DynamicDefaults.Path.Velocit y)</to>
Acceleration	INPUT	LREAL	-1.0	Acelera	ación
				> 0.0	Se utiliza el valor indicado.
				= 0.0	No admisible
				< 0.0	Se utiliza el valor configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica". (<to>.DynamicDefaults.Path.Accele</to>
					ration)
Deceleration	INPUT	LREAL	-1.0	Decele	ración
				> 0.0	Se utiliza el valor indicado.
				= 0.0	No admisible
				< 0.0	Se utiliza el valor configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica". (<to>.DynamicDefaults.Path.Decele</to>
Jerk	INPUT	LREAL	-1.0	Tirón	ration)
JEIK	INFUI	LNEAL	-1.0	> 0.0	Se utiliza el valor indicado.
				= 0.0	Sin limitación de tirones
				< 0.0	
				V.U.	Se utiliza el valor configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica".
					(<to>.DynamicDefaults.Path.Jerk)</to>

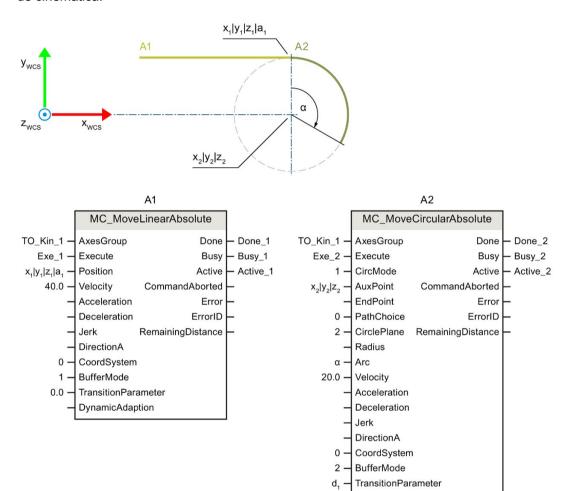
Parámetro	Declaración	Tipo de datos	Valor predeterminado	Des	cripción
DirectionA	INPUT	DINT	3		tido de movimiento de la orientación esiana
				1	Sentido positivo
				2	Sentido negativo
				3	Trayecto más corto
CoordSystem	INPUT	DINT	0	Siste	ema de referencia
				0	Sistema de coordenadas universal (WCS)
				1	Sistema de coordenadas de objeto 1 (OCS[1])
				2	Sistema de coordenadas de objeto 2 (OCS[2])
				3	Sistema de coordenadas de objeto 3 (OCS[3])
BufferMode	INPUT	DINT	1	Transición del movimiento	
				1	Encadenar el movimiento
					El movimiento en curso continúa hasta el final y la cinemática se para. Seguidamente se ejecuta el movimiento de esta orden.
				2	Suavizar la transición a la velocidad menor
					Cuando se alcanza la distancia de suavizado de transición, el movimiento en curso se suaviza con el movimiento de esta orden. Para ello se utiliza la velocidad más baja de las dos órdenes.
				5	Suavizar la transición a la velocidad mayor
					Cuando se alcanza la distancia de suavizado de transición, el movimiento en curso se suaviza con el movimiento de esta orden. Para ello se utiliza la velocidad más alta de las dos órdenes.

Parámetro	Declaración	Tipo de datos	Valor predeterminado	Descripo	ión
TransitionParameter	INPUT	ARRAY [15] OF LREAL		Parámet	ros de transición
Transition-	INPUT	LREAL	-1.0	Distancia	a de suavizado de transición
Parameter[1]				≥ 0.0	Se utiliza el valor indicado.
				< 0.0	Se utiliza la máxima distancia posible de suavizado de transición.
Transition- Parameter[2]	INPUT	LREAL	-	Reserva	do
Transition- Parameter[3]	INPUT	LREAL	-	Reserva	do
Transition- Parameter[4]	INPUT	LREAL	-	Reserva	do
Transition- Parameter[5]	INPUT	LREAL	-	Reservado	
DynamicAdaption	INPUT	DINT	-1.0	Adaptaci	ión dinámica
				< 0	Se utiliza el ajuste configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Dinámica".
					(<to>.DynamicDefaults.Dynamic-Adaption)</to>
				0	Sin adaptación dinámica
				1	Adaptación dinámica con segmentación de la trayectoria
				2	Adaptación dinámica sin segmentación de la trayectoria
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.
Active	OUTPUT	BOOL	FALSE	TRUE	Las consignas se calculan.
				FALSE	Si "Busy" = TRUE:
					La orden espera. (Normalmente: hay una orden previa aún activa).
CommandAborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.

Parámetro	Declaración	Tipo de datos	Valor predeterminado	Descripci	ón
Error	ОИТРИТ	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".
ErrorlD	OUTPUT	WORD	16#0000	Identificador de error (Página 316) del parámetro "ErrorID"	
RemainingDistance	OUTPUT	LREAL	0.0	Recorrido residual de la orden actual	

Consulte también

Identificación del error (cinemática) (Página 316)


Movimiento circular (Página 138)

Conexión de varios movimientos de la cinemática con transiciones geométricas (Página 185)

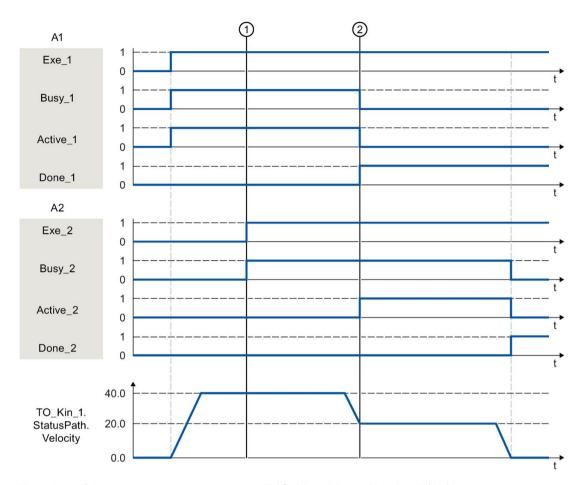

9.1.6.2 MC_MoveCircularAbsolute: Diagrama de función V4

Diagrama de función: Posicionamiento de la cinemática con movimiento circular de la trayectoria

En el diagrama de función se observan las secciones A1 y A2 del siguiente movimiento de cinemática:

DynamicAdaption

Una cinemática se mueve con una orden "MC MoveLinearAbsolute" (A1).

En el instante ① se inicia una orden "MC_MoveCircularAbsolute" (A2). Puesto que la orden "MC_MoveCircularAbsolute" no tiene un efecto de relevo, la orden A2 se incorpora a la cadena de órdenes.

En el instante ② se notifica la finalización de la orden A1 mediante "Done_1" y se inicia la orden A2. Puesto que para la orden A2 está ajustado "BufferMode = 2", la transición del movimiento se suaviza con la velocidad más baja de ambas órdenes y la distancia de suavizado de transición d_1 . El movimiento circular se especifica con "CircMode = 1" pasando por el centro del círculo $(x_2|y_2|z_2)$ y el ángulo α . En cuanto se alcanza la posición de destino se notifica la finalización de la orden A2 mediante "Done_2".

9.1.7 MC_MoveCircularRelative V4

9.1.7.1 MC_MoveCircularRelative: Posicionamiento relativo de la cinemática con movimiento de trayectoria circular V4

Descripción

La instrucción "MC_MoveCircularRelative" de Motion Control desplaza una cinemática hasta una posición relativa con un movimiento circular. También se desplaza la orientación cartesiana de forma relativa.

Con el parámetro "CircMode" se especifica la definición de la trayectoria circular:

• Pasando por un punto intermedio y el punto final

Con el parámetro "AuxPoint" se especifica un punto intermedio en la trayectoria circular por el que debe pasarse para llegar al punto final definido en el parámetro "EndPoint". Entre el punto inicial, intermedio y final se calcula la trayectoria circular. Solo es posible realizar trayectorias circulares de menos de 360°.

Pasando por el centro del círculo y el ángulo de un plano principal

Con el parámetro "AuxPoint" se define el centro del círculo. Mediante el ángulo indicado en el parámetro "Arc" se calcula el punto final de la trayectoria circular. Con el parámetro "PathChoice" se especifica si la trayectoria circular debe ser en sentido de rotación positivo o negativo. Con el parámetro "CirclePlane" se especifica el plano principal que debe recorrer la trayectoria circular.

Pasando por el radio del círculo y el punto final de un plano principal

Con el parámetro "EndPoint" se indica el punto final y con "Radius", el radio de la trayectoria circular. En función del radio pueden darse hasta cuatro trayectorias circulares posibles en el plano definido con el parámetro "CirclePlane". Con el parámetro "PathChoice" se especifica cuál de las trayectorias circulares debe recorrerse.

Con los parámetros "Velocity", "Acceleration", "Deceleration" y "Jerk" se especifica el comportamiento dinámico del movimiento de cinemática. Para la dinámica del movimiento de orientación se utilizan los valores estándar configurados en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica":

- <TO>.DynamicDefaults.Orientation.Velocity
- <TO>.DynamicDefaults.Orientation.Acceleration
- <TO>.DynamicDefaults.Orientation.Deceleration
- <TO>.DynamicDefaults.Orientation.Jerk

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- En los ejes interconectados del objeto tecnológico no hay ninguna orden de eje individual (p. ej. "MC_MoveVelocity") activa.

Comportamiento de relevo

Con el parámetro "TransitionParameter[1]" se especifica a qué distancia del punto de destino de la orden de movimiento anterior se suaviza la transición a la nueva orden de movimiento.

El comportamiento de relevo para órdenes "MC_MoveCircularAbsolute" se describe en el capítulo "Comportamiento de relevo V4: Órdenes de movimiento de cinemática (Página 273)".

Parámetro

La tabla siguiente muestra los parámetros de la instrucción "MC_MoveCircularRelative" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripe	Descripción	
AxesGroup	INPUT	TO_Kinematics	-	Objeto t	ecnológico	
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco ascendente	
CircMode	INPUT	DINT	0	Definicio	ón de la trayectoria circular	
				0	El vector de posición indicado en el parámetro "AuxPoint" define un punto en la trayectoria circular.	
				1	La posición indicada en el parámetro "AuxPoint" define el centro del círculo.	
				2	Los parámetros "Radius" y "EndPoint" definen el segmento circular.	
AuxPoint	INPUT	ARRAY [13] OF	-	Punto auxiliar de la trayectoria circular Si "CircMode" = 0: punto en la trayectoria circular		
		LREAL				
					Si "CircMode" = 1: punto medio de la trayecto- ria circular	
				• Si "C	CircMode" = 2: Irrelevante	
				Coorder	nada relativa al punto de inicio	
AuxPoint[1]	INPUT	LREAL	0.0	Coorder	Coordenada x	
AuxPoint[2]	INPUT	LREAL	0.0	Coorder	Coordenada y	
AuxPoint[3]	INPUT	LREAL	0.0	Coordenada z		

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripción	
EndPoint	INPUT	ARRAY [14] OF LREAL	-	Posición de destino relativa al punto de inicio el sistema de referencia indicado	
					Mode" = 1: Solo es relevante EndPoint[4] prientación)
EndPoint[1]	INPUT	LREAL	0.0	Coorder	nada x
EndPoint[2]	INPUT	LREAL	0.0	Coorder	nada y
EndPoint[3]	INPUT	LREAL	0.0	Coorder	nada z
EndPoint[4]	INPUT	LREAL	0.0	Coorder	nada A
PathChoice	INPUT	DINT	0	Orientad	ción de la trayectoria circular
				Si "Circl	Mode" = 0: Irrelevante
				Si "Circl	Mode" = 1:
				0	Sentido de giro positivo
				1	Sentido de giro negativo
				Si "Circl	Mode" = 2:
				0	Trayectoria circular positiva más corta
				1	Trayectoria circular negativa más corta
				2	Trayectoria circular positiva más larga
				3	Trayectoria circular negativa más larga
CirclePlane	INPUT	DINT	0	Plano principal de la trayectoria circular	
				Si "Circl	Mode" = 0: Irrelevante
				Si "Circl	Mode" = 1 y 2:
				0	Plano x-z
				1	Plano y-z
				2	Plano x-y
Radius	INPUT	LREAL	0.0	Si "Circl	Mode" = 2:
				Radio d	el movimiento circular
Arc	INPUT	LREAL	0.0	Si "Circl	Mode" = 1:
				Ángulo	del movimiento circular
Velocity	INPUT	LREAL	-1.0	Velocidad	
				> 0.0	Se utiliza el valor indicado.
				= 0.0	No admisible
				< 0.0	Se utiliza la velocidad configurada en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica".
					(<to>.DynamicDefaults.Path.Velocity)</to>

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripción	
Acceleration	INPUT	LREAL	-1.0	Aceleración	
				> 0.0	Se utiliza el valor indicado.
				= 0.0	No admisible
				< 0.0	Se utiliza la velocidad configurada en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica".
					(<to>.DynamicDefaults.Path.Accelerati on)</to>
Deceleration	INPUT	LREAL	-1.0	Decelei	ración
				> 0.0	Se utiliza el valor indicado.
				= 0.0	No admisible
				< 0.0	Se utiliza la velocidad configurada en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica".
					(<to>.DynamicDefaults.Path.Decelerat ion)</to>
Jerk	INPUT	LREAL	-1.0	Tirón	
				> 0.0	Se utiliza el valor indicado.
				= 0.0	Sin limitación de tirones
				< 0.0	Se utiliza la velocidad configurada en "Objeto tecnológico > Configuración > Parámetros avanzados > Preajuste de dinámica".
					(<to>.DynamicDefaults.Path.Jerk)</to>
CoordSystem	INPUT	DINT	0	Sistema de referencia	
				0	Sistema de coordenadas universal (WCS)
				1	Sistema de coordenadas de objeto 1 (OCS[1])
				2	Sistema de coordenadas de objeto 2 (OCS[2])
				3	Sistema de coordenadas de objeto 3 (OCS[3])

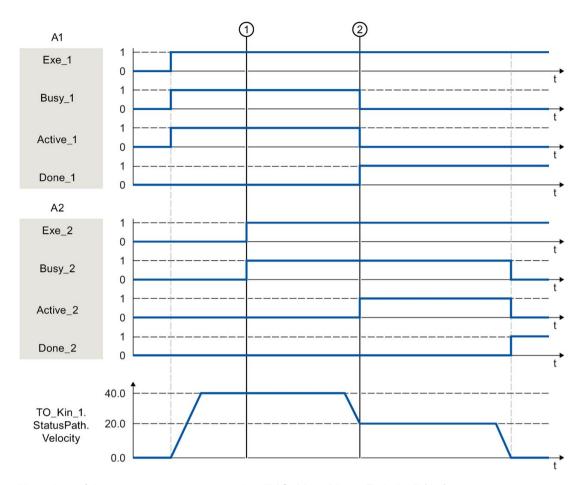
Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripción	
BufferMode	INPUT	DINT	1	Transició	ón del movimiento
				1	Encadenar el movimiento
					El movimiento en curso continúa hasta el final y la cinemática se para. Seguidamente se ejecuta el movimiento de esta orden.
				2	Suavizar la transición a la velocidad menor
					Cuando se alcanza la distancia de suavizado de transición, el movimiento en curso se suaviza con el movimiento de esta orden. Para ello se utiliza la velocidad más baja de las dos órdenes.
				5	Suavizar la transición a la velocidad mayor
					Cuando se alcanza la distancia de suavizado de transición, el movimiento en curso se suaviza con el movimiento de esta orden. Para ello se utiliza la velocidad más alta de las dos órdenes.
Transition- Parameter	INPUT	ARRAY [15] OF LREAL		Parámetros de transición	
Transition-	INPUT L	LREAL	-1.0	Distancia de suavizado de transición	
Parameter[1]				≥ 0.0	Se utiliza el valor indicado.
				< 0.0	Se utiliza la máxima distancia posible de suavizado de transición.
Transition- Parameter[2]	INPUT	LREAL	-	Reserva	do
Transition- Parameter[3]	INPUT	LREAL	-	Reserva	do
Transition- Parameter[4]	INPUT	LREAL	-	Reserva	do
Transition- Parameter[5]	INPUT	LREAL	-	Reserva	do
DynamicAdaption	INPUT	DINT	-1	Adaptaci	ión dinámica
				< 0	Se utiliza el ajuste configurado en "Objeto tecnológico > Configuración > Parámetros avanzados > Dinámica".
					(<to>.DynamicDefaults.DynamicAdapti on)</to>
				0	Sin adaptación dinámica
				1	Adaptación dinámica con segmentación de la trayectoria
				2	Adaptación dinámica sin segmentación de la trayectoria
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripo	Descripción	
Active	OUTPUT	BOOL	FALSE	TRUE	Las consignas se calculan.	
				FALSE	Si "Busy" = TRUE:	
					La orden espera. (Normalmente: hay una orden previa aún activa).	
Command- Aborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.	
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".	
ErrorID	OUTPUT	WORD	16#0000		Identificador de error (Página 316) del parámetro "ErrorID"	
Remaining- Distance	OUTPUT	LREAL	0.0	Recorrid	Recorrido residual de la orden actual	

Consulte también

Identificación del error (cinemática) (Página 316)

Movimiento circular (Página 138)


Conexión de varios movimientos de la cinemática con transiciones geométricas (Página 185)

9.1.7.2 MC_MoveCircularRelative: Diagrama de función V4

Diagrama de función: Posicionamiento relativo de la cinemática con movimiento circular de la trayectoria

En el diagrama de función se observan las secciones A1 y A2 del siguiente movimiento de cinemática:

Una cinemática se mueve con una orden "MC MoveLinearRelative" (A1).

En el instante ① se inicia una orden "MC_MoveCircularRelative" (A2). Puesto que la orden "MC_MoveCircularRelative" no tiene un efecto de relevo, la orden A2 se incorpora a la cadena de órdenes.

En el instante ② se notifica la finalización de la orden A1 mediante "Done_1" y se inicia la orden A2. Puesto que para la orden A2 está ajustado "BufferMode = 2", la transición del movimiento se suaviza con la velocidad más baja de ambas órdenes y la distancia de suavizado de transición d_1 . El movimiento circular se especifica con "CircMode = 2" pasando por el radio r y el punto final $(x_2|y_2|z_2)$. En cuanto se alcanza la posición de destino se notifica la finalización de la orden A2 mediante "Done_2".

9.2 Zonas

9.2.1 MC_DefineWorkspaceZone V4

9.2.1.1 MC_DefineWorkspaceZone: Definir zona del espacio de trabajo V4

Descripción

Con la instrucción "MC_DefineWorkspaceZone" de Motion Control se define una zona del espacio de trabajo referida al sistema de coordenadas universal o de objeto. Como consecuencia, las zonas definidas en "Objeto tecnológico > Configuración > Parámetros avanzados > Zonas" (<TO>.WorkspaceZone[1..10]) no se modifican y vuelven a estar disponibles tras reiniciar el objeto tecnológico. La variable "<TO>.StatusWorkspaceZone" del bloque de datos del objeto tecnológico contiene las zonas del espacio de trabajo que son efectivas actualmente.

La orden "MC_DefineWorkspaceZone" se incorpora a la cadena de órdenes en el objeto tecnológico Cinemática, con lo que es efectiva para las órdenes de movimiento posteriores.

Con los parámetros "GeometryType" y "GeometryParameter" se definen el tipo de geometría y el tamaño de la zona. Con el parámetro "ZoneType" se define una zona del espacio de trabajo como zona de trabajo, zona de bloqueo o zona de señalización. Es posible definir un máximo de diez zonas del espacio de trabajo. Mientras que varias de las zonas de bloqueo y de señalización definidas pueden estar activas al mismo tiempo, solo una de las zonas de trabajo definidas puede estar activa.

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- Ninguno de los ejes interconectados tiene activada una orden de eje individual (p. ej. "MC MoveVelocity").

Comportamiento de relevo

- Una orden "MC_DefineWorkspaceZone" es cancelada por una orden "MC_GroupStop".
- Una nueva orden "MC_DefineWorkspaceZone" no cancela ninguna orden de Motion Control en curso.

9.2 Zonas

Parámetro

La tabla siguiente muestra los parámetros de la instrucción "MC_DefineWorkspaceZone" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor predeter- minado	Descripo	Descripción		
AxesGroup	INPUT	TO_Kinematics	-	Objeto te	ecnológico		
Execute	INPUT	BOOL	FALSE	TRUE	La orden se incorpora a la cadena de órdenes.		
ZoneType	INPUT	DINT	0	Tipo de	zona		
				0	Zona de bloqueo		
				1	Zona de trabajo		
				2	Zona de señalización		
ZoneNumber	INPUT	DINT	1	Número	de zona		
				1	Zona 1		
				2	Zona 2		
				3	Zona 3		
				4	Zona 4		
				5	Zona 5		
				6	Zona 6		
				7	Zona 7		
				8	Zona 8		
				9	Zona 9		
				10	Zona 10		
ReferenceSystem	INPUT	DINT	0	Sistema	de referencia		
				0	Sistema de coordenadas universal (WCS)		
				1	Sistema de coordenadas de objeto 1 (OCS[1])		
				2	Sistema de coordenadas de objeto 2 (OCS[2])		
				3	Sistema de coordenadas de objeto 3 (OCS[3])		
Frame	INPUT	TO_Struct_Kinematics _Frame	-		e del origen de la zona con respecto al de referencia		
GeometryType	INPUT	DINT	0	Tipo de	geometría de la zona		
				0	Cubo		
				1	Esfera		
				2	Cilindro		

Parámetro	Declaración	Tipo de datos	Valor predeter- minado	Descripe	ción
Geometry- Parameter	INPUT	ARRAY [13] OF LREAL	-	Paráme	tros geométricos
Geometry- Parameter[1] INPUT	LREAL	0.0	Longitud Si "Geor Radio	d x metryType" = 1 o 2:
Geometry- Parameter[2	INPUT	LREAL	0.0	Longitud y Si "GeometryType" = 2: Altura	
Geometry- Parameter[3	INPUT	LREAL	0.0	Longitud	d z
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.
CommandAbo	rted OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".
ErrorID	OUTPUT	WORD	16#0000	Identificador de error (Página 316) del parámetr "ErrorID"	

Consulte también

Identificación del error (cinemática) (Página 316)

MC_SetWorkspaceZoneActive: Activar zona del espacio de trabajo V4 (Página 259)

MC_SetWorkspaceZoneInactive: Desactivar zona del espacio de trabajo V4 (Página 261)

9.2.2 MC_DefineKinematicsZone V4

9.2.2.1 MC_DefineKinematicsZone: Definir zona de la cinemática V4

Descripción

Con la instrucción "MC_DefineKinematicsZone" de Motion Control se define una zona de la cinemática con respecto al sistema de coordenadas de herramienta o brida. Como consecuencia, las zonas definidas en "Objeto tecnológico > Configuración > Parámetros avanzados > Zonas" (<TO>.KinematicsZone[2..10]) no se modifican y vuelven a estar disponibles tras reiniciar el objeto tecnológico. La variable "<TO>.StatusKinematicsZone" del bloque de datos del objeto tecnológico contiene las zonas de la cinemática que son efectivas actualmente.

La orden "MC_DefineKinematicsZone" se incorpora a la cadena de órdenes, con lo que es efectiva para las órdenes de movimiento posteriores.

Con los parámetros "GeometryType" y "GeometryParameter" se definen el tipo de geometría de la zona y su tamaño. Pueden definirse hasta nueve zonas de la cinemática. La zona de cinemática 1 es el punto de operación de la herramienta (TCP) y no se puede modificar.

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- Ninguno de los ejes interconectados tiene activada una orden de eje individual (p. ej. "MC MoveVelocity").

Comportamiento de relevo

- Una orden "MC_DefineKinematicsZone" es cancelada por una orden "MC_GroupStop".
- Una nueva orden "MC_DefineKinematicsZone" no cancela ninguna orden de Motion Control en curso.

Parámetros

La tabla siguiente muestra los parámetros de la instrucción "MC_DefineKinematicsZone" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Desc	Descripción	
AxesGroup	INPUT	TO_Kinematics	-	Obje	to te	cnológico
Execute	INPUT	BOOL	FALSE	TRU	E	La orden se incorpora a la cadena de órdenes.
ZoneNumber	INPUT	DINT	2	Núm	ero d	de zona
				2		Zona 2
				3		Zona 3
				4		Zona 4
				5		Zona 5
				6		Zona 6
				7		Zona 7
				8		Zona 8
				9		Zona 9
				10		Zona 10
ReferenceSystem	INPUT	DINT	0	Siste	ma o	de referencia
				0	Sis (FC	tema de coordenadas de la brida
				1		tema de coordenadas de la herra- enta (TCS)
Frame	INPUT	TO_Struct_ Kinemtics_Frame	-	Decalaje del origen de la zona con respecial sistema de referencia		
GeometryType	INPUT	DINT	0	Tipo de a		eometría de la zona
				0		Cubo
				1		Esfera
				2		Cilindro
GeometryParameter	INPUT	ARRAY [13] OF LREAL	-	Pará	metr	os geométricos
Geometry-	INPUT	LREAL	0.0	Long	itud	x
Parameter[1]				Si "G	eom	netryType" = 1 o 2:
				Radi	0	
Geometry-	INPUT	LREAL	0.0	Long	itud	у
Parameter[2]				Si "G	eom	netryType" = 2:
				Altur	а	
Geometry- Parameter[3]	INPUT	LREAL	0.0	Long	itud	z
Done	OUTPUT	BOOL	FALSE	TRU	E	La orden ha finalizado.
Busy	OUTPUT	BOOL	FALSE	TRU	E	La orden está en proceso.
CommandAborted	OUTPUT	BOOL	FALSE	TRU	E	La orden ha sido cancelada por otra durante su procesamiento.

9.2 Zonas

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripción	
Error	ОИТРИТ	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".
ErrorID	OUTPUT	WORD	16#0000		dor de error (Página 316) del o "ErrorID"

Consulte también

Identificación del error (cinemática) (Página 316)

MC_SetKinematicsZoneActive: Activar zona de la cinemática V4 (Página 263)

MC_SetKinematicsZoneInactive: Desactivar zona de la cinemática V4 (Página 265)

9.2.3 MC_SetWorkspaceZoneActive V4

9.2.3.1 MC_SetWorkspaceZoneActive: Activar zona del espacio de trabajo V4

Descripción

Con la instrucción de Motion Control "MC_SetWorkspaceZoneActive" se activa la zona del espacio de trabajo que haya definido en "Objeto tecnológico > Configuración > Parámetros avanzados > Zonas" o mediante una orden "MC_DefineWorkspaceZone". Con el parámetro "ZoneNumber" se especifica el número de la zona que debe activarse.

La orden "MC_SetWorkspaceZoneActive" se incorpora a la cadena de órdenes, con lo que es efectiva para las órdenes de movimiento posteriores.

Las variables "<TO>.StatusWorkspaceZone[1..10].Active" del bloque de datos del objeto tecnológico contienen el estado de activación actual de las zonas. Mientras que varias de las zonas de bloqueo y de señalización definidas pueden estar activas al mismo tiempo, solo una de las zonas de trabajo definidas puede estar activa.

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- Ninguno de los ejes interconectados tiene activada una orden de eje individual (p. ej. "MC MoveVelocity").
- La zona que debe activarse está definida.

Comportamiento de relevo

- Una orden "MC_SetWorkspaceZoneActive" es cancelada por una orden "MC_GroupStop".
- Una nueva orden "MC_SetWorkspaceZoneActive" no cancela ninguna orden de Motion Control en curso.

9.2 Zonas

Parámetro

La tabla siguiente muestra los parámetros de la instrucción "MC_SetWorkspaceZoneActive" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor predeter- minado	Descripe	Descripción	
AxesGroup	INPUT	TO_Kinematics	-	Objeto to	ecnológico	
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco ascendente	
ZoneNumber	INPUT	DINT	1	Número	de zona	
				1	Zona 1	
				2	Zona 2	
				3	Zona 3	
				4	Zona 4	
				5	Zona 5	
				6	Zona 6	
				7	Zona 7	
				8	Zona 8	
				9	Zona 9	
				10	Zona 10	
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.	
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.	
CommandAborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.	
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".	
ErrorlD	OUTPUT	WORD	16#0000	Identifica "ErrorID	ador de error (Página 316) del parámetro	

Consulte también

Identificación del error (cinemática) (Página 316)

MC_DefineWorkspaceZone: Definir zona del espacio de trabajo V4 (Página 253)

MC_SetWorkspaceZoneInactive: Desactivar zona del espacio de trabajo V4 (Página 261)

9.2.4 MC_SetWorkspaceZoneInactive V4

9.2.4.1 MC_SetWorkspaceZoneInactive: Desactivar zona del espacio de trabajo V4

Descripción

Con la instrucción de Motion Control "MC_SetWorkspaceZoneInactive" se desactiva una zona activa del espacio de trabajo. El parámetro "Mode" permite desactivar una zona concreta, todas las zonas de un tipo o bien todas las zonas en general.

La orden "MC_SetWorkspaceZoneInactive" se incorpora a la cadena de órdenes, con lo que es efectiva para las órdenes de movimiento posteriores.

Las variables "<TO>.StatusWorkspaceZone[1..10].Active" del bloque de datos del objeto tecnológico contienen el estado de activación actual de las zonas.

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- Ninguno de los ejes interconectados tiene activada una orden de eje individual (p. ej. "MC_MoveVelocity").
- La zona que debe desactivarse está definida.

Comportamiento de relevo

- Una orden "MC_SetWorkspaceZoneInactive" es cancelada por una orden "MC_GroupStop".
- Una nueva orden "MC_SetWorkspaceZoneInactive" no cancela ninguna orden de Motion Control en curso.

9.2 Zonas

Parámetros

La tabla siguiente muestra los parámetros de la instrucción "MC_SetWorkspaceZoneInactive" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor predeter- minado	Descripo	Descripción		
AxesGroup	INPUT	TO_Kinematics	-	Objeto te	ecnológico		
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco ascendente		
ZoneNumber	INPUT	DINT	1	Número	de zona		
				1	Zona 1		
				2	Zona 2		
				3	Zona 3		
				4	Zona 4		
				5	Zona 5		
				6	Zona 6		
				7	Zona 7		
				8	Zona 8		
				9	Zona 9		
				10	Zona 10		
Mode	INPUT	DINT	0	Desactiv	var las zonas de un tipo		
				0	Desactivar una zona concreta		
				1	Desactivar todas las zonas del espacio de trabajo		
				2	Desactivar todas las zonas de bloqueo		
				3	Desactivar todas las zonas de señalización		
				4	Desactivar la zona de trabajo		
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.		
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.		
CommandAborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.		
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".		
ErrorID	OUTPUT	WORD	16#0000		Identificador de error (Página 316) del parámetro "ErrorID"		

Consulte también

Identificación del error (cinemática) (Página 316)

MC_DefineWorkspaceZone: Definir zona del espacio de trabajo V4 (Página 253)

MC_SetWorkspaceZoneActive: Activar zona del espacio de trabajo V4 (Página 259)

9.2.5 MC_SetKinematicsZoneActive V4

9.2.5.1 MC_SetKinematicsZoneActive: Activar zona de la cinemática V4

Descripción

Con la instrucción "MC_SetKinematicsZoneActive" de Motion Control se activa la vigilancia de una zona de la cinemática que se haya definido en "Objeto tecnológico > Configuración > Parámetros avanzados > Zonas" o con una orden "MC_DefineKinematicsZone". Con el parámetro "ZoneNumber" se especifica el número de la zona de la cinemática que debe activarse.

La orden "MC_SetKinematicsZoneActive" se incorpora a la cadena de órdenes, con lo que es efectiva para las órdenes de movimiento posteriores.

Las variables "<TO>. Status Kinematics Zone[2..10]. Active del bloque de datos del objeto tecnológico contienen el estado de activación actual de las zonas de la cinemática.

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- Ninguno de los ejes interconectados tiene activada una orden de eje individual (p. ej. "MC_MoveVelocity").
- La zona de la cinemática que debe activarse está definida.

Comportamiento de relevo

- Una orden "MC_SetKinematicsZoneActive" no es cancelada por ninguna otra orden de Motion Control.
- Una nueva orden "MC_SetKinematicsZoneActive" no cancela ninguna orden de Motion Control en curso.

9.2 Zonas

Parámetros

La tabla siguiente muestra los parámetros de la instrucción "MC_SetKinematicsZoneActive" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor predeter- minado	Descripe	Descripción	
AxesGroup	INPUT	TO_Kinematics	-	Objeto t	ecnológico	
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco ascendente	
ZoneNumber	INPUT	DINT	2	Número	de zona	
				2	Zona 2	
				3	Zona 3	
				4	Zona 4	
				5	Zona 5	
				6	Zona 6	
				7	Zona 7	
				8	Zona 8	
				9	Zona 9	
				10	Zona 10	
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.	
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.	
CommandAborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.	
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".	
ErrorID	OUTPUT	WORD	16#0000	Identificador de error (Página 316) del parámetro "ErrorID"		

Consulte también

Identificación del error (cinemática) (Página 316)

MC_DefineKinematicsZone: Definir zona de la cinemática V4 (Página 256)

MC_SetKinematicsZoneInactive: Desactivar zona de la cinemática V4 (Página 265)

9.2.6 MC_SetKinematicsZoneInactive V4

9.2.6.1 MC_SetKinematicsZonelnactive: Desactivar zona de la cinemática V4

Descripción

Con la instrucción de Motion Control "MC_SetKinematicsZonelnactive" se desactiva una zona activa de la cinemática. El parámetro "Mode" permite desactivar una zona concreta o bien todas las zonas de la cinemática.

La orden "MC_SetKinematicsZoneInactive" se incorpora a la cadena de órdenes, con lo que es efectiva para las órdenes de movimiento posteriores.

Las variables "<TO>. Status Kinematics Zone[2..10]. Active del bloque de datos del objeto tecnológico contienen el estado de activación actual de las zonas de la cinemática.

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- Ninguno de los ejes interconectados tiene activada una orden de eje individual (p. ej. "MC_MoveVelocity").
- La zona de la cinemática que debe desactivarse está definida.

Comportamiento de relevo

- Una orden "MC_SetKinematicsZonelnactive" no es cancelada por ninguna orden de Motion Control.
- Una nueva orden "MC_SetKinematicsZonelnactive" no cancela ninguna orden de Motion Control en curso.

9.2 Zonas

Parámetros

La tabla siguiente muestra los parámetros de la instrucción "MC_SetKinematicsZoneInactive" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor predeter- minado	Descripción		
AxesGroup	INPUT	TO_Kinematics	-	Objeto to	ecnológico	
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco ascendente	
ZoneNumber	INPUT	DINT	2	Número	de zona	
				2	Zona 2	
				3	Zona 3	
				4	Zona 4	
				5	Zona 5	
				6	Zona 6	
				7	Zona 7	
				8	Zona 8	
				9	Zona 9	
				10	Zona 10	
Mode	INPUT	DINT	0	Desactiv	ar zonas	
				0	Desactivar una zona concreta	
				1	Desactivar todas las zonas	
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.	
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.	
CommandAborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.	
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".	
ErrorID	OUTPUT	WORD	16#0000	Identificador de error (Página 316) del parámetro "ErrorID"		

Consulte también

Identificación del error (cinemática) (Página 316)

MC_DefineKinematicsZone: Definir zona de la cinemática V4 (Página 256)

MC_SetKinematicsZoneActive: Activar zona de la cinemática V4 (Página 263)

9.3 Herramientas

9.3.1 MC DefineTool V4

9.3.1.1 MC_DefineTool: Redefinir herramienta V4

Descripción

El frame de la herramienta 1 se define con la instrucción "MC_DefineTool" de Motion Control. Los valores iniciales almacenados en el sistema no se sobrescriben. La herramienta 1 está activa de forma predeterminada.

La orden "MC_DefineTool" se incorpora a la cadena de órdenes en el objeto tecnológico Cinemática, con lo que es efectiva directamente. La orden "MC_DefineTool" solamente puede ejecutarse cuando la cinemática está parada.

Las coordenadas parametrizables dependen del tipo de cinemática empleado:

Tipo de cinemática		Coordenadas parametrizables
2D	sin orientación	x, z ¹⁾
	con orientación	z, a ²⁾
3D	sin orientación	x, y, z ³⁾
	con orientación	x, y, z, a

- 1) Los parámetros "y" y "a" están predefinidos con el valor "0.0".
- 2) Los parámetros "x" e "y" están predefinidos con el valor "0.0".
- 3) El parámetro "a" está predefinido con el valor "0.0".

Las variables siguientes del bloque de datos del objeto tecnológico contienen las coordenadas actuales del frame de herramienta 1:

- <TO>.StatusTool.Frame[1].x
- <TO>.StatusTool.Frame[1].y
- <TO>.StatusTool.Frame[1].z
- <TO>.StatusTool.Frame[1].a

Se aplica a

Cinemática

9.3 Herramientas

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- Ninguno de los ejes interconectados tiene activada una orden de eje individual (p. ej. "MC_MoveVelocity").
- La cinemática está parada.
- La cinemática no se encuentra en el estado "Interrupted".
- No hay ningún movimiento de cinemática activo.

Comportamiento de relevo

- Una orden "MC_DefineTool" no puede ser cancelada por ninguna otra orden de Motion Control.
- Una nueva orden "MC_DefineTool" no cancela ninguna orden de Motion Control en curso.

Parámetros

La tabla siguiente muestra los parámetros de la instrucción "MC_DefineTool" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripción	
AxesGroup	INPUT	TO_Kinematics	-	Objeto t	ecnológico
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco as- cendente
Frame	INPUT	TO_Struct_Kinematics_ KinematicsFrame	-	Coordenadas con respecto al FCS	
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.
CommandAborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".
ErrorID	OUTPUT	WORD	16#0000		ador de error (Página 316) del pa- "ErrorID"

Consulte también

Identificación del error (cinemática) (Página 316)

9.3.2 MC_SetTool V4

9.3.2.1 MC_SetTool: Cambiar herramienta activa V4

Descripción

Con la instrucción "MC_SetTool" de Motion Control se activa una herramienta. Con el parámetro "ToolNumber" se indica el número de herramienta. La orden "MC_SetTool" solamente puede ejecutarse cuando la cinemática está parada. La herramienta 1 está activa de forma predeterminada.

La variable "<TO>. Status Tool. Active Tool" del bloque de datos del objeto tecnológico contiene el número de la herramienta activa actualmente.

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- Ninguno de los ejes interconectados tiene activada una orden de eje individual (p. ej. "MC_MoveVelocity").
- La cinemática está parada.
- La cinemática no se encuentra en el estado "Interrupted".
- No hay ningún movimiento de cinemática activo.

Comportamiento de relevo

- Una orden "MC_SetTool" no puede ser cancelada por ninguna otra orden de Motion Control.
- Una nueva orden "MC SetTool" no cancela ninguna orden de Motion Control en curso.

Parámetros

La tabla siguiente muestra los parámetros de la instrucción "MC_SetTool" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripo	ción
AxesGroup	INPUT	TO_Kinematics	-	Objeto te	ecnológico
Execute	INPUT	BOOL	FALSE	TRUE	Inicio de la orden con flanco ascendente
ToolNumber	INPUT	DINT	1	Número	de la herramienta que debe ser efectiva
				1	Herramienta 1
				2	Herramienta 2
				3	Herramienta 3
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado.
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.
CommandAborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".
ErrorID	OUTPUT	WORD	16#0000	Identificador de error (Página 316) del parámetro "ErrorID"	

Consulte también

Identificación del error (cinemática) (Página 316)

9.4 Sistemas de coordenadas

9.4.1 MC SetOcsFrame V4

9.4.1.1 MC_SetOcsFrame: Redefinir el sistema de coordenadas de objeto V4

Descripción

Con la instrucción "MC_SetOcsFrame" de Motion Control se define la posición de un sistema de coordenadas de objeto (OCS) con respecto al sistema de coordenadas universal (WCS). Los valores iniciales almacenados en el bloque de datos del objeto tecnológico no se rebasan.

La orden "MC_SetOcsFrame" se incorpora a la cadena de órdenes, con lo que solo es efectiva para las órdenes de movimiento posteriores.

Las variables siguientes del bloque de datos del objeto tecnológico contienen las coordenadas actuales de los sistemas de coordenadas de objeto:

- <TO>.StatusOcsFrame[1..3].x
- <TO>.StatusOcsFrame[1..3].y
- <TO>.StatusOcsFrame[1..3].z
- <TO>.StatusOcsFrame[1..3].a
- <TO>.StatusOcsFrame[1..3].b
- <TO>.StatusOcsFrame[1..3].c

Se aplica a

Cinemática

Requisitos

- El objeto tecnológico se ha configurado correctamente.
- Los ejes interconectados están habilitados.
- Ninguno de los ejes interconectados tiene activada una orden de eje individual (p. ej. "MC_MoveVelocity").

9.5 Comportamiento de relevo de las órdenes de Motion Control V4

Comportamiento de relevo

El comportamiento de relevo para órdenes "MC_SetOcsFrame" se describe en el capítulo "Comportamiento de relevo V4: Órdenes de movimiento de cinemática (Página 273)".

Parámetros

La tabla siguiente muestra los parámetros de la instrucción "MC_SetOcsFrame" de Motion Control:

Parámetro	Declaración	Tipo de datos	Valor prede- terminado	Descripción	
AxesGroup	INPUT	TO_Kinematics	-	Objeto	tecnológico
Execute	INPUT	BOOL	FALSE	TRUE	La orden se incorpora a la cadena de órdenes.
Frame	INPUT	TO_Struct_ Kinematics_Frame	-	Coorde	nadas con respecto al WCS
OcsNumber	INPUT	DINT	1	Sistema	a de coordenadas del objeto
				1	Sistema de coordenadas de objeto 1 (OCS[1])
				2	Sistema de coordenadas de objeto 2 (OCS[2])
				3	Sistema de coordenadas de objeto 3 (OCS[3])
Done	OUTPUT	BOOL	FALSE	TRUE	La orden ha finalizado. Los nuevos valores son efectivos para la visualización y el movimiento.
Busy	OUTPUT	BOOL	FALSE	TRUE	La orden está en proceso.
CommandAborted	OUTPUT	BOOL	FALSE	TRUE	La orden ha sido cancelada por otra durante su procesamiento.
Error	OUTPUT	BOOL	FALSE	TRUE	Ha ocurrido un error al ejecutar la orden. La orden se rechaza. La causa del error se puede consultar en el parámetro "ErrorID".
ErrorID	OUTPUT	WORD	16#0000	Identificador de error (Página 316) del parámetro "ErrorID"	

Consulte también

Identificación del error (cinemática) (Página 316)

Comportamiento de relevo V4: Órdenes de movimiento de cinemática (Página 273)

9.5 Comportamiento de relevo de las órdenes de Motion Control V4

9.5.1 Comportamiento de relevo V4: Órdenes de movimiento de cinemática

Las órdenes de ejes individuales no son relevadas por órdenes de cinemática.

La tabla siguiente muestra qué efecto tiene una nueva orden de Motion Control sobre las órdenes de movimiento de cinemática en curso:

⇒ Orden en curso	MC_MoveLinearAbsolute	MC_GroupInterrupt	MC_GroupStop
⊎ Nueva orden	MC_MoveLinearRelative		
	MC_MoveCircularAbsolute		
	MC_MoveCircularRelative		
	MC_DefineWorkspaceZone		
	MC_DefineKinematikZone		
	MC_SetWorkspaceZoneActive		
	MC_SetWorkspaceZoneInactive		
	MC_SetKinematicsZoneActive		
	MC_SetKinematicsZoneInactive		
	MC_SetOcsFrame		
MC_Home	N	N	N
MC_MoveSuperimposed			
MC_Halt	A	Α	Α
MC_MoveAbsolute			
MC_MoveRelative			
MC_MoveVelocity			
MC_MoveJog			
MC_GearIn			
MC_GearInPos			
MC_Camin			
MC_MotionInVelocity			
MC_MotionInPosition			
MC_GroupStop			

9.5 Comportamiento de relevo de las órdenes de Motion Control V4

⇒ Orden en curso	MC_MoveLinearAbsolute	MC_GroupInterrupt	MC_GroupStop
↓ Nueva orden	MC_MoveLinearRelative		
	MC_MoveCircularAbsolute		
	MC_MoveCircularRelative		
	MC_DefineWorkspaceZone		
	MC_DefineKinematikZone		
	MC_SetWorkspaceZoneActive		
	MC_SetWorkspaceZoneInactive		
	MC_SetKinematicsZoneActive		
	MC_SetKinematicsZoneInactive		
	MC_SetOcsFrame		
MC_GroupInterrupt	В	Α	N
MC_GroupContinue			
MC_MoveLinearAbsolute	-	-	N
MC_MoveLinearRelative			
MC_MoveCircularAbsolute			
MC_MoveCircularRelative			
MC_DefineWorkspaceZone			
MC_DefineKinematikZone			
MC_SetWorkspaceZoneActive			
MC_SetWorkspaceZoneInactive			
MC_SetKinematicsZoneActive			
MC_SetKinematicsZoneInactive			
MC_SetOcsFrame			

A La orden en curso se cancela con "CommandAborted" = TRUE.

B La orden en curso se cancela o continúa.

N No permitido. La orden en curso sigue ejecutándose. Se rechaza la nueva orden.

⁻ Sin efecto. La orden en curso sigue ejecutándose. La orden se incorpora a la cadena de órdenes.

Anexo

A.1 Variables del objeto tecnológico Cinemática

A.1.1 Leyenda

Variable	Nombre de la variable						
Tipo de datos	Tipo de datos de la variable						
Valores	res Rango de valores de la variable- valores mínimo a máximo						
	(L = indi	cación lineal, R = indicación rotativa)					
		Sin una indicación de valores específica rigen los límites del rango de valores del tipo de datos correspondiente o la indicación bajo "Descripción".					
W	Efectivid	ad de los cambios en el bloque de datos tecnológico					
	DIR	Directo: Los cambios de valor se realizan mediante asignación directa y se aplican al iniciarse el siguiente MC-Servo [OB91].					
	CAL Con llamada de la instrucción de Motion Control:						
		Los cambios de valor se realizan mediante asignación directa y, después de llamar la correspondiente instrucción de Motion Control en el programa de usuario, se aplican al iniciarse el siguiente MC-Servo [OB91].					
	RES	Reinicio: El valor inicial de la memoria de carga se cambia mediante la instrucción avanzada "WRIT_DBL" (escribir en la memoria de carga del DB). Los cambios no son efectivos hasta que se reinicia el objeto tecnológico.					
	RON	Read only: No se puede o no se debe modificar la variable durante el tiempo de ejecución del programa de usuario.					
Descripción	Descripo	ción de la variable					

El acceso a las variables se realiza por medio de "<TO>.<nombre de variable>". El comodín <TO> representa el nombre del objeto tecnológico.

A.1 Variables del objeto tecnológico Cinemática

A.1.2 Variable Tcp (cinemática)

La variable estructurada <TO>.Tcp.<nombre de variable> contiene la posición del punto de operación de la herramienta (TCP), frame TCP en el sistema de coordenadas universal (WCS)

Variables

٧	ariable	Tipo de datos	Valores	w	Descripción
Тср.		STRUCT			
	х	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada x
	у	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada y
	z	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada z
	а	LREAL	de -180 a 180	RON	Coordenada A

Consulte también

A.1.3 Variable Kinematics (cinemática)

La variable estructurada <TO>.Kinematics.<nombre de variable> contiene el tipo de cinemática definida.

Variables

Variable	Tipo de datos	Valores	w	Descrip	oción		
TypeOfKinematics	DINT	de 1 a 34	RON	Tipo de cinemática			
				(Config	(Configuración en la vista de funciones)		
				1	Portal cartesiano 2D		
				2	Portal cartesiano 2D con orientación		
				3	Portal cartesiano 3D		
				4	Portal cartesiano 3D con orientación		
				5	Roller-picker 2D		
				6	Roller-picker 2D con orientación		
				7	Roller-picker 3D (vertical)		
				8	Roller-picker 3D con orientación (vertical)		
				9	Roller-picker 3D con orientación (horizontal)		
				10	SCARA 3D con orientación		
				11	Brazo articulado 2D		
				12	Brazo articulado 2D con orientación		
				13	Brazo articulado 3D		
				14	Brazo articulado 3D con orientación		
				15	Delta-picker 2D		
				16	Delta-picker 2D con orientación		
				17	Delta-picker 3D		
				18	Delta-picker 3D con orientación		
				21	Robot cilíndrico 3D		
				22	Robot cilíndrico 3D con orientación		
				23	Trípode 3D		
				24	Trípode 3D con orientación		
				31	2D definido por el usuario		
				32	2D definido por el usuario con orientación		
				33	3D definido por el usuario		
				34	3D definido por el usuario con orientación		

A.1 Variables del objeto tecnológico Cinemática

Variable	Tipo de datos	Valores	W	Descripción
Parameter[132]	ARRAY [132] OF LREAL	de -1.0E12 a 1.0E12	RES	Parámetros específicos de la cinemática

Consulte también

Variables del portal (Página 47)

Variables del Delta-picker (Página 103)

Variables del Roller-picker (Página 63)

Variables del brazo articulado (Página 88)

Variables del robot cilíndrico (Página 113)

Variables de Trípode (Página 121)

Variables de SCARA (Página 70)

Variables de las cinemáticas definidas por el usuario (Página 122)

A.1.4 Variable KcsFrame (cinemática)

La variable estructurada <TO>.KcsFrame.<nombre de variable> contiene el frame del sistema de coordenadas de la cinemática (KCS) en el sistema de coordenadas universal (WCS).

Variables

Variable	Tipo de datos	Rango de valores	w	Descripción
KcsFrame.	STRUCT			
х	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada x
У	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada y
z	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada z
а	LREAL		RES	Coordenada A
		0.0		En el tipo de cinemática "2D"
		0.0		En el tipo de cinemática "2D con orientación"
		de -180.0 a 180.0		En el tipo de cinemática "3D"
		de -180.0 a 180.0		En el tipo de cinemática "3D con orientación"
b	LREAL		RES	Coordenada B
		de -180.0 a 180.0		En el tipo de cinemática "2D"
		0.0		En el tipo de cinemática "2D con orientación"
		de -90.0 a 90.0		En el tipo de cinemática "3D"
		0.0		En el tipo de cinemática "3D con orientación"
С	LREAL		RES	Coordenada C
		0.0		En el tipo de cinemática "2D"
		0.0		En el tipo de cinemática "2D con orientación"
		de -180.0 a 180.0		En el tipo de cinemática "3D"
		0.0		En el tipo de cinemática "3D con orientación"

Consulte también

A.1 Variables del objeto tecnológico Cinemática

A.1.5 Variable OcsFrame (cinemática)

La variable estructurada <TO>.OcsFrame[1..3].<nombre de variable> contiene las tramas de los sistemas de coordenadas de objetos (OCS) 1 a 3 en el sistema de coordenadas universal (WCS).

Variables

Variable	Tipo de datos	Rango de valores	w	Descripción
OcsFrame[13].	ARRAY [13] OF STRUCT			
х	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada x
у	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada y
z	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada z
а	LREAL		RES	Coordenada A
		0.0		En el tipo de cinemática "2D"
		0.0		En el tipo de cinemática "2D con orientación"
		de -180.0 a 180.0		En el tipo de cinemática "3D"
		de -180.0 a 180.0		En el tipo de cinemática "3D con orientación"
b	LREAL		RES	Coordenada B
		de -180.0 a 180.0		En el tipo de cinemática "2D"
		0.0		En el tipo de cinemática "2D con orientación"
		de -90.0 a 90.0		En el tipo de cinemática "3D"
		0.0		En el tipo de cinemática "3D con orientación"
С	LREAL		RES	Coordenada C
		0.0		En el tipo de cinemática "2D"
		0.0		En el tipo de cinemática "2D con orientación"
		de -180.0 a 180.0		En el tipo de cinemática "3D"
		0.0		En el tipo de cinemática "3D con orientación"

Consulte también

A.1.6 Variable Tool (cinemática)

La variable estructurada <TO>.Tool[1..3].<nombre de variable> contiene el frame de herramienta en el sistema de coordenadas de la brida (FCS).

Variables

٧	ari	able	Tipo de datos	Rango de valores	w	Descripción
T	Tool[13].		ARRAY [13] OF STRUCT			
	F	rame.	STRUCT	de -1.0E12 a 1.0E12	RES	
		x	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada x del FCS
		у	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada y del FCS
		z	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada z del FCS
		а	LREAL		RES	Coordenada A
				0.0		En el tipo de cinemática "2D"
				de -180.0 a 180.0		En el tipo de cinemática "2D con orientación"
				0.0		En el tipo de cinemática "3D"
				de -180.0 a 180.0		En el tipo de cinemática "3D con orientación"

Consulte también

A.1 Variables del objeto tecnológico Cinemática

A.1.7 Variable DynamicDefaults (cinemática)

La variable estructurada <TO>.DynamicDefaults.<nombre de variable> contiene la configuración de los ajustes predeterminados de dinámica. Estos ajustes se utilizan cuando se indica un valor dinámico inferior a 0.0 en una instrucción de Motion Control. Los cambios en los ajustes predeterminados de dinámica se aplican con el próximo flanco ascendente en el parámetro "Execute" de una instrucción de Motion Control.

Variables

Var	iable	Tipo de datos	Valores	w	Des	scripción
Dyn	namicDefaults.	STRUCT				
Р	Path.	STRUCT				
	Velocity	LREAL	de 0.0 a 1.0E12	DIR	Pre	ajuste de velocidad de la trayectoria
	Acceleration	LREAL	de 0.0 a 1.0E12	DIR	Prea	ajuste de aceleración de la trayectoria
	Deceleration	LREAL	de 0.0 a 1.0E12	DIR	Prea	ajuste de deceleración de la trayectoria
	Jerk	LREAL	de 0.0 a 1.0E12	DIR	Prea	ajuste de tirón de la trayectoria
C	Orientation.	STRUCT				
	Velocity	LREAL	de 0.0 a 1.0E12	DIR		ajuste de velocidad de la orientación esiana
	Acceleration	LREAL	de 0.0 a 1.0E12	DIR		ajuste de aceleración de la orientación esiana
	Deceleration	LREAL	de 0.0 a 1.0E12	DIR		ajuste de deceleración de la orientación esiana
	Jerk	LREAL	de 0.0 a 1.0E12	DIR	Pre	ajuste de tirón de la orientación cartesiana
D) DynamicAdaption	DINT	de 0 a 2	CAL	Pre	ajuste de la adaptación dinámica
					0	Sin adaptación dinámica
					1	Adaptación dinámica con segmentación de la trayectoria
					2	Adaptación dinámica sin segmentación de la trayectoria

Consulte también

A.1.8 Variable DynamicLimits (cinemática)

La variable estructurada <TO>. DynamicLimits. <nombre de variable> contiene la configuración de los límites dinámicos. En el control de movimiento no se admiten valores dinámicos mayores que los límites dinámicos. Si en una instrucción de Motion Control se indican valores mayores, el desplazamiento se realizará con los límites dinámicos y aparecerá una advertencia (alarma de 501 a 503 - los valores dinámicos se limitan).

Variables

Va	iable	Tipo de datos	Valores	w	Descripción
Dyı	namicLimits.	STRUCT			
F	Path.	STRUCT			
	Velocity	LREAL	de 0.0 a 1.0E12	DIR	Limitación dinámica para la velocidad máxima de la trayectoria
	Acceleration	LREAL	de 0.0 a 1.0E12	DIR	Limitación dinámica para la velocidad máxima de la trayectoria
	Deceleration	LREAL	de 0.0 a 1.0E12	DIR	Limitación dinámica para la deceleración máxima de la trayectoria
	Jerk	LREAL	de 0.0 a 1.0E12	DIR	Limitación dinámica para el tirón máximo de la trayectoria
(Orientation.	STRUCT			
	Velocity	LREAL	de 0.0 a 1.0E12	DIR	Limitación dinámica para la velocidad máxima de la orientación cartesiana
	Acceleration	LREAL	de 0.0 a 1.0E12	DIR	Limitación dinámica para la velocidad máxima de la orientación cartesiana
	Deceleration	LREAL	de 0.0 a 1.0E12	DIR	Limitación dinámica para la deceleración máxima de la orientación cartesiana
	Jerk	LREAL	de 0.0 a 1.0E12	DIR	Limitación dinámica para el tirón máximo de orientación cartesiana

Consulte también

A.1 Variables del objeto tecnológico Cinemática

A.1.9 Variable MotionQueue (cinemática)

La variable estructurada <TO>.MotionQueue.<nombre de variable> contiene la configuración de parámetros de la cadena de órdenes.

Variables

٧	/ariable	Tipo de datos	Valores	w	Descripción
MotionQueue.		STRUCT			
	MaxNumberOf- Commands	DINT	de 1 a 10	RON	Número máximo de órdenes en la cadena de órdenes (Configuración en la vista de parámetros (estructura de datos))

Consulte también

Variables del control de movimiento y dinámica (Página 143)

A.1.10 Variable Override (cinemática)

La variable estructurada <TO>.Override.<nombre de variable> contiene la configuración de los parámetros de corrección.

Variables

٧	′ariable	Tipo de datos	Valores	w	Descripción
C	verride.	STRUCT			
	Velocity	LREAL	de 0.0 a 200.0	DIR	Corrección de velocidad

Consulte también

A.1.11 Variable WorkspaceZone (cinemática)

La variable estructurada <TO>.WorkspaceZone[1..10].<nombre de variable> contiene los parámetros de las zonas del espacio de trabajo.

Variables

Variable	Tipo de datos	Valores	w	Descripción		
Workspace Zone[110].	ARRAY [110] OF STRUCT					
Active	BOOL	-	RES	FALSE	Zona del espacio de trabajo desactivada	
				TRUE	Zona del espacio de trabajo activada	
Valid	BOOL	-	RES	FALSE	La zona no está definida	
				TRUE	La zona está definida	
Туре	DINT	de 0 a 2	RES	Tipo de z	Tipo de zona del espacio de trabajo	
				0	Zona de bloqueo	
				1	Zona de trabajo	
				2	Zona de señalización	
ReferenceSystem	DINT	de 0 a 3	RES	Sistema de coordenadas de referencia para la zona del espacio de trabajo		
				0	WCS	
				1	OCS1	
				2	OCS2	
				3	OCS3	
Frame.	STRUCT					
x	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada x		
у	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada y		
z	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada z		
а	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada A		
b	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada B		
С	LREAL	de -1.0E12 a 1.0E12	RES	Coorden	ada C	
Geometry.	STRUCT					
Туре	DINT	de 0 a 2	RES	Geometría de la zona		
				0	Cubo	
				1	Esfera	
				2	Cilindro	
Parameter[13]	ARRAY [13] OF LREAL	de 0.0 a 1.0E12	RES	1	Longitud x (cubo) o radio (esfera, cilindro)	
				2	Longitud y (cubo) o altura (cilindro)	
				3	Longitud z (cubo)	

Consulte también

Variables de la vigilancia de zonas (Página 155)

A.1 Variables del objeto tecnológico Cinemática

A.1.12 Variable KinematicsZone (cinemática)

La variable estructurada <TO>.KinematicsZone[2..10].<nombre de variable> contiene los parámetros de las zonas de la cinemática.

Variables

Variable	Tipo de datos	Valores	W	Descripción		
KinematicsZone[210].	ARRAY [210] OF STRUCT					
Active	BOOL	-	RES	FALSE	Zona de cinemática desactivada	
				TRUE	Zona de cinemática activada	
Valid	BOOL	-	RES	FALSE	La zona no está definida	
				TRUE	La zona está definida	
ReferenceSystem	DINT	de 0 a 1	RES	Sistema de coordenadas de referencia para la zona de cinemática		
				0	FCS	
				1	TCS	
Frame.	STRUCT				•	
x	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada x		
у	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada y		
z	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada z		
а	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada A		
b	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada B		
С	LREAL	de -1.0E12 a 1.0E12	RES	Coordenada C		
Geometry.	STRUCT					
Туре	DINT	de 0 a 2	RES	Geometría de la zona		
				0	Cubo	
				1	Esfera	
				2	Cilindro	
Parameter[13]	Parameter[13]		RES	1	Longitud x (cubo) o radio (esfera, cilindro)	
				2	Longitud y (cubo) o altura (cilindro)	
				3	Longitud z (cubo)	

Consulte también

Variables de la vigilancia de zonas (Página 155)

A.1.13 Variable StatusPath (cinemática)

La variable estructurada <TO>.StatusPath.<nombre de variable> contiene los parámetros del movimiento de cinemática actual.

Variables

٧	′ariable	Tipo de datos	Valores	W	Descripción	
S	tatusPath.	STRUCT				
	CoordSystem	DINT de 0 a 3	de 0 a 3	RON	Sistema de coordenadas de la orden de movimiento activa	
					0	Sistema de coordenadas universal
					1, 2, 3	Sistema de coordenadas de objeto 1, 2, 3
	Velocity	LREAL	de -1.0E12 a 1.0E12	RON	Velocida consign	ad de la trayectoria actual (referencia de a)
	Acceleration	LREAL	de -1.0E12 a 1.0E12	RON	Acelera consign	ción de la trayectoria actual (referencia de a)
	DynamicAdaption	DINT	de 0 a 2	RON	Adaptad	ción dinámica
					0	Sin adaptación dinámica
					1	Adaptación dinámica con segmentación de la trayectoria
					2	Adaptación dinámica sin segmentación de la trayectoria

Consulte también

A.1 Variables del objeto tecnológico Cinemática

A.1.14 Variable TcpInWcs (cinemática)

La variable estructurada <TO>.TcpInWcs.<nombre de variable> contiene los parámetros del punto de operación de la herramienta (TCP) en el sistema de coordenadas universal (WCS).

Variables

Variable		Tipo de datos	Valores	w	Descripción	
Тср	olnWcs.	STRUCT				
Х	۲.	STRUCT				
	Acceleration	LREAL	de -1.79769E308 a 1.79769E308	RON	Aceleración de la coordenada x de la trayectoria	
	Position	LREAL	de -1.79769E308 a 1.79769E308	RON	Posición de la coordenada x de la trayectoria	
	Velocity	LREAL	de -1.79769E308 a 1.79769E308	RON	Velocidad de la coordenada x de la trayectoria	
У	/.	STRUCT				
	Acceleration	LREAL	de -1.79769E308 a 1.79769E308	RON	Aceleración de la coordenada y de la trayectoria	
	Position	LREAL	de -1.79769E308 a 1.79769E308	RON	Posición de la coordenada y de la trayectoria	
	Velocity	LREAL	de -1.79769E308 a 1.79769E308	RON	Velocidad de la coordenada y de la trayectoria	
z	<u>.</u>	STRUCT				
	Acceleration	LREAL	de -1.79769E308 a 1.79769E308	RON	Aceleración de la coordenada z de la trayectoria	
	Position	LREAL	de -1.79769E308 a 1.79769E308	RON	Posición de la coordenada z de la trayectoria	
	Velocity	LREAL	de -1.79769E308 a 1.79769E308	RON	Velocidad de la coordenada z de la trayectoria	
a	ì.	STRUCT				
	Acceleration	LREAL	de -1.79769E308 a 1.79769E308	RON	Aceleración del giro A	
	Position	LREAL	de -1.79769E308 a 1.79769E308	RON	Posición del giro A	
	Velocity	LREAL	de -1.79769E308 a 1.79769E308	RON	Velocidad del giro A	

Consulte también

A.1.15 Variable TcpInOcs (cinemática)

La variable estructurada <TO>.TcpInOcs.<nombre de variable> contiene los parámetros del punto de operación de la herramienta (TCP) en los sistemas de coordenadas de objetos 1 a 3 (OCS).

Variable		Tipo de datos	Valores	W	Descripción
Тср	InOcs[13].	ARRAY [13] OF STRUCT			
х		STRUCT			
	Acceleration	LREAL	de -1.79769E308 a 1.79769E308	RON	Aceleración de la coordenada x del punto de operación de la herramienta en el sistema de coordenadas de objeto 1 a 3
	Position	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada x del punto de operación de la herramienta en el sistema de coordenadas de objeto 1 a 3
	Velocity	LREAL	de -1.79769E308 a 1.79769E308	RON	Velocidad de la coordenada x del punto de operación de la herramienta en el sistema de coordenadas de objeto 1 a 3
У		STRUCT			
	Acceleration	LREAL	de -1.79769E308 a 1.79769E308	RON	Aceleración de la coordenada y del punto de operación de la herramienta en el sistema de coordenadas de objeto 1 a 3
	Position	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada y del punto de operación de la herramienta en el sistema de coordenadas de objeto 1 a 3
	Velocity	LREAL	de -1.79769E308 a 1.79769E308	RON	Velocidad de la coordenada y del punto de operación de la herramienta en el sistema de coordenadas de objeto 1 a 3
z		STRUCT			
	Acceleration	LREAL	de -1.79769E308 a 1.79769E308	RON	Aceleración de la coordenada z del punto de operación de la herramienta en el sistema de coordenadas de objeto 1 a 3
	Position	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada z del punto de operación de la herramienta en el sistema de coordenadas de objeto 1 a 3
	Velocity	LREAL	de -1.79769E308 a 1.79769E308	RON	Velocidad de la coordenada z del punto de operación de la herramienta en el sistema de coordenadas de objeto 1 a 3
а	L	STRUCT			
	Acceleration	LREAL	de -1.79769E308 a 1.79769E308	RON	Aceleración de la coordenada A del punto de operación de la herramienta en el sistema de coordenadas de objeto 1 a 3
	Position	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada A del punto de operación de la herramienta en el sistema de coordenadas de objeto 1 a 3
	Velocity	LREAL	de -1.79769E308 a 1.79769E308	RON	Velocidad de la coordenada A del punto de operación de la herramienta en el sistema de coordenadas de objeto 1 a 3

A.1 Variables del objeto tecnológico Cinemática

Consulte también

Variables, sistemas de coordenadas y frames (Página 34)

A.1.16 Variable StatusOcsFrame (cinemática)

La variable estructurada <TO>.StatusOcsFrame.<nombre de variable> contiene los frames de los sistemas de coordenadas de objetos (OCS) 1 a 3 en el sistema de coordenadas universal (WCS).

Variables

٧	ariable	Tipo de datos	Valores	w	Descripción
StatusOcsFrame[13].		ARRAY [13] OF STRUCT			
	x	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada x del WCS
	у	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada y del WCS
	Z	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada z del WCS
	а	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada A del WCS
	b	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada B del WCS
	С	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada C del WCS

Consulte también

Variables, sistemas de coordenadas y frames (Página 34)

A.1.17 Variable StatusKinematics (cinemática)

La variable estructurada <TO>.StatusKinematics.<nombre de variable> contiene el estado de la cinemática.

Variables

Variable	Tipo de datos	Valores	w	Descripción		
StatusKinematics.	STRUCT					
Valid	BOOL	-	RON	Validez o	de los valores de transformación	
				FALSE	No válido	
				TRUE	Válido	
LinkConstellation	DWORD	de 0 a n	RON	Posición	de la articulación	
Bit 0	-	-	-	_	11 del eje A1 en la zona anterior/posterior tándar/zona invertida)	
				0	El origen del FCS se encuentra en la zona anterior (zona estándar) de las rectas de posición de articulación para el eje A1.	
					α1 = arctan(y _{FCS} /x _{FCS})	
				1	El origen del FCS se encuentra en la zona posterior (zona invertida) de la recta de posición de articulación para el eje A1.	
					$\alpha 1 = -\arctan(y_{FCS}/x_{FCS})$	
Bit 1	-	-	-		(2 del eje A2 positivo/negativo teniendo en I acoplamiento mecánico de los ejes	
				0	α2 positivo	
				1	α2 negativo	
Bit 2	-	-	-		d3 del eje A3 positivo/negativo teniendo en l acoplamiento mecánico de los ejes	
				0	α3 positivo	
				1	α3 negativo	

Consulte también

Variables de transformación de la cinemática (Página 136)

A.1.18 Variable FlangeInKcs (cinemática)

La variable estructurada <TO>.FlangeInKcs.<nombre de variable> contiene los parámetros del sistema de coordenadas de la brida (FCS) en el sistema de coordenadas de la cinemática (KCS).

Variables

Variab	ole	Tipo de datos	Valores	w	Descripción
FlangeInKcs.		STRUCT			
х.		STRUCT			
Α	Acceleration	LREAL	de -1.79769E308 a 1.79769E308	RON	Aceleración de la coordenada x del sistema de coordenadas de la brida (FCS) en el sistema de coordenadas de la cinemática (KCS)
P	Position	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada x del sistema de coordenadas de la brida en el sistema de coordenadas de la cinemática
V	elocity/	LREAL	de -1.79769E308 a 1.79769E308	RON	Velocidad de la coordenada x del sistema de coordenadas de la brida en el sistema de coordenadas de la cinemática
у.		STRUCT			
A	Acceleration	LREAL	de -1.79769E308 a 1.79769E308	RON	Aceleración de la coordenada y del sistema de coordenadas de la brida en el sistema de coordenadas de la cinemática
P	Position	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada y del sistema de coordenadas de la brida en el sistema de coordenadas de la cinemática
V	elocity	LREAL	de -1.79769E308 a 1.79769E308	RON	Velocidad de la coordenada y del sistema de coordenadas de la brida en el sistema de coordenadas de la cinemática
Z.		STRUCT			
A	acceleration	LREAL	de -1.79769E308 a 1.79769E308	RON	Aceleración de la coordenada z del sistema de coordenadas de la brida en el sistema de coordenadas de la cinemática
P	Position	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada z del sistema de coordenadas de la brida en el sistema de coordenadas de la cinemática
V	elocity/	LREAL	de -1.79769E308 a 1.79769E308	RON	Velocidad de la coordenada z del sistema de coordenadas de la brida en el sistema de coordenadas de la cinemática
a.		STRUCT			
A	Acceleration	LREAL	de -1.79769E308 a 1.79769E308	RON	Aceleración de la rotación A del sistema de coordenadas de la brida en el sistema de coordenadas de la cinemática
P	Position	LREAL	de -1.79769E308 a 1.79769E308	RON	Posición de la rotación A del sistema de coordenadas de la brida en el sistema de coordenadas de la cinemática
V	elocity/	LREAL	de -1.79769E308 a 1.79769E308	RON	Velocidad de la rotación A del sistema de coordenadas de la brida en el sistema de coordenadas de la cinemática

Consulte también

Variables, sistemas de coordenadas y frames (Página 34)

A.1.19 Variable StatusTool (cinemática)

La variable estructurada <TO>.StatusTool.<nombre de variable> contiene los parámetros de la herramienta.

Variables

٧	Variable		Tipo de datos	Valores	W	Descripción
S	StatusTool.		STRUCT			
	ActiveTool		DINT	de 1 a 3	RON	Herramienta efectiva actualmente
	F	rame[11].	ARRAY [11] OF STRUCT			
		Х	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada x de la herramienta 1
		y	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada y de la herramienta 1
		z	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada z de la herramienta 1
		а	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada A de la herramienta 1

Consulte también

Variables, sistemas de coordenadas y frames (Página 34)

A.1.20 Variable StatusWorkspaceZone (cinemática)

La variable estructurada <TO>.StatusWorkspaceZone.<nombre de variable> contiene el estado de las zonas del espacio de trabajo.

Variable Tipo de datos		Valores	w	Descripción		
StatusWorkspace- Zone[110].	ARRAY [110] OF STRUCT					
Active	BOOL	-	RON	FALSE	Zona del espacio de trabajo desactivada	
				TRUE	Zona del espacio de trabajo activada	
Valid	BOOL	-	RON	FALSE	La zona no está definida	
				TRUE	La zona está definida	
Туре	DINT	de 0 a 2	RON	Tipo de	e zona del espacio de trabajo	
				0	Zona de bloqueo	
				1	Zona de trabajo	
				2	Zona de señalización	
ReferenceSystem	DINT	de 0 a 3	RON		na de coordenadas de referencia ni zona del espacio de trabajo	
				0	wcs	
				1	OCS1	
				2	OCS2	
				3	OCS3	
Frame.	STRUCT				·	
х	LREAL	de -1.79769E308 a 1.79769E308	RON	Coorde	enada x	
у	LREAL	de -1.79769E308 a 1.79769E308	RON	Coorde	enada y	
z	LREAL	de -1.79769E308 a 1.79769E308	RON	Coorde	enada z	
а	LREAL	de -1.79769E308 a 1.79769E308	RON	Coorde	enada A	
b	LREAL	de -1.79769E308 a 1.79769E308		Coorde	enada B	
С	LREAL	de -1.79769E308 a 1.79769E308	RON	Coorde	enada C	
Geometry.	STRUCT		RON			
Туре	DINT	de 0 a 2	RON	Geome	etría de la zona	
				0 C	Cubo	
				1 E	sfera	
				2 C	ilindro	
Parameter[13]	ARRAY [13] OF	de 0.0 a 1.0E12	RON		ongitud x (cubo) o radio (esfera, ilindro)	
	LREAL			2 L	ongitud y (cubo) o altura (cilindro)	
				3 L	ongitud z (cubo)	

Consulte también

Variables de la vigilancia de zonas (Página 155)

A.1.21 Variable StatusKinematicsZone (cinemática)

La variable estructurada <TO>.StatusKinematicsZone.<nombre de variable> contiene el estado de las zonas de la cinemática.

Variables

Variable Tipo de datos		Valores		Descripción		
StatusKinematics-Zone[210].	ARRAY [210] OF STRUCT					
Active	BOOL	-	RON	FALSE	Zona de cinemática desactivada	
				TRUE	Zona de cinemática activada	
Valid	BOOL	-	RON	FALSE	La zona no está disponible	
				TRUE	La zona está disponible	
ReferenceSystem	DINT	de 0 a 1	RON		de coordenadas de referencia ona de cinemática	
				0	FCS	
				1	TCS	
Frame.	STRUCT					
х	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada x		
у	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada y		
z	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada z		
а	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada A		
b	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada B		
С	LREAL	de -1.79769E308 a 1.79769E308	RON	Coordenada C		
Geometry.	STRUCT					
Туре	DINT	de 0 a 2	RON	Geometri	a de la zona	
				0	Cubo	
				1	Esfera	
				2	Cilindro	
Parameter[13]	ARRAY [13] OF LREAL	de 0.0 a 1.0E12	RON	1	Longitud x (cubo) o radio (esfera, cilindro)	
				2	Longitud y (cubo) o altura (cilindro)	
				3	Longitud z (cubo)	

Consulte también

Variables de la vigilancia de zonas (Página 155)

A.1 Variables del objeto tecnológico Cinemática

A.1.22 Variable StatusZoneMonitoring (cinemática)

La variable estructurada <TO>.StatusZoneMonitoring.<nombre de variable> contiene el estado de las zonas infringidas.

Variables

Variable	Tipo de datos	Valores	W	Descripción
StatusZoneMonitoring.	STRUCT			
WorkingZones	DWORD	-	RON	Indicación de las zonas de trabajo infringidas Los números de bit 1 a 10 se corresponden con los números de zona configurados.
BlockedZones	DWORD	-	RON	Indicación de las zonas de bloqueo infringidas Los números de bit 1 a 10 se corresponden con los números de zona configurados.
SignalizingZones	DWORD	-	RON	Indicación de las zonas de señalización alcanzadas Los números de bit 1 a 10 se corresponden con los números de zona configurados.
KinematicsZones	DWORD	-	RON	Indicación de zonas de la cinemática que infringen las zonas del espacio de trabajo El número de bit 1 señala el estado de vigilancia del TCP (punto de operación de la herramienta). Los números de bit 2

Consulte también

Variables de la vigilancia de zonas (Página 155)

A.1.23 Variable StatusMotionQueue (cinemática)

La variable estructurada <TO>.StatusMotionQueue..<nombre de variable> contiene el estado de la cadena de órdenes.

Variables

Variable		Tipo de datos	Valores	W	Descripción
StatusMotionQueue.		STRUCT			
	NumberOfCommands	DINT	-	RON	Número de órdenes en espera en la cadena de órdenes

Consulte también

Variables del control de movimiento y dinámica (Página 143)

A.1.24 Variable KinematicsAxis (cinemática)

La variable estructurada <TO>.KinematicsAxis.<nombre de variable> contiene los ejes de cinemática definidos.

Variable	Tipo de datos	Valores	w	Descripción
KinematicsAxis.	STRUCT			
A1	DB_ANY	-	RON	Bloque de datos del objeto tecnológico del eje de cinemática A1
A2	DB_ANY	-	RON	Bloque de datos del objeto tecnológico del eje de cinemática A2
A3	DB_ANY	-	RON	Bloque de datos del objeto tecnológico del eje de cinemática A3
A4	DB_ANY	-	RON	Bloque de datos del objeto tecnológico del eje de cinemática A4

A.1.25 Variable Units (cinemática)

La variable estructurada <TO>.Units.<nombre de variable> contiene las unidades tecnológicas configuradas.

Variable	Tipo de datos	Valores	w	Descripo	sión
Units.	STRUCT				
LengthUnit	UDINT	de 0 a 4294967295	RON	Unidad p	para la posición
				1010	m
				1013	mm
				1011	km
				1014	μm
				1015	nm
				1019	in
				1018	ft
				1021	mi
LengthVelocityUnit	UDINT	de 0 a 4294967295	RON	Unidad p	oara la velocidad
				1062	mm/s
				1061	m/s
				1524	mm/min
				1525	m/min
				1526	mm/h
				1063	m/h
				1527	km/min
				1064	km/h
				1066	in/s
				1069	in/min
				1067	ft/s
				1070	ft/min
				1075	mi/h
AngleUnit	UDINT	de 0 a 4294967295	RON	Unidad p	para la posición del eje de orientación
				1004	rad
				1005	0
AngleVelocityUnit	UDINT	de 0 a 4294967295	RON	Unidad p	para la velocidad del eje de orienta-
				1521	°/s
				1522	°/min
				1086	rad/s
			1	1523	rad/min

A.1.26 Variable StatusWord (cinemática)

La variable <TO>. StatusWord incluye la información de estado del objeto tecnológico.

Encontrará indicaciones para evaluar los diferentes bits (p. ej., bit 2 "RestartActive") en el capítulo "Evaluar StatusWord, ErrorWord y WarningWord".

Variable	Tipo de datos	Valores	w	Descripción		
StatusWord	DWORD	-	RON	Información de estado del objeto tecnológico		
Bit 0	-	-	-	Reservado		
Bit 1	-	-	-	"Error"		
				0 No hay ningún error presente.		
				1 Existe un error.		
Bit 2	-	-	-	"RestartActive"		
				0 No hay ningún "Reinicio" está activo.		
				1 Hay un "reinicio" está activo. El objeto tecnológico se reinicializa.		
Bit 3	-	-	-	"OnlineStartValuesChanged"		
				0 Variables de "Reinicio" no modificadas		
				1 Cambios en las variables de "reinicio". Para aplicar los cambios es necesario inicializar nuevamente el objeto tecnológico.		
Bit 4	-	-	-	"ControlPanelActive"		
				0 El panel de mando de la cinemática está desactivado.		
				1 El panel de mando de la cinemática está activado.		
Bit 5	-	-	-	Reservado		
Bit 6	-	-	-	"Done"		
				O Se está procesando una orden de movimiento o el panel de mando de la cinemática está activado.		
				No se está procesando ninguna orden de movimiento y el panel de mando de la cinemática está desactivado.		
Bit 7	-	-	-	Reservado		
Bit 8	-	-	-	"LinearCommand"		
				0 No hay ningún movimiento lineal activo.		
				1 Un movimiento lineal está activo.		
Bit 9	-	-	-	"CircularCommand"		
				0 No hay ningún movimiento circular activo.		
				1 Hay un movimiento circular activo.		
Bit 10	-	_	_	Reservado		
Bit 11	-	-	-	Reservado		
Bit 12	-	-	-	"ConstantVelocity"		
				0 La cinemática se acelera o se decelera.		
				Se ha alcanzado la consigna de velocidad. La cinemática avanza a esta velocidad constante o está parada.		

A.1 Variables del objeto tecnológico Cinemática

Variable	Tipo de datos	Valores	W	Descripción	
Bit 13	-	-	-	"Accelerating"	
				0 No hay ningún proceso de aceleración activo.	
				1 Hay un proceso de aceleración activo.	
Bit 14	-	-	-	"Decelerating"	
				0 No hay ningún proceso de deceleración activo.	
				1 Hay un proceso de deceleración activo.	
Bit 15	-	-	-	"OrientationMotion"	
				Movimiento de orientación activo	
Bit 16	-	-	-	"Stopping"	
				0 No hay ninguna orden "MC_GroupStop" activa.	
				1 Hay una orden "MC_GroupStop" activa. Se interrumpe el movimiento en el objeto tecnológico Cinemática.	
Bit 17	-	-	-	"Interrupted"	
				No se ha interrumpido el movimiento en el objeto tecnológico Cinemática.	
				Se ha interrumpido el movimiento en el objeto tecnológico Cinemática con una orden "MC_GroupInterrupt". El movimiento puede reanudarse con una orden "MC_GroupContinue".	
Bit 18	-	-	-	"Blending"	
				No hay ningún segmento de suavizado de transición activo.	
				1 Hay un segmento de suavizado de transición activo.	
Bit 19	-	-	-	Reservado	
Bit 31					

Consulte también

Variables del control de movimiento y dinámica (Página 143)

Manual de funciones "S7-1500T Motion Control V4.0 en TIA Portal V15", capítulo "Evaluar StatusWord, ErrorWord y WarningWord"

(https://support.industry.siemens.com/cs/ww/es/view/109749263)

A.1.27 Variable ErrorWord (cinemática)

La variable <TO>. ErrorWord señala errores en el objeto tecnológico (alarmas tecnológicas).

Encontrará indicaciones para evaluar los diferentes bits (p. ej., bit 3

"CommandNotAccepted") en el capítulo "Evaluar StatusWord, ErrorWord y WarningWord".

Variables

Variable	Tipo de datos	Valores	w	Descripción
ErrorWord	DWORD	-	RON	
Bit 0	-	-	-	"SystemFault"
				Ha ocurrido un error interno del sistema.
Bit 1	-	-	-	"ConfigFault"
				Error de configuración
				Hay uno o varios parámetros de configuración incoherentes o inadmisibles.
Bit 2	-	-	-	"UserFault"
				Error en una instrucción de Motion Control o en su utilización en el programa de usuario
Bit 3	-	-	-	"CommandNotAccepted"
				Comando no ejecutable
				No es posible ejecutar una instrucción de Motion Control porque no se cumplen los requisitos necesarios.
Bit 4	-	-	-	"TransformationFault"
				Error en la transformación de la cinemática
Bit 5	-	-	-	Reservado
Bit 6	-	-	-	"DynamicError"
				Las especificaciones de valores dinámicos se limitan a valores fiables.
Bit 7	-	-	-	Reservado
Bit 31				

Consulte también

Manual de funciones "S7-1500T Motion Control V4.0 en TIA Portal V15", capítulo "Evaluar StatusWord, ErrorWord y WarningWord"

(https://support.industry.siemens.com/cs/ww/es/view/109749263)

A.1 Variables del objeto tecnológico Cinemática

A.1.28 Variable ErrorDetail (cinemática)

La variable estructurada <TO>.ErrorDetail.<nombre de variable> incluye el número de alarma y la reacción local efectiva a la alarma tecnológica actualmente presente en el objeto tecnológico.

Encontrará una lista de las alarmas tecnológicas y las reacciones a alarma en el anexo Alarmas tecnológicas (Página 305).

Variable		Tipo de datos	Valores	w	Descri	ipción
ErrorDetai		STRUCT				
Number		UDINT	-	RON	Núme	ro de la alarma
Reaction	า	DINT	de 0 a 12	RON	Reacc	ción efectiva a la alarma
					0	Ninguna reacción (solo advertencias)
					11	Parada con valores dinámicos máximos de la cinemática
					12	Parada con valores dinámicos máximos de los ejes

A.1.29 Variable WarningWord (cinemática)

La variable <TO>. WarningWord indica las advertencias presentes en el objeto tecnológico.

Encontrará indicaciones para evaluar los diferentes bits (p. ej., bit 2 "UserFault") en el capítulo "Evaluar StatusWord, ErrorWord y WarningWord".

Variables

Variable	Tipo de datos	Valores	w	Descripción
WarningWord	DWORD	-	RON	
Bit 0	-	-	-	"SystemFault"
				Ha ocurrido un error interno del sistema.
Bit 1	-	-	-	"ConfigFault"
				Error de configuración
				Uno o varios parámetros de configuración se adaptan internamente.
Bit 2	-	-	-	"UserFault"
				Error en una instrucción de Motion Control o en su utilización en el programa de usuario
Bit 3	-	-	-	"CommandNotAccepted"
				Comando no ejecutable
				No es posible ejecutar una instrucción de Motion Control porque no se cumplen los requisitos necesarios.
Bit 4	-	-	-	Reservado
Bit 5	-	-	-	Reservado
Bit 6	-	-	-	"DynamicWarning"
				Las especificaciones de valores dinámicos se limitan a valores fiables.
Bit 7	-	-	-	Reservado
Bit 31				

Consulte también

Manual de funciones "S7-1500T Motion Control V4.0 en TIA Portal V15", capítulo "Evaluar StatusWord, ErrorWord y WarningWord"

(https://support.industry.siemens.com/cs/ww/es/view/109749263)

A.1.30 Variable ControlPanel (cinemática)

La variable estructurada <TO>.ControlPanel.<nombre de variable> no incluye datos relevantes para el usuario. Esta variable estructurada se utiliza internamente.

aria	able	Tipo de datos	Valores	w	Descripción
ControlPanel.		STRUCT			
Input.		STRUCT			
	TimeOut	LREAL	de 100 a 60000	DIR	-
	EsLifeSign	UDINT	-	DIR	-
	Command[12].	ARRAY [12] OF STRUCT			
	ReqCounter	UDINT	-	DIR	-
	Туре	UDINT	-	DIR	-
	Position[14]	ARRAY [14] OF LREAL	-	DIR	-
	Velocity[14]	ARRAY [14] OF LREAL	-	DIR	-
	Acceleration[14]	ARRAY [14] OF LREAL	-	DIR	-
	Deceleration[14]	ARRAY [14] OF LREAL	-	DIR	-
	Jerk[14]	ARRAY [14] OF LREAL	-	DIR	-
	Param[19]	ARRAY [19] OF LREAL	-	DIR	-
	CoordinateSystem	UDINT	-	DIR	-
	ToolNumber	UDINT	-	DIR	-
Οι	utput.	STRUCT			
	RtLifeSign	UDINT	-	RON	-
	Command[12].	ARRAY [12] OF STRUCT	-		
	AckCounter	UDINT	-	RON	-
	Error	BOOL	-	RON	-
	ErrorID	WORD	-	RON	-
	Done	BOOL	-	RON	-
	Aborted	BOOL	-	RON	-

A.2 Alarmas tecnológicas

A.2.1 Sinopsis

La tabla siguiente muestra un resumen de las alarmas tecnológicas y las correspondientes reacciones. Cuando se produzca una alarma tecnológica, evalúe todo el texto de alarma visualizado para encontrar la causa exacta.

Leyenda

N.º	Número de la alarma tecnológica
	(equivale a <to>.ErrorDetail.Number)</to>
Reacción	Reacción efectiva a la alarma
	(equivale a <to>.ErrorDetail.Reaction)</to>
Bit de error	Bit activado en <to>.ErrorWord cuando se produce la alarma tecnológica</to>
	Encontrará una descripción de los bits en el anexo (Página 301).
Bit de advertencia	Bit activado en <to>.WarningWord cuando se produce la alarma tecnológica</to>
	Encontrará una descripción de los bits en el anexo (Página 303).
Reinicio	Para confirmar la alarma tecnológica debe inicializarse el objeto tecnológico (reinicio).
Búfer de diagnóstico	La alarma se introduce en el búfer de diagnóstico.
Texto de la alarma	Texto de alarma visualizado (limitado)

Lista de alarmas tecnológicas

N.º	Reacción	Bit de error	Bit de advertencia	Reini- cio	Búfer de diagnóstico	Texto de la alarma
101	Parada con valores dinámicos máximos de los ejes	X1	-	Х	X	Error de configuración.
201	Parada con valores dinámicos máximos de los ejes	X0	-	Х	Х	Error interno.
202	Parada con valores dinámicos máximos de los ejes	X0	-	Х	-	Error de configuración interno.
203	Parada con valores dinámicos máximos de los ejes	X0	-	Х	-	Error interno.
204	Parada con valores dinámicos máximos de los ejes	X0	-	-	-	Error de puesta en marcha.
304	Parada con valores dinámicos máximos de los ejes	X2	-	-	-	El valor límite de la velocidad es cero.
305	Parada con valores dinámicos máximos de los ejes	X2	-	-	-	 El valor límite de la aceleración es cero. El valor límite de la deceleración es cero.
306	Parada con valores dinámicos máximos de los ejes	X2	-	-	-	El valor límite del tirón es cero.
501	Ninguna reacción (solo advertencias)	-	X6	-	-	La velocidad programada se limita.
502	Ninguna reacción (solo advertencias)	-	X6	ı	-	Se limita la aceleración programada.Se limita la deceleración programada.
503	Ninguna reacción (solo advertencias)	-	X6	-	-	El tirón programado se limita.
561	Ninguna reacción (solo advertencias)	-	X6	-	-	Se limita la velocidad programada del movimiento de orientación.
562	Ninguna reacción (solo advertencias)	-	X6	-	-	 Se limita la aceleración programada del movimiento de orientación. Se limita la deceleración programada del
563	Ninguna reacción		X6	_	_	movimiento de orientación. Se limita el tirón programado del movimien-
	(solo advertencias)		7.0	_	_	to de orientación.
801	Parada con valores dinámicos máximos de los ejes	X2	-	-	-	Eje de cinemática no preparado.
802	Parada con valores dinámicos máximos de los ejes	X3	-	-	-	No es posible calcular el elemento geométrico.

N.º	Reacción	Bit de error	Bit de advertencia	Reini- cio	Búfer de diagnóstico	Texto de la alarma
803	Parada con valores dinámicos máximos de los ejes	X4	-	1	-	Error en el cálculo de la transformación.
804	Parada con valores dinámicos máximos de los ejes	X2	-	1	-	El movimiento de la cinemática no se puede detener al final.
805	Parada con valores dinámicos máximos de los ejes	X2	-	-	-	Limitación de la dinámica de la trayectoria mediante la dinámica de los ejes de la cinemática.
806	Parada con valores dinámicos máximos de la cinemática	X2	-	-	-	Se ha detectado una colisión con zonas de trabajo o bloqueo.
807	Ninguna reacción (solo advertencias)	-	X2	ı	-	Se ha detectado una colisión con zonas de señalización.
808	Parada con valores dinámicos máximos de los ejes	X2	-	-	-	No hay univocidad debido a que varias zonas de trabajo están activas.

Reacción a alarma

Una alarma tecnológica implica siempre una reacción a alarma que describe la repercusión sobre el objeto tecnológico. La reacción a alarma está predefinida por el sistema.

La tabla siguiente muestra posibles reacciones a alarmas:

Reacción a alarma	Descripción
Ninguna reacción (solo advertencias) <to>.ErrorDetail.Reaction = 0</to>	Se continúa con el procesamiento de las órdenes de Motion Control. El movimiento en curso de la cinemática puede verse afectado, p. ej., por una limitación de los valores dinámicos actuales a los límites configurados.
Parada con valores dinámicos máximos de la cinemática <to>.ErrorDetail.Reaction = 11</to>	Se cancelan las órdenes de movimiento en curso y pendientes. La cinemática se frena con los valores dinámicos máximos configurados en "Objeto tecnológico > Configuración > Parámetros avanzados > Dinámica" y se para. En este caso se tiene en cuenta el tirón máximo configurado.
Parada con valores dinámicos máximos de los ejes <to>.ErrorDetail.Reaction = 12</to>	Se cancelan las órdenes de movimiento en curso y pendientes. Los ejes se frenan con los valores dinámicos máximos configurados en "Objeto tecnológico > Configuración > Parámetros avanzados > Límites > Límites dinámicos" y se para. En este caso se tiene en cuenta el tirón máximo configurado.

A.2 Alarmas tecnológicas

A.2.2 Alarmas tecnológicas 101

Alarma tecnológica 101

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

Texto de la alarma	Solución
Error de configuración.	
Valor no admisible en <variable>.</variable>	Modifique convenientemente el valor indicado.
Falta interconexión del eje <n.º>.</n.º>	Interconecte de nuevo el eje.
Falta interconexión del eje de orientación.	
Delta-picker 2D: No se ha creado una estructura paralela cerrada.	Adapte los datos geométricos de la mecánica.
Delta-picker 3D: No se ha creado una estructura paralela cerrada.	
Delta-picker 3D: El offset del ángulo no permite un tercer brazo.	
Roller-picker: Radio erróneo.	
Distancias entre articulaciones no admisibles.	
No se han mantenido los límites al especificar las orientaciones.	Ajuste el valor correspondiente.

A.2.3 Alarmas tecnológicas 201 - 204

Alarma tecnológica 201

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

Reinicio: necesario

Texto de la alarma	Solución
Error interno.	Diríjase al servicio de atención al cliente.

Alarma tecnológica 202

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

Reinicio: necesario

Texto de la alarma	Solución
Error de configuración interno.	Diríjase al servicio de atención al cliente.

Alarma tecnológica 203

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

Reinicio: necesario

Texto de la alarma	Solución
Error de algoritmo interno.	Diríjase al servicio de atención al cliente.

Alarma tecnológica 204

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

	Texto de la alarma	Solución
Error de puesta en marcha.		
	Conexión al TIA Portal interrumpida.	Compruebe las propiedades de la conexión.

A.2 Alarmas tecnológicas

A.2.4 Alarmas tecnológicas 304 - 306

Alarma tecnológica 304

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

Reinicio: no necesario

Texto de la alarma	Solución
El valor límite de velocidad es cero.	Introduzca en los límites dinámicos un valor distinto de cero para la velocidad máxima
	(DynamicLimits.MaxVelocity).

Alarma tecnológica 305

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

Reinicio: no necesario

	Texto de la alarma	Solución
El valor límite de aceleración/deceleración es cero.		
	Aceleración	Introduzca en los límites dinámicos un valor distinto de cero para la aceleración máxima (DynamicLimits.MaxAcceleration).
	Deceleración	Introduzca en los límites dinámicos un valor distinto de cero para la deceleración máxima (DynamicLimits.MaxDeceleration).

Alarma tecnológica 306

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

Texto de la alarma	Solución
El valor límite del tirón es cero.	Introduzca en los límites dinámicos un valor distinto de
	cero para el tirón máximo (DynamicLimits.MaxJerk).

A.2.5 Alarmas tecnológicas 501 - 563

Alarma tecnológica 501

Reacción a alarma: Ninguna reacción (solo advertencias)

Reinicio: no necesario

Texto de la alarma	Solución
La velocidad programada se limita.	Compruebe el valor de la velocidad en la instrucción de Motion Control.
	Compruebe la configuración de los límites dinámicos.

Alarma tecnológica 502

Reacción a alarma: Ninguna reacción (solo advertencias)

Reinicio: no necesario

Texto de la alarma	Solución
La aceleración/deceleración programada se limita.	
Aceleración	 Compruebe el valor de la aceleración en la instrucción de Motion Control.
	 Compruebe la configuración de los límites dinámicos.
Deceleración	Compruebe el valor de la deceleración en la instrucción de Motion Control.
	 Compruebe la configuración de los límites dinámicos.

Alarma tecnológica 503

Reacción a alarma: Ninguna reacción (solo advertencias)

Texto de la alarma	Solución
El tirón programado se limita.	Compruebe el valor del tirón en la instrucción de Motion Control.
	Compruebe la configuración de los límites dinámicos.

A.2 Alarmas tecnológicas

Alarma tecnológica 561

Reacción a alarma: Ninguna reacción (solo advertencias)

Reinicio: no necesario

Texto de la alarma	Solución
Se limita la velocidad programada del movimiento de orientación.	Compruebe la configuración de la velocidad del movimiento de orientación.

Alarma tecnológica 562

Reacción a alarma: Ninguna reacción (solo advertencias)

Reinicio: no necesario

٦	exto de la alarma	Solución
	Se limita la aceleración/deceleración programada del novimiento de orientación.	
	Aceleración	Compruebe la configuración de la aceleración del movimiento de orientación.
	Deceleración	Compruebe la configuración de la deceleración del movimiento de orientación.

Alarma tecnológica 563

Reacción a alarma: Ninguna reacción (solo advertencias)

Texto de la alarma	Solución
Se limita el tirón programado del movimiento de orientación.	Compruebe la configuración del tirón del movimiento de orientación.

A.2.6 Alarmas tecnológicas 801 - 808

Alarma tecnológica 801

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

Reinicio: no necesario

-	Texto de la alarma	Solución
Eje de cinemática <n.º> no preparado.</n.º>		
	Eje no habilitado.	Habilite el objeto tecnológico.
	Comando de eje programado.	Para poder activar otro comando de cinemática, ajuste a parada el eje indicado.
	Alarma en el eje.	Compruebe y confirme las alarmas tecnológicas del eje de cinemática indicado.

Alarma tecnológica 802

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

٦	exto de la alarma	Solución
No es posible calcular el elemento geométrico.		
	Radio con "CircMode" = 2 menor que la mitad del recorrido.	Ajuste el radio.
	El punto inicial, intermedio o final son idénticos si "CircMode" = 0.	Introduzca valores distintos para el punto inicial, intermedio y final.
	No se puede alcanzar el punto intermedio si "CircMode" = 0.	Ajuste el punto intermedio.

A.2 Alarmas tecnológicas

Alarma tecnológica 803

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

Reinicio: no necesario

Texto de la alarma	Solución
Error en el cálculo de la transformación.	
La transformación de coordenadas de eje en coordenadas de cinemática ha generado un error.	Corrija el movimiento especificado en cuanto al espacio de articulación y a las zonas de
En caso de cinemática definida por el usuario:	transformación.
"FunctionResult" del MC-Transformation [OB98]	Posicione los ejes de la cinemática en una zona de
La transformación de las coordenadas de la cinemática en coordenadas de los ejes ha generado un error.	transformación permitida con movimientos de un eje individual.
En caso de cinemática predeterminada:	En caso de transformación de usuario:
Información adicional:	Compruebe el cálculo en el MC-Transformation
0 No puede alcanzarse la posición cartesiana.	[OB98].
1 Posición singular.	
En caso de cinemática definida por el usuario:	
"FunctionResult" del MC-Transformation [OB98]	

Alarma tecnológica 804

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

Reinicio: no necesario

Texto de la alarma	Solución
El movimiento de la cinemática no se puede detener al final.	Procure que la trayectoria sea lo suficientemente larga.

Alarma tecnológica 805

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

Texto de la alarma		Solución
Error en la limitación de la dinámica de la trayectoria mediante la dinámica de los ejes.		
	La velocidad de la trayectoria se limita a cero.	Configure una velocidad de la trayectoria mayor en el eje de la cinemática.
	La aceleración o deceleración de la trayectoria se limita a cero.	Configure una aceleración o deceleración de la trayectoria mayor en el eje de la cinemática.

Alarma tecnológica 806

Reacción a alarma: Parada con valores dinámicos máximos de la cinemática

Reinicio: no necesario

Texto de la alarma	Solución
· ·	Retire el objeto de cinemática de la zona de trabajo o bloqueo.

Alarma tecnológica 807

Reacción a alarma: Ninguna reacción (solo advertencias)

Reinicio: no necesario

Texto de la alarma	Solución
Se ha detectado una colisión con zonas de señalización.	-

Alarma tecnológica 808

Reacción a alarma: Parada con valores dinámicos máximos de los ejes

Texto de la alarma		Solución
No hay univocidad debido a que varias zonas de trabajo están activas.		
	<número activa="" actualmente="" de="" la="" zona=""></número>	Active únicamente una zona de trabajo.

A.3 Identificación del error (cinemática)

Los errores en las instrucciones de Motion Control se notifican mediante los parámetros "Error" y "ErrorID".

En las condiciones siguientes, la instrucción "Error" de Motion Control devuelve TRUE y "ErrorID" devuelve 16#8xxx:

- Estado inadmisible del objeto tecnológico que impide la ejecución de la orden.
- Parametrización inadmisible de la instrucción de Motion Control, que impide la ejecución de la orden.
- Como consecuencia de la reacción a alarma de un error en el objeto tecnológico.

Las tablas siguientes recogen una lista de todos los "ErrorIDs" que pueden mostrarse en las instrucciones de Motion Control. Junto a la causa del error se muestran también ayudas para solucionar los errores:

16#0000 - 16#800F

ErrorID	Descripción	Solución
16#0000	Ningún error	-
16#8001	Durante el procesamiento de la instrucción de Motion Control se ha producido una	En el bloque de datos tecnológico se emite un mensaje de error en la variable "ErrorDetail.Number".
	alarma tecnológica (error en el objeto tecnológico).	Encontrará una lista de las alarmas tecnológicas y las reacciones a alarma en el anexo Alarmas tecnológicas (Página 308).
16#8002	Indicación inadmisible del objeto tecnológico	Compruebe la indicación del objeto tecnológico en el parámetro "Axis" o "AxesGroup".
		Solo puede utilizar un objeto tecnológico Cinemática en el parámetro "AxesGroup".
16#8003	Indicación de velocidad inadmisible	Indique un valor válido para la velocidad lineal en el parámetro "Velocity".
16#8004	Indicación de aceleración inadmisible	Indique un valor válido para la aceleración en el parámetro "Acceleration".
16#8005	Indicación de deceleración inadmisible	Indique un valor válido para la deceleración en el parámetro "Deceleration".
16#8006	Indicación de tirón inadmisible	Indique un valor válido para el tirón en el parámetro "Jerk".
16#8007	Indicación de sentido inadmisible	Indique un valor válido para el sentido del movimiento en el parámetro "DirectionA".
16#8008	Indicación no admisible de la coordenada de destino relativa	Indique un valor válido para la coordenada de destino relativa en el parámetro "Distance".
16#8009	Indicación no admisible de la coordenada de destino absoluta	Indique un valor válido para la coordenada de destino absoluta en el parámetro "Position".
16#800A	Indicación de modo no admisible	Indique un valor válido para el modo en el parámetro "Mode".

ErrorID	Descripción	Solución
16#800D	No se permite la orden en el estado actual. Se está ejecutando "Restart".	Mientras se ejecuta "Restart", el objeto tecnológico no puede ejecutar órdenes.
		Espere hasta que haya concluido el "Restart" del objeto tecnológico.
16#800F	La orden no puede ejecutarse, ya que el objeto tecnológico está bloqueado.	Habilite el objeto tecnológico con "MC_Power.Enable" = TRUE. Reinicie la orden.

16#8010 - 16#807F

ErrorID	Descripción	Solución
16#8012	La orden no puede ejecutarse, ya que el panel de mando de la cinemática está activo.	Devuelva el control al programa de usuario. Reinicie la orden.
16#8014	No hay memoria de órdenes interna disponible.	Se ha alcanzado el número máximo posible de órdenes de Motion Control.
		Reduzca el número de órdenes que procesar (parámetro "Execute" = FALSE).
16#8015	No es posible confirmar el fallo con "MC_Reset" Error en la configuración del objeto tecnológico.	Revise la configuración del objeto tecnológico.

16#80A0 - 16#8FFF

ErrorID	Descripción	Solución
16#80B1	Indicación no admisible del sistema de coordenadas	Indique un valor válido para el sistema de coordenadas en el parámetro "CoordSystem".
16#80B2	Indicación no admisible de la transición del movimiento	Indique un valor válido para la transición del movimiento en el parámetro "BufferMode".
16#80B3	Indicación no admisible de la distancia de suavizado de transición	Indique un valor válido para la distancia de suavizado de transición en el parámetro "TransitionParameter".
16#80B5	Indicación no admisible de la adaptación dinámica	Indique un valor válido para la adaptación dinámica en el parámetro "DynamicAdaption".
16#80B6	Indicación no admisible para la definición de la trayectoria circular	Indique un valor válido para la definición de la trayectoria circular en el parámetro "CircMode".
16#80B7	Indicación no admisible para el punto auxiliar de la trayectoria circular	Indique un valor válido para el punto auxiliar de la trayectoria circular en el parámetro "AuxPoint".
16#80B8	Indicación no admisible de la posición de destino	Indique un valor válido para la posición de destino en el parámetro "EndPoint".
16#80B9	Indicación no admisible de la orientación de la trayectoria circular	Indique un valor válido para la orientación de la trayectoria circular en el parámetro "PathChoice".
16#80BA	Indicación no admisible para el plano principal de la trayectoria circular	Indique un valor válido para el plano principal de la trayectoria circular en el parámetro "CirclePlane".
16#80BB	Indicación no admisible del radio	Indique un valor válido para el radio del movimiento circular en el parámetro "Radius".
16#80BC	Indicación no admisible del ángulo	Indique un valor válido para el ángulo del movimiento circular en el parámetro "Arc".

A.3 Identificación del error (cinemática)

ErrorID	Descripción	Solución
16#80C1	Indicación no admisible del tipo de zona	Indique un valor válido para el tipo de zona en el parámetro "ZoneType".
16#80C2	Indicación no admisible del número de zona	Indique un valor válido para el número de zona en el parámetro "ZoneNumber".
16#80C3	Indicación no admisible del sistema de referencia	Indique un valor válido para el sistema de referencia en el parámetro "ReferenceSystem".
16#80C4	Indicación no admisible de coordenadas	Indique un valor válido para las coordenadas en el parámetro "Frame".
16#80C5	Indicación no admisible de la geometría de la zona	Indique un valor válido para la geometría de la zona en el parámetro "GeometryType".
16#80C6	Indicación no admisible de los parámetros geométricos	Indique un valor válido para los parámetros geométricos en el parámetro "GeometryParameter".
16#80C7	La zona no está definida.	Defina una zona del espacio de trabajo mediante la orden "MC_DefineWorkspaceZone" o bien una zona de la cinemática mediante la orden "MC_DefineKinematicsZone".
16#80C8	No puede redefinirse una herramienta durante un movimiento.	Finalice el movimiento activo. Reinicie la orden "MC_DefineTool".
	No puede cambiarse una herramienta activa durante un movimiento.	Finalice el movimiento activo. Reinicie la orden "MC_SetTool".
16#80CA	Indicación no admisible del número de herramienta.	Indique un valor válido para el número de herramienta en el parámetro "ToolNumber".
16#80CB	Indicación no admisible del sistema de coordenadas del objeto	Indique un valor válido para el sistema de coordenadas del objeto en el parámetro "OcsNumber".
16#80CC	La orden no puede ejecutarse porque en un eje de la cinemática hay activo un movimiento de un eje individual.	Finalice el movimiento de un eje individual actual. Reinicie la orden.
16#80CD	La orden no puede ejecutarse, ya que hay una orden "MC_GroupStop" activa.	Ajuste el parámetro "MC_GroupStop.Execute" a FALSE. Reinicie la orden.
16#80CE	La cadena de órdenes está sobrecargada.	Se ha enviado el máximo posible de órdenes de Motion Control.
16#8FFF	Error no especificado	Póngase en contacto con su representante de Siemens en las agencias y oficinas de ventas de su zona.
		Encontrará a las personas de contacto de Industry Automation and Drive Technologies en:
		(http://www.siemens.com/automation/partner)

Índice alfabético

A	Vigilancia de zonas, 145
A	Ciremática definida por el usuario, 122
Acoplamientos mecánicos, 129	CircMode, 138 Convenciones para la rotación, 31
Alarmas tecnológicas	Convenciones para la rotación, o r
Lista de alarmas tecnológicas, 305	
AxesGroup, 19	D
	Definición de frame, 31
В	Delta-picker
	2D, 90
Bloque de datos tecnológico	2D con orientación, 93
Variables del objeto tecnológico Cinemática, 275	3D, 96
Brazo articulado 2D, 71	3D con orientación, 99
2D, 71 2D con orientación, 74	
3D, 77	-
3D con orientación, 83	E
,	Ejes de la cinemática, 18
	Errores en las instrucciones de Motion Control, 316
C	ErrorID
Cadena de órdenes, 19, 182	Lista de ErrorlDs, 316
Cinemática, 18, 35	Espacio de articulación, 126
Acoplamientos mecánicos, 129	
Adaptación dinámica, 142	F
Agregar, 157	1
Ajustes predeterminados de dinámica, 141	Factor de acoplamiento, 129
Borrar, 180	FCS, 28
Configuración, 158	FNP, 19
Copiar, 179	
Definición de conceptos, 18 Diagnóstico, 209, 212, 214	G
Espacio de articulación, 126	
Especificaciones dinámicas, 143	Geometría de la zona, 153
Frames, 26	
Funciones, 20	1
Grados de libertad, 19	1
Límites dinámicos, 141	Identificación del error, 316
Movimiento, 137	Instrucción de Motion Control S7-1500T
Movimiento circular, 138	Errores en las instrucciones de Motion Control, 316
Movimiento lineal, 138	
Panel de mando de la cinemática, 192	K
Posiciones singulares, 128 Reglas de interconexión, 23	
Simulación, 23	KCS, 27
Sistemas de coordenadas, 26	KNP, 18

Variables, 275

Transformación de usuario, 129

M	Р
MC_DefineKinematicsZone, 256 MC_DefineTool, 267 MC_DefineWorkspaceZone, 253 MC_GroupContinue, 217, 219 MC_GroupInterrupt, 215 MC_GroupStop, 221, 223 MC_MoveCircularAbsolute, 236, 243 MC_MoveCircularRelative, 245, 251 MC_MoveLinearAbsolute, 224, 229 MC_MoveLinearRelative, 230, 235 MC_SetKinematicsZoneActive, 263	Panel de mando de la cinemática, 192, 197 PathChoice, 139 Portal 2D, 37 2D con orientación, 39 3D, 41 3D con orientación, 44 Posiciones singulares, 128 Punto cero (origen) de la cinemática, 18 Punto de operación de la herramienta, 19, 29
MC_SetKinematicsZoneInactive, 265	_
MC_SetOcsFrame, 271	R
MC_SetTool, 269 MC_SetWorkspaceZoneActive, 259 MC_SetWorkspaceZoneInactive, 261 MCS, 19 MC-Transformation-OB, 131 Motion Control S7-1500 Alarmas tecnológicas, 305 Unidad de medida, 24	Robot cilíndrico 3D, 104 3D con orientación, 108 Roller-picker 2D, 48 2D con orientación, 51 3D (vertical), 54 3D con orientación (horizontal), 60
Versiones, 156 Motion Control S7-1500T	3D con orientación (vertical), 57
Puesta en marcha, 197 Movimiento circular, 138 Movimiento de la cinemática, 137	S
Continuar, 184 Dinámica, 141 Dinámica de transición del movimiento, 189 Estado, 183 Interrumpir, 184 Movimiento circular, 187 Movimiento lineal, 185 Parar, 184 Recorrido residual, 183 Transición del movimiento, 185 Movimiento de orientación, 137 Movimiento lineal, 138	SCARA 3D con orientación, 65 Sistema de coordenadas de la brida, 28 Sistema de coordenadas de la cinemática, 27 Sistema de coordenadas de la herramienta, 29 Sistema de coordenadas de la máquina, 19 Sistema de coordenadas del objeto, 30 Sistema de coordenadas universal, 27
0	
Objeto tecnológico	

OCS, 30

Cinemática, 20, 21, 157

Т Ζ TCP, 19, 29 Zona de desplazamiento, 125 TCS, 29 Zona de transformación, 125 Tipo de cinemática Zonas Brazo articulado 2D. 71 Geometría de la zona, 153 Brazo articulado 2D con orientación, 74 Subentrada, 145, 150 Brazo articulado 3D, 77 Zonas de la brida, 152 Brazo articulado 3D con orientación, 83 Zonas de la cinemática, 151 Definida por el usuario, 122 Zonas de la herramienta, 151 Delta-picker 2D, 90 Zonas de señalización, 150 Delta-picker 2D con orientación, 93 Zonas de trabajo, 149 Delta-picker 3D, 96 Zonas del espacio de trabajo, 149 Delta-picker 3D con orientación, 99 Zonas de bloqueo, 147, 150 Portal 2D, 37 Zonas de la brida, 152 Zonas de la cinemática, 147, 151 Portal 2D con orientación, 39 Portal 3D, 41 Zonas de la herramienta, 151 Portal 3D con orientación, 44 Zonas de señalización, 147, 150 Robot cilíndrico 3D, 104 Zonas de trabajo, 147, 149 Robot cilíndrico 3D con orientación, 108 Zonas del espacio de trabajo, 147, 149 Roller-picker 2D, 48 Roller-picker 2D con orientación, 51 Roller-picker 3D (vertical), 54 Roller-picker 3D con orientación (horizontal), 60 Roller-picker 3D con orientación (vertical), 57 SCARA 3D con orientación, 65 Trípode 3D, 114 Trípode 3D con orientación, 118 Tipos de cinemáticas, 35 Transformación de la cinemática, 123, 125 Transformación de usuario. 129 Transformation-OB, 131 Transición del movimiento, 185 Trayectoria circular Definición, 138 Trípode 3D, 114 3D con orientación, 118 U Unidad de medida, 24 V Vigilancia de zonas, 145 W

WCS, 27