Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

⚠️ DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

⚠️ WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

⚠️ CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

⚠️ WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.
Preface

Legend:
① LEDs
② Under the front panel:
 PROFINET interface, 2 x 8-pin RJ-45 jack
③ Under the front panel:
 - Socket for 24 V DC power supply
 - Slider for setting the ground connector
④ Article number
⑤ Under the front panel:
 printed text with MAC addresses and firmware version
⑥ X = placeholder for hardware product version

Figure 1 CP 343-1

Validity and product names

This description contains information on the following product:

- CP 343-1
 Article number 6GK7343-1EX30-0XE0
 Hardware product version 7
 Firmware version V3.0
 Communications processor for SIMATIC S7-300 / C7-300 und SINUMERIK 840D power line

- CP 343-1
 Article number 6AG1343-1EX30-7XE0
 Hardware product version 7
 Firmware version V3.0
 Communications processor for SIMATIC S7-300 / C7-300 und SINUMERIK 840D power line - conformal coating
Note

Names

• In this document, the term "CP" is used instead of the full product name.
• The name STEP 7 is used for the configuration tool instead of the names STEP 7 V5.5 and STEP 7 Professional.

New in this edition

New ATEX/IECEx approval

Replaced documentation

This manual replaces the manual edition 10/2012.

Innovations and compatibility with the predecessor product

Note

You will find the new functions of the module in the section Enhanced functions (Page 11).

Make sure that you read the information relating to enhanced functions and restrictions in the section Module replacement / upgrading (Page 60).

Address label: Unique MAC address preset for the CP

The CP ships with a default MAC address. The MAC address is printed on the housing.

Address label: Unique MAC address for the CP

The CP is supplied with total of 3 default MAC addresses with the following assignment:

• PROFINET interface
• One MAC address for each of the 2 Ethernet ports of the PROFINET interface

The MAC addresses of the Ethernet ports are required only for detection and evaluation of neighborhood and topology relations.

The MAC address of the PROFINET interface is printed on the housing.

If you configure a MAC address (ISO transport connections), we recommend that you use the MAC address printed on the module for module configuration!

• This ensures that you assign a unique MAC address in the subnet!
• If you replace a module, the MAC address of the predecessor is adopted when you load the configuration data; configured ISO transport connections remain operable.

You should also refer to the information in the section Replacing a module (Page 59).
Structure of the documentation

The documentation for this device consists of the following parts:

- Manual Part B: Manual "CP 343-1" (this manual)
- Program blocks for SIMATIC NET S7 CPs - programming manual, see references /10/ (Page 73)

Contains the detailed description of the program blocks for the following services:
- Open communication services
- Access coordination with FETCH/WRITE
- Connection and system diagnostics
- Programmed connections and IP configuration
- PROFINET IO

Current manual release on the Internet

You will also find the current version of this manual on the Internet pages of Siemens Automation Customer Support under the following entry ID:

CP documentation in the Manual Collection (order no. A5E00069051)

The "SIMATIC NET Manual Collection" DVD contains the device manuals and descriptions of all SIMATIC NET products current at the time it was created. It is updated at regular intervals.

Version History / Current Downloads for the SIMATIC NET S7 CPs

The "Version History/Current Downloads for SIMATIC NET S7 CPs" provides information on all CPs available up to now for SIMATIC S7 (Industrial Ethernet, PROFIBUS and IE/PB Link).

An up-to-date version of this document can be found at on the Internet under the entry ID:

License conditions

Note

Open source software
The product contains open source software. Read the license conditions for open source software carefully before using the product.
You will find license conditions in the following document on the supplied data medium:

- OSS_CP3431_86.pdf

Firmware

The firmware is signed. This ensures that only firmware created by Siemens can be downloaded to the device.

Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens’ products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected to an enterprise network or the internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that may be implemented, please visit

[Link: (http://www.siemens.com/industrialsecurity)]

Siemens’ products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customers’ exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under

[Link: (http://www.siemens.com/industrialsecurity)]

FAQs on the Internet

You will find detailed information (FAQs) on using the CP described here on the Internet at the following address (entry type ”FAQ”):

[Link: (http://support.automation.siemens.com/WW/view/en/10806067)]

SIMATIC NET glossary

Explanations of many of the specialist terms used in this documentation can be found in the SIMATIC NET glossary.

You will find the SIMATIC NET glossary on the Internet at the following address:

Recycling and disposal

The product is low in pollutants, can be recycled and meets the requirements of the WEEE directive 2012/19/EU "Waste Electrical and Electronic Equipment".

Do not dispose of the product at public disposal sites. For environmentally friendly recycling and the disposal of your old device contact a certified disposal company for electronic scrap or your Siemens contact.

Keep to the local regulations.

You will find information on returning the product on the Internet pages of Siemens Industry Online Support:
Table of contents

Preface .. 3

1 Properties / services ... 11
 1.1 Application .. 11
 1.2 Enhanced functions .. 11
 1.3 Communication services ... 12
 1.4 Other services ... 14
 1.5 The CP as Web server .. 15

2 Performance data ... 17
 2.1 Transmission and reaction times .. 17
 2.2 Number of possible Ethernet/PROFINET connections ... 17
 2.3 Characteristics of S7 communication ... 18
 2.4 Characteristic data of the SEND/RECEIVE Interface ... 19
 2.5 PROFINET IO characteristic data ... 20
 2.6 Characteristic data of the integrated switch .. 23

3 Requirements for use ... 25
 3.1 Operation in control device families .. 25
 3.2 Project engineering ... 28
 3.3 Programming .. 29

4 LEDs .. 31

5 Installation, connecting up and commissioning ... 35
 5.1 Important notes on using the device ... 35
 5.2 Installing the CP, connecting power and ground .. 37
 5.3 Connecting the CP to Ethernet ... 40

6 Configuration and operation ... 43
 6.1 Security recommendations .. 43
 6.2 Project engineering ... 46
 6.3 Controlling the mode ... 46
 6.4 Network settings ... 47
 6.5 Influence of MPI on connections via Industrial Ethernet ... 49
 6.6 PROFINET IO ... 49
 6.6.1 How PROFINET IO devices start up in a large configuration 49
 6.6.2 PROFINET IO when operating other services at the same time 49
Table of contents

6.6.3 Effects of multicast communication on RT communication ... 50
6.7 IP configuration .. 50
6.7.1 Detection of double IP addressing in the network ... 50
6.7.2 Obtain IP address vie DHCP: CP STOP on expiry of the lease ... 51
6.7.3 Configured S7 connections cannot be operated if the IP address is assigned over DHCP ... 51
6.7.4 IP access protection using the IP access control list with a PROFINET IO device 51
6.8 Media redundancy ... 51
6.9 Timeofday synchronization ... 52
6.10 SNMP agent ... 52
6.11 Possible security gaps on standard IT interfaces: preventing unauthorized access 54
6.12 Programmed communication connections .. 55
6.12.1 Programmed communication connections with FB55 IP_CONFIG 55
6.12.2 Programmed communications connections - assigning parameters to the ports 55
6.12.3 IP access protection with programmed communication connections 55
6.13 Permitted length of ICMP packets ... 56
6.14 Downtime if an S7 connection aborts .. 56
6.7 Media redundancy ... 51
6.9 Timeofday synchronization ... 52
6.10 SNMP agent ... 52
6.11 Possible security gaps on standard IT interfaces: preventing unauthorized access 54
6.12 Programmed communication connections .. 55
6.12.1 Programmed communication connections with FB55 IP_CONFIG 55
6.12.2 Programmed communications connections - assigning parameters to the ports 55
6.12.3 IP access protection with programmed communication connections 55
6.13 Permitted length of ICMP packets ... 56
6.14 Downtime if an S7 connection aborts .. 56

7 Service and maintenance ... 57
7.1 Memory reset / reset to factory defaults ... 57
7.2 Memory reset - ACL ... 58
7.3 Loading new firmware ... 58
7.4 Replacing a module .. 59
7.4.1 Replacing older modules ... 60
7.4.2 Module replacement / upgrading .. 60
7.4.3 Replacing a module without a programming device ... 62

8 Technical specifications ... 65
A Approvals ... 67
B References .. 71
Index .. 77
Properties / services

1.1 Application

The CP 343-1 communications processor is intended for operation in a SIMATIC S7-300, SIMATIC C7-300 automation system or SINUMERIK 840D power line. It allows the connection of the S7-300 to Industrial Ethernet and supports PROFINET IO.

To integrate the CP in a linear bus or a ring, to connect a further Ethernet device or to use PROFINET media redundancy, a 2-port ERTEC real-time switch with autocrossing, autonegotiation and autosensing was integrated.

1.2 Enhanced functions

Abbreviations used with the CP 343-1 module

The module abbreviations used below for the CP 343-1 (for example EX30) correspond to the last four characters of the mid section of the order number.

Requirement for configuring new functions of firmware version V3.0

To use the features listed below, the following STEP 7 version is necessary:

- STEP 7 V5.5 + Service Pack 2 + Hotfix 1 + HSP 1057

With STEP 7 Professional V11.0 SP2, only the functions of firmware version V2.2 of the CP can be configured.

Functional enhancements of the EX30 from firmware version V2.6 to V3.0 - can be used with STEP 7 V5.5

The following new functions can be used with the module with firmware version 3.0:

- "Shared device" function as PROFINET IO device and as IO controller
- Use of PROFlenergy functionality

This requires the following PROFlenergy program blocks for the CP 343-1 in the "SIMATIC_NET_CP" library with the STEP 7 version listed above:

- PE_Start_CP, PE_CMD_CP, PE_I_DEV_CP and the program block DS3_WRITE_CP for the use of power modules of the ET 200S for PROFlenergy.
- The supplementary program blocks FC0 to FC8 for the PROFlenergy response data can be found in the Standard Library.

You will find the documentation of the program blocks in the online help and in the manual for the program blocks, see References, /10/ (Page 73).
1.3 Communication services

- New program block FB10 AG_CNTEX for connection diagnostics
- Configuration of the IO devices in the STEP 7 "I-device" dialog box (and as previously using a GSDML file)

Functional enhancements of the EX30 with firmware version V3.0 - regardless of the configuration tool used

- Advanced Web diagnostics (HTTP access) with the following additional options:
 - Diagnostics of S7 connections
 - Module identification
 - Expansion of Web diagnostics for The "Shared device" function
- Update center of Web diagnostics with the following functions:
 - Downloading firmware via the Web (HTTP access)
 - Downloading of language files for diagnostics buffer texts in STEP 7 format for new modules in the rack and for changing the language
- SNMP: Support of the MRP Monitoring MIB

Enhanced functions of earlier firmware versions and predecessor modules

You will find an overview of the earlier firmware versions and predecessor modules in the version history of the Industrial Ethernet CPs on the Internet pages of Siemens Automation Customer Support under the following entry ID: 56699406 (http://support.automation.siemens.com/WW/view/en/56699406)

You will find information about the characteristics of the individual firmware versions on the Internet pages of Siemens Automation Customer Support under the following entry ID: 43409748 (http://support.automation.siemens.com/WW/view/en/43409748)
> Entry list > Entry type "Updates"

1.3 Communication services

The CP supports the following communication services:

- PROFINET IO
 PROFINET IO allows direct access to IO devices over Industrial Ethernet.

 The CP can be used either as a PROFINET IO controller or as a PROFINET IO device, but not both at the same time.
 - PROFINET IO controller
 IO controller mode with alarm block and acyclic data exchange by reading/writing a data record.
 - PROFINET IO device
 Integration of the SIMATIC S7-300 automation system via the CP as an intelligent PROFINET IO device (I-device).
Properties / services

1.3 Communication services

Shared device

Individual submodules of the CP as IO device can be assigned up to two PROFINET IO controllers in STEP 7 V5.5.

Note the information on configuring PROFINET IO systems with shared IO devices in the "PROFINET System Description", see references, /13/ (Page 74).

- **S7 communication and PG/OP communication with the following functions:**
 - PG functions (including routing)
 - Operator control and monitoring functions (HMI)
 - Multiplexing TD/OP connections
 - Client and server for data exchange via communication blocks on S7 connections configured at both ends.

Note

Blocks for S7 communication (see also STEP 7 online help or the "System Software for S7-300/400 System and Standard Functions" manual):

- BSEND FB 12
- BRCV FB 13
- PUT FB 14
- GET FB 15
- USEND FB 8
- URCV FB 9
- C_CNTRL FC 62

- Server for data exchange on S7 connections configured at one end only without communication blocks on the S7300 / C7300 station

Open communication services with the following functions:

- SEND/RECEIVE interface over ISO transport connections, ISOonTCP, TCP and UDP connections

 UDP frame buffering on the CP can be disabled during configuration. When necessary, this allows you to achieve a shorter reaction time between the arrival of a UDP frame and its evaluation on the CPU.

- Multicast over UDP connection

 The multicast mode is made possible by selecting a suitable IP address when configuring connections.

- FETCH/WRITE services (server; corresponding to S5 protocol) via ISO transport connections, ISOonTCP connections and TCP connections;

 The addressing mode can be configured for FETCH/WRITE access as S7 or S5 addressing mode.

- LOCK/UNLOCK with FETCH/WRITE services;

- Connection diagnostics from the user program
1.4 Other services

- **Media redundancy (MRP)**
 Within an Ethernet network with a ring topology, the CP supports the media redundancy protocol MRP. You can assign the role of MRP client to the CP.

- **Time-of-day synchronization over Industrial Ethernet**
 Time-of-day synchronization can be configured in the following modes:
 - **SIMATIC mode**
 The CP receives MMS time messages and synchronizes its local time and the time of the CPU.
 Accuracy approx. +/- 1 second
 You can choose whether or not the time of day is forwarded. The forwarding direction can also be selected (station > LAN or LAN > station).
 or
 - **NTP mode (NTP: Network Time Protocol)**
 The CP sends timeofday queries at regular intervals to an NTP server and synchronizes its local time of day. The forwarding of the time-of-day to the CPU is optional.
 Accuracy approx. +/- 1 second

- **Addressing using a factoryset MAC address**
 The CP can be reached via the default or configured MAC address to allow an IP address to be assigned.

- **SNMP agent**
 The CP supports data queries over SNMP in version V1 (Simple Network Management Protocol). It delivers the content of certain MIB objects according to the MIB II standard, LLDP MIB, Automation System MIB and MRP Monitoring MIB.

- **Module access protection**
 To protect the module from accidental or unauthorized access, protection can be configured.

- **IP access protection (IPACL)**
 Communication via the CP of the local S7 station can be restricted to partners with specific IP addresses.

- **IP configuration**
 For the PROFINET interface, you can configure how and with which method the CP is assigned the IP address, the subnet mask and the address of a gateway.
 As an alternative to STEP 7, you have the option of assigning the connection configuration via a block interface in the user program (FB55: IP_CONFIG).
 Configuration of S7 connections using FB55 is not possible.
• **Web diagnostics**

 With the aid of Web diagnostics, you can read out the diagnostics data from a station connected via the CP to a PG/PC with a Web browser.

 This makes it possible to read the diagnostics buffers of the intelligent modules in the rack.

 Using the integrated update center of the diagnostics pages, you can download new firmware versions and diagnostics buffer message texts.

 If you do not require the functions, you can disable it in the STEP 7 configuration and disable port 80.

• **Connection diagnostics with the AG_CNTEX program block**

 With the AG_CNTEX program block, you can diagnose connections.

 – When necessary, you can activate or deactivate connections or initiate reestablishment of a connection.

 – You can check the reachability of the connection partners using the ping function.

 – You can find out which connection types are set up for the SEND / RECEIVE interface.

1.5 The CP as Web server

Enabling the Web server function

To use the Web server functionality of the CP, enable the relevant option in STEP 7 in the module properties, "Web" parameter group. This enables port 80 of the CP.

If you no longer require the functions, deactivate the function. The Web server function is enabled as default.

Web diagnostics

The CP provides you with the functionality of a web server for access by means of a web browser. The CP provides HTML pages for Web diagnostics. With the aid of Web diagnostics, you can read out the diagnostics data from a station connected via the CP to a PG/PC with an Internet browser.

With the following address, you have access to Web diagnostics:

```
http:\<IP address of the CP>
```

Using the integrated update center of the diagnostics pages, you can download new firmware versions and language files for the diagnostics buffer message texts.

For detailed information on Web diagnostics, refer to the general Part A of this manual, /1/ (Page 71).
Diagnostics buffer entries

When supplied, diagnostics buffer entries shown on diagnostics pages are always in English. This is the case whichever language you have selected to display the Web pages. How to download other language files to the CP and further information about Web diagnostics can be found in the general Part A of this manual.

Web browser

To access the HTML pages on the CP, you require a Web browser. The following Web browsers are suitable for communication with the CP (other browsers also possible):

- Internet Explorer (recommended version: as of 7.0)
- Chrome (recommended version: as of 12.0)
- Opera (recommended version: as of 9.2)
- Firefox (recommended version: as of 4.0)

You will find these Web browsers, information and any necessary addons on the Internet.
Performance data

2.1 Transmission and reaction times

Measured values on the Internet

Note
Measured values of transmission and reaction times over Ethernet, PROFIBUS and PROFINET networks for a series of configurations can be found on the Internet at the following address:

2.2 Number of possible Ethernet/PROFINET connections

Maximum number of parallel connections

Table 2-1 Maximum number of parallel connections

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Explanation / values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted number of simultaneous connections in</td>
<td>32 maximum</td>
</tr>
<tr>
<td>total over Industrial Ethernet</td>
<td></td>
</tr>
</tbody>
</table>

Example of maximum load

You can, for example, operate:

- 16 S7 connections, of which
 - 8 PUT jobs
 - 8 GET jobs
- 16 SEND/RECV connections, of which
 - 2 ISO-on-TCP connections
 - 8 TCP connections
 - 6 UDP connections
Also:

- Further TCP connections for Web diagnostics
- PROFINET IO
 - As PROFINET IO device:
 1 PROFINET connection to a PROFINET IO controller
 or
 - As shared device:
 2 PROFINET connections to 2 PROFINET IO controllers
 or
 - As PROFINET IO controller:
 Max. 32 PROFINET connections to PROFINET IO devices

2.3 Characteristics of S7 communication

Number of connections

Table 2-2 Number of connections for S7 communication

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Explanation / values</th>
</tr>
</thead>
</table>
| Number of connections for S7 communication via Industrial Ethernet. | in each case, up to
 - 16 operator control and monitoring functions (HMI)
 - 16 S7 connections configured at one end
 - 16 S7 connections configured at both ends
 The number depends on the CPU type being used; the valid values can be found in /1/ (Page 71). You should still keep to the maximum number of Ethernet connections specified in the section Number of possible Ethernet/PROFINET connections (Page 17).
 maximum 16 resources
 For each executed S7 communications function, a job resource is required. If the CP has 16 job resources, then only 1 PUT or GET job can be executed at one time on each of the 16 S7 connections. The same applies to BSEND/BRECV and USEND/URECV jobs. |
| LAN interface - data field length generated by CP per protocol data unit |
 - sending
 - receiving
 - 240 bytes / PDU
 - 240 bytes / PDU |
2.4 Characteristic data of the SEND/RECEIVE Interface

The SEND/RECEIVE interface provides access to communication over TCP, ISOonTCP, ISO transport and UDP connections.

The following characteristics are important:

Table 2-4 Characteristic data of the SEND/RECEIVE interface

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Explanation / values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of ISO transport connections, ISO-on-TCP connections + TCP connections + UDP connections in total</td>
<td>16 maximum
Notes: All UDP connections are also possible in multicast mode. Free UDP connections are supported by the CP.</td>
</tr>
<tr>
<td>Maximum data length for the blocks AG_SEND (as of V4.0) and AG_RECV (as of V4.0)</td>
<td>AG_SEND and AG_RECV allow the transfer of blocks of data with the following lengths: 1 to 8192 bytes for ISO transport, ISO-on-TCP, TCP 1 to 2048 bytes for UDP</td>
</tr>
<tr>
<td>Restrictions for UDP</td>
<td></td>
</tr>
</tbody>
</table>
2.5 PROFINET IO characteristic data

Execution times of the FCs AG_SEND / AG_RECV

The execution time required to process the FC blocks (AG_SEND, AG_RECV) required on the S7-300 / C7-300 CPU is decisive for the calculation of the CPU cycle times (OB1) for SEND/RECEIVE connections.

Note

Measurements of transmission and reaction times in Ethernet, PROFIBUS and PROFINET networks for a series of configurations can be found on the Internet at the following address:

2.5 PROFINET IO characteristic data

Possible modes with PROFINET IO

In PROFINET IO, the CP can operate as a PROFINET IO device or as a PROFINET IO controller.

Configuration limits of the CP as a PROFINET IO controller

The CP supports the following maximum configuration as a PROFINET IO controller:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Explanation / values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of operable PROFINET IO devices</td>
<td>32 *, **)</td>
</tr>
<tr>
<td>Size of the input area over all PROFINET IO devices</td>
<td>1024 bytes max.</td>
</tr>
<tr>
<td>Size of the output area over all PROFINET IO devices</td>
<td>1024 bytes max.</td>
</tr>
<tr>
<td>Size of the IO data area per submodule of a module in an IO device</td>
<td>1024 bytes max.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Explanation / values</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Transfer is not confirmed</td>
<td>The transfer of UDP frames is unconfirmed, in other words the loss of messages is not detected or displayed by the send block (AG_SEND).</td>
</tr>
<tr>
<td>• No receipt of UDP broadcast</td>
<td>To avoid communications overload of the CP due to high broadcast load, the CP does not allow receipt of UDP broadcasts.</td>
</tr>
</tbody>
</table>
| • UDP frame buffering | Size of the frame buffer with buffering enabled: 2 Kbytes
Note: Following a buffer overflow, newly arriving frames are discarded. |
Performance data

2.5 PROFINET IO characteristic data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Explanation / values</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inputs</td>
<td>240 bytes</td>
</tr>
<tr>
<td>• Outputs</td>
<td>240 bytes</td>
</tr>
<tr>
<td>Size of the consistency area for a submodule</td>
<td>240 bytes</td>
</tr>
<tr>
<td>Permitted number of CP 343-1 modules that can be used as PROFINET IO controllers within an S7-300 station</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Regardless of the CP type (EX30, GX30, GX31 ...), only 1 CP may be a PROFINET IO controller.

*) If data is kept on the CPU, the number of operable PROFINET IO devices may be < 32. This depends on the free configuration memory of the CPU type being used.

**) The number of PROFINET IO devices that can be operated may reduce if the devices used require extensive configuration data due to numerous submodules. In this case, the memory of the CP is not adequate and you will receive a message about lack of resources in the diagnostics buffer of the CP when downloading the configuration data.

***) The diagnostics addresses of the PROFINET IO devices cannot be used as an input on the IO controller. The data area of the inputs is reduced by the diagnostics addresses used.

Configuration limits of the CP as a PROFINET IO device

The CP supports the following maximum configuration as a PROFINET IO device:

Table 2- 6 Configuration limits of the CP as a PROFINET IO device

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of PROFINET IO connections</td>
<td>• As PROFINET IO device: 1 PROFINET connection to a PROFINET IO controller or • As shared device: 2 PROFINET connections to 2 PROFINET IO controllers</td>
</tr>
<tr>
<td>Size of the output area of the PROFINET IO device</td>
<td>512 bytes max. *</td>
</tr>
<tr>
<td>Size of the IO data area per sub module on the PROFINET IO device</td>
<td>• Inputs 240 bytes • Outputs 240 bytes</td>
</tr>
<tr>
<td>Size of the consistency area for a submodule</td>
<td>240 bytes</td>
</tr>
<tr>
<td>Maximum number of submodules</td>
<td>32</td>
</tr>
</tbody>
</table>

* For the size of the user data, refer to the following section.
Configuration limits of the CP as a PROFINET IO device and I-device

The CP supports the following configuration if it is configured as a PROFINET IO device and as an I-device:

Table 2-7 Configuration limits of the CP as a PROFINET IO device

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of the transfer area</td>
<td>240 bytes</td>
</tr>
<tr>
<td>Number of transfer areas</td>
<td>32</td>
</tr>
</tbody>
</table>

Size of the user data

The size of the user data is calculated from the maximum frame size (gross 548 bytes) minus the following values: 1 for the CP itself, 1 per Interface, 1 per port, 1 for each plugged-in module in HW Config or per slot used.

Table 2-8 Example of calculating the user data of the CP 343-1 as an IO device

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>548</td>
<td>Gross size of the frame</td>
</tr>
<tr>
<td>-1</td>
<td>for the CP itself</td>
</tr>
<tr>
<td>-1</td>
<td>for the Interface</td>
</tr>
<tr>
<td>-2</td>
<td>for 2 ports</td>
</tr>
<tr>
<td>-32</td>
<td>for the maximum number of pluggable modules</td>
</tr>
<tr>
<td>= 512</td>
<td>Net size of the user data *</td>
</tr>
</tbody>
</table>

* By using fewer but larger modules, the amount of user data can be increased.

Execution times of the FC blocks PNIO_SEND / PNIO_RECV

The execution time required to process the function blocks (PNIO_SEND, PNIO_RECV) required on the S7-300 CPU is decisive for the calculation of the reaction times in PROFINET IO.

Note

Measurements of transmission and reaction times in Ethernet, PROFIBUS and PROFINET networks for a series of configurations can be found on the Internet at the following address:

2.6 Characteristic data of the integrated switch

Learning addresses / deleting addresses (aging time)

The switch integrated in the CP (PROFINET interface) reads the source addresses included in the data packets. The switch therefore learns the addresses of the end devices connected via a port.

If the switch receives a data packet, it directs this packet only to the port via which the appropriate end node can be reached.

The switch monitors the age of the learned addresses. Addresses that exceed the "aging time" are deleted. The aging time is 5 minutes.

Ports can be deactivated individually

The ports of the switch integrated in the CP can be deactivated individually in STEP 7 / HW Config. This can, for example, be used for service purposes.

To do this, open the properties dialog of the relevant port and select the "disabled" setting under "Options > Transfer medium / duplex".

The port is turned off completely when it is disabled. The corresponding LED on the device (for example X1P1) is then turned off.
Performance data

2.6 Characteristic data of the integrated switch
3 Requirements for use

3.1 Operation in control device families

The CP can be operated in the following device families:

- S7-300 stations with the following CPU types:
 - Standard
 - Compact
 - Modular
- C7 compact units in C7 packaging system
- SINUMERIK

The following tables show the device environment in which the CP can be operated with the range of functions described here.

Note

The tables list the CPUs and devices released at the time this manual went to print. CPUs of the S7-300 or C7 control systems released later and not listed in the tables can also handle the range of functions described here.

Table 3-1 Use of the CP with S7-300

<table>
<thead>
<tr>
<th>CPU</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU 312</td>
<td>6ES7 312-1AD10-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 312-1AE13-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 312-1AE14-0AB0</td>
</tr>
<tr>
<td>CPU 312C</td>
<td>6ES7 312-5BD00-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 312-5BD01-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 312-5BE03-0AB0</td>
</tr>
<tr>
<td>CPU 312 IFM</td>
<td>6ES7 312-5AC02-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 312-5AC82-0AB0</td>
</tr>
<tr>
<td>CPU 313</td>
<td>6ES7 313-1AD03-0AB0</td>
</tr>
<tr>
<td>CPU 313C</td>
<td>6ES7 313-5BE00-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 313-5BE01-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 313-5BF03-0AB0</td>
</tr>
<tr>
<td>CPU 313C-2 DP</td>
<td>6ES7 313-6CE00-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 313-6CE01-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 313-6CF03-0AB0</td>
</tr>
<tr>
<td>CPU 313C-2 PtP</td>
<td>6ES7 313-6BE00-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 313-6BE01-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 313-6BF03-0AB0</td>
</tr>
<tr>
<td>CPU</td>
<td>Order number</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>CPU 314</td>
<td>6ES7 314-1AE00-0AB0</td>
</tr>
<tr>
<td>CPU 314</td>
<td>6ES7 314-1AE04-0AB0</td>
</tr>
<tr>
<td>CPU 314</td>
<td>6ES7 314-1AE84-0AB0</td>
</tr>
<tr>
<td>CPU 314</td>
<td>6ES7 314-1AF10-0AB0</td>
</tr>
<tr>
<td>CPU 314</td>
<td>6ES7 314-1AF11-0AB0</td>
</tr>
<tr>
<td>CPU 314</td>
<td>6ES7 314-1AG13-0AB0</td>
</tr>
<tr>
<td>CPU 314 IFM</td>
<td>6ES7 314-5AE03-0AB0</td>
</tr>
<tr>
<td>CPU 314 IFM</td>
<td>6ES7 314-5AE10-0AB0</td>
</tr>
<tr>
<td>CPU 314 IFM</td>
<td>6ES7 314-5AE82-0AB0</td>
</tr>
<tr>
<td>CPU 314 IFM</td>
<td>6ES7 314-5AE83-0AB0</td>
</tr>
<tr>
<td>CPU 314C-2 DP</td>
<td>6ES7 314-6CF00-0AB0</td>
</tr>
<tr>
<td>CPU 314C-2 DP</td>
<td>6ES7 314-6CF01-0AB0</td>
</tr>
<tr>
<td>CPU 314C-2 DP</td>
<td>6ES7 314-6CF02-0AB0</td>
</tr>
<tr>
<td>CPU 314C-2 DP</td>
<td>6ES7 314-6CG03-0AB0</td>
</tr>
<tr>
<td>CPU 314C-2 PtP</td>
<td>6ES7 314-6BF00-0AB0</td>
</tr>
<tr>
<td>CPU 314C-2 PtP</td>
<td>6ES7 314-6BF01-0AB0</td>
</tr>
<tr>
<td>CPU 314C-2 PtP</td>
<td>6ES7 314-6BF02-0AB0</td>
</tr>
<tr>
<td>CPU 314C-2 PtP</td>
<td>6ES7 314-6BG03-0AB0</td>
</tr>
<tr>
<td>CPU 315</td>
<td>6ES7 315-1AF03-0AB0</td>
</tr>
<tr>
<td>CPU 315-2 DP</td>
<td>6ES7 315-2AF03-0AB0</td>
</tr>
<tr>
<td>CPU 315-2 DP</td>
<td>6ES7 315-2AF83-0AB0</td>
</tr>
<tr>
<td>CPU 315-2 DP</td>
<td>6ES7 315-2AG10-0AB0</td>
</tr>
<tr>
<td>CPU 315-2 DP</td>
<td>6ES7 315-2AH14-0AB0</td>
</tr>
<tr>
<td>CPU 315-2 PN/DP</td>
<td>6ES7 315-2EG10-0AB0</td>
</tr>
<tr>
<td>CPU 315-2 PN/DP</td>
<td>6ES7 315-2EH13-0AB0</td>
</tr>
<tr>
<td>CPU 315-2 PN/DP</td>
<td>6ES7 315-2EH14-0AB0</td>
</tr>
<tr>
<td>CPU 315F-2 DP</td>
<td>6ES7 315-6FF00-0AB0</td>
</tr>
<tr>
<td>CPU 315F-2 DP</td>
<td>6ES7 315-6FF01-0AB0</td>
</tr>
<tr>
<td>CPU 315F-2 DP</td>
<td>6ES7 315-6FF04-0AB0</td>
</tr>
<tr>
<td>CPU 315F-2 PN/DP</td>
<td>6ES7 315-2FH10-0AB0</td>
</tr>
<tr>
<td>CPU 315F-2 PN/DP</td>
<td>6ES7 315-2FH13-0AB0</td>
</tr>
<tr>
<td>CPU 315F-2 PN/DP</td>
<td>6ES7 315-2FJ14-0AB0</td>
</tr>
<tr>
<td>CPU 315T-2 DP</td>
<td>6ES7 315-6TG10-0AB0</td>
</tr>
<tr>
<td>CPU 315T-2 DP</td>
<td>6ES7 315-6TH13-0AB0</td>
</tr>
<tr>
<td>CPU 316-2 DP</td>
<td>6ES7 316-2AG00-0AB0</td>
</tr>
<tr>
<td>CPU 317-2 DP</td>
<td>6ES7 317-2AJ10-0AB0</td>
</tr>
<tr>
<td>CPU 317-2 PN/DP</td>
<td>6ES7 317-2EJ10-0AB0</td>
</tr>
<tr>
<td>CPU 317-2 PN/DP</td>
<td>6ES7 317-2EK13-0AB0</td>
</tr>
<tr>
<td>CPU 317-2 PN/DP</td>
<td>6ES7 317-2EK14-0AB0</td>
</tr>
<tr>
<td>CPU 317F-2 DP</td>
<td>6ES7 317-6FF00-0AB0</td>
</tr>
<tr>
<td>CPU 317F-2 DP</td>
<td>6ES7 317-6FF03-0AB0</td>
</tr>
<tr>
<td>CPU 317F-2 PN/DP</td>
<td>6ES7 317-2FJ10-0AB0</td>
</tr>
<tr>
<td>CPU 317F-2 PN/DP</td>
<td>6ES7 317-2FK13-0AB0</td>
</tr>
<tr>
<td>CPU 317F-2 PN/DP</td>
<td>6ES7 317-2FK14-0AB0</td>
</tr>
<tr>
<td>CPU 317T-2 DP</td>
<td>6ES7 317-6TJ10-0AB0</td>
</tr>
<tr>
<td>CPU 317T-2 DP</td>
<td>6ES7 317-6TK13-0AB0</td>
</tr>
<tr>
<td>CPU 318-2 DP</td>
<td>6ES7 318-2AJ00-0AB0</td>
</tr>
</tbody>
</table>
3.1 Operation in control device families

<table>
<thead>
<tr>
<th>CPU</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU 319-3 PN/DP</td>
<td>6ES7 318-3EL00-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 318-3EL01-0AB0</td>
</tr>
<tr>
<td>CPU 319-3F PN/DP</td>
<td>6ES7 318-3FL00-0AB0</td>
</tr>
<tr>
<td></td>
<td>6ES7 318-3FL01-0AB0</td>
</tr>
</tbody>
</table>

Table 3-2 Use of the CP with C7 control systems

<table>
<thead>
<tr>
<th>C7</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7-613</td>
<td>6ES7 613-1C01-0AE03</td>
</tr>
<tr>
<td></td>
<td>6ES7 613-1CA02-0AE3</td>
</tr>
<tr>
<td>CPU 614</td>
<td>6ES7 614-1AH03-0AB3</td>
</tr>
<tr>
<td>C7-633 DP</td>
<td>6ES7 633-2BF02-0AE03</td>
</tr>
<tr>
<td>C7-635 Key</td>
<td>6ES7 635-2EC01-0AE3</td>
</tr>
<tr>
<td></td>
<td>6ES7 635-2EC02-0AE3</td>
</tr>
<tr>
<td>C7-635 Touch</td>
<td>6ES7 635-2EB01-0AE3</td>
</tr>
<tr>
<td></td>
<td>6ES7 635-2EB02-0AE3</td>
</tr>
<tr>
<td>C7-636 Key</td>
<td>6ES7 636-2EC00-0AE3</td>
</tr>
<tr>
<td>C7-636 Touch</td>
<td>6ES7 636-2EB00-0AE3</td>
</tr>
</tbody>
</table>

Table 3-3 Using the CP with SINUMERIK 840D power line

<table>
<thead>
<tr>
<th>Equipment group with CPU type</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCU561.4 with PLC 314-2 DP</td>
<td>6FC5 356-0BB14-0AA0</td>
</tr>
<tr>
<td>NCU571.4 with PLC 314C-2 DP</td>
<td>6FC5 357-0BB14-0AA0</td>
</tr>
<tr>
<td>NCU572.4 with PLC 314C-2 DP</td>
<td>6FC5 357-0BB24-0AA0</td>
</tr>
<tr>
<td>NCU573.4 with PLC 314C-2 DP</td>
<td>6FC5 357-0BB34-0AA0</td>
</tr>
<tr>
<td>NCU561.5 with PLC 317-2 DP</td>
<td>6FC5 356-0BB15-0AA0</td>
</tr>
<tr>
<td>NCU571.5 with PLC 317-2 DP</td>
<td>6FC5 357-0BB15-0AA0</td>
</tr>
<tr>
<td>NCU573.5 with PLC 317-2 DP</td>
<td>6FC5 357-0BB35-0AA0</td>
</tr>
</tbody>
</table>
3.2 Project engineering

Software versions

The following version of STEP 7 is required:

<table>
<thead>
<tr>
<th>STEP 7 versions</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 7 V5.5, Service Pack 2, Hotfix 4, HSP 1057</td>
<td>Requirement for configuration of the CP with the functions of firmware version 3.0</td>
</tr>
<tr>
<td>STEP 7 Professional V11, Service Pack 2, Update 2</td>
<td>Requirement for configuration of the CP with the functions of firmware version 2.4</td>
</tr>
</tbody>
</table>

Locating the support package

You can install the support package from your local file system if it is already stored there or from the Internet pages of Siemens Automation Customer Support.

- **STEP 7 V5.5**

 You will find the support package (HSP) on the Internet at the following address:

- **STEP 7 Professional V11**

 You will find the support package on the Internet at the following addresses:

 or

On the Internet page, select the "Entry list" tab and the "Download" entry type.

Installation of the support package

- **STEP 7 V5.5**

 Install the HSP in STEP 7 / HW Config with the "Options" > "Install Hardware Updates" menu command.

 You will find further information in the STEP 7 online help (under "HSP" or "Hardware update"). After installing the HSP, close STEP 7. After restarting STEP 7, the CP is in the catalog of HW Config.

- **STEP 7 Professional V11**

 Install the support package in STEP 7 using the menu command "Options" > "Support packages".

 The information system of STEP 7 will provide you with information (keyword "Support Packages" or Installing Support Packages"). After installing the support package, close STEP 7. After restarting STEP 7, the CP is in the catalog.
3.3 Programming

Program blocks

For some communications services, there are preprogrammed program blocks (FCs / FBs) available as the interface in your STEP 7 user program.

Please note the documentation of the program blocks in the online help of STEP 7 or in the manual /10/ (Page 73).

Note

Current block versions

We recommend that you always use the latest block versions for all module types.

You will find information on the current block versions and the current blocks for download on the Internet under:

With older module types, this recommendation assumes that you are using the latest firmware for the particular module type.
Requirements for use

3.3 Programming
LEDs

The display on the front panel consists of the following LEDs that indicate the operating mode and communications status.

![LEDs of the CP 343-1](image)

The LEDs have the following meaning:
- **SF**: Group error
- **BF**: Bus fault on Ethernet interface
- **DC5V**: 5 VDC power supply via the backplane bus (green = OK)
- **RX/TX**: Acyclic data traffic, for example SEND/RECEIVE (not relevant for PROFINET IO data)
- **RUN**: RUN mode
- **STOP**: STOP mode
- **X1P1**: Link status / activity of Ethernet port 1
- **X1P2**: Link status / activity of Ethernet port 2
- **MAINT**: Maintenance required (note/evaluate diagnostics buffer)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![LED symbol]</td>
<td>![LED symbol]</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>![LED symbol]</td>
<td>![LED symbol]</td>
</tr>
</tbody>
</table>

Legend for the following LED tables

LEDs for displaying the operating mode

The different combinations of the LEDs on the front panel indicate the status:
Table 4-1 LEDS: SF, BF, RUN, STOP

<table>
<thead>
<tr>
<th>SF (red)</th>
<th>BF (red)</th>
<th>RUN (green)</th>
<th>STOP (yellow)</th>
<th>CP operating mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td>• Starting up after power "ON" or • Stopped (STOP) with errors In this state, the CPU or intelligent modules in the rack remain accessible using PG functions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Starting up (STOP → RUN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Running (RUN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stopping (RUN → STOP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Stopped (STOP) In STOP mode, configuring and performing diagnostics on the CP remain possible.</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>Duplicate IP address detected</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
<td>The CP (configured as an I/O controller) has recognized at least 1 IO device as being disrupted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>Running (RUN) with error. Possible causes: • Event display in conjunction with the MRP function. The CP diagnostics buffer provides detailed information. • Extended port diagnostics reports an error. Examples: – Current port setting (transmission medium, duplex) does not correspond to the configuration. – Port interconnection does not correspond to the configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Loading using the Firmware Loader is active. *)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Firmware activation after loading using the Firmware Loader is active. *)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Firmware was successfully downloaded. *)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Firmware download aborted. *)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Module fault / system error</td>
</tr>
</tbody>
</table>

*) Does not apply to loading via the update center in Web diagnostics.
The "MAINT" LED

Note

When the "MAINT" LED lights up, important error messages and/or diagnostics interrupts have occurred. The CP continues in RUN mode.

Check the entries in the diagnostics buffer of the device.

LEDs for displaying the CP communications status

In addition to the LEDs that signal the CP state, the following LEDs provide information about the status of the CP interface to Industrial Ethernet.

Table 4-2 LEDs: RX/TX, X1P1, X1P2

<table>
<thead>
<tr>
<th>LED</th>
<th>Display</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX/TX (green)</td>
<td>![LED symbol]</td>
<td>The CP is sending/receiving over Industrial Ethernet.</td>
</tr>
<tr>
<td>X1P1 / X1P2</td>
<td>![LED symbol]</td>
<td>Port has no connection to Industrial Ethernet.</td>
</tr>
<tr>
<td></td>
<td>![LED symbol]</td>
<td>Existing connection via port to Industrial Ethernet (LINK status)</td>
</tr>
<tr>
<td></td>
<td>![LED symbol]</td>
<td>LED flashes yellow (constant light green): Port sending / receiving over Industrial Ethernet or PROFINET IO. Note: All received / sent frames are signaled for each specific port including those simply forwarded by the switch.</td>
</tr>
<tr>
<td></td>
<td>![LED symbol]</td>
<td>There is permanent data transfer at the port via Industrial Ethernet (e.g. PROFINET IO).</td>
</tr>
</tbody>
</table>

Module identification (PROFINET interface)

Note

Module identification - make the port LEDs flash briefly

With the help of Web diagnostics or the online functions of STEP 7, you can search for and identify the module in the rack. The options for this are as follows:

- In Web diagnostics
 - You click the "Flash" button in the update center.

- In STEP 7
 - You click the "Flash" button in the "Browse network" dialog

If you click the "Identify" or "Flash" buttons, all the port LEDs of the PROFINET interface flash briefly.
Installation, connecting up and commissioning

5.1 Important notes on using the device

Safety notices on the use of the device

The following safety notices must be adhered to when setting up and operating the device and during all associated work such as installation, connecting up, replacing devices or opening the device.

General notices

⚠️ WARNING

Safety extra low voltage

The equipment is designed for operation with Safety Extra-Low Voltage (SELV) by a Limited Power Source (LPS). (This does not apply to 100 V...240 V devices.)

This means that only SELV / LPS complying with IEC 60950-1 / EN 60950-1 / VDE 0805-1 must be connected to the power supply terminals. The power supply unit for the equipment power supply must comply with NEC Class 2, as described by the National Electrical Code (r) (ANSI / NFPA 70).

There is an additional requirement if devices are operated with a redundant power supply:

If the equipment is connected to a redundant power supply (two separate power supplies), both must meet these requirements.

General notices on use in hazardous areas

⚠️ WARNING

Risk of explosion when connecting or disconnecting the device

EXPLOSION HAZARD

DO NOT CONNECT OR DISCONNECT EQUIPMENT WHEN A FLAMMABLE OR COMBUSTIBLE ATMOSPHERE IS PRESENT.
5.1 Important notes on using the device

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Replacing components</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPLOSION HAZARD</td>
<td>SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2 OR ZONE 2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Requirements for the cabinet/enclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When used in hazardous environments corresponding to Class I, Division 2 or Class I, Zone 2, the device must be installed in a cabinet or a suitable enclosure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Restricted area of application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D or non-hazardous locations only.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Restricted area of application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This equipment is suitable for use in Class I, Zone 2, Group IIC or non-hazardous locations only.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
<th>LAN attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A LAN or LAN segment with the attachments belonging to it should be within a single low-voltage supply system and within a single building. Make sure that the LAN is in an of type A environment according to IEEE 802.3 or in a type 0 environment according to IEC TR 62101.</td>
</tr>
<tr>
<td></td>
<td>Never establish a direct electrical connection to TNV networks (telephone network) or WANs (Wide Area Network).</td>
</tr>
</tbody>
</table>

General notices on use in hazardous areas according to ATEX

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Requirements for the cabinet/enclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To comply with EU Directive 94/9 (ATEX95), this enclosure must meet the requirements of at least IP54 in compliance with EN 60529.</td>
</tr>
</tbody>
</table>
WARNING

Suitable cables for temperatures in excess of 70 °C

If the cable or conduit entry point exceeds 70°C or the branching point of conductors exceeds 80°C, special precautions must be taken. If the device is operated at ambient temperatures above 50°C, the permitted temperature range of the selected cable must be suitable for the temperatures actually measured.

WARNING

Protection against transient voltage surges

Provisions shall be made to prevent the rated voltage from being exceeded by transient voltage surges of more than 40%. This criterion is fulfilled, if supplies are derived from SELV (Safety Extra-Low Voltage) only.

5.2 Installing the CP, connecting power and ground

Note

Pulling/plugging

Pulling/plugging the CP when the power is on is not permitted.

You should also remember that by removing a module from the rack, all modules on the other side of it will be disconnected from the CPU.
Installation, connecting up and commissioning

5.2 Installing the CP, connecting power and ground

Legend:
1) Attachment to Industrial Ethernet (PROFINET interface): 2 x 8pin RJ45 jack
2) Connecting the power supply
3) Slider for setting the chassis ground connection

Figure 5-1 Connectors of the CP

Ground/chassis ground concept

Note

Note the instructions regarding the grounding and chassis ground concept in the SIMATIC S7 installation guides; see "SIMATIC S7 Programmable Controller S7300 - Installation and Hardware: Installation Manual": /12/ (Page 74).

Behind the hinged panel on the left of the device, you will see a slider with which you can connect or disconnect the chassis ground of the 24V power supply with reference ground.

- Slider pushed in: Chassis ground and reference ground are connected (caution: you can feel the slider lock into position).
- Slider pulled out: There is no connection between chassis ground and reference ground.

When shipped: Slider pushed in
Use a screwdriver to set the slider.
Installing and connecting up

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensuring ventilation</td>
</tr>
<tr>
<td>During installation, make sure that the upper and lower ventilation slits of the module are not obstructed and good ventilation is possible.</td>
</tr>
</tbody>
</table>

1. Install the CP on the S7 standard rail.
 Slots 4 to 11 are permitted for the CP in racks 0 to 3 (connected by IM 360/361). Follow the steps described in detail in /12/ (Page 74) in the sections dealing with installation and wiring.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>No installation in an expansion rack</td>
</tr>
<tr>
<td>The CP cannot be operated in an expansion rack that is connected via the IM 365. Reason: The required communication bus is not connected to the expansion rack via the IM 365.</td>
</tr>
</tbody>
</table>

2. Establish the connection via the enclosed bus connector to the backplane bus.
3. Connect the CP to the power supply.
 Follow the steps as described in detail in /12/ (Page 74) when wiring between the power supply and the CPU.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same power supply</td>
</tr>
<tr>
<td>The CPU, CP and IM (if one exists) must be connected to the same power supply.</td>
</tr>
<tr>
<td>Only wire up the S7300 / C7300 with the power switched off!</td>
</tr>
</tbody>
</table>

4. Connect the CP to Industrial Ethernet.
 An Ethernet cable can also be inserted and removed with the power supply on.
 The remaining steps in commissioning involve downloading the configuration data.

Downloading and addressing

You can connect the PG as follows when downloading the configuration data:
- Via MPI
- Via Industrial Ethernet
 For further details, refer to the general Part A of this manual.
 - Addressing the first time (IP address assignment / node initialization)
 - To download the defined configuration

The PG / PC requires a LAN attachment, for example via a CP 1613 or CP 1411 and must have the necessary software (for example the S71613 package or SOFTNET IE). The
TCP/IP protocol must be installed. The protocol used must then be applied to the S7ONLINE access point.

Diagnostics

Use the diagnostic functions during commissioning and to analyze problems. The following options are available:

- The LED displays on the CP
- Hardware diagnostics and troubleshooting with STEP 7
- Communication diagnostics with STEP 7 / NCM Diagnostics
- Static information using HW Config
- Web diagnostics
- If applicable, evaluation of the alarm block FB 54 in the user program
- Queries via SNMP

5.3 Connecting the CP to Ethernet

Connecting interface X1 to Industrial Ethernet

1. Connect the CP to Industrial Ethernet via one of the RJ45 jacks.
2. Where necessary, connect another component to the remaining free RJ45 jack.
Note

Autocrossing mechanism - effects on the connectors

For small local area networks or for attaching several Ethernet devices, a 2port switch has been integrated on the PROFINET interface of the CP.

With the autocrossing mechanism integrated in the switch, it is possible to use a standard cable to connect the PG/PC. A crossover cable is not necessary.

Please note the following points:

- **Manual configuration**

 If a port is set to manual configuration and autonegotiation is disabled, the autocrossing mechanism is also disabled for this port. Which cable you need to use depends on the partner device (network component or end device).

 In the factory, the ports are set for automatic configuration.

 For more information, refer to section Network settings (Page 47)

- **Connecting switches**

 If you connect further switches, make sure that no ring is formed in the network.

Note

MRP configuration

With an MRP configuration, keep to the setup guidelines for MRP.

You will find examples of network attachments in the general Part A of this manual, see /1/ (Page 71).
Installation, connecting up and commissioning

5.3 Connecting the CP to Ethernet
NOTICE
The front panel must be kept closed during operation.

6.1 Security recommendations

Keep to the following security recommendations to prevent unauthorized access to the system.

General

- You should make regular checks to make sure that the device meets these recommendations and other internal security guidelines if applicable.
- Evaluate your plant as a whole in terms of security. Use a cell protection concept with suitable products.
- Do not connect the device directly to the Internet. Operate the device within a protected network area.
- Keep the firmware up to date. Check regularly for security updates of the firmware and use them.
- Check regularly for new features on the Siemens Internet pages.
 - Here you will find information on industrial security: Link: (http://www.siemens.com/industrialsecurity)
 - Here you will find information on security in industrial communication: Link: (http://w3.siemens.com/mcms/industrial-communication/en/ie/industrial-ethernet-security/Seiten/industrial-security.aspx)
 - You will find a publication on the topic of network security (6ZB5530-1AP0x-0B4x) here: Link: (http://w3app.siemens.com/mcms/infocenter/content/en/Pages/order_form.aspx?nodeKey=key_518693&infotype=brochures)
 Enter the following filter: 6ZB5530

Physical access

Restrict physical access to the device to qualified personnel.

Network attachment

Do not connect the PC directly to the Internet. If a connection from the CP to the Internet is required, arrange for suitable protection before the CP, for example a SCALANCE S with firewall.
Security functions of the product

Use the options for security settings in the configuration of the product. These includes among others:

- Protection levels
 Configure access to the CPU under "Protection".

- Leave access to the Web server of the CPU (CPU configuration) and to the Web server of the CP disabled.

- Protection of the passwords for access to program blocks
 Protect the passwords stored in data blocks for the program blocks from being viewed. You will find information on the procedure in the STEP 7 information system under the keyword "Know-how protection".

Passwords

- Define rules for the use of devices and assignment of passwords.
- Regularly update the passwords to increase security.
- Only use passwords with a high password strength. Avoid weak passwords for example "password1", "123456789" or similar.
- Make sure that all passwords are protected and inaccessible to unauthorized personnel.
 See also the preceding section for information on this.
- Do not use one password for different users and systems.

Protocols

Secure and non-secure protocols

- Only activate protocols that you require to use the system.
- Use secure protocols when access to the device is not prevented by physical protection measures.
- Deactivate DHCP at interfaces to public networks such as the Internet, for example, to prevent IP spoofing.

Table: Meaning of the column titles and entries

The following table provides you with an overview of the open ports on this device.

- **Protocol / function**
 Protocols that the device supports.

- **Port number (protocol)**
 Port number assigned to the protocol.
6.1 Security recommendations

- **Default of the port**
 - Open
 The port is open at the start of the configuration.
 - Closed
 The port is closed at the start of the configuration.

- **Port status**
 - Open
 The port is always open and cannot be closed.
 - Open after configuration
 The port is open if it has been configured.
 - Open (login, when configured)
 As default the port is open. After configuring the port, the communications partner needs to log in.
 - Open with block call
 The port is only opened when a suitable program block is called.

- **Authentication**
 Specifies whether or not the protocol authenticates the communications partner during access.

<table>
<thead>
<tr>
<th>Protocol / function</th>
<th>Port number (protocol)</th>
<th>Default of the port</th>
<th>Port status</th>
<th>Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>S7 and online connections</td>
<td>102 (TCP)</td>
<td>Open</td>
<td>Open after configuration</td>
<td>No</td>
</tr>
<tr>
<td>HTTP</td>
<td>80 (TCP)</td>
<td>Closed</td>
<td>Open after configuration</td>
<td>No</td>
</tr>
<tr>
<td>SNMP</td>
<td>161 (UDP)</td>
<td>Open</td>
<td>Open after configuration</td>
<td>Yes (with SNMPv3)</td>
</tr>
</tbody>
</table>

Ports of communication partners and routers

Make sure that you enable the required client ports in the corresponding firewall on the communications partners and in intermediary routers.

These can be:
- NTP / 123 (UDP)
- DNS / 53 (UDP)
- DHCP / 67, 68 (UDP)
6.2 Project engineering

Project engineering

To set up the CP for communication services, read the information on configuring in the sections Project engineering (Page 28) and Replacing a module without a programming device (Page 62). For detailed information on configuration, refer to Part A of this manual, see References /1/ (Page 71).

6.3 Controlling the mode

You have the option of changing the mode of the CP between RUN and STOP using the STEP 7 configuration software (PLC > Accessible Nodes).

Change from STOP to RUN

The CP loads configured and/or downloaded data into the work memory and then changes to RUN mode.

Change from RUN to STOP

The CP changes to STOP - transitional phase with LED display "Stopping (RUN → STOP”).

- Established connections of the open communications services (see also section Communication services (Page 12)) are terminated.

- The following functions are disabled:
 - PROFINET IO
 - Time-of-day synchronization

- The following functions remain enabled:
 - Downloading the configuration data and diagnostics of the CP
 System connections for configuration, diagnostics and PG channel routing still exist.
 - Web diagnostics (HTTP access)
 - Routing function

Module access protection

The configurable module access protection has the following effects on the functions described here:

- Module access protection: Not locked
 The functions cannot be executed.

- Module access protection: Status-dependent
 With this setting, it is only possible to access the CP when the CPU is in STOP mode.
6.4 Network settings

The configuration of the network settings "Transmission medium / Duplex" is made in the properties dialog of the port of the interface in the "Options" tab.

Row "X1P1": Properties of port 1 of the PROFINET interface
Row "X1P2": Properties of port 2 of the PROFINET interface

Automatic setting or individual network settings

As default, the CP is configured for automatic detection (autosensing / autonegotiation / autocrossing).

Note
In normal situations, the basic setting ensures troublefree communication. You should only change this in exceptional situations.

If you create a manual configuration for the CP, the automatic negotiation of the network settings (autonegotiation) is no longer effective. If, on the other hand, the communication partner works with autonegotiation, no communication will be established.

Only use manual configuration when the communication partner works with the same manually set configuration.

Autocrossing mechanism

The automatic setting also includes an "autocrossing" mechanism. With autocrossing, you can connect network components and end devices using either crossover or straight-through cables.

STEP 7 special diagnostics and Web diagnostics display the network setting

Diagnostics of the port settings for the CP described here is possible using the entries in the diagnostics buffer using Web diagnostics, SNMP, STEP 7 diagnostics, and the LED displays.

You will find information on the currently used network settings in STEP 7 as follows:

- In STEP 7 special diagnostics under the diagnostics object "Industrial Ethernet" in the "Network Connection" group box
- in STEP 7 with the menu command "PLC > Module Information"
- In Web diagnostics
Further notes:

- **Autocrossover**
 If you disable the "Automatic setting" option, autocrossing is disabled; which cable you then use depends on the integration of the CP (network component or end device).

- **10/100 Mbps network components without "autonegotiation"**
 If you use 10/100 Mbps network components that do not support "Autonegotiation", it is possible that you will have to set the mode manually in the CP configuration in STEP 7. As default, the CP is configured for automatic detection.

- **Forcing a specific network setting instead of "Autonegotiation"**
 If your application requires a fixed network setting instead of "Autonegotiation", both partner devices must have the same setting.

- **No reaction to Autonegotiation query with manual configuration**
 Remember that if you configure the CP manually, it will not react to an autonegotiation query! As a result, a connected partner will not be able to make the required network setting and communication will not be established.

 Example:
 If the CP is set to "100 Mbps full duplex", a CP connected as partner will set itself to "100 Mbps half duplex". Reason: Due to the fixed setting, no autonegotiation response is possible; the connected partner recognizes the 100 Mbps with autosensing but nevertheless remains in half duplex.

- **Recommendation: Change "individual network settings" only over MPI**
 If you modify the LAN settings in the properties dialog of the CP in the "Port Parameters" tab, these changes will be adopted by the CP and activated when the configuration data is downloaded to the CP. In some situations, the device may then no longer be obtainable over Ethernet.

 We therefore recommend that you download configuration data to the S7 station over an MPI connection if you change this setting.

 If you download the configuration data over the LAN interface then, depending on the selected setting, it is possible that the current download will not be completed due to the changes to the configuration taking immediate effect and an inconsistent configuration is reported.

 Example:
 The download is started initially with the setting TP/ITP at 10 Mbps half duplex. If the "Individual network setting" is now changed to 100 Mbps full duplex, the download cannot be completed.
6.5 Influence of MPI on connections via Industrial Ethernet

Adding/removing MPI nodes

If a station on the MPI bus is added or removed, for example because a service PG has been connected or disconnected, it is possible that active communication connections on the communications bus are aborted. This has the following effects on the communication connections on Industrial Ethernet:

- All S7 connections are temporarily aborted.
 Exceptions: This does not apply when using CPUs with a separate communication bus, for example:
 - CPU 318-2, CPU 317-2 PN/DP, CPU 319-3 PN/DP, CPU 315-2 PN/DP,
 - CPU 315F-2 PN/DP, CPU 317-2 DP, CPU 317T-2 DP, CPU 317F-2 DP,
 - CPU 317F-2 PN/DP, CPU 319-3 PN/DP
- FETCH/WRITE connections are temporarily aborted.

On the FC interface in the user program, the condition codes made up of the DONE, ERROR and STATUS parameters must be evaluated in FC11 / FC12.

6.6 PROFINET IO

6.6.1 How PROFINET IO devices start up in a large configuration

When operating the module with a large configuration (up to 32 communications connections and up to 32 PROFINET IO devices), it may take several minutes when the station starts up before all PROFINET IO devices have received configuration data from the PROFINET IO controller. The IE/PB Link PN IO operating as a PROFINET IO device is particularly affected by this.

To ensure that the CPU does not interrupt the distribution of project engineering data in this situation, the monitoring times may need to be increased on the CPU (Properties dialog, "Startup" tab).

6.6.2 PROFINET IO when operating other services at the same time

Sporadically used services

Note the following if you are using functions alongside PROFINET IO that affect the configuration or the operating status (FB55, Primary Setup Tool, STEP 7, NCM Diagnostics):

Note

The functions listed above can influence the flow in PROFINET IO so that an interruption of cyclic IO data exchange of the PROFINET IO devices lasting several seconds may occur.
6.6.3 Effects of multicast communication on RT communication

Note
If PROFINET IO RT communication is operated at the same time as broadcast (BC) or multicast (MC) in an industrial Ethernet subnet, RT frames can be delayed by long BC frames or MC frames.

Among other things, these frames can be generated by the communications FCs AG_SEND or AG_RECV.

With certain constellations, this can lead to a PROFINET RT communication abort. The factors that influence this are the switch configurations ("switch depth"), the update time and the MC/BC frame lengths.

You will find further information about the influencing factors as well as possible solutions in: 29104898 (http://support.automation.siemens.com/WW/view/en/29104898)

6.7 IP configuration

6.7.1 Detection of double IP addressing in the network

To save you timeconsuming troubleshooting in the network, the CP detects double addressing in the network.

The reaction of the CP when double addressing is detected varies as follows:

- CP during startup

 When the CP starts up (following a power down or after assigning an Ethernet address), a query for its own IP address is sent into the network. If a response is sent in reply, the CP does not start up! The error is indicated by the LEDs ("Stopped (STOP) with error" + "BF" LED is displayed) and an entry is made in the internal diagnostics buffer.

 The CP remains in STOP mode.

 When you eliminate the cause by removing the device with the same IP address or by changing its address, you then need to restart the CP.

- CP in RUN mode

 If a double IP address is detected, the CP also reports this via the LED (BF) and generates an entry in the diagnostics buffer.

 The CP remains in RUN mode.

 If the conflict is eliminated on another component, the "BF" LED goes off again.
6.7.2 Obtain IP address via DHCP: CP STOP on expiry of the lease

If you have configured "Obtain IP address from a DHCP server", when the CP starts up, it is assigned a valid IP address by the DHCP server for a restricted time (period of the lease).

Note
STOP on expiry of the lease

The CP changes to STOP and loses the previously assigned IP address if the DHCP server does not extend it before expiry of the lease. All communication connections are terminated.

6.7.3 Configured S7 connections cannot be operated if the IP address is assigned over DHCP

Note

If you obtain the IP address using DHCP, any S7 connections you may have configured will not work. Reason: The configured IP address is replaced during operation by the address obtained with DHCP.

6.7.4 IP access protection using the IP access control list with a PROFINET IO device

Note the following behavior if IP access protection is activated:

If the CP is configured as a PROFINET IO device, you will need to enter the IP address of the PROFINET IO controller in the IP access control list.

With programmed communications connections, you should also note the following section: IP access protection with programmed communication connections (Page 55)

6.8 Media redundancy

You can use the CP in a ring topology with media redundancy. The CP can only be a redundancy client.

For more detailed information on configuration, refer to the online help of the "Media redundancy" tab and Part A of the manual, see /1/ (Page 71).
6.9 Timeofday synchronization

General rules
The CP supports the two modes explained below for timeofday synchronization:

- SIMATIC mode
- NTP mode (NTP: Network Time Protocol)

No automatic changeover to daylight saving time is defined in NTP. As a result, you may need to implement this changeover using a program application.

Project engineering
For more detailed information on configuration, refer to the online help of the "Time-of-day synchronization" parameter group and in Part A of the manual /1/ (Page 71).

6.10 SNMP agent

SNMP (Simple Network Management Protocol)
SNMP is a protocol for managing networks. To transmit data, SNMP uses the connectionless UDP protocol.
The information on the properties of SNMP-compliant devices is entered in MIB files (MIB = Management Information Base).
The CP supports data queries via SNMP in Version 1. It returns the contents of certain MIB objects according to the MIB II standard, LLDP MIB, Automation System MIB and MRP Monitoring MIB.

MIB file and SNMP profile file
You will find the MIB file and the SNMP profile file of the module in the STEP 7 installation in the folders "S7DATA" > "snmp" under the name of the module.

Further information
For more detailed information on working with MIB files, refer to the documentation of the SNMP client you are using (example of an SNMP client: SNMP OPC server from SIMATIC NET).
You will find more information on MIBs on the following SIMATIC NET Internet page:
Supported MIBs

The CP supports the following groups of MIB objects of the standard MIB II according to RFC1213:

- System
- Interfaces
- Address Translation (AT)
- IP
- ICMP
- TCP
- UDP
- SNMP

The other groups of the MIB II standard are not supported:

- EGP
- Transmission

The CP also supports the LLDPMIB according to IEEE 802.1AB, the PROFINET expansions of the LLDPMIB (see also IEC 61158106), the Automation System MIB and the MRP Monitoring MIB.

Exceptions / restrictions:

- Write access is permitted only for the following MIB objects of the system group:
 - sysContact
 - sysLocation
 - sysName
 A set sysName is sent as the host name using DHCP option 12 to the DHCP server to register with a DNS server.

 For all other MIB objects / MIB object groups, only read access is possible for security reasons.

- Traps are not supported by the CP.

"Interfaces" MIB group

This group returns status information about the CP interfaces. The MIB objects of the ifTable provide the status information of the interfaces. The "ifIndex" object identifier is assigned to the CP interfaces as follows:

Table 6- 1 Assignment of ifIndex

<table>
<thead>
<tr>
<th>ifIndex</th>
<th>Type of interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Port 1-2</td>
</tr>
<tr>
<td>3</td>
<td>Internal CP interface</td>
</tr>
</tbody>
</table>
Configuration and operation

6.11 Possible security gaps on standard IT interfaces: preventing unauthorized access

Access permissions using community name

The CP uses the following community names to control the access rights in the SNMP agent:

<table>
<thead>
<tr>
<th>Type of access</th>
<th>Community name</th>
<th>*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read access</td>
<td>public</td>
<td></td>
</tr>
<tr>
<td>Read and write access</td>
<td>private</td>
<td></td>
</tr>
</tbody>
</table>

*) Note the use of lowercase letters!

MIB files for your SNMP tools

If you use an SNMP tool, you will find the MIB files relevant to the CP in the STEP 7 installation in the following folder:

<D>\<Installation folder>\Siemens\Step7\S7DATA\snmp\mib

For the Automation System MIB, for example, these are the following files:

- automationPS.mib
- automationSmi.mib
- automationSystem.mib
- automationTC.mib

6.11 Possible security gaps on standard IT interfaces: preventing unauthorized access

With various SIMATIC NET components, such as switches, a wide range of parameter assignment and diagnostics functions (for example, Web servers, network management) are available using open protocols and interfaces. The possibility of unauthorized misuse of these open protocols and interfaces by third parties, for example to manipulate data, cannot be entirely excluded.

When using the functions listed above and these open interfaces and protocols (for example, SNMP, HTTP), you should take suitable security measures to prevent unauthorized access to the components and the network particularly from within the WAN/Internet.

Note

We expressly point out that automation networks must be isolated from the rest of the company network by suitable gateways (for example using tried and tested firewall systems). We do not accept any liability whatsoever, whatever the legal justification, for damage resulting from nonadherence to this notice.

If you have questions on the use of firewall systems and IT security, please contact your local Siemens office or representative. You will find the address in the SIMATIC catalog IK PI or on the Internet at the following address:

(http://www.automation.siemens.com/partner/guisearch.asp)
6.12 Programmed communication connections

6.12.1 Programmed communication connections with FB55 IP_CONFIG

Downloading the configuration using FB55 IP_CONFIG

IP_CONFIG allows program-controlled transfer of the configuration data.

Note

If the CP is in PG STOP mode and the configuration is downloaded using IP_CONFIG, the CP then changes automatically to RUN.

6.12.2 Programmed communications connections - assigning parameters to the ports

The CP supports the following settings when assigning parameters to the ports in the parameter block for TCP connections and UDP connections:

- **SUB_LOC_PORT parameter**
 The port can be specified as an option when the connection is established actively.

- **SUB_REM_PORT parameter**
 The port can be specified as an option when the connection is established passively.

6.12.3 IP access protection with programmed communication connections

In principle, it is possible to set up communications connections using program block IP_CONFIG (FB55) by programming and at the same time by configuring IP access protection.

When configuring specified connections (active endpoints) in STEP 7, the IP addresses of the partners are entered automatically in the IPACL (IP Access Control List).

Communications connections programmed with FB55 are also entered in the ACL as of firmware version V3.0.

Please note the following point:

Note

The IP addresses of partners with unspecified connections (passive end points) are not entered in the IPACL. Communication with unspecified nodes is only possible when IP access protection is enabled if the IP addresses were entered previously in the ACL during configuration.

How to configure IP access protection is described in the general part of this manual /1/ (Page 71).
6.13 Permitted length of ICMP packets

Permitted length of ICMP packets

Pings with a packet size of more than 1000 bytes are evaluated as an attack and filtered by the CP. This response is intentional and improves the robustness of the CP in an industrial environment.

6.14 Downtime if an S7 connection aborts

Note

Downtime if an S7 connection aborts

If an S7 connection is aborted, for example failure of the connection partner, it can take up to 40 s before the connection abort is recognized in the block. Block processing is aborted and the block resource is available again. This applies to BSEND (FB12), BRCV (FB13), USEND (FB8), URCV (FB9).

With PUT/GET, block processing cannot be aborted.
7.1 Memory reset / reset to factory defaults

If the CP was configured with the "Status-dependent" protection level, the following two functions are available only when the CPU is in STOP mode. You will find a setting in the properties dialog of STEP 7 > "Options" > Module access protection tab.

Available functions

The CP has a two level function available for resetting memory:

- Memory reset
 Following this memory reset, the CP retains the preset MAC address and the retentive parameters. The CP is therefore immediately ready for downloads using the IP address.
 The retentive parameters include:
 - IP address, subnet mask and, if applicable, router address
 - LAN settings

- Reset to factory settings
 After resetting, the CP only contains the default MAC address (as shipped).

Note

The functions for memory reset and resetting to defaults described here do not change the configuration data on the CPU!

If you subsequently upload the configuration data from the CPU to a PG you will always obtain the configuration data that was previously on the CP (with parameters, connections, IP address).

How to use the function

You can start the memory reset functions in STEP 7.

- Memory reset
 - In STEP 7 V5.5 with the menu command "PLC" > "Clear/Reset"
 - In STEP 7 special diagnostics with the "Operating Mode" > "Clear/Reset Module" menu command
 - In STEP 7 Professional V11 with STEP 7 special diagnostics
7.2 Memory reset - ACL

- Reset to factory settings
 - In STEP 7 V5.5 with the menu command "PLC" > "Edit Ethernet Node..." > Select CP > "OK" > "Reset to Factory Defaults"
 - In STEP 7 special diagnostics with the "Operating Mode" > "Reset to Factory Settings" menu command
 - In STEP 7 Professional V11 with "Online > Online & Diagnostics > Functions > Reset to Factory Settings"

Behavior after a memory reset

The CPU in the S7 station does not recognize that the CP memory was reset. The CP therefore changes to the "Stopped (STOP) with error" state (see LEDs (Page 31)).

The configuration data must then be reloaded.

If the configuration data is stored on the CPU, you can start a download by cycling power.

7.2 Memory reset - ACL

Note

After the memory reset, the previously configured IP-ACL (IP Access Control List) remains active.

7.3 Loading new firmware

Options for a firmware update

The following alternative methods can be used to download new firmware to a SIMATIC NET CP:

- Using the firmware loader supplied with STEP 7

 Requirement for downloading:
 - To download firmware, you require an Industrial Ethernet CP module in the PG/PC (for example, CP 1613) or a normal Ethernet module with the "Softnet" software package.
 - The S7ONLINE interface must be set to the "ISO - Industrial Ethernet" protocol. It is not possible to download using TCP/IP (and therefore not to other networks).

 Always run the download using the active MAC address of the CP!
7.4 Replacing a module

Note
Recommendation to reset address data if the use of the CP is changed
The following data is stored permanently on the CP:
- A configured MAC address
- IP parameters when using DHCP

If the CP has already been operated in your plant and you want to use it at a different location in the plant, it starts up with the permanently configured parameters.

If the CP has been used previously in your plant or has been repaired, delete all stored data by resetting to the factory settings.
7.4 Replacing a module

7.4.1 Replacing older modules

Distinction

When replacing existing modules with the module described here, the following variants must be distinguished:

- **Replacing a module**
 Describes the situation when an existing module can be replaced with a new module simply by pulling/plugging without changing the configuration.

- **Upgrading**
 (module replacement with compatible functions)
 Describes the situation when the module described here can be used instead of an older module as long as adaptations are made to the configuration. Here, the previously used CP needs to be replaced in the configuration by the new CP.

Unless otherwise specified, the range of functions of the older module continues to be supported.

You can also upgrade modules listed in "Module replacement". This is necessary when new characteristics that were not available in the previously used module are required.

7.4.2 Module replacement / upgrading

Replacing a module

The CP 343-1 (6GK7 343-1EX30-0XE0) described here can be used as a replacement for the following predecessor products:

- CP 343-1 (6GK7 343-1EX10-0XE0) *)
- CP 343-1 (6GK7 343-1EX11-0XE0) *)
- CP 343-1 (6GK7 343-1EX20-0XE0)
- CP 343-1 (6GK7 343-1EX21-0XE0) **)
- CP 343-1 (6GK7 343-1EX30-0XE0) firmware version V2.x

*) If one of these older device types is replaced, remember that the AUI interface is no longer available with the new CPs. To link to a current CP to an AUI network, use the media converter SCALANCE X101-1 AUI (6GK5 101-1BX00-2AA3).

**) With the current CP, note the changed number of possible connections and the lower PROFINET IO configuration limits as well as the absence of support for PROFINET CBA compared with the device type EX21.

Upgrading

The following predecessor products can be upgraded on the CP 343-1 (6GK7 343-1EX30-0XE0) described here: Refer to modules in "Replacing modules".
The CP 343-1 (EX30) can be used along with a dummy module SM370 (6ES7 370-0AA01-0AA0) in any double width slot of an existing S7-300 rack. The SM370 dummy module has a switch on the rear that you need to set to the position "NA" in this case.

Interface in the user program

Note

Remember that if you replace a module, you must only use the blocks permitted for the configured CP type on the SEND/RECEIVE interface in the user program. It is advisable to always use the current block versions.

If you use the module described here as replacement for the modules listed below, the blocks listed following this list must be used:

Modules used:
- 6GK7 343-1EX10-0XE0
- 6GK7 343-1EX11-0XE0 configured as 6GK7 343-1EX10-0XE0.

Block versions to be used:
- AG_SEND (as of V4.2)
- AG_RECV (as of V4.7)
- AG_LOCK (as of V4.0)
- AG_UNLOCK (as of V4.0)

Note

Always use the latest block versions for new user programs. You will find information on the current block versions and the current blocks for downloading on the Internet under:

Module replacement

Please follow the procedure below when replacing an older module with the module described here:
7.4 Replacing a module

7.4.1 Replacing an older module

<table>
<thead>
<tr>
<th>Originally configured module</th>
<th>Configuration procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>6GK7 343-1EX21-0XE0 *)</td>
<td>Case a: Configuration unchanged / module replacement</td>
</tr>
<tr>
<td>6GK7 343-1EX20-0XE0</td>
<td>If you have no requirements beyond what you had with the previous CP (for example configuration limits), you do not need to make changes in the configuration.</td>
</tr>
<tr>
<td>6GK7 343-1EX11-0XE0</td>
<td>You only need to remember the following distinction during commissioning:</td>
</tr>
<tr>
<td>6GK7 343-1EX10-0XE0 **) ***)</td>
<td>• If the option of storing the configuration data of the CP on the CPU was selected for the CPU you are replacing, when the CP starts up the configuration data is loaded automatically from the CPU to the CP.</td>
</tr>
<tr>
<td></td>
<td>• Otherwise, download the configuration data again from your PG/PC to the CP.</td>
</tr>
</tbody>
</table>

Case b: Adapted configuration / upgrade

If you want to use the extended options of the new CP, follow the steps below:

1. Replace the previously configured CP with the new module in STEP 7 / HW Config. You will find this in the hardware catalog.
2. Expand your configuration to suit your needs, for example the connection configuration.
3. Save, compile and load the configuration data to the CPU or CP again.

Note

Note the following information on the module types listed in the table above:

*) With the current CP, note the changed number of possible connections and the smaller PROFINET IO configuration limits as well as the omission of support for PROFINET CBA**).

**) If you replace a module, you will need to download the adapted configuration data to the new module type using STEP 7. The procedure is therefore only possible as described in "Case b / Adapted configuration".

***) If you replace the model, you will need to update the communications blocks to the latest version.

7.4.3 Replacing a module without a programming device

General procedure

The configuration data of the CP is stored optionally on the CPU or CP. Replacing the CP with a module of the same type (identical order number) without a PG is only possible if the data is stored on the CPU.
This option can be selected in the properties dialog of the CP (in the "Options" tab under "Module replacement without PG"). We recommend that you store the configuration data on the CPU as long as the configuration memory of the CPU allows.

For information on replacing previous modules, refer to the information on compatibility in section Module replacement / upgrading (Page 60).

Module replacement: Special feature of IP address assignment from a DHCP server

When configuring in the Properties dialog, you can specify the IP configuration for the CP. One option here is that the CP obtains the IP address from a DHCP server.

Note

When replacing modules, please remember that the factoryset MAC address of the new module is different from the previous module. When the factoryset MAC address of the new module is sent to the DHCP server, this will return either a different or possibly no IP address.

Ideally, you should therefore configure IP as follows:

Always configure a client ID if you want to obtain the same IP address from the DHCP server after replacing the module.

If, in exceptional situations, you have configured a new MAC address instead of the MAC address set in the factory, the configured MAC address will always be transferred to the DHCP server and the CP also receives the same IP address as the replaced module.
7.4 Replacing a module
Technical specifications

Table 8-1 Technical specifications

<table>
<thead>
<tr>
<th>Attachment to Industrial Ethernet</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>1 x PROFINET interface with 2 port switch</td>
</tr>
<tr>
<td>Execution</td>
<td></td>
</tr>
<tr>
<td>Connector</td>
<td>2 x RJ-45 jacks</td>
</tr>
<tr>
<td>Transmission rate</td>
<td>10 / 100 Mbps</td>
</tr>
<tr>
<td>When working with PROFINET IO and cyclic transfer, the transmission speed of 100 Mbps full duplex is mandatory.</td>
<td></td>
</tr>
<tr>
<td>Aging time</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Special features of the X1P1R and X1P2R ports</td>
<td>Integration in ring topology / MRP possible</td>
</tr>
</tbody>
</table>

Electrical data

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>External power supply</td>
<td>24 VDC</td>
</tr>
<tr>
<td>Permitted range</td>
<td>+20.4 V to +28.8 V</td>
</tr>
<tr>
<td>From backplane bus</td>
<td>5 VDC</td>
</tr>
<tr>
<td>Current consumption</td>
<td></td>
</tr>
<tr>
<td>From external power supply</td>
<td>200 mA maximum</td>
</tr>
<tr>
<td>From backplane bus</td>
<td>200 mA maximum</td>
</tr>
<tr>
<td>Effective power loss</td>
<td>5.8 W</td>
</tr>
</tbody>
</table>

Permitted ambient conditions

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>During operation with the rack installed horizontally</td>
<td>0 °C to +60 °C</td>
</tr>
<tr>
<td>During operation with the rack installed vertically</td>
<td>0 °C to +40 °C</td>
</tr>
<tr>
<td>During storage</td>
<td>-40 °C to +70 °C</td>
</tr>
<tr>
<td>During transportation</td>
<td>-40 °C to +70 °C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td></td>
</tr>
<tr>
<td>During operation</td>
<td>≤ 95 % at 25 °C, no condensation</td>
</tr>
<tr>
<td>Operating altitude</td>
<td></td>
</tr>
<tr>
<td>During operation</td>
<td>≤ 2,000 m above sea level</td>
</tr>
<tr>
<td>Contaminant concentration</td>
<td>Acc. to ISA-S71.04 severity level G1, G2, G3</td>
</tr>
</tbody>
</table>

Design, dimensions and weight

Module format	Compact module for S7-300, single width
Degree of protection	IP20
Weight	Approx. 220 g
Dimensions (W x H x D)	40 x 125 x 120 mm
Installation options	Mounting in an S7-300 rack

Product functions *

* You will find the product functions in the section Properties / services (Page 11).
For further data, refer to section Performance data (Page 17)

In addition to this, all the information in the "SIMATIC S7-300 Automation System Module Data" see /12/ (Page 74) in the section "General Technical Specifications" on the topics listed below applies to the CP:

- Electromagnetic compatibility
- Transportation/storage conditions
- Mechanical and climatic environmental conditions
- Information on insulation checks, protection class and degree of protection
Approvals

Approvals issued

Note

Issued approvals on the type plate of the device

The specified approvals apply only when the corresponding mark is printed on the product. You can check which of the following approvals have been granted for your product by the markings on the type plate.

Approvals for shipbuilding are not printed on the device type plate.

Current approvals on the Internet

You will find the current approvals for the product on the Internet pages of Siemens Industry Online Support.

Link: (http://support.automation.siemens.com/WW/view/en/10806075)

EC declaration of conformity

The product meets the requirements and safety objectives of the following EC directives and it complies with the harmonized European standards (EN) for programmable logic controllers which are published in the official documentation of the European Union:

 - Immunity - EN 61000-6-2 : 2005

 The device is designed for use in an industrial environment.

- EC directive 94/9/EC "Equipment and protective systems intended for use in potentially explosive atmospheres" (ATEX Explosion Protection Directive)
 - EN 60079-0:2006: Potentially explosive atmosphere - general requirements
 - EN 60079-15: 2005: Type of protection 'n'

- EC directive 2006/95/EEC "Electrical Equipment Designed for Use within Certain Voltage Limits" (Low Voltage Equipment Directive)
 - EN 61131–2 / IEC 61131–2 (programmable logic controllers, part 2: equipment requirements and verifications)

The EC Declaration of Conformity is available for the responsible authorities according to the above-mentioned EC Directive at the following address:
IECEx

The product meets the requirements of explosion protection according to IECEx.

IECEx classification:

- Ex nA IIC T4 Gc

 Certificate: IECEx DEK 14.0086X
 Applied standards:
 - EN 60079-0 - Explosive atmospheres - Part 0: Equipment - General requirements
 - EN 60079-15 - Explosive atmospheres - Part 15: Equipment protection by type of protection 'n'

- Ex ec IIC T4 Gc

 Certificate: IECEx DEK 18.0019X
 Applied standards:
 - EN 60079-0 - Explosive atmospheres - Part 0: Equipment - General requirements
 - EN 60079-7 - Explosive Atmospheres - Part 7: Equipment protection by increased safety 'e''

You can see the current versions of the standards in the IECEx certificate that you will find on the Internet at the following address:

The conditions must be met for the safe deployment of the product according to the section Important notes on using the device (Page 35).

You should also note the information in the document "Use of subassemblies/modules in a Zone 2 Hazardous Area" that you will find on the Internet at the following address:
ATEX

The product meets the requirements of the EU directive 2014/34/EU "Equipment and Protective Devices for Use in Potentially Explosive Atmospheres".

ATEX approval:

- II 3 G Ex nA IIC T4 Gc
 Type Examination Certificate: KEMA 03 ATEX 1228X
 Applied standards:
 - EN 60079-0 - Explosive atmospheres - Part 0: Equipment - General requirements
 - EN 60079-15 - Explosive atmospheres - Part 15: Equipment protection by type of protection 'n'

- II 3 G Ex ec IIC T4 Gc
 Type Examination Certificate: DEKRA 18 ATEX 0027X
 Applied standards:
 - EN 60079-0 - Explosive atmospheres - Part 0: Equipment - General requirements
 - EN 60079-7 - Explosive Atmospheres - Part 7: Equipment protection by increased safety 'e'

WARNING

Installation guidelines

The product meets the requirements if you keep to the following during installation and operation:

- The notes in the section Installation, connecting up and commissioning (Page 35)
- The installation instructions in the document /12/ (Page 74)

The current versions of the standards can be seen in the EU Declaration of Conformity, see above.

The conditions must be met for the safe deployment of the product according to the section Important notes on using the device (Page 35).

You should also note the information in the document "Use of subassemblies/modules in a Zone 2 Hazardous Area" that you will find here:

- In the SIMATIC NET Manual Collection under "All documents" >"Use of subassemblies/modules in a Zone 2 Hazardous Area"
- On the Internet at the following address:
cULus HAZ. LOC. approval

Underwriters Laboratories Inc.

- cULus Listed 7RA9 IND. CONT. EQ. FOR HAZ. LOC.:
 - UL 508 (Industrial Control Equipment)
 - UL 1604 (Hazardous Location)
 - CSA C22.2 No. 142 (Process Control Equipment)
 - CSA C22.2 No. 213 (Hazardous Location)

APPROVED for Use in:

- Cl. 1, Div. 2, GP. A, B, C, D T4A; Ta = 0 °C...60 °C
- Cl. 1, Zone 2, GP. IIC T4; Ta = 0 °C...60 °C

FM approval

Factory Mutual Research (FM):

- Approval Standard Class Number 3611
- APPROVED for Use in:
 - Class I, Division 2, Group A, B, C, D, Temperature Class T4A; Ta = 0 °C...60 °C
 - Class I, Zone 2, Group IIC, Temperature Class T4; Ta = 0 °C...60 °C

Notice for Australia (C-TICK)

- AS/NZS 2064 (Class A)

Notice for Korea (KCC)

- KCC-REM-S49-S7300CP
References

Finding the SIMATIC NET documentation

- **Catalogs**
 You will find the order numbers for the Siemens products of relevance here in the following catalogs:
 - SIMATIC NET Industrial Communication / Industrial Identification, catalog IK PI
 - SIMATIC Products for Totally Integrated Automation and Micro Automation, catalog ST 70

 You can request the catalogs and additional information from your Siemens representative.

 You can go to the Industry Mall on the Internet at the following address:
 Link: https://eb.automation.siemens.com/goos/catalog

- **Documentation on the Internet**

 You will find SIMATIC NET manuals on the Internet pages of Siemens Automation Customer Support:

 Go to the required product group and make the following settings:
 "Entry list" tab, Entry type "Manuals / Operating Instructions"

- **Documentation from the STEP 7 installation**

 Manuals that are included in the online documentation of the STEP 7 installation on your PG/PC can be found in the start menu ("Start" > "All Programs" > "Siemens Automation" > "Documentation").

B.1 On configuring, commissioning and using the CP

/S1/

SIMATIC NET
S7 CPs for Industrial Ethernet
Configuring and Commissioning
Manual Part A - General Applications
Configuration Manual
Siemens AG
B.2 For configuration with STEP 7 / NCM S7

/2/

SIMATIC NET
Version history / current downloads for the SIMATIC NET S7 CPs
History document
Siemens AG
(SIMATIC NET Manual Collection)
On the Internet under following entry ID:

B.2 For configuration with STEP 7 / NCM S7

/3/

SIMATIC NET
NCM S7 for Industrial Ethernet
Primer
Siemens AG
(part of the online documentation in STEP 7)

/4/

SIMATIC NET
Commissioning PC Stations - instructions and getting started
Configuration manual
Siemens AG
(SIMATIC NET Manual Collection)
On the Internet under following entry ID:
13542666 (http://support.automation.siemens.com/WW/view/de/13542666)

/5/

SIMATIC
Configuring Hardware and Connections with STEP 7
Siemens AG
Part of the documentation package "STEP 7 Basic Knowledge"
(Part of the online documentation in STEP 7)

B.3 On programming

/6/

SIMATIC NET
Program blocks for SIMATIC NET S7 CPs
Version history, reference document
Siemens AG
SIMATIC Programming with STEP 7
Siemens AG
(Part of the STEP 7 documentation package STEP 7 Basic Knowledge)
(Part of the online documentation in STEP 7)
18652056 (http://support.automation.siemens.com/WW/view/de/18652056)

SIMATIC System and Standard Functions for S7-300/400 Programming manual
Siemens AG
1214574 (http://support.automation.siemens.com/WW/view/de/1214574)

SIMATIC NET Industrial Communication with PG/PC Volume 1 - Basics System manual
Siemens AG
(SIMATIC NET Manual Collection)
On the Internet under following entry ID:
SIMATIC NET Industrial Communication with PG/PC Volume 2 - Interfaces Programming manual
Siemens AG
(SIMATIC NET Manual Collection)
On the Internet under following entry ID:

SIMATIC NET Program blocks for SIMATIC NET S7 CPs Programming Manual
Siemens AG

Automatisieren mit STEP 7 in AWL und SCL (ISBN: 978-3-89578-280-0) /
Automating with STEP 7 in STL and SCL (ISBN: 978-3-89578-295-4)
User manual, programming manual
Berger, Hans
Publicis KommunikationsAgentur GmbH, GWA, 2006
B.4 On installing and commissioning the CP

SIMATIC S7
Siemens AG

- S7-300 automation system
 - CPU 31xC and 31x Installation: Operating instructions
 AUTOHOTSPOT
 - Module Data: Reference manual
 AUTOHOTSPOT

- Automation system S7-400, M7-400
 - Installation: Installation manual
 AUTOHOTSPOT
 - Module Data: Reference manual
 AUTOHOTSPOT

B.5 For application and configuration of PROFINET IO

SIMATIC
PROFINET System Description
System manual
Siemens AG
(SIMATIC NET Manual Collection)
On the Internet under following entry ID:
19292127 (http://support.automation.siemens.com/WW/view/en/19292127)

SIMATIC
From PROFIBUS DP to PROFINET IO
Programming manual
Siemens AG
(SIMATIC NET Manual Collection)
B.6 On setting up and operating an Industrial Ethernet network

SIMATIC NET
Industrial Ethernet / PROFINET
System manual
Siemens AG

- Industrial Ethernet

- Passive network components

B.7 SIMATIC and STEP 7 basics

SIMATIC
Communication with SIMATIC
system manual
Siemens AG
Entry ID: 25074283 (http://support.automation.siemens.com/WW/view/en/25074283)

Documentation package "STEP 7 Basic Knowledge"
- Working with STEP 7 Getting Started (ID: 18652511)
- Programming with STEP 7 (ID: 18652056)
- Configuring Hardware and Connections with STEP 7 (ID: 18652631)
- From S5 to S7, Converter Manual (ID: 1118413)

Siemens AG
Order number 6ES7 810-4CA08-8AW0
(part of the online documentation in STEP 7)

B.8 Other topics

Ethernet, IEEE 802.3 (ISO 8802-3)
http://www.ieee.org (http://www.ieee.org)
References

B.8 Other topics

/20/
RFC 1006 (ISO Transport Service on top of the TCP Version: 3)
Request For Comment
http://www.ietf.org (http://www.ietf.org)

/21/
RFC 793 (TCP)
http://www.ietf.org (http://www.ietf.org)

/22/
RFC 791 (IP)
http://www.ietf.org (http://www.ietf.org)
Index

A
Abbreviation "EX", 11
Addressing, 39
ATEX, 36

C
Cabinet, 36
Cables for temperatures in excess of 70 °C, 37
Connection and system diagnostics, 5

D
Diagnostics, 40
Disposal, 7
Download, 39
Downloads, 5

E
EX (abbreviation), 11

F
FETCH/WRITE
Access coordination, 5

G
Glossary, 6
GSDML file, 29

H
Hazardous area, 35
Hazardous areas according to ATEX, 36

I
IP configuration, 5

M
MAC address, 4, 59
Manual Collection, 5

O
Open communication services, 5

P
Ping, 56
PROFInergy, 11
Programmed connections and IP configuration, 5
Protection against transient voltage surges, 37

R
Recycling, 7
Replacing components, 36

S
Safety extra low voltage, 35
Safety notices, 35
SIMATIC NET glossary, 6
SIMATIC NET Manual Collection, 5
STEP 7, 4
STEP 7 version, 11, 28

V
Version history, 5