Service

VAS 5067

Exhaust-gas Analyser

EU Operating Instructions
Contents

1 **Instructions for your personal safety and for the protection of equipment/vehicle components** .. 5
 1.1 Mains voltage High voltage .. 5
 1.2 Danger of acid burning in the respiratory system .. 5
 1.3 Danger of acid burning .. 5
 1.4 Danger of asphyxiation .. 6
 1.5 Danger of injury, danger of crushing ... 6
 1.6 Danger of burning ... 6
 1.7 Noise ... 6

2 **General information** ... 7
 2.1 Explanation of symbols used .. 7
 2.2 Application .. 7
 2.3 User groups .. 7
 2.4 Operating software and scheduled data ... 7

3 **Description of the unit** ... 7
 3.1 Functional description ... 7
 3.2 Views and controls .. 8
 3.3 Operating method .. 9
 3.4 Initial commissioning .. 10
 3.5 Exhaust analysis on 2-stroke engines ... 10

4 **Exhaust analysis** ... 12
 4.1 Commissioning ... 12
 4.2 Requirements for exhaust analysis ... 13
 4.3 Preparation of exhaust analysis ... 13
 4.4 Recalibration with test gas .. 13
 4.5 Maintenance .. 13
 4.6 Diagnosis measurement .. 14
 4.7 Emission test without data terminal .. 15
 4.8 Emission test with data terminal (special accessory) 18
 4.9 Copy of the protocol of an exhaust-emission measurement 21
 4.10 Protocol printouts .. 21

5 **Functions of parameterisation and test functions** 23
 5.1 Accessing entry mode ... 23
 5.2 Operation in entry mode .. 23
 5.3 Entry mode functions ... 24

6 **Special accessories** ... 34
 6.1 Protocol printer .. 34
 6.2 Engine-speed measurement ... 34
 6.3 Oil temperature measurement ... 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault messages</td>
<td>38</td>
</tr>
<tr>
<td>Maintenance</td>
<td>41</td>
</tr>
<tr>
<td>8.1 Hermetic sealing of the sampling system</td>
<td>41</td>
</tr>
<tr>
<td>8.2 Sampling probe (38)</td>
<td>41</td>
</tr>
<tr>
<td>8.3 Coarse filter GF1 (36)</td>
<td>41</td>
</tr>
<tr>
<td>8.4 Sampling hose (35/37)</td>
<td>41</td>
</tr>
<tr>
<td>8.5 Intake filter GF2 (33)</td>
<td>42</td>
</tr>
<tr>
<td>8.6 Checking the stability of indications</td>
<td>42</td>
</tr>
<tr>
<td>8.7 Checking flow monitoring</td>
<td>42</td>
</tr>
<tr>
<td>8.8 Before switching the analyser off</td>
<td>42</td>
</tr>
<tr>
<td>8.9 O2 sensor</td>
<td>43</td>
</tr>
<tr>
<td>8.10 Recalibration with certificated test gas</td>
<td>44</td>
</tr>
<tr>
<td>8.11 Standard parameterisation of the VAS 5067</td>
<td>46</td>
</tr>
<tr>
<td>8.12 Service report</td>
<td>47</td>
</tr>
<tr>
<td>Scope of delivery</td>
<td>49</td>
</tr>
<tr>
<td>Spare parts, parts subject to wear and special accessories</td>
<td>49</td>
</tr>
<tr>
<td>Technical data</td>
<td>50</td>
</tr>
<tr>
<td>11.1 Temperature limits</td>
<td>50</td>
</tr>
<tr>
<td>11.2 Sound power level to DIN 45 635 (in print mode)</td>
<td>50</td>
</tr>
<tr>
<td>Guarantee</td>
<td>50</td>
</tr>
<tr>
<td>Service address</td>
<td>50</td>
</tr>
</tbody>
</table>
1 Instructions for your personal safety and for the protection of equipment/vehicle components

1.1 Mains voltage
High voltage

Hazardous voltages occur in both the lighting system and the electrical system of a motor vehicle. If contact is made with live parts (e.g. with the ignition coil), there is a risk of electric shock from flashover voltages caused by damaged insulation (e.g. ignition cables which have been attacked by martens). This applies to both the primary side and the secondary side of the ignition system, to the cable harness and the plug connections, to the lighting systems (Litronic) and to the tester connections.

Safety precautions:
⇒ All testers must be connected to properly grounded, shock-proof sockets.
⇒ Testers must always be connected using the power cables supplied with them.
⇒ All extension cables must be fitted with shock-proof contacts.
⇒ Any cables with damaged insulation must be replaced (e.g. power or ignition cables).
⇒ Connect testers to the lighting system and switch them on before connecting them to the vehicle.
⇒ Connect testers to the engine ground or to the battery (B-) before switching on the ignition.
⇒ Always switch off the ignition before performing any work on the electrical system of the vehicle. The term “work” includes connecting testers, replacing parts of the ignition system, removing assemblies (e.g. generators), connecting assemblies to a test bench, etc.
⇒ Wherever possible, tests and settings should always be carried out with the ignition switched off and the engine stationary.
⇒ If tests or settings are carried out with the ignition switched on or the engine running, care must be taken not to touch any live parts. This applies to all the connecting cables of the testers as well as to the connections of any assemblies at the test bench.
⇒ Test connections must always be made using suitable connectors (e.g. vehicle-specific adapter cables).
⇒ Make sure that all test connections are properly plugged in and secure.

1.2 Danger of acid burning in the respiratory system

With exhaust gas measurements are taken, the sampling hose which are used release a highly caustic gas (hydrogen fluoride) that can cause acid burning in the respiratory system when heated to temperatures in excess of 250 °C (482 °F) or in the event of fire.

Safety precautions:
⇒ Consult a doctor immediately after inhaling!
⇒ Always wear gloves made of neoprene or PVC when removing combustion residues.
⇒ Neutralize any residues left after a calcium hydroxide solution. This produces non-toxic calcium fluoride, which can be washed away.

1.3 Danger of acid burning

Acids and alkalis can cause severe burning on unprotected skin. Hydrogen fluoride forms hydrofluoric acid in combination with moisture (water).

The condensate which accumulates in the sampling hose and in the condensate container likewise contains acid.

When replacing the O₂ sensor, it should be remembered that it contains alkali.

Safety precautions:
⇒ Rinse any affected parts of the skin immediately in water, then consult a doctor!

If liquid crystal escapes from a damaged liquid crystal display, it is imperative to avoid direct contact between the liquid and the skin, as well as inhalation or swallowing!
1.4 Danger of asphyxiation

Car exhaust fumes contain carbon monoxide (CO)—a colorless, odorless gas. If inhaled, carbon monoxide causes an oxygen deficiency in the body. Extreme caution is therefore essential when working in a pit, as some of the components of the exhaust gas are heavier than air and settle at the bottom of the pit.

Caution is also necessary when working on LPG-driven vehicles.

Safety precautions:

⇒ Always ensure effective ventilation and suction (especially when working in a pit).
⇒ Always switch on and connect the suction plant in a closed area.

1.5 Danger of injury, danger of crushing

If the vehicle is not prevented from rolling away, there is a danger of people being crushed against a workbench, for example. Both running and stationary engines have rotating and moving parts (e.g. belt drives) which may cause injuries to fingers and arms. A special hazard is presented by electrically driven fans, in that they may be switched on without warning while the engine is stationary and the ignition is switched off.

Safety precautions:

⇒ Take steps to prevent the vehicle from rolling away while it is being tested. Select the park position if the vehicle has an automatic transmission and apply the handbrake or lock the wheels with chocks (wedges).
⇒ Keep well away from rotating/moving parts while the engine is running.
⇒ When working on or in the vicinity of electrically driven fans, allow the engine to cool down first, then disconnect the plug of the fan motor.
⇒ Keep the tester connecting cables well away from all rotating parts.

1.6 Danger of burning

When working on a hot engine, there is a risk of injury from burning if such components as the exhaust gas manifold, the turbocharger, the Lambda sensor, etc. are touched or if parts of the body come too close to them. These components may be heated to temperatures of several hundred degrees Celsius. Depending on the duration of the exhaust gas measurements, the sampling probe of the exhaust gas measuring instrument may also become extremely hot.

Safety precautions:

⇒ Always wear protective clothing, e.g. gloves.
⇒ Allow the engine to cool down first (this also applies to auxiliary heating systems).
⇒ Keep the tester connecting cables well away from all hot parts.
⇒ Do not leave the engine running any longer than necessary for the test or setting.

1.7 Noise

Noise levels in excess of 70 dB(A) can occur when measurements are carried out on a vehicle, especially at high engine speeds. Damage to hearing may result if human beings are exposed to noise at such levels over an extended period of time.

Safety precautions:

⇒ If necessary, noise protection facilities must be provided by the owner at all workplaces in the vicinity of the testing areas.
⇒ If necessary, suitable personal noise protection facilities must be used by the operator.
2 General information

2.1 Explanation of symbols used

The following pictographs are used in these Operating Instructions:

<table>
<thead>
<tr>
<th>LED</th>
<th>LED</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td>LED</td>
<td>LED</td>
</tr>
</tbody>
</table>

Flashing LED on VAS 5067 (in bold print)

2.2 Application

The VAS 5067 Exhaust-gas analyzer is used for measuring the concentration of car exhaust emissions, for monitoring or engine diagnostic purposes. The unit can be used on vehicles fitted with a 4-stroke spark-ignition and 4-stroke rotary-piston (Wankel) engine. Measurements can only be performed on 2-stroke engines if the appropriate special accessories are used (see chapter 3.5).

The VAS 5067 can also be used for measuring the speed and oil temperature of an engine.

The VAS 5067 Exhaust-gas analyzer is suitable for carrying out emission tests on vehicles with spark-ignition engines, in accordance with EU Guideline 92/55 EC of the European Council dated June 22, 1992.

The VAS 5067 is subject to the laws requiring calibration for exhaust-gas analyzers and must as such be calibrated.

2.3 User groups

The VAS 5067 has been designed for use by trained expert personnel in the automotive industry. Read this Operating Instructions carefully for your own safety and to prevent the unit from being damaged through improper usage.

2.4 Operating software and scheduled data

Despite taking the greater possible care when programming, compiling and checking the software and data, we cannot guarantee for the correctness of the operating software.

We cannot accept any liability for consequential damage.

3 Description of the unit

3.1 Functional description

The VAS 5067 is used for measuring the exhaust-gas components CO, HC, CO₂ and O₂. The lambda air ratio is calculated on the basis of the emissions values measured. The VAS 5067 can also be used to measure the engine speed and oil temperature.

The following measurement ranges are covered:

<table>
<thead>
<tr>
<th>CO</th>
<th>Carbon monoxide 0 ... 10.00 % vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>Hydrocarbons (using hexane as a basis) 0 ... 9999 ppm</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide 0 ... 18 % vol</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen 0 ... 21 % vol</td>
</tr>
<tr>
<td>n</td>
<td>Engine speed 0 ... 9990 U/min</td>
</tr>
<tr>
<td>T</td>
<td>Oil temperature 0 ... 150 °C</td>
</tr>
<tr>
<td>λ</td>
<td>Lambda air ratio 0,500 ... 2,000</td>
</tr>
<tr>
<td>COcorrected</td>
<td>0 ... 10 %</td>
</tr>
</tbody>
</table>

The non-dispersive, infrared process is used for measuring the CO, CO₂ and HC components (NDIR - non-dispersive infrared spectroscopy).

The oxygen content is measured using an electrochemically acting sensor.

The engine speed is measured by attaching an inductive clip-on pickup to a spark plug cable and the oil temperature by inserting a temperature sensor into the engine instead of the oil dipstick.

The measured values can be printed out on an integral or external protocol printer (special accessory).
3.2 Views and controls

Figure 1. View from the front
1. Digital display
2. Protocol printer
3. Knob for opening the printer cover (to change the paper)
4. Printer paper feed button
5. Button for mains power supply on/off
6. Selector button for the pulse rate per 720° revolution (speed measurement)
7. Selector button for engine speed sensor and measuring point used
8. Printer button - generate a printout
9. Pump button - start/stop analysis

Figure 2. Digital display
10. HC digital display
11. O₂ digital display
12. Digital display for engine speed and CO₂corr
13. CO digital display
14. CO₂ digital display
15.1 Digital display for entry function symbol and first 2 places for oil temperature and lambda
15.2 Digital display for entry function status and last 2 places for oil temperature and lambda
16. Oil temperature display indicator
17. Lambda display indicator
18. Display for pulse rate per 720° revolution of the crankshaft and for entry function number
19. Pump symbol
20. Printer symbol
21. Cylinder symbol

Figure 3. Hose connection plan
30. Protective pump filter GF4
31. Activated charcoal filter
32. Protective pump filter GF3
33. Intake filter GF2
34. Measurement gas intake
35. 8 m hose (black)
36. Coarse filter GF1
37. 30 cm viton hose (black)
38. Sampling probe
39. Measurement gas and condensate outlet (70 cm PVC hose, transparent)
40. Gas and condensate outlet (70 cm PVC hose, transparent)
41. Test gas intake, condensate and gas outlet (70 cm PVC hose, transparent)
42. Sealing plug
3.3 Operating method

3.3.1 Warming-up period
The warming-up period of the unit lasts 3 minutes. No analysis is possible during this period.

No warming-up period is required for entry mode (see chapter 5). Allowance must therefore be made for zero point drift when analysing in this mode.

3.3.2 Drift correction
The analyzer will automatically carry out a system test with ambient air 15 minutes after analysis has commenced. If analysis is being carried out at that time, the test will be postponed until its completion.

3.3.3 Cpl system test
The analyzer switches a solenoid valve over to ambient air for the system test. Zero gas is used for flushing the unit for 30 seconds.

Hydrocarbons are removed from the inducted ambient air by an activated charcoal filter.

The drift of the oxygen measurement and the zero points of HC, CO and CO\textsubscript{2} measurements are monitored and adjusted.

3.3.4 Air ratio measurement
The analyzer calculates the lambda air ratio from the concentrations of HC, CO, CO\textsubscript{2} and oxygen measured. Precise oxygen measurement is important for the purposes of lambda calculation. If this is active, the oil temperature display will be switched over to lambda should a CO\textsubscript{2} concentration greater than 2 % be measured.

3.3.5 Corrected CO concentration (CO\textsubscript{corrected})
The analyzer will calculate the actual concentration of CO (CO\textsubscript{corrected}) from the concentration of CO and CO\textsubscript{2}.

VAS 5067:
Allowance is then made for leaks in the exhaust system. The corrected CO concentration is only printed out on the analysis protocol and if no engine speed is measured it is indicated in the digital display (12).

3.3.6 Oxygen measurement
The exhaust-gas analyzer is equipped with an O\textsubscript{2} sensor. This sensor is screwed to the rear of the analyzer in the socket provided (53).

Oxygen measurement is automatically adjusted to an oxygen content of 20.9 % by volume of air. It can be switched off (see chapter 5.3.6).

The O\textsubscript{2} sensor is a part subject to wear.
3.4 Initial commissioning

Caution! Min. height of installation location: 250 mm from floor
Min. length of outlet hoses: 300 mm

Note: These specifications must be observed to ensure that the condensate generated constantly flows off, the accuracy of measurement is guaranteed and that the measuring system is adequately protected against contamination.

For a hose connection plan, see Figure 3.

⇒ Connect the exhaust sampling probe to the prefilter (36) using the 30 cm viton hose (37).
⇒ Connect the sampling hose (35) to the prefilter.
⇒ Connect the sampling hose to the gas intake (34) on the analyzer.

Caution! Connect 3 70 cm PVC hoses (39/40/41) to the gas outlets. Lead the hoses into an open container to collect condensation. Observe the voltage specifications shown on the rating plate!

⇒ Connect the analyzer to a properly earthed two-pole-and-earth socket outlet using the power lead supplied.

3.5 Exhaust analysis on 2-stroke engines

3.5.1 Technical background

Vehicles with 2-stroke engines emit higher levels of hydrocarbon (HC) emissions than 4-stroke engines and they also emit oil. Oil for the most part consists of hydrocarbons. If no measures are taken to prevent it from happening, this oil is deposited on the sides/walls of the external gas path (sensor, hose, filter).

These deposits lead to an HC concentration being indicated (residual value indication) even when exhaust analysis is not being carried out. This means, then, that the actual HC value measured during an HC measurement is distorted by the amount of this residual value (increased).

This effect, referred to by experts as "hang-up", manifests itself in all exhaust-gas analyzers that are capable of measuring the HC concentration and is not specific to any particular make.

These deposits can be prevented to the greatest possible extent through the use of activated charcoal filters. These filters bind and neutralise for the most part oil and volatile hydrocarbons. Filters of this kind have a limited service life. They are used on the sensor in the gas path downstream of the coarse filter.

Deposits can also occur in small quantities downstream of the activated charcoal filter on the sides of the hose. They must be purged by means of one or other of the two alternatives we offer.

3.5.2 Solutions

- 1st alternative
 Flushing using the integral pump in the analyzer.
 The pump must be left switched on after each 2-stroke measurement until the HC value displayed has dropped to below 20 ppm. The flushing time depends on the magnitude of the residual value. It can take approx. 30 minutes, but it may also take considerably longer.
For this alternative, only the activated charcoal filter is additionally required for 2-stroke exhaust analysis. The filter must always be inserted in the gas path during these measurements.

1. Coarse filter
2. Activated charcoal filter
3. Sampling hose, material viton

2nd alternative

In order to reduce the flushing times drastically, i.e. to increase the availability of the units after a 2-stroke analysis, we recommend that you use a second external gas path.

The HC deposits can then be purged quickly by blowing out the hose with compressed air.

1. Coarse filter
2. Activated charcoal filter
3. Sampling hose, viton
4. Sampling hose set viton (8 + 0.3 + 0.3) m long

3.5.3 Notes

- Activated charcoal filters bind hydrocarbons.
- The second sampling hose and activated charcoal filter must only be used for CO measurements, not for HC and lambda measurements.
4 Exhaust analysis

4.1 Commissioning

The instructions in chapter 3.4 must be carried out before the unit is switched on for the first time.

4.1.1 The following must be tested before exhaust analysis commences:
- the sampling probe (for damage and blockages);
- the coarse filter (for presence and damage);
- the sampling hose (for damage and blockages);
- filters GF2, GF3 and GF4

4.1.2 Switch on the unit

The warming-up sequence may run differently, depending on the parameterisation of the unit (see chapter 5).

⇒ Press the mains button (5)
Segment test is carried out. Duration: 10 s.

Standby mode

⇒ The sampling probe (38) must then be sealed with the sealing plug (42).
⇒ Then start the leak test by pressing the pump button (9).

4.1.3 Leak testing

A leak test must be carried out every 24 hours. The exhaust-gas analyzer automatically prompts you to do so.

A leak test can be carried out on the sampling system during the warming-up period.

Warning! Danger! Risk of burning yourself! Depending on how long exhaust-gas analysis takes, the sampling probe of the analyzer can be very hot.

⇒ Activate the test by pressing the pump button (9)
The pump symbol (19) flashes.

The leak time is displayed in the display window (13).

⇒ Remove the sealing plug (42) immediately after the leak time has elapsed.
If the leak test is successful, the display will revert to warming up mode. Otherwise, a fault will be displayed!

4.2 Requirements for exhaust analysis

- The engine must be warm (oil temperature > 60 °C)
- No aids to starting (automatic or manual) must be operating.
- The exhaust pipe must not leak.
- The engine must have the ignition settings specified by the manufacturer (dwell angle, ignition timing and idling speed).

4.3 Preparation of exhaust analysis

Warning! Danger: exhaust fumes are poisonous!

Exhaust fumes must be extracted from confined spaces.

With exhaust systems with one silencer, but two tailpipes, both tailpipes must be fed into a common collector pipe.

It is possible when connecting the clip-on pickup that physical injury and/or damage to property may arise due to flashover if the ignition system is faulty. For this reason, always connect an earthing lead before operating the exhaust-gas analyzer.

Note: The sampling probe (38) may be inserted into the exhaust tailpipe only after conditioning has been performed or only while a measurement is running (see chapters 4.6, 4.7).

⇒ Switch off the engine and ignition.
⇒ When measuring the exhaust-gas emissions upstream of the catalytic converter, the full length of the sampling hose (8 m) must be used between the analyzer and the sampling point in the vehicle.

Observe the temperature limit for the viton hose (max. 200 °C).

The filter (36) must also be used.
⇒ Start analysis by pressing the pump button (9).

When using the special "oil temperature sensor" and "inductive clip-on pickup":
⇒ Make an earthing connection between the exhaust-gas analyzer and the vehicle.
⇒ Clip the inductive clip-on pickup to an ignition cable in the engine compartment at such a point that it is as far away as possible from any other ignition cables.
⇒ Set the number of ignition pulses using the button (6) (see chapter 6.2.4).
⇒ Select the sensor and measuring point using the button (7) (see chapter 6.2.3).
⇒ Adjust the oil temperature sensor to the length of the dipstick with the sealing cone.
⇒ Insert the oil temperature sensor into the cylinder block instead of the dipstick.
⇒ Start the engine.

4.4 Recalibration with test gas

Particularly high long-term stability is a feature of the analyzer. Nevertheless, legal requirements may entail its recalibration at regular intervals. Service agencies set the requisite parameters. Before the calibration period has expired, the following warning is displayed:

The unit must then be recalibrated with test gas up to expiration of the calibration period, in accordance with chapter 8.10.

4.5 Maintenance

Regular maintenance will ensure that the unit will continue to operate reliably and accurately. If the appointed date for maintenance becomes overdue, the following message is displayed in standby mode to remind you that maintenance is necessary:

You have to update the maintanance date in entry mode (see chapter 5.3.5). Maintenance see chapter 8.
4.6 Diagnosis measurement

4.6.1 Diagnosis measurement without data terminal

Diagnosis measurement is started from standby mode.

Start diagnosis measurement by pressing the pump button (9).

Note: You can abort measurement at any time by pressing the pump button (9) again.

The type of fuel set is displayed.
The cylinder symbol (21) flashes.

You can switch between these fuel types within 6 seconds by pressing the button (6):

- Petrol
- Liquid Petroleum Gas
- Compressed Natural Gas
- Methanol

An automatic system check is carried out depending on the status of the exhaust-gas analyzer. Duration: 30 s.

An automatic HC residue test is carried out. Duration: 6 s.

⇒ Print out a protocol by pressing the button (8)

Note: If you press the button (8) again while a measurement is in progress, the instantaneous measured values are printed out without a protocol header each time you press the button.

⇒ To end measurement and scavenge the analyzer, press the pump button (9).

4.6.2 Diagnosis measurement with data terminal (special accessory)

Diagnosis measurement is started from the main menu.

Mode of operation

F1 = Emission test (two speed)
F4 = Leak test
F5 = Diagnosis
F6 = Pulses/720°/RC
F9 = Parameter setting
Start diagnosis measurement by pressing function key F5.

Note: You can abort measurement at any time by pressing key F10.

The type of fuel set is displayed.

<table>
<thead>
<tr>
<th>Type of fuel: (P/L/C/M)</th>
<th>P = Petrol, LPG, CNG, Methanol</th>
</tr>
</thead>
</table>

Enter = Continue

Input: initial letter P, L, C, M.

Default setting is P (petrol)

LPG = Liquid Petroleum Gas
CNG = Compressed Natural Gas

Note: Confirm your setting by pressing the ENTER key.

An automatic CAL system check is carried out depending on the status of the exhaust-gas analyzer. Duration: 30 s.

System check F10 = Finish

An automatic HC residue test is carried out. Duration: 6 s.

ppm vol HC max 20 real 210*

System check F10 = Finish

After this test, the instantaneous measured values for the ambient air are displayed.

Note: Select the speed sensor, the measuring point and the number of pulses by pressing F6 (see chapter 4.8.1).

Print out a protocol by pressing the F3 key.

Note: If you press F3 again while a measurement is in progress, the instantaneous measured values are printed out without a protocol header each time you press the button.

To end measurement and scavenge the analyzer, press F10.

4.7 Emission test without data terminal

The emission test is started from standby mode.

Start the test by pressing the button (8).

Note: You can abort measurement at any time by pressing the pump button (9) again.

The type of fuel set is displayed.

The cylinder symbol (21) flashes.

You can switch between these fuel types by pressing the button (6):

- Petrol
- LPG = Liquid Petroleum Gas
- CNG = Compressed Natural Gas
- Methanol

By pressing the button (8) or automatically after 6 s, an automatic system check is carried out.

Duration: 30 s.
An automatic HC residue test is carried out. Duration: 6 s.

The conditioning phase is started automatically.

Note: Select the speed sensor and measuring point by pressing the button (7) (see chapter 6.2.3). The number of pulses is set using the button (6) (see chapter 6.2.4).

Wait until the printer symbol (20) flashes.

When the normal operating oil temperature has been reached (see manufacturer’s specifications):

⇒ push the sampling probe (38) into the exhaust tailpipe or the common collector pipe as far as possible. Fasten the sampling probe to the tailpipe using the clip provided.

⇒ end conditioning by pressing the printer button (8) and begin measurement.

Depending on how the analyzer has been parameterised (see chapter 5.3.15, Parameterisation of the sequence test), the measurement can be carried out following 2 different sequences:

- Measurement in which measurement taken at high idle speed comes second in sequence. Default parameterisation. Switchover from measurement at idle speed to measurement at high idle speed is performed manually.

- Measurement in which measurement taken at high idle speed comes first in sequence. Switchover from measurement at high idle speed to measurement at idle speed is performed automatically.

4.7.1 Measurement in which measurement taken at high idle speed comes second in sequence (closed-loop cat., open-loop cat., no cat.)

Note: If the actual engine speed is higher than the maximum permissible value, the speed indicator (12) flashes and automatic switchover to the gas analysis time does not take place.

If the actual engine speed is correct or if the speed override is activated (see chapter 5.3.15, Parameterisation of the test sequence, setting EU.EQ, parameter drbr), the gas analysis time lasting 30 s begins after you press the button (8).

Once the gas analysis time has expired, the printer symbol (20) flashes

⇒ Press the printer button (8).

The measured values taken during measurement at idle speed are stored and measurement at high idle speed is automatically started.

Note: If measurement at high idle speed is not be carried out (e.g. for a vehicle without a catalytic converter (cat.), the button (8) must be pressed once more within the space of 3 s. A protocol is printed out with the header, the results of the first measurement and the protocol footer as parameterised. The exhaust-gas analyzer is then scavenged.

Note: If the actual engine speed is higher than the maximum permissible value, the speed indicator (12) flashes and automatic switchover to the gas analysis time does not take place.

If the actual engine speed is correct or if the speed override is activated (see chapter 5.3.15, Parameterisation of the test sequence, setting EU.EQ, parameter drbr), the gas analysis time lasting 30 s begins after you press the button (8).

Once the gas analysis time has expired, the printer symbol (20) flashes

⇒ Press the printer button (8).

The measured values taken during measurement at idle speed are stored and measurement at high idle speed is automatically started.

Note: If measurement at high idle speed is not be carried out (e.g. for a vehicle without a catalytic converter (cat.), the button (8) must be pressed once more within the space of 3 s. A protocol is printed out with the header, the results of the first measurement and the protocol footer as parameterised. The exhaust-gas analyzer is then scavenged.

Note: If the actual engine speed is higher than the maximum permissible value, the speed indicator (12) flashes and automatic switchover to the gas analysis time does not take place.

If the actual engine speed is correct or if the speed override is activated (see chapter 5.3.15, Parameterisation of the test sequence, setting EU.EQ, parameter drbr), the gas analysis time lasting 30 s begins after you press the button (8).

Once the gas analysis time has expired, the printer symbol (20) flashes

⇒ Press the printer button (8).

The measured values taken during measurement at idle speed are stored and measurement at high idle speed is automatically started.

Note: If measurement at high idle speed is not be carried out (e.g. for a vehicle without a catalytic converter (cat.), the button (8) must be pressed once more within the space of 3 s. A protocol is printed out with the header, the results of the first measurement and the protocol footer as parameterised. The exhaust-gas analyzer is then scavenged.
Note: The value in the speed window can be increased by pressing the button (100 rpm per press of the button; setting range: 1500 - 3300 rpm + 400 rpm). When the maximum settable value is reached, the value automatically jumps to the lowest value. If the actual speed does not agree with the value in the speed window, the speed indicator (12) flashes and automatic switchover to the gas analysis time does not take place.

If the actual engine speed is correct or if the speed over-ride is activated (see chapter 5.3.15, Parameterisation of the test sequence, setting EU.E0, parameter drbr.), the gas analysis time lasting 30 s begins after you press the button (8).

Once the gas analysis time has expired, the measured values taken during the second measurement are automatically stored, the protocol printed out and measurement terminated.

The exhaust-gas analyzer is then scavenged.

4.7.2 Measurement in which measurement taken at high idle speed comes first in sequence (closed-loop cat. only)

● Measurement at high idle speed

The actual engine speed (12) and speed window (min. and max. of required speed (11 + 14)) are displayed.

Note: If the actual speed does not agree with the value in the speed window, the speed indicator (12) flashes and automatic switchover to the gas analysis time does not take place.

If the actual engine speed is correct, the gas analysis time lasting 30 s begins.

Once the gas analysis time for measurement at high idle speed has expired, the analyzer automatically switches over to measurement at idle speed.

- Measurement at idle speed

The actual engine speed (12) and maximum permissible idle speed (15) are displayed.

Note: If the actual engine speed is higher than the maximum permissible value, the speed indicator (12) flashes and automatic switchover to the gas analysis time does not take place.

If the actual engine speed is correct or if the speed over-ride is activated (see chapter 5.3.15, Parameterisation of the test sequence, setting EU.E0, parameter drbr.), the gas analysis time lasting 30 s begins after you press the button (8).

Once the gas analysis time has expired, the printer symbol (8) flashes.

Press the button (8).

The measured values taken are stored, the protocol printed out and measurement terminated.

The exhaust-gas analyzer is then scavenged.
4.8 Emission test with data terminal (special accessory)

The following basic menu is displayed on the data terminal:

<table>
<thead>
<tr>
<th>Mode of operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 = Emission test (two speed)</td>
</tr>
<tr>
<td>F4 = Leak test</td>
</tr>
<tr>
<td>F6 = Pulses/720’RC</td>
</tr>
<tr>
<td>F5 = Diagnosis</td>
</tr>
<tr>
<td>F9 = Parameter setting</td>
</tr>
</tbody>
</table>

4.8.1 Function keys on the data terminal

F1 Emission test

Official test for vehicles with spark-ignition engines with closed-loop-controlled fuel management system, other exhaust emission control systems and without exhaust emission control system.

F3 Print

Leads to a printout on the integral or externally connected printer.
- In the diagnosis measurement and emission test sequences, the instantaneous measured values are printed out.
- In the emission test sequences, function key F3 is not required since the printouts are made automatically.

F4 Leak test

Warning! Risk of burning yourself!

The sampling hole of the exhaust-gas analyzer may still be very hot after the previous measurement.
- The sampling probe (38) must be sealed with the sealing plug (42).

F5 Diagnosis measurement

After calibration, the following mask is displayed:

Type of fuel: (P/L/C/M) ᵇ

Petrol, LPG, CNG, Methanol Enter = Continue

For further description of diagnosis measurement see chapter 4.6.2.

F6 Entering the engine speed measuring point and number of pulses

To enable universal engine speed measurement on different ignition systems (single-/dual-spark, RUV), the system offers the ability to choose an engine speed (RPM) measuring point and RPM sensor (trigger clip-on pickup, secondary, primary/connecting cable term. 1/B-) and to set the number of pulses picked up every 2 revolutions of the crankshaft.

The setting can be changed in standby mode, during diagnosis measurement and during the first step of the emission test by carrying out an engine speed measurement.

- Entering the RPM measuring point

<table>
<thead>
<tr>
<th>RPM sensors measuring point EFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>n[/min] 0 at pulses/720’RC = 1</td>
</tr>
</tbody>
</table>

RPM sensors measuring point OK? (Y/N) ᵇ

⇒ Enter Y (yes) to move on to entering the number of pulses
⇒ After entering N (no), you can change the RPM measuring point

Selecting the rpm sensors measuring point n[/min] 0 at pulses/720’RC = 1

| EFS, DFS, I-Prim, Prim.-L (E/D/I/P) ? ᵇ |

⇒ Enter the initial letter: E, D, I or P
⇒ Default: E (EFS)
⇒ Continue by pressing ENTER

<table>
<thead>
<tr>
<th>RPM sensors measuring point EFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>n[/min] 2500 at pulses/720’RC = 1</td>
</tr>
</tbody>
</table>

RPM sensors measuring point OK? (Y/N) ᵇ

⇒ Enter Y (yes) to move on to entering the number of pulses
⇒ After entering N (no), the program returns to changing the RPM measuring point
Entering the number of pulses

<table>
<thead>
<tr>
<th>Number of pulses/720° rev. of crankshaft n[\text{min}] 2500 at pulses/720°RC = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring point EFS</td>
</tr>
<tr>
<td>Number of pulses OK? (Y/N) Y</td>
</tr>
</tbody>
</table>

⇒ Enter Y (yes) to end input of the RPM measuring point and number of pulses
⇒ After entering N (no), you can change the number of pulses

Setting the pulse rate/720° rev. of crank
n[\text{min}] 2500 at pulses/720°RC = 1

⇒ Enter a number: 1...6, 8, 10 or 12
Standard is 1
⇒ Continue by pressing ENTER

<table>
<thead>
<tr>
<th>Number of pulses/7200° rev. of crankshaft n[\text{min}] 2500 at pulses/720°RC = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring point EFS</td>
</tr>
<tr>
<td>Number of pulses OK? (Y/N) Y</td>
</tr>
</tbody>
</table>

⇒ Enter Y (yes) to end input of the RPM measuring point and number of pulses
⇒ After entering N (no), the program returns to changing the number of pulses

F9 Entering the workshop address, unit ID and date

The display of the data terminal displays the input mask for the protocol header (workshop address), registration (number) plate, signature, date and time, and final (advertising) text. In addition, the version number and the next maintenance date are displayed.

<table>
<thead>
<tr>
<th>P = Protocol head VERS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = Number plate Maintenance: 15.01.97</td>
</tr>
<tr>
<td>S = Signature A = Advertising</td>
</tr>
<tr>
<td>D = Date / time F10 = Finish</td>
</tr>
</tbody>
</table>

F10 Finish
This key enables you to abort a measuring procedure at any time. The program returns to the main menu.

Timeout
If no entry is made or an operator prompt is not replied to within 10 minutes, the analyzer automatically aborts measurement (a statutory requirement).
Message: “Emission test was interrupted”

4.8.2 Measurement in which measurement taken at high idle speed comes second in sequence (closed-loop cat., open loop cat., no cat.)

Note: Measurement at high idle speed is only performed on vehicles fitted with a closed-loop catalytic converter (see chapter 5.3.15, Parameterisation of the sequence test).

The emission test is started from the main menu.

Mode of operation
F1 = Emission test (two speed)
F4 = Leak test F6 = Pulses/720°RC
F5 = Diagnosis F9 = Parameter setting

⇒ Start the emission test by pressing key F1.
Note: You can abort the emission test at any time by pressing key F10.

The type of fuel set is displayed.

Type of fuel: \text{P/L/C/M}
Petrol, LPG, CNG, Methanol Enter = Continue

⇒ Input: initial letter \text{P, L, C, M}
Standard is \text{P} (petrol)
LPG Liquid Petroleum Gas
CNG Compressed Natural Gas

⇒ Confirm your setting by pressing the ENTER key. An automatic CAL system check is carried out for 30 s.

Emission test
System check F10 = Finish

An automatic HC residue test is carried out. Duration: 6 s.

<table>
<thead>
<tr>
<th>ppm vol HC max 20 real 210*</th>
</tr>
</thead>
<tbody>
<tr>
<td>System check F10 = Finish</td>
</tr>
</tbody>
</table>

The conditioning phase is started.

Type of fuel: Petrol
Oil temperature [°C]: 82
Real engine running speed n[\text{min}]: 800
F6= Pulses/720°RC Enter = Continue
Note: Select the speed sensor, the measuring point and the number of pulses by pressing F6 (see chapter 4.8.1).

⇒ Push the sampling probe (38) into the exhaust tailpipe or the common collector pipe as far as possible. Fasten the sampling probe to the tailpipe using the clip provided.

⇒ Continue by pressing ENTER

• Measurement at idle speed

Maximum engine running speed n[/min]: 1300
Real engine running speed n[/min]: 2550

Is sampling probe in exhaust pipe?
F3= Continue F6=Pulses/720°RC Change RPM

Note: If the actual engine speed is lower than the maximum permissible value, automatic switchover to the gas analysis time does not take place.

⇒ Bring the engine up to idle speed.

If the actual engine speed is correct or if the speed override is activated (see chapter 5.3.15, Parameterisation of the test sequence, setting EU.EO, parameter drbr.), the gas analysis time lasting 30 s begins after you press F3.

ppm vol HC 214 %vol CO 0.156
% vol O2 21.09 %vol CO2 13.04
n[/min] 1400 λ ----
F6 = Pulses/720°RC Gas running time: 29

Once the gas analysis time has expired, the following mask is displayed:

ppm vol HC 214 %vol CO 0.156
% vol O2 21.09 %vol CO2 13.04
n[/min] 800 λ ----
F6= Pulses/720°RC Enter = Continue

⇒ Continue by pressing ENTER

The measured values taken during measurement at idle speed are stored.

ppm vol HC 214 %vol CO 0.156
% vol O2 21.09 %vol CO2 13.04
n[/min] 800 λ ----
F3 = Quit/Print Enter = Continue

Note: If measurement at high idle speed is not be carried out (e.g. for a vehicle without a catalytic converter (cat.), the F3 key must be pressed once more within the space of 5 s. A protocol is printed out in accordance with the parameters set. The exhaust-gas analyzer is then scavenged.

⇒ Switch directly to measurement at high idle speed by pressing ENTER or wait for 5 s for this second measurement to be started automatically.

• Measurement at high idle speed

Required engine running speed n[/min] 2500 +/- 200
Real engine running speed n[/min]: 800
Speed range 1700-3500 rpm ENTER = Change

Note: The required engine speed can be increased by pressing the ENTER key (100 rpm per press of the key; setting range: 1700 – 3500 rpm ± 200 rpm). When the maximum settable value is reached, the value automatically jumps to the lowest value.

If the actual speed does not agree with the required speed by ± 200 rpm, automatic switchover to the gas analysis time does not take place.

⇒ Bring the engine up to required speed and hold it there.

If the actual engine speed is correct, the gas analysis time lasting 30 s begins.

ppm vol HC 214 %vol CO 0.156
% vol O2 21.09 %vol CO2 13.04
n[/min] 800 λ ----
F6 = Pulses/720°RC Gas running time: 29

Once the gas analysis time has expired, measurement is terminated automatically, the measured values taken during measurement at high idle speed are stored and a protocol is printed out in accordance with the parameters set.

The exhaust-gas analyzer is then scavenged.

4.8.3 Measurement in which measurement taken at high idle speed comes first in sequence (closed-loop cat. only)

Measurement in which measurement taken at high idle speed comes first in the sequence is performed along the same lines as described in chapter 4.8.2. This mode of measurement is, however, not suitable for vehicles not fitted with a catalytic converter.
The switchover from measurement at high idle speed to measurement at idle speed takes place automatically. Measurement is terminated manually.

4.9 **Copy of the protocol of an exhaust-emission measurement**

When the exhaust-gas analyzer is in standby mode after an exhaust-emission measurement, you can print out a copy of the protocol printout of the last measurement.

Note: If during this procedure you do not press a button during any period of 6 s, the program will automatically return to standby mode.

The exhaust-gas analyzer is in standby mode.

⇒ Press the \(\text{II} \) (7) and \(\text{III} \) (6) buttons at the same time.

The values from the last measurement at idle speed are displayed:

⇒ Press the \(\text{III} \) button (6).

The values from the last measurement at high idle speed are displayed:

⇒ Press the \(\text{III} \) button (6) once again.

A copy of the protocol printout from the last exhaust-emission measurement is printed out.

Note: This printout is marked with the word Copy above the protocol header.
4.10 Protocol printouts

Different protocols are printed out depending on the test procedure performed.

Note: The content of the protocol printouts depends on the parameters set.

● Protocol printout of a diagnosis measurement

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>>VAS 5067 V5.72 <</td>
<td>Unit ID</td>
</tr>
<tr>
<td>Car Gold Garage</td>
<td>Protocol header</td>
</tr>
<tr>
<td>Hattenham Drive 4</td>
<td>(6 lines)</td>
</tr>
<tr>
<td>New Hasletown</td>
<td></td>
</tr>
<tr>
<td>Tel.: 01234/567-0</td>
<td>Date/time</td>
</tr>
<tr>
<td>Fax : 01234/567-99</td>
<td>Type of fuel</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>27.06.96 14:01</td>
<td>Measurement results</td>
</tr>
<tr>
<td></td>
<td>in acc. with parameters sets</td>
</tr>
<tr>
<td>PEtr</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>80</td>
</tr>
<tr>
<td>1/min</td>
<td>600</td>
</tr>
<tr>
<td>% vol CO</td>
<td>0.098</td>
</tr>
<tr>
<td>% vol CO2</td>
<td>14.33</td>
</tr>
<tr>
<td>% vol O2</td>
<td>0.53</td>
</tr>
<tr>
<td>ppm vol HC</td>
<td>20</td>
</tr>
</tbody>
</table>

If you press the button (8) again while a measurement is in progress, the instantaneous measured values are printed out without a protocol header.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27.06.96 14:04</td>
<td></td>
</tr>
<tr>
<td>PEtr</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>80</td>
</tr>
<tr>
<td>1/min</td>
<td>600</td>
</tr>
<tr>
<td>% vol CO</td>
<td>0.098</td>
</tr>
<tr>
<td>% vol CO2</td>
<td>14.33</td>
</tr>
<tr>
<td>% vol O2</td>
<td>0.53</td>
</tr>
<tr>
<td>ppm vol HC</td>
<td>20</td>
</tr>
</tbody>
</table>

* See chapter 5.3, Entry mode functions, entry function nos. 2, 3 and 6.

● Protocol printout of an emission measurement, 1st and 2nd measurements

------------------------	Unit ID
>VAS 5067 V5.72 <	
Car Gold Garage	Protocol header
Hattenham Drive 4	(6 lines)
New Hasletown	
Tel.: 01234/567-0	Date/time
Fax : 01234/567-99	Type of fuel
	Measurement results
	in acc. with parameters sets
PEtr	
°C	80
1/min	600
% vol CO	0.098
% vol CO2	14.33
% vol O2	0.53
ppm vol HC	20

------------------------	Measurement results
	in acc. with parameters sets
Number plate	
Signature	
<<< Have a nice day >>>	

Note: If you request a copy of the protocol printout, this copy is marked with the word Copy above the protocol header.

* See chapter 5.3, Entry mode functions, entry function no. 15.
Protocol printout of an emission measurement, 1st measurement only

>VAS 5067 V5.72 <

Car Gold Garage
Hattenham Drive 4
New Hasletown
Tel.: 01234/567-0
Fax: 01234/567-99

27.06.96 14:11

PEtr

Results without cat.

Parameter	Value
°C	80
1/min	600
% vol CO	0.098
% vol CO2	14.33
% vol O2	0.53
ppm vol HC	20

Number plate

Signature

<<< Have a nice day >>>
5 Functions of parameterisation and test functions

Various unit parameters are set in entry mode.

There is no warming-up time in entry mode. If measurements are carried out in this mode, the zero point drift has to be observed.

Note: A flashing LED is shown here in **bold** print.

/G4c/G45/G64
Display normal
/Led
Display flashing

5.1 Accessing entry mode

Entry mode is accessed in the following way:

⇒ Press the mains switch (5).

The following display (1) will appear:

```
  8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
```

Hold down the printer button (8) for as long as this display is present.

5.2 Operation in entry mode

Digital displays 10 - 14 display values or symbols which can be viewed or changed.

The symbols of the entry function are displayed in digital display 15.1.

The status of the entry function is displayed in digital display 15.2:

- An. Function display
- Ei. Entry
- Ab. Routine running

The number of the entry function is displayed in digital display 18.

Meaning of the buttons

- **Button (9)** - Pressing the button will reduce the number of the entry function.
- **Selection** of the lower setting within an application (if possible).
- **Reduction** of the level set.

- **Button (8)** - Pressing the button will implement adjustment of a selected application.
 Example: the display "An" will change to "Ei" or "Ab" in the display field for the oil temperature.
- **Activation** of a setting in a setting application.
- **Adoption** of a setting and exit from the application.

- **Button (7)** - Pressing the button will increase the number of the entry function
 - Selection of the higher setting within an application
 - Increase of the level set.

Example:

Select an application by pressing the
⇒ **button (9)** or **button (7)**

Activate an application by pressing the
⇒ **button (8)**

Select a setting within an application by pressing the
⇒ **button (8)**

Activate a setting by pressing the
⇒ **button (8)**
5.3 Entry mode functions

<table>
<thead>
<tr>
<th>Number of the entry function</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AJ An</td>
<td>Recalibration with test gas (AJ function)</td>
</tr>
<tr>
<td>1</td>
<td>Uh An</td>
<td>Entry of date and time</td>
</tr>
<tr>
<td>2</td>
<td>LA An</td>
<td>Lambda calculation on/off</td>
</tr>
<tr>
<td>3</td>
<td>CO An</td>
<td>CO\textsubscript{corr} calculation on/off</td>
</tr>
<tr>
<td>4</td>
<td>Sr An</td>
<td>Updating the maintenance date</td>
</tr>
<tr>
<td>5</td>
<td>Pe An</td>
<td>Parameter printout</td>
</tr>
<tr>
<td>6</td>
<td>GS An</td>
<td>\textit{O}_2 measurement on/off</td>
</tr>
<tr>
<td>7</td>
<td>Sp An</td>
<td>Number of printouts</td>
</tr>
<tr>
<td>8</td>
<td>LP An</td>
<td>Printer selection</td>
</tr>
<tr>
<td>9</td>
<td>Sc An</td>
<td>Configuration of the analog current interface</td>
</tr>
<tr>
<td>10</td>
<td>Q2 An</td>
<td>Analysis mode, oxygen measurement</td>
</tr>
<tr>
<td>11</td>
<td>Pu An</td>
<td>Pump in entry mode on/off</td>
</tr>
<tr>
<td>12</td>
<td>An An</td>
<td>Analysis mode, infrared channels</td>
</tr>
<tr>
<td>13</td>
<td>SS An</td>
<td>Configuration of serial ports</td>
</tr>
<tr>
<td>14</td>
<td>nb An</td>
<td>Switchover between old and new MOT protocol</td>
</tr>
<tr>
<td>15</td>
<td>EU An</td>
<td>Parameterisation of the test sequence</td>
</tr>
<tr>
<td>17</td>
<td>Jd An</td>
<td>Calibration data</td>
</tr>
<tr>
<td>18</td>
<td>Bd An</td>
<td>Unit data</td>
</tr>
<tr>
<td>19</td>
<td>EndE</td>
<td>Exit from entry mode</td>
</tr>
</tbody>
</table>

5.3.1 Calibration with certificated test gas

Note: The relevant EU directive stipulates that exhaust-gas analyzers must be recalibrated with certificated test gas at regular intervals by expert personnel. See chapter 8.10 for the relevant procedure.

Select the AJ function by pressing
⇒ the \(\Box\) button (9) or \(\Box\) button (7).

See chapter 8.10 for the relevant procedure.

5.3.2 Setting the clock

Select the "set clock" function by pressing
⇒ the \(\Box\) button (9) or \(\Box\) button (7).

Activate the setting function by pressing
⇒ the \(\Box\) button (8).

The number block for the hours flashes.

- **Block selection**
 Move the flashing number block to the next block by pressing
 ⇒ the \(\Box\) button (7).
 Move the flashing number block to the previous block by pressing
 ⇒ the \(\Box\) button (9).
 Activate the selected block by pressing
 ⇒ the \(\Box\) button (8).
 Activate "End" to exit the setting function.

- **Number selection**
 The first number in the block selected will flash.

Move the selected number to the next one by pressing
⇒ the \(\Box\) button (7).
Move the selected number to the previous one by pressing
⇒ the \(\Box\) button (9).
Activate the selected numbers by pressing
⇒ the \(\Box\) button (8).

⇒ The numbers can be changed.
Activate EndE: to return to block selection.

Increase the selected number by pressing

⇒ the ✬ button (7).

Reduce the selected number by pressing

⇒ the ❌ button (9).

Adopt the numbers set and return to number selection by pressing

⇒ the ▼ button (8).

5.3.3 Lambda calculation on/off

An oxygen sensor is installed for calculating lambda.

YES: Lambda will be calculated and displayed when exhaust analysis is carried out.

NO: Lambda will not be calculated.

5.3.4 CO_{corrected} calculation on/off

This change of setting is only possible if the CO_{corrected} switch is set to YES in calibration mode.

YES: CO_{corrected} will be calculated and printed out on the protocol.

NO: CO_{corrected} will not be calculated.

5.3.5 Updating the maintenance date

This switch must be set to YES and activated when routine maintenance is carried out. This deletes the prompt in the display telling you that maintenance must now be carried out. The date on which the next maintenance work must be carried out is now displayed.

5.3.6 Parameter printout

YES: Pressing the printer button will produce a parameter printout.

NO: No printout of parameter

5.3.7 O₂ sensor on/off

YES: Oxygen measurement is switched on.

NO: Oxygen measurement is switched off.

5.3.8 Duplicate printout on/off

YES: Pressing the printer button will produce a single printout.

NO: Pressing the printer button will produce two printouts.
5.3.9 Printer selection

- No printer installed
- Printer connected to serial port
- Integral printer

Afterwards, check the configuration serial interface (see chapter 5.3.13).

5.3.10 Setting the analogue current output (option)

- No analogue current interface installed
- Output range 0 to 20 mA for each measurement channel
- Output range 4 to 20 mA for each measurement channel

Afterwards, check the configuration serial interface (see chapter 5.3.13).

5.3.11 Oxygen measurement

The sensor voltage of the O₂ sensor will be displayed in the HC display field. The O₂ concentration measured will be displayed in the oxygen display field. The flow measured will be displayed in the CO₂ display field.

5.3.12 Pump in entry mode on/off

The pump can be switched on (YES) or off (no).

5.3.13 Analysis mode

In this mode, measurements can be viewed with the pump switched off.

First, a system test with zero gas is carried out.

The gas measurements are then displayed.

Caution! Drift correction does not operate in this mode, so the zero levels may drift, leading to errors.

5.3.14 Configuring the serial port

Serial ports SEr1 and SEr2 can be configured as follows:

- No unit connected
- External printer
- Data terminal
- 2400 baud serial protocol
- 9600 baud serial protocol

Afterwards, check the printer selection (see chapter 5.3.8) and setting of the analogue current output (see chapter 5.3.9).

5.3.15 Switchover of the serial protocol

Serial protocol A

Serial protocol B

The serial protocol B supports the communication with a computer. Protocol A is reserved for special applications.
5.3.16 Parameterisation of the test sequence

Note: The parameter of the test sequence can only be changed if the switch $/G43/G43$ is set to $/G59/G45/G53$ in calibration mode. The barring function can only be deactivated by a service technician.

Select the "Parameterisation of the test sequence" function by pressing

\Rightarrow the $/G$ button (9) or $/G$ button (7).

Select the settings under this function by pressing

\Rightarrow the $/G$ button (9) or $/G$ button (7).

You use the settings to parameterise the exhaust-gas analyzer.

The following settings are available:

- **0** $EUE0$ Parameterising the environment
- **1** $EUE1$ Parameterising meas. values of 1st measurement
- **2** $EUE2$ Parameterising meas. values of 2nd measurement
- **3** $EUE3$ Parameterising the language
- **4** $EUE4$ End and exiting the function

- Setting $EUE0$ "Parameterising the environment"

Select the settings under this function by pressing

\Rightarrow the $/G$ button (9) or $/G$ button (7).

The following parameters can be changed:

0 dAt Date and time (YES/no)
1 Adr Protocol header (YES/no)
2 Sig Signature (YES/no)
3 PrL Number plate (YES/no)
4 Eml Timing of measurement at high idle speed (E1/E2)
5 Adv Advertising line
6 $d-Br$ Speed override
7 $EndE$ Exit the parameter

Example of how to set a parameter:

The current setting is always displayed for each parameter (example in this case Date and time).

Select the settings under this function by pressing

\Rightarrow the $/G$ button (9) or $/G$ button (7).

Set the parameter by pressing

\Rightarrow the $/G$ button (9) or $/G$ button (7).

Adopt the setting and deactivate the parameter by pressing

\Rightarrow the $/G$ button (8).

- "Date and time" parameter
This parameter defines whether or not the current date and time will be printed on the protocol.

- **Date and time are not printed**
- **Date and time are printed**

- **"Protocol header" parameter**

This parameter defines whether or not the protocol header will be printed on the protocol.

- **Protocol header is not printed**
- **Protocol header is printed**

- **"Signature" parameter**

This parameter defines whether or not the protocol will contain a line in which the operators can write their name or signature by hand. The text "Signature" is entered by the service agent using the data terminal.

- **Signature is not printed**
- **Signature is printed**

- **"Number plate" parameter**

This parameter defines whether or not the protocol will contain a line in which the operators can write the chassis number of the vehicle tested. The text "Chassis No." is entered by the service agent using the data terminal.

- **Is not printed**
- **Is printed**

- **"Timing of measurement at high idle speed" parameter**

This parameter defines whether the measurement at high idle speed will come before (first in the sequence) or after the measurement at idle speed (second in the sequence).

- **Measurement at high idle speed first in sequence**
- **Measurement at high idle speed first in sequence**

- **"Advertising line" parameter**

This parameter defines whether or not the protocol will contain a line with an advertising text. The advertising text is entered by the service agent using the data terminal.

- **Advertising text is not printed**
- **Advertising text is printed**

- **"Speed override" parameter**

This parameter defines whether or not the minimum engine speed for the idle speed measurement and the preselected speed for the measurement at high idle speed will be able to be overridden by pressing a button.

- **Speed is not overridden.**
- **Speed is overridden.**

- **Setting EU.EI "Parameterising meas. values of 1st measurement"**

Activate the function by pressing

⇒ the button (8).
Select the settings under this function by pressing
→ the \(\text{\textcircled{2}} \) button (9) or \(\text{\rightarrow} \) button (7).

The following parameters can be changed:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\text{HC})</td>
<td>Printout of HC value (YES/no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(\text{CO})</td>
<td>Printout of CO value (YES/no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(\text{CO}_2)</td>
<td>Printout of (\text{CO}_2) value (YES/no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(\text{O}_2)</td>
<td>Printout of (\text{O}_2) value (YES/no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(\text{E})</td>
<td>Printout of engine speed (YES/no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(\text{s})</td>
<td>Printout of oil temperature (YES/no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(\text{l})</td>
<td>Printout of lambda value (YES/no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(\text{CF})</td>
<td>Printout of lambda value (YES/no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(\text{End})</td>
<td>Exiting the function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activate the parameter by pressing
→ the \(\text{\textcircled{2}} \) button (8).

Set the parameter by pressing
→ the \(\text{\textcircled{2}} \) button (9) or \(\text{\rightarrow} \) button (7).

Adopt the setting and deactivate the parameter by pressing
→ the \(\text{\textcircled{2}} \) button (8).

- **“Printout of HC value” parameter**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\text{HC})</td>
<td>(\text{E})</td>
</tr>
<tr>
<td>1</td>
<td>(\text{HC})</td>
<td>(\text{S})</td>
</tr>
</tbody>
</table>

This parameter defines whether or not the HC value will be printed out on the protocol.

- **CO value is not printed**
- **HC value is printed**

- **“Printout of CO value” parameter**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\text{CO})</td>
<td>(\text{E})</td>
</tr>
<tr>
<td>1</td>
<td>(\text{CO})</td>
<td>(\text{S})</td>
</tr>
</tbody>
</table>

This parameter defines whether or not the CO value will be printed out on the protocol.

- **CO value is not printed**
- **CO value is printed**

- **“Printout of \(\text{CO}_2 \) value” parameter”**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\text{\textcircled{2}})</td>
<td>(\text{E})</td>
</tr>
<tr>
<td>1</td>
<td>(\text{\textcircled{2}})</td>
<td>(\text{S})</td>
</tr>
</tbody>
</table>

This parameter defines whether or not the \(\text{CO}_2 \) value will be printed out on the protocol.

- **\(\text{CO}_2 \) value is not printed**
- **\(\text{CO}_2 \) value is printed**

- **“Printout of \(\text{O}_2 \) value” parameter”**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\text{\textcircled{2}})</td>
<td>(\text{E})</td>
</tr>
<tr>
<td>1</td>
<td>(\text{\textcircled{2}})</td>
<td>(\text{S})</td>
</tr>
</tbody>
</table>

This parameter defines whether or not the \(\text{O}_2 \) value will be printed out on the protocol.

- **\(\text{O}_2 \) value is not printed**
- **\(\text{O}_2 \) value is printed**

- **“Printout of engine speed” parameter”**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\text{\textcircled{2}})</td>
<td>(\text{E})</td>
</tr>
<tr>
<td>1</td>
<td>(\text{\textcircled{2}})</td>
<td>(\text{S})</td>
</tr>
</tbody>
</table>

This parameter defines whether or not the engine speed will be printed out on the protocol.

- **Engine speed is not printed**
- **Engine speed is printed**

- **“Printout of oil temperature” parameter”**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\text{\textcircled{2}})</td>
<td>(\text{E})</td>
</tr>
<tr>
<td>1</td>
<td>(\text{\textcircled{2}})</td>
<td>(\text{S})</td>
</tr>
</tbody>
</table>

This parameter defines whether or not the oil temperature will be printed out on the protocol.

- **Oil temperature is not printed**
- **Oil temperature is printed**
- "Printout of lambda value" parameter

This parameter defines whether or not the lambda value will be printed out on the protocol.

\[\begin{array}{c}
\text{\checkmark} & \text{Lambda value is not printed} \\
\text{\checkmark} & \text{Lambda value is printed}
\end{array} \]

- "Printout of CO_corrected value" parameter

This parameter defines whether or not the CO_corrected value will be printed out on the protocol.

\[\begin{array}{c}
\text{\checkmark} & \text{CO_corrected value is not printed} \\
\text{\checkmark} & \text{CO_corrected value is printed}
\end{array} \]

- Setting EU E2 "Parameterising meas. values of 2nd measurement"

The parameters for the 2nd measurement are set in the same way as those for the parameters for the 1st measurement.

- Setting EU E3 "Language / country selection"

Activate the function by pressing

\[\Rightarrow \text{the } \text{\checkmark} \text{ button (8)}. \]

The following language settings are available:

0 d German
1 d D. Danish
2 d B. English
3 CH-d Swiss German
4 CH-I Swiss Italian
5 CH-F Swiss French
6 nl Dutch
7 PL Polish
8 P Portuguese
9 E Spanish
10 H Hungarian
11 J Japanese
12 ALL6 General

Select the language you want to use by pressing

\[\Rightarrow \text{the } \text{\checkmark} \text{ button (9) or } \text{\checkmark} \text{ button (7)}. \]

Adopt the setting by pressing

\[\Rightarrow \text{the } \text{\checkmark} \text{ button (8)}. \]

Note: When the language/country setting is changed, the basic parameters are also changed accordingly.

5.3.17 Displaying the calibration data

Activate the function by pressing

\[\Rightarrow \text{the } \text{\checkmark} \text{ button (8)}. \]

Select the settings by pressing

\[\Rightarrow \text{the } \text{\checkmark} \text{ button (9) or } \text{\checkmark} \text{ button (7)}. \]

The settings can be used to query calibration data.

- Software version and checksum

\[\begin{array}{c}
U 1 \ 3 \ L \\
U 3 \ 1 \ 0 \\
U A S \\
S 0 6 7 \\
C E 1 b \\
S U A n \ \ 0
\end{array} \]
Displayed above are, e.g., software version 3.10 and checksum 3E 3B.

- **Date for next recalibration and calibration interval**

 2509 1995 3S 6E 1A 2

- **Gases required (HC, CO, CO₂) for recalibration**

 YES Gas required for recalibration

 NO Gas not required

 The text is shown in the displays of the relevant gases.

- **Consequences when recalibration due**

 NO Recalibration not required

 YES 1D "Recalibration required" message

 SPE- Unit is disabled.

- **Setting leak test interval**

 STAND Standard (default) setting. A leak test is required each time the unit is switched on.

 NO Leak test not required.

 TARE Number of days after which a leak test is required.

- **Display of "official test" (country-specific regulations fulfilled)**

 YES All calibration data according to regulations

 NO Not all calibration data according to regulations

- **"Change of settings" parameter**

 YES "Change of settings" in entry mode enabled

 NO "Change of settings" in entry mode disabled

- **Date for next service (maintenance) and service interval (in days)**

 2103 1995 180 1A 2E 5A 2

- **Display of HC₉₋, OC₉₋ and sum factors**

 These types of fuel and their factors can be displayed in a submenu:

 - **PETR** Petrol
 - **LPG** Liquid Petroleum Gas
 - **CNB** Compressed Natural Gas
 - **CDH** Methanol
Open the submenu by pressing ⇒ the button (8).

Display the factors by pressing ⇒ the button (8).

⇒ Press the button (7).

⇒ Press the button (7).

⇒ Press the button (7).

⇒ Press the button (8).

Move to the next type of fuel by pressing ⇒ the button (7).

The factors of all the other types of fuel are displayed in the same way.

● End of the “Calibration data” submenu

5.3.18 Unit data

Activate the function by pressing ⇒ the button (8)

Select the settings by pressing ⇒ the button (9) or button (7).

Activate the settings by pressing ⇒ the button (8)

The settings can be used to query specific pieces of information about the unit.

● Measurements from the infrared channels on the analogue/digital converter and temperature of the analysis chapter.

● Temperature-corrected analogue/digital converter levels and temperature.

● Raw data
• Power supply voltage as a percentage of nominal voltage

U PR - - -

• Information on the installation date and the voltage of the O₂ sensor at the time of installation. Amendment of the date and sensor voltage.

0 2 1 n - - -

• Flow sensor voltage and display.

A d w d - - -

• Air pressure sensor voltage and display.

A d w 1 - - -

• End of the “Unit data” submenu.

End E - - -

5.3.19 End of entry mode

The entry mode is exited. The unit is restarted.

- - - - End E 19
6 Special accessories

6.1 Protocol printer

When the analyzer gas is switched on, a protocol can be printed out on the protocol printer (2) (if installed), showing the following details corresponding to the parameterisation (see chapter 5.3.15)
- All the measurements at the time the button is pressed
Programming is carried out during commissioning by the service agency, using a data terminal. An external printer can be connected to the serial port (RS 232) (56). Parameterisation takes place in entry mode (see chapters 5.3.8 and 5.3.13).

6.1.1 Changing the paper

⇒ Turn the knurled knob (1) and open the flap downwards.
⇒ Remove the retaining bar (2), lift the empty paper roll (3) slightly and remove it.
⇒ Push the new roll on to the spindle and lay it in the printer casing. Observe the direction of unrolling shown in the figure.
⇒ Cut off the end of the paper to leave a straight edge with right angles and feed it through the printer mechanism (5).
⇒ Press the feed button (4) until the paper protrudes about 5 cm from the printer mechanism.
⇒ Feed the paper through the opening with the cutter bar.
⇒ Replace the retaining bar.
⇒ Close the flap and press in the knurled knob.

6.1.2 Changing the printer ribbon

⇒ Tear off the paper.
⇒ Turn the knurled knob and open the flap downwards.
⇒ The ribbon can be removed by pressing the point marked PUSH on the ribbon cassette (5).
⇒ Insert the ribbon cassette:
 place the drive wheel (8) on the drive shaft. Then press the ribbon cassette in gently, applying slight pressure at the point marked PUSH. The ribbon (7) must be underneath the paper (6).
⇒ Align the ribbon and place it under slight tension by turning the drive wheel (in the direction shown by the arrow).
⇒ Press the feed button (4) until the paper protrudes about 5 cm from the printer mechanism.
⇒ Feed the paper through the opening with the cutter bar.
⇒ Close the flap and press in the knurled knob.

6.2 Engine-speed measurement

6.2.1 Connecting the sensors to the exhaust-gas analyzer

On the rear of the unit are 2 sockets that can be used for connecting various sensors for measuring the engine speed.
6.2.2 Performing engine-speed measurement

Warning! Always switch off the engine and ignition before carrying out any type of work on the ignition system.

⇒ Connect clamp B- of connecting cable term. 1, TD/TN, EST and B- to the negative battery terminal or an vehicle earthing-point.

Warning! This connection must always be made, even if the measurement is being taken using the clip-on pickup. It is possible when connecting the clip-on pickup that physical injury and/or damage to property may arise due to flashover if the ignition system is faulty. For this reason, always connect an earthing lead before operating the exhaust-gas analyzer.

⇒ Clip the trigger clip-on pickup on to the spark-plug cable on which the measuring point is most easily accessible or

⇒ Pick off the engine-speed signal at the most accessible measuring point using the banana plug of the connecting cable.

6.2.3 Selecting the sensor and measuring point

The origin of the engine-speed signal must be set by means of the selector button (7). When you press the button once, the symbol for the current setting appears for approx. 6 s. in the oil temperature display field (15.1/15.2). The speed display field (12) displays the engine speed. Each press of the button now switches you to the next possible setting.

The following settings are possible:

EFS Measurement using the trigger clamp-on pickup on the secondary side of ignition systems with rotating ignition distribution (ROV and 2 × ROV) and ignition systems with single-spark coils and crankshaft and camshaft sensors (EFS with NW) (NW = camshaft)
dFS Measurement using the trigger clamp-on pickup on the secondary side (ignition cable) of ignition systems with dual-spark coils (DFS) and ignition systems with single-spark coils without camshaft sensor (EFS)
I-Pr Measurement using the trigger clamp-on pickup on the primary side, term. 1 or 15 of one or all ignition circuits
Pr.-L Measurement using the connecting cable (term. 1, TD/TN, EST and B-) on term. 1, TD/TN or EST signals

6.2.4 Setting the pulse rate

The pulse rate must be set at the exhaust-gas analyzer using the button (6). The setting mode is activated through a single press. Every supplementary press switches to the next pulse rate.

During engine-speed measurement, the number of pulses for two revolutions of the crankshaft (720°) is evaluated. These pulses can be secondary signals (ignition pulses), primary signals (term. 1 or term. 15 pulses / currents or voltages) or pulses (voltages) that supply a signal that corresponds to the engine speed (e.g. TD or TN signal).

It is therefore necessary to set the number of pulses.

Possible pulse rates are: 1, 2, 3, 4, 5, 6, 8, 10 and 12.

The number of pulses per 720° revolution of the crankshaft depends on various factors:

Type of engine: 4-stroke, 2-stroke or rotary piston (Wankel)

No. of cylinders 1, 2, 3, 4, 5, 6, 8, 10, 12
Type of ignition: Rotating ignition distribution with one ignition distributor (ROV)
rotating ignition distribution with two ignition distributors (2 × ROV)
Ignition system with single-spark coil and crankshaft sensor (EFS)
Ignition system with single-spark coil, crankshaft and camshaft sensor (EFS with NW)

Ignition system with dual-spark coils (DFS)

Measuring point see chapter 6.2.5

The pulse rate present in the type of vehicle being tested must be taken from the table below and set at the exhaust-gas analyzer:

<table>
<thead>
<tr>
<th>Ignition system</th>
<th>Engine</th>
<th>Trigger clamp-on pickup</th>
<th>Connecting cable term 1 TD/TN, EST and B-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I-PrR</td>
<td>dFS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EFS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pr.-L</td>
</tr>
</tbody>
</table>

Display on VAS 5067 in °C - display fields (15.1/15.2)

Measuring points as depicted in figures

<table>
<thead>
<tr>
<th>Item 3, 4</th>
<th>Item 5</th>
<th>Item 6</th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>No figure</th>
<th>Term. 1/15 one ignition circuit</th>
<th>Term. 1/15 common cable of align. circuits</th>
<th>Spark-plug cable</th>
<th>Cable betw. coil and dis- tri-butor</th>
<th>Term. 1 of an ignition circuit</th>
<th>Control signals e.g. TN, TK, EST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROV 4T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Z</td>
<td>Z</td>
<td>-</td>
<td>1</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>ROV 2T/Wankel</td>
<td>2 × Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Z/2</td>
<td>2 × Z</td>
<td>-</td>
<td>2</td>
<td>2 × Z</td>
<td>Z</td>
</tr>
<tr>
<td>2-ROV 4T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Z/2</td>
<td>Z/2</td>
<td>-</td>
<td>1</td>
<td>Z/2</td>
<td>Z</td>
</tr>
<tr>
<td>EFS 4T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Z</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>EFS 2T/Wankel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 × Z</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>Z</td>
</tr>
<tr>
<td>EFS with NW 4T</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>Z</td>
</tr>
<tr>
<td>EFS with NW 2T/Wankel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 × Z</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>DFS 4T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Z</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>DFS 2T/Wankel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 × Z</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>Z</td>
</tr>
</tbody>
</table>

Z = No. of cylinders, ROV = Rotating high-tension distribution, EFS = Single-spark coil, DFS = Dual-spark coil, NW = Camshaft
6.2.5 Measuring point

(Item 1): Secondary side, ignition cable between distributor and spark plug of any cylinder

(Item 2): Secondary side, ignition cable between ignition coil and distributor (terminal 4)

(Item 3 or 4): Primary side, term. 1 or term. 15 current or voltage of "one" ignition circuit

(Item 5): Primary side, term. 1 or term. 15 current or voltage of "all" ignition circuits

TD (engine speed) or TN signal, e.g. at the diagnostic socket

* In modern ignition systems, a trigger box is often connected in series at this point. Adaptation then takes place between the trigger box and the ignition coil.

6.3 Oil temperature measurement

The temperature sensor (special accessory) is connected to socket (50) on the back of the unit and inserted into the engine instead of the dipstick. The oil temperature is displayed in the oil temperature display field. When air ratio measurement (see chapter 5.3.3) and oxygen measurement (see chapter 5.3.6) are activated, the display will switch to the air ratio if a CO₂ content greater than 2 % is measured.
7 Fault messages

Faults are indicated by fault displays. Err followed by a code number appears in the hydrocarbon (HC) display (10).

The fault display is erased by pressing the pump button \(\odot \) (9). However, it will appear again if the fault is not rectified.

If several faults are present at the same time, the code number of the next fault will appear the next time that the pump button \(\odot \) (9) is pressed. Standby mode will not be obtained again until all the code numbers have been displayed.

Example: \(\text{Err} \ 8 \)

Err 1 No flow
Remedy:
⇒ Blow out the sampling hose and sensor with compressed air
⇒ Change the coarse filter
⇒ Change the intake filter
⇒ Restart analysis

If this does not rectify the fault, contact the service agent quoting the code number.

Err 2 Leak test failed
Remedy:
⇒ Seal and re-run leak test
⇒ Test sampling probe for leaks or replace it
⇒ Test sampling hose for leaks or replace it
⇒ Replace the coarse filter and ensure that its mounting is not leaking
⇒ Replace intake filter GF2 and ensure that its seat is not leaking
⇒ Ensure that the mountings of filters GF3 and GF4 are not leaking

If this does not rectify the fault, contact the service agent quoting the code number.

Err 3 HC residues in the gas sampling system or gaseous hydrocarbons in the ambient air (e.g. petrol fumes).
Remedy:
⇒ Restart analysis
⇒ Pull off the sampling hose and blow it out with compressed air against the direction of intake. Blow out the sampling probe
⇒ Replace the GF1 filter
⇒ Replace the intake filter GF2
⇒ Hold the sampling probe in fresh air and restart analysis

If this does not rectify the fault, contact the service agent quoting the code number.

Err 4 Activated charcoal filter contaminated by HC residue
Remedy:
⇒ Restart analysis
⇒ Replace activated charcoal filter (31)

If this does not rectify the fault, contact the service agent quoting the code number.

Err 5 Fault at serial port 2 or error in parameterisation
Remedy:
⇒ Test interface cable
⇒ Make entry in entry mode

If this does not rectify the fault, contact the service agent quoting the code number.

Err 6 Fault in the analogue current interface or error in parameterisation.
Remedy:
⇒ Make entry in entry mode if this does not rectify the fault, contact the service agent quoting the code number.

Err 7 EEPROM error
Remedy:
⇒ Make entry in entry mode

Err 8 Recalibration with test gas required
Remedy:
⇒ Recalibration in accordance with chapter 5.3.1

If this does not rectify the fault, contact the service agent quoting the code number.
Err. 10 Wrong type of printer set
Remedy:
⇒ Set type of printer (see chapter 5.3.8)
If this does not rectify the fault, contact the service agent quoting the code number.

Err. 11 HC signal equalisation exceeds tolerances
Remedy:
⇒ Press pump button (9) and start system test
If this does not rectify the fault, contact the service agent quoting the code number.

Err. 12 CO signal equalisation exceeds tolerances
Remedy:
⇒ Press pump button (9) and start system test
If this does not rectify the fault, contact the service agent quoting the code number.

Err. 13 CO₂ signal equalisation exceeds tolerances
Remedy:
⇒ Press pump button (9) and start system test
If this does not rectify the fault, contact the service agent quoting the code number.

Err. 14 O₂ sensor equalisation faulty
Remedy:
⇒ Check oxygen sensor plug and carry out equalisation (see chapter 8.7.1).
⇒ Replace oxygen sensor
If this does not rectify the fault, contact the service agent quoting the code number.

Err. 15 Analogue–digital converter overflow
Remedy:
⇒ Restart analysis
If this does not rectify the fault, contact the service agent quoting the code number.

Err. 16 Minimum voltage for O₂ sensor undercut.
Remedy:
⇒ Check oxygen sensor plug and carry out equalisation (see chapter 8.7.1)
⇒ Replace oxygen sensor
If this does not rectify the fault, contact the service agent quoting the code number.

Err. 17 Air pressure measurement faulty.
Remedy:
Contact the service agent quoting the code number.

Err. 18 Flow sensor faulty
Remedy:
Contact the service agent quoting the code number.

Err. 19 Clock faulty
Remedy:
Contact the service agent quoting the code number.

Err. 20 Batterie verbraucht.
Remedy:
Contact the service agent quoting the code number.

Err. 21 Channel allocation wrong
Remedy:
Contact the service agent quoting the code number.

Err. 22 Power supply voltage exceeds tolerances
Remedy:
⇒ Check voltage of power supply
If this does not rectify the fault, contact the service agent quoting the code number.

Err. 23 Temperature measurement of the analyzer faulty
Remedy:
Contact the service agent quoting the code number.
Err-24 EEPROM fault
Remedy:
Contact the service agent quoting the code number.

Err-25 EEPROM fault
Remedy:
Contact the service agent quoting the code number.

Err-26 HC channel not calibrated
Remedy:
Contact the service agent quoting the code number.

Err-27 CO channel not calibrated
Remedy:
Contact the service agent quoting the code number.

Err-28 CO₂ channel not calibrated
Remedy:
Contact the service agent quoting the code number.

Err-29 Temperature compensation not carried out
Remedy:
Contact the service agent quoting the code number.

Err-30 HC, CO and CO₂ signal equalisation exceeds tolerances
Remedy:
Press pump button 0 (9) and start system test
If this does not rectify the fault, contact the service agent quoting the code number.

Fault message in engine-speed display field (12)
The engine is running but the display reads 0.
Remedy:
Check that B- connecting cable is connected properly.
Check that connecting cable for TD/TN/term. 1 signal is connected properly.
Is the trigger clamp-on pickup attached to the ignition cable of cylinder 1?
If Err is displayed in this display field, contact the service agent quoting the fault message.
8 Maintenance

Routine maintenance will ensure that the unit is ready for operation. The analyzers must be serviced at 6-month intervals. The maintenance work can be carried out by a servicing agency or by an appropriately trained member of staff from the workshop. Each service carried out must be logged and indicated on the analyzer itself.

The six-monthly and annual services must be logged in the form of a test protocol and indicated on the analyzer itself by affixing the maintenance sticker to the unit. We recommend that you file the documents that prove the performance of required maintenance procedures in the Maintenance Manual.

Necessary repairs to the unit (opening, adjusting, repairing the unit etc.) must only be carried out by staff from an authorised service agent.

The following periods must be observed:

- Every six months
 - Replace the coarse filter GF1 (36)
 - Replace the intake filter GF2 (33), see chapter 8.5
 - Check whether all three PVC hoses are connected to the gas outlets (39/40/41)
 - Visual inspection of the sampling probe (38)
 - Leak test in accordance with chapter 4.3
 - Confirm the carried out maintenance (see chapter 5.3.5).

- Annual maintenance
 This maintenance must be carried out by a qualified service agency. It comprises six-monthly maintenance and the following additional points:
 - Checking the measurement accuracy of the analyzer with a test gas
 - Replacing the activated charcoal filter (31) in the zero gas path
 - Replacing the protective pump filters GF3 (32) and GF4 (30)
 The calibration requirements of the responsible (local) authority must be observed.

8.1 Hermetic sealing of the sampling system

A hermetically sealed sampling system is an absolute necessity for accurate exhaust analysis. Testing it for leaks every day is recommended (see chapter 4.3).

8.2 Sampling probe (38)

Keep the aperture at the tip of the sensor clean. If any condensation or HC residue is present, remove the sampling probe from the hose and blow it out with compressed air against the direction of intake.

8.3 Coarse filter GF1 (36)

If very dirty (fault message Err1 for no flow), replace the coarse filter. The same applies if HC residue is present.

8.4 Sampling hose (35/37)

Check for damage. If any HC residue or condensation is present, pull the hose off the analyzer and blow it out with compressed air against the direction of intake.
8.5 Intake filter GF2 (33)

Replace the filter if it is very dirty (fault message Err1 for no flow) or if HC residue is present.

Caution! Do not pull out the fastening pieces (60) of the unit back panel!

Remove filter (33) and angle hose pieces (61) from upper and lower fastening pieces (60).

Pull off both angle hose pieces from filter with small rotation and fix them to the new filter.

Put on the new filter and angle hose pieces on the fastening pieces; observe the fitting position in accordance with the print on the unit back panel.

8.6 Checking the stability of indications

⇒ Disconnect the sampling hose from the measurement gas intake of the exhaust-gas analyzer.

Caution! There must be no exhaust-gas, petrol or cleaning-agent vapours in the ambient air in the vicinity of the exhaust-gas analyzer.

⇒ Switch on the pump by pressing the p button (9) on the analyzer.

After the "CAL" system check has been completed (approx. 30 s), the analyzer displays the instantaneous measured values.

Watch the indications of the gas measurement channels for approx. 2 min. to determine the limit values and whether the values are stable.

Limits of error for fluctuations (noise) in the indications of the gas measurement channels:

- CO indication 0 %vol ± 0.005 %vol
- CO2 indication 0 %vol ± 0.2 %vol
- O2 indication 20.0 %vol ± 0.4 %vol
- HC indication 0 ppmvol ± 12 ppmvol

The HC indication must stabilise at a value < 12 ppm by vol. after approx. 2 minutes. End measurement by pressing the button.

8.7 Checking flow monitoring

⇒ Hold your finger over the zero gas intake (activated charcoal filter) at the rear of the analyzer to seal it off.

⇒ Press the button.

After the CAL system check has been completed, the error message Err1 must appear (inadequate flow).

⇒ Remove your finger from the zero gas intake and seal off the measurement gas intake (using the sealing plug at the sampling probe).

⇒ Press the button.

After the CAL system check has been completed, the following indication

must be displayed first, followed by the error message Err1 (inadequate flow).

If these error messages cannot be displayed in this way, there is an error in the flow monitoring function. Contact your service agent who must perform appropriate troubleshooting.

8.8 Before switching the analyzer off

Before you switch off the analyzer, you must scavenge it (flush it out) with ambient air. This reduces the degree of contamination and prevents premature aging.

To do this:

⇒ Make sure that the sampling probe is in fresh air (not in the exhaust pipe).

⇒ Press the button and leave the pump running for a minute.

⇒ End scavenging by pressing the button again.

⇒ Acknowledge the maintenance message (see chapter 5.3.5).

⇒ Press the mains switch to switch off the analyzer.
8.9 O₂ sensor

The O₂ sensor will wear out with time. The zero point of oxygen analysis is monitored permanently. If it deviates, the fault message Err14 "O₂ sensor equalisation faulty" is displayed and the O₂ sensor must be replaced.

Note: Only use the genuine O₂ sensor with the designation CLASS R-17A SIE or W79085-G4003-X.

Warning! The O₂ sensor contains a caustic alkaline solution.

Caution! The O₂ sensor is an industrial refuse. It must be eliminated according to the rules in force.

8.9.1 O₂ sensor installation and equalisation

Note: After being unpacked, the O₂ sensor may require up to 30 minutes to reach the state in which it provides the necessary measuring accuracy. After unpacking the O₂ sensor, always wait 30 minutes before installing it.

- Installation
 ⇒ Disconnect the analyzer from the mains.
 ⇒ Remove the cap (53) from the O₂ sensor.
 ⇒ Remove the pawl-type plug from the O₂ sensor located on the back of the unit and unscrew the O₂ sensor.
 ⇒ Screw in the new O₂ sensor by hand without using a tool and reconnect the pawl-type plug.
 ⇒ Refit the cap (53).
 ⇒ Reconnect the analyzer to the mains.

- Equalisation
 Access entry mode as described in chapter 5.
 ⇒ Select the "Unit data" function.
 ⇒ Select the "Installation date and voltage of O₂ sensor" submenu.

The following appears in display field (1):

```
0 2 . 1 n - - A n 4
```

⇒ Press the button (8).

The calibration data of the old O₂ sensor are then displayed automatically.

```
3 0 4 8 2 8 2 0
1 5 0 9 9 4
E n d E 0 2 A b 4
```

Sensor voltage from the last equalisation in display 10. Instantaneous sensor voltage in display 13. Date of the last O₂ sensor equalisation in displays 11 and 14.

⇒ Press the button (7).

```
3 0 4 8 2 8 2 0
1 5 0 9 9 4
5 1 c h 0 2 A b 4
```

⇒ Press the button (8).

Equalisation is carried out. Duration: 30 s.

```
C A L . C A L .
C A L . C A L .
```

Once equalisation has been completed, the following display appears:

```
0 2 . 1 n - - A n 4
```

The sensor voltage and the installation date have been updated.

⇒ Exit the "Unit data" submenu.
⇒ Exit entry mode.
8.10 Recalibration with certificated test gas

The annual maintenance procedures cover the scope of the six-monthly procedures plus calibration with test gas. We recommend that you conclude a maintenance agreement with your service agent.

When you conduct the annual inspection of the analyzer using test gas, you must use e.g. a cylinder of test gas that contains the certificated gas mixture of 3.5 % CO + 14 % CO₂ + 2000 ppm C₃H₈ (propane) in N₂.

Warning! The test gas is odourless, combustible and toxic!

If you use a test gas cylinder with a cylinder pressure of greater than 0.7 bar, you must attach a pressure-reducing valve (per DIN 477 for test gas under a pressure of ≤ 4 bar) to the gas cylinder in order to prevent the analyzer from possible damage.

Caution! After a certain length of time (see the certificate of the test gas), the test gas loses its accuracy. The test gas can no longer be used for calibration purposes once the date specified has expired.

The service agency will parameterise the analyzer in accordance with local regulations. To recalibrate the analyzer, a test gas mixture is required that contains the following concentrations (depending on requirements):

- **HC:** 400 to 4000 ppm vol C₃H₈ (Propan)
- **CO:** 1 % vol to 10 % by volume of CO
- **CO₂:** 6 % vol to 18 % by volume of CO₂

The test gas must be fed into the test gas intake/gas outlet (41) via a viton hose at a rate of approximately 1 l/min. The flow will be displayed.

Caution! The test gas hose must not be connected to the analyzer until the analyzer indicates that it is ready.

Select the AJ function as described in chapter 5.1 by pressing
- ⇒ the button (9) or button (7).

Activate the AJ function by pressing
- ⇒ the button (8).

Select the gas constituents to be set, e.g. target HC level, by pressing
- ⇒ the button (9) or button (7).

Activate the selected numbers for the HC target level by pressing
- ⇒ the button (8).

Display value in ppm of C₃H₈ (propane).

Select the numbers to be set by pressing
- ⇒ the button (9) or button (7).

Activate the numbers by pressing
- ⇒ the button (8).

Amend the numbers by pressing
- ⇒ the button (9) or button (7).

Store the numbers set and return to number selection by pressing
- ⇒ the button (8).

Once all the numbers have been set correctly, select the "End" function by pressing
- ⇒ the button (9) or button (7).

Exit HC target level entry by pressing
- ⇒ the button (8).
Select the next target level:
proceed as for "HC" above.
Once all the levels have been set correctly, select "i.0" from the menu by pressing
⇒ the button (9) or button (7).
All the target levels entered will be redisplayed.

<table>
<thead>
<tr>
<th>2000</th>
<th>3500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: If you then press the button (8) to acknowledge the settings, recalibration will start, for which you must use test gas.
⇒ Press the button (8).

Note: The test gas hose must not yet be connected. System equalisation takes place at the end of the warming-up period.

The analyzer starts the warming-up period for test gas calibration.

Note: The test gas hose must not yet be connected. System equalisation takes place at the end of the warming-up period.

<table>
<thead>
<tr>
<th>CAL.</th>
<th>CAL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL.</td>
<td>CAL.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GAS</th>
<th>JUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>0</td>
</tr>
</tbody>
</table>

⇒ Disconnect the gas outlet hose (41).
⇒ Connect the test gas hose.
⇒ Feed in the test gas.
⇒ The flow is displayed in the speed display field (12).
 Set the flow to about 1 l/min.
When the flow is sufficient, the measurements will be displayed and the flow will last 30 seconds.

If one or more constituents of the gas deviate greatly from the target level set, the appropriate gas display will flash and "Err" will appear in the oxygen display field. Calibration will be rejected.

<table>
<thead>
<tr>
<th>1700</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td></td>
</tr>
</tbody>
</table>

When calibration has been properly completed, the analyzer will return to entry mode.

⇒ Close off the test gas cylinder.
⇒ Disconnect the test gas hose.
⇒ Reconnect the gas outlet hose (41).
8.11 Standard parameterisation of the VAS 5067

The following parameters must be activated:

Entry mode parameters
- Language 6b (English)
- Printer
- Serial interface r_1 ----
- Serial protocol r_2 ----

Calibration parameters
- HC test before every measurement
- Leak test interval 1 day
- Maintenance interval 183 days
- Calibration interval 365 days
- Calibration (test) gas mixture CO, HC, CO$_2$
- Change of settings parameter ($C = yE5$)
8.12 Service report

Service work

VAS 5067

<table>
<thead>
<tr>
<th>Date</th>
<th>Kind of work</th>
<th>Company</th>
<th>Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9 Scope of delivery

The scope of delivery of the VAS 5067 comprises the following:
- VAS 5067 basic unit
- Sampling probe, 400 mm long
- Sealing plug for leak test
- Gas sampling hose, 8 m Viton 5 x 1.5
- 3 PVC hoses, 0.7 m
- Filters
- Inductive clip-on pick up for engine-speed measurement
- Mains supply cable
- 2 time-lag fuses, 0.8 A 250 V (spare)
- O₂ sensor (integral)
- Operating instructions manual
- Connecting cable TD

10 Spare parts, parts subject to wear and special accessories

<table>
<thead>
<tr>
<th>Designation</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling probe, 600 mm long</td>
<td>C74211 A102 B55</td>
</tr>
<tr>
<td>Sealing plug for leak test</td>
<td>C79451 A3301 B345</td>
</tr>
<tr>
<td>- O-ring seal for sealing plug</td>
<td>C71121 Z100 A60</td>
</tr>
<tr>
<td>Gas sampling hose, 8 m Viton 5 x 1.5</td>
<td>C79451 A3407 C250</td>
</tr>
<tr>
<td>PVC hose set 0.7 m 5 x 1.5</td>
<td>C79451 A3407 C252</td>
</tr>
<tr>
<td>Filter (e.g. GF1/2/3)</td>
<td>C79127 Z400 A1</td>
</tr>
<tr>
<td>Activated charcoal filter</td>
<td>C79127 Z1473 A1</td>
</tr>
<tr>
<td>O₂ sensor CLASS R-17A SIE</td>
<td>W79085 64003 X</td>
</tr>
<tr>
<td>Oil temperature sensor</td>
<td>7MB1156 7AA08</td>
</tr>
<tr>
<td>- Rubber cap with retaining spring</td>
<td>7MB1156 7AA10</td>
</tr>
<tr>
<td>Inductive trigger clamp-on pickup</td>
<td>7MB1156 7AA02</td>
</tr>
<tr>
<td>Connecting cable TD</td>
<td>7MB1156 7AA02</td>
</tr>
<tr>
<td>Internal protocol printer</td>
<td>7MB1156 7AA10</td>
</tr>
<tr>
<td>- Paper roll</td>
<td>7MB1156 7AA02</td>
</tr>
<tr>
<td>- Ribbon cassette</td>
<td>7MB1156 7AA02</td>
</tr>
<tr>
<td>Upgrade kit, second serial port</td>
<td>C79451 A3407 D141</td>
</tr>
</tbody>
</table>
11 Technical data

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Measurement range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO meas. range</td>
<td>0.000-10.00 % vol CO</td>
<td>0.001 % vol</td>
</tr>
<tr>
<td>HC meas. range</td>
<td>0-9999 ppm vol HC</td>
<td>1 ppm vol</td>
</tr>
<tr>
<td>CO₂ meas. range</td>
<td>0.00-18.00 % vol CO₂</td>
<td>0.01 % vol</td>
</tr>
<tr>
<td>O₂ meas. range</td>
<td>0.00-22.00 % vol O₂</td>
<td>0.01 % vol</td>
</tr>
<tr>
<td>Lambda display</td>
<td>0.500-2.000</td>
<td>0.001</td>
</tr>
<tr>
<td>Speed measurement</td>
<td>0-9990 U/min</td>
<td>10 U/min</td>
</tr>
<tr>
<td>Oil temperature</td>
<td>0-150 °C</td>
<td>1 °C</td>
</tr>
</tbody>
</table>

Mains power supply 100 V, 120 V, 230 V, 240 V selectable with bridges, 50 or 60 Hz (setting by after-sales service only)

Power input 110 V A

Electromagnetic compatibility Class A as per EN 55 022

Permissible ambient temperature +2 °C bis +45 °C

Permissible relative humidity 5 % to 90 % without dew

Air pressure 700 hPa up to 1100 hPa (~300 m up to 2500 m altitude)

Normal position horizontal ± 5°

Height of installation location min. 250 mm from floor

(length of outlet hoses) min. 300 mm

Warming-up time 3 minutes

System equalisation 30 s, automatic, if required

Measurement gas flow 4 l/min (min. 2 l/min, max. 6 l/min)

Display delay < 15 s for 95 % measurement accuracy

Weight 10 kg

11.1 Temperature limits

Storing temperature -20 °C bis +65 °C

Continuous load for viton hose and sampling probe 200 °C max.

Peak load for sampling probe 250 °C max. für < 3 min

11.2 Sound power level to DIN 45 635 (in print mode)

Sound power level L_{WA} 70.2 dBA

Emission value

L_{WA} at workplace 59.1 dBA

12 Guarantee

If any modifications are made to or non-genuine accessories used with our products, all rights under guarantee shall be invalidated.

13 Service address

SIEMENS SPA
Centre Service Client
1, chemin de la Sandlach

F-67506 Haguenau

Tel.: 0033 3 88 90 6677

Fax: 0033 3 88 90 6688