SIEMENS

SINUMERIK Operate
SinuTrain
Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe

Wprowadzenie 1
Zalety pracy z ShopMill 2
Aby wszystko działało sprawnie 3
Podstawy dla początkujących 4
Odpowiednio przygotowany 5
Przykład 1: Obróbka wzdłużna 6
Przykład 2: Forma wtryskowa 7
Przykład 3: Płytka kształtowa 8
Przykład 4: Dźwignia 9
Przykład 5: Kołnierz 10
A teraz przejdźmy do wykonania detalu 11
Jak dobrze radzisz sobie z ShopMill? 12

09/2011
6FC5009-0AB50-1NP1
Wskazówki prawne

Koncepcja wskazówek ostrzeżeń

Podręcznik zawiera wskazówki, które należy bezwzględnie przestrzegać dla zachowania bezpieczeństwa oraz w celu uniknięcia szkód materialnych. Wskazówki dot. bezpieczeństwa oznaczono trójkątnym symbolem, ostrzeżenia o możliwości wystąpienia szkód materialnych nie posiadają trójkątnego symbolu ostrzegawczego. W zależności od opisywanego stopnia zagrożenia, wskazówki ostrzegawcze podzielono w następujący sposób.

⚠️ NIEBEZPIECZEŃSTWO

oznacza, że nieprzestrzeganie tego typu wskazówek ostrzegawczych grozi śmiercią lub odniesieniem ciężkich obrażeń ciała.

⚠️ OSTRZEŻENIE

oznacza, że nieprzestrzeganie tego typu wskazówek ostrzegawczych może grozić śmiercią lub odniesieniem ciężkich obrażeń ciała.

⚠️ OSTROŻNIE

z symbolem ostrzegawczym w postaci trójkąta oznacza, że nieprzestrzeganie tego typu wskazówek ostrzegawczych może spowodować lekkie obrażenia ciała.

⚠️ OSTROŻNIE

bez symbolu ostrzegawczego w postaci trójkąta oznacza, że nieprzestrzeganie tego typu wskazówek ostrzegawczych może spowodować szkody materialne.

⚠️ UWAGA

oznacza, że nieprzestrzeganie tego typu wskazówek ostrzegawczych może spowodować niezamierzone efekty lub nieprawidłowe funkcjonowanie.

W wypadku możliwości wystąpienia kilku stopni zagrożenia, wskazówkę ostrzegawczą oznaczono symbolem najwyższego z możliwych stopnia zagrożenia. Wskazówka oznaczona symbolem ostrzegawczym w postaci trójkąta, informująca o istniejącym zagrożeniu dla osób, może być również wykorzystana do ostrzeżenia przed możliwością wystąpienia szkód materialnych.

Wykwalifikowany personel

Produkt /system przynależy do niniejszej dokumentacji może być obsługiwany wyłącznie przez personel wykwalifikowany do wykonywania danych zadań z uwzględnieniem stosownej dokumentacji, a zwłaszcza zawartych w niej wskazówek dotyczących bezpieczeństwa i ostrzegawczych. Z uwagi na swoje wykształcenie i doświadczenie wykwalifikowany personel potrafi podczas pracy z tymi produktami / systemami rozpoznać ryzyka i unikać możliwych zagrożeń.

Zgodne z przeznaczeniem używanie produktów firmy Siemens

Przestrzegać następujących wskazówek:

⚠️ OSTRZEŻENIE

Produkty firmy Siemens mogą być stosowane wyłącznie w celach, które zostały opisane w katalogu oraz w załączonej dokumentacji technicznej. Polecenie lub zalecenie firmy Siemens jest warunkiem użycia produktów bądź komponentów innych producentów. Warunkiem niezawodnego i bezpiecznego działania tych produktów są prawidłowe transport, przechowywanie, ustawienie, montaż, instalacja, uruchomienie, obsługa i konserwacja. Należy przestrzegać dopuszczalnych warunków otoczenia. Należy przestrzegać wskazówek zawartych w przynależnej dokumentacji.

Znaki towarowe

Wszystkie produkty oznaczone symbolem ® są zarejestrowanymi znakami towarowymi firmy Siemens AG. Pozostałe produkty posiadające również ten symbol mogą być znakami towarowymi, których wykorzystywanie przez osoby trzecie dla własnych celów może naruszać prawa autorskie właściciela danego znaku towarowego.

Wykluczenie od odpowiedzialności

Treść drukowanej dokumentacji została sprowadzona pod kątem zgodności z opisywanym w niej sprzętem i oprogramowaniem. Nie można jednak wykluczyć pewnych rozbieżności i dlatego producent nie jest w stanie zagwarantować całkowitej zgodności. Informacje i dane w niniejszej dokumentacji poddawane są ciągłej kontroli. Poprawki i aktualizacje ukazują się zawsze w kolejnych wydaniach.
Spis treści

1 Wprowadzenie .. 7

2 Zalety pracy z ShopMill ... 9
 2.1 Skrócenie czasu na poznanie systemu ... 9
 2.2 Skrócenie czasu programowania ... 12
 2.3 Skrócenie czasu produkcji ... 16

3 Aby wszystko działało sprawnie ... 19
 3.1 Obsługa ShopMill .. 19
 3.2 Zawartości menu głównego .. 21
 3.2.1 Maszyna .. 21
 3.2.2 Parametr .. 24
 3.2.3 Program .. 26
 3.2.4 Menadżer programów ... 29
 3.2.5 Diagnoza ... 30

4 Podstawy dla początkujących .. 31
 4.1 Podstawy geometrii ... 31
 4.1.1 Osie narzędzia i płaszczyzny obróbki .. 31
 4.1.2 Punkty w obszarze roboczym ... 33
 4.1.3 Wymiary bezwzględne i przyrostowe ... 34
 4.1.4 Ruchy proste po torze ... 35
 4.1.5 Ruchy kołowe .. 37
 4.2 Podstawy technologiczne ... 38
 4.2.1 Nowoczesne frezy i wiertła .. 38
 4.2.2 Stosowane narzędzia ... 40
 4.2.3 Prędkość skrawania i prędkość obrotowa ... 43
 4.2.4 Wielkość posuwu/ostrze i prędkość posuwu .. 44

5 Odpowiednio przygotowany ... 45
 5.1 Zarządzanie narzędziami .. 45
 5.1.1 Lista narzędzi ... 45
 5.1.2 Lista zużycia narzędzi ... 47
 5.1.3 Lista magazynowa ... 48
 5.2 Zastosowane narzędzia ... 48
 5.3 Narzędzie w magazynie ... 50
 5.4 Pomiar narzędzi .. 50
 5.5 Ustawienie punktu zerowego detalu .. 52
Spis treści

6 Przykład 1: Obróbka wzdłużna ... 57
 6.1 Przegląd ... 57
 6.2 Zarządzanie i sporządzanie programu ... 58
 6.3 Wywołanie narzędzia i korekcja promieni frezu 63
 6.4 Wprowadzenie drogi ruchu .. 64
 6.5 Wiercenie otworów i powtórzenie pozycji 69

7 Przykład 2: Forma wtryskowa ... 79
 7.1 Przegląd ... 79
 7.2 Prosta i okrąg przy użyciu współrzędnych biegunowych 81
 7.3 Kieszeń prostokątna ... 89
 7.4 Kieszeń kołowa na szablonie pozycji ... 93

8 Przykład 3: Płyta kształtna .. 97
 8.1 Przegląd ... 97
 8.2 Frezowanie konturowe otwartych konturów 98
 8.3 Wybieranie pozostałego materiału i obróbka wykańczająca konturu kieszeni ... 106
 8.4 Obróbka na wielu płaszczyznach .. 116
 8.5 Uwzględnienie przeszkód ... 120

9 Przykład 4: Dźwignia ... 127
 9.1 Przegląd ... 127
 9.2 Frezowanie płaszczyzny ... 129
 9.3 Sporządzenie obrzeża występu dźwigni ... 131
 9.4 Wykonanie dźwigni ... 133
 9.5 Sporządzenie obramowania występu kołowego 146
 9.6 Wykonanie występu kołowego 30 .. 148
 9.7 Wykonanie występu kołowego 10 ... 149
 9.8 Kopiowanie występu kołowego 10 ... 151
 9.9 Wykonanie występu kołowego za pomocą edytora 153
 9.10 Wiercenie głębokich otworów ... 158
 9.11 Frezowanie po torze spiralnym ... 160
 9.12 Wytaczanie .. 163
 9.13 Frezowanie gwintu ... 166
 9.14 Programowanie biegunowe konturów 168
<table>
<thead>
<tr>
<th>Strona</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Przykład 5: Kołnerz</td>
</tr>
<tr>
<td>10.1</td>
<td>Przegląd</td>
</tr>
<tr>
<td>10.2</td>
<td>Sporządzenie poddprogramu</td>
</tr>
<tr>
<td>10.3</td>
<td>Lustrzane odbicie kroków obróbkich</td>
</tr>
<tr>
<td>10.4</td>
<td>Otwory</td>
</tr>
<tr>
<td>10.5</td>
<td>Obrót kieszeni</td>
</tr>
<tr>
<td>10.6</td>
<td>Fazowanie konturów</td>
</tr>
<tr>
<td>10.7</td>
<td>Rowek podłużny i kołowy</td>
</tr>
<tr>
<td>11</td>
<td>A teraz przejdźmy do wykonania detalu</td>
</tr>
<tr>
<td>12</td>
<td>Jak dobrze radzisz sobie z ShopMill?</td>
</tr>
<tr>
<td>12.1</td>
<td>Wprowadzenie</td>
</tr>
<tr>
<td>12.2</td>
<td>Ćwiczenie 1</td>
</tr>
<tr>
<td>12.3</td>
<td>Ćwiczenie 2</td>
</tr>
<tr>
<td>12.4</td>
<td>Ćwiczenie 3</td>
</tr>
<tr>
<td>12.5</td>
<td>Ćwiczenie 4</td>
</tr>
<tr>
<td>Indeks</td>
<td>219</td>
</tr>
</tbody>
</table>
Wprowadzenie

Szybceje od rysunku do gotowego detalu - ale jak?

Technologiczny rozwój obrabiarek odznacza się dużą dynamiką. Szczególnie przy sporządzaniu programów NC zakres czystego programowania systemu CAM rozszerzył się do programowania bezpośrednio przy maszynie CNC. Dla każdej dziedziny dostępne są specjalne, produktywne metody programowania. Dzięki ShopMill SIEMENS oferuje programowanie dopasowane do warsztatu, pozwalające na szybkie i praktyczne programowanie faz obróbki, począwszy od wytwarzania części pojedynczych aż do krótkiej serii. We współdziałaniu z nową powierzchnią obsługi sterowania SINUMERIK Operate możliwa jest intuicyjna i efektywna praca w warsztacie, również dla produkcji seryjnej.

Rozwiązanie brzmi: zamiast programować, sporządź plan obróbki.

Sporządzenie planu obróbki z przystępymi, odpowiednimi dla wykwalifikowanego pracownika kolejnościami czynności pozwoli użytkownikowi ShopMill sporządzić program NC bezpośrednio z rysunku. Również zmiany i różne warianty detalu można szybko zaprogramować wskutek przejrzystej struktury.

Przy zastosowaniu ShopMill nawet najbardziej skomplikowane kontury i detale dają się z łatwością programować dzięki zintegrowanemu i wydajnemu procesowi generowania drogi ruchu. Dlatego nowa zasada brzmi:

Łatwiej i szybciej od rysunku do detalu dzięki ShopMill!

Chociaż ShopMill jest łatwy w obsłudze, dzięki tej dokumentacji szkoleniowej możliwe będzie jeszcze szybsze poznanie tego świata obróbki. Zanim jednak przejdziemy do obsługi ShopMill, w pierwszych rozdziałach przedstawimy informacje podstawowe:

- wymienimy zalety pracy z ShopMill,
- Potem przedstawimy podstawy obsługi za pomocą SINUMERIK Operate.
- objaśnimy dla poczatkujących geometryczne i technologiczne podstawy obróbki,
- w następnym rozdziale przedstawimy krótkie wprowadzenie do zarządzania narzędziami.

Po części teoretycznej, zajmiemy się praktycznym zastosowaniem ShopMill:

- Na pięciu przykładach przedstawimy możliwości obróbki przy użyciu ShopMill, przy czym stopień trudności w tych przykładach będzie stopniowo podwyższany. Na początku objaśnimy działanie wszystkich przycisków, potem będziemy zachęcać do samodzielnej pracy.
- Przedstawimy, jak przy użyciu ShopMill wykonuje się automatyczną obróbkę,
- A na zakończenie można przeprowadzić test, na ile opanowali Państwo pracę z ShopMill.
Prosimy pamiętać, że stosowane tu parametry technologiczne ze względu na zróżnicowane warunki w warsztatach mają tylko charakter przykładowy.

Tak jak ShopMill powstał przy pomocy specjalistów, tak samo niniejsza dokumentacja szkoleniowa również została opracowana przez praktyków. Życzymy wielu przyjemności i sukcesów podczas pracy z ShopMill.
Zalety pracy z ShopMill

W tym rozdziale przedstawione zostaną zalety pracy z ShopMill.

2.1 Skrócenie czasu na poznanie systemu...

- Ponieważ w ShopMill nie ma żadnych pojęć obcojęzycznych, których trzeba się nauczyć. Wszystkie wprowadzane parametry są opisywane w postaci tekstowej.
Zalety pracy z ShopMill

2.1 Skrócenie czasu na poznanie systemu...

- Ponieważ ShopMill wspiera użytkownika kolorowymi obrazami pomocy.

- Ponieważ do graficznego planu obróbki w ShopMill można wprowadzać również polecenia DIN/ISO. Można programować w DIN/ISO 66025 i w cyklach DIN.
Zalety pracy z ShopMill

2.1 Skrócenie czasu na poznanie systemu...

- Ponieważ przy sporządzaniu planu obróbki w każdej chwili można się przełączać między poszczególnymi krokami obróbki a obrazem graficznym detalu.

Rysunek 2-1 Faza obróbki w planie obróbki

Rysunek 2-2 Widok graficzny
2.2 Skrócenie czasu programowania...

- Ponieważ ShopMill zapewnia optymalne wsparcie już podczas wprowadzania parametrów technologicznych: wystarczy wprowadzić tylko parametry z tabeli posuw/ostrze i prędkość skrawania, a prędkość obrotową i prędkość posuwu ShopMill obliczy automatycznie.

- Ponieważ w ShopMill w ramach jednego kroku można opisać kompletną obróbkę a wymagane ruchy pozycjonowania (od punktu zmiany narzędzia do detalu i z powrotem) są wywoływane automatycznie.

- Ponieważ w graficznym planie obróbki w ShopMill wszystkie kroki obróbki zostają przedstawione zwisłe i przejrzyste. Dzięki temu cały proces produkcji jest pod kontrolą, a tym samym mamy lepszą możliwość edycji, nawet przy skomplikowanych cyklach produkcyjnych.
Na przykład podczas wiercenia kilka operacji obróbki może być powiązanych z kilkoma szablonami pozycji i nie trzeba ich ponownie wywoływać.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Centring</td>
<td>T=CENTREDRILL12 F150/min S500 rev ø11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilling</td>
<td>T=DRILL10 F150/min V35m Z1=201nc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001: Row of positions</td>
<td>Z=10 X0=-42.5 Y0=-82.5 N=4 ø0=80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002: Obstacle</td>
<td>Z=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003: Row of positions</td>
<td>Z=10 X0=-42.5 Y0=-82.5 N=4 ø0=80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004: Obstacle</td>
<td>Z=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005: Position circle</td>
<td>Z=10 X0=0 Y0=0 R=22.5 N=6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006: Obstacle</td>
<td>Z=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>007: Positions</td>
<td>Z=10 X0=0 Y0=42.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End of program N=1
Ponieważ zintegrowany kalkulator konturu może przetwarzać wszelkie możliwe wymiary (w układzie kartezjanskim lub biegunowym), a mimo to jest łatwy i przejrzysty w obsłudze - dzięki wprowadzaniu parametrów ze wsparciem graficznym.
• Ponieważ w każdym momencie można zmieniać widok graficzny na ekran wprowadzania parametrów z obrazami pomocy.

Rysunek 2-5 Okno parametrów z obrazem pomocy

• Ponieważ sporządzenie planu obróbki a produkcja nie wykluczają się wzajemnie. Dzięki ShopMill można równolegle do produkcji sporządzić nowy plan obróbki.
2.3 Skrócenie czasu produkcji...

- Ponieważ dzięki różnym frezom do wybierania materiału z konturów kieszeni nie trzeba już dostosowywać do promienia kieszeni: pozostały materiał do obróbki zostanie rozpoznany automatycznie i wybrany najmniejszym frezem.

- Ponieważ podczas pozycjonowania narzędzia nie ma żadnych niepotrzebnych dosunięć między płaszczyzną wycofania a płaszczyzną obróbki. Jest to możliwe dzięki ustawieniu wycofania Wycofanie na PW lub Wycofanie zoptymalizowane.

Ustawienie Wycofanie zoptymalizowane definiuje się w nagłówku programu. Przy czym należy uwzględnić przeszkody, jak np. elementy mocujące.

Wycofanie na płaszczyznę wycofania (RP) = Wycofanie na płaszczyznę wycofania = skrócenie czasu wykonania
Ponieważ dzięki zawartej strukturze planu obróbki można minimalnym nakładem pracy zoptymalizować kolejność obróbki (np. redukcja ilości zmian narzędzia).

Rysunek 2-6 Początkowa kolejność obróbki

Rysunek 2-7 Zoptymalizowana kolejność obróbki dzięki Wytnij i Wstaw fazę obróbki.

Ponieważ dzięki ShopMill, na bazie powszechnie stosowanej techniki cyfrowej (napędy SINAMICS, ... , sterowania SINUMERIK), można uzyskać maksymalne prędkości posuwu przy optymalnej dokładności powtórzeń.
Zalety pracy z ShopMill

2.3 Skrócenie czasu produkcji...
Aby wszystko działało sprawnie

W tym rozdziale przedstawione zostaną przykładowe podstawy obsługi ShopMill.

3.1 Obsługa ShopMill

Wydajne oprogramowanie powinno być też proste w obsłudze. Zapewnia to przejrzysty panel obsługi maszyny, który wspiera obsługę zarówno systemu SINUMERIK 840D jak i przedstawionego tutaj SINUMERIK 828D. Panel obsługi składa się z trzech części: z płaskiego panelu obsługowego ①, pełnej klawitury CNC ② i z pulpitu maszynowego ③.
Poniżej przedstawione zostały najważniejsze przyciski pełnej klawiatury w ShopMill:

<table>
<thead>
<tr>
<th>Przycisk</th>
<th>Funkcja</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELP</td>
<td>Wyświetlenie pomocy online w zależności od kontekstu</td>
</tr>
<tr>
<td>SELECT</td>
<td>Wybranie wartości z listy</td>
</tr>
<tr>
<td></td>
<td>Kursor</td>
</tr>
<tr>
<td></td>
<td>Poruszanie kursorem za pomocą czterech klawiszy</td>
</tr>
<tr>
<td></td>
<td><Kursor w prawo> otwieranie katalogu lub programu w edytorze do edycji (np. cykl)</td>
</tr>
<tr>
<td>PAGE UP</td>
<td>Przewijanie obrazu menu do góry</td>
</tr>
<tr>
<td>PAGE DOWN</td>
<td>Przewijanie obrazu menu w dół</td>
</tr>
<tr>
<td>END</td>
<td>Przesunięcie kursora na ostatnie pole edycji w menu lub na tablicy</td>
</tr>
<tr>
<td>DEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tryb edycji:</td>
</tr>
<tr>
<td></td>
<td>Kasowanie pierwszego znaku na prawo</td>
</tr>
<tr>
<td></td>
<td>• Tryb nawigacji:</td>
</tr>
<tr>
<td></td>
<td>Kasowanie wszystkich znaków</td>
</tr>
<tr>
<td>BACKSPACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tryb edycji:</td>
</tr>
<tr>
<td></td>
<td>Kasowanie zaznaczonego znaku na lewo od kursora</td>
</tr>
<tr>
<td></td>
<td>• Tryb nawigacji:</td>
</tr>
<tr>
<td></td>
<td>Kasowanie wszystkich zaznaczonych znaków na lewo od kursora</td>
</tr>
<tr>
<td>INSERT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Po naciśnięciu tego przycisku następuje przejście w tryb edycji, a po ponownym jego naciśnięciu wyjście z trybu edycji i powrót w tryb nawigacji</td>
</tr>
<tr>
<td>INPUT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Zakończenie wprowadzania danych w polu edycji</td>
</tr>
<tr>
<td></td>
<td>• Otwarcie katalogu lub programu</td>
</tr>
</tbody>
</table>

Wybór funkcji w ShopMill odbywa się za pomocą klawiszy znajdujących się wokół ekranu. Są one w większości przyporządkowane do poszczególnych pozycji menu. Ponieważ zawartość menu zmienia się w zależności od sytuacji, określa się je również, jako przyciski programowe.
Aby wszystko działało sprawnie

3.2 Zawartości menu głównego

Wszystkie funkcje główne można wywołać poprzez przyciski programowe umieszczone poziomo.

Wszystkie funkcje podrzędne ShopMill wywołuje się przyciskami programowymi umieszczonymi pionowo.

Tym przyciskiem można w każdej chwili wywołać menu główne – niezależnie od tego, w jakim obszarze obsługi aktualnie się znajdujemy.

Menu główne

3.2 Zawartości menu głównego

3.2.1 Maszyna

Maszyna - Ręcznie

Nacisnąć przycisk programowy "Maszyna".

Nacisnąć przycisk "JOG".

Maszyna zostanie przygotowana do pracy, narzędzie przemieszcza się w trybie ręcznym. Można też przeprowadzić pomiar narzędza i ustawić punkty zerowe detalu.
Aby wszystko działało sprawnie

3.2 Zawartości menu głównego

Rysunek 3-1 Wywołanie narzędzia i wprowadzenie parametrów technologicznych

Rysunek 3-2 Wprowadzenie pozycji docelowej
Maszyna - Auto

Nacisnąć przycisk programowy "Maszyna".

Nacisnąć przycisk "AUTO".

W trakcie produkcji wyświetlana jest aktualna faza obróbki. Po naciśnięciu przycisku (symulacja w czasie rzeczywistym) można przejść do symulacji. Podczas wykonywania danego planu obróbki można do niego dodawać kroki obróbki lub rozpocząć wykonywanie nowego planu.
3.2 Zawartości menu głównego

3.2.2 Parametr

Listy parametrów

Tu edytowane są parametry do zarządzania narzędziami i programami.

Listy narzędzi

Obróbka nie może odbywać się bez narzędzi.

Zarządza się nimi na liście narzędzi.

Rysunek 3-3 Lista narzędzi
Magazyn

Narzędzia umieszcza się w magazynie.

Rysunek 3-4 Magazyn

Przesunięcia punktu zerowego

Punkty zerowe zapisane są w przejrzystej tabeli punktów zerowych.

Rysunek 3-5 Przesunięcia punktu zerowego
3.2.3 Program

Edycja programu

Tu edytuje się program.

Jeśli ShopMill został już zainstalowany w menadżerze programów, można sporządzić kompletny plan obróbki dla danego detalu. Warunkiem ustalenia optymalnej kolejności obróbki jest doświadczenie pracownika.

Kontur do obróbki zostanie wprowadzony graficznie jako jedna faza obróbki.

Geometria i technologia są tu ściśle ze sobą powiązane. Następujące obróbki technologiczne są stosowane na kontur.
Przykład zintegrowania geometrii z technologią:

![Diagram zintegrowania geometrii z technologią](image)

Frezowanie po torze wł. ze strategią najazdu i odjazdu
Kieszeń kolowa wł. z technologią i pozycją
Technologia wytaczania
Poszczególne wykonywania
Technologia nawiercenia
Technologia wiercenia
Poszczególne wykonywania

Takie geometryczno-technologiczne powiązanie widać bardzo wyraźnie na graficznym obrazie fazy obróbki poprzez „spinanie” odpowiednich symboli. Przy tym „spinanie” oznacza łączenie geometrii i technologii w jedną fazę obróbki.

Symulacja programu

Przed wykonaniem detalu można przedstawić wykonywanie programu w postaci graficznej na ekranie.

- Nacisnąć przyciski programowe "Symulacja" i "Start".
- Nacisnąć przycisk programowy "Stop", aby zatrzymać symulację.
- Nacisnąć przycisk programowy "Reset", aby przerwać symulację.

Symulację przedstawia się w następujących widokach:

![Symulacja programu](image)

Rysunek 3-6 Widok z góry

Łatwiejsze toczenie dzięki ShopMill
Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1
Aby wszystko działało sprawnie

3.2 Zawartości menu głównego

Rysunek 3-7 Widok w 3D

Rysunek 3-8 Widok boczny
3.2.4 Menadżer programów

Zarządzanie programami

Za pomocą menadżera programów sporządza się nowe programy. Można otworzyć program w celu ponownego opracowania, zmiany, skopiowania lub zmiany nazwy. Programy, które nie będą już potrzebne, można skasować.

Aktywne programy oznaczone są zielonym symbolem.

Wejście na USB oferuje możliwość przenoszenia danych. I tak można na przykład programy, które zostały utworzone na nośniku zewnętrznym, kopiować do NC i uruchamiać ich wykonanie.

Tworzenie nowego detalu

W katalogu detal możemy zarządzać programami oraz innymi plikami, jak na przykład: parametrami narzędzi, punktami zerowymi, stanem magazynu.
Aby wszystko działało sprawnie

3.2 Zawartości menu głównego

Tworzenie nowego programu

Przy tworzeniu nowego programu można za pomocą następujących przycisków programowych określić rodzaj programowania:

- Program ShopMill
- Program G-Code

3.2.5 Diagnoza

Alarmary i komunikaty

Tu wyświetlane są listy alarmów, komunikatów i protokoły alarmów.

Rysunek 3-9 Protokół alarmów
Podstawy dla początkujących

W tym rozdziale przedstawione zostaną ogólne podstawy geometrii i technologii frezowania. Jeszcze bez wprowadzania danych do ShopMill.

4.1 Podstawy geometrii

4.1.1 Osie narzędzia i płaszczyzny obróbki

Na uniwersalnych frezarkach narzędzie może zostać zamontowane równolegle do jednej z trzech osi głównych. Prostokątne względem siebie osie są ustawione na głównych torach ruchu maszyny według DIN 66217 lub ISO 841.

Z położenia zamocowanego narzędzia wynika obszar roboczy. Najczęściej jest to oś Z narzędzia.

Rysunek 4-1 Wrzeciono pionowe
W nowoczesnych maszynach zmiana położenia zamocowania narzędzia następują bez zbędnych nakładów w ciągu kilku sekund na głowicy obrotowej.

Rysunek 4-2 Wrzeciono poziome

Zostanie odpowiednio obrócone na drugą stronę układu współrzędnych, dlatego zmieniają się osie i kierunki w każdej płaszczyźnie obróbki (DIN 66217).

Za pomocą przycisku programowego "Różne" i "Ustawienia" przechodzi się do ekranu wprowadzania parametrów, gdzie w nagłówku programu można utworzyć płaszczyznę obróbki.

Nacisnąć przycisk programowy "Różne".

Nacisnąć przycisk programowy "Ustawienia".

Rysunek 4-3 Ekran wprowadzania parametrów płaszczyzn obróbki
4.1.2 Punkty w obszarze roboczym

Aby system sterowania numerycznego, SINUMERIK 828D z ShopMill, mógł się orientować w danym obszarze roboczym za pomocą układu pomiarowego, istnieje kilka ważnych punktów odniesienia.

Punkt zerowy maszyny M

Punkt zerowy maszyny M ustala producent i nie można go zmienić w trakcie eksploatacji maszyny. Znajduje się on w punkcie początkowym układu współrzędnych maszyny.

Punkt zerowy detalu W

Punkt zerowy detalu W, zwany również punktem zerowym programu, związany jest z punktem początkowym układu współrzędnych detalu. Może być on dowolnej wartości i powinien być umieszczony tam, gdzie na rysunku zaczyna się większość wymiarów.

Punkt referencyjny R

Na punkt referencyjny R najeźdza się w celu wyzerowania układu pomiarowego, ponieważ na punkt zerowy maszyny nie można najeźdzać. W ten sposób sterowanie odnajdzie swój punkt początkowy w układzie pomiarowym.
4.1.3 Wymiary bezwzględne i przyrostowe

Wymiary bezwzględne

Wprowadzane parametry odnoszą się do punktu zerowego detalu.

Wymiary bezwzględne

Przy wprowadzaniu wymiarów bezwzględnych podaje się zawsze **bezwzględną wartość współrzędnych punktu końcowego** (punkt początkowy nie jest brany pod uwagę).

Wymiary przyrostowe

Wprowadzone parametry odnoszą się do punktu początkowego.

Wymiary przyrostowe

Przy wprowadzaniu wymiarów przyrostowych podaje się **wartość różnicy** między punktem początkowym a punktem końcowym uwzględniając **kierunek**.

Przyciskiem SELECT przełącza się między bezwzględnym i przyrostowym wprowadzaniem wymiarów.
Poniżej przykłady wymiarowania bezwzględnego/przyrostowego:

Bezwzględny: X15 Y5
Przyrostowo: X-35 Y-25

Bezwzględny: X-30 Y50
Przyrostowo: X-15 Y40

Bezwzględny: X-10 Y-5
Przyrostowo: X30 Y25

4.1.4 Ruchy proste po torze

Do określenia punktu końcowego potrzebne będą dwa parametry. Parametry mogą wyglądać następująco:

- Kartezjańskie

Wprowadzenie współrzędnych X i Y

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>40.000</td>
<td>abs</td>
</tr>
<tr>
<td>X</td>
<td>30.000</td>
<td>inc</td>
</tr>
<tr>
<td>Y</td>
<td>50.000</td>
<td>abs</td>
</tr>
<tr>
<td>Y</td>
<td>40.000</td>
<td>inc</td>
</tr>
<tr>
<td>L</td>
<td>50.000</td>
<td></td>
</tr>
<tr>
<td>α1</td>
<td>53.130</td>
<td>°</td>
</tr>
<tr>
<td>α2</td>
<td>38.133</td>
<td>°</td>
</tr>
</tbody>
</table>

Transition to next element RADIUS
4.1 Podstawy geometrii

- **Biegunowe**

 Wprowadzenie długości i kąta
 Kąt 38,13° = Kąt do elementu poprzedniego
 lub
 Kąt 53,13° = Kąt początkowy osi dodatniej X

- **Kartezjański i biegunowy**

 Współrzędne kartezjańskie i biegunowe mogą być łączone, np.:
 - Współrzędne punktu końcowego Y i długość
 - Współrzędne punktu końcowego X i kąt (38,13° lub 53,13°)
4.1.5 Ruchy kołowe

Punkt końcowy określają współrzędne X i Y, a punkt środkowy okręgu określony zostanie współrzędnymi I i J. W ShopMill te cztery wartości mogą zostać wprowadzone bezwzględnie lub przyrostowo.

Jeśli parametry X i Y zostaną wprowadzone bezwzględnie, punkt środkowy I i Y zostanie wprowadzony przyrostowo. Określona musi zostać nie tylko różnica od punktu początkowego A do punktu środkowego M (często w połączeniu z obliczeniami matematycznymi), ale także kierunek i przebieg.

Dzięki możliwości wprowadzania wymiarów bezwzględnych punktu środkowego, ShopMill nie potrzebuje przeprowadzać żadnych obliczeń, dlatego nawet skomplikowane kontury można bezproblemowo zaprogramować w kalkulatorze konturu.

Wprowadzenie punktu środkowego (bezwzględnie)

Parametry (w tym przypadku promień), które wynikają z wprowadzonych danych, zostaną w ShopMill automatycznie obliczone.

Po wprowadzeniu:
Wyświetlenie wszystkich parametrów

W ShopMill mogą zostać wyświetcone wszystkie możliwe parametry geometryczne:

Kolejna zaleta bezwzględnego obliczania punktu środkowego: przy zmianie kierunku frezowania nie trzeba na nowo obliczać parametrów I i J.

4.2 Podstawy technologiczne

Głównym założeniem optymalizacji produkcji jest dobra znajomość narzędzi, w szczególności materiału z jakiego wykonane jest narzędzie skrawające, możliwości zastosowania narzędzi i optymalnych parametrów cięcia. Mimo, że narzędzia stanowią tylko od 2-5% całkowitych kosztów wykonania narzędzia, ich wydajność wpływa na koszty produkcyjne części aż w 50%.

4.2.1 Nowoczesne frezy i wiertła

Ciągły rozwój w zakresie nowych materiałów do wykonania narzędzi skrawających sprawił, że w ostatnich latach znacznie poprawiła się wydajność obróbki. W szczególności rozwijająca się od lat sześćdziesiątych technika nanoszenia powłok umożliwia osiągnięcie idealnego stosunku odporności na obciążenia i odporności na ścieranie. Takie materiały mają jeszcze inne zalety: wysoki czas żywotności i lepsza jakość powierzchni.
Specjalne powłoki ceramiczne, jak np.: warstwa Al₂O₃ dzięki swojej wytrzymałości termicznej są najbardziej odpowiednie do zastosowania przy wysokiej prędkości skrawania.

Zdjęcie, które zostało nam udostępnione dzięki uprzejmości firmy SECO, pokazuje system frezowania narożników z różnym pokryciem stołu obrotowego. Drugie zdjęcie pokazuje nowatorską technikę nanoszenia powłok, nazwaną przez firmę SECO "Powłoka DURATOMIC™", podczas której na węgliki spiekane (WS) ① i powłokę TiCN ② nakładane są pionowo kryształy Al₂O₃.

Dzięki specjalnej powłoce zwiększona zostaje odporność na ścieranie i obciążenia.
4.2.2 Stosowane narzędzia

Frez do płaszczyzn

Frez do płaszczyzn (zwanym również głowicą frezową) wybiera duże powierzchnie materiału.

Frez walcowo-czołowy

Frezem walcowo-czołowym prostokątne odcinki konturu wykonane zostaną odsadzeniami pionowymi.

Frez palcowy

Frez palcowy to wieloostrożowe narzędzie, które umożliwia "spokojną" obróbkę dzięki spiralnie ułożonymi ostrzami.
Frez palcowy do podłużnych otworów i rowków wpustowych

Frez palcowy do podłużnych otworów i rowków wpustowych (zwany również frezem do wiercenia rowków) przecina środek i dlatego może się w pełni zagłębić. Najczęściej ma dwa lub trzy ostrza.

Nawiertak

Nawiertak służy do nawiercenia i określenia fazy pod późniejsze wykonywane otwory. Jeśli podana zostanie średnica zewnętrzna fazy ShopMill oblicza automatycznie głębokość.
Wiertło kręte

W ShopMill można wybierać między różnymi operacjami wiercenia (łamanie wiórów, wiercenie głębokich otworów, ...). Ostrze wiertła 1/3D obliczone zostaje w ShopMill automatycznie.

Wiertło do pełnych otworów

Wiertło do pełnych otworów wyposażone na stole obrotowym i wykorzystywane tylko do wiercenia otworów o dużej średnicy. Wiercenie otworów musi zawsze być wykonywane bez przerwy.
4.2.3 Prędkość skrawania i prędkość obrotowa

Optymalna prędkość obrotowa narzędzia zależy od materiału z jakiego wykonane jest narzędzie skrawające i materiału detalu oraz od średnicy narzędzia. W praktyce prędkość obrotowa jest najczęściej wprowadzana bez obliczeń, na podstawie długoletniego doświadczenia. Ale najlepiej jest, obliczyć prędkość obrotową z prędkości skrawania z tabeli.

Przykład - Określenie prędkości skrawania

Korzystając z katalogów producenta lub książki z tabelami, ustala się najpierw optymalną prędkość skrawania.

Materiał, z którego wykonane jest narzędzie: Węglik spiekane
Materiał, z którego wykonany jest detal: C45

Wartość z tabeli: \(v_c = 80 - 150 \text{ m/min} \)
Wybrana wartość średnia: \(v_c = 115 \text{ m/min} \)

Prędkość obrotowa \(n \) obliczana jest z prędkości skrawania i znanej średnicy narzędzia.

\[
 n = \frac{v_c \cdot 1000}{d \cdot \pi}
\]

Przykładowo obliczona zostanie prędkość obrotowa dla dwóch narzędzi:

\[
 n_1 = \frac{115 \text{ mm} \cdot 1000}{40 \text{ mm} \cdot \pi \cdot \text{min}} \quad n_2 = \frac{115 \text{ mm} \cdot 1000}{63 \text{ mm} \cdot \pi \cdot \text{min}}
\]

\[
 n_1 = 900 \text{ 1/min} \quad n_2 \approx 580 \text{ 1/min}
\]

W kodowaniu NC prędkość obrotowa oznaczona jest literą \(S \) (ang. Speed). Wprowadzone parametry wyglądać jak:

Wskazówka

ShopMill na podstawie prędkości skrawania i średnicy narzędzia oblicza automatycznie prędkość obrotową wrzeciona. Jest to pomocne na przykład jako porównanie krzyżowe.
4.2.4 Wielkość posuwu/ostrze i prędkość posuwu

W poprzednim rozdziale określona została prędkość skrawania i prędkość obrotowa. Aby narzędzie skrawało, należy poza prędkością skrawania i prędkością obrotową zdefiniować prędkość posuwu narzędzia.

Podstawą do obliczenia prędkości posuwu jest wielkość posuwu/ostrze. Tak jak prędkość skrawania, również wielkość posuwu/ostrze znajduje się w książce z tabelami, w dokumentacji producenta narzędzia lub można polegać na własnym doświadczeniu.

Przykład - określenie posuwu/ostrze

Materiał wykonania narzędzi skrawających: Węgliki spiekane
Materiał, z którego wykonany jest detal: C45

Wartość z tabeli: \(f_z = 0,1 - 0,2 \) mm
Wybrana wartość średnia: \(f_z = 0,15 \) mm

Znając wielkość posuwu/ostrze, liczbę ostrzy i prędkość obrotową obliczona zostanie prędkość posuwu \(v_f \):

\[
v_f = f_z \cdot z \cdot n
\]

Przykładowo obliczona zostanie prędkość posuwu dla dwóch narzędzi z różną liczbą ostrzy:

\[
\begin{align*}
& d_1 = 63 \text{ mm}, z_1 = 4 & d_2 = 63 \text{ mm}, z_2 = 9 \\
& v_{f_1} = 580 \text{ 1/min} \cdot 0,15 \text{ mm} \cdot 4 & v_{f_2} = 580 \text{ 1/min} \cdot 0,15 \text{ mm} \cdot 9
\end{align*}
\]

\[
\begin{align*}
& v_{f_1} = 348 \text{ mm/min} & v_{f_2} = 783 \text{ mm/min}
\end{align*}
\]

W kodowaniu NC prędkość posuwu oznaczona jest literą \(F \) (ang. Feed). Wprowadzone parametry wyglądają tak:

<table>
<thead>
<tr>
<th>Wskazówka</th>
</tr>
</thead>
</table>

ShopMill oblicza prędkość posuwu automatycznie na podstawie wielkości posuwu/ostrze i liczby ostrzy. Jest to pomocne na przykład jako porównanie krzyżowe.
W tym rozdziale przedstawiony zostanie sposób doboru narzędzia stosowany w przykładach w następnych rozdziałach. Ponadto, na przykładzie objaśnione zostanie, jak przeprowadza się pomiar długości narzędzia oraz jak ustawia się punkt zerowy detalu.

5.1 Zarządzanie narzędziami

ShopMill udostępnia trzy listy do zarządzania narzędziami:

- lista narzędzi,
- lista zużycia narzędzi,
- lista magazynowa.

5.1.1 Lista narzędzi

Na liście narzędzia wyświetlane są wszystkie ich parametry i funkcje, które są potrzebne do utworzenia i ustawiania narzędzi.

Rysunek 5-1 Przykład listy narzędzi
Znaczenie najważniejszych parametrów w liście narzędzi:

<table>
<thead>
<tr>
<th>Miejsce</th>
<th>Numer miejsca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
<td>Typ narzędzia</td>
</tr>
<tr>
<td>Nazwa narzędzia</td>
<td>Identyfikacja narzędzia następuje przez jego nazwę i numer narzędzia siostrzanego. Nazwę narzędzia można wprowadzić jako tekst lub jako numer.</td>
</tr>
<tr>
<td>ST</td>
<td>Numer narzędzia siostrzanego (dla strategii narzędzia zamiennej)</td>
</tr>
<tr>
<td>D</td>
<td>Numer ostrza</td>
</tr>
<tr>
<td>Długość</td>
<td>Długość narzędzia</td>
</tr>
<tr>
<td>Średnica</td>
<td>Średnica narzędzia</td>
</tr>
<tr>
<td>Kąt wierzchołka lub skok</td>
<td>Kąt wierzchołka lub skok gwintu</td>
</tr>
<tr>
<td>N</td>
<td>Liczba ostrzy</td>
</tr>
<tr>
<td></td>
<td>Kierunek obrotu wrzecion</td>
</tr>
<tr>
<td></td>
<td>Dopływ chłodziwa 1 i 2 (np. chłodzenie wewnętrzne i zewnętrzne)</td>
</tr>
</tbody>
</table>

![Rysunek 5-2 Przykład listy narzędzi preferowanych](image-url)
5.1.2 Lista zużycia narzędzi

Tu ustala się parametry zużycia dla poszczególnych narzędzi.

Najważniejsze parametry zużycia narzędzi:

Δ Długość	Zużycie na długości
Δ Promień	Zużycie na promieniu
TC	wybór nadzoru narzędzi:
Czas żywotności lub liczba sztuk lub Zużycie*	
TC	wartość zadana czasu żywotności, liczby sztuk lub zużycia
Granica wstępnego ostrzegania	Narzędzie jest blokowane, gdy pole kontrolne jest aktywne

*R parametr uzależniony od wyboru w TC
5.1.3 Lista magazynowa

Na liście magazynowej znajdują się wszystkie narzędzia przyporządkowane do jednego lub kilku magazynów narzędzi. W oparciu o tą listę pokazują się informacje o stanie narzędzia. Miejsce w magazynie może być rezerwowane lub blokowane dla przewidzianych narzędzi.

Rysunek 5-4 Lista magazynowa

Znaczenie najważniejszych parametrów:

<table>
<thead>
<tr>
<th>G</th>
<th>Blokada miejsca w magazynie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ü</td>
<td>Oznaczenie narzędzia jako narzędzie nadwymiarowe. Narzędzie zajmuje miejsce dwóch półmiejsc po lewej, dwóch półmiejsc po prawej, jedno półmiejsce u góry i jedno półmiejsce u dołu w magazynie.</td>
</tr>
<tr>
<td>P</td>
<td>Kodowanie na stałe miejsce</td>
</tr>
<tr>
<td></td>
<td>Narzędzie jest na stałe przyporządkowane do tego miejsca w magazynie</td>
</tr>
</tbody>
</table>

5.2 Zastosowane narzędzia

W tym rozdziale, narzędzia potrzebne do późniejszej obróbki w ćwiczeniach, zostaną dodane do listy narzędzi.

Wybrać z menu głównego "Parametry".

Nacisnąć przycisk programowy "Lista narzędzi".
Aby załadować nowe narzędzie należy wejść na listę narzędzi i znaleźć wolne miejsce.

Nacisnąć przycisk programowy "Nowe narzędzie".

Z wyświetlonego katalogu narzędzi wybrać żądany typ narzędzia. Zostaje on wstawiony do listy narzędzi i można wpisać dane narzędzia.

Wskazówka

Frezy o średnicy 6, 10, 20 i 32 (Cutter6, 10, 20 i 32) muszą się zagłębiać, ponieważ zostaną one wykorzystane także w ćwiczeniach podczas frezowania kieszeni.
5.3 Narzędzie w magazynie

Poniżej przedstawiono jak załadować narzędzia do magazynu.

Wybrać z listy narzędzie bez numeru miejsca i nacisnąć przycisk "Załaduj".

Okno dialogowe automatycznie proponuje pierwsze, wolne miejsce w magazynie, które można zmienić lub zaakceptować. Magazyn dla kolejnych ćwiczeń może wyglądać następująco:

![Magazyn narzędzia]

5.4 Pomiar narzędzia

Poniżej przedstawiony został pomiar narzędzia.

Umieści narzędzie z listy narzędzi w uchwycie wrzeciona za pomocą przycisku programowego "T, S, M".

Przestawić w menu na "Pomiar narzędzia".

Przyciskiem programowym **Długość ręczne** narzędzie zostanie zmierzone w kierunku Z.
Przyciskiem programowym **Średnica ręcznie** zostanie zmierzona średnica narzędzia.

Przyciskiem programowym **Długość auto** narzędzie zostanie zmierzone w kierunku osi Z z wykorzystaniem czujnika pomiaru narzędzia.

Przyciskiem programowym **Średnica Auto** zostanie zmierzona średnica narzędzia z wykorzystaniem czujnika pomiaru narzędzia.

Przyciskiem programowym **Kompensacja czujnika pomiaru** określona zostanie pozycja czujnika pomiaru na stole maszyny w odniesieniu do punktu zerowego maszyny.
5.5 Ustawienie punktu zerowego detalu

Aby ustawić punkt zerowy detalu, w menu głównym należy przełączyć tryb obsługi **Maszyna ręcznie**.

W podmenu opcji **Punkt zerowy detalu** są do dyspozycji różne sposoby ustawienia punktu zerowego detalu.

Przyciskiem programowym **Kompensacja punktu stałego** określony zostanie punkt stały, jako punkt odniesienia do ręcznego pomiaru długości narzędzia.
Przykładowo punkt zerowy krawędzi detalu zostanie ustawiony z wykorzystaniem czujnika krawędziowego.

1) Wybór krawędzi

Określenie kierunku dotknięcie w lewo (+) lub (-). Parametrem X0 można określić przesunięcie punktu zerowego detalu, jeśli ma on nie leżeć na krawędzi detalu.

2) Dotknięcie krawędzi detalu

3) Punkt zerowy detalu zostanie ustawiony uwzględniając średnicę czujnika krawędziowego (5 mm). Ten sposób pomiaru należy powtórzyć dla Y czujnikiem krawędziowym i dla Z (najczęściej frezem).

Ponieważ poddany obróbce detal nie jest już w kształcie prostopadłościanu do dyspozycji są inne sposoby obliczeń:
Przykład 1: dowolny narożnik

W takim położeniu detalu można określić narożnik detalu poprzez pomiar 4 punktów.

Czuśnik pomiaru 3D występuje w wykonaniu elektronicznym i mechanicznym. Sygnał elektronicznego czujnika pomiaru może być bezpośrednio przejęty przez sterowanie.
Przykład 2: pomiar otworu

Przykład 3: pomiar czopa kołowego
Przy wykorzystaniu elektronicznego czujnika pomiaru 3D z magazynu narzędzi do wrzeciona pojawia się tolerancje mocowania. Może ona doprowadzić do błędów podczas kolejnych pomiarów. Aby temu zapobiec należy przeprowadzić kalibrację czujnika pomiaru 3D na dowolnej płaszczyźnie lub na dowolnym otworze za pomocą cyklu Kompensacja czujnika.

Rysunek 5-5 Kalibrowanie długości

Rysunek 5-6 Kalibrowanie promienia
Przykład 1: Obróbka wzdłużna

6.1 Przegląd

Cel ćwiczenia

W tym rozdziale przedstawione zostaną szczegółowo pierwsze kroki przygotowania detalu. Przedstawimy ...

- zarządzanie i tworzenie programów,
- wywołanie narzędzi i korekcja promienia frezu,
- wprowadzenie drogi ruchu,
- wiercenie otworów i powtórzenie pozycji.

Zadanie

Rysunek 6-1 Rysunek warsztatowy - przykład 1

Rysunek 6-2 Detal - przykład 1
Przykład 1: Obróbka wzdłużna

6.2 Zarządzanie i sporządzanie programu

Wskazówka

ShopMill zapisuje w pamięci zawsze ostatnie ustawienie, które zostało wybrane przyciskiem wyboru. Dlatego należy zwrócić uwagę, aby zarówno w polu edycji, jak i w polach zmian wszystkie jednostki, tekst, symbole były ustawione tak samo, jak w oknach dialogowych w podanych przykładach.

Możliwość przełączenia jest zawsze sygnalizowana wyświetlonym tekstem pomocy (patrz rysunek poniżej).

6.2 Zarządzanie i sporządzanie programu

Kolejność obsługi

Po uruchomieniu sterowania ukaże się ekran główny.

Rysunek 6-3 Ekran główny
Otworzyć menu główne przyciskiem **MENU SELECT**. W menu głównym można wywołać różne obszary ShopMill.

![Menu główne](image1)

Nacisnąć przycisk programowy **Menadżer programów**. Wyświetli się Menadżer programów.

W Menadżerze programów zarządza się planami obróbki i konturami (np. nowy, otwórz, kopiuj ...).

![Menadżer programów](image2)

W Menadżerze programów wyświetla się lista dostępnych katalogów ShopMill. Wybrać kursorem katalog "Detale".

Otworzyć katalog detale.

![Otwarcie katalogu detale](image3)

Wprowadzić nazwę 'EXAMPLE1' nowego detalu.

![Wprowadzenie nazwy detalu](image4)
Potwierdzić wprowadzone wartości. Następnie otworzy się kolejne okno dialogowe.

Rysunek 6-7 Sporządzenie programu krokowego

Klawiszem programowym ShopMill i programGUIDE G-Code wybiera się format wprowadzania.
Klawiszem programowym ShopMill ustala się rodzaj programu.
Wpisać nazwę planu obróbki, w tym przypadku 'Longitudinal_guide'.

Zatwierdzić wprowadzone wartości.
Po zatwierdzeniu otworzy się okno dialogowe do wprowadzenia parametrów detalu.

Rysunek 6-8 Nagłówek programu - obraz pomocy

W nagłówku programu wprowadza się parametry detalu, jak i ogólne parametry programu.
Wprowadzić następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednostka miary</td>
<td>mm</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Przesunięcie punktu zerowego</td>
<td>G54</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Detal surowy</td>
<td>Prostopadłością</td>
<td>X</td>
<td>Ponieważ punkt zerowy detalu leży na środku powierzchni detalu, współrzędne lewego narożnika detalu mają wartość ujemną</td>
</tr>
<tr>
<td>X0</td>
<td>-75</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>-50</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td>150 przyr</td>
<td>X (wybór przyr/bwzg)</td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>100 przyr</td>
<td>X (wybór przyr/bwzg)</td>
<td></td>
</tr>
<tr>
<td>ZA</td>
<td>0</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ZI</td>
<td>-20 bwzg</td>
<td>X (wybór przyr/bwzg)</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>G17 (XY)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Płaszczyzna wycofania</td>
<td>100</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Odstęp bezpieczeństwa</td>
<td>1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Kierunek obróbki</td>
<td>Ruch współbieżny</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Wycofanie na szablon pozycji</td>
<td>Zoptymalizowane</td>
<td>X</td>
<td>Patrz poniżej Wycofanie na szablon pozycji</td>
</tr>
</tbody>
</table>

Zatwierdzić wprowadzone wartości. Po zatwierdzeniu nagłówk programu wygląda następująco.

Rysunek 6-9 Nagłówek programu przykład 1 - edytor programów

Program został sporządzony jako baza do kolejnych kroków obróbki. Posiada on nazwę (niebieski pasek), nagłówek (ikona "P") i koniec (ikona "END"). W programie zapisywane są poszczególne kroki obróbki i kontury. Późniejsza obróbka odbywa się w kierunku od góry w dół.

W celu zmiany lub sprawdzenia wartości można przywołać nagłówek programu.
Przykład 1: Obróbka wzdłużna

6.2 Zarządzanie i sporządzanie programu

Wycofanie na szablon pozycji

Szablon pozycji może być ustawiony na zoptymalizowany (= zoptymalizowana droga ruchu) lub na płaszczyznę wycofania.

Wycofanie zoptymalizowane

Narzędzie porusza się w odstępie bezpieczeństwa w zależności od konturu.

Na płaszczyznę wycofania (zwyczaj)

Narzędzie porusza się do płaszczyzny wycofania i dosuwa do nowej pozycji.

Przyciski programowe

Tym przyciskiem programowym przejdź do obrazu graficznego detalu online (patrz rysunek poniżej).

Rysunek 6-10 Nagłówek programu - widok graficzny

Tym przyciskiem programowym wróć do obrazu pomocy.
6.3 Wywołanie narzędzia i korekcja promienia frezu

Kolejność obsługi

W następnym etapie wybierz odpowiednie narzędzie:

Tym przyciskiem rozwinąć menu poziome.

Wybrać przycisk programowy **Prosta okrąg**.

Wybrać przycisk programowy **Narzędzie**.

Otworzyć listę narzędzi.

Rysunek 6-11 Lista narzędzi

Wybrać kursorem narzędzie CUTTER60.

Zatwierdzić narzędzie do programu. Po zaakceptowaniu narzędzia wprowadź prędkość skrawania 80 m/min (ewentualnie zmienić jednostkę przyciskiem wyboru).

Rysunek 6-12 Narzędzie - prędkość skrawania

Zatwierdzić wprowadzoną wartość.
Przykład 1: Obróbka wzdłużna

6.4 Wprowadzenie drogi ruchu

Kolejność obsługi

Wprowadź drogę ruchu:

Wybierz przycisk programowy "Prosta".

Wybierz przycisk programowy "Przesuw szybki".

Wprowadź w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>110 bwzg</td>
<td>X</td>
<td>Patrz poniżej Korekcja promienia</td>
</tr>
<tr>
<td>Y</td>
<td>0 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Korekcja promienia</td>
<td>Wył.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 6-13 Wprowadzenie drogi ruchu - korekcja promienia

Zatwierdzić wprowadzone wartości.

Wybierz przycisk programowy "Prosta".

Wybierz przycisk programowy "Przesuw szybki".
Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-10 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Korekcja promienia</td>
<td>Puste pole</td>
<td>X</td>
<td>Patrz poniżej Korekcja promienia</td>
</tr>
</tbody>
</table>

Rysunek 6-14 Wprowadzenie drogi ruchu - pozycjonowanie narzędzia w kierunku Z

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy "Prosta".

Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-110 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>400 mm/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Korekcja promienia</td>
<td>Puste pole</td>
<td>X</td>
<td>Patrz poniżej Korekcja promienia</td>
</tr>
</tbody>
</table>

Łatwiejsze toczenie dzięki ShopMill
Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1 65
Przykład 1: Obróbka wzdłużna

6.4 Wprowadzenie drogi ruchu

Zatwierdzić wprowadzone wartości. Po zatwierdzeniu plan obróbki wygląda następująco:

![Rysunek 6-15 Wprowadzenie drogi ruchu - pierwsza droga obróbki](image1)

Wybrać przycisk programowy "Narzędzie" i przeprowadzić samodzielnie następujące kroki obróbki.

Zmienić narzędzie CUTTER16. Po zatwierdzeniu narzędzia wprowadzić prędkość skrawania 100 m/min.

Wprowadzić drogę ruchu zgodnie z poniższą listą kroków obróbki.

![Rysunek 6-16 Wprowadzenie drogi ruchu - lista kroków obróbki](image2)

![Rysunek 6-17 Wprowadzenie drogi ruchu - lista kroków obróbki](image3)
Przykład 1: Obróbka wzdłużna

6.4 Wprowadzenie drogi ruchu

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1

Rysunek 6-18 Wprowadzenie drogi ruchu - kompletna

Uruchomić symulację.

Rysunek 6-19 Symulacja drogi ruchu

Symulację powtarza się przyciskiem programowym Symulacja lub kończy dowolnym, poziomym przyciskiem programowym.
Przykład 1: Obróbka wzdłużna

6.4 Wprowadzenie drogi ruchu

Korekcja promienia

<table>
<thead>
<tr>
<th>Wybór</th>
<th>Rezultat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Korekcja promienia jest wyłączona. Frez porusza się ze swoim punktem środkowym po konturze.</td>
</tr>
<tr>
<td></td>
<td>Poprzednie ustawienie konturu zostanie zachowane.</td>
</tr>
<tr>
<td></td>
<td>Następuje korekcja lewego konturu w kierunku frezowania.</td>
</tr>
<tr>
<td></td>
<td>Następuje korekcja prawego konturu w kierunku frezowania.</td>
</tr>
</tbody>
</table>
6.5 Wiercenie otworów i powtórzenie pozycji

Kolejność obsługi

Wprowadzić parametry otworów i powtórzeń pozycji. Przy czym 12 otworów należy najpierw nawiercić, przewiercić i zagwintować.

Wybór przycisku programowego Wiercenie.

Wybór przycisku programowego Nawiercanie.

Otworzyć listę narzędzi. Wybrać kursorem narzędzie CENTERDRILL12.

Zatwierdzić narzędzie do programu. Po zatwierdzeniu narzędzia wprowadzić następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>150 mm/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>500 obr/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Średnica/wierzchołek</td>
<td>Średnica</td>
<td>X</td>
<td>Nawiercenie można wprowadzić w oparciu o średnicę lub głębokość (wierzchołek). Ponieważ otwory mają 0,5 mm fazę, można wprowadzić średnicę o wartości 11 mm.</td>
</tr>
</tbody>
</table>
Przykład 1: Obróbka wzdłużna

6.5 Wiercenie otworów i powtórzezenie pozycji

Zatwierdzić wprowadzone wartości.

W kolejnym kroku zostaną wprowadzone pozycje wiercenia i połączone z parametrami cięcia.

Wybrać przycisk programowy Pozycje.

Rysunek 6-21 Nawiercanie

Rysunek 6-22 Pozycje - pojedynczych otworów
Przykład 1: Obróbka wzdłużna

6.5 Wiercenie otworów i powtórzenie pozycji

Wprowadzić następujące parametry dla dwóch pojedynczych otworów:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z0</td>
<td>-10</td>
<td></td>
<td>Głębokość początkowa - 10 mm</td>
</tr>
<tr>
<td>X0</td>
<td>-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td>50 bwzg</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Y1</td>
<td>0 bwzg</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Wskazówka

Po wybraniu przycisku programowego *Widok graficzny* otrzymuje się szczegółowy obraz pomocy (patrz tabela poniżej).

<table>
<thead>
<tr>
<th>Pozycje</th>
<th>Szablon pozycji</th>
<th>Pozycja okrąg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy *Pozycje*.
Wybór przycisk programowy **Pozycja okrąg**.

Rysunek 6-23 Pozycja okrąg

Wprowadzić następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z0</td>
<td>-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pozycjonowanie</td>
<td>Prosta</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Przykład 1: Obróbka wzdłużna

6.5 Wiercenie otworów i powtórzenie pozycji

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Pozycje**.

Wybrać przycisk programowy **Szablon pozycji**.

![Diagram of Positioning](image)

Rysunek 6-24 Pozycje - siatka

Wprowadzić następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szablon</td>
<td>Siatka</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td>-65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Wiercenie, rozwiercanie**.

Otworzyć listę narzędzi. Wybrać kursorem narzędzie DRILL8.5.
Zatwierdzić narzędzie do programu. Po zatwierdzeniu narzędzia wprowadzić następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>150 mm/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>35 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chwyt/wierzchołek</td>
<td>Chwyt</td>
<td>X</td>
<td>Wprowadzić głębokość przyrostowo, w odniesieniu do chwytu. Tzn. ostrze wiertła 1/3 D zostanie automatycznie uwzględnione.</td>
</tr>
<tr>
<td>Z1</td>
<td>20 przyr</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>0 sek</td>
<td>X</td>
<td>Otwory zostaną wykonane bez czasu oczekiwania na wyjście narzędzia z materiału.</td>
</tr>
</tbody>
</table>

Wskazówka

Nawiercanie, wiercenie i gwintowanie zostaną automatycznie ze sobą powiązane.

Rysunek 6-25 Wiercenie

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy Gwint.
Wybrać przycisk programowy **Gwintowanie otworu**.

Otworzyć listę narzędzi. Wybrać kursorem narzędzie THREADCUTTER M10.

Zatwierdzić narzędzie do programu. Po zatwierdzeniu narzędzia wprowadzić następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1.5 mm/h</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>60 obr/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>60 obr/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>22 przyr</td>
<td>X</td>
<td>Glębokość należy podać przyrostowo.</td>
</tr>
</tbody>
</table>

Rysunek 6-26 Gwint

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Powtórzenie pozycji**.
Przykład 1: Obróbka wzdużna

6.5 Wiercenie otworów i powtórzenie pozycji

Rysunek 6-27 Powtórzenie pozycji

Zatwierdzić wprowadzone wartości. Po zatwierdzeniu w edytorze widać połączone kroki obróbki.

Rysunek 6-28 Łączenie kroków obróbki

Wybrać przycisk programowy Wiercenie, rozwiercanie.

Otworzyć listę narzędzi. Wybrać kursorem narzędzie DRILL10.

Zatwierdzić narzędzie do programu. Po zatwierdzeniu narzędzia wprowadzić następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>150 mm/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>35 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chwyt/wierzchołek</td>
<td>Chwyt</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>20 przyr</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>0</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1
Przykład 1: Obróbka wzdłużna

6.5 Wiercenie otworów i powtórzenie pozycji

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1

Rysunek 6-29 Dziesiąty otwór

Zatwierdzić wprowadzone wartości.

Powtórzyć pozycje 001 i 002 dla dziesiątego otworu.

Rysunek 6-30 Powtórzenie pozycji 001 i 002 w edytorze programów

Uruchomić symulację.

Rysunek 6-31 Symulacja w 3D
Przykład 1: Obróbka wzdłużna

6.5 Wiercenie otworów i powtórzenie pozycji
Przykład 2: Forma wtryskowa

7.1 Przegląd

Cel ćwiczenia

W tym rozdziale przedstawione zostaną kolejne, nowe funkcje. Przedstawimy ...
- określenie prostej i okręgu przy wykorzystaniu współrzędnych biegunowych,
- wykonanie kieszeni prostokątnej,
- zastosowanie kieszeni kołowej na szablonie pozycji.

Zadanie

Rysunek 7-1 Rysunek warsztatowy - przykład 2

Rysunek 7-2 Detal - przykład 2
Przygotowanie

Należy zrealizować następujące etapy:

1. Utworzyć nowy detal o nazwie 'EXAMPLE2'.
2. Sporządzić nowy program krokowy o nazwie 'INJECTION_FORM'.
3. Wprowadzić wymiary detalu surowego (porównać sposób postępowania jak w przykładzie 1).

Wskazówka

Uwaga na nowe położenie punktu zerowego!

4. Założyć frez o średnicy 20 (V 80 m/min).
5. Zpozycjonować narzędzie przesuwem szybkim na punkt X-12/ X-12/ Z-5.
6. Określić punkt początkowy konturu na X5 i Y5. Punkt początkowy zostanie określony na prostej (F 100 mm/min, korekcja promienia frezu w lewo). Po wprowadzeniu parametrów plan obróbki wygląda następująco.

Rysunek 7-3 Program krokowy
7.2 Prosta i okrąg przy użyciu współrzędnych biegunowych

Kolejność obsługi

Zanim wprowadzone zostaną parametry konturu, należy zwrócić uwagę na następującą wskazówkę:

Wskazówka

Punkt końcowy może być opisany nie tylko współrzędnymi X i Y, ale także współrzędnymi biegunowymi.

W naszym przykładzie nieznane są wartości X i Y. Ale punkt ten można określić: jest on oddalony o 20 mm od punktu środkowego kieszeni kołowej, który określa biegun. Kąt biegunowy 176° wynika z obliczeń 180° - 4° (patrz rysunek warsztatowy).

Rysunek 7-4 Określenie punktu końcowego i kąta biegunowego

W kolejnych etapach wprowadź kontur:

Wybrać przycisk programowy Biegunowo.

Wybrać przycisk programowy Biegun.

Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>30 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>75 bwzg</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Przykład 2: Forma wtryskowa

7.2 Prosta i okrąg przy użyciu współrzędnych biegunowych

![Rysunek 7-5 Wprowadzenie bieguna](image.png)

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Prosta biegunowo**.

Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>20</td>
<td></td>
<td>Długość L określa odległość od punktu końcowego prostej do biegunu</td>
</tr>
<tr>
<td>α</td>
<td>176</td>
<td></td>
<td>Kąt biegunowy określa, jaka musi być długość L, aby móc obrócić się wokół biegunu i osiągnąć punkt końcowy prostej. Kąt biegunowy można wprowadzić w kierunku przeciwnym do ruchu wskazówek zegara (176°) lub zgodnie z ruchem wskazówek zegara (-184°).</td>
</tr>
</tbody>
</table>
Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Okrąg biegunowo**.

Określenie toru kołowego może również nastąpić za pomocą współrzędnych biegunowych.

Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>90 (ang)</td>
<td></td>
<td>Ponieważ biegun obowiązuje zarówno dla toru kołowego jak i dla prostej, wprowadzamy go tylko jeden raz. Kąt biegunowy wynosi w tym przypadku 90°. (patrz rysunek)</td>
</tr>
</tbody>
</table>

Rysunek 7-7 Punkt początkowy/punkt końcowy biegunu
Przykład 2: Forma wtryskowa

7.2 Prosta i okrąg przy użyciu współrzędnych biegunowych

Rysunek 7-8 Wprowadzenie toru kołowego

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy \textit{Wroc}.

Wybrać przycisk programowy "\textit{Prosta}".

Ponieważ punkt końcowy prostej jest znany, można zastosować funkcję \textit{Prosta}.

Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>120</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 7-9 Wprowadzenie prostej
Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Biegunowo**.

Wybrać przycisk programowy **Biegun**.

Ponieważ punkt końcowy następnego toru kołowego nie jest znany, należy znów wykorzystać współrzędne biegunowe.

Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wybór</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>120 bwzg</td>
<td>X</td>
<td>Biegun toru kołowego jest znany z rysunku.</td>
</tr>
<tr>
<td>Y</td>
<td>75 bwzg</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 7-10 Wprowadzenie biegunu toru kołowego

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Okrąg biegunowo**.

Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wybór</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>4</td>
<td></td>
<td>Kąt biegunowy, na zasadzie symetrii, jest również znany.</td>
</tr>
</tbody>
</table>
Przykład 2: Forma wtryskowa

7.2 Prosta i okrąg przy użyciu współrzędnych biegunowych

Rysunek 7-11 Wprowadzenie toru kołowego biegunowo

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy Wróć.

Wybrać przycisk programowy "Prosta".

Punkt końcowy prostej jest znany i może być bezpośrednio wprowadzony.

Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>145 bwzg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>5 bwzg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 7-12 Wprowadzenie prostej
Przykład 2: Forma wtryskowa

7.2 Prosta i okrąg przy użyciu współrzędnych biegunowych

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy "Prosta".
Ostatnią prostą kontur został kompletnie sfrezowany.
Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-20 bwzg</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 7-13 Wprowadzenie prostej

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy "Prosta".
Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-12 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-12 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Korekcja promienia</td>
<td>Wył.</td>
<td>X</td>
<td>Ostatni ruch to przejazd na wprowadzony odstęp bezpieczeństwa, przy czym kontur zostanie wyłączony.</td>
</tr>
</tbody>
</table>

Łatwiejsze toczenie dzięki ShopMill
Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1
Przykład 2: Forma wtryskowa

7.2 Prosta i okrąg przy użyciu współrzędnych biegunowych

Zatwierdzić wprowadzone wartości.

Symulacja pokazuje przebieg produkcji, zanim rozpocznie się wykonanie detalu.

Rysunek 7-14 Wprowadzenie prostej - odstęp bezpieczeństwa

Rysunek 7-15 Symulacja widok z góry
Przykład 2: Forma wtryskowa

7.3 Kieszeń prostokątna

Kolejność obsługi

W kolejnych etapach wprowadź kieszeń prostokątną:

![Rysunek 7-17 Kieszeń prostokątna - przykład 2](image)

Wybierz przycisk programowy **Frezowanie**.

Wybierz przycisk programowy **Kieszeń**.

Wybierz przycisk programowy **Kieszeń prostokątna**.

Otwórz listę narzędzi i wybierz CUTTER10.

Zatwierdź narzędzie do programu.
Przykład 2: Forma wtryskowa

7.3 Kieszeń prostokątna

Po zatwierdzeniu narzędzia wprowadzić następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.15 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>120 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Punkt odniesienia</td>
<td>Środek</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka zgrubna</td>
<td>X</td>
<td>Należy uważać, aby pole edycji było ustawione na pojedyncza pozycja</td>
</tr>
<tr>
<td>X0</td>
<td>75</td>
<td></td>
<td>Wprowadzić parametry geometryczne kieszeni prostokątnej: pozycja, szerokość i długość, ...</td>
</tr>
<tr>
<td>Y0</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α0</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>-15 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DXY</td>
<td>80%</td>
<td>X</td>
<td>Maksymalny dosuw w płaszczyźnie (DXY) określa, jaka szerokość materiału zostanie poddana obróbce. Podawać w procentach średnicy frezu lub w mm. Maksymalny dosuw w płaszczyźnie zostanie wprowadzony tu w %.</td>
</tr>
<tr>
<td>DZ</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UXY</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zagłębianie</td>
<td>Spiralnie</td>
<td>X</td>
<td>Wybrać zagłębianie spiralnie, o ile nie został już wcześniej ustawione (patrz poniżej Zagłębiane)</td>
</tr>
<tr>
<td>EP</td>
<td>2 mm/h</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Kieszeń**.

Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.08 mm/ostrze</td>
<td>X</td>
<td>Obróbka wykańczająca krawędzi i dna kieszeni. Krawędź można ewentualnie poddać tylko obróbcie wykańczającej lub ściąć krawędzie kieszenie.</td>
</tr>
<tr>
<td>V</td>
<td>150 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka wykańczająca</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Przykład 2: Forma wtryskowa

7.3 Kieszeń prostokątna

Zatwierdzić wprowadzone wartości.

Zagłębianie

<table>
<thead>
<tr>
<th>Zagłębianie spiralne</th>
<th>Zagłębianie prostopadłe</th>
<th>Zagłębianie ruchem wahliwym</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP = Skok zagłębiania</td>
<td>ER = Promień zagłębiania</td>
<td>EW = Kąt zagłębiania</td>
</tr>
</tbody>
</table>

Rysunek 7-19 Obróbka wykańczająca kieszeni prostokątnej
7.4 Kieszeń kołowa na szablonie pozycji

Kolejność obsługi

W kolejnych etapach wprowadź kieszeń kołową:

Rysunek 7-20 Kieszeń kołowa - przykład 2

Wybierz przycisk programowy Frezowanie.

Wybierz przycisk programowy Kieszeń.

Wybierz przycisk programowy Kieszeń kołowa.

Otwórz listę narzędzi i wybierz CUTTER10.

Zatwierdź narzędzie do programu.

Po zatwierdzeniu narzędzia wprowadzić następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.15 mm/ostrze</td>
<td>X</td>
<td>Podobnie jak podczas wiercenia otworów, kieszeń kołową można sporządzić na szablonie pozycji.</td>
</tr>
<tr>
<td>V</td>
<td>120 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka zgrubna</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Szablon pozycji</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>∅</td>
<td>30</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>-10 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DXY</td>
<td>80 %</td>
<td>X</td>
<td>Podać maksymalny dosuw w płaszczyźnie w %</td>
</tr>
<tr>
<td>DZ</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Przykład 2: Forma wtryskowa

7.4 Kieszeń kołowa na szablone pozycji

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>UXY</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zagłębianie</td>
<td>Spiralnie</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>2 mm/h</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wybieranie materiału</td>
<td>Kompletna obróbka</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 7-21 Obróbka zgubna kieszeni kołowej

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy Kieszeń.

Wybrać przycisk programowy Kieszeń kołowa.

Wprowadzić następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.08 mm/osłone</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>150 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka wykańczająca</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Przykład 2: Forma wtryskowa

7.4 Kieszeń kołowa na szablonie pozycji

Rysunek 7-22 Obróbka wykańczająca kieszeń kołowej

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy Wiercenie.

Wybrać przycisk programowy Pozycje.

Wybrać przycisk programowy Szablon pozycji.

Wprowadzić następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szablon</td>
<td>Siatka</td>
<td>X</td>
<td>Opis szablonu pozycji następuje w menu Wiercenie, podmenu Pozycje (niezależnie od rodzaju obróbki)</td>
</tr>
<tr>
<td>X0</td>
<td>30 bwzg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>25 bwzg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Przykład 2: Forma wtryskowa
7.4 Kieszeń kołowa na szablonie pozycji

Rysunek 7-23 Pozycje kieszeni kołowych

Zatwierdzić wprowadzone wartości.

Uruchomić symulację.

Rysunek 7-24 Symulacja - aktywny przekrój
Przykład 3: Płytka kształtowa

8.1 Przegląd

Cel ćwiczenia

W tym rozdziale przedstawione zostaną kolejne, nowe funkcje, w szczególności kalkulator konturu. Przedstawimy ...

- jak frezować otwarte kontury,
- wybieranie materiału z konturu kieszeni, obróbka pozostałego materiału i obróbka wykańczająca,
- obróbkę na wielu płaszczyznach,
- jak uniknąć przeszkód.

Zadanie

Rysunek 8-1 Rysunek warsztatowy - przykład 3
Przykład 3: Płytka kształtowa

8.2 Frezowanie konturowe otwartych konturów

Przygotowanie

Należy zrealizować następujące etapy:
1. Utworzyć nowy detal o nazwie 'Example3'.
2. Sporządzić nowy plan obróbki o nazwie 'MOLD_PLATE'.
3. Wprowadzić wymiary detalu surowego (porównać sposób postępowania jak w przykładzie 1).

Wskazówka

Uwaga na nowe położenie punktu zerowego!

8.2 Frezowanie konturowe otwartych konturów

Kalkulator konturu

Do wprowadzania parametrów konturów służy w ShopMill kalkulator konturu, za pomocą którego z łatwością można wprowadzić nawet najtrudniejsze kontury.

Za pomocą graficznego kalkulatora konturu można w prosty i szybki sposób wprowadzić kontur podczas programowania bez skomplikowanych obliczeń matematycznych.
Kolejność obsługi

W kolejnych etapach wprowadź kontur:

Wybierz przycisk programowy **Frezowanie konturu**.

Wybierz przycisk programowy **Nowy kontur**. Wprowadź nazwę konturu 'MOLD_PLATE_Outside'.

Każy kontur otrzymuje swoją nazwę. To poprawia czytelność programów.

Rysunek 8-3 Tworzenie nowego konturu 'MOLD_PLATE_Outside'

Zatwierdź wprowadzone wartości.

Wprowadź w oknie dialogowym następujące wartości punktu początkowego konturu:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-35</td>
<td></td>
<td>Punkt początkowy projektu jest równocześnie punktem początkowym późniejszej obróbki konturu</td>
</tr>
<tr>
<td>Y</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 8-4 Wprowadzenie punktu początkowego
Wskazówka

Zdefiniowany zostanie tylko kontur detalu. Dosunięcie i odsunięcie zostanie określone później.

Zatwierdzić wprowadzone wartości.

Wprowadzić w oknie dialogowym następujące wartości dla prostej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Przejście do następnego elementu</td>
<td>Promień</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 8-5 Wprowadzenie odcinka pionowego konturu

Zatwierdzić wprowadzone wartości.
Przykład 3: Płytka kształtowa

8.2 Frezowanie konturowe otwartych konturów

Łatwiejsze toczenie dzięki ShopMill

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>35 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>15</td>
<td></td>
<td>Promień wprowadzony zostanie jako zaokrąglenie.</td>
</tr>
</tbody>
</table>

Rysunek 8-6 Wprowadzenie odcinka poziomego konturu

Zatwierdzić wprowadzone wartości.
8.2 Frezowanie konturowe otwartych konturów

Wprowadzić w oknie dialogowym następujące wartości dla prostej pionowej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-100 biezg</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 8-7 Wprowadzenie odcinka pionowego konturu

Zatwierdzić wprowadzony kontur.

Zatwierdzić kontur do planu obróbki.

W celu obróbki konturu należy postępować zgodnie z następującymi krokami obróbki:

Wybrać przycisk programowy Frezowanie konturowe.

Otworzyć listę narzędzi i wybrać CUTTER32.

Zatwierdzić narzędzie do programu.
Wprowadzić w oknie dialogowym następujące wartości obróbki zgrabnej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.15 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>120 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka zgrabna w przód</td>
<td>X, X</td>
<td>Od wersji ShopMill 6.4 frezowanie w tył można wykonywać w przeciwnym kierunku do kierunku konstrukcji</td>
</tr>
<tr>
<td>Korekcja promienia</td>
<td>Z lewej</td>
<td>X</td>
<td>Naiąd narzędzia z lewej strony konturu.</td>
</tr>
<tr>
<td>Z0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>10 przyr</td>
<td>X</td>
<td>Przełączyć głębokość Z1 na przyr. Zaleta jest taka, że zawsze będzie taka sama głębokość kieszeni bez podawania wartości liczbowych. To zdecydowanie ułatwia wprowadzanie parametrów kieszeni.</td>
</tr>
<tr>
<td>DZ</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UXy</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>5</td>
<td></td>
<td>Przy długości dosunięcia L1 promień frezu nie musi być brany pod uwagę. ShopMill oblicza go automatycznie.</td>
</tr>
<tr>
<td>FZ</td>
<td>0.1 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Odsunięcie</td>
<td>Prosta</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tryb odsunięcia</td>
<td>Na płaszczyznę wycofania</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Przykład 3: Płytka kształtowa

8.2 Frezowanie konturowe otwartych konturów

Zatwierdzić wprowadzone wartości.

Wprowadzić w oknie dialogowym następujące wartości obróbki wykańczającej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.08 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>150 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka wykańczająca</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 8-8 Obróbka zgrubna konturu

Rysunek 8-9 Obróbka wykańczająca konturu
Zatwierdzić wprowadzone wartości.

W edytorze programów obie fazy obróbki zostaną połączone.

Rysunek 8-10 Łączenie faz obróbki w planie obróbki

Symulacja pokazuje przebieg produkcji, zanim rozpocznie się wykonanie detalu.

Rysunek 8-11 Symulacja - kontur z zewnątrz
8.3 Wybieranie pozostałego materiału i obróbka wykańczająca konturu kieszeni

Kolejność obsługi

W kolejnych etapach wprowadź kontur kieszeni. Z kieszeni zostanie wybrany materiał i nastąpi obróbka wykańczająca.

Rysunek 8-12 Kontur kieszeni

Wybierz przycisk programowy \textit{Frezowanie konturu}.

Wybierz przycisk programowy \textit{Nowy kontur}. Wprowadzić nazwę konturu 'MOLD_PLATE_Inside'.

Rysunek 8-13 Tworzenie nowego konturu 'MOLD_PLATE_Inside'

Zatwierdzić wprowadzone wartości.

Wprowadzić w oknie dialogowym następujące wartości punktu początkowego:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0 bwzg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-90 bwzg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 8-14 Wprowadzenie punktu początkowego
Zatwierdzić wprowadzone wartości.

Wprowadź w oknie dialogowym następujące wartości prostej poziomej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
</table>

Rysunek 8-15 Wprowadzenie odcinka poziomego konturu

Zatwierdzić wprowadzone wartości.
Przykład 3: Płytka kształtowa

8.3 Wybieranie pozostałego materiału i obróbka wykańczająca konturu kieszeni

Wprowadzić w oknie dialogowym następujące wartości łuku:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kierunek obrotów</td>
<td>Z lewej</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>30 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-85 bwzg</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Po wprowadzeniu punktu końcowego Y otrzymamy dwa rozwiązania. Przyciskiem programowym **Wybór dialogowy** należy wybrać rozwiązanie. Wybrane rozwiązanie oznaczone zostanie na pomarańczowo, a alternatywne na czarno.

Zatwierdzić wybór. Procesor geometryczny rozpoznaje automatycznie, że zaprogramowany łuk następuje stycznie do prostej. Wybierz przycisk programowy **Styczna do poprz.**.

Łatwiejsze tocenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1
Zatwierdzić wprowadzone wartości.

Wprowadzić w oknie dialogowym następujące wartości prostej pionowej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-20 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Przejście do następnego elementu</td>
<td>Promień 5</td>
<td>X</td>
<td>Punkt końcowy prostej jest znany. Przejście do R36 zostanie zaokrąglone o R5.</td>
</tr>
</tbody>
</table>

Rysunek 8-18 Wprowadzenie odcinka pionowego konturu

Zatwierdzić wprowadzone wartości.
8.3 Wybieranie pozostałelego materiału i obróbka wykańczająca konturu kieszeni

Wprowadzić w oknie dialogowym następujące wartości łuku:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kierunek obrotów</td>
<td>Z prawej</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>-30 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-20 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Przejście do następnego elementu</td>
<td>Promień 5</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 8-19 Wprowadzenie konturu łuku

Zatwierdzić wprowadzone wartości.
Wprowadzić w oknie dialogowym następujące wartości prostej pionowej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-90 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Przejście do następnego elementu</td>
<td>Promień 5</td>
<td>X</td>
<td>Wprowadzić promień R5 jako zaokrąglenie.</td>
</tr>
</tbody>
</table>

Rysunek 8-20 Wprowadzenie odcinka pionowego konturu

Zatwierdzić wprowadzone wartości.

Zamknąć kontur. Tym samym kontur kieszeni jest kompletnie zdefiniowany.

Rysunek 8-21 Zamknięcie konturu

Zatwierdzić kontur do planu obróbki.
Wybór przycisk programowy Kieszeń.

Otworzyć listę narzędzi i wybrać CUTTER20.

Zatwierdzić narzędzie do programu.

Wskazówka

Kierunek wykonywania kieszeni został już określony w nagłówku programu. W tym wypadku zostanie wybrany ruch współbieżny.

Wprowadzić w oknie dialogowym następujące wartości obróbki zgrubnej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.15 mm/ostrze</td>
<td>X</td>
<td>Wskazówko: Jeśli głębokość obróbki została wprowadzona przyrostowo, głębokość należy wprowadzić jako wartość dodatnią.</td>
</tr>
<tr>
<td>V</td>
<td>120 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka zgrubna</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>15 przyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DXY</td>
<td>50%</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DZ</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UXY</td>
<td>0.3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punkt początkowy</td>
<td>Automatycznie</td>
<td>X</td>
<td>Jeżeli dla punktu początkowego (pozycja zagłębiania) wybrane zostało ustawienie auto będzie to w ten sposób przyjęte w ShopMill.</td>
</tr>
<tr>
<td>Zagłębianie</td>
<td>Spiralnie</td>
<td>X</td>
<td>Ustawić zagłębieinie na spiralnie o skoku i promieniu 2 mm.</td>
</tr>
<tr>
<td>EP</td>
<td>2 mm/h</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tryb odsunięcia</td>
<td>Na płaszczyznę wycofania</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Kieszeń pozostały mat**. Ponieważ frez o średnicy 20 nie usunie materiału promienia R5, w rogach pozostaje jeszcze materiał. Funkcją **Kieszeń pozostały mat** pozostały materiał zostanie dokładnie wybrany.

Otworzyć listę narzędzi i wybrać CUTTER10.

Zatwierdzić narzędzie do programu.

Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.1 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>120 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka zgrubna</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DXY</td>
<td>50%</td>
<td></td>
<td>Maksymalny dosuw w płaszczyźnie powinien wynosić 50%.</td>
</tr>
<tr>
<td>DZ</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Przykład 3: Płytka kształtowna

8.3 Wybieranie pozostałego materiału i obróbka wykańczająca konturu kieszeni

Wybieranie narzędzi

Zatwierdzić wprowadzone wartości.

Wybór przycisk programowy Kieszeń.

Otworzyć listę narzędzi i wybrać CUTTER10.

Zatwierdzić narzędzie do programu.

Wprowadzić w oknie dialogowym następujące parametry obróbki kieszeni:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.08 mm/ostrze</td>
<td>X</td>
<td>Parametry w polach naddatek na obróbkę wykańczającą w płaszczyźnie (UXY) i naddatek na obróbkę wykańczającą na głębokość (UZ), ustawiony wcześniej przy obróbce zgrubnej naddatek, musi pozostać. Ta wartość ma znaczenie podczas automatycznego obliczania drogi ruchu.</td>
</tr>
<tr>
<td>V</td>
<td>150 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Dno</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UXY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.3 Wybieranie pozostałego materiału i obróbka wykańczająca konturu kieszeni

Rysunek 8-24 Obróbka wykańczająca kieszeni

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy Kieszon.

Wprowadzić w oknie dialogowym następujące wartości obróbki pozostałego materiału na konturze:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obróbka</td>
<td>Krawędź</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 8-25 Obróbka wykańczająca krawędzi

Zatwierdzić wprowadzone wartości.
8.4 Obróbka na wielu płaszczyznach

Kolejność obsługi

Frezować kieszon kołową jak w przykładzie 'INJECTION_FORM' w dwóch krokach.

1. W pierwszym kroku kieszon zostanie poddana obróbce zgrubnej frezem o średnicy 20 do wartości -9,7.

Rysunek 8-26 Kieszon kołowa

Rysunek 8-27 Obróbka zgrubna kieszoni kołowej
2. W drugim kroku, tym samym narzędziem, kieszeń zostanie poddana obróbce wykańczającej.

W kolejnych krokach wprowadź obróbkę wewnętrznej strony kieszeni kołowej. Kieszeń kołowa zostanie poddana obróbce do głębokości -20 mm.

Wskazówka

Głębokość początkowa nie znajduje się teraz w punkcie 0 mm lecz -10 mm!

Wybrać przycisk programowy Frezowanie.

Wybrać przycisk programowy Kieszeń.
Przykład 3: Płytka kształtowa

8.4 Obróbka na wielu płaszczyznach

Wprowadzić w oknie dialogowym następujące wartości obróbki kieszeni kołowej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.15 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>120 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka zgrubna</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∅</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>-20 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DXY</td>
<td>50%</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DZ</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UXY</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zagłębianie</td>
<td>Prostopadłe</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FZ</td>
<td>0.1 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 8-30 Obróbka zgrubna wewnętrznej strony kieszeni kołowej

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Frezowanie**.

Wybrać przycisk programowy **Kieszeń**.
Przykład 3: Płytka kształtowa

8.4 Obróbka na wielu płaszczyznach

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1

Wprowadzić w oknie dialogowym następujące wartości obróbki kieszeni kołowej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.08 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>150 m/min</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 8-31 Obróbka wykańczająca wewnętrznej strony kieszeni kołowej

Zatwierdzić wprowadzone wartości.

Uruchomić symulację.

Rysunek 8-32 Symulacja - widok w 3D
8.5 Uwzględnienie przeszkód

Kolejność obsługi

Jak już zostało przedstawione w przykładzie 1, również w tym detalu można połączyć ze sobą różne szablony otworów. Należy zwrócić uwagę, aby wszystkie przeszkody zostały umieszczone zgodnie z kolejnością obróbki. Między otworami zawsze przemieszczamy się na Odstęp bezpieczeństwa lub na Płaszczyznę obróbki, tak jak zostało to ustawione.

Wykonaj najpierw nawiercenie i wiercenie analogicznie jak w przykładzie pierwszym.

1. Nawiercanie

![Rysunek 8-33 Nawiercanie](image1)

2. Wiercenie

![Rysunek 8-34 Wiercenie](image2)
W kolejnym etapie wprowadź pozycje wiercenia:
Wybierz przycisk programowy Pozycje.

Określić najpierw kolejność otworów po lewej w kolejności od dołu do góry.
Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szablon</td>
<td>Linia</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td>-42.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>-92.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 8-35 Określenie kolejności otworów
Zatwierdzić wprowadzone wartości.
Wybierz przycisk programowy Pozycje.
Przykład 3: Płytka kształtowa

8.5 Uwzględnienie przeszkód

Przyciskiem programowym "Przeszkoda" wprowadź drogę ruchu 1 mm, ponieważ jako następne powinny zostać wykonane otwory po prawej od dołu do góry. Przeszkodę należy wprowadzić wtedy, gdy wcześniej pole edycji w nagłówku programu "Wycofanie na szabl.poz." przełączono na zoptymalizowany.

Rysunek 8-36 Wprowadzenie przeszkody

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy Pozycje.

Wprowadzić w oknie dialogowym następujące wartości drugiego rzędu otworów:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szablon</td>
<td>Linia</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td>42.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>-92.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy Pozycje.

Aby móc przejść do następnego szablonu otworu należy znów ominąć przeszkodę. Wprowadzić parametr Z=1.

Zatwierdzić wprowadzoną wartość.

Wybrać przycisk programowy Pozycje.

Wprowadzić w oknie dialogowym następujące parametry sześciu otworów na pełnym okręgu:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szablon</td>
<td>Pełny okrąg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>22.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pozycjonowanie</td>
<td>Prosta</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy Pozycje.

Aby wykonać ostatni otwór przeszkoda musi zostać omińiona. Wprowadzić parametr Z=1.

Zatwierdzić wprowadzoną wartość.

Wybrać przycisk programowy Pozycje.

Wprowadzić w oknie dialogowym następujące wartości pozycji ostatniego otworu:

Wskazówka

Ewentualnie usunąć już dostępne pozycje klawiszem DEL.

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szablon</td>
<td>Prostokątny</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>42.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Przykład 3: Płytka kształtowa

8.5 Uwzględnienie przeszkód

Rysunek 8-39 Wprowadzenie pozycji otworów

Zatwierdzić wprowadzone wartości.

Wskazówka

Ten przykład powinien zostać wykonany funkcją "Przeszkoda". Są oczywiście inne sposoby, aby tak zaprogramować pozycje otworów, aby była tylko jedna przeszkoda. Proszę wypróbować różne rozwiązania!

Uruchomić symulację.

Rysunek 8-40 Symulacja widok z góry
Przykład 3: Płytka kształtowa

8.5 Uwzględnienie przeszkód

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1
Przykład 4: Dźwignia

9.1 Przegląd

Cel ćwiczenia

W tym rozdziale przedstawione zostaną kolejne, nowe funkcje. Przedstawimy ...

- frezowanie płaszczyzny,
- sporządzanie obrzeża dookoła występu (kieszon pomocnicza),
- sporządzanie i kopiowanie występu kołowego,
- pracę z edytorem programów i wykonanie występu,
- wiercenie głębokich otworów, frezowanie po torze spiralnym, wytaczanie i frezowanie gwintu,
- biegunowe programowanie konturów (od wersji 6.4).

Zadanie

![Rysunek 9-1 Rysunek warsztatowy - przykład 4](image_url)
Przygotowanie

Należy zrealizować następujące etapy:
1. Utworzyć nowy detal o nazwie 'Example4'.
2. Sporządzić nowy plan obróbki o nazwie 'LEVER'.
3. Wprowadzić wymiary detalu surowego (porównać sposób postępowania jak w przykładzie 1).

Wskazówka

Należy zwrócić uwagę, że detal surowy powinien mieć grubość 25 mm, a parametr ZA należy ustawić na 5 mm!

Po wprowadzeniu danych nagłówek programu powinien wyglądać następująco.

Rysunek 9-3 Wymiary detalu w nagłówku programu
9.2 Frezowanie płaszczyzny

Kolejność obsługi

Wybrać przycisk programowy *Frezowanie*.

Wybrać przycisk programowy *Frezowanie płaszczyzny*.

Otworzyć listę narzędzi i wybrać FACEMILL63.

Zatwierdzić narzędzie do programu.

Wprowadzić w oknie dialogowym następujące wartości obróbki zgrubnej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.1 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>120 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka zgrubna</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Kierunek</td>
<td>Zmienny</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td>-40</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>-70</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td>110 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>30 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>0 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DXY</td>
<td>30 %</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DZ</td>
<td>5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>1</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Frezowanie płaszczyzny**.

Wprowadzić w oknie dialogowym następujące wartości obróbki wykańczającej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.08 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>150 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka wykańczająca</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Wskazówka

Naddatek na obróbkę wykańczającą musi zawierać te same wartości zarówno dla obróbki zgrubnej jak i wykańczającej, aby przy obróbce zgrubnej, naddatek do obróbki wykańczającej i obróbki pozostałego materiału został zachowany.
9.3 Sporządzenie obrzeża występu dźwigni

Kolejność obsługi

Wskazówka

Tak jak w przypadku części z przykładu 'LEVER', gdzie nie ma kieszeni, należy sporządzić kieszeń pomocniczą aby utworzyć kontur zewnętrznego. Służy to do zewnętrznego odgraniczenia drogi ruchu i tworzy tym samym obszar, w którym porusza się narzędzie.

Wybrać przycisk programowy Frezowanie konturu.

Sporządzić nowy kontur o nazwie 'LEVER_Rectangular_Area'.

Rysunek 9-6 Tworzenie konturu
Przykład 4: Dźwignia

9.3 Sporządzenie obrzeża występu dźwigni

Rysunek 9-7 Obrzeże występu dźwigni

Porównaj swój kontur z rysunkiem poniżej.

Rysunek 9-8 Zaprojektowany kontur
9.4 Wykonanie dźwigni

Kolejność obsługi

W kolejnych etapach wprowadź kontur:

Wybrać przycisk programowy Frezowanie konturu.

Sporządzić nowy kontur o nazwie 'LEVER_Lever'.

Po zatwierdzeniu wprowadzić w oknie dialogowym następujące wartości punktu początkowego konturu:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-24 bwzg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0 bwzg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Przykład 4: Dźwignia

9.4 Wykonanie dźwigni

Rysunek 9-11 Określenie punktu początkowego

Zatwierdzić wprowadzone wartości.
Wprowadzić w oknie dialogowym następujące wartości pierwszego łuku:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kierunek obrotów</td>
<td>Zgodnie z ruchem wskazówek zegara</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>24</td>
<td></td>
<td>Promień i punkt środkowy jest znany</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 9-12 Kontur łuku

Zatwierdzić wprowadzone wartości.
Przykład 4: Dźwignia
9.4 Wykonanie dźwigni

Sporządzić prostą skośną stycznie do poprzedniego elementu.

Wybrać przycisk programowy **Styczna do poprz.**

Rysunek 9-13 Prosta skośna konturu

Zatwierdzić wprowadzone wartości.
Przykład 4: Dźwignia

9.4 Wykonanie dźwigni

Wprowadzić styczny łuk koła.

Wybrać przycisk programowy Styczna do poprz.

Wprowadzić w oknie dialogowym następujące wartości łuku koła:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kierunek obrotów</td>
<td>Z prawej</td>
<td>X</td>
<td>Promień, punkt środkowy i punkt końcowy są znane.</td>
</tr>
<tr>
<td>R</td>
<td>8</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>85 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-8 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>85 bwzg</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 9-14 Kontur łuku

Zatwierdzić wybrany kontur.

Zatwierdzić wprowadzone wartości.
Przykład 4: Dźwignia

9.4 Wykonanie dźwigni

Wprowadzić w oknie dialogowym następujące wartości dla odcinka poziomego do punktu końcowego X30:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>30 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>40</td>
<td></td>
<td>Wprowadzić jako promień do następnego elementu wartość 40 mm.</td>
</tr>
</tbody>
</table>

Rysunek 9-15 Odcinek poziomy konturu

Zatwierdzić wprowadzone wartości.
Należy uwzględnić poniższą wskazówkę dotyczącą odcinka prostej:

Wskazówka
Przejście tangencyjne będzie zawsze odnosiło się do elementu głównego, tzn. w tym przypadku prosta nie będzie styczną (patrz rysunek poniżej).

Rysunek 9-16 Prosta skośna konturu
Zatwierdzić wprowadzone wartości.
Przykład 4: Dźwignia
9.4 Wykonanie dźwigni

Wprowadzić styczny łuk koła.

Wybrać przycisk programowy **Styczna do poprz.**

Wybrać przycisk programowy **Wszystkie parametry.**

Funkcję **Wszystkie parametry** otrzymamy dokładną informację o łuku. Może to służyć do kontroli wprowadzanych wartości (np.: czy łuk zakończony jest pionowo ...?).

Wprowadzić w oknie dialogowym następujące wartości łuku koła:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kierunek obrotów</td>
<td>Z prawej</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-58 bwzg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0 bwzg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>-58 bwzg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 9-17 Kontur łuku

Wybrać kontur.

Zatwierdzić wybrany kontur.

Zatwierdzić wprowadzone wartości.

Wprowadzić odcinek pionowy (automatycznie stycznie) do punktu końcowego Y-27.
Wybór przycisk programowy **Styczna do poprz.**
Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-27 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>18</td>
<td>X</td>
<td>Zaokrąglić przejście do następnej prostej wartością R18.</td>
</tr>
</tbody>
</table>

Rysunek 9-18 Odcinek pionowy konturu

Zatwierdzić wprowadzone wartości.
Przykład 4: Dźwignia

9.4 Wykonanie dźwigni

Wprowadzić odcinek.

Rysunek 9-19 Prosta skośna konturu

Zatwierdzić wprowadzone wartości.
Zamknąć łukiem kontur z punktem początkowym.

Wybrać przycisk programowy **Styczna do poprz.**

Wprowadzić w oknie dialogowym następujące wartości punktu początkowego konturu:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>24</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>-24</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 9-20 Kontur łuku

Zatwierdzić wprowadzone wartości.

Zatwierdzić kontur.
Następny krok to wykonanie obróbki zgrubnej i wykańczającej kieszeni uwzględniając kontur dźwigni.

Rysunek 9-21 Obróbka zgrubna i wykańczająca dźwigni

Wybrać przycisk programowy Kieszeń.

Otworzyć listę narzędzi i wybrać CUTTER20.

Zatwierdzić narzędzie do programu.

Wprowadzić w oknie dialogowym następujące wartości obróbki zgrubnej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.15 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>120 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka zgrubna</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>6 przyr</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DXY</td>
<td>50%</td>
<td>X</td>
<td>Podać maksymalny dosuw w płaszczyźnie w %</td>
</tr>
<tr>
<td>DZ</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UXY</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punkt początkowy</td>
<td>Automatycznie</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Zagłębianie</td>
<td>Prostopadle</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FZ</td>
<td>0.15 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tryb odsunięcia</td>
<td>na RP</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Rysunek 9-22 Obróbka zgrubna konturu

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy Kieszeń.

Wprowadzić w oknie dialogowym następujące wartości obróbki wykańczającej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.08 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>150 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Obróbka</td>
<td>Obróbka wykańczająca dna</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>6 przyr</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DXY</td>
<td>50%</td>
<td>X</td>
<td>Podać maksymalny dosuw w płaszczyźnie w %</td>
</tr>
<tr>
<td>UXy</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punkt początkowy</td>
<td>Ręcznie</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>XS</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YS</td>
<td>-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zagłębianie</td>
<td>Prostopadle</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tryb odsunięcia</td>
<td>na RP</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
9.5 Sporządzenie obramowania występu kołowego

Kolejność obsługi

Wykonać najpierw obramowanie jako ograniczenie drogi ruchu frezu. Frezować na głębokość -3.

Wskazówka

Wartości R36 i R26 wynikają z promienia występu + średnicy frezu (w tym wypadku 20 mm + z naddatkiem 1 mm).

Promień R5 i R15 są wybrane dowolnie.
Wybrać przycisk programowy **Frezowanie konturu**.

Sporządzić nowy kontur o nazwie 'LEVER_Lever_Area'.

![New contour](image)

Rysunek 9-25 Tworzenie konturu

Zaprojektować ograniczenie drogi ruchu wokół konturu detalu, jak to zostało opisane powyżej, aby frez o średnicy 20mm mieścił się między ograniczenie a występ. Wprowadzić kontur organiczający w taki sam sposób jak kontur dźwigni.

![Diagram](image)

Rysunek 9-26 Odcinek konturu łuku z lewej

![Diagram](image)

Rysunek 9-27 Odcinek konturu łuku z prawej
9.6 Wykonanie występu kołowego 30

Kolejność obsługi

Wykonać występ kołowy 30 jak na załączonym rysunku:

![Rysunek 9-28 Występ kołowy 30](image)

Wybrać przycisk programowy *Frezowanie konturu*.

![New contour](image)

Sporządzić nowy kontur o nazwie 'LEVER_Circle_R15'.

![Rysunek 9-29 Tworzenie konturu](image)

Samodzielnie sporządzić kontur kołowy (patrz rysunek poniżej). Punkt początkowy projektu koła znajduje się w punkcie X-15 i Y0.

Wskazówka

Uwaga, niektóre wartości są podawane przyrostowo!
Przykład 4: Dźwignia

9.7 Wykonanie występu kołowego 10

Kolejność obsługi

Wykonać występ kołowy 10 jak na załączonym rysunku:

Rysunek 9-31 Występ kołowy 10

Wybrać przycisk programowy **Frezowanie konturu**.

Sporządzić nowy kontur o nazwie 'LEVER_Circle_R5_A'.

Rysunek 9-32 Tworzenie konturu
Przykład 4: Dźwignia

9.7 Wykonanie występu kołowego 10

Samodzielnie sporządzić kontur kołowy (patrz rysunek poniżej). Punkt początkowy projektu koła znajduje się w punkcie X80 i Y0.

Wskazówka

Ponieważ za chwilę występ kołowy zostanie skopiowany, kontur musi zostać wprowadzony przyrostowo, aby przy kopiowaniu zmienić tylko punkt początkowy.

Rysunek 9-33 Kontur występu kołowego 10

Obraz graficzny po wprowadzeniu koła.

Rysunek 9-34 Widok graficzny
9.8 Kopiowanie występu kołowego 10

Kolejność obsługi

Skopiować sporządzony wcześniej występ kołowy:

Rysunek 9-35 Występ kołowy 10

Przejść do konturu 'LEVER_Circle_R5_A' i skopiować go.

Rysunek 9-36 Kopiowanie konturu
Przykład 4: Dźwignia

9.8 Kopiowanie występu kołowego 10

Wstawić skopiowany kontur i nadać mu nową nazwę "LEVER_Circle_R5_B".

Rysunek 9-37 Wprowadzenie nazwy dla skopiowanego konturu

Zatwierdzić wprowadzone wartości.

Po zatwierdzeniu plan obróbki wygląda następująco.

Rysunek 9-38 Wstawiony kontur w edytorze

Teraz należy zmienić tylko punkt początkowy, ponieważ kontur został wprowadzony przyrostowo.

Otworzyć kontur. Tym przyciskiem można także otwierać do edycji wybrany element geometryczny otwartego konturu.
Wprowadzić w oknie dialogowym następujące wartości punktu początkowego konturu:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 9-39 Zmiana punktu początkowego

Zatwierdzić wprowadzone wartości.

9.9 Wykonanie występu kołowego za pomocą edytora

Kolejność obsługi

Wykonać trzy występy kołowe. Przedstawimy kolejne funkcje w edytorze programów, które pomagają w wielokrotnym wykorzystaniu bloku lub bloków programu w planie obróbki i w zarządzaniu nimi (patrz Funkcje edytora programów).

Następny kontur służy podczas wykonywania występu jako ograniczenie drogi ruchu.

Rysunek 9-40 Ograniczenie drogi ruchu
Plan obróbki wygląda następująco.

Rysunek 9-41 Plan obróbki

Zaznaczyć obróbkę zgrubną i wykańczającą kieszeni.

Skopiować zaznaczone kroki obróbki.

Rysunek 9-42 Zaznaczone obróbki

Łatwiejsze toczenie dzięki ShopMill
Wstawić je poniżej konturów. Technologia wybierania materiału zostanie połączona z konturami.

![Diagram](image)

Rysunek 9-43 Wstawione obróbki

Obróbkę zgrubną i wykańczającą należy dostosować do nowej głębokości obróbki.

Otworzyć obróbkę zgrubną.

Wprowadzić w oknie dialogowym następujące wartości obróbki zgrubnej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>3 przyr</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Punkt początkowy</td>
<td>Ręcznie</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>XS</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YS</td>
<td>-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1
Przykład 4: Dźwignia

9.9 Wykonanie występu kołowego za pomocą edytora

Łatwiejsze toczenie dzięki ShopMill

Zatwierdzić wprowadzone wartości.

Otworzyć obróbkę wykańczającą. Zmienić wartości analogicznie do obróbki zgrubnej.

Zatwierdzić wprowadzone wartości.
Przykład 4: Dźwignia

9.9 Wykonanie występu kołowego za pomocą edytora

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1

W widoku graficznym pokazane zostaną, jakie geometrie należą do technologii obróbki zgrubnej (plan obróbki - grafika).

Rysunek 9-46 Widok graficzny

W celu kontroli uruchomić symulację.

Rysunek 9-47 Symulacja - widok z góry
Funkcje w edytorze programów

Poniżej przedstawiony zostanie przegląd funkcji w edytorze programów:

- Przejdź do widoku graficznego
- Szukaj tekstu w programie
- Wybierz kilka faz obróbki do dalszej obróbki (np. kopij lub wytnij)
- Kopij fazy obróbki do schowka
- Wstaw fazy obróbki ze schowka. Wstawianie odbywa się zawsze za zaznaczoną fazą obróbki.
- Kopuj fazę obróbki do schowka i skasuj równocześnie z miejsca źródłowego. Ten przycisk programowy służy również do kasowania.
- Rozwinięcie menu
- Nowa numeracja faz obróbki
- Otwórz okno dialogowe ustawień. Tu ustala się czy numeracja następuje automatycznie lub czy koniec bloku powinien być przedstawiony w postaci symbolu.
- Powrót do poprzedniego menu

9.10 Wiercenie głębokich otworów

Kolejność obsługi

W kolejnych etapach wykonaj otwór:

Rysunek 9-48 Wiercenie głębokich otworów
Przykład 4: Dźwignia

9.10 Wiercenie głębokich otworów

Wybrać przycisk programowy Wiercenie.

Wybrać przycisk programowy Wiercenie, rozwiercanie.

Otworzyć listę narzędzi i wybrać PREDRILL30.

Zatwierdzić narzędzie do programu.

Wprowadzić w oknie dialogowym następujące wartości otworu głębokiego:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.1 mm/h</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>120 m/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>W odniesieniu do</td>
<td>Wierzchołek</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>głębokości</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>-21 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>0 s</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 9-49 Wprowadzenie parametrów otworu

Zatwierdzić wprowadzone wartości.
Wprowadzić w oknie dialogowym następujące wartości pozycji otworu:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pozycje</td>
<td>Prostokątny</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z0</td>
<td>-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>-40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 9-50 Wprowadzenie pozycji

Zatwierdzić wprowadzone wartości.

9.11 Frezowanie po torze spiralnym

Kolejność obsługi

Po wierceniu należy wybrać pozostały materiał z pierścienia kołowego ruchem spiralnym:

Rysunek 9-51 Frezowanie po torze spiralnym
Przykład 4: Dźwignia

9.11 Frezowanie po torze spiralnym

Wybrać przycisk programowy **Prosta okrąg**.

Otworzyć listę narzędzi i wybrać CUTTER20.

Zatwierdzić narzędzie do programu. Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>120 m/min</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 9-52 Frezowanie po torze spiralnym

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy "**Prosta**".

Wybrać przycisk programowy "**Przesuw szybki**".

Wprowadzić w oknie dialogowym następujące wartości punktu początkowego konturu:

Wskazówka

Ponieważ frezowanie odbywa się bez korekcji promienia frezu, należy spozycjonować wielkość frezu na średnicę otworu (tu 45.84 mm) po odliczeniu nadddatku na obróbkę wykańczającą.
Przykład 4: Dźwignia

9.11 Frezowanie po torze spiralnym

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>82</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-40</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Korekcja promienia</td>
<td>Wył.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Pole Wartość Wybór Przyciskiem wyboru Wskazówki

Wybierz przycisk programowy **Linia spiralna**. Wprowadź w oknie dialogowym następujące wartości dla lini spiralnej:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>70</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>-40</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>3 mm/h</td>
<td>X</td>
<td>Skok lini spiralnej wynosi 3.</td>
</tr>
<tr>
<td>Z</td>
<td>-23 bwzg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.1 mm/ostrze</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Zatwierdzić wprowadzone wartości.

Rysunek 9-53 Pozycjonowanie

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1

162
Wskazówka

Ponieważ narzędzie porusza się po torze skośnym, wywołanych zostanie 6 obrotów, aby cały materiał został wybrany (mimo, że po 5 obrotach osiągana jest głębokość końcowa).

Rysunek 9-54 Wprowadzenie lini spiralnej

Zatwierdzić wprowadzone wartości.

9.12 Wytaczanie

Kolejność obsługi

Obróbka kieszeni kołowej narzędziem do wytaczania:

Rysunek 9-55 Wytaczanie kieszeni kołowej
Wybór przycisk programowy **Wiercenie**.

Wybierz przycisk programowy **Wytaczanie**.

Otworzyć listę narzędzi i wybrać **DRILL_tool**.

Zatwierdzić narzędzie do programu.

Wprowadzić w oknie dialogowym następujące parametry obróbki:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.08 mm/h</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>500 obr/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>15 przyr</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>0 s</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SPOS</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tryb odsunięcia</td>
<td>Odsunięcie</td>
<td>X</td>
<td>Opcja odsunięcie wycofuje narzędzie od konturu, zanim narzędzie wyjedzie z otworu. Tą opcją można stosować tylko dla jednostrzowych narzędzi.</td>
</tr>
<tr>
<td>D</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wskazówka

Kąt narzędzia przy odsunięciu ustala producent maszyny.
Przykład 4: Dźwignia

9.12 Wytaczanie

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1

Rysunek 9-56 Wyczenie

Zatwierdzić wprowadzone wartości.

Ustawić narzędzie na punkt środkowy otworu. Wymiar 45,84 mm wyznacza ustawiona średnica narzędzia. Zamiast wpisywać pozycję można skorzystać z funkcji Powtórzenie pozycji.

Wprowadzić w oknie dialogowym następujące parametry pozycji:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z0</td>
<td>-6</td>
<td>Wybór Przyciskiem</td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td>70</td>
<td>Wybór Przyciskiem</td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>-40</td>
<td>Wybór Przyciskiem</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 9-57 Pozycjonowanie

Zatwierdzić wprowadzone wartości.
9.13 Frezowanie gwintu

Kolejnosc obslugi

Rysunek 9-58 Frezowanie gwintu

Wybrac przycisk programowy Frezowanie.

Wybrac przycisk programowy Frezowanie gwintu.

Otworyz listu narzędzi i wybrac THREADCUTTER.

Zatwierdzic narzędzie do programu.

Frezowac gwint z gory na dol. Zastosowany zostanie THREADCUTTER (F 0.08 mm/ostrze, V 150 m/min o skoku 2 mm). Gwint prawoskrętny powinien zostac wykonany do wartosci bezwzgladnej Z-23. Naddatek 3 mm sprawi, ze gwint zostanie sfrezowany dokładnie.

Podczas wprowadzania pomocne sao obrazy pomocy.

Porownac swoje dane z rysunkiem poniżej.

Rysunek 9-59 Frezowanie gwintu

Zatwierdzic wprowadzone wartosci.
Ustalić pozycję gwintu.

Wprowadzić w oknie dialogowym następujące wartości:

<table>
<thead>
<tr>
<th>Pole</th>
<th>Wartość</th>
<th>Wybór Przyciskiem wyboru</th>
<th>Wskazówki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z0</td>
<td>-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0</td>
<td>-40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 9-60 Wprowadzenie pozycji

Zatwierdzić wprowadzone wartości.
Przykład 4: Dźwignia

9.14 Programowanie biegunowe konturów

Programowanie biegunowe

Nieraz elementy konturu na rysunku warsztatowym dotyczą punktu biegunowego.ZNane są nie tylko współrzędne kartezjańskie (X/Y), ale także biegunowe, odstęp między biegunami i kąt biegunowy.

W celu ćwiczenia wykonana zostanie modyfikacja dźwigni. Dolne "ramę dźwigni" nie leży pionowo do punktu zerowego X0, lecz zostanie przesunięte o 10° zgodnie ze wskazówkami zegara.

Na tym przykładzie przedstawimy jak programuje się graficznie bez zastosowania kalkulatora lub konstrukcji pomocniczych.

Rysunek 9-61 Programowanie biegunowe dźwigni

Kolejność obsługi

Przesunąć kursorem najpierw na łuk, którego punkt środkowy musi być na nowo zmierzony (patrz rysunek poniżej).

Rysunek 9-62 Kursor na łuku
Rozwinąć menu.

Ustawić kursor na fragmencie łuku i wprowadzić położenie bieguna. Ustawić biegun na punkcie zerowym.

Rysunek 9-63 Wprowadzenie bieguna

Zatwierdzić wprowadzone wartości.

Dostosować poniżej parametry łuku:

1. Usunąć w oknie dialogowym łuku parametry Y-58, I0 i J-58, które już nie są potrzebne.

Rysunek 9-64 Usunięcie parametrów
Przykład 4: Dźwignia

9.14 Programowanie biegunowe konturów

2. Przestawić współrzędne punktu środkowego z kartezjańskich na biegunowe. Wprowadzić odstęp między biegunami i kąt biegunowy (patrz rysunek poniżej).

Rysunek 9-65 Wprowadzenie odstępu między biegunami i kąta biegunowego

Zatwierdzić wprowadzone wartości.

Zatwierdzić zmiany.

W widoku graficznym można zauważyć, że w taki sam sposób należy dostosować jeszcze kieszeń pomocniczą LEVER_Lever_Area i występ kołowy LEVER_Circle_R5_B.

Rysunek 9-66 Widok graficzny po przesunięciu
Zmienić samodzielnie oba kontury. Wskazówka:

Wskazówka

Przy kieszeni pomocniczej można oczywiście postępować szacunkowo i punkt środkowy łuku R26 określony biegunowo oszacować jako kartezjański (X-10/Y-57). Kontur można potem zamknąć prostą pionową.

Przy występie kołowym punkt startowy jest już określony biegunowo. Punkt środkowy należy zmienić jeszcze w łuku pełnego okręgu.

Rysunek 9-67 Dopasowanie obramowania

Rysunek 9-68 Dopasowanie występu kołowego
Po wszystkich zmianach widok graficzny wygląda następująco:

Rysunek 9-69 Widok graficzny
Przykład 5: Kołnierz

10.1 Przegląd

Cel ćwiczenia

W tym rozdziale przedstawimy ...

- sporządzenie podprogramu,
- lustrzane odbicie kroków obróbki,
- fazowanie dowolnych konturów
- i wykonanie rowka podłużnego i kołowego.

Zadanie

Rysunek 10-1 Rysunek warsztatowy - przykład 5

Rysunek 10-2 Detal - przykład 5
10.2 Sporządzenie poddprogramu

Wskazówka

W dotychczasowych ćwiczeniach objaśnione zostały wszystkie kroki obróbki i prawie wszystkie klawisze programowe lub przyciski. W tym przykładzie nie będą podawane wszystkie parametry lecz tylko informacje pomocnicze oraz klawisze programowe lub przyciski.

10.2 Sporządzenie poddprogramu

Kolejność obsługi

Sporządzenie i sposób funkcjonowania podprogramów przedstawiony zostanie na detalu CORNER_MACHINING.

W kolejnych etapach sporządzone zostaną cztery narożniki za pomocą podprogramu i funkcji lustro.

Rysunek 10-3 Kontur czterech naroży

Sporządzić nowy program krokowy o nazwie CORNER_MACHINING. Program ten zostanie później włączony jako podprogram.

Rysunek 10-4 Sporządzenie podprogramu
Wprowadzić następujące parametry do nagłówka programu. Rozmiary detalu surowego zostaną później centralnie określone w programie głównym.

Rysunek 10-5 Wprowadzenie nagłówka podprogramu

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Frezowanie konturu**.

Sporządzić nowy kontur o nazwie **CORNER_M_SURFACE**.

Rysunek 10-6 Tworzenie konturu
Przykład 5: Kołnierz

10.2 Sporządzenie podprogramu

Określić punkt początkowy. Projektowany będzie np. prawy, górny narożnik.

Rysunek 10-7 Wprowadzenie punktu początkowego

Zatwierdzić wprowadzone wartości.

Sporządzić kontur. Po wprowadzeniu obu elementów konturu obraz powinien wyglądać następująco. Zatwierdzić kontur do planu obróbki.

Rysunek 10-8 Podprogram konturu prawego, górnego naroża
Przykład 5: Kołnierz

10.2 Sporządzenie poddprogramu

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1 177

Kontur należy frezować frezem o średnicy 20 (F 0.15 mm/ostrze i V 120 m/min).

Rysunek 10-9 Obróbka zgrubna konturu

Dosunięcie i odsunięcie następują po prostej. Parametry długości określa odstęp między krawędzią frezu a detalem.

Rysunek 10-10 Dosunięcie i odsunięcie po prostej

Zatwierdzić wprowadzone wartości.

Obróbkę zgrubną konturu wykonać tym samym frezem (F 0.08 mm/ostrze i V 150 m/min).

Rysunek 10-11 Obróbka wykańczająca konturu
Zatwierdzić wprowadzone wartości.

Następnie zaokrąglić narożnik detalu surowego R5:
Wybrać przycisk programowy **Frezowanie konturu**.

Sporządzić nowy kontur o nazwie **CORNER_M_ARC** .

Rysunek 10-12 Tworzenie konturu

Określić punkt początkowy.

Rysunek 10-13 Wprowadzenie punktu początkowego

Zatwierdzić wprowadzone wartości.
Wprowadzić kontur i przynależące kroki obróbki:

Rysunek 10-14 Wprowadzenie geometrii

Rysunek 10-15 Obróbka zgrubna konturu
Zadanie

Po tym jak sporządzony został podprogram, teraz należy sporządzić program główny. Funkcją "Lustrzane odbicie" z menu "Transformacje" można wykorzystać podprogram do sporządzania wszystkich czterech detali.

Lustrzane odbicia można wykonać na dwa różne sposoby:

- nowe: lustrzane odbicie zostanie wykonane w miejscu, gdzie odbyła się pierwsza obróbka,
- addytywne: lustrzane odbicie zostanie wykonane w miejscu, gdzie odbyła się ostatnia obróbka.

Kolejność obróbki zostanie schematycznie przedstawiona poniżej przy ustawieniu nowe.
Przykład 5: Kołnierz

10.3 Lustrzane odbicie kroków obróbki

Kolejność obsługi

Utworzyć program główny o nazwie FLANGE.

Rysunek 10-18 Tworzenie programu głównego
Wprowadzić nagłówek programu.

Rysunek 10-19 Wprowadzenie nagłówka podprogramu

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy Różne.

Wstawić podprogram do programu głównego.

Wskazówka

Ponieważ podprogram został utworzony w tym samym katalogu co program główny, pole edycji "Ścieżka/Detal" może pozostać puste.
Zatwierdzić wprowadzone wartości. Po zatwierdzeniu program obróbki wygląda następująco.

Zatwierdzić wprowadzone wartości.
Przykład 5: Kołnierz

10.3 Lustrzane odbicie kroków obróbki

Wykonać lustrzane odbicie obróbki:
Skopiować podprogram za lustrzannym odbiciem. Następuje druga obróbka.
Lustrzane odbicie i Wywołanie podprogramu należy powtórzyć dla pozostałych naroży.

Rysunek 10-23 Kopiowanie podprogramu

Pełne zilustrowania ułatwi obraz pomocy. Po wprowadzeniu czterech obróbek, należy wyłączyć lustrzane odbicie we wszystkich trzech osiach.

Rysunek 10-24 Lustrzane odbicie - obraz pomocy

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1
Program obróbki wygląda następująco.

Rysunek 10-25 Kompletne lustrzane odbicie w edytorze programów

W celu kontroli uruchomić symulację.

Rysunek 10-26 Symulacja - widok w 3D

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1 185
10.4 Otwory

Kolejność obsługi

Kolejny etap to wykonanie czterech otworów w narożach. Ponieważ między poszczególnymi otworami znajduje się przeszkoda, należy wprowadzić je w dwóch pozycjach.

Rysunek 10-27 Otwory

Rysunek 10-28 Nawiercanie

Rysunek 10-29 Wiercenie
10.5 Obrót kieszeni

Kolejność obsługi

W kolejnym etapie zaprogramowany zostanie kontur i obróbka dla zaznaczonej na żółto kieszeni. Poprzez obrót układu współrzędnych wykonane zostaną obie pozostałe kieszenie.

Wybrać przycisk programowy Frezowanie konturu.

Sporządzić nowy kontur o nazwie 'FLANGE_NODULE'.

Rysunek 10-30 Wprowadzenie pozycji przeszkody

Rysunek 10-31 Tworzenie nowego konturu
Przykład 5: Kolińcza

10.5 Obrót kieszeni

Określić punkt początkowy.

Rysunek 10-32 Wprowadzenie punktu początkowego

Zatwierdzić wprowadzone wartości.
Wybierz przycisk programowy Łuk.

Wybierz przycisk programowy Wszystkie parametry.
Łuk R42 zostanie dokładnie określony np. przez promień, punkt środkowy osi X i kąt wyjścia. Projektować w kierunku przeciwnym do ruchu wskazówek zegara, aby obróbka wykńczająca kieszeni odbyła się z tym samym ruchem współbieżnym.

Rysunek 10-33 Wprowadzenie łuku

Zatwierdź wprowadzone wartości.
Przykład 5: Kolnierz

10.5 Obrót kieszeni

Wybrać przycisk programowy **Prosta przekątna.**

Wybrać przycisk programowy **Wszystkie parametry.**

Sporządzić odcinek prostej przekątnej.

Rysunek 10-34 Sprządzenie prostej przekątnej

Zatwierdzić wprowadzone wartości.
Przykład 5: Kołnierz

10.5 Obrót kieszeni

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1

Wybrać przycisk programowy **Łuk**.

Wybrać przycisk programowy **Wszystkie parametry**.

Sporządzić drugi łuk.

Rysunek 10-35 Wprowadzenie łuku

Zatwierdzić wprowadzone wartości.
Przykład 5: Kołnierz

10.5 Obrót kieszeni

Wybrać przycisk programowy **Prosta przekątna.**

Wybrać przycisk programowy **Wszystkie parametry.**

Sporządzić drugi odcinek prostej przekątnej.

Rysunek 10-36 Sprządzenie prostej przekątnej

Zatwierdzić wprowadzone wartości.
Przykład 5: Kołnierz

10.5 Obrót kieszeni

Wybrać przycisk programowy Łuk.

Zatwierdzić wprowadzone wartości.

Zatwierdzić kontur kieszeni do planu obróbki.

Sporządzić samodzielnie następny etap:

Rysunek 10-37 Wprowadzenie końcowego łuku

Rysunek 10-38 Obróbka zgrubna kieszeni
Przykład 5: Kołnierz

10.5 Obrót kieszeni

W kolejnych etapach skopiować łańcuch kroków do obróbki trzech kieszeni:
Zaznaczyć w edytorze programów kompletny program obróbki kieszeni.
Skopiować łańcuch programu do pamięci pośredniej.

Rysunek 10-41 Kopiowanie kroków obróbki

Wybrać przycisk programowy **Różne**.

Wybrać przycisk programowy **Transformacje**.

Układ współrzędnych zostanie obrócony o 120° wokół osi Z.

Rysunek 10-42 Obrót wokół osi Z

Zatwierdzić wprowadzone wartości.
Przykład 5: Kołnierz

10.5 Obrót kieszeni

Wstawić skopiowane kroki obróbki.

Wybrać przycisk programowy Transformacje.

Wprowadzić kolejny obrót o 120°.

Zatwierdzić wprowadzone wartości.
Wstawić skopiowane kroki obróbki.

Rysunek 10-45
Wstawienie skopiowanych kroków obróbki

Przyciskiem wyboru nowy i wartością 0° anulować obrót.

Rysunek 10-46
Anulowanie obrotu

Zatwierdzić wprowadzone wartości.
10.6 Fazowanie konturów

Kolejność obsługi

Sfazować frezowaną ostatnio kieszeń kołową.

Do przeprowadzenia fazownia potrzebne jest narzędzie, które pozwala na wprowadzenie kąta wierzchołka narzędzia, na przykład CENTERDRILL12.

<table>
<thead>
<tr>
<th>Loc</th>
<th>Type</th>
<th>Tool name</th>
<th>ST</th>
<th>D</th>
<th>Length</th>
<th>φ</th>
<th>Tip angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>CUTTER60</td>
<td>1</td>
<td>1</td>
<td>110.000</td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>CUTTER16</td>
<td>1</td>
<td>1</td>
<td>110.000</td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>CENTERDRILL12</td>
<td>1</td>
<td>1</td>
<td>120.000</td>
<td>9.8</td>
<td>90</td>
</tr>
</tbody>
</table>

Rysunek 10-47 Nawiertak

Wybrać *Fazowanie*. Obróbka fazy zaprogramowana zostanie przez szerokość fazy (FS) i głębokość zagłębiania wierzchołka narzędzia (ZFS).

Rysunek 10-48 Fazowanie
Przykład 5: Kołnierz

10.6 Fazowanie konturów

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1 199
10.7 Rowek podłużny i kołowy

Kolejność obsługi

Na zakończenie programuje się rowki. Wykonane zostaną za pomocą przycisków *Szablon pozycji* i *Pozycjonowanie na Pełny okrąg*.

Rysunek 10-51 Rowek podłużny i kołowy

Wybrać przycisk programowy *Frezowanie*.

Wybrać przycisk programowy *Rowek*.

Do obróbki zgrubnej rowków podłużnych wybrać CUTTER6 (F 0.08 mm/ostrze i V 120 m/min).

Rysunek 10-52 Obróbka zgrubna rowka podłużnego

Zatwierdzić wprowadzone wartości.
Przykład 5: Kołnierz

10.7 Rowek podłużny i kołowy

Do obróbki zgrubnej zastosować to samo narzędzie (F 0.05 mm/ostrze i V 150 m/min).

Rysunek 10-53 Obróbka wykańczająca rowka podłużnego

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy Wiercenie.

Wprowadzić pozycje rowków podłużnych. Punkt odniesienia znajduje się w środku rowka.

Rysunek 10-54 Wprowadzenie pozycji rowka podłużnego

Zatwierdzić wprowadzone wartości.
Wybrać przycisk programowy **Frezowanie**.

Wybrać przycisk programowy **Rowek**.

Obróbkę wykańczającą rowka kołowego wykonać CUTTER6 (F 0.08 mm/ostrze oraz FZ 0.08 mm/ostrze i V 120 m/min).

Opcja **Pełny okrąg** automatycznie pozycjonuje rowki kołowe w takim samym odstępie jeden od drugiego. Punkt odniesienia w układzie X/Y/Z odnosi się do punktu środkowego rowka kołowego.

![Rysunek 10-55 Obróbka zgrubna rowka kołowego](image)

Zatwierdzić wprowadzone wartości.

Wybrać przycisk programowy **Rowek**.
Przykład 5: Kołnierz

10.7 Rowek podłużny i kołowy

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1

Do obróbki zgrubnej zastosować to samo narzędzie (F 0.05 mm/ostrze, FZ 0.05 mm/ostrze i V 150 m/min).

Zatwierdzić wprowadzone wartości.

Plan obróbki

Rysunek 10-56 Obróbka wykańczająca rowka kołowego

Rysunek 10-57 Fragment z planu obróbki

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1
Przykład 5: Kołnierz

10.7 Rowek podłużny i kołowy

Widok graficzny

Rysunek 10-58 Widok graficzny

Symulacja - widok w 3D

Rysunek 10-59 Widok w 3D
A teraz przejdźmy do wykonania detalu

Po zdobyciu gruntownej wiedzy jak sporządzić plan obróbki w ShopMill zdobytej po przeprowadzonych ćwiczeniach nastąpi wykonanie detalu.

Do wykonania detalu konieczne jest przeprowadzenie następujących kroków:

Najazd na punkt odniesienia

Po włączeniu sterowania należy przed uruchomieniem planów obróbki najechać na punkt odniesienia maszyny. W ten sposób ShopMill znajduje punkt początkowy w układzie pomiarowym drogi na maszynie.

Ponieważ najazd na punkt odniesienia jest różny w zależności od typu maszyny i jej producenta, podanych zostanie tylko kilka wskaźówek ogólnych:

1. Najechać narzędziem na wolne miejsce na powierzchni roboczjej, z którego możemy się bezkolizyjnie poruszać w wszystkich kierunkach. Należy sprawdzić, czy narzędzie nie znalazło się poza punktem odniesienia danej osi (ponieważ najazd na punkt odniesienia na każdej osi odbywa się tylko w jednym kierunku, nie można byłoby do niego dotrzeć).
2. Najechać na punkt odniesienia dokładnie według zaleceń producenta maszyny.

Zamocowanie detalu

Aby zachować wymiary podczas wykonywania detalu i dla bezpieczeństwa konieczne jest odpowiednie zamocowanie detalu. W tym celu stosuje się imadło maszynowo-śrubowe lub zacisk.

Ustawienie punktu zerowego detalu

Ponieważ ShopMill nie wie w jakim obszarze roboczym znajduje się detal, należy wprowadzić punkt zerowy detalu.

Przeważnie punkt zerowy detalu ustawiany jest na płaszczyźnie za pomocą

- czujnika pomiaru 3D lub
- czujnika krawędziowego przez dotknięcie.

Przeważnie punkt zerowy detalu w osi narzędzia ustawiany jest za pomocą

- czujnika pomiaru 3D przez dotknięcie lub
- narzędziem przez "zadrapanie"
A teraz przejdźmy do wykonania detalu

Wskazówka
Podczas stosowania narzędzi i cykli pomiarowych należy zwrócić uwagę na parametry producenta.

Wykonanie planu obróbki
Maszyna jest już przygotowana, detal zamocowany, a narzędzia zwymiarowane. Można zacząć:

Wybrać z "Menedżer programów" program, który ma zostać wykonany, np. INJECTION_FORM.

Rysunek 11-1 Wybór programu

Otworzyć program.

Rysunek 11-2 Otwarcie planu obróbki
Wybierz przycisk programowy **Wykonaj NC.**

Rysunek 11-3 Wykonanie

Ponieważ plan obróbki nie był jeszcze wykonywany pod nadzorem, ustawiamy potencjometr posuwu w położeniu zerowym, aby od samego początku mieć wszystko pod kontrolą.

Jeśli podczas wykonywania chcemy również obejrzeć symulację, przed jej uruchomieniem musimy wybrać funkcję **Symulacja w czasie rzeczywistym.** Tylko wtedy wyświetcone zostaną wszystkie drogę ruchu i ich następstwo.

Uruchomić wykonanie i kontrolować prędkość ruchu narzędzia potencjonometrem posuwu.
A teraz przejdźmy do wykonania detalu
Jak dobrze radzisz sobie z ShopMill?

12.1 Wprowadzenie

Kolejne cztery ćwiczenia to podstawowy sprawdzian wiedzy z ShopMill. Dla ułatwienia podajemy przykładowy plan obróbki. Czas określony w oparciu o sposób postępowania odpowiadający temu planowi obróbki. Podany czas jest tylko orientacyjny.

12.2 Ćwiczenie 1

Wykonasz to zadanie za pomocą ShopMill w 15 minut?

Rysunek 12-1 Rysunek warsztatowy DIYS1

Wskazówki

Przykładowe rozwiązanie

Rysunek 12-2 Plan obróbki

Rysunek 12-3 Symulacja detalu
12.3 Ćwiczenie 2

Wykonasz to zadanie za pomocą ShopMill w 20 minut?

Wskazówki

Nawet jeśli wygląda to skomplikowanie: z takim konturem w ShopMill nie ma żadnego problemu. Można nawet zastosować automatyczną obróbkę pozostałego materiału. Porównaj czas wykonania, jeśli wszystko zostanie wykonane frezem o średnicy 10.

Wskazówka do konturu:

- Projektuj kontur w kierunku przeciwnym do ruchu wskazówek zegara.
- Kąt rozwarcia górnego, lewego łuku wynosi 115°.
Przykładowe rozwiązanie

Rysunek 12-5 Plan obróbki

Rysunek 12-6 Symulacja detalu
12.4 Ćwiczenie 3

Wykonasz to zadanie za pomocą ShopMill w 30 minut?

Wskazówki

W przykładowym planie obróbki powierzchnia występu zostanie poddana wstępnjej obróbce cyklem czopa prostokątnego z menu "Frezowanie". W tym cyku zdefiniowany prostokąt jest przesuwany ruchem kołowym i dociera do konturu. Prostokąt zostanie jeszcze raz w pełni okrążony i z powrotem ruchem kołowym znajdzie się w tym samym punkcie. Promień dosunięcia i odsunięcia wynika z geometrii czopa prostokątnego.
Przykładowe rozwiązanie

Rysunek 12-8 Plan obróbki

Rysunek 12-9 Symulacja detalu
12.5 Ćwiczenie 4

Wykonasz to zadanie za pomocą ShopMill w 30 minut?

Rysunek 12-10 Rysunek warsztatowy WING

Wskazówki

W przykładowym planie obróbki kontur zewnętrzny w kształcie koła frezowany jest za pomocą cyklu czopa kołowego. Sposób postępowania jest zasadniczo taki sam jak w przypadku czopa prostokątnego (patrz przykładowy plan obróbki w ćwiczeniu 3). Wspólny punkt środkowy obu łuków koła R45 i R50 (punkt początkowy właściwej konstrukcji) określony zostanie biegunowo (25 mm pod kątem 65° w odniesieniu do punktu biegunowego przy X0/Y0).

Od wersji oprogramowania V6.4 w menu "Frezowanie" znajduje się od dyspozycji cykl grawerski.
Przykładowe rozwiązanie

Rysunek 12-11 Plan obróbki

Rysunek 12-12 Wprowadzenie cyklu grawerskiego
Jak dobrze radzisz sobie z ShopMill?

12.5 Ćwiczenie 4

Łatwiejsze toczenie dzięki ShopMill

Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1

Rysunek 12-13 Symulacja detalu
Jak dobrze radzisz sobie z ShopMill?

12.5 Ćwiczenie 4

Łatwiejsze toczenie dzięki ShopMill
Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1
Indeks

A
Alarmy, 30

B
Biegun, 81

D
Dosunięcie i odsunięcie, 103, 177

E
Edytor programów
 Kopiuj, 158
 Rozwiń menu, 158
 Szukaj, 158
 Widok graficzny, 158
 Wróć do menu, 158
 Wstaw, 158
 Wypnij, 158
 Zaznacz, 158
 Ekran główny, 58
 Element główny, 139
 Element przejściowy, 100

F
Frez do płaszczyzn, 40
 Frez palcowy, 40
 Frez palcowy do podłużnych otworów i rowków wpustowych, 41
 Frez walcowo-czołowy, 40
 Frezy, 38

G
Głębokość gwintowania otworu, 75
 Głębokość obróbki, 103
 Głębokość początkowa, 103
 Graficzny plan obróbki, 12
 Gwint, 74

K
Kalkulator konturu, 14
Katalog, 59
Kąt biegunowy, 81, 82
Kieszon pomocnicza, 131, 146
Kompensacja czujnika, 56
Komunikaty, 30
Korekcja promienia
 Lewy kontur, 68
 Prawy kontur, 68
 wyłączony, 68
Książka z tabelami, 43, 44

L
Lista kroków obróbki, 66
Lista magazynowa, 48
Lista narzędzi, 46
Lista zużycia narzędzi, 47

Ł
Łączenie, 27

M
Material narzędzi skrawających, 38
Menadżer programów, 59
 Menadżer programów, 59
 Menu główne, 21

N
Naddatek na obróbkę wykańczającą, 114
Nagłówek programu, 60
najazd na punkt początkowy, 80
Narzędzia potrzebne w ćwiczeniach, 48
Nawiercanie, 120
Nawiertak, 41
Nowa numeracja w edytorze programów, 158

Łatwiejsze toczenie dzięki ShopMill
Materiały szkoleniowe, 09/2011, 6FC5095-0AB50-1NP1

219
O

Obramowanie, 146
Obróbka wykańczająca dna, 114
Odstęp bezpieczeństwa, 61
Odsunięcie, 164
Osie narzędzia, 31

Widok z góry, 125
Symulacja w czasie rzeczywistym, 207
Szablon pozycji, 13

T

Transformacje, 183

U

Ustawienia edytora programów, 158
Uszkodzenie konturu, 72

W

W odniesieniu do głębokości, 76
Widok graficzny, 150, 158
Wiercenie, 120
Wiertła, 38
Wiertło do pełnych otworów, 42
Wiertło kręte, 42
Współrzędne biegunowe, 168
Wstaw, 17
Wszechście parametry, 140
Wybieranie materiału, 114
Wybór dialogowy, 108
Wycofanie na szablon pozycji
 Na płaszczyznę wycofania, 62
 Wycofanie zoptymalizowane, 62
Wykonanie, 205
Wymiar bezwzględny, 34
Wymiar przyrostowy, 34
Wytnij, 17

Z

Zagłębianie
 Prostopadłe, 92
 ruchem wahliwym, 92
 Spiralnie, 92
Załaduj do magazynu, 50
Zamknięcie konturu, 111
Zaokrąglenie, 101
Zarządzanie programem, 59
Zatwierdzić dialog, 108
Znacznik startowy, 207

P

Plaszczyzna wycofania, 61
Plaszczyzny obróbki, 31
Podprogram, 174
Podstawy obsługi, 19
Pomiar detalu, 52
Posuw/ostrze, 12, 44
Potencjometr, 207
Powłoki, 39
Pozostały materiał, 16, 113
Pozycje, 70
Posycjonowanie, 72
Prędkość obrotowa, 43
Prędkość posuwu narzędzia, 44
Prędkość skrawania, 12, 43
Promień, 101
Prosta, 84
Przesunięcia punktu zerowego, 25
Przeszkoda, 122
Przyciski programowe, 20
Punkt referencyjny, 33
Punkt zerowy detalu, 33
Punkt zerowy maszyny, 33
Punkty w obszarze roboczym, 33

R

Rodzaj obróbki, 61
Różne, 182
Ruch współbieżny, 61
Ruchy kołowe, 37
Ruchy proste po torze, 35

S

Sporządzić plan obróbki, 80
Styczna do elementu poprzedniego, 108
Symbol obróbki wykańczającej, 91
Symbol obróbki zgrubnej, 90
Symulacja, 27, 67
 Aktywny przekrój, 96
 Widok w 3D, 185