Using S7-300 PROFIBUS CP as DP master or DP slave

CP 342-5, STEP 7 (TIA Portal)

Security Information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks. In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens’ products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines and networks. Systems, machines and components should only be connected to the enterprise network or the internet if and to the extent necessary and with appropriate security measures (e.g. use of firewalls and network segmentation) in place.

Additionally, Siemens’ guidance on appropriate security measures should be taken into account. For more information about industrial security, please visit http://www.siemens.com/industrialsecurity.

Siemens’ products and solutions undergo continuous development to make them more secure. Siemens strongly recommends to apply product updates as soon as available and to always use the latest product versions. Use of product versions that are no longer supported, and failure to apply latest updates may increase customer’s exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under http://www.siemens.com/industrialsecurity.

Contents

1 Introduction .. 3
2 CP 342-5 as DP Master .. 4
 2.1 Setup .. 4
 2.2 Address Area of the Inputs and Outputs ... 4
 2.3 Module Start Address ... 5
 2.4 Parameterization of the DP_SEND and DP_RECV Instructions 6
3 CP 342-5 a DP Slave .. 8
 3.1 Setup .. 8
 3.2 Set DP Slave Mode ... 9
 3.3 Create Transfer Areas ... 9
 3.4 Module Start Address ... 10
 3.5 Parameterization of the DP_SEND and DP_RECV Instructions 10
1 Introduction

If you are operating an S7-300 PROFIBUS CP as DP master or DP slave, then you have to call the DP_SEND and DP_RECV instructions in the user program of the CPU.

STEP 7 (TIA Portal) includes the DP_SEND and DP_RECV instructions in the "Instructions" task card under "Communication > Communications Processor > SIMATIC NET CP > PROFIBUS CP".
2 CP 342-5 as DP Master

This chapter describes how to configure and program an S7-300 PROFIBUS CP as DP master in STEP 7 (TIA Portal). In the example, a CP 342-5 is used as DP master.

The DP_SEND instruction transfers the data of a specified DP output area to the PROFIBUS CP for output to the distributed IO.

The DP_RECV instruction reads the process data of the distributed IO and status information into the specified DP input area.

2.1 Setup

In section 2.4 we describe the parameterization of the DP_SEND and DP_RECV instructions taking the example below (see Figure 2-2).

2.2 Address Area of the Inputs and Outputs

3 DP slaves with the following input and output modules are configured on the CP 342-5 (DP master):

1. Slave_1
 - 1 byte DI with the address area 0-1
 - 1 byte DO with the address area 0-1
2 CP 342-5 as DP Master

2. Slave_2
 - 1 byte DI with the address area 380-381
 - 1 byte DO with the address area 470-471

3. Slave_3
 - 1 byte DI with the address area 2000-2001
 - 1 byte DO with the address area 2140-2141

The address area of the inputs is 2001 bytes (0-2000).
The address area of the outputs is 2141 bytes (0-2140).

2.3 Module Start Address

1. Mark the CP 342-5 in the Network view or Device view. The properties of the CP 342-5 are displayed in the inspector window.
2. Go to the "General" tab and navigate to "I/O addresses" to determine the module start address. In this example the CP 342-5 has the following module start address: 256 (dec) = 16#100 (hex).
2.4 Parameterization of the DP_SEND and DP_RECV Instructions

Call the DP_SEND and DP_RECV instructions in the user program of the CPU. In this example the call is made cyclically in OB1.

DP_SEND

The following figure shows the call of the DP_SEND instruction.

Figure 2-3

The table below shows the inputs of the DP_SEND instruction.

Table 2-1

<table>
<thead>
<tr>
<th>Input</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPLADDR</td>
<td>WORD</td>
<td>Module start address (See section 2.3)</td>
</tr>
<tr>
<td>SEND</td>
<td>ANY</td>
<td>Specify the address area of the outputs (see section 2.2).</td>
</tr>
</tbody>
</table>

The table below shows the outputs of the DP_SEND instruction.

Table 2-2

<table>
<thead>
<tr>
<th>Output</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DONE</td>
<td>BOOLEAN</td>
<td>The Status parameter indicates whether the order has been executed error-free.</td>
</tr>
<tr>
<td>ERROR</td>
<td>BOOLEAN</td>
<td>Error display</td>
</tr>
<tr>
<td>STATUS</td>
<td>WORD</td>
<td>Status display</td>
</tr>
</tbody>
</table>

Data transfer with DP_SEND has been successfully completed when all the following conditions are fulfilled:

- Value of the output ERROR = false
- Value of the output DONE = true
- Value of the output STATUS = 16#0000

When the data has been transferred successfully, the value of the output STATUS changes between 16#0000 und 16#8180 and the value of the output DONE changes between true and false, because the DP_SEND instruction is called cyclically.
DP_RECV

The following figure shows the call of the DP_RECV instruction.

Figure 2-4

The table below shows the inputs of the DP_RECV instruction.

Table 2-3

<table>
<thead>
<tr>
<th>Input</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPLADDR</td>
<td>WORD</td>
<td>Module start address (See section 2.3)</td>
</tr>
<tr>
<td>RECV</td>
<td>ANY</td>
<td>Specify the address area of the outputs (see section 2.2).</td>
</tr>
</tbody>
</table>

The table below shows the outputs of the DP_RECV instruction.

Table 2-4

<table>
<thead>
<tr>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDR</td>
<td>BOOLEAN</td>
</tr>
<tr>
<td>ERROR</td>
<td>Error display</td>
</tr>
<tr>
<td>STATUS</td>
<td>Status display</td>
</tr>
<tr>
<td>DPSTATUS</td>
<td>DP status display</td>
</tr>
</tbody>
</table>

Data transfer with DP_RECV has been successfully completed when all the following conditions are fulfilled:

- Value of the output ERROR = false
- Value of the output NDR = true
- Value of the output STATUS = 16#0000

When the data has been transferred successfully, the value of the output STATUS changes between 16#0000 und 16#8180 and the value of the output NDR changes between true and false, because the DP_RECV instruction is called cyclically.

Note

If you use the start address 0 for address area of the inputs, p#DB*.DBX0.0 Byte *, for example, then in program processing you can access the areas of the data blocks using the download and transfer commands as if the address of the data block corresponds to the addresses of the process IO.

- You use the command "L DB2.DBB380" to read the input EB 380.
- You use the command "T DB1.DBB470" to write to the output AB 470.

The outputs are transferred and the inputs are loaded.
3 CP 342-5 a DP Slave

This chapter describes how to configure and program an S7-300 PROFIBUS CP as DP slave in STEP 7 (TIA Portal). In the example, a CP 342-5 is used as DP slave.

If you use the CP 342-5 as DP slave, you call the DP_SEND and DP_RECV instructions in the user program of the S7-300 CPU. In this way the data is transferred from the S7-300 CPU to the CP 342-5 and read.

The DP_SEND instruction transfers the input data of the DP slave to the PROFIBUS CP for transfer to the DP master.

The DP_RECV instruction reads the output data transferred from the DP master into the DP data area specified in the instruction.

The DP master reads the data out of the CP 342-5 and writes the data to the CP 342-5. In this way the CP 342-5 functions as a data buffer between the controllers of the DP slave and the DP master. You have to configure a communication for the DP slave and the DP master.

Figure 3-1

3.1 Setup

In section 3.5 we describe the parameterization of the DP_SEND and DP_RECV instructions taking the example below (see Figure 3-2).
3.2 Set DP Slave Mode

1. Mark the CP 342-5 in the Network view or Device view. The properties of the CP 342-5 are displayed in the inspector window.

2. Go to the "General" tab and under "Operating mode" you select the operating mode "DP slave".

3. Assign the relevant DP master to the CP 342-5.

3.3 Create Transfer Areas

You have to create the transfer areas for the data exchange with the DP master.

1. Mark the CP 342-5 in the Network view or Device view. The properties of the CP 342-5 are displayed in the inspector window.

2. Go to the "General" tab and under "Operating mode > I-slave communication" you create the transfer areas for data exchange with the DP master. The transfer area for the inputs has a length of 15 bytes. The transfer area for the outputs has a length of 35 bytes.

3. Only specify the master address. The slave address is configured with the DP_SEND and DP_RECV instructions.
3.4 Module Start Address

1. Mark the CP 342-5 in the Network view or Device view. The properties of the CP 342-5 are displayed in the inspector window.

2. Go to the "General" tab and navigate to "I/O addresses" to determine the module start address. In this example the CP 342-5 has the following module start address: 256 (dec) = 16#100 (hex).

3.5 Parameterization of the DP_SEND and DP_RECV Instructions

Call the DP_SEND and DP_RECV instructions in the user program of the CPU. In this example the call is made cyclically in OB1.

DP_SEND

With the DP_SEND instruction the input addresses are sent to the DP master. The following figure shows the call of the DP_SEND instruction.

The table below shows the inputs of the DP_SEND instruction.

<table>
<thead>
<tr>
<th>Input</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPLADDR</td>
<td>WORD</td>
<td>Module start address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(See section 3.4)</td>
</tr>
<tr>
<td>SEND</td>
<td>ANY</td>
<td>Specify the length of the transfer area of the inputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(see section 3.3).</td>
</tr>
</tbody>
</table>
The table below shows the outputs of the DP_SEND instruction.

Table 3-2

<table>
<thead>
<tr>
<th>Output</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DONE</td>
<td>BOOLEAN</td>
<td>The Status parameter indicates whether the order has been executed error-free.</td>
</tr>
<tr>
<td>ERROR</td>
<td>BOOLEAN</td>
<td>Error display</td>
</tr>
<tr>
<td>STATUS</td>
<td>WORD</td>
<td>Status display</td>
</tr>
</tbody>
</table>

Data transfer with DP_SEND has been successfully completed when all the following conditions are fulfilled:

- Value of the output ERROR = false
- Value of the output DONE = true
- Value of the output STATUS = 16#0000

When the data has been transferred successfully, the value of the output STATUS changes between 16#0000 und 16#8180 and the value of the output DONE changes between true and false, because the DP_SEND instruction is called cyclically.

DP_RECV

With the DP_RECV instruction the output addresses of the DP master are received.

The following figure shows the call of the DP_RECV instruction.

The table below shows the inputs of the DP_RECV instruction.

Table 3-3

<table>
<thead>
<tr>
<th>Input</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPLADDR</td>
<td>WORD</td>
<td>Module start address (See section 3.4)</td>
</tr>
<tr>
<td>RECV</td>
<td>ANY</td>
<td>Specify the length of the transfer area of the outputs (see section 3.3).</td>
</tr>
</tbody>
</table>

The table below shows the outputs of the DP_RECV instruction.

Table 3-4

<table>
<thead>
<tr>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDR</td>
<td>BOOLEAN</td>
</tr>
<tr>
<td>ERROR</td>
<td>ERROR display</td>
</tr>
<tr>
<td>STATUS</td>
<td>Status display</td>
</tr>
<tr>
<td>DPSTATUS</td>
<td>DP status display</td>
</tr>
</tbody>
</table>
Data transfer with DP_RECV has been successfully completed when all the following conditions are fulfilled:

- Value of the output ERROR = false
- Value of the output NDR = true
- Value of the output STATUS = 16#0000

When the data has been transferred successfully, the value of the output STATUS changes between 16#0000 und 16#8180 and the value of the output NDR changes between true and false, because the DP_RECV instruction is called cyclically.