Simulation with SIMIT Simulation Framework and PCS 7 in a practical example

SIMIT Simulation Framework V8.1, SIMATIC PCS 7 V8.1

https://support.industry.siemens.com/cs/ww/de/view/77362399
Warranty and liability

Note

The application examples are not binding and do not claim to be complete regarding the configuration, equipment and any eventuality. The application examples do not represent customer-specific solutions but are merely to serve as an aid for typical tasks. You are responsible for proper operation of the described products. These application examples do not release you from the obligation of a safe approach during application, installation, operation and maintenance. By using these application examples, you accept the fact that we are not liable for any damages beyond the scope of the described liability provision. We reserve the right to make changes to these application examples at any time without prior notice. If there are any deviations between the recommendations provided in this application example and other Siemens publications – e.g. catalogs – the contents of the other documents have priority.

We do not accept any liability for the information contained in this document. Any claims against us – based on whatever legal reason – resulting from the use of the examples, information, programs, engineering and performance data etc., described in this application example shall be excluded. Such an exclusion shall not apply in the case of mandatory liability, e.g. under the German Product Liability Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life, body or health, guarantee for the quality of a product, fraudulent concealment of a deficiency or breach of a condition which goes to the root of the contract (“wesentliche Vertragspflichten”). The damages for a breach of a substantial contractual obligation are, however, limited to the foreseeable damage, typical for the type of contract, except in the event of intent or gross negligence or injury to life, body or health. The above provisions do not imply a change of the burden of proof to your detriment.

Any form of duplication or distribution of these application examples or excerpts hereof is prohibited without the expressed consent of the Siemens AG.

Security Information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, solutions, machines, equipment and/or networks. They are important components in a holistic industrial security concept. With this in mind, Siemens’ products and solutions undergo continuous development. Siemens recommends that you keep yourself regularly informed about product updates.

For the secure operation of Siemens products and solutions, it is necessary to take suitable preventive action (e.g. cell protection concept) and integrate each component into a holistic, state-of-the-art industrial security concept. Products used from other manufacturers should also be taken into account here.

For more information about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-specific newsletter. For further information, visit http://support.industry.siemens.com.
Preface

Aim of this Application Example

The aim of this application example is to introduce additional functions and libraries in a practical example, in addition to the SIMIT Simulation Framework Getting Started. The associated example project includes a complete simulation from the signals to the process.

Key Content

The following main topics are covered in this application example:

- The structure of a simulation project from the signal level to the process level (partly with reference to existing documentation)
- Customizing templates
- The structure of the process level with the FLOWNET library
- The simulation of a conveyor system with components of the CONTEC library
- Automatic generation of the device level using the simulated conveyor system
- Pre-prepared scripts which can be used for operator training, for example.

Validity

- SIMIT Simulation Framework V8.1
- SIMATIC PCS 7 V8.1 SP1
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warranty and liability</td>
<td>2</td>
</tr>
<tr>
<td>Preface</td>
<td>3</td>
</tr>
<tr>
<td>1 Task Description and Solution</td>
<td>6</td>
</tr>
<tr>
<td>1.1 Task</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Solution</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1 Overview of the complete solution</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2 Core Functionality</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3 Hardware and Software Components</td>
<td>8</td>
</tr>
<tr>
<td>2 Initial Work on the Project</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Presentation of the Project</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Configuring the PLCSIM Interface in the SIMATIC Manager</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Configuring the PLCSIM Interface in SIMIT</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Verifying Communication between PLCSIM and SIMIT</td>
<td>12</td>
</tr>
<tr>
<td>2.5 The Current Status of your Project</td>
<td>12</td>
</tr>
<tr>
<td>3 Creating the Device Level</td>
<td>14</td>
</tr>
<tr>
<td>3.1 Creating a Template</td>
<td>14</td>
</tr>
<tr>
<td>3.2 CMT Import</td>
<td>18</td>
</tr>
<tr>
<td>3.3 Generating the Device Level</td>
<td>21</td>
</tr>
<tr>
<td>3.3.1 Adapting the Template</td>
<td>21</td>
</tr>
<tr>
<td>Conveyor System Simulation Chart</td>
<td>24</td>
</tr>
<tr>
<td>3.3.2 Procedure for “Generating the Device Level”</td>
<td>26</td>
</tr>
<tr>
<td>3.3.3 Final Adjustments/Additions</td>
<td>27</td>
</tr>
<tr>
<td>3.4 The Current Status of your Project</td>
<td>29</td>
</tr>
<tr>
<td>4 Modeling Physical Correlations</td>
<td>30</td>
</tr>
<tr>
<td>4.1 Establishing the Physical Process Model</td>
<td>30</td>
</tr>
<tr>
<td>4.2 Model Plant Section “Plant1”</td>
<td>30</td>
</tr>
<tr>
<td>4.2.1 Creating Macros</td>
<td>30</td>
</tr>
<tr>
<td>4.2.2 Additional Preparations</td>
<td>34</td>
</tr>
<tr>
<td>4.2.3 Creating the Chart “RMT1”</td>
<td>34</td>
</tr>
<tr>
<td>4.2.4 Creating the Chart “RMT2”</td>
<td>37</td>
</tr>
<tr>
<td>4.2.5 Creating the Chart “RMT3”</td>
<td>41</td>
</tr>
<tr>
<td>4.3 Model Plant Section “Plant2”</td>
<td>44</td>
</tr>
<tr>
<td>4.3.1 Preparation</td>
<td>44</td>
</tr>
<tr>
<td>4.3.2 Creating the Chart “Reactor1”</td>
<td>44</td>
</tr>
<tr>
<td>4.3.3 Creating the Chart “Reactor2”</td>
<td>47</td>
</tr>
<tr>
<td>4.4 The Current Status of your Project</td>
<td>52</td>
</tr>
<tr>
<td>5 Simulation of the Conveyor System</td>
<td>53</td>
</tr>
<tr>
<td>5.1 Modeling the Goods Conveyed</td>
<td>53</td>
</tr>
<tr>
<td>5.1.1 Creating the List of Goods Conveyed</td>
<td>53</td>
</tr>
<tr>
<td>5.1.2 Calculating the Color of the Goods Conveyed</td>
<td>54</td>
</tr>
<tr>
<td>5.1.3 “Calc” Chart</td>
<td>55</td>
</tr>
<tr>
<td>5.2 The Current Status of your Project</td>
<td>57</td>
</tr>
<tr>
<td>6 Animation of the Crown Cap Machine</td>
<td>58</td>
</tr>
<tr>
<td>6.1 Creating the 3D Viewer Control</td>
<td>58</td>
</tr>
<tr>
<td>6.2 Creating the Animation</td>
<td>59</td>
</tr>
<tr>
<td>6.3 The Current Status of your Project</td>
<td>61</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>Scripts and Snapshots</td>
</tr>
<tr>
<td>7.1</td>
<td>Scripts</td>
</tr>
<tr>
<td>7.2</td>
<td>Snapshots</td>
</tr>
<tr>
<td>8</td>
<td>Commissioning</td>
</tr>
<tr>
<td>9</td>
<td>Related literature</td>
</tr>
<tr>
<td>10</td>
<td>History</td>
</tr>
</tbody>
</table>
1 Task Description and Solution

1.1 Task

PCS 7 projects are becoming more and more complex due to the increasingly significant demand for availability and individuality of systems. In this regard, the automation programs must also undergo extensive testing. To make this possible, certain system states and feedback are required from actuators and sensors to test whether the automation program is functioning correctly. The provision of feedback or the system state is very laborious or not possible without a suitable tool. For this reason, nowadays one can find tools such as SIMIT Simulation Framework (hereafter referred to as SIMIT), which simplify the simulation of signals, devices and process states in a significant way.

1.2 Solution

This application example given here describes how to use the SIMIT simulation software to easily and quickly create the required simulation for a unit for the manufacture and packaging of soft drinks. The plant sections raw material tanks, reactors and a bottling plant are used for the simulation. The basis for the simulation project described here is the PCS 7 project "bottling plant", which you can find on the same article page.

The application example provides a template which includes the simulation of important physical processes, devices, and signals of a raw material tank, stirred tank reactor and the filling unit. The installation is modular and is based on physical principles.

Its utilization offers the following advantages:

- A reduction of the knowledge necessary to develop simulations
- A decrease in the configuration effort
- Flexible installation and adjustment
- Standardized structures
1.2 Solution

1.2.1 Overview of the complete solution

Diagram

The following figure shows parts of a possible style depth of a simulation solution of a filling unit.

Figure 1–1

Description

The application example "virtual commissioning with SIMIT Simulation Framework for typical process and production automation" includes a PCS 7 project from a beverage blending and bottling plant and the associated simulation model. The PCS 7 project does not form part of the description given here and serves solely as a basis for the description of the simulation model.

The simulation model is divided into three levels:

- Signal level
- Device level
- Process level

You can find a description of the levels and of SIMIT in the application example "SIMIT Getting Started" in chapter 1 "SIMIT at a glance" (3).
1 Task Description and Solution

1.2 Solution

Aim

The aim of the application example given here is to introduce functions and libraries which are not described in Getting Started. In this example, the following topics will be highlighted in particular:

- FLOWNET library
- CONTEC library
- The function "Generating the device level"
- Script function
- Creating/optimizing templates

Delimitation

Physically speaking, the technical process is illustrated in a simplified way by assuming ideal conditions.

Required Knowledge

Fundamental knowledge of the following specialist fields is a prerequisite:

- Basic knowledge of process technology
- Basic knowledge of physical modeling
- Engineering with SIMATIC PCS 7 and Advanced Process Library (APL)
- Knowledge of control technology

1.2.2 Core Functionality

The individual components of the PCS 7 project "Bottling Plant" simulation are described in the following section. The simulation consists of three main components:

- Raw material tanks
- Reactors
- Filling

The main components with the associated technical functions are derived from the technological hierarchy of the PCS 7 project.

You can find information on the generation procedure and the individual components such as signals, devices and processes in the application example "Simulation of a PCS 7 stirred tank reactor with SIMIT simulation framework" chapter 1.2. “Solution” (4).

1.2.3 Hardware and Software Components

The application example has been created with the following components:

Hardware Components

| Table 1–1 |
|-----------------|-----------------|
| **Component** | **Instructions** |
| SIMATIC PCS 7 ES/OS IPC847D W7 | For the PCS 7 V8.1 example project and the SIMIT V8.1 example project |
1 Task Description and Solution

1.2 Solution

Note
In case of different hardware, please take heed of the suggested hardware configuration for installing the software components.

The suggested hardware configuration can be found in the read me file of the PCS 7 (online)\[5].

Software Components

Table 1–2

<table>
<thead>
<tr>
<th>Component</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMATIC PCS 7 V8.1 SP1</td>
<td>Part of SIMATIC PCS 7 ES/OS IPC847D W7</td>
</tr>
<tr>
<td>S7-PLCSIM</td>
<td>The license is not a part of SIMATIC PCS 7 ES/OS IPC847D</td>
</tr>
<tr>
<td>SIMIT ULTIMATE V8.1</td>
<td>The software and license are not a part of SIMATIC PCS 7 IPC847D</td>
</tr>
</tbody>
</table>

Note
SIMIT V8.1 is offered in three versions: "STANDARD", "PROFESSIONAL" and "ULTIMATE". An overview of the contained modules is available in chapter 1.2 "product versions" of the manual "SIMIT (V8.1) Operating Manual" (6). In the application example, the modules "PLCSIM coupling" and "CMT import (CMT - control module type)", Component Type Editor (CTE) as well as the libraries FLOWNET and CONTEC are used. These do not form part of SIMIT V8.1 STANDARD.

Example Files and Projects

The following table contains all the files and projects used in this application example.

Table 1–3

<table>
<thead>
<tr>
<th>File/project</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>77362399_PROJECT_BottlingPlant_SIMIT_V81.zip</td>
<td>SIMIT V8.1 example project</td>
</tr>
<tr>
<td>77362399_PROJECT_BottlingPlant_PCS7_V81.zip</td>
<td>PCS 7 V8.1 example project</td>
</tr>
<tr>
<td>77362399_DOCU_Bottling_Plant_en.pdf</td>
<td>This document</td>
</tr>
</tbody>
</table>
2 Initial Work on the Project

2.1 Presentation of the Project

Description of the Plant
The basic liquid materials are dispensed from three raw material tanks into two reactors. The flow rates are regulated by valves. The liquids are then heated or cooled in the reactors. Then the liquids are bottled. After the filling process, the bottles are taken away on conveyor belts.

Task Description for the PCS 7 Project "Bottling Plant"
The bottling plant is depicted in SIMIT:
- Generating the signal level and coupling with PLCSIM
- Generating the device level and the simulation of the conveyor belt
 While doing this you will get to know the function "Generating the device level".
- Generating the physical models
 When generating the physical models you will get to know the FLOWNET libraries.
- Generating the scripts which can be used for operator training sessions, for example.

2.2 Configuring the PLCSIM Interface in the SIMATIC Manager

Before you start configuring SIMATIC, you must first retrieve the "BottlingPlant_MP" project in the SIMATIC Manager, change the settings and load PLCSIM.
The approach is described in the application example SIMIT Getting Started (131) in chapter 2.2 "Configuring the PLCSIM interface in the SIMATIC Manager.

Note
The "BottlingPlant_MP" project includes two automation systems. For this reason, steps 4 to 9 should be executed twice (once per AS).
2.3 Configuring the PLCSIM Interface in SIMIT

The configuration approach is described in the application example SIMIT Getting Started (3) in chapter 2.3 "Configuring the PLCSIM interface in the SIMATIC Manager.

Note

The "BottlingPlant_MP" project includes two automation systems. For this reason, steps 1 to 4 in table 2-3 and steps 1-8 in table 2-4 should be executed twice (once per AS).

As two PLCSIM couplings are created in the application example, the couplings should be assigned unique names and one time slice each. The couplings have the following names in the application example:

- Coupling to AS1 "1_SignalLevel_PLCSIM_AS1"
- Coupling to AS1 "2_SignalLevel_PLCSIM_AS2"

Assigning the Time Slice

You can set the cycle times of the time slices in the properties window of the project manager. Time slices 2 and 3 are used in the application example. A cycle time of 50 ms is set for each time slice.

![Figure 2–1](image-url)
2 Initial Work on the Project

2.4 Verifying Communication between PLCSIM and SIMIT

You can assign the relevant time slice in the properties window of the coupling. You can enter the number of the PLCSIM instance in the field "PLCSIM number". You will find the number in the header of the PLCSIM window for each AS. The PLCSIM number 1 is also assigned to the coupling for AS1 in the following image.

![Figure 2–2](image)

Set the time slice 3 and the PLCSIM number 2 for AS2.

2.4 Verifying Communication between PLCSIM and SIMIT

In order to prevent communication errors between PLCSIM and SIMIT, you can test the connection in a simple way. The precise approach is described in the application example SIMIT Getting Started (13) in chapter 2.4 "Verifying communication between PLCSIM and SIMIT".

2.5 The Current Status of your Project

In preparation for the actual creation of the process simulation for the "Bottling Plant" project, you have completed the following tasks:

- You have retrieved the PCS 7 project "Bottling Plant" and downloaded the configured hardware in the virtual AS (PLCSIM).
- You have created two PLCSIM couplings in SIMIT and imported the symbol tables you had previously exported from PCS 7 into SIMIT.
- You have set the cycle times for the time slices and assigned a time slice to each coupling.
- You have assigned the PLCSIM number to each coupling.
- You have tested the communication between PLCSIM and SIMIT.

At the current state of your project you are now able to perform signal tests. At this stage of the simulation, you can see whether the signals are communicated from the control to the signal level (see Figure 2–3). Tests such as the opening and closing of valves can be validated at this stage.
You are still unable to simulate the time response or the transient response of processes. This requires you to describe the process in detail and simulate it in SIMIT. The following chapters describe a possible process simulation for the "Bottling Plant" project.

Figure 2–3
3 Creating the Device Level

3.1 Creating a Template

3 Creating the Device Level

In the previous chapter, the PLCSIM couplings were configured. The PLCSIM data can be accessed for writing and reading.

If the AS sends control signals, these are sent in real application to actuators. These then perform an action that changes the process in some way. This could be, for example, a level increase or the sinking of a mass flow. This change must be detected by sensors and sent back to the AS.

In this chapter, the actuators and sensors are replicated. While doing this, you will get to know and use the functions “CMT import” and “Generation of a device level”.

3.1 Creating a Template

To be able to use the “CMT import” and “Generation of a device level” functions effectively, you must create corresponding templates for the actuators and sensors used. The templates must match the CMTs in PCS 7. That means that the template name is identical to the CMT name.

The following list comprises the required templates.

- AMON_Std
- BottlingAnalogVlv
- Bottling_2WayValve
- Bottling_Dose
- Bottling_MotorLean
- Bottling_MotorRev
- Bottling_MotorSimoCode
- Bottling_MotorSinamics
- Bottling_PID
- Bottling_ValveLean
- Conv

There are two options for creating templates. The first option is to adapt the existing templates (base templates). The second option is to create a new one. In order to adapt the base templates, they have to be copied. For example, they could be copied into the folder project templates. After that it is possible to open and edit them.

Procedure

The following section will provide you with some examples of how to create or adapt templates.

AMON_Std:

First of all, the interfaces to the CMT must be defined before creating a template. To do this, the following tasks must be performed in the SIMATIC Manager:

1. Open the CMT “AMON_Std” in the master data library of the “BottlingPlant” project.
2. Open the technical connections of the CMT “View > Technical connections”.
3. Take note of the names of the assigned blocks and the names of the associated signals and parameters which you need in the SIMIT template.
The following figure outlines these for the “AMON_Std”.

Figure 3–1

The template “AMON_Std” is created from the base template “AnalogMonitoring” from the folder “PCS 7 AP Library V80”. The following tasks need to be performed:

5. Select the template “AnalogMonitoring”.
6. Drag the template and drop it into the project templates.

Figure 3–2

7. Change the name to “AMON_Std”.
8. Double-click to open the template.
9. Make the changes according to the following table.
3 Creating the Device Level

3.1 Creating a Template

Table 3–1

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Old value</th>
<th>New value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Name</td>
<td>{$ChartName}/X</td>
<td>{$ChartName}/PV</td>
</tr>
<tr>
<td>Phys2Raw</td>
<td>Name</td>
<td>Phys2Raw#1</td>
<td>{$ChartName}_Phys2Raw</td>
</tr>
<tr>
<td></td>
<td>Phys_Lower_Limit</td>
<td>PV_LR_Value</td>
<td>PV\Scale\Low</td>
</tr>
<tr>
<td></td>
<td>Phys_Upper_Limit</td>
<td>PV_HR_Value</td>
<td>PV\Scale\High</td>
</tr>
<tr>
<td>Signed2Unsigned</td>
<td>Name</td>
<td>Signed2Unsigned #1</td>
<td>{$ChartName}_Signed2Unsigned</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING PV_SymbolName</td>
<td>COUPLING PV\PV_In</td>
</tr>
</tbody>
</table>

10. Insert text boxes to improve clarity according to the following figure.

Figure 3–3

11. Save and close the template.

Bottling_2WayValve:
Before creating the template, the names of the assigned blocks and the associated signals and parameters which you want to address in the SIMIT template need to be compiled (see steps 1 to 4 AMON_Std). The following table compiles these:

Table 3–2

<table>
<thead>
<tr>
<th>Block</th>
<th>Signal / parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CtrlV0</td>
<td>PV_Out</td>
</tr>
<tr>
<td>CtrlV1</td>
<td>PV_Out</td>
</tr>
<tr>
<td>CtrlV2</td>
<td>PV_Out</td>
</tr>
<tr>
<td>FbkP0</td>
<td>PV_In</td>
</tr>
<tr>
<td>FbkV0</td>
<td>PV_In</td>
</tr>
<tr>
<td>FbkV1</td>
<td>PV_In</td>
</tr>
<tr>
<td>FbkV2</td>
<td>PV_In</td>
</tr>
</tbody>
</table>
3 Creating the Device Level

3.1 Creating a Template

<table>
<thead>
<tr>
<th>Block</th>
<th>Signal / parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>MonTiV0Dynamic</td>
</tr>
<tr>
<td>V</td>
<td>MonTiV1Dynamic</td>
</tr>
<tr>
<td>V</td>
<td>MonTiV2Dynamic</td>
</tr>
</tbody>
</table>

The template can be created with this information. The following figure shows the arrangement and the interconnection of the necessary components.

![Diagram](image)

The following list comprises the properties of the components.

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Signal</td>
<td>COUPLING Ctrl0\PV_Out</td>
</tr>
<tr>
<td>Output</td>
<td>Signal</td>
<td>COUPLING Ctrl1\PV_Out</td>
</tr>
<tr>
<td>Output</td>
<td>Signal</td>
<td>COUPLING Ctrl2\PV_Out</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>{$ChartName_MUL_V0}</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>V\MonTiV0Dynamic</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>{$ChartName_MUL_V1}</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>V\MonTiV1Dynamic</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>{$ChartName_MUL_V2}</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>V\MonTiV2Dynamic</td>
</tr>
<tr>
<td>DriveV1</td>
<td>Name</td>
<td>{$ChartName_V0}</td>
</tr>
<tr>
<td>DriveV1</td>
<td>Name</td>
<td>{$ChartName_V1}</td>
</tr>
<tr>
<td>DriveV1</td>
<td>Name</td>
<td>{$ChartName_V2}</td>
</tr>
</tbody>
</table>
3 Creating the Device Level

3.2 CMT Import

With the aid of templates, you can create the device level with the function “CMT Import”.

Requirements
To use the function “CMT Import” for automatic model creation, a corresponding XML file is required, exported from the PCS 7 project. The PCS 7 project must also be created with the help of CMTs (control module types).

Preparation
Create the following subfolders in the folder "Chart".
- 1_SignalLevel
- 2_DeviceLevel
- 3_ProcessLevel

Procedure
The application example “SIMIT Getting Started” in chapters 3.3.1 “Export of XML files from PCS 7” and chapter 3.3.3 “CMT Import” describe in detail how to export the required XML files and carry out the CMT import.

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>Name</td>
<td>{$ChartName}_AND</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>{$ChartName}_V0/Hi</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>{$ChartName}_V0/Lo</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>{$ChartName}_V0/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>{$ChartName}_V1/Hi</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>{$ChartName}_V1/Lo</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>{$ChartName}_V1/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>{$ChartName}_V2/Hi</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>{$ChartName}_V2/Lo</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>{$ChartName}_V2/Y</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING FbkV0/PV_In</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING FbkV1/PV_In</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING FbkV2/PV_In</td>
</tr>
</tbody>
</table>

Create the remaining templates according to the procedure described above.

Note
It is a huge advantage if you give every component which you place on a chart a unique name. By using {$ChartName} this can be easy and convenient when using templates. When generating charts, {$ChartName} is replaced by the plan name. If you place additional components on charts, give each of them a unique name. This makes it easier to interconnect the components beyond the limits of the chart at a later date.
The CMT import for the application example given here is described step by step in the following section.

1. Right-click the “DeviceLevel” folder.
2. Select “Automatic model generation > CMT Import” in the context menu.
3. In the “Coupling” box, select the coupling “1_SignalLevel_PLCSIM_AS1”.
4. Untick the box “Plant3” in the preview.

5. Click "Import" to start the import.
6. Click “OK” in the window “Import complete”.

Figure 3–5
7. Execute steps 1 to 6 for the coupling “2_SignalLevel_PLCSIM_AS2”. Apply your settings as shown in the following figure.

Note

Only the charts for the fill level measuring points are created. The charts for the conveyor line drives are created with the aid of the function “Generation of device level”.

Figure 3–6

CMT import

CMT file: D:\Projects\SIMIT\Bottling\Plant1\PCS7_Proj\Exports\AS_Proj.xml

Template folder: D:\Projects\Bottling\Plant1\Bottling\Plant1.ppt

Coupling: 2_SignalLevel_PLCSIM_AS2

- Remove elements with empty replacement

Preview

- **Plant2**
 - **Plant3**
 - **Conveyor**
 - Conv1
 - Conv2
 - Conv3
 - Conv4
 - Conv5
 - Conv6
 - Conv7
 - ConvCurCola
 - ConvCurOlino
 - ConvSpur
 - LI311
 - LI312

- **Placeholder**

Result

The device level is created in its entirety for the plant sections “Plant1” and “Plant2”. For the plant section “Plant3”, only the fill level measuring points “LI311” and “LI312” were created.
3.3 Generating the Device Level

An additional option for creating a model automatically is the function “Generating the Device Level”. When using this function, the device level is created using information from the conveyor system model which is constructed using CONTEC library components.

Templates are required for this, as with the CMT import. The templates for the “Generation of the device level” are created in the same way as the templates for the CMT import.

In the application example given here, the CMT import template “Bottling_MotorRev” is adapted and saved under the name “Conv”. Then the conveyor system is replicated using the “Conveyor” components in the CONTEC library.

3.3.1 Adapting the Template

The following procedure describes how to adapt the template “Bottling_MotorRev”.

8. Create a new template.
9. Name it “Conv”.
10. Open the template “Bottling_MotorRev”, select all the components contained in the template and copy them.
11. Close the template “Bottling_MotorRev” and switch to the template “Conv”.
12. Insert the copied components into the template “Conv”.
13. Adapt the available components as described in the table below:

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Old value</th>
<th>New value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>Text</td>
<td>{$ChartName}_MotorRev</td>
<td>{$NAME}_MotorRev</td>
</tr>
<tr>
<td>Output</td>
<td>Signal</td>
<td>COUPLING Fwd$PV_Out</td>
<td>COUPLING DO_{($NAME)}_Fwd</td>
</tr>
<tr>
<td>Output</td>
<td>Signal</td>
<td>COUPLING REv$PV_Out</td>
<td>COUPLING DO_{($NAME)}_Rev</td>
</tr>
<tr>
<td>OR</td>
<td>Name</td>
<td>OR#1</td>
<td>OR_{($NAME)}</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL#1</td>
<td>MUL_{($NAME)}</td>
</tr>
<tr>
<td></td>
<td>Input X1</td>
<td>UIMonTiDynamic</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Input X2</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>DriveP1</td>
<td>Name</td>
<td>DriveP1#1</td>
<td>{($NAME)}_U</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>Connector#1</td>
<td>{($NAME)/Run}</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>Connector#2</td>
<td>{($NAME)/Dir}</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>Connector#3</td>
<td>{($NAME)}/Y</td>
</tr>
<tr>
<td>NOTc</td>
<td>Name</td>
<td>NOTc#1</td>
<td>NOTc_{($NAME)}</td>
</tr>
<tr>
<td>AND</td>
<td>Name</td>
<td>AND#1</td>
<td>AND_Fwd_{($NAME)}</td>
</tr>
<tr>
<td>AND</td>
<td>Name</td>
<td>AND#2</td>
<td>AND_Rev_{($NAME)}</td>
</tr>
<tr>
<td>Pushbutton</td>
<td>Name</td>
<td>Pushbutton#1</td>
<td>Pushbutton_{($NAME)}_Startlocal</td>
</tr>
<tr>
<td>Pushbutton</td>
<td>Name</td>
<td>Pushbutton#2</td>
<td>Pushbutton_{($NAME)}_Stoplocal</td>
</tr>
<tr>
<td>Switch</td>
<td>Name</td>
<td>Switch#1</td>
<td>Switch_{($NAME)}_Maint</td>
</tr>
<tr>
<td>Switch</td>
<td>Name</td>
<td>Switch#2</td>
<td>Switch_{($NAME)}_Trip</td>
</tr>
</tbody>
</table>
3 Creating the Device Level

3.3 Generating the Device Level

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Old value</th>
<th>New value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING FbkFwd\PV_In</td>
<td>COUPLING DI{$NAME}_FbkFwd</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING FbkRev\PV_In</td>
<td>COUPLING DI{$NAME}_FbkRev</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING StartLocal\PV_In</td>
<td>COUPLING DI{$NAME}_StartLocal</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING StopLocal\PV_In</td>
<td>COUPLING DI{$NAME}_StopLocal</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING Maint\PV_In</td>
<td>COUPLING DI{$NAME}_Maint</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING Trip\PV_In</td>
<td>COUPLING DI{$NAME}_Trip</td>
</tr>
</tbody>
</table>

14. Insert the components which are additionally required into the template, as shown in the following figure. These are essential for the sensors of the components in the conveyor system.

Figure 3–7

(SNAME) MotorRev

15. Adjust the properties of the components as summarized in the table below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BConnector</td>
<td>Name</td>
<td>BConnector{$NAME} - SensorA1</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>{$NAME} SensorA1</td>
</tr>
<tr>
<td>BConnector</td>
<td>Name</td>
<td>BConnector{$NAME} - SensorA2</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>{$NAME} SensorA2</td>
</tr>
<tr>
<td>Component</td>
<td>Property</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>BConnector</td>
<td>Name</td>
<td>BConnector_(${NAME})-SensorA3</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>${NAME} SensorA3</td>
</tr>
<tr>
<td>BConnector</td>
<td>Name</td>
<td>BConnector_(${NAME})-SensorA4</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>${NAME} SensorA4</td>
</tr>
<tr>
<td>Binary Display</td>
<td>Name</td>
<td>Binary display_(${NAME})_SensorA1</td>
</tr>
<tr>
<td>Binary Display</td>
<td>Name</td>
<td>Binary display_(${NAME})_SensorA2</td>
</tr>
<tr>
<td>Binary Display</td>
<td>Name</td>
<td>Binary display_(${NAME})_SensorA3</td>
</tr>
<tr>
<td>Binary Display</td>
<td>Name</td>
<td>Binary display_(${NAME})_SensorA4</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING DI_(${NAME})_SA1</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING DI_(${NAME})_SA2</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING DI_(${NAME})_SA3</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING DI_(${NAME})_SA4</td>
</tr>
<tr>
<td>BConnector</td>
<td>Name</td>
<td>BConnector_(${NAME})-SensorB1</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>${NAME} SensorB1</td>
</tr>
<tr>
<td>BConnector</td>
<td>Name</td>
<td>BConnector_(${NAME})-SensorB2</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>${NAME} SensorB2</td>
</tr>
<tr>
<td>BConnector</td>
<td>Name</td>
<td>BConnector_(${NAME})-SensorB3</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>${NAME} SensorB3</td>
</tr>
<tr>
<td>BConnector</td>
<td>Name</td>
<td>BConnector_(${NAME})-SensorB4</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>${NAME} SensorB4</td>
</tr>
<tr>
<td>Binary Display</td>
<td>Name</td>
<td>Binary display_(${NAME})_SensorB1</td>
</tr>
<tr>
<td>Binary Display</td>
<td>Name</td>
<td>Binary display_(${NAME})_SensorB2</td>
</tr>
<tr>
<td>Binary Display</td>
<td>Name</td>
<td>Binary display_(${NAME})_SensorB3</td>
</tr>
<tr>
<td>Binary Display</td>
<td>Name</td>
<td>Binary display_(${NAME})_SensorB4</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING DI_(${NAME})_SB1</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING DI_(${NAME})_SB2</td>
</tr>
</tbody>
</table>
3 Creating the Device Level

3.3 Generating the Device Level

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING DI_{$NAME}_SB3</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>COUPLING DI_{$NAME}_SB4</td>
</tr>
<tr>
<td>AConnector</td>
<td>Name</td>
<td>($NAME)-Speed</td>
</tr>
</tbody>
</table>

16. Save and close the template “Conv”.

Conveyor System Simulation Chart

In the application example given here, there is a separate chart for the simulation of the conveyor system. The following will describe how to create this chart.

Chart Properties

1. Create the folder “Conveyor” in the folder “3_ProcessLevel”.
2. Create a new chart “Conveyor_sim” in this folder.
3. Adapt the size and scale in line with the following figure.

Note

The dimensions of the components from the CONTEC library play a decisive role in the simulation as the lengths of the conveyor lines and the sensor positions are derived from these. You can find more information in chapter 7.3.2.5 “Scale” in the manual “SIMIT (V8.1)” (16).

Conveyor System

The conveyor system is created using components from the CONTEC library. The following section will describe how to create the simulation of the conveyor system.

1. Place the components “Conveyor-S4”, “ConveyorCurve45-R60” and “SpurConveyor-2” on the chart “Conveyor_sim”, as shown in the following figure.
3 Creating the Device Level

3.3 Generating the Device Level

2. Adjust the properties of the components using the table below.

Table 3–6

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv1</td>
<td>Name</td>
<td>Conv1</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA1</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>MaterialType</td>
<td>CBoxDS256</td>
</tr>
<tr>
<td></td>
<td>TEMPLATE</td>
<td>Conv</td>
</tr>
<tr>
<td></td>
<td>HIERARCHY</td>
<td>Conveyor</td>
</tr>
<tr>
<td>Conv2</td>
<td>Name</td>
<td>Conv2</td>
</tr>
<tr>
<td></td>
<td>Width</td>
<td>12000</td>
</tr>
<tr>
<td></td>
<td>NominalSpeed</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>NbrOfSensorsA</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA1</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA2</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA3</td>
<td>10000</td>
</tr>
<tr>
<td>ConvSpur</td>
<td>TEMPLATE</td>
<td>Conv</td>
</tr>
<tr>
<td></td>
<td>HIERARCHY</td>
<td>Conveyor</td>
</tr>
<tr>
<td>Conv3</td>
<td>Name</td>
<td>Conv3</td>
</tr>
<tr>
<td></td>
<td>Width</td>
<td>7200</td>
</tr>
<tr>
<td></td>
<td>RemoveA3</td>
<td>Conv3-SensorA3 OUT</td>
</tr>
<tr>
<td></td>
<td>NbrOfSensorsA</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA1</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA2</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA3</td>
<td>7000</td>
</tr>
<tr>
<td></td>
<td>TEMPLATE</td>
<td>Conv</td>
</tr>
<tr>
<td></td>
<td>HIERARCHY</td>
<td>Conveyor</td>
</tr>
</tbody>
</table>
3 Creating the Device Level

3.3 Generating the Device Level

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv4</td>
<td>Name</td>
<td>Conv4</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA1</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>TEMPLATE</td>
<td>Conv</td>
</tr>
<tr>
<td></td>
<td>HIERARCHY</td>
<td>Conveyor</td>
</tr>
<tr>
<td>Conv6</td>
<td>Name</td>
<td>Conv6</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA1</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>TEMPLATE</td>
<td>Conv</td>
</tr>
<tr>
<td></td>
<td>HIERARCHY</td>
<td>Conveyor</td>
</tr>
<tr>
<td>ConvCurvCola</td>
<td>Name</td>
<td>ConvCurvCola</td>
</tr>
<tr>
<td></td>
<td>TEMPLATE</td>
<td>Conv</td>
</tr>
<tr>
<td></td>
<td>HIERARCHY</td>
<td>Conveyor</td>
</tr>
<tr>
<td>ConvCurvOLimo</td>
<td>Name</td>
<td>ConvCurvOLimo</td>
</tr>
<tr>
<td></td>
<td>TEMPLATE</td>
<td>Conv</td>
</tr>
<tr>
<td></td>
<td>HIERARCHY</td>
<td>Conveyor</td>
</tr>
<tr>
<td>Conv5</td>
<td>Name</td>
<td>Conv5</td>
</tr>
<tr>
<td></td>
<td>Width</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>RemoveA2</td>
<td>Conv5-SensorA2 OUT</td>
</tr>
<tr>
<td></td>
<td>NbrOfSensorsA</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA1</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA2</td>
<td>4900</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TEMPLATE</td>
<td>Conv</td>
</tr>
<tr>
<td></td>
<td>HIERARCHY</td>
<td>Conveyor</td>
</tr>
<tr>
<td>Conv7</td>
<td>Name</td>
<td>Conv7</td>
</tr>
<tr>
<td></td>
<td>Width</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>RemoveA2</td>
<td>Conv7-SensorA2 OUT</td>
</tr>
<tr>
<td></td>
<td>NbrOfSensorsA</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA1</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>SensorPositionA2</td>
<td>4800</td>
</tr>
<tr>
<td></td>
<td>TEMPLATE</td>
<td>Conv</td>
</tr>
<tr>
<td></td>
<td>HIERARCHY</td>
<td>Conveyor</td>
</tr>
</tbody>
</table>

3.3.2 Procedure for "Generating the Device Level"

The following section will describe the procedure for the function “Generating the Device Level”.

Requirement

The requirement for using the function “Generating the Device Level” is that you have created the relevant template (if you are not using the base templates) and you have created the model of the conveyor system with the components from the CONTEC library.
3 Creating the Device Level

3.3 Generating the Device Level

Procedure

1. Right-click “Plant3” in the “DeviceLevel” folder.
2. Select “Automatic model generation > Device Level Generation” in the context menu.
3. Set the coupling “2_SignalLevel_PLCSIM_AS2” in the “Coupling” box.

Figure 3–10

4. Click “Import”.
5. Click “OK” in the window “Import complete”.

3.3.3 Final Adjustments/Additions

Adjustments and/or additions have to be made to the charts “ConvSpur” and “ConvCurvCola” because the template used does not meet all requirements.

Note

If you have several charts of the same type which need to be adapted after generating the device level, it is sensible to have a separate template for these charts.
3 Creating the Device Level
3.3 Generating the Device Level

ConvSpur

1. Open the chart ConvSpur.
2. Insert two components from each of the types “Output” and “BConnector”.
3. Interconnect these as shown in the following figure.

Figure 3–11

Adjust the properties of the components as summarized in the table below.

Table 3–7

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DO_ConvSpure_S_AB</td>
</tr>
<tr>
<td>Output</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DO_ConvSpure_S_AD</td>
</tr>
<tr>
<td>BConnector</td>
<td>Name</td>
<td>ConvSpur-Switch1</td>
</tr>
<tr>
<td>BConnector</td>
<td>Name</td>
<td>ConvSpur-Switch2</td>
</tr>
</tbody>
</table>

ConvCurvCola

1. Open the chart “ConvCurvCola”.
2. Insert the component “MUL”.
3. Interconnect these as shown in the following figure.

Figure 3–12

4. Adjust the properties of the components as summarized in the table below.

Table 3–8

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL_Speed_ConvCurvCola</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>-1.0</td>
</tr>
</tbody>
</table>
3 Creating the Device Level

3.4 The Current Status of your Project

Result

The device level is created in its entirety for the plant section “Plant3”.

3.4 The Current Status of your Project

You have reproduced the device level of the PCS 7 project in SIMIT in full and can now execute the measuring point test.

Figure 3–13

Simulation with SIMIT and PCS 7 in a practical example
Entry ID: 77362399, V1.0, 10/2015
4 Modeling Physical Correlations

The following section will describe how to reproduce the models of physical correlations in the PCS 7 project “Bottling Plant” in SIMIT, using components from the standard library, the FLOWNET library and a component created with the CTE tool.

4.1 Establishing the Physical Process Model

The basic procedure for establishing a physical process model is described in the application example “Simulation of a PCS 7 stirred tank reactor with SIMIT simulation framework” (4) chapter 2 “Basics of Process Engineering”.

4.2 Model Plant Section “Plant1”

The following section will describe the development of the process model for the plant section “Plant1”. The plant section “Plant1” describes raw material tanks and injection into the reactors of plant section “Plant2”. The plant section consists of three raw material tanks. The modeling is carried out for raw material tanks 1 and 3 with components from the standard library. Raw material tank 2 is created using components from the FLOWNET library. Macros are created for calculations which occur repeatedly.

4.2.1 Creating Macros

The following section will describe the procedure for creating the required macros.

Macro “LiterSTom3s”

The macro “LiterSTom3s” converts the volume flow from liters per second to m³ per second. The procedure for creating this is described below step-by-step.

2. Create a new macro.
3. Rename this macro “LiterSTom3s”.
4. Open the macro.
5. Open the properties of the macro.
6. Assign the property “Code” the value “LiterSTom3s”.
7. Insert the component “DIV” from the standard library into the macro.
8. Assign it a suitable name (e.g. DIV_convert_Liter_s_to_m3_s).
9. Assign the input X2 the value 1000.0.
10. Connect the input “X1” of the “DIV” component to the sidebar for inputs.
11. Rename the input “L_s”.
12. Connect the input “Y” of the “DIV” component to the sidebar for outputs.
13. Rename the output “m3_s”.

Macro “m3sToLiterS”

The macro “m3sToLiterS” converts the volume flow from m³ per second to liters per second. The procedure for creating the macro is the same as the procedure for creating the macro “LiterSTom3s”.

The following figure shows the components and their connection to the macro.

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro</td>
<td>Code</td>
<td>m3sToLiterS</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL_convert_m3_s_to_Liter_s</td>
</tr>
<tr>
<td>X1</td>
<td>Connection to m3_s</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Connection to L_s</td>
<td></td>
</tr>
</tbody>
</table>

Macro “m3ToLiter”

The macro “m3ToLiter” converts the volume from m³ to liters. The procedure for creating the macro is the same as the procedure for creating the macro “LiterSTom3s”.

Adjust the properties of the macro and components as summarized in the table below.
4 Modeling Physical Correlations

4.2 Model Plant Section “Plant1”

The following figure shows the components and their connection to the macro.

Figure 4–3

Adjust the properties of the macro and components as summarized in the table below.

Table 4–2

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro</td>
<td>Code</td>
<td>m3ToLiter</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL_convert_m3_to_Liter</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>Connection to m3</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Connection to L</td>
</tr>
</tbody>
</table>

Macro “PumpPress”

The macro “PumpPress” simulates the characteristic of a pump. The procedure for creating the macro is the same as the procedure for creating the macro “LiterSTom3s”.

The following figure shows the components and their connection to the macro.

Figure 4–4
Adjust the properties of the macro and components as summarized in the table below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro</td>
<td>Code</td>
<td>PumpPress</td>
</tr>
<tr>
<td>AFormula</td>
<td>Name</td>
<td>AFormula_PumpPress</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>Connection to Pump_percent</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>Connection to Pressure_Gain</td>
</tr>
<tr>
<td></td>
<td>X3</td>
<td>Connection to Flow_X</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Connection to Flow_X</td>
</tr>
<tr>
<td></td>
<td>Formula</td>
<td>X1/100X2X3</td>
</tr>
</tbody>
</table>

Macro “ValveCurve”

The macro “ValveCurve” simulates the equal percentage characteristic of a valve. The procedure for creating the macro is the same as the procedure for creating the macro “LiterSTom3s”.

The following figure shows the components and their connection to the macro.
4 Modeling Physical Correlations

4.2 Model Plant Section “Plant1”

Adjust the properties of the macro and components as summarized in the table below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro</td>
<td>Code</td>
<td>ValveCurve</td>
</tr>
<tr>
<td>AFormula</td>
<td>Name</td>
<td>AFormula_ValveCurve</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>Connection to Y_Valve_percent</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>Connection to exp</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Connection to Y_m3_s</td>
</tr>
<tr>
<td></td>
<td>Formula</td>
<td>X3*exp(X1/100,X2)</td>
</tr>
<tr>
<td>DIV</td>
<td>DIV_ValveCurve</td>
<td>Connection to Scaling_L_Min</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>60000,0</td>
</tr>
</tbody>
</table>

4.2.2 Additional Preparations

Besides the actual models, components are also essential for the simulation of the physical correlations as they can be used to set specific states. Separate charts are created for these.

1. Create the folder “Misc” (from “miscellaneous”) in the folder “Charts”.
2. Create the chart “Connections” in the folder “Misc”.

Components and their connections which are used in this chart are described in the following section.

4.2.3 Creating the Chart “RMT1”

The purpose of the chart is to simulate the physical model of the raw material tank “RMT1”.

In the application example given here, the capacity of the raw material tank is simulated according to the following formula:

\[V = \int V_{in} + V_{out} \, dt \]

Procedure

The following section will describe the creation procedure.

1. Create a new folder in the folder “3_ProcessLevel”.
2. Rename it “Plant1”.
3. Create a new chart in the folder “Plant1”.
4. Rename it “RMT1”.
5. Insert the relevant components into the chart (see the figure below).
6. Interconnect the components as shown in the following figure.

Figure 4–6

![Diagram of RMT1]

7. Open the chart “Connections”.
8. Insert the components shown in the following figure into the chart.
9. Interconnect the components as shown in the following figure.

Figure 4–7

![Diagram of Fill RMTs]

10. Adjust the properties of the components as summarized in the table below.

Table 4–5

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BConnector</td>
<td>Name</td>
<td>BConnector_Fill_RMTs</td>
</tr>
<tr>
<td>Output</td>
<td>Signal</td>
<td>1_SignalLevel_PLCSIM_AS1 DO_RMT1_Filling</td>
</tr>
<tr>
<td>OR</td>
<td>Name</td>
<td>OR_Fill_RMT1</td>
</tr>
</tbody>
</table>

11. Save and close the chart “Connections”.
12. Open the chart “RMT1”.
13. Adjust the properties of the components as summarized in the table below.

Table 4–6 Flow in RMT1

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS_FF</td>
<td>Name</td>
<td>RS_FF_Fill_RMT1</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>OR_Fill_RMT1 OUT</td>
</tr>
</tbody>
</table>
4 Modeling Physical Correlations

4.2 Model Plant Section "Plant1"

Simulation with SIMIT and PCS 7 in a practical example

Table 4–7 Flow out RMT1

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Name</td>
<td>Selection_Fill_RMT1</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>100</td>
</tr>
<tr>
<td>ValveCurve</td>
<td>Name</td>
<td>ValveCurve_Fill_RMT1</td>
</tr>
<tr>
<td></td>
<td>exp</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Scaling_L_Min</td>
<td>900</td>
</tr>
</tbody>
</table>

Table 4–8 RMT1

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NP111/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NP1111_Red/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>FV111/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK111/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK112/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK113/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>RMT1_empty</td>
</tr>
<tr>
<td>MinMax</td>
<td>Name</td>
<td>MinMax_Pumps_RMT1</td>
</tr>
<tr>
<td></td>
<td>MAX</td>
<td></td>
</tr>
<tr>
<td>MinMax</td>
<td>Name</td>
<td>MinMax_Valves_RMT1</td>
</tr>
<tr>
<td></td>
<td>MIN</td>
<td></td>
</tr>
<tr>
<td>ValveCurve</td>
<td>Name</td>
<td>ValveCurve_RMT1</td>
</tr>
<tr>
<td></td>
<td>exp</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Scaling_L_Min</td>
<td>500</td>
</tr>
<tr>
<td>PumpPress</td>
<td>Name</td>
<td>PumpPress_RTM1</td>
</tr>
<tr>
<td></td>
<td>Press_Gain</td>
<td>1.0</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL_RMT1_Out</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

ADD Name ADD_sum_flow_RMT1

INT Name INT_RMT1

UL 500.0

m3ToLiter Name m3ToLiter_RMT1

Selection Name Selection_RMT1_empty

X1 100

Connector Name LI111/PV

Connector Name RMT1_empty
4 Modeling Physical Correlations

4.2 Model Plant Section “Plant1”

Table 4–9 Fill RMT1 finished?, For Dosing Control, Flow into Reactor1

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m3ToLiter</td>
<td>Name</td>
<td>m3ToLiter_FD111/PV</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>FD111_PV</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>RMT1_to_Reactor_1</td>
</tr>
<tr>
<td>Compare</td>
<td>Name</td>
<td>Compare_Fill_RMT1_finished</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>450.0</td>
</tr>
<tr>
<td></td>
<td>Comparison</td>
<td>></td>
</tr>
</tbody>
</table>

14. Save and close the chart “RMT1”.

4.2.4 Creating the Chart “RMT2”

The purpose of the chart is to simulate the physical model of the raw material tank “RMT2”.

In the application example given here, the capacity of the raw material tank is simulated according to the following formula:

\[V = \int \dot{V}_{in} + \dot{V}_{out} \, dt \]

The chart “RMT2” is created using components from the FLOWNET library. The FLOWNET library contains components for creating the simulation of piping networks. You can find a detailed description of piping networks and components in the FLOWNET library in chapter 7 “The FLOWNET Library” in the manual “SIMIT V8.1” (6).

Procedure

The following section will describe the creation procedure.

1. Create a new chart in the folder “Plant1”.
2. Rename it “RMT2”.
3. Insert the relevant components into the chart (see the figure below).
4. Interconnect the components as shown in the following figure.

Figure 4–8

5. Open the chart “Connections”.

6. Insert the components with a red frame in the figure into the chart.
7. Interconnect the components as shown in the following figure.

Figure 4–9

8. Adjust the properties of the components as summarized in the table below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Signal</td>
<td>1_SignalLevel_PLCSIM_AS1, DO_RMT2_Filling</td>
</tr>
<tr>
<td>2x Connector</td>
<td>Name</td>
<td>NK123_V0/Hi</td>
</tr>
<tr>
<td>2x Connector</td>
<td>Name</td>
<td>NK123_V1/Hi</td>
</tr>
<tr>
<td>XOR</td>
<td>Name</td>
<td>XOR_RMT2_Left</td>
</tr>
<tr>
<td>AND</td>
<td>Name</td>
<td>AND_RMT2_Right</td>
</tr>
<tr>
<td>Selection</td>
<td>Name</td>
<td>Selection_RMT2_Left</td>
</tr>
<tr>
<td>X1</td>
<td></td>
<td>100.0</td>
</tr>
<tr>
<td>Selection</td>
<td>Name</td>
<td>Selection_RMT2_Right</td>
</tr>
<tr>
<td>X1</td>
<td></td>
<td>100.0</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>RMT2_Left</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>RMT2_Right</td>
</tr>
</tbody>
</table>

9. Save and close the chart “Connections”.
10. Open the chart “RMT2”.
11. Adjust the properties of the components as summarized in the table below.
4 Modeling Physical Correlations

4.2 Model Plant Section “Plant1”

Simulation with SIMIT and PCS 7 in a practical example

Entry ID: 77362399, V1.0, 10/2015

Table 4–11 Flow in RMT2

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PnodeLiquid</td>
<td>Name</td>
<td>Pnode Liquid In RMT2</td>
</tr>
<tr>
<td></td>
<td>Pressure</td>
<td>4.0</td>
</tr>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve Fill RMT2</td>
</tr>
<tr>
<td></td>
<td>Cvs</td>
<td>55.0</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>RS_FF</td>
<td>Name</td>
<td>RS_FF Fill RMT2</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>OR Fill RMT2 OUT</td>
</tr>
<tr>
<td>Selection</td>
<td>Name</td>
<td>Selection Fill RMT2</td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 4–12 RMT2

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>StorageTankLiquid</td>
<td>Name</td>
<td>StorageTankLiquid_RMT2</td>
</tr>
<tr>
<td></td>
<td>Volume</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>LevelInit</td>
<td>0.0</td>
</tr>
<tr>
<td>Measurements</td>
<td>Name</td>
<td>Measurements_LI121</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>LI121/PV</td>
</tr>
</tbody>
</table>

Table 4–13 Flow out RMT2

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve_NK121</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>Pump</td>
<td>Name</td>
<td>Pump_NP121</td>
</tr>
<tr>
<td></td>
<td>NominalPressure</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>NominalMassflow</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NP121/Y</td>
</tr>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve_FV121</td>
</tr>
<tr>
<td></td>
<td>Cvs</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>FV121/Y</td>
</tr>
<tr>
<td>PipeMeasure</td>
<td>Name</td>
<td>PipeMeasure_Dosing_control_FD121</td>
</tr>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve_NK122</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK122/Y</td>
</tr>
<tr>
<td>JointLiquid</td>
<td>Name</td>
<td>JointLiquid_RMT2_Flow_out</td>
</tr>
</tbody>
</table>
4 Modeling Physical Correlations

4.2 Model Plant Section “Plant1”

Simulation with SIMIT and PCS 7 in a practical example

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve_RMT2_Right</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>RMT2_Right</td>
</tr>
<tr>
<td>Topology</td>
<td>Name</td>
<td>To_Reactor_2</td>
</tr>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve_RMT2_Left</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>PipeMeasure</td>
<td>Name</td>
<td>PipeMeasure_Flow_into_Reactor1</td>
</tr>
<tr>
<td>Measurements</td>
<td>Name</td>
<td>Measurements_Flow_into_Reactor</td>
</tr>
<tr>
<td>LiterSTom3s</td>
<td>Name</td>
<td>LiterSTom3s_Flow_into_Reactor1</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>RMT2_to_Reactor_1</td>
</tr>
<tr>
<td>PnodeLiquid</td>
<td>Name</td>
<td>PnodeLiquid_Flow_out_RMT2</td>
</tr>
</tbody>
</table>

Table 4–14 Fill RMT2 finished?, for dosing control

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare</td>
<td>Name</td>
<td>Compare_Fill_RMT2_finished</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>450.0</td>
</tr>
<tr>
<td></td>
<td>Comparison</td>
<td>></td>
</tr>
<tr>
<td>Measurements</td>
<td>Name</td>
<td>Measurements_FD121</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>FD121_PV</td>
</tr>
</tbody>
</table>

12. Save and close the chart “RMT2”.

4.2.5 Creating the Chart “RMT3”

The purpose of the chart is to simulate the physical model of the raw material tank “RMT3”.

In the application example given here, the capacity of the raw material tank is simulated according to the following formula:

$$ V = \int \dot{V}_\text{in} + \dot{V}_\text{out} \, dt $$

Procedure

The following section will describe the creation procedure.

1. Create a new chart in the folder “Plant1”.
2. Rename it “RMT3”.
3. Open the chart “RMT1”.
4. Select all of the components and copy them.
5. Close the chart “RMT1”.
6. Insert the copied components into the chart “RMT3”.

Siemens AG 2015 All rights reserved
7. Remove the following components:
 - Connector “NP1111_Red/Y”
 - MinMax “MinMax_Pumps_RMT1”
 - PumpPress “PumpPress_RTM1”
 - ValveCurve “ValveCurve_RMT1”
 - m3ToLiter “m3ToLiter_FD111/PV”

8. Connect the connector “NP111/Y” to the component “MinMax_Valves_RMT3”, as shown in the following figure.

9. Insert the macro “LiterSTom3s” and connect it as shown in the following figure.

10. Open the chart “Connections”.
11. Insert the components with a red frame in the figure into the chart.
12. Interconnect the components as shown in the following figure.

13. Adjust the properties of the components as summarized in the table below.
Table 4–15

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Signal</td>
<td>1.SignalLevel PLCSIM AS1 DO RMT3 Filling</td>
</tr>
<tr>
<td>OR</td>
<td>Name</td>
<td>OR_Fill_RMT3</td>
</tr>
</tbody>
</table>

14. Save and close the chart "Connections".
15. Open the chart "RMT3".
16. Adjust the properties of the components as summarized in the table below.

Table 4–16 Flow in RMT3

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Old value</th>
<th>New value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS_FF</td>
<td>Name</td>
<td>RS_FF_Fill_RMT1</td>
<td>RS_FF_Fill_RMT3</td>
</tr>
<tr>
<td>S</td>
<td>OR_Fill_RMT1</td>
<td>OR_Fill_RMT3</td>
<td></td>
</tr>
<tr>
<td>Selection</td>
<td>Name</td>
<td>Selection_Fill_RMT1</td>
<td>Selection_Fill_RMT3</td>
</tr>
<tr>
<td>ValveCurve</td>
<td>Name</td>
<td>ValveCurve_Fill_RMT1</td>
<td>ValveCurve_Fill_RMT3</td>
</tr>
</tbody>
</table>

Table 4–17 Flow out RMT3

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Old value</th>
<th>New value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Name</td>
<td>FV111/Y</td>
<td>FV131/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK111/Y</td>
<td>NK131/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK111/Y</td>
<td>NK132/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK111/Y</td>
<td>NK133/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>RMT1_empty</td>
<td>RMT3_empty</td>
</tr>
<tr>
<td>MinMax</td>
<td>Name</td>
<td>MinMax_Valves_RMT1</td>
<td>MinMax_Valves_RMT3</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NP111/Y</td>
<td>NP131/Y</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL_RMT1_Out</td>
<td>MUL_RMT3_Out</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>FD111_PV</td>
<td>FD131_PV</td>
</tr>
<tr>
<td>LiterSTom3s</td>
<td>Name</td>
<td>LiterSTom3#1</td>
<td>LiterSTom3s_RTM3</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>RMT1_to_Reactor_1</td>
<td>RMT3_to_Reactor_2</td>
</tr>
</tbody>
</table>

Table 4–18 RMT3

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Old value</th>
<th>New value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Name</td>
<td>ADD_sum_flow_RMT1</td>
<td>ADD_sum_flow_RMT3</td>
</tr>
<tr>
<td>INT</td>
<td>Name</td>
<td>INT_RMT1</td>
<td>INT_RMT3</td>
</tr>
<tr>
<td>m3ToLiter</td>
<td>Name</td>
<td>m3ToLiter_RMT1</td>
<td>m3ToLiter_RMT3</td>
</tr>
<tr>
<td>Selection</td>
<td>Name</td>
<td>Selection_RMT1_empty</td>
<td>Selection_RMT3_empty</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>LI111/PV</td>
<td>LI131/PV</td>
</tr>
<tr>
<td>Compare</td>
<td>Name</td>
<td>Compare_Fill_RMT1_finished</td>
<td>Compare_Fill_RMT3_finished</td>
</tr>
</tbody>
</table>
4.3 Model Plant Section “Plant2”

The following section will describe the development of the process model for the plant section “Plant2”. The plant section “Plant2” describes the reactors and dosage into the reactors of plant section “Plant3”. The plant section consists of two reactors. Modeling for “Reactor1” takes place with a reactor component created with the CTE tool and with components from the standard library. “Reactor2” is created with components of the FLOWNET library. Macros created previously are used for calculations which occur repeatedly.

4.3.1 Preparation

The reactor component “StirredTankReactor” must be created with the CTE tool first of all, to be able create the chart for the “Reactor1” process model in SIMIT. You can find the model equations for the component “StirredTankReactor” in the application example “Simulation of a PCS 7 stirred tank reactor with SIMIT simulation framework” chapter 2.4 “Simulation of a process”. In the application example given here, these have been adapted and simplified. You can find information regarding the creation of your own components and the syntax in the CTE tool in the “SIMIT - Component Type Editor” manual. You can open the component “StirredTankReactor” with the CTE tool, look at the source code and, if required, adapt it.

4.3.2 Creating the Chart “Reactor1”

The purpose of the chart is to simulate the physical model of the reactor “Reactor1”.

Procedure

1. Create the folder “Plant2” in the folder “3_ProcessLevel”.
2. Create a new chart in the folder “Plant2”.
3. Rename it “Reactor1”.
4. Insert the relevant components into the chart (see the figure below).
5. Interconnect the components as shown in the following figure.

Figure 4–12

6. Open the chart “Connections”.

7. Insert the components shown in the following figure into the chart.

8. Interconnect the components as shown in the following figure.

Figure 4–13

9. Adjust the properties of the components as summarized in the table below.

Table 4–19

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BConnector</td>
<td>Name</td>
<td>Bconnector_RESET_Reactors</td>
</tr>
<tr>
<td>SR_FF</td>
<td>Name</td>
<td>SR_FF_RESET_Reactors</td>
</tr>
</tbody>
</table>

1. Close the chart “Connections”.
2. Open the chart “Reactor1”.
3. Adjust the properties of the components as summarized in the table below.
4 Modeling Physical Correlations

4.3 Model Plant Section “Plant2”

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Name</td>
<td>FV211/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK211/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK212/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>Reactor1_Empty</td>
</tr>
<tr>
<td>MinMax</td>
<td>Name</td>
<td>MinMax_FlowOut_Reactor1</td>
</tr>
<tr>
<td>Parameter</td>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>ValveCurve</td>
<td>Name</td>
<td>ValveCurve_Reactor1</td>
</tr>
<tr>
<td>Exp</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Scaling_L_Min</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>PumpPress</td>
<td>Name</td>
<td>PumpPress_Reactor1</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>TV211/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK213/Y</td>
</tr>
<tr>
<td>MinMax</td>
<td>Name</td>
<td>MinMax_Temperature_Reactor1</td>
</tr>
<tr>
<td>Parameter</td>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>PTn</td>
<td>Name</td>
<td>PTn_Disturb_Temp_Reactor1</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>20.0</td>
</tr>
<tr>
<td>ADD</td>
<td>Name</td>
<td>ADD_Heating_Reactor1</td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td>20.0</td>
</tr>
<tr>
<td>StirredTankReactor</td>
<td>Name</td>
<td>StirredTankReactor_Reactor1</td>
</tr>
<tr>
<td>SET</td>
<td></td>
<td>Connection to Bconnector_RESET_Reactors OUT</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>ULimit</td>
<td></td>
<td>Connection to SR_FF_RESET_Reactors R</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>LI211/Y</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK214_vent/Y</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL_Temp_Reactor1</td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td>-1.0</td>
</tr>
<tr>
<td>PTn</td>
<td>Name</td>
<td>PTn_Vent_Reactor1</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td>Selection</td>
<td>Name</td>
<td>Selection_Reactor1_Empty</td>
</tr>
<tr>
<td>X0</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
4 Modeling Physical Correlations

4.3 Model Plant Section “Plant2”

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Name</td>
<td>Reactor1_Empty</td>
</tr>
<tr>
<td>m3sToLiters</td>
<td>Name</td>
<td>m3sToLiters_Reactor1</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>FD211_PV</td>
</tr>
<tr>
<td>ADD</td>
<td>Name</td>
<td>ADD_Temp_Reactor1</td>
</tr>
<tr>
<td>NOTc</td>
<td>Name</td>
<td>NOTc_INT_Reactor_LI311</td>
</tr>
<tr>
<td>INT</td>
<td>IN</td>
<td>Connection to Conv2 SensorA2</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>TC221/PV</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>LI311/PV</td>
</tr>
</tbody>
</table>

4. Close the chart “Reactor1”.

4.3.3 Creating the Chart “Reactor2”

The purpose of the chart is to simulate the physical model of the reactor “Reactor2”.

Procedure

1. Create a new chart in the folder “Plant2”.
2. Rename it “Reactor2”.
3. Insert the relevant components into the chart (see the figure below).
4. Interconnect the components as shown in the following figure.

Figure 4–14

5. Open the chart “Connections”.
6. Insert the components shown in the following figure into the chart (in a red frame).
7. Interconnect the components as shown in the following figure.

Figure 4–15

8. Adjust the properties of the components as summarized in the table below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Name</td>
<td>Selection_RESET_Reactor2</td>
</tr>
<tr>
<td>X1</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>RESET_REAC2</td>
</tr>
<tr>
<td>Compare</td>
<td>Name</td>
<td>TV221/Y</td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Comparison</td>
<td></td>
<td><=</td>
</tr>
<tr>
<td>Selection</td>
<td>Name</td>
<td>Selection_Cooling_Reac2</td>
</tr>
<tr>
<td>X1</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>TempCoolingReac2</td>
</tr>
</tbody>
</table>

9. Close the chart “Connections”.

10. Open the chart “Reactor2”.

11. Adjust the properties of the components as summarized in the table below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PnodeLiquid</td>
<td>Name</td>
<td>PnodeLiquid_Inlet_RMT3_to_Reac2</td>
</tr>
<tr>
<td></td>
<td>Pressure</td>
<td>40.0</td>
</tr>
<tr>
<td>PnodeLiquid</td>
<td>Name</td>
<td>PnodeLiquid_for_Heating_Liquid</td>
</tr>
<tr>
<td></td>
<td>Pressure</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>200.0</td>
</tr>
<tr>
<td>PnodeLiquid</td>
<td>Name</td>
<td>PnodeLiquid_for_Heating_Liquid</td>
</tr>
<tr>
<td></td>
<td>Pressure</td>
<td>50</td>
</tr>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve_RMT3_to_Reactor_2</td>
</tr>
<tr>
<td></td>
<td>CVs</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
</tbody>
</table>
4.3 Model Plant Section “Plant2”

Table of Components and Properties

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>Name</td>
<td>RMT3_to_Reactor_2</td>
</tr>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve_TV221/Y</td>
</tr>
<tr>
<td></td>
<td>CVs</td>
<td>360.0</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>TV221/Y</td>
</tr>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve_NK223/Y</td>
</tr>
<tr>
<td></td>
<td>CVs</td>
<td>360.0</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK223/Y</td>
</tr>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve_TempCoolingReac2</td>
</tr>
<tr>
<td></td>
<td>CVs</td>
<td>360.0</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>PipeMeasure</td>
<td>Name</td>
<td>PipeMeasure_RMT3_to_Reactor_2</td>
</tr>
<tr>
<td>Measurement</td>
<td>Name</td>
<td>Measurement_FD131</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>FD131_PV</td>
</tr>
<tr>
<td>JointLiquid</td>
<td>Name</td>
<td>JointLiquid_Temp_Reac2</td>
</tr>
<tr>
<td>AConst</td>
<td>Name</td>
<td>AConst_Pump_Heating</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>100.0</td>
</tr>
<tr>
<td>JointLiquid</td>
<td>Name</td>
<td>JointLiquid_SUM_Inlet_to_Reac2</td>
</tr>
<tr>
<td>Pump</td>
<td>Name</td>
<td>Pump_Heating</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td>HeatExchangerLiquid</td>
<td>Name</td>
<td>HeatExchangerLiquid_Reac2</td>
</tr>
<tr>
<td></td>
<td>VolumeTS</td>
<td>1.2</td>
</tr>
<tr>
<td>PnodeLiquid</td>
<td>Name</td>
<td>PnodeLiquid_HeatExange_Out</td>
</tr>
<tr>
<td></td>
<td>Pressure</td>
<td>0.1</td>
</tr>
<tr>
<td>StopValve</td>
<td>Name</td>
<td>StopValve_RMT2_to_Reactor_2</td>
</tr>
<tr>
<td></td>
<td>CVs</td>
<td>30.0</td>
</tr>
<tr>
<td>Topology</td>
<td>Name</td>
<td>To_Reactor_2</td>
</tr>
<tr>
<td>StorageTankLiquid</td>
<td>Name</td>
<td>Reactor2</td>
</tr>
<tr>
<td></td>
<td>Volume</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>NbrOfStubs</td>
<td>4</td>
</tr>
<tr>
<td>Measurements</td>
<td>Name</td>
<td>Measurements_Reactor2</td>
</tr>
<tr>
<td>JointLiquid</td>
<td>Name</td>
<td>LI221/PV</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL_Reactor2</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>-1.0</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK224_vent</td>
</tr>
<tr>
<td>PTn</td>
<td>Name</td>
<td>PT1_Reac2_NK224_vent</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Simulation with SIMIT and PCS 7 in a practical example

Entry ID: 77362399, V1.0, 10/2015
12. Close the chart “Reactor2”.

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTn</td>
<td>Name</td>
<td>PT1_Disturb_Reac2</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>10.0</td>
</tr>
<tr>
<td>ADD</td>
<td>Name</td>
<td>ADD_Temp_Reactor2</td>
</tr>
<tr>
<td>JointLiquid</td>
<td>Name</td>
<td>JointLiquid_Outlet_Reac2</td>
</tr>
<tr>
<td>Valve</td>
<td>Name</td>
<td>ResetValve_Reac2</td>
</tr>
<tr>
<td></td>
<td>CVs</td>
<td>360.0</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>RESET_REAC2</td>
</tr>
<tr>
<td>PnodeLiquid</td>
<td>Name</td>
<td>PnodeLiquid_Reset_Reac2</td>
</tr>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve_NK221</td>
</tr>
<tr>
<td></td>
<td>CVs</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NK221/Y</td>
</tr>
<tr>
<td>Pump</td>
<td>Name</td>
<td>Pump_NP221</td>
</tr>
<tr>
<td></td>
<td>NominalPressure</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>NominalMassflow</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>NP221_Simo/Y</td>
</tr>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve_FV221</td>
</tr>
<tr>
<td></td>
<td>CVs</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>FV221/Y</td>
</tr>
<tr>
<td>PipeMeasure</td>
<td>Name</td>
<td>PipeMeasure_FD221</td>
</tr>
<tr>
<td>Valve</td>
<td>Name</td>
<td>Valve_NK222</td>
</tr>
<tr>
<td></td>
<td>CVs</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>ShowFlow</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>ShowFlowDirection</td>
<td>True</td>
</tr>
<tr>
<td>PnodeLiquid</td>
<td>Name</td>
<td>PnodeLiquid_to_Plant3</td>
</tr>
<tr>
<td>Measurements</td>
<td>Name</td>
<td>Measurements_FD221</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>FD221_PV</td>
</tr>
<tr>
<td>NOTc</td>
<td>Name</td>
<td>NOTc_LI312</td>
</tr>
<tr>
<td></td>
<td>IN</td>
<td>Connection to Conv2-SensorA2 OUT</td>
</tr>
<tr>
<td>INT</td>
<td>Name</td>
<td>LI132</td>
</tr>
<tr>
<td></td>
<td>UL</td>
<td>10.5</td>
</tr>
<tr>
<td>Connector</td>
<td>Name</td>
<td>LI312/PV</td>
</tr>
</tbody>
</table>
4.4 The Current Status of your Project

At the current state of your project you can already test the program of the AS. So far you have created all actuators and sensors in the folder "2_DeviceLevel", and associated their inputs and outputs with the symbolic addresses. Besides this, there are replicas of your plant's physical processes in the "3_ProcessLevel" folder.
5 Simulation of the Conveyor System

5.1 Modeling the Goods Conveyed

In chapter 3 you created the conveyor system with the components from the CONTEC library and derived the simulation of the drives with the function “Generating the Device Level”. The following procedure describes how to interconnect the sensors and model the goods conveyed.

5.1 Modeling the Goods Conveyed

The CONTEC library makes the relevant components available for the simulation of the goods conveyed. These can be used to model the goods conveyed.

5.1.1 Creating the List of Goods Conveyed

An inventory of goods to be conveyed is compiled into a materials list for the simulation. Proceed as follows to create this:

1. In the Project window, open the “Material” folder.
2. Double-click “New list”. A new list is created and opened in the workplace.
3. Open the “MATERIAL” folder in the CONTEC library.
4. Drag and drop the component “CBoxDS256” onto the workplace by holding down the “Alt” key.
5. In the window “How many instances should be created?”, set the number to 10 and click “OK”.

![Figure 5–1](image)

6. Set the “SizeOfStorage” parameter for the goods conveyed to 8.
7. Save and close the list.
5 Simulation of the Conveyor System
5.1 Modeling the Goods Conveyed

5.1.2 Calculating the Color of the Goods Conveyed

In the application example given here, the goods conveyed constitute beverage crates. Depending on the color of the beverage crate, the relevant drink is filled into bottles. The component “BoxProperty” assists in assigning or reading the color of the beverage crate. The component is not part of the CONTEC library and was created using the CTE tool. The application example given here does not describe the creation process.

Besides the component “BoxProperty”, the application example given here contains two other components which are not part of a SIMIT library.

- “CompareBox”
- “CompareMix”

Component “BoxProperty”

The component “BoxProperty” invokes system functions which enable access to the simulation of the goods conveyed. When the conveyed goods are created by the “Conveyor” component in the CONTEC library, the conveyed goods are assigned a unique ID. This can be read, for example, using the output “SensorIdA1”. The component “BoxProperty” has read or write access to the conveyed goods.

Note

You can find information regarding the system functions of the CONTEC library in chapter “7.3.4.3 System functions” in the manual “SIMIT (V8.1)”.

The “BoxProperty” component has the input “Id” which enables the sensor of the “conveyor” component to read the Id. Furthermore, the component has the inputs “READ” and “WRITE”. If the input “WRITE” is active, then the information present at the other inputs of “BoxProperty” is written to the memory and the properties of the conveyed goods. This includes the values for the inputs “R”, “G”, and “B”. With these values, the color of the conveyed goods in the simulation is defined.

Note

You can find information regarding the properties of the conveyed goods (e.g. color of conveyed goods) in chapter 7.3.3.4 “Component types for the simulation of conveyed goods” in the handbook “SIMIT (V8.1)”.

In the application example given here, an additional Id is written to memory which represents the color of the goods conveyed.

- Id “10” red
- Id “20” green
- Id “30” blue

If the input “READ” is active, then the memory of the item conveyed is read. Which item conveyed is read, depends on the Id of the item conveyed. This is transferred to the “BoxProperty” component with the aid of the “Conveyor” component sensors. The information from the memory is written to the outputs of the “BoxProperty” component and can be used there for further processing. The Color-Id is read in the application example given here.
5 Simulation of the Conveyor System

5.1 Modeling the Goods Conveyed

“CompareBox” Component

The component “CompareBox” imports a number at input X. The outputs are then written using the number. The outputs relate to the color inputs of the item conveyed. Furthermore, the Id of each color is written to the output “Id”.

“CompareMix” Component

The “CompareMix” component imports the color-Id and reveals at the output whether it is cola, orange-lemonade or a mix of both.

5.1.3 “Calc” Chart

The purpose of the “Calc” chart is to model the color of the item conveyed. It contains the components described in chapter 5.1.2. Besides modeling the color of the item conveyed, the conveyor system’s sensors also analyze the Ids entered. The following section will describe the procedure for creating the chart.

Procedure

1. Create a new folder in the folder “ProcessLevel”.
2. Rename it “Conveyor”.
3. Move the chart “Conveyor_sim”, which you have already created (see chapter 3.2.2.) into the folder “Conveyor”.
4. Create another folder in the folder “Conveyor”.
5. Rename it “Misc”.
6. Create a new chart in the folder “Misc”.
7. Rename it “Calc”.
8. Open the chart.
9. Insert the relevant components into the chart (see the figure below).
5 Simulation of the Conveyor System
5.1 Modeling the Goods Conveyed

10. Interconnect the components as shown in the following figure.

Figure 5–2

11. Adjust the properties of the components as summarized in the table below.

Table 5–1 Define box color and create box object on conveyor

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pushbutton</td>
<td>Name</td>
<td>Pushbutton_CreateBoxColor</td>
</tr>
<tr>
<td>Output</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2 DO_ConvSpure_S_AD</td>
</tr>
<tr>
<td>OR</td>
<td>Name</td>
<td>OR_CreateBoxColor</td>
</tr>
<tr>
<td>Counter</td>
<td>Name</td>
<td>Counter_CreateBoxColor</td>
</tr>
<tr>
<td></td>
<td>UL</td>
<td>3.0</td>
</tr>
<tr>
<td>CompareBox</td>
<td>Name</td>
<td>CompareBox_CreateBoxColor</td>
</tr>
<tr>
<td>BoxProperty</td>
<td>Name</td>
<td>BoxProperty</td>
</tr>
<tr>
<td></td>
<td>Id</td>
<td>Connection to Conv1 SensorIdA1</td>
</tr>
<tr>
<td></td>
<td>WRITE</td>
<td>Connection to Conv1 SensorA1</td>
</tr>
<tr>
<td>Pushbutton</td>
<td>Name</td>
<td>Pushbutton_CreateBoxColor</td>
</tr>
<tr>
<td>Output</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2 DO_PickUp</td>
</tr>
<tr>
<td>OR</td>
<td>Name</td>
<td>OR_CreateBoxObject</td>
</tr>
<tr>
<td></td>
<td>OUT</td>
<td>Connection to Conv1 CreateObject</td>
</tr>
</tbody>
</table>
5.2 The Current Status of your Project

At the current state of your project you can test the automation of the conveyor system.

Table 5–2 Read object ID and color ID from box object

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoxProperty</td>
<td>Name</td>
<td>BoxProperty_ReadIDs_Conv2_A1</td>
</tr>
<tr>
<td></td>
<td>Id</td>
<td>Connection to Conv2 SensorIdA1</td>
</tr>
<tr>
<td></td>
<td>READ</td>
<td>Connection to Conv2 SensorA1</td>
</tr>
<tr>
<td>BoxProperty</td>
<td>Name</td>
<td>BoxProperty_ReadIDs_Conv2_A2</td>
</tr>
<tr>
<td></td>
<td>Id</td>
<td>Connection to Conv2 SensorIdA2</td>
</tr>
<tr>
<td></td>
<td>READ</td>
<td>Connection to Conv2 SensorA2</td>
</tr>
<tr>
<td>BoxProperty</td>
<td>Name</td>
<td>BoxProperty_ReadIDs_Conv2_A3</td>
</tr>
<tr>
<td></td>
<td>Id</td>
<td>Connection to Conv2 SensorIdA3</td>
</tr>
<tr>
<td></td>
<td>READ</td>
<td>Connection to Conv2 SensorA3</td>
</tr>
<tr>
<td>CompareMix</td>
<td>Name</td>
<td>CompareMIX_Conv2_A1</td>
</tr>
<tr>
<td></td>
<td>Sin</td>
<td>Connection to Conv2 SensorA1</td>
</tr>
<tr>
<td>CompareMix</td>
<td>Name</td>
<td>CompareMIX_Conv2_A2</td>
</tr>
<tr>
<td></td>
<td>Sin</td>
<td>Connection to Conv2 SensorA2</td>
</tr>
<tr>
<td>CompareMix</td>
<td>Name</td>
<td>CompareMIX_Conv2_A3</td>
</tr>
<tr>
<td></td>
<td>Sin</td>
<td>Connection to Conv2 SensorA3</td>
</tr>
<tr>
<td>OR</td>
<td>Name</td>
<td>OR_Cola_or_Mix</td>
</tr>
<tr>
<td>OR</td>
<td>Name</td>
<td>OR_OLimo_or_Mix</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI_Sensor1_Cola</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI_Sensor1_OLimo</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI_Sensor1_Mix</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI_Sensor2_Cola</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI_Sensor2_Olilo</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI_Sensor2_Mix</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI_Sensor3_Cola</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI_Sensor3_Olilo</td>
</tr>
<tr>
<td>Input</td>
<td>Signal</td>
<td>2_SignalLevel_PLCSIM_AS2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI_Sensor3_Mix</td>
</tr>
</tbody>
</table>

12. Save and close the chart “Calc”.

5.2 **The Current Status of your Project**

At the current state of your project you can test the automation of the conveyor system.
6 Animation of the Crown Cap Machine

Besides the simple two-dimensional animation of graphic elements, SIMIT gives you the option to create three-dimensional animations. The three-dimensional animation of the crown cap machine is created below.

6.1 Creating the 3D Viewer Control

The 3D viewer control (Taskcard Control) is contained in the basic library of SIMIT. 3D animations can be created quickly and easily with this control, as it gives you the option to import the geometry model of machines from a CAD system. The import requirement is that the model has been exported in the format VRLM V2.0.

Note

The description given here does not cover the generation of the geometry model.

You can find further information regarding the 3D viewer control and the data format requirement in chapter 7.1.7.4 “The 3D Viewer Control” in the SIMIT manual (V8.1) (/6/).

Procedure

1. Create a new chart in the folder “Conveyor”.
2. Rename it “3D_CrownCap”.
3. Open the chart.
4. Insert the component “3D viewer” from the task card “Controls”.
5. Adjust the properties of the components as summarized in the table below.

Table 6-1

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D-Viewer</td>
<td>Name</td>
<td>CrownCapMaschine</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Width</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td>695</td>
</tr>
<tr>
<td></td>
<td>3D model</td>
<td>MASCHINE.wrl</td>
</tr>
</tbody>
</table>

Note

The file “MASCHINE.wrl” belongs to the ZIP files “77362399_PROJ_SIMIT_V81_Bottling.zip” which is available for download from the article page.

6. Save and close the chart.
6.2 Creating the Animation

After you have integrated the geometry model of the machine into the 3D viewer control, it will have various connectors (see properties of the 3D viewer control “CrownCapMachine”). These can be used to address and animate the model. For the animation, the movements of the individual machine parts are modeled using standard library components. The animation begins as soon as an item has left the conveyor line.

The following section will describe the procedure for creating the animation.

Procedure

1. Create a new chart in the “Misc” folder of the “Conveyor” folder.
2. Rename it “AnimationControl”.
3. Open the chart.
4. Insert the relevant components into the chart (see the figure below).
5. Interconnect the components as shown in the following figure.

6. Adjust the properties of the components as summarized in the table below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>Name</td>
<td>Delay_sensor_z_axis_TY_move_back</td>
</tr>
<tr>
<td>RS_FF</td>
<td>Name</td>
<td>RS_FF_sensor_z_axis_TY</td>
</tr>
<tr>
<td>OR</td>
<td>Name</td>
<td>OR_start_animation</td>
</tr>
<tr>
<td>IN1</td>
<td>Connection to Conv5 SensorA2</td>
<td></td>
</tr>
<tr>
<td>IN2</td>
<td>Connection to Conv3 SensorA3</td>
<td></td>
</tr>
<tr>
<td>IN3</td>
<td>Connection to Conv7 SensorA2</td>
<td></td>
</tr>
<tr>
<td>DriveV1</td>
<td>Name</td>
<td>DriveV1_sensor_z_axis_TY</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL_sensor_z_axis_TY</td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td>-5.0</td>
</tr>
</tbody>
</table>
6 Animation of the Crown Cap Machine

6.2 Creating the Animation

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>Name</td>
<td>Delay_doors_close</td>
</tr>
<tr>
<td></td>
<td>T_ON</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>T_OFF</td>
<td>5.0</td>
</tr>
<tr>
<td>RS_FF</td>
<td>Name</td>
<td>RS_FF_door_sensors</td>
</tr>
<tr>
<td>DriveV1</td>
<td>Name</td>
<td>DriveV1_door_sensors</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL_door_sensor_left_TX</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>-5.0</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL_door_sensor_right_TX</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>5.0</td>
</tr>
<tr>
<td>Delay</td>
<td>Name</td>
<td>Delay_sonsor_y_axis_TX_move_back</td>
</tr>
<tr>
<td>RS_FF</td>
<td>Name</td>
<td>RS_FF_sonsor_y_axis_TX</td>
</tr>
<tr>
<td>DriveV1</td>
<td>Name</td>
<td>DriveV1_sonsor_y_axis_TX</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL_sonsor_y_axis_TX</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>-5.0</td>
</tr>
<tr>
<td>Delay</td>
<td>Name</td>
<td>Delay_sonsor_x_axis_TX_move_back</td>
</tr>
<tr>
<td></td>
<td>T_ON</td>
<td>1.0</td>
</tr>
<tr>
<td>RS_FF</td>
<td>Name</td>
<td>RS_FF_sonsor_x_axis_TX</td>
</tr>
<tr>
<td>DriveV1</td>
<td>Name</td>
<td>DriveV1_sonsor_x_axis_TX</td>
</tr>
<tr>
<td>MUL</td>
<td>Name</td>
<td>MUL_sonsor_x_axis_TX</td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>-5.0</td>
</tr>
</tbody>
</table>

7. Save and close the chart “AnimationControl”.
8. Open the chart “3D_CrownCap”.
9. Select the 3D viewer control components and adjust the properties according to the table below.

Table 6–3

<table>
<thead>
<tr>
<th>Component</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrownCapMaschine</td>
<td>Sensor_X-axis#TX</td>
<td>Connection to MUL_sonsor_x_axis_TX_Y</td>
</tr>
<tr>
<td></td>
<td>Sensor_Y-axis#TX</td>
<td>Connection to MUL_sonsor_y_axis_TX_Y</td>
</tr>
<tr>
<td></td>
<td>Sensor_Z-axis#TX</td>
<td>Connection to MUL_sonsor_z_axis_TX_Y</td>
</tr>
<tr>
<td></td>
<td>Door_sensor_left#TX</td>
<td>Connection to MUL_door_sensor_left_TX_Y</td>
</tr>
<tr>
<td></td>
<td>Door_sensor_right#TX</td>
<td>Connection to MUL_door_sensor_right_TX_Y</td>
</tr>
</tbody>
</table>

10. Save and close the chart.
6.3 The Current Status of your Project

At the current state of your project you have created a 3D viewer control and integrated a corresponding geometry model. In addition, you have created animation for the 3D viewer control.

Configuration is complete at this point. The following section will introduce you to the scripts and snapshots contained in the project.

In the example project given here, there are charts which contain other animations with graphic elements and controls which are not described in the application example given here. For this, some charts which were created throughout the application example, were adjusted. These adjustments are optional and not part of the description given here.

Note

You can find information regarding graphic elements and controls in the SIMIT manual (V8.1) (/6/) and in the application example “SIMIT Getting Started” (/3/), in chapter 5 “Creating the graphical interface”.
7 Scripts and Snapshots

7.1 Scripts

The example project given here contains three scripts and a snapshot. The following section describes the functions of the scripts and snapshots. Both of these functions offer great advantages when developing an Operator Training System.

7.1 Scripts

SIMIT gives you the opportunity to influence the simulation by using the Automatic Control Interface with automated scripts. This allows you to create situations such as the overheating of a reactor. Furthermore, scripts can be used to create snapshots. This allows you to create a plant status with a script and then save it as a snapshot. Furthermore, you can create log files with measurement values for the period of time that a script is running. This allows you to determine, for example, the operator reaction time required to prevent, for example, the overheating of a reactor.

Creating Scripts

Scripts are created in the folder “Scripting” in the project window. These can be created before the simulation starts or during the simulation. Changes can be made to the scripts throughout the simulation. To create a script, open the folder “Scripting” and execute the function “New script”. You can enter the commands in the editor window and if the simulation is running, you can start the script using the “Start script” button.

Note

For detailed information about creating and starting scripts and commands, please refer to chapter 6 "the Automatic Control Interface (ACI)" of the "SIMIT (V8.1)" operating manual.

“LeanPIDTest” Script

A simple control test for temperature regulation of “Reactor1” can be carried out using the “LeanPIDTest” script. After the script has started, a log file is created. The start date and start time are recorded in the log file. A query appears to check whether the target value of 10°C is set on the regulator. If the response is “yes”, a plot of the actuating value is created for the valve TV211. After a period of 20,000 cycles, a disturbance of 10°C is added to the temperature value TC211 for another 20,000 cycles. At the end, the disturbance is removed and a snapshot “Lean-OTS” is created.

Note

The paths specified in the script can be adjusted, if required.
7.2 Snapshots

Script “Reactor1OverHeating”

The overheating of “Reactor1” is simulated using “Reactor1OverHeating”. After the script has started, a log file is created. The start date and start time are recorded in the log file. Then a disturbance variable is added to the reactor temperature. The disturbance variable is only removed when the operator opens the valve “NK214_vent” (in the WinCC Runtime). At the end of the script, the operator’s reaction time is recorded in the protocol file.

Note

The paths specified in the script can be adjusted, if required.

Script “Reactor2OverHeating”

The script “Reactor2OverHeating” corresponds to the script “Reactor1OverHeating”. Only “Reactor2” is heated and reacts to valve “NK224_vent” being opened.

7.2 Snapshots

The snapshot “Lean-OTS” is included in the application example given here. This was created automatically by the script “LeanPIDTest”. It can be created manually using the function “Snapshots”. You can select this in the menu “Simulation > Snapshots” by clicking the button “Snapshots” in the toolbar or in the folder “Snapshots” in the project window.

You can retain the plant status in a snapshot and reload it as often as you like.
8 Commissioning

The commissioning procedure for the SIMIT and PCS 7 project is described in detail in the application example “Simulation of a PCS 7 stirred tank reactor with SIMIT simulation framework” (41).

Start the SFC “SFC_Master” in the WinCC figure “Plant1” after you have started the simulation and the WinCC Runtime (see the following figure).

Figure 8–1
9 Related literature

Table 9–1

<table>
<thead>
<tr>
<th>Topic</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens Industry Online Support</td>
<td>http://support.industry.siemens.com</td>
</tr>
<tr>
<td>Download page of this entry</td>
<td>https://support.industry.siemens.com/cs/ww/de/view/77362399</td>
</tr>
<tr>
<td>Process control system SIMATIC PCS 7 PCS 7 read-me V8.1 incl. SP1 (online)</td>
<td>https://support.industry.siemens.com/cs/ww/en/view/109474</td>
</tr>
</tbody>
</table>

10 History

Table 10–1

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0</td>
<td>10/2015</td>
<td>First edition</td>
</tr>
</tbody>
</table>