

Industry Online Support

NEWS

2

# PID-Regelung mit PID\_Compact

2

SIMATIC S7-1200 / S7-1500 + TIA Portal V15.1

https://support.industry.siemens.com/cs/ww/de/view/100746401

Siemens Industry Online Support



# **Rechtliche Hinweise**

### Nutzung der Anwendungsbeispiele

In den Anwendungsbeispielen wird die Lösung von Automatisierungsaufgaben im Zusammenspiel mehrerer Komponenten in Form von Text, Grafiken und/oder Software-Bausteinen beispielhaft dargestellt. Die Anwendungsbeispiele sind ein kostenloser Service der Siemens AG und/oder einer Tochtergesellschaft der Siemens AG ("Siemens"). Sie sind unverbindlich und erheben keinen Anspruch auf Vollständigkeit und Funktionsfähigkeit hinsichtlich Konfiguration und Ausstattung. Die Anwendungsbeispiele stellen keine kundenspezifischen Lösungen dar, sondern bieten lediglich Hilfestellung bei typischen Aufgabenstellungen. Sie sind selbst für den sachgemäßen und sicheren Betrieb der Produkte innerhalb der geltenden Vorschriften verantwortlich und müssen dazu die Funktion des jeweiligen Anwendungsbeispiels überprüfen und auf Ihre Anlage individuell anpassen.

Sie erhalten von Šiemens das nicht ausschließliche, nicht unterlizenzierbare und nicht übertragbare Recht, die Anwendungsbeispiele durch fachlich geschultes Personal zu nutzen. Jede Änderung an den Anwendungsbeispielen erfolgt auf Ihre Verantwortung. Die Weitergabe an Dritte oder Vervielfältigung der Anwendungsbeispiele oder von Auszügen daraus ist nur in Kombination mit Ihren eigenen Produkten gestattet. Die Anwendungsbeispiele unterliegen nicht zwingend den üblichen Tests und Qualitätsprüfungen eines kostenpflichtigen Produkts, können Funktions- und Leistungsmängel enthalten und mit Fehlern behaftet sein. Sie sind verpflichtet, die Nutzung so zu gestalten, dass eventuelle Fehlfunktionen nicht zu Sachschäden oder der Verletzung von Personen führen.

### Haftungsausschluss

Siemens schließt seine Haftung, gleich aus welchem Rechtsgrund, insbesondere für die Verwendbarkeit, Verfügbarkeit, Vollständigkeit und Mangelfreiheit der Anwendungsbeispiele, sowie dazugehöriger Hinweise, Projektierungs- und Leistungsdaten und dadurch verursachte Schäden aus. Dies gilt nicht, soweit Siemens zwingend haftet, z.B. nach dem Produkthaftungsgesetz, in Fällen des Vorsatzes, der groben Fahrlässigkeit, wegen der schuldhaften Verletzung des Lebens, des Körpers oder der Gesundheit, bei Nichteinhaltung einer übernommenen Garantie, wegen des arglistigen Verschweigens eines Mangels oder wegen der schuldhaften Verletzung wesentlicher Vertragspflichten. Der Schadensersatzanspruch für die Verletzung wesentlicher Vertragspflichten ist jedoch auf den vertragstypischen, vorhersehbaren Schaden begrenzt, soweit nicht Vorsatz oder grobe Fahrlässigkeit vorliegen oder wegen der Verletzung des Lebens, des Körpers oder der Gesundheit gehaftet wird. Eine Änderung der Beweislast zu Ihrem Nachteil ist mit den vorstehenden Regelungen nicht verbunden. Von in diesem Zusammenhang bestehenden oder entstehenden Ansprüchen Dritter stellen Sie Siemens frei, soweit Siemens nicht gesetzlich zwingend haftet.

Durch Nutzung der Anwendungsbeispiele erkennen Sie an, dass Siemens über die beschriebene Haftungsregelung hinaus nicht für etwaige Schäden haftbar gemacht werden kann.

### Weitere Hinweise

Siemens behält sich das Recht vor, Änderungen an den Anwendungsbeispielen jederzeit ohne Ankündigung durchzuführen. Bei Abweichungen zwischen den Vorschlägen in den Anwendungsbeispielen und anderen Siemens Publikationen, wie z. B. Katalogen, hat der Inhalt der anderen Dokumentation Vorrang.

Ergänzend gelten die Siemens Nutzungsbedingungen (https://support.industry.siemens.com).

### Securityhinweise

Siemens bietet Produkte und Lösungen mit Industrial Security-Funktionen an, die den sicheren Betrieb von Anlagen, Systemen, Maschinen und Netzwerken unterstützen.

Um Anlagen, Systeme, Maschinen und Netzwerke gegen Cyber-Bedrohungen zu sichern, ist es erforderlich, ein ganzheitliches Industrial Security-Konzept zu implementieren (und kontinuierlich aufrechtzuerhalten), das dem aktuellen Stand der Technik entspricht. Die Produkte und Lösungen von Siemens formen nur einen Bestandteil eines solchen Konzepts.

Der Kunde ist dafür verantwortlich, unbefugten Zugriff auf seine Anlagen, Systeme, Maschinen und Netzwerke zu verhindern. Systeme, Maschinen und Komponenten sollten nur mit dem Unternehmensnetzwerk oder dem Internet verbunden werden, wenn und soweit dies notwendig ist und entsprechende Schutzmaßnahmen (z.B. Nutzung von Firewalls und Netzwerk-segmentierung) ergriffen wurden.

Zusätzlich sollten die Empfehlungen von Siemens zu entsprechenden Schutzmaßnahmen beachtet werden. Weiterführende Informationen über Industrial Security finden Sie unter: <u>https://www.siemens.com/industrialsecurity</u>.

Die Produkte und Lösungen von Siemens werden ständig weiterentwickelt, um sie noch sicherer zu machen. Siemens empfiehlt ausdrücklich, Aktualisierungen durchzuführen, sobald die entsprechenden Updates zur Verfügung stehen und immer nur die aktuellen Produktversionen zu verwenden. Die Verwendung veralteter oder nicht mehr unterstützter Versionen kann das Risiko von Cyber-Bedrohungen erhöhen.

Um stets über Produkt-Updates informiert zu sein, abonnieren Sie den Siemens Industrial Security RSS Feed unter: <u>https://www.siemens.com/industrialsecurity</u>.

# Inhaltsverzeichnis

| Rech | tliche Hi                                                                   | nweise                                                                                                                                                                                      | 2                                                    |
|------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1    | Aufgabe                                                                     | 3                                                                                                                                                                                           | 4                                                    |
|      | 1.1                                                                         | Übersicht                                                                                                                                                                                   | 4                                                    |
| 2    | Lösung                                                                      |                                                                                                                                                                                             | 5                                                    |
|      | 2.1<br>2.2<br>2.3<br>2.3.1<br>2.3.2                                         | Übersicht<br>Beschreibung der Kernfunktionalität<br>Hard- und Software-Komponenten<br>Gültigkeit<br>Verwendete Komponenten                                                                  | 5<br>6<br>7<br>7<br>8                                |
| 3    | Funktio                                                                     | nsweise                                                                                                                                                                                     | 9                                                    |
|      | 3.1<br>3.2<br>3.2.1<br>3.3<br>3.3.1<br>3.3.2                                | Gesamtübersicht<br>OB "Main"<br>FB "Hmi"<br>OB "CyclicInterrupt"<br>FB "PID_Compact"<br>FB "Simulation"                                                                                     | 9<br>.10<br>.10<br>.11<br>.12<br>.14                 |
| 4    | Installat                                                                   | ion und Inbetriebnahme                                                                                                                                                                      | .17                                                  |
|      | 4.1<br>4.2<br>4.3<br>4.4<br>4.5                                             | Hardwareanpassung<br>PID-Regler konfigurieren<br>CPU-Simulation mit PLCSIM<br>Inbetriebnahme des Kompaktreglers<br>Bediengerät<br>HMI-Projektteil ins KTP900 Basic laden<br>HMI simulierten | .17<br>.20<br>.23<br>.24<br>.26<br>.26<br>.26        |
| 5    | Bedienu                                                                     | Ing des Anwendungsbeispiels                                                                                                                                                                 | . 27                                                 |
|      | 5.1<br>5.1.1<br>5.1.2<br>5.1.3<br>5.1.4<br>5.1.5<br>5.1.6<br>5.1.7<br>5.1.8 | Übersicht<br>Übersicht (Anfangsbild)<br>Kurvenverlauf<br>Optimierung<br>Beobachtung<br>Meldeanzeige<br>Konfiguration<br>Simulation<br>Einstellungen                                         | .27<br>.29<br>.31<br>.34<br>.35<br>.36<br>.39<br>.40 |
| 6    | Anhang                                                                      |                                                                                                                                                                                             | .41                                                  |
|      | 6.1<br>6.2<br>6.3                                                           | Service und Support<br>Links und Literatur<br>Änderungsdokumentation                                                                                                                        | .41<br>.42<br>.42                                    |

# 1 Aufgabe

# 1.1 Übersicht

### Einführung

Um in einem technischen System bestimmte Größen gezielt beeinflussen zu können, bedarf es der Regelung dieser Größen. Auch in der Automatisierungstechnik werden Regler vielseitig eingesetzt, wie zum Beispiel zur Drehzahlregelung.

Für die SIMATIC S7-1200/S7-1500 wird das Technologieobjekt "PID\_Compact" für proportional wirkende Stellglieder zur Verfügung gestellt.

### Beschreibung der Automatisierungsaufgabe

Die Automatisierungsaufgabe besteht darin, einen Regelkreis zur Beeinflussung von physikalischen Größen in einem technischen Prozess aufzubauen. Der Regelkreis soll dabei aus den folgenden Elementen bestehen:

- "PID\_Compact" als Regler
- simulierte technische Prozesse als Regelstrecke

Abbildung 1-1



Folgende Punkte werden im Anwendungsbeispiel beschrieben:

- Projektierung und Parametrierung des Software-Reglers ("PID\_Compact")
- Optimierungsmöglichkeiten des "PID\_Compact"
- Bedienung und Beobachtung des Regelprozesses über HMI

# 2 Lösung

# 2.1 Übersicht

### Schema

Die folgende Abbildung zeigt schematisch die wichtigsten Komponenten der Lösung:

Abbildung 2-1



Das Technologieobjekt "PID\_Compact" liest den gemessenen Istwert und vergleicht diesen mit dem Sollwert (im vorliegenden Beispiel erfolgt die Sollwert-Vorgabe über HMI).

Aus der sich ergebenden Regeldifferenz errechnet der Regler einen Ausgangswert, um die Sollwert-Abweichung bzw. die Störgröße ggf. auszuregeln. Der Ausgangswert setzt sich beim PID-Regler aus drei Anteilen zusammen:

- P-Anteil Der P-Anteil des Ausgangswerts ist proportional zur Regeldifferenz.
- I-Anteil

Der I-Anteil des Ausgangswerts ist der integrale Bestandteil. Dieser steigt solange eine Regeldifferenz vorhanden ist.

• D-Anteil

Der D-Anteil ist der differentiale Bestandteil und steigt mit wachsender Änderungsgeschwindigkeit der Regeldifferenz.

Das Technologieobjekt "PID\_Compact" besitzt die Inbetriebnahme-Funktionalität "Optimierung", mit der die P-, I-, und D-Parameter abhängig von der Regelstrecke automatisch berechnet werden können. Sie können die Regel-Parameter aber auch manuell vorgeben.

Die automatische Optimierung teilt sich in Optimierungsarten auf:

- 1. Erstoptimierung und
- 2. Nachoptimierung

Beide Optimierungsarten werden im Folgenden beschrieben.

## 2.2 Beschreibung der Kernfunktionalität

# 2.2 Beschreibung der Kernfunktionalität

Die Kernfunktionalität des Anwendungsbeispiels liegt in der Bedienung des Technologieobjektes "PID\_Compact" über das HMI.

## Übersicht und Beschreibung der Oberfläche



Die Bedienung des Anwendungsbeispiels besteht aus den folgenden 6 Bildern:

- Kurvenverlauf
- Optimierung
- Beobachten
- Alarmmeldungen
- Konfiguration
- Simulation

Die Bedienung der Oberflächen wird näher im Kapitel <u>Bedienung des</u> <u>Anwendungsbeispiels</u> beschrieben.

## Vorteile dieser Lösung

Das Anwendungsbeispiel erlaubt es Ihnen sämtliche Konfigurationsmöglichkeiten und Inbetriebnahmefeatures über ein Bediengerät bzw. HMI-Simulation zu nutzen. Das vorliegende Anwendungsbeispiel bietet Ihnen folgende Vorteile:

- Umschaltung zwischen Automatik- und Handbetrieb
- Kurvenverlauf von Soll-, Ist und Stellgröße via HMI
- Umschaltung zwischen realer Regelstrecke und Simulation
- Störgrößenausregelung im simulierten Betrieb
- Vorgabe des Verhaltens im Fehlerfall und deren Simulation
- Manuelle Reglerparametervorgabe und automatische Selbstoptimierung
- Onlineüberwachung des Reglerbausteins "PID\_Compact"
- Konfigurationsänderung zur Laufzeit

### 2.3 Hard- und Software-Komponenten

### Abgrenzung

|         | Dieses Anwendungsbeispiel gibt einen Überblick über das Technologieobjekt<br>"PID_Compact" zur Inbetriebnahme mit der SIMATIC S7-1200/S7-1500.<br>Sie können das Anwendungsbeispiel übernehmen, um Ihre Reglung komfortabel<br>über ein Bediengerät zu bedienen und an Ihre Automationsaufgabe anzupassen. |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|         | Das Anwendungsbeispiel wurde über die Simulation der Regelstrecke getestet.<br>Für den realen Betrieb müssen Sie das Anwendungsbeispiel an Ihr verwendetes<br>Stellglied und Ihren verwendeten Istwertsensor anpassen:                                                                                     |  |  |  |  |  |
|         | <ul> <li>Analoge Ansteuerung oder Ansteuerung über einen digitalen Ausgang mit Hilfe<br/>des pulsweitenmodulierten Signals?</li> </ul>                                                                                                                                                                     |  |  |  |  |  |
|         | Benötigte Spannung und Leistung für die Ansteuerung?                                                                                                                                                                                                                                                       |  |  |  |  |  |
|         | Welche Signaleigenschaften besitzt der verwendete Istwertsensor?                                                                                                                                                                                                                                           |  |  |  |  |  |
| Hinweis | Das Anwendungsbeispiel ist kein Ersatz für die Konfigurationsmaske des<br>PID_Compact-Assistenten, da über diesen die Startwerte im<br>Instanzdatenbaustein definiert werden, welche entscheidend für den<br>Wiederanlauf nach einem Spannungsausfall sind.                                                |  |  |  |  |  |
|         | Neben dem Reglungsbaustein "PID_Compact" stellt STEP 7 (TIA Portal) für die SIMATIC S7-1200/S7-1500 noch folgende Kompaktregler mit automatischer Optimierung zur Verfügung:                                                                                                                               |  |  |  |  |  |
|         | <ul> <li>Dreipunktschrittregler "PID_3Step" f ür Ventile oder Stellglieder mit<br/>integrierendem Verhalten (<u>10</u>)</li> </ul>                                                                                                                                                                         |  |  |  |  |  |
|         | <ul> <li>Temperaturregler "PID_Temp" f ür reine Heizen- oder Heizen/K ühlen-<br/>Anwendungen (<u>\4\</u>, <u>\5\</u>)</li> </ul>                                                                                                                                                                           |  |  |  |  |  |
| Hinweis | Nähere Informationen zu den Technologieobjekten finden Sie                                                                                                                                                                                                                                                 |  |  |  |  |  |
|         | • im STEP 7 Professional Handbuch ( <u>\6\</u> ) $\rightarrow$ <u>Kapitel "PID Control"</u> bzw.                                                                                                                                                                                                           |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |

# Vorausgesetzte Kenntnisse

Grundlegende Kenntnisse über Regelungstechnik werden vorausgesetzt.

# 2.3 Hard- und Software-Komponenten

# 2.3.1 Gültigkeit

Dieses Anwendungsbeispiel wurde erstellt und getestet mit

- STEP 7 ab V15.1 Update 1
- S7-1200 CPU Firmware ab V4.3 / S7-1500 CPU Firmware ab V2.6
- Technologieobjekt "PID\_Compact" V2.3 für S7-1200 / V2.4 für S7-1500
- **Hinweis** Die Versionsunterschiede des Reglers finden Sie im Kapitel "Neuerungen PID\_Compact" im Funktionshandbuch zur PID-Regelung (<u>\13\</u>).

## 2.3 Hard- und Software-Komponenten

# 2.3.2 Verwendete Komponenten

Dieses Anwendungsbeispiel wurde mit den nachfolgenden Komponenten erstellt:

### Hardware-Komponenten

Tabelle 2-1

| Komponente                                                                                                                | Anz. | Artikelnummer           | Hinweis                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------|------|-------------------------|---------------------------------------------------------------------------------------------------------------|
| SIMATIC HMI KTP900<br>BASIC                                                                                               | 1    | 6AV2123-2JB03-0AX0      | Optional (kann auch in<br>WinCC simuliert<br>werden)                                                          |
| COMPACT SWITCH<br>MODULE CSM 1277                                                                                         | 1    | 6GK7277-1AA10-0AA0      |                                                                                                               |
| STROMVERSORGUNG<br>S7-1200 PM1207                                                                                         | 1    | 6EP1332-1SH71           |                                                                                                               |
| CPU 1211C,<br>DC/DC/DC,<br>6DI/4DO/2AI                                                                                    | 1    | 6ES7211-1AE40-0XB0      | Firmware V4.3                                                                                                 |
| Lüfter/Motor mit analoger<br>Drehzahl-Ansteuerung<br>(0 bis 10V / 0 bis 20mA)                                             | 1    | Lüfter/Motor Hersteller | - Ohne integrierte<br>Drehzahl-<br>Regelelektronik<br>- Optional mit<br>integrierter Ist-<br>Drehzahlrückgabe |
| INKREMENTALGEBER<br>MIT HTL<br>1000 I/U ,<br>BETRIEBSSPG. 10-30V<br>KLEMMFLANSCH,<br>WELLE 10 MM<br>FLANSCHDOSE<br>RADIAL | 1    | z.B.:<br>6FX2001-4QB00  | Optional falls<br>Lüfter/Motor keine<br>integrierte Ist-<br>Drehzahlrückgabe liefert                          |
| SIGNAL BOARD SB<br>1232, 1 AQ, (12 Bit<br>Auflösung)                                                                      | 1    | 6ES7232-4HA30-0XB0      | Optional (bei<br>Ansteuerung des<br>Lüfters/Motors mit 0 bis<br>20 mA Stromausgabe)                           |
| Programmiergerät                                                                                                          | 1    |                         | Mit Ethernetanschluss                                                                                         |
| CPU 1511C-1 PN, 175<br>KB Prog, 1 MB Daten                                                                                | 1    | 6ES7511-1CK01-0AB0      | Firmware V2.6                                                                                                 |
| SIMATIC S7 Memory<br>Card, 24 MB                                                                                          | 1    | 6ES7954-8LF03-0AA0      | Steckbar als<br>Ladespeicher in die S7-<br>1500                                                               |

# 3.1 Gesamtübersicht

## Software-Komponenten

Tabelle 2-2

| Komponente                                 | Anz. | Artikelnummer      | Hinweis                                                                                                                                             |
|--------------------------------------------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| SIMATIC<br>STEP 7<br>Professional<br>V15 1 | 1    | 6ES7822-1AA05-0YA5 | <ul> <li>Beinhaltet WinCC Basic V15.1</li> <li>Mit Update 1 (<u>\8\)</u> und HSP0276 (<u>\12\)</u></li> </ul>                                       |
| 10.1                                       |      |                    | <ul> <li>für S7-1200 und S7-1500</li> </ul>                                                                                                         |
| SIMATIC<br>STEP 7 Basic<br>V15.1           | 1    | 6ES7822-0AA05-0YA5 | <ul> <li>Beinhaltet WinCC Basic V15.1</li> <li>Mit Update 1 (<u>\8)</u></li> <li>Mit HSP0276 (<u>\12\</u>) für S7-1200<br/>Firmware V4.3</li> </ul> |

# **Beispieldateien und Projekte**

Die folgende Liste enthält alle Dateien und Projekte, die in diesem Beispiel verwendet werden.

Tabelle 2-3

| Komponente                                         | Hinweis                        |
|----------------------------------------------------|--------------------------------|
| 100746401_S71200_PidCompact_TiaV15.1_PROJ_V2.0.zip | TIA Portal Projekt für S7-1200 |
| 100746401_S71500_PidCompact_TiaV15.1_PROJ_V2.0.zip | TIA Portal Projekt für S7-1500 |
| 100746401_S71x00_PidCompact _DOC_V2.0_de.pdf       | dieses Dokument                |

# 3 Funktionsweise

# 3.1 Gesamtübersicht

<u>Abbildung 3-1</u> zeigt die zeitliche Abfolge der Bausteinaufrufe im Steuerungsteil des TIA Portal-Projektes.

Abbildung 3-1



Das Beispiel-Programm wird in folgenden OBs aufgerufen:

- OB "Main", aus dem der FB für die HMI-Übergabe aufrufen wird
- Weckalarm OB "CyclicInterrupt", der zyklisch alle 100 Millisekunden den Kompaktregler und die Simulationsbausteine aufruft.

Die Variablen-Übergabe zwischen den Funktionen findet über den Datenbaustein DB "Tags" und den Instanzdatenbaustein des Reglers DB "InstPidCompact" statt.

# 3.2 OB "Main"

# 3.2 OB "Main"

Aus dem Organisationsbaustein "Main" wird der Funktionsbaustein für die HMI-Übergabe aufgerufen.

## 3.2.1 FB "Hmi"

Abbildung 3-2 Network 1: FB "Hmi" "InstHmi" "Hmi" "Tags".hmi. tuningVisible tuningVisible "Tags".hmi. sutVisible sutVisible "Tags".hmi. tirVisible tirVisible "Tags".hmi. manualModeVisib manualModeVi sible le "Tags".hmi. setpointLimited setpointLimited "Tags".hmi. acknowledgeVisib acknowledgeVi le sible "Tags".hmi. - EN errorSimulationVi errorSimulation sible Visible "Tags".hmi. simulate simulate "Tags". "Tags".hmi. pidCompact. errorSimulation errorAck errorSimulation pidErrorAck "Tags".hmi. "Tags".hmi. outputPwmUsin tuningMode outputPwmUsint tuningMode t "Tags".hmi. errorAckInt "Tags".hmi. errorBitsInt errorAckInt errorBitsInt "Tags".hmi. "Tags".hmi. warningInt errorAck - errorAck warningInt "InstPidCompact" - pidCompact ENO -

Tabelle 3-1

|        | Name              | Datentyp | Beschreibung                          |
|--------|-------------------|----------|---------------------------------------|
| Input  | simulate Bool     |          | Aktivierung der Simulation            |
|        | errorSimulation   | Bool     | Simulierung eines Sensorfehlers       |
|        | tuningMode        | Int      | Optimierungsartauswahl (1=Erst-       |
|        | -                 |          | /2=Nachoptimierung)                   |
|        | errorAckInt       | Int      | Quittiervariable für HMI-Bitmeldungen |
|        | errorAck          | Bool     | HMI-Anforderung zum Löschen der       |
|        |                   |          | Fehlermeldungen                       |
| Output | tuningVisible     | Bool     | Sichtbarkeit der Optimierung          |
|        | sutVisible        | Bool     | Sichtbarkeit der Erstoptimierung      |
|        | tirVisible        | Bool     | Sichtbarkeit der Nachoptimierung      |
|        | manualModeVisible | Bool     | Sichtbarkeit der Umschaltung in den   |
|        |                   |          | Handbetrieb                           |

### 3 Funktionsweise

## 3.3 OB "CyclicInterrupt"

|       | Name                   | Datentyp    | Beschreibung                                                        |
|-------|------------------------|-------------|---------------------------------------------------------------------|
|       | setpointLimited        | Bool        | Verletzung der Sollwert-Grenzvorgaben                               |
|       | acknowledgeVisible     | Bool        | Sichtbarkeit der HMI-Anforderung zum<br>Löschen der Fehlermeldungen |
|       | errorSimulationVisible | Bool        | Sichtbarkeit der Simulierung eines<br>Sensorfehlers                 |
|       | pidErrorAck            | Bool        | Löschen der Fehlermeldungen (PID-Regler)                            |
|       | outputPwmUsint         | USInt       | PWM-Signal als Datentyp "USInt" zur HMI-<br>Anzeige                 |
|       | errorBitsInt           | Int         | Fehlermeldung als Datentyp "Int" zur HMI-<br>Anzeige                |
|       | warningInt             | Int         | Warnungen als Datentyp "Int" zur HMI-<br>Anzeige                    |
| InOut | pidCompact             | PID_Compact | Übergabe des Instanzdatenbausteins des FB<br>"PID_Compact"          |

Im Funktionsbaustein "Hmi" werden Variablen definiert, die das Bediengerät zur Sichtbarkeits-Animation von Objekten und Elementen benötigt.

Nähere Beschreibungen finden Sie in den Netzwerküberschriften.

# 3.3 OB "CyclicInterrupt"

Das eigentliche Programm (der Aufruf des Kompaktreglers "PID\_Compact") findet im Weckalarm-OB statt, da diskrete Software-Regelungen in einem definierten zeitlichen Abstand aufgerufen werden müssen.

Als konstantes Zeitintervall der Abtastzeit des OB "CyclicInterrupt" wurde 100ms gewählt.

### Programmübersicht

Im Weckalarm-OB wird der gesamte simulierte Regelkreis berechnet.

Abbildung 3-3



Folgende Peripherie-Anbindung zur Regelung einer realen Strecke ist im Beispielprojekt getroffen:

## 3.3 OB "CyclicInterrupt"

### Tabelle 3-2

| Variable                 | S7-1200 | S7-1500 |
|--------------------------|---------|---------|
| "PID_Compact".Input_PER  | IW64    | IW0     |
| "PID_Compact".Output_PER | QW80    | QW0     |
| "PID_Compact".Output_PWM | Q0.0    | Q4.0    |

### Beschreibung

Der Kompaktregler "PID\_Compact" greift im Beispielprojekt auf die Peripheriesignale aus <u>Tabelle 3-2</u> zu. Dieser berechnet aus der Regeldifferenz = Sollwert – Istwert in Abhängigkeit von den PID-Parametern die Stellgröße. Die Stellgröße kann analog oder digital als pulsweitenmoduliertes Signal an die Peripherie-Steuerungsausgänge ausgegeben werden.

Zur Simulation wird die Stellgröße als Gleitkommazahl dem Funktionsbaustein "LSim\_PT1" übergeben.

Der FB "LSim\_PT1" simuliert eine Regelstrecke mit PT1-Verhalten und gibt so den simulierten Istwert als Gleitkommazahl aus.

Dieser wird über den FC "Scale" in einen Analogwert umgewandelt.

Bei Betätigung der Fehlersimulation ("Error simulation") wird der analoge Istwert mit dem fehlerhaften Wert (-32768) überschrieben.

Zusätzlich wird der simulierte analoge Istwert über den FC "Scale" in die entsprechende Gleitkommazahl für den Eingang "Input" des FB "PID\_Compact" umgerechnet.

Durch die Deaktivierung des FB "Simulation" können Sie die Streckensimulation ausschalten und eine reale Reglungsstrecke (Signalauswertung über die Steuerungsperipherie) mit dem FB "PID\_Compact" regeln.

# 3.3.1 FB "PID\_Compact"

STEP 7 V15.1 liefert das Technologieobjekt "PID\_Compact" in der Version 2.3 für die S7-1200 bzw. Version 2.4 für die S7-1500 mit der Installation. Dieser Funktionsbaustein wurde speziell für die Regelung von proportional wirkenden Stellgliedern entwickelt.

3.3 OB "CyclicInterrupt" Abbildung 3-4 Network 2: FB "PID\_Compact" "InstPidCompact" PID\_Compact 📤 施 "Tags". pidCompact. scaledInput ScaledInput "Tags". pidCompact. output --- EN Output Output\_PER "sbAg" "Tags". "outputPwm" Output\_PWM pidCompact. setpoint Setpoint "Tags". "Tags".speed.rpm Input pidCompact. SetpointLimit\_ setpointLimitH "ai0" -Input\_PER н "Tags". "Tags". pidCompact. pidCompact. disturbance. setpointLimitL Disturbance SetpointLimit\_L "Tags". "Tags". pidCompact. pidCompact. manualEnable \_ inputWarningH ManualEnable InputWarning\_H "Tags". "Tags". pidCompact. pidCompact. manualValue. inputWarningL ManualValue InputWarning\_L "Tags". "Tags". pidCompact. pidCompact. errorAck - ErrorAck state State "Tags". "Tags". pidCompact. pidCompact. reset — Reset error Error "Tags". "Tags". pidCompact. pidCompact. modeActivate errorBits - ModeActivate ErrorBits 3 -Mode ENO -

## Tabelle 3-3

|                                                      | Name            | Datentyp                                  | Beschreibung                     |
|------------------------------------------------------|-----------------|-------------------------------------------|----------------------------------|
| Input                                                | Setpoint        | Real                                      | Sollwerteingang                  |
|                                                      | Input           | Real                                      | Istwert in REAL-Format           |
|                                                      | Input_PER       | Int                                       | Analoger Istwert                 |
|                                                      | Disturbance Rea |                                           | Störaufschaltung                 |
| ManualEnable Bool Aktivierung der Betriebsart "Handb |                 | Aktivierung der Betriebsart "Handbetrieb" |                                  |
| ManualValue Real Handwert                            |                 | Handwert                                  |                                  |
| ErrorAck Bool Löschen der Fehlermeldungen / Warnung  |                 | Löschen der Fehlermeldungen / Warnungen   |                                  |
|                                                      | Reset           | Bool                                      | Rücksetzen, Neustart des Reglers |

### 3 Funktionsweise

## 3.3 OB "CyclicInterrupt"

|                                                           | Name            | Datentyp                                       | Beschreibung                                      |
|-----------------------------------------------------------|-----------------|------------------------------------------------|---------------------------------------------------|
|                                                           | ModeActivate    | Bool                                           | Betriebart "Mode" freigeben                       |
| Output                                                    | ScaledInput     | Real                                           | Skalierter Istwert                                |
|                                                           | Output          | Real                                           | Ausgangswert in REAL-Format                       |
|                                                           | Output_PER      | Int                                            | Analoger Ausgangswert                             |
|                                                           | Output_PWM      | Bool                                           | Pulsweitenmodulierter Ausgangswert                |
|                                                           | SetpointLimit_H | Bool                                           | Sollwert wird an der oberen Grenze festgehalten   |
|                                                           | SetpointLimit_L | Bool                                           | Sollwert wird an der unteren Grenze festgehalten  |
| InputWarning_H Bool Istwert hat die obere Warngrenze über |                 | Istwert hat die obere Warngrenze überschritten |                                                   |
|                                                           | InputWarning_L  | Bool                                           | Istwert hat die untere Warngrenze unterschritten  |
|                                                           | State           | Int                                            | Anzeige der aktuellen Betriebsart des PID-Reglers |
|                                                           |                 |                                                | (0=Inaktiv,1=SUT,2=TIR,3=Automatik,4=Hand)        |
|                                                           | Error           | Bool                                           | Mindestens eine Fehlermeldung liegt vor           |
|                                                           | ErrorBits       | DWord                                          | Fehlermeldung                                     |
| InOut                                                     | Mode            | Int                                            | Betriebsartvorgabe (siehe "State")                |

Der FB "PID\_Compact" wird im Weckalarm OB "CyclicInterrupt" aufgerufen. Den Instanzdatenbaustein "InstPidCompact" finden Sie im Ordner "Technologieobjekte": Dieser lässt sich öffnen über Rechtsklick -> "DB-Editor öffnen" ("Open DB editor").

### **Hinweis** Eine nähere Beschreibung des Kompaktreglers erhalten Sie in der STEP 7 V15.1 Online-Hilfe. Markieren Sie dazu den Funktionsbaustein "PID\_Compact" im Programmaufruf (siehe <u>Abbildung 3-4</u>) und drücken Sie F1.

# 3.3.2 FB "Simulation"

Abbildung 3-5



Tabelle 3-4

|                                                  | Name                                                         | Datentyp                            | Beschreibung                              |
|--------------------------------------------------|--------------------------------------------------------------|-------------------------------------|-------------------------------------------|
| Input initialCall Bool Erstaufruf des Weckalarms |                                                              | Erstaufruf des Weckalarms           |                                           |
|                                                  | errorSimulation                                              | Bool                                | Simulierung eines Sensorfehlers           |
| Output output Real Simulierter Istwert als RE    |                                                              | Simulierter Istwert als REAL-Format |                                           |
| •                                                | outputPer                                                    | Int                                 | Simulierter analoger Istwert              |
| InOut                                            | InOut pidCompact PID_Compact Übergabe des Instanzdatenbauste |                                     | Übergabe des Instanzdatenbausteins des FB |
|                                                  |                                                              |                                     | "PID_Compact"                             |

Der FB "Simulation" simuliert die zu regelnde Strecke als PT1-Glied. Zusätzlich findet innerhalb des Bausteins die Umrechnung auf den Istwert als Analogwert bzw. Gleitkommazahl statt. Der FB "Simulation" schreibt direkt auf den gewählten

### 3.3 OB "CyclicInterrupt"

Peripherieeingang des Technologieobjekts "PID\_Compact". Mit der Deaktivierung des FB "Simulation" verarbeitet der Regler somit den Istwert eines angeschlossenen Sensors. Der FB "Simulation" ruft die folgenden Bausteine auf:

- FB "LSim PT1"
- FC "Scale"

Der FB "Simulation" wird im gleichen Weckalarm wie der Kompaktregler "PID\_Compact" aufgerufen.

Nähere Informationen finden Sie in den Netzwerküberschriften und in folgender Beschreibung.

### FB "LSim\_PT1"

Der Funktionsbaustein "LSim\_PT1" simuliert das kontinuierliche Verhalten einer PT1-Strecke. Dieser Baustein stammt aus der Bibliothek zur Regelstrecken-Simulation (\7). Hier finden Sie auch eine ausführliche Beschreibung des FB "LSim\_PT1". In dem vorliegenden Anwendungsbeispiel ist der Streckensimulationsbaustein "LSim\_PT1" mit einer Verzögerungszeit von 3 Sekunden ausgelegt.

Hinweis Beachten Sie bitte, dass Änderungen der Streckenparameter erst nach Aktivierung des Eingangs "calcParam" (im Beispielprojekt als Neustart der CPU realisiert) übernommen werden.

## FC "Scale"

Die Funktion "Scale " dient zur linearen Umrechnung nach der folgenden Formel:

$$output = \frac{outputRef2 - outputRef1}{inputRef2 - inputRef1} \cdot (input - inputRef1) + outputRef1$$



3.3 OB "CyclicInterrupt"

| Ab | bildung 3-7 |         |        |
|----|-------------|---------|--------|
|    |             | "Scale" |        |
|    | EN          |         |        |
|    | input       |         |        |
|    | inputRef1   |         |        |
|    | inputRef2   |         |        |
|    | outputRef1  |         | output |
|    | outputRef2  |         | ENO    |

### Tabelle 3-5

|        | Name       | Datentyp | Beschreibung                       |
|--------|------------|----------|------------------------------------|
| Input  | input      | LReal    | Umzurechnender Wert                |
|        | inputRef1  | LReal    | Eingangswert der Referenzpunktes 1 |
|        | inputRef2  | LReal    | Eingangswert der Referenzpunktes 2 |
|        | outputRef1 | LReal    | Ausgangswert der Referenzpunktes 1 |
|        | outputRef2 | LReal    | Ausgangswert der Referenzpunktes 2 |
| Output | output     | LReal    | Ausgangswert                       |

Durch die Wahl des Datentyps "LReal" wird die richtige Konvertierung von bzw. in die angehängten Aktualparameter gewährleistet.

Der FC "Scale" rechnet den Streckenausgangs in einen Analogwert um, um das Verhalten des Reglers im Fehlerfall simulieren zu können.

Der Fehlerfall tritt bei einer realen Strecke durch den Ausfall des Istwertsensors (z.B. durch Drahtbruch) ein.

In der Simulation wird dieses durch die Überschreibung des analogen Istwertes mit einem Wert außerhalb des Messbereichs (-32768) erreicht (siehe <u>Abbildung 3-3</u>).

Anschließend rechnet FC "Scale" den resultierenden Analogwert in einen Gleitkommawert für die Istwertauswahl "Input" des FB "PID\_Compact" um.

4.1 Hardwareanpassung

# 4 Installation und Inbetriebnahme

# 4.1 Hardwareanpassung

Die folgende Tabelle gibt Auskunft über die verwendeten Steuerungen und die Anbindungsmöglichkeiten an eine reale Regelstrecke.

Tabelle 4-1

| Signal                                                                                       | CPU 1211C             | CPU 1511C-1 PN     |
|----------------------------------------------------------------------------------------------|-----------------------|--------------------|
| Analoger Istwert (0-10V)                                                                     | IW64                  | IWO                |
| Analoger Stellwert (0-10V)                                                                   | QW80 (mit SB 1232 AQ) | QW0                |
| Digitales PWM-Signal                                                                         | Q0.0                  | Q4.0               |
| Digitale Erfassung der Drehzahl (A-B-<br>Spur) des Inkrementalgebers über<br>schnelle Zähler | DI 0.0<br>DI 0.1      | DI 10.0<br>DI 10.1 |

Je nach Ausführung Ihres gewählten Stellglieds müssen Sie die Hardware-Konfiguration eventuell anpassen.

Im folgendem werden die Konfigurationsmöglichkeiten für den Betrieb des Kompaktreglers "PID\_Compact" vorgestellt.

### Eingangssignal

Die Regelgröße wird als aufbereitete Gleitkommazahl "Input" oder als Analogwert von der Peripherie "Input\_PER" erfasst. Der "PID\_Compact" bietet die Umrechnung des Analogwertes in die physikalische Einheit in der Konfigurationsmaske an.

Zur Regelgrößenerfassung werden Baugruppen zur Analogwertaufnahme, sowie zur Temperaturerfassung über Thermoelemente oder Widerstandsthermometer angeboten.

# Ausgangssignal

Der "PID\_Compact" bietet die Ansteuerung des Stellglieds über einen Analogausgang oder über einen digitalen pulsweitenmodulierten Transistor-Ausgang an.

**Hinweis** Weitere Informationen zu der Wahl Ihrer Peripherie bzw. deren Verdrahtung finden Sie im Hardware-Katalog im TIA Portal oder:

- im Kapitel A "Technische Daten" im S7-1200 Handbuch (13)
- im Handbuch "SIMATIC S7-1500/ET 200MP Manual Collection" (19)
- über das TIA Selection Tool (<u>11)</u>)

## 4.1 Hardwareanpassung

### Installation der Hardware

Nachfolgendes Bild zeigt den Hardwareaufbau des Anwendungsbeispiels mit einer SIMATIC S7-1200.



Nachfolgendes Bild zeigt den Hardwareaufbau des Anwendungsbeispiels mit einer SIMATIC S7-1500.

# 4 Installation und Inbetriebnahme

# 4.1 Hardwareanpassung



# Hardware montieren

Tabelle 4-2

| Nr. | Aktion                                                                                                  | Anmerkung                                                                                                             |
|-----|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 1   | Passen Sie die Peripherie der S7-1200/S7-1500 an Ihr verwendetes Stellglied an.                         | Siehe Kapitel <u>4.1</u>                                                                                              |
| 2   | Montieren Sie alle benötigten Komponenten auf einer<br>Hutschiene (S7-1200) bzw. S7-1500 Profilschiene. |                                                                                                                       |
| 3   | Verdrahten und verbinden Sie alle benötigten Komponenten wie beschrieben.                               | S7-1200 Handbuch ( <u>\3</u> )<br><u>Kapitel A "Technische Daten"</u> bzw.<br>S7-1500 Manual Collection ( <u>\9</u> ) |
| 4   | Zum Schluss aktivieren Sie die Spannungsversorgung für die SIMATIC PM 1207.                             |                                                                                                                       |

4.2 Konfiguration

# 4.2 Konfiguration

# 4.2.1 Peripherie-Adressen übergeben

Je nach geänderter Konfiguration müssen die Ein- bzw. Ausgangsadressen der hinzugefügten Hardware dem Programm übergeben werden.

Dieses wird am Beispiel eines Signalboards 1232 AQ 1x12 Bit für die SIMATIC S7-1200 gezeigt:

| Tabel | le | 4-3 |
|-------|----|-----|
|       |    |     |

| Nr. | Aktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Anmerkung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | Öffnen Sie die Gerätekonfiguration der Steuerung "PID_CPU".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>100746401_S71200_PidCompa</li> <li>Add new device</li> <li>Devices &amp; networks</li> <li>PID CPU ICPU 1211C DC/DC/</li> <li>Device configuration</li> <li>Online &amp; diagnostics</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.  | Markieren Sie in der Gerätesicht der CPU das<br>Signalboard 1232 AQ 1x12 Bit.<br>Lesen Sie die Ausgangsadresse des<br>Signalboards unter dem Menüpunkt "E/A-<br>Adressen":<br>• Anfangsadresse: 80<br>• Endadresse: 81<br>Dieses bedeutet:<br>Die Adresse, über die der Analogwert des SB<br>1232 AQ 1x12 Bit ausgegeben wird, lautet:<br><b>QW80</b>                                                                                                                                                                                                                  | PD_CPU     S7-1200 rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.  | Offnen Sie im Steuerungsteil des Projektes<br>den OB "CyclicInterrupt".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PID_CPU [CPU 1211C DC/DC/      Device configuration     Online & diagnostics     Program blocks     Add new block     ScyclicInterrupt [OB30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.  | <ul> <li>Da über das Signalboard die analoge<br/>Stellgröße an das Stellglied ausgegeben wird,<br/>übergeben Sie den Ausgang "Output_PER"<br/>des FB "PID_Compact" an das Ausgangswort<br/>QW80 im Netzwerk 2.</li> <li>Markieren Sie dazu die verknüpfte<br/>Variable "sbAq" und wählen über<br/>Rechtsklick "Variable umverdrahten"<br/>(Rewire tag).</li> <li>Ändern Sie die Adresse der Variablen:<br/>%QW80</li> <li>Entsprechend können Sie so auch die anderen<br/>Peripherieverknüpfungen aus <u>Tabelle 4-1</u> an<br/>Ihre Signalwahl angleichen.</li> </ul> | Network 2: F8*FND_Compact*     Top1130     "InstriktCompact*     PD_Compact     SceledInput     SceledInput     "Tags",     pdCompact.     "SeeledInput     "Tags",     pdCompact.     "SeeledInput     "Seel |

# 4.2 Konfiguration

# 4.2.2 PID-Regler konfigurieren

Die Konfiguration des Technologieobjekts "PID\_Compact" legt die Funktionsweise des Kompaktreglers fest.

Die getroffenen Einstellungen bestimmen die Startwerte, mit denen der PID-Regler nach einem Kalt- oder Warmstart (z.B. Spannungsausfall) wieder anläuft.

Eine nähere Beschreibung finden Sie im S7-1200 Handbuch (<u>\3\</u>)  $\rightarrow$  <u>Kapitel 10.2.5</u> bzw. im Funktionshandbuch zur PID-Regelung (<u>\13\</u>)  $\rightarrow$  Kapitel "PID\_Compact V2 konfigurieren".

Tabelle 4-4

| Nr. | Aktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Anmerkung                                                                                                                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | Öffnen Sie den Konfigurationseditor über die<br>Auswahl der CPU -> Technologieobjekte -><br>InstPidCompact -> Konfiguration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PID_CPU [CPU 1211C DC/DC/DC]  Device c iniguration  Online & liagnostics  Program b, cks  Add new bjects  Add new bject  Configuration  Configuration  Commissioning |
| 2.  | <ul> <li>Öffnen Sie das Untermenü "Regelungsart" in den Grundeinstellungen:<br/>Bestimmen Sie</li> <li>welche physikalische Einheit bei der<br/>Anzeige von Soll- und Istwert verwendet<br/>werden soll</li> <li>ob der Regler-Ausgang invertiert werden<br/>soll</li> <li>ob der Regler nach Neustart der CPU<br/>"inaktiv" bleiben soll oder in die<br/>Betriebsart wechselt, die an "Mode"<br/>gespeichert ist</li> <li>unter "Mode setzen auf:" die Betriebsart,<br/>die nach einem vollständigen Laden in<br/>Gerät aktiviert werden soll.<br/>(Voraussetzung hierfür ist, dass der<br/>Parameter "Mode" nicht verknüpft wird -&gt;<br/>siebe Abbildung 3-4)</li> </ul> | Controller type                                                                                                                                                      |
| 3.  | <ul> <li>Gleichen Sie das Untermenü "Eingangs-<br/>/Ausgangsparameter" in den<br/>Grundeinstellungen an ihre verwendeten<br/>Sensoren/Aktoren an:</li> <li>Istwert als aufbereitete Gleitkommazahl<br/>"Input" oder als Analogwert "Input_PER"</li> <li>Stellgröße als Gleitkommazahl "Output",<br/>als Analogwert "Output_PER" oder als<br/>digitales pulsweitenmoduliertes Signal<br/>"Output_PWM"</li> </ul>                                                                                                                                                                                                                                                              | Input / output parameters                                                                                                                                            |

# 4.2 Konfiguration

| Nr. | Aktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Anmerkung                                                                                                                                                                                                                                             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.  | Bestimmen Sie im Untermenü<br>"Istwertgrenzen" in den Istwerteinstellungen<br>die Grenzen des skalierten Prozesswertes.<br>Hinweis: Achten Sie auf die richtige<br>Einstellung von Ober- und Untergrenze des<br>Istwertes, da der Regler Verletzung dieser<br>Grenzen als Fehlerfall interpretiert und nach<br>den Einstellungen "Verhalten im Fehlerfall"<br>(siehe Nr. 8) reagiert!                                                                                                                                           | Process value limits                                                                                                                                                                                                                                  |
| 5.  | Bestimmen Sie bei Verwendung des analogen<br>Prozesswertes "Input_PER" im Untermenü<br>"Istwertskalierung" in den<br>Istwerteinstellungen die Wertepaare für die<br>lineare Umrechnung in den skalierten<br>Prozesswert.                                                                                                                                                                                                                                                                                                        | Process value scaling                                                                                                                                                                                                                                 |
| 6.  | Öffnen Sie die " <b>Istwertüberwachung</b> " in den<br>Erweiterten Einstellungen:<br>Hier können Sie Warngrenzen angeben bei<br>deren Über- bzw. Unterschreitung jeweils ein<br>Warnbit aktiviert wird.                                                                                                                                                                                                                                                                                                                         | Process value monitoring<br>Warning high limit: 1350.0 1/min<br>Warning low limit: 0.0 1/min                                                                                                                                                          |
| 7.  | Öffnen Sie die " <b>PWM-Begrenzungen</b> " in den<br>Erweiterten Einstellungen:<br>Zur Anpassung an die Stellgliedträgheit<br>können Sie hier minimale Ein- bzw.<br>Ausschaltzeiten vorgeben.<br><b>Hinweis:</b> Auch bei Verwendung eines anderen<br>Stellgrößensignals ("Output" oder<br>"Output_PER") wirken diese Einstellungen!                                                                                                                                                                                            | PWM limits                                                                                                                                                                                                                                            |
| 8.  | Öffnen Sie das Untermenü " <b>Ausgangswert</b> " in<br>den Erweiterten Einstellungen:<br><b>Ausgangswertgrenzen</b><br>Bestimmen Sie die prozentualen Grenzen des<br>auszugebenden Signals an das Stellglied.<br><b>Verhalten im Fehlerfall</b><br>Bestimmen Sie, ob im Fehlerfall<br>• der Regler inaktiv geschaltet wird,<br>• die aktuelle Stellgröße für die Fehlerdauer<br>beibehalten wird oder<br>• ein vorzugebender Ersatzausgangswert<br>als Stellgröße dauerhaft oder für die<br>Fehlerdauer ausgegeben werden soll. | Output value limits<br>Output value ligh limit: 100.0 %<br>Output value high limit: 0.0 %<br>Output value low limit: 0.0 %<br>Freaction to error<br>Set output to: Substitute output value while error is pending •<br>Substitute output value: 0.0 % |

### 4.3 CPU-Simulation mit PLCSIM

| Nr. | Aktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Anmerkung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.  | Öffnen Sie die " <b>PID-Parameter</b> " in den<br>Erweiterten Einstellungen:<br>Hier können Sie die Startwerte der<br>Reglerparameter manuell vorgeben.<br>Sie werden dann als Startwerte in den<br>Instanzdatenbaustein des "PID_Compact"<br>geschrieben und nach einem Kaltstart (Projekt<br>in die Steuerung laden) als Aktualwerte<br>übernommen.<br><b>Regel für Optimierung</b><br>Je nach gewählter Reglerstruktur werden die<br>Startwerte für die Einstellregeln der Erst- bzw.<br>Nachoptimierung auf<br>• "PID nach Chien, Hrones und Reswick"<br>bzw. "PID automatisch" oder<br>• "PI nach Chien, Hrones und Reswick"<br>bzw. "Ziegler-Nichols PI" eingestellt.<br>Wählen Sie als Reglerstruktur für die<br>Drehzahlregelung "PI". | PID Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10. | Speichern Sie das Projekt.<br>Markieren Sie den Programmordner der S7-<br>1x00 und übertragen Sie das Programm via<br>"Online/PLC-Programm in Gerät laden und<br>zurücksetzen" in die Steuerung, damit die<br>getroffenen Einstellungen als Startwerte des<br>Technologieobjekts mit dem Starten der CPU<br>übernommen werden.                                                                                                                                                                                                                                                                                                                                                                                                                 | Project Edit View Insert       Online       Options Tools Window Help         Image: Save project Insert       Go online       Ctrl+K         Project tree       Go online       Ctrl+K         Devices       Simulation       Image: Simulation         Image: Stop runtime/simulation       Image: Simulation       Ctrl+L         Image: Stop runtime/sim/simant |

# Hinweis Änderungen der Startwerte eines Datenbausteins werden erst beim nächsten STOP/RUN-Übergang (bei nicht remanenten Datentypen) als Aktualwerte übernommen.

# 4.3 CPU-Simulation mit PLCSIM

Sie können das Technologieobjekt "PID\_Compact" V2.x für CPU S7-1500 mit PLCSIM simulieren. Die Simulation von PID\_Compact V2.x mit PLCSIM für CPU S7-1200 wird nicht unterstützt.

Der tatsächliche Zeittakt eines Weckalarm-OB kann bei einer simulierten PLC größere Schwankungen aufweisen als bei "echten" PLCs. In der Standardkonfiguration ermittelt PID\_Compact die Zeit zwischen den Aufrufen automatisch und überwacht diese auf Schwankungen.

Bei der Simulation von PID\_Compact mit PLCSIM kann deshalb ein Abtastzeitfehler (ErrorBits = DW#16#00000800) erkannt werden. Dies führt zum Abbruch von laufenden Optimierungen.

Um dies zu verhindern, sollten Sie PID\_Compact bei Simulation mit PLCSIM wie folgt konfigurieren:

- CycleTime.EnEstimation = FALSE
- CycleTime.EnMonitoring = FALSE
- CycleTime.Value: Weisen Sie dieser Variablen den Zeittakt des aufrufenden Weckalarm-OB in der Einheit Sekunden zu.

4.4 Inbetriebnahme des Kompaktreglers

# 4.4 Inbetriebnahme des Kompaktreglers

Im Folgenden erfahren Sie, wie Sie die Optimierung des PID\_Compact mit Hilfe des Inbetriebnahme-Assistenten vornehmen.

Tabelle 4-5

| Nr. | Aktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Anmerkung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | Öffnen Sie den Inbetriebnahme-Editor über die<br>Auswahl der CPU -> Technologieobjekte -><br>InstPidCompact -> Inbetriebnahme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>100746401_S71200_PidCompact</li> <li>Add new device</li> <li>Devices &amp; networks</li> <li>PID_CPU [CPU 1211C DC/DC/DC]</li> <li>Device (Infiguration</li> <li>Online diagnostics</li> <li>Pront in blocks</li> <li>Technology objects</li> <li>Add new object</li> <li>InstPidCompact [DB1130]</li> <li>Configuration</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.  | Starten Sie die Messung.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Measurement<br>Sampling time: 0.3 s V Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.  | Der Status der Optimierung besagt, dass noch<br>keine Optimierung gestartet wurde und der<br>Regler befindet sich nach dem ersten Anlauf der<br>CPU im Zustand "Deaktiviert – Inaktiv" (siehe<br><u>Tabelle 4-4</u> , Nr. 2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Turing status<br>Turing status<br>Data of controller<br>Structure<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Processor<br>Proce |
| 4.  | <ul> <li>Die besten PID-Parameter erhalten Sie, wenn<br/>Sie Erst- und Nachoptimierung durchführen.</li> <li>Voraussetzungen für die Erstoptimierung sind: <ul> <li>ManualEnable = FALSE, Reset = FALSE</li> <li>PID_Compact befindet sich in der<br/>Betriebsart "Handbetrieb", "Inaktiv" oder<br/>"Automatikbetrieb".</li> </ul> </li> <li>Der Sollwert und der Istwert befinden sich<br/>innerhalb der konfigurierten Grenzen (siehe<br/><u>Tabelle 4-4</u>, Nr. 4).</li> <li>Die Differenz zwischen Sollwert und Istwert<br/>ist größer als 30 % der Differenz zwischen<br/>Obergrenze Istwert und Untergrenze<br/>Istwert.</li> <li>Der Abstand zwischen Sollwert und Istwert<br/>ist &gt; 50% des Sollwerts.</li> </ul> Geben Sie einen Sollwert möglichst im Mittelfeld<br>des Istwertbereichs vor (z.B. über eine<br>Beobachtungstabelle; im Projekt ist der Startwert<br>des Sollwertes schon entsprechend vordefiniert). | Tuning mode          Pretuning       Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.  | Die Erstoptimierung ermittelt die Prozessantwort<br>auf einen Sprung des Ausgangswerts und sucht<br>den Wendepunkt. Aus der maximalen Steigung<br>und der Totzeit der Regelstrecke werden die<br>PID-Parameter berechnet.<br>Die Erstoptimierung und die anschließende<br>Einregelung auf den Sollwert mit den<br>gefundenen PID-Parametern können Sie über                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Legend<br>CurrentSetpoint (1/min)<br>ScaledInput (1/min)<br>Output (%)<br>0.833 0.917 1 1.083 1.167 1.25 1.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### 4.4 Inbetriebnahme des Kompaktreglers

| Nr. | Aktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Anmerkung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | den Kurvenverlauf verfolgen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.  | Nach erfolgreicher Erstoptimierung wechselt der<br>Regler in den Automatikbetrieb.<br>Die ermittelten Werte können Sie über "Gehe zu<br>PID-Parameter" einsehen.<br>Über "PID-Parameter laden" werden die<br>ermittelten Werte als Startwerte in den<br>Instanzdatenbaustein des "PID_Compact" ins<br>Projekt geschrieben.                                                                                                                                                                                                                                                                                                                                                                                                             | Turning status Program: Status |
| 7.  | <ul> <li>Voraussetzungen für die Nachoptimierung sind:</li> <li>ManualEnable = FALSE, Reset = FALSE</li> <li>Der Sollwert und der Istwert befinden sich<br/>innerhalb der konfigurierten Grenzen.</li> <li>Der Regelkreis ist am Arbeitspunkt<br/>eingeschwungen. Der Arbeitspunkt ist<br/>erreicht, wenn der Istwert dem Sollwert<br/>entspricht.</li> <li>Es werden keine Störungen erwartet.</li> <li>PID_Compact befindet sich in der<br/>Betriebsart Inaktiv, Automatikbetrieb oder<br/>Handbetrieb.</li> <li>Geben Sie einen Sollwert möglichst im Mittelfeld<br/>des Istwertbereiches vor (z.B. über eine<br/>Beobachtungstabelle; im Projekt ist der Startwert<br/>des Sollwertes schon entsprechend vordefiniert).</li> </ul> | Tuning mode<br>Fine tuning  Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.  | Die Nachoptimierung generiert eine konstante,<br>begrenzte Schwingung des Istwertes. Aus<br>Amplitude und Frequenz dieser Schwingung<br>werden die PID-Parameter für den Arbeitspunkt<br>optimiert. Aus den Ergebnissen werden alle PID-<br>Parameter neu berechnet. Die PID-Parameter<br>aus der Nachoptimierung zeigen meist ein<br>besseres Führungs- und Störverhalten als die<br>PID-Parameter aus der Erstoptimierung.<br>Die Nachoptimierung können Sie über den<br>Kurvenverlauf verfolgen.                                                                                                                                                                                                                                    | Legend         ×           1000         CurrentSetpoint (1/min)           1000         ScaledInput (1/min)           1000         Output (%)           000         Output (%)           000         Output (%)           000         Output (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.  | Nach erfolgreicher Beendigung der<br>Nachoptimierung können Sie die ermittelten<br>PID-Parameter wiederum als Startwerte in den<br>Instanzdatenbaustein des "PID_Compact" ins<br>Projekt laden, um anschließend die<br>Projektänderungen in die CPU zu laden und zu<br>sichern.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PID Parameters         Upload PID parameters         Go to PID parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Eine nähere Beschreibung finden Sie im S7-1200 Handbuch ( $\underline{\} \rightarrow \underline{\text{Kapitel 10.2.7}}$ ) und im Funktionshandbuch zur PID-Regelung ( $\underline{\} \rightarrow \underline{\text{Kapitel "PID}}$ -Compact V2 in Betrieb nehmen").

Hinweis Die PID-Parameter sind im Instanzdatenbaustein des Kompaktreglers "PID\_Compact" remanent hinterlegt. Bei einem Warmstart (Spannungswiederkehr) bleiben die zuletzt durchlaufenen Werte erhalten. Nur bei einem Kaltstart (Übertragung des Projektes im Betriebszustand STOP oder Urlöschen des Speichers über MRES) werden die Startwerte geladen. 4.5 Bediengerät

# 4.5 Bediengerät

# HMI-Projektteil ins KTP900 Basic laden

Verbinden Sie Ihr PG/PC zum Übertragen direkt oder über den Switch CSM1277 mit dem HMI.

Tabelle 4-6

| Nr. | Aktion                                                                                                                                                                                                                                                                         | Anmerkung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | <ul> <li>Markieren Sie den Bediengeräteordner<br/>"PID_HMI [KTP900 Basic PN]".</li> <li>Betätigen Sie die Schaltfläche "Laden in<br/>Gerät" zum Download des HMI-<br/>Projektteils in das KTP900 Basic.</li> <li>Befolgen Sie den Wizard zum "Laden ins<br/>Gerät".</li> </ul> | Project Edit View Insert Online Options Tools Window Help<br>Project tree<br>Project tree<br>Devices<br>Project tree<br>Devices<br>Project tree<br>Devices<br>Project tree<br>Devices<br>Project tree<br>Devices<br>Project tree<br>Devices<br>Project tree<br>Devices<br>Project tree<br>Project tree<br>Devices<br>Project tree<br>Devices<br>Project tree<br>Project tree<br>Project tree<br>Devices<br>Project tree<br>Project |

### **HMI simulierten**

Falls Sie das PG/PC als Bediengerät verwenden wollen, starten Sie die HMI-Simulation wie folgt:

### Tabelle 4-7

| Nr. | Aktion                                                                                                                                                      | Anmerkung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | <ul> <li>Markieren Sie den Bediengeräteordner<br/>"PID_HMI [KTP900 Basic PN]".</li> <li>Betätigen Sie die Schaltfläche "Simulation<br/>starten".</li> </ul> | Project Edit View Insert Online Options Tools Window Help  Save project  Save project |

# 5 Bedienung des Anwendungsbeispiels

# 5.1 Übersicht

Übersicht und Beschreibung der Oberfläche



Die Bedienoberfläche besteht aus 8 Menüs:

- Anfangsbild (Übersicht)
- Kurvenverlauf
- Optimierung
- Beobachtung
- Meldeanzeige
- Konfiguration
- Simulation
- Systemfunktionen

# 5.1.1 Übersicht (Anfangsbild)

Das Übersichtsbild gibt Aufschluss über die behandelte Thematik. Vorgestellt wird das Technologieobjekt: der Kompaktregler "PID\_Compact" verfügbar in den Steuerungen:

- SIMATIC S7-1200 CPU mit Firmware V4.3 und PID\_Compact V2.3
- SIMATIC S7-1500 CPU mit Firmware V2.6 und PID\_Compact V2.4

Die Projektierung erfolgt in STEP 7 V15.1 (TIA Portal).

Zusätzlich wird die Bedienung der rechten Menüleiste erklärt. Diese ist in jedem Bild verfügbar. 5 Bedienung des Anwendungsbeispiels

# 5.1 Übersicht

Abbildung 5-2 Compac SIMATIC S 200 CPU firmware > TIA Portal > = V1gelangen Sie zum Übersichtsbild (dieses Bild). Über Über gelangen Sie zum Kurvenverlauf (Abbildung 5-3). Über gelangen Sie zur Optimierung (Abbildung 5-4). Über gelangen Sie zur Beobachtung (Abbildung 5-5). Über gelangen Sie zur Meldeanzeige (Abbildung 5-6). gelangen Sie zur Konfiguration (Abbildung 5-8). Über Über gelangen Sie zur Simulation (Abbildung 5-10). Über gelangen Sie zu den Systemfunktionen (Abbildung 5-11). Über F8 können Sie zwischen deutscher und englischer Sprache umschalten. Das aktuell angewählte Menü erkennen Sie über den orangen Hintergrund des Symbols: z.B. (für das Übersichtsbild) bzw. über die Betitelung in der Overview Kopfzeile (links): In der Mitte der Kopfzeile erfahren Sie, in welcher Betriebsart sich der Regler momentan befindet: State: Automatic mode (für den Automatikbetrieb) 9/19/2014 1:15:40 PM Die Kopfzeile ist ebenfalls in jedem Bild sichtbar.

# 5.1.2 Kurvenverlauf



Das Bild "Kurvenverlauf" zeigt den zeitlichen Verlauf über 90 Sekunden

- des Sollwertes Setpoint (Skala links)
- des Istwertes Input (Skala links)
- der Stellgröße Output (Skala rechts)

### Handbetrieb

Über schalten Sie in den Handbetrieb.

Manual value: +50 % (Wertebereich

Im Handbetrieb können Sie über den Handwert 0 bis 100 %) die Stellgröße direkt angeben.

Hinweis Der Handbetrieb wird hier über die Wertvorgabe am Parameter "Mode" in Verbindung mit der Aktivierung über "ModeActivate" eingeschaltet (nicht über "ManualEnable").

### Automatikbetrieb



Stellgröße addiert wird vorgeben.

5 Bedienung des Anwendungsbeispiels

### 5.1 Übersicht

Sie können so im Automatikbetrieb die Ausregelung der Störgröße im Kurvenverlauf verfolgen.

### Verhalten im Fehlerfall

Bei Überschreitung der Istwertgrenzen (z.B. durch Ausfall des Sensors) können Sie das Verhalten des Reglers vorbestimmen.

Bestimmen Sie, ob im Fehlerfall

- der Regler inaktiv geschaltet werden soll
  - Error treatment active
  - die aktuelle Stellgröße für die Fehlerdauer beibehalten wird

Current value while error is pending

oder bei aktiver Fehlerbehandlung

- oder
  Substitute output value
- ein Ersatzausgangswert while error is pending vorzugeben über als Stellgröße ausgegeben werden soll.

Bei aktiver Fehlerbehandlung wird die Stellgröße (Output) im Fehlerfall auf den aktuellen Wert oder auf den Ersatzausgangswert für die Fehlerdauer gesetzt. Dieses Verhalten tritt in folgenden Betriebsartenauf:

- Erstoptimierung
- Nachoptimierung
- Automatikbetrieb

Der Regler schaltet sich zusätzlich im Handbetrieb inaktiv bei Auswahl dieses Verhaltens im Fehlerfall.

Im Streckensimulationsbetrieb lässt sich das gewählte Verhalten im Fehlerfall über



Ì 🔼

Symbol rot hinterlegt:

Hinweis Diese Auswahlfelder sind gelb hinterlegt, da es sich hier um nicht remanente Daten im Instanzdatenbaustein des "PID\_Compact" handeln. Sie können sie diese über das Bediengerät oder deren Simulation verändern, um die Funktion zu testen.

Um diese Voreinstellungen auch über einen Spannungsverlust zu sichern, müssen dieser Wert als Startwerte in den Instanzdatenbaustein des "PID\_Compact" geschrieben werden.

Der Konfigurationsassistent bietet diese Funktion (<u>Tabelle 4-4</u>) bei anschließender Übertragung des Instanzdatenbausteins an.

+0 %

#### 5.1.3 Optimierung

Im Menü "Optimierung" können Sie die Regelungsparametrierung automatisch oder manuell bestimmen.





Die Optimierungsmaske bietet die Möglichkeit

- zur Erstoptimierung oder
- zur Nachoptimierung

aus dem inaktiven Reglerzustand, Hand- oder Automatikbetrieb.

### Hinweis Der Handbetrieb darf dafür nicht über den Eingang "ManualEnable" gewählt sein!

Für die Erstoptimierung können Sie zwischen folgenden Optimierungsmethoden wählen:

- Chien, Hrones, Reswick PID .
- Chien, Hrones, Reswick PI

Für die Nachoptimierung können Sie zwischen folgenden Optimierungsmethoden wählen:

- **PID** automatisch
- **PID** schnell .
- **PID** langsam .
- **Ziegler-Nichols PID**
- Ziegler-Nichols PI
- Ziegler-Nichols P

# Cancel

1/min

10

Über TuningLevel: bestimmen Sie die maximal erlaubte Sollwertänderung während der Optimierung. Bei Überschreitung dieses Wertes wird die Optimierung abgebrochen und der Regler schaltet sich je nach gewählter Fehlerbehandlung inaktiv oder kehrt in die Betriebsart zurück aus dem die Optimierung gestartet wurde.

Während der Optimierung wird der Sollwert eingefroren. Die Grenzvorgaben (eingefrorener Sollwert mit maximal erlaubter Sollwertänderung) werden angezeigt: 10 675 +/-1/min Hinweis Der Parameter "CancelTuningLevel" stellt die Optimierung auch bei Signalrauschen am Sollwert sicher (z.B. bei der Verwendung eines Potentiometers). starten Sie die gewählte Optimierungsmethode. Hinweis Geben Sie einen Sollwert möglichst im Mittelfeld des Istwertbereiches vor, um einen Abbruch der Optimierung durch das Erreichen der Begrenzung zu vermeiden. Während der Optimierung wird der Optimierungsstatus und der prozentuale Progress: **60** % Vorschritt angezeigt. brechen Sie die Optimierung ab und kehren in die Betriebsart zurück aus Über der die Optimierung gestartet wurde. Nach erfolgreicher Optimierung werden die ermittelten Regler-Parameter in der Retain. Spalte CtrlParams dargestellt und die Regler-Parameter vor der Optimierung CtrlParams werden in die Spalte BackUp geschoben. LoadBackUp Der gesicherte "BackUp"-Parametersatz lässt sich über wieder in den Regler laden. Die aktuellen Regler-Parameter ("Retain.CtrlParams") lassen sich auch manuell 1.0 editieren (dargestellt durch Umrahmung der Parameter Hinweis Der aktuelle Regler-Parametersatz ("Retain.CtrlParams") ist remanent und bleibt auch nach Spannungsverlust erhalten. Um mit diesen Parametern auch nach einem Kaltstart zu starten, müssen diese als Startwerte in den Instanz-DB des "PID\_Compact" geschrieben werden. Der Inbetriebnahme-Assistent bietet diese Funktion an (Tabelle 4-5, Schritt 9).

> Über **Init** werden die Defaultwerte des PLC-Datentyps "PID\_CompactRetain" geladen:



Die Abtastzeit des Reglers **PID\_Compact sampling time: 0.1 s** entspricht dem Zeittakt des Weckalarm-Organisationsbausteins, in dem der "PID\_Compact" aufgerufen wird.

Die Abtastzeit des PID-Algorithmus **Sampling time of PID algorithm:** 0.1 s entspricht einem Vielfachen der Abtastzeit des Reglers und ist abhängig von PWM-Begrenzung.

Nach erfolgreicher Optimierung können Sie je nach Optimierungsart über

## Calculate Params

ohne den Optimierungsprozess zu wiederholen.

# OFF

Über können Sie den Regler inaktiv schalten. Dieser Betriebszustand ist speziell für die Erstoptimierung von Vorteil. Bei der Erstoptimierung werden aus der Antwort auf einen Sollwertsprung die Regelungsparameter ermittelt. Dabei darf der Istwert nicht zu nah am Sollwert sein:

- |Setpoint Input| > 0.3 \* |Config.InputUpperLimit Config.InputLowerLimit| und
- |Setpoint Input| > 0.5 \* |Setpoint|

## 5.1.4 Beobachtung

Die Beobachtungsmaske zeigt den Online-Status des Kompaktreglers "PID\_Compact".

Abbildung 5-5



Sie können:

- alle Ein- und Ausgangswerte einsehen
- die folgenden Parameter editieren:
  - Sollwert im Automatikbetrieb ("Setpoint")
  - Störgrößenaufschaltung im Automatikbetrieb ("Disturbance")
  - Ein-/Ausschaltung des Handbetriebes ("ManualEnable")
  - Manuelle Stellgrößenvorgabe im Handbetrieb ("ManualValue")
  - Quittierung (Rücksetzen) der Meldungen "ErrorBits" und "Warning" ("Acknowledge Error")
  - Rücksetzen des Kompaktreglers ("Reset")
  - Wechsel der Betriebsart über die Auswahl am Parameter "Mode" und Aktivierung über "ModeActivate"
- Die Konfiguration der Istwertüberwachung testen
  - Editieren der oberen ("InputUpperWarning") und unteren ("InputLowerWarning") Warngrenzen
  - Direkte Überwachung an den Ausgängen "InputWarning\_H" bzw.
     "InputWarning\_L"
- Hinweis Der Reset-Button führt in diesem Anwendungsbeispiel einen Neustart der Bausteine "PID\_Compact" und "LSim\_PT1" durch. Dabei wechselt der Regler in die Betriebsart "Inaktiv". Die Meldungen "ErrorBits" und "Warnings" werden zurückgesetzt. Anschließend startet der Regler in der Betriebsart, die am Parameter "Mode" anliegt.
- **Hinweis** Im Handbetrieb (aktiviert über "ManualEnable" = "ON"), lässt sich die Betriebsart über "Mode" und "ModeActivate" nicht verändern.

### 5.1.5 Meldeanzeige

Das Menü "Meldeanzeige" zeigt die aktuell anstehenden Meldungen am Ausgang "ErrorBits" und am statischen Parameter "Warning" des "PID\_Compact" als hexadezimaler Fehlercode, sowie in Textform mit Zeitstempel und Status an. Abbildung 5-6

| Alarm view        | State: Automatic mode                                                                                                                      | 3/26/2019 1:18:58 PM |             |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|
| Date Time         | Warning                                                                                                                                    | Status               |             |
| 3/26/2019 1:14:44 | M 16#0020: The cycle time of the calling OB limits the sampling time of the PID algori<br>Improve results by using shorter OB cycle times. | thm. K               |             |
| 3/26/2019 1:14:44 | 2M 16#0001: The point of inflection was not found during pretuning.                                                                        | К                    | $(\square)$ |
|                   |                                                                                                                                            |                      | $\leq$      |
|                   |                                                                                                                                            |                      |             |
|                   |                                                                                                                                            |                      | (Y)         |
| Date Time         | ErrorBits                                                                                                                                  | Status               |             |
| 3/26/2019 1:15:27 | M 16#0002: Invalid value at "Input_PER" parameter. Check whether an error is pendi analog input.                                           | ng at the K          |             |
|                   |                                                                                                                                            |                      | *           |
|                   |                                                                                                                                            |                      |             |
| Warning: 16#      | 0000021 ErrorBits: 16#0000002                                                                                                              | Acknowledge          |             |

Die Fehlermeldungen "ErrorBits" werden beim Auftreten auch global angezeigt.

### Abbildung 5-7

| ErrorBits  |           |        | ×                                                                                                          |
|------------|-----------|--------|------------------------------------------------------------------------------------------------------------|
| Time       | Date      | Status | Text                                                                                                       |
| 1:21:39 PM | 3/26/2019 | к      | 16#0002: Invalid value at "Input_PER" parameter. Check whether an error is pending at the<br>analog input. |
|            |           |        |                                                                                                            |
|            |           |        |                                                                                                            |
|            |           |        |                                                                                                            |
|            |           |        |                                                                                                            |
| Dabei ha   | ben Sie d | die Mö | glichkeit, nicht mehr anstehende Fehler über                                                               |

quittieren. Dadurch werden alle nicht mehr anstehenden Meldungen an "ErrorBits" und "Warning" über den Eingang "ErrorAck" gelöscht.

Innerhalb der Meldanzeige und der anderen Masken führen Sie diese Funktion

| And Advances |     |    |   |
|--------------|-----|----|---|
| Ackno        | wle | 66 |   |
| ACKING       |     | 9  | - |

über Error aus.

Die Schaltfläche ist nur bei anstehenden Meldungen ("ErrorBits" oder "Warning") sichtbar.

### **Hinweis** Die vollständige Beschreibung aller Fehlermeldungen finden Sie in der Online-Hilfe von STEP 7 (TIA Portal). Markieren Sie dazu den Funktionsbaustein "PID\_Compact" im Programmaufruf (siehe <u>Abbildung 3-4</u>) und drücken Sie F1.

# 5.1.6 Konfiguration

Die Konfigurationsmaske ist den Grundeinstellungen des Konfigurations-Assistenten (<u>Tabelle 4-4</u>) nachempfunden.



Hier können Sie während der Laufzeit folgende Vorgaben ändern:

### Grundeinstellungen

- Regelungsart
  - Vorgabe der angezeigten physikalischen Einheit (auf 5 Zeichen begrenzt; nicht identisch mit der Vorauswahl im Konfigurationsassistenten)
     Physical unit:

1/min

Invertieren der Regelsinns (siehe <u>Tabelle 4-4</u>, Schritt 2)
 Invert the control logic:



- Eingangs-/Ausgangsparameter (siehe Tabelle 4-4, Schritt 3)
  - Istwertsignal-Auswahl: Gleitkommazahl ("Input") oder analog ("Input\_PER")

| Input_PER (analog) | $\bigtriangledown$ |  |
|--------------------|--------------------|--|
| Input              |                    |  |
| Input_PER (analog) |                    |  |

### Istwerteinstellungen

• Istwertgrenzen (siehe <u>Tabelle 4-4</u>, Schritt 4)

5 Bedienung des Anwendungsbeispiels

# 5.1 Übersicht

Editieren von Ober- und Untergrenze des Istwertes Process value limits



- Istwertskalierung (siehe <u>Tabelle 4-4</u>, Schritt 5)
  - Editieren von analogen und skalierten oberen und unteren Istwerten Process value scaling



Hinweis Die Istwertskalierung dient zur linearen Umrechnung des Analogwertes "Input\_PER" in den skalierten Istwert "ScaledInput". Im Simulationsbetrieb wird diese Umrechnung aber auch bei Auswahl der Istwerterfassung über den Gleitkommawert "Input" benötigt (siehe <u>Abbildung</u> <u>3-3</u>).

### Erweiterte Einstellungen

- PWM-Begrenzungen (siehe <u>Tabelle 4-4</u>, Schritt 7)
  - Editieren von minimaler Einschalt- und Ausschaltzeit zur Anpassung an eventueller Stellgliedträgheit



- Ausgangswertgrenzen (siehe <u>Tabelle 4-4</u>, Schritt 8)
  - Editieren von Ober- und Untergrenze des Ausgangswertes Output value limits



5 Bedienung des Anwendungsbeispiels

### 5.1 Übersicht

### Sollwertgrenzen

Der Kompaktregler "PID\_Compact" begrenzt den Sollwert automatisch auf die Istwertgrenzen "Process value limits". Sie können den Sollwert aber auch auf einen kleineren Bereich über die Sollwertgrenzen "Setpoint limits" beschränken.

"PID\_Compact" nimmt automatisch die engere Begrenzung.

Abbildung 5-9



Bei Grenzverletzung erfolgt eine entsprechende interne Beschränkung. Der tatsächliche Sollwert "CurrentSetpoint" wird angezeigt und der Ausgangsparameter "SetpointLimit\_H" **SLH** bzw. "SetpointLimit\_L" **SLL** zeigt die

Ausgangsparameter "SetpointLimit\_H" **Sum** bzw. "SetpointLimit\_L" **Suu** zeigt die Grenzverletzung an. Es erfolgt eine entsprechende Warnungsmeldung (16#0004).

Diese Maske dient dem Kennenlernen der Kompaktreglereinstellungen und deren Charakteristika (besonders für den Simulationsbetrieb).

Hinweis Diese Ein-/Ausgabefelder sind gelb hinterlegt, da es sich hier um nicht remanente Daten im Instanzdatenbaustein des "PID\_Compact" handelt. Sie können diese über das Bediengerät oder deren Simulation verändern, um die Funktion zu testen.

Um diese Voreinstellungen auch über einen Spannungsverlust zu sichern, müssen diese Werte als Startwerte in den Instanzdatenbaustein des "PID\_Compact" geschrieben werden. Der Konfigurationsassistent bietet diese Funktion (<u>Tabelle 4-4</u>) bei anschließender Übertragung des Instanzdatenbausteins an.

# 5.1.7 Simulation

Das Simulationsbild ermöglicht die Umschaltung zwischen einem realen und einem simulierten Regelungssystem.

Abbildung 5-10



Das Blockschaltbild der PID-Regelung wird gezeigt mit:

- der Sollwertvorgabe "Setpoint"
- der Istwertanzeige mit Istwertsignal-Auswahl
  - "Input" als Gleitkommazahl oder
  - "Input\_PER" als Analogwert mit interner Umrechnung ("ScaledInput")
- der Störgrößenvorgabe "Disturbance"
- der Stellgrößenausgabe
  - als prozentuale Gleitkommazahl "Output"
  - als Analogwert "Output\_PER"
  - als pulsweitenmoduliertes digitales Signal "Output\_PWM"

Ist die Simulation nicht eingeschaltet, wird der FB "Simulation" deaktiviert und der Regler verarbeitet somit die Signale über die Steuerungsperipherie (<u>Tabelle 4-1</u>).

Bei eingeschalteter Simulation Simulation zeigt das Bild die Blockschaltbildstruktur, wie die Eingangssignale für den Regler errechnet werden:

Der Ausgang des PT1-Streckensimulationsblocks

# 5.1.8 Einstellungen

Das Einstellungsmenü besteht aus den Masken

- Systemzeit/CPU
- Helligkeit
- Benutzer
- System

### Abbildung 5-11

| Settings        | State: Automatic mode                     | /18/2014 6:04:13 PM |      |
|-----------------|-------------------------------------------|---------------------|------|
|                 | System time                               |                     |      |
| System time/PLC | Date and Time: 9/18/2014 6:04:13 PM       | (                   |      |
| Brightness      | write to PLC                              |                     |      |
| L User view     |                                           |                     |      |
| System          |                                           |                     | (Up) |
| Current User:   | PLC                                       |                     |      |
|                 | PLC mode: RUN RUN                         |                     | *    |
| German          | 9078                                      |                     |      |
| English         |                                           |                     |      |
| Exit            |                                           |                     |      |
| Über            | German wählen Sie als Anzeigesprache "Deu | utsch".             |      |
| Über            | wählen Sie als Anzeigesprache "Eng        | ylisch".            |      |
| Über 🚺          | Exit beenden Sie die HMI-Runtime.         |                     |      |

### Zeiteinstellung/CPU

Das Anwendungsbeispiel verfügt über eine Zeitsynchronisation zwischen CPU und HMI.



### Anhang 6

#### 6.1 Service und Support

### **Industry Online Support**

Sie haben Fragen oder brauchen Unterstützung?

Über den Industry Online Support greifen Sie rund um die Uhr auf das gesamte Service und Support Know-how sowie auf unsere Dienstleistungen zu.

Der Industry Online Support ist die zentrale Adresse für Informationen zu unseren Produkten, Lösungen und Services.

Produktinformationen, Handbücher, Downloads, FAQs und Anwendungsbeispiele - alle Informationen sind mit wenigen Mausklicks erreichbar: https://support.industry.siemens.com/

### **Technical Support**

Der Technical Support von Siemens Industry unterstützt Sie schnell und kompetent bei allen technischen Anfragen mit einer Vielzahl maßgeschneiderter Angebote - von der Basisunterstützung bis hin zu individuellen Supportverträgen.

Anfragen an den Technical Support stellen Sie per Web-Formular: https://www.siemens.de/industry/supportrequest

### SITRAIN – Training for Industry

Mit unseren weltweit verfügbaren Trainings für unsere Produkte und Lösungen unterstützen wir Sie praxisnah, mit innovativen Lernmethoden und mit einem kundenspezifisch abgestimmten Konzept.

Mehr zu den angebotenen Trainings und Kursen sowie deren Standorte und Termine erfahren Sie unter: https://www.siemens.de/sitrain

### Serviceangebot

Unser Serviceangebot umfasst folgendes:

- Plant Data Services
- Ersatzteilservices .
- Reparaturservices
- Vor-Ort und Instandhaltungsservices •
- Retrofit- und Modernisierungsservices .
- Serviceprogramme und Verträge .

Ausführliche Informationen zu unserem Serviceangebot finden Sie im Servicekatalog:

https://support.industry.siemens.com/cs/sc

## **Industry Online Support App**

Mit der App "Siemens Industry Online Support" erhalten Sie auch unterwegs die optimale Unterstützung. Die App ist für Apple iOS, Android und Windows Phone verfügbar:

https://support.industry.siemens.com/cs/ww/de/sc/2067

# 6.2 Links und Literatur

Tabelle 6-1

| Nr.  | Thema                                                                                                                                                                                                              |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| \1\  | Siemens Industry Online Support<br>https://support.industry.siemens.com                                                                                                                                            |  |  |
| \2\  | Link auf die Beitragsseite des Anwendungsbeispiels<br>https://support.industry.siemens.com/cs/ww/de/view/100746401                                                                                                 |  |  |
| /3/  | Systemhandbuch SIMATIC S7-1200 Automatisierungssystem<br>https://support.industry.siemens.com/cs/ww/de/view/109764129                                                                                              |  |  |
| \4\  | Ein- und Mehrschleifige Reglerstrukturen (Kaskadedenregelung) mit PID_Temp <a href="https://support.industry.siemens.com/cs/ww/de/view/103526819">https://support.industry.siemens.com/cs/ww/de/view/103526819</a> |  |  |
| \5\  | Mehrzonenregelung mit "PID_Temp" für SIMATIC S7-1200/S7-1500<br>https://support.industry.siemens.com/cs/ww/de/view/109740463                                                                                       |  |  |
| \6\  | SIMATIC STEP 7 Basic/Professional V15.1 und SIMATIC WinCC V15.1<br>https://support.industry.siemens.com/cs/ww/de/view/109755202                                                                                    |  |  |
| \7\  | Regeln von simulierten Regelstrecken in der S7-1500 mit PID_Compact V2<br>https://support.industry.siemens.com/cs/ww/de/view/79047707                                                                              |  |  |
| \8\  | Updates für STEP 7 V15.1 und WinCC V15.1<br>https://support.industry.siemens.com/cs/ww/de/view/109763890                                                                                                           |  |  |
| \9\  | SIMATIC S7-1500/ET 200MP Manual Collection<br>https://support.industry.siemens.com/cs/ww/de/view/86140384                                                                                                          |  |  |
| \10\ | Dreipunktschrittregelung mit der SIMATIC S7-1200/S7-1500<br>https://support.industry.siemens.com/cs/ww/de/view/62154322                                                                                            |  |  |
| \11\ | TIA Selection Tool<br>http://w3.siemens.com/mcms/topics/de/simatic/tia-selection-tool/Seiten/tab.aspx                                                                                                              |  |  |
| \12\ | Support Packages für den Hardware Katalog im TIA Portal (HSP)<br>https://support.industry.siemens.com/cs/ww/de/view/72341852                                                                                       |  |  |
| \13\ | Funktionshandbuch SIMATIC S7-1200, S7-1500 PID-Regelung <a href="https://support.industry.siemens.com/cs/ww/de/view/108210036">https://support.industry.siemens.com/cs/ww/de/view/108210036</a>                    |  |  |

# 6.3 Änderungsdokumentation

Tabelle 6-2

| Version | Datum   | Änderung                                       |
|---------|---------|------------------------------------------------|
| V1.0    | 11/2014 | Erste Ausgabe                                  |
| V2.0    | 04/2019 | Beitrags-Erweiterung auf S7-1500 und TIA V15.1 |