
SIMOTION SIMOTION SCOUT SIMOTION ST Structured Text

Preface

Introduction

1

Getting Started with ST

2

ST Fundamentals

3

Functions, Function Blocks,
and Programs

4

Integration of ST in
SIMOTION

5

Error Sources and
Program Debugging

6

Appendix

A

SIMOTION

SIMOTION SCOUT
SIMOTION ST Structured Text

Programming and Operating Manual

05/2009

Legal information Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION
without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE
indicates that an unintended result or situation can occur if the corresponding information is not taken into
account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The device/system may only be set up and used in conjunction with this documentation. Commissioning and
operation of a device/system may only be performed by qualified personnel. Within the context of the safety notes
in this documentation qualified persons are defined as persons who are authorized to commission, ground and
label devices, systems and circuits in accordance with established safety practices and standards.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be adhered to. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this
publication may be trademarks whose use by third parties for their own purposes could violate the rights of the
owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

 Siemens AG
Industry Sector
Postfach 48 48
90026 NÜRNBERG
GERMANY

 Copyright © Siemens AG 2009.
Technical data subject to change

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 3

Preface

Scope
This document is part of the SIMOTION Programming documentation package.
This document is valid for product version V4.1, Service Pack 4 of SIMOTION SCOUT (the
engineering system of the SIMOTION product family) in conjunction with:
● a SIMOTION device with the following versions of the SIMOTION kernel:

– V4.1 SP4
– V4.1 SP2
– V4.1 SP1
– V4.0
– V3.2
– V3.1
– V3.0

● The relevant version of the following SIMOTION Technology Packages, depending on the
kernel
– Cam
– Path (kernel V4.1 and higher)
– Cam_ext (kernel V3.2 and higher)
– TControl
– Gear, Position and Basic MC (only for kernel V3.0).

This document describes the syntax and implementation of the SIMOTION ST Structured
Text programming language for this version of SIMOTION SCOUT. It also includes
information on the following topics:
● ST Editor and Compiler with program example
● Data storage and data management on SIMOTION devices
● Options for diagnosis and troubleshooting
The scope of the SIMOTION ST programming language may contain new syntax elements
compared to earlier versions. These have only been tested using the current version of the
SIMOTION kernel and are released only for this kernel version or higher versions.

Preface

 SIMOTION ST Structured Text
4 Programming and Operating Manual, 05/2009

Conversion of existing projects to the current SIMOTION SCOUT version
It is possible to upgrade existing projects to the current version of SIMOTION SCOUT and
the SIMOTION ST programming language. In some cases, recompilation using the current
version of the compiler can change the version identifiers in the data storage areas of the
programs, thus resulting in deletion and initialization of all retentive and non-retentive data
on the SIMOTION device. In exceptional cases, minor changes to the program source files
may also be required.
If new syntax elements of the SIMOTION ST programming language are used on a
SIMOTION device with an older version of the SIMOTION Kernel, the compiler outputs
warning 16700 (version V3.1 and higher of the SIMOTION Kernel). If these syntax elements
are used anyway, the project can be stored in the old project format, but can no longer be
converted using the compiler of an older version of SIMOTION SCOUT.

Information in this manual
The following is a list of chapters included in this manual along with a description of the
information presented in each chapter.
● Introduction (Chapter 1)
● Getting Started with ST (Chapter 2)

Requirements for creating programs and a sample program
● ST Basics (Chapter 3)

Elements of the ST programming language, variable and data type declarations,
statements

● Functions, Function Blocks and Programs (Chapter 4)
Programming and call of the program organization units (POU)

● Integration of ST in SIMOTION SCOUT (Chapter 5)
Behavior of variables, access to inputs and outputs, libraries, preprocessor

● Error Sources and Program Test (Chapter 6)
Information on error sources, efficient programming, and program testing

● Appendices
– Formal Language Description (Appendix A.1)
– Compiler Error Messages and Remedies (Appendix A.2)
– Template for Example Unit (Appendix A.3)

● Index
If you want to get started immediately, begin by working through Chapter 2.

 Preface

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 5

SIMOTION Documentation
An overview of the SIMOTION documentation can be found in a separate list of references.
This documentation is included as electronic documentation with the supplied SIMOTION
SCOUT.
The SIMOTION documentation consists of 9 documentation packages containing
approximately 80 SIMOTION documents and documents on related systems (e.g.
SINAMICS).
The following documentation packages are available for SIMOTION V4.1 SP4:
● SIMOTION Engineering System
● SIMOTION System and Function Descriptions
● SIMOTION Service and Diagnostics
● SIMOTION Programming
● SIMOTION Programming - References
● SIMOTION C
● SIMOTION P350
● SIMOTION D4xx
● SIMOTION Supplementary Documentation

Hotline and Internet addresses

Siemens Internet address
The latest information about SIMOTION products, product support, and FAQs can be found
on the Internet at:
● General information:

– http://www.siemens.de/simotion (German)
– http://www.siemens.com/simotion (international)

● Downloading documentation
Further links for downloading files from Service & Support.
http://support.automation.siemens.com/WW/view/en/10805436

● Individually compiling documentation on the basis of Siemens contents with the My
Documentation Manager (MDM), refer to http://www.siemens.com/mdm
My Documentation Manager provides you with a range of features for creating your own
documentation.

● FAQs
You can find information on FAQs (frequently asked questions) by clicking
http://support.automation.siemens.com/WW/view/en/10805436/133000.

Preface

 SIMOTION ST Structured Text
6 Programming and Operating Manual, 05/2009

Additional support
We also offer introductory courses to help you familiarize yourself with SIMOTION.
For more information, please contact your regional Training Center or the main Training
Center in 90027 Nuremberg, Germany.
Information about training courses on offer can be found at:
www.sitrain.com

Technical support
If you have any technical questions, please contact our hotline:

 Europe / Africa
Phone +49 180 5050 222 (subject to charge)
Fax +49 180 5050 223
€0.14/min from German wire-line network, mobile phone prices may differ.
Internet http://www.siemens.com/automation/support-request

 Americas
Phone +1 423 262 2522
Fax +1 423 262 2200
E-mail mailto:techsupport.sea@siemens.com

 Asia / Pacific
Phone +86 1064 757575
Fax +86 1064 747474
E-mail mailto:support.asia.automation@siemens.com

 Note
Country-specific telephone numbers for technical support are provided under the following
Internet address:
http://www.automation.siemens.com/partner

Questions about this documentation
If you have any questions (suggestions, corrections) regarding this documentation, please
fax or e-mail us at:

Fax +49 9131- 98 2176
E-mail mailto:docu.motioncontrol@siemens.com

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 7

Contents

 Preface .. 3
1 Introduction.. 15

1.1 High-level programming language...15
1.2 Programming language with technology commands...15
1.3 Execution levels ...15
1.4 ST editor with tools for writing and testing programs...16

2 Getting Started with ST.. 17
2.1 Integration of ST in SCOUT...17
2.1.1 Getting to know the elements of the workbench..19
2.2 Requirements for program creation ...20
2.3 Working with the ST editor and the compiler ...21
2.3.1 Insert ST source file ...21
2.3.2 Opening an existing ST source file ..23
2.3.3 Changing the properties of an ST source file ..23
2.3.4 Working with the ST editor...25
2.3.4.1 Syntax coloring...25
2.3.4.2 Drag&drop..26
2.3.4.3 Shortcuts ..27
2.3.4.4 Settings of the ST editor ..30
2.3.4.5 Indentations and tabs...32
2.3.4.6 Folds (show and hide blocks) ..34
2.3.4.7 Display spaces and tabs ..37
2.3.4.8 Changing the font size in the ST editor..38
2.3.4.9 Select text ..39
2.3.4.10 Use bookmarks ..41
2.3.4.11 Automatic completion...42
2.3.4.12 Other help for the ST editor ...44
2.3.4.13 Using the command library ..44
2.3.4.14 ST editor toolbar ..45
2.3.5 Starting the compiler ..46
2.3.5.1 Help for the error correction ...46
2.3.6 Making settings for the compiler ..47
2.3.6.1 Global compiler settings...47
2.3.6.2 Local compiler settings ..49
2.3.6.3 Effectiveness of global or local compiler settings ..51
2.3.6.4 Meaning of warning classes...52
2.3.6.5 Display of the compiler options..52
2.3.7 Know-how protection for ST source files ...54
2.3.8 Making preprocessor definitions ..54
2.3.9 Exporting, importing and printing an ST source file ...56
2.3.9.1 Exporting an ST source file as a text file (ASCII)...56
2.3.9.2 Exporting an ST source file in XML format ..56
2.3.9.3 Importing a text file (ASCII) as an ST source file...57
2.3.9.4 Importing XML data into ST source files..57

Contents

 SIMOTION ST Structured Text
8 Programming and Operating Manual, 05/2009

2.3.9.5 Printing an ST source file .. 58
2.3.10 Using an external editor .. 58
2.3.11 ST source file menus .. 60
2.3.11.1 ST source file menu .. 60
2.3.11.2 ST source file context menu.. 61
2.4 Creating a sample program... 63
2.4.1 Requirements.. 63
2.4.2 Opening or creating a project.. 63
2.4.3 Making the hardware known ... 65
2.4.4 Entering source text with the ST editor ... 66
2.4.4.1 Functions of the editor... 67
2.4.4.2 Source text of the sample program... 68
2.4.5 Compiling a sample program .. 69
2.4.5.1 Starting the compiler ... 69
2.4.5.2 Correcting errors ... 69
2.4.5.3 Example of error messages .. 70
2.4.6 Running the sample program.. 71
2.4.6.1 Assigning a sample program to an execution level .. 71
2.4.6.2 Establishing a connection to the target system... 73
2.4.6.3 Downloading the sample program to the target system ... 74
2.4.6.4 Starting and testing the sample program.. 75

3 ST Fundamentals .. 77
3.1 Language description resources... 77
3.1.1 Syntax diagram ... 77
3.1.2 Blocks in syntax diagrams... 78
3.1.3 Meaning of the rules (semantics).. 78
3.2 Basic elements of the language.. 79
3.2.1 ST character set.. 79
3.2.2 Identifiers in ST ... 80
3.2.2.1 Rules for identifiers ... 80
3.2.2.2 Examples of identifiers .. 81
3.2.3 Reserved identifiers .. 82
3.2.3.1 Protected identifiers .. 83
3.2.3.2 Additional reserved identifiers... 88
3.2.4 Numbers and Boolean values... 90
3.2.4.1 Integers ... 90
3.2.4.2 Floating-point numbers ... 91
3.2.4.3 Exponents ... 91
3.2.4.4 Boolean values.. 91
3.2.4.5 Data types of numbers .. 92
3.2.5 Character strings... 93
3.3 Structure of an ST source file.. 94
3.3.1 Statements .. 96
3.3.2 Comments... 97
3.4 Data types ... 98
3.4.1 Elementary data types .. 99
3.4.1.1 Elementary data types .. 99
3.4.1.2 Value range limits of elementary data types... 101
3.4.1.3 General data types.. 102
3.4.1.4 Elementary system data types.. 103
3.4.2 User-defined data types .. 103
3.4.2.1 User-defined data types .. 103

 Contents

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 9

3.4.2.2 Syntax of user-defined data types (type declaration) ..104
3.4.2.3 Derivation of elementary or derived data types ...106
3.4.2.4 Derived data type ARRAY ...107
3.4.2.5 Derived data type - Enumerator...109
3.4.2.6 Derived data type STRUCT (structure)..110
3.4.3 Technology object data types ..112
3.4.3.1 Description of the technology object data types ..112
3.4.3.2 Inheritance of the properties for axes ..113
3.4.3.3 Examples of the use of technology object data types ...113
3.4.4 System data types ...115
3.5 Variable declaration ...116
3.5.1 Syntax of variable declaration..116
3.5.2 Overview of all variable declarations ...117
3.5.3 Initialization of variables or data types...119
3.5.4 Constants ...122
3.6 Value assignments and expressions ...124
3.6.1 Value assignments...124
3.6.1.1 Syntax of the value assignment ...124
3.6.1.2 Value assignments with variables of an elementary data type..126
3.6.1.3 Value assignments with variables of the STRING elementary data type126
3.6.1.4 Value assignments with variables of a bit data type..128
3.6.1.5 Value assignments with variables of the derived enumerator data type130
3.6.1.6 Value assignments with variables of the derived ARRAY data type ...130
3.6.1.7 Value assignments with variables of the derived STRUCT data type131
3.6.2 Expressions..132
3.6.2.1 Result of an expression ...132
3.6.2.2 Interpretation order of an expression...133
3.6.3 Operands ...134
3.6.4 Arithmetic expressions...135
3.6.4.1 Examples of arithmetic expressions ..137
3.6.5 Relational expressions...138
3.6.6 Logic expressions and bit-serial expressions ..140
3.6.7 Priority of operators..142
3.7 Control statements...143
3.7.1 IF statement ...143
3.7.2 CASE statement ..145
3.7.3 FOR statement...147
3.7.3.1 Processing of the FOR statement..148
3.7.3.2 Rules for the FOR statement ...148
3.7.3.3 Example of the FOR statement..148
3.7.4 WHILE statement...149
3.7.5 REPEAT statement..150
3.7.6 EXIT statement ..151
3.7.7 RETURN statement ...151
3.7.8 WAITFORCONDITION statement ...152
3.7.9 GOTO statement..153
3.8 Data type conversions ...154
3.8.1 Elementary data type conversion...154
3.8.1.1 Implicit data type conversions..155
3.8.1.2 Explicit data type conversions..157
3.8.2 Supplementary conversions...158

Contents

 SIMOTION ST Structured Text
10 Programming and Operating Manual, 05/2009

4 Functions, Function Blocks, and Programs.. 159
4.1 Creating and calling functions and function blocks... 159
4.1.1 Defining functions.. 160
4.1.2 Defining function blocks .. 161
4.1.3 Declaration section of FB and FC ... 162
4.1.4 Statement section of FB and FC... 165
4.1.5 Call of functions and function block calls .. 166
4.1.5.1 Principle of parameter transfer.. 166
4.1.5.2 Parameter transfer to input parameters .. 166
4.1.5.3 Parameter transfer to in/out parameters ... 167
4.1.5.4 Parameter transfer to output parameters (for FB only)... 169
4.1.5.5 Parameter access times.. 169
4.1.5.6 Calling a function... 170
4.1.5.7 Calling function blocks (instance calls) ... 171
4.1.5.8 Accessing the FB's output parameter outside the FB... 173
4.1.5.9 Accessing the FB's input parameter outside the FB... 173
4.1.5.10 Error sources in FB calls ... 174
4.2 Comparison of functions and function blocks ... 175
4.2.1 Description of example.. 175
4.2.2 Source file with comments .. 176
4.3 Programs... 178
4.3.1 Assignment of a program in the execution system ... 178
4.3.2 Calling a program in the program ("program in program").. 179
4.4 Expressions... 180

5 Integration of ST in SIMOTION.. 183
5.1 Source file sections ... 183
5.1.1 Use of the source file sections .. 183
5.1.1.1 Interface section.. 184
5.1.1.2 Implementation section ... 185
5.1.1.3 Program organization units (POUs) .. 185
5.1.1.4 Functions (FCs)... 186
5.1.1.5 Function blocks (FBs) ... 187
5.1.1.6 Programs... 188
5.1.1.7 Expressions... 189
5.1.1.8 Declaration section.. 190
5.1.1.9 Statement section ... 190
5.1.1.10 Data type definition ... 191
5.1.1.11 Variable declaration .. 192
5.1.2 Import and export between ST source files .. 194
5.1.2.1 Unit identifier ... 194
5.1.2.2 Interface section of an exporting unit .. 194
5.1.2.3 Example of an exporting unit .. 196
5.1.2.4 USES statement in an importing unit .. 197
5.1.2.5 Example of an importing unit... 199
5.2 Variables in SIMOTION... 200
5.2.1 Variable model .. 200
5.2.1.1 Unit variables .. 204
5.2.1.2 Non-retentive unit variables .. 204
5.2.1.3 Retentive unit variables... 206
5.2.1.4 Local variables (static and temporary variables)... 207
5.2.1.5 Static variables.. 209
5.2.1.6 Temporary variables ... 210

 Contents

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 11

5.2.2 Use of global device variables ...211
5.2.3 Memory ranges of the variable types...212
5.2.3.1 Example of memory areas, valid as of Kernel V3.1...214
5.2.3.2 Memory requirement of the variables on the local data stack (Kernel V3.1 and higher)...........217
5.2.3.3 Memory requirement of variables on local data stack (Kernel V3.0 and below)218
5.2.4 Time of the variable initialization..219
5.2.4.1 Initialization of retentive global variables ...219
5.2.4.2 Initialization of non-retentive global variables ..220
5.2.4.3 Initialization of local variables ..222
5.2.4.4 Initialization of static program variables...223
5.2.4.5 Initialization of instances of function blocks (FBs) ...224
5.2.4.6 Initialization of system variables of technology objects ...224
5.2.4.7 Version ID of global variables and their initialization during download......................................225
5.2.5 Variables and HMI devices ..227
5.3 Access to inputs and outputs (process image, I/O variables)..230
5.3.1 Overview of access to inputs and outputs ...230
5.3.2 Important features of direct access and process image access..231
5.3.3 Direct access and process image of cyclic tasks...233
5.3.3.1 Rules for I/O addresses for direct access and the process image of the cyclical tasks235
5.3.3.2 Creating I/O variables for direct access or process image of cyclic tasks.................................236
5.3.3.3 Syntax for entering I/O addresses ...238
5.3.3.4 Possible data types of I/O variables ..239
5.3.4 Access to fixed process image of the BackgroundTask ..239
5.3.4.1 Absolute access to the fixed process image of the BackgroundTask (absolute PI access)......240
5.3.4.2 Syntax for the identifier for an absolute process image access ..241
5.3.4.3 Symbolic access to the fixed process image of the BackgroundTask (symbolic PI access).....243
5.3.4.4 Possible data types for symbolic PI access...244
5.3.4.5 Example of symbolic PI access ...244
5.3.4.6 Creating an I/O variable for access to the fixed process image of the BackgroundTask..........245
5.3.5 Accessing I/O variables ...246
5.4 Using libraries ..247
5.4.1 Compiling a library ...248
5.4.2 Know-how protection for libraries...250
5.4.3 Using data types, functions and function blocks from libraries..251
5.5 Use of the same identifiers and namespaces..252
5.5.1 Use of the same identifiers ..252
5.5.2 Namespaces ..255
5.6 Reference data ..259
5.6.1 Cross-reference list..259
5.6.1.1 Creating a cross-reference list ...259
5.6.1.2 Content of the cross-reference list ...260
5.6.1.3 Working with a cross-reference list ..262
5.6.1.4 Filtering the cross-reference list...263
5.6.2 Program structure ..263
5.6.2.1 Content of the program structure...264
5.6.3 Code attributes...265
5.6.3.1 Code attribute contents..265
5.7 Controlling the preprocessor and compiler with pragmas ...266
5.7.1 Controlling a preprocessor...267
5.7.1.1 Preprocessor statement...268
5.7.1.2 Example of preprocessor statements ..270
5.7.2 Controlling compiler with attributes..271

Contents

 SIMOTION ST Structured Text
12 Programming and Operating Manual, 05/2009

5.8 Jump statement and label ... 274
6 Error Sources and Program Debugging... 275

6.1 Notes on avoiding errors and on efficient programming ... 275
6.2 Program debugging... 276
6.2.1 Modes for program testing .. 276
6.2.1.1 Modes of the SIMOTION devices ... 276
6.2.1.2 Important information about the life-sign monitoring... 278
6.2.1.3 Life-sign monitoring parameters ... 280
6.2.2 Symbol Browser .. 281
6.2.2.1 Properties of the symbol browser ... 281
6.2.2.2 Using the symbol browser... 281
6.2.3 Monitoring variables in watch table... 285
6.2.3.1 Variables in the watch table .. 285
6.2.3.2 Using watch tables .. 285
6.2.4 Program run .. 287
6.2.4.1 Program run: Display code location and call path .. 287
6.2.4.2 Parameter call stack program run... 288
6.2.4.3 Program run toolbar .. 288
6.2.5 Program status.. 289
6.2.5.1 Properties of the program status... 289
6.2.5.2 Using the status program.. 291
6.2.5.3 Call path for program status.. 292
6.2.5.4 Parameter call path status program.. 294
6.2.6 Breakpoints ... 295
6.2.6.1 General procedure for setting breakpoints.. 295
6.2.6.2 Setting the debug mode.. 295
6.2.6.3 Define the debug task group... 297
6.2.6.4 Debug task group parameters .. 299
6.2.6.5 Debug table parameter ... 300
6.2.6.6 Setting breakpoints ... 301
6.2.6.7 Breakpoints toolbar ... 303
6.2.6.8 Defining the call path for a single breakpoint .. 304
6.2.6.9 Breakpoint call path / task selection parameters .. 306
6.2.6.10 Defining the call path for all breakpoints ... 307
6.2.6.11 Call path / task selection parameters of all breakpoints per POU .. 309
6.2.6.12 Activating breakpoints ... 310
6.2.6.13 Display call stack... 312
6.2.6.14 Breakpoints call stack parameter.. 313
6.2.7 Trace ... 313

A Appendix.. 315
A.1 Formal Language Description... 315
A.1.1 Language description resources... 316
A.1.1.1 Formatted rules (lexical rules)... 316
A.1.1.2 Unformatted rules (syntactic rules) ... 317
A.1.2 Basic elements (terminals).. 318
A.1.2.1 Letters, digits and other characters... 318
A.1.2.2 Formatting characters and separators in the rules ... 319
A.1.2.3 Formatting characters and separators for constants .. 320
A.1.2.4 Predefined identifiers for process image access .. 321
A.1.2.5 Identifiers of the Taskstartinfo... 322
A.1.2.6 Operators .. 323
A.1.2.7 Reserved words .. 323
A.1.3 Rules ... 332

 Contents

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 13

A.1.3.1 Identifiers..332
A.1.3.2 Notation for constants (literals) ..333
A.1.3.3 Comments..341
A.1.3.4 Sections of the ST source file ..342
A.1.3.5 Structures of ST source files..343
A.1.3.6 Program organization units (POU)...345
A.1.3.7 Declaration sections...347
A.1.3.8 Structure of the declaration blocks...349
A.1.3.9 Data types..356
A.1.3.10 Statement section ..361
A.1.3.11 Value assignments and operations..362
A.1.3.12 Call of functions and function block calls ...368
A.1.3.13 Control statements...371
A.2 Compiler Error Messages and Remedies..376
A.2.1 File access errors (1000 – 1100) ...376
A.2.2 Scanner errors (2001, 2002)..376
A.2.3 Declaration errors in POU (3002 – 3027) ..377
A.2.4 Declaration errors in data type declarations (4001 – 4051)...378
A.2.5 Declaration errors in variables declarations (5001 – 5509) ...379
A.2.6 Errors in the expression (6001 - 6201) ..380
A.2.7 Syntax errors, errors in the expression (7000 - 7014) ...384
A.2.8 Error when linking a source file (8001, 8100) ..385
A.2.9 Errors while loading the interface of another UNIT or a technology package (10000 -

10037, 10100 - 10101)...385
A.2.10 Implementation restrictions (15001 – 15200)...388
A.2.11 Warnings (16001 - 16700) ...388
A.2.12 Information (32010 - 32653) ..393
A.3 Template for Example Unit ..395
A.3.1 Preliminary information ..395
A.3.2 Type definition in the interface...396
A.3.3 Variable declaration in the interface ..397
A.3.4 Implementation...399
A.3.5 Function ...400
A.3.6 Function block..402
A.3.7 Program ...404
A.3.8 Notes on initialization ...406

 Index.. 407

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 15

Introduction 1

In addition to conventional open and closed-loop control tasks, today's automation systems
are increasingly required to handle data management functions and complex mathematical
calculations. ST (Structured Text) is specially designed for these tasks. Standardized to IEC
61131-3 (German standard DIN EN-61131-3), this programming language makes your job
as a programmer easier.

1.1 High-level programming language
ST is a high-level, PASCAL-based programming language. This language is based on the
IEC 61131-3 standard, which standardizes programming languages for programmable
controllers (PLC). ST is based on the Structured Text part of this standard.
Using a high-level language like ST to program control systems offers the user a wide range
of possibilities, for example:
● Data management
● Process optimization
● Mathematical/statistical calculations

1.2 Programming language with technology commands
In addition to IEC 61131-3 compliance, the SIMOTION ST programming language also
contains commands for SIMOTION devices, motion control and technology.
Technology objects represent a technological functionality, e.g. positioning an axis or
assigning parameters for an output cam. Technology commands are language commands
provided by the technology objects. Such commands may be used, for example, to activate
camming or to control motion sequences, for example, in order to position an axis.

1.3 Execution levels
The SIMOTION execution system provides different execution levels (cyclic, synchronous,
time-controlled, alarm-controlled and sequential) for optimal support of the various tasks
involved in creating user programs.
SIMOTION SCOUT is the engineering system of the SIMOTION product family. ST is the
high-level language for creating user programs; in ST, you can develop user programs for
the various execution levels.
The execution of user programs can be time-driven if you want them to run synchronously
with the system clock or a defined time cycle. They can be interrupt-driven if they are to start
and run once in response to a particular event. Alternatively, they can run sequentially or
cyclically at the round robin execution level.

Introduction
1.4 ST editor with tools for writing and testing programs

 SIMOTION ST Structured Text
16 Programming and Operating Manual, 05/2009

1.4 ST editor with tools for writing and testing programs
An easy-to-use text editor is provided for creating programs.
The ST compiler converts the edited program into executable code and indicates any syntax
errors, specifying the program line and the cause of the error.
SIMOTION SCOUT provides test functions for testing ST programs. You can test and
visualize your programs online.

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 17

Getting Started with ST 2

This chapter uses a simple example to describe how to write a program, compile it into
executable code, run it, and test it.

2.1 Integration of ST in SCOUT
The program environment for ST comprises the following components:
● An editor for creating programs, consisting of functions (FC), function blocks (FB), and

user-defined data types (UDT), etc.
● A compiler for compiling the previously edited ST program into executable machine code
● The program status for assisting your search for logical program errors in the running

program
● A detail view, in which, for example, error messages of the compiler are displayed. An

important tab of the detail view is the Symbol browser, where you can monitor and
change variables.

The individual components are easy to use. They are integrated directly in the SIMOTION
SCOUT workbench.
For more information about the operation of the workbench and its tools, refer to the
SIMOTION SCOUT Configuration Manual.

Getting Started with ST
2.1 Integration of ST in SCOUT

 SIMOTION ST Structured Text
18 Programming and Operating Manual, 05/2009

Figure 2-1 Development environment of ST

 Getting Started with ST
 2.1 Integration of ST in SCOUT

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 19

2.1.1 Getting to know the elements of the workbench
The workbench represents the framework for SIMOTION SCOUT. Its tools allow you to
perform all the steps necessary to configure, optimize and program a machine for your
application.

Figure 2-2 Workbench elements

The workbench contains the following elements:
● Menus
Menus contain menu commands with which you can control the workbench and call tools,
etc.
● Toolbars
You can execute many of the available menu commands by clicking the corresponding
button in one of the toolbars.
● Project navigator
The project navigator displays the entire project and its elements (e.g. CPU, axes, programs,
cams) in a tree structure.

Getting Started with ST
2.2 Requirements for program creation

 SIMOTION ST Structured Text
20 Programming and Operating Manual, 05/2009

● Work Area
This window allows you to perform specific tasks either independently (by programming) or
using wizards (by configuring).
● Detailed view
The detail view displays additional information about the elements selected in the project
navigator, e.g. all global variables for a program or the Compile/Test Output window.

2.2 Requirements for program creation
This section describes the general conditions you will need to meet before writing a program.
You will find detailed information in the SIMOTION SCOUT Configuring Manual and the
SIMOTION Motion Control function descriptions.

Add or open a project
The project is the highest level in the data management hierarchy. SIMOTION SCOUT
saves all data which belongs, for example, to a production machine, in the project directory.
This means that the project therefore brackets together all SIMOTION devices, drives, etc.
belonging to one machine.
Once you have created a project, you can:
● Configure hardware
● Insert and configure technology objects

Configuring hardware
Within the project, the hardware used must be made known to the system, including:
● SIMOTION device
● Centralized I/O (with I/O addresses)
● Distributed I/O (with I/O addresses)
A SIMOTION device must be configured before you can insert and edit ST source files.

Insert and configure technology objects
The functionality of axes, output cams, etc. is represented in SIMOTION by technology
objects (TOs).
You cannot program technology objects using system functions and access their system
variables until you have inserted and configured them.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 21

2.3 Working with the ST editor and the compiler
In this section, you will learn how to use the ST editor and the compiler.

2.3.1 Insert ST source file
ST source files are assigned to the SIMOTION device on which they are to run.

Proceed as follows
1. Open the appropriate SIMOTION device in the project navigator.
2. Select the PROGRAMS folder.
3. Select the menu Insert > Program > ST source file.
4. Enter the name of the ST source file.

Names for program source files must satisfy the rules for identifiers: They are made up of
letters (A … Z, a … z), digits (0 … 9) or single underscores (_) in any order, whereby the
first character must be a letter or underscore. No distinction is made between upper and
lower case letters.
The permissible length of the name depends on the SIMOTION Kernel version:
– As of Version V4.1 of the SIMOTION Kernel: maximum 128 characters.
– Up to Version V4.0 of the SIMOTION Kernel: maximum 8 characters.
Names must be unique within the SIMOTION device.
Protected or reserved identifiers (Page 82) are not allowed.
Existing program sources (e.g. ST source files, MCC units) are displayed.

5. If necessary, select further tabs to make local settings (only valid for this ST source file):
– Compiler tab: Local settings of the compiler (Page 49) for code generation and

message display.
– Additional settings tab: Definitions for preprocessor (Page 54)

6. Select the Open editor automatically checkbox.
7. Confirm with OK.

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
22 Programming and Operating Manual, 05/2009

Figure 2-3 Insert ST source file

NOTICE
With versions of the SIMOTION Kernel up to V4.0, a violation of the permissible length of
the program source file name may not be detected until a consistency check or a download
of the program source file is performed!

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 23

2.3.2 Opening an existing ST source file

Proceed as follows
1. Open the subtree of the appropriate SIMOTION device in the project navigator.
2. Open the PROGRAMS folder.
3. Select the desired ST source file.
4. Select the Edit > Open object menu command.
5. Only for ST source files with know-how protection:

If the user with the login assigned to the ST source file has not yet logged on:
– Enter the corresponding password for the displayed login.
You can now open additional ST source files to which the same login is assigned without
having to re-enter the password.

 Note
You can also double-click the required ST source file to open it.

2.3.3 Changing the properties of an ST source file

Proceed as follows
1. Under the SIMOTION device, open the PROGRAMS folder.
2. Select the desired ST source file.
3. Select the Edit > Object Properties menu command.
4. If necessary, select further tabs to make local settings (only valid for this ST source file):

– General tab: General details for the ST source, e.g. timestamp of the last change and
the storage location of the project (see figure).

– Compiler tab: Local settings of the compiler (Page 49) for code generation and
message display.

– Additional settings tab: Definitions for the preprocessor (Page 54) and display the
compiler options (Page 52) as specified for the current settings of the compiler.

– Compilation tab: Display of the compiler options (Page 52) for the last compilation of
the ST source.

– Object address tab: Set the internal object address of the ST source. The object
addresses of the other program sources are displayed.

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
24 Programming and Operating Manual, 05/2009

Figure 2-4 Properties of an ST source file

Changing the name of an ST source file
You can also change the names of the ST source file here. To do this, click the [...] button.
Names for program source files must satisfy the rules for identifiers: They are made up of
letters (A … Z, a … z), numbers (0 … 9) or single underscores (_) in any order, whereby the
first character must be a letter or underscore. No distinction is made between upper and
lower case letters.
The permissible length of the name depends on the SIMOTION Kernel version:
● As of Version V4.1 of the SIMOTION Kernel: maximum 128 characters.
● Up to Version V4.0 of the SIMOTION Kernel: maximum 8 characters.
Names must be unique within the SIMOTION device.
Protected or reserved identifiers (Page 82) are not allowed.
Existing program sources (e.g. ST source files, MCC units) are displayed.

NOTICE
With versions of the SIMOTION Kernel up to V4.0, a violation of the permissible length of
the program source file name may not be detected until a consistency check or a download
of the program source file is performed!

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 25

2.3.4 Working with the ST editor
The ST editor makes it easier for you to work with the ST source file, variables and
technology objects through the following operator controls:
● Syntax coloring
● Drag&drop
● Menu commands and shortcuts

Figure 2-5 Opened ST source file in the ST editor

See also
Shortcuts (Page 27)

2.3.4.1 Syntax coloring
The ST editor represents language elements in different colors:
● Blue: Keywords and compiler built-in functions
● Magenta: Numbers, values
● Green: Comments
● Black: Technology objects, user code, variables

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
26 Programming and Operating Manual, 05/2009

2.3.4.2 Drag&drop

Drag&drop
A drag-and-drop operation (dragging while keeping the left mouse button pressed) enables
you to:
● Move selected text areas within an ST source file or to another opened ST source file.
● Copy names of variables from the symbol browser to the ST source file.
● Copy names (e.g. of technology objects, functions or function blocks) from the project

navigator to the ST source file.
● Copy system functions from the command library to the ST source file.

To copy names of variables from the symbol browser to the ST source file:
1. Select the entire line of the desired variable in the symbol browser. To do this, click the

line number at the start of the line.
2. Press the left mouse button and drag the line number to the desired position in the ST

source file.
The name of the selected variable is inserted in the ST source file.

To copy the name of an element (e.g. a technology object, a function or a function block)
from the project navigator to the ST source file:
1. Select the Project tab in the project navigator.
2. Select the element in the project navigator.
3. Press the left mouse button and drag the element to the desired position in the ST source

file.
The name of the selected element is inserted in the ST source file.

To copy a system function from the command library to the ST source file:
1. Select the Command Library tab in the project navigator.
2. Select the system function in the command library.
3. Press the left mouse button and drag the system function to the desired position in the ST

source file.
The system function is inserted in the ST source file with its parameters.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 27

2.3.4.3 Shortcuts
The ST editor also provides keyboard shortcuts. Some commands can also be called via the
Edit or ST editor menus:

Table 2- 1 ST Editor keyboard shortcuts

Shortcuts Description
F2 Jump to the next bookmark.
F3 Find next (menu Edit > Find next).
F9 Set or remove a breakpoint (menu Debug > Set/remove breakpoint).
F12 Activate or deactivate a set breakpoint (menu Debug > Activate/deactivate breakpoint).
BACK Delete the character to the left of the cursor.
INS Switch between insert mode and overwrite mode.
DEL Delete the selected area or the character to the right of the cursor (menu Edit > Delete).
Arrow key Move the cursor.
POS1 Move cursor to the beginning of the line.
END Move cursor to the end of the line.
PG UP Move up one page. The cursor follows.
PG DN Move down one page. The cursor follows.
TAB Jump to the next tab position. A tab character ($09) or the equivalent number of spaces

($20) will be inserted, depending on the settings for the ST editor.
SHIFT+F2 Jump to the previous bookmark.
SHIFT+BACK Delete the character to the left of the cursor.
SHIFT+INS Paste clipboard contents (menu Edit > Paste).
SHIFT+DEL Cut the selected area (menu Edit > Cut).
SHIFT+Arrow key Select line of text.
SHIFT+POS1 Select text back to the beginning of the line.
SHIFT+END Select text to the end of the line.
SHIFT+PG UP Move up one page. Select lines of text up to the new cursor position.
SHIFT+PG DN Move down one page. Select lines of text up to the new cursor position.
SHIFT+TAB Jump to the preceding tab position.
CTRL+A Select all text (menu Edit > Select All).
CTRL+B Accept and compile ST source file (menu ST source > Accept and compile).
CTRL+C Copy the selected area to the clipboard (menu Edit > Copy).
CTRL+D Duplicate the current line or the area selected.
CTRL+F Find text in ST source file (menu Edit > Find)
CTRL+H Replace text in ST source file (menu Edit > Replace).
CTRL+J Display the next search result in the project-wide search (menu Edit > Display next

position).
CTRL+L Copy the current line or the selected area to the clipboard.
CTRL+V Paste clipboard contents (menu Edit > Paste).
CTRL+X Cut the selected area (menu Edit > Cut).
CTRL+Y Redo the last action (menu Edit > Redo).
CTRL+Z Undo the last action (menu Edit > Undo).

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
28 Programming and Operating Manual, 05/2009

Shortcuts Description
CTRL+space Automatic completion
CTRL+F2 Set or delete bookmarks.
CTRL+F4 Close the active window (e.g. menu ST source > Close).
CTRL+F5 Remove all the breakpoints (in all the program source files) in the SIMOTION device

(menu Debug > Remove all breakpoints).
CTRL+F7 Activate or deactivate the program status function (menu ST source >

Program status on/off).
CTRL+F8 Continue to execute the program at the activated breakpoint (menu Debug > Continue).
CTRL+BACK Delete the word to the left of the cursor.
CONTROL+INS Copy the selected area to the clipboard (menu Edit > Copy).
CTRL+DEL Delete the word to the right of the cursor.
CTRL+arrow key (left/right) Move cursor left or right by one word.
CTRL+arrow key (up/down) Move up or down one page. The cursor remains in the same position for as long as it is

visible in the window.
CTRL+POS1 Move cursor to the beginning of the ST source file.
CTRL+END Move cursor to the end of the ST source file.
CTRL+SHIFT+B Display bracket pairs in the current ST source file.
CTRL+SHIFT+F Search for texts within the project (menu Edit > Search in the project)
CTRL+SHIFT+G Replace texts within the project (menu Edit > Replace in the project)
CTRL+SHIFT+F2 Delete all bookmarks in the ST source file.
CTRL+SHIFT+F3 Arrange windows, tile horizontally.
CTRL+SHIFT+F5 Arrange windows, tile vertically.
CTRL+SHIFT+F8 Format selected area.
CTRL+SHIFT+F9 Move cursor to the start of the current or higher-level block.
CTRL+SHIFT+F10 Move cursor to the end of the current block.
CTRL+SHIFT+F11 Move cursor to the start of the higher-level block, 1st level.
CTRL+SHIFT+F12 Move cursor to the start of the higher-level block, 2nd level.
CTRL+SHIFT+BACK Delete text to the left of the cursor up to the beginning of the line.
CTRL+SHIFT+DEL Delete text to the right of the cursor up to the end of the line.
CTRL+SHIFT+arrow key
(left/right)

Select word to the left or right of the cursor.

CTRL+SHIFT+POS1 Select lines of text back to the beginning of the ST source file.
CTRL+SHIFT+END Select lines of text up to the end of the ST source file.
CTRL+ALT+C Folding: Hide all blocks of the current ST source file.
CTRL+ALT+D Folding: Show all blocks of the current ST source file.
CTRL+ALT+F Folding: Show or hide folding information in the current ST source file.
CTRL+ALT+I Display indentation level in the current ST source file.
CTRL+ALT+L Show or hide line numbers in the current ST source file.
CTRL+ALT+R Folding: Show all subordinate blocks.
CTRL+ALT+T Folding: Show/hide block.
CTRL+ALT+V Folding: Hide all subordinate blocks.
CTRL+ALT+W Show or hide blanks and tabs in the current ST source file.
CTRL+ADD (numeric keypad) Increase font size in the current ST source file.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 29

Shortcuts Description
CTRL+MINUS (numeric
keypad)

Decrease font size in the current ST source file.

CTRL+DIV (numeric keypad) Change font size in the current ST source file to 100%.
ALT+SHIFT+L Change selected text to upper case.
ALT+SHIFT+U Change selected text to lower case.
ALT+SHIFT+Arrow key Select text by column.
ALT+SHIFT+POS1 Select columns of text back to the beginning of the line.
ALT+SHIFT+END Select columns of text to the end of the line.
ALT+SHIFT+PG UP Move down one page. Select columns of text up to the new cursor position.
ALT+SHIFT+PG DN Move down one page. Select columns of text up to the new cursor position.

Table 2- 2 Combined keyboard and mouse actions

Keyboard Mouse Description
 Single left click in text Set cursor
 Double left click in text Select word
 Press left button and drag mouse Select line of text
 Single left click on line number Select line
SHIFT Single left click in text Select line of text
CTRL Single left click on line number Select all text (menu Edit > Select All).
CTRL Single left click in bookmark column Set or delete bookmarks.
CTRL Turn mouse wheel Change font size
ALT Press left button and drag mouse Select text by column
ALT+SHIFT Single left click in text Select text by column

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
30 Programming and Operating Manual, 05/2009

2.3.4.4 Settings of the ST editor

Proceed as follows:
1. Select the menu Tools > Settings.
2. Select the ST editor / Scripting tab.
3. Enter the settings.
4. Click OK or Accept to confirm.

Figure 2-6 ST Editor / Scripting

The settings also apply to the script editor.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 31

The table below contains a description of the individual parameters.

Table 2- 3 Parameter settings ST Editor / Scripting

Parameter Description
Display line numbering If active, the line numbers are displayed.

See: Other ST editor tools (Page 44).
Replace tabs with blanks You select here how text indentation is performed (for the automatic

indentation or by pressing the Tab key):
• If active: By adding the appropriate number of space characters ($20).
• If inactive: By adding the tab character ($09).
See: Indentations and tabs (Page 32).

Tab width Number of characters skipped by a tab.
See: Indentations and tabs (Page 32).

Tooltip display for
function parameters

When active, the parameters are displayed as tooltips for the functions.

Automatic indent/outdent If active, for the text input, source file sections and blocks are indented
automatically by the set tab width.
See: Indentations and tabs (Page 32).

Folding active If active, the column with the folding information is displayed at the left-
hand side next to the edit area.
You can then hide blocks in an ST source file so that only the first line of
the block remains visible.
See: Fold (show and hide blocks) (Page 34)

Display indentation level If active, you can optically highlight the indent and outdent for blocks using
vertical help lines (in accordance with the set tab size).
See: Indentations and tabs (Page 32).

Display bracket pairs If active, the associated bracket of the pair that belongs to the bracket
where the cursor is located will be found and optically highlighted.
See: Other ST editor tools (Page 44).

Font Font for the display of the text in the ST editor. All non-proportionally
spaced fonts installed on the PC are available for selection.

Font size Font size (in pt) for the display of the text in the ST editor.
See: Change the font size in the ST editor (Page 38).

Status format Format in which the variable values are displayed for the program status
(for ST editor only).
See: Properties of the program status (Page 289).

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
32 Programming and Operating Manual, 05/2009

2.3.4.5 Indentations and tabs

Specify tab width
The standard tab width for all ST sources is specified in the settings of the ST editor
(Page 30).
This setting is used for all ST source files opened subsequently.

Indent using tabs or spaces
You can select in the settings of the ST editor (Page 30) how the text will be indented (e.g.
with the automatic indent and outdent when the Tab key is pressed):
● By adding the appropriate number of space characters ($20).
● By adding the tab character ($09).
This setting is used for all ST source files opened subsequently.

Automatically indent and outdent blocks
The ST editor recognizes blocks introduced with a keyword and terminated with another
keyword, e.g.:
● INTERFACE / END_INTERFACE
● IMPLEMENTATION / END_IMPLEMENTATION
● Declaration blocks (e.g. TYPE / END_TYPE, VAR / END_VAR)
● Program organization units (e.g. PROGRAM / END_PROGRAM)
● Control statements (e.g. IF / END_IF, FOR / END_FOR)
During the text input, the ST editor can automatically indent text within blocks by the tab size.
The end line of the block will be outdented automatically.
This function is activated in the settings of the ST editor (Page 30).

 Note
This setting affects only the behavior during the text input. It does not have any effect on
existing text in the ST sources.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 33

Format selection
You can use this function to force the blocks (see above) in an existing text to be indented by
the tab size in accordance with their hierarchy. The number of the leading spaces or tabs will
be changed:
● As specified by the current tab size of the ST source file.
● As specified by the current setting for the type of the indent (with tabs or spaces).
Follow these steps:
1. Select the text area in the ST editor that you want to format (see Select text (Page 39)).
2. Press the CTRL+SHIFT+F8 key combination.

NOTICE
Leading tabs or spaces will be replaced in a line only when the formatting changes their
number.

Display indentation level
You can optically highlight the indent and outdent for blocks using vertical help lines (in
accordance with the set tab size).

Figure 2-7 ST source with visible indent aid

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
34 Programming and Operating Manual, 05/2009

You can activate or deactivate this function:
● For the active ST source

– Press the CTRL+ALT+I key combination.
● For all open ST sources:

– Activate or deactivate the Display indentation level checkbox in the ST editor settings
(Page 30).

2.3.4.6 Folds (show and hide blocks)
You can hide blocks in an ST source file so that only the first line of the block remains
visible. This increases the legibility during the editing or reading of an ST source file.
A block is introduced with a keyword and terminated with another keyword, e.g.:
● INTERFACE / END_INTERFACE
● IMPLEMENTATION / END_IMPLEMENTATION
● Declaration blocks (e.g. TYPE / END_TYPE, VAR / END_VAR)
● Program organization units (e.g. PROGRAM / END_PROGRAM)
● Control statements (e.g. IF / END_IF, FOR / END_FOR)
● Block comment (* / *)
How to recognize that a block is displayed:
● When the column is shown with the fold information (at the left-hand side next to the

editing area), a minus character appears next to the first line of the block.
How to recognize that a block is hidden:
● When the column is shown with the fold information (at the left-hand side next to the

editing area), a plus character appears next to the first line of the block.
● A hyphen is displayed below this line.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 35

Figure 2-8 ST source for which all blocks are shown

Figure 2-9 ST source with hidden IF block (including block comment)

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
36 Programming and Operating Manual, 05/2009

Proceed as follows:
How to show or hide the column with the fold information (at the left-hand side of the editing
area):
● For the active ST source file:

– Press the CTRL+ALT+F key combination.
● For all open ST sources:

– Activate or deactivate the Folding active checkbox in the settings of the ST editor
(Page 30).

How to show or hide blocks (the column containing the folding information must be shown):
● Hide an individual block (options):

– Click on the minus character in the column with the fold information.
– Position the cursor on the corresponding line of the block and press the CTRL+ALT+T

shortcut.
Only the first line of the block remains visible. All subsequent lines of the block (including
lines of subordinate blocks) will be hidden.
The show/hide status of the subordinate blocks is saved. This is reinstated when
individual blocks are shown.

● Show an individual block (options):
– Click on the plus character in the column with the fold information.
– Position the cursor on the visible line of the block and press the CTRL+ALT+T

shortcut.
All subsequent lines of the block will be shown. Subordinate blocks are shown as follows:
If the show/hide status has been saved (when hiding individual blocks, for example), this
will be reinstated.

● Hide all blocks:
– Press the CTRL+ALT+C shortcut.
All the blocks in the ST source file (including all the subordinate blocks) will be hidden. In
each case, only the first line of the 1st-level blocks remain visible (usually INTERFACE
and IMPLEMENTATION).

● Show all blocks:
– Press the CTRL+ALT+D shortcut.
All the blocks in the ST source file (including all the subordinate blocks) will be shown. All
the lines in the ST source file will be visible.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 37

● Hide subordinate blocks:
– Position the cursor on the corresponding line of the block and press the CTRL+ALT+V

shortcut.
All the subordinate blocks for the current block will be hidden and the current block itself
will be shown. Only the lines of the current block and the first lines of the blocks on the
next level will be visible.

● Show subordinate blocks:
– Position the cursor on the corresponding line of the block and press the CTRL+ALT+R

shortcut.
The current block and all subordinate blocks will be shown. All the lines of these blocks
will be visible.

 Note
After opening an ST source in the editor, all lines of the ST source are visible. All blocks are
shown.

2.3.4.7 Display spaces and tabs
You can display spaces and tabs in the ST source files.

Figure 2-10 ST source file with visible spaces and tabs

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
38 Programming and Operating Manual, 05/2009

Proceed as follows
How to specify whether spaces and tabs are displayed in the active ST source file:
1. Set the cursor in the opened ST source.
2. Press the CTRL+ALT+W key combination.
This setting is not saved when the ST source is closed.

2.3.4.8 Changing the font size in the ST editor
You can change the font size of the ST source in the editor. The font size of the line numbers
and the size of other display elements (e.g. fold marks, bookmarks) will also be changed.

Figure 2-11 Increased size display of the ST source

Proceed as follows
You can change the font size:
● For the current ST source
● For ST source files to be opened subsequently

How to change the font size for the current ST source (alternative):
● Press the CTRL key while moving the mouse wheel
● Press concurrently the CTRL key and one of the following keys on the numeric block:

– ADD (+) to increase,
– MINUS (-) to reduce,
– DIV for 100%.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 39

How to change the font size for ST sources to be opened subsequently:
1. Open the settings for the ST editor (see Settings of the ST editor (Page 30)).
2. Enter the required font size.
This setting will used for all ST sources that will be opened subsequently. It does not affect
the currently opened ST sources.

2.3.4.9 Select text

Selecting lines of text
How to select lines of text:
● With the mouse:

– With pressed left mouse button, scan the text to be selected.
or

● With the keyboard or the mouse:
– Place the cursor with the arrow keys of the keyboard or with the mouse at the start of

the text to be selected.
– Press the Shift key while placing the cursor at the end of the text to be selected.

Please also refer to the keyboard shortcuts (Page 27).

Figure 2-12 ST source with selected lines of text

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
40 Programming and Operating Manual, 05/2009

Selecting columns of text
How to select columns of text:
● With the mouse:

– Press the Alt key while keeping the left mouse button pressed, scan the text to be
selected.

or
● With the keyboard or the mouse:

– Place the cursor with the arrow keys of the keyboard or with the mouse at the start of
the text to be selected.

– Press the ALT+SHIFT key combination while placing the cursor at the end of the text
to be selected. Please also refer to the keyboard shortcuts (Page 27).

Figure 2-13 ST source with selected columns of text

Selecting a single line
How to select a single line:
● Click with the left mouse button next to the line number of the appropriate line.

Selecting the complete text
How to select the complete text (alternatives):
● Press the CTRL key while clicking with the left mouse button in the column with the line

numbers.
● Press the CTRL+A key combination.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 41

2.3.4.10 Use bookmarks
You can set bookmarks in the ST editor. This allows you to jump to specific selected lines
within the ST source file.

Figure 2-14 ST source with bookmarks

Setting and deleting bookmarks
How to set a bookmark for a line of the active ST source file or to delete an existing
bookmark:
● With the keyboard and the mouse:

– Press the Ctrl key.
– Simultaneously, click with the left mouse button at the right-hand side next to the line

number of the appropriate line.
● With the keyboard:

– Set the cursor in the appropriate line of the ST source.
– Press the CTRL+F2 key combination.

NOTICE
Bookmarks are not saved when the ST source is closed.

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
42 Programming and Operating Manual, 05/2009

Jump to bookmark
How to jump to the next bookmark within the ST source:
● Press the F2 key.
How to jump to the previous bookmark within the ST source:
● Press the SHIFT+F2 key combination.

Delete all bookmarks
How to delete all bookmarks in an ST source:
● Press the CTRL+SHIFT+F2 key combination.

2.3.4.11 Automatic completion
In the ST editor, you can automatically complete identifiers. A selection list with identifiers
that begin with the previously entered characters will be displayed.

Figure 2-15 ST editor, automatic completion of an identifier (e.g. END_)

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 43

Proceed as follows
How to automatically complete an identifier:
1. Write the first characters of the identifier (e.g. the letters of a word).
2. Press the Ctrl+space key combination.

The selection possibilities are displayed in a window.
3. Select the required identifier.

 Note
If only a single identifier is offered for selection, the selection window will not be opened and
the identifier completed immediately.

Functional description
The following identifiers that begin with the specified character will be offered:
● Keywords of the Structured Text language
● Identifiers from the command library
● For technology objects including their system variables and configuration data
● Identifiers of the own ST source:

– Program organization units (POU)
– Data types
– Variables and constants
– Structure elements

● Identifiers from imported program sources

 Note
Identifiers from the own ST source and from imported program sources will be displayed
correctly only when the corresponding program source has been compiled.
The display is made context-sensitive, only those types of identifiers that are appropriate at
the associated location of the ST source will be offered:
• Within a declaration block, only data types and keywords
• Within a program organization unit (POU), no data types
• For a structure (e.g. var_struct.xx), only structure components

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
44 Programming and Operating Manual, 05/2009

2.3.4.12 Other help for the ST editor

Display bracket pairs
The two brackets of a bracket-pair can be optically highlighted.
To do this, place the cursor next to a bracket. The editor attempts to find the associated
brackets of the pair and possibly displays both brackets red. This simplifies the recognition of
bracket pairs, in particular for nesting.
How to switch this function on or off:
● For the active ST source file:

– Press the CTRL+SHIFT+B key combination.
● For all open ST sources:

– Activate or deactivate the Display bracket pairs checkbox in the ST editor settings
(Page 30).

This setting is also used for all ST source files opened subsequently.

Show and hide line numbers
Line numbers can be displayed in the ST editor:
How to switch this function on or off:
● For the active ST source file:

– Press the CTRL+ALT+L key combination.
● For all open ST sources:

– Activate or deactivate the Display line numbers checkbox in the ST editor settings
(Page 30).

This setting is also used for all ST source files opened subsequently.

2.3.4.13 Using the command library
The command library is a tab in the project navigator. It contains the available system
functions, system function blocks, and operators.
You can drag these elements from the command library to the ST editor window with
drag&drop.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 45

2.3.4.14 ST editor toolbar
This toolbar contains important operating actions for programming:

Table 2- 4 ST editor toolbar

Symbol Meaning

Program status
Click this icon to start the program status test mode. During the program execution,
you can monitor the values of the variables marked in the ST source.
The following prerequisites are necessary:
1. The program must be compiled with the appropriate compiler option.
2. The project and the program must be loaded into the target system.
3. An online connection to the target system must have been established.
Reclick this icon to end the program status.
See: Using the program status (Page 291).

Stop monitoring of the program variables
Click this icon in the program status test mode to stop the monitoring of the program
variables.
See Using the program status (Page 291).

Continue monitoring of the program variables
Click this icon in the program status test mode to continue the monitoring of the
program variables.
See: Using the program status (Page 291).

Refresh
Click this symbol in the program status test mode to force updating of the values
displayed. The monitoring of the program variables must have been activated.
See: Using the program status (Page 291).

Insert ST source file
Click this icon to create a new ST source file. The icon is active only when the
PROGRAMS folder where the ST source file is to be saved is selected in the project
navigator.
See: Insert ST source file (Page 21).

Accept and compile
Click this icon to transfer the current ST source file to the project and compile into
executable code.
See: Starting the compiler (Page 46).

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
46 Programming and Operating Manual, 05/2009

2.3.5 Starting the compiler

Requirement
The ST source file has been opened with the ST editor.

Proceed as follows
1. Click in the window with the ST editor. The dynamic ST source file menu appears.
2. Select the ST source file > Accept and compile menu command.

 Note
The ST source file menu is dynamic. It only appears if the window of the ST editor is active.

The compiler checks the syntax of the ST source file. The "Compile/check output" tab of the
detail view displays the successful compilation of the source text or compiler errors. The
error details include: The name of the ST source file, the number of the line in which the
error occurred, the error number and the error description.

2.3.5.1 Help for the error correction
To obtain help during error correction:
● Double-click the error message in the Compile/check output tab of the detail view.
The cursor is placed at the relevant line in the ST source file.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 47

2.3.6 Making settings for the compiler
You can define the compiler settings (compiler options) as follows:
● Globally for the SIMOTION project, valid for all programming languages, seeGlobal

settings of the compiler (Page 47)
● Locally for an individual ST source within the SIMOTION project, see Local settings of the

compiler (Page 49)

2.3.6.1 Global compiler settings
The global setting are valid for all programming languages within the SIMOTION project.

Proceed as follows
1. Select the menu Tools > Settings.
2. Select the Compiler tab.
3. Define the settings according to the following table.
4. Confirm with OK.

Figure 2-16 Global compiler settings

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
48 Programming and Operating Manual, 05/2009

Parameter

Table 2- 5 Parameters for global compiler settings

Parameter Description
Warning classes1 In addition to error messages, the compiler can output warnings and information. You can

set the scope of the output warning messages:
Active: The compiler outputs warnings and information for the selected class.
Inactive: The compiler suppresses warnings and information for the respective class.
See also For meanings of the warning classes (Page 52).

Selective linking1 Active (standard): Unused code is removed from the executable program.
Inactive: Unused code is retained in the executable program.

Use preprocessor1 Active: Preprocessor is used (see Control preprocessor (Page 267)).
Inactive (standard): Preprocessor is not used.

Enable program status1 Active: Additional program code is generated to enable monitoring of program variables
(including local variables).
Inactive (standard): Program status not possible.
See Properties of the program status (Page 289).

Permit language extensions1 Active: Language elements are permitted that do not comply with IEC 61131-3.
• Direct bit access to variables of a bit data type (Page 128)
• Accessing the input parameter of a function block while outside the function block

(Page 173)
• Calling a program while in a different program (Page 179)
Inactive (standard): Only language elements that comply with IEC 61131-3 are permitted.

Only create program
instance data once1

Active: The local variables of a program are only stored once in the user memory of the
unit. This setting is required for calling a program while inside a different program
(Page 179).
Inactive (standard): The local variables of a program are stored according to the task
assignment in the user memory of the respective task.
See Memory ranges of the variable types (Page 212).

Display all messages with
Save and compile all2

Here, you can control the scope of the error log that will be displayed in the workbench's
detail view when you call the Save and compile all command in SIMOTION SCOUT.
Active: A detailed log is created that is similar to that for single compilation of an ST source
file.
Inactive: A compressed error log is created.

1 Local setting also possible, see Local settings of the compiler (Page 49). Please also refer to the description of the
effectiveness of global or local compiler settings (Page 51).
2User-specific settings. Valid for all SIMOTION projects that the user processes.

NOTICE
You may have to recompile the project for the settings to take effect.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 49

2.3.6.2 Local compiler settings
Local settings are configured individually for each ST source file; local settings overwrite
global settings.

Proceed as follows
1. Open the Properties window for the ST source file, see Changing the properties of an ST

source (Page 23):
Select the ST source file in the project navigator and select the Edit > Object properties
menu command.

2. Select the Compiler tab.
3. Define the settings according to the following table.
4. Confirm with OK.

Figure 2-17 Local compiler settings for the ST source file

Parameter

Table 2- 6 Parameters for the local compiler settings for the ST source file

Parameter Description
Ignore global settings See the description under "Effectiveness of global or local compiler settings (Page 51)".
Suppress warnings In addition to error messages, the compiler can output warnings and information. You can

set the scope of the warning messages to be output:
Active: The compiler suppresses all warnings and information concerning this source. The
checkboxes for the warning classes can no longer be selected and show as activated
against a gray background.
Inactive: The compiler outputs the warnings and information according to the warning class
selection that follows.

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
50 Programming and Operating Manual, 05/2009

Parameter Description
Warning classes1 Only for Suppress warnings = inactive.

Active: The compiler outputs warnings and information for the selected class.
Inactive: The compiler suppresses warnings and information for the respective class.
Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).
See also For meanings of the warning classes (Page 52).
Note: If "Suppress warnings" is active, the checkboxes can no longer be selected and show
as activated against a gray background.

Selective linking1 Active: Unused code is removed from the executable program.
Inactive: Unused code is retained in the executable program.
Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).

Use preprocessor1 Active: Preprocessor is used.
Inactive: Preprocessor is not used.
Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).
See Controlling the preprocessor (Page 267).

Enable program status1 Active: Additional program code is generated to enable monitoring of program variables
(including local variables).
Inactive: Program status not possible.
Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).
See Properties of the program status (Page 289).

Permit language extensions1 Active: Language elements are permitted that do not comply with IEC 61131-3.
• Direct bit access to variables of a bit data type (Page 128)
• Accessing the input parameter of a function block when outside the function block

(Page 173)
• Calling a program while in a different program (Page 179)
Inactive: Only language elements are permitted that comply with IEC 61131-3.
Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).

Only create program
instance data once1

Active: The local variables of a program are only stored once in the user memory of the
unit. This setting is required for calling a program while inside a different program
(Page 179).
Inactive: The local variables of a program are stored according to the task assignment in
the user memory of the respective task.
Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).
See Memory ranges of the variable types (Page 212).

Enable OPC-XML Active: Symbol information for the unit variables of the ST source is available in the
SIMOTION device (required for the _exportUnitDataSet and _importUnitDataSet functions,
see the SIMOTION Basic Functions Function Manual.
Inactive: Symbol information is not created.

1 Global setting also possible, see Global settings of the compiler (Page 47). Please also refer to the description of the
effectiveness of global or local compiler settings (Page 51).

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 51

2.3.6.3 Effectiveness of global or local compiler settings
You can control the effectiveness of global and local settings in the "Ignore global settings"
parameter of the local compiler settings (Page 49). The selected setting applies to all of the
following parameters:
● Warning classes
● Selective linking
● Use preprocessor
● Enable program status
● Permit language extensions
● Only create program instance data once
● Permit single step (only in MCC programming language)
The following setting can be made for "Ignore global settings".
● Active:

Only the local settings selected apply to all the parameters referred to above. The global
settings are ignored.
The following statuses can be selected for individual parameters:
– Check mark against a white background: "Active" local setting applies
– White background only: "Inactive" local setting applies

● Inactive:
The global setting can also be adopted for all the parameters referred to above.
The following statuses can be selected for individual parameters:
– Check mark against a white background: "Active" local setting applies
– White background only: "Inactive" local setting applies
– Gray background: The global setting displayed is adopted.

Check mark against a gray background: "Active" global setting applies
Gray background only: "Inactive" global setting applies

NOTICE
If you uncheck "Ignore global settings", the global settings of the parameters concerned will
not become effective automatically. You can recognize this setting from the fact that the
checkboxes still have a white background.
A parameter's global setting will only be adopted and become effective if you have
specifically selected the gray background for the respective parameter's checkbox.

 Note
You can check the current compiler options which will be effective the next time the program
source is compiled.
• To do this, select the "Additional settings" tab (Page 52) in the Properties window of the

program source.

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
52 Programming and Operating Manual, 05/2009

2.3.6.4 Meaning of warning classes
The table lists the warning classes and their meanings.

Table 2- 7 Meaning of warning classes

Warning class Meaning
0 Warnings for unreferenced or unused code sections and data
1 Warnings for hidden identifiers
2 Warnings for data type conversion, e.g. for data change
3 Warnings about set compiler options
4 Warnings about semaphores (potentially faulty functions)
5 Warnings about alarm functions
6 Warnings about constructs in libraries (unit variables declared)
7 Messages of the preprocessor

The detailed description of the compiler error messages specifies which warning classes are
assigned to the individual warnings (16001 - 16700) (Page 388) and information (32010 -
32653) (Page 393).

2.3.6.5 Display of the compiler options
You can view for a program source the following:
● The current compiler options using the global or local settings of the compiler.
● The compiler options used for the last compilation of the program source.

Requirement
The Properties window of the program source (Page 23) is open.

Proceed as follows
To display the current compiler options using the global or local settings of the compiler
(Page 47):
● Select the Additional settings tab.

The current compiler options for the program source are displayed. They are valid for a
future compilation.

To display the compiler options used for the last compilation of the program source:
● Select the Compiler tab.

The following are displayed for the last compilation of the program source:
– The version of the used compiler.
– The used compiler options.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 53

Meaning of the compiler options

Compiler option Meaning
-c2 Do not create debug and symbol information.
-C lang_ext
-C lang_iec

"Permit language extensions"1 active.
"Permit language extensions" inactive.

-C opcsym
-C no_opcsym

"Permit OPC-XML"1 active.
"Permit OPC-XML" inactive.

-C opcsym
-C no_preproc

"Use preprocessor"1 active.
"Use preprocessor" inactive.

-C prog_once
-C prog_multi

"Create program instance data only once"1 active.
"Create program instance data only once" inactive.

-D text Preprocessor definition (Page 54).
-e local2
-e user2

Only local settings act.
Only global settings act.
No details (default): Global settings will be augmented with local settings.

-I2 Accept the package settings from device or library.
-l sel
-l no_sel

"Selective linking"1 active.
"Selective linking" inactive.

-s
-s_off

"Enable program status"1 active.
"Enable program status" inactive.

-w no_warn
-w all_warn
-w n_off
-w n_on

"Suppress warnings"1 active.
Display all warnings.
Warning class n active1.
Warning class n inactive1.

Further options Internal options of the SIMOTION compiler.
1 Meaning of the compiler option: see "Local compiler settings (Page 49)".
2 Only when the compiler is called from the command line, e.g. using scripting.

 Note
The compiler options can also be specified when the compiler is called from the command
line, e.g. using scripting.

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
54 Programming and Operating Manual, 05/2009

2.3.7 Know-how protection for ST source files
You can protect ST source files from access by unauthorized third parties. Protected ST
source files can only be opened or exported as plain text files by entering a password.
The SIMOTION online help provides additional information on know-how protection.

 Note
If you export in XML format, the ST source files are exported in an encrypted form. When
importing the encrypted XML files, the know-how protection, including login and password,
remains in place.

See also
Know-how protection for libraries (Page 250)

2.3.8 Making preprocessor definitions
You can make definitions for the preprocessor (see Control preprocessor (Page 267)) in the
Properties dialog box of the ST source file. This enables you also to control the preprocessor
with ST source files with know-how protection (see Know-how protection for ST sources
(Page 54)).

Making preprocessor definitions in the Properties dialog box
1. Open the Properties window for the ST source file

(see Changing the properties of an ST source (Page 23)):
Select the ST source file in the project navigator and select the Edit > Object properties
menu command.

2. Select the Additional settings tab.
3. Enter the preprocessor definitions (syntax as shown in the following table).
4. Confirm with OK.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 55

Figure 2-18 Preprocessor definitions

Table 2- 8 Syntax of the preprocessor definitions

Syntax Meaning
Identifier=text
’Identifier=text’
"Identifier=text"

The specified identifier is defined and replaced in the ST source file by
the specified text.
Permissible characters: See table footnote.
If the expression contains blanks (e.g. in the text), the syntax
"Identifier=text" must be used.

Identifier The specified identifier is defined and replaced in the ST source file by
blank text.
Permissible characters: See table footnote.

Multiple preprocessor definitions are separated by commas: Definition_1, Definition_2, …
Permissible characters:
• For identifier: In accordance with the rules for identifiers: Series of letters (A … Z, a … z), digits

(0 … 9) or single underscores (_) in any order, whereby the first character must be a letter or
underscore. No distinction is made between upper and lower case letters.

• For text: Sequence of any characters other than \ (backslash), ’ (single quote) and ” (double
quote). The keywords USES, USELIB and USEPACKAGE are not permitted.

 Note
Preprocessor definitions made within an ST source file with pragmas, overwrite the
definitions in the Properties dialog box.
Note the information for preprocessor statement (Page 268)!

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
56 Programming and Operating Manual, 05/2009

2.3.9 Exporting, importing and printing an ST source file
An overview is provided here of the export, import and printing of an ST source file.

2.3.9.1 Exporting an ST source file as a text file (ASCII)
To export an ST source file as an ASCII file:
1. Open the ST source file (Page 23), entering the password if necessary (for ST source

files with know-how protection (Page 54)).
2. Make sure that the cursor is in the ST editor.
3. Select the ST source file > Export menu command.
4. Enter the path and file name for the ASCII file and click Save to confirm.
The ST source file is saved as an ASCII file; the file name is given the default extension *.st.
Alternatively, you can also proceed as follows:
1. Select the ST source file in the project navigator.
2. Select Export from the context menu.
3. Only for ST source files with know-how protection (Page 54):

If the user with the login assigned to the ST source file has not yet logged on:
– Enter the corresponding password for the displayed login.
You can now export or open additional ST source files to which the same login is
assigned, without having to re-enter the password.

4. Enter the path and file name for the ASCII file and click Save to confirm.

2.3.9.2 Exporting an ST source file in XML format
Follow these steps to export an ST source file in XML format:
1. Select the ST source file in the project navigator.
2. Select the context menu Expert > Save project and export object.
3. Specify the path for the XML export, and confirm with OK.
An XML file with the ST source file name and a folder with additional associated XML files
are saved in the specified path.

 Note
Know-how-protected ST source files can also be exported in XML format. The ST source
files are exported encrypted. When importing the encrypted XML files, the know-how
protection, including login and password, remains in place.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 57

2.3.9.3 Importing a text file (ASCII) as an ST source file
To import an ASCII file as an ST source file:
1. Select the PROGRAMS folder under the appropriate SIMOTION device in the project

navigator.
2. Select the menu Insert > External source > ST source file.
3. Select the ASCII file to be imported, and click Open to confirm.

The dialog box for inserting an ST source file is displayed.
4. Enter the name of the ST source file and select the additional options (see Insert ST

source file (Page 21)).
The ASCII file is incorporated into the current project directory as an ST source file and can
be opened.

2.3.9.4 Importing XML data into ST source files
Follow these steps to import XML data into an ST source file:
1. If applicable, insert a new ST source file (see Insert ST source file (Page 21)).
2. Select the ST source file in the project navigator.
3. Select the context menu Expert > Import object.
4. Select the XML data to be imported.

The imported XML data overwrites existing data in the selected ST source file. The entire
project is saved and recompiled.

Alternative:
1. In the project navigator, select the PROGRAMS folder.
2. In the context menu, select Import object.
3. Select the XML data to be imported.

A new ST source file is created, and the XML data is imported. This ST source file is
assigned the name which is saved in the XML data; if a naming conflict occurs, it is
automatically renamed. The entire project is saved and recompiled.

 Note
Note that if the XML data to be imported was exported from an ST source file that was know-
how protected, the know-how protection, including login and password, remains in place
while importing the encrypted XML data.

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
58 Programming and Operating Manual, 05/2009

2.3.9.5 Printing an ST source file
To print an ST source file:
1. Open the ST source file.
2. Make sure that the cursor is in the ST editor.
3. Select the menu Project > Print.
The program is printed with the name and date.

2.3.10 Using an external editor

What external editors can be used?
As an alternative to the default ST editor, you can use any other ASCII editor that supports
the following function:
● External programs (for example, compiler) can be called and run on the active window.
In addition, the editor should be capable of highlighting certain text passages of the ST
source file in color (syntax coloring).

 Note
If you use an external editor, the dynamic ST source file menu and its entries are not
available. The corresponding toolbar is also inactive.
It must be possible to start compilation of the ST source file from the external editor.
Status Program continues with the ST editor.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 59

Settings for the use of an external editor
The settings are made in the SCOUT workbench:
1. Select the menu Tools > Settings.
2. Select the ST external editor tab (see figure).
3. Activate the Use external ST editor checkbox.
4. Enter the path of the external editor:

– Click Browse... and select the path and file name of the editor.

Figure 2-19 Settings for the use of an external editor

Making settings in the external editor
The following notes are of a general nature. Compare the operator instructions of the
external editor.
1. Configure the path to the ST compiler in the external editor. The compiler is located in the

STEP7 installation directory s7bin\u7wstcax.exe.
2. Syntax files are supplied for various editors. These enable the editor to highlight text

passages in color (syntax coloring). Copy the syntax file to the relevant directory and
configure the editor accordingly.

Note the following when using an external editor:

CAUTION
Close all windows of the external editor before you close a project or exit SIMOTION
SCOUT. Failure to do so could result in loss of data!

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
60 Programming and Operating Manual, 05/2009

2.3.11 ST source file menus

2.3.11.1 ST source file menu
Depending on the active application/editor or the mode (ONLINE/OFFLINE), certain
commands are not displayed or cannot be selected. The menu is only displayed if the ST
editor is active in the working area.
You can select the following functions:

Table 2- 9 ST Source File Menu

Function Meaning/Note
Close Select this command to close the active ST source file. In the event of changes, you can decide

whether you want to transfer the changed source file to the project.
Properties Select this command to display the properties of the active ST source file. Several tabs are

provided to make local settings for this source.
See: Changing the properties of an ST source file (Page 23).

Accept and compile Choose this command to transfer the current ST source file to the project and compile into
executable code.
See: Starting the compiler (Page 46).

Use preprocessor As an option, the preprocessor scans an ST source file before compiling and can, for example,
replace character strings in the file, which will then be taken into account during the
compilation. You can specifically execute the preprocessor statements with this menu
command.

Export Select this command to export the active ST source file as text file (ASCII).
See: Exporting an ST source file as a text file (ASCII) (Page 56).

Program status On/Off Select this command to start the program status test mode. During the program execution, you
can monitor the values of the variables marked in the ST source.
The following prerequisites are necessary:
1. The program must be compiled with the appropriate compiler option.
2. The project and the program must be loaded into the target system.
3. An online connection to the target system must have been established.
Select the command again to close the program status.
See: Using the program status (Page 291).

Save variables You can save retain, unit and global variables with this menu command. You can save these
variables from the RAM/ROM memory of the target device and store them on a data medium as
XML file. When these variables are restored, they can be written from the data medium to the
RAM/ROM memory of the target device.

Restore variables You can restore retain, unit and global variables from the previously exported variables with this
menu command. When these variables are restored, they can be written from the data medium
to the RAM/ROM memory of the target device.

 Getting Started with ST
 2.3 Working with the ST editor and the compiler

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 61

2.3.11.2 ST source file context menu
Depending on the active application/editor or the mode (ONLINE/OFFLINE), certain
commands are not displayed or cannot be selected.
You can select the following functions:

Table 2- 10 ST source file context menu

Function Meaning/Note
Open Select this command to open the selected ST source file.

See: Opening an existing ST source file (Page 23).
Cut The selected ST source file is deleted and saved on the clipboard.
Copy The selected ST source file is copied to the clipboard.
Inserting The contents of the clipboard are pasted to the current location of the cursor.
Delete The selected ST source file is deleted, including all the data.
Rename Select this command in order to change the name of the selected ST source file. Please

note that with name changes, it is not possible to change the referencing to this name and
that the new name must comply with the Rules for identifiers (Page 80).

Save variables You can save retain, unit and global variables with this menu command. You can save
these variables from the RAM/ROM memory of the target device and store them on a data
medium as XML file. When these variables are restored, they can be written from the data
medium to the RAM/ROM memory of the target device.

Restore variables You can restore retain, unit and global variables from the previously exported variables
with this menu command. When these variables are restored, they can be written from the
data medium to the RAM/ROM memory of the target device.

Expert
Import object Select this command to import XML data to the selected ST source file from an ST source

file, which you have previously exported to another project. The existing data in the ST
source file being imported is overwritten.
See: Importing XML data into an ST source file (Page 57).

Save project and export
object

Select this command to export the selected ST source file in XML format. You can import
the exported data into other projects.
See: Exporting an ST source file in XML format (Page 56).

Accept and compile Choose this command to transfer the current ST source file to the project and compile into
executable code.
See: Starting the compiler (Page 46).

Run preprocessor As an option, the preprocessor scans an ST source file before compiling and can, for
example, replace character strings in the file, which will then be taken into account during
the compilation. You can specifically execute the preprocessor statements with this menu
command.

Program status On/Off Select this command to start the program status test mode. During the program execution,
you can monitor the values of the variables marked in the ST source file.
The following prerequisites are necessary:
1. The program must be compiled with the appropriate compiler option.
2. The project and the program must be loaded into the target system.
3. An online connection to the target system must have been established.
Select the command again to close the program status.
See: Using the program status (Page 291).

Getting Started with ST
2.3 Working with the ST editor and the compiler

 SIMOTION ST Structured Text
62 Programming and Operating Manual, 05/2009

Function Meaning/Note
Export Select this command to export the selected ST source file as a text file (ASCII).

See: Exporting an ST source file as a text file (ASCII) (Page 56).
Know-how protection

Set Select this command to protect the selected ST source file from unauthorized access by
third parties. Protected ST source files can only be opened or exported as plain text files by
entering a password.
See: Know-how protection for ST source files (Page 54).

Delete Select this command in order to cancel the know-how protection for the selected source file
temporarily or permanently. The password needs to be entered in order to do this.
See: Know-how protection for ST source files (Page 54).

Reference data
Create Select this command in order to create the reference data (cross-reference list, program

structure, code attributes) for the selected ST source file.
The cross-reference list for the selected ST source file appears after this command is
executed.
See: Reference data (Page 259), creating a cross-reference list (Page 259).

Display
Cross references The cross-reference list for the selected ST source file is formed from the reference data

created previously and is displayed. The cross-reference list contains the declaration and
uses all the identifiers for the selected ST source file.
See: Content of the cross-reference list (Page 260).

Program structure The program structure for the selected ST source file is formed from the reference data
created previously and is displayed. The program structure contains all the subroutine calls
and their nesting within the selected ST source file.
See: Content of the program structure (Page 264).

Code attributes The code attributes for the selected ST source file are formed from the reference data
created previously and are displayed. The code attributes contain information about the
storage requirements of various data areas of the selected ST source file.
See: Code attribute contents (Page 265).

Print Select this command to print the selected ST source file. You can choose whether you
wish to print the text of the ST source file and/or their properties.

Print preview Choose this command to generate a preview of the expected print output.
Properties Select this command to display the properties of the selected ST source file. Several tabs

are provided to make local settings for this source file.
See: Changing the properties of an ST source file (Page 23).

 Getting Started with ST
 2.4 Creating a sample program

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 63

2.4 Creating a sample program
In this section, we create a short program to illustrate the steps involved, including starting
and testing. Testing is described in Program test (Page 276).

Function
The Flash program sets a bit in an output byte of your target system and rotates it within this
byte. This causes each bit of the output byte to be set and reset in succession. After the last
bit of the byte, the first bit is to be set again. You can observe the result of the program at the
outputs of your target system.

2.4.1 Requirements
To create the sample program, you need
● A SIMOTION project and
● A SIMOTION device (e.g. SIMOTION C240) within the project whose output is configured

at address 62.

2.4.2 Opening or creating a project
Projects contain all the information about the hardware and configuration. This includes the
programs you use to control the hardware.

Proceed as follows
If a project does not yet exist, proceed as follows:
1. Select Project in the menu bar.
2. Select New or Open.
3. Specify a name for a new project, and click OK to confirm.
For details, see the online help.

Getting Started with ST
2.4 Creating a sample program

 SIMOTION ST Structured Text
64 Programming and Operating Manual, 05/2009

Figure 2-20 Creating a new project

 Getting Started with ST
 2.4 Creating a sample program

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 65

2.4.3 Making the hardware known

The steps are as follows:
1. Create and configure a new SIMOTION device (e.g. C240 V4.1).
2. Configure an output in HW Config at Address 62.
For more details on steps 1 and 2, refer to the online help.

Figure 2-21 Change in HW Config

Getting Started with ST
2.4 Creating a sample program

 SIMOTION ST Structured Text
66 Programming and Operating Manual, 05/2009

2.4.4 Entering source text with the ST editor

Proceed as follows
1. In the project navigator, open the tree for your SIMOTION device (programs are assigned

to the SIMOTION device on which they are to run).
2. Select the PROGRAMS folder and choose Insert > Program > ST source file.
3. Enter a name for the ST source file consisting of up to 128 characters (see figure), e.g.

ST_1, and click OK to confirm the entries.
The ST editor appears in the working area. The ST source file ST_1 is inserted in the
navigator.

4. Enter the source text from Source text of the sample program (Page 68), preferably with
indented lines. To do this, press the TAB key.
The features of the ST editor are described in Working with the ST editor (Page 25); the
structure of an ST source file is described in detail in Structure of the ST source file
(Page 94) and in Source file sections (Page 183).

5. Use comments as often as possible. Enter your comment after the // characters if the
comment fits on one line of text. If the comment extends across several lines, insert it
between character pairs (* and *).

6. Save the complete project with Project > Save.

 Getting Started with ST
 2.4 Creating a sample program

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 67

Figure 2-22 Naming the ST source file

2.4.4.1 Functions of the editor
In addition to simple text input, the ST editor provides the following advanced/convenience
functions for documenting the functionality of your source text:
● Standard Windows user features (for example, Undo with Ctrl+Z or Redo with Ctrl+Y)
● Syntax coloring (different colors for different language elements)
● Source file printout in an appropriate layout with page number, source file name and

printing date
● Export/import of the source file
● Source file archiving (via the project)
A detailed description of the functions is contained in Working with the ST editor (Page 25)
and in Making settings for the compiler (Page 47).

Getting Started with ST
2.4 Creating a sample program

 SIMOTION ST Structured Text
68 Programming and Operating Manual, 05/2009

2.4.4.2 Source text of the sample program
The table shows the source code of the sample program. You need to enter it in the same
way to create executable code.

Table 2- 11 Flash sample program

INTERFACE
 VAR_GLOBAL
 counterVar : INT := 1; // counter variable
 outputVar : BYTE := 1; // auxiliary tag
 END_VAR
 PROGRAM Flash;
END_INTERFACE

IMPLEMENTATION
 PROGRAM Flash
 IF counterVar >= 500 THEN // in every 500th pass
 %QB62 := outputVar; // set output byte
 outputVar := ROL (in := outputVar, n := 1);
 (* // rotate bit in byte
 one digit to the left*)
 counterVar := 0; // reset counter
 END_IF;
 counterVar := counterVar + 1; // increment counter
 END_PROGRAM
END_IMPLEMENTATION

 Getting Started with ST
 2.4 Creating a sample program

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 69

2.4.5 Compiling a sample program
Before you can run or test your program, you must compile it into executable machine code.
The compiler performs this task.

2.4.5.1 Starting the compiler
Before you can run or test your program, you must compile it into executable machine code.
The ST compiler performs this task.
Start the compiler as follows:
1. Click in the window with the ST editor to display the ST source file menu. This menu is a

dynamic menu and is only displayed if the window of the ST editor is active.
2. Start the compiler by selecting the ST source file > Accept and compile menu command.

2.4.5.2 Correcting errors
The compiler checks the syntax of the ST source file. The Compile/check output tab of the
detail view displays the successful compilation of the source text or compiler errors. The
error details include: Name of the ST source file, the line number where the error occurred,
the error number and an error description.
Proceed as follows to correct an error in the sample program:
1. Double-click the error message. The cursor is placed at the relevant line in the ST source

file. See Example for error messages (Page 70).
2. Start debugging the first error.
3. Start the compilation operation again.
4. Repeat the entire operation until no more errors are displayed (0 errors).
After a successful compilation, you will have created an application program with the name
flash. This program is displayed in the project navigator below the ST_1 program source file.

Getting Started with ST
2.4 Creating a sample program

 SIMOTION ST Structured Text
70 Programming and Operating Manual, 05/2009

2.4.5.3 Example of error messages

Figure 2-23 Error messages during ST source file compilation

The figure shows an example of compiling the ST source file ST_1 (see Source text of the
sample program (Page 68), in which the following change has been made: The semicolon is
missing in the statement "counterVar := counterVar + 1" at the end of line 18.
The compiler does not detect the error until Line19, because it continues with the compilation
after the missing semicolon.
Once the missing semicolon is added, the ST source file is compiled without errors.
A detailed list of all compiler error messages can be found in Compiler error messages and
their correction (Page 376).

See also
Compiler Error Messages and Remedies (Page 376)

 Getting Started with ST
 2.4 Creating a sample program

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 71

2.4.6 Running the sample program
Before you can run the program, you must assign it to an execution level or task. When you
have done this, you can establish the connection to the target system, download the
program to the target system and then start it.

2.4.6.1 Assigning a sample program to an execution level
The execution levels specify the order in which the programs run. Each execution level
contains one or more tasks to which you can assign programs.
The assignment of a program to a task can only be performed after compilation and before
the program is loaded onto the target system.
Assign the sample program to the BackgroundTask. The BackgroundTask is provided for the
programming of cyclic sequences without a fixed time frame. It is executed cyclically in the
round robin execution level, which means it will be automatically restarted on completion.
How to assign the sample program to the BackgroundTask:
1. When you double-click the Execution system element in the project navigator, the window

containing the execution system and the program assignment appears in the working
area.

2. Click BackgroundTask to select it for the program assignment.
The program assignment on the left side of the window shows you all the compiled
programs that can be assigned to tasks.

3. In the Programs list, click sample program ST_1.flash. Then, click the >> button to assign
the program to the BackgroundTask.
The result is shown in the following figure. The program ST_1.flash is displayed in the
Programs used list box.

For more information on the execution system and assignment of programs to tasks, see
SIMOTION Motion Control Basic Functions Function Description.

Getting Started with ST
2.4 Creating a sample program

 SIMOTION ST Structured Text
72 Programming and Operating Manual, 05/2009

Figure 2-24 Assigning the sample program to the BackgroundTask

 Getting Started with ST
 2.4 Creating a sample program

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 73

2.4.6.2 Establishing a connection to the target system
Before a connection to the target system can be set up, the PC interface card must be
configured and connected to the target system.
Proceed as follows to connect to the target system:
1. Select the Project > Connect to target system menu command.

The Diagnostics overview tab is opened in the detail view. The diagnostics overview
shows you the operating state, memory allocation and CPU utilization for the device you
are connected to. You can see at the lower right edge of the screen that you are
connected to the target system.

Note
For more detailed information, refer to the SIMOTION SCOUT Configuring Manual and
SIMOTION SCOUT online help.

Figure 2-25 Establishing a connection to the target system

Getting Started with ST
2.4 Creating a sample program

 SIMOTION ST Structured Text
74 Programming and Operating Manual, 05/2009

2.4.6.3 Downloading the sample program to the target system
Proceed as follows to download the sample program to the target system:
1. Switch the target system to STOP.
2. Select the Target system > Download > Project to target system menu command.
3. Confirm all further queries.
The Target system output window in the detail view opens and displays the result of the
download.

Figure 2-26 Downloading the sample program to the target system

 Getting Started with ST
 2.4 Creating a sample program

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 75

2.4.6.4 Starting and testing the sample program

Starting sample program
Proceed as follows to start the sample program:
● Switch your target system to RUN (see hardware description).
The lamps flash in sequence at the outputs of your target system.

Testing a sample program
See Program test (Page 276).

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 77

ST Fundamentals 3

This section describes the language resources available in ST and how to use them. Please
note that functions, function blocks and the task control system are described in the following
chapters. For a complete formal language description containing all the syntax diagrams,
see Appendix Rules (Page 332).

3.1 Language description resources
Syntax diagrams are used as a basis for the language description in the following sections of
the manual. They provide you with an invaluable insight into the syntactic (i.e. grammatical)
structure of ST.

3.1.1 Syntax diagram
The syntax diagram is a graphical representation of the language structure. The structure is
described by a sequence of rules. A rule can build on existing rules.

Figure 3-1 Syntax diagram

The syntax diagram in the previous figure is read from left to right. The following rule
structures must be observed:
● Sequence: Sequence of blocks
● Option: Statement(s) that can be skipped
● Iteration: Repetition of one or more statements
● Alternative: Branch

ST Fundamentals
3.1 Language description resources

 SIMOTION ST Structured Text
78 Programming and Operating Manual, 05/2009

3.1.2 Blocks in syntax diagrams
A block is a basic element or an element that is itself composed of blocks. The figure shows
the symbol types used to represent the blocks:

Figure 3-2 Blocks

Formatted and unformatted rules must be observed when entering source text, i.e. when
converting the blocks or elements of a syntax diagram into source text (see Help for the
language description (Page 316)).

See also
Formal Language Description (Page 315)

3.1.3 Meaning of the rules (semantics)
The rules can only represent the formal structure of the language. The meaning (i.e.
semantics) is not always apparent. For this reason, additional information is written beside
the rules if the meaning is critical. Examples are:
● Where elements of the same kind have a different meaning, an additional name is

appended. For example, an addition is specified in the date rule for every decimal digit
string element - either year, month or day (see Literals (Page 333)). The name indicates
the usage.

● Important restrictions are noted next to the rules. For example, in the integer rule for -
(minus), it is noted that the minus can appear only in front of decimal digit strings of data
types SINT, INT, and DINT (see Literals (Page 333)).

See also
Formal Language Description (Page 315)

 ST Fundamentals
 3.2 Basic elements of the language

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 79

3.2 Basic elements of the language
The basic elements of the ST language include the ST character set, reserved identifiers
constructed from the ST character set (e.g. language commands), self-defined identifiers
and numbers.
The ST character set and the reserved identifiers are basic elements (terminals) as they are
described verbally and not by another rule. Self-defined identifiers and numbers are not
terminals as they are described by other rules.
In the syntax diagrams, terminals are represented by circles or oval symbols, while
composite elements are represented by rectangles (see Blocks in syntax diagrams
(Page 78)). Below is a selection of the main terminals; for a complete overview, refer to
Basic elements (terminals) (Page 318).

3.2.1 ST character set
ST uses the following letters and digits from the ASCII character set:
● The lower and upper case letters from A to Z
● The Arabic digits from 0 to 9
Letters and digits are the most commonly used characters. For example, identifiers (see
Identifiers in ST (Page 80)) consist of a combination of letters, digits and the underscore.
The underscore is one of the special characters.
Special characters have a fixed meaning in ST (see Formal Language Description
(Page 315), Basic elements (terminals) (Page 318)).

ST Fundamentals
3.2 Basic elements of the language

 SIMOTION ST Structured Text
80 Programming and Operating Manual, 05/2009

3.2.2 Identifiers in ST
Identifiers are names in ST. These names can be defined by the system, such as language
commands. However, the names can also be user-defined, for example, for a constant,
variable or function.

3.2.2.1 Rules for identifiers
Identifiers are made up of letters (A … Z, a … z), numbers (0 … 9) or single underscores (_)
in any order, whereby the first character must be a letter or underscore. No distinction is
made between upper and lower case letters (e.g. Anna and AnNa are considered to be
identical by the compiler).
An identifier can by represented formally by the following syntax diagram:

Figure 3-3 Syntax: Identifier

When assigning a name, it is best to choose a unique, meaningful name that contributes to
the clarity of the program.
The syntax diagram in the figure says that the first character of an identifier must be a letter
or underscore. An underscore must be followed by a letter or number, i.e. more than one
underscore in succession is not allowed. This can be followed by any number or sequence of
underscores, letters or numbers. The only exception here again is that two underscores may
not appear together.

 ST Fundamentals
 3.2 Basic elements of the language

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 81

3.2.2.2 Examples of identifiers

Examples of valid identifiers
The following names are valid identifiers:

x y12 _sum temperature R_CONTROLLER3
name area myFB table

Examples of invalid identifiers
The following names are not valid identifiers:

Invalid identifier Reason
4ter The first character must be a letter or underscore.
*#AB Special characters (except underscores) are not permitted.
RR__20 Two underscores in succession are not permitted.
S value Blank spaces are not permitted as they are special characters.
Array While ARRAY is formally a valid identifier, it is a reserved identifier, i.e. it

may only be used as predefined. This means you cannot use this name for
your own purposes, for example, for a variable.

Identifiers that may not be used
Never define identifiers that:
● Are identical to a reserved identifier

For more information, see Reserved identifiers (Page 82).
● Match a task name

For a more detailed explanation, refer to the SIMOTION Basic Functions Function
Manual.

Note
If possible, avoid defining identifiers that begin with _ (underscore), struct, enum or
command.
While these are valid identifiers, their use can cause errors later when you download
(additional) technology packages. Command words, parameters or data types in the
basic system and in technology packages begin with these characters.

ST Fundamentals
3.2 Basic elements of the language

 SIMOTION ST Structured Text
82 Programming and Operating Manual, 05/2009

3.2.3 Reserved identifiers
Reserved identifiers may only be used as predefined. You may not declare a variable or data
type with the name of a reserved identifier.
There is no distinction between upper and lower case notation.
A list of all identifiers with a predefined meaning can be found in the SIMOTION Basic
Functions Function Manual:
● For more information on protected and reserved identifiers in the ST programming

language,
see also "Protected identifiers (Page 83)" and "Further reserved identifiers (Page 88)"

● For general standard functions and the data types defined in these functions,
see also "Error Sources and Program Test (Page 275)"

● General system function blocks
● System functions, system variables and data types of SIMOTION devices

(see also list manuals of the SIMOTION devices)
● System functions, system variables and data types of technology objects

(see also parameter manuals for the technology packages)

 ST Fundamentals
 3.2 Basic elements of the language

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 83

3.2.3.1 Protected identifiers
The protected identifiers of the ST language are listed in the table.
For a brief explanation of all reserved words, please refer to Appendix Reserved Words
(Page 323), and Syntax diagrams (Page 77) in Appendix Rules (Page 332).

Table 3- 1 Protected identifiers in ST programming language

A
ABS
ACOS
AND
ANYOBJECT
ANYOBJECT_TO_OBJECT
ANYTYPE_TO_BIGBYTEARRAY

ANYTYPE_TO_LITTLEBYTEARRAY
ARRAY
AS
ASIN
AT
ATAN

B
BIGBYTEARRAY_TO_ANYTYPE
BOOL
BOOL_TO_BYTE
BOOL_TO_DWORD
BOOL_TO_WORD
BOOL_VALUE_TO_DINT
BOOL_VALUE_TO_INT
BOOL_VALUE_TO_LREAL
BOOL_VALUE_TO_REAL
BOOL_VALUE_TO_SINT
BOOL_VALUE_TO_UDINT
BOOL_VALUE_TO_UINT
BOOL_VALUE_TO_USINT

BY
BYTE
BYTE_TO_BOOL
BYTE_TO_DINT
BYTE_TO_DWORD
BYTE_TO_INT
BYTE_TO_SINT
BYTE_TO_UDINT
BYTE_TO_UINT
BYTE_TO_USINT
BYTE_TO_WORD
BYTE_VALUE_TO_LREAL
BYTE_VALUE_TO_REAL

C
CASE
CONCAT
CONCAT_DATE_TOD
CONSTANT
COS
CTD
CTD_DINT

CTD_UDINT
CTU
CTU_DINT
CTU_UDINT
CTUD
CTUD_DINT
CTUD_UDINT

ST Fundamentals
3.2 Basic elements of the language

 SIMOTION ST Structured Text
84 Programming and Operating Manual, 05/2009

D
DATE
DATE_AND_TIME
DATE_AND_TIME_TO_DATE
DATE_AND_TIME_TO_TIME_OF_DAY
DELETE
DINT
DINT_TO_BYTE
DINT_TO_DWORD
DINT_TO_INT
DINT_TO_LREAL
DINT_TO_REAL
DINT_TO_SINT
DINT_TO_STRING
DINT_TO_UDINT
DINT_TO_UINT
DINT_TO_USINT
DINT_TO_WORD
DINT_VALUE_TO_BOOL

DO
DT
DT_TO_DATE
DT_TO_TOD
DWORD
DWORD_TO_BOOL
DWORD_TO_BYTE
DWORD_TO_DINT
DWORD_TO_INT
DWORD_TO_REAL
DWORD_TO_SINT
DWORD_TO_UDINT
DWORD_TO_UINT
DWORD_TO_USINT
DWORD_TO_WORD
DWORD_VALUE_TO_LREAL
DWORD_VALUE_TO_REAL

E
 ELSE
ELSIF
END_CASE
END_EXPRESSION
END_FOR
END_FUNCTION
END_FUNCTION_BLOCK
END_IF
END_IMPLEMENTATION
END_INTERFACE
END_LABEL
END_PROGRAM

END_REPEAT
END_STRUCT
END_TYPE
END_VAR
END_WAITFORCONDITION
END_WHILE
ENUM_TO_DINT
 EXIT
EXP
EXPD
EXPRESSION
EXPT

F
F_TRIG
FALSE
FIND

FOR
FUNCTION
FUNCTION_BLOCK

G
GOTO

 ST Fundamentals
 3.2 Basic elements of the language

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 85

I
IF
IMPLEMENTATION
INSERT
INT
INT_TO_BYTE
INT_TO_DINT
INT_TO_DWORD
INT_TO_LREAL
INT_TO_REAL

INT_TO_SINT
INT_TO_TIME
INT_TO_UDINT
INT_TO_UINT
INT_TO_USINT
INT_TO_WORD
INT_VALUE_TO_BOOL
INTERFACE

L
LABEL
LEFT
LEN
LIMIT
LITTLEBYTEARRAY_TO_ANYTYPE
LN
LOG
LREAL
LREAL_TO_DINT
LREAL_TO_INT

LREAL_TO_REAL
LREAL_TO_SINT
LREAL_TO_STRING
LREAL_TO_UDINT
LREAL_TO_UINT
LREAL_TO_USINT
LREAL_VALUE_TO_BOOL
LREAL_VALUE_TO_BYTE
LREAL_VALUE_TO_DWORD
LREAL_VALUE_TO_WORD

G
MAX
MID
MIN

MOD
MUX

N
NOT
O
OF OR
P
PROGRAM

ST Fundamentals
3.2 Basic elements of the language

 SIMOTION ST Structured Text
86 Programming and Operating Manual, 05/2009

R
R_TRIG
REAL
REAL_TO_DINT
REAL_TO_DWORD
REAL_TO_INT
REAL_TO_LREAL
REAL_TO_SINT
REAL_TO_STRING
REAL_TO_TIME
REAL_TO_UDINT
REAL_TO_UINT
REAL_TO_USINT
REAL_VALUE_TO_BOOL

REAL_VALUE_TO_BYTE
REAL_VALUE_TO_DWORD
REAL_VALUE_TO_WORD
REPEAT
REPLACE
RETAIN
RETURN
RIGHT
ROL
ROR
RS
RTC

S
SEL
SHL
SHR
SIN
SINT
SINT_TO_BYTE
SINT_TO_DINT
SINT_TO_DWORD
SINT_TO_INT
SINT_TO_LREAL
SINT_TO_REAL
SINT_TO_UDINT
SINT_TO_UINT
SINT_TO_USINT

SINT_TO_WORD
SINT_VALUE_TO_BOOL
SQRT
SR
STRING
STRING_TO_DINT
STRING_TO_LREAL
STRING_TO_REAL
STRING_TO_UDINT
STRUCT
StructAlarmId
STRUCTALARMID_TO_DINT
StructTaskId

T
TAN
THEN
TIME
TIME_OF_DAY
TIME_TO_INT
TIME_TO_REAL
TO

TOD
TOF
TON
TP
TRUE
TRUNC
TYPE

 ST Fundamentals
 3.2 Basic elements of the language

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 87

U
UDINT
UDINT_TO_BYTE
UDINT_TO_DINT
UDINT_TO_DWORD
UDINT_TO_INT
UDINT_TO_LREAL
UDINT_TO_REAL
UDINT_TO_SINT
UDINT_TO_STRING
UDINT_TO_UINT
UDINT_TO_USINT
UDINT_TO_WORD
UDINT_VALUE_TO_BOOL
UINT
UINT_TO_BYTE
UINT_TO_DINT
UINT_TO_DWORD
UINT_TO_INT
UINT_TO_LREAL
UINT_TO_REAL
UINT_TO_SINT

UINT_TO_UDINT
UINT_TO_USINT
UINT_TO_WORD
UINT_VALUE_TO_BOOL
UNIT
UNTIL
USELIB
USEPACKAGE
USES
USINT
USINT_TO_BYTE
USINT_TO_DINT
USINT_TO_DWORD
USINT_TO_INT
USINT_TO_LREAL
USINT_TO_REAL
USINT_TO_SINT
USINT_TO_UDINT
USINT_TO_UINT
USINT_TO_WORD
USINT_VALUE_TO_BOOL

V
VAR
VAR_GLOBAL
VAR_IN_OUT
VAR_INPUT

VAR_OUTPUT
VAR_TEMP
VOID

W
WAITFORCONDITION
WHILE
WITH
WORD
WORD_TO_BOOL
WORD_TO_BYTE
WORD_TO_DINT
WORD_TO_DWORD

WORD_TO_INT
WORD_TO_SINT
WORD_TO_UDINT
WORD_TO_UINT
WORD_TO_USINT
WORD_VALUE_TO_LREAL
WORD_VALUE_TO_REAL

X
XOR

ST Fundamentals
3.2 Basic elements of the language

 SIMOTION ST Structured Text
88 Programming and Operating Manual, 05/2009

3.2.3.2 Additional reserved identifiers
The table contains additional reserved identifiers that are reserved for future expansions.

Table 3- 2 Additional reserved identifiers of the ST language

A
ACTION
ADD
ADD_DT_TIME

ADD_TIME
ADD_TOD_TIME

B
BCD_TO_BYTE
BCD_TO_DINT
BCD_TO_DWORD
BCD_TO_INT

BCD_TO_LWORD
BCD_TO_SINT
BCD_TO_WORD
BYTE_TO_BCD

C
CONFIGURATION
CTD_LINT
CTD_ULINT
CTU_LINT

CTU_ULINT
CTUD_LINT
CTUD_ULINT

D
DINT_TO_BCD
DIV

DIVTIME
DWORD_TO_BCD

E
EN
END_ACTION
END_CONFIGURATION
END_RESOURCE

END_STEP
END_TRANSITION
ENO
EQ

F
F_EDGE FROM
G
GE GT
I
INITIAL_STEP INT_TO_BCD
L
LE
LINT
PM

LWORD
LWORD_TO_BCD

G
MUL MULTIME
N
MS
R
R_EDGE RESOURCE

 ST Fundamentals
 3.2 Basic elements of the language

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 89

S
SEMA
SINT_TO_BCD
STEP
SUB
SUB_DATE_DATE

SUB_DT_DT
SUB_DT_TIME
SUB_TIME
SUB_TOD_TIME
SUB_TOD_TOD

T
TRANSITION
U
ULINT
V
VAR_ACCESS
VAR_ALIAS

VAR_EXTERNAL
VAR_OBJECT

W
WORD_TO_BCD

ST Fundamentals
3.2 Basic elements of the language

 SIMOTION ST Structured Text
90 Programming and Operating Manual, 05/2009

3.2.4 Numbers and Boolean values
Numbers can be written in various ways in ST. A number can contain a sign, a decimal point
or an exponent. The following rules apply to all numbers:
● Commas and blanks may not appear within a number.
● An underscore (_) is allowed as a visual separator.
● The number can be preceded by a plus (+) or minus (–). If no sign is used, it is

assumed that the number is positive.
● Numbers may not violate certain maximum and minimum values.

3.2.4.1 Integers
An integer contains neither a decimal point nor an exponent. An integer is thus a sequence
of numeric digits that can be preceded with a sign.
The following are valid integers:

0 1 +1 -1
743 -5280 60_000 -32_211_321

The following integers are invalid for the reasons indicated:

123,456 Commas are not permitted.
36. An integer may not contain a decimal point.
10 20 30 Blanks are not permitted.

In ST, you can represent integers in different number systems. This is achieved by inserting
a keyword prefix for the number system.
The following are used:
● 2# for the binary system
● 8# for the octal system
● 16# for the hexadecimal system.
Valid representations of the decimal number 15 are:

2#1111 8#17 16#F

 ST Fundamentals
 3.2 Basic elements of the language

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 91

3.2.4.2 Floating-point numbers
A floating-point number can contain a decimal point or an exponent (or both). A decimal
point must appear between two digits. A floating-point number therefore cannot start or end
with a decimal point.
The following are valid floating-point numbers:

0.0 1.3 -0.2 827.602
0000.0 +0.000743 60_000.15 -315.0066

The following floating-point numbers are invalid:

1. A numeric digit must be present before the decimal point and after the

decimal point.
1,000.0 Commas are not permitted.
1.333.333 Two points are not permitted.

3.2.4.3 Exponents
An exponent can be included to define the position of the decimal point. If no decimal point
appears, it is assumed that it is on the right side of the digit. The exponent itself must be
either a positive or negative integer. Base 10 is expressed by the letter E.
The magnitude 3 x 108 can be represented in ST by the following correct floating-point
numbers:

3.0E+8 3.0E8 3e+8 3E8 0.3E+9
0.3e9 30.0E+7 30e7

The following floating-point numbers are invalid:

3.E+8 A numeric digit must be present before the decimal point and after the decimal

point.
8e2.3 The exponent must be an integer.
.333e-3 A numeric digit must be present before the decimal point and after the decimal

point.
30 E8 Blanks are not permitted.

3.2.4.4 Boolean values
Boolean values are bit constants. They must be represented by a value of zero (0) or one (1)
or by the keywords FALSE or TRUE.
Example:

a := 1; // is equivalent a := TRUE
b := FALSE; // is equivalent to b := 0

ST Fundamentals
3.2 Basic elements of the language

 SIMOTION ST Structured Text
92 Programming and Operating Manual, 05/2009

3.2.4.5 Data types of numbers
The compiler automatically selects the elementary data type that is suitable for the number
depending on its value and use (in an expression or a value assignment).
You can also specify the data type directly: Place the data type (numeric data type or bit data
type) and the character "#" in front of the number.
Examples:

INT#255 INT#16#FF INT#8#377
WORD#255 WORD#16#FF WORD#8#377
REAL#255 REAL#16#FF REAL#8#377
REAL#255.0 REAL#2.55E2 LREAL#255.0

 Note
Floating-point numbers can only be assigned to data types REAL and LREAL.

 ST Fundamentals
 3.2 Basic elements of the language

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 93

3.2.5 Character strings

What is a character string?
A character string is a sequence of zero or more characters with an apostrophe at the start
and at the end. Each character is encoded with 1 byte (8 bits) in the string.
A character can be entered as follows:
● As printable characters (ASCII code $20 to $7E, $80 to $FF), except the dollar signs

(ASCII code $24) and apostrophe (ASCII code $27), as these have a special function
within the string

● As the 2-digit hexadecimal ASCII code of the relevant character preceded by the dollar
sign ($)

● As a combination of two characters according to the following table:

Table 3- 3 2-character combinations for special characters in strings

Character combination Meaning
$$ Dollar sign $ ($24)
$’ Apostrophe ’ ($27)
$L or $l Line Feed LF ($0A)
$N or $n Carriage Return + Line Feed CR + LF ($0D$0A)
$P or $p Form Feed FF ($0C)
$R or $r Carriage Return CR ($0D)
$T or $t Horizontal tab (HT) ($09)

Examples:

’’ Empty string (length 0).
’A’ String of length 1 containing the letter A.
’ ’ String of length 1 containing a blank.
’$’’ String of length 1 containing an apostrophe.
’RL’
’$0D$0A’

Two equivalent representations for a string of length 2 containing the characters
CR and LF.

’$$1.00’ String of length 5 containing $1.00.
’TextRL’ String of length 6 containing the word Text followed by the characters CR and LF.
’ÄÖÜ’
’$C4$D6$FC’

Two equivalent representations for a string of length 3 containing the German
umlauts ÄÖü (A, O, u with diaresis).

ST Fundamentals
3.3 Structure of an ST source file

 SIMOTION ST Structured Text
94 Programming and Operating Manual, 05/2009

3.3 Structure of an ST source file
An ST source basically consists of continuous text. This text can be structured by dividing it
into logical sections. Detailed rules for this can be found in Source file modules (Page 183).
A brief summary is given below:
● An ST source file is a logical unit that you create in your project and that can appear

several times. It is often referred to as a unit.
● The logic sections of an ST source file are called Sections (see table).
● A user program is the sum of all program sources (e.g. ST source files, MCC units).
Each logical section of the ST source file has a beginning and end denoted by specific
keywords:

FUNCTION Test1 : REAL

 VAR CONSTANT
 PI : REAL := 3.1415;
 END _ VAR

 VAR _ INPUT
 r1 : REAL;
 END _ VAR

 Test1 := PI * r1 * r1;
 :
 :
END _ FUNCTION

Figure 3-4 Structure of an ST source file

You do not have to program every function yourself. You can also make use of SIMOTION
system components. These are preprogrammed sections such as system functions or the
functions of the technology objects (TO functions).

 ST Fundamentals
 3.3 Structure of an ST source file

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 95

Table 3- 4 Major sections of an ST source file

Source file section Description
Unit statement (optional) Contains the name of the ST
Interface section Contains statements for importing and exporting

variables, types and program organization units (POUs).
Implementation section Contains executable sections of the ST source file.
POU (program organization unit) Single executable section of the ST source file (program,

function, function block)
Declaration section Contains declarations (e.g. of variables and types), can

be included in the interface section and the
implementation section as well as in a POU.

Statement section Contains executable statements of a POU.

 Note
An extensively annotated template for example unit is also available in the online Help. You
can use it as a template for a new ST source file.
Call the ST editor Help and click the relevant link. Copy the text to the open window of the
ST editor and modify the template according to your requirements.
Template for example unit contains a copy of this template.

ST Fundamentals
3.3 Structure of an ST source file

 SIMOTION ST Structured Text
96 Programming and Operating Manual, 05/2009

3.3.1 Statements
The statement section of a program organization unit (POU – program, function, function
block) consists of repeated single statements. It follows the declaration section of a POU and
ends with the end of the POU. There are no explicit keywords for the start and end.
There are three basic types of statements in ST:
● Value assignments

Assignment of an expression to a variable; see Variables declaration (Page 116)
● Control statements

Repetition or branching of statements; see Control statements (Page 143)
● Subroutine execution

Functions (FC) and function blocks (FB); see Functions, function blocks, programs
(Page 159)

Table 3- 5 Examples of statements

...
// Value assignment
 Status := 17;

// Control statement
 IF a = b THEN
 FOR c := 1 TO 10 DO
 b := b + c;
 END_FOR;
 END_IF;

// Function call
 retVal := Test1(10.0);
...

 ST Fundamentals
 3.3 Structure of an ST source file

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 97

3.3.2 Comments
Comments are used for documentation purposes and to help the user understand the source
file section. After compilation, they have no meaning for the program execution.
There are two types of comments:
● Line comment
● Block comment
The line comment is preceded by //. The compiler will process the text which follows until the
end of the line as a comment.
You can enter a block comment over several lines if it is preceded by (* and ends with *).
Please note the following when inserting comments:
● You can use the complete extended ASCII character set in comments.
● The character pairs (* and *) are ignored within the line comment.
● Nesting of block comments is not allowed. However, you can nest line comments in block

comments.
● Comments can be inserted at any position, but not in rules that have to be maintained,

such as in names of identifiers. For more information about these rules, refer to Help for
the language description (Page 316).

Table 3- 6 Examples of comments

 // This is a one-line comment.
 a := 5;

 // This is an example of a one-line comment
 // used several times in succession.
 b := 23;

(* The above example is easier to edit as a
 multi-line comment.
 *)
 c := 87;

ST Fundamentals
3.4 Data types

 SIMOTION ST Structured Text
98 Programming and Operating Manual, 05/2009

3.4 Data types
A data type is used to determine how the value of a variable or constant is to be used in a
program source.
The following data types are available to the user:
● Elementary data types
● User-defined data types (UDT)

– Simple derivatives
– Arrays
– Enumerators
– Structures (Struct)

● Technology object data types
● System data types

See also
Elementary data types (Page 99)
Description of the technology object data types (Page 112)
System data types (Page 115)

 ST Fundamentals
 3.4 Data types

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 99

3.4.1 Elementary data types

3.4.1.1 Elementary data types
Elementary data types define the structure of data that cannot be broken down into smaller
units. An elementary data type describes a memory area with a fixed length and stands for
bit data, integers, floating-point numbers, duration, time, date and character strings.
All the elementary data types are listed in the table below:

Table 3- 7 Bit widths and value ranges of the elementary data types

Type Reserv. word Bit width Range of values
Bit data type
Data of this type uses either 1 bit, 8 bits, 16 bits, or 32 bits. The initialization value of a variable of this data type is 0.

Bit BOOL 1 0, 1 or FALSE, TRUE
Byte BYTE 8 16#0 to 16#FF
Word WORD 16 16#0 to 16#FFFF

Double word DWORD 32 16#0 to 16#FFFF_FFFF
Numeric types
These data types are available for processing numeric values. The initialization value of a variable of this data type is 0 (all
integers) or 0.0 (all floating-point numbers).

Short integer SINT 8 -128 to 127 (-2**7 to 2**7-1)
Unsigned short integer USINT 8 0 to 255 (0 to 2**8-1)
Integer INT 16 -32_768 to 32_767 (-2**15 to 2**15-1)
Unsigned integer UINT 16 0 to 65_535 (0 to 2**16-1)
Double integer DINT 32 -2_147_483_648 to 2_147_483_647 (-2**31 to 2**31-1)
Unsigned double
integer

UDINT 32 0 to 4_294_96_7295 (0 to 2**32-1)

Floating-point number
(per IEEE -754)

REAL 32 -3.402_823_466E+38 to -1.175_494_351E-38,
0.0,
+1.175_494_351E-38 to +3.402_823_466E+38
Accuracy:
23-bit mantissa (corresponds to 6 decimal places), 8-bit
exponent, 1-bit sign.

Long floating-point
number
(in accordance with
IEEE-754)

LREAL 64 -1.797_693_134_862_315_8E+308 to
-2.225_073_858_507_201_4E-308,
0.0,
+2.225_073_858_507_201_4E-308 to
+1.797_693_134_862_315_8E+308
Accuracy:
52-bit mantissa (corresponds to 15 decimal places), 11-bit
exponent, 1-bit sign.

ST Fundamentals
3.4 Data types

 SIMOTION ST Structured Text
100 Programming and Operating Manual, 05/2009

Type Reserv. word Bit width Range of values
Time types
These data types are used to represent various date and time values.

Duration in increments
of 1 ms

TIME 32 T#0d_0h_0m_0s_0ms to T#49d_17h_2m_47s_295ms
Maximum of two digits for the values day, hour, minute,
second and a maximum of three digits for milliseconds
Initialization with T#0d_0h_0m_0s_0ms

Date in increments of 1
day

DATE 32 D#1992-01-01 to D#2200-12-31
Leap years are taken into account, year has four digits,
month and day are two digits each
Initialization with D#0001-01-01

Time of day in steps of
1 ms

TIME_OF_DAY
(TOD)

32 TOD#0:0:0.0 to TOD#23:59:59.999
Maximum of two digits for the values hour, minute, second
and maximum of three digits for milliseconds
Initialization with TOD#0:0:0.0

Date and time DATE_AND_TI
ME
(DT)

64 DT#1992-01-01-0:0:0.0 to DT#2200-12-31-23:59:59.999
DATE_AND_TIME consists of the data types DATE and
TIME
Initialization with DT#0001-01-01-0:0:0.0

String type
Data of this type represents character strings, in which each character is encoded with the specified number of bytes.
The length of the string can be defined at the declaration. Indicate the length in "[" and "]", e.g. STRING[100]. The default
setting consists of 80 characters.
The number of assigned (initialized) characters can be less than the declared length.
 String with 1

byte/character
STRING 8 All characters with ASCII code $00 to $FF are permitted.

Default ’ ’ (empty string)

NOTICE
During variable export to other systems, the value ranges of the corresponding data types
in the target system must be taken into account.

Figure 3-5 Syntax: STRING data type

 ST Fundamentals
 3.4 Data types

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 101

3.4.1.2 Value range limits of elementary data types
The value range limits of certain elementary data types are available as constants.

Table 3- 8 Symbolic constants for the value range limits of elementary data types

Symbolic constant Data type Value Hex notation
SINT#MIN SINT -128 16#80
SINT#MAX SINT 127 16#7F
INT#MIN INT -32768 16#8000
INT#MAX INT 32767 16#7FFF
DINT#MIN DINT -2147483648 16#8000_0000
DINT#MAX DINT 2147483647 16#7FFF_FFFF
USINT#MIN USINT 0 16#00
USINT#MAX USINT 255 16#FF
UINT#MIN UINT 0 16#0000
UINT#MAX UINT 65535 16#FFFF
UDINT#MIN UDINT 0 16#0000_0000
UDINT#MAX UDINT 4294967295 16#FFFF_FFFF
T#MIN
TIME#MIN

TIME T#0ms 16#0000_00001

T#MAX
TIME#MAX

TIME T#49d_17h_2m_47s_295ms 16#FFFF_FFFF1

TOD#MIN
TIME_OF_DAY#MIN

TOD TOD#00:00:00.000 16#0000_00001

TOD#MAX
TIME_OF_DAY#MAX

TOD TOD#23:59:59.999 16#0526_5BFF1

1 Internal display only

ST Fundamentals
3.4 Data types

 SIMOTION ST Structured Text
102 Programming and Operating Manual, 05/2009

3.4.1.3 General data types
General data types are often used for the input and output parameters of system functions
and system function blocks. The subroutine can be called with variables of each data type
that is contained in the general data type.
The following table lists the available general data types:

Table 3- 9 General data types

General data type Data types contained
ANY_BIT BOOL, BYTE, WORD, DWORD
ANY_INT SINT, INT, DINT, USINT, UINT, UDINT
ANY_REAL REAL, LREAL
ANY_NUM ANY_INT, ANY_REAL
ANY_DATE DATE, TIME_OF_DAY (TOD), DATE_AND_TIME (DT)
ANY_ELEMENTARY ANY_BIT, ANY_NUM, ANY_DATE, TIME, STRING
ANY ANY_ELEMENTARY, user-defined data types (UDT), system data types,

data types of the technology objects

 Note
You cannot use general data types as type identifiers in variable or type declarations.
The general data type is retained when a user-defined data type (UDT) is derived directly
from an elementary data type (only possible with the SIMOTION ST programming language).

 ST Fundamentals
 3.4 Data types

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 103

3.4.1.4 Elementary system data types
In the SIMOTION system, the data types specified in the table are treated similarly to the
elementary data types. They are used with many system functions.

Table 3- 10 Elementary system data types and their use

Identifier Bit width Use
StructAlarmId 32 Data type of the alarmId for the project-wide unique identification of

the messages. The alarmId is used for the message generation.
See Function Manual SIMOTION Basic Functions.
Initialization with STRUCTALARMID#NIL

StructTaskId 32 Data type of the taskId for the project-wide unique identification of the
tasks in the execution system.
See Function Manual SIMOTION Basic Functions.
Initialization with STRUCTTASKID#NIL

Table 3- 11 Symbolic constants for invalid values of elementary system data types

Symbolic constant Data type Significance
STRUCTALARMID#NIL StructAlarmId Invalid AlarmId
STRUCTTASKID#NIL StructTaskId Invalid TaskId

3.4.2 User-defined data types

3.4.2.1 User-defined data types
User-defined data types (UDT) are created with the construct TYPE/END_TYPE in the
declaration subsections of subsequent source file modules (see Breakdown of ST source file
(Page 94) and Source file modules (Page 183)):
● Interface section
● Implementation section
● Program organization unit (POU)
You can continue to use the data types you created in the declaration section. The source
file section determines the range of the type declaration.

See also
Syntax of user-defined data types (type declaration) (Page 104)
Derivation of elementary or derived data types (Page 106)
Derived data type ARRAY (Page 107)
Derived data type - Enumerator (Page 109)
Derived data type STRUCT (structure) (Page 110)

ST Fundamentals
3.4 Data types

 SIMOTION ST Structured Text
104 Programming and Operating Manual, 05/2009

3.4.2.2 Syntax of user-defined data types (type declaration)

Figure 3-6 Syntax: User-defined data type

The declaration of the UDT is introduced with the keyword TYPE.

 ST Fundamentals
 3.4 Data types

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 105

For each data type to be declared, this is followed by (see figure):
1. Name:

The name of the data type must comply with the rules for identifiers.
2. Data type specification

The term data type comprises (see Derivation of elementary or derived data types
(Page 106)):
– Elementary data types
– Previously declared UDTs
– TO data types
– System data types
The following data type specifications are also possible:
– ARRAY data type specification (see Derived data type ARRAY - field (Page 107))
– Enumerator data type specification (see Derived data type enumerator (Page 109))
– STRUCT data type specification (see Derived data type STRUCT – structure

(Page 110))
The references in brackets refer to the following sections, in which the respective data
type specification is described in detail.

3. Optional initialization:
You can specify an initialization value for the data type. If you subsequently declare a
variable of this data type, the initialization value is assigned to the variable.
Exception: With the STRUCT data type specification, each individual component is
initialized within the data type specification.
See also Initialization of variables or data types (Page 119).

The complete UDT declaration is terminated with the keyword END_TYPE. You can create
any number of data types within the TYPE/END_TYPE construct. You can use the defined
data types to declare variables or parameters.
UDTs can be nested in any way as long as the syntax in the figure is observed. For example,
you can use previously defined UDTs or nested structures as a data type specification. Type
declarations can only be used sequentially and not in nested structures.

 Note
You can learn how to declare variables and parameters in Overview of all variable
declarations (Page 117), and how to assign values with UDT in Syntax for value assignment
(Page 124).

Below is a description of individual data type specifications for UDTs and examples
demonstrating their use.

ST Fundamentals
3.4 Data types

 SIMOTION ST Structured Text
106 Programming and Operating Manual, 05/2009

3.4.2.3 Derivation of elementary or derived data types
In the derivation of data types, an elementary or user-defined data type (UDT) is assigned to
the data type to be defined in the TYPE/END_TYPE construct:
TYPE identifier : Elementary data type { := initialization } ; END_TYPE
TYPE identifier : User-defined data type { := initialization } ; END_TYPE
Once you have declared the data type, you can define variables of derived data type
identifier. This is equivalent to declaring variables as data type elementary data type.

Table 3- 12 Examples of derivation of elementary data types

TYPE
 I1: INT; // Elementary data type
 R1: REAL; // Elementary data type
 R2: R1; // Derived data type (UDT)
END_TYPE
VAR
 // These variables can be used wherever
 // variables of type INT can be used.
 myI1 : I1;
 myI2 : INT; // No derived data type!

 // These variables can be used wherever
 // variables of type REAL can be used.
 myR1 : R1;
 myR2 : R2;
END_VAR
myI1 := 1;
myI2 := 2;
myR1 := 2.22;
myR2 := 3.33;

 ST Fundamentals
 3.4 Data types

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 107

3.4.2.4 Derived data type ARRAY
The ARRAY derived data type combines a defined number of components of the same data
type in the TYPE/END_TYPE construct. The syntax diagram in the following figure shows
this data type, which is specified more precisely after the reserved identifier OF.
TYPE identifier : ARRAY data type specification { := initialization } ; END_TYPE

Figure 3-7 Syntax: ARRAY data type specification

The index specification describes the limits of the array:
● The array limits specify the minimum and maximum value for the index. They can be

specified using constants or constant expressions; the data type is DINT (or can be
implicitly converted to DINT – see Converting elementary data types (Page 154)).

● The array limits must be separated by two periods.
● The entire index specification is enclosed in square brackets.
● The index itself can be an integer value of data type DINT (or it can be implicitly

converted to DINT – see Converting elementary data types (Page 154)).

Note
If array limits are violated during runtime, a processing error occurs in the program (see
SIMOTION Basic Functions Function Manual).

You declare the data type of the array components with the data type specification. All of the
options described in this chapter can be used as data types, for example, even user-defined
data types (UDT).
There are several different ARRAY types:
● The one-dimensional ARRAY type is a list of data elements arranged in ascending order.
● The two-dimensional ARRAY type is a table of data consisting of lines and columns. The

first dimension refers to the line number, the second to the column number.
● The higher-dimensional ARRAY type is an expansion of the two-dimensional ARRAY

type that includes additional dimensions.

ST Fundamentals
3.4 Data types

 SIMOTION ST Structured Text
108 Programming and Operating Manual, 05/2009

Table 3- 13 Examples of one-dimensional arrays

TYPE
 x : ARRAY[0..9] OF REAL;
 y : ARRAY[1..10] OF C1;
END_TYPE

Two-dimensional arrays are comparable to a table with lines and columns. You can create
two- or multi-dimensional arrays by means of a multi-level type declaration, see example:

Table 3- 14 Examples of multi-dimensional arrays

TYPE
 a : ARRAY[1..3] OF INT; // one-dimensional array (3 columns):
 matrix1: ARRAY[1..4] OF a; // two-dimensional Field
 // (4 lines with 3 columns)
 b: ARRAY[4..8] OF INT; // one-dimensional array (5 columns):
 matrix2: ARRAY[10..16] OF b; // two-dimensional Field
 // (7 lines with 5 columns)
END_TYPE

VAR
 m: matrix1; // Variable m of data type two-dim. Field
 n: matrix2; // Variable m of data type two-dim. Field
END_VAR

m[4][3] := 9; // Write to Matrix1 at line 4, column 3
n[16][8] := 10; // Write to Matrix2 at line 7, column 5

In the example, you can define:
1. Table columns a[1] to a[3] as a one-dimensional array that will contain integers.
2. Table lines matrix1[1] to matrix2[4] also as an array but take as the data type

specification the array a you just created with the columns of the table.
When you specify an array in the data type specification, you create a second dimension.
You can create further dimensions in this way.

Now declare a variable using the data type created for the table. You address each
dimension of the table using square brackets, in this case specifying the line and column.

 ST Fundamentals
 3.4 Data types

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 109

3.4.2.5 Derived data type - Enumerator
In the case of enumerator data types, a restricted set of identifiers or names is assigned to
the data type to be defined in the TYPE/END_TYPE construct:
TYPE identifier : Enumerator data type specification { := initialization } ; END_TYPE

Figure 3-8 Syntax: Enumerator data type specification

Once you have declared the identifier data type, you can define variables in the enumerator
data type. In the statement section, you can assign only elements from the list of defined
identifiers (enumerator elements) to these variables.
You can also specify the data type directly: Place the enumerator data type identifier and the
"#" sign in front of the enumerator element (see Table Examples of enumerator data types).
You can obtain the first and last value of an enumeration data type with enum_type#MIN and
enum_type#MAX respectively, whereby enum_type is the enumeration data type identifier.
You can obtain the numeric value of an enumeration element with the ENUM_TO_DINT
conversion function.

Table 3- 15 Examples of enumerator data types

TYPE
 C1: (RED, GREEN, BLUE);
END_TYPE

VAR
 myC11, myC12, myC13 : C1;
END_VAR

myC11 := GREEN;
myC1l := C1#GREEN;
myC12 := C1#MIN; // RED
myC13 := C1#MAX; // BLUE

 Note
You will also find enumerator data types as system data types.
Enumerator data types can be components of a structure, meaning that they can be found at
any lower level in the user-defined data structure.

ST Fundamentals
3.4 Data types

 SIMOTION ST Structured Text
110 Programming and Operating Manual, 05/2009

3.4.2.6 Derived data type STRUCT (structure)
The derived data type STRUCT, or structure, encompasses an area of a fixed number of
components in the TYPE/END_TYPE construct; the data types of these components can
vary:
TYPE identifier : STRUCT data type specification; END_TYPE

Figure 3-9 Syntax: STRUCT data type specification

The syntax of the component declaration is shown in the following figure.

Figure 3-10 Syntax: Component declaration

The following are permitted as data types:
● Elementary data types
● Previously declared UDTs
● System data types
● TO data types
● ARRAY data type specification

 ST Fundamentals
 3.4 Data types

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 111

You also have the option to assign initialization values to the components. Proceed as when
initializing variables or data types (see Initialization of variables or data types (Page 119)).

 Note
The following data specifications cannot be used directly within a component declaration:
• STRUCT data type specifications
• Enumerator data type specifications
Solution: Declare a UDT (user-defined data type) beforehand with the above-mentioned
specifications and use this in the component declaration.
This allows you to nest STRUCT data types.
You will also find STRUCT data types as system data types.

This example shows how a UDT is defined and how this data type is used within a variable
declaration.

Table 3- 16 Examples of derived data type STRUCT

TYPE // UDT definition
 S1: STRUCT
 var1 : INT;
 var2 : WORD := 16#AFA1;
 var3 : BYTE := 16#FF;
 var4 : TIME := T#1d_1h_10m_22s_2ms;
 END_STRUCT;
END_TYPE

VAR
 myS1 : S1;
END_VAR

myS1.var1 := -4;
myS1.var4 := T#2d_2h_20m_33s_2ms;

ST Fundamentals
3.4 Data types

 SIMOTION ST Structured Text
112 Programming and Operating Manual, 05/2009

3.4.3 Technology object data types

3.4.3.1 Description of the technology object data types
You can declare variables with the data type of a technology object (TO). The following table
shows the data types for the available technology objects in the individual technology
packages.
For example, you can declare a variable with the data type posaxis and assign it an
appropriate instance of a position axis. Such a variable is often referred to as a reference.

Table 3- 17 Data types of technology objects (TO data type)

Technology object Data type Contained in the technology
package

Drive axis driveAxis CAM1 2, PATH, CAM_EXT
External encoder externalEncoderType CAM1 2, PATH, CAM_EXT
Measuring input measuringInputType CAM1 2, PATH, CAM_EXT
Output cam outputCamType CAM1 2, PATH, CAM_EXT
Cam track (as of V3.2) _camTrackType CAM, PATH, CAM_EXT
Position axis posAxis CAM1 3, PATH, CAM_EXT
Following axis followingAxis CAM1 4, PATH, CAM_EXT
Following object followingObjectType CAM1 4, PATH, CAM_EXT
Cam camType CAM, PATH, CAM_EXT
Path axis (as of V4.1) _pathAxis PATH, CAM_EXT
Path object (as of V4.1) _pathObjectType PATH, CAM_EXT
Fixed gear (as of V3.2) _fixedGearType CAM_EXT
Addition object (as of V3.2) _additionObjectType CAM_EXT
Formula object (as of V3.2) _formulaObjectType CAM_EXT
Sensor (as of V3.2) _sensorType CAM_EXT
Controller object (as of V3.2) _controllerObjectType CAM_EXT
Temperature channel temperatureControllerType TControl
General data type,
to which every TO can be
assigned

ANYOBJECT

1) As of Version V3.1, the BasicMC, Position and Gear technology packages are no longer
contained.
2) For Version V3.0, also contained in the BasicMC, Position and Gear technology packages.
3) For Version V3.0, also contained in the Position and Gear technology packages.
4) For Version V3.0, also contained in the Gear technology package.

You can access the elements of technology objects (configuration data and system
variables) via structures (see SIMOTION Basic Functions Function Manual).

 ST Fundamentals
 3.4 Data types

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 113

Table 3- 18 Symbolic constants for invalid values of technology object data types

Symbolic constant Data type Meaning
TO#NIL ANYOBJECT Invalid technology object

See also
Inheritance of the properties for axes (Page 113)
Examples of the use of technology object data types (Page 113)

3.4.3.2 Inheritance of the properties for axes
Inheritance for axes means that all of the data types, system variables and functions of the
TO driveAxis are fully included in the TO positionAxis. Similarly, the position axis is fully
included in the TO followingAxis, the following axis in the TO pathAxis. This has, for
example, the following effects:
● If a function or a function block expects an input parameter of the driveAxis data type, you

can also use a position axis or a following axis or a path axis when calling.
● If a function or a function block expects an input parameter of the posAxis data type, you

can also use a following axis or a path axis when calling.

3.4.3.3 Examples of the use of technology object data types
Below, you will see an example of optional use of a variable with a technology object data
type (you will find an example of mandatory use of a variable with a TO data type in the
SIMOTION Basic Functions Function Manual). A second example shows the alternative
without using a variable with TO data type.
A TO function will be used to enable an axis in the main part of a program so that the axis
can be positioned. After the positioning operation, the current position of the axis will be
recorded using a structure access.

ST Fundamentals
3.4 Data types

 SIMOTION ST Structured Text
114 Programming and Operating Manual, 05/2009

The first example uses a variable with TO data type to demonstrate its use.

Table 3- 19 Example of the use of a data type for technology objects

VAR
 myAxis : posAxis; // Declaration variable for axis
 myPos : LREAL; // Variable for position of axis
 retVal: DINT; // Variable for return value of the
 // TO function
END_VAR
myAxis := Axis1; // The name Axis1 was defined when the axis
 // was configured in the project navigator.

// Call of function with variables of TO data type:
retVal := _enableAxis(axis := myAxis, commandId := _getCommandId());

// Axis is positioned.
retVal := _pos(axis := myAxis,
 position := 100,
 commandId:= _getCommandId());

// Scan the position using structure access
myPos := myAxis.positioningState.actualPosition;

The second example does not use a variable with TO data type.

Table 3- 20 Example of using a technology object

VAR
 myPos : LREAL; // Variable for position of axis
 retVal: DINT; // Variable for return value of TO function
END_VAR

// Call of function without variable of TO data type
// The name Axis1 was defined when the axis
// was configured in the project navigator.
retVal := _enableAxis(axis := Axis1,
 commandId:= _getCommandId());

// Axis is positioned.
retVal := _pos(axis := Axis1
 position := 100,
 commandId:= _getCommandId());

// Scan the position using structure access
myPos := Axis1.positioningState.actualPosition;

You will find details for configuration of technology objects in the SIMOTION Motion Control
function descriptions.

 ST Fundamentals
 3.4 Data types

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 115

3.4.4 System data types
There are a number of system data types available that you can use without a previous
declaration. And, each imported technology packages provides a library of system data
types.
Additional system data types (primarily enumerator and STRUCT data types) can be found
● In parameters for the general standard functions (see SIMOTION Basic Functions

Function Manual)
● In parameters for the general standard function modules (see SIMOTION Basic

Functions Function Manual)
● In system variables of the SIMOTION devices (see relevant parameter manuals)
● In parameters for the system functions of the SIMOTION devices (see relevant parameter

manuals)
● In system variables and configuration data of the technology objects (see relevant

parameter manuals)
● In parameters for the system functions of the technology objects (see relevant parameter

manuals)

ST Fundamentals
3.5 Variable declaration

 SIMOTION ST Structured Text
116 Programming and Operating Manual, 05/2009

3.5 Variable declaration
A variable defines a data item with variable contents that can be used in the ST source file. A
variable consists of an identifier (e.g. myVar1) that can be freely selected and a data type
(e.g. BOOL). Reserved identifiers (see Reserved identifiers (Page 82)) must not be used as
identifiers.

3.5.1 Syntax of variable declaration
Variables are always created according to the same pattern in the declaration section of a
source file section:
1. Start a declaration block with an appropriate keyword (e.g. VAR, VAR_GLOBAL – see

Overview of all variable declarations (Page 117)).
2. This is followed by the actual variable declarations (see figure); you can create as many

of these as you wish. The order is arbitrary.
3. End the declaration block with END_VAR.
4. You can create further declaration blocks (also with the same keyword).

Figure 3-11 Syntax: Variable declaration

Note the following:
● The variable name must be an identifier, i.e. it can only contain letters, numbers or an

underscore, but not special characters.
● The following are permissible as data types:

– Elementary data types
– UDT (user-defined data types)
– System data types
– TO data types
– ARRAY data type specifications
– Designation of a function block (instance declaration – see Calling functions and

function modules (Page 166)).
● You can assign initial values to the variables in the declaration statement. This is known

as initialization (see Initialization of variables or data types (Page 119)).

 ST Fundamentals
 3.5 Variable declaration

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 117

Deviations from the pattern presented are as follows:
● For constant declarations (a constant must be initialized with a value, see Constants

(Page 122)),
● For process image access (see Overview of all variable declarations (Page 117)):

– A variable declaration is not required for absolute process image access,
– Initialization is not permitted for symbolic process image access.

Table 3- 21 Examples of variable declarations

VAR CONSTANT
 PI : REAL := 3.1415;
END_VAR

VAR
 // Declaration of a variable ...
 var1 : REAL;
 // ... or if there are several variables of the same type:
 var2, var3, var4 : INT;
 // Declaration of a one-dimensional array:
 a1 : ARRAY[1..100] OF REAL;
 // Declaration of a character string (string):
 str1 : STRING[40];
END_VAR

3.5.2 Overview of all variable declarations
You specify the name, data type, and initial values of variables in the variable and parameter
declarations. You always execute these declarations in the declaration sections of the
following source file sections:
● Interface section
● Implementation section
● POU (program, function, function block, expression)
The source file section also determines which variables you can declare (see table), as well
as their range.
For additional information about source file modules, refer to Breakdown of ST source file
(Page 94) and Source file modules (Page 183).

ST Fundamentals
3.5 Variable declaration

 SIMOTION ST Structured Text
118 Programming and Operating Manual, 05/2009

Table 3- 22 Keywords for declaration blocks

Keyword Meaning Declaration in the following
declaration sections

VAR Declaration of temporary or static variables
See Variable model (Page 200).

Any POU

VAR_GLOBAL Declaration of unit variables
See Variable model (Page 200).

Interface section
Implementation section

VAR_IN_OUT Variable declaration of in/out parameter; the
POU accesses this variable directly (using a
reference) and can change it immediately.
See Defining functions (Page 160), Defining
function blocks (Page 161).

Function
Function block
Expression

VAR_INPUT Variable declaration of input parameter, value
is externally supplied and cannot be changed
within the POU.
See Defining functions (Page 160), Defining
function blocks (Page 161).

Function
Function block
Expression

VAR_OUTPUT Variables declaration output parameter; value
is transmitted from the function block
See Defining functions (Page 160), Defining
function blocks (Page 161).

Function block

VAR_TEMP Declaration of temporary variables
See Variable model (Page 200).

Program
Function block

RETAIN Declaration of retentive variables
See Variable model (Page 200).

Only as a supplement to
VAR_GLOBAL in the interface
and implementation section

CONSTANT Declaration of constants
See Constants (Page 122).

Only as a supplement:
• to VAR in FB, FC, or

program
• to VAR_GLOBAL in interface

or implementation section

 ST Fundamentals
 3.5 Variable declaration

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 119

3.5.3 Initialization of variables or data types
The assignment of initial values to the variables or data types within a declaration is optional;
see Syntax of variables declaration (Page 116) and Syntax of user-defined data types
(Page 104).
● If there is no initialization specified in the variable declaration, the compiler automatically

assigns the initialization value specified in the data type declaration to the variables.
● If there is no initialization specified in the data type declaration either, the compiler

assigns the value of zero to the variables or data types. Exception:
– For time data types: The initialization value for each data type
– For enumeration data types: 1st value of the enumeration

You preassign a variable or a user-defined data type with initial values by assigning a value
(:=) after the data type specification.
● Assign the elementary data types (or data types derived from elementary data types) a

constant expression in accordance with Figure Syntax: constant expression.
● Assign an array initialization list to an array (ARRAY) in accordance with the figure titled

Syntax: Array initialization list.
● Assign a structure initialization list to the individual components of a structure (STRUCT)

in accordance with the figure titled Syntax: Structure initialization list.
● Assign an enumerator element to an enumerator data type.

Figure 3-12 Syntax: Variable initialization

The initialization value assigned to a variable is calculated from the constant expression at
the time of the compilation. For information about the syntax of the constant expression, see
the figure titled Syntax: Constant expression.

ST Fundamentals
3.5 Variable declaration

 SIMOTION ST Structured Text
120 Programming and Operating Manual, 05/2009

Note that a variable list (a1, a2, a3, .. : INT := ..) can be initialized with a common value. In
this case, you do not have to initialize the variables individually (a1 : INT := .. ; a2 : INT := .. ;
etc.).

 Note
The constant expressions used for initialization are calculated in the data type of the
declared variables or in the declared data type.

Figure 3-13 Syntax: Constant expression

 ST Fundamentals
 3.5 Variable declaration

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 121

Figure 3-14 Syntax: Array initialization list

Figure 3-15 Syntax: Structure initialization list

Table 3- 23 Examples of variable initialization

VAR
 // Declaration of a variable ...
 var1 : REAL := 100.0;
 // ... or if there are several variables of the same type:
 var2, var3, var4 : INT := 1;
 var5 : REAL := 3 / 2;
 var6 : INT := 5 * SHL(1, 4)
 myC1 : C1 := GREEN;
 array1 : ARRAY [0..4] OF INT := [1, 3, 8, 4, 0];
 array2 : ARRAY [0..5] OF DINT := [6 (7)];
 array3 : ARRAY [0..10] OF INT := [2 (2(3),3(1)),0];
 // is equivalent to [2(3),3(1),2(3),3(1)),0]
 // Initialization as follows:
 // Array elements 0, 1 with 3;
 // Array elements 2, 3, 4 with 1;
 // Array elements 5, 6 with 3;
 // Array elements 7, 8, 9 with 1;
 // Array element 10 with 0
 myAxis : PosAxis := TO#NIL;
END_VAR

ST Fundamentals
3.5 Variable declaration

 SIMOTION ST Structured Text
122 Programming and Operating Manual, 05/2009

Table 3- 24 Examples of data type initialization

TYPE
 // Initialization of a derived data type
 type1 : REAL := 10.0;
 // Initialization of an enumeration data type
 cmyk_colour : (cyan, magenta, yellow, black) := yellow;
 // Initialization of structures
 var_rgb_colour : STRUCT
 red, green, blue : USINT := 255;// white
 END_STRUCT;
 new_colour : var_rgb_colour := (red := 0, blue := 0);//green
END_TYPE

Variables of a technology object (TO) data type are initialized by the compiler with TO#NIL.
The effect of tasks on variable initialization is described in the SIMOTION Basic Functions
Function Manual.

3.5.4 Constants
Constants are data with a fixed value that you cannot change during program runtime.
Constants are declared in the same way as variables:
● In the declaration section of a POU for local constants (see Figure Syntax: Constant

block in a POU and syntax: Constant declaration).
● In the interface or implementation section of the ST source file for unit constants (see

FigureSyntax: Unit constants in the interface or implementation section and syntax:
Constant declaration). You can import unit constants declared in the interface section into
other ST source files (see Variable model (Page 200)).

The source file section also determines the range of the constant declaration.

Figure 3-16 Syntax: Constant block in a POU

Figure 3-17 Syntax: Unit constants in interface or implementation section

 ST Fundamentals
 3.5 Variable declaration

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 123

Figure 3-18 Syntax: Constant declaration

The value assigned to a constant is calculated from the constant expression at the time of
compilation. For information about the syntax of the constant expression, see the figure titled
Syntax: Constant expression.

Table 3- 25 Examples of constants

VAR CONSTANT
 PI : REAL := 3.1415;
 intConst : INT := 10;
 sintConst : SINT := 0;
 dintConst : DINT := 10_000;
 timeConst : TIME := TIME#1h;
 strConst : STRING[40] := 'Example of a string';
 Two_PI : REAL := 2 * PI;
END_VAR

ST Fundamentals
3.6 Value assignments and expressions

 SIMOTION ST Structured Text
124 Programming and Operating Manual, 05/2009

3.6 Value assignments and expressions
You have no doubt already created value assignments with the character string :=. This may
have been for a statement as part of an example (see table titled Examples of statements in
Statements (Page 96)) or when initializing variables in the declaration subsection of a source
file module.
However, this is only a small range of the options available for formulating value
assignments. This section of the manual now describes this important topic in detail using a
large number of examples for illustration purposes.

See also
Notes on avoiding errors and on efficient programming (Page 275)

3.6.1 Value assignments

3.6.1.1 Syntax of the value assignment
A value assignment is used to assign the value of an expression to a variable. The previous
value is overwritten. Before a value can be correctly assigned, a variable must be declared in
the declaration section (see Syntax of variable declaration (Page 116)).
As shown in the following syntax diagram, the expression is evaluated on the right side of
the assignment sign :=. The result is stored in the variable, whose name is on the left side of
the assignment sign (target variable). All target variables supported from a formal viewpoint
are shown in the figure.

 ST Fundamentals
 3.6 Value assignments and expressions

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 125

Figure 3-19 Syntax: Value assignments

The following contains explanations and examples for the left side of the value assignment:
● Value assignments with variables of an elementary data type (Page 126) ,
● Value assignments with variables of the derived enumerator data type (Page 130)
● Value assignments with variables of the derived ARRAY data type (Page 130)
● Value assignments with variables of the derived STRUCT data type (Page 131)
● Value assignments with absolute PI access (to addresses of the process image), see:

Absolute access to the fixed process image of the BackgroundTask (absolute PI access)
(Page 240).

How the right side of a value assignment, i.e. an expression, is formed, is described in
Expressions (Page 132).

ST Fundamentals
3.6 Value assignments and expressions

 SIMOTION ST Structured Text
126 Programming and Operating Manual, 05/2009

3.6.1.2 Value assignments with variables of an elementary data type
An expression with an elementary data type (Page 99) can be assigned to a variable when
one of the following conditions is fulfilled:
● Expression and target variable have the same data type.

Note the following information on the STRING data type (Page 126).
● The data type of the expression can be implicitly converted to the data type of the target

variable (see Conversion of elementary data types (Page 154) and Functions for the
conversion of numerical data types and bit data types in the SIMOTION Basic Functions
Function Manual).

Examples

elemVar := 3*3;
elemVar := elemVar1;

See also
Value assignments with variables of a bit data type (Page 128)

3.6.1.3 Value assignments with variables of the STRING elementary data type

Assignments between variables of the STRING data type
There are no restrictions to assignments between variables of the STRING data type
(character strings) that have been declared with different lengths. If the declared length of
the target variable is shorter than the current length of the assigned character string, the
character string is truncated to the length of the target variable.
Exception: The following applies for an in/out assignment (parameter transfer to an in/out
parameter): The declared length of the assigned variable (actual parameter) must be greater
than or equal to the declared length of the target variable (formal in/out parameter). See
Parameter transfer to in/out parameters (Page 167).
Please also refer to Syntax diagram of STRING data type (Page 99):
Examples:

string20 := 'ABCDEFG';
string20 := string30;

 ST Fundamentals
 3.6 Value assignments and expressions

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 127

Access to elements of a string
The individual elements of a string can be addressed in the same way as the elements of an
array [1..n]. These elements are converted implicitly to the elementary data type BYTE. In
this way assignments between string elements and variables of the BYTE data type are
possible.
Examples:

byteVar := string20[5];
string20[10] := byteVar;

The following special cases have to be taken into account:
1. When assigning a variable of the BYTE data type to a string element

(e.g. stringVar[n:] := byteVar):
– The string element to which the value is to be assigned lies outside of the declared

length of the string:
The string remains unchanged, TSI#ERRNO is set to 1.

– The string element to which the value is to be assigned lies outside of the assigned
length of the string (n > LEN(stringVar)), but within the declared length:
The length of the string is adjusted, the string elements between LEN(stringvar) and n
are set to $00.

2. When assigning a string element to a variable of the BYTE data type
(byteVar := stringVar[n:]):
– The string element to which the variable is to be assigned lies outside of the assigned

length of the string (n > LEN(stringVar)):
The variable is set to 16#00, TSI#ERRNO to 2.

Editing strings
Various system functions are available for the editing of strings, such as the joining of
strings, replacement and extraction of characters, see SIMOTION Basic Functions Function
Manual.

Converting between numbers and strings
Various system functions are available for conversion between variables of numeric data
types and strings; see Converting elementary data types (Page 154) and the SIMOTION
Basic Functions Function Manual.

ST Fundamentals
3.6 Value assignments and expressions

 SIMOTION ST Structured Text
128 Programming and Operating Manual, 05/2009

3.6.1.4 Value assignments with variables of a bit data type

Access to individual bits of a bit data type variable
You can also access the individual bits of a variable of data type BYTE, WORD or DWORD:
● With standard functions (see SIMOTION Basic Functions Function Manual):

You can read, write or invert any bit of a bit string with the functions _getBit, _setBit and
_toggleBit.
You can specify the number of the bit via a variable.

● With direct bit access:
You can define the bit of the variable that you want to access as a constant, via a
separate point behind the variable.
You can only specify the number of the bit via a constant.
To be able to use this option, you must activate the "Permit language extensions"
compiler option (see Global compiler settings (Page 47) and Local compiler settings
(Page 49)).

Figure 3-20 Syntax: Direct bit access

 ST Fundamentals
 3.6 Value assignments and expressions

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 129

Table 3- 26 Example of direct bit access

// Only with compiler option "Permit language extensions"
FUNCTION f : VOID
 VAR CONSTANT
 BIT_7 : INT := 7;
 END_VAR
 VAR
 dw : DWORD;
 b: BOOL;
 END_VAR
 b := dw.BIT_7; // Access to bit 7
 b := dw.3; // Access to bit 3
// b := dw.33; // Compilation error;
 // Bit 33 not permitted.
END_FUNCTION

NOTICE
The access to bits of an I/O variable or system variable can be interrupted by other tasks.
There is therefore no guarantee of consistency.

Editing variables of the bit data types
You can:
1. Combine several variables of the same data type into one variable of a higher-level data

type (e.g. two variables of the BYTE data type into one of the WORD data type). Various
system functions are available for this, e.g. WORD_FROM_2BYTE.

2. Split one variable into several variables of a lower-level data type (e.g. one variable of the
DWORD data type into four of the BYTE data type). Various system functions are
available for this, e.g. DWORD_TO_4BYTE.

3. Rotate or shift the bits within a variable. The bit sting standard functions ROL, ROR, SHL
and SHR are available for this.

These system functions and system function blocks are described in the SIMOTION Basic
Functions Function Manual.

Logic operators
Variables of the bit data types can be combined with logic operators; see Logic expressions
and bit-serial expressions (Page 140).

ST Fundamentals
3.6 Value assignments and expressions

 SIMOTION ST Structured Text
130 Programming and Operating Manual, 05/2009

3.6.1.5 Value assignments with variables of the derived enumerator data type
Each expression and each variable of the derived enumerator data type (see also: Derived
enumerator data type (Page 109)) can be assigned to another variable of the same type.

type1 := BLUE;

3.6.1.6 Value assignments with variables of the derived ARRAY data type
An array consists of several dimensions and array elements, all of the same type (see also:
Derived ARRAY data type (Page 107)).
There are various ways to assign arrays to variables. You can assign complete arrays,
individual elements, or parts of arrays:
● A complete array can be assigned to another array if both the data types of the

components and the array limits (the smallest and largest possible array indices) are the
same. Valid assignments are:

array_1 := array_2;

● An individual array element is addressed by the array name followed by the index value

in square brackets. An index must be an arithmetic expression of the data type SINT,
USINT, INT, UINT or DINT.

elem1 := array [i];
array_1 [2] := array_2 [5];
array [j] := 14;

● A value assignment for a valid subarray can be obtained by omitting a pair of square

brackets for each dimension of the array, starting at the right. This addresses a partial
area of the array whose number of dimensions is equal to the number of remaining
indices (see example below).
Consequently, you can reference rows and individual components within a matrix but not
closed columns (closed in the sense of from...to). Valid assignments are:

matrix1[i] := matrix2[k];
array1 := matrix2 [k];

 ST Fundamentals
 3.6 Value assignments and expressions

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 131

3.6.1.7 Value assignments with variables of the derived STRUCT data type
Variables of a user-defined data type that contain STRUCT data type specifications are
called structured variables (see also Derived STRUCT data type (Page 110)). They can
either represent a complete structure or a component of this structure.
Valid parameters for a structure variable are:

struct1 //Identifier for a structure
struct1.elem1 //Identifier for a structure component
struct1.array1 //Identifier of a simple array

//within a structure
struct1.array1[5] //Identifier of an array component

//within a structure

There are two ways to assign structures to variables. You can reference complete structures
or structure components:
● A complete structure can only be assigned to another structure if the data type and the

name of both structure components match.
A valid assignment is:

struct1 := struct2;

● You can assign a type-compatible variable, a type-compatible expression or another

structure component to each structure component.
Valid assignments are:

struct1.elem1 := Var1;
struct1.elem1 := 20;
struct1.elem1 := struct2.elem1;
struct1.array1 := struct2.array1;
struct1.array1[10] := 100;

 Note
You also use structured variables in the FBInstanceName.OutputParameter format, e.g.
myCircle.circumference to access the output variables of a function block, i.e. the result of
the function block. For more detailed information about function blocks, refer to the
explanations in Defining functions (Page 160) and Defining function blocks (Page 161).
A further application of structured variables is to access TO variables and the variables of
the basic system.

ST Fundamentals
3.6 Value assignments and expressions

 SIMOTION ST Structured Text
132 Programming and Operating Manual, 05/2009

3.6.2 Expressions
An expression represents a value that is calculated when the program is compiled or
executed. It consists of operands (e.g. constants, variables or function values) and operators
(e.g. *, /, +, -).
The data types of the operands and the operators involved determine the expression type.
ST uses the following types of expression:
● Arithmetic expressions (Page 135)
● Relational expressions (Page 138)
● Logic expressions and bit-serial expressions (Page 140)

3.6.2.1 Result of an expression
The result of an expression can be:
● Assigned to a variable
● Used as a condition for a control statement
● Used as a parameter for a function or function block call.
The data type of the result of an arithmetical or bit-serial expression is determined by the
data types of the operands. The data type used is the lowest common data type to which
both operands can be implicitly converted.
An expression value can only be assigned to a variable (or a parameter of a function or
function block) in the following cases:
● The expression calculated and the variable to be assigned are of the same data type.
● The data type of the calculated expression can be implicitly converted to the data type of

the variable to be assigned.
For more information on this error source and its solution, see SIMOTION Basic Functions
Function Manual.

 Note
Expressions containing only the following elements can be used for variable initialization and
index specification in ARRAY declarations (for initialization expressions – see Figure Syntax:
Constant expression in Initialization of variables or data types (Page 119)):
• Constants
• Basic arithmetic operations
• Logic and relational operations
• Bit string standard functions
The constant expressions used for initialization are calculated in the data type of the
declared variables or in the declared data type.

 ST Fundamentals
 3.6 Value assignments and expressions

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 133

3.6.2.2 Interpretation order of an expression
The interpretation order of an expression depends on the following:
● The priority of the operators used,
● The left-to-right rule,
● The use of parentheses (for operators of the same priority).
Expressions are processed according to specific rules:
● Operators are executed according to priority

(see table in Operator priority (Page 142)).
● Operators of the same priority are executed from left to right.
● A minus symbol in front of an identifier denotes multiplication by -1.
● An arithmetic operator cannot be followed immediately by another.

The expression a * -b is therefore invalid, but a * (-b) is allowed.
● Parentheses override the operator priority order, i.e. parentheses have the highest

priority.
● Expressions in parentheses are treated as individual operands and are always evaluated

first.
● The number of opening parentheses must equal the number of closing parentheses.
● Arithmetic operations cannot be used on characters or logic data. For this reason,

expressions such as (n<=0) + (n<0) are invalid.

Table 3- 27 Examples of expressions

testVar // Operand
A AND (B) // Logic expression
A AND (NOT B) // Logic expression with negation
(C) < (D) // Relational expression
3+3*4/2 // Arithmetic expression

ST Fundamentals
3.6 Value assignments and expressions

 SIMOTION ST Structured Text
134 Programming and Operating Manual, 05/2009

3.6.3 Operands

Definition
Operands are objects which can be used to formulate expressions. Operands can be
represented by the syntax diagram:

Figure 3-21 Syntax: Operand

Table 3- 28 Examples of operands

intVar
5
%I4.0
PI
NOT TRUE
axis1.motionStateData.actualVelocity

 ST Fundamentals
 3.6 Value assignments and expressions

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 135

3.6.4 Arithmetic expressions
An arithmetic expression is an expression formed with arithmetical operators. These
expressions allow numerical data types to be processed.

Figure 3-22 Syntax: Arithmetic operator

Figure 3-23 Syntax: Basic arithmetic operator

The following table shows for each arithmetic operation:
● The arithmetic operator
● The permitted data types of the operands
● The data type of the result.
Some of the General data types (Page 102) are used here.

 Note
Further operations are possible with standard numeric functions, see Standard numeric
functions in the SIMOTION Basic Functions Function Manual.
It is recommended to enclose negative numbers in parentheses, even in cases where it is
not absolutely necessary, in order to enhance legibility.
The arithmetic operators are processed in accordance with their rank (Page 142).

ST Fundamentals
3.6 Value assignments and expressions

 SIMOTION ST Structured Text
136 Programming and Operating Manual, 05/2009

Table 3- 29 Arithmetic operators

Data type Instruction Operator
1st operand 2nd operand Result1)

Exponential
(See also EXPT function)

** ANY_REAL2) ANY_REAL ANY_REAL3)

Unary minus – ANY_NUM (None) ANY_NUM
ANY_NUM ANY_NUM ANY_NUM
ANY_BIT4) ANY_BIT4) ANY_BIT

Multiplication *

TIME ANY_NUM TIME
ANY_NUM ANY_NUM5) ANY_NUM
ANY_BIT4) ANY_BIT4) 5) ANY_BIT
TIME ANY_NUM5) TIME

Division /

TIME TIME5 UDINT
ANY_INT ANY_INT5) ANY_INT Modulo division MOD
ANY_BIT4) ANY_BIT4) 5) ANY_BIT
ANY_NUM ANY_NUM ANY_NUM
ANY_BIT4) ANY_BIT4) ANY_BIT
TIME TIME TIME6)
TOD TIME TOD6)

Addition +

DT TIME DT7)
ANY_NUM ANY_NUM ANY_NUM
ANY_BIT4) ANY_BIT4) ANY_BIT
TIME TIME TIME
TOD TIME8) TOD
DATE DATE TIME9)
TOD TOD TIME9)
DT TIME DT

Subtraction –

DT DT TIME9)
1) The data type of the result (unless explicitly stated) is the lowest common data type to which both

operands can be implicitly converted.
2) The first operand must be greater than zero.

Exceptions as of Version V4.1 of the SIMOTION Kernel:
– If the second operand is an integer, the first operand can be less than zero.
– If the second operand is positive, the first operand can be equal to zero.
The following applies up to Version V4.0 of the SIMOTION Kernel: If the first operand is equal to
zero, an error message can be caught with ExecutionFaultTask.

3) Data type of first operand.
4) Other than BOOL data type. The calculation is made using the unsigned integer of the same bit

width.
5) The second operand must not be equal to zero.
6) Addition, possibly with overflow.
7) Addition with date correction.
8) Restriction of TIME to TOD before calculation.
9) These operations are based on the modulo of the maximum value of the TIME data type.

 ST Fundamentals
 3.6 Value assignments and expressions

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 137

 Note
If the limits of the value range are exceeded in operations with variables of the general
ANY_REAL data type, the result contains the equivalent bit pattern according to IEEE 754.
In order to establish whether the value range was exceeded in the operation, you can verify
the result using the function _finite (see SIMOTION Basic Functions Function Manual).

3.6.4.1 Examples of arithmetic expressions

Examples of arithmetic expressions with numbers
Assuming that i and j are integer variables (e.g. of data type INT) with the values of 11 and -
3 respectively, some example integer expressions and their corresponding values are
presented below:

Expression Value
i + j 8
i - j 14
i * j -33
i MOD j -2
i / j -3

Examples of valid arithmetic expressions with time specifications
Assume the following variables:

Variables Content Data type
t1 T#1D_1H_1M_1S_1MS TIME
t2 T#2D_2H_2M_2S_2MS TIME
d1 D#2004-01-11 DATE
d2 D#2004-02-12 DATE
tod1 TOD#11:11:11.11 TIME_OF_DAY
tod2 TOD#12:12:12.12 TIME_OF_DAY
dt1 DT#2004-01-11-11:11:11.11 DATE_AND_TIME
dt2 DT#2004-02-12-12:12:12.12 DATE_AND_TIME

Some expressions with these variables and their values are shown in the example.

Expression Value
t1 + t2 T#3D_3H_3M_3S_3MS
dt1 + t1 DT#2004-01-12-12:12:12.111
t1 - t2 T#48D_16H_1M_46S_295MS
t1 * 2 T#2D_2H_2M_2S_2MS
t1 / 2 T#12H_30M_30S_500MS
DATE_AND_TIME_TO_TIME_OF_DAY(dt1) TOD#11:11:11.110
DATE_AND_TIME_TO_DATE(dt1) D#2004-01-11

ST Fundamentals
3.6 Value assignments and expressions

 SIMOTION ST Structured Text
138 Programming and Operating Manual, 05/2009

3.6.5 Relational expressions

Definition
A relational expression is an expression of the BOOL data type formed with relational
operators (see figure).

Figure 3-24 Syntax: Relational operators

Relational operators compare the values of two operands (see table) and return a Boolean
value as result.
1st Operand Operator 2nd Operand -> Boolean value

Table 3- 30 Meaning of relational operators

Operator Meaning
> 1. operand is greater than the 2nd operand
< 1. operand is less than the 2nd operand
>= 1. operand is greater than or equal to the 2nd operand
<= 1. operand is less than or equal to the 2nd operand
= 1. operand is equal to the 2nd operand
<> 1. operand is not equal to the 2nd operand

The result of the relational expression is:
● 1 (TRUE), when the comparison is satisfied
● 0 (FALSE), when the comparison is not satisfied.

 ST Fundamentals
 3.6 Value assignments and expressions

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 139

The following table shows permissible combinations of the data types for the two operands
and relational operators.

Table 3- 31 Relational expressions: Permissible combinations of the data types and relational
operators

Data type
1. Operand 2. Operand

Permissible relational operators

ANY_NUM ANY_NUM1) <, >, <=, >=, =, <>
ANY_BIT ANY_BIT <, >, <=, >=, =, <>
DATE DATE <, >, <=, >=, =, <>
TIME_OF_DAY (TOD) TIME_OF_DAY (TOD) <, >, <=, >=, =, <>
DATE_AND_TIME (DT) DATE_AND_TIME (DT) <, >, <=, >=, =, <>
TIME TIME <, >, <=, >=, =, <>
STRING STRING2) <, >, <=, >=, =, <>
Enumerator data type Enumerator data type3) =, <>
ARRAY Field (ARRAY)3) =, <>
Structure (STRUCT) Structure (STRUCT)3) =, <>

1) The comparison is made in the lowest common data type to which both operands can be implicitly
converted.

2) Variables of the STRING data type can be compared irrespective of the declared length of the
string.
To compare two variables of the STRING data type with different lengths, the shorter character
string is expanded to the length of the longer character string by inserting $00 on the right-hand
side. The comparison starts from left to right and is based on the ASCII code of the respective
characters. Example: ’ABC’ < ’AZ’ < ’Z’ < ’abc’ < ’az’ < ’z’.

3) Data type of the first operand.

Relational expressions and variables or constants of the BOOL data type can be combined
with logic operators to form logic expressions (see Logic expressions and bit-serial
expressions (Page 140)). This enables the implementation of queries such as If a < b and b
< c, then ….

NOTICE
Relational operators have a higher priority than logic operators in an expression (see
Operator priority (Page 142)). Therefore the operands of a relational expression must be
placed in brackets if they themselves are logic expressions or bit-serial expressions.
Note that errors can occur when comparing REAL or LREAL variables (also the
corresponding system variables, e.g. axis position).

ST Fundamentals
3.6 Value assignments and expressions

 SIMOTION ST Structured Text
140 Programming and Operating Manual, 05/2009

Table 3- 32 Examples of relational expressions

IF A = 2 THEN
 //...
END_IF;
var_1 := B < C; // var_1 of BOOL data type
IF D < E OR var_2 THEN // var_2 of BOOL data type
 // ...
END_IF;

3.6.6 Logic expressions and bit-serial expressions

Definition
With the logic operators AND, &, XOR, and OR, it is possible to combine operands and
expressions of the general data type ANY_BIT (BOOL, BYTE, WORD, or DWORD).
With the logic operator NOT it is possible to negate operands and expressions of data type
ANY_BIT.
The table provides information about the available operators:

Table 3- 33 Logic operators

Instruction Operator 1. Operand 2. Operand Result1
Negation NOT ANY_BIT - ANY_BIT
Conjunction AND or & ANY_BIT ANY_BIT ANY_BIT
Exclusive
disjunction

XOR ANY_BIT ANY_BIT ANY_BIT

Disjunction OR ANY_BIT ANY_BIT ANY_BIT
1 The data type of the result is determined by the most powerful data type of the operands.

The expression is designated
● a logic expression, if only operands of data type BOOL are used.

The operators have the effect on the operands stated in the following truth table.
The result of a logic expression is 1 (TRUE) or 0 (FALSE).

● a bit-serial expression, if operands of data type BYTE, WORD, or DWORD are used.

 ST Fundamentals
 3.6 Value assignments and expressions

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 141

The operators have the effect on individual bits of the operands stated in the following
truth table.

Table 3- 34 Truth table of the logic operators

Operands
(data type BOOL)

Result (data type BOOL)

a b NOT a NOT b a AND b
a & b

a XOR b a OR b

0 0 1 1 0 0 0
0 1 1 0 0 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1

Examples

Table 3- 35 Logic expressions

Expression (let n = 10) Value
(n>0) AND (n<20) TRUE
(n>0) AND (n<5) FALSE
(n>0) OR (n<5) TRUE
(n>0) XOR (n<20) FALSE
NOT ((n>0) AND n<20)) FALSE

Table 3- 36 Bit-serial expressions

Expression Value
2#01010101 AND 2#11110000 2#01010000
2#01010101 OR 2#11110000 2#11110101
2#01010101 XOR 2#11110000 2#10100101
NOT 2#01010101 2#10101010

Expression in query (let value1 be 2#01, let value2 be 2#11)

IF (value1 AND value2) = 2#01 THEN...

Condition returns TRUE, because bit-serial expression returns 2#01.

ST Fundamentals
3.6 Value assignments and expressions

 SIMOTION ST Structured Text
142 Programming and Operating Manual, 05/2009

3.6.7 Priority of operators
Some general rules for the formulation of expressions were described in Expressions
(Page 132). The table shows you the priority of the individual operators within an expression.

Instruction Symbol Priority
Parentheses (Expression)
Function evaluation Identifier (argument list)

e.g. LN(a), EXPT (a,b) etc.
Negation
Complement

–
NOT

Exponentiation **
Multiplication
Division
Modulo

*
/
MOD

Addition
Subtraction

+
–

Comparison <, >, <=, >=
Equal
Not equal

=
<>

Boolean AND &, AND
Boolean
EXCLUSIVE OR

XOR

Boolean OR OR

Highest

Lowest

 ST Fundamentals
 3.7 Control statements

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 143

3.7 Control statements
Few source file sections can be programmed such that all statements are executed in
sequence from start to end. Usually, some statements will be executed only if a condition is
true (alternatives) and some will be executed repeatedly (loops). Program control statements
within a source file section are the means for accomplishing this.

3.7.1 IF statement
The IF statement is a conditional statement. It specifies one or more options and selects one
(or none) of its statement sections for execution.
The specified logic expressions are evaluated when the conditional statement is executed. If
the value of an expression is TRUE, the condition is fulfilled, if the value is FALSE, it is not
fulfilled.

Figure 3-25 Syntax: IF statement

The IF statement is processed according to the following rules:
1. If the value of the first expression is TRUE, the statement section after the THEN is

executed.
The program is subsequently resumed after the END_IF.

2. If the value of the first expression is FALSE, the expressions in the ELSIF branches are
evaluated. If a Boolean expression in one of the ELSIF branches is TRUE, the statement
section following THEN is executed.
The program is subsequently resumed after the END_IF.

3. If none of the Boolean expressions in the ELSIF branches is TRUE, the sequence of
statements after the ELSE is executed (or, if there is no ELSE branch, no further
statements are executed).
The program is subsequently resumed after the END_IF.

ST Fundamentals
3.7 Control statements

 SIMOTION ST Structured Text
144 Programming and Operating Manual, 05/2009

Any number of ELSIF statements may be programmed.
Note that there may not be any ELSIF branches and/or ELSE branch. This is interpreted in
the same way as if the branches existed with no statements.

 Note
An advantage of using one or more ELSIF branches rather than a sequence of IF statements
is that the logic expressions following a valid expression are no longer evaluated. This helps
to reduce the processing time required for the program and to prevent execution of
unwanted program routines.

Table 3- 37 Examples of the IF statement

IF A=B THEN
 n:= 0;
END_IF;

IF temperature < 5.0 THEN
 %Q0.0 := TRUE;
ELSIF temperature > 10.0 THEN
 %Q0.2 := TRUE;
 ELSE
 %Q0.1 := TRUE;
END_IF;

 ST Fundamentals
 3.7 Control statements

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 145

3.7.2 CASE statement
The CASE statement is used to select 1 of n program sections.
This selection determines a selection expression (selector):
● Expression of general data type ANY_INT
● Variable of an enumeration data type (enumerator)
The selection is made from a list of values (value list), whereby a section of the program is
assigned to each value or group of values.

Figure 3-26 Syntax: CASE statement

The CASE statement is processed according to the following rules:
1. The selection expression (selector) is calculated. It must return a value of general data

type ANY_INT (integer) or an enumerator data type.
2. Then a check is performed to determine whether the selector value is contained in the

value list. Each value in the list represents one of the allowed values for the selection
expression.

3. If a match is found, the program section assigned in the list is executed.
4. The ELSE branch is optional. It is executed if no match is found.
5. If the ELSE branch is missing and no match is found, the program is resumed after

END_CASE.

ST Fundamentals
3.7 Control statements

 SIMOTION ST Structured Text
146 Programming and Operating Manual, 05/2009

The value list contains the allowed values for the selection expression.

Figure 3-27 Syntax: Value list

Note the following when formulating the value list:
● Each value list can begin with a constant (value), a constant list (value1, value2, value3,

etc.) or a constant range (value1 to value2).
● Values in the value list must be integer values or constants/elements of the enumeration

data type of the selector.

Note
A value should only occur once in the value lists of a CASE statement.
In the event of multiple occurrence of a value, the compiler will issue an alarm, and only
the section of the statement corresponding to the value list in which the value occurred
first is executed.

The following example illustrates the use of the CASE statement.

Table 3- 38 Examples of the CASE statement

CASE intVar OF
 1 : a := 1;
 2,3 : b := 1;
 4..9 : c := 1; d:=2;
 ELSE
 e := 5;
END_CASE;

 ST Fundamentals
 3.7 Control statements

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 147

3.7.3 FOR statement
A FOR statement or a repeat statement executes a series of statements in a loop, whereby
values are assigned to a variable (a count variable) on each pass. The count variable must
be a local variable of type SINT, INT or DINT.
The definition of a loop with FOR includes the specification of a start and end value. Both
variables must be the same data type as the count variable.

 Note
You use the FOR statement when the number of loop passes is known at the programming
stage. If the number of passes is not known, the WHILE or REPEAT statement is more
suitable (see WHILE statement (Page 149) and REPEAT statement (Page 150)).

Figure 3-28 Syntax: FOR statement

ST Fundamentals
3.7 Control statements

 SIMOTION ST Structured Text
148 Programming and Operating Manual, 05/2009

3.7.3.1 Processing of the FOR statement
The FOR statement is processed according to the following rules:
1. At the start of the loop, the count variable is set to the start value and is increased

(positive increment) or decreased (negative increment) by the specified increment after
each loop pass until the end value is reached. After the first loop pass, the start value is
known as the current value.

2. On each pass, the system checks whether the following conditions are true:
– Start value or current value <= end value (for positive increment) or
– Start value or current value >= end value (for negative increment)
If the condition is fulfilled, the sequence of statements is executed.
If the condition is not fulfilled, the loop and, thus, the sequence of statements is skipped
and the program is resumed after END_FOR.

3. If the FOR loop is not executed due to Step 2, the count variable retains the current
value.

3.7.3.2 Rules for the FOR statement
The following rules apply to the FOR statement:
● The BY [increment] specification can be omitted. If no increment is specified, the default

is +1.
● The start value, end value, and increment are expressions (see Expressions (Page 132)).

The expression is evaluated once at the beginning of the FOR statement.
● If the start value and end value are of the DINT data type, the value of (end value - start

value) must be less than the maximum value range of the double integer, that is, less
than 2**31-1.

● Only the first selection statement for which the selector is true is executed.
● The count variable contains the value which triggers the loop exit, i.e. it is incremented

before the loop is exited.
● You are not allowed to change the end value and increment value during the execution of

the loop.

3.7.3.3 Example of the FOR statement

Table 3- 39 Example of the FOR statement

FOR k := 1 TO 10 BY 2 DO
 l:=l+1;
 // ...
END_FOR;

 ST Fundamentals
 3.7 Control statements

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 149

3.7.4 WHILE statement
The WHILE statement allows a sequence of statements to be executed repeatedly under the
control of an iteration condition. The iteration condition is formulated in accordance with the
rules for a logic expression.

 Note
You use the WHILE statement when the number of loop passes is not known at the
programming stage. If the number of passes is known, the FOR statement is more suitable
(see FOR statement (Page 147)).

Figure 3-29 Syntax: WHILE statement

The statement section after DO is repeated until the iteration condition has the value TRUE.
The WHILE statement is processed according to the following rules:
1. The iteration condition is evaluated each time before the statement section is executed.
2. If the value is TRUE, the statement section is executed.
3. If the value is FALSE, the WHILE statement is terminated (this can occur the first time the

condition is evaluated) and the program is resumed after END_WHILE.

Table 3- 40 Example of the WHILE statement

WHILE Index <= 50 DO
 Index:= Index + 2;
END_WHILE;

ST Fundamentals
3.7 Control statements

 SIMOTION ST Structured Text
150 Programming and Operating Manual, 05/2009

3.7.5 REPEAT statement
A REPEAT statement causes a sequence of statements programmed between REPEAT and
UNTIL to be executed repeatedly until a termination condition is true. The termination
condition is formulated in accordance with the rules for a logic expression.

 Note
You use the REPEAT statement when the number of loop passes is not known at the
programming stage. If the number of passes is known, the FOR statement is more suitable
(see FOR statement (Page 147)).

Figure 3-30 Syntax: REPEAT statement

The condition is checked after the statement section is executed. That means the statement
section is executed at least once, even if the termination condition is true at the start.
The REPEAT statement is processed according to the following rules:
1. The iteration condition is evaluated each time after the statement section is executed.
2. If the value is FALSE, the statement section is executed again.
3. If the value is TRUE, execution of the REPEAT statement is terminated and program

execution is resumed after END_REPEAT.

Table 3- 41 Example of the REPEAT statement

Index:= 1;
REPEAT
 Index:= Index + 2;
UNTIL Index > 50
END_REPEAT;

 ST Fundamentals
 3.7 Control statements

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 151

3.7.6 EXIT statement
An EXIT statement is used to exit a loop (FOR, WHILE or REPEAT loop) at any point,
irrespective of whether the termination condition is true or false.
This statement has the effect of jumping directly out of the loop immediately surrounding the
EXIT statement.
The program resumes after the end of the loop (e.g. after END_FOR).

Table 3- 42 Example of the EXIT statement

Index:= 1;
FOR Index := 1 to 51 BY 2 DO
 IF %I0.0 THEN
 EXIT;
 END_IF;
END_FOR;
// The following value assignment is made after the execution of EXIT
// or after the regular end of the FOR loop
// For the execution:
Index_find := Index_2;

3.7.7 RETURN statement
A RETURN statement causes termination of the POU currently being processed (program,
function, function block).
When a function or a function block is terminated, program execution continues in the
higher-level POU after the position where the function or function block was called.

Table 3- 43 Example of the RETURN statement

Index:= 1;
FOR Index := 1 to 51 BY 2 DO
 IF %I0.0 THEN
 RETURN;
 END_IF;
END_FOR;
// The following value assignment is made after the regular end
// of the FOR loop for the execution, however, not after the execution
// of RETURN:
Index_find := Index_2;

ST Fundamentals
3.7 Control statements

 SIMOTION ST Structured Text
152 Programming and Operating Manual, 05/2009

3.7.8 WAITFORCONDITION statement
You can use the WAITFORCONDITION statement to wait for a programmable event or
condition in a MotionTask. The statement suspends execution of the calling MotionTask until
the condition is true. You program this condition in an Expression (Page 180). More
information about the WAITFORCONDITION and expressions in this regard is contained in
the SIMOTION Motion Control Basic Functions Function Manual.

Figure 3-31 Syntax: WAITFORCONDITION statement

Expression identifier is a construct declared with EXPRESSION; its value defines (together
with WITH edge evaluation, if necessary) whether the condition is considered as been
satisfied.
The WITH edge evaluation sequence is optional. Edge evaluation is an expression of data
type BOOL; it determines how the value of expression identifier is interpreted:
● Edge evaluation = TRUE: The rising edge of expression identifier is interpreted; i.e. the

condition is satisfied when the value of expression identifierchanges from FALSE to
TRUE.

● Edge evaluation = FALSE: The static value of expression identifier is interpreted; i.e. the
condition is satisfied when the value of expression identifier is TRUE.

If WITH edge evaluation is not specified, the default setting is FALSE, i.e. the static value of
expression identifier is evaluated.
The statement section must contain at least one statement (empty statements also possible).

 ST Fundamentals
 3.7 Control statements

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 153

Table 3- 44 Example of the WAITFORCONDITION statement

// ...
// Call the statement with name of expression
WAITFORCONDITION myExpression WITH TRUE DO
// Here, at least one statement will be executed with higher priority,
e.g.
 %Q0.0 := TRUE;
END_WAITFORCONDITION;
// ...

For a complete example, refer to the description for the Expression (Page 180).

3.7.9 GOTO statement
The GOTO statement causes a jump to the jump label specified in the command (see Jump
statement and labeling (Page 274)).
You program jump statements with the GOTO statement and specify the jump label to which
you want to jump. Jumps are only permitted within a POU.

Figure 3-32 Syntax: GOTO statement

 Note
You should only use the GOTO statement in special circumstances (for example, for
troubleshooting). It should not be used at all according to the rules for structured
programming.
Jumps are only permitted within a POU.
The following jumps are illegal:
• Jumps to subordinate control structures (WHILE, FOR, etc.)
• Jumps from a WAITFORCONDITION structure
• Jumps within CASE statements
Jump labels can only be declared in the POU in which they are used. If jump labels are
declared, only the declared jump labels may be used.

ST Fundamentals
3.8 Data type conversions

 SIMOTION ST Structured Text
154 Programming and Operating Manual, 05/2009

3.8 Data type conversions
This section describes how you can implicitly and explicitly convert between elementary data
types. It also contains an overview of the additional conversion possibilities.

3.8.1 Elementary data type conversion
The table presents an overview of the conversion options between numerical data types and
bit data types. The following are distinct conversion options:
● Implicit conversion: Conversion is automatic when different data types are used in an

expression or when values are assigned by the compiler.
● Explicit conversion: Conversion is carried out when the user calls a conversion function

(see SIMOTION Basic Functions Function Manual).

Table 3- 45 Type conversion of numeric data types and bit data types

Target data type Source
data type BOOL BYTE WORD DWOR

D
USINT UINT UDINT SINT INT DINT REAL LREAL STRIN

G

BOOL – Im/Ex Im/Ex Im/Ex Val Val Val Val Val Val Val Val –
BYTE Ex – Im/Ex Im/Ex Ex Ex Ex Ex Ex Ex Val Val Elem
WORD Ex Ex – Im/Ex Ex Ex Ex Ex Ex Ex Val Val –
DWORD Ex Ex Ex – Ex Ex Ex Ex Ex Ex Ex/Val Val –
USINT Val Ex Ex Ex – Im/Ex Im/Ex Ex Im/Ex Im/Ex Im/Ex Im/Ex –
UINT Val Ex Ex Ex Ex – Im/Ex Ex Ex Im/Ex Im/Ex Im/Ex –
UDINT Val Ex Ex Ex Ex Ex – Ex Ex Ex Ex Ex Ex
SINT Val Ex Ex Ex Ex Ex Ex – Im/Ex Im/Ex Im/Ex Im/Ex –
INT Val Ex Ex Ex Ex Ex Ex Ex – Im/Ex Im/Ex Im/Ex –
DINT Val Ex Ex Ex Ex Ex Ex Ex Ex – Ex Im/Ex Ex
REAL Val Val Val Ex/Val Ex Ex Ex Ex Ex Ex – Im/Ex Ex
LREAL Val Val Val Val Ex Ex Ex Ex Ex Ex Ex – Ex
STRING – Elem – – – – Ex – – Ex Ex Ex –
Im: Implicit data type conversion possible
Ex: Explicit data type conversion possible using the Quelldatentyp_TO_Zieldatentyp type conversion function
Val: Explicit data type conversion possible using the
Quelldatentyp_VALUE_TO_Zieldatentyp type conversion function
Elem: Implicit data type conversion with an element of the STRING data type

For information on conversion functions for date and time data types: Please refer to the
SIMOTION Basic Functions Function Manual.

 ST Fundamentals
 3.8 Data type conversions

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 155

3.8.1.1 Implicit data type conversions
Implicit type conversion is always possible if an enlargement of the value range does not
cause any value loss, e.g. from REAL to LREAL or from INT to REAL. The result is always
defined.
The following figure provides a graphics-based view of all implicit type conversion chains.
Each stage in the type conversion chain - reading from left to right or from top to bottom -
always represents an enlargement of the value range.

Figure 3-33 Implicit type conversion chains (one or more levels from left to right or one level from top

to bottom)

The following implicit type conversions are supported:
1. Horizontally (from left to right) over one or more levels (e.g. USINT to UDINT)
2. Vertically (from top to bottom) over one level (e.g. UINT to REAL)
The implicit type conversions can be combined in the following order (e.g. INT to LREAL).
All other type conversions cannot be performed implicitly (e.g. UDINT to REAL), that is, you
must use an explicit function (see SIMOTION Basic Functions Function Manual).

 Note
In arithmetic expressions, the result is always calculated in the largest number format
contained in the expression.
A value can only be assigned to the expression if:
• The calculated expression and the variable to be assigned are of the same data type.
• The data type of the calculated expression can be implicitly converted to the data type of

the variable to be assigned.
For more information on this error source and its solution: Please refer to the SIMOTION
Basic Functions Function Manual.

ST Fundamentals
3.8 Data type conversions

 SIMOTION ST Structured Text
156 Programming and Operating Manual, 05/2009

Table 3- 46 Example of data types in expressions and value assignments

VAR
 usint_var : USINT;
 real_var : REAL;
 byte_var : BYTE;
 string_var : STRING[80] := 'example for string';
END_VAR

usint_var := 234 / 10; // Expression data type: USINT
 // Result = 23

real_var := 234 / 10; // Expression data type: USINT
 // Implicit conversion possible
 // Result = 23.0

usint_var := 234 / SINT#10; // Expression data type: INT
 // Implicit conversion and
 // value assignment not possible

real_var := 234 / 10.0; // Expression data type: REAL
 // Result = 23.4

usint_var := 234 / 10.0; // Expression data type: REAL
 // Implicit conversion and
 // value assignment not possible

byte_var := string_var[5]; // Implicit conversion possible
 // Result = 16#70 ('p')

string_var[10] := byte_var; // Implicit conversion possible
 // Result = 'example fpr string'

 Note
If applicable, specify the data type explicitly for numbers (e.g. UINT#127, if the number 127
is to be of data type UINT instead of USINT).

 ST Fundamentals
 3.8 Data type conversions

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 157

3.8.1.2 Explicit data type conversions
Explicit conversion is always required if information could be lost, for example, if the value
range is decreased or the accuracy is reduced, as is the case for conversion from LREAL to
REAL.
The conversion functions for numeric data types and bit data types are listed in the
SIMOTION Basic Functions Function Manual.
The compiler outputs warnings when it detects conversions associated with loss of precision.

NOTICE
The type conversion may cause errors when the program is running, which will trigger the
error response set in the task configuration (see SIMOTION Basic Functions Function
Manual).
Special attention is required when converting DWORD to REAL. The bit string from
DWORD is taken unchecked as the REAL value. You must make sure that the bit string in
DWORD corresponds to the bit pattern of a normalized floating-point number in accordance
with IEEE. To do this, you can use the _finite and _isNaN functions.
Otherwise, an error is triggered (see above) as soon as the REAL value is first used for an
arithmetic operation (for example, in the program or when monitoring in the symbol
browser).

 Note
The following applies if the value range limits are exceeded during conversion from LREAL
to REAL:
• Underflow (absolute value of LREAL number is smaller than the smallest positive REAL

number):
Result is 0.0.

• Overflow (absolute value of LREAL number is larger than the largest positive REAL
number):
The error response specified during task configuration is triggered.

ST Fundamentals
3.8 Data type conversions

 SIMOTION ST Structured Text
158 Programming and Operating Manual, 05/2009

3.8.2 Supplementary conversions
The ST system functions and ST system functions also permit the following conversions:
● Combining bit-string data types

These functions combine multiple variables of a bit string data type into one variable of a
higher-level data type.

● Splitting bit-string data types
These function blocks split up a variable of a bit string data type into multiple variables of
a higher-level data type.

● Converting between any data types and byte arrays
They are commonly used to create defined transmission formats for data exchange
between various devices.
For further information (e.g. on the arrangement of the byte arrays, application example):
Please refer to the SIMOTION Basic Functions Function Manual.

● Conversion of technology object data types
It converts variables of a hierarchical TO data type (driveAxis, posAxis, or followingAxis)
or of the general ANYOBJECT type to a compatible TO data type.

For Application Examples and further information: Please refer to the SIMOTION Basic
Functions Function Manual.

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 159

Functions, Function Blocks, and Programs 4

This chapter describes how to create and call user-defined functions and function blocks.
Standard functions are already available in the system for type conversion, trigonometry, and
bit string manipulation. The SIMOTION Basic Functions Function Manual describes how to
use system functions and functions of technology objects (TO functions).
A function (FC) is a logic block with no static data. All local variables lose their value when
you exit the function and are reinitialized the next time you call the function.
A function block (FB) is a code block with static data. Since an FB has memory, its output
parameters can be accessed at any time and from any point in the user program. Local
variables retain their values between calls.
Programs are similar to FBs, but have no parameters. However, they can be assigned
execution levels and tasks (see SIMOTION Basic Functions Function Manual).
FCs and FBs have the advantage that they can be reused, because they are encapsulated
source file sections to which parameters can be assigned.
Functions, function blocks, and programs are program organization units (POUs), i.e. they
are executable source file sections. You will find an overview of all source file sections in
Use of the source file sections (Page 183).

4.1 Creating and calling functions and function blocks
The following description explains how to create and call functions (FCs) and function blocks
(FBs). A complete example showing the differences between FC and FB is contained in
Comparison of functions and function blocks (Page 175).
The order in which you must define and call the stipulated source file sections is given in Use
of the source file sections (Page 183).
How to export and import FCs and FBs is explained in Section Import and export between
ST source files (Page 194).

Functions, Function Blocks, and Programs
4.1 Creating and calling functions and function blocks

 SIMOTION ST Structured Text
160 Programming and Operating Manual, 05/2009

4.1.1 Defining functions
You define a function in the declaration part of the implementation section before the section
of the source file (program, FB, or FC) in which it is called.
Use the following syntax:

Figure 4-1 Syntax: Function (FC)

The FUNCTION keyword is followed by an identifier as the FC name and the data type of the
return value. Enter VOID as data type if the FC has no return value.
Then enter (see example in Source file with comments (Page 176)):
● The optional declaration section
● The statement section
● The END_FUNCTION keyword

 Functions, Function Blocks, and Programs
 4.1 Creating and calling functions and function blocks

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 161

4.1.2 Defining function blocks
You define a function block in the declaration part of the implementation section before the
section of the source file (program, FB or FC) in which the FB is called.
Use the following syntax:

Figure 4-2 Syntax: Function block (FB)

Enter an identifier as the FB name after the FUNCTION_BLOCK keyword.
Then enter (see example in Source file with comments (Page 176)):
● The optional declaration section
● The statement section
● The END_FUNCTION keyword

Functions, Function Blocks, and Programs
4.1 Creating and calling functions and function blocks

 SIMOTION ST Structured Text
162 Programming and Operating Manual, 05/2009

4.1.3 Declaration section of FB and FC
A declaration section is subdivided into various declaration blocks that are each identified by
a separate pair of keywords. Each block contains a declaration list for similar data, such as
constants, local variables and parameters. Each type of block may only appear once; the
blocks may appear in any order.
The following options are then available for the declaration section of an FC and an FB (see
also the example in Source file with comments (Page 176)):

Table 4- 1 Declaration blocks for FC and FB: Options

Data Syntax FB FC
Constant VAR CONSTANT

Declaration list
END_VAR

X X

Input parameters VAR_INPUT
Declaration list
END_VAR

X X

In/out parameter VAR_IN_OUT
Declaration list
END_VAR

X X

Output parameters VAR_OUTPUT
Declaration list
END_VAR

X –

Local variable
(for FC and FB)

VAR
Declaration list
END_VAR

X
(static)

X
(temporary)

Local variable
(for FB)

VAR_TEMP
Declaration list
END_VAR

X
(temporary)

-

Declaration list: The list of identifiers of the type to be declared

Parameters are local data and are formal parameters of a function block or function. When
the FB or FC is called, the formal parameters are substituted by the actual parameters, thus
providing a means of exchanging information between the called and calling source file
sections.
● Formal input parameters receive the actual input values (data flow inwards).
● Formal output parameters (only for FB) are used to transfer output values (data flow

outwards).
● Formal in/out parameters act as input and output parameters.
The following figures show the syntax for the parameter declaration of an FB or an FC.

 Functions, Function Blocks, and Programs
 4.1 Creating and calling functions and function blocks

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 163

Figure 4-3 Syntax: FB parameter block

Figure 4-4 Syntax: FC parameter block

You can use the declared parameters the same as other variables within the FB or FC, with
the following exception: You cannot assign values to input parameters.

Functions, Function Blocks, and Programs
4.1 Creating and calling functions and function blocks

 SIMOTION ST Structured Text
164 Programming and Operating Manual, 05/2009

From outside of an FB or an FC, you can access:
● The input and output parameters of an FB by means of structured variables (see User-

defined data types (Page 103)).
The access to the input parameter is possible only when the "Permit language
extensions" compiler option has been activated (see Global compiler settings
(Page 47) or Local compiler settings (Page 49)).
Data access to the output parameter is possible as standard.

● The return value of an FC by using the function in an expression and assigning this, for
example, to a variable (the specification of the function name calls the function and
simultaneously returns a result).

 Functions, Function Blocks, and Programs
 4.1 Creating and calling functions and function blocks

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 165

4.1.4 Statement section of FB and FC
The statement section of the FC or FB contains statements that are executed when the FC
or FB is called. There is no difference compared to the formal rules for creating a statement
section; however, you should note the information in the following table.

 Note
For tips on the efficient use of parameters, please refer to Runtime-optimized Programming
in the SIMOTION Basic Functions Function Manual.

Table 4- 2 Use of parameters and variables in FCs and FBs

Parameter/variable Use
Input parameters With the call of an FC or an FB, assign the current values to the input

parameters. These values are used for data processing within the FC or the
FB, for example, for calculations, but cannot be modified themselves.
Only for activated "Permit language extensions" compiler option (see Global
compiler settings (Page 47) or Local compiler settings (Page 49)): The input
parameters of an FB can be read and written using structured variables, also
outside the FB (e.g. in the calling source file section).

In/out parameter You assign a variable to an in/out parameter for the call of the FB or FC. The
FC or the FB accesses this variable directly and can change it immediately.
Type conversions are not supported.
The variable assigned to an in/out parameter must be able to be directly read
and written. Therefore, system variables (of the SIMOTION device or a
technology object), I/O variables or process image accesses cannot be
assigned to an in/out parameter.

Output parameters
(for FB only)

You assign a variable to an in/out parameter for the call of an FB using the =>
operator. The value of the output parameter (result) is transferred to the
variables when the FB is closed. The output parameters of an FB can also be
read using structured variables, also outside the FB (e.g. in the calling source
file section).
An FC has no formal output parameters, because the function name receives
the return value. The function name itself is, in a sense, the output parameter.

Local variables Local variables are variables that are declared and used only within the block.
All local variables (VAR ... END_VAR) are temporary in an FC, i.e. they lose
their value when the FC is terminated. The next time the FC is called, they are
reinitialized.
A differentiation between static and temporary local variables is made in the
FB:
• Static variables (VAR ... END_VAR) retain their value when the FB is

closed.
• Temporary variables (VAR_TEMP ... END_VAR) lose their value when the

FB is closed. The next time the FB is called, they are reinitialized.
The value of the local variable cannot be queried directly by the calling block.
This is only possible using an output parameter.

Functions, Function Blocks, and Programs
4.1 Creating and calling functions and function blocks

 SIMOTION ST Structured Text
166 Programming and Operating Manual, 05/2009

4.1.5 Call of functions and function block calls
This provides an overview of the call of the functions and function blocks.

4.1.5.1 Principle of parameter transfer
When you call an FC or FB, data exchange takes place between the calling and the called
block. The parameters to be transferred must be specified as a parameter list in the call. The
parameters are written in parentheses. Several parameters are separated by commas.

myCircle (lrRadius := 3, lrCircumf := myCircumf) ;

Figure 4-5 Principle of parameter transfer for the call

Input and in/out parameters are normally specified as a value assignment. In this way, you
assign values (actual parameters) to the parameters you have defined in the declaration
section of the called block (formal parameters).
The assignment of output parameters is made using the => operator. In this way, you assign
a variable (actual parameter) to the output parameters you have defined in the declaration
section of the called block (formal parameters).

4.1.5.2 Parameter transfer to input parameters

Figure 4-6 Syntax: Input assignment

You transfer the data (actual parameters) to the formal input parameters of an FB or FC by
means of input assignments. You can specify the actual parameters in the form of
expressions. You can use the formal input parameters in statements within the FB or FC, but
you cannot modify their values.
A short form of parameter transfer is supported, but should not be applied in conjunction with
user-defined FBs. This short form is required only for some FCs, see SIMOTION Basic
Functions Function Manual.

 Functions, Function Blocks, and Programs
 4.1 Creating and calling functions and function blocks

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 167

The assignment of actual parameters is optional for an FB. If no input assignment is
specified, the values of the last call are retained because an FB is a source file section with
memory.
The assignment of an actual parameter is optional for an FC when an initialization
expression was specified for the declaration of the formal parameter.
Also refer to the examples in Calling functions (Page 170) and Calling function blocks
(instance calls) (Page 171).
You can also gain read and write access to an FB's input parameter at any time outside the
FB. For further details, see: Accessing the FB's input parameter outside the FB (Page 173).

4.1.5.3 Parameter transfer to in/out parameters

Figure 4-7 Syntax: In/out assignment

You transfer the data (actual parameters) to the formal in/out parameters of an FB or an FC
using in/out assignments. You can only assign a variable of the same type to the formal
in/out parameter, data type conversions are not possible.
You can use and change the formal in/out parameters in statements within the FC or the FB.
The FC or the FB accesses the variable of the actual parameter directly and can change it
immediately.
Also refer to the examples in Calling functions (Page 170) and Calling function blocks
(instance calls) (Page 171).

Functions, Function Blocks, and Programs
4.1 Creating and calling functions and function blocks

 SIMOTION ST Structured Text
168 Programming and Operating Manual, 05/2009

When using the STRING data type in in/out assignments, the declared length of the actual
parameter must be greater than or equal to the length of the formal in/out parameter (see
following example).

Table 4- 3 Example of the use of the STRING data type in in/out assignments

FUNCTION_BLOCK REF_STRING
 VAR_IN_OUT
 io : STRING[80];
 END_VAR
; // Statements
END_FUNCTION_BLOCK

FUNCTION_BLOCK test
 VAR
 my_fb : REF_STRING;
 str1 : STRING[100];
 str2 : STRING[50];
 END_VAR
 my_fb(io := str1); // Permitted call
 my_fb(io := str2); // Not permitted call,
 // compiler error message

END_FUNCTION_BLOCK

The variable assigned to an in/out parameter must be able to be directly read and written.
Therefore, system variables (of the SIMOTION device or a technology object), I/O variables
or process image accesses cannot be assigned to an in/out parameter.
Please note the different parameter access times!

 Functions, Function Blocks, and Programs
 4.1 Creating and calling functions and function blocks

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 169

4.1.5.4 Parameter transfer to output parameters (for FB only)

Figure 4-8 Syntax: Output assignment

You use an output assignment to assign the formal output parameters of an FB to the
variables (actual parameter) that accept the value of the formal output parameter when the
FB is closed.
You can use and change the formal output parameters in statements within the FB.
Also refer to the examples in Calling function blocks (instance calls) (Page 171).
Output assignments are optional for the parameter transfer. You can gain read and write
access to an FB's output parameter at any time, even outside the FB. For further details,
see: Accessing the FB's output parameter outside the FB (Page 173).

4.1.5.5 Parameter access times
The types of access and thus the parameter access times are different:
● In the case of input assignments, the values of the actual parameters are copied into the

formal parameters. If large structures, such as arrays, are copied and the FC or FB is
called frequently, this can limit performance.

● Values are not copied in in/out assignments. Rather, in this case a link is established
between the memory addresses of the formal parameters and those of the actual
parameters. Transferring the variables is therefore faster than input assignments
(especially where large volumes of data are involved). However, accessing variables from
the FB can be slower.

● If you are using unit variables, nothing is copied to the function or function block because
these variables are valid in the entire ST source file (see Variable model (Page 200)).

 Note
Using in/out parameters instead of input parameters is only faster if a large volume of data is
to be passed to the function block.
If unit variables are used predominantly instead of parameters, the resulting program
structure will be complex and confusing: object orientation, data encapsulation, multiple use
of variable names (encapsulation of validity ranges), etc., are no longer possible.

Functions, Function Blocks, and Programs
4.1 Creating and calling functions and function blocks

 SIMOTION ST Structured Text
170 Programming and Operating Manual, 05/2009

4.1.5.6 Calling a function
A function is called as follows:
● Function with return value (data type other than VOID):

The function is placed on the right-hand side of a value assignment. It can also appear as
operand within an expression. After calling the function, its return value is used at the
appropriate point to calculate the expression.
Examples:

y:=sin(x);
y := sin(in := x);
y := sqrt (1 - cos(x) * cos(x));

● Function without return value (VOID data type)

The assignment consists only of the function call.
The following example is valid provided a funct1 function with the in1 and in2 input
parameters and the inout in/out parameter has already been defined.
Example:

funct1 (in1 := var11, in2 := var12, inout1 := var13);

 Note
In the function itself, the result (return value) is assigned to the function name (except for
data type VOID).

 Functions, Function Blocks, and Programs
 4.1 Creating and calling functions and function blocks

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 171

4.1.5.7 Calling function blocks (instance calls)
Before you call a function block (FB), you must declare an instance. You declare a variable
and enter the name of the function block as the data type. You declare this instance:
● Locally (within VAR/END_VAR in the declaration section of a program or function block)
● Globally (within VAR_GLOBAL/END_VAR in the interface of implementation section)
● As an in/out parameter (within VAR_IN_OUT / END_VAR in the declaration section of a

function block or a function).

Figure 4-9 Syntax: Instance declaration

The instance declaration can also be an array, e.g.:

FB_inst : ARRAY [1..2] OF FB_name.

 Note
Pay attention to the different initialization times for different variable types.

You call a function block instance in the statement section of a POU (for information about
syntax, see Figure). FB parameters are input and in-out assignments separated by commas.

Functions, Function Blocks, and Programs
4.1 Creating and calling functions and function blocks

 SIMOTION ST Structured Text
172 Programming and Operating Manual, 05/2009

Figure 4-10 FB call syntax

The example in the following table is applicable, assuming that the supply and motor function
blocks have already been defined:
● FB Supply:

Input parameters in1, in2; in/out parameter inout; output parameter out
● FB motor:

In/out parameters inout1, inout2; output parameters out1, out2

Table 4- 4 Example of instance declaration, FB call, and access to output parameters

VAR
 Supply1, Supply2: Supply;
 Motor1 : Motor;
END_VAR

// Parameter transfer (output assignment) when calling the instance of an FB
Supply1 (in1 := var11, in2 := expr12, inout := var13, out => var14) ;
Supply2 (in1 := var21, in2 := expr22, inout := var23, out => var24) ;
Motor1 (inout1 := var31, inout2 := var32, out1 => var33, out2 => var34);
// ...
// Accessing the FB's output parameter outside the FB
var15 := Supply1.out;
var25 := Supply2.out;
var35 := Motor1.out1;
var36 := Motor1.out2;
var41 := Motor1.out1 * Motor1.out2 * (Supply1.out + Supply2.out);

 Functions, Function Blocks, and Programs
 4.1 Creating and calling functions and function blocks

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 173

4.1.5.8 Accessing the FB's output parameter outside the FB
In addition to the output assignment (Page 169) for the call of an FB, it is always possible to
access an FB's output parameter outside the FB.
To do so, use structured variables (Page 110) in the FB instance name.output parameter
format , e.g. Supply1.out.
Also refer to the examples in Calling function blocks (instance calls) (Page 171).
The instance name of the FB itself must not be used in a value assignment!

4.1.5.9 Accessing the FB's input parameter outside the FB
In addition to the input assignment (Page 166) for the call of an FB, it is always possible to
read and write an FB's input parameter outside the FB.
To do so, use structured variables (Page 110) in the FB instance name.input parameter
format , e.g. Supply1.in1.

NOTICE
To be able to use this option, the "Permit language extensions" compiler option must be
activated (see Global compiler settings (Page 47) and Local compiler settings (Page 49)).

The instance name of the FB itself must not be used in a value assignment!

Table 4- 5 Example of assignment to input parameter

// Only with compiler option "Permit language extensions" activated
VAR
 var_fb : _WORD_TO_2BYTE;
 var_word : WORD;
END_VAR
var_fb.wordin := var_word;
// ..
var_fb();

Functions, Function Blocks, and Programs
4.1 Creating and calling functions and function blocks

 SIMOTION ST Structured Text
174 Programming and Operating Manual, 05/2009

4.1.5.10 Error sources in FB calls
Note the following when calling a function block instance:
● Only assign in/out parameters with variables that are stored directly in the memory.

Only the following variables are permissible actual parameters:
– Global variables (unit variables and global device user variables)
– Local variables
– Variables of the data type of the TO (TO instances)
The following are not possible, in particular:
– System variables (TO variables)
– Names of technological objects from the Engineering System
– I/O variables
– Absolute and symbolic process image access

● Do not use functions (FCs) as in/out parameters.
The FC return value, i.e. the FC call, cannot be an actual parameter in an in/out
assignment. You must first store the result of the FC in a local variable and then use this
variable as an actual parameter in the in/out assignment.

● Do not use constants as in/out parameters.
Only variables can be used as actual parameters of an in/out assignment because the
value is written back.

● In/out parameters cannot be initialized.

 Functions, Function Blocks, and Programs
 4.2 Comparison of functions and function blocks

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 175

4.2 Comparison of functions and function blocks
The differences between user-defined function blocks (FBs) and functions (FCs) are
succinctly illustrated below using a complete example.

4.2.1 Description of example
The following example illustrates the differences between FBs and FCs. For simplicity, each
type of parameter is used only once, although, in reality, you can define any number of
parameters. The terms used are defined both in the detailed descriptions in Define functions
(Page 160) and Define function blocks (Page 161).
A block will be created as an FB and an FC in the declaration part of the implementation
section for use in calculating the circumference and the area of a circle for a radius input
variable.
● An input parameter is defined for the radius.
● An in/out parameter is defined for the circumference of the circle, i.e. the value of the

transferred variable is assigned directly during the call of the FB or the FC.
● There are several ways of defining the area of the circle for the FB and the FC:

– For the FB, an output parameter is defined.
– For the FC, its return value is used; the data type of the return value is defined

appropriately.
● Each FB and FC call will be recorded in a counter (local variable). The explanations for

the example state: We will see that this value will continue to be counted only in the FB.
● In the program section, the FB or the FC is called and the actual parameters assigned to

the following formal parameters:
– For the FB: Input, in/out and output parameters
– For the FC: Input and in/out parameters.
The values for the circumference and the area are available after calling the FB or the
FC:
– For the FB: in the actual parameters of the in/out and output parameter.

The output parameter can be read even outside the FB.
– For the FC: in the return value of the function and in the actual parameter of the in/out

parameter.

Functions, Function Blocks, and Programs
4.2 Comparison of functions and function blocks

 SIMOTION ST Structured Text
176 Programming and Operating Manual, 05/2009

4.2.2 Source file with comments

Table 4- 6 Example of differences between FB and FC

Function block (FB) Function (FC)
INTERFACE
 PROGRAM CircleCalc1;
END_INTERFACE
IMPLEMENTATION
 FUNCTION_BLOCK Circle1
 //Constant declaration
 VAR CONSTANT
 PI : LREAL := 3.1415 ;
 END_VAR
 //Input parameter
 VAR_INPUT
 Radius : LREAL;
 END_VAR
 //In/out parameter
 VAR_IN_OUT
 circumference : LREAL;
 END_VAR
 //Output parameter
 VAR_OUTPUT
 Area : LREAL;
 END_VAR
 // Local variables, static
 VAR
 Counter : DINT;
 (* Variable retains its value
 between calls *)
 END_VAR
 //Call counter
 Counter := counter + 1 ;
 Circumference := 2 * PI * Radius ;
 Area := PI * Radius**2 ;
 END_FUNCTION_BLOCK
 PROGRAM CircleCalc1
 VAR
 myCircle1 : Circle1 ;
 myArea1, myArea2 : LREAL;
 myCircf : LREAL;
 END_VAR;
 myCircle1(Radius := 3
 , Circumference := myCircf
 , Area => myArea1) ;
 myArea2 := myCircle1.Area ;
 // myCircf has the value 18,849
 // myArea1 has the value 28,274
 // myArea2 has the value 28,274
 END_PROGRAM
END_IMPLEMENTATION

INTERFACE
 PROGRAM CircleCalc2;
END_INTERFACE
IMPLEMENTATION
 FUNCTION Circle2 : LREAL
 //Constant declaration
 VAR CONSTANT
 PI : LREAL := 3.1415 ;
 END_VAR
 //Input parameter
 VAR_INPUT
 Radius : LREAL;
 END_VAR
 //In/out parameter
 VAR_IN_OUT
 circumference : LREAL;
 END_VAR
 //Output parameter
 // Not possible

 // Local variables, temporary
 VAR
 Counter : DINT;
 (* Variable will be initialized
 with 0 for each call *)
 END_VAR
 //Call counter
 Counter := Counter + 1 ;
 Circumference := 2 * PI * Radius ;
 Circle2 := PI * Radius**2 ;
 END_FUNCTION
 PROGRAM CircleCalc2
 VAR

 myArea : LREAL;
 myCircf : LREAL;
 END_VAR;
 myArea := Circle2(Radius := 3
 , Circumference := myCircf);

 // myCircf has the value 18,849
 // myArea has the value 28,274

 END_PROGRAM
END_IMPLEMENTATION

 Functions, Function Blocks, and Programs
 4.2 Comparison of functions and function blocks

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 177

Table 4- 7 Example of the differences between FB and FC for the previous example

Function block (FB) Function (FC)
Comments

Reserved words for the definition:
FUNCTION_BLOCK and END_FUNCTION_BLOCK

Reserved words for the definition:
FUNCTION and END_FUNCTION

No return value permitted. The data type of the return value must be specified after the
name (VOID data type, if no return value).

Input parameters can be used to transfer values to the FB. Input parameters can be used to transfer values to the FC.
In/out parameters can be used to read and write the
transferred variables in the FB.

In/out parameters can be used to read and write the
transferred variables in the FC.

Output parameters can be used to return values from an FB. No output parameters permitted.
The local variables are static, i.e. they retain their value
between FB calls.
The Counter local variable is incremented; its value is
retained when the FB is closed. The variable is, therefore,
incremented each time the FB is called.
To see this behavior: Assign the value of the local variables
to a global variable in the FB. Monitor the value of the global
variable after repeated FB calls.

The local variables are temporary, i.e. they lose their value
when the function is terminated.
Although the Counter local variable is incremented, its value
is lost when the FC is exited. The variable is reinitialized (to
0 in the example) at the next FC call.
To see this behavior: Assign the value of the local variables
to a global variable in the FC. The value of the global
variable remains unchanged after repeated FC calls.

In the statement section, the results (return values) are
assigned to the output or in/out parameters.

In the statement section, the result (return value) is
assigned to the function name (except when VOID data type
is specified).

In the declaration section of the block that executes the call,
an instance of the FB is declared: you declare a variable
and specify the name of the FB as its data type. You use the
declared instance name to call the FB and to access its
output parameters.
The name of the FB itself must not be used in the statement
section.

• You assign a variable to the in/out parameters when the
FB instance is called.

• With the call, you can assign the output parameters to a
variable.

• You can read an FB's output parameters, even outside
the FB. For this purpose, use structured variables in the
following format:
FB-instancename.outputparameter.

• You assign a variable to the in/out parameters when the
FB instance is called.

• To obtain the return value of the FC:
– Assign the function to a variable.
– Use the function in an expression on the right side of

a value assignment.

The program that executes the call cannot access variables
other than the in/out variables and output parameters of the
FB.
Exception: For activated "Permit language extensions"
compiler option (see Global compiler settings (Page 47) or
Local compiler settings (Page 49)), the called program can
also access the input parameters of an FB. For this
purpose, use structured variables in the following format:
FB-instancename.inputparameter.

The program that executes the call cannot access any
variables other than the return value.

Functions, Function Blocks, and Programs
4.3 Programs

 SIMOTION ST Structured Text
178 Programming and Operating Manual, 05/2009

4.3 Programs
Programs are a series of statements placed between the PROGRAM and END_PROGRAM
keywords.

Figure 4-11 Syntax: Program

Programs are declared in the Implementation section (Page 185) of an ST source file and
are comparable with the FB. Static local variables (VAR...END_VAR) or temporary local
variables (VAR_TEMP...END_VAR) can be created, for example. However, they do not have
any formal parameters and so cannot be called with arguments. Examples for programs are
contained in the Source file with comments (Page 176) and Source text of the sample
program (Page 68) sections.

4.3.1 Assignment of a program in the execution system
By default, programs in the execution system are assigned to a task. The execution behavior
of the programs, e.g. the associated task determines the initialization of the variables. For
more information about the execution system and the tasks, refer to the SIMOTION Basic
Functions Function Manual. This requires the program in the interface section (Page 184) of
the ST source file to be specified as the program organization unit to be exported.

 Functions, Function Blocks, and Programs
 4.3 Programs

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 179

4.3.2 Calling a program in the program ("program in program")
Optionally, a program can also be called within a different program or a function block. This
requires the following compiler options to be activated (see Global compiler settings
(Page 47) and Local compiler settings (Page 49)):
1. "Permit language extensions" for the program source of the calling program or function

block and
2. "Create program instance data only once" for the program source of the calling program.
The call is performed as for a function with parameters and return value, see following
example.

NOTICE
The activated "Create program instance data only once" compiler option causes:
• The static variables of the programs (program instance data) are stored in a different

Memory area (Page 212). This also changes the Initialization behavior (Page 223).
• All called programs with the same name use the same program instance data.

Table 4- 8 Example for calling a program in a program

PROGRAM my_prog
 ; // ...
END_PROGRAM

PROGRAM main_prog
 ; // ...
 my_prog();
 ; // ...
END_PROGRAM

 Note
Most of the programming work involved in assigning programs to tasks can be done if
programs are called from within a program. In the execution system, only one calling
program needs to be assigned to the associated tasks in each case.

Functions, Function Blocks, and Programs
4.4 Expressions

 SIMOTION ST Structured Text
180 Programming and Operating Manual, 05/2009

4.4 Expressions
The expression is a special case of a function declaration:
● The data type of the return value is defined as BOOL and is not specified explicitly.
It is used in conjunction with the WAITFORCONDITION statement (Page 152).
An expression can only be declared in the implementation section of the ST source file.

Figure 4-12 Syntax: Expression

Optionally, the following can be declared in the declaration section:
● Local (temporary) variables
● Local constants
● User-defined data types (UDT)
● Input and in/out parameters (as of Version V4.1 of the SIMOTION kernel)
The following can be accessed in the statement section:
● To the local variables of the expression
● To the input and in/out parameters (provided their declaration is permitted)
● Unit variables
● Global device variables, I/O variables, and the process image
An expression of data type BOOL must be assigned to the expression name in the statement
section of the expression (see figure).

 Note
The statement section of the expression cannot contain any function calls or loops.

 Functions, Function Blocks, and Programs
 4.4 Expressions

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 181

Example
The following example assumes that the feeder program is running in a MotionTask. The
option Activation after StartupTask is selected for this MotionTask. The assignment of
programs to tasks is performed in SIMOTION SCOUT (see SIMOTION Motion Control Basic
Functions function description).

Table 4- 9 Example of the use of an EXPRESSION and the WAITFORCONDITION statement

INTERFACE
 USEPACKAGE cam;
 PROGRAM feeder; // in MotionTask_1
END_INTERFACE

IMPLEMENTATION
 // Condition for WAITFORCONDITION statement
 EXPRESSION automaticExpr
 automaticExpr := IOfeedCam; // Digital input
 END_EXPRESSION

 PROGRAM feeder
 VAR
 retVal : DINT ;
 END_VAR ;
 retVal := _enableAxis (axis := realAxis,
 enableMode := ALL,
 servoCommandToActualMode := INACTIVE,
 nextCommand := WHEN_COMMAND_DONE,
 commandId := _getCommandId());

 // Wait until the start condition is satisfied
 WAITFORCONDITION automaticExpr WITH TRUE DO
 // High-priority execution of all statements
 // to the END_WAITFORCONDITION command
 retVal := _pos (axis := realAxis,
 positioningMode := RELATIVE,
 position := 500,
 velocityType := DIRECT,
 velocity := 300,
 velocityProfile := TRAPEZOIDAL,
 mergeMode := IMMEDIATELY,
 nextCommand := WHEN_MOTION_DONE,
 commandId:= _getCommandId());
 END_WAITFORCONDITION;

 retVal := _disableAxis (axis := realAxis,
 disableMode := ALL,
 servoCommandToActualMode := INACTIVE,
 nextCommand := WHEN_COMMAND_DONE,
 commandId := _getCommandId());
 END_PROGRAM
END_IMPLEMENTATION

Functions, Function Blocks, and Programs
4.4 Expressions

 SIMOTION ST Structured Text
182 Programming and Operating Manual, 05/2009

Further examples are contained in the SIMOTION Motion Control Basic Functions Function
Manual. In particular, the manual describes how, as of Version V4.1 of the
SIMOTION kernel, you use an EXPRESSION with parameters and, for example, program a
time monitoring in a WAITFORCONDITION statement.

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 183

Integration of ST in SIMOTION 5

This section describes the interoperability of ST programs and SIMOTION SCOUT.

5.1 Source file sections
An overview of the meaning of the source file sections was provided in Structure of an ST
source file (Page 94). This section describes details, such as the syntax of the sections and
how to use them to import and export data between several ST source files.

5.1.1 Use of the source file sections
You must follow certain structure and syntax rules in your source file sections (modules), so
that the ST source file can be compiled. A few general guidelines are presented here; details
on source file sections are presented later in this section:
● When creating the source file, you should always pay attention to the order of the source

file sections. A section that is to be called must always precede the calling section;
otherwise the section that is to be called will not recognize the calling section.
For example, variables must always be declared before they are used and functions must
be defined before they are called.

● The source text for the most common source file sections – program, function or function
block – consists of the following:
– Start of section with reserved word and identifier
– Declaration section (optional)
– Statement section
– End of section with reserved word

● Identifiers for source file sections – hereinafter referred to as name or name_list - follow
the general syntax rules for identifiers (Identifiers in ST (Page 80)).

 Note
A template with all possible source file sections is available in the online help.

Integration of ST in SIMOTION
5.1 Source file sections

 SIMOTION ST Structured Text
184 Programming and Operating Manual, 05/2009

5.1.1.1 Interface section
The interface section contains statements for importing and exporting data (data types,
variables, function blocks, functions, and programs). Technology packages and libraries can
also be downloaded. The interface section has the following syntax:

Table 5- 1 Syntax of interface section

Syntax INTERFACE
// Interface statements (optional)
END_INTERFACE
An individual identifier of the section cannot be specified.
Optionally, interface statements exist in the following order between reserved words INTERFACE
and END_INTERFACE.
1. Specification of utilized technology package. Syntax:

USEPACKAGE tp-name [AS namespace];
For more details, refer to the SIMOTION Basic Functions Function Manual.

2. Specification of utilized libraries.

Syntax:
USELIB library-name-list [AS namespace];
For more information, see "Using data types, functions and function blocks from libraries
(Page 251)".

3. Reference to other units in order to use their exported components.
Syntax:
USES unit_name-list;
For more information, see "USES statement in an importing unit (Page 197)".

4. Declarations and specifications for the export
– Data type definitions (Page 191):

User-defined data types (UDT) that are valid in the entire ST source file and that are to be
exported

– Variable declarations (Page 192):

Unit variables and unit constants valid in the entire ST source file and exported.

Permissible keywords: See table in "Variable declaration (Page 192)".
– Information regarding program organization units (POU) to be exported.

Syntax:
FUNCTION fc_name;
FUNCTION_BLOCK fb_name;
PROGRAM program_name;

All technology packages, libraries, imported units, data type declarations, variable declarations
and program organization units listed in the interface section will be exported. For more
information on export, see "Interface section of an exporting unit (Page 194)".

Sequence The interface section is the first section of an ST source file1.
The order of the interface statements 1 to 4 is fixed.
Within number 4, any order is permitted. The individual declaration blocks for data type definitions
and variable definitions can appear more than once.
Attention: Identifiers must be declared before they are used.

Frequency Once per ST source file
Mandatory section yes
1 Optionally, the unit statement can precede the interface section (see "Identifier of the unit (Page 194)".

 Integration of ST in SIMOTION
 5.1 Source file sections

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 185

5.1.1.2 Implementation section
The implementation section contains the executable sections, comprising the main part of
the ST source file.
The implementation section has the following syntax:

Table 5- 2 Syntax of the implementation section

Syntax IMPLEMENTATION
// Implementation statements (optional)
END_IMPLEMENTATION
An individual identifier of the section cannot be specified.
Optionally, implementation statements (main part of the ST source file) exist in the following order
between the reserved words IMPLEMENTATION and END_IMPLEMENTATION:
1. Reference to other units in order to use their exported components. Syntax:

USES unit_name-list;
For more information, see "USES statement in an importing unit (Page 197)".

2. Declarations
– Data type definitions (Page 191):

User-defined data types (UDT) that are valid in the entire ST source file
– Variable declarations (Page 192):

Unit variables and constants that are valid in the entire ST source file

Permissible keywords: See table in "Variable declaration (Page 192)".
3. Program organization units (POUs) (Page 185)

Sequence Always follows the interface section.
The order of the implementation statements indicated above is mandatory; within number 2 and 3,
any order is permitted:
Attention: Identifiers must be declared before they are used.

Frequency Once per ST source file
Mandatory section yes

5.1.1.3 Program organization units (POUs)
POUs are the executable source file sections:
● Functions (FC) (Page 186)
● Expressions (Page 189)
● Function blocks (FB) (Page 187)
● Programs (Page 188)

 Note
Called POUs always precede the calling POUs so that they are recognized by the latter.

Integration of ST in SIMOTION
5.1 Source file sections

 SIMOTION ST Structured Text
186 Programming and Operating Manual, 05/2009

5.1.1.4 Functions (FCs)
Functions (FC) are classified as program organization units (POUs). Functions are
paramterized source file sections with temporary data that can be called from programs and
function blocks. All internal variables lose their values when the function is exited and are
reinitialized the next time the function is called.
FCs have the following syntax:

Table 5- 3 Syntax of functions (FCs)

Syntax FUNCTION name : function_data_type
// Declaration section
// Statement section
END_FUNCTION
name stands for the identifier of the function, while function_data_type stands for the data type of
the return value.
Permissible keywords for the variable declaration in the declaration section: See table in "Variable
declaration (Page 192)".
Note the following for functions with function_data_type <> VOID: In the statement section, an
expression of data type function_data_type must be assigned to the function identifier!

Sequence FCs can only be defined in the implementation section.
Pay attention to the order: FCs must come before the POUs from which they are called!
The declaration section (Page 190) must precede the statement section (Page 190).

Frequency Any number of times per ST source file
Mandatory section no

For information on functions (FC), see Creating and calling functions and function blocks
(Page 159).

 Integration of ST in SIMOTION
 5.1 Source file sections

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 187

5.1.1.5 Function blocks (FBs)
Function blocks (FB) are classified as program organization units (POUs). They are source
file sections with static data that can be called from programs and assigned parameters
(internal variables retain their value between calls). Since an FB has memory, its output
parameters can be accessed at any time and from any point in the user program.
FBs have the following syntax:

Table 5- 4 Syntax of the function blocks

Syntax FUNCTION_BLOCK name
// Declaration section
// Statement section
END_FUNCTION_BLOCK
name stands for the identifier of the function block.
Permissible keywords for the variable declaration in the declaration section: See table in "Variable
declaration (Page 192)".

Special features Before you call a function block (FB), you must declare an instance: You declare a variable and
enter the identifier of the function block as the data type. You can declare the instance locally
(within VAR / END_VAR in the declaration sections of a program or a function block).
You can declare the instance globally (within VAR_GLOBAL / END_VAR in the interface or
Implementation section), however, not using function blocks defined in the same ST source file.
This is possible only with function blocks made available by imported program source files and
libraries.
You cannot declare an instance of an FB in FCs.

Sequence FBs can only be defined in the implementation section.
Pay attention to the order: FBs must precede the POE in which an instance is declared as local
variable.
The declaration section (Page 190) must precede the statement section (Page 190).

Frequency Any number of times per ST source file
Mandatory section no

For information on the FB, see Creating and calling functions and function blocks
(Page 159).

Integration of ST in SIMOTION
5.1 Source file sections

 SIMOTION ST Structured Text
188 Programming and Operating Manual, 05/2009

5.1.1.6 Programs
Programs are classified as program organization units (POUs). They are called on the target
system according to their task assignment (see Configuring the execution system in the
SIMOTION Basic Functions Function Manual) and can call FCs and FBs.
Programs have the following syntax:

Table 5- 5 Syntax of the programs

Syntax PROGRAM name
// Declaration section
// Statement section
END_PROGRAM
name stands for the name of the program.
Permissible keywords for the variable declaration in the declaration section: See table in "Variable
declaration (Page 192)".

Sequence Programs can only be defined in the implementation section.
It is advantageous to place programs after expressions, FCs, and FBs. This enables the program
to recognize and use the source file sections.
The declaration section (Page 190) must precede the statement section (Page 190).

Frequency Any number of times per ST source file
Mandatory section no

For more information about programs, see Programs (Page 178).

 Integration of ST in SIMOTION
 5.1 Source file sections

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 189

5.1.1.7 Expressions
Expressions are a special case of a function declaration with the specified data type BOOL
of the return value. The expression within the EXPRESSION <expression identifier> ...
END_EXPRESSION reserved words assigned to the function name is evaluated.
You can use the WAITFORCONDITION construct to wait directly for a programmable event
or condition in a MotionTask. The statement suspends the task that called it until the
condition (expression) is true.
Expressions have the following syntax:

Table 5- 6 Syntax of the expressions

Syntax EXPRESSION name
// Declaration section
// Statement section
END_EXPRESSION
name stands for the identifier of the expression.
Permissible keywords for the variable declaration in the declaration section: See table in "Variable
declaration (Page 192)".
Attention: In the statement section, an expression of data type BOOL must be assigned to the
expression identifier!

Sequence An expression can only be declared in the implementation section of an ST source file.
Therefore, expressions precede the program in which they are called from a
WAITFORCONDITION control structure.
The declaration section (Page 190) must precede the statement section (Page 190).

Frequency Any number of times per ST source file
Mandatory section no

For more information on expressions, see Expressions (Page 180). In conjunction with the
WAITFORCONDITION statement, see SIMOTION Basic Functions Function Manual.

Integration of ST in SIMOTION
5.1 Source file sections

 SIMOTION ST Structured Text
190 Programming and Operating Manual, 05/2009

5.1.1.8 Declaration section
The declaration section of a program organization unit (POU) contains the data type
definition and the variable declaration of the POU.
The declaration section has the following structure:

Table 5- 7 Structure of the declaration section

Structure // Data type definition
// Variable declaration

Sequence The declaration section has no explicit keywords at the start or end. It begins after the keyword of
the respective program organization unit (POU) and ends with the first executable statement of
the statement section.
It contains the following in any order:
• Data type definitions (Page 191):

User-defined data types (UDT) that are valid locally in the POU
• Variable declarations (Page 192):

Variables and constants that are valid locally in the POU

Permissible keywords according to the respective POU: See table in "Variable declaration
(Page 192)".

Attention: Identifiers must be declared before they are used.
Frequency Once per POU
Mandatory section no

5.1.1.9 Statement section
The statement section of a POU consists of the individual (executable) statements.
The statement section has the following structure:

Table 5- 8 Structure of the statement section

Structure // Statements

Sequence The statement section has no explicit keywords at the start or end. It begins after the declaration
section and ends with the keyword of the respective POU.

Frequency Once per POU
Mandatory section no

For more information on statements, see
● Value assignments and expressions (Page 124)
● Control statements (Page 143)
● Calling functions and function blocks (Page 166)

 Integration of ST in SIMOTION
 5.1 Source file sections

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 191

5.1.1.10 Data type definition
For the data type definition, you specify user-defined data types (UDT). You can use them
for variable declarations. UDTs can be defined in the interface section, the implementation
section, and the declaration section of FCs, FBs, and programs.
The data type definition has the following syntax:

Table 5- 9 Syntax of the data type definition

Syntax TYPE
name : data_type_specification;
 // ...
END_TYPE
name represents the name of the individual data type that you use for the Variable declarations.
data_type_specification stands for any data type or a structure. Any number of individual data
types can appear between TYPE and END_TYPE.

Sequence You can define UDTs as follows:
• In the Interface section:

The UDTs are recognized within the ST source file and will be exported

They can be used in the interface and implementation section for declaration of unit variables
and in all POUs for declaration of local variables.

In addition, they can be used in all units which import this ST source file (in SIMOTION ST
with the USES statement).

• In the Implementation section:

The UDTs are recognized within the ST source file

They can be used in the implementation section for declaration of unit variables and in all
POUs for declaration of local variables.

• In the Declaration section of a POU (FC, FB, program, expression)

The UDTs are only recognized locally within the POU

They can only be used within the POU for declaration of local variables.
UDTs must be defined before they are used in a variable declaration.

Frequency The TYPE / END_VAR declaration block may appear more than once in a source file section; any
number of UDTs are possible within a declaration block.

Mandatory section no

For more information about the UDT, see User-defined data types (Page 103).

Integration of ST in SIMOTION
5.1 Source file sections

 SIMOTION ST Structured Text
192 Programming and Operating Manual, 05/2009

5.1.1.11 Variable declaration
A declaration section contains variable declarations and can itself be contained in FCs, FBs,
and programs (POUs) as well as in the interface section and the implementation section.
The variable declaration has the following syntax:

Table 5- 10 Syntax of variable declaration

Syntax variable_type
 name_list : data_type;
 // ...
END_VAR
variable_type represents the keyword of the variable type being declared. The permitted
keywords depend on the source file section.
• In the Interface section or Implementation section of an ST source file:

VAR_GLOBAL: Non-retentive unit variable

VAR_GLOBAL CONSTANT: Unit constant

VAR_GLOBAL RETAIN: Retentive unit variable
• In the Declaration section of a function:

VAR: Local variable

VAR CONSTANT: Local constant

VAR_INPUT: Input parameter

VAR_IN_OUT: In/out parameter
• In the Declaration section of a function block:

VAR: Local variable

VAR CONSTANT: Local constant

VAR_TEMP: Temporary variable

VAR_INPUT: Input parameter

VAR_OUTPUT: Output parameter

VAR_IN_OUT: In/out parameter
• In the Declaration section of a program:

VAR: Local variable

VAR CONSTANT: Local constant

VAR_TEMP: Temporary variable
• In the Declaration section of an expression:

VAR: Local variable

VAR CONSTANT: Local constant

VAR_INPUT: Input parameter (as of Version 4.1 of the SIMOTION kernel)

VAR_IN_OUT: In/out parameter (as of Version 4.1 of the SIMOTION kernel)
name_list is the list of identifiers of the data_type data type to be declared.

 Integration of ST in SIMOTION
 5.1 Source file sections

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 193

Sequence The variable is declared:
• In the Interface section of the ST source file:

Permissible keywords: see table field syntax.

The unit variables are recognized within the ST source file and will be exported.

They can be used in all POUs of the ST source file.

In addition, they can be used in all units which import this ST source file (in SIMOTION ST
with the USES statement).

• In the Implementation section of the ST source file:

Permissible keywords: see table field syntax.

The unit variables are recognized within the ST source file.

They can be used in all POUs of the ST source file.
• In the Declaration section of a POU (FC, FB, program, expression)

Permissible keywords according to the type of POU: See table cell Syntax.

The variables are only recognized locally within the POU.

They can only be used within the POU for declaration of local variables.

Exceptions:
– You can also access the output parameters of a function block outside the FB.
– You can access the input parameters of a function block outside the FB provided the

"Permit language extensions" compiler option has been activated. See Global settings of
the compiler (Page 47) and Local settings of the compiler (Page 49).

Variables must be declared before they are used.
Frequency The number of times the variable_type / END_VAR declaration block of a specific variable type

can appear depends on the associated source file section:
• In the interface and implementation section of the ST source:

The declaration blocks may appear more than once.
• In the declaration section of a POU (FC, FB, program, expression):

Each declaration block (other than VAR CONSTANT / END_VAR) may appear just once in the
declaration section.

Permitted declaration blocks and keywords depending on the associated source file section: See
table cell Syntax.
Any number of variable declarations are possible within a declaration block.

Mandatory section no

For more information about variable declarations, see Variable declaration (Page 116).

Integration of ST in SIMOTION
5.1 Source file sections

 SIMOTION ST Structured Text
194 Programming and Operating Manual, 05/2009

5.1.2 Import and export between ST source files
ST applies the unit concept, where you can access the global variables, data types,
functions (FCs), function blocks (FBs), and programs of other source files. Thus, for
example, you can compile reusable subroutines and make them available.

5.1.2.1 Unit identifier
Below, unit refers to a program source file (e.g. ST source file, MCC source file). The name
of the program source file defined in SIMOTION SCOUT is applied as the identifier.
Optionally, you can set the unit statement as first statement for an ST source file (preceding
the interface section). Syntax:

UNIT name;

name corresponds to the name of the ST source file defined in SIMOTION SCOUT, see Add
ST source (Page 21) or Change the properties of an ST source file (Page 23).
The unit statement is ignored if the name specified there differs from the name of the ST
source file.

5.1.2.2 Interface section of an exporting unit
You can enter the following constructs in the interface section of an exporting unit. The
syntax of the constructs is only implied here, for details, see "Interface section (Page 184)".
● The type declarations to be exported

TYPE
User-defined data types with their complete declaration.

● The variable declarations to be exported
VAR_GLOBAL, VAR_GLOBAL RETAIN, or VAR_GLOBAL CONSTANT
Non-retentive and retentive unit variables and unit constants with their complete
declaration.

● POUs (functions, function blocks, and programs) to be exported
Specify each POU (function, function block, or program) to be exported with the relevant
keyword. Close each entry with a semicolon.
– FUNCTION_BLOCK fb_name ;
– FUNCTION fc_name ;
– PROGRAM program_name ;

 Integration of ST in SIMOTION
 5.1 Source file sections

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 195

Specifications can be made in any order; the POU itself is programmed in the
implementation section of the ST source file.

 Note
The following further specifications are possible in the interface section, they are listed
before the exported data types, variables and POU:
1. Specification of utilized technology packages (USEPACKAGE …).
2. Specification of utilized libraries (USELIB …).
3. Reference to other units in order to use their exported units (USES …).
These imported technology packages, libraries and units are also exported. For inheritance,
see "USES statement in an importing unit (Page 197)".
You must adhere to the order presented for the specifications in the interface section of a
unit (ST source file), see "Interface section (Page 184)". Otherwise, error-free compilation of
the ST source file will not be possible.

The programs of an ST source file must be listed in the interface section so that they can be
assigned to a task in the execution system (see Configuring the execution system in the
SIMOTION Basic Functions Function Manual). The compiler outputs a warning message if
programs cannot be exported in the interface section of an ST source file.
Functions and function blocks that are only used in the ST source file should not be listed in
the interface section.

Integration of ST in SIMOTION
5.1 Source file sections

 SIMOTION ST Structured Text
196 Programming and Operating Manual, 05/2009

5.1.2.3 Example of an exporting unit
Below is an example of an exporting unit (myUnit_A). It is imported by myUnit_B (see
Example of an importing unit (Page 199)).

Table 5- 11 Example of an exporting unit

UNIT myUnit_A; // Optional, name of the ST source file

INTERFACE
 // ... USES statement also possible here
 TYPE // Declaration of data types to be exported
 color : (RED, GREEN, BLUE);
 END_TYPE
 VAR_GLOBAL
 cycle : INT := 1; // Declaration of the
 // unit variables to be exported
 END_VAR
 FUNCTION myFC; // Export statement of an FC
 FUNCTION_BLOCK myFB; // Export statement of an FB
 PROGRAM myProgram_A; // Export statement of a program
 // (to interface with the execution system)
END_INTERFACE

IMPLEMENTATION
 Function myFC : LREAL // Function written out
 ; // ... (Statements)
 END_FUNCTION

 Function_BLOCK myFB // Function block written out
 ; // ... (Statements)
 END_FUNCTION_BLOCK

 PROGRAM myProgram_A // Program written out
 ; // ... (Statements)
 END_PROGRAM
END_IMPLEMENTATION

 Integration of ST in SIMOTION
 5.1 Source file sections

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 197

5.1.2.4 USES statement in an importing unit
Enter the following statement in the interface or implementation section of an importing unit:

USES unit_name-list

unit_name-list is a list of units separated by commas from which the modules are to be
imported.
Example:

USES unit_1, unit_2, unit_3;

This enables you to access the following elements specified or declared in the interface
section of the imported unit (e.g. ST source file, MCC source):
● User-defined data types (UDT)
● Unit variables and unit constants
● Programs, functions and function blocks
● Imported technology packages, libraries and units
You can use the imported elements as if they existed in the current unit.

 Note
The keyword USES can only occur once in the interface section or in the implementation
section of a unit. When multiple units are to be imported, enter them as a list separated by
commas after the keyword USES.

The USES statement can appear in either the interface section or the implementation section
of a unit. This has far-reaching implications:

Integration of ST in SIMOTION
5.1 Source file sections

 SIMOTION ST Structured Text
198 Programming and Operating Manual, 05/2009

Table 5- 12 Implications regarding placement of USES statement in interface section or in implementation section

Effect USES statement
in the interface section

USES statement
in the implementation section

Inheritance The current unit continues exporting the
imported unit; the imported unit is inherited by
all other units that access the current unit.
Example:
1. Unit B imports Unit A in the interface

section.
2. Unit C in turn imports Unit B.
3. Then Unit C also imports Unit A

automatically.
A → B → C ⇒ A → C
Because of inheritance, Unit A must not be
imported explicitly into Unit C.

Inheritance is interrupted.
Example:
1. Unit B imports Unit A in the implementation

section.
2. Unit C in turn imports Unit B.
3. Then Unit C has no automatic access to

Unit A.
Unit C must explicitly import Unit A if it wants to
access Unit A.

Variable declaration The declaration of a unit variable of an imported
data type is possible in:
• Interface section
• Implementation section

The declaration of a unit variable of an imported
data type is only possible in the implementation
section.

 Note
You will find tips for use of unit variables in the SIMOTION Basic Functions Function Manual.

 Integration of ST in SIMOTION
 5.1 Source file sections

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 199

5.1.2.5 Example of an importing unit
Below is an example of an importing unit (myUnit_B). It imports the unit myUnit_A from
Example of an exporting unit (Page 196).

Table 5- 13 Example of an importing unit

UNIT myUnit_B; // Optional, name of the ST source file
INTERFACE
 // ... if required, USES statement
 PROGRAM myProgram_B;
 // Specification of programs to be exported, FB, FC
 // Data types and unit variables
END_INTERFACE

IMPLEMENTATION
 USES myUnit_A; // Specification of unit to be imported

 VAR_GLOBAL
 myInstance : myFB; // Declaration of an instance
 // of the imported FB
 mycolor : color; // Declaration of a variable
 // of the imported data type
 END_VAR

 PROGRAM myProgram_B

 mycolor := GREEN; // Value assignment to a variable of the
 // data type to be imported
 cycle := cycle + 1; // Value assignment to
 // imported variable
 END_PROGRAM
END_IMPLEMENTATION

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
200 Programming and Operating Manual, 05/2009

5.2 Variables in SIMOTION
This summarizes the variables available in ST.

5.2.1 Variable model
The following table shows all the variable types available for programming with ST.
● System variables of the SIMOTION device and the technology objects
● Global user variables (I/O variables, device-global variables, unit variables)
● Local user variables (variables within a program, a function or a function block)

System variables

Variable type Meaning
System variables of the
SIMOTION device
System variables of
technology objects

Each SIMOTION device and technology object has specific system variables. These can be
accessed as follows:
• Within the SIMOTION device from all programs
• From HMI devices
You can monitor system variables in the symbol browser.

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 201

Global user variables

Variable type Meaning
I/O variables You can assign symbolic names to the I/O addresses of the SIMOTION device or the peripherals.

This allows you to have the following direct accesses and process image accesses to the I/O:
• Within the SIMOTION device from all programs
• From HMI devices
You create these variables in the symbol browser after you have selected the I/O element in the
project navigator.
You can monitor I/O variables in the symbol browser.

Global device
variables

User-defined variables which can be accessed by all SIMOTION device programs and HMI
devices.
You create these variables in the symbol browser after you have selected the GLOBAL DEVICE
VARIABLES element in the project navigator.
Global device variables can be defined as retentive. This means that they will remain stored even
when the SIMOTION device power supply is disconnected.
You can monitor global device variables in the symbol browser.

Unit variables User-defined variables that all programs, function blocks, and functions (e.g. ST source, MCC
source, LAD/FBD source) can access within a unit.
Declare these variables in the unit:
• In the interface section:

You can import these variables into other units (ST source files, MCC source files, LAD/FBD
source files) and they are also available on HMI devices as standard.

• In the implementation section:
You can only access these variables within the associated unit.

You can declare unit variables as retentive. This means that they will remain stored even when the
SIMOTION device power supply is disconnected.
You can monitor unit variables in the symbol browser.

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
202 Programming and Operating Manual, 05/2009

Local user variables

Variable type Meaning
 User-defined variables which can be accessed from within the program (or function,

function block) in which they were defined.
Variable of a program
(program variable)

Variable is declared in a program. The variable can only be accessed within this program. A
differentiation is made between static and temporary variables:
• Static variables are initialized according to the memory area in which they are stored.

Specify this memory area by means of a compiler option. By default, the static variables
are initialized depending on the task to which the program is assigned (see SIMOTION
Basic Functions Function Manual).

You can monitor static variables in the symbol browser.
• Temporary variables are initialized every time the program in a task is called.

Temporary variables cannot be monitored in the symbol browser.
Variable of a function (FC
variable)

Variable is declared in a function (FC). The variable can only be accessed within this
function.
FC variables are temporary; they are initialized each time the FC is called. They cannot be
monitored in the symbol browser.

Variable of a function block
(FB variable)

Variable is declared in a function block (FB) source. The variable can only be accessed
within this function block. A differentiation is made between static and temporary variables:
• Static variables retain their value when the FB terminates. They are initialized only when

the instance of the FB is initialized; this depends on the variable type with which the
instance of the FB was declared.

You can monitor static variables in the symbol browser.
• Temporary variables lose their value when the FB terminates. The next time the FB is

called, they are reinitialized.

Temporary variables cannot be monitored in the symbol browser.

Further information is available from the following sources:
● In the corresponding list manuals, you can find the compressed information on all system

variables of the SIMOTION technology packages and SIMOTION devices.
● For more details on the use of system variables of technology objects, please refer to the

SIMOTION Motion Control Technology Objects Function Manuals.

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 203

● In the SIMOTION Basic Functions Function Manual you can find information on how to
access system variables and configuration data.

● This documentation contains information on:
– Accessing I/O addresses with I/O variables (see Direct access and process image of

the cyclic tasks (Page 233))
– Accessing the process image (see Access to the fixed process image of the

BackgroundTask (Page 239))
– Creating and using global device variables (see Using global device variables

(Page 211))
– Use of unit variables and local variables (static and temporary variables).

Note
Please note that downloading the ST source file to the target system and tasks that
are being executed affect the initialization of variables and (as a result of this) their
contents; see Using the same identifiers.

See also
Time of the variable initialization (Page 219)

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
204 Programming and Operating Manual, 05/2009

5.2.1.1 Unit variables
Unit variables are valid throughout the entire ST source file, i.e. they can be accessed in any
source file section.
Unit variables are declared in the interface and/or implementation section of an ST source
file; the location of the declaration determines the validity of the unit variable:
● If you declare the unit variables in the interface section, you create variables that can be

used in other program sources (e.g. ST source files, MMC units). For more on importing
and exporting between program source files, see Import and export between ST source
files (Page 194).
By default, these unit variables are also available on HMI devices. The total size of the
unit variables that can be exported to HMI devices is limited to 64 KB per unit.

● If you declare the unit variables in the implementation section, you create variables that
can be used by all program organization units (POUs) of the current source file.

You can change the default setting for the HMI export of the unit variables using a pragma
within a declaration block, see Variables and HMI devices (Page 227) and Controlling
compiler with attributes (Page 271).

You can define unit variables with different behavior, e.g. in case of power failure:
● Non-retentive unit variables (keyword VAR_GLOBAL): its value is lost in the event of a

power failure.
● Retentive unit variables (keyword VAR_GLOBAL RETAIN): its value remains in the event

of a power failure.
● Unit constants (keyword VAR_GLOBAL CONSTANT): its value is retained unchanged

(see Constants (Page 122)).
You will find tips for the efficient use of unit variables in the SIMOTION Basic Functions
Function Manual.

5.2.1.2 Non-retentive unit variables
Non-retentive unit variables lose their value in the event of a power failure.

Figure 5-1 Syntax: Unit variables

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 205

This declaration block may appear more than once within an interface or implementation
section. You specify the variable name and data type for the variable declaration (see
Overview of all variable declarations (Page 117) and Initialization of variables or data types
(Page 119)).
For the scope of the declaration and the HMI export, see Unit variables (Page 204).

 Note
For initialization of the non-retentive unit variables:
• See Initialization of non-retentive global variables (Page 220).
• The behavior during downloading can be set (Options > Settings menu command, Project

Download tab, Initialize all non-retentive device-global variables and program data
checkbox)

• The type of version ID and therefore the initialization behavior on downloading depends
on the SIMOTION Kernel version. For details, see Version ID of global variables and their
initialization during download (Page 225).

Table 5- 14 Examples of non-retentive unit variables

INTERFACE
 VAR_GLOBAL //These variables can be exported.
 rotation1 : INT;
 field1 : ARRAY [1..10] OF REAL;
 flag1 : BOOL;
 motor1 : motor; // Instance declaration
 END_VAR
END_INTERFACE
IMPLEMENTATION
 VAR_GLOBAL //These variables cannot be exported
 // MotionTask.
 rotation2 : INT;
 field2 : ARRAY [1..10] OF REAL;
 flag2 : BOOL;
 motor2 : motor; // Instance declaration
 END_VAR
END_IMPLEMENTATION

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
206 Programming and Operating Manual, 05/2009

5.2.1.3 Retentive unit variables
Retentive unit variables permit permanent storage of variable values even throughout a
power failure.

Figure 5-2 Syntax: Retentive variable block

This declaration block may appear more than once within an interface or implementation
section. You specify the variable name and data type for the variable declaration (see
Overview of all variable declarations (Page 117) and Initialization of variables or data types
(Page 119)).
For the scope of the declaration and the HMI export, see Unit variables (Page 204).

 Note

• For initialization of the retentive unit variables:

– See Initialization of retentive global variables (Page 219).
– The behavior during downloading can be set (Options > Settings menu command,

Project Download tab, Initialize all retentive device-global variables and program data
checkbox).

– The type of version ID and therefore the initialization behavior on downloading
depends on the SIMOTION Kernel version. For details, see Version ID of global
variables and their initialization during download (Page 225).

• The amount of memory available for retentive variables depends on the device (see
quantity framework in the SIMOTION SCOUT Configuration Manual).
To make efficient use of limited memory space, use the memory in a single ST source file
and sort the variables in descending order!

• Check the capacity utilization of the retentive memory in SIMOTION SCOUT.
In online mode, call the device diagnostics of the SIMOTION device to be checked (see
online help). In the System utilization tab under Retentive data, you can see how much
memory is available.

Table 5- 15 Examples of retentive variables

VAR_GLOBAL RETAIN
 Measuring field : ARRAY[1 to 10] OF REAL;
 Pass : INT;
 Switch: BOOL;
END_VAR

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 207

5.2.1.4 Local variables (static and temporary variables)
Local variables are valid only in the source file section (e.g. program, FC or FB) in which
they were declared. We distinguish between the following:
● Static variables (Page 209):

Static variables retain their value over all passes of the source file section (block
memory).

● Temporary variables (Page 210):
Temporary variables are initialized each time the source file section is called again.

See also: Initialization of local variables (Page 222).

 Note
Local variables cannot be accessed outside the source file section in which they were
declared.

The following table provides an overview of the declaration of static and temporary variables.
It shows the source file sections in which these variables can be declared and the keywords
that can be used to declare them.

Table 5- 16 Keywords for declaring static and temporary variables depending on source file section.

Keywords for the declaration Source file section
Static variables Temporary variables

Function – VAR / END_VAR
or

VAR_INPUT / END_VAR
or

VAR_IN_OUT / END_VAR2
Expression – VAR / END_VAR

or
VAR_INPUT / END_VAR

or
VAR_IN_OUT / END_VAR2

Function block VAR / END_VAR1

or
VAR_INPUT / END_VAR1

or
VAR_OUTPUT / END_VAR1

VAR_TEMP / END_VAR
or

VAR_IN_OUT / END_VAR2

Program VAR / END_VAR3 VAR_TEMP / END_VAR
1 The initialization of the variable depends on initialization of the declared instance. See Initialization of instances of
function blocks (FBs) (Page 224).
2 The reference (pointer) for the transferred variable is temporary.
3 The initialization of the variables depends on the memory area in which they are stored. See Initialization of static
program variables (Page 223).

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
208 Programming and Operating Manual, 05/2009

 Note
Please note that downloading the ST source file to the target system and running tasks
affect variable initialization and thus the contents of the variables, see Time of the variable
initialization (Page 219).

Table 5- 17 Examples of static and temporary variables

IMPLEMENTATION
 FUNCTION testFkt
 VAR // Declaration of temporary variables
 flag : BOOL;
 END_VAR
 END_FUNCTION
 FUNCTION_BLOCK testFbst;
 VAR // Declaration of static variables
 rotation1 : INT;
 END_VAR

 VAR_TEMP // Declaration of temporary variables
 help1, help2 : REAL;
 END_VAR
 END_FUNCTION_BLOCK
 PROGRAM testPrg;
 VAR // Declaration of static variables
 rotation2 : INT;
 END_VAR

 VAR_TEMP // Declaration of temporary variables
 help1, help2 : REAL;
 END_VAR
 END_PROGRAM
END_IMPLEMENTATION

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 209

5.2.1.5 Static variables
Static variables retain their most recent value when the source file section is exited. This
value is used again at the next call.
The following source file sections contain static variables:
● Programs
● Function blocks
Static variables are declared in a static variable block.

Figure 5-3 Syntax: Static variable block

You can do the following in the static variable block, according to the syntax in the figure:
● Declare variables (name and data type), optionally with initialization.
● Declare symbolic accesses to the process image of the BackgroundTask.
● Declare instances of the function blocks.

For initialization of the static variables:
● In programs: Depending on the execution behavior to which the program is assigned (see

SIMOTION Basic Functions Function Manual).
See also Initialization of static program variables (Page 223).

● In function blocks: Depending on the initialization of the declared instance.
See also Initialization of instances of function blocks (FBs) (Page 224).

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
210 Programming and Operating Manual, 05/2009

5.2.1.6 Temporary variables
Temporary variables are initialized each time the source file section is called. Their value is
retained only during execution of the source file section.
The following source file sections contain temporary variables:
● Programs
● Function blocks
● Functions
● Expression
In functions and expressions, you declare temporary variables in the FB temporary variable
block (see following figure):

Figure 5-4 Syntax: Temporary variable block in the FB or program

In functions and expressions, you declare temporary variables in the FC temporary variable
block (see following figure):

Figure 5-5 Syntax: Temporary variable block in an FC

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 211

5.2.2 Use of global device variables
Global device variables are user-defined variables that you can access from all program
sources (e.g. ST source files, MCC units) of a SIMOTION device.
Global device variables are created in the symbol browser tab of the detail view; to do this,
you must be working in offline mode.
Here is a brief overview of the procedure:
1. In the project navigator of SIMOTION SCOUT, select the GLOBAL DEVICE VARIABLES

element in the SIMOTION device subtree.
2. In the detail view, select the Symbol browser tab and scroll down to the end of the

variable table (empty row).
3. In the last (empty) row of the table, enter or select the following:

– Name of variable
– Data type of variable (only elementary data types are permitted)

4. Optionally, you can make the following entries:
– Selection of Retain checkbox (This declares the variable as retentive, so that its value

will be retained after a power failure.)
– Array length (array size)
– Initial value (if array, for each element)
– Display format (if array, for each element)

You can now access this variable using the symbol browser or any program of the
SIMOTION device.
In ST source files, you can use a global device variable, just like any other variable.

 Note
If you have declared unit variables or local variables of the same name (e.g. var-name),
specify the global device variable with _device.var-name.
An alternative to global device variables is the declaration of unit variables in a separate unit,
which is imported into other units. This has the following advantages:
1. Variable structures can be used.
2. The initialization of the variables during the STOP-RUN transition is possible (via

Program in StartupTask).
3. For newly created global unit variables, a download in RUN is also possible.
Please refer to the SIMOTION Basic Functions Function Manual.

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
212 Programming and Operating Manual, 05/2009

5.2.3 Memory ranges of the variable types
The different variable types are stored in different memory areas, which are initialized at
different times. The table shows:
● The available memory areas for variable types that are declared in ST source files

(possibly dependent on the version of the SIMOTION Kernel).
● The initialization time for each memory area.
An explanation using an example is contained in the Example for memory areas, valid as of
Kernel V3.1 (Page 214) section.

Table 5- 18 Memory ranges assigned to different variable types and their initialization

Memory area Assigned variable types Initialization4
Retentive memory Retentive unit variables During download using the download

settings
User memory of unit • Non-retentive unit variables

• Function block instances declared with
VAR_GLOBAL, including the associated
static variables (VAR, VAR_INPUT,
VAR_OUTPUT)

Also for the activated "Create program instance
data only once" compiler option (Page 47):
• Local variables of the unit programs

declared with VAR
• Function block instances declared with

VAR_GLOBAL, including the associated
static variables (VAR, VAR_INPUT,
VAR_OUTPUT)

• When the device is switched on
• During download using the download

settings
• As of Version V4.1 of the SIMOTION

Kernel:

For transition to the RUN mode when
the associated declaration block
specifies the following pragma:

{ BlockInit_OnDeviceRun :=
ALWAYS; }

See also Controlling compiler with
attributes (Page 271)

User memory of task For the deactivated "Create program instance
data only once" compiler option (Page 47)
(default):
• Local variables declared with VAR of the

assigned programs
• Function block instances declared with VAR

within the assigned programs, including the
associated static variables (VAR,
VAR_INPUT, VAR_OUTPUT)

According to execution behavior of task:
• Sequential tasks:

Each time task is started
• Cyclic tasks:

For CPU transition to the RUN mode

• Reference (pointer) to the program called in
the task

• Local variables declared with VAR_TEMP of
the program called in the task

On each call of the program in the task

• Reference (pointer) to called function block
instances

• Local variables of function blocks declared
with VAR_TEMP

• In/out parameters of function blocks
declared with VAR_IN_OUT1

Each time the function block instance is
called

Local data stack of the task
(as of Version V3.1 of the
SIMOTION kernel)2

• Variables of called functions declared with
VAR, VAR_INPUT or VAR_IN_OUT1

• Return value of called functions

Each time the function is called

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 213

Memory area Assigned variable types Initialization4
• Copied data of the program called in the

task, including all associated variables
(VAR, VAR_TEMP)

On each call of the program in the task

• Copied data from instances of called
function blocks, including all associated
variables (VAR, VAR_INPUT,
VAR_OUTPUT, VAR_IN_OUT1,
VAR_TEMP)

Each time the function block instance is
called

Local data stack of the task
(up to Version V3.0 of the
SIMOTION kernel)3

• Variables of called functions declared with
VAR, VAR_INPUT or VAR_IN_OUT1

• Return value of called functions

Each time the function is called

1 References (pointers) to the transferred variables.
2 Also for the use of libraries that have been compiled with reference to the SIMOTION device and the associated version
of the SIMOTION kernel (as of Version V3.1). See also Memory requirement of the variables on the local data stack (as of
Kernel V3.1).
3 Also for the use of libraries that have been compiled device-dependent (i.e. without reference to a SIMOTION device and
a SIMOTION Kernel version). See also Memory requirement of the variables on the local data stack (up to Kernel V3.0).
4 For a detailed description of the initialization behavior of the individual variable types, see Time of the variable
initialization (Page 219).

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
214 Programming and Operating Manual, 05/2009

5.2.3.1 Example of memory areas, valid as of Kernel V3.1

Table 5- 19 Example of memory ranges of the variable types, as of Kernel V3.1 (Part 1)

INTERFACE
// The statements in the interface section specify,
// what source content is exported.
 FUNCTION FC1;
 FUNCTION_BLOCK FB1;
 PROGRAM p1;

 // Unit variables of the interface section are also visible
 // on HMI devices.
 VAR_GLOBAL // Non-retentive unit variables
 // are present in the UNIT user memory
 u1_if : INT;
 END_VAR
 VAR_GLOBAL CONSTANT // Unit constants are located
 // in the unit user memory
 END_VAR
 VAR_GLOBAL RETAIN // Retentive unit variables are located
 // in the retentive (power-fail-safe) memory
 END_VAR
END_INTERFACE

IMPLEMENTATION
// The implementation section contains the executable code sections
// in different program organization units (POU)
// A POU can be a program, FC, or FB.
 // Unit variables of the implementation section can only be used
 // within the source file.
 VAR_GLOBAL // Non-retentive unit variables are located
 // in the unit user memory
 u1_glob : INT;
 END_VAR
 VAR_GLOBAL CONSTANT // Unit constants are located
 // in the unit user memory
 END_VAR
 VAR_GLOBAL RETAIN // Retentive unit variables are located
 // in the retentive (power-fail-safe) memory
 END_VAR
//--

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 215

Table 5- 20 Example of memory ranges of the variable types, as of Kernel V3.1 (Part 2)

// Continuation
//--
 FUNCTION_BLOCK FB1 // Declaration of an instance
 // instance determines where its data are located:
 // - as VAR_GLOBAL in a unit:
 // in the unit user memory
 // - as VAR in a program:
 // in the user memory of the task (default)
 // - As VAR in a function block:
 // in the user memory of the unit or task,
 // depending on the instance declaration of the higher-level FB
 // When the instance is called, a pointer to the instance data
 // is placed on the stack of the calling task

 VAR_INPUT // Input parameters
 // are in the user memory
 // are written when the instance is called
 fb_in : INT;
 END_VAR
 VAR_OUTPUT // Output parameters
 // are in the user memory
 fb_out : INT;
 END_VAR
 VAR_IN_OUT // In/out parameter
 // references are in the user memory
 // are written when the instance is called
 fb_in_out : INT;
 END_VAR

 VAR // Static variables
 // are in the user memory
 // can be used locally in the FB
 fb_var1 : INT;
 END_VAR

 VAR_TEMP // Temporary variables
 // are on the stack of the calling task
 // are initialized on each call
 fb_temp1 : INT;
 END_VAR

 // Code is in the user memory of the unit
 fb_var1 := fb_var1 + 1;
 fb_out := fb_var1;
 fb_temp1 := fb_in_out;
 fb_in_out := fb_temp1 + fb_in;
 END_FUNCTION_BLOCK
//--

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
216 Programming and Operating Manual, 05/2009

Table 5- 21 Example of memory ranges of the variable types, as of Kernel V3.1 (Part 3)

// Continuation
//--
 FUNCTION FC1 : INT // The function data is on the
 // stack of the calling task; they are initialized each time
 // the function is called.
 // The return value is on the stack of the calling task

 VAR_INPUT // Input parameters
 // are on the stack of the calling task
 // are written when the function is called
 fc_in : INT;
 END_VAR

 VAR // Temporary variables
 // are on the stack of the calling task
 fc_var : INT;
 END_VAR
 // Code is in the user memory of the unit
 fc_var := 567;
 fc1 := fc_in + fc_var;
 END_FUNCTION

 PROGRAM p1
 VAR // By default, variables are located in the
 // in the user memory of the task
 p_var : INT;
 p_varFB : FB1;
 END_VAR

 VAR_TEMP // Temporary variables
 // are on the stack of the task,
 // are initialized on each task pass
 p_temp : INT;
 END_VAR

 // Code is in the user memory of the unit
 p_temp := p_var;
 p_varFB (fb_in_out := p_temp);
 u1_glob := 4711;
 END_PROGRAM
END_IMPLEMENTATION

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 217

5.2.3.2 Memory requirement of the variables on the local data stack (Kernel V3.1 and higher)
The variables stored on the local data stack of a task are listed in Memory ranges of the
variable types (Page 212). You set the stack size for each task in the task configuration.
Note the following for memory requirements in the local stack:
● Temporary local variables require their own size on the stack.
● Global variables and static local variables do not require any resources on the stack.

If you are using them as input parameters for a function, however, they require their own
data size on the stack.

● Even if a function is called more than once in a task, it only uses the stack's resources
once.

● Variables of type BOOL require one byte on the stack.

 Note
The above details are also true for the use of libraries that have been compiled with
reference to the SIMOTION device and the associated version of the SIMOTION kernel (as
of Version V3.1).

NOTICE
If the library is not device-dependent (i.e. compiled without reference to a SIMOTION
device or SIMOTION Kernel version): These libraries are compiled compatible to the
permitted versions of the SIMOTION kernel.
Consequently, the variables of program organization units (POU) called from these libraries
occupy the local data stack as for versions of the SIMOTION kernel up to V3.0. See
Memory requirement of the variables on the local data stack (valid up to kernel V3.0)
(Page 218).

You can obtain information about the memory requirements of a POU in the local data stack
using the Program Structure (Page 263) function.

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
218 Programming and Operating Manual, 05/2009

5.2.3.3 Memory requirement of variables on local data stack (Kernel V3.0 and below)
The variables stored on the local data stack of a task are listed in Memory ranges of the
variable types (Page 212). You set the stack size for each task in the task configuration.
Note the following for memory requirements in the local stack:
● Static local variables in programs require double their size on the stack.
● Static local variables in FBs require several times their size on the stack, depending on

the calling depth.
● Temporary local variables (in programs, FBs, and FCs) require their own size on the

stack.
● Global variables do not occupy any stack memory space.

If you are using them as input parameters for a function or function block, however, they
will occupy their usual space on the stack.

● Even if a function is called more than once in a task, it only uses the stack's resources
once.

● Variables of type BOOL require one byte on the stack.

NOTICE
When a function block instance is called, all instance data is copied to the local data stack,
even if the instance is declared as a VAR_GLOBAL instance.
If the library is not device-dependent (i.e. compiled without reference to a SIMOTION
device or SIMOTION Kernel version): These libraries are compiled compatible to the
permitted versions of the SIMOTION kernel. Consequently, the variables of program
organization units (POU) called from these libraries occupy the local data stack as
described in this section.
The memory requirement on the local data stack is significantly larger than for versions of
the SIMOTION kernel as of V3.1, see Memory requirement of the variables on the local
data stack (as of Kernel V3.1) (Page 217). Take this into consideration for setting the stack
size for the task configuration!

You can obtain information about the memory requirements of a POU in the local data stack
using the Program Structure (Page 263) function.

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 219

5.2.4 Time of the variable initialization
The timing of the variable initialization is determined by:
● Memory area to which the variable is assigned
● Operator actions (e.g. source file download to the target system)
● Execution behavior of the task (sequential, cyclic) to which the program was assigned.
All variable types and the timing of their variable initialization are shown in the following
tables. You will find basic information about tasks in the SIMOTION Basic Functions
Function Manual.
The behavior for variable initialization during download can be set: To do this, as a default
setting select the Options > Settings menu and the Download tab or define the setting during
the current download.

 Note
You can upload values of unit variables or global device variables from the SIMOTION
device into SIMOTION SCOUT and save them in XML format.
1. Save the required data segments of the unit variables or global device variables as a data

set with the function _saveUnitDataSet.
2. Use the Save variables function in SIMOTION SCOUT.
You can use the Restore variables function to download these data sets and variables back
to the SIMOTION device.
For more information, refer to the SIMOTION SCOUT Configuration Manual.
This makes it possible, for example, to obtain this data, even if it is initialized by a project
download or if it becomes unusable (e.g. due to a version change of SIMOTION SCOUT).

5.2.4.1 Initialization of retentive global variables
Retentive variables retain their last value after a loss of power. All other data is reinitialized
when the device is switched on again.
Retentive global variables are initialized:
● When the backup or buffer for retentive data fails.
● When the firmware is updated.
● When a memory reset (MRES) is performed.
● With the restart function (Del. SRAM) in SIMOTION P350.
● By applying the _resetUnitData function (as of kernel V3.2), possible selectively for

different data segments of the retentive data.
● When a download is performed according to the following description.

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
220 Programming and Operating Manual, 05/2009

Table 5- 22 Initializing retentive global variables during download

Variable type Time of the variable initialization
Retentive global
device variables

The behavior when downloading depends on the Initialization of all retentive global device
variables and program data setting1:
• Yes2: All retentive global device variables are initialized.
• No3:

– As of version V3.2 of the SIMOTION Kernel:

Separate version ID for retentive global device variables. If the version ID is changed, the
retentive global device variables are initialized.

– Up to Version V3.1 of the SIMOTION kernel:

Joint version ID for all global device variables (retentive and non-retentive). If the version
ID is changed, all global device variables are initialized.

See: Version ID of global variables and their initialization during download (Page 225).
Retentive unit
variables

The behavior when downloading depends on the Initialization of all retentive global device
variables and program data setting1:
• Yes2: All retentive unit variables (all units) are initialized.
• No3:

– As of version V3.2 of the SIMOTION Kernel:

Separate version ID for each individual data block (= declaration block)4 of the retentive
unit variables in the interface or implementation section. If the version identification is
changed, only the associated data block will be initialized5.

– Up to Version V3.1 of the SIMOTION kernel:

Common version ID for all unit variables (retentive and non-retentive, in the interface and
implementation section) of a unit. If the version ID is changed, all unit variables of this unit
are initialized.

See: Version ID of global variables and their initialization during download (Page 225).
1 Default setting in the Options > Settings menu, Download tab,
or the current setting for the download.
2 The corresponding checkbox is active.
3 The corresponding checkbox is inactive.
4 Several data blocks for retentive unit variables in the interface or implementation section can be declared only in the
SIMOTION ST programming language. For the SIMOTION MCC and SIMOTION LAD/FBD programming languages, only
one data block for retentive unit variables will be created in the interface or implementation section.
5 Also for the download in RUN, provided the associated prerequisites have been satisfied and the following attribute has
been specified in the associated declaration block within a pragma (only for the SIMOTION ST programming language):
{ BlockInit_OnChange := TRUE; }.
For the download in RUN, see the SIMOTION Basic Functions Function Manual.

5.2.4.2 Initialization of non-retentive global variables
Non-retentive global variables lose their value during power outages. They are initialized:
● For the Initialization of retentive global variables (Page 219), e.g. during a firmware

update or general reset (MRES).
● During power up.
● By applying the _resetUnitData function (as of kernel V3.2), possible selectively for

different data segments of the non-retentive data.

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 221

● During the download in accordance with the description on the following table.
● Only as of Version V4.1 of the SIMOTION Kernel and for non-retentive unit variables:

For transition to the RUN mode when the associated declaration block within a pragma
specifies the following attribute (only for SIMOTION ST programming language): {
BlockInit_OnDeviceRun := ALWAYS; }

Table 5- 23 Initializing non-retentive global variables during download

Variable type Time of the variable initialization
Non-retentive global
device variables

The behavior when downloading depends on the Initialization of all non-retentive global device
variables and program data setting1:
• Yes2: All non-retentive global device variables are initialized.
• No3:

– As of version V3.2 of the SIMOTION Kernel:

Separate version ID for non-retentive global device variables. If the version ID is changed,
the non-retentive global device variables are initialized.

– Up to Version V3.1 of the SIMOTION kernel:

Joint version ID for all global device variables (retentive and non-retentive). If the version
ID is changed, all global device variables are initialized.

See: Version ID of global variables and their initialization during download (Page 225).
Non-retentive unit
variables

The behavior when downloading depends on the Initialization of all non-retentive global device
variables and program data setting1:
• Yes2: All non-retentive unit variables (all units) are initialized.
• No3:

– As of version V3.2 of the SIMOTION Kernel:

Separate version ID for each individual data block (= declaration block)4 of the non-
retentive unit variables in the interface or implementation section. If the version
identification is changed, only the associated data block will be initialized5.

– Up to Version V3.1 of the SIMOTION kernel:

Common version ID for all unit variables (retentive and non-retentive, in the interface and
implementation section) of a unit. If the version ID is changed, all unit variables of this unit
are initialized.

See: Version ID of global variables and their initialization during download (Page 225).
1 Default setting in the Options > Settings menu, Download tab,
or the current setting for the download.
2 The corresponding checkbox is active.
3 The corresponding checkbox is inactive.
4 Several data blocks for non-retentive unit variables in the interface or implementation section can be declared only in the
SIMOTION ST programming language. For the SIMOTION MCC and SIMOTION LAD/FBD programming languages, only
one data block for non-retentive unit variables will be created in the interface or implementation section.
5 Also for the download in RUN, provided the associated prerequisites have been satisfied and the following attribute has
been specified in the associated declaration block within a pragma (only for the SIMOTION ST programming language):
{ BlockInit_OnChange := TRUE; }.
For the download in RUN, see the SIMOTION Basic Functions Function Manual.

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
222 Programming and Operating Manual, 05/2009

5.2.4.3 Initialization of local variables
Local variables are initialized:
● For the initialization of retentive unit variables (Page 219).
● For the initialization of non-retentive unit variables (Page 220).
● Also, according to the following description:

Table 5- 24 Initialization of local variables

Variable type Time of the variable initialization
Local program
variables

Local variables of programs are initialized differently:
• Static variables (VAR) are initialized according to the memory area in which they are stored.

See: Initialization of static program variables (Page 223).
• Temporary variables (VAR_TEMP) are initialized every time the program of the task is called.

Local variables of
function blocks (FB)

Local variables of function blocks are initialized differently:
• Static variables (VAR, VAR_IN, VAR_OUT) are only initialized when the FB instance is

initialized.

See: Initialization of instances of function blocks (FBs) (Page 224).
• Temporary variables (VAR_TEMP) are initialized every time the FB instance is called.

Local variables of
functions (FC)

Local variables of functions are temporary and are initialized every time the function is called.

 Note
You can obtain information about the memory requirements of a POU in the local data stack
using the Program Structure (Page 263) function.

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 223

5.2.4.4 Initialization of static program variables
The following versions affect the following static variables:
● Local variables of a unit program declared with VAR
● Function block instances declared with VAR within a unit program, including the

associated static variables (VAR, VAR_INPUT, VAR_OUTPUT).
The initialization behavior is determined by the memory area in which the static variables are
stored. This is determined by the "Create program instance data only once" (Page 47)
compiler option.
● For the deactivated "Create program instance data only once" compiler option (default):

The static variables are stored in the user memory of each task, which is assigned to the
program.
The initialization of the variables thus depends on the execution behavior of the task to
which the program is assigned (see SIMOTION Basic Functions Function Manual):
– Sequential tasks (MotionTasks, UserInterruptTasks, SystemInterruptTasks,

StartupTask, ShutdownTask): The static variables are initialized every time the task is
started.

– Cyclic tasks (BackgroundTask, SynchronousTasks, TimerInterruptTasks): The static
variables are initialized only during transition to RUN mode.

● For the activated "Create program instance data only once" compiler option:
This setting is necessary, for example, if a program is to be called within a program.
The static variables of all programs from the program source (unit) involved are only
stored once in the user memory of the unit.
– They are thus initialized together with the non-retentive unit variables, see Initialization

of non-retentive global variables (Page 220).
– Only as of Version V4.1 of the SIMOTION Kernel:

In addition, they can be initialized during transition to RUN mode. To do this, the
following attribute must be specified in the associated declaration block within a
pragma (only SIMOTION ST programming language):
{ BlockInit_OnDeviceRun := ALWAYS; }.

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
224 Programming and Operating Manual, 05/2009

5.2.4.5 Initialization of instances of function blocks (FBs)
The initialization of a function block instance (Page 171) is determined by the location of its
declaration:
● Global declaration (within VAR_GLOBAL/END_VAR in the interface of implementation

section):
Initialization as for a non-retentive unit variable, see Initialization of non-retentive global
variables (Page 220).

● Local declaration in a program (within VAR / END_VAR):
Initialization as for static variables of programs, see Initialization of static variables of
programs (Page 223).

● Local declaration in a function block (within VAR / END_VAR):
Initialization as for an instance of this function block.

● Declaration as in/out parameter in a function block or a function (within
VAR_IN_OUT / END_VAR):
For the initialization of the POU, only the reference (pointer) will be initialized with the
instance of the function block remaining unchanged.

Note
You can obtain information about the memory requirements of a POU in the local data
stack using the Program Structure (Page 263) function.

5.2.4.6 Initialization of system variables of technology objects
The system variables of a technology object are usually not retentive. Depending on the
technology object, a few system variables are stored in the retentive memory area (e.g.
absolute encoder calibration).
The initialization behavior (except in the case of download) is the same as for retentive and
non-retentive global variables. See Initialization of retentive global variables (Page 219) and
Initialization of non-retentive global variables (Page 220).
The behavior during the download is shown below for:
● Non-retentive system variables
● Retentive system variables

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 225

Table 5- 25 Initializing technology object system variables during download

Variable type Time of the variable initialization
Non-retentive system
variables

Behavior during download, depending on the Initialization of all non-retentive data for technology
objects setting1:
• Yes2: All technology objects are initialized.

– All technology objects are restructured and all non-retentive system variables are
initialized.

– All technological alarms are cleared.
• No3: Only technology objects changed in SIMOTION SCOUT are initialized.

– The technology objects in question are restructured and all non-retentive system variables
are initialized.

– All alarms that are pending on the relevant technology objects are cleared.
– If an alarm that can only be acknowledged with Power On is pending on a technology

object that will not be initialized, the download is aborted.

Retentive system
variables

Only if a technology object was changed in SIMOTION SCOUT, will its retentive system variables
be initialized.
The retentive system variables of all other technology objects are retained (e.g. absolute encoder
calibration).

1 Default setting in the Options > Settings menu, Download tab,
or the current setting for the download.
2 The corresponding checkbox is active.
3 The corresponding checkbox is inactive.

5.2.4.7 Version ID of global variables and their initialization during download

Table 5- 26 Version ID of global variables and their initialization during download

Data segment As of Version V3.2 of the SIMOTION kernel Up to Version V3.1 of the
SIMOTION kernel

Global device variables
Retentive global
device variables

Non-retentive
global device
variables

• Separate version ID for each data segment of the global
device variables.

• The version identification of the data segment changes
for:
– Add or remove a variable within the data segment
– Change of the identifier or the data type of a variable

within the data segment
• This version ID does not change on:

– Changes in the other data segment
– Changes to initialization values1

• During downloading2, the rule is: Initialization of a data
segment only if its version ID has changed.

• Use of the functions for data backup and initialization
possible.

• Common version ID for all data
segments of the global device
variables.

• This version ID changes when
the variable declaration is
changed in a data segment.

• During downloading2, the rule
is: Initialization of all data
segments if the version ID
changes.

• Use of the functions for data
backup not possible.

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
226 Programming and Operating Manual, 05/2009

Data segment As of Version V3.2 of the SIMOTION kernel Up to Version V3.1 of the
SIMOTION kernel

Unit variables of a unit
Retentive unit
variables in the
interface section
Retentive unit
variables in the
implementation
section
Non-retentive unit
variables in the
interface section

Non-retentive unit
variables in the
implementation
section

• Several data blocks (= declaration blocks)3 in each data
segment possible.

• Own version ID for each data block.
• The version identification of the data block changes for:

– Add or remove a variable in the associated
declaration block

– Change of the identifier or the data type of a variable
in the associated declaration block

– Change of a data type definition (from a separate or
imported4 unit) used in the associated declaration
block

– Add or remove declaration blocks within the same
data segment before the associated declaration block

• This version ID does not change on:
– Add or remove declaration blocks in other data

segments
– Add or remove declaration blocks within the same

data segment after the associated declaration block
– Changes in other data blocks
– Changes to initialization values1
– Changes to data type definitions that are not used in

the associated data block
– Changes to functions

• During downloading2, the rule is: Initialization of a data
block only if its version ID has changed.5

• Functions for data backup and initialization take into
account the version ID of the data blocks.

• One data block in each data
segment (also for several
declaration blocks)3

• Common version ID for all
global declarations in a unit.

• This version ID changes in
response to the following
changes:
– Variable declaration in a

data segment
– Declaration of global data

types in the unit
– Declaration in the interface

section of an imported4 unit.
• During downloading2, the rule

is: Initialization of all data
segments if the version ID
changes.

• Use of the functions for data
backup only possible for: Non-
retentive unit variables in the
interface section

1 Changed initialization values are not effective until the data block or data segment in question is initialized.
2 If Initialization of all retentive global device variables and program data = No and Initialization of all non-retentive global
device variables and program data = No.
In the case of other settings: See the sections "Initialization of retentive global variables (Page 219)" and "Initialization of
non-retentive global variables (Page 220)".
3 Several declaration blocks per data segment are possible only in the SIMOTION ST programming language. For the
SIMOTION MCC and SIMOTION LAD/FBD programming languages, only one declaration block per data segment will be
created.
4 The import of units depends on the programming language, refer to the associated section (Page 197).
5 Also for the download in RUN, provided the associated prerequisites have been satisfied and the following attribute
(Page 271) has been specified in the associated declaration block within a pragma (Page 266) (only for the SIMOTION ST
programming language): { BlockInit_OnChange := TRUE; }.
For the download in RUN, see the SIMOTION Basic Functions Function Manual.

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 227

5.2.5 Variables and HMI devices
The following variables are exported to HMI devices where they are available:
● System variables of the SIMOTION device
● System variables of technology objects
● I/O variables
● Global device variables
● Retentive and non-retentive unit variables of the interface section (default setting).

This default setting can be changed for each declaration block using the following
pragma:
{ HMI_Export := FALSE; }
The unit variables of such an identified declaration block are not exported to HMI devices.
The HMI consistency check is also omitted for them during the download.
See also Controlling compiler with attributes (Page 271).

The following variables are not exported to HMI devices and are not available there:
● Retentive and non-retentive unit variables of the implementation section (default setting).

This default setting can be changed for each declaration block using the following
pragma:
{ HMI_Export := TRUE; }
The unit variables of such an identified declaration block are exported to HMI devices.
Consequently, they are subject to the HMI consistency check during the download.
See also Controlling compiler with attributes (Page 271).

● Local variables of a POU

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

 SIMOTION ST Structured Text
228 Programming and Operating Manual, 05/2009

NOTICE
The total size of the unit variables that can be exported to HMI devices is limited to 64 KB
per unit.
The effect of the pragma { HMI_Export := FALSE; } and
{ HMI_Export := TRUE; } depends on the version of the SIMOTION Kernel:
• As of Version V4.1 of the SIMOTION Kernel:

The pragma affects the export of the corresponding declaration block to HMI devices
and the structure of the HMI address space:
– Only those variables in declaration blocks exported to HMI devices occupy the HMI

address space.
– Within the HMI address space, the variables are arranged according to order of their

declaration.
• Up to version V3.2 or V4.0 of the SIMOTION kernel:

The pragma affects only the export of the corresponding declaration block to HMI
devices.
The HMI address space is also occupied by unit variables of the interface section whose
declaration blocks are not assigned to HMI devices.
Within the HMI address space, the variables are sorted in the following order:
– Retentive unit variables of the interface section (exported and not exported).
– Retentive unit variables of the implementation section (only exported).
– Non-retentive unit variables of the interface section (exported and not exported).
– Non-retentive unit variables of the implementation section (only exported).
Within these segments, the variables are arranged according to order of their
declaration.

• Up to Version V3.1 of the SIMOTION kernel:
The pragma has no effect.

 Integration of ST in SIMOTION
 5.2 Variables in SIMOTION

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 229

Table 5- 27 Example for the control of the HMI export with the corresponding pragma

INTERFACE
 VAR_GLOBAL
 // HMI export
 x1 : DINT;
 END_VAR
 VAR_GLOBAL
 { HMI_Export := FALSE; }
 // No HMI export
 x2 : DINT;
 END_VAR
 // ...
END_INTERFACE

IMPLEMENTATION
 VAR_GLOBAL
 // No HMI export
 y1 : DINT;
 END_VAR
 VAR_GLOBAL
 { HMI_Export := TRUE; }
 // HMI export
 y2 : DINT;
 END_VAR
 // ...
END_IMPLEMENTATION

Integration of ST in SIMOTION
5.3 Access to inputs and outputs (process image, I/O variables)

 SIMOTION ST Structured Text
230 Programming and Operating Manual, 05/2009

5.3 Access to inputs and outputs (process image, I/O variables)

5.3.1 Overview of access to inputs and outputs
SIMOTION provides several possibilities to access the device inputs and outputs of the
SIMOTION device as well as the central and distributed I/O:
● Via direct access with I/O variables

Direct access is used to directly access the corresponding I/O address.
Define an I/O variable (name and I/O address) without assigning a task to it. The entire
address space of the SIMOTION device can be used.
It is preferable to use direct access with sequential programming (in MotionTasks);
access to current input and output values at a particular point in time is especially
important in this case.
Further information: Direct access and process image of the cyclic tasks (Page 233).

● Via the process image of cyclic tasks using I/O variables
The process image of the cyclic tasks is a memory area in the RAM of the SIMOTION
device, on which the whole I/O address space of the SIMOTION device is mirrored. The
mirror image of each I/O address is assigned to a cyclic task and is updated using this
task. The task remains consistent throughout the whole cycle. This process image is
used preferentially when programming the assigned task (cyclic programming).
Define an I/O variable (name and I/O address) and assign a task to it. The entire address
area of the SIMOTION device can be used.
Direct access to this I/O variable is still possible: Specify direct access with _direct.var-
name.
Further information: Direct access and process image of the cyclic tasks (Page 233).

● Using the fixed process image of the BackgroundTask
The process image of the BackgroundTask is a memory area in the RAM of the
SIMOTION device, on which a subset of the I/O address space of the SIMOTION device
is mirrored. The mirror image is refreshed with the BackgroundTask and is consistent
throughout the entire cycle. This process image is used preferentially when programming
the BackgroundTask (cyclic programming).
The address space 0 .. 63 can be used. I/O addresses that are accessed using the
process image of the cyclic task are excluded.
Further information: Access to the fixed process image of the BackgroundTask
(Page 239).

A comparison of the most important properties is contained in "Important properties of direct
access and process image (Page 231)".
You can use I/O variables like any other variable, see "Access I/O variables (Page 246)".

 Note
An access via the process image is more efficient than direct access.

 Integration of ST in SIMOTION
 5.3 Access to inputs and outputs (process image, I/O variables)

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 231

5.3.2 Important features of direct access and process image access

Table 5- 28 Important features of direct access and process image access

 Direct access Access to process image of
cyclic tasks

Access to fixed process image
of the BackgroundTask

Permissible address
range

Entire address range of the SIMOTION device
Exception: I/O variables comprising more than one byte must not
contain addresses 63 and 64 contiguously (example: PIW63 or
PQD62 are not permitted).
The addresses used must be present in the I/O and appropriately
configured.

0 .. 63,
except for the addresses used
in the process image of the
cyclic tasks
Addresses that are not present
in the I/O or have not been
configured can also be used.

Assigned task None. Cyclic task for selection:
• SynchronousTasks,
• TimerInterruptTasks,
• BackgroundTask.

BackgroundTask.

Updating • Onboard I/O of SIMOTION
devices C230-2, C240,
C240 PN, and P350:

Update occurs in a cycle
clock of 125 µs.

• I/O via PROFIBUS DP,
PROFINET, P-Bus, and
DRIVE-CLiQ as well as
Onboard I/O of the D4xx
SIMOTION devices:

Update occurs in the
position control cycle clock.

Inputs are read at the start of
the cycle clock.
Outputs are written at the end
of the cycle clock.

Update occurs with the
assigned task:
• Inputs are read before the

assigned task is started and
transferred to the process
input image.

• Process output image is
written to the outputs after
the assigned task has been
completed.

An update is made with the
BackgroundTask:
• Inputs are read before the

BackgroundTask is started
and is transferred to the
process input image.

• Process output image is
written to the outputs when
the BackgroundTask is
complete.

– During the entire cycle of the
assigned task.
Exception: Direct access to
output occurs.

Consistency

Consistency is only ensured for elementary data types.
When using arrays, the user is responsible for ensuring data
consistency.

During the entire cycle of the
BackgroundTask.
Exception: Direct access to
output occurs.

Use Preferred in MotionTasks Preferred in the assigned task Preferred in the
BackgroundTask

Use the absolute
address

Not supported. Possible, with the following
syntax: e.g. %IW62, %Q63.3.

Integration of ST in SIMOTION
5.3 Access to inputs and outputs (process image, I/O variables)

 SIMOTION ST Structured Text
232 Programming and Operating Manual, 05/2009

 Direct access Access to process image of
cyclic tasks

Access to fixed process image
of the BackgroundTask

Declaration as
variable

Necessary, for the entire device as an I/O variable in the symbol
browser.
Syntax of I/O address: e.g. PIW1022, PQ63.3.

Possible, but not necessary:
• for the entire device as an

I/O variable in the symbol
browser,

• As unit variable,
• As local variable in a

program.

Write protection for
outputs

Possible; Read only status can
be selected.

Not supported. Not supported.

Declaration of arrays Possible. Not supported.
Further information Direct access and process image of the cyclic tasks (Page 233). Access to the fixed process

image of the BackgroundTask
(Page 239).

Error during access from user
program, alternative reactions
available:
• CPU stop1
• Substitution value
• Last value

Error during generation of
process image, alternative
reactions available:
• CPU stop2
• Substitution value
• Last value

Error during generation of
process image, reaction: CPU
stop2.
Exception: If a direct access
has been created at the same
address, the behavior set there
applies.

Responses in the
event of an error

Please refer to the SIMOTION Basic Functions function description.
Access
• In RUN mode Without any restrictions. Without any restrictions. Without any restrictions.

• During
StartupTask

Possible with restrictions:
• Inputs can be read.
• Outputs are not written until

StartupTask is complete.

Possible with restrictions:
• Inputs are read at the start

of the StartupTask.
• Outputs are not written until

StartupTask is complete.

Possible with restrictions:
• Inputs are read at the start

of the StartupTask.
• Outputs are not written until

StartupTask is complete.

• During
ShutdownTask

Without any restrictions. Possible with restrictions:
• Inputs retain status of last

update
• Outputs are no longer

written.

Possible with restrictions:
• Inputs retain status of last

update
• Outputs are no longer

written.
1 Call the ExecutionFaultTask.
2 Call the PeripheralFaultTask.

 Integration of ST in SIMOTION
 5.3 Access to inputs and outputs (process image, I/O variables)

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 233

5.3.3 Direct access and process image of cyclic tasks

Properties
Direct access to inputs and outputs and access to the process image of the cyclic task
always take place via I/O variables. The entire address range of the SIMOTION device (see
table below) can be used.
A comparison of the most important properties, also in comparison to the fixed process
image of the BackgroundTask (Page 239) is contained in "Important properties of direct
access and process image (Page 231)".

Direct access
The direct access is used to directly access the corresponding I/O address. Direct access is
used primarily for sequential programming (in MotionTasks). The access to the current value
of the inputs and outputs at a specific time is particularly important.
For direct access, you define an I/O variable (Page 236) without assigning it a task.

 Note
An access via the process image is more efficient than direct access.

Process image of the cyclic task
The process image of the cyclic tasks is a memory area in the RAM of the SIMOTION
device, on which the whole I/O address space of the SIMOTION device is mirrored. The
mirror image of each I/O address is assigned to a cyclic task and is updated using this task.
The task remains consistent throughout the whole cycle. This process image is used
preferentially when programming the assigned task (cyclic programming). The consistency
during the complete cycle of the task is particularly important.
For the process image of the cyclical task you define an I/O variable (Page 236) and assign
it a task.
Direct access to this I/O variable is still possible: Specify direct access with _direct.var-name.

Integration of ST in SIMOTION
5.3 Access to inputs and outputs (process image, I/O variables)

 SIMOTION ST Structured Text
234 Programming and Operating Manual, 05/2009

Address range of the SIMOTION devices
The address range of the SIMOTION devices depending on the version of the
SIMOTION kernel is contained in the following table. The complete address range can be
used for direct access and process image of the cyclical tasks.

Table 5- 29 Address range of the SIMOTION devices depending on the version of the
SIMOTION kernel

Address range for SIMOTION Kernel version SIMOTION device
V3.0 V3.1, V3.2 As of V4.0

C230-2 0 .. 1023 0 .. 2047 4 0 .. 2047 4
C240 – – 0 .. 4096 4

C240 PN 1 – – 0 .. 4096 5
D410 2 – – 0 .. 16383 4 5
D425 3 – 0 .. 4095 4 0 .. 16383 4 5
D435 0 .. 1023 0 .. 4095 4 0 .. 16383 4 5

D445 3 – 0 .. 4095 4 0 .. 16383 4 5
D445-1 1 – – 0 .. 16383 4 5

P350 0 .. 1023 0 .. 2047 4 0 .. 4095 4
1 Available with V4.1 SP2 HF4 and higher
2 Available with V4.1 and higher
3 Available with V3.2 and higher
4 For distributed I/O (over PROFIBUS DP), the transmission volume is restricted to 1024 bytes per
PROFIBUS DP line.
5 For distributed I/O (over PROFINET), the transmission volume is restricted to 4096 bytes per
PROFINET segment.

 Note
Observe the rules for I/O addresses for direct access and the process image of the cyclical
tasks (Page 235).

 Integration of ST in SIMOTION
 5.3 Access to inputs and outputs (process image, I/O variables)

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 235

5.3.3.1 Rules for I/O addresses for direct access and the process image of the cyclical tasks

NOTICE
You must observe the following rules for the I/O variable addresses for direct access and
the process image of the cyclic task (Page 233). Compliance with the rules is checked
during the consistency check of the SIMOTION project (e.g. during the download).
1. Addresses used for I/O variables must be present in the I/O and configured

appropriately in the HW Config.
2. I/O variables comprising more than one byte must not contain addresses 63 and 64

contiguously.
 The following I/O addresses are not permitted:
– Inputs: PIW63, PID61, PID62, PID63
– Outputs: PQW63, PQD61, PQD62, PQD63

3. All addresses of an I/O variable comprising more than one byte must be within an
address area configured in HW-config.

4. An I/O address (input or output) can only be used by a single I/O variable of data type
BYTE, WORD or DWORD or an array of these data types. Access to individual bits with
I/O variables of data type BOOL is possible.

5. If several processes (e.g. I/O variable, technology object, PROFIdrive telegram) access
an I/O address, the following applies:
– Only a single process can have write access to an I/O address of an output (BYTE,

WORD or DWORD data type).
Read access to an output with an I/O variable that is used by another process for
write access, is possible.

– All processes must use the same data type (BYTE, WORD, DWORD or ARRAY of
these data types) to access this I/O address. Access to individual bits is possible
irrespective of this.
Please be aware of the following, for example, if you wish to use an I/O variable to
read the PROFIdrive telegram transferred to or from the drive: The length of the I/O
variables must match the length of the telegram.

– Write access to different bits of an address is possible from several processes;
however, write access with the data types BYTE, WORD or DWORD is then not
possible.

 Note
These rules do not apply to accesses to the fixed process image of the BackgroundTask
(Page 239). These accesses are not taken into account during the consistency check of the
project (e.g. during download).

Integration of ST in SIMOTION
5.3 Access to inputs and outputs (process image, I/O variables)

 SIMOTION ST Structured Text
236 Programming and Operating Manual, 05/2009

5.3.3.2 Creating I/O variables for direct access or process image of cyclic tasks
You create I/O variables for direct access and a process image of the cyclic tasks in the
symbol browser in the detail view; you must be in offline mode to do this.
Here is a brief overview of the procedure:
1. In the project navigator of SIMOTION SCOUT, select the I/O element in the subtree of the

SIMOTION device.
2. In the detail view, select the "Symbol browser" tab and scroll down to the end of the

variable table (empty row).
3. In the last (empty) row of the table, enter or select the following:

– Name of variable.
– I/O address according to the "syntax for entering I/O addresses (Page 238)".
– Optional for outputs:

Activate the "Read only" checkbox if you only want to have read access to the output.
You can then read an output that is already being written by another process (e.g.
output of an output cam, PROFIdrive telegram).
A read-only output variable cannot be assigned to the process image of a cyclic task.

– Data type of the variables in accordance with "Possible data types of the I/O variables
(Page 239)".

4. Optionally, you can also enter or select the following (not for data type BOOL):
– Array length (array size).
– Process image or direct access:

Can only be assigned if the "Read only" checkbox is cleared.
For process image, select the cyclic task to which you want to assign the I/O variable.
To select a task, it must have been activated in the execution system.
For direct access, select the blank entry.

– Strategy for the behavior in an error situation (see SIMOTION Basic Functions
Function Manual).

– Substitute value (if array, for each element).
– Display format (if array, for each element), when you monitor the variable in the

symbol browser.
You can now access this variable using the symbol browser or any program of the
SIMOTION device.

 Integration of ST in SIMOTION
 5.3 Access to inputs and outputs (process image, I/O variables)

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 237

NOTICE
Note the following for the process image for cyclic tasks:
• A variable can only be assigned to one task.
• Each byte of an input or output can only be assigned to one I/O variable.
In the case of data type BOOL, please note:
• The process image for cyclic tasks and a strategy for errors cannot be defined. The

behavior defined via an I/O variable for the entire byte is applicable (default: direct
access or CPU stop).

• The individual bits of an I/O variable can also be accessed using the bit access
functions.

Take care when making changes within the I/O variables (e.g. inserting and deleting I/O
variables, changing names and addresses):
• In some cases the internal addressing of other I/O variables may change, making all I/O

variables inconsistent.
• If this happens, all program sources that contain accesses to I/O variables must be

recompiled.

 Note
I/O variables can only be created in offline mode. You create the I/O variables in SIMOTION
SCOUT and then use them in your program sources (e.g. ST sources, MCC sources,
LAD/FBD sources).
Outputs can be read and written to, but inputs can only be read.
Before you can monitor and modify new or updated I/O variables, you must download the
project to the target system.

You can use I/O variables like any other variable, see "Access I/O variables (Page 246)".

Integration of ST in SIMOTION
5.3 Access to inputs and outputs (process image, I/O variables)

 SIMOTION ST Structured Text
238 Programming and Operating Manual, 05/2009

5.3.3.3 Syntax for entering I/O addresses
For the input of the I/O address for the definition of an I/O variable for direct access or
process image of cyclical tasks (Page 233), use the following syntax. This specifies not only
the address, but also the data type of the access and the mode of access (input/output).

Table 5- 30 Syntax for the input of the I/O addresses for direct access or process image of the cyclic tasks

Syntax for Permissible address range Data type
Input Output Direct access Process image e.g. direct access

D435 V4.1
BOOL PIn.x PQn.x n:

x:
0 .. MaxAddr
0 .. 7

 -1 n:
x:

0 .. 16383
0 .. 7

BYTE PIBn PQBn n: 0 .. MaxAddr n: 0 .. MaxAddr n: 0 .. 16383
WORD PIWn PQWn n: 0 .. 62

64 .. MaxAddr - 1
n: 0 .. 62

64 .. MaxAddr - 1
n: 0 .. 62

64 .. 16382
DWORD PIDn PQDn n: 0 .. 60

64 .. MaxAddr - 3
n: 0 .. 60

64 .. MaxAddr - 3
n: 0 .. 60

64 .. 16380
n = logical address
x = bit number
MaxAddr = Maximum I/O address of the SIMOTION device depending on the version of the SIMOTION kernel, see

address range of the SIMOTION devices in "direct access and process image of the cyclical tasks
(Page 233)".

1 For data type BOOL, it is not possible to define the process image for cyclic tasks. The behavior defined via an I/O
variable for the entire byte is applicable (default: direct access).

Examples:
Input at logic address 1022, WORD data type: PIW1022.
Output at logical address 63, bit 3, BOOL data type: PQ63.3.

 Note
Observe the rules for I/O addresses for direct access and the process image of the cyclical
tasks (Page 235).

 Integration of ST in SIMOTION
 5.3 Access to inputs and outputs (process image, I/O variables)

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 239

5.3.3.4 Possible data types of I/O variables
The following data types can be assigned to the I/O variables for direct access and process
image of the cyclical tasks (Page 233). The width of the data type must correspond to the
data type width of the I/O address.
If you assign a numeric data type to the I/O variables, you can access these variables as
integer.

Table 5- 31 Possible data types of the I/O variables for direct access and the process image of the
cyclical tasks

Data type of I/O address Possible data types for I/O variables
BOOL (PIn.x, PQn.x) BOOL
BYTE (PIBn, PQBn) BYTE, SINT, USINT
WORD (PIWn, PQWn) WORD, INT, UINT
DWORD (PIDn, PQDn) DWORD, DINT, UDINT

For details of the data type of the I/O address, see also "Syntax for entering I/O addresses
(Page 238)".

5.3.4 Access to fixed process image of the BackgroundTask
The process image of the BackgroundTask is a memory area in the RAM of the SIMOTION
device, on which a subset of the I/O address space of the SIMOTION device is mirrored.
Preferably, it should be used for programming the BackgroundTask (cyclic programming) as
it is consistent throughout the entire cycle.
The size of the fixed process image of the BackgroundTask for all SIMOTION devices is 64
bytes (address range 0 ... 63).
A comparison of the most important properties in comparison to the direct access and
process image of the cyclical tasks (Page 233) is contained in "Important properties of direct
access and process image (Page 231)".

NOTICE
I/O addresses that are accessed with the process image of the cyclic tasks must not be
used. These addresses cannot be read or written to with the fixed process image of the
BackgroundTask.

 Note
The rules for I/O addresses for direct access and the process image of the cyclical tasks
(Page 235) do not apply. The accesses to the fixed process image of the BackgroundTask
are not taken into account during the consistency check of the project (e.g. during
download).
Addresses not present in the I/O or not configured in HW Config are treated like normal
memory addresses.

Integration of ST in SIMOTION
5.3 Access to inputs and outputs (process image, I/O variables)

 SIMOTION ST Structured Text
240 Programming and Operating Manual, 05/2009

You can access the fixed process image of the BackgroundTask by means of:
● Using an absolute PI access (Page 240): The absolute PI access identifier contains the

address of the input/output and the data type.
● Using a symbolic PI access (Page 243): You declare a variable that references the

relevant absolute PI access.
– A unit variable
– A static local variable in a program.

● Using an I/O variable (Page 245): In the symbol browser, you define a valid I/O variable
for the entire device that references the corresponding absolute PI access.

NOTICE
Please note that if the inputs and outputs work with the little-endian byte order (e.g. the
integrated digital inputs of SIMOTION devices C230-2, C240, or C240 PN) and the
following conditions are fulfilled:
1. The inputs and outputs are configured to an address 0 .. 62.
2. An I/O variable for direct access (data type WORD, INT or UINT) has been created for

these inputs and outputs.
3. You also access these inputs and outputs via the fixed process image of the

BackgroundTask.
then the following is valid:
• Access with the data type WORD supplies the same result via the I/O variable and the

fixed process image of the BackgroundTask.
• The access to the individual bytes with the _getInOutByte function (see SIMOTION

Basic Functions Function Manual) supplies these in the Little Endian order.
• Access to the individual bytes or bits with the fixed process image of the

BackgroundTask supplies these in the Big Endian order.
For information on the order of the bytes Little Endian and Big Endian: Please refer to the
SIMOTION Basic Functions Function Manual.

5.3.4.1 Absolute access to the fixed process image of the BackgroundTask (absolute PI access)
You make absolute access to the fixed process image of the BackgroundTask (Page 239) by
directly using the identifier for the address (with implicit data type). The syntax of the
identifier (Page 241) is described in the following section.
You can use the identifier for the absolute PI access in the same manner as a normal
variable (Page 241).

 Note
Outputs can be read and written to, but inputs can only be read.

 Integration of ST in SIMOTION
 5.3 Access to inputs and outputs (process image, I/O variables)

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 241

5.3.4.2 Syntax for the identifier for an absolute process image access
For the absolute access to the fixed process image of the BackgroundTask (Page 240), use
the following syntax. This specifies not only the address, but also the data type of the access
and the mode of access (input/output).
You also use these identifiers:
● For the declaration of a symbolic access to the fixed process image of the

BackgroundTask (Page 243).
● For the creation of an I/O variables for accessing the fixed process image of the

BackgroundTask (Page 245).

Table 5- 32 Syntax for the identifier for an absolute process image access

Syntax for Data type
Input Output

Permissible address range

BOOL %In.x
 or
%IXn.x1

%Qn.x
or
%QXn.x1

n:
x :

0 .. 63 2
0 .. 7

BYTE %IBn %QBn n: 0 .. 63 2
WORD %IWn %QWn n: 0 .. 63 2
DWORD %IDn %QDn n: 0 .. 63 2
n = logical address
x = bit number
1 The syntax %IXn.x or %QXn.x is not permitted when defining I/O variables.
2 Except for the addresses used in the process image of the cyclic tasks.

Integration of ST in SIMOTION
5.3 Access to inputs and outputs (process image, I/O variables)

 SIMOTION ST Structured Text
242 Programming and Operating Manual, 05/2009

Examples
Input at logic address 62, WORD data type: %IW62.
Output at logical address 63, bit 3, BOOL data type: %Q63.3.

NOTICE
Addresses that are accessed with the process image of the cyclic tasks must not be used.
These addresses cannot be read or written to with the fixed process image of the
BackgroundTask.

 Note
The rules for I/O addresses for direct access and the process image of the cyclical tasks
(Page 235) do not apply. The accesses to the fixed process image of the BackgroundTask
are not taken into account during the consistency check of the project (e.g. during
download).
Addresses not present in the I/O or not configured in HW Config are treated like normal
memory addresses.

Several examples for the assignment of variables of the same type follow:

Table 5- 33 Examples of absolute CPU memory access

status1 := %I1.1; // BOOL data type
status2 := %IB10; // BYTE data type
status3 := %IW20; // WORD data type
status4 := %ID20; // DWORD data type

%Q1.1 := status1; // BOOL data type
%QB20 := status2; // BYTE data type
%QW20 := status3; // WORD data type
%QD20 := status4; // DWORD data type

 Integration of ST in SIMOTION
 5.3 Access to inputs and outputs (process image, I/O variables)

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 243

5.3.4.3 Symbolic access to the fixed process image of the BackgroundTask (symbolic PI access)
You can access the fixed process image of the BackgroundTask (Page 239) symbolically
without needing to always specify the absolute process image access.
You can declare symbolic access:
● As a static variable of a program (within the VAR/END_VAR structure in the declaration

section)
● As a unit variable (within the VAR_GLOBAL / END_VAR structure in the interface or

implementation section of the ST source file)
The syntax for declaring a symbolic name for the PI access is shown in the figure:

Figure 5-6 Declaration of a symbolic access to the process image

For the absolute PI access, see "Syntax for the identifier for an absolute PI access
(Page 241)".
The range of the declared integer or bit data type must correspond to the range of the
absolute PI access, see "Possible data types of the symbolic PI access (Page 244)". After
declaring a numerical data type, you can address the contents of the process image as an
integer.
See also Example for the declaration (Page 244).

Integration of ST in SIMOTION
5.3 Access to inputs and outputs (process image, I/O variables)

 SIMOTION ST Structured Text
244 Programming and Operating Manual, 05/2009

5.3.4.4 Possible data types for symbolic PI access
In the following cases, a data type that differs from that of the absolute PI access can be
assigned to the fixed process image of the BackgroundTask (Page 239). The data type width
must correspond to the data type width of the absolute PI access.
● For the declaration of a symbolic PI access (Page 243).
● For the creation of an I/O variable (Page 245).
If you assign a numeric data type to the symbolic PI access or to the I/O variables, you can
access these variables as integer.

Table 5- 34 Possible data types for symbolic PI access

Data type of the
absolute PI access

Possible data types of the
symbolic PI access

BOOL (%In.x, %IXn.x, %Qn.x. %QXn.x) BOOL
BYTE (%IBn, %QBn) BYTE, SINT, USINT
WORD (%IWn, %QWn) WORD, INT, UINT
DWORD (%IDn, %PQDn) DWORD, DINT, UDINT

For the data type of the absolute PI access, see also "Syntax for the identifier for an absolute
PI access (Page 241)".

5.3.4.5 Example of symbolic PI access
If, for example, you want to access the CPU memory area (absolute PI access (Page 241))
%IB10, but can respond flexibly to changes in your program, then declare a myInput variable
with this CPU memory area as follows:

VAR
 myInput AT %IB10 : BYTE;
END_VAR

If you want to use the integer value of the memory area, declare the myInput variable as
follows:

VAR
 myInput AT %IB10 : SINT;
END_VAR

If you want to use a CPU memory area other than %IB10 in your program at a later time, you
only need to change the absolute PI access in the variable declaration.

 Integration of ST in SIMOTION
 5.3 Access to inputs and outputs (process image, I/O variables)

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 245

5.3.4.6 Creating an I/O variable for access to the fixed process image of the BackgroundTask
You create I/O variables for access to the fixed process image for the background task in the
symbol browser in the detail view; you must be in offline mode to do this.
Here is a brief overview of the procedure:
1. In the project navigator of SIMOTION SCOUT, select the "I/O" element in the subtree of

the SIMOTION device.
2. In the detail view, select the Symbol browser tab and scroll down to the end of the

variable table (empty row).
3. In the last (empty) row of the table, enter or select the following:

– Name of variable.
– Under I/O address, the absolute PI access according to the "syntax for the identifier

for an absolute PI access (Page 241)"
 (exception: The syntax %IXn.x or %QXn.x is not permitted for data type BOOL).

– Data type of the I/O variables according to the "possible data types of the symbolic PI
access (Page 244)".

4. Select optionally the display format used to monitor the variable in the symbol browser.
You can now access this variable using the symbol browser or any program of the
SIMOTION device.

 Note
I/O variables can only be created in offline mode. You create the I/O variables in SIMOTION
SCOUT and use them in your program sources.
Note that you can read and write outputs but you can only read inputs.
Before you can monitor and modify new or updated I/O variables, you must download the
project to the target system.

You can use I/O variables like any other variable, see "Access I/O variables (Page 246)".

Integration of ST in SIMOTION
5.3 Access to inputs and outputs (process image, I/O variables)

 SIMOTION ST Structured Text
246 Programming and Operating Manual, 05/2009

5.3.5 Accessing I/O variables
You have created an I/O variable for:
● Direct access or process image of the cyclic tasks (Page 233).
● Access to the fixed process image of the BackgroundTask (Page 239).
You can use this I/O variable just like any other variable.

NOTICE
Consistency is only ensured for elementary data types.
When using arrays, the user is responsible for ensuring data consistency.

 Note
If you have declared unit variables or local variables of the same name (e.g. var-name),
specify the I/O variable using _device.var-name (predefined namespace, see the
"Predefined namespaces" table in "Namespaces").
It is possible to directly access an I/O variable that you created as a process image of a
cyclic task. Specify direct access with _direct.var-name or _device._direct.var-name.

If you want to deviate from the default behavior when errors occur during variable access,
you can use the _getSafeValue and _setSafeValue functions (see SIMOTION Basic
Functions Function Manual).
For errors associated with access to I/O variables, see SIMOTION Basic Functions Function
Manual.

 Integration of ST in SIMOTION
 5.4 Using libraries

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 247

5.4 Using libraries
Libraries provide you with user-defined data types , functions and function blocks that can be
used from all SIMOTION devices.
Libraries can be written in all programming languages; they can be used in all program
sources (e.g. ST source files, MCC units).
You can obtain more details on inserting and managing libraries in the online help.

NOTICE
The same rules as for the names of program source files apply to the library names, see
Insert ST source file (Page 21). In particular, the permissible length of the name depends
on the SIMOTION Kernel version:
• As of Version V4.1 of the SIMOTION Kernel: maximum 128 characters.
• Up to Version V4.0 of the SIMOTION Kernel: maximum 8 characters.
With versions of the SIMOTION Kernel up to V4.0, a violation of the permissible length of
the library name may not be detected until a consistency check or a download of the project
is performed!

There is also the option of having a library make programs available, which can be called
from other programs or function blocks. Please refer to the conditions which apply when
calling a "program in a program" (Page 179). In each case, the static data for the program
called is stored once in the user memory of the device on which the library program is called.
The same program instance data is used every time the program is called on the same
device. A library program cannot be assigned to the execution system.

Integration of ST in SIMOTION
5.4 Using libraries

 SIMOTION ST Structured Text
248 Programming and Operating Manual, 05/2009

5.4.1 Compiling a library
In libraries, you can use all ST commands except for the ones listed in the table. In addition,
you are not allowed to access some variables; these variables are also listed in this table .

Table 5- 35 Illegal ST commands and variable access in libraries

Prohibited commands:
• _getTaskId function (see SIMOTION Basic Functions Function Manual).
• _getAlarmId function (see SIMOTION Basic Functions Function Manual).
• _checkEqualTask function (see SIMOTION Basic Functions Function Manual).
• Following functions that are intended for SIMOTION kernel versions up to V3.0:

– Task control commands
– Commands for runtime measurement of tasks
– Commands for message programming

With these functions, the name of the task of the configured message is transferred.
• If the library is not device-dependent (i.e. compiled without reference to a SIMOTION device or

SIMOTION Kernel version):
– System functions of SIMOTION devices (see the Parameter Manual for SIMOTION devices)
– Version-dependent system functions

Prohibited variable accesses:
• Unit variables (retentive and non-retentive)
• Global device variables (retentive and non-retentive)
• I/O variables
• Instances of the technology objects and their system variables
• Variables of task names and configured messages (_task and _alarm namespaces, see

Namespaces (Page 255), Predefined namespaces table)
• If the library is not device-dependent (i.e. compiled without reference to a SIMOTION device or

SIMOTION Kernel version):
– System variables of SIMOTION devices (see the Parameter Manual for SIMOTION devices)
– Configuration data of technology objects (see Parameter Manual of configuration data for the

relevant SIMOTION technology package)

 Note
The Program status debug function is not available in libraries.

 Integration of ST in SIMOTION
 5.4 Using libraries

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 249

Compiling an individual library
To compile an individual library, proceed as follows:
1. Select the library in the project navigator.
2. Select the Edit > Object Properties menu command.
3. Select the TPs/TOs tab.
4. Select the SIMOTION devices (with SIMOTION kernel version) and the technology

packet that you want to use as a basis for compiling the library; see the SIMOTION Basic
Functions Function Manual.

5. Select Accept and compile from the context menu.
The library is compiled with reference to all selected SIMOTION devices, SIMOTION kernel
versions and technology packages (and independently of devices).

NOTICE
If the library to be compiled imports another library, note the following:
1. For the imported library, at least the same devices and SIMOTION kernel versions must

be selected as for the importing library.
Alternatively, the imported library can be compiled independently of devices if the
prerequisites for this are fulfilled (refer to the SIMOTION Basic Functions Function
Manual).

2. The imported library must already be compiled individually with reference to all
configured devices, kernel versions and technology packages.
Compilation of the library as part of a project-wide compilation is generally not sufficient.

Compiling a library as part of a project-wide compilation
When you compile the whole SIMOTION project (e.g. by choosing Project > Save and
recompile all or by performing an XML import), the libraries used are also compiled.

NOTICE
When performing project-wide compilation, note the following:
1. The system automatically identifies dependencies between libraries and selects the

appropriate compilation sequence.
2. A library is only compiled with reference to the SIMOTION devices (including versions of

the SIMOTION kernel) that are configured in the project and which use the library.
3. Other SIMOTION devices and kernel versions set for the library are ignored.

Integration of ST in SIMOTION
5.4 Using libraries

 SIMOTION ST Structured Text
250 Programming and Operating Manual, 05/2009

5.4.2 Know-how protection for libraries
You can protect libraries and their source files against unauthorized access by third parties.
Protected libraries or sources can only be opened or exported as plain text files by entering a
password.
You can:
● Provide individual sources of a library with know-how protection:

Only the sources are protected against unauthorized access.
The setting of the SIMOTION devices including the versions of the SIMOTION Kernel and
the technology packages, for which the library is to be compiled, can still be changed and
adapted by the user. Please refer to the SIMOTION Basic Functions Function Manual.
The user can thus use the library for other SIMOTION devices and kernel versions.

● Provide the library with know-how protection:
The following is then protected against unauthorized access:
– All sources of the library
– The setting of the SIMOTION device including the versions of the SIMOTION Kernel

and the technology packages for which the library is to be compiled.
You thus prevent that the user can use the library for other SIMOTION devices and
kernel versions.
Only use this setting if this is intended.

The SIMOTION online help provides additional information on know-how protection.

 Note
If you export in XML format, the libraries or sources are exported in an encrypted form.
When importing the encrypted XML files, the know-how protection, including login and
password, remains in place.

 Integration of ST in SIMOTION
 5.4 Using libraries

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 251

5.4.3 Using data types, functions and function blocks from libraries
Before using data types, functions or function blocks from libraries, you must make them
known to the ST source file. To do so, use the following construct in the interface section of
the ST source file:

USELIB library-name [AS namespace];

In this case, library-name is the name of the library as it appears in the project navigator.
When multiple libraries are to be specified, enter them as a list separated by commas, e.g.:

USELIB library-name_1 [AS namespace_1],
 library-name_2 [AS namespace_2],
 library-name_3 [AS namespace_1], ...

You can use the optional AS namespace add-on to define a namespace (see Namespaces
(Page 255)).
● You can then access data types, functions, and function blocks in the library that have the

same name as such an ST source file of a SIMOTION device (in the PROGRAMS folder).
● You can also use namespaces to change the names of data types, functions and function

blocks in the library so that they have different names.
You can also assign the same namespace to different libraries.

Table 5- 36 Example of use of namespaces with libraries

INTERFACE
 USELIB Bib_1 AS NS_1, Bib_2 AS NS_2;
 PROGRAM Main_Program;
END_INTERFACE

IMPLEMENTATION
 FUNCTION Function1 : VOID
 VAR
 ComID : CommandIdType;
 END_VAR
 ComId := _getCommandId();
 END_FUNCTION

 PROGRAM Main_program
 function1(); // Function from this source
 NS_1.Var1:=1;
 NS_2.Var1:=2;
 NS_1.function1(); // Function from the Bib1 library
 NS_2.function1(); // Function from the Bib2 library
 END_PROGRAM
END_IMPLEMENTATION

Integration of ST in SIMOTION
5.5 Use of the same identifiers and namespaces

 SIMOTION ST Structured Text
252 Programming and Operating Manual, 05/2009

5.5 Use of the same identifiers and namespaces

5.5.1 Use of the same identifiers
It is possible to use unit variables and local variables (program variables, FB variables, FC
variables) with the same name. When compiling a program source, the compiler searches
for identifiers beginning with the current POU. The smaller validity range always takes
priority over the larger validity range.
You can therefore use the same identifiers in different source file sections, as long as the
rules below are adhered to. If a higher-level identifier is hidden by an identifier in a unit or
POE, the compiler issues a warning.

NOTICE
Under certain circumstances, the compiler may not issue a warning if, for example, the
associated technology package is not imported.

Identifiers in a program organization unit (POU)
All following identifiers in a POU must be unique:
● Local variables of the POU.
● Local data types of the POU.
They may not also be identical with the following identifiers:
● Reserved identifiers.
● Identifiers of the POU itself.
The compiler issues a warning when the following identifiers are hidden:
● Unit variables, data types and POU or the same or imported units
● Standard system functions, standard system function blocks and associated data types
● System functions and system data types of the SIMOTION device
● Program organization units (POU) and data types from imported libraries

– This can be resolved by entering a user-defined namespace.
● System functions and system data types from imported technology packages.

– This can be resolved by entering a user-defined namespace.
● SIMOTION device variables (system variables, I/O variables, global device variables)

– This can be resolved by entering the predefined namespace _device.
● Technology objects configured on the SIMOTION device

– This can be resolved by entering the predefined namespace _to.

 Integration of ST in SIMOTION
 5.5 Use of the same identifiers and namespaces

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 253

Identifiers in a unit
All following identifiers in a unit must be unique:
● Unit variables (declared in the interface or implementation section)
● Data types (declared in the interface or implementation section)
● Program organization units (POUs)
These must not be identical to the following identifiers either:
● Reserved identifiers.
● Unit variables, data types and POU imported units.
● Standard system functions, standard system function blocks and associated data types.
● System functions and system data types of the SIMOTION device.
● Program organization units (POU) and data types from imported libraries.

– This can be resolved by entering a user-defined namespace.
● System functions and system data types from imported technology packages.

– This can be resolved by entering a user-defined namespace.
The compiler issues a warning when the following identifiers are hidden:
● SIMOTION device variables (system variables, I/O variables, global device variables).

– This can be resolved by entering the predefined namespace _device.
● Technology objects configured on the SIMOTION device.

– This can be resolved by entering the predefined namespace _to.

Identifiers on the SIMOTION device (e.g., I/O variables, global device variables)
All the following identifiers on the SIMOTION device must be unique:
● I/O variables
● Global device variables
● System variables of the SIMOTION device
● System functions and system data types of the SIMOTION device.
These must not also be identical to the following identifiers:
● Reserved identifiers.
● Standard system functions, standard system function blocks and associated data types.

Integration of ST in SIMOTION
5.5 Use of the same identifiers and namespaces

 SIMOTION ST Structured Text
254 Programming and Operating Manual, 05/2009

Example
The following example illustrates this situation. It shows that for use of identical names for
unit variables (large validity range) and FC variables (small variable scope), only the
variables declared in the function are valid within this source file section. The unit variables
are only valid in POUs in which no local variables of the same name were declared. See the
example.

Table 5- 37 Example of identifier validity

TYPE
 type_a : (enum1, enum2, enum3);
END_TYPE

VAR_GLOBAL
 var_a, var_b : DINT; // Unit variables
END_VAR

FUNCTION fc_1 : VOID
 VAR
 var_a : type_a; // Declaration hides UNIT variable
 var_c : DINT; // Local variable
 END_VAR
 // Permitted statements
 var_a := enum2; // Access to local variable
 var_b := 100; // Access to unit variable
 var_c := -1; // Access to local variable
 // Invalid statement
 // var_a := 200;
END_FUNCTION

FUNCTION fc_2 : VOID
 VAR
 var_b : type_a; // Declaration hides UNIT variable
 var_c : type_a; // Local variable
 END_VAR
 // Permitted statements
 var_a := -100; // Access to unit variable
 var_b := enum3; // Access to local variable
 var_c := enum1; // Access to local variable
 // Invalid statement
 // var_b := 200;
END_FUNCTION

 Integration of ST in SIMOTION
 5.5 Use of the same identifiers and namespaces

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 255

5.5.2 Namespaces
You can also access data types, unit variables, functions, and function blocks defined
outside of a program source (e.g. in libraries, technology packages, and on the SIMOTION
device) using their names.
When compiling a program source, the compiler searches for identifiers beginning with the
current POU. The data types, variables, functions, or function blocks declared in a program
source therefore hide identifiers with the same name which have been defined outside the
source, see Use of the same identifiers (Page 252). In order to still access these hidden
identifiers, you can use namespaces in certain cases.

User-defined namespace
In the import instruction for libraries and technology packages, you can define namespaces
in order to reach the data types, functions, or function blocks of these libraries and
technology packages.

USELIB library-name_1 [AS lib_namespace_1],
 library-name_2 [AS lib_namespace_2],
 library-name_3 [AS lib_namespace_1], ...

USEPACKAGE tp-name_1 [AS tp_namespace_1],
 tp-name_2 [AS tp_namespace_2],
 tp-name_3 [AS tp_namespace_1], ...

You can also use namespaces to make names consistent within different libraries.
If you wish to use a data type, a function or a function block from a library or a technology
package, place the namespace identifier in front of the name, separated by a period, for
example, namespace.fc-name, namespace.fb-name, namespace.type-name

Integration of ST in SIMOTION
5.5 Use of the same identifiers and namespaces

 SIMOTION ST Structured Text
256 Programming and Operating Manual, 05/2009

Example
The following example shows how to select the Cam technology package, assign it the
namespace Cam1 and use the namespace:

Table 5- 38 Example of selecting a technology package and using a namespace

INTERFACE
 USEPACKAGE Cam AS Cam1;
 USES ST_2;
 FUNCTION function1;
END_INTERFACE

IMPLEMENTATION
 FUNCTION function1 : VOID
 VAR_INPUT
 p_Axis : posAxis;
 END_VAR
 VAR
 retVal : DINT;
 END_VAR

 retVal:= Cam1._enableAxis (
 axis := p_Axis,
 nextCommand := Cam1.WHEN_COMMAND_DONE,
 commandId := _getCommandId());
 END_FUNCTION
END_IMPLEMENTATION

NOTICE
If a namespace is defined for an imported library or technology package, this must always
be specified if a function, function block, or data type from this library or technology
package is being used. See above example: Cam1._enableAxis,
Cam1.WHEN_COMMAND_DONE.

 Integration of ST in SIMOTION
 5.5 Use of the same identifiers and namespaces

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 257

Predefined namespace
Namespaces are predefined for device- and project-specific variables as well as TaskID and
AlarmID variables. If necessary, write their designation before the variable names, separated
by a period, for example, _device.var-name or _task.task-name

Table 5- 39 Predefined namespaces

Name space Description
_alarm For AlarmId: The _alarm.name variable contains the AlarmId of the message with

the name identifier (see SIMOTION Basic Functions Function Manual).
_device For device-specific variables (global device variables, I/O variables, and system

variables of the SIMOTION device).
_direct For direct access to I/O variables – see Direct access and process image of the

cyclical tasks (Page 233).
Local namespace for _device. Nesting as in _device._direct.name is permitted.

_project For names of SIMOTION devices in the project; only used with technology objects
on other devices.
With unique project-wide names of technology objects, used also for these names
and their system variables.

_task For TaskID: The _task.name variable contains the TaskId of the task with the
name identifier (see SIMOTION Basic Functions Function Manual).

_to For technology objects configured on the SIMOTION device, and their system
variables and configuration data.
Not for system functions and data types of the technology objects. In this case, if
necessary, use the user-defined namespace for the imported technology package

Integration of ST in SIMOTION
5.5 Use of the same identifiers and namespaces

 SIMOTION ST Structured Text
258 Programming and Operating Manual, 05/2009

Figure 5-7 Namespaces and identifier hierarchy

 Integration of ST in SIMOTION
 5.6 Reference data

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 259

5.6 Reference data
The reference data provide you with an overview of:
● on utilized identifiers with information about their declaration and use

(Cross-reference list (Page 259)).
● on function calls and their nesting

(Program structure (Page 263))
● on the memory requirement for various data areas of the program sources

(Code attributes (Page 265))

5.6.1 Cross-reference list
The cross-reference list shows all identifiers in program sources (e.g. ST source files, MCC
source files):
● Declared as variables, data types, or program organization units (program, function,

function block)
● Used as previously defined types in declarations
● Used as variables in the statement section of a program organization unit.
You can generate the cross-reference list selectively for:
● An individual program source (e.g. ST source file, MCC source file, LAD/FBD source)
● All program sources of a SIMOTION device
● All program sources and libraries of the project
● Libraries (all libraries, single library)

5.6.1.1 Creating a cross-reference list
To create the cross-reference list:
1. In the project navigator, select the element for which you want to create a cross-reference

list.
2. Select the menu Edit > Reference data > Create.
The cross-reference list is displayed in its own tab in the detail view.

 Note
The generated cross-reference list is saved automatically and can be displayed selectively
after selecting the appropriate element in the project navigator. To display the cross-
reference list, select the Edit > Reference data > Display > Cross-Reference List menu
command.
When a cross-reference list is recreated, it is updated selectively (corresponding to the
selected element in the project navigator). Other existing cross-reference data are retained
and displayed, if applicable.

Integration of ST in SIMOTION
5.6 Reference data

 SIMOTION ST Structured Text
260 Programming and Operating Manual, 05/2009

5.6.1.2 Content of the cross-reference list
The cross-reference list contains all the identifiers assigned to the element selected in the
project navigator. The applications for the identifiers are also listed in a table:
Details of how to work with the cross-reference list are described in the section "Working with
the cross-reference list (Page 262)".

Table 5- 40 Meanings of columns and selected entries in the cross-reference list

Column Entry in column Meaning
Name Identifier name
Type Identifier type
 Name • Data type of variable (e.g. REAL, INT)

• POU type (e.g. PROGRAM, FUNCTION)

 DERIVED Derived data type
 DERIVED ANY_OBJECT TO data type
 ARRAY … ARRAY data type
 ENUM … Enumerator data type
 STRUCT … STRUCT data type
Declaration Location of declaration
 Name (unit) Declaration in the program source name
 Name (LIB) Declaration in the library name
 Name (TO) System variable of the technology object name
 Name (TP) Declaration in the default library specified:

• Technology package name
• std_fct = IEC library
• device = device-specific library

 Name (DV) Declaration on the SIMOTION device name (e.g. I/O variable or global device
variable)

 _project Declaration in the project (e.g. technology object)
 _device Internal variable on the SIMOTION device (e.g. TaskStartInfo)
 _task Task in the execution system
Usage Use of identifier
 CALL Call as subroutine
 ENUM name As element when declaring the enumerator data type name
 I/O Declaration as I/O variable
 R Read access
 R (TYPE) As data type in a declaration
 R/W Read and write access
 STRUCT name As component when declaring the structure name
 TYPE Declaration as data type or POU
 Variable type (e.g. VAR,

VAR_GLOBAL)
Declaration as variable of the variable type specified

 W Write access

 Integration of ST in SIMOTION
 5.6 Reference data

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 261

Column Entry in column Meaning
Path specification Path specification for the SIMOTION device or program source
 Name SIMOTION device name
 Name1/Name2 • Program source name2 on SIMOTION device name1

• Program source name2 in library name1

 Name/taskbind.hid Execution system of the SIMOTION device name
Range Range within the SIMOTION device or program source
 IMPLEMENTATION Implementation section of the program source
 INTERFACE Interface section of the program source
 POU type name (e.g.

FUNCTION name,
PROGRAM name)

Program organization unit (POU) name within the program source (also MCC
chart, LAD/FBD program)

 I/O address I/O variable
 TASK name Assignment for the task name
 _device Global device variable
Language Programming language of the program source
Line/Block Line number of the program source (e.g. ST source file)

With MCC units or MCC charts, the following is also shown:
• Number: serial numbers for the command (block numbers) or
• DT: declaration table

 Note
Activated single-step monitoring in MCC programming
Each task is assigned two variables TSI#dwuser_1 and TSI#dwuser_2, which can be written
and read.
When single step monitoring is activated, the compiler uses these variables to control single
step monitoring if at least one MCC chart is assigned to the relevant task. The user then
cannot use these variables, because their contents are overwritten by single step monitoring
and may cause undesirable side effects.

Integration of ST in SIMOTION
5.6 Reference data

 SIMOTION ST Structured Text
262 Programming and Operating Manual, 05/2009

5.6.1.3 Working with a cross-reference list
In the cross-reference list you are able to:
● Sort the column contents alphabetically:

– To do this, click the header of the appropriate column.
● Search for an identifier or entry:

– Click the "Search" button and enter the search term.
● Filter (Page 263) the identifiers and entries displayed.
● Copy contents to the clipboard in order, for example, to paste them into a spread-sheet

program
– Select the appropriate lines and columns.
– Press the CTRL+C shortcut.

● Print the contents ("Project" > "Print" menu).
● Open the referenced program source and position the cursor on the relevant line of the

ST source file (or MCC command or LAD/FBD element):
– Double-click on the corresponding line in the cross-reference list.

or
– Place the cursor in the corresponding line of the cross-reference list and click the "Go

to application" button.
Further details about working with cross-reference lists can be found in the online help.

 Integration of ST in SIMOTION
 5.6 Reference data

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 263

5.6.1.4 Filtering the cross-reference list
You can filter the entries in the cross-reference list so that only relevant entries are
displayed:
1. Click the "Filter settings" button.

The "Filter Setting for Cross References" window will appear.
2. Activate the "Filter active" checkbox.
3. If you also want to display system variables and system functions:

– Deactivate the "Display user-defined variables only" checkbox.
4. Set the desired filter criterion for the relevant columns:

– Select the relevant entry from the drop-down list box or enter the criterion.
– If you want to search for a character string within an entry: Deactivate the "Whole

words only" checkbox.
5. Confirm with "OK."
The contents of the cross-reference list will reflect the filter settings selected.

 Note
A filter is automatically activated after the cross-reference list has been created.

5.6.2 Program structure
The program structure contains all the function calls and their nesting within a selected
element.
When the cross-reference list has been successfully created, you can display the program
structure selectively for:
● An individual program source (e.g. ST source file, MCC source file, LAD/FBD source)
● All program sources of a SIMOTION device
● All program sources and libraries of the project
● Libraries (all libraries, single library, individual program source within a library)
Follow these steps:
1. In the project navigator, select the element for which you want to display the program

structure.
2. Select the menu Edit > Reference data > Display > Program structure.

The cross-reference tab is replaced by the program structure tab in the detail view.

Integration of ST in SIMOTION
5.6 Reference data

 SIMOTION ST Structured Text
264 Programming and Operating Manual, 05/2009

5.6.2.1 Content of the program structure
A tree structure appears, showing:
● as base respectively

– the program organization units (programs, functions, function blocks) declared in the
program source, or

– the execution system tasks used
● below these, the subroutines referenced in this program organization unit or task.
For structure of the entries, see table:

Table 5- 41 Elements of the display for the program structure

Element Description
Base
(declared POU or
task used))

List separated by a comma
• Identifier of the program organization unit (POU) or task
• Identifier of the program source in which the POU or task was declared,

with add-on [UNIT]
• Minimum and maximum stack requirement (memory requirement of the

POU or task on the local data stack), in bytes [Min, Max]
• Minimum and maximum overall stack requirement (memory requirement of

the POU or task on the local data stack including all called POUs), in bytes
[Min, Max]

Referenced POU List separated by a comma:
• Identifier of called POU
• Optionally: Identifier of the program source / technology package in which

the POU was declared:

Add-on (UNIT): User-defined program source

Add-on (LIB): Library

Add-on (TP): System function from technology package
• Only for function blocks: Identifier of instance
• Only for function blocks: Identifier of program source in which the instance

was declared:

Add-on (UNIT): User-defined program source

Add-on (LIB): Library
• Line of (compiled) source in which the POU is called; several lines are

separated by "|".

 Integration of ST in SIMOTION
 5.6 Reference data

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 265

5.6.3 Code attributes
You can find information on or the memory requirement of various data areas of the program
sources under code attribute.
When the cross-reference list has been successfully created, you can display the code
attributes selectively for:
● An individual program source (e.g. ST source file, MCC source file, LAD/FBD source)
● All program sources of a SIMOTION device
● All program sources and libraries of the project
● Libraries (all libraries, single library, individual program source within a library)
Follow these steps:
1. In the project navigator, select the element for which you want to display the code

attributes.
2. Select the Edit > Reference data > Display > Code attributes menu.

The Cross-references tab is now replaced by the Code attributes tab in the detail view.

5.6.3.1 Code attribute contents
The following are displayed in a table for all selected program source files:
● Identifier of program source file,
● Memory requirement, in bytes, for the following data areas of the program source file:

– Dynamic data: All unit variables (retentive and non-retentive, in the interface and
implementation sections),

– Retain data: Retentive unit variables in the interface and implementation section,
– Interface data: Unit variables (retentive and non-retentive) in the interface section,

● Number of referenced sources.

Integration of ST in SIMOTION
5.7 Controlling the preprocessor and compiler with pragmas

 SIMOTION ST Structured Text
266 Programming and Operating Manual, 05/2009

5.7 Controlling the preprocessor and compiler with pragmas
A pragma is used to insert an ST source file text (e.g. statements), which influences the
compilation of the ST source file.
Pragmas are enclosed in { and } braces and can contain
(see figure):
● Preprocessor statements for controlling the preprocessor, see Controlling the

preprocessor (Page 267).
The pragmas with preprocessor statements contained in an ST source file are evaluated
by the preprocessor and interpreted as control statements.

● Attributes for compiler options to control the compiler, see Controlling compiler with
attributes (Page 271).
The pragmas with attributes for compiler options contained in an ST source file are
evaluated by the compiler and interpreted as control statements.

Figure 5-8 Pragma syntax

NOTICE
Be sure to use the correct pragma syntax (e.g. upper- and lower-case notation of
attributes).
Unrecognized pragmas are ignored with no warning message.

 Integration of ST in SIMOTION
 5.7 Controlling the preprocessor and compiler with pragmas

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 267

5.7.1 Controlling a preprocessor
The preprocessor prepares an ST source file for compilation. For example, character strings
can be defined as replacement texts for identifiers, or sections of the source program can be
hidden/shown for compilation.
The preprocessor is disabled by default. You can activate it as follows:
● Globally for all program source files and programming languages within the project, see

"Global settings of the compiler (Page 47)".
● Local for a program source file, see "Local compiler settings (Page 49)".
During the compilation of a program source file, you will be informed about the preprocessor
actions. This requires, however, that the display of warnings class 7 is activated, see
Meaning of the warning classes (Page 52). You specify the details for issued warnings and
information:
● In the global or local settings of the compiler.
● With the _U7_PoeBld_CompilerOption := warning:n:off or warning:n:on attribute within an

ST source file, see "Controlling compiler with attributes (Page 271)".
Like compiler messages, information about the preprocessor is shown in the "Compile/check
output" tab of the detail view.

 Note
You can also view the text of the ST source file modified by the preprocessor:
1. Open the ST source file.
2. Select the ST source file > Execute preprocessor menu command.
The modified source text is shown in the "Compile/check output" tab of the detail view.

Integration of ST in SIMOTION
5.7 Controlling the preprocessor and compiler with pragmas

 SIMOTION ST Structured Text
268 Programming and Operating Manual, 05/2009

5.7.1.1 Preprocessor statement
You can control the preprocessor by means of statements in pragmas. The statements
specified in the following syntax diagram can be used. These statements act on all
subsequent lines of the ST source file.
They can be used in ST source files of a SIMOTION device or a library.
You can make definitions for the preprocessor in the property dialog box of the ST source file
(see Making preprocessor definitions (Page 54)). This enables you also to control the
preprocessor with ST source files with know-how protection (see Know-how protection for
ST sources (Page 54)).

Figure 5-9 Syntax of a preprocessor statement

 Integration of ST in SIMOTION
 5.7 Controlling the preprocessor and compiler with pragmas

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 269

Table 5- 42 Preprocessor statements

Statement Meaning
#define The specified identifier will be replaced below by the specified text.

Permissible characters: See table footnote.
#undef The replacement rule for the identifier is cancelled.
#ifdef For variant formation (conditional compilation)

If the specified identifier is defined, the following program lines (until the next
pragma that contains #else or #endif) are compiled by the compiler.

#ifndef For variant formation (conditional compilation)
If the specified identifier is not defined, the following program lines (until the next
pragma that contains #else or #endif) are compiled by the compiler.

#else For variant formation (conditional compilation)
Alternative branch to #ifdef or #ifndef.
The following program lines (until the next pragma containing #endif) are
compiled by the compiler, if the preceding query with #ifdef or #ifndef was not
fulfilled.

#endif Concludes variant formation with #ifdef or #ifndef.
Permissible characters:
• For identifiers: In accordance with the rules for identifiers (Page 80).
• For text: Sequence of any characters other than \ (backslash), ’ (single quote) and ” (double

quote). The keywords USES, USELIB and USEPACKAGE are not permitted.

 Note
Each preprocessor statement must begin with a new line and end with a line break.
Consequently, the curly brackets ({ and }) enclosing the pragma must be placed in separate
lines of the ST source file!
In the case of pragmas with #define statements, please note:
• Pragmas with #define statements in the interface section of an ST source file are

exported. The defined identifiers can be imported with the USES statement into other ST
source files of the same SIMOTION device or of the same library.

• Identifiers defined in pragmas of libraries cannot be imported into ST source files of a
SIMOTION device.

• Redefinition of reserved identifiers is not possible.
You can also make preprocessor definitions in the property dialog box of the ST source file.
In the case of different definitions of the same identifiers, #define statements within the ST
source file have priority.

Integration of ST in SIMOTION
5.7 Controlling the preprocessor and compiler with pragmas

 SIMOTION ST Structured Text
270 Programming and Operating Manual, 05/2009

5.7.1.2 Example of preprocessor statements

Table 5- 43 Example of preprocessor statements

ST source file

With preprocessor statements

Preprocessor output

INTERFACE
 FUNCTION_BLOCK fb1;
 VAR_GLOBAL
 g_var : INT;
 END_VAR
// Preprocessor definitions
{
#define my_define g_var
#define my_call f(my_define)
}
// my_define -> g_var
// my_call -> f(g_var)
END_INTERFACE

IMPLEMENTATION
 FUNCTION f : INT
 VAR_INPUT
 i : INT;
 END_VAR
 f := i;
 END_FUNCTION

 FUNCTION_BLOCK fb1
 VAR_INPUT
 i_var : INT;
 END_VAR
 VAR_OUTPUT
 o_var : INT;
 END_VAR
 my_define := i_var;
// Delete the preprocessor definition
// For my_define
{
#undef my_define
}
 o_var := my_call + 1;
{
#ifdef my_define
}
 my_define := i_var;
{
#endif
}
 END_FUNCTION_BLOCK
END_IMPLEMENTATION

INTERFACE
 FUNCTION_BLOCK fb1;
 VAR_GLOBAL
 g_var : INT;
 END_VAR

{

}

END_INTERFACE

IMPLEMENTATION
 FUNCTION f : INT
 VAR_INPUT
 i : INT;
 END_VAR
 f := i;
 END_FUNCTION

 FUNCTION_BLOCK fb1
 VAR_INPUT
 i_var : INT;
 END_VAR
 VAR_OUTPUT
 o_var : INT;
 END_VAR
 g_var := i_var;

{

}
 o_var := f(g_var) + 1;
{

}
 END_FUNCTION_BLOCK
END_IMPLEMENTATION

 Integration of ST in SIMOTION
 5.7 Controlling the preprocessor and compiler with pragmas

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 271

5.7.2 Controlling compiler with attributes
You can use attributes within a pragma to control the compiler.

Figure 5-10 Syntax of an attribute for compiler options

Table 5- 44 Permissible attributes for compiler options

Attribute identifier Attribute value Meaning
The attribute affects the output of compiler warnings and information within an ST
source file, as well as all subsequent lines of the ST source file.
warning:n:err Outputs the warning or information specified by the number n as

an error. Permissible values for n:
n = 16000 and higher: Number for a warning or information:

warning:n:off Warnings or information specified by the number n are not
displayed. Permissible values for n:
n = 0 to 7: Warning class, see also Meaning of the warning classes
(Page 52).
n = 16000 and higher: Number for a warning or information:

_U7_PoeBld_CompilerOption

warning:n:on Warnings specified by the number n are displayed
Permissible values for n:
n = 0 to 7: Warning class, see also Meaning of the warning classes
(Page 52).
n = 16000 and higher: Number for a warning or information:

The attribute changes the unit variables available on HMI devices by default. It must
be placed directly after the associated keyword of the following declaration blocks:
• VAR_GLOBAL
• VAR_GLOBAL RETAIN
It affects only the unit variables declared in the associated declaration block.
Detailed description of the HMI export, in particular the effect of the attribute
depending on the version of the SIMOTION kernel: see Variables and HMI devices
(Page 227).
FALSE In the interface section of an ST source file. The unit variables

declared in the associated declaration block are not available on
HMI devices.

HMI_Export

TRUE In the implementation section of an ST source file. The unit
variables declared in the associated declaration block are
available on HMI devices.

Integration of ST in SIMOTION
5.7 Controlling the preprocessor and compiler with pragmas

 SIMOTION ST Structured Text
272 Programming and Operating Manual, 05/2009

Attribute identifier Attribute value Meaning
Only as of Version V3.2 of the SIMOTION kernel.
The attribute changes the standard definition whether a download in RUN mode is
possible when a change is made to the version identification of the associated
declaration block. It must be placed directly after the associated keyword of the
following declaration blocks:
• VAR_GLOBAL (in the interface and implementation section)
• VAR_GLOBAL RETAIN (in the interface and implementation section)
• VAR (only for programs in a unit when the "Create program instance data only

once" compiler option is active).
It affects only the variables declared in the associated declaration block.
See also Version ID of global variables and their initialization during download
(Page 225).
FALSE Download in RUN mode is not possible when the version

identification of the declaration block is changed (default).

BlockInit_OnChange

TRUE Download in RUN mode is possible despite the change to the
version identification of the declaration block. The variables of the
declaration block are initialized in the process.

Only as of Version V4.1 of the SIMOTION kernel.
The attribute changes the standard definition whether the variables of the associated
declaration block will be initialized for the transition to the RUN mode. It must be
placed directly after the associated keyword of the following declaration blocks:
• VAR_GLOBAL (in the interface and implementation section)
• VAR (only for programs in a unit when the "Create program instance data only

once" compiler option is active).
It affects only the variables declared in the associated declaration block.
See also Memory ranges of the variable types (Page 212).
DISABLE The variables declared in the associated declaration block are not

initialized in the transition of the mode from STOP to RUN
(default).

BlockInit_OnDeviceRun

ALWAYS The variables declared in the associated declaration block are
initialized in the transition of the mode from STOP to RUN.

NOTICE
Be sure to use the correct upper- and lower-case notation for attributes!

 Note
The insertion, deletion or changing of the HMI_Export, BlockInit_OnChange or
BlockInit_OnDeviceRun attributes in a declaration block does not change its version
identification!

 Integration of ST in SIMOTION
 5.7 Controlling the preprocessor and compiler with pragmas

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 273

Table 5- 45 Example of attributes for compiler options

INTERFACE
 VAR_GLOBAL
 { HMI_Export := FALSE;
 BlockInit_OnChange := TRUE; }
 // No HMI export, download in RUN possible
 x : DINT;
 END_VAR
 FUNCTION_BLOCK fb1;
END_INTERFACE

IMPLEMENTATION
 VAR_GLOBAL
 { HMI_Export := TRUE;
 BlockInit_OnDeviceRun := ALWAYS; }
 // HMI export, initialization for the STOP -> RUN transition
 y : DINT;
 END_VAR
 FUNCTION_BLOCK fb1
 VAR_INPUT
 i_var : INT;
 END_VAR
 VAR_OUTPUT
 o_var : INT;
 END_VAR

 { _U7_PoeBld_CompilerOption := warning:2:on; }
 o_var := REAL_TO_INT(1.0); // Warning 16004
 { _U7_PoeBld_CompilerOption := warning:2:off; }
 o_var := REAL_TO_INT(1.0); // No warning 16004
 { _U7_PoeBld_CompilerOption := warning:16004:on; }
 o_var := REAL_TO_INT(1.0); // Warning 16004
 { _U7_PoeBld_CompilerOption := warning:16004:off; }
 o_var := REAL_TO_INT(1.0); // No warning 16004
 { _U7_PoeBld_CompilerOption := warning:2:off;
 _U7_PoeBld_CompilerOption := warning:16004:on; }
 o_var := REAL_TO_INT(1.0); // Warning 16004
 END_FUNCTION_BLOCK
END_IMPLEMENTATION

Integration of ST in SIMOTION
5.8 Jump statement and label

 SIMOTION ST Structured Text
274 Programming and Operating Manual, 05/2009

5.8 Jump statement and label
In addition to control statements (see Control statements (Page 143)), a jump statement is
also available.
You program jump statements with the GOTO statement and specify the jump label to which
you want to jump. Jumps are only permitted within a POU.
Enter the jump label (separated by a colon) in front of the statement at which you want the
program to resume.
Alternatively, you can declare the jump labels in the POU (with the structure
LABEL/END_LABEL in the POU). Only the declared jump labels can then be used in the
statement section.
Syntax of jump statements and labels:

Table 5- 46 Example of syntax for jump statements

FUNCTION func : VOID
 VAR
 x, y, z BOOL;
 END_VAR
 LABEL
 lab_1, lab_2; // Declaration of the jump labels
 END_LABEL
 x := y;
 lab_1 : y := z; // Jump label with statement
 IF x = y THEN
 GOTO lab_2; // Jump statement
 END_IF;
 GOTO lab_1; // Jump statement
 lab_2 : ; // Jump label with blank statement
END_FUNCTION

 Note
You should only use the GOTO statement in special circumstances (for example, for
troubleshooting). It should not be used at all according to the rules for structured
programming.
Jumps are only permitted within a POU.
The following jumps are illegal:
• Jumps to subordinate control structures (WHILE, FOR, etc.)
• Jumps from a WAITFORCONDITION structure
• Jumps within CASE statements
Jump labels can only be declared in the POU in which they are used. If jump labels are
declared, only the declared jump labels may be used.

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 275

Error Sources and Program Debugging 6

This chapter describes various sources of programming errors and shows you how to
program efficiently. You also learn what options are available for program testing. For all
possible compilation error messages, i.e. compiler errors, see Compiler error messages and
their remedies (Page 376). Possible reactions and remedies are described for each error.

6.1 Notes on avoiding errors and on efficient programming
The SIMOTION Basic Functions Function Manual lists some common error sources, which
hinder the compilers or prevent the proper execution of a program. There are notes on, e.g.:
● Data types for assigning arithmetic expressions
● Starting functions in cyclic tasks
● Wait times in cyclic tasks
● Errors on download
● CPU does not switch to RUN
● CPU goes to STOP
● Size of the local data stack
● etc.
In addition, you will also find notes on efficient programming there, particularly for
● runtime-oriented programming
● change-optimized programming

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
276 Programming and Operating Manual, 05/2009

6.2 Program debugging
Syntax errors are detected and displayed by the ST compiler during the compilation
procedure. Runtime errors in the execution of the program are displayed by system alarms
or lead to the operating mode STOP. You can find logical programming errors with the test
functions of ST, e.g. with the symbol browser, status program, trace.
To achieve the same results as shown below using the test functions, use of the sample
program in Creating a sample program (Page 63) is recommended.

6.2.1 Modes for program testing

6.2.1.1 Modes of the SIMOTION devices
Various SIMOTION device modes are available for program testing.
How to select the mode of a SIMOTION device:
1. Highlight the SIMOTION device in the project navigator.
2. Select the "Test mode" context menu.
3. Select the required mode (see following table).

If you have selected "Debug mode":
– Accept the safety information.
– Parameterize the sign-of-life monitoring.
Observe the following section: Important information about the life-sign monitoring
(Page 278).

4. Confirm with "OK".
The SIMOTION device switches to the selected mode.
When the SIMOTION device switches to "Debug mode":
– A connection to the target system will be established automatically (online mode) if

SIMOTION SCOUT is currently in offline mode.
– The activated debug mode is indicated in the status bar.
– The breakpoints toolbar is displayed.

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 277

Table 6- 1 Modes of a SIMOTION device

Setting Meaning
Process mode Program execution on the SIMOTION device is optimized for maximum system performance.

The following diagnostic functions are available, although they may have only restricted
functionality because of the optimization for maximum system performance:
• Monitor variables in the symbol browser or a watch table.
• Program status (only restricted):

– Restricted monitoring of variables (e.g. variables in loops, return values for system
functions).

– As of version V4.0 of the SIMOTION kernel:

No more than one program source (e.g. ST source, MCC source, LAD/FBD source) can
be monitored per task.

– Up to version V3.2 of the SIMOTION kernel:

No more than one program source (e.g. ST source, MCC source, LAD/FBD source) can
be monitored.

• Trace tool (only restricted) with measuring functions for drives and function generator, see
online help:
– No more than one trace on each SIMOTION device.

Test mode The diagnostic functions of the process mode are available to the full extent:
• Monitor variables in the symbol browser or a watch table.
• Program status:

– Monitoring of all variables possible.
– As of version V4.0 of the SIMOTION kernel:

Several program sources (e.g. ST sources, MCC sources, LAD/FBD sources) can be
monitored per task.

– Up to version V3.2 of the SIMOTION kernel:

No more than one program source (e.g. ST source, MCC source, LAD/FBD source) can
be monitored per task.

• Trace tool with measuring functions for drives and function generator, see online help:
– No more than four traces on each SIMOTION device.

Note
Runtime and memory utilization increase as the use of diagnostic functions increases.

Debug mode This mode is available in SIMOTION kernel as of V3.2.
In addition to the diagnostic functions of the test mode, you can use the following functions:
• Breakpoints

Within a program source file, you can set breakpoints (Page 295). When an activated
breakpoint is reached, selected tasks will be stopped.

• Controlling MotionTasks

In the "Task Manager" tab of the device diagnostics, you can use task control commands for
MotionTasks, see the SIMOTION Basic Functions Function Manual.

No more than one SIMOTION device of the project can be switched to debug mode.
SIMOTION SCOUT is in online mode, i.e. connected with the target system.
Observe the following section: Important information about the life-sign monitoring (Page 278).

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
278 Programming and Operating Manual, 05/2009

6.2.1.2 Important information about the life-sign monitoring.

WARNING
You must observe the appropriate safety regulations.
Use the debug mode or a control panel only with the life-sign monitoring function activated
with a suitably short monitoring time! Otherwise, if problems occur in the communication
link between the PC and the SIMOTION device, the axis may start moving in an
uncontrollable manner.
The function is released exclusively for commissioning, diagnostic and service purposes.
The function should generally only be used by authorized technicians. The safety
shutdowns of the higher-level control have no effect.
Therefore, there must be an EMERGENCY STOP circuit in the hardware. The appropriate
measures must be taken by the user.

Accept safety notes
After selecting the debug mode or a control panel, you must accept the safety notes. You
can set the parameters for the life-sign monitoring.
Proceed as follows:
1. Click the Settings button.

The "Debug settings" window opens.
2. Read there, as described in the following section, the safety notes and parameterize the

life-sign monitoring.

Parameterizing the life-sign monitoring
In the Life-sign monitoring parameterization window, proceed as described below:
1. Read the warning!
2. Click the Safety notes button to open the window with the detailed safety notes.
3. Do not make any changes to the defaults for life-sign monitoring.

Changes should only be made in special circumstances and in observance of all danger
warnings.

4. Click Accept to confirm you have read the safety notes and have correctly parameterized
the life-sign monitoring.

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 279

NOTICE
Pressing the spacebar or switching to a different Windows application causes:
• In debug mode for activated breakpoints:

– The SIMOTION device switches to STOP mode.
– The outputs are deactivated (ODIS).

• For controlling an axis or a drive using the control panel (control priority for the PC):
– The axis or the drive is brought to a standstill.
– The enables are reset.

WARNING
This function is not guaranteed in all operating modes. Therefore, there must be an
EMERGENCY STOP circuit in the hardware. The appropriate measures must be taken by
the user.

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
280 Programming and Operating Manual, 05/2009

6.2.1.3 Life-sign monitoring parameters

Table 6- 2 Life-sign monitoring parameter description

Field Description
Life-sign monitoring The SIMOTION device and SIMOTION SCOUT regularly exchange

life-sign signals to ensure a correctly functioning connection. If the
exchange of the life-sign is interrupted longer than the set monitoring
time, the following response occurs:
• In debug mode for activated breakpoints:

– The SIMOTION device switches to STOP mode.
– The outputs are deactivated (ODIS).

• For controlling an axis or a drive using the control panel (control
priority for the PC):
– The axis is brought to a standstill.
– The enables are reset.

The following parameterizations are possible:
• Active check box:

If the check box is selected, life-sign monitoring is active.

The deactivation of the life-sign monitoring is not always possible.
• Monitoring time:

Enter the timeout.

Prudence
Do not make any changes to the defaults for life-sign monitoring, if
possible.
Changes should only be made in special circumstances and in
observance of all danger warnings.

Safety information Please observe the warning!
Click the button to obtain further safety information.
See: Important information about the life-sign monitoring (Page 278)

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 281

6.2.2 Symbol Browser

6.2.2.1 Properties of the symbol browser
In the symbol browser, you can view and, if necessary, change the name, data type, and
variable values. In particular, you can: see the following variables:
● Unit variables and static variables of a program or function block
● System variables of a SIMOTION device or a technology object
● I/O variables or global device variables.
For these variables, you can:
● View a snapshot of the variable values
● Monitor variable values as they change
● Change (modify) variable values
However, the symbol browser can only display/modify the variable values if the project has
been loaded in the target system and a connection to the target system has been
established.

6.2.2.2 Using the symbol browser

Requirements
● Make sure that a connection to the target system has been established and a project has

been downloaded to the target system. To load the project with the sample program, see
"Executing the sample program (Page 71)".

● You can run the user program, but you do not have to. If the program is not run, you only
see the initial values of the variables.

The procedure depends on the memory area in which the variables to be monitored are
stored.

Variables in the user memory of the unit or in the retentive memory
You can use the symbol browser to monitor the variables contained in the user memory of
the unit or in the retentive memory, see Memory ranges of the variable types (Page 212):
● Retentive and non-retentive unit variables of the interface section of a program source file

(unit)
● Retentive and non-retentive unit variables of the implementation section of a program

source file (unit)
● Static variables of the function blocks whose instances are declared as unit variables.
● In addition, if the program source file (unit) has been compiled with the "Create program

instance data only once" compiler option (Page 47):
– Static variables of the programs.
– Static variables of the function blocks whose instances are declared as static variables

of programs.

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
282 Programming and Operating Manual, 05/2009

Follow these steps:
1. Select the program source file in the project navigator (e.g. ST_1).
2. In the detail view, click the Symbol browser tab.
You see in the symbol browser all variables of the program source file contained in the user
memory of the unit or in the retentive memory.
● All unit variables of the program source file.
● Only if the program source file has been compiled with the "Create program instance data

only once" compiler option: The programs of the program source and their static variables
(including instances of function blocks).

Variables in the user memory of the task
You can use the symbol browser to monitor the variables contained in the user memory of
the associated task, see Memory ranges of the variable types (Page 212):
If the program source (unit) was compiled without the compiler option (Page 47) "Create
program instance data only once" (default), the user memory of the task to which the
program was assigned contains the following variables:
● Static variables of the programs.
● Static variables of the function blocks whose instances are declared as static variables of

programs.
Follow these steps:
1. In the project navigator of SIMOTION SCOUT, select the EXECUTION SYSTEM element

in the subtree of the SIMOTION device.
2. In the detail view, click the Symbol browser tab.
The symbol browser shows all tasks used in the execution system together with the
assigned programs. The associated variables contained in the user memory of the task are
listed below.

 Note
You can monitor temporary variables (together with unit variables and static variables) with
Program status (see Properties of the program status (Page 289)).

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 283

System variables and global device variables
You can also monitor the following variables in the symbol browser:
● System variables of SIMOTION devices
● System variables of technology objects
● I/O variables
● Global device variables
Follow these steps:
1. Select the appropriate element in the SIMOTION SCOUT project navigator.
2. In the detail view, click the Symbol browser tab.
The corresponding variables are displayed in the symbol browser.

Figure 6-1 Viewing variables in the symbol browser

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
284 Programming and Operating Manual, 05/2009

Status and controlling variables
In the Status value column, the current variable values are displayed and periodically
updated.
You can change the value of one or several variables. Proceed as follows for the variables to
be changed:
1. Enter a value in the Control value column.
2. Activate the checkbox in this column
3. Click the Immediate control button.
The values you entered are written to the selected variables.

NOTICE
Note when you change the values of several variables:
The values are written sequentially to the variables. It can take several milliseconds until
the next value is written. The variables are changed from top to bottom in the symbol
browser. There is therefore no guarantee of consistency.

Fix the display of the symbol browser
You can fix the display of the symbol browser for the active object:
● To do so, click the Retain display icon in the right upper corner of the symbol browser.

The displayed symbol changes to .
The variables of this object are still displayed and updated in the symbol browser even if
another object is selected in the project navigator.

● To remove the display, click the icon again. The displayed symbol changes back
to .

Display invalid floating-point numbers
Invalid floating-point numbers are displayed as follows in the symbol browser (independently
of the SIMOTION device):

Table 6- 3 Display invalid floating-point numbers

LED Meaning
1.#QNAN
-1.#QNAN

Invalid bit pattern in accordance with IEEE 754 (NaN Not a Number) There is no
distinction between signaling NaN (NaNs) and quiet NaN (NaNq).

1.#INF
-1.#INF

Bit pattern for + infinity in accordance with IEEE 754
Bit pattern for – infinity in accordance with IEEE 754

-1.#IND Bit pattern for indeterminate

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 285

6.2.3 Monitoring variables in watch table

6.2.3.1 Variables in the watch table
With the symbol browser you see only the variables of an object within the project. With
program status you see only the variables of an ST source file within a freely selectable
monitoring area.
With watch tables, in contrast, you can monitor selected variables from different sources as a
group (e.g. program sources, technology objects, SINAMICS drives - even on different
devices).
You can see the data type of the variables in offline mode. You can view and modify the
value of the variables in online mode.

6.2.3.2 Using watch tables
You can group variables from various program sources, technology objects,
SIMOTION devices, etc. (even on different devices), in a watch table where you can monitor
them together and, if necessary, change them.

Creating a watch table
Procedure for creating a watch table and assigning variables:
1. In the Project navigator, select the MONITOR folder.
2. Select Insert > Watch table to create a watch table, and enter the name of the watch

table. A watch table with this name appears in the MONITOR folder.
3. In the project navigator, click the object from which you want to move variables to the

watch table.
4. In the symbol browser, select the corresponding variable line by clicking its number in the

left column.
5. From the context menu, select Add to watch table and the appropriate watch table, e.g.

Watch table_1.
6. If you click the watch table, you will see in the detail view of the Watch table tab that the

selected variable is now in the watch table.
7. Repeat steps 3 to 6 to monitor the variables of various objects.

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
286 Programming and Operating Manual, 05/2009

Status and controlling variables
If you are connected to the target system, you can monitor the variable contents.
In the Status value column, the current variable values are displayed and periodically
updated.
You can change the value of one or several variables. Proceed as follows for the variables to
be changed:
1. Enter a value in the Control value column.
2. Activate the checkbox in this column
3. Click the Immediate control button.
The values you entered are written to the selected variables.

NOTICE
Note when you change the values of several variables:
The values are written sequentially to the variables. It can take several milliseconds until
the next value is written. The variables are changed from top to bottom in the watch table.
There is therefore no guarantee of consistency.

Fix the display of the watch table
You can fix the display of the active watch table:
● To do so, click the Retain display icon in the right upper corner of the Watch table tab in

the detail view. The displayed symbol changes to .
This watch table is still displayed even if another one is selected in the project navigator.

● To remove the display, click the icon again. The displayed symbol changes back
to .

Display invalid floating-point numbers
Invalid floating-point numbers are displayed as follows in the watch table (independently of
the SIMOTION device):

Table 6- 4 Display invalid floating-point numbers

LED Meaning
1.#QNAN
-1.#QNAN

Invalid bit pattern in accordance with IEEE 754 (NaN Not a Number) There is no
distinction between signaling NaN (NaNs) and quiet NaN (NaNq).

1.#INF
-1.#INF

Bit pattern for + infinity in accordance with IEEE 754
Bit pattern for – infinity in accordance with IEEE 754

-1.#IND Bit pattern for indeterminate

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 287

6.2.4 Program run

6.2.4.1 Program run: Display code location and call path
You can display the position in the code (e.g. line of an ST source file) that a MotionTask is
currently executing along with its call path.
Follow these steps:
1. Click the "Show program run" button on the Program run toolbar.

The "Program run call stack (Page 288)" window opens.
2. Select the desired MotionTask.
3. Click the "Update" button.
The window shows:
● The position in the code being executed (e.g. line of the ST source file) stating the

program source and the POU.
● Recursively positions in the code of other POUs that call the code position being

executed.
The following names are displayed for the SIMOTION RT program source files:

Table 6- 5 SIMOTION RT program source files

Name Meaning
taskbind.hid Execution system
stdfunc.pck IEC library
device.pck Device-specific library
tp-name.pck Library of the tp-name technology package,

e.g. cam.pck for the library of the CAM technology package

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
288 Programming and Operating Manual, 05/2009

6.2.4.2 Parameter call stack program run
You can display the following for all configured tasks:
● the current code position in the program code (e.g. line of an ST source file)
● the call path of this code position

Table 6- 6 Parameter description call stack program run

Field Description
Selected CPU The selected SIMOTION device is displayed.
Refresh Clicking the button reads the current code positions from the

SIMOTION device and shows them in the open window.
Calling task Select the task for which you want to determine the code position

being executed.
All configured tasks of the execution system.

Current code position The position being executed in the program code (e.g. line of an ST
source file) is displayed (with the name of the program source file,
line number, name of the POU).

is called by The code positions that call the code position being executed within
the selected task are shown recursively (with the name of the
program source file, line number, name of the POU, and name of the
function block instance, if applicable).

For names of the SIMOTION RT program sources, refer to the table in "Program run
(Page 287)".

6.2.4.3 Program run toolbar
You can display the position in the code (e.g. line of an ST source file) that a MotionTask is
currently executing along with its call path with this toolbar.

Table 6- 7 Program run toolbar

Symbol Meaning

Display program run
Click this button to open the Program run call stack window. In this window, you can
display the currently active code position with its call path.
See: Program run: Display code position and call path (Page 287)

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 289

6.2.5 Program status

6.2.5.1 Properties of the program status
Status program enables monitoring the variable values accurately to the cycle during
program execution.
You can select a monitoring area in the ST source file and monitor, in addition to global and
static local variables, also temporary local variables (e.g. within a function) there.
The values of the following variables are displayed:
● Simple data type variables (INT, REAL, etc.)
● Individual elements of a structure, provided an assignment is made
● Individual elements of an array, provided an assignment is made
● Enumeration data type variables
While the selected monitoring range is running in the ST source file, the corresponding buffer
for the variables to be monitored is filled with the corresponding values on the
SIMOTION device. Once the selected monitoring range has been run, the buffer is formatted
for display in the SIMOTION SCOUT. SIMOTION SCOUT calls the formatted values at
regular intervals and displays them.
As of SIMOTION Kernel V3.2, you can select a location in an ST source file at which a
function or instance of a function block is called (call path). This enables you to observe the
variable values specifically for this call.

 Note
Due to the restricted buffer capacity and the requirement for minimum runtime tampering, the
following variables cannot be displayed:
• Complete arrays
• Complete structures
Individual array elements or individual structure elements are displayed, however, provided
an assignment is made in the ST source file.

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
290 Programming and Operating Manual, 05/2009

Table 6- 8 Differences between process mode and test mode in Program Status

 Process mode Test mode
Optimization of program execution For maximum system performance, only

restricted diagnosis is possible
For full diagnosis options

Maximum number of monitored
program sources (e.g. ST source
files, MCC source files, LAD/FBD
sources)

• As of version V4.0 of the SIMOTION
kernel:

Maximum 1 program source per task
• Up to version V3.2 of the SIMOTION

kernel:

Maximum 1 program source

• As of version V4.0 of the SIMOTION
kernel:

Multiple program sources per task
• Up to version V3.2 of the SIMOTION

kernel:

Maximum 1 program source per task
Loops (e.g. WHILE, REPEAT,
FOR)

On repeat loops, the recording is
interrupted.
If the whole loop is selected, the values
are displayed on the first run of the loop.

If there are repeats, the recording
continues correctly.
If the whole loop is selected, the values
are displayed on the last run of the loop.

System functions that contain
internal loops (e.g. functions for
processing strings)

Values are not displayed in some cases Values are displayed correctly.

NOTICE
Program status requires additional CPU resources.
Please note if you want to monitor several programs at the same time with the status
program:
• Test mode must be activated (see Operating modes of the SIMOTION devices

(Page 276))
• Up to version V4.0 of the SIMOTION Kernel, the programs must be assigned to various

tasks.

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 291

6.2.5.2 Using the status program
Before you can work with the Status program, you must instruct the system to run in a
special mode:
1. Make sure that the ST source file generates the additional debug code during

compilation:
– Select the ST source file in the project navigator and select the Edit > Object

properties menu command.
– Select the Compiler tab to change the local settings of the compiler (Page 49).
– Make sure that the Enable Status program checkbox is activated and confirm with OK.

You can also change this compiler option at global settings of the compiler (Page 47).
2. Open the ST source file and recompile it with ST source file > Accept and compile.
3. Download and start the program in the usual way.
4. Click the button for program status in the ST editor toolbar (Page 45) to start this test

mode.
The ST editor window is now divided vertically: You can see the ST source file in the left
pane; the right pane displays the selected variables and their values.

Figure 6-2 Part of an ST program in program status test mode

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
292 Programming and Operating Manual, 05/2009

Follow the procedure below to test with program status:
1. In the editor, select the section of the ST source file you want to test.
2. As of version V3.2 of the SIMOTION Kernel:

If you have selected a section of a POU that is called by several positions in a program
source file or several tasks:
Enter the call path for program status (Page 292).

For the selected section, you can see variables and their values in the right pane of your
screen; they are updated cyclically:
● Values that have changed in the current pass are displayed in red.
● Values that have not changed are displayed in black.
● Variables without values, e.g. variables in an unused IF branch are shown in green and

marked with a question mark.
If the display of the variable values changes too fast:
● Click the button for Stop monitoring of program variables in the ST editor toolbar

(Page 45) to stop the display.
● Click the button for Continue monitoring of program variables in the ST editor toolbar

(Page 45) to continue the display.
You can force the update of the displayed values:
● Click the button for Update on the ST editor toolbar (Page 45).

The buffer of the SIMOTION device is read, even if the selected monitoring range has not
yet been completely processed and the values are incomplete. This can be useful, for
example, if the program is waiting for a WAITFORCONDITION statement.
The monitoring of the program variables must have been activated.

6.2.5.3 Call path for program status
With SIMOTION kernel V3.2 and higher, you can specify the call path when monitoring
variable values of functions and function blocks. This enables you to observe the variable
values specifically for this call.
For this purpose, the Call path window automatically opens in the following cases:
● You have selected a section of a function:

The function is called at various points in the program source files (e.g. ST source files) of
the SIMOTION device.

● You have selected a section of a function block:
There are several instances of the function block or the instance is called at various
points in the program source files (e.g. ST source files) of the SIMOTION device.

● You have selected a section of a program:
The program is assigned to more than one task.

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 293

How to select the call path:
In the Call path status program window, the marked section of the POU (code position) is
displayed (with the name of the ST source file, line number, name of the POU).
1. If the code position is called in several tasks:

– Select the task.
2. Select the code position to be called (in the calling POU).

You can select from the following:
– The code positions to be called within the selected task (with the name of the program

source, line number, name of the POU).
If the selected calling code position is in turn called by several code positions, further
lines are displayed in which you proceed similarly.

– All:
All displayed code positions are selected. Moreover, all code positions (up to the top
level of the hierarchy) are selected from which the displayed code positions are called.

Program Status for devices with SIMOTION kernel versions up to V3.1

NOTICE
Note the following if you use the "Program status" diagnostic function in devices with
SIMOTION Kernels up to V3.1:
• If the project has been compiled with a SIMOTION SCOUT version up to V3.1, the "Call

path/Task selection" window will not always be displayed. This means that "Program
status" cannot be used to its full extent.

• In such cases, you can only specify the call path if you recompile the project with the
current version of SIMOTION SCOUT and download it.

When performing a recompilation with the current version of the compiler, note the
following:
• Among other effects, this generates new version codes in the data storage areas of the

programs.
• When the project is downloaded, all retentive and non-retentive data on the SIMOTION

device is deleted and initialized.
• In some cases, minor changes to the program sources may be required.
• Once the project has been saved in an old project format, it must be recompiled with the

relevant version of the compiler.

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
294 Programming and Operating Manual, 05/2009

6.2.5.4 Parameter call path status program

Table 6- 9 Program status call path parameter description

Field Description
Calling task Select the task.

All tasks in which the selected code position is called are available
for selection.

Current code position The selected section of the POU (code position) is shown (with the
name of the ST source file, line number, name of the POU)

is called by Select the calling code position.
The following are available:
• The code positions to be called within the selected task (with the

name of the program source, line number, name of the POU).

If the selected calling code position is in turn called by several
code positions, further lines are displayed in which you proceed
similarly.

• All:

All displayed code positions are selected. Moreover, all code
positions (up to the top level of the hierarchy) are selected from
which the displayed code positions are called.

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 295

6.2.6 Breakpoints

6.2.6.1 General procedure for setting breakpoints
You can set breakpoints within a POU of a program source (e.g. ST source, MCC chart,
LAD/FBD source). On reaching an activated breakpoint, the task in which the POU with the
breakpoint is called is stopped. If the breakpoint that initiated the stopping of the tasks is
located in a program or function block, the values of the static variables for this POU are
displayed in the "Variables status" tab of the detail display. Temporary variables (also in/out
parameters for function blocks) are not displayed. You can monitor static variables of other
POUs or unit variables in the symbol browser.

Requirement:
● The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

open.

Proceed as follows
Follow these steps:
1. Select "Debug mode" for the associated SIMOTION device, see Set debug mode

(Page 295).
2. Specify the debug task group, see Specifying the debug task group (Page 297).
3. Set breakpoints, see Setting breakpoints (Page 301).
4. Define the call path, see Defining a call path for a single breakpoint (Page 304).
5. Activate the breakpoints, see Activating breakpoints (Page 310).

6.2.6.2 Setting the debug mode

WARNING
You must observe the appropriate safety regulations.
Use the debug mode only with activated life-sign monitoring (Page 278) with a suitably
short monitoring time! Otherwise, if problems occur in the communication link between the
PC and the SIMOTION device, the axis may start moving in an uncontrollable manner.
The function is released exclusively for commissioning, diagnostic and service purposes.
The function should generally only be used by authorized technicians. The safety
shutdowns of the higher-level control have no effect!
Therefore, there must be an EMERGENCY STOP circuit in the hardware. The appropriate
measures must be taken by the user.

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
296 Programming and Operating Manual, 05/2009

To set the debug mode, proceed as follows:
1. Highlight the SIMOTION device in the project navigator.
2. Select Test mode from the context menu.
3. Select Debugmode (Page 276).
4. Accept the safety information
5. Parameterize the sign-of-life monitoring.

See also section: Important information about the life-sign monitoring (Page 278).
6. Confirm with OK.

If no connection has been established with the target system (offline mode), the online
mode will be established automatically.
The activated debug mode is indicated in the status bar.
The breakpoints toolbar (Page 303) is displayed.

 Note
You cannot change the program sources in debug mode!

NOTICE
Pressing the spacebar or switching to a different Windows application causes in debug
mode for activated breakpoints:
• The SIMOTION device switches to STOP mode.
• The outputs are deactivated (ODIS).

WARNING
This function is not guaranteed in all operating modes. Therefore, there must be an
EMERGENCY STOP circuit in the hardware. The appropriate measures must be taken by
the user.

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 297

6.2.6.3 Define the debug task group
On reaching an activated breakpoint, all tasks that are assigned to the debug task group are
stopped.

Requirement
● The relevant SIMOTION device is in debug mode.

Proceed as follows
How to assign a task to the debug task group:
1. Highlight the relevant SIMOTION device in the project navigator.
2. Select Debug task group from the context menu.

The Debug Task group window opens.
3. Select the tasks to be stopped on reaching the breakpoint:

– If you only want to stop individual tasks (in RUN mode): Activate the Debug task group
selection option.
Assign all tasks to be stopped on reaching a breakpoint to the Tasks to be stopped
list.

– If you only want to stop individual tasks (in HALT mode): Activate the All tasks
selection option.
In this case, also select whether the outputs and technology objects are to be released
again after resumption of program execution.

NOTICE
Note the different behavior when an activated breakpoint is reached, see the following
table.

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
298 Programming and Operating Manual, 05/2009

Table 6- 10 Behavior at the breakpoint depending on the tasks to be stopped in the debug task group.

Tasks to be stopped Properties
Single selected tasks
(debug task group)

All tasks

Behavior on reaching the breakpoint
 Operating mode RUN STOP
 Stopped tasks Only tasks in the debug task group All tasks
 Outputs Active Deactivated (ODIS activated)
 Technology Closed-loop control active No closed-loop control (ODIS activated)
 Runtime measurement of the

tasks
Active for all tasks Deactivated for all tasks

 Time monitoring of the tasks Deactivated for tasks in the debug task
group

Deactivated for all tasks

 Real-time clock Continues to run Continues to run
Behavior on resumption of program execution
 Operating mode RUN RUN
 Started tasks All tasks in the debug task group All tasks
 Outputs Active
 Technology Closed-loop control active

The behavior of the outputs and the
technology objects depends on the
'Continue' activates the outputs (ODIS
deactivated) checkbox.
• Active: ODIS will be deactivated. All

outputs and technology objects are
released.

• Inactive: ODIS remains activated. All
outputs and technology objects are
only released after another download
of the project.

 Note
You can only make changes to the debug task group if no breakpoints are active.

Proceed as follows:
1. Set breakpoints (see Setting breakpoints (Page 301)).
2. Define the call path (see Defining a call path for a single breakpoint (Page 304)).
3. Activate the breakpoints (see Activating breakpoints (Page 310)).

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 299

6.2.6.4 Debug task group parameters
Use this window to define the debug task group. On reaching an activated breakpoint, all
tasks that are assigned to the debug task group are stopped.
This requires that the relevant SIMOTION device is in debug mode, see Modes of the
SIMOTION devices (Page 276).

Table 6- 11 Debug settings parameter description

Field Description
Debug task group Select this selection option if you only want to stop individual tasks.

The SIMOTION device remains in RUN mode after an activated
breakpoint is reached. Outputs and technology objects remain
activated.
Assign all tasks to be stopped on reaching a breakpoint to the Tasks
to be stopped list.

All tasks Select this selection option if you only want to stop all user tasks.
The SIMOTION device remains in STOP mode after an activated
breakpoint is reached, all outputs and technology objects will be
deactivated (ODIS activated).
In this case, also select whether the outputs and technology objects
are to be released again after resumption of program execution.

'Resume' activates the outputs
(ODIS deactivated).

Only if All tasks is selected.
Activate the checkbox, to release again the outputs and technology
objects after program execution has been resumed.
All outputs and technology objects can only be released after a
download of the project with deactivated checkbox.

NOTICE
Note the different behavior at the activated breakpoint depending on the tasks to be
stopped, see table in Define the debug task group (Page 297).
You can only make changes to the debug task group if no breakpoints are active.

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
300 Programming and Operating Manual, 05/2009

6.2.6.5 Debug table parameter
The debug table shows all debug points (e.g. breakpoints, trace points) in the program
sources of a SIMOTION device.

Table 6- 12 Debug table parameter description

Field Description
Debug points (table)
 Active The activation state of the breakpoint is displayed.

Click the checkbox to change the activation state.
See: Activating breakpoints (Page 310).

 Source, line (POU) The code position is shown with the debug point set (with the name of
the program source file, line number, name of the POU).

 Debug type The type of the debug point is shown (e.g. breakpoint, trace point).
 Call path Click the button to define the call path for the breakpoint.

See: Defining the call path for a single breakpoint (Page 304).
All breakpoints ...
 Activate Click the button to activate all breakpoints (in all program sources) of

the SIMOTION device.
See: Activating breakpoints (Page 310).

 Deactivate Click the button to deactivate all breakpoints (in all program sources) of
the SIMOTION device.
See: Activating breakpoints (Page 310).

 Delete Click the button to clear all breakpoints (in all program sources) of the
SIMOTION device.
See: Setting breakpoints (Page 301).

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 301

6.2.6.6 Setting breakpoints

Requirements:
1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

open.
2. The relevant SIMOTION device is in debug mode,

see Setting debug mode (Page 295).
3. The debug task group is defined, see Defining the debug task group (Page 297).

Proceed as follows
How to set a breakpoint:
1. Select the code location where no breakpoint has been set:

– SIMOTION ST: Place the cursor on a line in the ST source file that contains a
statement.

– SIMOTION MCC: Select an MCC command in the MCC chart (except module or
comment block).

– SIMOTION LAD/FBD: Set the cursor in a network of the LAD/FBD program.
2. Alternative:

– Select the Debug > Set/remove breakpoint menu command (shortcut F9).

– Click the button in the Breakpoints toolbar.
To remove a breakpoint, proceed as follows:
1. Select the code position with the breakpoint.
2. Alternative:

– Select the Debug > Set/remove breakpoint menu command (shortcut F9).

– Click the button in the Breakpoints toolbar.
To remove all breakpoints (in all program sources) of the SIMOTION device, proceed as
follows:
● Alternative:

– Select the Debug > Remove all breakpoints menu command (shortcut CTRL+F5).

– Click the button in the Breakpoints toolbar.

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
302 Programming and Operating Manual, 05/2009

 Note
You cannot set breakpoints:
• For SIMOTION ST: In lines that contain only comment.
• For SIMOTION MCC: On the module or comment block commands.
• For SIMOTION LAD/FBD: Within a network.
• At code locations in which other debug points (e.g. trigger points) have been set.
You can list the debug points in all program sources of the SIMOTION device in the debug
table:
• Click the button for "debug table" in the Breakpoints toolbar.
In the debug table, you can also remove all breakpoints (in all program sources) of the
SIMOTION device:
• Click the button for "Clear all breakpoints".
Set breakpoints remain saved also after leaving the "debug mode", they are displayed only
in debug mode.

You can use the program status (Page 291) diagnosis functions and breakpoints together in
a program source file or POU. However, the following restrictions apply depending on the
program languages:
● SIMOTION ST: For Version V3.2 of the SIMOTION Kernel, the (marked) ST source file

lines to be tested with program status must not contain a breakpoint.
● SIMOTION MCC and LAD/FBD: The commands of the MCC chart (or networks of the

LAD/FBD program) to be tested with program status must not contain a breakpoint.

Proceed as follows
1. Define the call path, see Defining a call path for a single breakpoint (Page 304).
2. Activate the breakpoints, see Activating breakpoints (Page 310).

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 303

6.2.6.7 Breakpoints toolbar
This toolbar contains important operator actions for setting and activating breakpoints:

Table 6- 13 Breakpoints toolbar

Symbol Meaning

Set/remove breakpoint
Click this icon to set at breakpoint for the selected code position or to remove an
existing breakpoint.
See: Setting breakpoints (Page 301).

Activate/deactivate breakpoint
Click this icon to activate or deactivate the breakpoint at the selected code position.
See: Activating breakpoints (Page 310).

Edit the call path
Click this icon to define the call path for the breakpoints:
• If a code position with breakpoint is selected: The call path for this breakpoint.
• If a code position without breakpoint is selected: The call path for all breakpoints

of the POU.
See: Defining the call path for a single breakpoint (Page 304), Defining the call path
for all breakpoints (Page 307).

Activate all breakpoints
Click this icon to activate all breakpoints in the current program source or POU (e.g.
ST source file, MCC chart, LAD/FBD program).
See: Activating breakpoints (Page 310).

Deactivate all breakpoints
Click this icon to deactivate all breakpoints in the current program source or POU
(e.g. ST source file, MCC chart, LAD/FBD program).
See: Activating breakpoints (Page 310).

Remove all breakpoints
Click this icon to remove all breakpoints in the current program source or POU (e.g.
ST source file, MCC chart, LAD/FBD program).
See: Setting breakpoints (Page 301).

Debug table
Click this icon to display the debug table.
See: Debug table parameters (Page 300).

Display call stack
Click this icon after reaching an activated breakpoint to:
• View the call path at the current breakpoint.
• View the code positions at which the other tasks of the debug task group have

been stopped together with their call path.
See: Displaying the call stack (Page 312).

Resume
Click this icon to continue the program execution after reaching an activated
breakpoint.
See: Activating breakpoints (Page 310), Displaying the call stack (Page 312).

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
304 Programming and Operating Manual, 05/2009

6.2.6.8 Defining the call path for a single breakpoint

Requirements:
1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

open.
2. The relevant SIMOTION device is in debug mode,

see Setting debug mode (Page 295).
3. The debug task group is defined, see Defining the debug task group (Page 297).
4. Breakpoint is set, see Setting breakpoints (Page 301).

Proceed as follows
To define the call path for a single breakpoint, proceed as follows:
1. Select the code location where a breakpoint has already been set:

– SIMOTION ST: Set the cursor in an appropriate line of the ST source.
– SIMOTION MCC: Select an appropriate command in the MCC chart.
– SIMOTION LAD/FBD: Set the cursor in an appropriate network of the LAD/FBD

program.

2. Click the button for "edit call path" in the Breakpoints toolbar.
In the Call path / task selection breakpoint window, the marked code position is displayed
(with the name of the program source file, line number, name of the POU).

3. Select the task in which the user program (i.e. all tasks in the debug task group) will be
stopped when the selected breakpoint is reached.
The following are available:
– All calling locations starting at this call level

The user program will always be started when the activated breakpoint in any task of
the debug task group is reached.

– The individual tasks from which the selected breakpoint can be reached.
The user program will be stopped only when the breakpoint in the selected task is
reached. The task must be in the debug task group.
The specification of a call path is possible.

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 305

4. Only for functions and function blocks: Select the call path, i.e. the code position to be
called (in the calling POU).
The following are available:
– All calling locations starting at this call level

No call path is specified. The user program is always stopped at the activated
breakpoint if the POU in the selected tasks is called.

– Only when a single task is selected: The code positions to be called within the
selected task (with the name of the program source, line number, name of the POU).
The call path is specified. The user program will be stopped at the activated
breakpoint only when the POU is called from the selected code position.
If the POU of the selected calling code position is also called from other code
positions, further lines are displayed successively in which you proceed similarly.

5. If the breakpoint is only to be activated after the code position has been reached several
times, select the number of times.

 Note
You can also define the call path to the individual breakpoints in the debug table:
1. Click the button for "debug table" in the Breakpoints toolbar.

The "Debug table" window opens.
2. Click the appropriate button in the "Call path" column.
3. Proceed in the same way as described above:

– Specify the task.
– Define the call path (only for functions and function blocks).
– Specify the number of passes after which the breakpoint is to be activated.

Proceed as follows:
● Activate the breakpoints, see Activating breakpoints (Page 310).

 Note
You can use the "Display call stack (Page 312)" function to view the call path at a current
breakpoint and the code positions at which the other tasks of the debug task group were
stopped.

See also
Defining the call path for all breakpoints (Page 307)

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
306 Programming and Operating Manual, 05/2009

6.2.6.9 Breakpoint call path / task selection parameters

Table 6- 14 Breakpoint call path / task selection parameter description

Field Description
Selected CPU The selected SIMOTION device is displayed.
Calling task Select the task in which the user program (i.e. all tasks in the debug

task group) will be stopped when the selected breakpoint is reached.
The following are available:
• All calling locations starting at this call level

The user program will always be started when the activated
breakpoint in any task of the debug task group is reached.

• The individual tasks from which the POU with the selected
breakpoint can be reached.

The user program will be stopped only when the breakpoint in
the selected task is reached. The task must be in the debug task
group.

The specification of a call path is possible.
Current code position The code position is shown with the set breakpoint (with the name of

the program source file, line number, name of the POU).
is called by Only for functions and function blocks:

Select the call path, i.e. the code position to be called (in the calling
POU).
The following are available:
• All calling locations starting at this call level

No call path is specified. The user program will always be
stopped at the activated breakpoint when the POU in the tasks is
reached.

• Only when a single task is selected: The code positions to be
called within the selected task (with the name of the program
source, line number, name of the POU).

The call path is specified. The user program will be stopped at
the activated breakpoint only when the POU is called from the
selected code position.

If the POU of the selected calling code position is also called
from other code positions, further lines are displayed
successively in which you proceed similarly.

The breakpoint will be
activated at each nth pass.

If you do not want the breakpoint to be activated until the code
position has been reached a certain number of times, set this
number.

NOTICE
You can only make changes to the debug task group if no breakpoints are active.

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 307

6.2.6.10 Defining the call path for all breakpoints
With this procedure, you can:
● Select a default setting for all future breakpoints in a POU (e.g. MCC chart, LAD/FBD

program or POU in an ST source file).
● Accept and compare the call path for all previously set breakpoints in this POU.

Requirements
● The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

open.
● The relevant SIMOTION device is in debug mode,

see Setting debug mode (Page 295).
● The debug task group is defined, see Defining the debug task group (Page 297).

Proceed as follows
To define the call path for all future breakpoints of a POU, proceed as follows:
1. Select the code location where no breakpoint has been set:

– SIMOTION ST: Set the cursor in an appropriate line of the ST source.
– SIMOTION MCC: Select an appropriate command in the MCC chart.
– SIMOTION LAD/FBD: Set the cursor in an appropriate network of the LAD/FBD

program.

2. Click the button for "edit call path" in the Breakpoints toolbar.
In the "Call path / task selection all breakpoints for each POU" window, the marked code
position is displayed (with the name of the program source file, line number, name of the
POU).

3. Select the task in which the user program (i.e. all tasks in the debug task group) will be
stopped when a breakpoint in this POU is reached.
The following are available:
– All calling locations starting at this call level

The user program will always be started when an activated breakpoint of the POU in
any task of the debug task group is reached.

– The individual tasks from which the selected breakpoint can be reached.
The user program will be stopped only when a breakpoint in the selected task is
reached. The task must be in the debug task group.
The specification of a call path is possible.

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
308 Programming and Operating Manual, 05/2009

4. Only for functions and function blocks: Select the call path, i.e. the code position to be
called (in the calling POU).
The following are available:
– All calling locations starting at this call level

No call path is specified. The user program is always stopped at an activated
breakpoint when the POU in the selected tasks is called.

– Only when a single task is selected: The code positions to be called within the
selected task (with the name of the program source, line number, name of the POU).
The call path is specified. The user program will be stopped at an activated breakpoint
only when the POU is called from the selected code position.
If the selected calling code position is in turn called by other code positions, further
lines are displayed successively in which you proceed similarly.

5. If a breakpoint is only to be activated after the code position has been reached several
times, select the number of times.

6. If you want to accept and compare this call path for all previously set breakpoints in this
POU:
– Click Accept.

Proceed as follows:
● Activate the breakpoints, see Activating breakpoints (Page 310).

 Note
You can use the "Display call stack (Page 312)" function to view the call path at a current
breakpoint and the code positions at which the other tasks of the debug task group were
stopped.

See also
Defining the call path for a single breakpoint (Page 304)

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 309

6.2.6.11 Call path / task selection parameters of all breakpoints per POU
Here you can define a presetting for the call path of all future breakpoints to be set in a POU.
Moreover, you can also accept this setting for all previously set breakpoints of this POU.

Table 6- 15 Call path / task selection parameter description of all breakpoints per POU

Field Description
Selected CPU The selected SIMOTION device is displayed.
Calling task Select the task in which the user program (i.e. all tasks in the debug

task group) will be stopped when a breakpoint in this POU is
reached.
The following are available:
• All calling locations starting at this call level

The user program will always be started when an activated
breakpoint of the POU in any task of the debug task group is
reached.

• The individual tasks from which the selected breakpoint can be
reached.

The user program will be stopped only when an activated
breakpoint in the selected task is reached. The task must be in
the debug task group.

The specification of a call path is possible.
Current POU The POU in which the cursor is located is displayed (with the name

of the program source file, name of the POU).
is called by Only for functions and function blocks:

Select the call path, i.e. the code position to be called (in the calling
POU).
The following are available:
• All calling locations starting at this call level

No call path is specified. The user program will always be
stopped at an activated breakpoint when the POU in the selected
tasks is called.

• Only when a single task is selected: The code positions to be
called within the selected task (with the name of the program
source, line number, name of the POU).

The call path is specified. The user program will be stopped at an
activated breakpoint only when the POU is called from the
selected code position.

If the POU of the selected calling code position is also called
from other code positions, further lines are displayed
successively in which you proceed similarly.

The breakpoint will be
activated at each nth pass.

If you do not want the breakpoint to be activated until the code
position has been reached a certain number of times, set this
number.

Apply this call path to all
previous breakpoints of this
POU

Click the Apply button, if you want to apply the call path to all
previously set breakpoints of the current POU. Any existing settings
will be overwritten.

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
310 Programming and Operating Manual, 05/2009

6.2.6.12 Activating breakpoints
Breakpoints must be activated if they are to have an effect on program execution.

Requirements
1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

open.
2. The relevant SIMOTION device is in debug mode,

see Setting debug mode (Page 295).
3. The debug task group is defined, see Defining the debug task group (Page 297).
4. Breakpoints are set, see Setting breakpoints (Page 301).
5. Call paths are defined, see Defining a call path for a single breakpoint (Page 304).

Activating breakpoints
How to activate a single breakpoint:
1. Select the code location where a breakpoint has already been set:

– SIMOTION ST: Set the cursor in an appropriate line of the ST source.
– SIMOTION MCC: Select an appropriate command in the MCC chart.
– SIMOTION LAD/FBD: Set the cursor in an appropriate network of the LAD/FBD

program.
2. Alternative:

– Select the Debug > Activate/deactivate breakpoint menu command (shortcut F12).

– Click the button in the Breakpoints toolbar.
To activate all breakpoints (in all program sources) of the SIMOTION device, proceed as
follows:
● Alternative:

– Select the Debug > Activate all breakpoints menu command.

– Click the button in the Breakpoints toolbar.

 Note
Breakpoints of all program sources of the SIMOTION device can also be activated and
deactivated in the debug table:
1. Click the button for "debug table" in the Breakpoints toolbar.

The "Debug table" window opens.
2. Perform the action below, depending on which breakpoints you want to activate or

deactivate:
– Single breakpoints: Check or clear the corresponding checkboxes.
– All breakpoints (in all program sources): Click the corresponding button.

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 311

Behavior at the activated breakpoint
On reaching an activated breakpoint (possibly using the selected call path (Page 304)), all
tasks assigned to the debug task group will be stopped. The behavior depends on the tasks
in the debug task group and is described in "Defining a debug task group (Page 297)". The
breakpoint is highlighted.
If the breakpoint that initiated the stopping of the tasks is located in a program or function
block, the values of the static variables for this POU are displayed in the "Variables status"
tab of the detail display. Temporary variables (also in/out parameters for function blocks) are
not displayed. You can monitor static variables of other POUs or unit variables in the symbol
browser (Page 281).
You can use the "Display call stack (Page 312)" function to:
● View the call path at the current breakpoint.
● View the code positions with the call path at which the other tasks of the debug task

group have been stopped.

Resuming program execution
How to resume program execution:
● Alternative:

– Select the Debug > Continue menu command (shortcut CTRL+F8).

– Click the button on the Breakpoint toolbar to "Continue".

Deactivate breakpoints
To deactivate a single breakpoint, proceed as follows:
1. Select the code position with the activated breakpoint.
2. Alternative:

– Select the Debug > Activate/deactivate breakpoint menu command (shortcut F12).

– Click the button in the Breakpoints toolbar.
To deactivate all breakpoints (in all program sources) of the SIMOTION device, proceed as
follows:
● Alternative:

– Select the Debug > Deactivate all breakpoints menu command.

– Click the button in the Breakpoints toolbar.

Error Sources and Program Debugging
6.2 Program debugging

 SIMOTION ST Structured Text
312 Programming and Operating Manual, 05/2009

6.2.6.13 Display call stack
You can use the "Display call stack" function to:
● View the call path at the current breakpoint.
● View the code positions with the call path at which the other tasks of the debug task

group have been stopped.

Requirement
The user program is stopped at an activated breakpoint, i.e. the tasks of the debug task
group (Page 297) have been stopped.

Proceed as follows
To call the "Display call stack" function, proceed as follows:
● Click the button for "display call stack" in the Breakpoints toolbar.

The "Breakpoint call stack" dialog opens. The current call path (including the calling task
and the number of the set passes) is displayed.
The call path cannot be changed.

To use the "Display call stack" function, proceed as follows:
1. Keep the "Breakpoint call stack" dialog open.
2. To display the code position at which the other task was stopped, proceed as follows:

– Select the appropriate task. All tasks of the debug task group can be selected.
The code position, including the call path, is displayed. If the code position is contained in
a user program, the program source with the POU (e.g. ST source file, MCC chart,
LAD/FBD program) will be opened and the code position marked.

3. How to resume program execution:

– Click the button for "resume" (Ctrl+F8 shortcut) in the Breakpoint toolbar.
When the next activated breakpoint is reached, the tasks of the debug task group will be
stopped again. The current call path, including the calling task, is displayed.

4. Click "OK" to close the "Breakpoint call stack" dialog.
For names of the SIMOTION RT program sources, refer to the table in "Program run
(Page 287)".

 Error Sources and Program Debugging
 6.2 Program debugging

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 313

6.2.6.14 Breakpoints call stack parameter
When an activated breakpoint (Page 310) is reached, you can display the following for each
task in the debug task group (Page 297):
● The position in the program code (e.g. line of an ST source file) at which the task

stopped.
● The call path of this code position.

Table 6- 16 Breakpoint call path parameter description

Field Description
Selected CPU The selected SIMOTION device is displayed.
Calling task Select the task for which you want to display the code position at

which the task was stopped.
All tasks of the debug task group can be selected.

Current code position The position in the program code (e.g. line of an ST source file) at
which the selected task was stopped is displayed (with the name of
the program source file, line number, name of the POU).

is called by The code positions that call the current code position within the
selected task are shown recursively (with the name of the program
source file, line number, name of the POU, and name of the function
block instance, if applicable).

For names of the SIMOTION RT program sources, refer to the table in "Program run
(Page 287)".

6.2.7 Trace
Using the trace tool, you can record and store the course of variable values over time (z. B.
unit variables, local variables, system variables, I/O variables). This allows you to document
the optimization, for example, of axes.
You can set the recording time, display up to four channels, select trigger conditions,
parameterize timing adjustments, select between different curve displays and scalings, etc.
Aside from isochronous recording, you can also select Recording at code position. This lets
you record the values of variables whenever the program runs through a specific point in the
ST source file.
The trace tool is described in detail in the online help.

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 315

Appendix A
A.1 Formal Language Description

In this chapter, you will find overviews of the basic elements of ST and a complete
compilation of all syntax diagrams with the language elements. This appendix summarizes
the basic features of the ST language.

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
316 Programming and Operating Manual, 05/2009

A.1.1 Language description resources
Syntax diagrams are used as a basis for the language description in the individual sections.
They provide you with an invaluable insight into the syntactic (i.e. grammatical) structure of
ST.
Instructions for using syntax diagrams were presented in Language description resources.
Information about the difference between formatted and unformatted rules, of interest to the
advanced user, is presented below.

A.1.1.1 Formatted rules (lexical rules)
The lexical rules describe the structure of the elements processed by the compiler during
lexical analysis. This means that the notation is formatted and the rules must be followed. In
particular, that means:
● Insertion of formatting characters is not allowed.
● Block and line comments cannot be inserted.
● Attributes for identifiers cannot be inserted.
The following figure shows a lexical rule for legal identifiers.

Figure A-1 Example of a lexical rule

Valid examples according to this rule include:

R_CONTROLLER3
_A_ARRAY
_100_3_3_10

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 317

A.1.1.2 Unformatted rules (syntactic rules)
The syntactic rules build on the lexical rules and describe the structure of ST. You can write
your ST program unformatted within the framework of these rules.
The unformatted property means:
● Formatting characters can be inserted anywhere.
● Block and line comments can be inserted.
The following example shows the syntactic rule for assigning a value in a statement.

Figure A-2 Example of a syntactic rule

Valid examples according to this rule include:

VARIABLE_1 := 100; SWITCH := FALSE;
//'This is a comment
VARIABLE_2:=3.2 +VARIABLE_1;

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
318 Programming and Operating Manual, 05/2009

A.1.2 Basic elements (terminals)
A terminal is a basic element that is declared verbally and not by a further rule. It is
represented in the syntax diagrams by an oval or circle.

A.1.2.1 Letters, digits and other characters
Letters and digits are the most commonly used characters. The identifier, for example,
consists of a combination of letters, digits, and the underscore. The underscore is one of the
special characters.

Table A- 1 Letters and digits

Characters Subgroup Character set elements
Upper case A .. Z Letter
Lower case a .. z

Digit Decimal digit 0 .. 9
Octal digit Octal digit 0 .. 7
Hexadecimal digit Hexadecimal digit 0 .. 9, A .. F, a .. f
Bit Binary digit 0, 1

You can use the complete extended ASCII character set in comments. You can use all
printable ASCII code characters starting from decimal equivalent 32 (blank).
For language commands, identifiers, constants, expressions and operators, you can use
special characters, i.e. characters other than letters and digits, only according to certain
rules.

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 319

A.1.2.2 Formatting characters and separators in the rules
Formatting characters and separators are used differently in formatted (lexical) and
unformatted (syntactic) rules. Language description resources (Page 316) describes the
differences between syntactic and lexical rules.
In the tables below, you will find the formatting characters and separators of the lexical and
syntactic rules. You are also provided with a description and a list of all rules in which the
formatting characters and separators are used as terminals (see Rules (Page 332)).

Table A- 2 Formatting characters and separators in lexical rules

Characters Description Lexical rule
: Separator between hours, minutes,

and seconds
Time of day information

. Separator for floating-point
representation, time interval
representation, absolute addressing

Floating-point representation, time-of-day
information, decimal representation, access
to local or global instance

_
Underscore

Separator for identifiers, separator for
numerical values in constants

Identifiers, decimal digit string, binary digit
string, octal digit string, hexadecimal digit
string, sequence representation

% Prefix for direct identifier on CPU
memory access

Simple memory access

// Comment Line comment
(**) Comment Block comment

Table A- 3 Formatting characters and separators in syntactic rules

Characters Description Syntactic rule
: Separator for type information Function, variable declaration, component

declaration, CASE statement, instance
declaration

; Ends a declaration or statement Constant block, statement, variable
declaration, instance declaration, component
declaration, statement section

, Separator for lists Variable declaration, array initialization list,
instance declaration, ARRAY data type
specification, FB parameter, FC parameter,
value list

.. Range information Array data type specification, value list
. Structure access Structured variable

() Initialization list for arrays,
parentheses in expressions, function
and function block calls

Array initialization list, expression, simple
multiplication, operand, exponent, FB call,
function call

[] Array declaration, structured variable
section of array

Array data type specification

See also
Language description resources (Page 77)

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
320 Programming and Operating Manual, 05/2009

A.1.2.3 Formatting characters and separators for constants
Below, you will find all formatting characters and separators for constants with information on
the lexical rule in which they are used.

Table A- 4 Formatting characters and separators for constants

Characters Code for Lexical rule
2# Integer constant Binary digit string
8# Integer constant Octal digit string
16# Integer constant Hexadecimal digit string
E Separator for floating-point constants Exponent
E Separator for floating-point constants Exponent
D# Time information Date
DATE# Time information Date
DATE_AND_TIME# Time information Date and time
DT# Time information Date and time
T# Time information Duration
TIME# Time information Duration
TIME_OF_DAY# Time information Time of day
TOD# Time information Time of day
d Separator for time interval (day) Days (rule: Sequence

representation)
h Separator for time interval (hours) Hours

(rule: Sequence representation)
m Separator for time interval (minutes) Minutes

(rule: Sequence representation)
ms Separator for time interval

(milliseconds)
Milliseconds
(rule: Sequence representation)

s Separator for time interval (seconds) Seconds
(rule: Sequence representation)

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 321

A.1.2.4 Predefined identifiers for process image access
Below is a list of all predefined variables in ST that you can use to access CPU memory
areas (absolute identifiers). Note that you can read and write outputs but you can only read
inputs.

Table A- 5 Absolute identifier

Identifier Description Lexical rule
%In.x
or
%IXn.x

CPU input range with byte and
bit address

Absolute PI access

%IBn CPU input range with byte
address

Absolute PI access

%IWn CPU input range with word
address

Absolute PI access

%IDn CPU input range with double
word address

Absolute PI access

%Qn.x
or
%QXn.x

CPU output range with byte and
bit address

Absolute PI access

%QBn CPU output range with byte
address

Absolute PI access

%QWn CPU output range with word
address

Absolute PI access

%QDn CPU output range with double
word address

Absolute PI access

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
322 Programming and Operating Manual, 05/2009

A.1.2.5 Identifiers of the Taskstartinfo
The following identifiers are defined for the Taskstartinfo:

Table A- 6 Identifiers of the Taskstartinfo

Identifier Data type Description
TSI#alarmNumber DINT Scan for alarm number
TSI#commandId.high UDINT Scan for commandId (most

significant word)
TSI#commandId.low UDINT Scan for commandId (least

significant word)
TSI#currentTaskId StructTaskId Scan for TaskId of current task
TSI#cycleTime TIME Scan for configured cycle time

of current task
TSI#details DWORD Scan for detailed information
TSI#executionFaultType UDINT Scan for type of execution error
TSI#interruptId UDINT Scan for triggering event
TSI#logBaseAdrIn DINT Scan for logical base address
TSI#logBaseAdrOut DINT Scan for logical base address
TSI#logDiagAddr DINT Scan for logical diagnostic

address
TSI#shutDownInitiator UDINT Scan for cause of transition to

STOP
TSI#startTime DT Scan for start time
TSI#taskId StructTaskId Scan for TaskId of triggering

task
TSI#toInst ANYOBJECT Scan for TO instance

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 323

A.1.2.6 Operators
Below is a list of all ST operators and the syntactic rules in which they are used.

Table A- 7 ST operators

Operator Description Rule
:= Assignment operator (also

for initialization values)
Value assignment, input assignment, in/out
assignment, variable declaration, constant
declaration, user-defined data types,
component declaration

+, – Arithmetic operators: Unary
operators, sign

Expression, exponent

+, –, *, /
MOD

Basic arithmetic operators Expression, basic arithmetic operator

** Arithmetic operators:
Exponent operator

Expression

NOT Logic operators: Negation Expression, operand
AND, &, OR, XOR Basic logic operator Basic logic operator
<, >, <=, >=, =, <> Relational operator Relational operator
=> Assignment operator Output assignment

A.1.2.7 Reserved words
Below is an alphabetical list of keywords, predefined identifiers, and standard functions of
the basic ST system. You are also provided with a description and the syntactic rule from
rules in which they are used as terminals. An exception is standard functions, which are
included only implicitly in the syntactic rule for function calls as the standard function name.

 Note
Variables must not be assigned the names of keywords or predefined identifiers. For more
information about identifiers, see Identifiers in ST. You will find an overview of the identifiers
reserved for technology objects and other reserved identifiers in Reserved identifiers.

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
324 Programming and Operating Manual, 05/2009

Table A- 8 ST keywords and predefined identifiers in the basic ST system

Keyword/identifier Description Rule
ABS Standard numeric function Function call
ACOS Standard numeric function Function call
AND Logic operator Basic logic operator
ANYOBJECT General data type for technology

objects
TO data type

ANYOBJECT_TO_OBJECT Standard function for type conversion
(technology objects)

Function call

ANYTYPE_TO_BIGBYTEARRAY Standard function (marshalling) Function call
ANYTYPE_TO_LITTLEBYTEARRAY Standard function (marshalling) Function call
ARRAY Introduces the specification of an array

and is followed by the index list
between [and]

Array data type specification

AS Introduces a namespace –
ASIN Standard numeric function Function call
AT Reserved identifier –
ATAN Standard numeric function Function call
BIGBYTEARRAY_TOANYTYPE Standard function (marshalling) Function call
BOOL Elementary data type for binary data Bit data type
BOOL_TO_BYTE Standard function for type conversion Function call
BOOL_TO_DWORD Standard function for type conversion Function call
BOOL_TO_WORD Standard function for type conversion Function call
BOOL_VALUE_TO_DINT Standard function for type conversion Function call
BOOL_VALUE_TO_INT Standard function for type conversion Function call
BOOL_VALUE_TO_LREAL Standard function for type conversion Function call
BOOL_VALUE_TO_REAL Standard function for type conversion Function call
BOOL_VALUE_TO_SINT Standard function for type conversion Function call
BOOL_VALUE_TO_UDINT Standard function for type conversion Function call
BOOL_VALUE_TO_UINT Standard function for type conversion Function call
BOOL_VALUE_TO_USINT Standard function for type conversion Function call
BY Introduces the increment FOR statement
BYTE Elementary data type Bit data type
BYTE_TO_BOOL Standard function for type conversion Function call
BYTE_TO_DINT Standard function for type conversion Function call
BYTE_TO_DWORD Standard function for type conversion Function call
BYTE_TO_INT Standard function for type conversion Function call
BYTE_TO_SINT Standard function for type conversion Function call
BYTE_TO_UDINT Standard function for type conversion Function call
BYTE_TO_UINT Standard function for type conversion Function call
BYTE_TO_USINT Standard function for type conversion Function call
BYTE_TO_WORD Standard function for type conversion Function call
BYTE_VALUE_TO_LREAL Standard function for type conversion Function call
BYTE_VALUE_TO_REAL Standard function for type conversion Function call

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 325

Keyword/identifier Description Rule
CASE Introduces a control statement for

selection
CASE statement

CONCAT Standard function for string editing Function call
CONCAT_DATE_TOD Standard function for type conversion Function call
CONSTANT Introduces a constant definition Constant block
COS Standard numeric function Function call
CTD Down counter Function block call
CTD_DINT Down counter Function block call
CTD_UDINT Down counter Function block call
CTU Up counter Function block call
CTU_DINT Up counter Function block call
CTU_UDINT Up counter Function block call
CTUD Up/down counter Function block call
CTUD_DINT Up/down counter Function block call
CTUD_UDINT Up/down counter Function block call
DATE Elementary data type for date Time type
DATE_AND_TIME Elementary data type for date and time DATE_AND_TIME
DATE_AND_TIME_TO_DATE Standard function for type conversion Function call
DATE_AND_TIME_TO_TIME_OF_DAY Standard function for type conversion Function call
DELETE Standard function for string editing Function call
DINT Elementary data type for double

precision integer with value range -
2**31 to 2**31-1

Numeric data type

DINT_TO_BYTE Standard function for type conversion Function call
DINT_TO_DWORD Standard function for type conversion Function call
DINT_TO_INT Standard function for type conversion Function call
DINT_TO_LREAL Standard function for type conversion Function call
DINT_TO_REAL Standard function for type conversion Function call
DINT_TO_SINT Standard function for type conversion Function call
DINT_TO_STRING Standard function for type conversion Function call
DINT_TO_UDINT Standard function for type conversion Function call
DINT_TO_UINT Standard function for type conversion Function call
DINT_TO_USINT Standard function for type conversion Function call
DINT_TO_WORD Standard function for type conversion Function call
DINT_VALUE_TO_BOOL Standard function for type conversion Function call
DO Introduces the statement section for

FOR statement or WHILE statement
FOR statement, WHILE statement

DT Shorthand notation for
DATE_AND_TIME

DATE_AND_TIME

DT_TO_DATE Standard function for type conversion Function call
DT_TO_TOD Standard function for type conversion Function call
DWORD Elementary data type for double word Bit data type
DWORD_TO_BOOL Standard function for type conversion Function call

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
326 Programming and Operating Manual, 05/2009

Keyword/identifier Description Rule
DWORD_TO_BYTE Standard function for type conversion Function call
DWORD_TO_DINT Standard function for type conversion Function call
DWORD_TO_INT Standard function for type conversion Function call
DWORD_TO_REAL Standard function for type conversion Function call
DWORD_TO_SINT Standard function for type conversion Function call
DWORD_TO_UDINT Standard function for type conversion Function call
DWORD_TO_UINT Standard function for type conversion Function call
DWORD_TO_USINT Standard function for type conversion Function call
DWORD_TO_WORD Standard function for type conversion Function call
DWORD_VALUE_TO_LREAL Standard function for type conversion Function call
DWORD_VALUE_TO_REAL Standard function for type conversion Function call
 ELSE Introduces the clause to be executed if

no condition true
IF statement, CASE statement

ELSIF Introduces alternative condition IF statement
END_CASE Ends the CASE statement CASE statement
END_EXPRESSION Ends the EXPRESSION statement Function
END_FOR Ends the FOR statement FOR statement
END_FUNCTION Ends the function Function
END_FUNCTION_BLOCK Ends the function block Function block
END_IF Ends the IF statement IF statement
END_IMPLEMENTATION Ends the implementation section Implementation section
END_INTERFACE Ends the interface section Interface section
END_LABEL Ends the LABEL statement –
END_PROGRAM Ends the program section Program section
END_REPEAT Ends the REPEAT statement REPEAT statement
END_STRUCT Ends the specification of a structure STRUCT data type specification
END_TYPE Ends the UDT User-defined data type
END_VAR Ends a declaration block Temporary variable block, static

variable block, parameter block,
constant block

END_WAITFORCONDITION Ends the control statement for a task
waiting for a programmable event

WAITFORCONDITION statement

END_WHILE Ends the WHILE statement WHILE statement
ENUM_TO_DINT Standard function for type conversion Function call
 EXIT Direct exit from loop execution EXIT
EXP Standard numeric function Function call
EXPD Standard numeric function Function call
EXPRESSION Programmable event for waiting task Function
EXPT Standard numeric function Function call
F_TRIG Detects falling edge Function block call
FALSE Predefined Boolean constant: Logical

condition false, value equal to 0
–

FIND Standard function for string editing Function call

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 327

Keyword/identifier Description Rule
FOR Introduces control statement for loop

execution
FOR statement

FUNCTION Introduces the function Function
FUNCTION_BLOCK Introduces the function block Function block
GOTO Jump –
IF Introduces a control statement for

selection
IF statement

IMPLEMENTATION Introduces the IMPLEMENTATION
section

IMPLEMENTATION section

INSERT Standard function for string editing Function call
INT Elementary data type for single

precision integer with value range -
2**15 to 2**15-1

Numeric data type

INT_TO_BYTE Standard function for type conversion Function call
INT_TO_DINT Standard function for type conversion Function call
INT_TO_DWORD Standard function for type conversion Function call
INT_TO_LREAL Standard function for type conversion Function call
INT_TO_REAL Standard function for type conversion Function call
INT_TO_SINT Standard function for type conversion Function call
INT_TO_TIME Standard function for type conversion Function call
INT_TO_UDINT Standard function for type conversion Function call
INT_TO_UINT Standard function for type conversion Function call
INT_TO_USINT Standard function for type conversion Function call
INT_TO_WORD Standard function for type conversion Function call
INT_VALUE_TO_BOOL Standard function for type conversion Function call
INTERFACE Introduces the interface section Interface section
LABEL Definition of jump labels –
LEFT Standard function for string editing Function call
LEN Standard function for string editing Function call
LIMIT Standard function for selection Function call
LITTLEBYTEARRAY_TOANYTYPE Standard function (marshalling) Function call
LN Standard numeric function Function call
LOG Standard numeric function Function call
LREAL Elementary data type for 64-bit double-

precision floating-point number (long
real)

Numeric data type

LREAL_TO_DINT Standard function for type conversion Function call
LREAL_TO_INT Standard function for type conversion Function call
LREAL_TO_REAL Standard function for type conversion Function call
LREAL_TO_SINT Standard function for type conversion Function call
LREAL_TO_STRING Standard function for type conversion Function call
LREAL_TO_UDINT Standard function for type conversion Function call
LREAL_TO_UINT Standard function for type conversion Function call
LREAL_TO_USINT Standard function for type conversion Function call

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
328 Programming and Operating Manual, 05/2009

Keyword/identifier Description Rule
LREAL_VALUE_TO_BOOL Standard function for type conversion Function call
LREAL_VALUE_TO_BYTE Standard function for type conversion Function call
LREAL_VALUE_TO_DWORD Standard function for type conversion Function call
LREAL_VALUE_TO_WORD Standard function for type conversion Function call
MAX Standard function for selection Function call
MID Standard function for string editing Function call
MIN Standard function for selection Function call
MOD Arithmetic operator for division

remainder
Basic arithmetic operator, simple
multiplication

MUX Standard function for selection Function call
NOT Logic operator, belongs to the unary

operators
Expression, operand

OF Introduces data type specification Array data type specification, CASE
statement

OR Logic operator Basic logic operator
PROGRAM Introduces the PROGRAM section Program
R_TRIG Detects rising edge Function block call
REAL Elementary data type for 32-bit single

precision floating-point number (real)
Numeric data type

REAL_TO_DINT Standard function for type conversion Function call
REAL_TO_DWORD Standard function for type conversion Function call
REAL_TO_INT Standard function for type conversion Function call
REAL_TO_LREAL Standard function for type conversion Function call
REAL_TO_SINT Standard function for type conversion Function call
REAL_TO_STRING Standard function for type conversion Function call
REAL_TO_TIME Standard function for type conversion Function call
REAL_TO_UDINT Standard function for type conversion Function call
REAL_TO_UINT Standard function for type conversion Function call
REAL_TO_USINT Standard function for type conversion Function call
REAL_VALUE_TO_BOOL Standard function for type conversion Function call
REAL_VALUE_TO_BYTE Standard function for type conversion Function call
REAL_VALUE_TO_DWORD Standard function for type conversion Function call
REAL_VALUE_TO_WORD Standard function for type conversion Function call
REPEAT Introduces control statement for loop

execution
REPEAT statement

REPLACE Standard function for string editing Function call
RETAIN Declaration of buffered variables Retentive variable block
RETURN Control statement for returning from

subroutine
RETURN statement

RIGHT Standard function for string editing Function call
ROL Bit string standard functions Function call
ROR Bit string standard functions Function call
RS Bistable function block

(priority reset)
Function block call

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 329

Keyword/identifier Description Rule
RTC Real-time clock Function block call
SEL Standard function for selection Function call
SHL Bit string standard functions Function call
SHR Bit string standard functions Function call
SIN Standard numeric function Function call
SINT Elementary data type for short integer

with value range -128 to 127
Numeric data type

SINT_TO_BYTE Standard function for type conversion Function call
SINT_TO_DINT Standard function for type conversion Function call
SINT_TO_DWORD Standard function for type conversion Function call
SINT_TO_INT Standard function for type conversion Function call
SINT_TO_LREAL Standard function for type conversion Function call
SINT_TO_REAL Standard function for type conversion Function call
SINT_TO_UDINT Standard function for type conversion Function call
SINT_TO_UINT Standard function for type conversion Function call
SINT_TO_USINT Standard function for type conversion Function call
SINT_TO_WORD Standard function for type conversion Function call
SINT_VALUE_TO_BOOL Standard function for type conversion Function call
SQRT Standard numeric function Function call
SR Bistable function block

(priority set)
Function block call

STRING Elementary data type for character
strings

String data type

STRING_TO_DINT Standard function for type conversion Function call
STRING_TO_LREAL Standard function for type conversion Function call
STRING_TO_REAL Standard function for type conversion Function call
STRING_TO_UDINT Standard function for type conversion Function call
STRUCT Introduces the specification of a

structure and is followed by a list of
components

STRUCT data type specification

StructAlarmId Data type for AlarmId –
StructAlarmId_TO_DINT Standard function for type conversion Function call
StructTaskId Data type for TaskId –
TAN Standard numeric function Function call
THEN Introduces subsequent actions if

condition true
IF statement

TIME Elementary data type for time
information

Time type

TIME_OF_DAY Elementary data type for time of day Time type
TIME_TO_INT Standard function for type conversion Function call
TIME_TO_REAL Standard function for type conversion Function call
TO Introduces end value FOR statement
TOD Shorthand notation for TIME_OF_DAY Time type
TOF OFF delay Function block call

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
330 Programming and Operating Manual, 05/2009

Keyword/identifier Description Rule
TON ON delay Function block call
TP Pulse Function block call
TRUE Predefined Boolean constant: Logical

condition true, value not equal to 0
–

TRUNC Standard numeric function Function call
TYPE Introduces UDT User-defined data type
UDINT Elementary data type for unsigned

double precision integer with value
range 0 to 2**32-1

Numeric data type

UDINT_TO_BYTE Standard function for type conversion Function call
UDINT_TO_DINT Standard function for type conversion Function call
UDINT_TO_DWORD Standard function for type conversion Function call
UDINT_TO_INT Standard function for type conversion Function call
UDINT_TO_LREAL Standard function for type conversion Function call
UDINT_TO_REAL Standard function for type conversion Function call
UDINT_TO_SINT Standard function for type conversion Function call
UDINT_TO_STRING Standard function for type conversion Function call
UDINT_TO_UINT Standard function for type conversion Function call
UDINT_TO_USINT Standard function for type conversion Function call
UDINT_TO_WORD Standard function for type conversion Function call
UDINT_VALUE_TO_BOOL Standard function for type conversion Function call
UINT Elementary data type for unsigned

single precision integer with value
range 0 to 2**16-1

Numeric data type

UINT_TO_BYTE Standard function for type conversion Function call
UINT_TO_DINT Standard function for type conversion Function call
UINT_TO_DWORD Standard function for type conversion Function call
UINT_TO_INT Standard function for type conversion Function call
UINT_TO_LREAL Standard function for type conversion Function call
UINT_TO_REAL Standard function for type conversion Function call
UINT_TO_SINT Standard function for type conversion Function call
UINT_TO_UDINT Standard function for type conversion Function call
UINT_TO_USINT Standard function for type conversion Function call
UINT_TO_WORD Standard function for type conversion Function call
UINT_VALUE_TO_BOOL Standard function for type conversion Function call
UNIT Introduces the UNIT section Unit section
UNTIL Introduces exit condition for REPEAT

statement
REPEAT statement

USELIB Introduces the library name –
USEPACKAGE Introduces the package name –
USES Introduces a reference to other units –
USINT Elementary data type for unsigned

short integer with value range 0 to 255
Numeric data type

USINT_TO_BYTE Standard function for type conversion Function call

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 331

Keyword/identifier Description Rule
USINT_TO_DINT Standard function for type conversion Function call
USINT_TO_DWORD Standard function for type conversion Function call
USINT_TO_INT Standard function for type conversion Function call
USINT_TO_LREAL Standard function for type conversion Function call
USINT_TO_REAL Standard function for type conversion Function call
USINT_TO_SINT Standard function for type conversion Function call
USINT_TO_UDINT Standard function for type conversion Function call
USINT_TO_UINT Standard function for type conversion Function call
USINT_TO_WORD Standard function for type conversion Function call
USINT_VALUE_TO_BOOL Standard function for type conversion Function call
VAR Introduces a declaration block for local

variables
Static variable block

VAR_GLOBAL Introduces a declaration block for unit
variables (global variables)

Unit variables

VAR_IN_OUT Introduces a declaration block Parameter block
VAR_INPUT Introduces a declaration block Parameter block
VAR_OUTPUT Introduces a declaration block Parameter block
VAR_TEMP Introduces a declaration block Parameter block
VOID No return value on function call Function
WAITFORCONDITION Introduces the control statement for a

task waiting for a programmable event
WAITFORCONDITION statement

WHILE Introduces control statement for loop
execution

WHILE statement

WITH Use in conjunction with
WAITFORCONDITION

WAITFORCONDITION statement

WORD Elementary data type for word Bit data type
WORD_TO_BOOL Standard function for type conversion Function call
WORD_TO_BYTE Standard function for type conversion Function call
WORD_TO_DINT Standard function for type conversion Function call
WORD_TO_DWORD Standard function for type conversion Function call
WORD_TO_INT Standard function for type conversion Function call
WORD_TO_SINT Standard function for type conversion Function call
WORD_TO_UDINT Standard function for type conversion Function call
WORD_TO_UINT Standard function for type conversion Function call
WORD_TO_USINT Standard function for type conversion Function call
WORD_VALUE_TO_LREAL Standard function for type conversion Function call
WORD_VALUE_TO_REAL Standard function for type conversion Function call
XOR Logic operator Basic logic operator

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
332 Programming and Operating Manual, 05/2009

A.1.3 Rules
The following syntax rules of the ST language are subdivided into rules with formatted
notation (lexical rules) and unformatted notation (syntactic rules). Language description
resources describes the differences between syntactic and lexical rules.

A.1.3.1 Identifiers

Figure A-3 Identifier

Figure A-4 Number

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 333

A.1.3.2 Notation for constants (literals)

Literals

Figure A-5 Literal

Figure A-6 Integer

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
334 Programming and Operating Manual, 05/2009

Figure A-7 Floating-point number

Figure A-8 Exponent

Figure A-9 Time literal

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 335

Figure A-10 Character string

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
336 Programming and Operating Manual, 05/2009

Figure A-11 Character

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 337

Digit string

Figure A-12 Decimal digit string

Figure A-13 Binary digit string

Figure A-14 Octal digit string

Figure A-15 Hexadecimal digit string

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
338 Programming and Operating Manual, 05/2009

Date and time

Figure A-16 Date

Figure A-17 Time

Figure A-18 Time

Figure A-19 Date and time

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 339

Figure A-20 Date information

Figure A-21 Time of day information

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
340 Programming and Operating Manual, 05/2009

Figure A-22 Sequence representation

Figure A-23 Decimal representation

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 341

A.1.3.3 Comments
Note the following when inserting comments:
● Nesting of line comments is not allowed.
● Nesting of block comments is not allowed, but you can nest line comments in block

comments.
● Comments are allowed at any position in the unformatted (syntactic) rules.
● Comments are not allowed in formatted (lexical) rules.

Figure A-24 Comments

Figure A-25 Line comment

Figure A-26 Block comment

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
342 Programming and Operating Manual, 05/2009

A.1.3.4 Sections of the ST source file

Sections of the ST source file

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 343

A.1.3.5 Structures of ST source files

Figure A-27 ST source file

Figure A-28 Unit definition

Figure A-29 Interface section

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
344 Programming and Operating Manual, 05/2009

Figure A-30 Implementation section

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 345

A.1.3.6 Program organization units (POU)

Figure A-31 Expression

Figure A-32 Function (FC)

Figure A-33 Function block (FB)

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
346 Programming and Operating Manual, 05/2009

Figure A-34 Program

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 347

A.1.3.7 Declaration sections

Figure A-35 Expression declaration section

Figure A-36 FC declaration section

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
348 Programming and Operating Manual, 05/2009

Figure A-37 FB declaration section

Figure A-38 Program declaration section

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 349

A.1.3.8 Structure of the declaration blocks

Constant blocks

Figure A-39 Constant block

Figure A-40 Unit constants / global constant block

Variable blocks

Figure A-41 Unit variables / global variable block

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
350 Programming and Operating Manual, 05/2009

Figure A-42 Retentive variable block

Figure A-43 Temporary variable block in FC

Figure A-44 Temporary variable block in the FB/program

Figure A-45 Static variable block

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 351

Parameter fields

Figure A-46 FB parameter block

Figure A-47 FC parameter block

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
352 Programming and Operating Manual, 05/2009

Jump labels

Figure A-48 Jump label declaration

Declarations

Figure A-49 Constant declaration

Figure A-50 Variable declaration

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 353

Figure A-51 Symbolic PI access

Figure A-52 Instance declaration

Figure A-53 FB ARRAY specification

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
354 Programming and Operating Manual, 05/2009

Initialization

Figure A-54 Initialization

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 355

Figure A-55 Constant expression

Figure A-56 Array initialization list

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
356 Programming and Operating Manual, 05/2009

Figure A-57 Structure initialization list

A.1.3.9 Data types

Figure A-58 Data type

Elementary data types

Figure A-59 Elementary data type

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 357

Figure A-60 Bit data type

Figure A-61 Numeric data type

Figure A-62 Integer data type

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
358 Programming and Operating Manual, 05/2009

Figure A-63 Floating-point number data type

Figure A-64 Time data type

Figure A-65 String data type

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 359

User-defined data types

Figure A-66 User-defined data type

Figure A-67 ARRAY data type specification

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
360 Programming and Operating Manual, 05/2009

Figure A-68 STRUCT data type specification

Figure A-69 Component declaration

Figure A-70 Enumerator data type specification

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 361

A.1.3.10 Statement section

Figure A-71 Statement section

Figure A-72 Statement

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
362 Programming and Operating Manual, 05/2009

A.1.3.11 Value assignments and operations

Value assignment and expression

Figure A-73 Value assignments

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 363

Figure A-74 Expression

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
364 Programming and Operating Manual, 05/2009

Operands

Figure A-75 Operand

Figure A-76 Structured variable

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 365

Figure A-77 Absolute PI access

Figure A-78 Constant

Figure A-79 Enumerator value

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
366 Programming and Operating Manual, 05/2009

Figure A-80 External tag

Figure A-81 Access to FB output parameters

Figure A-82 Access to FB input parameters

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 367

Figure A-83 Bit access

Operators

Figure A-84 Basic logic operator

Figure A-85 Arithmetic operator

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
368 Programming and Operating Manual, 05/2009

Figure A-86 Basic arithmetic operator

Figure A-87 Relational operators

A.1.3.12 Call of functions and function block calls

Figure A-88 FB call

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 369

Figure A-89 FC call

Figure A-90 FB parameter

Figure A-91 FC parameter

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
370 Programming and Operating Manual, 05/2009

Figure A-92 Input assignment

Figure A-93 In/out assignment

Figure A-94 Output assignment

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 371

A.1.3.13 Control statements

Branches

Figure A-95 IF statement

Figure A-96 CASE statement

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
372 Programming and Operating Manual, 05/2009

Figure A-97 Value list

Repetition statements and jump statements

Figure A-98 Repetition statement and jump statements

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 373

Figure A-99 FOR statement

Figure A-100 WHILE statement

Figure A-101 REPEAT statement

Appendix
A.1 Formal Language Description

 SIMOTION ST Structured Text
374 Programming and Operating Manual, 05/2009

Figure A-102 EXIT statement

Figure A-103 RETURN statement

Figure A-104 WAITFORCONDITION statement

 Appendix
 A.1 Formal Language Description

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 375

Figure A-105 GOTO statement

Appendix
A.2 Compiler Error Messages and Remedies

 SIMOTION ST Structured Text
376 Programming and Operating Manual, 05/2009

A.2 Compiler Error Messages and Remedies
This section provides an overview of the compiler error messages and their correction.

A.2.1 File access errors (1000 – 1100)

Table A- 9 File access errors (1000 – 1100)

Error Description
1000 A read/write error has occurred on file access.
1001 Unable to load the file with the plain text error messages; cannot output error message texts.

Please refer to the online help using the error number!
1002 The created code could not be stored. Please close some windows and recompile!
1003 A read/write error has occurred on opening the file. Please close the application and try again!
1100 The option for stating a preprocessor definition contains an invalid identifier as the defined token.

The correct syntax of the call option is: -D identifier[=[text]]
Examples:
• -D myident // Definition of myident; this can be queried using #ifdef.
• -D myident= // myident is defined as empty character string
• -D "myident=This is a text" // myident is defined as character string 'This is a text'. The

quotation marks only have to be used if the replacement text contains a blank.

A.2.2 Scanner errors (2001, 2002)

Table A- 10 Scanner errors (2001, 2002)

Error Description
2001 The specified character is illegal.
2002 The specified identifier contains illegal characters or combinations of characters. According to

IEC 61131, an identifier must start with a letter or an underscore. Any number of letters, digits, or
underscores may follow, but no more than one underscore in a row.

 Appendix
 A.2 Compiler Error Messages and Remedies

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 377

A.2.3 Declaration errors in POU (3002 – 3027)

Table A- 11 Declaration errors in POU (3002 – 3027)

Error Description
3002 Keyword "IMPLEMENTATION" to identify the code section of the load unit is expected.
3003 The specified declaration block is not permitted in this context.
3004 The VAR, VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT, VAR CONSTANT variable declaration

blocks are permitted just once for each POU.
Up to Version V3.1 of the SIMOTION kernel, the VAR_GLOBAL, VAR_GLOBAL CONSTANT,
VAR_GLOBAL RETAIN declaration blocks are permitted just once in the interface or
implementation section.

3005 TASK statement: The task link has already been made in the source file for the specified task.
Further task linking not possible.

3006 Incorrect stack size for task specified. Only positive integers are permitted.
3007 The specified identifier must be a task identifier; see task configuration.
3008 The specified identifier must be a program identifier. The declaration is made in the statement

PROGRAM xx ... END_PROGRAM.
3009 The EXPRESSION keyword must be followed by an identifier. The declaration is made in the

statement EXPRESSION xx ... END_EXPRESSION.
3010 The specified identifier is not an EXPRESSION identifier. Check whether the declaration was

made using the statement EXPRESSION xx ... END_EXPRESSION.
3011 The TASK statement is not permitted in the unit. Use the task configuration in the Workbench.
3012 The specified identifier has already been declared at another position. It cannot be used again as

a function identifier.
3013 The specified identifier has already been declared at another position. It cannot be used again as

a function block identifier.
3014 The UNIT statement is expected. The following forms are permissible:

• UNIT myunit;
• UNIT myunit : dvtype;
The UNIT statement is only required when compiling at the ASCII file level. It is optional when the
compiler is called from the Workbench.

3015 The source file is not ended with END_IMPLEMENTATION. Observe the structure for a source
file!

3016 No further statements may be specified after keyword END_IMPLEMENTATION.
3017 The task declaration is not ended with END_TASK. Observe the structure for a source file!
3018 The POU declaration is not ended with END_FUNCTION, END_FUNCTION_BLOCK, or

END_PROGRAM. Observe the structure for a source file!
3019 A POU starting with keywords FUNCTION, FUNCTION_BLOCK, or PROGRAM is expected.
3020 The task linking statement is expected. Configuration: TASK tname ... END_TASK;
3022 The keyword INTERFACE is expected. See the structure for a source file.
3023 Keyword INTERFACE or IMPLEMENTATION is expected. See the structure for a source file.
3024 Syntax error in TASK statement. Correct structure: TASK tname ... END_TASK;
3025 The specified identifier has already been declared at another position. It cannot be used again as

a program identifier.

Appendix
A.2 Compiler Error Messages and Remedies

 SIMOTION ST Structured Text
378 Programming and Operating Manual, 05/2009

Error Description
3026 The WAITFORCONDITION statement cannot be used recursively. An attempt was made to use a

WAITFORCONDITION statement a second time within a WAITFORCONDITION statement. This
is not possible.

3027 An attempt was made to insert a WAITFORCONDITION statement within an EXPRESSION ...
END_EXPRESSION block. This is not possible. The WAITFORCONDITION statement cannot be
used within an expression.

A.2.4 Declaration errors in data type declarations (4001 – 4051)

Table A- 12 Declaration errors in data type declarations (4001 – 4051)

Error Description
4001 The specified identifier is a standard function identifier that cannot be overwritten. Choose a

different identifier.
4002 The specified identifier has already been used. Use as a type identifier is not possible. Choose a

different identifier.
4003 The specified identifier has already been used. Use as a constant identifier is not possible.

Choose a different identifier.
4004 The specified initialization value has an incorrect format. Choose the initialization value that

corresponds to the data type declaration.
4005 Syntax error in type declaration.
4006 Syntax error in the structure element specification in the structure declaration.
4007 Syntax error in declaration of an ARRAY data type.
4008 Syntax error in the identifier list specification. The identifiers must be separated by commas.
4009 The specified constant identifier has been assigned different values. This occurs when

enumeration data types are declared. Identical enumeration elements in different enumeration
data types must be located in the same position in the type declaration.

4010 The specified type identifier is not exported from the source file, although the POU in which it is
used, is exported. Use a different data type or declare the data type in the implementation
section.

4011 A constant declaration requires the specification of an initialization value. Example: x : DINT := 5;
4012 The specified data type must be declared outside the POU. For VAR_INPUT, VAR_OUTPUT,

and VAR_IN_OUT, the type identifiers must not be declared locally in the POU, as they must also
be known outside the POU for parameter transfer purposes.

4013 The specified value is used several times in the enumeration data type. The values in the
enumeration data type must differ, however.

4050 The data type or variable declaration creates a data type that is larger than the specified
maximum permissible data size.

4051 The variable declaration requires a memory area that is larger than the specified maximum
permissible memory size.

 Appendix
 A.2 Compiler Error Messages and Remedies

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 379

A.2.5 Declaration errors in variables declarations (5001 – 5509)

Table A- 13 Declaration errors, variables declarations (5001 – 5509)

Error Description
5001 The specified constant value causes the value range to be exceeded and cannot be converted to

the requested type.
5002 The specified identifier has already been used. Use as a variable identifier is not possible.

Choose a different identifier.
5003 Syntax error in variable declaration.
5004 The specification of a data type is expected (simple or derived data type).
5005 The specified constant value has the wrong data type or causes the value range to be exceeded.
5006 Check the number of initialization values for array initialization.
5007 Syntax error in the specification of the time and date literals.
5008 A function block instance cannot be created at the specified position. For example, FB instances

cannot be created in functions. In addition, output parameters (VAR_OUTPUT) of function blocks
cannot be FB instances.

5009 The data type specified in the declaration cannot be applied to the variable with absolute
address. An integer or bit data type with matching bit width must be used.

5010 An attempt was made to assign a memory address to a variable. This is not possible at the
specified position. Use this assignment only within the VAR_GLOBAL declaration of a unit or
within the VAR declaration of a PROGRAM.

5012 The specified variables cannot be preassigned an initialization value.
5014 Incorrect initialization of a data structure. The initialization value for a component was specified

more than once.
5016 The initialization of variables and data types with technology objects defined in the project is not

possible. Technology objects are themselves variables and so cannot be used for the
initialization.

5100 The specified variables cannot be preassigned an initialization value.
5110 Special characters can be specified via $... in the following way: $$, $', $L, $N, $P, $R, $T.

Moreover, the numeric value of a character can be specified via $xx, whereby xx stands for the
two-digit hexadecimal specification of the character code.

5111 The special character can only be specified via $... . This affects $L, $N, $P, $R, $T
5112 Multi-line character string constants are not permitted. To produce a new line in the output, use

the appropriate special character in the character string, e.g. $N, RL.
5500 The specified jump label identifier was already defined. Choose a different name.
5501 The specified jump label identifier has not been defined. Include this identifier in the LABEL

declaration.
5502 The jump label identifier has been assigned more than once. However, each jump label can only

be used once as a label.
5503 The jump label is specified as a jump destination, but the associated label is missing.
5504 No jumps are possible in subordinate control structures (e.g. WHILE loops). The specified jump

label cannot be used at this position.
5505 No jumps are possible in subordinate control structures (e.g. WHILE loops). The specified jump

destination cannot be reached.

Appendix
A.2 Compiler Error Messages and Remedies

 SIMOTION ST Structured Text
380 Programming and Operating Manual, 05/2009

Error Description
5506 No jumps are possible in WAITFORCONDITION blocks. The specified jump label cannot be used

at this position.
5507 No jumps are possible in WAITFORCONDITION blocks. The specified jump destination cannot

be reached.
5509 Jump labels cannot be used within a CASE statement. The syntax does not allow any

differentiation between a jump label and the value list of the CASE statement.

A.2.6 Errors in the expression (6001 - 6201)

Table A- 14 Errors in the expression (6001 - 6201)

Error Description
6001 Syntax error: A statement terminated with a semicolon is expected,

e.g. a := b*c;
6002 Syntax error: An expression is expected, e.g. x < y .
6003 The specified identifier is no variable identifier. You must specify a variable identifier. Check

whether the indicated identifier is covered.
Up to and including V4.0, access to global device identifiers was possible within a program or
function block of the same name despite warning 16021.

6004 The index for array access must be the DINT data type. Perform a suitable type conversion or
use another expression.

6005 Type conflict in the expression. One of the operands cannot be converted to the data type of the
calculation, or the result assignment produces a type conflict.

6006 The specified variable cannot be accessed. Therefore it cannot be used in the expression.
Possible causes:
• Variable cannot be read.
• Attempt to access a local variable of a function or function block from outside.

6007 Cannot write specified variable. A value assignment is not possible.
6008 The specified function does not supply a return value. An application in the expression is

therefore not possible (function declared with a return value of VOID).
6009 The specified identifier does not refer to a function or a function block instance. Therefore it

cannot be used as function identifier.
6010 The specified identifier is not included as an input parameter (VAR_INPUT) or in/out parameter

(VAR_IN_OUT) in the declaration of the POU (function or function block). It cannot be used in the
POU call.

6011 The number of function arguments in the call differs from the declaration, or the call parameters
required are missing in the call.

6012 RETURN is not permitted syntactically at this position. RETURN may only be used in functions.
6013 EXIT is not permitted syntactically at this position. EXIT can only be used within FOR, WHILE,

and REPEAT.
6014 The specified index value is outside the array limits. Only index values that match the array

declaration are permissible.
6015 The specified task control command cannot be applied to the task. It is not allowed for this type of

task.

 Appendix
 A.2 Compiler Error Messages and Remedies

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 381

Error Description
6016 The specified task is deactivated in the execution system. It must be enabled before it can be

used.
6017 Syntax error on specifying programs within a task. The programs must be listed by name and

separated by commas.
6018 The specified identifier does not refer to a PROGRAM. Therefore it cannot be used as a program

identifier.
6019 Multiple assignment of program to task. Only one assignment is possible.
6020 Syntax error on specifying directly displayed variables. Inputs must have the syntax %Ix.y and

outputs the syntax %Qx.y.
6021 The specified byte offset of the directly displayed variables lies outside the permissible address

space.
6022 The specified byte offset of the directly displayed variables lies outside the permissible address

space. Values 0 to 7 are permissible.
6023 The return value of the function was not assigned. An assignment is however imperative.
6024 A variable with the specified identifier is not included in the task start information.
6025 The condition variable and condition values of a CASE statement must be of the data type SINT,

INT, DINT, USINT, UINT or UDINT. It must be possible to implicitly convert the condition values
to the data type of the condition variables.

6026 The specified message identifier is not contained in the message configuration. Switch to the
message configuration and add the identifier.

6027 System variable access is only possible directly by means of a technology object reference.
Access by means of a structure or array is not possible. Create a local variable of type TO and
assign the TO reference to this variable. You can then access the required system variable by
means of this local TO variable.

6028 Type conflict in expression at specified operation. One of the operands cannot be converted to
the data type of the calculation, or the result assignment produces a type conflict. The specified
data type in the expression is expected.

6029 The specified function parameter does not have a default value, so it is imperative to specify a
value when the function is called.

6030 An attempt was made to transfer an expression to an in/out parameter (VAR_IN_OUT). This is
not possible. User variables must be specified as in/out parameters.

6031 An attempt was made to transfer a system variable (TO, I/O direct access) to an in/out parameter
(VAR_IN_OUT). This is not possible. User variables must be specified as in/out parameters.

6032 An attempt was made to transfer a variable in the process image to an in/out parameter
(VAR_IN_OUT). This is not possible. User variables must be specified as in/out parameters.

6033 An attempt was made to transfer a variable with a non-matching data type to an in/out parameter
(VAR_IN_OUT). However, an Implicit type conversion is not possible. User variables with the
correct data type must be specified as in/out parameters.

6034 An attempt was made to transfer a read only variable to an in/out parameter (VAR_IN_OUT). This
is not possible. In/out parameters must be read/write.

6035 An attempt was made to transfer a constant to an in/out parameter (VAR_IN_OUT). This is not
possible. In/out parameters must be user variables.

6036 An operation is applied to a constant. The value of the constant is outside the definition range for
the function. Examples are:
• Application of SQRT to a negative number.
• Use of logarithmic functions on a number <= 0.
• Use of ASIN or ACOS on a number outside the interval [0..1]

Appendix
A.2 Compiler Error Messages and Remedies

 SIMOTION ST Structured Text
382 Programming and Operating Manual, 05/2009

Error Description
6037 An attempt was made to divide a constant by zero. This operation is not permitted.
6038 The specified function parameter occurs more than once in the argument list.
6039 The specified POU (function or function block) cannot be used. Possible causes:

• The definition of the POU in the implementation section is missing. Only the prototype was
specified in the interface section.

• The POU is fully defined only after its use (e.g. call, instance declaration). If necessary, move
this POU in the program source before the POU in which it is used.

• An instance of the function block cannot be declared as unit variable in the same program
source in which this function block is defined.

6040 Only simple variables may be used as semaphores; indexing is not possible.
6041 The message function requires an auxiliary value of the specified data type. Type conversion is

not possible.
6042 The message function requires that you specify a message number. The specified message

number is invalid.
6050 Type conflict in expression at specified operation/variable. One of the operands cannot be

converted to the type of the calculation, or the result assignment produces a type conflict. A
conversion between source file type and target type is not possible.

6051 The expression contains a type conflict for the specified operation. One of the operands cannot
be converted to the data type of the other operand to perform the calculation, or the operand data
types are not permitted for this operation.

6052 Type conflict in the expression. The specified data type cannot be used for the operation (see
marshalling functions).

6053 The expression contains a type conflict for the specified operation. This operation is not
permissible on the specified data type.

6054 Type conflict in the expression. The specified variable cannot be used as indexed array variable.
6060 At the function call, there is a mixture of assignments of function arguments and setting

parameters. Use one form of the function call. Example:
• f (x, y); or
• f (in1 := x, in2 := y);

6061 The specified parameter of the function or the function block is an in/out parameter.
Consequently, a variable must be assigned when the POU is called.

6062 The specified identifier cannot be used as a function argument. Only variables from the
declaration blocks VAR_INPUT and VAR_IN_OUT are permitted.

6070 Access to configuration data is only possible for variables that have been specified completely.
Append the name according to the configuration data for the selected technology object.

6080 The specified variable is no input or output variable that can be directly accessed. Such a variable
must be declared in the I/O container of the respective device; it must have the syntax PI* or PQ*.

6100 The specified construct can only be compiled if the device type is set. Add the device type to the
unit statement or set the device type in the program container.

6110 The specified construct cannot be used in libraries.
6111 The specified construct cannot be used in libraries.
6112 The specified construct cannot be used in libraries.
6113 Access to technology objects and devices is not allowed in libraries.
6130 The specification of an interval is not permissible for the data type indicated in the CASE

statement.

 Appendix
 A.2 Compiler Error Messages and Remedies

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 383

Error Description
6140 The specification of a constant in ENUM_TO_DINT requires specifying the data type in the form

of enum_type#value.
6150 The specified bit offset lies outside the valid range for the specified data type.
6200 Only for "Permit language extensions" compiler option (-C lang_ext):

The called PROGRAM contains instance data (VAR … END_VAR declaration block) stored in the
user memory of the assigned task. This means a call of the PROGRAM from another POU is not
possible. Compile the source file with the "Create program instance data only once" compiler
option (-C prog_once) or remove the instance data.

6201 Only for "Permit language extensions" compiler option (-C lang_ext):
The call of a PROGRAM is not supported in functions. Such calls can be made only in function
blocks or another PROGRAM.

Appendix
A.2 Compiler Error Messages and Remedies

 SIMOTION ST Structured Text
384 Programming and Operating Manual, 05/2009

A.2.7 Syntax errors, errors in the expression (7000 - 7014)

Table A- 15 Syntax errors, errors in the expression (7000 - 7014)

Error Description
7000 A syntax error has occurred. Possible causes:

• Incorrectly ended control structures (e.g. END_IF missing)
• Statements not terminated with ;
• Missing parentheses

7001 The specified identifier does not refer to a constant. Please enter one constant per value or
identifier.

7002 A signed integer is expected. The integer can be of data type SINT, INT, or DINT.
7003 When specifying the interval, the initial value must be less than or equal to the end value. This

applies to the declaration of arrays and the specification of the interval in CASE selection
conditions.

7004 An initialization value is expected. The value must be a constant. Constants can be assigned as
follows:
• Directly per value
• Symbolically via a preceding constant declaration
• As an expression containing constants only

7009 An expression that supplies data type BOOL is expected as condition for WHILE, REPEAT, and
IF. This can be specified as a variable of data type BOOL or via a comparison expression. You
can also specify a function with a return value of data type BOOL.

7010 A syntax error has occurred. Possible causes:
• Incorrectly terminated control structures (e.g. END_IF missing)
• Statements not terminated with ;
• Missing parentheses

7011 A syntax error has occurred. Possible causes:
• Incorrectly terminated control structures (e.g. END_IF missing)
• Statements not terminated with ;
• Missing parentheses

7012 A syntax error in the statement, that starts at the specified line, has occurred. Possible causes:
• Incorrectly terminated control structures (e.g. END_IF missing)
• Statements not terminated with ;
• Missing parentheses

7013 A syntax error has occurred. An illegal construct is being used.
7014 A syntax error has occurred. Possible causes:

• Incorrectly terminated control structures (e.g. END_IF missing)
• Statements not terminated with ;
• Missing parentheses

 Appendix
 A.2 Compiler Error Messages and Remedies

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 385

A.2.8 Error when linking a source file (8001, 8100)

Table A- 16 Error when linking a source file (8001, 8100)

Error Description
8001 The specified POU has been exported to the INTERFACE section, but an IMPLEMENTATION

section is missing. Either delete the export statement or specify a valid implementation.
8100 The maximum size of the data area that can be reached using HMI is 65536 bytes. This limit has

been exceeded with the specified variable. All subsequent variables cannot be reached either.

A.2.9 Errors while loading the interface of another UNIT or a technology package (10000
- 10037, 10100 - 10101)

Table A- 17 Errors while loading the interface of another UNIT or a technology package
(10000 - 10037, 10100 - 10101)

Error Description
10000 The specified unit has an invalid file format. Probably, the unit was created using an older version

of the compiler or compiled using incompatible options. If a unit is involved, it should compiled
first. Then repeat the current compilation. If a package is involved, a newer version should be
installed.

10001 The unit name has an invalid format. The rules for identifiers in ST are also true for unit names;
the following restrictions apply to their length:
• Up to Version V4.0 of the SIMOTION Kernel: 8 characters.
• As of Version V4.1 of the SIMOTION Kernel: 128 characters.

10002 Error while loading the interface of another UNIT, a library or technology package. The specified
identifier is contained in two different imported units, libraries or technology packages.
• Remove a unit, library or technology package from the import list or
• Establish uniqueness between the identifiers in imported units, libraries or technology

packages. Change the exporting units in the interface section or specify a namespace for a
library or a technology package (USELIB … AS namespace;
USEPACKAGE … AS namespace;).

10003 The specified data type has an invalid memory layout. Probably, the unit was created using an
older version of the compiler or compiled using incompatible options. If a unit is involved, it should
compiled first. Then repeat the current compilation. You can also perform "Save and recompile
everything".
If a package is involved, a newer version should be installed.
If the error persists, inform the support department.

10004 The exported identifiers of the specified unit could not be loaded. Close some applications and try
again.

10005 A recursion was detected on loading packages. The specified package has already been loaded
with USEPACKAGE and cannot be specified a second time.

10006 A recursion was detected on loading the unit. The specified unit has already been loaded with
USES and cannot be specified a second time.

Appendix
A.2 Compiler Error Messages and Remedies

 SIMOTION ST Structured Text
386 Programming and Operating Manual, 05/2009

Error Description
10007 The maximum number of imported units which can be referenced in a unit was exceeded. A

maximum of 223 imported units per load unit are permissible. Both units imported directly with
USES and indirectly imported units are counted.

10008 The number of imported packages that can be referenced in a unit has been exceeded. A
maximum of 127 imported packages per load unit are permissible.

10009 The specified package is used in the unit, but it is not available on the device. This error message
occurs when you compile with the "implicit package utilization" option and have programmed a
USEPACKAGE statement that has a different content than the packages specified on the device.

10010 The specified package is used in Unit a but not in Unit b. This error message occurs when
different packages have been specified with USEPACKAGE in units that reference each other
with USES. Correct the USEPACKAGE statements.

10011 The specified unit is used directly or indirectly by itself via one or more units. Correct the USES
statements.

10012 The specified unit is imported directly or indirectly into several units in different compilation
versions. Recompile all units that reference the specified unit in the USES statement.

10013 The specified unit has not yet been compiled, or an error occurred during the last compilation.
Compile this unit first to ensure successful compilation.

10014 The type of specified technology object (TO) is not supported by the package specified previously
during compilation with USEPACKAGE. Use a package that contains the TO type.

10015 The maximum number of technology objects (TO) which can be referenced in a unit was
exceeded. A maximum of 65535 TOs can be referenced.

10016 The device type parameter is not available. If the unit to be compiled is not to be assigned to a
device, use the statement UNIT xx : dvtype;

10017 The device type has not been specified uniquely. In the unit, the statement UNIT xx : dvtype;
specifies a different device type than the one determined via the assignment of the unit to the
device.

10018 The specified unit could not be found. Check whether the unit name is available in the
PROGRAM container of Workbench or whether the specified file is contained in the current
working directory (only u7bt00ax - command line).

10019 The specified technology package could not be found. Observe the preceding error outputs.
10020 Error occurred while loading the technology package. Observe further error outputs.
10021 The technology package is used in the specified source file, however, it is not selected on the

device. Correct the USEPACKAGE statement, or select the technology package on the device.
10022 The specified technology package is being used with different versions. Correct the settings for

the technology package selection on the device and, if required, in the library. Only one version of
a technology package can be used on a device.

10030 The device type has not been specified uniquely. In the unit, the statement UNIT xx : dvtype;
specifies a different device type than the one determined via the assignment of the unit to the
library container.

10031 The specified library is used directly or indirectly by itself via one or more libraries. Correct the
USELIB statements.

10032 The specified library could not be found. Check your project.
10033 A recursion was detected on loading the library. The specified library has already been loaded

with USELIB and cannot be specified a second time.

 Appendix
 A.2 Compiler Error Messages and Remedies

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 387

Error Description
10034 The specified library is not completely compiled. Possible causes:

• The library has not yet been compiled.
• The library has not been compiled for all device types specified for the library container (e.g.

in project-wide compilation).
• An error occurred in the last compilation.
First compile this library individually (accept and compile).

10035 The specified library could not be found. Check whether the library name is available in the
Workbench project or whether the specified file is contained in the current working directory (only
u7bt00ax command line).

10036 The specified package is used in the source file, but it is not available in the library. Libraries are
generally compiled against the package versions specified in the library container. You have
programmed a USEPACKAGE statement that has a different content than the packages specified
in the library. Either select the correct package version or remove the USEPACKAGE statement
from the source file.

10037 The code variant for the current device type is not selected for the specified library. This means
this library cannot be used. Activate the code variant for this library.

10100 The specified type of a technology object is contained in several packages that were referenced
by the source file. Please choose the technology package that meets your requirements.

10101 The specified technology object is not compatible with the types of technology objects supported
by the loaded packages Update the package or change the type of technology object.

Appendix
A.2 Compiler Error Messages and Remedies

 SIMOTION ST Structured Text
388 Programming and Operating Manual, 05/2009

A.2.10 Implementation restrictions (15001 – 15200)

Table A- 18 Implementation restrictions (15001 – 15200)

Error Description
15001 The specified construct is not supported by the current version of the compiler.
15002 The currently selected device does not support the specified function. Select a different device

version if you want to use this function. To do so, replace the CPU in the hardware catalog and, if
necessary, update the firmware.

15003 The specified identifier is a keyword that is not supported and therefore cannot be used as user-
specific in order to ensure compatibility with later compiler versions.

15004 The specified identifier denotes a standard function that is not supported and cannot be used as
user-specific identifier in order to ensure compatibility with later compiler versions.

15005 The specified identifier denotes a non-supported standard function and cannot be used as user-
specified identifier in order to ensure compatibility with later compiler versions.

15006 The specified construct can only be used in source files generated with MCC. Usage in ST is not
possible.

15007 A source/library/package is used in the implementation section either directly or indirectly without
specifying a namespace. In the interface section, it is used with a namespace. Solve this conflict
by specifying a namespace in the interface section for the specified source/library/package.

15070 The specified construct does not conform to the language standard, however, for compatibility
reasons, is not supported for old platforms. Convert the usage to the specified alternative.

15152 A USES, USELIB, or USEPACKAGE statement was found in a source file section hidden by
conditional compilation. This is illegal. Source file sections that contain these statements cannot
be complied conditionally.

15153 The specified definition is not considered during code generation. It is not possible to define
keywords differently.

15200 The specification of a bit offset for a bitstring variable requires the "Permit language extensions"
compiler option (-C lang_ext).

A.2.11 Warnings (16001 - 16700)
You can control the output of warnings and information:
● In the global compiler settings (Page 47)
● In the local compiler settings (Page 49)
● In an ST source file by specifying the following attribute (Page 271) within a pragma

(Page 266): { _U7_PoeBld_CompilerOption := warning:n:on } or
{ _U7_PoeBld_CompilerOption := warning:n:off }, where n is the warning class or the
number for the warning or information.

You can also redefine individual warnings and information as errors:
● In an ST source file by specifying the following attribute (Page 271) within a pragma

(Page 266): { _U7_PoeBld_CompilerOption := warning:n:err }, where n is the number for
the warning or information.

 Appendix
 A.2 Compiler Error Messages and Remedies

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 389

Table A- 19 Warnings (16001 - 16700)

Error Description
16001 (Warning class: 0)

Only in conjunction with the "Selective Linking" compiler option. The specified function, the
function block, or the program are neither exported nor called in the current unit. No code is
generated.

16002 (Warning class: 0)
Only in conjunction with the "Selective Linking" compiler option. The specified unit does not
contain any exported PROGRAM nor any task link. No code is generated for the unit.

16003 (Warning class: 2)
The operands of the comparison operation do not contain any explicit type definition. The data
type listed in the comparison can be seen in the warning message issued. Specify the data type
of the used constants explicitly with <type>#<value>.

16004 (Warning class: 2)
The specified type conversion may cause the variable value to change due to the reduced display
width or inadequate accuracy of the target data type.

16005 (Warning class: 2)
During type conversion, the dependency of the variable value can cause the sign to change.

16006 (Warning class: 2)
The specified value will be rounded to the next displayable value due to insufficient display width.

16007 (Warning class: 2)
A loss of accuracy occurred during type conversion. Not all decimal places are considered.

16008 (Warning class: 2)
A loss of accuracy occurred during initialization of the specified variables. The constant will be
converted to the specified data type. Not all decimal places are considered.

16009 (Warning class: 0)
Only in connection with compiler option Selective Linking. The specified unit does not contain any
exported PROGRAMs or any task linking. Unable to access unit code. Unable to call relevant
POU.

16010 (Warning class: 0)
Specified program not exported to unit; therefore unable to use it in configuration of the execution
level.

16011 (Warning class: 0)
The source file does not contain any exported global variables. No data are loaded to the target
system.

16012 (Warning class: 0)
The specified source file name was taken over from the PROGRAMS container of the selected
device. The identifier of the source file in the UNIT statement was ignored.

16013 (Warning class: 2)
Because of the marshalling function, the specified data type is not portably convertible. Only use
SIMOTION devices in connection with this data type, or perform an explicit conversion of the data
type.

16014 (Warning class: 2)
With the specified operation, a data type conversion is performed between signed and unsigned.
Because the bit string is adopted in this case, the resulting numerical value can differ from the
specified value.

Appendix
A.2 Compiler Error Messages and Remedies

 SIMOTION ST Structured Text
390 Programming and Operating Manual, 05/2009

Error Description
16015 (Warning class: 2)

For the assignment of the character string constants to the variables, only part of the character
string constants is transferred, because the length of the variable is insufficient to accept all
characters.

16016 (Warning class: 2)
The operands in the expression do not contain any explicit type definition. The data type of the
operation is determined by specifying the values. The resulting data type in which the expression
is calculated can be seen in the issued warning message. To define the data type:
• Specify the data type of the used constants explicitly with <type>#<value>.
• Use an explicit data type conversion.

16017 (Warning class: 2)
The operands in the expression contain only constants. The data type of the operation can be
determined by specifying the data type (in the form <type>#<value>) or explicit data type
conversion.
This output is used for finding problems, in particular, for the use of symbolic constants, because
the data type of the operation cannot normally be determined easily.

16018 (Warning class: 2)
The data type of the comparison operation is defined using the value of a constant that has a
larger value range than the contained variable. The comparison is performed with the data type of
the constant.

16020 (Warning class: 1)
The declaration hides the specified identifier, which has been globally defined in its own source
file or an imported source file. Access to the global identifier is no longer possible from the POU
where this identifier is declared locally.

16021 (Warning class: 1)
The declaration hides the specified identifier, which is defined on the device. You can access the
global device identifier with _device.<name>.

16022 (Warning class: 1)
The declaration hides the specified identifier, which is defined in the project (e.g. technology
object or device). You can access the global project identifier with _project.<name>.

16023 (Warning class: 1)
The declaration hides the specified identifier for the data type of a technology object. Access to
the data type identifier is no longer possible.

16024 (Warning class: 1)
The declaration hides the access to the technology object on the device. You can access this TO
with _to.<name>.

16025 (Warning class: 1)
The declaration hides the IEC standard function with the identical name. Access to this function is
no longer possible in the current context.

16026 (Warning class: 1)
The specified identifier is reserved by SIEMENS for potential extensions. The use of this identifier
can cause compiler errors in later versions. If you want to avoid this, change this identifier.

16030 (Warning class: 1)
A label has been specified several times in a CASE statement. Only the first label is ever
evaluated. Other specifications have no effect.

 Appendix
 A.2 Compiler Error Messages and Remedies

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 391

Error Description
16102 (Warning class: 3)

The option for output of code for the program status diagnosis function is ignored because no
debug information was generated. Output of debug information was deactivated via compiler
options.

16103 (Warning class: 3)
The option for outputting code at the library for the program status diagnosis function is ignored.
The code for program status is generated as defined in the option in the individual source files.

16150 (Warning class: 7)
A new definition has been made for the specified identifier. Consequently, the previous definition
is invalid.
This warning enables the work of the preprocessor to be tracked.

16151 (Warning class: 7)
An attempt has been made to delete the definition of the specified identifier with #undef.
However, the identifier is not defined or the definition is already deleted.
This warning enables the work of the preprocessor to be tracked.

16152 (Warning class: 7)
The specified definition is not considered during code generation. The cause for this can be that
the preprocessor is deactivated for the compiled source.

16153 (Warning class: 7)
The preprocessor is not active in the current source, even though preprocesssor statements are
used. Activate the preprocessor or remove the statements.

16170 (Warning class: -)
The definition from sources imported using USES are not considered during the code generation.

16171 (Warning class: -)
The definition from the specified sources imported using USES could not be loaded. Compile the
specified source file beforehand.

16200 (Warning class: 4)
The use of a semaphore requires a global variable to enable access to it from a different task.
Local task operations do not have to be blocked via semaphores.

16210 (Warning class: 4)
The basis of the exponential function (EXPT standard function or ** operator) is negative. The
operation can be executed at run time only under the following conditions:
1. It can be used on a device with a version of the SIMOTION kernel as of V4.1.
2. The exponent is an integer.
The ExecutionFaultTask will be initiated for non-integer exponents or for use on a device with a
version of the SIMOTION kernel up to V4.0. The program will be aborted here.

16220 (Warning class: 4)
The condition of an IF statement, WHILE statement or REPEAT statement is a constant
expression.

16230 (Warning class: 4)
The expression with the specified values does not cause any change to the result; optimized
code will be created.

16240 (Warning class: 4)
The expression with the specified values exceeds the definition range of the operation. The result
may be incorrect.

Appendix
A.2 Compiler Error Messages and Remedies

 SIMOTION ST Structured Text
392 Programming and Operating Manual, 05/2009

Error Description
16300 (Warning class: 5)

The auxiliary value has a data type that cannot be converted to the data type configured for the
message.

16301 (Warning class: 5)
The specified auxiliary value is not evaluated during output of the message.

16302 (Warning class: 5)
The data type of the auxiliary value cannot be determined from the message configuration. The
specified data type is used.

16303 (Warning class: 5)
No auxiliary value has been specified for the function although the message configuration
requires such a value. A default value of the corresponding data type was added.

16304 (Warning class: 5)
An alarm accompanying value is specified using a constant or a constant expression. The
resulting data type of the alarm accompanying value can be seen in the issued warning message.
To define the data type:
• Specify the data type of the used constants explicitly with <type>#<value>.
• Use an explicit data type conversion.

16400 (Warning class: 6)
A global variable has been declared in a library. This may mean that the library cannot be used
more than once.

16420 (Warning class: 6)
The return value has not been assigned within the function. If such a function is called, it returns a
random value.

16421 (Warning class: 6)
A variable that has neither been assigned nor read in the code has been declared.

16450 (Warning class: –)
A global variable has been created in the retentive memory range. This declaration is not
permissible at the specified position.

16451 (Warning class: –)
The initialization of large arrays with values other than 0 causes a high data volume in the
controller. This results in long load times as well as high memory utilization.

16452 (Warning class: –)
The specified program has a large quantity of instance data to be initialized. This can lead to a
runtime violation when the task is started because both the initialization code and the user code
are being executed. In particular, caution is advised in the case of SynchronousTasks.

16470 (Warning class: -)
The specified construct does not conform to the language standard, however, for compatibility
reasons, is not supported for old platforms. Convert the usage to the specified alternative.

16600 (Warning class: 6)
The specified variable is not contained in the initialization list. The default initialization value is
used.

16601 (Warning class: 6)
The specified variable is not contained in the initialization list. The default initialization value is
used.

 Appendix
 A.2 Compiler Error Messages and Remedies

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 393

Error Description
16602 (Warning class: 6)

The specified variable is not contained in the initialization list. The default initialization value is
used.

16700 (Warning class: 3)
The SIMOTION device can also be processed with previous versions of the SIMOTION SCOUT.
The specified construct is not supported by all the earlier versions of the compiler.

A.2.12 Information (32010 - 32653)
You control this output of information together with the warnings (Page 388):

Table A- 20 Information (32010 - 32653)

Error Description
32010 (Warning class: 6)

The specified jump label identifier has been declared but not used.
32020 (Warning class: –)

The specified variable was declared globally in this source file or in another source file with the
indicated data type.
This information helps when searching for the cause of compilation errors. It is issued together
with error messages.

32021 (Warning class: –)
The specified variable was declared on the device as an I/O variable, a global device variable, or
a system variable.
This information helps when searching for the cause of compilation errors. It is issued together
with error messages.

32022 (Warning class: –)
The specified variable was declared in the project as a global identifier.
This information helps when searching for the cause of compilation errors. It is issued together
with error messages.

32023 (Warning class: –)
Until now, no valid declaration has been found for the specified identifier.
This information is issued together with error messages.

32024 (Warning class: 0)
The specified variable has been declared as a global identifier in the current unit or in an
importing unit.
This information helps when searching for the cause of compilation errors. It is issued together
with error messages.

32030 (Warning class: 0)
The specified array initialization does not conform to IEC 61131-3. For portable programs, the
array initialization values should be placed into square brackets. Example of field initialization in
compliance with the standard:
x : ARRAY [0 to 1] OF INT := [1, 2];

Appendix
A.2 Compiler Error Messages and Remedies

 SIMOTION ST Structured Text
394 Programming and Operating Manual, 05/2009

Error Description
32050 (Warning class: 0)

The maximum size that can be reached via an HMI is 65536 bytes. This limit has been exceeded
with the specified variable. All subsequent variables cannot be reached either.

32300 (Warning class: 1)
A label has been specified several times in a CASE statement. Only the first label is ever
evaluated. Other specifications have no effect.

32650 (Warning class: 7)
The specified identifier will be replaced thereafter by the output text.
This information enables the work of the preprocessor to be tracked.

32651 (Warning class: 7)
The definition of the specified identifier has been deleted with #undef.
This information enables the work of the preprocessor to be tracked.

32652 (Warning class: 7)
The identifier will be used with the specified replacement text in the source file. Compilation takes
place with the replacement text.
This information enables the work of the preprocessor to be tracked.

32653 (Warning class: 7)
The specified identifier will be replaced thereafter by the output text. This information appears if
additional replacements are loaded with a USES statement.
This information enables the work of the preprocessor to be tracked.

 Appendix
 A.3 Template for Example Unit

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 395

A.3 Template for Example Unit

A.3.1 Preliminary information
This appendix presents a comprehensive annotated template that you can call in the online
Help. You can use it as a template for a new ST source file.

//--
// Notes for the INITIALIZATION of the user data are available
// at the end of the template
//--
INTERFACE
// All statements added between INTERFACE and END_INTERFACE/
// Keywords are used to define which source contents
// (variables, functions, function blocks, etc.) also in other
// sources (units) are available or exported.

 USEPACKAGE cam;
 // The technology packages to be used are known here and thus
 // made usable in the source. Technology object (TO)-specific
 // Commands can be used in this UNIT only when the
 // appropriate package has been included.
 // If a source file that uses USEPACKAGE cam is integrated via USES,
 // it will be "inherited". USEPACKAGE can then be omitted.
 // The package used in this example is "cam". However, other
 // technology packages can also be used (see documentation).

 // USELIB testlib;

 // If library functions are to be used in the source file, they must be made
 // known in the source, too. If the library
 // with the name "testlib" does not exist in the project,
 // the error message
 // "Error 10035, "testlib.lib" library could not be loaded"
 // "Error 10032, "testlib" library could not be loaded"
 // will be output.
 // If libraries are not being used, this line can be
 // deleted..

 // USES header;

 // USES is used to import contents exported from a different source
 // (NAME here "header") and made usable in "Template".
 // If the source with the name "header" does not exist in the project,
 // the error message
 // "Error 10018, "header" source could not be loaded"
 // will be output. In this case, the NAME of an existing source file must be
 // used in place of "header".

Appendix
A.3 Template for Example Unit

 SIMOTION ST Structured Text
396 Programming and Operating Manual, 05/2009

A.3.2 Type definition in the interface

 // **
 // * Type definition in the INTERFACE *
 // **
 VAR_GLOBAL CONSTANT
 PI : REAL := 3.1415;
 ARRAY_MAX : INT := 3;
 END_VAR
 // Declaration of a global constant. In the source file
 // no other value can be assigned to the identifier.
 // User defined variable types (UDT) are
 // defined between TYPE and END_TYPE.
 TYPE
 array1dim : ARRAY [0..ARRAY_MAX] OF INT;
 // Definition of a one-dimensional array with four array elements from
 // type INT under the name "array1dim". With "array1dim" as the data type
 // in all source file segments, one-dimensional arrays can now
 // be declared by type INT.

 array2dim : ARRAY [0..3] OF array1dim;
 // A two-dimensional array is an array of one-dimensional arrays.
 // Here a two-dimensional field with 16 elements occurs
 // of the type INT under the name "array2dim"

 enumTrafficLight : (RED, YELLOW, GREEN);
 // Definition of enumerator "enumTrafficLight" as a
 // user-defined variable type. Variables of this type can
 // only accept the values "RED", "YELLOW", and "GREEN".

 structCollection : STRUCT
 toAxisX : posaxis;
 aInStruct1dim : array1dim;
 eTrafficInStruct : enumTrafficLight;
 iCounter : INT;
 bStatus : WORD;
 END_STRUCT;
 // A user-defined structure is created here. It is possible to
 // combine elementary data types (here INT and WORD) or already defined
 // user data types (here "array1dim" and "enumTrafficLight") into
 // one structure. In addition, types
 // of technology objects can also be used.
 // In the example, the structure contains an element of
 // a positioning axis (posAxis) TYPE.
 // In the definition, make certain to sort the variables
 // by size in increasing sequence
 // (ARRAY, STRUCT, LREAL, DWORD, INT, BOOL ...)

 arrayOfStruct : ARRAY [0..5] OF structCollection;
 // Nesting is also possible. The type "arrayOfStruct"
 // contains a field comprising six elements of type "structCollection"
 END_TYPE

 Appendix
 A.3 Template for Example Unit

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 397

A.3.3 Variable declaration in the interface

 // **
 // * Variable declaration in the INTERFACE *
 // **
 VAR_GLOBAL // In the user memory of the UNIT.
 // Also visible using HMI services.

 g_aMyArray : ARRAY [0..11] OF REAL := [3 (2(4), 2(18))];
 // Example of a declaration of a one-dimensional array without
 // previous type declaration. The initialization performed here is
 // read as follows:
 // Two elements each are initialized with the value 4,
 // two elements with the value 18. This pattern is used in the field

 // "g_aMyArray" three times in succession.
 // The field elements are thus assigned as follows:
 // 4, 4, 18, 18, 4, 4, 18, 18, 4, 4, 18, 18.

 g_aMy2dim : array2dim;
 // Example of a declaration of a two-dimensional array

 g_aMy1dim : array1dim;
 // Example of a declaration of a one-dimensional array with
 // use of a type declaration.

 g_sMyStruct : structCollection;
 // Variable of the type or with the structure of
 // user_struct.

 g_aMyArrayOfStruct : arrayOfStruct;
 // The variable generated here contains a field from
 // structural elements as declared in section TYPE/END_TYPE

 g_tMyTime : TIME := T#0d_1h_5m_17s_4ms;
 // ...as elementary time types and derived data types (see below).

 g_eMyTraffic : enumTrafficLight := RED;
 // An enumerator of type "enumTrafficLight" is created here and
 // assigned the value "RED".

 g_iMyInt : INT := -17;
 // Variables of an elementary numerical data type can
 // also be declared in variable declarations...

 END_VAR

Appendix
A.3 Template for Example Unit

 SIMOTION ST Structured Text
398 Programming and Operating Manual, 05/2009

VAR_GLOBAL RETAIN
 END_VAR
 // The variables declared with the add-on RETAIN are
 // stored in the RETAIN data area of the hardware platform used and
 // are therefore safe from network failure.
 // The declaration of VAR, VAR CONSTANT, VAR_TEMP, VAR_INPUT, VAR_OUTPUT
 // and VAR_IN_OUT is not permissible here.
 // Variables that are defined in this section and thus exported
 // can be reimported by means of the USES "template" into another source file (UNIT)
 .

 FUNCTION FC_myFirst;
 FUNCTION_BLOCK FB_myFirst;
 PROGRAM myPRG;
 // The function blocks (FBs),
 // functions (FCs) and programs defined in the implementation part are exported here
in the interface part,
 // so that they can be used in other units.
 // Non-exported FBs and FCs can only be used in this source file
 // ("information hiding", placing in the interface only
 // what other units absolutely need).
 // A program that has not been exported cannot be assigned to any TASK!
END_INTERFACE

 Appendix
 A.3 Template for Example Unit

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 399

A.3.4 Implementation

 // **
 // * IMPLEMENTATION section *
 // **
IMPLEMENTATION
 // In the IMPLEMENTATION section of a unit, the executable code sections
 // are stored in various program organization units (POUs).
 // A POU can be a program, FC, or FB.

 VAR_GLOBAL CONSTANT
 END_VAR

 TYPE
 END_TYPE
 // The type definition can also be made in the IMPLEMENTATION section.
 // However, this definition cannot be imported in another source file.
 The type definition can, however, be used for variables
 // in all POUs of the source file "Template". The definition of types must
 // be performed before the declaration of a variable.
 VAR_GLOBAL // In the user memory of the UNIT
 g_boDigInput1 : BOOL;
 // Boolean variable for "EXPRESSION" example (see below).
 END_VAR

 VAR_GLOBAL RETAIN
 END_VAR
 // The variables declared with the add-on RETAIN are
 // stored in the RETAIN data area of the hardware platform used and
 // are therefore safe from network failure.
 // Variable declaration in the IMPLEMENTATION section.
 // The declaration of VAR, VAR CONSTANT, VAR_TEMP, VAR_INPUT, VAR_OUTPUT
 // and VAR_IN_OUT is not permissible here.

 EXPRESSION xCond
 xCond := g_boDigInput1;
 END_EXPRESSION
 // Definition of an EXPRESSION.
 // An EXPRESSION is a special function case, which recognizes only the
 // return values TRUE and FALSE. It is used in conjunction with the
 // statement WAITFORCONDITON (see myPRG) and should only be used
 // if the program is executed as part of
 // a MotionTask. If "dig_input_1" (usual in a digital input or a
 // condition in the program) takes on the value 1, the return value of the
 // EXPRESSION is TRUE.

Appendix
A.3 Template for Example Unit

 SIMOTION ST Structured Text
400 Programming and Operating Manual, 05/2009

A.3.5 Function

 // **
 // * FUNCTION *
 // **
 // The declaration of an FB or FC must be placed in the source file
 // before the actual use (the call), so that the code of the
 // block is already known to the calling point.

 FUNCTION FC_myFirst : INT
 // The statement section of the POU FUNCTION begins here. The return value
 // of the function has the type integer in this case.
 // The stack of the calling TASK is initialized on each call.
 // The return value is located on the stack and is written by the FUNCTION.

 VAR CONSTANT
 END_VAR

 TYPE
 END_TYPE
 // The type declaration can also be made in POUs. The basic difference is
 // the validity of the type declaration. A type declared in a POU can only
 // be used for variables within associated POU.

 VAR_INPUT // In the stack of the calling TASK, will be placed on
 // stack on call, assignment optional.
 END_VAR

 VAR // In the Stack of the calling TASK, used in FUNCTION.
 END_VAR
 // Variable declaration in an FC.
 // The declaration of VAR_TEMP, VAR_GLOBAL, VAR_GLOBAL CONSTANT,
 // VAR_GLOBAL RETAIN, VAR_OUTPUT and VAR_IN_OUT is not
 // permissible here.

 // The use of unit-global variables for data acceptance in FCs
 // and FBs is the fastest option for the runtime. The use
 // of the input parameters VAR_INPUT and the return via the
 // return value is slower, since the values are copied respectively.

 // Comment: Variables declared with VAR and VAR CONSTANT are
 // temporary. On the next call, the contents from the latest
 // call are no longer available, in contrast to the FB.

 Appendix
 A.3 Template for Example Unit

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 401

 // **
 // * Area for FC code or statements *
 // **)
 // Code is in the user memory.
 g_eMyTraffic := YELLOW; // e.g. change the traffic light.

 FC_myFirst := 17;
 // In this example, the function returns the value "17" to the
 // calling program.

 END_FUNCTION

Appendix
A.3 Template for Example Unit

 SIMOTION ST Structured Text
402 Programming and Operating Manual, 05/2009

A.3.6 Function block

 // **
 // * FUNCTION_BLOCK *
 // **

 // The declaration of an FB or FC must be placed in the source file
 // before the actual use (the call), so that the code of the
 // block is already known to the calling point.

 FUNCTION_BLOCK FB_myFirst
 // The statement section of the FUNCTION_BLOCK POU begins here.
 // Instance data are dependent where the instance is formed
 // (see comments at the template end) in the user memory of UNIT
 // or TASK and are initialized with STOP->RUN or starting the TASK

 // The pointer to the instance data is transferred during the call.

 VAR CONSTANT
 END_VAR
 // Variables declared with VAR and VAR CONSTANT are
 // static, i.e., on the next block call, their contents remain
 // available and valid.

 TYPE
 END_TYPE
 // The type definition can also be made in POUs. The
 // basic difference is the validity of the
 // Type definition. A type defined in a POU can only
 // be used for variables within associated POU.

 VAR_INPUT // In the user memory of the UNIT or TASK,
 // assignment optional on call.
 END_VAR

 VAR_IN_OUT // In the user memory of the UNIT or TASK,
 // reference must be assigned on call.
 END_VAR

 VAR_OUTPUT // In the user memory of the UNIT or TASK.
 END_VAR

 VAR // In the user memory of the UNIT or TASK,
 // can be used in the FB.
 END_VAR

 VAR_TEMP // In the stack of the calling task,
 // is initialized on each call.
 END_VAR

 Appendix
 A.3 Template for Example Unit

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 403

 // Variable declaration in an FB.
 // The declaration of VAR_GLOBAL, VAR_GLOBAL CONSTANT and
 // VAR_GLOBAL RETAIN is not permissible here.

 // **
 // * Area for FB code or statements *
 // **

 g_eMyTraffic := GREEN; // e.g. change the traffic light.
 END_FUNCTION_BLOCK

Appendix
A.3 Template for Example Unit

 SIMOTION ST Structured Text
404 Programming and Operating Manual, 05/2009

A.3.7 Program

 // **
 // * PROGRAM *
 // **
 PROGRAM myPRG
 // The statement section of the POU PROGRAM begins here.

 VAR CONSTANT
 END_VAR

 TYPE
 END_TYPE
 // The type definition can also be made in POUs. The
 // basic difference is the validity of the
 // Type definition. A type defined in a POU can only
 // be used for variables within associated POU.
 VAR // In the user memory of the TASK.
 instFBMyFirst : FB_myFirst;
 // In order to be able to call an FB, an area for static
 // variables (forming an instance) must be generated. This has to do with
 // the "memory" of the FB.

 retFCMyFirst : INT;
 // Variable for the return value of the function.
 END_VAR

 VAR_TEMP // In the stack of the task, initialized in each pass.
 END_VAR
 // Variable declaration in a PROGRAM.
 // The declaration of VAR_GLOBAL, VAR_GLOBAL CONSTANT,
 // VAR_GLOBAL RETAIN, VAR_INPUT, VAR_OUTPUT and VAR_IN_OUT
 // is not permissible here.

 // Comment: Whether the local variables declared via VAR
 // are temporary variables depends on the task context in which the
 // PROGRAM is used.
 //
 // In non-cyclic tasks (StartupTask, ShutdownTask, MotionTasks,
 // SystemInterruptTasks and UserInterruptTasks) the previous
 // contents of VAR and VAR_TEMP are no longer available.
 // The variables are thus temporary.
 //
 // With other cyclic tasks (BackgroundTask, IPOsynchronousTask,
 // IPOsynchronousTask_2 and TimerInterruptTasks), the contents
 // of variables declared in the VAR section remain the same
 // for the following run. The variables are thus static.
 // Variables from VAR_TEMP are always temporary.

 Appendix
 A.3 Template for Example Unit

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 405

 instFBMyFirst ();
 // FB call with a valid instance.

 retFCMyFirst := FC_myFirst ();
 // FC call and assignment of return value.

 WAITFORCONDITION xCond WITH TRUE DO
 // The statements programmed here come immediately for
 // execution if the condition "xcond" defined in the associated
 // EXPRESSION is logically true.
 ;
 END_WAITFORCONDITION;
 // WAITFORCONDITION is generally used only in MotionTasks.
 These remain in the location and the
 // condition defined in the EXPRESSION is checked with high priority.

 END_PROGRAM

END_IMPLEMENTATION
//--

Appendix
A.3 Template for Example Unit

 SIMOTION ST Structured Text
406 Programming and Operating Manual, 05/2009

A.3.8 Notes on initialization

// INSTRUCTION FOR INITIALIZATION OF USER DATA
// * User data (variables from elementary data types, structures, and arrays)
// * are initialized as different times. The time
// * depends on the location (i.e., memory area) of the data.
// * A distinction is always made between the main memory of a task (stack) and
// * in the user memory of the TASK. There is a user memory
// * for a TASK and for a UNIT.

// Data in the main memory of a task (stack):
// ==
// Each task has a reserved memory for stack data (parameters for
// function calls, temporary variables). The stack size of a TASK is
// calculated by the compiler and can be influenced by the user in the
// execution system under task configuration (Reserve for Download in the RUN).
// * The main memory of a TASK (stack) contains the following data:
// - VAR of FUNCTIONs
// - VAR_TEMP of FUNCTION_BLOCKs and PROGRAMs
// - VAR_INPUT and return value of FUNCTIONs
// * These are initialized at each call (delete / set to zero and
// from the program, if necessary).

// The user memory (heap) is managed separately for each UNIT and for each
// TASK:
// ==
// * The user memory of a UNIT contains the following data:
// - VAR_GLOBAL from INTERFACE and IMPLEMENTATION
// * These are initialized (delete / set to zero and write initial values
// from the program, if necessary):
// - During startup
// - during loading (if initialization of all non-retentive data is selected)
//
// * The user memory of a TASK contains the following data:
// VAR of PROGRAMs
// * These are initialized (delete / set to zero and write initial values
// from the program, if necessary):
// - For cyclic tasks, once when STOP->RUN
// - For non-cyclic tasks, at start of task
//
// * The instance data of FUNCTION_BLOCKs (VAR_INPUT, VAR_OUTPUT,
// VAR_IN_OUT (reference), VAR) are dependent on where the instance of the FB
// is formed, in the user memory of a UNIT or TASK.
// Instantiation of the FB in
// - VAR_GLOBAL: Instance is located in the user memory of the UNIT
// - VAR in the PROGRAM: Instance is located in the user memory of the TASK
// - VAR in the FB: Instance is located in the user memory according to
// higher-level FB
// * The instance data are initialized as described above.
// Which variable type is located in which data area can be obtained in
// comments in the template.
//--

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 407

Index

k
–, 136

#define, 269
#else, 269
#endif, 269
#ifdef, 269
#ifndef, 269
#undef, 269

*
*, 136
**, 136

/
/, 136

:
:, 104, 116
:=, 125, 166, 167

_
_additionObjectType, 112
_alarm, 257
_camTrackType, 112
_controllerObjectType, 112
_device, 246, 257
_direct, 230, 233, 246, 257
_fixedGearType, 112
_formulaObjectType, 112
_getSafeValue

Application, 246
_project, 257
_sensorType, 112
_setSafeValue

Application, 246
_task, 257

_to, 257
_U7_PoeBld_CompilerOption, 271

+
+, 136

<
<, 138
<=, 138
<>, 138

=
=, 138
=>, 169

>
>, 138
>=, 138

1
-1.#IND, 284, 286
1.#INF, 284, 286
-1.#INF, 284
-1.#INF, 286
1.#QNAN, 284, 286
-1.#QNAN, 284
-1.#QNAN, 286

A
Absolute identifier

Overview, 321
Access times

Parameter, 169
ANY, 102
ANY_BIT, 102
ANY_DATE, 102
ANY_ELEMENTARY, 102
ANY_INT, 102
ANY_NUM, 102

Index

 SIMOTION ST Structured Text
408 Programming and Operating Manual, 05/2009

ANY_REAL, 102
ANYOBJECT, 112
Arithmetic operators, 135
ARRAY data type specification

Error source, 107
Arrays

Data type, 107
Value assignments, 130, 131

Attribute
Compiler option, 271

B
Basic elements

Of ST, 79
Basic functions, 135
Bit constants, 91
Bit data types, 99
BlockInit_OnChange, 272
BlockInit_OnDeviceRun, 272
Blocks, 78
BOOL, 99
Boolean data, 91
Branches

Syntax, 371
Breakpoint, 295

Activating, 310
Call path, 304, 307
Call stack, 312
Deactivating, 311
remove, 301
Set, 301
Toolbar, 303

BYTE, 99

C
Call path

Breakpoint, 304, 307
Call stack, 312
Program run, 287
Program status, 292

camType, 112
CASE statement

Description, 145
Character set, 79, 318
Code attributes, 265
Commands

Overview of the basic system, 323
ST programming language overview, 88

Comments, 97
Source file section, 97

Syntax, 341
Compiler, 69

Attribute, 271
Correcting errors, 46, 69
Declaration errors, 377
Declaration errors in type declarations, 378
Declaration errors in variable declarations, 379
Error when linking a source file, 385
Errors while loading the interface of another UNIT
or technology package, 385
File access errors, 376
Implementation restrictions, 388
Information, 393
Scanner errors, 376
Setting, 47
Start, 69
starting, 46
Syntax errors, errors in expression, 384
Warnings, 388

Compiler option, 47, 53
Compiling

Library, 248
Compound data types, 107, 110
CONSTANT, 118, 122
Constant block

Syntax, 349
Constants

Bit, 91
Data types for constants, 98
Date and time, syntax, 338
Digit strings, syntax, 337
Floating-point number, 91
Formatting characters and separators, 320
Globally valid, 204
Integer, 90
Literals, syntax, 333
Symbolic names, 122
Time specifications, 100
Unit constants, 204

Control statements, 143
CPU memory access

Identifiers for process image access, 321
Variable model, 200

Cross-reference list, 259
Displayed data, 260
Filtering, 263
Generating, 259
Single step monitoring (MCC), 260
Sorting, 262
TSI#dwuser_1, 260
TSI#dwuser_2, 260

Cyclic program execution
Effect on I/O access, 230

 Index

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 409

Effect on variable initialization, 219
Cyclic program processing

Effect on I/O access, 233, 239

D
Data model, 200
Data type specification

ARRAY, 107
elementary, 106
Enumerator, 109
STRUCT, 110

Data types
ARRAY, 107
Bit data type, 99
Conversions, 154
Derivation of simple types, 106
elementary, 99
Elements, syntax, 356
Enumerator, 109
Enumerators, 109
Explicit conversions, 157
Implicit conversions, 155
Inheritance, 113
Initialization, 119
Numeric, 99
STRING, 100
STRUCT, 110
Structure, 110
Syntax, 356
Technology object, 112
Time, 100
TYPE, 104
User-defined, 104
User-defined, syntax, 359

DATE, 100
DATE_AND_TIME, 100
Debug mode, 277, 296
Declaration

Parameter, 117
Variables, 117

Declaration section
Syntax, 347

Declarations
Syntax, 352

Derivation of simple data types, 106
Derived data type

Enumerator, 109
Derived data type

ARRAY, 107
Enumerator, 109
Field, 107

Derived data type
STRUCT, 110

Derived data type
Structure, 110

DINT, 99
DINT#MAX, 101
DINT#MIN, 101
Direct access, 230, 233

Features, 231
Variable model, 200

Download
Effect on variable initialization, 219

driveAxis, 112
DT, 100
DWORD, 99

E
Editor, 25

Example for program, 66
Operation, 67
Toolbar, 45

Elementary data types
Overview, 99

Enumerator data types, 109
Enumerators, 109
Error

ARRAY data type specification, 107
FB or FC call, 174

Error messages
Declaration errors, 377
Declaration errors in type declaration, 378
Declaration errors in variable declarations, 379
Error when linking a source file, 385
Errors while loading the interface of another UNIT
or technology package, 385
File access errors, 376
Implementation restrictions, 388
Information, 393
Scanner errors, 376
Syntax errors, errors in expression, 384
Warnings, 388

Example, complete
FBs and FCs, 175
Rotate bit in output byte, 63
ST source file (template), 395
User-defined data types, 111
Using data types of TOs, 113

EXIT statement
Description, 151

Explicit data type conversions, 157
Exponent

Index

 SIMOTION ST Structured Text
410 Programming and Operating Manual, 05/2009

Description, 91
Exponentiation, 136
Export

ST source file, 56
EXPRESSION

Description, 189
Syntax, 180

Logic expression; bit-serial expression
logic; expressions: bit-serial, 140

Expressions
Arithmetic, 135
Logic, 142
Relational expressions, 138, 142
Rules for formulation, 133, 142

externalEncoderType, 112

F
FB, 159
FB/FC variables

Definition, 207
Variable model, 200

FC, 159
File

See Source file, 94
Floating-point number

Data types, 99
Description, 91
Notation, 91

followingAxis, 112
followingObjectType, 112
FOR statement

Description, 147
Formatting characters, 319
Function, 159

Call path, 292
Calling, 170
defining, 160
Error sources during a call, 174
Example, 175
Input parameters, 165
Local variables, 165
Source file section, 186
Structure, 160
Syntax, 160

Function block, 159
Call path, 292
Call, syntax, 172
Calling, 171
defining, 161
Difference to the FC, 175
Error sources during a call, 174

Example, 175
In/out parameter, 165
Input parameters, 165
Instances, 171
Local variables, 165
Names, 171
Output parameters, 165
Source file section, 187
Structure, 161
Syntax, 161

G
Global device user variables

Defining, 211
Variable model, 200

GOTO statement, 274

H
Hardware

Setting up, 65
Hiding validity ranges, 252
HMI_Export, 271

I
I/O variable

create, 236, 245
Creating, 236, 245
Direct access, 230, 233
Process image, 230, 233
Process image of the BackgroundTask, 240
Variable model, 200

Identifier
Predefined, 321
Reserved for ST, 88, 323
Rules for formulating, 80
Syntax, 80

Identifiers
Syntax, 332

IF statement
Description, 143

Implementation
Source file section, 185

Implicit data type conversions, 155
Import

ST source file, 57
In/out assignment

Syntax, 168, 169
In/out parameter

 Index

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 411

Function block, 165
Transfer, 167

Inheritance
During import/export, 198
For technology objects, 113

Initialization
Data types, 119
Time of the variable initialization, 219
Variables, 119

Input assignment
Syntax, 166

Input parameters
Access in the function block, 173
Function, 165
Function block, 165
Transfer, 166

Instance declaration of FB
Syntax, 171

Instruction
Source file section, 96

INT, 99
INT#MAX, 101
INT#MIN, 101
Integer

Data types, 99
Description, 90
Notation, 90

Integer number
See Integer, 90

Interface
Source file section, 184

J
Jump labels

Syntax, 352

K
Key combination

ST editor, 27
Keyboard shortcuts, 27
Know-how protection

Libraries, 250
Source files, 54

L
LABEL declaration, 274
Language description

Resources, 77, 316, 318

Library, 247
Compiling, 248
Using, 251

Local data stack, 212, 217
Local variables

Variable model, 200
LREAL, 99

M
measuringInputType, 112
Memory requirement, 212, 217
MOD, 136
Mode

Debug mode, 277, 296
Test mode, 277

Multi-element variables, 130, 131

N
Name space

User-defined, 255
Names, 80
Namespace

Predefined, 257
New

I/O variable, 236, 245
Number systems

Notation, 90
Numbers

Data types for numbers, 98
Description, 90
Notation, 90

Numeric data types, 99

O
Operands

Syntax, 364
Operating mode

Process mode, 277
Test mode, 290

Operators, 323
Priority, 142
Relational operators, 138
Syntax, 367

Output parameters
Access in the function block, 173
Function block, 165
Transfer, 169

outputCamType, 112

Index

 SIMOTION ST Structured Text
412 Programming and Operating Manual, 05/2009

P
Parameter

Access times, 169
Block (syntax), 162
Declaration, 162
Declaration, general, 117
Function and function block, 162
Transfer (in/out parameter), 167
Transfer (input parameter), 166
Transfer (output parameter), 169
Transfer (principle), 166

Parameter fields
Syntax, 351

posAxis, 112
Pragma

Attribute, 271
Preprocessor statement, 268

Preprocessor
Activating, 48, 50
Controlling, 267
Preprocessor statement, 268
Using, 48, 50
Warning class, 52

Printing
ST source file, 58

Process image
Cyclic tasks, 233
Features, 231
principle and use, 230, 239
Symbolic access, 243

Process image of the BackgroundTask, 230
Process image of the cyclic tasks, 230
Process mode, 277
Program

Assigning tasks, 71
Call path, 292
Compiling, 69
Connecting to target system, 73
Creating (example), 66
Download, 74
Executing, 71, 75
Locating errors, 276
Source file section, 188
starting, 71, 75
Status (test tool), 289
Testing, 276

Program organization units
Source file section, 185
Syntax, 345

Program run, 287
Toolbar, 288

Program section

See Source file section, 183
Program structure, 263
Program structuring, 143
program variables

Definition, 207
In the data model, 206
Variable model, 200

Programming environment, 17
Project

Opening, 63
Prototypes, 194

R
REAL, 99
Real number

See Floating-point number, 91
Reference, 112
Reference data, 259
References, 5
Relational expressions, 138
REPEAT statement

Description, 150
Repetition statements and jump statements

Syntax, 372
Reserved identifiers, 82, 323
RETAIN, 118, 206
Retentive variables

Definition, 206
Variable model, 200

RETURN statement
Description, 151

Rules
Formatted, 316, 332
Semantics, 78
Unformatted, 317, 332

RUN
Effect on variable initialization, 219

S
SCOUT Workbench > See Workbench, 17
sections

Syntax, 342
Separators, 319
Sequential program execution

Effect on I/O access, 230, 233
Effect on variable initialization, 219

Setting
Compiler, 47

Shortcuts, 27
Simple data types

 Index

SIMOTION ST Structured Text
Programming and Operating Manual, 05/2009 413

Derivation, 106
Single-element variables, 126
SINT, 99
SINT#MAX, 101
SINT#MIN, 101
Source file

Structure, 94
Source file section, 183

Data type declaration, 191
Declaration section, 190
Function, 186
Function block, 187
Implementation, 185
Instruction, 96
Interface, 184
Program, 188
Program organization units, 185
Statement section, 190
Unit statement, 194
Variable declaration, 192

ST compiler. See Compiler, 46
ST editor, 25
ST source file

exporting, 56
Importing, 57
Printing, 58
See Source file, 94
Template (example), 395

ST source file section
See Source file section, 183

Standard functions, 135
Statement

Source file section, 190
Statement section

Syntax, 361
Status

Program (test tool), 289
STOP to RUN

Effect on variable initialization, 219
STRING, 100

assignment, 126
Edit, 127
Element, 127
Syntax diagram, 100

StructAlarmId, 103
STRUCTALARMID#NIL, 103
StructTaskId, 103
STRUCTTASKID#NIL, 103
Structured variables, 130, 131
Structures

Syntax, 343
Symbol Browser, 281
Symbolic access to I/O address space

Process image, 243
Syntax diagram, 77
System functions

Inheritance, 113
System variables

Inheritance, 113
Variable model, 200

T
T#MAX, 101
T#MIN, 101
Target variable, 124
Task

Assigning programs, 71
Effect on variable initialization, 219

Technology object
Data type, 112
Inheritance, 113

Template
ST source file, 395

Terminals, 79
Test mode, 277, 290
Testing a program, 276
TIME, 100
Time types

Conversions, 154
Functions, 135
Overview, 100

TIME#MAX, 101
TIME#MIN, 101
TIME_OF_DAY, 100
TIME_OF_DAY#MAX, 101
TIME_OF_DAY#MIN, 101
TO#NIL, 113
TOD, 100
TOD#MAX, 101
TOD#MIN, 101
Trace tool, 313
TSI#dwuser_1

Cross-reference list, 260
TSI#dwuser_2

Cross-reference list, 260
TYPE, 104
Type conversion functions, 154
Type declaration, 104

U
UDINT, 99
UDINT#MAX, 101
UDINT#MIN, 101

Index

 SIMOTION ST Structured Text
414 Programming and Operating Manual, 05/2009

UDT
See User-defined data type, 103

UINT, 99
UINT#MAX, 101
UINT#MIN, 101
Unit

Source file section, 194
Template (example), 395

UNIT, 194
Unit constants

Definition;, 204
Unit variables, 204

Definition, 204
Non-retentive, 204
Variable model, 200

User-defined data type
Syntax, 104

USES, 185, 197
USINT, 99
USINT#MAX, 101
USINT#MIN, 101

V
Value assignments

Description, 124
Syntax, 362

VAR, 118, 209, 210
VAR CONSTANT, 118, 122
VAR_GLOBAL, 118, 204
VAR_GLOBAL CONSTANT, 118, 122
VAR_GLOBAL RETAIN, 118, 206
VAR_IN_OUT, 118, 163
VAR_INPUT, 118, 163
VAR_OUTPUT, 118, 163
VAR_TEMP, 118, 210
Variable blocks

Syntax, 349
Variables, 116

ARRAY, 130
ARRAY, 131
Battery-backed, 206
Declaration, 117
Declaration (source file section), 192
elementary, 126
Enumerator data type, 130
Enumerator data type, 130
Function block, 165
Functions, 165
Hiding validity ranges, 252
Identical names, 252
Initialization, 119

Instance declaration of FB, 171
Local, 207
Parameter declaration, 162
Process image, 230, 239
Retentive, 206
Static, 207
structured, 131
Temporary, 207
timing of initialization, 219
Unit variable, 204
Validity, 200
Watch tables, 285

W
Warning class, 52, 267
Watch tables, 285
WHILE statement

Description, 149
WORD, 99
Workbench

Elements, 19
Programming environment, 17

	SIMOTION ST Structured Text
	Legal information
	Preface
	Contents
	1 Introduction
	1.1 High-level programming language
	1.2 Programming language with technology commands
	1.3 Execution levels
	1.4 ST editor with tools for writing and testing programs

	2 Getting Started with ST
	2.1 Integration of ST in SCOUT
	2.1.1 Getting to know the elements of the workbench

	2.2 Requirements for program creation
	2.3 Working with the ST editor and the compiler
	2.3.1 Insert ST source file
	2.3.2 Opening an existing ST source file
	2.3.3 Changing the properties of an ST source file
	2.3.4 Working with the ST editor
	2.3.4.1 Syntax coloring
	2.3.4.2 Drag&drop
	2.3.4.3 Shortcuts
	2.3.4.4 Settings of the ST editor
	2.3.4.5 Indentations and tabs
	2.3.4.6 Folds (show and hide blocks)
	2.3.4.7 Display spaces and tabs
	2.3.4.8 Changing the font size in the ST editor
	2.3.4.9 Select text
	2.3.4.10 Use bookmarks
	2.3.4.11 Automatic completion
	2.3.4.12 Other help for the ST editor
	2.3.4.13 Using the command library
	2.3.4.14 ST editor toolbar

	2.3.5 Starting the compiler
	2.3.5.1 Help for the error correction

	2.3.6 Making settings for the compiler
	2.3.6.1 Global compiler settings
	2.3.6.2 Local compiler settings
	2.3.6.3 Effectiveness of global or local compiler settings
	2.3.6.4 Meaning of warning classes
	2.3.6.5 Display of the compiler options

	2.3.7 Know-how protection for ST source files
	2.3.8 Making preprocessor definitions
	2.3.9 Exporting, importing and printing an ST source file
	2.3.9.1 Exporting an ST source file as a text file (ASCII)
	2.3.9.2 Exporting an ST source file in XML format
	2.3.9.3 Importing a text file (ASCII) as an ST source file
	2.3.9.4 Importing XML data into ST source files
	2.3.9.5 Printing an ST source file

	2.3.10 Using an external editor
	2.3.11 ST source file menus
	2.3.11.1 ST source file menu
	2.3.11.2 ST source file context menu

	2.4 Creating a sample program
	2.4.1 Requirements
	2.4.2 Opening or creating a project
	2.4.3 Making the hardware known
	2.4.4 Entering source text with the ST editor
	2.4.4.1 Functions of the editor
	2.4.4.2 Source text of the sample program

	2.4.5 Compiling a sample program
	2.4.5.1 Starting the compiler
	2.4.5.2 Correcting errors
	2.4.5.3 Example of error messages

	2.4.6 Running the sample program
	2.4.6.1 Assigning a sample program to an execution level
	2.4.6.2 Establishing a connection to the target system
	2.4.6.3 Downloading the sample program to the target system
	2.4.6.4 Starting and testing the sample program

	3 ST Fundamentals
	3.1 Language description resources
	3.1.1 Syntax diagram
	3.1.2 Blocks in syntax diagrams
	3.1.3 Meaning of the rules (semantics)

	3.2 Basic elements of the language
	3.2.1 ST character set
	3.2.2 Identifiers in ST
	3.2.2.1 Rules for identifiers
	3.2.2.2 Examples of identifiers

	3.2.3 Reserved identifiers
	3.2.3.1 Protected identifiers
	3.2.3.2 Additional reserved identifiers

	3.2.4 Numbers and Boolean values
	3.2.4.1 Integers
	3.2.4.2 Floating-point numbers
	3.2.4.3 Exponents
	3.2.4.4 Boolean values
	3.2.4.5 Data types of numbers

	3.2.5 Character strings

	3.3 Structure of an ST source file
	3.3.1 Statements
	3.3.2 Comments

	3.4 Data types
	3.4.1 Elementary data types
	3.4.1.1 Elementary data types
	3.4.1.2 Value range limits of elementary data types
	3.4.1.3 General data types
	3.4.1.4 Elementary system data types

	3.4.2 User-defined data types
	3.4.2.1 User-defined data types
	3.4.2.2 Syntax of user-defined data types (type declaration)
	3.4.2.3 Derivation of elementary or derived data types
	3.4.2.4 Derived data type ARRAY
	3.4.2.5 Derived data type - Enumerator
	3.4.2.6 Derived data type STRUCT (structure)

	3.4.3 Technology object data types
	3.4.3.1 Description of the technology object data types
	3.4.3.2 Inheritance of the properties for axes
	3.4.3.3 Examples of the use of technology object data types

	3.4.4 System data types

	3.5 Variable declaration
	3.5.1 Syntax of variable declaration
	3.5.2 Overview of all variable declarations
	3.5.3 Initialization of variables or data types
	3.5.4 Constants

	3.6 Value assignments and expressions
	3.6.1 Value assignments
	3.6.1.1 Syntax of the value assignment
	3.6.1.2 Value assignments with variables of an elementary data type
	3.6.1.3 Value assignments with variables of the STRING elementary data type
	3.6.1.4 Value assignments with variables of a bit data type
	3.6.1.5 Value assignments with variables of the derived enumerator data type
	3.6.1.6 Value assignments with variables of the derived ARRAY data type
	3.6.1.7 Value assignments with variables of the derived STRUCT data type

	3.6.2 Expressions
	3.6.2.1 Result of an expression
	3.6.2.2 Interpretation order of an expression

	3.6.3 Operands
	3.6.4 Arithmetic expressions
	3.6.4.1 Examples of arithmetic expressions

	3.6.5 Relational expressions
	3.6.6 Logic expressions and bit-serial expressions
	3.6.7 Priority of operators

	3.7 Control statements
	3.7.1 IF statement
	3.7.2 CASE statement
	3.7.3 FOR statement
	3.7.3.1 Processing of the FOR statement
	3.7.3.2 Rules for the FOR statement
	3.7.3.3 Example of the FOR statement

	3.7.4 WHILE statement
	3.7.5 REPEAT statement
	3.7.6 EXIT statement
	3.7.7 RETURN statement
	3.7.8 WAITFORCONDITION statement
	3.7.9 GOTO statement

	3.8 Data type conversions
	3.8.1 Elementary data type conversion
	3.8.1.1 Implicit data type conversions
	3.8.1.2 Explicit data type conversions

	3.8.2 Supplementary conversions

	4 Functions, Function Blocks, and Programs
	4.1 Creating and calling functions and function blocks
	4.1.1 Defining functions
	4.1.2 Defining function blocks
	4.1.3 Declaration section of FB and FC
	4.1.4 Statement section of FB and FC
	4.1.5 Call of functions and function block calls
	4.1.5.1 Principle of parameter transfer
	4.1.5.2 Parameter transfer to input parameters
	4.1.5.3 Parameter transfer to in/out parameters
	4.1.5.4 Parameter transfer to output parameters (for FB only)
	4.1.5.5 Parameter access times
	4.1.5.6 Calling a function
	4.1.5.7 Calling function blocks (instance calls)
	4.1.5.8 Accessing the FB's output parameter outside the FB
	4.1.5.9 Accessing the FB's input parameter outside the FB
	4.1.5.10 Error sources in FB calls

	4.2 Comparison of functions and function blocks
	4.2.1 Description of example
	4.2.2 Source file with comments

	4.3 Programs
	4.3.1 Assignment of a program in the execution system
	4.3.2 Calling a program in the program ("program in program")

	4.4 Expressions

	5 Integration of ST in SIMOTION
	5.1 Source file sections
	5.1.1 Use of the source file sections
	5.1.1.1 Interface section
	5.1.1.2 Implementation section
	5.1.1.3 Program organization units (POUs)
	5.1.1.4 Functions (FCs)
	5.1.1.5 Function blocks (FBs)
	5.1.1.6 Programs
	5.1.1.7 Expressions
	5.1.1.8 Declaration section
	5.1.1.9 Statement section
	5.1.1.10 Data type definition
	5.1.1.11 Variable declaration

	5.1.2 Import and export between ST source files
	5.1.2.1 Unit identifier
	5.1.2.2 Interface section of an exporting unit
	5.1.2.3 Example of an exporting unit
	5.1.2.4 USES statement in an importing unit
	5.1.2.5 Example of an importing unit

	5.2 Variables in SIMOTION
	5.2.1 Variable model
	5.2.1.1 Unit variables
	5.2.1.2 Non-retentive unit variables
	5.2.1.3 Retentive unit variables
	5.2.1.4 Local variables (static and temporary variables)
	5.2.1.5 Static variables
	5.2.1.6 Temporary variables

	5.2.2 Use of global device variables
	5.2.3 Memory ranges of the variable types
	5.2.3.1 Example of memory areas, valid as of Kernel V3.1
	5.2.3.2 Memory requirement of the variables on the local data stack (Kernel V3.1 and higher)
	5.2.3.3 Memory requirement of variables on local data stack (Kernel V3.0 and below)

	5.2.4 Time of the variable initialization
	5.2.4.1 Initialization of retentive global variables
	5.2.4.2 Initialization of non-retentive global variables
	5.2.4.3 Initialization of local variables
	5.2.4.4 Initialization of static program variables
	5.2.4.5 Initialization of instances of function blocks (FBs)
	5.2.4.6 Initialization of system variables of technology objects
	5.2.4.7 Version ID of global variables and their initialization during download

	5.2.5 Variables and HMI devices

	5.3 Access to inputs and outputs (process image, I/O variables)
	5.3.1 Overview of access to inputs and outputs
	5.3.2 Important features of direct access and process image access
	5.3.3 Direct access and process image of cyclic tasks
	5.3.3.1 Rules for I/O addresses for direct access and the process image of the cyclical tasks
	5.3.3.2 Creating I/O variables for direct access or process image of cyclic tasks
	5.3.3.3 Syntax for entering I/O addresses
	5.3.3.4 Possible data types of I/O variables

	5.3.4 Access to fixed process image of the BackgroundTask
	5.3.4.1 Absolute access to the fixed process image of the BackgroundTask (absolute PI access)
	5.3.4.2 Syntax for the identifier for an absolute process image access
	5.3.4.3 Symbolic access to the fixed process image of the BackgroundTask (symbolic PI access)
	5.3.4.4 Possible data types for symbolic PI access
	5.3.4.5 Example of symbolic PI access
	5.3.4.6 Creating an I/O variable for access to the fixed process image of the BackgroundTask

	5.3.5 Accessing I/O variables

	5.4 Using libraries
	5.4.1 Compiling a library
	5.4.2 Know-how protection for libraries
	5.4.3 Using data types, functions and function blocks from libraries

	5.5 Use of the same identifiers and namespaces
	5.5.1 Use of the same identifiers
	5.5.2 Namespaces

	5.6 Reference data
	5.6.1 Cross-reference list
	5.6.1.1 Creating a cross-reference list
	5.6.1.2 Content of the cross-reference list
	5.6.1.3 Working with a cross-reference list
	5.6.1.4 Filtering the cross-reference list

	5.6.2 Program structure
	5.6.2.1 Content of the program structure

	5.6.3 Code attributes
	5.6.3.1 Code attribute contents

	5.7 Controlling the preprocessor and compiler with pragmas
	5.7.1 Controlling a preprocessor
	5.7.1.1 Preprocessor statement
	5.7.1.2 Example of preprocessor statements

	5.7.2 Controlling compiler with attributes

	5.8 Jump statement and label

	6 Error Sources and Program Debugging
	6.1 Notes on avoiding errors and on efficient programming
	6.2 Program debugging
	6.2.1 Modes for program testing
	6.2.1.1 Modes of the SIMOTION devices
	6.2.1.2 Important information about the life-sign monitoring.
	6.2.1.3 Life-sign monitoring parameters

	6.2.2 Symbol Browser
	6.2.2.1 Properties of the symbol browser
	6.2.2.2 Using the symbol browser

	6.2.3 Monitoring variables in watch table
	6.2.3.1 Variables in the watch table
	6.2.3.2 Using watch tables

	6.2.4 Program run
	6.2.4.1 Program run: Display code location and call path
	6.2.4.2 Parameter call stack program run
	6.2.4.3 Program run toolbar

	6.2.5 Program status
	6.2.5.1 Properties of the program status
	6.2.5.2 Using the status program
	6.2.5.3 Call path for program status
	6.2.5.4 Parameter call path status program

	6.2.6 Breakpoints
	6.2.6.1 General procedure for setting breakpoints
	6.2.6.2 Setting the debug mode
	6.2.6.3 Define the debug task group
	6.2.6.4 Debug task group parameters
	6.2.6.5 Debug table parameter
	6.2.6.6 Setting breakpoints
	6.2.6.7 Breakpoints toolbar
	6.2.6.8 Defining the call path for a single breakpoint
	6.2.6.9 Breakpoint call path / task selection parameters
	6.2.6.10 Defining the call path for all breakpoints
	6.2.6.11 Call path / task selection parameters of all breakpoints per POU
	6.2.6.12 Activating breakpoints
	6.2.6.13 Display call stack
	6.2.6.14 Breakpoints call stack parameter

	6.2.7 Trace

	A Appendix
	A.1 Formal Language Description
	A.1.1 Language description resources
	A.1.2 Basic elements (terminals)
	A.1.3 Rules

	A.2 Compiler Error Messages and Remedies
	A.2.1 File access errors (1000 – 1100)
	A.2.2 Scanner errors (2001, 2002)
	A.2.3 Declaration errors in POU (3002 – 3027)
	A.2.4 Declaration errors in data type declarations (4001 – 4051)
	A.2.5 Declaration errors in variables declarations (5001 – 5509)
	A.2.6 Errors in the expression (6001 - 6201)
	A.2.7 Syntax errors, errors in the expression (7000 - 7014)
	A.2.8 Error when linking a source file (8001, 8100)
	A.2.9 Errors while loading the interface of another UNIT or a technology package (10000 - 10037, 10100 - 10101)
	A.2.10 Implementation restrictions (15001 – 15200)
	A.2.11 Warnings (16001 - 16700)
	A.2.12 Information (32010 - 32653)

	A.3 Template for Example Unit
	A.3.1 Preliminary information
	A.3.2 Type definition in the interface
	A.3.3 Variable declaration in the interface
	A.3.4 Implementation
	A.3.5 Function
	A.3.6 Function block
	A.3.7 Program
	A.3.8 Notes on initialization

	Index
	k
	#
	*
	/
	:
	_
	+
	<
	=
	>
	1
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

