Valid for

Control
SINUMERIK 840D sl/ 840DE sl
SINUMERIK 840Di sl/ 840DiE sl

Software
NCU Systemsoftware für 840D sl/ 840DE sl 2.6
Systemsoftware für 840Di sl/ 840DiE sl 1.4

Drive
SINAMICS S120

03/2009
SINUMERIK® Documentation

Printing history

Brief details of this edition and previous editions are listed below.
The status of each edition is shown by the code in the "Remarks" column.

Status code in the "Remarks" column:
A New documentation
B Unrevised reprint with new order number
C Revised edition with new status

<table>
<thead>
<tr>
<th>Edition</th>
<th>Order No.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/2006</td>
<td>6FC5398-6BP10-1BA0</td>
<td>C</td>
</tr>
<tr>
<td>11/2006</td>
<td>6FC5398-6BP10-2BA0</td>
<td>C</td>
</tr>
<tr>
<td>01/2008</td>
<td>6FC5398-6BP10-3BA0</td>
<td>C</td>
</tr>
<tr>
<td>03/2009</td>
<td>6FC5398-6BP10-4BA0</td>
<td>C</td>
</tr>
</tbody>
</table>

Registered Trademarks
All designations with the trademark symbol ® are registered trademarks of Siemens AG. Other designations in this documentation may be trademarks whose use by third parties for their own purposes may infringe the rights of the owner.

Liability disclaimer
We have checked that the contents of this document correspond to the hardware and software described. Nonetheless, differences might exist and therefore we cannot guarantee that they are completely identical. The information contained in this document is, however, reviewed regularly and any necessary changes will be included in the next edition.

Copyright © Siemens AG 2009
Order No. 6FC5398-6BP10-4BA0
Subject to change without prior notice
Preface

SINUMERIK Documentation

The SINUMERIK documentation is organized in 3 parts:

- General documentation
- User documentation
- Manufacturer/service documentation

Information on the following topics is available at http://www.siemens.com/motioncontrol/docu:

- Ordering documentation
 Here you can find an up-to-date overview of publications.
- Downloading documentation
 Links to more information for downloading files from Service & Support.
- Researching documentation online
 Information on DOConCD and direct access to the publications in DOCon-WEB.
- Compiling individual documentation on the basis of Siemens contents with the My Documentation Manager (MDM), refer to http://www.siemens.com/mdm. My Documentation Manager provides you with a range of features for generating your own machine documentation.
- Training and FAQs
 Information on the range of training courses and FAQs (frequently asked questions) are available via the page navigation.

Target audience

Project engineers, technologists (of machine manufacturers), start-up engineers (of systems/machines), programmers.

Benefits

The Diagnostics Manual enables the intended target group to evaluate error and fault indications and to respond accordingly.

With the help of the Diagnostics Manual, the target group has an overview of the various diagnostic options and diagnostic tools.
Standard version

This Diagnostics Manual only describes the functionality of the standard version. Extensions or changes made by the machine tool manufacturer are documented by the machine tool manufacturer.

Other functions not described in this documentation might be executable in the control. This does not, however, represent an obligation to supply such functions with a new control or when servicing.

Further, for the sake of simplicity, this documentation does not contain all detailed information about all types of the product and cannot cover every conceivable case of installation, operation or maintenance.

Technical Support

If you have any technical questions, please contact our hotline:

<table>
<thead>
<tr>
<th>European / Africa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
<td>+49 180 5050 222</td>
</tr>
<tr>
<td>Fax</td>
<td>+49 180 5050 223</td>
</tr>
<tr>
<td>Internet</td>
<td>http://www.siemens.com/automation/support-request</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>American</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
<td>+1 423 262 2522</td>
</tr>
<tr>
<td>Fax</td>
<td>+1 423 262 2200</td>
</tr>
<tr>
<td>Email</td>
<td>mailto:techsupport.sea@siemens.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asian / Pacific</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
<td>+86 1064 757575</td>
</tr>
<tr>
<td>Fax</td>
<td>+86 1064 747474</td>
</tr>
<tr>
<td>Email</td>
<td>mailto:support.asia.automation@siemens.com</td>
</tr>
</tbody>
</table>

Note

National phone numbers for technical support are provided under the following Internet address: http://www.automation.siemens.com/partner
Questions about this documentation

If you have any queries (suggestions, corrections) in relation to this documentation, please send a fax or email to the following address:

<table>
<thead>
<tr>
<th>Fax</th>
<th>+49 9131 98 2176</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email</td>
<td>mailto:docu.motioncontrol@siemens.com</td>
</tr>
</tbody>
</table>

A fax form is available at the end of this document.

SINUMERIK Internet address

http://www.siemens.com/sinumerik

CompactFlash cards for the user (only for hardware descriptions)

- The SINUMERIK CNC supports the file systems FAT16 and FAT32 for CompactFlash cards. You may need to format the memory card if you want to use a memory card from another device or if you want to ensure the compatibility of the memory card with the SINUMERIK. However, formatting the memory card will permanently delete all data on it.

- Do not remove the memory card while it is being accessed. This can result in damage to the memory card and the SINUMERIK as well as the data on the memory card.

- If you cannot use a memory card with the SINUMERIK, it is probably because the memory card is not formatted for the control system (e.g. Ext3 Linux file system), the memory card file system is faulty or it is the wrong type of memory card.

- Insert the memory card carefully and the right way round into the memory card slot (observe indicators such as arrow or similar). This way you avoid mechanical damage to the memory card or the device.

- Only use memory cards that have been approved by Siemens for use with SINUMERIK. Even though the SINUMERIK complies with the general industry standards for memory cards, it is possible that memory cards from some manufacturers will not function perfectly in this device or are not completely compatible with it (you can obtain information on compatibility from the memory card manufacturer or supplier).

- The "CompactFlash® 5000 Industrial Grade" CompactFlash card from SanDisk has been approved for SINUMERIK (Order Number 6FC5313-5AG00-0AA0).
Safety Instructions

This Manual contains information which you should carefully observe to ensure your own personal safety and the prevention of material damage. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring to property damage only have no safety alert symbol. The warnings appear in decreasing order of risk as given below.

Danger
Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury or in substantial property damage.

Warning
Indicates that death or severe personal injury will result if proper precautions are not taken.

Caution
with a warning triangle indicates that minor personal injury can result if proper precautions are not taken.

Caution
without a warning triangle indicates that property damage can result if proper precautions are not taken.

Notice
indicates a potential situation which, if not avoided, may result in an undesirable event or state.

If several hazards of different degrees occur, the hazard with the highest degree must always be given priority. A warning notice accompanied by a safety alert symbol indicating a risk of bodily injury can also indicate a risk of property damage.

Qualified Personnel

The associated device/system may only be set up and operated using this documentation. Commissioning and operation of a device/system may only be performed by qualified personnel. Qualified persons are defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and systems in accordance with established safety practices and standards.
Contents

1 Overview of System Error Alarms ... 1-9
 1.1 Subject matter of this manual ... 1-9
 1.2 Structure of alarm description ... 1-9
 1.3 Number ranges of the alarm numbers .. 1-11
 1.4 System errors ... 1-14

2 Overview of Alarms ... 2-15
 2.1 NCK alarms .. 2-15
 2.2 HMI-Alarms ... 2-558
 2.3 SINAMICS-Alarms ... 2-630
 2.4 Drives alarms ... 2-995
 2.5 PLC alarms .. 2-1005

3 List of Action Numbers ... 3-1027

4 System Reactions .. 4-1041
 4.1 System Reaction on SINUMERIK Alarms ... 4-1041
 4.2 Cancel criteria for alarms ... 4-1044
 4.3 System reactions on SINAMICS Alarms ... 4-1045

A Appendix ... A-1049
 A.1 Abbreviations ... A-1049
1.1 Subject matter of this manual

This manual is intended as a work of reference. It allows the operator at the machine tool:

- To correctly assess special situations when operating the machine.
- To ascertain the reaction of the system to the special situation.
- To utilize the possibilities for continued operation following the special situation.
- To follow references to other documentation containing further details.

Scope

This manual describes the alarms / messages from the NC kernel (NCK) area, the PLC and the drives.

For special situations in conjunction with the integrated PLC, please refer to the SIMATIC S7-300 documentation.

The alarms are sorted by ascending alarm number in each section. There are gaps in the sequence.

1.2 Structure of alarm description

Each alarm consists of an alarm number and alarm text. There are four description categories:

- Explanation
- Reaction
- Remedy
- Program continuation

For a more detailed explanation of the "Reaction" category, please refer to section: "System reactions on alarms"

For a more detailed explanation of the "Program continuation" category, please refer to the section: "Clear criteria for alarms"
Structure of the alarms for the number range 200 000 - 299 999

Each alarm (fault or warning), consisting of a number, location (optional) and alarm text, is indicated with further information for the following categories:

- Reaction
- Acknowledgment
- Cause
- Remedy

Note

Instead of <location>, the following is indicated in the alarm display:

- Axis name and drive number or
- Bus and slave number of the PROFIBUS DP component affected

For a more detailed explanation of the "Reaction" / "Acknowledgement" category, please refer to section: "System reactions on SINAMICS alarms".

"Cause":

For the cause of the alarm.warning, the fault / warning value is prepared as far as possible in text form.

Action list

The actions described in the alarm texts ("Action %---") are explained in detail in the table in the "Action list" section.
1.3 Number ranges of the alarm numbers

NCK alarms

<table>
<thead>
<tr>
<th>Number range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 000 - 009 999</td>
<td>General alarms</td>
</tr>
<tr>
<td>010 000 - 019 999</td>
<td>Channel alarms</td>
</tr>
<tr>
<td>020 000 - 029 999</td>
<td>Axis/spindle alarms</td>
</tr>
<tr>
<td>060 000 - 064 999</td>
<td>Cycle alarms SIEMENS</td>
</tr>
<tr>
<td>065 000 - 069 999</td>
<td>Cycle alarms user</td>
</tr>
<tr>
<td>070 000 - 079 999</td>
<td>Compile cycles, manufacturer and OEM</td>
</tr>
</tbody>
</table>

HMI alarms/messages

<table>
<thead>
<tr>
<th>Number range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 000 - 100 999</td>
<td>Basic system</td>
</tr>
<tr>
<td>101 000 - 101 999</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>102 000 - 102 999</td>
<td>Services</td>
</tr>
<tr>
<td>103 000 - 103 999</td>
<td>Machine</td>
</tr>
<tr>
<td>104 000 - 104 999</td>
<td>Parameters</td>
</tr>
<tr>
<td>105 000 - 105 999</td>
<td>Programming</td>
</tr>
<tr>
<td>106 000 - 106 999</td>
<td>Reserve</td>
</tr>
<tr>
<td>107 000 - 107 999</td>
<td>OEM</td>
</tr>
<tr>
<td>108 000 - 108 999</td>
<td>HiGraph</td>
</tr>
<tr>
<td>109 000 - 109 999</td>
<td>Distributed systems (M to N)</td>
</tr>
<tr>
<td>110 000 - 110 999</td>
<td>Cycles</td>
</tr>
<tr>
<td>113 000 - 113 999</td>
<td>Bedienoberfläche ergänzen</td>
</tr>
<tr>
<td>114 000 - 114 999</td>
<td>HT 6</td>
</tr>
<tr>
<td>119 000 - 119 999</td>
<td>OEM</td>
</tr>
<tr>
<td>120 000 - 129 999</td>
<td>HMI Advanced messages</td>
</tr>
<tr>
<td>130 000 - 139 999</td>
<td>OEM</td>
</tr>
<tr>
<td>142 000 - 142 099</td>
<td>RCS Viewer Embedded / RCS Host Embedded</td>
</tr>
<tr>
<td>149 000 - 149 999</td>
<td>ePS</td>
</tr>
</tbody>
</table>
SINAMICS alarms (faults/warnings)

Tabelle 1-3 Number ranges of the message numbers, continued

<table>
<thead>
<tr>
<th>Number Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>201 000 - 203 999</td>
<td>Control Unit</td>
</tr>
<tr>
<td>204 000 - 204 999</td>
<td>Reserved</td>
</tr>
<tr>
<td>205 000 - 205 999</td>
<td>Power Unit</td>
</tr>
<tr>
<td>206 000 - 206 999</td>
<td>Infeed</td>
</tr>
<tr>
<td>207 000 - 207 999</td>
<td>Drive</td>
</tr>
<tr>
<td>208 000 - 208 999</td>
<td>Option Board</td>
</tr>
<tr>
<td>209 000 - 209 999</td>
<td>Reserved</td>
</tr>
<tr>
<td>213 000 - 213 002</td>
<td>License</td>
</tr>
<tr>
<td>230 000 - 230 999</td>
<td>DRIVE-CLIQ-component power unit</td>
</tr>
<tr>
<td>231 000 - 231 999</td>
<td>DRIVE-CLIQ-component encoder 1</td>
</tr>
<tr>
<td>232 000 - 232 999</td>
<td>DRIVE-CLIQ-component encoder 2</td>
</tr>
<tr>
<td>233 000 - 233 999</td>
<td>DRIVE-CLIQ-component encoder 3</td>
</tr>
<tr>
<td>234 000 - 234 999</td>
<td>Reserved</td>
</tr>
<tr>
<td>235 000 - 235 999</td>
<td>Terminal module 31 (TM31)</td>
</tr>
<tr>
<td>236 000 - 236 999</td>
<td>Reserved</td>
</tr>
<tr>
<td>240 000 - 240 999</td>
<td>Controller Extension (NX32)</td>
</tr>
<tr>
<td>241 000 - 248 999</td>
<td>Reserved</td>
</tr>
<tr>
<td>249 000 - 249 999</td>
<td>SINAMICS GM7SM7GL</td>
</tr>
<tr>
<td>250 000 - 250 999</td>
<td>Communication Board (COMM BOARD)</td>
</tr>
<tr>
<td>250 500 - 259 999</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Drive alarms

Tabelle 1-4 Number ranges of the alarm numbers, continued

<table>
<thead>
<tr>
<th>Number Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 000 - 399 999</td>
<td>Drive</td>
</tr>
</tbody>
</table>

PLC alarms/messages

Tabelle 1-5 Number ranges of the alarm numbers, continued

<table>
<thead>
<tr>
<th>Number Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 000 - 499 999</td>
<td>General alarms</td>
</tr>
<tr>
<td>500 000 - 599 999</td>
<td>Channel alarms ²</td>
</tr>
<tr>
<td>600 000 - 699 999</td>
<td>Axis/spindle alarms ²</td>
</tr>
<tr>
<td>700 000 - 799 999</td>
<td>User area ²</td>
</tr>
<tr>
<td>800 000 - 899 999</td>
<td>Sequencers/graphs ²</td>
</tr>
<tr>
<td>(810 001 - 810 009)</td>
<td>System error messages from PLC ¹</td>
</tr>
</tbody>
</table>
1) More detailed information is available via the diagnostic function (diagnostic buffer) in SIMATIC STEP 7.
2) The PLC alarms in the range 500000 - 899999 are configured and described by the machine manufacturer.

Reference

Reference is made to the following documents:
- Manual HMI sl
- Function Manual of basic machines, supporting manuals: A2, A3, B1, B2, D1, F1, G2, H2, K1, K2, N2, P1, P3, R1, S1, V1, W1, Z1
- Function Manual of expanded functions, supporting manuals: A4, B3, B4, F3, H1, K3, K5, M1, M5, N3, N4, P2, P5, R2, S3, S7, T1, W3, W4, Z
- Function Manual of special functions, supporting manuals: F2, G1, G3, K6, M3, S9, T3, TE01, TE02, TE1, TE3, TE4, TE6, TE7, TE8, V2, W5, W6, Z3
- Function Manual Safety Integrated
- User Manual POSMO SI/CD/CA
- Operating Manual HMI sl Turning
- Operating Manual HMI sl Milling
- Operating Manual HMI sl Universal
- Operating Manual HMI-Advanced
- Operating Manual HMI-Embedded
- Function Manual HLA-Modul
- Commissioning Manual, Commissioning CNC: NCK, PLC, Antrieb
- Commissioning Manual, Commissioning CNC: ShopMill
- Commissioning Manual, Commissioning CNC: ShopTurn
- Commissioning Manual, Commissioning Basesoftware und HMI sl: IM9, TX2, IM7
- Commissioning Manual, Commissioning Basesoftware und HMI-Advanced, M4, BE1, TX2, IM8
- Commissioning Manual, Commissioning Basesoftware und HMI-Embedded, IM2, BE1, TX2, IM7
- Function Manual of Tool Management
- Function Manual of ISO-dialects for SINUMERIK
- Function Manual of Synchronized actions
- Programming Manual Job planing
1.4 System errors

The following alarms are system errors:

1000 1005 1013 1017
1001 1010 1014 1018
1002 1011 1015 1019
1003 1012 1016 1160

These system error alarms are not described in detail. If such a system error occurs, please contact the hotline and indicate the following details:

- Alarm number
- Alarm text and
- The internal system error number
Overview of Alarms

2.1 NCK alarms

0 No (more) alarm(s) present
Definitions: If the communication (variable service) requests more alarms than currently available in the alarm list, this alarm is communicated as an end-of-file indication.
Reaction: No alarm reaction.
Remedy: --
Program Continuation: Internal

1030 System error in link module error code %1 error type %2
Parameters: %1 = Hex-Zahl Link-Error
%2 = Hex-Zahl Link-Error-Type
Definitions: This alarm is not a user error. An internal error has occurred in the software of the link module. Two parameters are output with this error for debugging purposes. They provide information about the cause and location of the error.
Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Make a note of the error text and contact Siemens AG A&D MC, Hotline (tel./fax: see alarm 1000)
Program Continuation: Switch control OFF - ON.

1031 Link module generated an unspecified error %1 NCU %2 %3 %4
Parameters: %1 = Hex-Zahl unspecified status in stateOfLinkModules
%2 = NCU number
%3 = Command from link module to NCK
%4 = Status of own link
Definitions: This alarm is not a user error.
- 1. If NCU== 0 -> A parameter not equal to zero was not found
- 2. If NCU not equal to zero -> An error which the NC was not able to interpret in the connection to this NCU. The error is output as a number. It is possible that the NCU link module is running a newer software version than the NC.
The other parameters are used for error localization in the NC/LINK-MODUL software.
Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Make a note of the error text and contact Siemens AG A&D MC, Hotline (tel./fax: see alarm 1000)
Program Continuation: Switch control OFF - ON.
1100 No valid firmware

Definitions: No memory card or memory card without valid firmware (license) inserted.

Reaction: Alarm display.

Remedy: Make a note of the error text and contact Siemens AG A&D MC, Hotline (tel./fax: see alarm 1000)

Program Continuation: Switch control OFF - ON.

2000 PLC sign-of-life monitoring

Definitions: The PLC must give a sign of life within a defined period of time (MD10100 $MN_PLC_CYCLIC_TIMEOUT). If this does not occur, the alarm is triggered.

The sign of life is a counter reading on the internal NC/PLC interface which the PLC causes to count up with the 10 ms time alarm. The NCK also tests cyclically whether the counter reading has changed.

Reaction:
- NC not ready.
- Local alarm reaction.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Check monitoring time frame in MD10100 $MN_PLC_CYCLIC_TIMEOUT (reference value: 100ms).

Establish the cause of the error in the PLC and eliminate it (analysis of the ISTACK. If monitoring has responded with a loop in the user program rather than with a PLC Stop, there is no ISTACK entry).

Program Continuation: Switch control OFF - ON.

2001 PLC has not started up

Definitions: The PLC must give at least 1 sign of life within a period of time defined in MD10120 $MN_PLC_RUNNINGUP_TIMEOUT (default: 1 sec.).

Reaction:
- NC not ready.
- Local alarm reaction.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Please inform the authorized personnel/service department. The monitoring time in MD10120 $MN_PLC_RUNNINGUP_TIMEOUT must be checked and adapted to the first OB1 cycle.
- Determine the cause of error in the PLC (loop or stop in the user program) and eliminate it.

Program Continuation: Switch control OFF - ON.

2100 NCK battery warning threshold reached

Definitions: The undervoltage monitor of the NCK battery has reached the prewarning threshold. This is at 2.7-2.9 V (nominal voltage of the battery is 3.0-3.1 V at 950 mAh).

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. The battery must be replaced within the next 6 weeks. After this period, the voltage can drop below the alarm limit of 2.4-2.6 V if the RAMs to be buffered take up a lot of current.

Program Continuation: Clear alarm with the Delete key or NC START.

2101 NCK battery alarm

Definitions: The undervoltage monitoring (2.4 - 2.6 V) of the NCK battery has responded during cyclic operation.

Reaction: Alarm display.
Remedy: If the NCK battery is replaced without interrupting the power supply, no data will be lost. This means that production can continue without taking any further steps. (A buffer capacitor on the NCK holds the supply voltage for at least 30 minutes and the battery can be replaced within this time even when the control is switched off).

Sinumerik combines an NCU's two potential parts subject to wear (fan/battery) in one shared mechanically replacable module the construction of which is easily accessible.

When the battery module is unplugged during operation, the module is also separated from the fan's air supply. Therefore the battery should only be replaced during operation, if production cannot be continued otherwise.

If it is not possible to replace the battery quickly, a second fan/battery module should be available for use during the replacement process. It should be plugged onto the NCU during replacement of the battery.

In this context please note for the safety function of the '840D sl' that it will switch off the module automatically after a certain time, if the fan is defect or not plugged in; this will protect the NCU from thermal destruction (see Manual: chapter Dual fan/battery module).

Program Continuation: Clear alarm with the Delete key or NC START.

2102 NCK battery alarm

Definitions: The undervoltage monitoring (2.4 - 2.6 V) of the NCK battery was detected during system power-up.

Reaction: NC not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Pull out the battery/fan unit from the NC module and replace the battery (type: lithium battery with lead, size 1/2 AA, 850 mAh, min. 3.2 V).

The system must then be reinitialized because it must be assumed that data has been lost in the buffered RAM during the last power-off phase as a result of insufficient supply voltage (refer to Section 2.2 in the Installation and Start-up Guide for the procedure).

The following data might have been corrupted or entirely lost:
- NC machine data
- Drive machine data
- Option data
- Setting data
- User variable
- Global subroutines
- Cycles and macros, as well as
- PLC machine data
- PLC basic program
- PLC user program, and all
- PLC user data

User data in the NCK and PLC (e.g. tool and workpiece data) that have been altered by the manufacturing process since the last data backup must be updated manually to match the present machine status!

Program Continuation: Switch control OFF - ON.

2110 NCK temperature alarm

Definitions: The temperature sensor has reached the response threshold of 60 degrees C +/- 2.5 degrees C.

Reaction: Alarm display.

Remedy: In order to reset the sensor, the temperature must be reduced by 7 degrees C.

Program Continuation: Clear alarm with the Delete key or NC START.
2120 **NCK fan alarm type %1**

Definitions: The fan consists of a 26 V DC motor with electronic commutator (rated speed: approx. 8700 rpm). The commutator signal is used for speed monitoring, response speed: < 7500 rpm. In the case of a fan defect, Solutionline modules can be forced to power off in order to prevent them from mechanical destruction (see Manual: chapter Dual fan/battery module). This applies, if the fan alarm is of type one.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. The unit with the fan and NCK battery must be replaced.

Program Continuation: Clear alarm with the Delete key or NC START.

2130 **5V/24V encoder or 15V D/A converter undervoltage**

Definitions: A failure has occurred in the power supply to the encoder (5V/24V) or D/A converter (+/-15V).

Reaction: NC not ready. The NC switches to follow-up mode. Mode group not ready, also effective for single axes NC Start disable in this channel. Axes of this channel must be re-referenced. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Check the encoder and cable for short-circuits (the fault should not occur when you remove the cable). Check the power feeder line.

Program Continuation: Switch control OFF - ON.

2140 **The actual service switch position forces the SRAM to be cleared at the next Power On (general reset active)**

Definitions: The initialization switch is currently set to overall reset. This means that the module’s SRAM is deleted with the next module reset. The NC data memory is cleared during this operation.

Reaction: NC not ready. Interface signals are set. Alarm display.

Remedy: Reset initialization switch to zero.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

2190 **Hardware plug-in module for communication with the digitizer missing**

Definitions: MD $MN_ASSIGN_DIGITIZE_TO_CHAN was used to activate the digitizing function by assigning it to a channel. The function requires a hardware module (RS422 board plugged into the NCU) for communication with the digitizing unit. This module was not found when booting.

Reaction: Interface signals are set. Alarm display.

Remedy: Please inform the authorized personnel/service department. Plug in communications module or cancel channel assignment.

Program Continuation: Switch control OFF - ON.
2192
No NCU link module exists, MD %1 reset

Parameters:
%1 = String: MD identifier

Definitions:
An attempt was made to activate the NCU link functionality but the hardware is not available. The MD was reset. Only occurs with the NCU link system

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Install the hardware module and activate the function again (MD).

Program Continuation:
Switch control OFF - ON.

2193
'Safety Integrated' is not available for link axis %1.

Parameters:
%1 = Machine axis index

Definitions:
The "Safety Integrated" function is not available for a link axis. Only occurs with the NCU link system

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Use "Safety Integrated" function for local axes only.

Program Continuation:
Switch control OFF - ON.

2194
Link axis active and $MN_MM_SERVO_FIFO_SIZE != 3

Definitions:
At least one axis is to be distributed via NCU link, then the machine data $MN_MM_SERVO_FIFO_SIZE must be 3. Occurs only with an NCU link system.

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Set $MN_SERVO_FIFO_SIZE to 3.

Program Continuation:
Switch control OFF - ON.

2195
[Channel %1:] Axis %2 high-speed punching/nibbling not possible via link

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
An attempt was made to activate high-speed nibbling or punching for an axis programmed on a different NCU than the drive.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
High-speed nibbling and punching is only supported on one NCU.

Program Continuation:
Clear alarm with the RESET key in all channels of this mode group. Restart part program.

2196
Link axis active andMD18720 $MN_MM_SERVO_FIFO_SIZE != %1

Parameters:
%1 = required value in MD18720 $MN_MM_SERVO_FIFO_SIZE
Definitions: Occurs only with an NCU link system.
- Possible causes of the fault:
 - At least one axis is to be distributed via NCU link, then the MD18720 $MN_MM_SERVO_FIFO_SIZE must be 3 or 4.
 - The IPO cycle of this NCU is faster than the link communication cycle, then the MD18720 $MN_MM_SERVO_FIFO_SIZE must be set to the value proposed in the alarm.

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: MD18720 $MN_MM_SERVO_FIFO_SIZE must be set to the value proposed in the alarm.

Program Continuation: Switch control OFF - ON.

2200 [Channel %1:] Fast punching/nibbling not possible in several channels

Parameters: %1 = Channel number

Definitions: An attempt was made to activate fast nibbling or punching in a channel while it has already been active in another channel. Fast punching and nibbling is only possible simultaneously in the same channel.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Fast nibbling and punching simultaneously in 1 channel only.

Program Continuation: Clear alarm with the RESET key. Restart part program

2900 Reboot is delayed

Definitions: This alarm indicates a delayed reboot.
This alarm only occurs when reboot was carried out by the HMI and MD10088 $MN_REBOOT_DELAY_TIME was set greater than zero.
The alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK BIT 20.

Reaction: NC not ready.
The NC switches to follow-up mode.
Mode group not ready, also effective for single axes
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Alarm reaction delay is cancelled.

Remedy: See MD10088 $MN_REBOOT_DELAY_TIME and MD11410 $MN_SUPPRESS_ALARM_MASK.

Program Continuation: Switch control OFF - ON.

3000 Emergency stop

Definitions: The EMERGENCY STOP request is applied to the NCK/PLC interface DB10 DBX56.1 (Emergency stop).

Reaction: NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Alarm reaction delay is cancelled.

Remedy: Please inform the authorized personnel/service department. Remove the cause of the emergency stop and acknowledge the emergency stop via the PLC/NCK interface DB10 DBX56.2 (emergency stop acknowledgement).

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.
4000 [Channel %1:] Machine data %2[%3] has gap in axis assignment

Parameters:
- %1 = Channel number
- %2 = String: MD identifier
- %3 = String: MD identifier

Definitions:
The assignment of a machine axis to a channel by the MD20070 $MC_AXCONF_MACHAX_USED must be contiguous. At system power-up (Power On) gaps are detected and displayed as an alarm.

Reaction:
- NC not ready.
- Mode group not ready, also effective for single axes
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Please inform the authorized personnel/service department. The entries for the indices for the machine axes used in the channels must be contiguous in table MD20070 $MC_AXCONF_MACHAX_USED. Channel axis gaps must be enabled via MD11640$MN_ENABLE_CHAN_AX_GAP.

Program Continuation:
Switch control OFF - ON.

4001 [Channel %1:] Axis %2 defined for more than one channel via machine data %3

Parameters:
- %1 = Channel number
- %2 = Index: Machine axis number
- %3 = String: MD identifier

Definitions:
In the channel-specific MD20070 $MC_AXCONF_MACHAX_USED [CHn, AXm]=x (n ... channel number, m ... channel axis number, x ... machine axis number), several channels were assigned to a machine axis without having a master channel defined for this axis.

Reaction:
- NC not ready.
- Mode group not ready, also effective for single axes
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Please inform the authorized personnel/service department. In the axis-specific MD30550 $MA_AXCONF_ASSIGN_MASTER_CHAN [AXm]=n (m ... machine axis number, n ... channel number), a master axis was set for the axes that are supposed to be alternately assigned by the NC program to one or the other channel.

Program Continuation:
Switch control OFF - ON.

4002 [Channel %1:] Machine data %2[%3] assigns an axis not defined in channel

Parameters:
- %1 = Channel number
- %2 = String: MD identifier
- %3 = Index: MD array index

Definitions:
Only axes that have been activated in the channel by means of MD20070 $MC_AXCONF_MACHAX_USED [kx]=n may be declared as geometry axes or transformation axes by means of the MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB [gx]=k. This also applies to MD22420 $MC_FGROUP_DEFAULT_AXES (gx: Geometry axis index, kx: Channel axis index, k: Channel axis no., m: Machine axis no.).

Assignment of geometry axes to channel axes
MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB (includes channel axis no. k):
- Geometry axis index: 0, 1st channel: 1, 2nd channel: 1
- Geometry axis index: 1, 1st channel: 2, 2nd channel: 0
- Geometry axis index: 2, 1st channel: 3, 2nd channel: 3
MD20070 $MC_AXCONF_MACHAX_USED (includes machine axis no. m):
- Channel axis index: 0, 1st channel: 1, 2nd channel: 4
- Channel axis index: 1, 1st channel: 2, 2nd channel: 5
- Channel axis index: 2, 1st channel: 3, 2nd channel: 6
- Channel axis index: 3, 1st channel: 7, 2nd channel: 0
- Channel axis index: 4, 1st channel: 8, 2nd channel: 0
- Channel axis index: 5, 1st channel: 0, 2nd channel: 0
- Channel axis index: 6, 1st channel: 0, 2nd channel: 0
- Channel axis index: 7, 1st channel: 0, 2nd channel: 0

Reaction:
NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
Correct
- MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB
- MD24... $MC_TRAFO_AXES_IN...
- MD24... $MC_TRAFO_GEOAX_ASSIGN_TAB...
- MD22420 $MC_FGROUP_DEFAULT_AXES
- and/or MD20070 $MC_AXCONF_MACHAX_USED.

Program Continuation:
Switch control OFF - ON.

4003 Axis %1 incorrect assignment of master channel in machine data %2
Parameters:
%1 = Axis
%2 = String: MD identifier

Definitions:
For some applications, it is useful to operate an axis in several channels (C axis or spindle on single spindle or double carriage machines).
The machine axes which are defined through the channel-specific MD20070 $MC_AXCONF_MACHAX_USED in several channels, must be assigned to a master channel with the axis-specific MD30550 $MA_AXCONF_ASSIGN_MASTER_CHAN.
For axes that are activated in one channel only, the number of this channel or zero must be entered as a master channel.

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Modify MD 20070:
$MC_AXCONF_MACHAX_USED and/or MD30550: $MA_AXCONF_ASSIGN_MASTER_CHAN.

Program Continuation:
Switch control OFF - ON.

4004 [Channel %1:] Machine data %2 axis %3 defined repeatedly as geometry axis
Parameters:
%1 = Channel number
%2 = String: MD identifier
%3 = Axis index

Definitions:
An axis may only be defined once as a geometry axis.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB.

Program Continuation:
Switch control OFF - ON.
4005 [Channel %1:] Maximum number of axes in channel %1 exceeded. Limit %2

Parameters:
%1 = Channel number
%2 = Upper limit for the number of axes in the channel

Definitions:
MD20070 $MC_AXCONF_MACHAX_USED defines which machine axes can be used in this channel. This simultaneously defines the number of active axes in the channel. This upper limit has been exceeded. Note: The channel axis gaps may cause certain indices of MD20070 $MC_AXCONF_MACHAX_USED to remain unused and therefore do not count as active channel axes.

Example:
- CHANDATA(2)
- $MC_AXCONF_MACHAX_USED[0] = 7
- $MC_AXCONF_MACHAX_USED[1] = 8
- $MC_AXCONF_MACHAX_USED[2] = 0
- $MC_AXCONF_MACHAX_USED[3] = 3
- $MC_AXCONF_MACHAX_USED[4] = 2
- $MC_AXCONF_MACHAX_USED[5] = 0
- $MC_AXCONF_MACHAX_USED[6] = 1
- $MC_AXCONF_MACHAX_USED[7] = 0
This channel uses the five machine axes 1, 2, 3, 8, 7, i.e. it has 5 active channel axes.

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify MD20070 $MC_AXCONF_MACHAX_USED.

Program Continuation:
Switch control OFF - ON.

4006 The maximum number of activatable axes has been exceeded (limit %1)

Parameters:
%1 = Number of axes

Definitions:
The sum of the two option data $ON_NUM_AXES_IN_SYSTEM and $ON_NUM_ADD_AXES_IN_SYSTEM must not exceed the maximum number of axes in the system.

Reaction:
NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. The sum of the two option data $ON_NUM_AXES_IN_SYSTEM and $ON_NUM_ADD_AXES_IN_SYSTEM must not exceed the maximum number of axes (dependent on configuration).

Program Continuation:
Switch control OFF - ON.

4007 Axis %1 incorrect assignment of master NCU in machine data %2

Parameters:
%1 = Axis
%2 = String: MD identifier

Definitions:
Machine axes which can be activated on several NCKs through MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB must be assigned to a master NCU in MD30554 $MA_AXCONF_ASSIGN_MASTER_NCU. For axes that are activated on only one NCU, the number of this NCU or 0 must be entered as master NCU. An assignment can only be made with MD30554 $MA_AXCONF_ASSIGN_MASTER_NCU if the machine axis is also addressed via a channel MD20070 ($MC_AXCONF_MACHAX_USED+ MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB).

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Correct MD30554 $MA_AXCONF_ASSIGN_MASTER_NCU and/or MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB.

Program Continuation: Switch control OFF - ON.

4010
Invalid identifier used in machine data %1[%2]

Parameters:
%1 = String: MD identifier
%2 = Index: MD array index

Definitions:
When determining a name in the NCK tables (arrays) for: machine axes, Euler angles, direction vectors, normal vectors, interpolation parameters and intermediate point coordinates, one of the following syntax rules for the identifier to be entered has been violated:
- The identifier must be an NC address letter (A, B, C, I, J, K, Q, U, V, W, X, Y, Z), possibly with a numerical extension (840D: 1-99)
- The identifier must begin with any 2 capital letters but not with $ (reserved for system variables).
- The identifier must not be a keyword of the NC language (e.g. POSA).

Reaction:
NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Enter the identifier for user-defined names with correct syntax in the displayed MD.
- Machine axes: MD10000 $MN_AXCONF_MACHAX_NAME_TAB
- Euler angles: MD10620 $MN_EULER_ANGLE_NAME_TAB
- Normal vectors: MD10630 $MN_NORMAL_VECTOR_NAME_TAB
- Direction vectors: MD10640 $MN_DIR_VECTOR_NAME_TAB
- Interpolation parameters: MD10650 $MN_IPO_PARAM_NAME_TAB
- Intermediate point coordinates: MD10660 $MN_INTERMEDIATE_POINT_NAME_TAB

Program Continuation: Switch control OFF - ON.

4011
[Channel %1:] Invalid identifier used in machine data %2[%3]

Parameters:
%1 = Channel number
%2 = String: MD identifier
%3 = Index: MD array index

Definitions:
When defining names in the channel-specific tables for geometry axes and channel axes, one of the following syntax rules for the identifier to be entered has been violated:
- The identifier must begin with any 2 capital letters but not with $ (reserved for system variables).
- The identifier must not be a keyword of the NC language (e.g. SPOS).

Reaction:
NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Enter the identifier for user-defined names with correct syntax in the displayed MD.
- Geometry axes: MD20060 $MC_AXCONF_GEOAX_NAME_TAB
- Channel axes: MD10000 $MN_AXCONF_MACHAX_NAME_TAB

Program Continuation: Switch control OFF - ON.
4012 Invalid identifier used in machine data %1[%2]

Parameters:
- %1 = String: MD identifier
- %2 = Index: MD array

Definitions:
The selected identifier is invalid. Valid identifiers are:
- AX1 - AXn: Machine axis identifiers
- N1AX1 - NnAXm: Link axis identifiers (NCU + machine axis), only for 'NCU-Link' expansion level!
- C1S1 - CnSm: Container axis identifiers (container + container location), only for 'Axis container' expansion level!

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Use the correct identifier.

Program Continuation:
Switch control OFF - ON.

4013 Invalid NCU link configuration by machine data %1 = %2 , on NCU_1 = %3

Parameters:
- %1 = String: MD identifier
- %2 = Index: MD array
- %3 = MD value of master NCU

Definitions:
The link module configuration detected on the local NCU is different from the master NCU of the NCU cluster. The link module configuration defines the system clock time, the communication baudrate and the maximum number of message transfer retries.
The following machine data are used for this purpose:
- SYSCLK_SAMPL_TIME_RATIO,
- IPO_SYSCLK_TIME_RATIO,
- LINK_RETRY_CTR,
- LINK_BAUDRATE_SWITCH,
- SYSCLK_CYCLE_TIME

The values of these machine data must be the same on all NCUs.

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
The machine data required for the link module configuration must be the same on all NCUs in the cluster.

Program Continuation:
Switch control OFF - ON.

4014 Axis %1 defined several times in %2

Parameters:
- %1 = String: MD identifier
- %2 = String: Check and, if necessary, correct the following machine data with reference to the data sheet:

Definitions:
An axis was assigned several times.
The axis can be a:
- Machine axis
- Link axis
- Axis in a container location

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Define a correct, unique axis assignment.

Program Continuation:
Switch control OFF - ON.
4016 **Axis %1 already used by NCU %2**

Parameters:
- %1 = Machine axis index
- %2 = NCU number

Definitions: An attempt was made to apply setpoints to one axis from several NCUs. Only occurs with the NCU link system.

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Define a correct, unique axis assignment.

Program Continuation: Switch control OFF - ON.

4017 **Axis container %1, location %2 already used by NCU %3**

Parameters:
- %1 = Axis container number
- %2 = Axis container location
- %3 = NCU number

Definitions: A multiple reference to the axis container location has been made via the logical axis table (MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB). With the NCU link, the multiple reference may also have been made by another NCU in the NCU group.

Example: Container1 location1 was referenced twice incorrectly
- $MN_AXCONF_LOGIC_MACHAX_TAB[0] = CT1_SL1
- $MN_AXCONF_LOGIC_MACHAX_TAB[6] = CT1_SL1

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Correct and complete the container location assignments. Check the machine data for the logical axis assignment table (MN_AXCONF_LOGIC_MACHAX_TAB).

Program Continuation: Switch control OFF - ON.

4018 **Axis container %1, location %2 not used by any channel**

Parameters:
- %1 = Axis container number
- %2 = Axis container location

Definitions: The container location is not referenced by any channel.

Reaction:
- NC not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Correct and complete the container location assignments. Check machine data MD20070 $MC_AXCONF_MACHAX_USED and MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB.

Program Continuation: Switch control OFF - ON.

4019 **Axis container %1 advance not allowed with current status of NCU %2**

Parameters:
- %1 = NCU number
- %2 = Axis container number

Definitions: This error only occurs with direct advancing of the container. With direct container advancing, only one channel is allowed to activate the NC language command for advancing the container. In order to ensure this, the other channels must have the reset status and the axes must be stationary. With NCU link, the above condition applies to all channels of the NCU group.
Error parameters:
- 1: NC Ready missing
- 16: At least one other channel is active
- 35: AXCT axis is active following axis/spindle
- 36: AXCT axis is active leading axis
- 39: Axis/spindle disable active
- 40: Overlaid motion active for AXCT axis
- 41: Axis exchange active for AXCT axis
- 42: Interpolator active for one axis container axis
- 46: Rotating spindle with different Ipo cycle of NCUs
- 47: New-Config active

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
The program must be canceled with Reset and the zero offset deselected before activating the axis container switch.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

4020 Identifier %1 used several times in machine data %2
Parameters:
%1 = String: Name of identifier
%2 = String: MD identifier

Definitions:
When determining a name in the NCK tables (arrays) for: machine axes, Euler angles, direction vectors, normal vectors, interpolation parameters and intermediate point coordinates, an identifier has been used that already exists in the control.

Reaction:
NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Select for the identifier to be entered a character string that is not yet used in the system (max. 32 characters).

Program Continuation:
Clear alarm with the RESET key in all channels of this mode group. Restart part program.

4021 [Channel %1:] Identifier %2 used several times in machine data %3
Parameters:
%1 = Channel number
%2 = String: Name of identifier
%3 = String: MD identifier

Definitions:
To determine the name in the channel-specific tables for geometry axes and channel axes an identifier already existing in the control has been used.

Reaction:
NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Select for the identifier to be entered a character string that is not yet used in the system (max. 32 characters).

Program Continuation:
Switch control OFF - ON.

4022 [Channel %1:] Axis %2: axis container %3 switch not allowed: ext. work offset active
Parameters:
%1 = Channel
%2 = Axis/spindle
%3 = Axis container number
Overview of Alarms 03/2009

NCK alarms

Definitions: The axis container switch enable cannot be given because an external zero offset is active.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: The program must be aborted with the RESET key and the external zero point offset deselected before the container is advanced.

Program Continuation: Clear alarm with the RESET key. Restart part program

4023 Axis container %1 switch not allowed, axis container %2 switch active

Parameters: %1 = Axis container
%2 = Axis container

Definitions: Only one axis container can be rotated at a time.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Program must be canceled with Reset and the program sequences (NCUs, channels) must be synchronized such that only one axis container switch is active at a time.

Program Continuation: Clear alarm with the RESET key. Restart part program

4024 Invalid axis configuration due to missing axis container machine data

Parameters: %1 = NCU number
%2 = Axis container number

Definitions: The axis configuration could not be generated due to missing axis container machine data. This error can only occur as a result of a communication error. The communication failure will be indicated separately by further alarms.

Reaction: NC not ready.
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Correct the link communication problems (refer to the other alarm messages).

Program Continuation: Switch control OFF - ON.

4025 [Channel %1:] Axis %2: axis container %3 switch not allowed: master/slave active.

Parameters: %1 = Channel
%2 = Axis/spindle
%3 = Axis container number

Definitions: It is not possible to enable axis container switch as a master/slave link is active.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Abort program with the RESET key. If required, disconnect the master - slave coupling.

Program Continuation: Clear alarm with the RESET key. Restart part program
4026 Machine data %1[%2], link axis NC%3_AX%4 not used by any channel

Parameters:
- %1 = String: MD identifier
- %2 = Index: MD array
- %3 = NCU number
- %4 = Machine axis number

Definitions: The link axis is not referenced by any channel.

Reaction:
- NC not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Correct and complete the logical axis assignments. Check machine data MD20070 $MC_AXCONF_MACHAX_USED and MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB.

Program Continuation:
- Switch control OFF - ON.

4027 NOTICE! MD %1 was also changed for the other axes of axis container %2

Parameters:
- %1 = String: MD identifier
- %2 = Axis container number

Definitions: Message to the user indicating that the machine data change for the axis was also performed for all other axes in the same container.

Reaction: Alarm display.

Remedy: None

Program Continuation:
- Clear alarm with the Delete key or NC START.

4028 Attention! The axial MDs of the axes of the axis containers were matched.

Definitions: Note for the user, that the machine data of the axis were matched in the axis containers.

Reaction: Alarm display.

Remedy: None

Program Continuation:
- Clear alarm with the RESET key. Restart part program

4029 NOTICE! The axial MDs in axis container %1 will be matched on the next power-up

Parameters: %1 = Axis container number

Definitions: Message to the user indicating that the machine data of the axes in the axis container will be matched on the next power-up. An axis container allows axes to be exchanged between channels and NCUs. To ensure that no conflicts arise, the axes within the same axis container must have a similar behavior. The first axis in the axis container determines which machine data have to be the same for the other axis in the axis container.

Reaction: Alarm display.

Remedy: None

Program Continuation:
- Clear alarm with the Delete key or NC START.

4030 [Channel %1:] Identifier missing in machine date %2[%3]

Parameters:
- %1 = Channel number
- %2 = String: MD identifier
- %3 = Index: MD array index

Definitions: An axis identifier is expected for the displayed MD in accordance with the axis configuration in the MD20070 $MC_AXCONF_MACHAX_USED and MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB.
Reaction:
NC not ready.
Mode group not ready. Also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
Check axis configuration and enter the missing identifier into the MD or, should the axis not exist,
specify for this channel axis the machine axis 0 in the channel-specific MD20070 $MC_AXCONF_MACHAX_USED. If this concerns a geometry axis that is not to be used (this applies only for 2-axis machining, e.g. on lathes), then channel axis 0 must be entered additionally in the channel-specific MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB.

Program Continuation:
Switch control OFF - ON.

4031 [Channel %1:] Link axis %2 defined for more than one channel in machine data %3

Parameters:
%1 = Channel number
%2 = Index: Axis number for logical axis assignment
%3 = String: MD identifier

Definitions:
- NC not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct the MD20070 $MC_AXCONF_MACHAX_USED or assign a master channel. In the event of a link communication failure, these error causes have to be remedied first.

Program Continuation:
Switch control OFF - ON.

4032 [Channel %1:] Wrong identifier for facing axis in %2

Parameters:
%1 = Channel number
%2 = String: MD identifier

Definitions:
According to the axis configuration in MD20150 $MC_GCODE_RESET_VALUES or MD20100 $MC_DIAMETER_AX_DEF, a facing axis identifier is expected at the specified location.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Add the correct identifier.

Program Continuation:
Switch control OFF - ON.
4033 NOTICE! NCU link communication still not connected

Definitions: The NCU link communication could not be established due to other active alarms. This is the case, for example, if during boot-up the system detects and modifies incorrect cycle times (see alarm 4110).

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Analyze and fix the other alarms and start the control again.

Program Continuation: Switch control OFF - ON.

4034 Local link axis %1 is not allowed for different interpolation cycle time = %2/%3

Parameters: %1 = Axis name
%2 = Local interpolation cycle
%3 = Max. interpolation cycle

Definitions: Local link axes are only permissible on an NCU if the interpolation cycle set corresponds to the slowest interpolation cycle of the interconnected NCU systems.

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Remove local link axis (see MD10000 $MN_AXCONF_MACHAX_NAME_TAB and MD12701$MN_AXCONF_ASSIGN_TAB1) or adapt the interpolation cycle (MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO).

Program Continuation: Switch control OFF - ON.

4035 Interpolation cycle from NCU%1 = %2 does not match NCU%3 = %4

Parameters: %1 = NCU_number1
%2 = MD value of NCU_number1
%3 = NCU_number2 (with slowest IPO cycle)
%4 = MD value of NCU_number2

Definitions: Occurs only with an NCU link system. The interpolation cycles of the NCUs specified in the alarm do not match one another. The slowest IPO cycle in interconnected NCU systems must be an integral multiple of all configured IPO cycles.

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Set a suitable value in MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO for all interconnected NCUs.

Program Continuation: Switch control OFF - ON.

4036 Wrong NCU link configuration by MD %1

Parameters: %1 = String: MD identifier

Definitions: Occurs only with an NCU link system. Different interpolation and position control cycles have been set in the NCUs of the LINK group. This is only allowed if the function FAST-IPO-LINK in MD18780 $MN_MM_NCU_LINK_MASK has been activated.

Caution: For diagnostic purposes, two additional alarm parameters are output together with this alarm.
- 1. 2nd parameter: Position control or IPO cycle time of this NCU
- 2. 2nd parameter: Position control or IPO cycle time of another NCU.
NCK alarms

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: - Activate FAST-IPO-LINK function in MD18780 $MN_MM_NCU_LINK_MASK
- Or do not set different position control or IPO cycles on the NCUs (see MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO and MD10060 $MN_POSCTRL_SYSCLOCK_TIME_RATIO).

Program Continuation: Switch control OFF - ON.

4040 [Channel %1:] Axis identifier %2 not consistent with machine data %3

Parameters:
%1 = Channel number
%2 = String: Axis identifier
%3 = String: MD identifier
%4 = There are not enough channel axes entered in the MD displayed.

Definitions: The use of the specified axis identifier in the displayed MD is not consistent the channel's axis configuration stated in the MD20070 $MC_AXCONF_MACHAX_USED and MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB.
Only with active "OEM transformation" compile cycle: There are not enough channel axes entered in the MD displayed.

Reaction: NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
Check and correct the identifier used in the MD10000 $MN_AXCONF_MACHAX_NAME_TAB, MD20080 $MC_AXCONF_CHANAX_NAME_TAB and/or MD20060 $MC_AXCONF_GEOAX_NAME_TAB.
Only with active "OEM transformation" compile cycle: In addition to the specified MD, check and correct MD24110 $MC_TRAFO_AXES_IN_1[n] of the activated OEM transformation according to the function description.

Program Continuation: Switch control OFF - ON.

4045 [Channel %1:] Conflict between machine data %2 and machine data %3

Parameters:
%1 = Channel number
%2 = String: MD identifier
%3 = String: MD identifier

Definitions: Using the specified machine data %1 leads to a conflict with machine data %2.

Reaction: NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Correct the specified machine data.

Program Continuation: Switch control OFF - ON.
4050 NC code identifier %1 cannot be reconfigured to %2
Parameters: %1 = String: Old identifier
 %2 = String: New identifier
Definitions: Renaming of an NC code was not possible for one of the following reasons:
 - The old identifier does not exist
 - The new identifier lies in another type range.
 NC codes/keywords can be reconfigured via machine data as long as the type range is not aban-
 doned.
 Type 1: "real" G codes: G02, G17, G33, G64, ...
 Type 2: named G codes: ASPLINE, BRISK, TRANS, ...
 Type 3: settable addresses: X, Y, A1, A2, I, J, K, ALF, MEAS, ...
Reaction: NC not ready.
 Mode group not ready, also effective for single axes
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department.
 Correct MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB (protection level 1).
 The list must be built up as follows:
 Even address: Identifier to be modified.
 Following odd address: New identifier
 e.g.: $MN_NC_USER_CODE_CONF_NAME_TAB [10] = "ROT"
 clears the ROT function from the control
Program Con-
tinuation: Switch control OFF - ON.

4060 Standard machine data loaded (%1, %2, %3, %4)
Parameters: %1 = Identifier 1
 %2 = Identifier 2
 %3 = Identifier 3
 %4 = Identifier 4
Definitions: The standard MD were loaded because
 - a cold start was requested or
 - the MD buffer voltage failed or
 - an initialization was requested for loading the standard machine data (MD11200 $MN_INIT_MD).
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. After automatically loading the standard
 MDs, the individual MDs must be entered or loaded in the relevant system.
Program Con-
tinuation: Clear alarm with the RESET key. Restart part program

4062 Backup data loaded
Definitions: The user data saved in the flash memory are loaded to the SRAM.
Reaction: Alarm display.
Remedy: Load specific machine data again.
Program Con-
tinuation: Clear alarm with the RESET key. Restart part program
4065 Buffered memory was restored from backup medium (potential loss of
data!)

Definitions:
- Only occurs with SINUMERIK 840D / 840Di sl / 802D.
- 840Di sl only
- The user data of the NC and the remanent data of the PLC are stored in the static memory area
(SRAM) of the MCI board. The content of the SRAM is backed up as an SRAM image on PCU hard
disk at each "NCK POWER ON reset" and each time Windows XP is closed down normally. The previously
valid SRAM image then becomes the SRAM backup, which is also stored on the PCU hard
disk.
- The SRAM backup is used and alarm 4065 issued in the following cases:

<table>
<thead>
<tr>
<th>MCI board</th>
<th>SRAM MCI board</th>
<th>SRAM image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unknown</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Unknown</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

!! Only for 802D

The reason for this alarm is that the backup time is exceeded. Make sure that the required operating
time of the control corresponds to the specifications in your Installation & Start-up Guide. The current
backup copy of the buffered memory has been created by the last internal data backup via the "Save
data" softkey on the HMI.

Reaction:
- NC not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Make a POWER ON reset.
- 840Di / 840Di sl only:
 - Alarm 4065 also has to be acknowledged on the HMI after a POWER ON reset:
 - HMI: Operating area switchover > Diagnostics > NC/PLC Diagnostics > Diagnostics > "Acknowledge
 alarm 4065" button

Note
- Press the "ETC" key to change to the secondary softkey bar in order to acknowledge the alarm with
 a softkey.

Program Con-
tinuation:
- Switch control OFF - ON.

4070 Normalizing machine data has been changed

Definitions:
- The control uses internal physical units (mm, degrees, s, for paths, velocities, acceleration, etc.). During
programming or data storage, some of these values are input and output using different units
(rev./min, m/s2, etc.).
- The conversion is carried out with the scaling factors that can be entered (system specific MD array
MD10230 $MN_SCALING_FACTORS_USER_DEF USER_DEF[n] (n ... index number 0 - 10), when
the corresponding masking bit is set to "1".
- If the masking bit is set to "0" then scaling takes place with the internal standard factors.
- The following machine data influence the scaling of other MDs:
 - MD10220: $MN_SCALING_USER_DEF_MASK
 - MD10230: $MN_SCALING_FACTORS_USER_DEF
 - MD10240: $MN_SCALING_SYSTEM_IS_METRIC
 - MD10250: $MN_SCALING_VALUE_INCH
 - MD30300: $MA_IS_ROT_AX
- If these data are modified, the NCK must be powered up again. Only then will the input of dependent
data be performed correctly.

Reaction:
- Alarm display.

Remedy:
- Please inform the authorized personnel/service department.
- If the alarm has been displayed after downloading an MD file which is consistent within itself, then the
download operation must be repeated with a new NC power-up. (The file contains scaling-dependent
machine data in front of the scaling factors).

Program Con-
tinuation:
- Clear alarm with the Delete key or NC START.
4071
Check the position of the encoder

Definitions:
A machine data has been changed that affects the value of an absolute encoder position. Please check the position values.

For absolute encoders:
Encoder adjustment has been changed, the machine reference of the axis position may have changed, check the encoder adjustment.

Other encoders:
The reference point of the axis position has been changed, check the referencing procedure.

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department.

Program Continuation:
Clear alarm with the Delete key or NC START.

4073
Compile cycle functions define machine data number %1 several times

Parameters:
%1 = Machine data number

Definitions:
Can only occur when installing compile cycle functions. Two different compile cycle applications use the same machine data number. The machine data which was defined twice is shifted into the free number range above 64000.

Reaction:
Alarm display.

Remedy:
The error has no effect on the usability of the machine data and the function of the compile cycle application. To ensure that the compile cycle machine data documentation is correct, you must contact the supplier of the compile cycle. Only the supplier can remedy the error by changing the software.

Program Continuation:
Switch control OFF - ON.

4075
Machine data %1 (and maybe others) not changed due to missing permission level %2

Parameters:
%1 = String: MD identifier
%2 = Write protection level of the MD

Definitions:
On executing a TOA file or when writing machine data from the part program, an attempt has been made to write an item of data with a higher protection level than the access authorization currently set in the control. The item of data in question has not been written and program execution is continued. This alarm is set only when access violation is detected for the first time.

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Set the required access level by means of keyswitch or password entry or delete the machine data concerned from the MD file/part program.

Program Continuation:
Clear alarm with the Delete key or NC START.

4076
Machine data could not be changed with permission level %2

Parameters:
%1 = Number of MDs
%2 = Preset access authorization

Definitions:
On executing a TOA file or when writing data from the part program an attempt has been made to write data with a higher protection level than the access authorization currently set in the control. The data in question have not been written and program execution is continued without hindrance. This alarm is issued on acknowledging alarm 4075. It can be cleared only with Power ON.

Reaction:
NC Start disable in this channel.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Set the required access level by means of keyswitch or password entry or delete the machine data concerned from the MD file/part program.

Program Continuation:
Switch control OFF - ON.

4077
New value %1 of MD %2 not set. Requested %3 bytes too much %4 memory.

Parameters:
%1 = New value of machine data
%2 = Machine data number
%3 = Number of bytes requested that exceeded availability
%4 = Type of memory
Definitions: An attempt was made to enter a new value in the specified memory configuration machine data. It was not possible to modify the value, as this would have cleared the contents of the user memory. This was because the memory requested exceeded the available capacity.

The third parameter specifies the number of bytes by which the maximum user memory was exceeded. The fourth parameter specifies the type of memory whose limit was exceeded.

- "D" stands for dynamic or non-buffered user memory (this is where, for example, the LUD variables are stored and the interpolation buffer size is entered). The capacity of this memory type is defined by the current memory configuration and the value in $MN_MM_USER_MEM_DYNAMIC.
- "S" stands for static or buffered user memory (this is where part programs, offset data, R parameters, tool data, etc. are stored). This memory type is defined by the current memory configuration and the value in $MN_MM_USER_MEM_BUFFERED.
- "iS" stands for internal static or buffered user memory. This memory type is defined by the current memory configuration (not settable). A few NCK functions use this memory.

Reaction: Alarm display.

Remedy: If the modification was unintentional, ignore the error message and continue. The alarm has no negative effects. The remedy depends on the access right and the current memory configuration of the NCK:

- The intended change is not possible -> Try again with a smaller value. Observe the change in the number of bytes.
- Is it possible to expand the memory? This option depends on the model in use. (Not possible if parameter 4 equals "iS").
- The NCK user memory may have been set smaller than it could be. With the appropriate access authorization, the machine data (see above) can be changed.
- If parameter 4 equals "iS" and no synchronous actions are used, then $MN_MM_ACTFILESYS_LOG_FILE_MEM[2] = 0 can be set. Otherwise the desired machine data change cannot be made.

Program Continuation: Clear alarm with the Delete key or NC START.

4080 Incorrect configuration of indexing axis in MD %1

Parameters: %1 = String: MD identifier

Definitions: The assignment of a position table to an indexing axis or the contents of a position table contains an error, or the length of a position table has been parameterized with 0.

Reaction: NC not ready.

Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. 3 MD identifiers are output, depending on the type of error.

1. MD30500 $MA_INDEX_AX_ASSIGN_POS_TAB: the error is due to multiple assignment of a position table MD10910 $MN_INDEX_AX_POS_TAB_1 or MD10930 $MN_INDEX_AX_POS_TAB_2 to axes with different types (linear/rotary axis).
2. MD10910 $MN_INDEX_AX_POS_TAB_1 or MD10930 $MN_INDEX_AX_POS_TAB_2: the contents of the displayed tables are incorrect.
 - The entered positions must be arranged in increasing size.
 - A particular position must not be set more than once.
 - If the table is assigned to one or several modulo axes, then the contents must be within the 0 to < 360 degree range.
3. MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1 or MD10920 $MN_INDEX_AX_LENGTH_POS_TAB_2: the length of the displayed position table n was specified with 0.

Program Continuation: Clear alarm with the RESET key. Restart part program.
4090 Too many errors during power-up
Definitions: More than \(n \) errors occurred during control power-up.
Reaction: NC Start disable in this channel.
Alarm display.
Remedy: Set the machine data correctly.
Program Continuation: Switch control OFF - ON.

4099 \(%1 \) error(s) during processing of MD initialization
Parameters: \(%1 = \) Number of errors
Definitions: Errors occurred during processing of the machine data initializations. See the power-up log files for a more detailed description of the errors.
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department.
Program Continuation: Clear alarm with the RESET key in all channels. Restart part program.

4100 System cycle time/scan time divider corrected for digital drive
Definitions: MD10050 $MN_SYSCLOCK_CYCLE_TIME (system clock cycle) and/or MD10080 $MN_SYSCLOCK_SAMPL_TIME_RATIO (division factor of the position control cycle for actual value acquisition) have been corrected.
The new value of the system clock cycle can be taken from MD10050 $MN_SYSCLOCK_CYCLE_TIME.
For PROFINET: The sampling cycle to which the digital drive is synchronized (drive clock cycle) is largely determined by the cycle specifications of the STEP 7 project (above all the PROFIBUS and PROFINET cycle grids).
An additional, independent cycle division factor is not required for the actual value acquisition (that means MD10080 $MN_SYSCLOCK_SAMPL_TIME_RATIO = 1 usually applies).
Reaction: Alarm display.
Remedy: No remedial measures are required. The alarm display can be canceled with Reset.
Program Continuation: Clear alarm with the Delete key or NC START.

4110 IPO cycle changed to \(%1 \) ms
Parameters: \(%1 = \) String (new IPO cycle time)
Definitions: The IPO cycle divisor was set to a value which was not an integral multiple of the position control cycle divisor. The divisor (MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO) was increased.
For PROFIBUS/PROFINET: MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO has been modified because of the modified DP cycle in the SDB (MD10050 $MN_SYSCLOCK_CYCLE_TIME).
Reaction: Alarm display.
Remedy: MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO has been modified.
Program Continuation: Clear alarm with the RESET key. Restart part program.

4111 PLC cycle increased to \(%1 \) ms
Parameters: \(%1 = \) String (new PLC cycle time)
Definitions: The PLC cycle divisor was set to a value which was not an integral multiple of the IPO cycle divisor. The divisor (MD10074 $PLC_IPO_TIME_RATIO) has been increased.
For PROFIBUS/PROFINET: MD10074 $PLC_IPO_TIME_RATIO has been modified because of the modified DP cycle in the SDB (MD10050 $SYSCLOCK_CYCLE_TIME).
Reaction: Alarm display.
Remedy: MD10074 $MN_PLC_IPO_TIME_RATIO has been modified.
Program Continuation: Clear alarm with the RESET key. Restart part program.
4112 Servo cycle changed to %1 ms
Parameters: %1 = String (new servo cycle time)
Definitions: For PROFIBUS/PROFINET only:
MD10060 $POSCTRL_SYSCLK_TIME_RATIO has been modified because of the modified DP cycle in the SDB (MD10050 $SYSCLK_CYCLE_TIME).
Reaction: Alarm display.
Remedy: MD10060 $MN_POSCTRL_SYSCLK_TIME_RATIO RATIO has been modified.
Program Con-

4113 Sysclock cycle changed to %1 ms
Parameters: %1 = String (new PLC cycle time)
Definitions: For PROFIBUS/PROFINET only:
MD10050 $SYSCLK_CYCLE_TIME has been modified because of the modified DP cycle in the SDB.
Reaction: Alarm display.
Remedy: MD10050 $MN_SYSCLK_CYCLE_TIME has been modified.
Program Con-

4114 Error in DP cycle of the SDB
Parameters: %1 = String (new PLC cycle time)
Definitions: For PROFIBUS/PROFINET only:
The DP cycle in the SDB contains an error and cannot be set. The default value of MD10050$MN_SYSCLK_CYCLE_TIME is set.
Reaction: Alarm display.
Remedy: Correct the SDB
Program Con-

4115 Time ratio communication to Ipo changed to %1
Parameters: %1 = String (new PLC cycle time)
Definitions: The value of the MD10072 $MN_COM_IPO_TIME_RATIO has been adapted. This can only occur, if the value of the machine data is smaller than one and the time thus calculated is no multiple of the position control cycle.
Reaction: Alarm display.
Remedy: The MD10072 $MN_COM_IPO_TIME_RATIO has been adapted. Please check to ensure that the calculated value is correct.
Program Con-

4150 [Channel %1:] Invalid M function subprogram call configured
Parameters: %1 = Channel number
Definitions: MD10715 $MN_M_NO_FCT_CYCLE[n] or MD10718 $MN_M_NO_FCT_CYCLE_PAR contains invalid configuration data: An M function, which is occupied by the system and cannot be replaced by a subprogram call has been specified in MD10715 $MN_M_NO_FCT_CYCLE[n] for the configuration of the subprogram call via M function:
- M0 to M5,
- M17, M30,
- M19, M40 to M45,
- M function for selecting spindle/axis mode according to MD20094 $MC_SPIND_RIGID_TAPPING_M_NR (default: M70),
- M functions for nibbling/punching as configured in MD26008 $MC_NIBBLE_PUNCH_CODE if activated by MD26012 $MC_PUNCHNIB_ACTIVATION,
- Also M96 to M99 for applied external language (MD18800 $MN_MM_EXTERN_LANGUAGE).
MD10718 $MN_M_NO_FCT_CYCLE_PAR contains an invalid array index of MD10715 $MN_M_NO_FCT_CYCLE[n]. Currently, the values 0 to 9 are permissible. The affected machine data is reset to the default value -1. This deactivates the function.

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Configure an M function in MD10715 $MN_M_NO_FCT_CYCLE[n] that is not occupied by the system, or configure a permissible array index in MD10718 $MN_M_NO_FCT_CYCLE_PAR.

Program Continuation:
Switch control OFF - ON.

4152

Illegal configuration of the 'Block display with absolute values' function

Definitions:
The "Block display with absolute values" function has been illegally parameterized:
- An illegal block length has been set with MD28400 $MC_MM_ABSBLOCK:
 - While ramping up, the machine data will be checked for the following value range:
 - 0, 1, 128 to 512
- An invalid display range has been set with MD28402 $MC_MM_ABSBLOCK_BUFFER_CONF[].
 - While ramping up, the machine data will be checked for the following upper and lower limits:
 - $0 <= MD28402 $MC_MM_ABSBLOCK_BUFFER_CONF[0] <= 8$
 - $0 <= MD28402 $MC_MM_ABSBLOCK_BUFFER_CONF[1] <= (MD28060 $MC_MM_IPO_BUFFER_SIZE + MD28070 $MC_MM_NUM_BLOCKS_IN_PREP)$
 - Alarm 4152 is issued if the limits are violated.

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Configure block length/display range within the permissible limits.

Program Continuation:
Switch control OFF - ON.

4160

[Channel %1:] Invalid M function number configured for spindle switchover

Parameters:
- %1 = Channel number

Definitions:
An M function was specified in MD20094 $MC_SPIND_RIGID_TAPPING_M_NR in order to configure the M function number for spindle switchover. The M function number is assigned by the system and cannot be used for the switchover (M1 to M5, M17, M30, M40 to M45).

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Configure an M function which is not used by the system (M1 to M5, M17, M30, M40 to M45) in MD20094 $MC_SPIND_RIGID_TAPPING_M_NR.

Program Continuation:
Switch control OFF - ON.
4170 Invalid M function number for channel synchronisation assigned
Definitions: An M number between 0 and 99 has been specified in machine data MD10800
$MN_EXTERN_CHAN_SYNC_M_NO_MIN or MD10802
$MN_EXTERN_CHAN_SYNC_M_NO_MAX for the configuration of the M number range for channel
synchronization in ISO2/3 mode or the machine data MD10802
$MN_EXTERN_CHAN_SYNC_M_NO_MAX is smaller than MD10800
$MN_EXTERN_CHAN_SYNC_M_NO_MIN.
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Check MD10800 $MN_EXTERN_CHAN_SYNC_M_NO_MIN and MD10802
$MN_EXTERN_CHAN_SYNC_M_NO_MAX.
Program Continuation: Switch control OFF - ON.

4180 Invalid M function number assigned to enable ASUP
Definitions: An invalid M function number has been assigned for activation of ASUP. An illegal M number has been
assigned in MD10804 $MN_EXTERN_M_NO_SET_INT or MD10806
$MN_EXTERN_M_NO_DISABLE_INT for the configuration of the M number range for activa-
tion/deactivation of the interrupt program.
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Check MD10804 $MN_EXTERN_M_NO_SET_INT and MD10806
$MN_EXTERN_M_NO_DISABLE_INT.
Program Continuation: Switch control OFF - ON.

4181 [Channel %1:] Invalid assignment of an M auxiliary function number
Parameters: %1 = Channel number
Definitions: In MD22254 $MC_AUXFU_ASSOC_M0_VALUE or MD22256 $MC_AUXFU_ASSOC_M1_VALUE, a
number has been specified for the configuration of a new predefined M function which is occupied by
the system, and cannot be used for an assignment. (M0 to M5, M17, M30, M40 to M45).
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Configure an M function in machine data MD22254 $MC_AUXFU_ASSOC_M0_VALUE or MD22256
$MC_AUXFU_ASSOC_M1_VALUE which is not occupied by the system (M1 to M5, M17, M30, M40
to M45).
Program Continuation: Switch control OFF - ON.

4182 [Channel %1:] Invalid M auxiliary function number in %2%3, MD reset
Parameters: %1 = Channel number
%2 = MD identifier
%3 = If required, MD index
Definitions: In the specified machine data, a number has been specified for the configuration of an M function
which is occupied by the system, and cannot be used for an assignment. (M0 to M5, M17, M30, M40
to M45 and also M98, M99 with applied ISO dialect). The value set by the user has been reset to the
default value by the system.
4183
[Channel %1:] M auxiliary function number %2 used several times (%3 and %4)

Parameters:
%1 = Channel number
%2 = M auxiliary function number
%3 = MD identifier
%4 = MD identifier

Definitions:
In the specified machine data, a number has been used several times for the configuration of an M function.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4184
[Channel %1:] Illegally predefined auxiliary function in %2%3, MD reset

Parameters:
%1 = Channel number
%2 = MD identifier
%3 = If required, MD index

Definitions:
In the specified machine data, a predefined auxiliary function has been illegally configured.
The value set by the user has been reset to the default value by the system.

Program Continuation:
Switch control OFF - ON.

4185
[Channel %1:] Illegal auxiliary function configured %2 %3 %4

Parameters:
%1 = Channel number
%2 = Type of auxiliary function
%3 = Extension
%4 = Auxiliary function value

Definitions:
An auxiliary function has been illegally configured.
Predefined auxiliary functions cannot be reconfigured by user-defined auxiliary functions.
See:
MD22010 $MC_AUXFU_ASSIGN_TYPE[n]
MD22020 $MC_AUXFU_ASSIGN_EXTENSION[n]
MD22030 $MC_AUXFU_ASSIGN_VALUE[n]
MD22035 $MC_AUXFU_ASSIGN_SPEC[n]
Overview of Alarms 03/2009

NCK alarms

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Reconfigure the auxiliary function.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4200
[Channel %1:] Geometry axis %2 must not be declared a rotary axis

Parameters:
%1 = Channel number
%2 = Axis name

Definitions:
The geometry axes represent a Cartesian coordinate system and therefore the declaration of a geometry axis as rotary axis leads to a definition conflict.

Reaction:
NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
Remove rotary axis declaration for this machine axis.
For this purpose, the geometry axis index for the displayed geometry axis must be determined by means of MD20060 $MC_AXCONF_GEOAX_NAME_TAB. The channel axis number is stored with the same index in MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB. The channel axis number minus 1 provides the channel axis index under which the machine axis number is found in MD20070 $MC_AXCONF_MACHAX_USED.

Program Continuation:
Switch control OFF - ON.

4210
[Channel %1:] Spindle %2 declaration as rotary axis missing

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
If a machine axis is to be operated as a spindle, this machine axis must be declared as a rotary axis.

Reaction:
NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Set rotary axis declaration for this machine axis in the axis-specific MD30300 $MA_IS_ROT_AX.

Program Continuation:
Switch control OFF - ON.

4215
[Channel %1:] Spindle %2 declaration as modulo axis missing

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
The spindle functionality requires a modulo axis (positions in [deg]).

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Set MD30310 $MA_ROT_IS_MODULO.

Program Continuation:
Switch control OFF - ON.
4220 [Channel %1:] Spindle %2 declared repeatedly
Parameters: %1 = Channel number
%2 = Axis name, spindle number
Definitions: The spindle number exists more than once in the channel.
Reaction: NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department.
The spindle number is stored in the axis-specific MD35000 $MA_SPIND_ASSIGN_TO_MACHAX.
The channel to which this machine axis/spindle is assigned is listed in the machine axis index. (The
machine axis number is given in the channel-specific MD20070 $MC_AXCONF_MACHAX_USED).
Program Continuation: Switch control OFF - ON.

4225 [Channel %1:] Axis %2 declaration as rotary axis missing
Parameters: %1 = Channel number
%2 = Axis name, axis number
Definitions: The modulo functionality requires a rotary axis (positions in [deg]).
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department.
Set MD30300 $MA_IS_ROT_AX.
Program Continuation: Switch control OFF - ON.

4230 [Channel %1:] Data alteration from external not possible in current channel state
Parameters: %1 = Channel number
Definitions: It is not allowed to enter this data while the part program is being executed (e.g. setting data for working area limitation or for dry run feedrate).
Reaction: Alarm display.
Remedy: The data to be entered must be altered before starting the part program.
Program Continuation: Clear alarm with the Delete key or NC START.

4240 Runtime overflow for IPO cycle or position controller cycle, IP %1
Parameters: %1 = Program location
Definitions: The settings for the interpolation and position control cycle were modified before the last power-up such that too little computing time is now available for the requisite cyclic task.
The alarm occurs immediately after power-up if too little runtime is available even when the axes are stationary and the NC program has not started. However, task overflow can occur only when computation-intensive NC functions are called during program execution.
Reaction: NC not ready.
The NC switches to follow-up mode.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Alarm reaction delay is cancelled.
Remedy: Please inform the authorized personnel/service department. Take greater care when optimizing the clock times MD10050 $MN_SYSCLK_CYCLE_TIME, MD10060 $MN_POSCTRL_SYSCLK_TIME_RATIO and/or MD10070 $MN_IPO_SYSCLK_TIME_RATIO. The test should be performed with an NC program that represents the highest possible control load. To be on the safe side, a margin of 15 to 25% should be added to the times determined in this way.

Program Continuation: Switch control OFF - ON.

4250 FastPlcCom functionality not available
Definitions: This alarm indicates that the PLC provides the None FastPlcCom functionality during start-up although this functionality is requested by the NCK.
Reaction: Alarm display.
Remedy: Retrofit the PLC with the FastPlcCom functionality or deactivate the FastPlcCom functionality by means of NCK machine data.
Program Continuation: Clear alarm with the RESET key. Restart part program

4252 PLCIO read error: %1
Parameters: %1 = PLCIO error code
Definitions: This alarm indicates that errors occurred when reading the PLCIO with the FastPlcCom functionality.
- PLC hardware does not exist
- Incorrect data transmission
- Functionality is already used by 'technological function'.
Reaction: Alarm display.
Remedy: Check machine data MD10394 $MN_PLCIO_NUM_BYTES_IN / MD10395 $MN_PLCIO_LOGIC_ADDRESS_IN.
Check PLC hardware configuration.
Check whether 'technological function' already uses the functionality.
Program Continuation: Clear alarm with the RESET key. Restart part program

4254 PLCIO write error: %1
Parameters: %1 = PLCIO error code
Definitions: This alarm indicates that errors occurred when writing on the PLCIO with the FastPlcCom functionality.
- PLC hardware does not exist
- Incorrect data transmission
- Functionality is already used by 'technological function'.
Reaction: Alarm display.
Remedy: Check machine data MD10396 $MN_PLCIO_NUM_BYTES_OUT / MD10397 $MN_PLCIO_LOGIC_ADDRESS_OUT.
Check PLC hardware configuration.
Check whether 'technological function' already uses the functionality.
Program Continuation: Clear alarm with the RESET key. Restart part program
4260 Machine data %1 illegal

Parameters:
- %1 = String: MD identifier

Definitions:
The selected cam pair was not activated by MD10450 $MN_SW_CAM_ASSIGN_TAB, or several cam pairs were selected.

Reaction:
- Mode group not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Activate the cam pair or select only one cam pair.

Program Continuation:
Switch control OFF - ON.

4270 Machine data %1 assigns not activated NCK input/output byte %2

Parameters:
- %1 = String: MD identifier
- %2 = Index

Definitions:
The specified machine data assigns a digital input/output byte or an analog input/output signal the processing of which has not been activated to an NC function.

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Correct machine data. Activate required inputs/outputs via MDs:
- MD10350 $MN_FASTIO_DIG_NUM_INPUTS
- MD10360 $MN_FASTIO_DIG_NUM_OUTPUTS
- MD10300 $MN_FASTIO_ANA_NUM_INPUTS
- MD10310 $MN_FASTIO_ANA_NUM_OUTPUTS

Activation of fast inputs/outputs does not require the corresponding hardware configuration to be available at the control. All functions using fast inputs/outputs can also be made use of by the PLC specification/modification defined in the VDI interface, if the response time requirements are reduced accordingly. Activated inputs/outputs increase the computation time requirement of the interpolation cycle because the PLC manipulation signals are handled cyclically. Note: Deactivate any inputs/outputs not in use.

Program Continuation:
Switch control OFF - ON.

4275 Machine data %1 and %2 both assign the same NCK output byte no. %3 several times

Parameters:
- %1 = String: MD identifier
- %2 = String: MD identifier
- %3 = No. of output

Definitions:
The specified machine data assign two NC functions to the same digital/analog output.

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Correct machine data.

Program Continuation:
Switch control OFF - ON.
4280 Assignment of NCK input/output byte via MD %1[%2] does not match hardware configuration

Parameters:
%1 = String: MD identifier
%2 = Index: MD array

Definitions:
When booting, the required input/output module was not found at the slot specified in the MD.

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Check hardware or correct the MD, if necessary. Note: monitoring of the hardware configuration is performed independently of the number of activated inputs/outputs (MD10300 $MN_FASTIO_ANA_NUM_INPUTS, MD10310 $MN_FASTIO_ANA_NUM_OUTPUTS, MD10350 $MN_FASTIO_DIG_NUM_INPUTS, MD10360 $MN_FASTIO_DIG_NUM_OUTPUTS)

Program Continuation:
Switch control OFF - ON.

4282 Hardware of external NCK outputs assigned repeatedly

Definitions:
Several outputs have been configured on the same hardware byte.

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Alter MD10368 $MN_HW_ASSIGN_DIG_FASTOUT or MD10364 $MN_HW_ASSIGN_ANA_FASTOUT.

Program Continuation:
Switch control OFF - ON.

4285 Error on terminal block %1, error code %2

Parameters:
%1 = Number of terminal block (1 ... 4)
%2 = Error code

Definitions:

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Check hardware.

Program Continuation:
Switch control OFF - ON.

4290 Sign of life monitoring: local P-bus not alive

Definitions:
The COM computer must alter the sign-of-life on the local P-bus in each SERVO cycle. Monitoring for alteration takes place in the IPO cycle. If the sign of life has not altered, this alarm is triggered.

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Check hardware.

Program Continuation:
Switch control OFF - ON.
4291 Failure of module in local P-bus slot %1, error codes %2 %3 %4
Parameters: %1 = Slot number
 %2 = Error code
 %3 = Error code
 %4 = Error code
Definitions: The module on the specified slot has signaled a diagnostics alarm. The error code reported corresponds to the AS300 documentation.
Reaction: NC not ready.
 Channel not ready.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Check hardware.
Program Continuation: Switch control OFF - ON.

4300 Declaration in MD %1 is not allowed for axis %2.
Parameters: %1 = String: MD identifier
 %2 = Axis name, spindle number
Definitions: The axis cannot be operated as competing positioning axes, for example because the axis is the slave axis within a closed gantry group or a gantry group to be closed.
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. Reset MD30450 $MA_IS_CONCURRENT_POS_AX for the axis concerned.
Program Continuation: Clear alarm with the RESET key. Restart part program.

4310 Declaration in MD %1 index %2 is not allowed.
Parameters: %1 = String: MD identifier
 %2 = Index: MD array index
Definitions: The machine data values must be written in the array in ascending order.
Reaction: Mode group not ready.
 Channel not ready.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Correct the MD.
Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

4320 Axis %1 function %2 %3 and %4 not allowed
Parameters: %1 = String: Axis identifier
 %2 = String: MD identifier
 %3 = String: Bit
 %4 = String: MD identifier
Definitions: The functions declared by the specified machine data cannot simultaneously be active for one axis.
Reaction: Mode group not ready.
 Channel not ready.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: Deactivate one of the functions.
Program Continuation: Switch control OFF - ON.
Overview of Alarms 03/2009

NCK alarms

4334 [Channel %1:] The amount of fine correction in parameter %2 of the orientable toolholder %3 is too large

Parameters:
%1 = Channel number
%2 = Invalid parameter of the orientable toolholder
%3 = Number of the orientable toolholder

Definitions:
The maximum permissible value of the fine correction in an orientable toolholder is limited by the
MD20188 $MC_TOCARR_FINE_LIM_LIN for linear variables, and by the machine data MD20190
$MC_TOCARR_FINE_LIM_ROT for rotary variables. The alarm can only occur if the SD42974
$SC_TOCARR_FINE_CORRECTION is not equal to zero.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Enter a valid fine correction value.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4336 [Channel %1:] Orientable toolholder no. %2 for orientation transformation %3 does not exist

Parameters:
%1 = Channel number
%2 = Number of the orientable toolholder
%3 = Number of the orientation transformation that is to be parameterized with the orientable toolholder

Definitions:
The orientable toolholder, with whose data the orientation transformation is to be parameterized (see
MD2.... $MC_TRAFO5_TCARR_NO_...), does not exist.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Enter a valid tool-carrier number.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4338 [Channel %1:] Invalid transformation type '%2' in toolholder %3 for orientation transformer %4

Parameters:
%1 = Channel number
%2 = Transformer type
%3 = Number of the orientable toolholder
%4 = Number of the orientation transformation that is to be parameterized with the orientable toolholder

Definitions:
The parameters of the orientation transformation are taken over from the data of an orientable toolholder. This orientable toolholder contains an invalid transformation type. (Types T, P and M are permissible).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Enter a valid transformation type.

Program Continuation:
Clear alarm with the RESET key. Restart part program

4340 [Channel %1:] Block %2 invalid transformation type in transformation no. %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Transformation number
Definitions: An invalid, i.e. undefined, number was entered in one of the machine data TRAFO_TYPE_1 ...
TRAFO_TYPE_8. This alarm also occurs if a certain type of transformation is only impossible on the
type of control used (e.g. 5-axis transformation on a SINUMERIK 802D).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Enter a valid transformation type.

Program Continuation: Clear alarm with the RESET key. Restart part program

4341 [Channel %1:] Block %2 no data set available for transformation no. %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Transformation number

Definitions: Only a limited number of machine data sets (usually 2) is available for each related group of transfor-
mations (e.g. orientation transformations, Transmit, Tracyl, etc.). This alarm is output if an attempt is
made to set more transformations from a group.
Example:
Two orientation transformations are allowed. The machine data contains e.g.:
TRAFO_TYPE_1 = 16 ; 1st orientation transformation
TRAFO_TYPE_2 = 33 ; 2nd orientation transformation
TRAFO_TYPE_3 = 256 ; 1st transmit transformation
TRAFO_TYPE_4 = 20 ; 3rd orientation transformation => This entry triggers alarm

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Enter valid machine data.

Program Continuation: Clear alarm with the RESET key. Restart part program

4342 [Channel %1:] Invalid machine data for general 5-axis transformation
error no. %2

Parameters: %1 = Channel number
%2 = Error type

Definitions: The machine data which describe the axis directions and the basic orientation and the input axes for
the general 5-axis transformation are invalid. The error parameter displayed specifies the cause of the alarm:
- 1: The first axis (MD2.... $MC_TRAFO5_AXIS1_...) is not defined (all three entries of the vector are
0)
- 2: The second axis (MD2.... $MC_TRAFO5_AXIS2_...) is not defined (all three entries of the vector
are 0)
- 3: The basic orientation (MD2.... $MC_TRAFO5_BASE_ORIENT_...) is not defined (all three entries
of the vector are 0)
- 4: The first and second axis are (virtually) parallel
- 5: On MD2.... $MC_TRAFO_TYPE_ = 56 (rotatable tool and workpiece) there is no 4-axis transfor-
mation, i.e. 2 rotary axes must always be available. (See MD2.... $MC_TRAFO_AXES_IN_...)
- 6: The third axis (MD2.... TRAFO$MC_TRAFO6_AXIS3_...) is not defined (all three entries of the
vector are 0) (6-axis transformation)
- 7: The normal tool vector (MD2.... TRAFO$MC_TRAFO6_BASE_ORIENT_NORMAL_...) is not
defined (all three entries of the vector are 0) (6-axis transformation)
- 8: The basic tool orientation (MD2.... $MC_TRAFO6_BASE_ORIENT_...) and the normal tool vector
(MD2.... $MC_TRAFO6_BASE_ORIENT_NORMAL_...) are (virtually) parallel (6-axis transformation)
- 9: The first external axis (MD2.... $MC_TRAFO7_EXT_AXIS1_...) has not been defined (all three vec-
tor entries are 0) (7-axis transformation)
-10: Invalid transformation type (MD2.... $MC_TRAFO_TYPE_...) A transformation type unequal to
24 has been entered for the generic 7-axis transformation.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Set valid machine data.
Program Continuation: Clear alarm with the RESET key. Restart part program

4343 [Channel %1:] Attempt made to change the machine data of an active transformation.

Parameters: %1 = Channel number
Definitions: An attempt was made to change the machine data of an active transformation and to activate the machine data with RESET or NEWCONFIG.
Reaction: Interpreter stop
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Set valid machine data.
Program Continuation: Clear alarm with the RESET key. Restart part program

4344 [Channel %1:] Block %2 Axis %3 defined in $NK_NAME[%4] is not available in the current channel

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name
%4 = Index of the chain element
Definitions: In the specified chain element a machine axis was indicated that is not available in the current channel on transformation selection. This means that this axis is currently assigned to another channel.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Specify the axis available in the channel.
Program Continuation: Clear alarm with the RESET key. Restart part program

4345 [Channel %1:] Invalid configuration in chained transformation no. %2

Parameters: %1 = Channel number
%2 = Transformation number
Definitions: A chained transformation is incorrectly configured (MD24995 $MC_TRACON_CHAIN_1 or MD24996 $MC_TRACON_CHAIN_2). The following causes for the error are possible:
- The list of transformations to be chained starts with a 0 (at least one entry not equal to zero is required).
- The list of transformations to be chained contains the number of a transformation which does not exist.
- The number of a transformation in the list is greater than or equal to the number of the chained transformation. Example: The cascaded transformation is the fourth transformation in the system, i.e. MD24400 $MC_TRAFO_TYPE_4 = 8192. In this case, only values 1, 2 or 3 may be entered in the associated list (e.g. MD24995 $MC_TRACON_CHAIN_1[...]).
- The chaining setting is invalid. The following restrictions currently apply. A maximum of two transformations can be chained. The first transformation must be an orientation transformation, transmit, peripheral curve transformation or inclined axis. The second transformation must be the inclined axis transformation.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Set a valid transformation chain.
Program Continuation: Clear alarm with the RESET key. Restart part program
4346 [Channel %1:] Invalid geoaxis assignment in machine data %2[%3]
Parameters: %1 = Channel number
%2 = Name of machine data
%3 = Transformation number
Definitions: MD2.... $MC_TRAFO_GEOAX_ASSIGN_TAB_[... contains an invalid entry. The following causes for
the error are possible:
- The entry references a channel axis which does not exist.
- The entry is zero (no axis) but the transformation needs the relevant axis as a geometry axis.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Correct the entry in MD2.... $MC_TRAFO_GEOAX_ASSIGN_TAB_ or MD2....
$MC_TRAFO_AXES_IN_.
Program Continuation: Clear alarm with the RESET key. Restart part program

4347 [Channel %1:] Invalid channel axis assignment in machine data %2[%3]
Parameters: %1 = Channel number
%2 = Name of machine data
%3 = Transformation number
Definitions: MD2.... $MC_TRAFO_AXIS_IN_[... contains an invalid entry. The following causes for the error are
possible:
- The entry refers to a channel axis which does not exist.
- The entry is zero (no axis) but the transformation needs the relevant axis as a channel axis.
- More than one external axis has been entered in MD2.... $MC_TRAFO_AXIS_IN_[... for the 7-axis
transformation.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Correct the entry in MD2.... $MC_TRAFO_AXES_IN_.
Program Continuation: Clear alarm with the RESET key. Restart part program

4348 [Channel %1:] Block %5 Configuration error %6 in transformation
$NT_NAME[%3] = '%2'.
Parameters: %1 = Channel number
%2 = Name of the transformation data record
%3 = Index of the transformation data record
%4 = Block number, label|error number
Definitions: The transformation data record is incorrect. The error cause is defined in detail by the following error
number:
- 1. The machine kinematics have not been defined, i.e. neither $NT_TOOL_CHAIN[n,0] nor
$NT_PART_CHAIN[n,0] refer to kinematic chains.
- 2. The kinematic chain with the name contained in $NT_T_CHAIN_NAME[n] could not be found.
- 3. The kinematic chain element with the name contained in $NT_T_CHAIN_LAST_ELEM[n] could
not be found.
- 4. The kinematic chain element with the name contained in $NT_T_CHAIN_LAST_ELEM[n] could
not be found.
- 5. The kinematic chain with the name contained in $NT_P_CHAIN_NAME[n] could not be found.
NCK alarms

- 6. The kinematic chain element with the name contained in $NT_P_CHAIN_1ST_ELEM[n]$ could not be found.
- 7. The kinematic chain element with the name contained in $NT_P_CHAIN_LAST_ELEM[n]$ could not be found.
- 10. The rotary axis defined in $NT_ROT_AX_NAME[n,0]$ could not be found in any of the relevant kinematic chains.
- 11. The rotary axis defined in $NT_ROT_AX_NAME[n,1]$ could not be found in any of the relevant kinematic chains.
- 12. The rotary axis defined in $NT_ROT_AX_NAME[n,2]$ could not be found in any of the relevant kinematic chains.
- 20. The linear axis defined in $NT_GEO_AX_NAME[n,0]$ could not be found in any of the relevant kinematic chains.
- 21. The linear axis defined in $NT_GEO_AX_NAME[n,1]$ could not be found in any of the relevant kinematic chains.
- 22. The linear axis defined in $NT_GEO_AX_NAME[n,2]$ could not be found in any of the relevant kinematic chains.
- 30. The base orientation has not been defined, i.e. all three components of $NT_BASE_ORIENT[n, 0..2]$ are zero.
- 31. The orientation normal vector has not been defined, i.e. all three components of $NT_BASE_ORIENT_NORMAL[n, 0..2]$ are zero.
- 32. The vectors for the definition of the base orientation ($NT_BASE_ORIENT[n, 0..2]$) and the base normal vector ($NT_BASE_ORIENT_NORMAL[n, 0..2]$) are parallel.
- 40. The first and the second orientation axis of an orientation transformation are parallel.
- 41. The second and the third orientation axis of an orientation transformation are parallel.
- 42. No orientation axis has been defined (an orientation transformation requires at least one orientation axis).
- 43. Invalid 3-axis orientation transformation: the orientation axis is not vertical to the plane created by the two geometry axes.
- 50. Less than two geometry axes were defined for an orientation transformation.
- 51. Not all three geometry axes were defined for an orientation transformation with more than one orientation axis.
- 100. The maximum number of kinematic elements (total of linear axes, rotary axes and constant elements) has been exceeded. A sequence of constant elements in a chain that are not interrupted by an axis, counts as only one element.
- 101. A maximum of 15 kinematic elements is currently permissible for orientation transformations.
- 103. The maximum number of elements in the definition of the kinematic chain for the tool has been exceeded.
- 104. The maximum number of elements in the definition of the kinematic chain for the workpiece has been exceeded.
- 10000. Illegal redundant rotary axis. For the time being, only one redundant axis is permissible for orientation transformation. This rotary axis must be the first axis in the kinematic chain.
- 10001. The type "virtual rotary axis" of a kinematic element is not permissible (for the time being).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Define valid transformation data record.

Program Continuation:
Clear alarm with the RESET key. Restart part program.
4349 [Channel %1:] No free memory space available for transformations.
Parameters: %1 = Channel number
%2 = Number of the transformations already active
Definitions: Any kinematic transformation in the NCK requires a defined memory space. If MD18866
$MN_MM_NUM_KIN_TRAFOS does not equal zero, it indicates how many kinematic transformations
are allowed to be active in the NCK at the same time.
If MD18866 $MN_MM_NUM_KIN_TRAFOS equals zero, the maximum number of kinematic transfor-
mations that are active at the same time, is determined automatically (currently twenty times the num-
ber of the existing channels).
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Increase the value of MD18866 $MN_MM_NUM_KIN_TRAFOS.
Program Con-
tinuation: Clear alarm with the RESET key. Restart part program

4350 [Channel %1:] Axis identifier %2 machine data %3 not consistent with
machine data %4
Parameters: %1 = Channel number
%2 = String: Axis identifier
%3 = String: MD identifier
%4 = String: MD identifier
Definitions: MD32420 $MA_JOG_AND_POS_JERK_ENABLE (jerk limitation) and MD35240
$MA_ACCEL_TYPE_DRIVE (acceleration reduction) have been defined as the normal position for an
axis.
However, the two functions cannot be activated at the same time for one axis.
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Resetting of MD32420
$MA_JOG_AND_POS_JERK_ENABLE or MD35240 $MA_ACCEL_TYPE_DRIVE.
Program Con-
tinuation: Switch control OFF - ON.

4400 MD alteration will cause reorganization of buffered memory (Art %1),
(loss of data!) - %2
Parameters: %1 = Memory type
%2 = MD identifier, if required
Definitions: A machine data has been altered that configures the buffered memory. If the NCK powers up with the
altered data, this will lead to reorganization of the buffered memory and thus to the loss of all buffered
user data (part programs, tool data, GUD, leadscrew error compensation, ...)
Meaning of the 1st parameter
0x00 buffered memory (internal)
0x01 buffered memory
Reaction: Alarm display.
Remedy: If the control includes user data that have not yet been saved, then a data backup must be performed
before the next NC power-up. By manually resetting the altered MD to the value it had before the last
power-up, reorganization of the memory can be avoided.
Program Con-
tinuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
4402 %1 causes a machine data reset
Parameters: %1 = Machine data
Definitions: If this machine data is set, the current machine data values are overwritten by the default values at the next ramp-up. Under certain circumstances, this may cause data loss (even in the buffered memory).
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. If the control includes user data that has not yet been saved, then a data backup must be performed before the next NCK power-up. By manually resetting the altered MD to the value it had before the last power-up, reorganization of the memory can be avoided.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

4502 [Channel %1:] Anachronism %2(%3) -> %4
Parameters: %1 = Channel number
%2 = String: MD identifier
%3 = String: MD identifier
%4 = String: MD identifier
Definitions: Previously, in MD20110 $MC_RESET_MODE_MASK Bit4 and Bit5, the reset behavior of the 6th or 8th G groupe was determined. This setting is now made in MD20152 $MC_GCODE_RESET_MODE. In order to ensure compatible handling of "old" data backups, the "old" values are taken from MD20110 $MC_RESET_MODE_MASK and entered in MD20152 $MC_GCODE_RESET_MODE.
Reaction: Alarm display.
Remedy: --
Program Continuation: Clear alarm with the Delete key or NC START.

4503 [TO unit %1:] H number %2 assigned more than once. H number linked again.
Parameters: %1 = TO unit
%2 = H number
Definitions: This error can only occur when MD10880 $MN_MM_EXTERN_CNC_SYSTEM= 1 or 2. The Power ON effective MD10890, $MN_EXTERN_TOOLPROG_MODE, bit 3 has been reset. On reconstructing data handling after Power ON, it has been found that different edges of the same TO unit have the same H number. They had been linked previously. They are linked again and MD10890 $MN_EXTERN_TOOLPROG_MODE, bit 3 is set again.
Reaction: Alarm display.
Remedy: H numbers must be assigned only once in a TO unit. Then, MD10890, $MN_EXTERN_TOOLPROG_MODE, bit 3 can be set = 0 and a restart can be performed.
Program Continuation: Clear alarm with the Delete key or NC START.

4600 Invalid handwheel type for handwheel %1
Parameters: %1 = Handwheel number
Definitions: The handwheel type (hardware segment) for handwheel %1 requested through MD11350 $MN_HANDWHEEL_SEGMENT is invalid.
Reaction: Interface signals are set. Alarm display.
Remedy: Configure a valid type for the corresponding handwheel through MD11350 $MN_HANDWHEEL_SEGMENT.
Program Continuation: Switch control OFF - ON.
4610 Invalid handwheel module for handwheel %1
Parameters: %1 = Handwheel module
Definitions: For SINUMERIK 840D and SINUMERIK 840DI only:
The handwheel module for handwheel %1 requested through MD11351
$MN_HANDWHEEL_MODULE is not available for 840D systems. An 840D system is always
regarded as a module. Therefore MD11351 $MN_HANDWHEEL_MODULE = 1 must always be set
for handwheels directly linked to 840D systems.
Reaction: Interface signals are set.
Alarm display.
Remedy: Set machine date MD11351 $MN_HANDWHEEL_MODULE = 1 for the corresponding handwheel.
Program Continuation: Switch control OFF - ON.

4611 Invalid handwheel input for handwheel %1
Parameters: %1 = Handwheel input
Definitions: For SINUMERIK 840D and SINUMERIK 840DI only:
The handwheel input for handwheel %1 requested through MD11352 $MN_HANDWHEEL_INPUT is
not available for 840D systems. A maximum of 2 or 3 handwheels can be linked directly to 840D sys-
tems:
840D powerline: 1st and 2nd handwheels directly to the 840D hardware
840DI: 1st and 2nd handwheels directly to the extension board
Reaction: Interface signals are set.
Alarm display.
Remedy: Configure MD11352 $MN_HANDWHEEL_INPUT for a valid input for the corresponding handwheel
Program Continuation: Switch control OFF - ON.

4620 Invalid handwheel module for handwheel %1
Parameters: %1 = Handwheel module
Definitions: For SINUMERIK 802D only:
The handwheel module for handwheel %1 requested through MD11351
$MN_HANDWHEEL_MODULE is not available for 802D systems. An 802D system is always
regarded as a module. Therefore MD11351 $MN_HANDWHEEL_MODULE = 1 must always be set
for handwheels linked directly to 802D systems.
Reaction: Interface signals are set.
Alarm display.
Remedy: Set machine date MD11351 $MN_HANDWHEEL_MODULE = 1 for the corresponding handwheel.
Program Continuation: Switch control OFF - ON.

4621 Invalid handwheel input for handwheel %1
Parameters: %1 = Handwheel input
Definitions: For SINUMERIK 802D only:
The handwheel input for handwheel %1 requested through MD11352 $MN_HANDWHEEL_INPUT is
not available for 802D systems. A maximum of 2 handwheels can be directly linked to 802D system.
Reaction: Interface signals are set.
Alarm display.
Remedy: Configure MD11352 $MN_HANDWHEEL_INPUT for a valid input for the corresponding handwheel
Program Continuation: Switch control OFF - ON.
4630 **Invalid handwheel module for handwheel %1**

Parameters: %1 = Handwheel module

Definitions: For PROFIBUS/PROFINET only:
The reference in $MN_HANDWHEEL_MODULE to a corresponding entry in machine data array
$MN_HANDWHEEL_LOGIC_ADDRESS[] which is required for configuring PROFIBUS handwheels
is not available.

Reaction: Interface signals are set.
Alarm display.

Remedy: Configure the machine data MD11351 $MN_HANDWHEEL_MODULE for the corresponding PROFI-
BUS handwheel so that there is a valid reference to an entry in the machine data array MD11353
$MN_HANDWHEEL_LOGIC_ADDRESS[].

Program Continuation: Switch control OFF - ON.

4631 **Invalid handwheel slot for handwheel %1**

Parameters: %1 = Handwheel slot

Definitions: For PROFIBUS/PROFINET only:
The handwheel slot for handwheel %1 requested through machine data $MN_HANDWHEEL_INPUT
is not available for PROFIBUS handwheels.

Reaction: Interface signals are set.
Alarm display.

Remedy: Configure machine date MD11352 $MN_HANDWHEEL_INPUT to a valid handwheel slot for the cor-
responding PROFIBUS handwheel.

Program Continuation: Switch control OFF - ON.

4632 **Logical PROFIBUS handwheel slot base address for handwheel %1 not found**

Parameters: %1 = Handwheel number

Definitions: For PROFIBUS/PROFINET only:
The logical basic address of the PROFIBUS handwheel slot in machine data array
$MN_HANDWHEEL_LOGIC_ADDRESS[] indexed in machine data $MN_HANDWHEEL_MODULE
was not found in the current STEP 7 hardware configuration.

Reaction: Interface signals are set.
Alarm display.

Remedy: Check if MD11351 $MN_HANDWHEEL_MODULE of the corresponding handwheel is correct. Check
if indexed logical base address of PROFIBUS handwheel slot in machine date array MD11353
$MN_HANDWHEEL_LOGIC_ADDRESS[] is correct.

Program Continuation: Switch control OFF - ON.

4640 **Invalid handwheel module for handwheel %1**

Parameters: %1 = Handwheel module

Definitions: For ETHERNET only:
The handwheel module for handwheel %1 requested through MD11351
$MN_HANDWHEEL_MODULE is not available for ETHERNET handwheels. MD11351
$MN_HANDWHEEL_MODULE = 1 must always be set when configuring ETHERNET handwheels.

Reaction: Interface signals are set.
Alarm display.

Remedy: Set machine date MD11351 $MN_HANDWHEEL_MODULE = 1 for the corresponding handwheel.

Program Continuation: Switch control OFF - ON.

4641 **Invalid handwheel input for handwheel %1**

Parameters: %1 = Handwheel input

Definitions: For ETHERNET only:
The handwheel input for handwheel %1 requested through MD11352 $MN_HANDWHEEL_INPUT is
not available for ETHERNET handwheels. A maximum of 6 handwheels can be configured.
4700 PROFIBUS I/O: The logical slot / I/O area address %1 was not found.

Parameters: %1 = Area address

Definitions: For PROFIBUS/PROFINET only:
- The logical slot / I/O area address was not found in MD10500 $MN_DPIO_LOGIC_ADDRESS_IN with the stated slot / I/O area in the current STEP 7 hardware configuration.

Reaction: Interface signals are set.
Alarm display.

Remedy: Check the slot / I/O area address in the configuration (STEP 7, HW Config).

Program Continuation: Switch control OFF - ON.

4702 PROFIBUS I/O: The logical slot / I/O area address %1 was not found.

Parameters: %1 = Area address

Definitions: For PROFIBUS/PROFINET only:
- The logical slot / I/O area address was not found in MD10506 $MN_DPIO_LOGIC_ADDRESS_OUT with the stated slot / I/O area index in the current STEP 7 hardware configuration.

Reaction: Interface signals are set.
Alarm display.

Remedy: Check the slot / I/O area address in the configuration (STEP 7, HW Config).

Program Continuation: Switch control OFF - ON.

5000 Communication job not executable %1

Parameters: %1 = Reference to which resources are no longer available.

Definitions: The communication job (data exchange between NCK and HMI, e.g.: loading an NC part program) cannot be executed because there is insufficient memory space. Cause: too many communication jobs in parallel.

Reaction: Alarm display.

Remedy: - Reduce the number of communication jobs taking place at the same time or increase MD10134 $MN_MM_NUM_MMC_UNITS
- Restart communication job.
- Please inform the authorized personnel/service department. No remedial measures are possible - the operation triggering the alarm message has to be repeated. Clear the alarm display with Cancel.

Program Continuation: Clear alarm with the Delete key or NC START.

6000 Memory reorganized using standard machine data

Definitions: The memory management was not able to allocate the NC user memory with the values in the machine data. It did not have enough memory available because the total memory available is provided as dynamic and static memory for the NC user (e.g. for macro definitions, user variables, number of tool offsets, number of directories and files etc.).

Reaction: NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Redefine the NC memory structure!
A specific MD for NC user memory allocation cannot be stated to be the cause of the alarm. The MD initiating the alarm therefore has to be determined on the basis of the default values in the machine data by changing the user-specific memory structure step by step.
Usually, it is not just one single MD that has been set too large. Therefore it is advisable to reduce the memory area by a certain proportion in several MDs.
Overview of Alarms 03/2009

NCK alarms

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

6010 [Channel %1:] Data block %2 not or not completely created, error code %3

Parameters:
- %1 = Channel number
- %2 = String (block name)
- %3 = Internal error code

Definitions:
Data management has detected an error in power-up. The specified data block may not have been created. The error number specifies the type of error. If the error number is >100000, then there is a fatal system error. Otherwise, the user memory range was made too small. In this case the (user) error codes have the following meaning:
- Error number 1: No memory space available
- Error number 2: Maximum possible number of symbols exceeded
- Error number 3: Index 1 lies outside the valid value range
- Error number 4: Name already exists in channel
- Error number 5: Name already exists in NCK

If the alarm occurs after cycle programs, macro definitions or definitions for global user data (GUD) have been introduced, the machine data for the user memory configuration have been incorrectly configured. In all other cases, changes to machine data that are already correct lead to errors in the user memory configuration.

The following block names (2nd parameter) are known in the NCK (all system and user data blocks; in general, only problems in the user data blocks can be remedied by user intervention):
- _N_NC_OPT - System internal: option data, NCK global
- _N_NC_SEA - System internal: setting data, NCK global
- _N_NC_CEC - System internal: 'cross error compensation'
- _N_NC_PRO - System internal: protection zones, NCK global
- _N_NC_GD1 - User: 1st GUD block defined by _N_SGUD_DEF, NCK global
- _N_NC_GD2 - User: 2nd GUD block defined by _N_MGUD_DEF, NCK global
- _N_NC_GD3 - User: 3rd GUD block defined by _N_UGUD_DEF, NCK global
- _N_NC_GD4 - User: 4th GUD block defined by _N_GUD4_DEF, NCK global
- _N_NC_GD5 - User: 5th GUD block defined by _N_GUD5_DEF, NCK global
- _N_NC_GD6 - User: 6th GUD block defined by _N_GUD6_DEF, NCK global
- _N_NC_GD7 - User: 7th GUD block defined by _N_GUD7_DEF, NCK global
- _N_NC_GD8 - User: 8th GUD block defined by _N_GUD8_DEF, NCK global
- _N_NC_GD9 - User: 9th GUD block defined by _N_GUD9_DEF, NCK global
- _N_NC_MAC - User: Macro definitions
- _N_NC_FUN - System internal: predefined functions and procedures, NCK global
- _N_CHc_OPT - System internal: option data, channel-specific
- _N_CHc_CEC - System internal: setting data, channel-specific
- _N_CHc_NEW - System internal: machine data, channel-specific
- _N_CHc_GD1 - User: 1st GUD block defined by _N_SGUD_DEF, channel-specific
- _N_CHc_GD2 - User: 2nd GUD block defined by _N_MGUD_DEF, channel-specific
- _N_CHc_GD3 - User: 3rd GUD block defined by _N_UGUD_DEF, channel-specific
- _N_CHc_GD4 - User: 4th GUD block defined by _N_GUD4_DEF, channel-specific
- _N_CHc_GD5 - User: 5th GUD block defined by _N_GUD5_DEF, channel-specific
- _N_CHc_GD6 - User: 6th GUD block defined by _N_GUD6_DEF, channel-specific
- _N_CHc_GD7 - User: 7th GUD block defined by _N_GUD7_DEF, channel-specific
- _N_CHc_GD8 - User: 8th GUD block defined by _N_GUD8_DEF, channel-specific
- _N_CHc_GD9 - User: 9th GUD block defined by _N_GUD9_DEF, channel-specific
- _N_AXa_OPT - System internal: option data, axial
- _N_AXa_CEC - System internal: leadscrew error compensation data, axial
- _N_AXa_QEC - System internal: quadrant error compensation data, axial
- _N_TOL_TOC - System internal: toolholder data, TOA-specific
- _N_TOL_TOA - System internal: tool data, TOA-specific
- _N_TOL_TMA - System internal: magazine data, TOA-specific
- _N_NC_KIN - System internal: data to describe kinematic chains, NCK-specific
NCK alarms

- _N_NC_NPA - System internal: data to describe 3D protection zones, NCK-specific
- _N_NC_WAL - System internal: data to describe coordinate-specific working area limitation
- _N_COMPLETE_CYD - System internal: cycle and display machine data, NCK, channel, axis specific
c = Channel number
a = Machine axis number
t = TOA unit number
There are additional internal system data blocks with identifiers.

Reaction:
NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct the machine data or undo the changes made.
Please inform the authorized personnel/service department. There are two determining machine data for cycle programs:
- MD18170 $MN_MM_NUM_MAX_FUNC_NAMES = max. number of all cycle programs, error number = 2 shows that this value is too small.
- MD18180 $MN_MM_NUM_MAX_FUNC_PARAM = max. number of all parameters defined in the cycle programs, error number = 2 shows that this value is too small
 (If these MDs are modified, the memory backup is retained)
The following applies to macro definitions:
MD18160 $MN_MM_NUM_USER_MACROS = max. number of all macro definitions, error number = 2 shows that this value is too small.
 (If these MDs are modified, the memory backup is retained)
The following applies to GUD variables:
- MD18120 $MN_MM_NUM_GUD_NAMES_NCK = max. number of all NCK global GUD variables, error number = 2 shows that this value is too small.
- MD18130 $MN_MM_NUM_GUD_NAMES_CHAN = max. number of all channel-specific GUD variables in the channel, error number = 2 shows that this value is too small.
- MD18150 $MN_MM_GUD_VALUES_MEM = total value memory of all GUD variables together, error number = 1 shows that this value is too small.

Program Continuation:
Switch control OFF - ON.

6020 Machine data have been changed - now memory is reorganized

Definitions:
Machine data have been changed that define the NC user memory allocation. Data management has restructured the memory in accordance with the altered machine data.

Reaction:
Alarm display.

Remedy:
No remedial measures are required. Any user data that are required must be input again.

Program Continuation:
Clear alarm with the RESET key. Restart part program
6030 Limit of user memory has been adapted

Definitions: Data management checks during power-up the actually available physical user memory (DRAM, DPRAM and SRAM) with the values in the system-specific machine data MD18210 \$MN_MM_USER_MEM_DYNAMIC, MD18220 \$MN_MM_USER_MEM_DPR und MD18230 \$MN_MM_USERMEM_BUFFERED-USERMEM_BUFFERED.

Reaction: Alarm display.
Remedy: No remedial measures are required. The new maximum permissible value can be read from the reduced machine data.
Program Continuation: Clear alarm with the RESET key. Restart part program.

6035 Instead of %1 KB the system has only %2 KB of free user memory of type "%3"

Parameters: %1 = Free memory capacity in KB defined for the control model
%2 = Actual maximum capacity of free memory in KB
%3 = Type of memory, "D" =non-battery-backed, "S" =battery-backed

Definitions: The alarm can only occur after a 'cold start' (=NCK start-up with standard machine data). The alarm is only a notice. There is no interference with any NCK functions. It shows that the NCK has less free user memory available than specified by Siemens for this control variant. The value of the actually available free user memory can also be taken from the MD18050 \$MN_INFO_FREE_MEM_DYNAMIC, MD18060 \$MN_INFO_FREE_MEMS_STATIC.
Siemens supplies NCK with default settings that, depending on the model, have certain (free) memory space available for the specific settings of the actual applications. The original factory setting of NCK systems is thus that the alarm does not occur with a cold start.

Reaction: Alarm display.
Remedy: Reasons for the message:
- The NCK contains compile cycle software, that uses so much memory space that the hardware cannot provide the required memory.
- The NCK runs on hardware that is not intended for this NCK release (i.e. that has not enough memory capacity).
- If the application runs properly with the remaining free user memory (i.e. can be started up without any errors), the message can simply be ignored.
- If the actual application cannot be configured because there is not enough memory capacity available, either the existing compile cycle must be reduced or, if possible, the system must be upgraded with additional memory space.

Program Continuation: Clear alarm with the RESET key. Restart part program.

6100 Error while creating %1, error number %2 %3

Parameters: %1 = Symbolname
%2 = Error code
%3 = If required, internal error identifier

Definitions: An error was detected while creating a compile cycle machine data. The error number specifies the type of error.
- Error number 1: Insufficient memory available
- Error number 2: Symbol in the NCK already exists
- Error number 3: Maximum possible number of symbols exceeded
- Error number 4: Invalid name prefix
- Error number 5: Illegal array size

Note: Other errors of this type could have occurred, but have not been displayed.

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
- Error number 1: The memory reserved by MD18238 $MN_MM_CC_MD_MEM_SIZE has to be increased. If the error occurs while loading an archive, then the machine data must be increased "manually". To do this, either Edit the archive with 'arcedit' or Overwrite the MD in the MD picture and prevent the deletion of the machine data when writing the archive (MMC: Set Ask_for_CFG_RESET.INI = 1 in 'dino.ini'). Also refer to: Upgrade instructions P6.x.
- Error number 2: Error in the combination or while reloading compile cycles: Do not activate compile cycle.
- Error number 3: Error in the combination or while reloading compile cycles: Do not activate compile cycle.
- Error number 4: Error in the compile cycle: Do not activate compile cycle.
- Error number 5: Error in the compile cycle: Do not activate compile cycle.

Program Continuation:
Switch control OFF - ON.

6200
Memory for CC MD full.
Definitions:
The memory reserved for storage of compile cycle machine data is full. Some of these machine data could not be created correctly.
Reaction:
Alarm display.
Remedy:
Please inform the authorized personnel/service department. If the alarm is displayed on start-up of compile cycles, this may be remedied by increasing MD18238 $MN_MM_CC_MD_MEM_SIZE.
Program Continuation:
Switch control OFF - ON.

6401
[Channel %1:] Tool change not possible: Empty location for tool %2 on magazine %4 not available.
Parameters:
%1 = Channel ID
%2 = String (identifier)
%3 = -Not used-
%4 = Magazine number
Definitions:
The tool cannot be moved into the selected tool magazine. There is no appropriate location for this tool. A suitable location is mainly determined by the status. The status must indicate that this location is free, not disabled, not reserved and not co-occupied by a tool that is too large. Furthermore, it is important that the type of tool matches the type of any magazine location that may be free. (If, for example, all magazine locations are of the 'B' type and these are all free and the tool is of type 'A', then this tool cannot be put into this magazine).
Reaction:
NC Start disable in this channel. Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
- Check whether the magazine data have been defined correctly.
- Check whether there is still room in the magazine to add another tool; there may not be due to operating procedures.
- Check whether a location type hierarchy is defined and whether it, for example, does not allow insertion of a type 'A' tool in a free location with type 'B'.
Program Continuation:
Clear alarm with the RESET key. Restart part program

6402
[Channel %1:] Tool change not possible. Magazine no. %2 not available
Parameters:
%1 = Channel ID
%2 = Magazine number
Definitions:
The desired tool change is not possible. The magazine with the specified number is not available.
Reaction:
NC Start disable in this channel. Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
- Check whether the magazine data have been defined correctly.
- Check whether the magazine is connected to the desired tool holder/spindle via a distance relation.
- The user PLC program may have sent wrong data to the NCK.
Program Continuation:
Clear alarm with the RESET key. Restart part program
6403 [Channel %1:] Tool change not possible. Magazine location number %2 on magazine %3 not available.

Parameters:
%1 = Channel ID
%2 = Magazine number
%3 = Magazine location number

Definitions:
The desired tool change is not possible. The specified magazine location is not contained in the specified magazine.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Check whether the magazine data have been defined correctly.
The user PLC program may have delivered incorrect data to the NCK.

Program Continuation:
Clear alarm with the RESET key. Restart part program

6404 [Channel %1:] Tool change not possible. Tool %2 not available or not usable

Parameters:
%1 = Channel ID
%2 = String (identifier)

Definitions:
The desired tool change is not possible. The specified tool does not exist or cannot be inserted.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
- Check whether the part program is written correctly.
- Check whether the tool data are correctly defined.
- Check whether there is a replacement tool which can be used for the specified tool.

Program Continuation:
Clear alarm with the RESET key. Restart part program

6405 [Channel %1:] Command %2 has invalid PLC acknowledge parameter %3 - identifier %4

Parameters:
%1 = Channel ID
%2 = Command no.
%3 = PLC acknowledge parameter
%4 = Error code

Definitions:
The specified command has been answered by the PLC with an invalid acknowledgement in the current context. The following assignments are defined for "command no.":
1 Move tool, load or unload magazine
2 Prepare tool change
3 Execute tool change
4 Prepare tool change and execute with T command
5 Prepare tool change and execute with M command
7 Terminate canceled tool command
8 Check tool movement with reservation
9 Check tool movement
0 Transport acknowledgement
Parameters 2 and 3 designate the PLC command and the status number of the acknowledgement. Example: Parameter 4 of the alarm message is 10. It is not defined that a buffer location has to be reserved for asynchronous tool motion. In the example, the parameter is ignored by the NCK. Further possible causes for the alarm: The tool change defined by the command is not possible. The magazine location specified in the invalid parameter does not exist in the magazine.

The 3rd parameter - error identification - gives a more detailed description of the alarm. Meanings:
- 0 = not defined
- 1 = status not allowed or undefined status received by PLC
- 2 = source and/or target magazine no./location no. unknown
- 3 = not defined
- 4 = target magazine no. and/or location no. are not the end target in the tool motion command
- 5 = not defined
- 6 = source and/or target magazine no./location no. unknown during tool change
- 7 = PLC comm. with inconsistent data: either inconsistent magazine addresses in VDI or NCK command unequal to PLC acknowledgement or both
- 8 = PLC comm. with inconsistent data: while rejecting a tool, the tool to be rejected was unloaded asynchronously. NCK cannot perform a new selection.
- 9 = PLC comm. with inconsistent data: the command acknowledgement data wants to move a tool to a location that is occupied by another tool.
- 10 = Asynchronous tool motion with reservation is only defined for the motion from a magazine to a buffer location.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Erroneous PLC communication: Correct the PLC program.

Program Continuation:
Clear alarm with the RESET key. Restart part program

6406 [Channel %1:] PLC acknowledge for command %2 is missing

Parameters:
%1 = Channel ID
%2 = Command no.

Definitions:
There is still no acknowledgement from the PLC for the tool change. The NCK cannot continue processing until it receives this acknowledgement for the specified command number. Possible command number values are described for alarm 6405.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
- Erroneous PLC communication: Correct the PLC program.
- It is possible to release NCK with the PLC command 7 from the wait condition.
This aborts the waiting command.

Program Continuation:
Clear alarm with the RESET key. Restart part program

6407 [Channel %1:] Tool %2 cannot be placed in magazine %3 on location %4. Invalid definition of magazine!

Parameters:
%1 = Channel ID
%2 = String (identifier)
%3 = Magazine number
%4 = Magazine location number

Definitions:
A tool change request or a verification request was issued to put the tool in a location which does not satisfy the prerequisites for filling.
The following causes for the error are possible:
- Location is blocked or not free!
- Tool type does not match the location type!
- Tool possibly too large, adjacent locations are not free!

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
- Check whether the magazine data are correctly defined (especially the location type).
- Check whether the tool data are correctly defined (especially the location type).

Program Continuation:
Clear alarm with the RESET key. Restart part program

6410
[TO unit %1:] Tool %2 has reached its prewarning limit with D = %4

Parameters:
%1 = TO unit
%2 = Tool identifier (name)
%3 = -Not used-
%4 = D number

Definitions:
Tool monitoring: This message informs that the specified D offset has reached its prewarning limit for a time-, quantity- or wear-monitored tool. If possible, the D number is displayed; if not, value 0 is assigned to the 4th parameter.
If the function additive offset is being used, additive offset monitoring may be active instead of tool wear monitoring. The actual type of tool monitoring is a tool property (see $TC_TP9). If replacement tools are not being used, the duplo number specified has no meaning. The alarm is triggered through the HMI or PLC (=OPI interface). The channel context is not defined. The TO unit was specified for this reason (see MD28085 $MC_MM_LINK_TOA_UNIT).

Reaction:
Interface signals are set.
Alarm display.

Remedy:
For information only. The user must decide what to do.

Program Continuation:
Clear alarm with the Delete key or NC START.

6411
[Channel %1:] Tool %2 has reached its prewarning limit with D = %4

Parameters:
%1 = Channel number
%2 = Tool identifier (name)
%3 = -Not used-
%4 = D number

Definitions:
Tool monitoring: This message informs that the specified D offset has reached its prewarning limit for a time-, quantity- or wear-monitored tool. If possible, the D number is displayed; if not, value 0 is assigned to the 4th parameter.
If the function additive offset is being used, additive offset monitoring may be active instead of tool wear monitoring. The actual type of tool monitoring is a tool property (see $TC_TP9). If replacement tools are not being used, the duplo number specified has no meaning. The alarm originates during NC program execution.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
For information only. The user must decide what to do.

Program Continuation:
Clear alarm with the Delete key or NC START.

6412
[TO unit %1:] Tool %2 has reached its monitoring limit with D = %4

Parameters:
%1 = TO unit
%2 = Tool identifier (name)
%3 = -Not used-
%4 = D number

Definitions:
Tool monitoring: This message informs that the specified D offset has reached its prewarning limit for a time-, quantity- or wear-monitored tool. If possible, the D number is displayed; if not, value 0 is assigned to the 4th parameter.
If the function additive offset is being used, additive offset monitoring may be active instead of tool wear monitoring. The actual type of tool monitoring is a tool property (see $TC_TP9). If replacement tools are not being used, the duplo number specified has no meaning. The alarm is triggered through the HMI or PLC (=OPI interface). The channel context is not defined. The TO unit was specified for this reason (see MD28085 $MC_MM_LINK_TOA_UNIT).

Reaction:
Interface signals are set.
Alarm display.

Remedy:
For information only. The user must decide what to do.

Program Continuation:
Clear alarm with the Delete key or NC START.
6413 [Channel %1:] Tool %2 has reached its monitoring limit with D = %4

Parameters:
- %1 = TO unit
- %2 = Tool identifier (name)
- %3 = -Not used-
- %4 = D number

Definitions:
- Tool monitoring: This message informs that the specified D offset has reached its prewarning limit for a time-, quantity- or wear-monitored tool. If possible, the D number is displayed; if not, value 0 is assigned to the 4th parameter.
- If the function additive offset is being used, additive offset monitoring may be active instead of tool wear monitoring.
- The actual type of tool monitoring is a tool property (see $TC_TP9).
- If replacement tools are not being used, the duplo number specified has no meaning.
- The alarm originates during NC program execution.

Reaction:
- Interface signals are set.
- Alarm display.

Remedy:
- For information only. The user must decide what to do.

Program Continuation:
- Clear alarm with the Delete key or NC START.

6415 [TO unit %1:] Tool %2 with tool edge no. %3 has reached tool monitor warning limit

Parameters:
- %1 = TO unit
- %2 = Tool identifier
- %3 = Cutting edge number

Definitions:
- This message informs that at least one cutting edge of the time or quantity monitored tool has reached its monitoring limit. The alarm was triggered through the OPI interface (MMC, PLC). The channel context is not defined. The TO unit was specified for this reason.

Reaction:
- Interface signals are set.
- Alarm display.

Remedy:
- For information only. The user must decide what to do.

Program Continuation:
- Clear alarm with the Delete key or NC START.

6416 [Channel %1:] Tool %2 with tool edge no. %3 has reached tool monitor warning limit

Parameters:
- %1 = Channel number
- %2 = Tool identifier
- %3 = Cutting edge number

Definitions:
- This message informs that at least one cutting edge of the time or quantity monitored tool has reached its monitoring limit. The limit was detected in the channel context. The alarm originated during NC program execution.

Reaction:
- Interface signals are set.
- Alarm display.

Remedy:
- For information only. The user must decide what to do.

Program Continuation:
- Clear alarm with the Delete key or NC START.
6417 [TO unit %1:] Tool %2 with tool edge no. %3 has reached tool monitoring limit

Parameters:
%1 = TO unit
%2 = Tool identifier
%3 = Cutting edge number

Definitions:
This message informs that at least one cutting edge of the time or quantity monitored tool has reached its monitoring limit. The alarm was triggered through the OPI interface (MMC, PLC). The channel context is not defined. The TO unit was specified for this reason.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
For information only. The user must decide what to do.

Program Continuation:
Clear alarm with the Delete key or NC START.

6418 [Channel %1:] Tool %2 with tool edge no. %3 has reached tool monitoring limit

Parameters:
%1 = Channel number
%2 = Tool identifier
%3 = Tool number

Definitions:
This message informs that at least one cutting edge of the time or quantity monitored tool has reached its monitoring limit. The limit was detected in the channel context. The alarm originated during NC-program execution.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
For information only. The user must decide what to do.

Program Continuation:
Clear alarm with the Delete key or NC START.

6421 [Channel %1:] Tool move not possible. Empty location for tool %2 on magazine %4 not available.

Parameters:
%1 = Channel ID
%2 = String (identifier)
%3 = -Not used-
%4 = Magazine number

Definitions:
The desired tool motion command - triggered from the MMC or PLC - is not possible. The tool cannot be moved into the specified tool magazine. There is no appropriate location for this tool.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check whether the magazine data have been defined correctly (e.g. the magazine must not be disabled).
- Check whether the tool data are correctly defined (for example, the tool location type must match the location types allowed in the magazine).
- Check whether the magazine has simply no more room to accept another tool thanks to operating procedures.
- Check whether a location type hierarchy is defined and whether, for example, it does not allow insertion of a type 'A' tool in a free location with type 'B'.

Program Continuation:
Clear alarm with the Delete key or NC START.

6422 [Channel %1:] Tool move not possible. Magazine no. %2 not available.

Parameters:
%1 = Channel ID
%2 = Magazine number

Definitions:
The desired tool motion command - triggered from the MMC or PLC - is not possible. The magazine with the specified number is not available.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NCK alarms

Remedy:
- Check whether the magazine data have been defined correctly.
- If the PLC issued the command for motion: check whether the PLC program is correct.
- If the MMC issued the command for motion: check whether the MMC command was assigned correct parameters.

Program Continuation:
Clear alarm with the Delete key or NC START.

6423 [Channel %1:] Tool move not possible. Location %2 on magazine %3 not available.

Parameters:
%1 = Channel ID
%2 = Magazine location number
%3 = Magazine number

Definitions:
The desired tool motion command - triggered from the MMC or PLC - is not possible. The specified magazine location is not contained in the specified magazine.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Check whether the magazine data have been defined correctly.

Program Continuation:
Clear alarm with the Delete key or NC START.

6424 [Channel %1:] Tool move not possible. Tool %2 not available/not usable.

Parameters:
%1 = Channel ID
%2 = String (identifier)

Definitions:
The desired tool motion command - triggered from the HMI or PLC - is not possible. The status of the named tool does not allow movement of the tool. The named tool is not defined or not permitted for the command.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check whether the tool status 'is being changed' ('H20') is set. If yes, then the appropriate tool change command must first be completed by the PLC. Then the tool should be able to be moved.
- Check whether the tool data are correctly defined. Has the correct T number been specified?
- Check whether the move command has been correctly parameterized. Is the desired tool at the source location? Is the target location suitable for taking the tool?
- Check whether the tool has already been loaded (if the alarm occurs while loading the tool).

Program Continuation:
Clear alarm with the Delete key or NC START.

6425 [Channel %1:] Tool %2 cannot be placed in magazine %3 on location %4.
Invalid definition of magazine!

Parameters:
%1 = Channel ID
%2 = String (identifier)
%3 = Magazine number
%4 = Magazine location number

Definitions:
The desired tool motion command - triggered from the MMC or PLC - is not possible. A movement request was issued to put the tool in a location which does not satisfy the prerequisites for filling. The following causes for the error are possible:
- Location is blocked or not free!
- Tool type does not match the location type!
- Tool possibly too large, adjacent locations are not free!
- If a tool is to be loaded or unloaded, the load/unload position must be of 'load location' type.
- If a tool is to be loaded or unloaded, is the magazine in question linked to the load/unload location?
See $TC_MDP1, $TC_MDP2.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check whether the magazine data have been defined correctly.
- Check whether there is still room in the magazine to add another tool; there may not be due to operating procedures.
- Check whether a location type hierarchy is defined and whether it, for example, does not allow insertion of a type 'A' tool in a free location with type 'B'.
- Check whether the magazine in question is linked to the load/unload location or whether a distance has been defined.
- Check whether the load/unload position is of 'load location' type.
See also $TC_MPP1.

Program Continuation:
Clear alarm with the Delete key or NC START.

6430 Workpiece counter: overflow in table of monitored cutting edges.

Definitions:
No more cutting edges can be entered in the piece counter table.
As many cutting edges can be noted for the workpiece counter as are possible in total in the NCK. This means that if for each tool each cutting edge in each TO unit is used precisely once for a workpiece then the limit is reached.
If several workpieces are made on several toolholders/spindles simultaneously, it is possible to note MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA cutting edges for the workpiece counter for all of the workpieces.
If this alarm occurs, it means that cutting edges used subsequently are no longer quantity monitored until the table has been emptied again, e.g. by means of the NC language command SETPIECE or by the relevant job from HMI, PLC (PI service).

Reaction:
NC Start disable in this channel.
Interface signals are set. Alarm display.

Remedy:
- Was decrementing of the piece counter forgotten? Then program SETPIECE in the part program, or add the correct command in the PLC program.
- If the part program/PLC program is correct, then more memory should be set for tool cutting edges via the MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA (can only be performed with the necessary access rights!).

Program Continuation:
Clear alarm with the Delete key or NC START.

6431 [Channel %1:] Block %2 Function not allowed. Tool management/monitoring is not active.

Parameters:
%1 = Channel ID
%2 = Block number, label

Definitions:
Occurs when a data management function is called which is not available because ToolMan is deactivated. For example, the language commands GETT, SETPIECE, GETSELT, NEWT, DELT.

Reaction:
Correction block is reorganized.
Interface signals are set. Alarm display.

Remedy:
- Please inform the authorized personnel/service department.
- Make sure of how the NC is supposed to be configured! Is tool management or tool monitoring needed but not activated?
- Are you using a part program that is meant for a numerical control with tool management/tool monitoring? It is not possible to start this program on the numerical control without tool management/tool monitoring. Either run the part program on the appropriate NC control or edit the part program.
- Activate tool management/tool monitoring by setting the appropriate machine data. See MD18080$MN_MM_TOOL_MANAGEMENT_MASK, MD20310$MC_TOOL_MANAGEMENT_MASK
- Check whether the required option is set accordingly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
6432 Function not executable. No tool assigned to tool holder/spindle

Parameters:
%1 = Channel ID

Definitions:
When an attempt is made to perform an operation that requires a tool to be located on the spindle. This can be the quantity monitoring function, for example.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Select another function, another toolholder/spindle, position tool on toolholder/spindle.

Program Continuation:
Clear alarm with the Delete key or NC START.

6433 [Channel %1:] Block %2 %3 not available with tool management

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions:
The symbol variable specified in %3 is not available with active tool management. The function GELSELT should be used with $P_TOOLP.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify program. If $P_TOOLP has been programmed, the GETSELT function should be used instead.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

6434 [Channel %1:] Block %2 NC command SETMTH not allowed because tool holder function not active

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
No master toolholder has been defined for the initial state (MD20124 $MC_TOOL_MANAGEMENT_TOOLHOLDER = 0), therefore no toolholder is available. The NC command SETMTH has neither been defined. In this setting, the tool change is carried out referring to the master spindle. The master spindle is set with SETMS.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Correct the NC program (delete or replace SETMHT) or enable toolholder function via machine data.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

6441 Writing of $P_USEKT not allowed.

Definitions:
An attempt was made to write the value of $P_USEKT. This is not possible since programming T= ‘location number’ with automatic setting of $P_USEKT is active.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check how the NC is supposed to be configured. (See bit16 and bit22 in MD 20310 $MC_TOOL_MANAGEMENT_MASK).
- Is a part program being used that is intended for an NC control without T=‘location number’ with automatic setting of $P_USEKT? This program cannot be started on an NC control with T=‘location number’ with automatic setting of $P_USEKT.
- Either run the part program on an appropriate NC control or edit the part program.

Program Continuation:
Clear alarm with the Delete key or NC START.
6442 [Channel %1:] Function not executable. No tool assigned to desired magazine/magazine location %2.

Parameters:
%1 = Channel ID
%2 = Magazine/magazine location no.

Definitions:
PLC logic is presumably incorrect. Tool change with reject tool is configured. Preparatory command is pending. Selected tool is (e.g. from PLC) unloaded from its location. PLC acknowledges preparatory command with ‘Repeat tool selection’ (e.g. status =7). NCK cannot find the tool at the magazine location specified in the PLC command.

Or: Illegal operator intervention in an active tool selection (unloading of the tool to be selected) has occurred. Therefore the PLC acknowledgement fails.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
PLC programmer must note the following:
- Ensure that the tool is not removed from the specified magazine location (e.g. incorrect PLC program).
- Do not remove the tool from the programmed tool change before the final acknowledgement of the command (= unload).

!! It is however permissible to change the location of the tool to be loaded. The NCK can deal with this situation.

This alarm supplements Alarm 6405, if it contains the identifier 8. Therefore, the diagnostics should be easier.

Program Continuation:
Clear alarm with the Delete key or NC START.

6450 [Channel %1:] Block %2 tool change not possible. Invalid magazine location no. %3 in buffer magazine

Parameters:
%1 = Channel ID
%2 = Block number, label
%3 = Magazine location number

Definitions:
The desired tool change is not possible. The specified magazine location is either toolholder/spindle or empty.
Only the numbers of the buffer that are not toolholder/spindle may be programmed with the NC command TCI, i.e. the location number of a gripper is allowed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Check whether the magazine data ($TC_MPP1) have been defined correctly.
- Check whether the alarm-causing program command _ e.g. TCI _ has been programmed correctly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

6451 [Channel %1:] Block %2 tool change not possible. No buffer magazine defined.

Parameters:
%1 = Channel ID
%2 = Block number, label

Definitions:
The desired tool change is not possible. No buffer magazine defined.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Check whether the magazine data have been defined correctly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
6452 [Channel %1:] Block %2 tool change not possible. Tool holder/spindle number = %3 not defined.

Parameters: %1 = Channel ID
%2 = Block number, label
%3 = Tool holder/spindle number

Definitions: The desired tool change is not possible. The toolholder/spindle number has not been defined.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: General: The following must apply: 'maximum programmed address extension s (=spindle number/toolholder number)
of Ts=1, Ms=6 must be less than the value of MD19076 SMN_MM_NUM_LOCS_WITH_DISTANCE.
With magazine management: Check whether the toolholder number/spindle number and the magazine data have been defined correctly.
(See also the system variables $TC_MPP1, $TC_MPP5 of the buffer magazine).

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

6453 [Channel %1:] Block %2 tool change not possible. No assignment between toolholder/spindle no. = %3 and buffer magazine location %4

Parameters: %1 = Channel ID
%2 = Block number, label
%3 = Spindle no.
%4 = Location no.

Definitions: The desired tool change is not possible. No relation has been defined between the toolholder/spindle number and the buffer magazine location (Location No.)

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: - Check whether the magazine data ($TC_MLSR) have been defined correctly.
- Check whether the alarm-causing program command _ e.g. TCI _ has been programmed correctly.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

6454 [Channel %1:] Block %2 tool change not possible. No distance relation available.

Parameters: %1 = Channel ID
%2 = Block number, label

Definitions: The desired tool change is not possible. Neither the spindle nor the buffer magazine location have a distance relation.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: - Check whether the magazine data ($TC_MDP2) have been defined correctly.
- Check whether the alarm-causing program command _ e.g. TCI _ has been programmed correctly.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
6455 [Channel %1:] Block %2 tool change not possible. Magazine location no. %3 not available in magazine %4

Parameters: %1 = Channel ID
%2 = Block number, label
%3 = Magazine location number
%4 = Magazine number

Definitions: The desired tool change is not possible. The indicated magazine location is not available in the indicated magazine.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
- Check whether the causing program command - e.g. TCI - has been parameterized correctly.
- Check whether magazine data have been defined correctly. ($TC_MAP6 and $TC_MAP7 of the intermediate location magazine)

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

6500 NC memory full

Definitions: The NC file system is full. The available buffered memory does not suffice. Note: At initial start-up, files of the NC file system may be affected such as drive data, MMC files, FIFO files, NC programs...

Reaction: Alarm display.

Remedy: Adjust the size of the buffered memory (MD18230 $MN_MM_USER_MEM_BUFFERED) or increase the space available in the buffered memory, e.g. by unloading part programs that are no longer being used. Or decrease the size of the ring buffer (see $MC_RESU_RING_BUFFER_SIZE).

Program Continuation: Clear alarm with the Delete key or NC START.

6510 Too many part programs in the NC memory

Definitions: The number of files in the file system (part of the NC memory) of the NC has reached the maximum number possible. Note: During initial start-up, this can concern files from the NC file system, e.g. drive data, MMC files, FIFO files, NC programs...

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Delete or unload files (e.g. part programs), or
- Increase MD18320 $MN_MM_NUM_FILES_IN_FILESYSTEM.

Program Continuation: Clear alarm with the Delete key or NC START.

6520 The value of the machine data %1%2 is too low

Parameters: %1 = String: MD identifier
%2 = If required, index: MD array

Definitions: The MD18370 $MN_MM_PROTOC_NUM_FILES specifies the number of protocol files for the protocol users. However, more types are used than configured.

Reaction: Alarm display.

Remedy: Increase MD18370 $MN_MM_PROTOC_NUM_FILES.

Program Continuation: Clear alarm with the Delete key or NC START.

6530 Too many files in directory

Definitions: The number of files in a directory of the NC memory has reached the maximum limit.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Delete or unload files (e.g. part programs) in the respective directory, or
- Increase MD18280 $MN_MM_NUM_FILES_PER_DIR.

Program Continuation: Clear alarm with the Delete key or NC START.
6540 Too many directories in the NC memory
Definitions: The number of directories in the NC file system (part of the NC memory) has reached the maximum limit.
Reaction: Alarm display.
Remedy: - Delete or unload directory (e.g. workpiece), or
- Increase MD18310 $MN_MM_NUM_DIR_IN_FILESYSTEM.
Program Continuation: Clear alarm with the Delete key or NC START.

6550 Too many subdirectories
Definitions: The number of subdirectories in a directory of the NCK has reached the maximum limit.
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department.
- Delete or empty subdirectories in the respective directory, or
- Increase MD18270 $MN_MM_NUM_SUBDIR_PER_DIR.
Program Continuation: Clear alarm with the Delete key or NC START.

6560 Data format not allowed
Definitions: An attempt was made to write impermissible data in an NCK file. This error can occur in particular when the attempt was made to load binary data in the NCK as ASCII file. The error can also occur during preprocessing of cycles (see MD10700 $MN_PREPROCESSING_LEVEL) if the NC block is very long. In this case, subdivide the NC block.
Reaction: Alarm display.
Remedy: Specify that the file concerned is a binary file (e.g. extension: .BIN).
Program Continuation: Clear alarm with the Delete key or NC START.

6570 NC memory full
Definitions: The NC card file system of the NCK is full. The task cannot be executed. Too many system files were created in the DRAM.
Reaction: Alarm display.
Remedy: Start fewer "execute from external" processes.
Program Continuation: Clear alarm with the Delete key or NC START.

6580 NC memory full
Definitions: The NC card file system of the NCK is full. The task cannot be executed. Too many files have been loaded
Reaction: Alarm display.
Remedy: Delete or empty files (e.g. part programs).
Program Continuation: Clear alarm with the Delete key or NC START.

6581 NC user memory full
Definitions: The DRAM file system of the user area is full. The order cannot be executed.
Reaction: Alarm display.
Remedy: Delete or unload files (e.g. parts programs)
Program Continuation: Clear alarm with the Delete key or NC START.

6582 NC machine OEM memory full
Definitions: The DRAM file system of the machine OEM area is full. The order cannot be executed.
Reaction: Alarm display.
Remedy: Delete or unload files (e.g. parts programs)
Program Continuation: Clear alarm with the Delete key or NC START.
6583 NC system memory full
Definitions: The DRAM file system of the system area (Siemens) is full. The order cannot be executed.
Reaction: Alarm display.
Remedy: Delete or unload files (e.g. parts programs)
Program Continuation: Clear alarm with the Delete key or NC START.

6584 NC memory limit TMP reached
Definitions: The DRAM file system of the TMP (temporary) area is full. The job cannot be executed.
Reaction: Alarm display.
Remedy: Increase MD18351 $MN_MM_DRAM_FILE_MEM_SIZE or switch off the precompilation of individual or all cycles or, if need be, delete the files in the TMP area.
Program Continuation: Clear alarm with the Delete key or NC START.

6585 NC external memory limit reached
Definitions: The DRAM file system of the external area (execution of the external drive) is full. The job cannot be executed.
Reaction: Alarm display.
Remedy: Load the files to be executed explicitly into the NCK.
Program Continuation: Clear alarm with the Delete key or NC START.

6693 File %1 lost
Parameters: %1 = File name
Definitions: Due to a power failure, a file change could not be terminated properly. The file is lost.
Reaction: NC not ready.
Interface signals are set. Alarm display.
Remedy: Import the file again.
Program Continuation: Switch control OFF - ON.

6700 [Channel %1:] Value of the machine data %2%3 is too low
Parameters: %1 = Channel number
%2 = MD identifier
%3 = If required, field index
Definitions: The MD28302 $MC_MM_PROTOC_NUM_ETP_STD_TYP specifies the number of default event types for the protocol users. However, more types are used than configured.
Reaction: Alarm display.
Remedy: Increase MD28302 $MC_MM_PROTOC_NUM_ETP_STD_TYP.
Program Continuation: Clear alarm with the Delete key or NC START.

7000 Too many compile cycle alarms defined
Definitions: Too many alarms are defined for the compile cycles. On powering up, the quantity was exceeded when defining a new CC alarm.
Reaction: Alarm display.
Remedy: Apart from reducing the number of CC alarms, no remedial measures are possible at the present time. (contact SIEMENS AG, System Support for A&D MC products, Hotline (Tel.: see alarm 1000)
Program Continuation: Clear alarm with the Delete key or NC START.
7010 **MMC number range exceeded**

Definitions: A fixed quantity of alarm numbers (100) is reserved for the compile cycles. This has been exceeded when defining a new CC alarm. (The valid range is between 0 and 4999).

Reaction: Alarm display.

Remedy: Define the CC alarm numbers in the valid range from 0 to 4999.

Program Continuation: Clear alarm with the Delete key or NC START.

7020 **Compile cycle alarm number has not been defined**

Definitions: The alarm ID used by the compile cycle manufacturer is not known to the system. This was not allocated when the compile cycle alarms were generated.

Reaction: Alarm display.

Remedy: The alarm can have 2 possible causes:
- The alarm number has not been defined. A definition must still be made.
- The call parameter used is not the same as the one transferred by the NCK.

Program Continuation: Clear alarm with the Delete key or NC START.

7100 **Compile cycles VDI area: %1 byte for inputs and %2 byte for outputs. Maximum %3 bytes available.**

Parameters:
- %1 = String (machine data)
- %2 = String (machine data)
- %3 = Max. length for interface

Definitions: The sum of the input and output bytes at the VDI user interface for the compile cycles exceeds the maximum quantity of 400 bytes.

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Set the machine data for dividing up the VDI user interface of the compile cycles (DB 9) into input and output bytes in accordance with the functions in the compile cycles. The maximum quantity of 400 bytes must not be exceeded. There are no restrictions concerning the division into input and output bytes.

Program Continuation: Switch control OFF - ON.

7200 **Problem with externally linked compile cycle %1 %2**

Parameters:
- %1 = Description string
- %2 = Additional information

Definitions: Problem with loadable compile cycles

Example:
"Version_conflict_with_CCNCKInterface_Version"
"Loader_problem_from_dFixup"

Reaction: Alarm display.

Remedy: See function description of the compile cycle!

Program Continuation: Clear alarm with the Delete key or NC START.

7201 **Assertion error in %1 line %2**

Parameters:
- %1 = String (path with program name)
- %2 = String (line number)
Definitions: This alarm is purely a development alarm. It only occurs with externally linked compile cycles.

Reaction: NC not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Alarm reaction delay is cancelled.

Remedy: Consultation with CC developer

Program Continuation: Clear alarm with the RESET key in all channels. Restart part program.

7202 Missing option bit for %1: %2 <hex>

Parameters: %1 = (string) name of the specific .elf file
%2 = (int) required option bit (hex)

Definitions: Alarm for SIEMENS compile cycles. This alarm appears when the option bit required for a SIEMENS compile cycle is not set.

Reaction: NC not ready.
Channel not ready.
Interface signals are set.
Alarm display.
Alarm reaction delay is cancelled.

Remedy: Set the required option bit or delete the .elf file from the Flash File System.

Program Continuation: Clear alarm with the RESET key in all channels. Restart part program.

7205 [Channel %1:] Incompatible OEM transformation version NCK %2 CC %3

Parameters: %1 = (int) channel number
%2 = Transformer interface version NCK
%3 = Transformer interface version OEM

Definitions: The interface for OEM transformations has changed incompatibly in the system.

Reaction: NC not ready.
Channel not ready.
Interface signals are set.
Alarm display.
Alarm reaction delay is cancelled.

Remedy: Load the new compile cycle version

Program Continuation: Clear alarm with the RESET key in all channels. Restart part program.

7300 Problem with externally linked COA application %1 Index: %2 Additional information: %3

Parameters: %1 = Name of the COA application
%2 = Index describing the problem that occured in more detail
%3 = Optional additional parameter

Definitions: A problem occurred while loading the COA application. This problem is described in more detail by the parameters "Index" and "Additional information":

Index == 1: The interface version of the COA application is incompatible with the NCK version. The additional information contains the interface version of the COA application.
Index == 2: The heap memory requested by the COA application is not available. The additional information contains the heap memory requested in KB.
Index == 3: The $P_INCOAP parameters requested by the COA application cannot be created due to insufficient memory. The additional information contains the heap memory requested in KB.

Reaction: Alarm display.
Remedy:

Index == 1: The COA application is not executable in the current environment. Please inform the
authorized personnel/service department.
Index == 2 or 3: The memory requested by the COA application will not become available until after
another restart. This means that the alarm should no longer occur with a restart (NCK reset). Other-
wise, there is a real memory problem, and the COA application is not executable (see Index == 1).

Program Con-

continuation:

Switch control OFF - ON.

7301 Assertion error in %1 line %2

Parameters:
%1 = File name
%2 = Line number

Definitions:
This alarm is purely a development alarm. It only occurs with externally linked COA applications.

Reaction:
NC not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Alarm reaction delay is cancelled.

Remedy:
Query with COA developers

Program Con-

tinuation:
Clear alarm with the RESET key in all channels. Restart part program.

7500 Block %1 invalid protection level for command %2 (protection level act.: %3 prog.: %4)

Parameters:
%1 = Block number
%2 = Programmed command
%3 = Current protection level of the command
%4 = Programmed protection level of the command

Definitions:
On assigning a protection level for a parts program command via REDEF command
- an impermissible parts program command has been programmed
- a protection level has been programmed that is logically smaller (larger in value) than the protection
level currently applicable for this command.
- the relevant definition file has not been protected sufficiently against write access. The write protec-
tion of the file must be at least as high as the highest protection level that has been assigned to a parts
program command in this definition file.

Reaction:
Alarm display.

Remedy:
Modify definition files /_N_DEF_DIR/_N_MACCESS_DEF or /_N_DEF_DIR/_N_UACCESS_DEF-
CESS_DEF. Please see the Siemens Programming Guide or the OEM documentation for the lan-
guage commands permissible for the relevant system configurations.

Program Con-

tinuation:
Clear alarm with the RESET key. Restart part program.

8000 [Channel %1:] Option 'Interrupt routines' not set

Parameters:
%1 = Channel number

Definitions:
Fast NCK inputs are required for the input signals in order to activate the interrupt routines and rapid
lift from contour. This function is not included in the basic version and must be retrofitted when needed.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Do not use rapid interrupt inputs or con-
tact the machine manufacturer with a view to retrofitting this option!

Program Con-

tinuation:
Clear alarm with the RESET key. Restart part program.

8010 Option 'activation of more than %1 axes' not set

Parameters:
%1 = Number of axes
Definitions: More machine axes have been defined through the MD20070 $MC_AXCONF_MACHAXUsed than are allowed in the system.

Reaction:
- NC not ready.
- Mode group not ready, also effective for single axes.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Please inform the authorized personnel/service department. The sum of all axes that have been configured through the channel-specific MD20070 $MC_AXCONF_MACHAXUsed, must not exceed the maximum number of axes (dependent on configuration -> option, basic version: 4 axes).

Program Continuation:
- Switch control OFF - ON.

8020 Option 'activation of more than %1 channels' not set

Parameters:
- %1 = Number of channels

Definitions:
- A 2nd channel has been indicated but the corresponding option does not exist.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- In the system-specific MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP, reduce the number of channels to 1 or retrofit the option for a 2nd channel.

Program Continuation:
- Switch control OFF - ON.

8021 Option 'activation of more than %1 mode groups' not set

Parameters:
- %1 = Number of mode groups

Definitions:
- The option for the number of mode groups is not compatible with the activated mode group.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Add option for more mode groups. Activate fewer mode groups.

Program Continuation:
- Switch control OFF - ON.

8022 Option 'activation of more than %1KB SRAM' not set

Parameters:
- %1 = Memory size

Definitions:
- The option for memory extension does not correspond to the active SRAM.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Please inform the authorized personnel/service department.
- Buy option
- Activate less SRAM

Program Continuation:
- Switch control OFF - ON.

8023 Option 'Activation of more than %1 KB PLC user memory' not set

Parameters:
- %1 = Memory size

Definitions:
- The option for the memory configuration does not correspond to the PLC user memory used.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Please inform the authorized personnel/service department.
- Purchase option
- Use less PLC user memory

Program Continuation:
- Switch control OFF - ON.
8024 Option 'Activation of more than %1 magazines' not set

Parameters: %1 = Number of permissible magazines

Definitions: The option for activating multiple magazines is not set

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Buy option
- Reduce the number of magazines (MD18084 $MN_MM_NUM_MAGAZINE)

Program Continuation:
Switch control OFF - ON.

8030 [Channel %1:] Block %2 option 'interpolation of more than %3 axes' not set

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of permissible axes

Definitions: The option for the number of interpolating axes does not correspond to the number of axes programed in the interpolation group.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Option: "Interpolation of more than 4 axes" (the number of permitted axes can be set in this option) or program in the part program as many axes corresponding to the configuration of the control.

Program Continuation:
Clear alarm with the RESET key. Restart part program

8031 [Channel %1:] Block %2 axis %3: Axis has no IPO functionality

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis, spindle number

Definitions: An axis/spindle that has been defined as a special axis/auxiliary spindle (see MD30460 $MA_BASE_FUNCTION_MASK bit8), should be operated as an interpolating axis.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Define axis as interpolating axis (see MD30460 $MA_BASE_FUNCTION_MASK bit8) or change part program

Program Continuation:
Clear alarm with the RESET key. Restart part program

8032 Option 'activation of more than %1 link axes' not set

Parameters: %1 = Number of axes

Definitions: The option for the number of link axes does not match the number of axes programmed in MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Buy option
- Configure fewer link axes

Program Continuation:
Clear alarm with the RESET key. Restart part program
8034 Option 'activation of axis containers' not set

Definitions: The option for activating the axis container function in MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB is not enabled.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Buy option
- Do not configure any containers

Program Continuation: Clear alarm with the RESET key. Restart part program

8036 Option: it is not allowed to set different IPO cycles or position control cycles with NCU link.

Definitions: The option for activating the FAST_IPO_LINK has not been set. For NCU link, all Ip0 or position control cycles must then be equal (see FAST-IPO-LINK description).

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: - Buy option
- Do not activate different Ip0 or position control cycles (see MD10070 $MN_IPO_SYSCLK_TIME_RATIO and MD10060 $MN_POSCTRL_SYSCLK_TIME_RATIO).

Program Continuation: Switch control OFF - ON.

8037 'Activate APC/Number of current setpoint filters' option not set.

Definitions: More than six current setpoint filters were activated in the drive, although the corresponding option had not been set.

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: - Buy option
- Deactivate the 'Advanced Positioning Control' (APC) function in the drive.
- Set a maximum of six current setpoint filters in the drive.

Program Continuation: Switch control OFF - ON.

8038 Option 'activation of more than %1 lead link axes' not set

Parameters: %1 = Number of axes

Definitions: The option for the number of lead link axes does not match the number of configured axes in the MD30554 $MA_AXCONF_ASSIGN_MASTER_NCU.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Buy option
- Configure fewer lead link axes

Program Continuation: Clear alarm with the RESET key. Restart part program

8040 Machine data %1 reset, corresponding option is not set

Parameters: %1 = String: MD identifier

Definitions: A machine data has been set that is locked by an option.

Reaction: Alarm display.
NCK alarms

Remedy: Please inform the authorized personnel/service department. For retrofitting the option, please refer to your machine manufacturer or to a sales representative of SIEMENS AG, A&D MC.

Program Continuation: Clear alarm with the Delete key or NC START.

8041 Axis %1: MD %2 reset, corresponding option not sufficient

Parameters: %1 = Axis number %2 = String: MD identifier

Definitions: All of the axes selected in the machine data of the assigned option are used. Safety functions have been selected for too many axes in the axial machine data.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: --

Program Continuation: Switch control OFF - ON.

8044 Option for IPO cycle time %1 ms not set

Parameters: %1 = Impermissible IPO cycle time

Definitions: The option for activation of an IPO cycle time of %1 ms has not been set.
Option - Permiss. IPO cycle time:
- Option-free >= 8ms
- 1. 1st step >= 6ms
- 2. 2nd step >= 4ms
- 3. 3rd step >= 2ms
- 4. 4th step <2ms

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Buy option
- Increase IPO cycle time (e.g. via MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO)

Program Continuation: Switch control OFF - ON.

8050 Option 'SPL inputs/outputs' not set

Definitions: The number of PLC I/Os has not been set in the option date for Solution Line.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Select area SI Basic or SI Comfort in the option date.

Program Continuation: Switch control OFF - ON.

8051 Option 'Handwheel on PROFIBUS' not set

Definitions: The option to operate handwheels on PROFIBUS is not set.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Activate option 'Handwheel on PROFIBUS'

Program Continuation: Switch control OFF - ON.
8080 %1 option(s) is/are activated without setting the license key
Parameters: %1 = Number of non-licensed options
Definitions: One or more options were activated but no license key was set to prove the purchase of the option(s).
Reaction: Alarm display.
Remedy: Generate license key through the internet under http://www.siemens.com/automation/licence and enter it in the operating area "Start-up", function (HSK) "Licences".
Program Continuation: Clear alarm with the Delete key or NC START.

8081 %1 option(s) is/are activated that are not licensed by the license key
Parameters: %1 = Number of non-licensed options
Definitions: One or more options were activated, that are not licensed by the license key entered.
Reaction: Alarm display.
Remedy: Generate new license key through the internet under http://www.siemens.com/automation/licence and enter it in the operating area "Start-up", function (HSK) "Licences".
Program Continuation: Clear alarm with the Delete key or NC START.

8082 A wrong license key was entered three times, Power On required before next try.
Definitions: The license key was entered wrongly at least three times. Before the next input, a new power ON is required.
Reaction: Alarm display.
Remedy: Execute NCK Power On and enter the license key (correctly).
Program Continuation: Clear alarm with the Delete key or NC START.

8088 'Selection of non-grinding-specific tools' option not possible
Definitions: The system version of the software only allows selection of grinding specific tools (i.e. tools of type 4xx).
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Select a tool of type 4xx (grinding tool)
or install a standard version of the system software
Program Continuation: Clear alarm with the RESET key. Restart part program

8098 Invalid combination of options (%1)
Parameters: %1 = Bit mask of options
Definitions: The following restrictions apply to this module for the combination of options:
The option "Two-channel" and the options "External language", "Nibbling", "Neural quadrant error compensation" and "Measurement level 2" exclude one another!
Bit0 (LSB): Nibbling
Bit1 : External language
Bit2 : Neural quadrant error compensation
Bit3 : Measurement level 2
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Set the options accordingly.
Program Continuation: Switch control OFF - ON.
8100 [Channel %1:] Block %2: function not possible

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: - Impossible due to embargo regulations:
 - 1. Synchronous actions: Writing of feed, override and axial offsets ($AA_VC, $AC_VC, $AA_OVR,
 $AA_VC and $AA_OFF) from synchronous actions as well as Continuous Dressing can be pro-
 grammed only once in a block.
 - 2. Extended measurement: ‘Cyclic measurement’ (MEAC) and ‘Measurement from synchronous
 action’ is not possible.
 - 3. Axis interpolation: The number of axes interpolating with one another must not exceed 4 (this also
 includes synchronous coupling of axes via synchronous actions "DO POS[X]=$A..." "DO
 FA[X]=$A...").

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.

Remedy: Modify part program.

Program Continuation: Clear alarm with the RESET key. Restart part program

8101 Option for collision avoidance is inadequate

Definitions: The option stage is inadequate for the desired function. Possible reasons:
 1. More 3D protection zones have been created than is possible.
 2. A protection zone type was requested that is not permitted.

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: 1. Buy an adequate option stage.
 2. Reduce the number of 3D protection zones.
 3. Avoid impermissible protection zone types.

Program Continuation: Clear alarm with the RESET key. Restart part program

8120 [Channel %1:] Block %2 following axis/spindle %3 generic coupling %4 required

Parameters: %1 = Channel number
 %2 = Block number
 %3 = Slave axis
 %4 = String

Definitions: The option stage is inadequate for the desired function. Possible reasons:
 More couplings have been created than are permitted.
 The number of permissible leading axes has been exceeded for one or more couplings.
 The range of functions of one or more couplings has not been released.

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Buy an adequate option stage.
 Reduce the number of simultaneously active couplings.
 Reduce the number of leading axes per coupling or only use the released range of functions.

Program Continuation: Clear alarm with the RESET key. Restart part program
9000 Handwheel %1 failed
Parameters: %1 = Handwheel number
Definitions: For PROFIBUS/PROFINET only:
PROFIBUS handwheel has failed
Reaction: Interface signals are set.
Alarm display.
Remedy: Restore connection to PROFIBUS handwheel
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

9050 PROFIBUS I/O: Sign of life failure, logical slot / I/O area address %1
Parameters: %1 = Area address
Definitions: For PROFIBUS/PROFINET only:
The sign of life of the slot / I/O area has failed. No data can currently be read from the PROFIBUS I/O devices.
Reaction: Interface signals are set.
Alarm display.
Remedy: Check the communications link to the PROFIBUS I/O devices.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

9052 PROFIBUS I/O: Sign of life failure, logical slot / I/O area address %1
Parameters: %1 = Area address
Definitions: For PROFIBUS/PROFINET only:
The sign of life of the slot / I/O area has failed. No data can currently be written to the PROFIBUS I/O devices.
Reaction: Interface signals are set.
Alarm display.
Remedy: Check the communications link to the PROFIBUS I/O devices.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10203 [Channel %1:] NC start without reference point (action=%2<ALNX>)
Parameters: %1 = Channel number
%2 = Action number/action name
Definitions: NC start has been activated in the MDI or AUTOMATIC mode and at least one axis that needs to be referenced has not reached its reference point.
Reaction: Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Via the channel-specific MD20700: $MC_REFP_NC_START_LOCK (NC Start without reference point) you can decide whether or not the axis has to be referenced before NC Start. The start of referencing can be enabled channel-specific or axis-specific.
Channel-specific reference point approach: The rising edge of the NC/PLC interface signal DB21-30 DBX1.0 (Activate referencing) starts an automatic sequence which starts the axes of the channel in the same sequence as specified in the axis-specific MD34110 $MA_REFP_CYCLE_NR (axis sequence channel-specific referencing). 0: The axis does not participate in channel-specific referencing, but it must be referenced for NC Start, -1: The axis does not participate in channel-specific referencing, but it need not be referenced for NC Start, 1- 8: Starting sequence for the channel-specific referencing (simultaneous start at the same no.), 1 - 31: CPU type Axis-specific referencing: Press the direction key that corresponds to the approach direction in the axis-specific MD34010 $MA_REFP_CAM_MDIR_IS_MINUS (reference point approach in minus direction).
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10207 [Channel %1:] Error when selecting or deselecting the digitize function
Parameters: %1 = Channel number
Definitions: An error has occurred on activating/deactivating the digitizing module; e.g. not in channel ready state, already activated, etc.
Reaction: Alarm display.
Remedy: Press RESET.
Program Continuation: Clear alarm with the Delete key or NC START.

10208 [Channel %1:] Continue program with NC start
Parameters: %1 = Channel number
Definitions: After block search with calculation, the control is in the desired state. The program can now be started with NC Start or the state can be changed for the time being with overstore/jog.
Reaction: Interpreter stop
Alarm display.
NC Stop on alarm.
Remedy: Press NC Start.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10209 [Channel %1:] Internal NC stop after block search
Parameters: %1 = Channel number
Definitions: Internal alarm which only initiates the alarm response NC Stop.
The alarm is output in the following situations:
- If MD11450 $MN_SEARCH_RUN_MODE, bit 0 ==1 and the last action block is loaded in the main run after block search. Alarm 10208 is then activated as a function of the NC/PLC interface signal DB21-30 DBX1.6 (PLC action finished).
- Search alarm 10208 has been suppressed by the PI service _N_FINDBL (third decade of the parameter supplied with "2"). Alarm 10209 is set as a function of whether or not a search ASUB has been configured (MD11450 $MN_SEARCH_RUN_MODE bit 1) with the end of the search ASUB or the loading of the last action block in the main run.
Reaction: Interpreter stop
NC Stop on alarm.
Remedy: NC-Start
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10222 [Channel %1:] Inter-channel communication not possible
Parameters: %1 = Channel number
Definitions: This channel has received a negative acknowledgment from the inter-channel communication because the destination channel number is not known, e.g.: START(x) or WAITE(x) but channel x has not been initialized.
Reaction: Alarm display.
Remedy: This is an indication of possible discrepancies. The program continues if no acknowledgment is called for.
Program Continuation: Clear alarm with the Delete key or NC START.
10223 [Channel %1:] Command %2 is already occupied
Parameters: %1 = Channel number
%2 = Event name
Definitions: This channel has received a negative acknowledgment from the inter-channel communication because this command is already active or has not yet been terminated, e.g.: INIT(x,"ncprog") but a program select request is already active for channel x.
Reaction: Alarm display.
Remedy: This is an indication of possible discrepancies. The program continues if no acknowledgment is called for.
Program Continuation: Clear alarm with the Delete key or NC START.

10225 [Channel %1:] Command denied
Parameters: %1 = Channel number
Definitions: The channel has received a command that cannot be executed.
Reaction: Alarm display.
Remedy: Press RESET.
Program Continuation: Clear alarm with the Delete key or NC START.

10261 [Channel %1:] Communication overload for block preparation
Parameters: %1 = Channel number
Definitions: The internal communication between the NCK modules that evaluate the channel-specific VDI signals (START/STOP/RESET/DDTG/ASUBS/...) and the block preparation are overloaded. The block preparation modules are not being allocated enough computing time.
Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: More processor time must be allocated to the block preparation modules. Machine data $MN_IPO_SYSCLOCK_TIME_RATIO or $MN_SYSCLOCK_CYCLE_TIME can be increased for this purpose.
Program Continuation: Switch control OFF - ON.

10299 [Channel %1:] Auto-Repos function is not enabled
Parameters: %1 = Channel number
Definitions: The Auto-Repos function (operating mode) was selected in the channel but is not implemented.
Reaction: Alarm display.
Remedy: This message is purely informational.
Program Continuation: Clear alarm with the Delete key or NC START.

10600 [Channel %1:] Block %2 auxiliary function during thread cutting active
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: An auxiliary function output is programmed in a thread cutting block.
Reaction: Alarm display.
Remedy: Consequential errors can occur if the machining path of the thread block is too short and further blocks (thread blocks) follow in which no machining stop may occur.
Possible remedial measures:
- Program a longer path and/or a lower traversing rate.
- Output auxiliary function in another block (program section).
Program Continuation: Clear alarm with the Delete key or NC START.
10601 [Channel %1:] Block %2 zero velocity at block end point during thread cutting
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
This alarm occurs only when several blocks with G33 follow in succession. The block end velocity in
the specified block is zero, although a further thread cutting block follows. The reasons for this can be,
for instance:
- G9
- Auxiliary function after motion
- Auxiliary function output before the motion of the following block
- Positioning axis in the block
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Modify the NC part program by removing any programmed "Stop at end of block" G09.
Modify general MD11110 $MN_AUXFU_GROUP_SPEC [n] for selecting the output time of an auxil-
liary function group by changing "Auxiliary function output before/after the movement" to "Auxiliary
function output during the movement":
Bit 5 = 1: Auxiliary function output before movement
Bit 6 = 1: Auxiliary function output during movement
Bit 7 = 1: Auxiliary function output after movement
Program Continuation:
Clear alarm with the RESET key. Restart part program

10602 [Channel %1:] Block %2 velocity limitation during thread cutting
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
In the displayed thread block, the axis would exceed its maximum velocity when the spindle override
is in the maximum position.
Reaction:
Local alarm reaction.
Alarm display.
Remedy:
If the axis velocity is not limited (faultless thread) no remedial measures are necessary. Otherwise, a
lower spindle speed must be programmed for the thread block.
Program Continuation:
Clear alarm with the Delete key or NC START.

10604 [Channel %1:] Block %2 thread pitch increase too high
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The thread pitch increase is causing an axis overload. A spindle override of 100% is assumed during
verification.
Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy:
Reduce the spindle speed, thread pitch increase or path length in the NC program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program

10605 [Channel %1:] Block %2 thread pitch decrease too high
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The thread pitch decrease is causing an axis standstill in the thread block.
Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy:
Reduce the thread pitch decrease or path length in the NC program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10607 [Channel %1:] Block %2 thread with frame not executable

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The current frame is corrupting the reference between the thread length and the thread pitch.

Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Perform thread cutting with G33, G34, G35 without a frame.
Use G63 or G331/G332.

Program Continuation: Clear alarm with the RESET key. Restart part program

10610 [Channel %1:] Axis %2 not stopped

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: An axis/spindle has been positioned over several NC blocks using the POSA/SPOSA instruction. The programmed target position had not yet been reached ("exact stop fine" window) when the axis/spindle was reprogrammed.
Example:
N100 POSA[U]=100
::
N125 X... Y... U... ; e.g.: U axis still travels from N100!

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check and correct the part program (analyze whether motion beyond block boundaries is appropriate here). Prevent block change by means of the keyword WAITP for axes or WAITS for spindles until the positioning axes or positioning spindles have also reached their target position.
Example for axes:
N100 POSA[U]=100
::
N125 WAITP(U)
N130 X... Y... U...
Example for spindles:
N100 SPOSA[2]=77
::
N125 WAITS(2)
N130 M6

Program Continuation: Clear alarm with the RESET key. Restart part program

10620 [Channel %1:] Block %3 axis %2 at software limit switch %4

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
%4 = String

Definitions: During the traversing motion, the system detected that the software limit switch would be traversed in the direction indicated. Exceeding the traversing range was not detected during block preparation because there has either been a motion overlay or a zero offset has been executed or a coordinate transformation is active.

Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Depending on the reason for this alarm being triggered, the following remedial measures should be undertaken:
- Handwheel override: Cancel the motion overlay and avoid this or keep it smaller when the program is repeated.
- Transformation: Check the preset/programmed zero offsets (current frame). If the values are correct, the tool holder (fixture) must be moved in order to avoid triggering the same alarm when the program is repeated, which would again cause the program to be aborted.

Program Continuation: Clear alarm with the RESET key. Restart part program

10621 [Channel %1:] Axis %2 rests on software limit switch %3%4
Parameters: %1 = Channel number
 %2 = Axis name, spindle number
 %3 = String
 %4 = The axis of the software limit switch is only output if different from the traversing axis.

Definitions: The specified axis is already positioned at the displayed software end delimiter.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. Check machine data MD36110 $MA_POS_LIMIT_PLUS/MD36130 $MA_POS_LIMIT_PLUS2 and MD36100 $MA_POS_LIMIT_MINUS/MD36120 $MA_POS_LIMIT_MINUS2 for the software limit switches. Shut down in JOG mode from the software limit switch. Please inform the authorized personnel/service department.

Machine data:
Check whether the 2nd software limit switch has been selected in the axis-specific interface signals: "DB31, ... DBX12.3 (2nd software limit switch plus) and DB31, ... DBX12.2 (2nd software limit switch minus).

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10630 [Channel %1:] Block %2 axis %3 at working area limit %4
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Axis, spindle number
 %4 = String (+ or -)

Definitions: The specified axis violates the working area limitation. This is recognized only in the main run either because the minimum axis values could not be measured before the transformation or because there is a motion overlay.

Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Program other motion or do not perform overlaid motion.

Program Continuation: Clear alarm with the RESET key. Restart part program
10631 [Channel %1:] Axis %2 rests at working area limit %3%4
Parameters: %1 = Channel number
%2 = Axis, spindle
%3 = String (+ or -)
%4 = The axis of the working area limitation is only output if different from the traversing axis.
Definitions: The specified axis reaches the working area limitation in JOG mode.
Reaction: Alarm display.
Remedy: Check SD43420 $SA_WORKAREA_LIMIT_PLUS and SD43430 $SA_WORKAREA_LIMIT_MINUS
for the working area limitation.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10632 [Channel %1:] Block %2 axis %3 reaches the coordinate system-specific working area limit %4
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis, spindle number
%4 = String (+ or -)
Definitions: The specified axis violates the coordinate system-specific working area limitation. This is not detected until the main run, either because the minimum axis values could not be determined before the transformation or because there is an overlaid movement.
Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Program other motion or do not perform overlaid motion.
Program Continuation: Clear alarm with the RESET key. Restart part program

10633 [Channel %1:] Axis %2 is at coordinate system-specific working area limit %3%4
Parameters: %1 = Channel number
%2 = Axis, spindle
%3 = String (+ or -)
%4 = The axis of the coordinate system-specific working area limitation is only output if different from the traversing axis.
Definitions: The specified axis reaches the coordinate system-specific working area limitation in JOG mode.
Reaction: Alarm display.
Remedy: Check the system parameter $P_WORKAREA_CS_xx for the coordinate system-specific working area limitation.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10634 [Channel %1:] Axis %2, tool radius compensation is inactive for type %3 working area limitation, reason: The tool is not oriented parallel to the axis.
Parameters: %1 = Channel number
%2 = Axis, spindle
%3 = 0: BCS, 1: WCS / SZS
Definitions: The tool radius compensation of the working area limitation of the stated axis is not taken into account.
Reason: The tool is not oriented parallel to the axis (e.g. because toolcarrier or transformation is active).
The alarm is reported in JOG mode.
Reaction: Alarm display.
Remedy: The tool radius compensation for working area limitations in JOG mode can only be taken into account if the tool is parallel to the axis.
Active transformation and toolcarrier must be switched off for this function.
NCK alarms

Program Continuation:

Clear alarm with the Delete key or NC START.

10635

[Channel %1:] Axis %2, tool radius compensation is inactive for type %3 working area limitation, reason: no milling or drilling tool.

Parameters:

%1 = Channel number
%2 = Axis, spindle
%3 = 0: BCS, 1: WCS / SZS

Definitions:
The tool radius compensation of the working area limitation of the stated axis is not taken into account.
Reason: The tool must be of type milling cutter or drill.
The alarm is reported in JOG mode.

Reaction:
Alarm display.

Remedy:
The tool radius compensation for working area limitations in JOG mode can only be taken into account for milling or drilling tools.

Program Continuation:
Clear alarm with the Delete key or NC START.

10636

[Channel %1:] Axis %2, tool radius compensation is inactive for type %3 working area limitation, reason: Transformation is active.

Parameters:

%1 = Channel number
%2 = Axis, spindle
%3 = 0: BCS, 1: WCS / SZS

Definitions:
The tool radius compensation of the working area limitation of the stated axis is not taken into account.
Reason: A transformation is active.
The alarm is reported in JOG mode.

Reaction:
Alarm display.

Remedy:
The tool radius compensation for working area limitations in JOG mode cannot be taken into account if transformation is active.

Program Continuation:
Clear alarm with the Delete key or NC START.

10637

[Channel %1:] Axis %2, tool radius compensation is inactive for type %3 working area limitation, reason: Tool not active.

Parameters:

%1 = Channel number
%2 = Axis, spindle
%3 = 0: BCS, 1: WCS / SZS

Definitions:
The tool radius compensation of the working area limitation of the stated axis is not taken into account.
Reason: No tool is active.
The alarm is reported in JOG mode.

Reaction:
Alarm display.

Remedy:
The tool radius compensation for working area limitations in JOG mode cannot be taken into account without an active tool.

Program Continuation:
Clear alarm with the Delete key or NC START.

10650

[Channel %1:] Axis %2 incorrect gantry machine data, error code %3

Parameters:

%1 = Channel number
%2 = Axis
%3 = Error no.

Definitions:
An incorrect value was entered in the gantry-specific axial machine data. Further information can be derived from the error number.
- Error no. = 1 => either an incorrect gantry unit has been entered or the designation of the following axis is incorrect.
- Error no. = 2 => master axis has been specified more than once.

Reaction:
NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Overview of Alarms 03/2009

NCK alarms

Remedy: Please inform the authorized personnel/service department. Correct the machine data:
MD37100 $MA_GANTRY_AXIS_TYPE
0: No gantry axis
1: Master axis grouping
11: Slave axis grouping
2: Master axis grouping
12: Slave axis grouping
3: Master axis grouping
13: Slave axis grouping

Program Continuation:
Switch control OFF - ON.

10651 [Channel %1:] Gantry configuration error. Error code %2
Parameters: %1 = Channel number
%2 = Reason
Definitions: The gantry configuration set in the machine data is erroneous. Gantry unit and reason for objection can be found in the transfer parameter. The transfer parameter is made up as follows.
- %2 = error designation + gantry unit (XX).
- %2 = 10XX => no master axis declared
- %2 = 20XX => no slave axis declared
- %2 = 30XX => different contents in MD30550 $MA_AXCONF_ASSIGN_MASTER_CHAN slave axis and master axis
- %2 = 40XX => different channel or NCU assignment of the gantry axes
- %2 = 50XX => no slave axis declared in this channel
- %2 = 60XX => different channel assignment of the master axis
- %2 = 70XX => error: slave axis is geometry axis
- %2 = 80XX => error: compile cycle axis as slave axis
- %2 = 90XX => error: gantry axis is spindle
- %2 = 100XX => error: gantry axis is Hirth geared
 e.g. error code 1001 = no master axis declared, gantry unit 1.

Reaction: NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Correct the machine data:
MD37100 $MA_GANTRY_AXIS_TYPE
0: No gantry axis
1: Master axis grouping
11: Slave axis grouping
2: Master axis grouping
12: Slave axis grouping
3: Master axis grouping
13: Slave axis grouping

Program Continuation:
Switch control OFF - ON.

10652 [Channel %1:] Axis %2 gantry warning threshold exceeded
Parameters: %1 = Channel number
%2 = Axis
Definitions: The gantry following axis has exceeded the warning limit specified in MD37110 $MA_GANTRY_POS_TOL_WARNING.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department.
1. Check axis (uneven mechanical movement?)
2. MD not set correctly (MD37110 $MA_GANTRY_POS_TOL_WARNING). Changes to this MD take effect after a RESET.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
10653 [Channel %1:] Axis %2 gantry error threshold exceeded

Parameters:
%1 = Channel number
%2 = Axis

Definitions:
The gantry following axis has exceeded the error limit (actual value tolerance) specified in MD37120 $MA_GANTRY_POS_TOL_ERROR.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
1. Check axis (uneven mechanical movement?)
2. MD not set correctly (MD37120 $MA_GANTRY_POS_TOL_ERROR). A POWER ON is necessary after modifying the MD.
If the axes are not yet referenced, MD37130 $MA_GANTRY_POS_TOL_REF is the trigger condition for the error message.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

10654 [Channel %1:] Waiting for synchronization start of gantry group %2

Parameters:
%1 = Channel number
%2 = Gantry unit

Definitions:
The alarm message appears when the axes are ready for synchronization. The gantry grouping can now be synchronized. The actual value difference between the master and slave axes is greater than the gantry warning limit MD 37110 $MA_GANTRY_POS_TOL_WARNING. The synchronization must be started explicitly with the NC/PLC interface signal DB31, ... DBX29.4 (Start gantry synchronization).

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
See Function Manual, Special Functions, Gantry Axes (G1)

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

10655 [Channel %1:] Synchronization of gantry group %2 in progress

Parameters:
%1 = Channel number
%2 = Gantry unit

Definitions:
No further explanation.

Reaction:
Alarm display.

Remedy:
--

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

10656 [Channel %1:] Axis %2 gantry slave axis dynamically overloaded

Parameters:
%1 = Channel number
%2 = Axis

Definitions:
The indicated gantry slave axis is dynamically overloaded, i.e. the slave axis cannot follow the master axis dynamically

Reaction:
Mode group not ready.
Local alarm reaction.
Channel not ready.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Compare the axial machine data of the gantry slave axis with the data of the gantry master axis

Program Continuation:
Clear alarm with the RESET key in all channels of this mode group. Restart part program.
10657
[Channel %1:] Axis %2 power OFF in the gantry error limit exceeded status

Parameters:
%1 = Channel number
%2 = Axis

Definitions:
Gantry error limit exceeded status (alarm 10653) has been switched off. The error can only be removed by deleting MD37135 $MA_GANTRY_ACT_POS_TOL_ERROR or by deactivating the extended monitoring (MD37150 $MA_GANTRY_FUNCTION_MASK Bit0).

Reaction:
NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.

1. Remove a mechanical misalignment
2. Check axis (uneven mechanical movement?)
3. Delete MD37135 $MA_GANTRY_ACT_POS_TOL_ERROR or deactivate the extended monitoring
4. MD37120 $MA_GANTRY_POS_TOL_ERROR is set incorrectly
 - If the MD is changed, a Power ON will be required.

Program Continuation:
Clear alarm with the RESET key. Restart part program

10658
[Channel %1:] Axis %2 impermissible axis status %3.

Parameters:
%1 = Channel number
%2 = Axis number
%3 = Error ID and gantry unit

Definitions:
- 30XX => Gantry group cannot be closed, as not all gantry axes are in one channel.
- 40XX => Gantry group cannot be closed, as the gantry axes have different axis states, for example the axis is assigned to the PLC.
- 50XX => Gantry group is to change channel due to a PLC request, not all gantry axes are known in the new channel.
- 60XX => Gantry group is to be transferred to the channel due to an NC program request, but the channel does not know all the gantry axes.

Reaction:
NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy:
Error ID:
- 30XX => assign all gantry axes to the current channel, for example via axis exchange.
- 40XX => set all axes of the gantry group to the same axis state, for example assign all axes to the NC program, or assign all axes to the PLC.
- 50XX => make all gantry axes known to the required channel.
- 60XX => make all gantry axes known to the required channel.

:end

Program Continuation:
Clear alarm with the RESET key. Restart part program

10700
[Channel %1:] Block %2 NCK protection zone %3 violated during automatic or MDI mode

Parameters:
%1 = Channel number
%2 = Block number
%3 = Protection zone number

Definitions:
The workpiece-related NCK protection zone has been violated. Note that another tool-related protection zone is still active. The workpiece-related protected area can be traversed after a new NC Start.

Reaction:
Local alarm reaction. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy:
Protection zone can be traversed after a new NC Start.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10701 [Channel %1:] Block %2 channel-specific protection zone %3 violated during automatic or MDI mode

Parameters: %1 = Channel number
%2 = Block number
%3 = Protection zone number

Definitions: The workpiece-related channel-specific protection zone has been violated. Note that another tool-related protection zone is still active. The workpiece-related protected area can be traversed after a new NC Start.

Reaction: Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Protection zone can be traversed after a new NC Start.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10702 [Channel %1:] NCK protection zone %2 violated during manual mode

Parameters: %1 = Channel number
%2 = Protection zone number

Definitions: The workpiece-related NCK protection zone has been violated. Note that another tool-related protection zone is still active. The workpiece-related protected area can be traversed after a new NC Start.

Reaction: Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: Protection zone can be traversed after a new NC Start.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10703 [Channel %1:] Channel-specific protection zone %2 violated during manual mode

Parameters: %1 = Channel number
%2 = Protection zone number

Definitions: The workpiece-related channel-specific protection zone has been violated. Note that another tool-related protection zone is still active. The workpiece-related protected area can be traversed after a new NC Start.

Reaction: Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: Protection zone can be traversed after a new NC Start.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10704 [Channel %1:] Block %2 protection zone monitoring is not guaranteed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: New movements of a geometry axis which have been added could not be allowed for at the time of block preparation. It is therefore not certain that the protection zones will not be violated. This is just a warning message without further reactions.

Reaction: Interface signals are set.
Alarm display.

Remedy: Take other measures to ensure that the geometry axes motion, including the additional motion, does not violate the protection zones. (The warning comes nevertheless) or exclude additional motions.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
10706 [Channel %1:] NCK protection zone %2 reached with axis %3 during manual mode

Parameters: %1 = Channel number
%2 = Protection zone number
%3 = Axis name

Definitions: The workpiece-related NCK protection zone has been reached with the specified axis. Note that another tool-related protection zone is still active. The workpiece-related protection zone can be traversed when the PLC has issued an enable signal.

Reaction: Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Protection zone can be traversed after enable signal from PLC.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10707 [Channel %1:] Channel-specific protection zone %2 reached with axis %3 during manual mode

Parameters: %1 = Channel number
%2 = Protection zone number
%3 = Axis name

Definitions: The workpiece-related channel-specific protection zone has been reached with the specified axis. Note that another tool-related protection zone is still active. The workpiece-related protection zone can be traversed when the PLC has issued an enable signal.

Reaction: Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Protection zone can be traversed after enable signal from PLC.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

10710 [Channel %1:] Block %2 conflict with centerless grinding

Parameters: %1 = Channel number
%2 = Spindle number

Definitions: Centerless grinding is active and a block has been processed that satisfies at least one of the following conditions:
- G96 active and regulating spindle is master spindle.
- Regulating spindle is in interdependent grouping.
- Axes of centerless transformation overlap with an active transformation and a tool is active.
- Constant wheel peripheral speed for the regulating spindle is active.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Modify program.

Program Continuation: Clear alarm with the RESET key. Restart part program.
10720 [Channel %1:] Block %3 axis %2 software limit switch %4

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
%4 = String (+ or -)

Definitions:
The path programmed for the axis violates the currently valid software limit switch. The alarm is activated when preparing the part program block. If bit 11=0 in the machine data MD11411 $MN_ENABLE_ALARM_MASK, this alarm is issued instead of alarm 10722. If bit 11 is set in the machine data MD11411 $MN_ENABLE_ALARM_MASK, an expanded diagnostics option is offered for the software limit switch violation. The condition for activation is the presence of the ALUN* alarm file in the HMI.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Check and correct positions in the NC program.
Please inform the authorized personnel/service department.
Check machine data: MD36100 $MA_POS_LIMIT_MINUS / MD36120 $MA_POS_LIMIT_MINUS2 and MD36110 $MA_POS_LIMIT_PLUS / MD36130 $MA_POS_LIMIT_PLUS2 for the software limit switches.
Check the axis-specific interface signals: DB31, ... DBX12.3 / 12.2 (2nd software limit switch plus/minus) to see whether the 2nd software limit switch is selected.
Check the currently active work offsets via the current frame.
Work offsets, overlaid movements ($AA_OFF), DRF and transformation components must also be checked.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10721 [Channel %1:] Block %3 axis %2 software limit switch %4

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
%4 = String (+ or -)

Definitions:
The motion planned for the axis violates the currently valid software limit switch. The alarm is activated during the preprocessing of approach or rest blocks for REPOS. Depending on MD11411 $MN_ENABLE_ALARM_MASK, bit11=0 this alarm is output instead of alarm 10723. If this MD11411 $MN_ENABLE_ALARM_MASK, bit11 is set in this machine data $MN_ENABLE_ALARM_MASK, an expanded diagnostics option is offered for the software limit switch violation. The condition for activation is the presence of the ALUN* alarm file in the HMI. See also the Diagnostics Manual for alarm 10723.

Reaction: Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Determine the cause of the offset from the initial or target position. The REPOS command is executed at the end of an ASUB or system ASUB. See also cross reference from ASUBs.
Check the axis-specific NC/PLC interface signals DB31, ... DBX12.3 / 12.2 (2nd software limit switch plus/minus) to see whether the 2nd software limit switch is selected.
Check the currently active work offset via the current frame.
Also check the external work offsets, overlaid movements ($AA_OFF), DRF and transformation components.
Cancel the NC program with NC reset.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

10722 [Channel %1:] Block %5 axis %2 software limit switch %6 violated, residual distance: %7 %3<ALUN> violated

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Unit of distance
%4 = Block number, label|number+string(+/-)|residual distance
Definitions: The path programmed for the axis violates the currently valid software limit switch. The alarm is activated when preparing the part program block.

This alarm is issued instead of alarm 10720 if bit 11 = 1 in the MD11411 $MN_ENABLE_ALARM_MASK. Alarm 10722 offers an expanded diagnostics option for the software limit switch violation. The condition for activation is the presence of the ALUN* alarm file in the HMI.

See also diagnostics guide for alarm 10720.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: Check and correct positions in the NC program.
Please inform the authorized personnel/service department.
Machine data: MD36100 $MA_POS_LIMIT_MINUS/MD36120 $MA_POS_LIMIT_MINUS2 and MD36110 $MA_POS_LIMIT_PLUS/MD36130 $MA_POS_LIMIT_PLUS2 must be checked for the software limit switches.

Check the axis-specific interface signals: DB31, ... DBX12.3 / 12.2 (2nd software limit switch plus/minus) to see whether the 2nd software limit switch is selected.

Check currently active work offsets via the current frame.
Work offsets, overlaid movements ($AA_OFF), DRF and transformation components must also be checked.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10723 [Channel %1:] Block %5 axis %2 software limit switch %6 violated, residual distance: %7 %3<ALUN>

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Unit of distance
%4 = Block number, label|number|string(+/-)|residual distance

Definitions: The motion planned for the axis violates the currently active software limit switch.
The alarm is activated during the preprocessing of approach or rest blocks for REPOS.

This alarm is issued instead of alarm 10721 if bit11 = 1 in MD11411 $MN_ENABLE_ALARM_MASK.
Alarm 10723 offers an expanded diagnostics option for the software limit switch violation. The condition for activation is the presence of the ALUN* alarm file in the HMI.
See also the Diagnostics Manual for alarm 10721.

Reaction: Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: Determine the cause of the offset from the initial or target position. The REPOS command is executed at the end of an ASUB or system ASUB. See also cross reference from ASUBs.
Please inform the authorized personnel/service department.
Check the MD36100 $MA_POS_LIMIT_MINUS / MD36120 $MA_POS_LIMIT_MINUS2 and MD36110 $MA_POS_LIMIT_PLUS / MD36130 $MA_POS_LIMIT_PLUS2 for the software limit switches.

Check the axis-specific interface signals DB31, ... DBX12.3 / 12.2 (2nd software limit switch plus/minus) to see whether the 2nd software limit switch is selected.
Check the currently active work offset via the current frame.
Also check the external work offsets, overlaid movements ($AA_OFF), DRF and transformation components.
Cancel the NC program with NC reset.

Program Continuation: Clear alarm with the RESET key. Restart part program

10730 [Channel %1:] Block %3 axis %2 working area limitation %4

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
%4 = String (+ or -)
Definitions: This alarm is generated if it is determined during block preparation that the programmed path of the axis violates the working area limitation.

If bit 11=0 in machine data MD11411$MN_ENABLE_ALARM_MASK, this alarm is issued instead of alarm 10732. If bit 11 is set in machine data MD11411$MN_ENABLE_ALARM_MASK, an expanded diagnostics option is offered for the software limit switch violation. The condition for activation is the presence of the ALUN* alarm file in the HMI.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: a) Check NC program for correct positional data and, if necessary, make corrections.
b) Check zero offsets (current frame)
c) Correct working area limitation via G25/G26, or
d) Correct working area limitation via setting data, or
e) Deactivate working area limitation via setting data 43410 WORKAREA_MINUS_ENABLE=FALSE

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10731 [Channel %1:] Block %3 axis %2 working area limitation %4

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
%4 = String (+ or -)

Definitions: The motion planned for the axis violates the currently active working area limit.
The alarm is activated during the preparation of approach or rest blocks for REPOS.
This alarm is issued instead of alarm 10733 if bit 11 is not set in MD11411$MN_ENABLE_ALARM_MASK.

Reaction: Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: Determine the cause of the offset from the initial or target position. The REPOS command is executed at the end of an ASUB or system ASUB. See also cross reference from ASUBs.
Check the currently active work offset via the current frame.
Also check the external work offsets, overlaid movements ($AA_OFF), DRF and transformation components.
Cancel NC program with NC reset.

Program Continuation: Clear alarm with the RESET key. Restart part program.

10732 [Channel %1:] Block %5 axis %2 working area limitation violated, residual distance: %6 %3<ALUN>

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Unit of distance
%4 = String
%5 = Block number, label
%6 = Residual distance

Definitions: This alarm is generated if it is determined during block preprocessing that the programmed path of the stated axis violates the working area limitation.
If MD11411$MN_ENABLE_ALARM_MASK, bit 11=1, this alarm is issued instead of alarm 10730.
Alarm 10732 offers an expanded diagnostics option for the working area limitation violation. The condition for activation is the presence of the ALUN* alarm file in the HMI.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: a) Check NC program for correct positional data and, if necessary, make corrections.
b) Check zero offsets (current frame)
c) Correct working area limitation via G25/G26, or
d) Correct working area limitation via setting data, or
e) Deactivate working area limitation via setting data 43410$SA_WORKAREA_MINUS_ENABLE=FALSE

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10733 [Channel %1:] Block %5 axis %2 working area limitation violated, residual distance: %6 %3<ALUN>

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Unit of distance
%4 = Block number, label|residual distance

Definitions:
The motion planned for the axis violates the currently active working area limitation.
The alarm is activated during the preparation of approach or rest blocks for REPOS.
This alarm is issued instead of alarm 10731 if bit11=1 in MD11411 $MN_ENABLE_ALARM_MASK.
Alarm 10733 offers an expanded diagnostics option for the working area limitation violation. The condition for activation is the presence of the ALUN* alarm file in the HMI.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Determine the cause of the offset from the initial or target position. The REPOS command is executed at the end of an ASUB or system ASUB. See also cross reference from ASUBs.
Check the currently active work offset via the current frame.
Also check the external work offsets, overlaid movements ($AA_OFF), DRF and transformation components.
Cancel NC program with NC reset.

Program Continuation:
Clear alarm with the RESET key. Restart part program

10735 [Channel %1:] Block %5 axis %2 coordinate system-specific working area limitation violated, residual distance: %6 %3<ALUN>

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Unit of distance
%4 = Block number, label|residual distance

Definitions:
This alarm is generated if it is determined during block preparation that the programmed path of the stated axis violates the coordinate system-specific working area limitation.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
a) Check NC program for correct positional data and, if necessary, make corrections.
b) Check work offsets (current frame)
c) Correct the working area limitation with WALCS1 ... WALCS9, or
d) Correct the working area limitation in $P_WORKAREA_CS_LIMIT_PLUS or $P_WORKAREA_CS_LIMIT_MINUS, or
e) Deactivate the working area limitation with $P_WORKAREA_CS_MINUS_ENABLE =FALSE or $P_WORKAREA_CS_PLUS_ENABLE.
In cases d) and e), then reactivate the group of the selected coordinate system-specific working area limitation.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10736 [Channel %1:] Block %5 %2 coordinate system-specific working area limitation violated, residual distance: %6 %3<ALUN>

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Unit of distance
%4 = Block number, label/residual distance

Definitions:
This alarm is generated if it is determined during block preparation that the programmed path of the stated axis violates the coordinate system-specific working area limitation. The alarm is activated during the preparation of approach or residual blocks for REPOS.

Reaction:
Local alarm reaction. Interface signals are set. Alarm display.

Remedy:
Determine the cause of the offset from the initial or target position. The REPOS command is executed at the end of an ASUB or system ASUB. See also cross reference from ASUBs. Check the currently active work offset via the current frame. Also check the external work offsets, overlaid movements ($AA_OFF), DRF and transformation components. Cancel NC program with NC reset.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

10740 [Channel %1:] Block %2 too many empty blocks in WAB programming

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
It is not allowed to program more blocks than specified by MD20202 $MC_WAB_MAXNUM_DUMMY_BLOCKS between the WAB block and the block determining the approach and retraction tangent.

Reaction:
Correction block is reorganized. Local alarm reaction. Interface signals are set. Alarm display. NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10741 [Channel %1:] Block %2 direction reversal with WAB infeed motion

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A safety distance which has been programmed is located perpendicular to the machining plane and not between the start and end point of the WAB contour.

Reaction:
Correction block is reorganized. Local alarm reaction. Interface signals are set. Alarm display. NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10742 [Channel %1:] Block %2 WAB distance invalid or not programmed

Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: Possible causes:
In a WAB block, the parameter DISR has not been specified or its value is less than or equal to 0.
During approach or retraction with circle and active tool radius, the radius of the internally generated
-WAB contour is negative. The internally generated WAB contour is a circle with a radius which, when
offset with the current offset radius (sum of tool radius and offset value OFFN), yields the tool center
point path with the programmed radius DISR.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10743 [Channel %1:] Block %2 WAB programmed several times
Parameters: %1 = Channel number
%2 = Block number, label

Definitions: An attempt has been made to activate a WAB motion before a previously activated WAB motion was
terminated.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10744 [Channel %1:] Block %2 no valid WAB direction defined
Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The tangent direction for smooth approach or retraction is not defined.
Possible causes:
- In the program, no block with travel information follows the approach block.
- Before a retraction block, no block with travel information has been programmed in a program.
- The tangent to be used for WAB motion is vertical to the current machining plane.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10745 [Channel %1:] Block %2 WAB end position not clear
Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In the WAB block and in the following block, the position has been programmed perpendicular to the
machining direction. In the WAB block, no position has been indicated in the machining plane.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program. Either remove the position data for the infeed axis from the WAB block or the
following block, or program a position in the machining plane in the WAB block as well.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10746 [Channel %1:] Block %2 block search stop for WAB
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: A preprocessing stop has been inserted between an SAR approach block and the following block defining the tangent direction or between an SAR retraction block and the following block defining the end position.
Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10747 [Channel %1:] Block %2 retraction direction not defined for WAB
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: In a WAB retraction block with quarter circle or semi-circle (G248 or G348), the end point in the machining plane was not programmed, and either G143 or G140 without tool radius compensation is active.
Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Modify part program. The following changes are possible:
- Indicate end point in the machining plane in the WAB block.
- Activate tool radius compensation (effective for G140 only, not for G143).
- State retraction side explicitly with G141 or G142.
- Perform retraction with a straight line instead of a circle.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10748 [Channel %1:] Block %2 illegal retract plane with WAB
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: By means of DISRP a position of the retraction plane has been programmed which is not situated between the safety distance (DISCL) and the starting point (during approach) and/or end point (during retraction) of the WAB movement.
Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Modify part program
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10750 [Channel %1:] Block %2 tool radius compensation activated without tool number
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions:
A tool T... must be selected so that the control can make allowance for the associated compensation values.
A correction data block (D1) containing the correction values (parameter P1 - P25) is automatically assigned to each tool (T number). Up to 9 correction data blocks can be assigned to a tool by specifying the required data block with the D number (D1 - D9).
The cutter radius compensation (CRC) is allowed for if function G41 or G42 is programmed. The correction values are contained in parameter P6 (geometry value) and P15 (wear value) of the active correction data block Dx.

Reaction:
Correction block is reorganized.
Interpreter stop
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Before calling the CRC with G41/G42, program a tool number under the address T...

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10751 [Channel %1:] Block %2 danger of collision due to tool radius compensation
Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The "Bottleneck detection" (calculation of intersection for the following compensated traversing blocks) has not been able to calculate a point of intersection for the reviewed number of traversing blocks. It is therefore possible that one of the equidistant paths violates the workpiece contour.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Please inform the authorized personnel/service department. Check the part program and, if possible, modify the programming so that inside corners with smaller paths than the correction value are avoided. (Outside corners are not critical because the equidistants are lengthened or intermediate blocks are inserted, so that there is always a point of intersection).
Increase the number of reviewed traversing blocks via machine data MD20240 $MC_CUTCOM_MAXNUM_CHECK_BLOCKS (default: 3), this increases the amount of calculation and consequently also the block cycle time.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10752 [Channel %1:] Block %2 overflow of local block buffer with tool radius compensation
Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The cutter radius compensation must buffer a variable number of intermediate blocks in order to enable calculation of the equidistant tool path for each NC block. The size of the buffer cannot be determined by simple means. It depends on the number of blocks without traversing information in the compensation plane, the number of contour elements to be inserted and the shape of the curvature in spline and polynomial interpolation.
The size of the buffer is fixed by the system and cannot be changed via the MDs.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Please inform the authorized personnel/service department.
Reduce the size of the buffer that has been assigned by modifying the NC program.
- By avoiding:
 - Blocks without traversing information in the compensation plane
 - Blocks with contour elements having a variable curvature (e.g. ellipses) and with curvature radii that are smaller than the compensation radius. (Such blocks are divided up into several subblocks).
 - Reduce the number of reviewed blocks for collision monitoring (MD20240 $MC_CUTCOM_MAXNUM_CHECK_BLOCKS).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10753 [Channel %1:] Block %2 selection of the tool radius compensation only possible in linear block

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Selection of tool radius compensation with G41/G42 may only be performed in blocks where the G function G00 (rapid traverse) or G01 (feed) is active.
In the block with G41/G42, at least one axis in the plane G17 to G19 must be written. It is always advisable to write both axes because, as a rule, both axes are traversed when selecting the compensation.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Correct the NC program and put the compensation selection in a block with linear interpolation.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10754 [Channel %1:] Block %2 deselection of the tool radius compensation only possible in linear block

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Deselection of tool radius compensation with G40 can only be performed in blocks where the G function G00 (rapid traverse) or G01 (feed) is active.
In the block with G40, at least one axis in the plane G17 to G19 must be written. It is always advisable to write both axes because, as a rule, both axes are traversed when deselecting the compensation.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Correct the NC program and put the compensation selection in a block with linear interpolation.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10755 [Channel %1:] Block %2 selection of the tool radius compensation via KONT not possible at the current starting point

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When activating the cutter radius compensation with KONT the starting point of the approach block is within the compensation circle and therefore already violates the contour.
If the cutter radius compensation is selected with G41/G42, the approach behavior (NORM or KONT) determines the compensation movement if the present actual position is behind the contour. With KONT, a circle is drawn with the cutter radius around the programmed initial point (= end point of the approach block). The tangent that passes through the current actual position and does not violate the contour is the approach movement.
If the start point is within the compensation circle around the target point, no tangent passes through this point.
Overview of Alarms

NCK alarms

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Place selection of the CRC such that the starting point of the approach movements comes to rest outside of the correction circle around the target point (programmed traversing movements > compensation radius). The following possibilities are available:
Selection in the previous block
Insert intermediate block
Select approach behavior NORM

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10756 \[Channel \%1: \] Block \%2 deselection of the tool radius compensation via KONT not possible at the programmed end point

Parameters:
\%1 = Channel number
\%2 = Block number, label

Definitions: On deselection of the cutter radius compensation, the programmed end point is within the compensation circle. If this point were in fact to be approached without compensation, there would be a contour violation.
If the cutter radius compensation is deselected via G40, the approach behavior (NORM or KONT) determines the compensation movement if the programmed end point is behind the contour. With KONT, a circle is drawn with the cutter radius about the last point at which the compensation is still active. The tangent passing through the programmed end position and not violating the contour is the retraction movement.
If the start point is within the compensation circle around the target point, no tangent passes through this point.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Place deselection of the CRC such that the programmed end point comes to rest outside the compensation circle around the last active compensation point. The following possibilities are available:
Deselection in the next block
Insert intermediate block
Select retract behavior NORM

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10757 \[Channel \%1: \] Block \%2 changing the compensation plane while tool radius compensation is active not possible

Parameters:
\%1 = Channel number
\%2 = Block number, label

Definitions: In order to change the compensation plane (G17, G18 or G19) it is first necessary to deselect the cutter radius compensation with G40.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Insert an intermediate block in the part program using the correction deselection. After the plane change, the cutter radius compensation is to be selected in an approach block with linear interpolation.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10758 [Channel %1:] Block %2 curvature radius with variable compensation value too small

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The current cutter radius compensation (the cutter used) is too large for the programmed path radius. In a block with variable tool radius compensation, a compensation must be possible either anywhere or nowhere on the contour with the smallest and the largest compensation value from the programmed range. There must be no point on the contour in which the curvature radius is within the variable compensation range.

If the compensation value varies its sign within a block, both sides of the contour are checked, otherwise only the compensation side.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Use smaller cutters or allow for a part of the cutter radius at the time of contour programming.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10759 [Channel %1:] Block %2 path is parallel to tool orientation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In a block with spline or polynomial interpolation, the corrected path runs in at least one point parallel to the tool orientation, i.e. the path has a tangent perpendicular to the compensation plane. The tangent at a point on a path is regarded as parallel to the tool orientation if the angle between the two directions is less than the limit value defined by MD21080 $MC_CUTCOM_PARALLEL_ORI_LIMIT. However, in circumferential milling, straight lines running parallel to the tool orientation are permissible, as well as circles with a circle plane perpendicular to the compensation plane (application with smooth retraction from the groove). Straight lines in the direction of the tool orientation are not permissible in face milling (CUT3D, CUT3DF, CUT3DFS).

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Do not use splines or polynomials when writing the contour section, but straight lines and circles instead. Divide up the tool piece geometry and deselect the cutter radius compensation between the various sections.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10760 [Channel %1:] Block %2 helical axis is not parallel to tool orientation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
With active tool radius compensation a helix is only permissible if the helix axis is parallel to the tool, i.e. the circle plane and the compensation plane must be identical.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Orient helix axis perpendicular to the machining plane.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10761 [Channel %1:] Block %2 tool radius compensation for ellipse with more than one revolution not possible

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When machining the inside of an ellipse, in parts of the ellipse the curvature radii are greater than or smaller than the cutter radius compensation.
In ellipses, in this case the block would be split up into 4 subblocks with curvature radii that are greater than and less than the compensation radius. Over several revolutions, there would be a tremendous increase in the amount of calculation required by the unlimited number of resulting subblocks, and therefore this situation is rejected by the error message.
If compensation is possible everywhere or nowhere on the ellipse, then ellipses are also permissible that cover more than one full revolution.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Use cutter with smaller radius or program motion block on blocks with no more than one revolution.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10762 [Channel %1:] Block %2 too many empty blocks between two traversing blocks with active tool radius compensation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The maximum permissible number of empty blocks is limited by a machine data.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
- Modify part program
- Modify machine data
- Check whether SBL2 is activated. With SBL2, a block is generated from each part program line which can lead to exceeding the maximum permissible number of empty blocks between two traversing blocks.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10763 [Channel %1:] Block %2 path component of the block in the compensation plane becomes zero

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Due to collision monitoring with active tool radius compensation, the path component of the block in the compensation plane becomes zero. If the original block contains no motion information perpendicular to the compensation plane, it means that this block is excluded.

The alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK bit1 = 1.

Reaction:
Alarm display.

Remedy:
- The behavior is correct at narrow locations that cannot be machined with the active tool.
- Modify the part program if necessary.
- Use tool with smaller radius if necessary.
- Program CDOF/CDOF2.

Program Continuation:
Clear alarm with the Delete key or NC START.

10764 [Channel %1:] Block %2 discontinuous path with active tool radius compensation

Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: This alarm occurs when, with active tool radius compensation, the starting point used for calculating the compensation is not identical to the end point of the preceding block. This situation can occur, for example, when a geometry axis is traversed between two positions as a positioning axis or when, with an active kinematic transformation (e.g. 5-axis transformation) the tool length compensation is altered.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10765 [Channel %1:] Block %2 3D tool radius compensation not possible

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: This alarm occurs when an attempt is made to activate the 3D tool radius compensation even though the option required for this is not fitted in the control.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: The option cannot be activated by altering machine data because the necessary code is not physically available.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10766 [Channel %1:] Illegal change of surface orientation between block %2 and block %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Block number, label

Definitions: This alarm occurs with 3D face milling when, at the time of block transition, the surface defined in the first block is continued in the second block with the rear side of the surface defined there. The block number in the alarm designates the second block.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10767 [Channel %1:] Block %2 processing with tilt angle unequal 0 not possible

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: When face milling with a torus milling cutter, the tilt angle must be 0 if the surface normal vector and the tool orientation include an angle that is less than the limiting angle given by the MD21082 $ MC_CUTCOM_PLANE_ORI_LIMIT, i.e. in this case only the lead angle may be unequal to 0.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program. If necessary, use another tool (ball end mill).

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10768 [Channel %1:] Block %2 illegal tool orientation with 3D tool radius compensation

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: This alarm may occur during 3D face milling: the angle between the surface normal vector of the surface to be machined and the largest surface normal vector of the tool surface is smaller than the limit value given by MD21080 $MC_CUTCOM_PARALLEL_ORI_LIMIT, or the tool is oriented such that machining would have to be performed from the rear side of the surface. In this case, the largest surface normal vector is the vector the direction of which deviates most from the direction in the tool point (i.e. parallel to the tool longitudinal axis). With cylindrical tools or tools which end in a cylindrical part (e.g. the standard torus milling cutter), this vector is positioned perpendicular to the tool vector. For this type of tool, the alarm indicates that the angle between the tool longitudinal axis of, for example an envelope line of the cylinder, and the surface to be machined is smaller than the minimum permissible value. With tools the (valid) surface of which ends in a conical part instead of a cylindrical part (e.g. a beveled cutter or a torus milling cutter where the torus is defined to be smaller than 90 degrees), this alarm indicates that the angle between an envelope line of the taper and the surface to be machined is smaller than the minimum permissible value.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program. If necessary, use another tool.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10769 [Channel %1:] Block %2 Illegal surface normal vector with 3D tool radius compensation

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In 3D face milling, surface normal vector and path tangent vector must theoretically be perpendicular to one another, i.e. they must be at 90° to one another. Since both vectors can be programmed independently of each other, deviations from this angle are possible and allowed. This alarm is generated when the angle between surface normal vector and path tangent vector becomes less than the limit angle given by the MD21084 $MC_CUTCOM_PLANE_PATH_LIMIT.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10770 [Channel %1:] Block %2 change of corner type due to change of orientation with active tool radius compensation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The type of a corner (inside or outside corner) depends not only on the programmed path but also on the tool orientation. For this purpose, the programmed path is projected in the plane perpendicularly to the actual tool orientation and the corner type is determined there. If a change in orientation is programmed (in one or several blocks) between two traversing blocks, resulting in the type of corner at the end of the first traversing block being different from that at the start point of the second block, the above error message is issued.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10771 [Channel %1:] Block %2 overflow of local block buffer due to orientation smoothing

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
This error occurs when more blocks must be buffered than memory space is available. This error can only occur when the software has been incorrectly configured.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Increase size of local buffer area.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10772 [Channel %1:] Block %2 illegal orientation change when activating or deactivating 3D face cutting

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In face milling, no intermediate blocks with pure orientation change are allowed between the activation block and the first correction block or between the last correction block and the deactivation block (3D tool radius compensation).

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10773 [Channel %1:] Illegal tool orientation in block %2 at inside corner with block %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Block number, label
Definitions: On inside corners, the path of the traversing blocks concerned is reduced but the orientation change originally programmed in the block is retained and is now carried out in synchronism with the shortened path. Because of the ensuing changed relationship between path tangent, surface normal and tool orientation, singular points or points with impermissible side angle can occur in 3D face milling. This is not allowed.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10774 [Channel %1:] Illegal tool dimensions with face cutting in block %2

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
This alarm occurs when illegal tool dimensions are programmed for face milling, e.g. negative tool radius, rounding radius zero or negative for tool types that require a rounding radius, taper angle zero or negative for tapered tools.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10775 [Channel %1:] Illegal tool change with face cutting in block %2

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
This alarm occurs when a tool change has been programmed while 3D tool radius compensation is active with the result that the tool type changes or, if the tool type remains unchanged, at least one relevant tool dimension has changed as compared with the deselected tool. Depending on the tool type, relevant tool dimensions can be the tool diameter, the rounding radius or the taper angle. Changes to the tool length are allowed.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10776 [Channel %1:] Block%2 axis %3 must be geometry axis if tool radius compensation is active

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name

Definitions:
This alarm occurs when an axis that is required for tool radius compensation is not a geometry axis. With CUT2DF, the axis can be a positioning axis perpendicular to the machining plane; with all other types of compensation (CUT2DF, CUT3DC, CUT3DF, CUT3DFF), all geometry axes must be operated as such.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Modify part program. On selection of G41/42, the axes involved must be known as GEOAX in the channel. It is possible by programming GEOAX() or G91 G0 X0 Y0 in the block prior to G41/42.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10777 [Channel %1:] Block %2 tool radius compensation: too many blocks with suppression of compensation

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The maximum permissible number of blocks with active compensation suppression with tool radius compensation is limited by MD20252 $MC_CUTCOM_MAXNUM_SUPPR_BLOCKS.

Reaction: Correction block is reorganized. Local alarm reaction. Interface signals are set. Alarm display. NC Stop on alarm at block end.

Remedy: - Modify part program.
- Modify machine data.
- Check whether SBL2 is activated. With SBL2, a block is generated from each part program line which can lead to exceeding the maximum permissible number of empty blocks between two traversing blocks.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10778 [Channel %1:] Block %2 preprocessing stop with active tool radius compensation

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: If a preprocessing stop is detected with active tool radius compensation (either programmed by the user or generated internally) and the SD42480 $SC_STOP_CUTCOM_STOPRE is set, then this warning is issued because in this situation machine movements which were not intended by the user can occur (termination of radius compensation and new approach).

Reaction: Alarm display. NC Stop on alarm at block end.

Remedy: - Continue machining with CANCEL and Start.
- Modify part program.
- Set SD42480 $SC_STOP_CUTCOM_STOPRE to FALSE.

Program Continuation: Clear alarm with the Delete key or NC START.

10779 [Channel %1:] Block %2 preprocessing stop with active tool radius compensation

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: If a preprocessing stop is detected with active tool radius compensation (either programmed by the user or generated internally) and the SD42480 $SC_STOP_CUTCOM.StopRE is set, then this warning is issued because in this situation machine movements which were not intended by the user can occur (termination of radius compensation and new approach). To continue machining, activate the CANCEL key and perform a restart.

Reaction: Correction block is reorganized. Local alarm reaction. Interface signals are set. Alarm display. NC Stop on alarm at block end.

Remedy: - Continue machining with CANCEL and Start.
- Modify part program.
- Set SD42480 $SC_STOP_CUTCOM_STOPRE to FALSE.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10780 [Channel %1:] Block %2 impermissible change of a turning or grinding tool with active tool radius compensation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A tool change on which the edge offset (difference between edge center and edge reference point) changes, is only permissible in straight and polynomial blocks.
It is impermissible in circular blocks, involute blocks and in blocks including rational polynomials with maximum permissible numerator and denominator degrees.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
- Continue machining with CANCEL and Start.
- Modify part program.
- Set SD42480 $SC_STOP_CUTCOM_STOPRE to FALSE.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10781 [Channel %1:] Block %2 illegal orientation of involute with tool radius compensation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Tool radius compensation is possible for involutes only if the compensation plane matches the involute plane.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10782 [Channel %1:] Block %2 illegal curve type with tool radius compensation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
This alarm occurs, if an attempt is made to apply the tool radius compensation to a curve type for which this function is not implemented. The only cause at present: Involute with 3D tool radius compensation.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10783 [Channel %1:] Block %2 tool radius compensation type requires orientation transformation

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: This alarm occurs, if an attempt is made to activate a tool radius compensation which must enable a tool orientation change and the Orientation transformation option is not available. This alarm can only occur if one of the following G code is active in the G code group 22:
- CUT3DC
- CUT3DCC
- CUT3DCCD

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: - Modify part program
- Install "Orientation transformation" option

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10784 [Channel %1:] Block %2 illegal tool for tool radius compensation with constraint surface

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: When activating the tool radius compensation with constraint surface, an illegal tool type is active. Only cutting tools of the tool types 1 to 399 are admitted with the following exceptions:
- 111 ball end milling cutter
- 155 torus milling cutter
- 156 torus milling cutter
- 157 torus milling cutter

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Use another tool.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10790 [Channel %1:] Block %2 plane change during linear programming with angles

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The active plane was changed between the first and second subblock when programming two straight lines with angle parameters.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10791 [Channel %1:] Block %2 invalid angle during linear programming

Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No intermediate point was found when programming a contour consisting of two straight lines and an angle specification.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

10792 [Channel %1:] Block %2 illegal interpolation type during linear programming with angles

Parameters: %1 = Channel number %2 = Block number, label

Definitions: Only spline or linear interpolation is permitted for programming two straight lines with angle specification. Circular or polynomial interpolation is not allowed.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10793 [Channel %1:] Block %2 second block missing during linear programming with angles

Parameters: %1 = Channel number %2 = Block number, label

Definitions: The second block is missing during programming of two straight lines with angle specification. This situation only occurs if the first subblock is also the last block of a program, or if the first subblock is followed by a block with a preprocessor stop.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10794 [Channel %1:] Block %2 angle specification missing in 2nd block during linear interpolation with angles

Parameters: %1 = Channel number %2 = Block number, label

Definitions: The angle is missing from the second block during programming of two straight lines with angle specification. This error can only occur if an angle was programmed in the preceding block, but no axis of the active plane was programmed in that block. The cause of the error may therefore also have been the intention to program a single straight line with an angle in the previous block. In this case, exactly one axis of the active plane must be programmed.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10795
[Channel %1:] Block %2 end point specification during angle programming contradictory

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
During programming of a straight line, both positions of the active plane and an angle were specified (the position of the end point is over-specified), or the position of the programmed coordinate cannot be reached with the specified angle. If a contour consisting of two straight lines is to be programmed with angles, it is possible to specify the two axis positions of the plane and an angle in the second block. The error can also occur if, due to a programming error, the preceding block cannot be interpreted as the first subblock of such a contour. A block is interpreted as the first block of a two-block contour if an angle, but not an axis of the active plane, was programmed, and if the block is not already the second block of a contour.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10800
[Channel %1:] Block %3 axis %2 is not a geometry axis

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Block number, label

Definitions:
With an active transformation or a frame with a rotation component the geometry axes are needed for block preparation. If a geometry axis has previously been traversed as positioning axis, it retains its status of "positioning axis" until it is again programmed as a geometry axis. Because of the POSA motion beyond block boundaries, it is not possible to identify in the preprocessing run whether the axis has already reached its target position when the block is executed. This is, however, an unconditional requirement for calculating the ROT component of the frame or of the transformation.
If geometry axes are used as positioning axes, then:
1. No rotation may be specified in the current overall frame.
2. No transformation may be selected.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
After selecting transformation or frame, reprogram the geometry axis now operating as positioning axis (e.g. with WAITP) in order to revert the status to "geometry axis.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10805
[Channel %1:] Block %2 repositioning after switch of geometry axes or transformation

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
In the asynchronous subroutine the assignment of geometry axes to channel axes was changed or the active transformation modified.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program.
10810 [Channel %1:] Block %2 master spindle not defined
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The function "Revolutional feedrate" (with G95 or G96), or "Rigid tapping" (with G331/G332) has been programmed, although no master spindle is defined from which the speed could be derived. For the definition the MD 20090 $MC_SPIND_DEF_MASTER_SPIND is available for the default or the keyword SETMS in the part program, thus allowing each spindle of the channel to be redefined as master spindle.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Preset the master spindle with MD20090 $MC_SPIND_DEF_MASTER_SPIND[n]=m (n ... channel index, m ... spindle no.) or define it with an identifier in an NC part program before a G function that requires a master spindle is programmed.
The machine axis that is to be operated as a spindle must be equipped in MD35000 $MA_SPIND_ASSIGN_TO_MACHAX[n]=m (n ... machine axis index, m ... spindle no.) with a spindle number. Additionally, the MD20070 $MC_AXCONF_MACHAX_USED[n]=m (n ... channel axis index, m ... machine axis index) must be used to assign it to a channel (channel axis index 1 or 2).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10820 [Channel %1:] Rotary axis/spindle %2 not defined
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
Definitions:
Revolutional feed has been programmed for contouring and synchronous axes or for an axis/spindle. However, the rotary axis/spindle from which the feed is to be deduced is not available.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Correct part program or set the SD43300 $SA_ASSIGN_FEED_PER_REV_SOURCE correctly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10860 [Channel %1:] Block %2 feedrate not programmed
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Cause:
A traversing velocity has not been programmed for the displayed traversing block. Feed F or FZ:
With the traversing velocity defined by feed F or FZ, F or FZ was not reprogrammed after the feed type changed, for example linear feed G94 after revolutional feedrate G95 F or G95 FZ.
Modal feed FRCM:
With modal traversing velocity FRCM defined for rounding RND or chamfering CHF, feed FRCM was not reprogrammed after the feed type changed, for example linear feed G94 after revolutional feedrate G95, or revolutional feedrate G95 F after tooth feedrate G95 FZ.

Note:
Feed FRCM also has to be reprogrammed when the feed type changes if the current traversing block does not contain chamfering CHF or rounding RND, but the feed FRCM was programmed active, that is unequal to 0, before the feed type changed.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy:
Program feedrate in accordance with the interpolation type.
- G93: The feedrate is specified as a time-reciprocal value under address F in [rev/min].
- G94 and G97: The feedrate is programmed under address F in [mm/min] or [m/min].
- G95: The feedrate is programmed as revolutionary feedrate under address F in [mm/revolution] or under the address FZ in [mm/tooth].
- G96: The feedrate is programmed as cutting rate under address S in [m/min]. It is derived from the current spindle speed.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10861 [Channel %1:] Block %3 velocity of positioning axis %2 is zero

Parameters:
%1 = Channel number
%2 = Axis
%3 = Block number, label

Definitions:
No axis velocity has been programmed and the positioning velocity set in the machine data is zero.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Enter a different velocity in MD32060 $MA_POS_AX_VELO.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10862 [Channel %1:] Block %2 master spindle also used as path axis

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A contour has been programmed that also includes the master spindle as contouring axis. However, the velocity of the contour is derived from the rotational speed of the master spindle (e.g. G95).

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Modify the program so that no reference is possible to the program itself.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10865 [Channel %1] Block %2 FZ active, but no tool offset, tool %3

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Tool

Definitions:
For the displayed traversing block a tooth feedrate is active, but no tool offset. Traversing can be performed after the error has been acknowledged. For calculation of the effective feedrate one tooth per revolution will be assumed.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Check the NC program for correct tool selection and correct it, if required; then continue the program with NC start.
Or:
Continue the NC program with NC start. For calculation of the effective feedrate one tooth per revolution is assumed.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
10866 [Channel %1:] Block %2 FZ is active, but the number of teeth of the active D number %4 of tool %3 is zero.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Identifier
%4 = D number

Definitions:
Tooth feedrate is active for the displayed traversing block, but a D number of 0 is selected with $TC_DPNT (number of teeth).
Traversing can be performed after acknowledgement of the error. For calculation of the effective feedrate one tooth per revolution is assumed.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Check the NC program for correct tool selection and correct it, if required; then continue the NC program with NC start.
Or:
Continue the NC program with NC start. The feedrate will be calculated assuming 1 tooth.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10870 [Channel %1:] Block %2 facing axis for constant velocity not defined

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Constant cutting speed was selected although no transverse axis was applied as reference axis for constant cutting speed or assigned through SCC[AX].
Constant cutting speed can be activated as follows:
- Basic position G96, G961 or G962 of G group 29 during booting
- Programming of G96, G961 or G962
A reference axis for G96, G961 or G962 can be applied as a transverse axis in MD20100 $MC_DIAMETER_AX_DEF or defined through the instruction SCC[AX].

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Check MD20100 $MC_DIAMETER_AX_DEF. Before programming G96, G961 or G962 a transverse axis must be defined as a reference axis for constant cutting speed via MD20100 $MC_DIAMETER_AX_DEF or SCC[AX].

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

10880 [Channel %1:] Block %2 too many empty blocks between two traversing blocks when inserting chamfers or radii

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Between 2 blocks containing contour elements and which are to be joined with a chamfer or a radius (CHF, RND), more blocks without contour information have been programmed than provided for in the MD20200 $MC_CHFRND_MAXNUM_DUMMY_BLOCKS.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Modify the part program in order that the permissible number of dummy blocks is not exceeded or adapt the channel-specific machine data MD20200 $MC_CHFRND_MAXNUM_DUMMY_BLOCKS (dummy blocks with chamfers/radii) to the maximum number of dummy blocks.
NCK alarms

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10881 [Channel %1:] Block %2 overflow of local block buffer in the case of chamfers or radii

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Between 2 blocks containing the contour elements and to be joined with a chamfer or a radius (CHF, RND), so many dummy blocks have been programmed without contour information that the internal buffer is too small.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: Modify part program such that the number of dummy blocks is reduced.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10882 [Channel %1:] Block %2 activation of chamfers or radii (non-modal) without traversing movement in the block

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: No chamfer or radius has been inserted between 2 linear or circle contours (edge breaking) because:
There is no straight line or circle contour in the plane
There is a movement outside the plane
A plane change has taken place
The permissible number of empty blocks without traversing information (dummy blocks) has been exceeded.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Correct the part program according to the above error description or change the number of dummy blocks in the channel-specific MD20200 $MC_CHFRND_MAXNUM_DUMMY_BLOCKS to comply with the maximum number allowed for in the program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10883 [Channel %1:] Block %2 chamfer or fillet has to be reduced

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: This alarm is output, if at least one of the relevant blocks when inserting chamfers or radii is so short, that the contour element to be inserted must be reduced against its originally programmed value. The alarm occurs only if bit 4 is set in the MD11411 $MN_ENABLE_ALARM_MASK. Otherwise, the chamfer or radius is adapted without an alarm being output.

Reaction: Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify NC program of continue program without modifications after CANCEL and Start or with Start alone.

Program Continuation: Clear alarm with the Delete key or NC START.
10890 [Channel %1:] Block %2 overflow of local block buffer when calculating splines
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The maximum permissible number of empty blocks is limited by a machine data.
Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy: - Modify part program
- Modify machine data
- Check whether SBL2 is activated. With SBL2, a block is generated from each part program line which can lead to exceeding the maximum permissible number of empty blocks between two traversing blocks.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10891 [Channel %1:] Block %2 multiplicity of node is greater than its order
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In the B spline the distance between nodes PL (node = point on spline at which 2 polynomials meet) has been programmed with zero too often in succession (i.e. the "multiplicity" of a node is too great). In the quadratic B spline the node distance may not be specified more than twice with 0 in succession, and in the cubic B spline not more than 3 times.
Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy: Program the node distance PL = 0 in succession no more than the degree of the B spline used.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10900 [Channel %1:] Block %2 no S value programmed for constant cutting speed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: If G96 is active, the constant cutting speed under address S is missing.
Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy: Program constant cutting speed under S in [m/min] or deselect the function G96. For example, with G97 the previous feed is retained but the spindle continues to rotate at the current speed.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10910 [Channel %1:] Block %2 irregular velocity waveform of one path axis

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
When the path axis waveforms were analyzed during block preparation, a large local deviation relative to the path velocity was detected in the velocity waveform of one or more path axes. Such a situation can have the following causes:
- The path runs close to singular positions of the machine kinematics.
- The programmed contour characteristic is very uneven.
- The FGROUP definition is unfavorable relative to the contour.
- The setting MD28530 $MC_MM_PATH_VELO_SEGMENTS=0 is inadequate for curvature changes occurring within one block. This problem occurs more frequently with G643, G644 and COMPCAD.
- A kinematic transformation has been implemented with insufficient numerical accuracy.

The path velocity is generally reduced substantially in order to avoid axis overloads safely. An apparent machine standstill may occur. Severe axis movements occur suddenly as soon as the singular position is reached.

Reaction:
Local alarm reaction.
Alarm display.

Remedy:
Dividing a block into several smaller ones often provides an improvement.
If MD28530 $MC_MM_PATH_VELO_SEGMENTS=0 is set, then the alarm may be avoidable by a value MD28530 $MC_MM_PATH_VELO_SEGMENTS=3 or 5, as the blocks are then analyzed considerably more accurately.

Program Continuation:
Clear alarm with the Delete key or NC START.

10911 [Channel %1:] Block %2 transformation prohibits to traverse the pole

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The given curve passes through the pole of the transformation.

Reaction:
Interpreter stop
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program

10912 [Channel %1:] Block %2 preprocessing and main run might not be synchronized

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The preset positioning axis run cannot be accurately calculated beforehand. The reason for this is either that the axes involved in the transformation are traversed as positioning axes or that a transformation pole is circumnavigated too frequently by the curve.

The velocity check is performed starting from this block in the main run. It is more conservative than with anticipated calculation. The LookAhead function is deactivated. If it is not possible to take over the velocity check into the main run, part program processing is aborted.

Reaction:
Alarm display.

Remedy:
No action is usually necessary. The velocity control operates more effectively, however, if the part program is modified.
- If a transformation pole is circumnavigated several times by the curve, it helps to split up the block into smaller parts.
- If a positioning axis is the cause, you should check whether the axis can be traversed as a path axis. The Look Ahead function remains deactivated until preprocessing can be based on defined conditions again (e.g. as a result of change from JOG->AUTO, tool or tool edge change).

Program Continuation:
Clear alarm with the Delete key or NC START.
10913 [Channel %1:] Block %2 negative feed profile is ignored
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The given feed profile is in part negative. However, negative path feed is not allowed. The feed profile is ignored. The specified feed block end value is taken when traversing over the entire block.
Reaction: Local alarm reaction.
 Alarm display.
Remedy: No action is usually necessary. The alarm message indicates an error in the programming, however, and this should be corrected.
Program Continuation: Clear alarm with the Delete key or NC START.

10914 [Channel %1:] Block %2: movement not possible while transformation active.
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The machine kinematics does not allow the specified motion. Transformation-dependent error causes can be in: TRANSMIT: A (circular) area exists around the pole, where positioning is not possible. The area is caused by the fact that the tool reference point cannot be traversed as far as into the pole. The area is defined by:
 - the machine data (MD24920 $MC_TRANSMIT_BASE_TOOL..)
 - the active tool length compensation (see $TC_DP..). Whether the tool length compensation is included in the calculation depends on the working plane selected (see G17,..),
 - The machine stops before the faulty block.
Reaction: Interpreter stop
 Local alarm reaction.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program. Change the incorrectly specified tool length compensation.
Program Continuation: Clear alarm with the RESET key. Restart part program

10915 [Channel %1:] Block %2 preparation problem in Look Ahead (module %3, identifier %4)
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Module identifier
 %4 = Error code
Definitions: The parameterized memory is inadequate to run Look Ahead in expansion mode.
Reaction: Interpreter stop
 Local alarm reaction.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: Change parameterization. Increase work memory. Use standard Look Ahead.
 Contact Siemens if necessary.
Program Continuation: Clear alarm with the RESET key. Restart part program
10916 [Channel %1:] Block %2 preparation problem in Look Ahead (module %3, identifier %4)
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Module identifier
%4 = Error code
Definitions: The parameterized memory is inadequate to create an optimum path velocity profile. The profile created is not as smooth as it could be.
Reaction: Local alarm reaction.
Alarm display.
Warning display.
Remedy: Change parameterization, increase IPO buffer.
Program Continuation: Clear alarm with the Delete key or NC START.

10930 [Channel %1:] Block %2 interpolation type not allowed in stock removal contour
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The following types of interpolation are allowed in the contour program for stock removal: G00, G01, G02, G03, CIP, CT
Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: In the contour subroutine, program only path elements that consist of straight lines and arcs.
Program Continuation: Clear alarm with the RESET key. Restart part program

10931 [Channel %1:] Block %2 incorrect stock removal contour
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The following errors occurred in the subroutine for the contour during stock removal:
- Full circle
- Overlapping contour elements
- Wrong start position
Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: The errors listed above must be corrected in the subroutine for the stock removal contour.
Program Continuation: Clear alarm with the RESET key. Restart part program

10932 [Channel %1:] Block %2 preparation of contour has been restarted
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The first contour preparation/contour decoding run must be terminated with EXECUTE.
Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Program the keyword EXECUTE to terminate the contour preparation in the part program before again calling up contour segmentation (keyword CONTPRON).
Program Continuation: Clear alarm with the RESET key. Restart part program
10933 [Channel %1:] Block %2 contour programm does not contain enough contour blocks
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The contour program contains:
 - Less than 3 contour blocks with CONTPRON
 - No contour blocks with CONTDCON
Reaction: Local alarm reaction.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Increase the size of the program with the stock removal contour to include at least 3 NC blocks with movements in both axes of the current machining plane.
Program Continuation: Clear alarm with the RESET key. Restart part program

10934 [Channel %1:] Block %2 array for contour segmentation is set too small
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: During contour segmentation (activated with the keyword CONTPRON), the field for the contour table has been detected as too small. For every permissible contour element (circle or straight line) there must be a row in the contour table.
Reaction: Local alarm reaction.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Base the definition of the field variables of the contour table on the contour elements to be expected. The contour segmentation divides some NC blocks into as many as 3 machining cuts. Example: N100 DEF TABNAME_1 [30, 11] Field variables for the contour table provide for 30 machining cuts. The number of columns (11) is a fixed quantity.
Program Continuation: Clear alarm with the RESET key. Restart part program

10940 [Channel %1:] Block %2 curve table %3: delete/overwrite not possible
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Number of curve table
Definitions: The curve table can only be deleted if it is not active in a link.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: It is necessary to deactivate all links that are being used by the curve table to be deleted.
Program Continuation: Clear alarm with the RESET key. Restart part program

10941 [Channel %1:] Block %2: Curve table %3: NC SRAM memory full, type %4
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Number of curve table
 %4 = Object type
Definitions: Insufficient free dynamic memory during curve table definition.
The object type parameter specifies for which curve table object the memory will not suffice:
1: Number of curve tables too small (MD18400 $MN_MM_NUM_CURVE_TABS)
2: Number of linear curve table segments too small (MD18403 $MN_MM_NUM_CURVE_SEG_LIN)
3: Number of polynomial curve table segments too small (MD18402 $MN_MM_NUM_CURVE_SEGMENTS)
4: Number of curve table polynomials too small (MD18404 $MN_MM_NUM_CURVE_POLYNOMS)

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel / service department. Delete curve tables that are no longer required, or reconfigure the memory space for the curve tables. The curve table definition process now has to be repeated; see machine data:
MD18400 $MN_MM_NUM_CURVE_TABS, MD18402 $MN_MM_NUM_CURVE_SEGMENTS,
MD18403 $MN_MM_NUM_CURVE_SEG_LIN,
MD 18404 $MN_MM_NUM_CURVE_POLYNOMS.

Program Continuation: Clear alarm with the RESET key. Restart part program

10942 [Channel %1:] Block %2 curve table %3: illegal instruction during definition

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of curve table

Definitions: Various illegal command sequences cause the output of this alarm during the definition of the curve table. For example, it is impermissible to terminate definition of a curve table with M30 before programming the CTABEND command.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Correct the part program and start it again.

Program Continuation: Clear alarm with the RESET key. Restart part program

10943 [Channel %1:] Block %2 curve table %3: direction reversal of lead value in the block not allowed

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of curve table

Definitions: The conditions for converting a programmed contour to a curve table were not fulfilled in this block.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Correct the part program and start it again.

Program Continuation: Clear alarm with the RESET key. Restart part program

10944 [Channel %1:] Block %2 curve table %3: illegal transformation

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of curve table

Definitions: It is impermissible to use a transformation in a curve table if the leading axis or following axis programmed in CTABDEF is involved in the transformation. Exception: TRAANG.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Overview of Alarms 03/2009

NCK alarms

Remedy: Correct NC part program.
Program Continuation: Clear alarm with the RESET key. Restart part program

10945 [Channel %1:] Block %2 curve table %3: illegal coupling of axes
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of curve table
Definitions: It is not possible to program axis links for the leading axes and following axis programmed in CTAB-DEF.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Correct NC part program.
Program Continuation: Clear alarm with the RESET key. Restart part program

10946 [Channel %1:] Block %2 curve table %3: no contour defined
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of curve table
Definitions: No movement for the leading axis was programmed between CTABDEF and CTABEND. A curve table is not permitted without a contour.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Correct the part program and start it again.
Program Continuation: Clear alarm with the RESET key. Restart part program

10947 [Channel %1:] Block %2 curve table %3: contour not continuous
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of curve table
Definitions: The contour in a curve table must be continuous. Incontinuity can occur, for example, as a result of activating a transformation.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Correct the part program and start it again.
Program Continuation: Clear alarm with the RESET key. Restart part program

10948 [Channel %1:] Block %2 curve table %3: position jump at end of period
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of curve table
Definitions: A periodic curve table was defined in which the position of the following axis at the end of the table was different to the position at the start of the table.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Correct the part program and start it again.
Program Continuation: Clear alarm with the RESET key. Restart part program
10949 [Channel %1:] Block %2 curve table %3: missing master axis motion
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of curve table
Definitions: A slave axis motion has been programmed without a master axis motion.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Correct the part program and start it again.
Program Continuation: Clear alarm with the RESET key. Restart part program.

10950 [Channel %1:] Calculation of arc length function too inaccurate
Parameters:
%1 = Channel number
Definitions: The calculation of the arc length function could not be performed to the required accuracy.
Reaction: Alarm display.
Warning display.
Remedy: The calculation of the arc length function could not be performed to the required accuracy during active polynomial interpolation. Either increase MD20262 $MC_SPLINE_FEED_PRECISION or reserve more memory for the representation of the arc length polynomials. MD28540 $MC_MM_ARCLENGTH_SEGMENTS defines how many polynomial segments can be used per block in order to approximate the arc length function.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10951 [Channel %1:] Block %2 curve table %3: following value period is zero
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of curve table
Definitions: --
Reaction: Alarm display.
Remedy: Ensure that the table specification is correct.
Program Continuation: Clear alarm with the Delete key or NC START.

10955 [Channel %1:] Block %2 curve table %3: missing master axis motion
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of curve table
Definitions: A slave axis motion has been programmed without a master axis motion. This can also occur if, with active radius compensation, a block is created in which the slave axis moves but not the master axis. The alarm is for information only and can be suppressed by setting MD20900 $MC_CTAB_ENABLE_NO_LEADMOTION = 2.
Reaction: Alarm display.
Remedy: Alarm can be switched off via MD20900 $MC_CTAB_ENABLE_NO_LEADMOTION = 2.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
10956 [Channel %1:] Block %2 curve table %3: NC memory limit DRAM reached type %4.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of curve table
%4 = Object type

Definitions:
Insufficient memory in the DRAM while defining the curve table.
The object type parameter specifies for which curve table object the memory will not suffice:
1: Number of curve tables too small (MD18406 $MN_MM_NUM_CURVE_TABS_DRAM)
2: Number of linear curve table segments too small (MD18409 $MN_MM_NUM_CURVE_SEG_LIN_DRAM)
3: Number of polynomial curve table segments too small (MD18408 $MN_MM_NUM_CURVE_SEGMENTS_DRAM)
4: Number of curve table polynomials too small (MD18410 $MN_MM_NUM_CURVE_POLYNOMS_DRAM)

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Delete the curve tables that are no longer required in DRAM or reconfigure the memory space for the curve tables. The curve table must then be redefined. Machine data for memory configuration of the curve tables in DRAM:
MD18406 $MN_MM_NUM_CURVE_TABS_DRAM, MD18408 $MN_MM_NUM_CURVE_SEGMENTS_DRAM, MD18409 $MN_MM_NUM_CURVE_SEG_LIN_DRAM, MD18410 $MN_MM_NUM_CURVE_POLYNOMS_DRAM.

Program Continuation:
Clear alarm with the RESET key. Restart part program

10958 [Channel %1:] Lin. curve table %2, memory type %3 includes %4 polynomial segments.

Parameters:
%1 = Channel number
%2 = Number of curve table
%3 = Memory type
%4 = Number of polynomial segments

Definitions:
On generating the curve table with the specified ID in the specified memory type (1 = SRAM, 2 = DRAM), polynomial segments were used instead of possible linear segments.
By increasing the number of linear curve table segments by the indicated number, the curve table can be saved in a better way.

The following machine data are involved depending on the memory type:
1 (SRAM): MD18403 $MN_MM_NUM_CURVE_SEG_LIN
2 (DRAM): MD18409 $MN_MM_NUM_CURVE_SEG_LIN_DRAM

Reaction:
Alarm display.

Remedy:
The indicated curve table can be created and optimized for the memory by increasing
MD18403 $MN_MM_NUM_CURVE_SEG_LIN or MD18409 $MN_MM_NUM_CURVE_SEG_LIN_DRAM
and repeating table generation.

Program Continuation:
Clear alarm with the Delete key or NC START.

10960 [Channel %1:] Block %2 COMPCURV/COMPCAD and radius compensation can-notbe used simultaneously

Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: Compressor types COMPCURV and COMPCAD cannot be used in combination with tool radius compensation. Only compressor type COMPON can be activated while tool radius compensation is active.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10961 [Channel %1:] Block %2 maximum cubic polynomials are allowed on active radius compensation.

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: With active radius compensation, only up to cubic polynomials are permissible for the geometry axes. In this case no 4th or 5th degree polynomials can be programmed.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10962 [Channel %1:] Block %2 function %3 not possible with path correction

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Funktionsname

Definitions: With this software release, the specified function can not yet be used together with tool radius compensation. Please modify the part program or obtain a higher software version.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10970 [Channel %1:] Block %2 continuous-path mode active during punching

Parameters: %1 = Channel number
%2 = Block number

Definitions: The active continuous-path mode G64x is ignored during punching/nibbling.

Reaction: Alarm display.

Remedy: Disable continuous-path mode with G60 during punching/nibbling.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10980 [Channel %1:] Block %2 orientation smoothing not possible

Parameters: %1 = Channel number
%2 = Block number, label
Definitions: This alarm can have the following causes:
1. Orientation smoothing cannot be activated with active path-relative orientation interpolation with ORIPATH.
 This means that in the 34th modal G code group the G code OSOF must be active.
2. The path-relative orientation interpolation cannot be activated with ORIPATH and ORIPATH_MODE = 1 because MD28580 $MC_MM_ORIPATH_CONFIG = 0. This MD must have the value 1.
3. Smoothing of the orientation cannot be activated with OSD or OST because MD28580 $MC_MM_ORIPATH_CONFIG = 0. This MD must have the value 1.

Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

10982 [Channel %1:] Block %2 orientation smoothing not possible with ORISON

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: This alarm has the following cause:
The smoothing of the orientation with ORISON is only possible if MD MD28590 $MC_MM_ORISON_BLOCKS >= 4.

Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy: Modify part program or set MD28590 $MC_MM_ORISON_BLOCKS >= 3.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12000 [Channel %1:] Block %2 address %3 programmed repeatedly

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source string of the address

Definitions: Most addresses (address types) may only be programmed once in an NC block, so that the block information remains unambiguous (e.g. X... T... F... etc. - exception: G and M functions).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Remove from the NC program addresses that occur more than once (except for those where multiple value assignments are allowed).
- Check whether the address (e.g. the axis name) is specified via a user-defined variable (this may not be easy to see if allocation of the axis name to the variable is performed in the program through computational operations only).

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12010 [Channel %1:] Block %2 address %3 address type programmed too often

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source string of the address

Definitions: The number of times each address type may occur in a NC block is defined internally (for instance, all axes together form one address type to which a block limit also applies).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NCK alarms

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECTION. The correction pointer positions on the incorrect block. The program information must be split up over several blocks (but make sure that the functions are of the non-modal type!).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12020 [Channel %1:] Block %2 illegal address modification

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Valid address types are 'IC', 'AC', 'DC', 'CIC', 'CAC', 'ACN', 'ACP', 'CACN', 'CACP'. Not each of these address modifications can be used for each address type. The Programming Guide specifies which of these can be used for the various address types. If this address modification is applied to address types that are not allowed, then the alarm is generated, e.g.:
N10 G02 X50 Y60 I=DC(20) J30 F100 interpolation parameters with DC.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Key: Press the NC STOP key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer is then positioned on the incorrect block. Apply non-modal address modifications only for permissible addresses, in accordance with the Programming Manual.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12030 [Channel %1:] Block %2 invalid parameter or data type in %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions:
In polynomial interpolation, polynomials must not be greater than the 3rd degree (refer to Programming Guide).
f(p) = a0 + a1 p + a2 p2 + a3 p3
The coefficients a0 (the starting points) are identical to the end points of the preceding block and need not be programmed. In the polynomial block, a maximum of 3 coefficients per axis is therefore allowed (a1, a2, a3).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12040 [Channel %1:] Block %2 expression %3 is not of data type 'AXIS'

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string in the block

Definitions:
Some keywords require that the data in their parameters be written in variables of the type "AXIS". For example, in the keyword PO the axis identifier must be specified in the parenthesized expression, and it must be defined as a variable of the AXIS type. With the following keywords only parameters of the AXIS type are possible:
AX[.], FA[.], FD[.], FL[.], IP[.], OVRA[.], PO[.], POS[.], POSA[.]
Example:
N5 DEF INT ZUSTELL=Z1 incorrect, this does not specify an axis identifier but the number 26 161
N5 DEF AXIS ZUSTELL=Z1 correct
N10 POLY PO[X]=(0.1,0.2,0.3) PO[Y]=(22,33,44) &PO[INFEED]=(1,2,3)

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Overview of Alarms 03/2009

NCK alarms

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Correct the part program in accordance with the instructions given in the Programming Guide.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12050 [Channel %1:] Block %2 DIN address %3 not configured

Parameters: %1 = Channel number
%2 = Block number, label
%3 = DIN address in the source text block

Definitions: The name of the DIN address (e.g. X, U, X1) is not defined in the control. In addition to the fixed DIN addresses, the control also has variable addresses. Refer to "Variable addresses" in the Programming Guide. The names of these addresses can be altered by machine data.

e.g.: DIN identifier -> Configured identifier
G01 -> LINE, G04 -> WAIT ...

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Study the Programming Guide and the machine data with respect to the addresses actually configured and their significance and correct the DIN block accordingly.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12060 [Channel %1:] Block %2 same G group programmed repeatedly

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The G functions that can be used in the part program are divided into groups that are syntax defining or non-syntax defining. Only one G function may be programmed from each G group. The functions within a group are mutually preclusive.
The alarm refers only to the non-syntax defining G functions. If several G functions from these groups are called in one NC block, the last of these in a group is active in each case (the previous ones are ignored).
Syntax defining G functions: 1. to 4th G group
Non-syntax defining G functions: 5. to nth G group

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. No remedy is required. You should, however, check whether the G function last programmed really is the one required.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12070 [Channel %1:] Block %2 too many syntax-defining G functions

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Syntax defining G functions determine the structure of the part program block and the addresses contained in it. Only one syntax defining G function may be programmed in each NC block. The G functions in the 1st to 4th G group are syntax defining.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Analyze NC block and distribute the G functions over several NC blocks.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12080 [Channel %1:] Block %2 syntax error in text %3
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source text area
Definitions: At the text position shown, the grammar in the block is incorrect. The precise reason for this error cannot be specified in more detail because there are too many possibilities.
Example 1: N10 IF GOTO ... ; the condition for the jump is missing!
Example 2: N10 DEF INT VARI=5
 N11 X VARI ; the operation is missing for the X and VARI variables
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Analyze the block and correct it in accordance with the syntax rules given in the Programming Guide.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12090 [Channel %1:] Block %2 unexpected parameter %3
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Disallowed parameters in the text
Definitions: The programmed function has been predefined; no parameters are allowed in its call. The first unexpected parameter is displayed.
Example: On calling the predefined subroutine TRAFOF (switching off a transformation) parameters have been transferred (one or more).
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Program function without parameter transfer.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12100 [Channel %1:] Block %2 number of passes %3 not permissible
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of passes
Definitions: The subroutines called with MCALL are modal, i.e. after each block with positional information a routine run is automatically performed once. For this reason, programming of the number of passes under address P is not allowed.
The modal call is effective until another MCALL is programmed, either with a new subroutine name or without (delete function).
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Program the subroutine call MCALL without number of passes.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12110 [Channel %1:] Block %2 block syntax cannot be interpreted
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The addresses programmed in the block are not permissible together with the valid syntax defining G function, e.g. G110 X20 Y30 F1000.

An interpolation parameter must not be programmed in the linear block.

Reaction: Correction block is reorganized.

Interface signals are set.

Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.

Check the block structure and correct in accordance with the programming requirements.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12120 [Channel %1:] Block %2 G function not separately programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The G function programmed in this block must be alone in the block. No general addresses or synchronous actions may occur in the same block. These G functions are:

G25, G26: Working area and spindle speed limitation
G110, G111, G112: Pole programming with polar coordinates
G92: Spindle speed limitation with \(v \) constant
STARTFIFO, STOPFIFO: Control of preprocessing buffer
E.g. G4 F1000 M100: no M function allowed in the G4 block.

Reaction: Correction block is reorganized.

Interface signals are set.

Alarm display.

Remedy: Program G function by itself in the block.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12130 [Channel %1:] Block %2 illegal tool orientation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The tool orientation may only be contained in a modal motion block or in a WAB block (repositioning). It can be programmed via Euler angles (A1, B1, C1), normal vector components (A2, B2, C2), direction vectors (A3, B3, C3) or the axis end values. If the tool orientation is programmed in conjunction with the functions:

G04 (dwell time), G33 (thread cutting with constant lead), G74 (approach reference points) or REPOSLL, REPOSQQ, REPOSQH (repositioning)
then an alarm is issued with Euler angles, direction vectors and normal vector components.

Reaction: Correction block is reorganized.

Interface signals are set.

Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.

Program tool orientation with the axis end values or use a separate block for this.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12140 [Channel %1:] Block %2 functionality %3 not implemented

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Software construct in the source text

Definitions: In the full configuration of the control functions are possible that are not yet implemented in the current version.

Reaction: Correction block is reorganized.

Interface signals are set.

Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.

The displayed function must be removed from the program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12150 [Channel %1:] Block %2 operation %3 not compatible with data type

Parameters: %1 = Channel number
%2 = Block number, label
%3 = String (violating operator)

Definitions: The data types are not compatible with the required operation (within an arithmetic expression or in a value assignment).
Example 1:
Arithmetic operation
N10 DEF INT OTTO
N11 DEF STRING[17] ANNA
N12 DEF INT MAX
N50 MAX = OTTO + ANNA
Example 2:
Value assignment
N10 DEF AXIS DRILL N11 DEF INT OTTO : N50 OTTO = DRILL

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Alter the definition of the variables used such that the required operations can be executed.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12160 [Channel %1:] Block %2 Value %3 lies beyond the value range

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Impermissible value

Definitions: The programmed constant or the variable lies beyond the value range that has previously been established by the definition of the data type.
An initial value in a DEF or REDEF instruction lies beyond the upper (ULI) or lower (LLI) limit values that have been programmed or already exist in the DEF instruction.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Correct value of the constant or adapt data type. If the value for an integer constant is too great, it can be specified as real constant by adding a decimal point.
Example:
Value range INTEGER: +/-2**31 - 1
Value range REAL: +/-10**-300 .. 10**+300

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12161 [Channel %1:] Block %2 Error on defining the limit %3
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Impermissible limit value
Definitions: The alarm may have the following causes.
 - During definition (DEF) or redefinition (REDEF) of a variable's limits, a value was entered for the
 upper limit that is smaller than that for the lower limit.
 - A limit for a variable type was programmed that is not of type CHAR, INT or REAL.
 - A limit value of type CHAR was programmed for a variable with the data type INT or REAL.
 - A string (more than one character) was programmed for one of the limits.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: If the alarm occurs in the part program (DEF instruction), press the NC Stop key and select the func-
 tion "Compensation block" using PROGRAM CORRECT softkey. The cursor is placed on the incorrect
 block.
 Adjust the limit values afterwards or completely remove the limit programming in the case of an incor-
 rect data type.
 If the alarm occurs on compiling a GUD or ACCESS file, correct the GUD or ACCESS definition file
 (DEF file).
Program Con-
 tinuation: Clear alarm with NC START or RESET key and continue the program.

12162 [Channel %1:] Block %2 Physical unit not allowed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: In a DEF or REDEF instruction a physical unit may only be defined for variables of type INT or REAL.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: If the alarm occurs in the part program (DEF instruction), press the NC Stop key and select the func-
 tion "Compensation block" using PROGRAM CORRECT softkey. The cursor is placed on the incorrect
 block.
 In the compensation block the data type can now be adjusted in the DEF instruction, or the physical
 unit (PHU xy) must be removed.
 If the alarm occurs on compiling a GUD or ACCESS file, correct the GUD or ACCESS definition file
 (DEF file).
Program Con-
 tinuation: Clear alarm with NC START or RESET key and continue the program.

12163 [Channel %1:] Block %2 Change of access protection not allowed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Changing the access rights for system variables (with REDEF) is not allowed in GUD files. They can
 only be changed in the ACCESS files (_N_SYSACCESS_DEF, _N_SACCESS_DEF,
 _N_MACCESS_DEF and _N_UACCESS_DEF).
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Cut the REDEF instruction from the GUD file and paste it into one of the ACCESS files.
Program Con-
 tinuation: Clear alarm with NC START or RESET key and continue the program.

12170 [Channel %1:] Block %2 name %3 defined several times
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Symbol in block
Definitions: The symbol shown in the error message has already been defined in the active part program. Note that user-defined identifiers may occur more than once if the multiple definition occurs in other (sub)programs, i.e. local variables may be redefined with the same name if the program has been exited (subprograms) or has already been concluded. This applies both to user-defined symbols (labels, variables) and to machine data (axes, DIN addresses and G functions).

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: The symbol already known to data management is displayed. This symbol must be looked for in the definition part of the current program using the program editor. The 1st or 2nd symbol must be given a different name.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12180 [Channel %1:] Block %2 illegal chaining of operators %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Chained operators

Definitions: Operator chaining means the writing in sequence of binary and unary operators without using any form of parentheses.
Example:
N10 ERG = VARA - (- VARB) ; correct notation
N10 ERG = VARA - VARB ; error!

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Formulate the expression correctly and unambiguously making use of parentheses. This improves clarity and readability of the program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12185 [Channel %1:] Block %2 a bit combination with %3 is not permitted

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Address name

Definitions: A bit combination is not possible with the assignment to this address. Bit combinations are permitted only for coupling addresses (CPMBRAKE, CPMVDI and CPMAL).

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Change the part program. If the data type of the address permits a bit combination, write the value of the address in a variable, make a bit combination with the variable, and assign the variable to the address.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12190 [Channel %1:] Block %2 variable of type ARRAY has too many dimensions

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: Array with variables of type STRING may be no more than 1-dimensional, and with all other variables no more than 2-dimensional.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Correct the array definition, with multi-dimensional arrays define a second 2-dimensional array if necessary and operate it with the same field index.
Program Con-continuation:
Clear alarm with NC START or RESET key and continue the program.

12200 [Channel %1:] Block %2 symbol %3 cannot be created

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Symbol in the source block

Definitions:
The symbol to be created with the DEF instruction cannot be created because:
- it has already been defined (e.g. as variable or function)
- the internal memory location is no longer sufficient (e.g. with large arrays)

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Make the following checks:
- Check with the text editor whether the name to be allocated in the active program cycle (main program and called subprograms) has already been used.
- Estimate the memory requirements for the symbols already defined and reduce these if necessary by using fewer global and more local variables.

Program Con-continuation:
Clear alarm with NC START or RESET key and continue the program.

12205 [Channel %1:] Block %2 area specification missing for GUD area

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The area specification (NCK or CHAN) was not programmed in the definition instruction for a GUD variable.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Complete the area specification for the GUD variable definition in the GUD definition file.
The definition of a GUD variable must conform to the following syntax:
DEF <Area> <Data type> <Variable name> e.g.
DEF NCK INT intVar1
DEF CHAN REAL realVar1

Program Con-continuation:
Clear alarm with NC START or RESET key and continue the program.

12210 [Channel %1:] Block %2 string %3 too long

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = String in the source block

Definitions:
- In the definition of a variable of type STRING, it has been attempted to initialize more than 100 characters.
- In an allocation, it has been found that the string does not fit in the given variable.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Select shorter string or divide up the character string into 2 strings
- Define larger string variable

Program Con-continuation:
Clear alarm with NC START or RESET key and continue the program.

12220 [Channel %1:] Block %2 binary constant %3 in string too long

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Binary constant
Definitions: When initializing or allocating the value of a variable of type STRING more than 8 bits have been found as binary constant.
DEF STRING[8] OTTO = "ABC'H55''B00011111'DEF"

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
In the window for the alarm message, the first characters of the binary constant are always displayed although the surplus bit might not be located until further on. Therefore, the complete binary constant must always be checked for an incorrect value.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12230 \[Channel %1: \] Block %2 hexadecimal constant %3 in string too long
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Hexadecimal constant

Definitions: A string can also contain bytes that do not correspond to a character that can be entered or one that is available on a keyboard with a minimized number of keys. These characters can be input as binary or hexadecimal constants. They may occupy up to 1 byte each only - therefore be < 256, e.g.
N10 DEF STRING[2] OTTO="'HCA' 'HFE'"

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
In the window for the alarm message, the first characters of the hexadecimal constant are always displayed although the surplus bit might not be located until further on. Therefore, the complete hexadecimal constant must always be checked for an incorrect value.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12240 \[Channel %1: \] Block %2 tool orientation %3 defined repeatedly
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Text

Definitions: Only 1 tool orientation can be programmed per DIN block. This can either be defined via the 3 Euler angles, or the end points of the axes, or through direction vectors.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Since the tool orientation can be set in 3 different ways, the most advantageous should be selected.
For this type of specification, the addresses and value assignments must be programmed and all other orientation parameters must be removed.
Axis end points (additional axes): A, B, C axis identifiers Euler angles: A2, B2, C2 Direction vectors: A3, B3, C3

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12250 \[Channel %1: \] Block %2 nested macro %3 not possible
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source string
Overview of Alarms 03/2009

Definitions: The macro technique supplies a 1-line instruction or series of instructions with a new identifier by means of the keyword DEFINE. No further macro may be contained in the string of instructions (nesting). Example: N10 DEFINE MACRO1 AS G01 G91 X123 MACRO2 F100

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function “Correction block” with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Nested macros must be replaced by the full program information.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12260 [Channel %1:] Block %2 too many initialization values specified %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: In the initialization of an array (array definition and value assignments to individual array elements) there are more initialization values than array elements. Example: N10 DEF INT OTTO[2,3]=

(more than 6 values)

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function “Correction block” with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Check the NC program to establish whether:
1. During array definition the number of array elements (n,m) was indicated correctly (DEF INT FIELD-NAME[n,m] e.g. an array with 2 lines and 3 columns: n=2, m=3). 2. During initialization the value assignments have been made correctly (values of the individual field elements separated by comma, decimal point for variables of the type REAL).

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12261 [Channel %1:] Block %2 initialization of %3 not allowed

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: Frame type variables cannot be initialized in the definition. Example: DEF FRAME LOCFRAME = CTRANS(X,200)
Equally, no default values can be programmed for axes in the program run during field initialization via SET.
A REDEF instruction with PRLOC is only permitted for setting data, but not for machine data or variables.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Perform initialization in separate block in the execution part of the program: DEF FRAME LOCFRAME = CTRANS(X,200)
When using for axis variables:
If REDEF ... INIRE, INIPO, INICF, PRLOC changes the behavior of a GUD, LUD etc., then the MD11270 $MN_DEFAULT_VALUES_MEM_MASK must equal 1.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12270 [Channel %1:] Block %2 macro identifier %3 already defined

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string macro name
Definitions: The name of the macro to be selected by the instruction DEFINE is already defined in the control as:

- Macro name
- Keyword
- Variable
- Configured identifier.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Select DEFINE instruction with another macro name.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12280 [Channel %1:] Block %2 maximum macro length %3 exceeded

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: The string of instructions on the right side of the macro is limited to 256 characters. If an attempt is made to define a longer character string under one macro (possible only through V.24 input of NC blocks, because communication between operator panel and NCK is limited to a block length of 242 characters), an alarm is displayed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Divide the functions defined under the macro into 2 macros.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12290 [Channel %1:] Block %2 arithmetic variable %3 not defined

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source string arithmetic variable

Definitions: Only the R parameters are predefined as arithmetic variables. All other arithmetic variables must be defined with the DEF instruction before being used. The number of arithmetic parameters is defined via machine data. The names must be unambiguous and may not be repeated in the control (exception: local variables).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Define the required variable in the definition part of the program (possibly in the calling program if it is to be a global variable).

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12300 [Channel %1:] Block %2 call-by-reference parameter missing on subroutine call %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: In the subroutine definition, a formal REF parameter (call-by-reference parameter) has been specified with no actual parameter assigned to it.
The assignment takes place in the subroutine call on the basis of the position of the variable name and not on the basis of the name!
Example:

Subroutine: (2 call-by-value parameters X and Y,
1 call-by-reference parameter Z)
PROC XYZ (INT X, INT Y, VAR INT Z)
 :
 M17
ENDPROC

Main program:
N10 DEF INT X
N11 DEF INT Y
N11 DEF INT Z
 :
N50 XYZ (X, Y); REF parameter Z missing
or
N50 XYZ (X, Z); REF parameter Z missing!

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.

Assign a variable to all REF parameters (call-by-reference parameters) of the subroutine when calling.

No variable must be assigned to "normal" formal parameters (call-by-value parameters), as these are defaulted with 0.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12310 [Channel %1:] Block %2 axis parameter missing on procedure call %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions:
When calling the subroutine, an AXIS parameter is missing which, according to the EXTERN declaration, should be present.

With the EXTERN instruction, user-defined subroutines (procedures) are made "known" that have a parameter transfer.

Procedures without parameter transfer require no EXTERN declaration.

Example:

Subroutine XYZ (with the formal parameters):
PROC XYZ (INT X, VAR INT Y, AXIS A, AXIS B)
EXTERN instruction (with variable types):
EXTERN XYZ (INT, VAR INT, AXIS, AXIS) Subroutine call (with actual parameters):
N10 XYZ (, Y1, R_TISCH)

Variable X is defaulted with value 0
Variable Y is supplied with the value of the variable Y1 and returns the results to the calling program after the subroutine run
Variable A is supplied with the axis in R_TISCH
Variable B missing!

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.

Program the missing AXIS parameter in the call.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12320 [Channel %1:] Block %2 parameter %3 is no variable
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string
Definitions:
A constant or the result of a mathematical expression has been assigned to a REF parameter instead of a variable at the time of the subroutine call, even though only variable identifiers are allowed.
Examples:
N10 XYZ (NAME_1, 10, OTTO) or
N10 XYZ (NAME_1, 5 + ANNA, OTTO)
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Remove the constant or the mathematical expression from the NC block.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12330 [Channel %1:] Block %2 type of parameter %3 incorrect
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string
Definitions:
When calling a procedure (a subroutine) it is found that the type of the actual parameter cannot be converted into the type of the formal parameter. There are two possible cases:
- Call-by-reference parameter: Actual parameter and formal parameter must be of precisely the same type, e.g. STRING, STRING.
- Call-by-value parameter: Actual parameter and formal parameter can in principle be different providing conversion is basically possible. In the present case, however, the types are generally not compatible, e.g. STRING -> REAL.
Overview of type conversions:
- from REAL to:
 REAL: yes, INT: yes*, BOOL: yes*, STRING: -, AXIS: -, FRAME: -
- from INT to:
 REAL: yes, INT: yes, BOOL: yes1), CHAR: if value 0 ...255, STRING: -, AXIS: -, FRAME: -
- from BOOL to:
 REAL: yes, INT: yes, BOOL: yes, CHAR: yes, STRING: -, AXIS: -, FRAME: -
- from CHAR to:
 REAL: yes, INT: yes, BOOL: yes1), CHAR: yes, STRING: yes, AXIS: -, FRAME: -
- from STRING to:
1) Value <> 0 corresponds to TRUE, value ==0 corresponds to FALSE.
2) String length 0 => FALSE, otherwise TRUE.
*) At type conversion from REAL to INT fractional values that are >=0.5 are rounded up, others are rounded down.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Check transfer parameters of the subroutine call and define the application accordingly as call-by-value or call-by-reference-parameter.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12340 [Channel %1:] Block %2 number of parameters too high %3
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string
Definitions: When calling a function or a procedure (predefined or user-defined) more parameters were transferred than defined.
Predefined functions and procedures: The number of parameters has been set permanently in the NCK.
User-defined functions and procedures: The number of parameters is established by type and name in the definition.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Check whether the correct procedure/function has been called. Program the number of parameters in accordance with the procedure/function.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12350 [Channel %1:] Block %2 parameter %3 no longer possible
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: An attempt has been made to transfer actual parameters although axis parameters located before them have not been assigned. For procedure or function calls, assignment of parameters that are no longer required can be omitted, if subsequently no further parameters are to be transferred. Example: N10 FGROUP(X, Y, Z, A, B); max. 8 axes possible The following call-by-value parameters would then be initialized with zero because the space-dependent assignment has been lost on account of the omitted axis parameters. Axes that can be omitted and following parameters do not occur in the predefined procedures and functions.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. In predefined procedures and functions either remove the following parameters or transfer any preceding axis parameters. In user-defined procedures and functions, parameter transfer must be programmed in accordance with the instructions given in the machine manufacturer's programming guide.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12360 [Channel %1:] Block %2 dimension of parameter %3 incorrect
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: The following possibilities of error must be checked:
- The current parameter is an array, but the formal parameter is a variable
- The current parameter is a variable, but the formal parameter is an array

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. Correct the NC part program in accordance with the cause of error as listed above.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12370 [Channel %1:] Block %2 range of values %3 not permissible
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string
Definitions: A variable has been initialized with a value range outside an initialization block. The definition of program-global variables is allowed only in special initialization blocks. These variables can be initialized with a value range.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Remove the value range specification (begins with the keyword OF) or define the variable as a global variable in the initialization block and initialize it with a value range.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12380 [Channel %1:] Block %2 maximum memory capacity reached

Parameters: %1 = Channel number %2 = Block number, label

Definitions: The data definitions in this block cannot be processed because the maximum available memory for creating the data has been filled, or because the data block cannot accommodate any further data. The alarm can also occur if several subroutine calls are executed in sequence and no block with an effect on the machine is generated (motion, dwell, M function).

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Please inform the authorized personnel/service department. Reduce the number of variables, reduce the size of arrays, or increase the capacity of the data management system.
- If new macro definitions are to be introduced -> Increase MD18160 $MN_MM_NUM_USER_MACROS
- If new GUD definitions are to be introduced -> Check MD18150 $MN_MM_GUD_VALUES_MEM, MD18130 $MN_MM_NUM_GUD_NAMES_CHAN, MD18120 $MN_MM_NUM_GUD_NAMES_NCK
- If the error occurs while executing an NC program with LUD definitions or when using cycle programs (the parameters count as LUD variable of the cycle program), the following machine data must be checked:
 MD28040 $MC_MM_LUD_VALUES_MEM,
 MD18242 $MN_MM_MAX_SIZE_OF_LUD_VALUE,
 MD18260 $MN_MM_LUD_HASH_TABLE_SIZE,
 MD28020 $MC_MM_NUM_LUD_NAMES_TOTAL,
 MD28010 $MC_MM_NUM_REORG_LUD_MODULES

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12390 [Channel %1:] Block %2 initialization value %3 cannot be converted

Parameters: %1 = Channel number %2 = Block number, label %3 = Source string

Definitions: During initialization, a value has been assigned to a variable that does not correspond to the type of the variable, nor can it be converted to the data type of the variable.

Overview of type conversions:
- from REAL to REAL: no, INT: yes1), BOOL: yes, CHAR: yes2), STRING: -
- from INT to REAL: yes, INT: no, BOOL: yes, CHAR: yes2), STRING: -
- from BOOL to REAL: yes, INT: yes, BOOL: no, CHAR: yes, STRING: -
- from CHAR to REAL: yes, INT: yes, BOOL: yes, CHAR: no, STRING: yes
- from STRING to REAL: -, INT: -, BOOL: yes, CHAR: yes3), STRING: no
1) Value <> 0 corresponds to TRUE, value ==0 corresponds to FALSE.
2) String length 0 => FALSE, otherwise TRUE.
3) If only one character.

It is not possible to convert from type AXIS and FRAME nor into type AXIS and FRAME.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.
Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Define variable type such that the initialization value can be assigned, or
- Select initialization value in accordance with the variable definition.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12400 **[Channel %1:] Block %2 field %3 element does not exist**

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
The following causes are possible:
- Impermissible index list; an axis index is missing
- Array index does not match the definition of the variables
- An attempt was made to access a variable at array initialization via SET or REP; this attempt did not correspond to the standard access. Single character access, partial frame access, omitted indices not possible.

A non-existent element was addressed on initializing this array.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Array initialization: Check the array index of the addressed element. The 1st array element is given the index [0,0], the 2nd array element [0,1] etc. The right array index (column index) is incremented first.
In the 2nd row, the 4th element is also addressed with the index [1,3] (the indices start at zero).
Array definition: Check the size of the array. The 1st number indicates the number of elements in the 1st dimension (number of rows), the 2nd number indicates the number of elements in the 2nd dimension (number of columns).
An array with 2 rows and 3 columns must be defined by specifying [2,3].

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12410 **[Channel %1:] Block %2 incorrect index type for %3**

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:
In assigning a value to an element of an array variable, the array index was specified in a way that is not allowed.
Only the following are allowed as array index (in square brackets):
- Axis identifier, provided the array variable was defined as data type FRAME.
- Integer values for all other data types.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Correct indices of the array element with respect to variable definition or define the array variable differently.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12420 **[Channel %1:] Block %2 identifier %3 too long**

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source string

Definitions:

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. The symbol to be created or the target of program jumps (label) must conform to the system specifications, that means the name must begin with 2 letters (but the 1st sign must not be "$") and may be up to a maximum of 32 characters.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12430 [Channel %1:] Block %2 specified index is invalid

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In specifying an array index (in the array definition) an index was used that is outside the permissible range.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Specify array index within the permissible range. Value range per array dimension: 1 - 32767.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12440 [Channel %1:] Block %2 maximum number of formal arguments exceeded

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In the definition of a procedure (a subroutine) or in an EXTERN instruction, more than 127 formal parameters have been specified.

Example: PROC ABC (FORMPARA1, FORMPARA2, ... FORMPARA127, FORMPARA128, ...)
EXTERN ABC (FORMPARA1, FORMPARA2, ... FORMPARA127, FORMPARA128, ...)

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. A check must be made to determine whether all parameters really have to be transferred. If so, the formal parameters can be reduced by using global variables or R parameters, or by grouping together parameters of the same type to form an array and transfer them in this form.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12450 [Channel %1:] Block %2 label defined twice

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The label of this block already exists.

If the NC program is compiled off-line, the entire program is compiled block for block. During this procedure all multiple labels are recognized; this is not always the case with on-line compilation. (Only the actual program run is compiled here, i.e. program branches that are not passed through in this run are disregarded and could therefore contain programming errors).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer is positioned on the block where the displayed label occurs for the 2nd time. Use the editor to search the part program where this label occurs for the 1st time, and change one of the names.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12460 [Channel %1:] Block %2 maximum number of symbols exceeded with %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions:
The max. number of variable definitions (GUD, LUD), macro definitions, cycle programs and/or cycle parameters (PROC instruction) that the controller's data management system is able to handle has been exceeded.
If this alarm occurs in conjunction with alarm 15175, not enough memory for the preprocessing of the cycle program definitions is available (PROC instruction).
If this alarm occurs in conjunction with alarm 15180, then this alarm shows the name of the file (INI or DEF file) causing the error.
(For a list of names of INI files and their meaning -> please refer to alarm 6010)

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Generally reduce the number of symbols in the affected block (possibly by using the array technique or by using R parameters), or adapt the corresponding machine data (see below).
MD28020 $MC_MM_NUM_LUD_NAMES_TOTAL with error in LUD blocks (i.e. if more variable definitions were made in the active part program than allowed by the MD).
GUD data blocks can cause errors as part of the 'initial.ini download' process (e.g. in the case of a series start-up) or by selective activation via PI service _N_F_COPY (activate GUD via HMI dialog).
If alarm 15180 refers to a GUD definition file, then MD18120 $MN_MM_NUM_GUD_NAMES_NCK or MD18130 $MN_MM_NUM_GUD_NAMES_CHAN is set to a value that is too small.
Macros are loaded during POWER ON/NCK RESET or selectively via PI service _N_F_COPY (activate macro via HMI dialog). If alarm 15180 refers to a macro definition file, then MD18160 $MN_MM_NUM_USER_MACROS is set to a value that is too small.
Cycle program definitions (PROC instruction) are reloaded at each POWER ON/NCK RESET. In case of failure check parameter %3 to find out whether the name of the cycle program has caused the error - in this case, the value of MD18170 $MN_MM_NUM_MAX_FUNC_NAMES should be increased, or whether the name of a cycle call parameter has caused the error - in this case, the value of MD18180 $MN_MM_NUM_MAX_FUNC_PARAM should be increased.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12470 [Channel %1:] Block %2 G function %3 is unknown

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions:
With indirectly programmed G functions, an invalid or non-allowed group number has been programmed. Allowed group number = 1. and 5 max. number of G groups. In the displayed block, a non-defined G function has been programmed. Only "real" G functions are checked, which begin with the address G, e.g. G555. *Named* G functions such as CSPLINE, BRISK etc. are interpreted as subroutine names.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. You should decide on the basis of the machine manufacturer's programming guide whether or not the displayed G function exists or is available, or whether a standard G function has been reconfigured (or introduced by an OEM). Remove G function from the part program or program function call in accordance with the machine manufacturer's programming guide.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12475 [Channel %1:] Block %2 invalid G function number %3 programmed
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = G code number
Definitions: A non-allowed G function number (parameter 3) has been programmed for a G group with indirect G
 code programming. Only the G function numbers indicated in the Programming Guide "Fundamentals",
 Section 12.3 "List of G functions/Path conditions" are allowed.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12480 [Channel %1:] Block %2 subroutine %3 already defined
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Source string
Definitions: The name used in the PROC or EXTERN instruction has already been defined in another call descrip-
 tion (e.g. for cycles).
 Example:
 EXTERN CYCLE85 (VAR TYP1, VAR TYP2, ...)
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM COR-
 RECT. The correction pointer positions on the incorrect block. A program name must be selected that
 has not yet been used as identifier. (Theoretically, the parameter declaration of the EXTERN instruc-
 tion could also be adapted to the existing subroutine in order to avoid the alarm output. However, it
 would have been defined identically twice).
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12481 [Channel %1:] Block %2 program attribute %3 not allowed
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Source string
Definitions: The attribute used in the PROC instruction is not permitted in the current operating mode.
 The attribute SAVE, for example, is not allowed in a technology cycle.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Press button NC STOP and select the function "Compensation block" using softkey PROGRAM COR-
 RECT. The cursor jumps to the incorrect block. Then delete the invalid program attribute.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12490 [Channel %1:] Block %2 access permission level %3 is not valid
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Source string
Definitions: The desired access authorization, programmed with the keyword REDEF, has not been set. The desired protection level is either beyond the permitted value range or the protection level change is not allowed.
(The REDEF instruction is only executable in INITIAL_INI blocks on SINUMERIK 840D, P1 (6/94)). The protection level may be changed only if:
1. The current protection level is equal to or higher than the level originally defined, and
2. The new protection level is to be below the level originally defined.
The higher numerical values represent the lower protection levels. The lower 4 levels (from 7 to 4) correspond to the keyswitch positions, and the upper 4 levels are associated with 4 passwords.

Reaction: Correction block is reorganized.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Use the REDEF instruction only in the INITIAL_INI block
- Using the operator panel, set the current protection level to at least the same level as that of the variable with the highest level
- Program protection level within the permissible value range
- Only program new protection levels that are lower than the old values

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12495 Channel %1 Block %2 Change (definition) of data class %3 is not allowed here

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Data class

Definitions: Change of the data class in this ACCESS file or definition in this GUD file (for file name see alarm 15180) not possible. Priority of the new data class may only be smaller or the same as that of the definition file. This means that DCS may only be programmed in SGUD (SACCESS), DCM not in UGUD and GUD9 (UACCESS), DCU not in GUD9. DC1 is allowed in all GUD and ACCESS files.

Reaction: Correction block is reorganized.
Alarm display.

Remedy: Program the data class of the area permissible for this GUD or ACCESS file.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12500 [Channel %1:] Block %2 in this module %3 is not possible

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: The displayed keyword may not be used in this type of block and at this location (all files in the NCK are designated as blocks).

Block types:
- Program blockContains a main program or subroutine
- Data blockContains macro or variable definitions and possibly an M, H or E function
- Initialization blockContains only selected language elements for data initialization

Reaction: Correction block is reorganized.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Remove the displayed language elements (keyword) with its parameters from this block and insert in the block provided for this purpose.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12510 [Channel %1:] Block %2 too many machine data %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions:
In the part program, in the machine data file (._.TEA) and in the initialization file (._.INI), no more than 5 machine data may be used per block.

Example:
N ...
N ...

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Divide up the part program block into several blocks.
- If necessary, use the local variable for storing intermediate results.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12520 [Channel %1:] Block %2 too many tool parameters %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions:
In the part program, in the tool offset file (._.TOA) and in the initialization file (._.INI), no more than 5 tool offset parameters may be used per block.

Example:
N ...
N ...

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Divide up the part program block into several blocks.
- If necessary, use the local variable for storing intermediate results.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12530 [Channel %1:] Block %2 invalid index for %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions:
In macro definitions, an attempt was made to define a G function with more than 3 decades or an M function with more than 2 decades as identifier of the macro.

Example:
_N_LMAC_DEF DEFINE G4444 AS G01 G91 G1234
DEFINE M333 AS M03 M50 M99

M17

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Modify the macro definition in accordance with the Programming Guide.
Overview of Alarms 03/2009

NCK alarms

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12540 [Channel %1:] Block %2 Block is too long or too complex
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The maximum internal block length after translator processing must not exceed 256 characters. After editing, for example, several macros in the block or a multiple nesting, this limit can be exceeded.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Divide up the program block into several subblocks.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12550 [Channel %1:] Block %2 name %3 not defined or option/function not activated
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source symbol
Definitions: The identifier displayed has not been defined before being used.
- _N_SMAC_DEF
- _N_MMAC_DEF
- _N_LMAC_DEF
- _N_SGUD_DEF
- _N_MGUD_DEF
- _N_UGUD_DEF
Variable: DEF statement is missing
Program: PROC declaration is missing
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Press the NC Stop key and select the function "Compensation block" with the softkey PROGRAM CORRECT. The cursor positions itself on the incorrect block.
- Correct the name used (writing error)
- Check definitions of variables, subroutines and macros
- Declare subroutine with EXTERN, load subroutine to SPF-Dir
- Check interface definition of subroutine
- Check options. See also MD10711 $MN_NC_LANGUAGE_CONFIGURATION.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12552 [Channel %1:] Block %2 tool/magazine OEM parameter not defined.
Option not set. Option not set.
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The programmed $TC_... Cx system variable is not known in the control.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
- Correct the name used (writing error)
- STC_DPCx, STC_TPCx, STC_MOPCx, $TC_MAPCx, $TC_MPPCx, $TC_DPCSx, $TC_TPCSx, $TC_MOPCSx, $TC_MAPCSx, $TC_MPPCSx; with x=1,...,10
- These are the OEM parameters of the tools magazines. The corresponding machine data value is set to < 10, or the option 'TM OEM parameters' has not been set.
- Use correct parameter number, or - if the name cannot be changed - set machine data correction (see MD18096 $MN_MM_NUM_CC_TOA_PARAM, ... MD18206 $MN_MM_NUM_CCS_TOA_PARAM, ...).
- Check the option (machine data are only effective when the option is enabled).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12553 [Channel %1:] Block %2 name %3 option/function is not active
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source symbol
Definitions:
The option (if MD10711 $MN_NC_LANGUAGE_CONFIGURATION = 1) or the NC function (if MD10711 $MN_NC_LANGUAGE_CONFIGURATION = 3) related to this language command is not active.
But the name of the language command is known.
Each programming of this language command is rejected with this alarm.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the "Compensation block" function by pressing the PROGRAM CORRECT softkey. The cursor positions itself on the incorrect block.
- Correct the name used (in the case of a typing error).
- Activate the NC function (if a language command of an inactive function has been programmed).
- Enable the option required (if a language command of a function with a non-enabled option has been programmed).
See also MD10711 $MN_NC_LANGUAGE_CONFIGURATION.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12554 [Channel %1:] Block %2 replacement cycle %3 for the predefined procedure is missing.
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Cycle name
Definitions:
The replacement cycle that is to be called instead of the predefined procedure is not present / unknown in the control.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC stop key and select the "Compensation block" function by pressing the PROGRAM CORRECT softkey. The cursor will position itself in the faulty block.
- Correct the name used for the predefined procedure (write error)
- Or load the replacement cycle into one of the cycle directories (+ restart)
- Or set the machine data bit for the predefined procedure in MD11754 $MN_COUPLE_CYCLE_MASK to 0 so that the predefined procedure is executed again.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12555 [Channel %1:] Block %2 function not available (identification %3)
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Fine ID
Definitions:
The identifier has not been defined for this system.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Press the NC stop key and select the "Compensation block" function by pressing the "Program correct" softkey. The correction indicator will position in the incorrect block.
- Correct the name used (write error)
- Use a better software system in case of malfunction
- Check the definition of variables, subroutines and macros
- Declare a subroutine with EXTERNAL; load the subroutine to SPF-Dir
- Check the interface definition of the subroutine

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12556 [Channel %1:] Block %2 name %3 Name is already known
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions: The name of the symbol to be created is part of the NC language scope and therefore already known. Although the NC function is not active, this name can no longer be used for GUDs, macros and PROC definitions.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Press key NC Stop and select "Correction block" function by pressing softkey "Program correct". The correction indicator is set to the incorrect block.
- Correct the name used (typing error)
- With MD10711 $MN_NC_LANGUAGE_CONFIGURATION = 2 or 4, only those language commands are created, the option of which has been set or the function of which is active.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12560 [Channel %1:] Block %2 programmed value %3 exceeds allowed limits
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: In a value assignment, the permissible value range of the data type has been exceeded.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block. Assign value within the value range of the various data types, or if necessary use another type in order to increase the size of the value range, e.g. INT ->REAL.

Value ranges of the various variable types:
- REAL: Property: Fractional number with dec. pt., value range: +/-2-1022-2+1023
- INT: Property: Integers with signs, value range: +/-231-1
- BOOL: Property: Truth value TRUE, FALSE, value range: 0,1
- CHAR: Property: 1 ASCII character, value range: 0-255
- STRING: Property: Character string (max. 100 values), value range: 0-255
- AXIS: Property: Axis addresses, value range: Axis names only
- FRAME: Property: Geometric information, value range: As for axis paths

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12570 [Channel %1:] Block %2 too many motion synchronous actions in %3
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions: No more than 16 actions are allowed in a block with motion synchronous action.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Reduce the number of programmed actions.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12571 [Channel %1:] Block %2 %3 not permissible for motion synchronous action

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions: The predefined subprogram %3 specified here is not allowed in a block with motion synchronous action. It may only be contained in a "normal" block.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Correct PROC instruction of technology cycle.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12572 [Channel %1:] Block %2 %3 only permissible for motion synchronous action

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions: The predefined subprogram %3 specified here is only allowed in a block with motion synchronous action. It must not be contained alone in a "normal" block.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12573 [Channel %1:] Block %2 motion-synchronous action: Call by reference parameters not allowed %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source text area

Definitions: Call by reference parameters (keyword VAR) are not possible with technology cycles.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Correct PROC instruction of technology cycle.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12580 [Channel %1:] Block %2 %3 not permissible for assignment in motion synchronous action

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source symbol

Definitions: The variable displayed must not be written in a motion synchronous action. Only selected variables are permitted here, e.g. DO $AA_IW[X]=10 is not allowed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Modify part program.
In a motion synchronous action, only certain variables are allowed. E.g. $AA_IM, $AC_DTGPB

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12581 [Channel %1:] Block %2 invalid read access to %3 while in motion synchronous action

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source symbol

Definitions:
- In a motion synchronous action, the displayed variable must not be entered as a variable that is to be read online, i.e.
 1. The displayed variable must not be written to the left of the comparison in a motion synchronous action. Only selected variables are permissible, e.g. WHEN $AA_OVR == 100 DO ...
 2. In a motion synchronous action, the displayed variable must not be used as a $S variable, e.g. WHEN $AA.IM[X] >= $SP_AD[1] DO ... DO $AC_VC = $SP_F
 3. The displayed variable must not be programmed as an online evaluated parameter of a synchronous procedure, e.g. DO SYNFCT(1, $AC_PARAM[0], $SA_OSCILL.Reverse_POS2[Z])

Reaction: Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy: Modify program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12582 [Channel %1:] Block %2 field index %3 incorrect

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source symbol

Definitions:
- $A or $V variables are assessed in real-time in motion synchronous actions, i.e. in the interpolation cycle. All other variables (e.g. user-defined variables) are still computed at block preparation. It is not permissible to index the index of a variable for block preparation with a real-time variable.

Example:
- DEF INT INPUT[3]
- WHEN $A_IN[1] == INPUT[$A_INA[1]] DO ...
- The locally defined variable INPUT must not be indexed with a real-time variable.

Program editing:
- WHEN $A_IN[1] == $AC_MARKER[$A_INA[1]] DO ...

Reaction: Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy: Modify program: Use real-time variables.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12583 [Channel %1:] Block %2 variable %3 no system variable

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Source symbol

Definitions:
- In motion synchronous actions, only special system variables are allowed on the left side of the compare operation for the assigned variable as input and result variable of SYNFCT and as input variable for PUTFTOFCF. Real-time synchronous access is allowed here. The programmed variable is not a system variable.

Example:
- DEF REAL OTTO, BERTA[2] DO SYNFCT(2,OTTO, $MN...) ; Local variables or machine data are not allowed as parameter for SYNFCT.

Reaction: Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy: Modify part program. Local variables or machine data are not allowed as parameters for SYNFCT.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12584 [Channel %1:] Block %2 variable %3 cannot be read synchronously with motion
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source symbol
Definitions:
In motion synchronous actions on the left side of the compare operation, only special variables are allowed as input variables of SYNFCT and as input variables for PUTFTOCF. Motion synchronous access is possible here.
Example:
PUTFTOCF(1, $AA_OVR, 2, 1, 2)
The variable $AA_OVR is not allowed here.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Modify part program. For the functions SYNFCT and PUTFTOCF only certain variables are allowed, for example $AC_DTGPW.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12585 [Channel %1:] Block %2 variable %3 cannot be changed synchronously with motion
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Source symbol
Definitions:
When assigning SYNFCT in motion synchronous actions and result variables, only special variables are allowed. Real-time synchronous access is allowed here.
Example:
WHEN $AA_IM[X1] >= 100 DO $AC_TIME = 1000. The variable $AC_TIME (time from beginning of block) cannot be written
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Modify part program. Only certain variables are allowed for the function SYNFCT where real-time synchronous access is possible.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12586 [Channel %1:] Block %2 motion synchronous action: type conflict in variable %3
Parameters:
%1 = Channel number
%2 = Block number
%3 = Source symbol
Definitions:
Type conversion is not possible for online variables $A.. or $V.., which are evaluated or written in the interpolation cycle. Only variables of the same type can be linked or assigned to one another.
Example 1:
WHENEVER $AA_IM[X] > $A_IN[1] DO ...
An online variable of the REAL type (actual value) cannot be compared with a variable of the BOOL type (digital input)
The operation is possible if the following change is made:
WHENEVER $AA_IM[X] > $A_INA[1] DO ...
Example 2:
WHENEVER ... DO $AC_MARKER[1]= $AA_IM[X]-$AA_MM[X]
Improvement:
WHENEVER ... DO $AC_PARAM[1]= $AA_IM[X]-$AA_MM[X]
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Modify part program: Use variables of the same type.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12587
[Channel %1:] Block %2 motion synchronous action: operation/function %3 not allowed

Parameters:
- %1 = Channel number
- %2 = Block number
- %3 = Operator/function

Definitions: The specified function / operator is not permissible for logic operations of real-time variables in motion synchronous actions. The following operators/functions are permissible:
- `==` `>=` `<` `<=` `<>` `+` `-` `/`
- `DIV` `MOD`
- `AND` `OR` `XOR` `NOT`
- `B_AND` `B_OR` `B_XOR` `B_NOT`
- `SIN` `COS` `TAN` `ATAN2` `SQRT` `POT` `TRUNC` `ROUND` `ABS` `EXP` `LNX` `SPI`

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12588
[Channel %1:] Block %2 motion synchronous action: address %3 not allowed

Parameters:
- %1 = Channel number
- %2 = Block number
- %3 = Address

Definitions:
- The specified address cannot be programmed in motion-synchronous actions. Example: ID = 1 WHENEVER $A_IN[1]==1 DO D3
- The cutting edge cannot be changed out of a motion-synchronous action.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12589
[Channel %1:] Block %2 motion synchronous action: variable %3 not allowed with modal ID

Parameters:
- %1 = Channel number
- %2 = Block number
- %3 = Variable name

Definitions:
- The modal ID in motion synchronous action must not be formed by means of an on-line variable.
- Examples:
 - This can be corrected in the following way:
 - R10 = $AC_MARKER[1]
 - The ID in a synchronous action is always permanent, and cannot be changed in the interpolation cycle.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Modify part program: Replace the on-line variable by an arithmetic variable.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12590
[Channel %1:] Block %2 global user data cannot be created

Parameters:
- %1 = Channel number
- %2 = Block number, label
Definitions: The number of global user data blocks is defined in MD18118 $MN_MM_NUM_GUD_MODULES. Here, _N_SGUD_DEF corresponds to block 1, _N_MGUD_DEF corresponds to block 2, _N_UGUD_DEF corresponds to block 3, _N_GUD4_DEF corresponds to block 4 etc. In the directory _N_DEF_DIR there is a file with definitions for global user data, the block number of which is greater than the number of blocks given in the MD. The alarm may, however, also be caused by value zero in one of MD18120 $MN_MM_NUM_GUD_NAMES_NCK, MD18130 $MN_MM_NUM_GUD_NAMES_CHAN and by the definition of a variable with NCK or CHAN in one of the GUD definition files.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Please inform the authorized personnel/service department. Increase MD18118 $MN_MM_NUM_GUD_MODULES. Or, if it already has the correct value, check whether MD18120 $MN_MM_NUM_GUD_NAMES_NCK (if a variable has been defined with attribute NCK) or MD18130 $MN_MM_NUM_GUD_NAMES_CHAN (if a variable has been defined with attribute CHAN) is not zero.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12600 [Channel %1:] Block %2 invalid line checksum

Parameters: %1 = Channel number
%2 = Block number

Definitions: On processing an INI file or when executing a TEA file, an invalid line checksum has been detected.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Correct INI file or correct MD and create new INI file (via "upload").

Program Continuation: Switch control OFF - ON.

12610 [Channel %1:] Block %2 accessing single character with call-by-reference parameter not possible %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: An attempt has been made to use a single character access for a call-by-reference parameter.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Temporarily store single characters in user-defined CHAR variable and transfer this.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12620 [Channel %1:] Block %2 accessing this variable as single character not possible %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source string

Definitions: The variable is not a user-defined variable. The single character access is only allowed for user-defined variables (LUD/GUD).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Temporarily store variable in user-defined STRING, process this and put back into storage.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12630 [Channel %1:] Block %2 skip ID/label in control structure not allowed
Parameters: %1 = Channel number
 %2 = Block number
Definitions: Blocks with control structures (FOR, ENDIF, etc.) cannot be concealed and must not contain any
 labels.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program: Reproduce skip ID via an IF query. Write the label alone in the block before the
 control structure block.
Program Con-
 tination: Clear alarm with NC START or RESET key and continue the program.

12640 [Channel %1:] Block %2 invalid nesting of control structures
Parameters: %1 = Channel number
 %2 = Block number
Definitions: Error in program run: Opened control structures (IF-ELSE-ENDIF, LOOP-ENDLOOP etc.) are not ter-
 minated or there is no beginning of loop for the programmed end of loop.
 Example:
 LOOP ENDIF ENDLOOP
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Correct part program in such a way that all opened control structures are also terminated.
Program Con-
 tination: Clear alarm with the RESET key. Restart part program

12641 [Channel %1:] Block %2 maximum nesting depth of control structures exceeded
Parameters: %1 = Channel number
 %2 = Block number
Definitions: Max. nesting depth control structures (IF-ELSE-ENDIF, LOOP-ENDLOOP etc.) exceeded. At the
 present time, the max. nesting depth is 8.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Correct part program. If necessary, move parts to a subroutine.
Program Con-
 tination: Clear alarm with the RESET key. Restart part program

12650 Channel %1 block %2 axis identifier %3 different in channel %4
Parameters: %1 = Channel number
 %2 = Block number
 %3 = Source symbol
 %4 = Channel number with different axis definition
Definitions: In cycles that are preprocessed at Power On, only those geometry and channel axis identifiers may
 be used that exist in all channels with the same meaning. In different channels, different axis indices
 are assigned to the axis identifier.
 The axis identifiers are defined via MD20060 $MC_AXCONF_GEOAX_NAME_TAB and MD20080
 $MC_AXCONF_CHANAX_NAME_TAB. Example: C is the 4th channel axis in channel 1 and the 5th
 channel axis in channel 2.
 If the axis identifier C is used in a cycle that is preprocessed at Power On, then this alarm is issued.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Please inform the authorized personnel/service department.

1. Modify machine data: Select the same identifiers for geometry and channel axes in all channels. Example: The geometry axes are called X, Y, Z in all channels. They can then also be programmed directly in preprocessed channels.

2. Do not program the axis directly in the cycle but define it as a parameter of the axis type. Example:

 Cycle definition:
 PROC DRILL(AXIS DRILLAXIS) G1 AX[DRILLAXIS]=10 F1000 M17
 Call from the main program:
 DRILL(Z)

Program Continuation: Clear alarm with the RESET key. Restart part program

12660 [Channel %1:] Block %2 motion synchronous action: variable %3 reserved formotion synchronous actions and technology cycles

Parameters: %1 = Channel number
%2 = Block number
%3 = Variable name

Definitions: The displayed variable may only be used in motion synchronous actions or in technology cycles. For example, "$R1" may only be used in motion synchronous actions. In standard part programs R parameters are programmed with R1.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12661 [Channel %1:] Block %2 technology cycle %3: no further subprogram call possible

Parameters: %1 = Channel number
%2 = Block number
%3 = Name of the technology cycle call

Definitions: In a technology cycle it is not possible to call a subroutine or another technology cycle.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12700 [Channel %1:] Block %2 contour definition programming not allowed as modal sub-program is active

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In the external language mode, a block is programmed with contour definition and a modal cycle is active at the same time. Because of unclear address assignment (e.g. R = radius for contour definition or return plane for drilling cycle) contour definition programming must not be used when a modal cycle is active.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12701 [Channel %1:] Block %2 illegal interpolation type for contour definition active
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: In one contour definition block, G01 is not active as interpolation function. In one contour definition block, the linear interpolation always has to be selected with G01. G00, G02, G03, G33 etc. are not permitted.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program. Program linear interpolation G01.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12710 [Channel %1:] Block %2 illegal language element in external language mode
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The programmed language element is not allowed or unknown in external language mode. Only the language elements from Siemens mode which are used for subprogram calls (except for Lxx) and the language constructs for program repetition with REPEAT (UNTIL) are allowed.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
 Check that the language command is available in Siemens mode. Switch to Siemens mode with G290.
 Program the command in the next block and switch back to the external language mode in the following block.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12720 [Channel %1:] Block %2 program number for macro call (G65/G66) missing
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: During macro call with G65/G66 no program number was defined. The program number must be programmed with address "P".
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

12722 [Channel %1:] Block %2 multiple ISO_2/3 macro or cycle calls in the block
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: A mixture of cycle and macro calls are programmed in a block, e.g. cycle calls with G81 - G89 together with an M macro in the block or a G65/G66 macro call together with M macros in the block. G05, G08, G22, G23, G27, G28, G29, G30, G50.1, G51.1, G72.1, G72.2 functions (ISO mode) also execute subroutine calls. Only one macro or cycle call can appear in an NC block.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Deactivate modal cycles or modal macro calls if one of the above mentioned G functions has been programmed.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
12724 [Channel %1:] Block %2 no radius programmed for cylinder interpolation activation/deactivation
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
When programming G07.1 (cylinder interpolation TRACYL), no cylinder radius has been programmed. Selection of the cylinder interpolation (TRACYL) with G07.1 C <cylinder radius> deselect with G07.1 C0. For "C" the name of the rotary axis defined in the TRACYL machine data has to be programmed.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
G07.1 block, program the cylinder radius under the name of the rotary axis for the cylinder interpolation.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12726 [Channel %1:] Block %2 illegal plane selection with parallel axes
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
In a block with plane selection (G17 _ G19), a basic axis of the coordinate system must not be programmed together with the parallel axis assigned to it.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
For plane selection with G17, G18, G19 either program the basic axis of the coordinate system or the assigned parallel axis.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12728 [Channel %1:] Block %2 distance for double turret not set
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The tool clearance for the double turret head in the SD42162 $SC_EXTERN_DOUBLE_TURRET_DIST is 0.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Enter tool clearance for the double turret head in the SD42162 $SC_EXTERN_DOUBLE_TURRET_DIST.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

12730 [Channel %1:] Block %2 no valid transformation machine data parameterized
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The machine data MD24100 $MC_TRAFO_TYPE_1, MD24110 $MC_TRAFO_AXES_IN_1[1], MD24210 $MC_TRAFO_AXES_IN_2[1] are incorrectly set for G07.1, G12.1.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Enter valid transformation identifier for TRACYL in MD24100 $MC_TRAFO_TYPE_1 and the rotary axis number in MD24110 $MC_TRAFO_AXES_IN_1[1] or MD24210 $MC_TRAFO_AXES_IN_2[1].
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
12740 [Channel %1:] Block %2 modal macro call %3 not possible
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Source string
Definitions: When calling a modal macro no other modal macro, modal cycle or modal subroutine may be active.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14000 [Channel %1:] Block %2 illegal end of file
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm 14000 is output in the following situations:
- Parts program was not terminated with M30, M02 or M17.
- Executing from external: Download was aborted (e.g. because HMI was switched off).
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - End parts program with M30, M02 or M17 and start parts program.
- Executing from external: If the download for the selected program was aborted,
the default program _N_MPF0 is automatically selected with RESET
The selection of the user program must be repeated after that.
Program Continuation: Clear alarm with the RESET key. Restart part program

14001 [Channel %1:] Block %2 illegal end of block
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: After system-internal data manipulation (e.g. when reloading from an external source) a part file can
end without having LF as the last character.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Read out the part program, modify it with a text editor (e.g., insert blanks or comments before the displayed block), so that after reading it in again the part program has a different structure in the memory.
Program Continuation: Clear alarm with the RESET key. Restart part program

14005 [Channel %1:] Block %2 program %3 program-specific start disable has been set
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Program name
Definitions: Program %3 cannot be executed, as the program-specific start disable has been set for this file.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Reset the program-specific start disable for file %3.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14006 [Channel %1:] Block %2 invalid program name %3
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Program name
Definitions: When selecting or calling an NC program it was found that the program name did not follow NC conventions:
- The length of the program name, without prefix _N_ and Suffix _MPF / _SPF, must not exceed 24 characters, as otherwise the program name is truncated in the OPI variables.
Reaction: Alarm display.
Remedy: - Shorten the name of the program.
- Suppress the alarm with MD 11415 $MN_SUPPRESS_ALARM_MASK_2 bit 9.
Program Continuation: Clear alarm with the Delete key or NC START.

14008 [Channel %1:] Block %2 WRITE command writes in the temporary memory area in /_N_EXT_DIR
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: A workpiece is executed from an external data register (Execute from external drives function). The part programs are temporarily stored in the NCK directory /_N_EXT_DIR. An attempt is now made to write in this temporary directory with a WRITE command.
The alarm is intended to indicate that this data is not stored in the original directory on the external data carrier, and will be lost at the next part program selection because the programs in the directory /_N_EXT_DIR will then be deleted.
Reaction: Alarm display.
Remedy: State a directory that remains permanently loaded in the NCK as the target for the WRITE command (e.g. MPF_DIR). The alarm can be suppressed with MD11415 $MN_SUPPRESS_ALARM_MASK_2 bit 8.
Program Continuation: Clear alarm with the Delete key or NC START.

14009 [Channel %1:] Block %2 illegal program path %3
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Program path
Definitions: The part program command CALLPATH was called with a parameter (program path) referring to a directory which does not exist in the file system of the NCK.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: - Modify the CALLPATH instruction such that the parameter contains the complete path name of the loaded directory.
- Load the programmed directory in the file system of the NCK.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14010 [Channel %1:] Block %2 invalid default parameter in subroutine call
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In a subroutine call with parameter transfer, parameters have been omitted that cannot be replaced by default parameters (call-by-reference parameters or parameters of type AXIS. The other missing parameters are defaulted with the value 0 or with the unit frame in the case of frames).
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: The missing parameters must be provided with values in the subroutine call.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
Overview of Alarms 03/2009

NCK alarms

14011 [Channel %1:] Block %2 program %3 not existing or will be edited

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Program name

Definitions: A subroutine call was aborted because the called subroutine could not be opened.
The subroutine call can be executed via
- subroutine designator
- CALL / PCALL / MCALL command
- SETINT command
- M/T function replacement
- event-driven program calls (PROG_EVENT)
- selection of a PLC ASUB via PI "_/N_ASUP_" and/or FB-4
- calling a PLC ASUB via interrupt interface (FC-9)

There are various reasons for the alarm:
- the subroutine is not in the parts program memory the subroutine
- the subroutine is not in the search path (selected directory, _N_SPF_DIR or cycle directories
 _N_CUS_DIR, _N_CMA_DIR, _N_CST_DIR
- the subroutine has not been released or is being edited
- faulty absolute path name in subroutine call:
 Examples of complete path names: /_/N_directoryName_DIR/_N_programmName_SPF or
 /_/N_WKS_DIR/_N_wpdName_WPD/_N_programmName_SPF. directoryName: MPF, SPF, CUS,
 CMA, CST (predefined directories). wpdName: application-specific designator for workpiece directo-
 ries (max. of 24 signs). programmName: Name of subroutine (max. of 24 signs)
- A reload buffer for executing from external was called as subroutine.

Note: Unknown designators (string) found in the parts program line by themselves, are interpreted as
subroutine calls.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Ensure that the subroutine (alarm parameter %3)
- is available in the parts program memory
- has been released and is not being edited
- is available in the search path if not being called via an absolute path name.

Program Con-
tinuation:
Clear alarm with NC START or RESET key and continue the program.

14012 [Channel %1:] Block %2 maximum subroutine level exceeded

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The maximum nesting depth of 8 program levels has been exceeded.
Subroutines can be called from the main program, and these in turn may have a nesting depth of 7.
In interrupt routines the maximum number of levels is 4!

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Modify the machining program so that the nesting depth is reduced, e.g. using the editor copy a sub-
routine of the next nesting level into the calling program and remove the call for this subroutine. This
reduces the nesting depth by one program level.

Program Con-
tinuation:
Clear alarm with the RESET key. Restart part program

14013 [Channel %1:] Block %2 number of subroutine passes invalid

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In a subroutine call the programmed number of passes P is zero or negative.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Program number of passes between 1 and 9 999.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14014 [Channel %1:] Selected program %3 not available or will be edited

Parameters: %1 = Channel number %2 = Block number, label %3 = Program name

Definitions: The selected parts program is not in the NCK memory or the access authorization for the program selection is from a higher level than the current control status. During creation, this program received the protection level of the NC control which was active at the time. In SW 5 or higher a program edited on HMI can no longer be started with NC Start. The alarm will also be issued, if a file other than the specified definition file has been selected for the GUD or macro definition.

Reaction: Alarm display.

Remedy: Reload the program in the NCK memory or check and correct the name of the directory (workpiece overview) and the program (program overview) and reselect.

Program Continuation: Clear alarm with the Delete key or NC START.

14015 [Channel %1:] Block %2 program %3 is not enabled

Parameters: %1 = Channel number %2 = Block number, label %3 = Program name

Definitions: The execution right currently set in the control (e.g. key switch position 0) is inadequate to execute part program %3.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: - Raise the execution right to match the protection level of part program %3
- Assign a lower protection level to part program %3 or release (key switch protection level 0)

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14016 [Channel %1:] Block %2 error when calling the subroutine via M/T function

Parameters: %1 = Channel number %2 = Block number, label

Definitions: The following conflict was detected in a subprogram call per M or T function:
In the block referenced by parameter %2:
- An M or T function replacement has already been activated
- A modal subprogram call is active
- A subprogram return jump is programmed
- An end of program is programmed
- An M98 subprogram call is active (only in external language mode)
- T function replacement by D function programming in the same part program line is not possible with active TLC (G43/G44) in ISO2 system.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: An M or T function replacement is only possible if a subprogram call or return jump has not already been performed as a result of other program constructs. The part program must be corrected accordingly.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14017 [Channel %1:] Block %2 syntax error when calling the subroutine via M function
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: When calling M code subroutine with parameter transfer, an illegal syntax was detected:
- Address extension not programmed as a constant.
- M function value not programmed as a constant.
Note: If a parameter transfer has been programmed via MD10718 $MN_M_NO_FCT_CYCLE_PAR for an M function replacement, the following restriction applies to this M function: both the address extension and the M function value must be programmed for replacement as constants.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Change the programming of the M function.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14018 [Channel %1:] Block %2 parts program command %3 not executable (protection level setpoint value / actual value: %4)
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Programmed command
%4 = Protection level of the command / current protection level
Definitions: To parts program command %3, a protection level has been assigned that is logically higher (smaller in value) than the current access right, or the command does not exist in the current control configuration.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify parts program. Please see the Siemens Programming Guide or OEM documentation for the language commands permissible for the relevant system configuration.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14020 [Channel %1:] Block %2 wrong value or wrong number of parameters on function or procedure call
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: - An illegal parameter value was specified in a function or procedure call.
- An illegal number of actual parameters was programmed in a function or procedure call.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14021 [Channel %1:] Block %2 wrong value or wrong number of parameters on function or procedure call
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: - An illegal parameter value was specified in a function or procedure call.
- An illegal number of actual parameters was programmed in a function or procedure call.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with the RESET key. Restart part program

14022 [Channel %1:] Block %2 error on function or procedure call, error code %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Error code

Definitions:
- An error occurred during a function or procedure call.
- The cause of the error is indicated more closely by an error code.
- The meaning of the error code can be found in the documentation of the function or procedure that caused the error.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14025 [Channel %1:] Block %2 motion synchronous action: illegal modal ID

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- In modal motion synchronous actions an illegal ID number has been assigned.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program

14026 [Channel %1:] Block %2 motion synchronous action: invalid polynomial number in the FCTDEF command

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- An FCTDEF command was programmed with a polynomial number that exceeds the maximum value set in MD28252 $MC_MM_NUM_FCTDEF_ELEMENTS.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
- Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program

14027 [Channel %1:] Block %2 motion-synchronous action: Too many technology cycles programmed.

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- You can call a maximum of eight technology cycles with one motion-synchronous action. You exceeded the upper limit.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
- Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14028 [Channel %1:] Block %2 motion-synchronous action: Technology cycle programmed with too many parameters

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Maximum number of transfer parameters for one technology cycle exceeded.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Change technology cycle

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14030 [Channel %1:] Block %2 combine OSCILL and POSP during oscillation with infeedmotion

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: When oscillating controlled by synchronized actions, the assignment of oscillating and infeed axis (OSCILL) as well as the definition of the infeed (POSP) must be carried out in one NC block.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14033 [Channel %1:] Block %2 involute: no end point programmed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: No end point was programmed for the involute. This is either possible via direct programming with the geometry axis identifiers or by specifying the angle between start and end vector.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14034 [Channel %1:] Block %2 involute: angle of rotation too large

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: With programming of the angle of rotation (with AR) for involute interpolation, the maximum programmable angle of rotation is limited if the involute is moving towards the basic circle. The maximum value is reached if the involute touches the basic circle. With MD21016 $MC_INVOLUTE_AUTO_ANGLE_LIMIT = TRUE, each angle is accepted without an alarm; if necessary, the angle is automatically limited during interpolation.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14035 [Channel %1:] Block %2 involute: start point invalid
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: With involute interpolation, the start point of the involute must be outside the basic circle. The pro-
 grammed center point or radius must be adapted accordingly.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14036 [Channel %1:] Block %2 involute: end point invalid
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: With involute interpolation, the end point of the involute must be outside the basic circle. The pro-
 grammed center point / radius or end point must be adapted accordingly.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14037 [Channel %1:] Block %2 involute: radius invalid
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: With involute interpolation, the programmed radius of the basic circle must be greater than zero.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14038 [Channel %1:] Block %2 involute not definable: end point error
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The programmed end point does not lie on the involute defined by the start point, radius and center
 point of the basic circle. The deviation of the effective end radius from the programmed value is greater
 than the permissible value specified in MD21015 $MC_INVOLUTE_RADIUS_DELTA.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14039 [Channel %1:] Block %2 involute: end point programmed several times
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: With involute interpolation, either the end point with the geometry axis identifiers or the angle of rota-
 tion with AR=value can be programmed. Simultaneous programming of end point and angle of rotation
 in one block is not allowed, since the end point can thus not be defined exactly.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14040

[Channel %1:] Block %2 error in end point of circle

Parameters:
\%1 = Channel number
\%2 = Block number, label

Definitions:
In circular interpolation, either the circle radii for the initial point and the end point are further apart, or the circle center points are further apart, than specified in the machine data.
1. In circle radius programming the starting and end points are identical, thus the circle position is not determined by starting and end points.
2. Radii: The NCK calculates from the present start point and the other programmed circle parameters the radii for the start and the end point.
An alarm message is issued if the difference between the circle radii is either
- greater than the value in the $MC_CIRCLE_ERROR_CONST$ for small radii, if the programmed radius is smaller than the quotient of the machine data $MD21000$ $MC_CIRCLE_ERROR_CONST$ divided by $MD21010$ $MC_CIRCLE_ERROR_FACTOR$, or
- greater than the programmed radius multiplied by the $MD21000$ $MC_CIRCLE_ERROR_FACTOR$ (for large radii, if the programmed radius is greater than the quotient of the machine data $MD21000$ $MC_CIRCLE_ERROR_CONST$ divided by $MD21000$ $MC_CIRCLE_ERROR_FACTOR$).
3. Center points: A new circle center is calculated using the circle radius at the starting position. It lies on the mid-perpendicular positioned on the connecting straight line from the starting point to the end point of the circle. The angle in the radian measure between both straight lines from the starting point to the center calculated/programmed as such must be lower than the root of 0.001 (corresponding to approx. 1.8 degrees).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
Check $MD21000$ $MC_CIRCLE_ERROR_CONST$ and $MD21000$ $MC_CIRCLE_ERROR_FACTOR$.
If the values are within reasonable limits, the circle end point or the circle mid-point of the part program block must be programmed with greater accuracy.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14045

[Channel %1:] Block %2 error in tangential circle programming

Parameters:
\%1 = Channel number
\%2 = Block number, label

Definitions:
The alarm may have the following causes:
The tangent direction is not defined for tangent circle, e.g. because no other travel block has been programmed before the current block. No circle can be formed from start and end point as well as tangent direction because - seen from the start point - the end point is located in the opposite direction to that indicated by the tangent.
It is not possible to form a tangent circle since the tangent is located perpendicular to the active plane.
In the special case in which the tangent circle changes to a straight line, several complete circular revolutions were programmed with TURN.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14048 [Channel %1:] Block %2 wrong number of revolutions in circle programming

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
In the circle programming, a negative number of full revolutions has been specified.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

14050 [Channel %1:] Block %2 nesting depth for arithmetic operations exceeded

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
For calculating arithmetic expressions in NC blocks, an operand stack with a fixed set size is used. With very complex expressions, this stack can overflow. This may also occur with extensive expressions in synchronized actions.

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Divide up complex arithmetic expressions into several simpler arithmetic blocks.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14051 [Channel %1:] Block %2 arithmetic error in part program

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- In calculating an arithmetic expression, an overflow has occurred (e.g. division by zero)
- In a data type, the representable value range has been exceeded

Reaction:
- Correction block is reorganized.
- Interface signals are set.
- Alarm display.

Remedy:
Analyze the program and correct the defective point in the program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14055 [Channel %1:] Block %2 impermissible NC language substitution, error code %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Error code

Definitions:
This alarm occurs in conjunction with an NC language substitution configured in MD30465 $MA_AXIS_LANG_SUB_MASK. Error code %3 gives more detailed information about the cause of the problem:

Error code:
1: Several events had been programmed, causing the replacement cycle to be called. Only one substitution is allowed per part program line.
2: A non-modal synchronized action had also been programmed for the part program line with the NC language substitution.
3: The system variables $P_SUB_SPOSIT and $P_SUB_SPOSMODE were called outside a replacement cycle.

Reaction:
- Correction block is reorganized.
- Interpreter stop
- Interface signals are set.
- Alarm display.

Remedy:
Modify the NC program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14060 [Channel %1:] Block %2 invalid skip level with differential block skip

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: With "Differential block skip", a skip level greater than 7 has been specified. (In packet 1 specification of a value for the skip level is rejected by the converter as a syntax error, i.e. the only possibility is a "Suppress block" ON/OFF on one level).

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Enter a skip level (number behind the slash) less than 8.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14070 [Channel %1:] Block %2 memory for variables not sufficient for subroutine call

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: A called subroutine cannot be processed (opened), either because the internal data memory to be created for general purposes is not large enough, or because the available memory for the local program variables is too small. The alarm can only occur in MDI mode.

Reaction: Interpreter stop NC Start disable in this channel. Interface signals are set. Alarm display.

Remedy: Analyze the part program section:
1. Has the most useful data type always been selected in the variable definitions? (For example REAL for data bits is poor; BOOL would be better)
2. Can local variables be replaced by global variables?

Program Continuation: Clear alarm with the RESET key. Restart part program

14080 [Channel %1:] Block %2 jump destination %3 not found

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Jump destination

Definitions: In conditional and unconditional jumps, the jump destination within the program must be a block with a label (symbolic name instead of block number). If no jump destination has been found with the given label when searching in the programmed direction, an alarm is output.
For parameterizable returns with RET to block number or label, the jump destination within the program must be a block with the block number or label (symbolic name instead of block number).
For returns over several levels (parameter 2), the jump destination must be a block within the program level you jumped to.
For returns with a string as return destination, the search string must be a name known in the control and the search string must be preceded in the block by a block number and/or a label only.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Check NC part program for the following possible errors:
1. Check whether the target designation is identical with the label.
2. Is the jump direction correct?
3. Has the label been terminated with a colon?

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14082 [Channel %1:] Block %2 label %3 program section not found
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Start or end label
Definitions:
The start point for repetition of the program part with CALL <program name> BLOCK <start label> TO <end label> has not been found or the same program part repetition has been called recursively.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Check the start and end labels for programming repetition in the user program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14085 [Channel %1:] Block %2 instruction not allowed
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The instruction 'TML()' may only be used in the subprogram, which replaces the T command.
Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy:
Modify part program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14088 [Channel %1:] Block %2 axis %3 doubtful position
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions:
An axis position larger than 3.40e+38 increments has been programmed. This alarm can be suppressed with bit11 in MD11410 $MN_SUPPRESS_ALARM_MASK.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Modify part program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14090 [Channel %1:] Block %2 invalid D number
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
A value less than zero has been programmed under address D.
A set of parameters with 25 correction values has been automatically assigned to each active tool.
Each tool can have 9 sets of parameters (D1 - D9, initial setting is D1). When the D number changes, the new parameter set is active (D0 is used for deselecting the correction values).
N10 G.. X... Y... T15 ; Parameter set D1 of T15 active
N50 G.. X... D3 M.. ; Parameter set D3 of T15 active
N60 G.. X... T20 ; Parameter set D1 of T20 active
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Program D numbers in the permissible value range (D0, D1 to D9).
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14091 [Channel %1:] Block %2 illegal function, index %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Index

Definitions:
A function was programmed or triggered which is not allowed in the current program context. The code of the function in question is encoded in the "index" parameter:

Index == 1: "RET" command was programmed in the main program level
Index == 2: Conflict between "Cancel level"/"Clear number of passes" and "Implicit GET"
Index == 3: Conflict ASUB start immediately after selection of overstore (up to P3)
Index == 4: MD10760 $MN_G53_TOOLCORR = 1: SUPA/G153/G53 programmed in G75
Index == 5: POSRANGE command not programmed in synchronized action
Index == 6: SIRELAY command not programmed in synchronized action
Index == 7: GOTOF/GOTOB/GOTO command programmed with string variable in synchronized action.
Index == 8: COA application "cutting generator" not active

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Index == 1: Substitute "RET" command with M17/M30
Index == 2: Insert an auxiliary block (e.g. M99) after the subroutine call to which the "Cancel level"/"Clear number of passes" refers
Index == 3: Overstore an auxiliary block (e.g. M99), then start ASUB (up to P3)
Index == 4: With MD10760 $MN_G53_TOOLCORR = 1: Do not activate SUPA/G53/G153 in the G75 block
Index == 5: Program POSRANGE command in synchronized action
Index == 6: Program SIRELAY command in synchronized action
Index == 7: Program GOTOF/GOTOB/GOTO command with block number or label
Index == 8: Load COA application "cutting generator"

Program Continuation:
Clear alarm with the RESET key. Restart part program

14092 [Channel %1:] Block %2 axis %3 is wrong axis type

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
One of the following programming errors has occurred:
1. The keyword WAITP(x) "Wait with block change until the specified positioning axis has reached its end point" has been used for an axis that is not a positioning axis.
2. G74 "Reference point approach from the program" has been programmed for a spindle. (Only axis addresses are permitted).
3. The keyword POS/POSA has been used for a spindle. (The keywords SPOS and SPOSA must be programmed for spindle positioning).
4. If the alarm occurs with the "Rigid tapping" function (G331), the following causes are conceivable:
 - The master spindle is not in position-controlled mode.
 - Incorrect master spindle
 - Master spindle without encoder
5. An axis name was programmed which no longer exists (e.g. when using axial variables as an index). Or NO_AXIS has been programmed as an index.
6. If 14092 is output as a note with alarm 20140 Motion-synchronous action: traversing of command axis, the following causes are possible:
 - The axis is currently being traversed by the NC program already.
 - An overlaid movement is active for the axis.
 - The axis is active as following axis of a coupling.
 - An interpolation compensation such as a temperature compensation is active for the axis.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Correct the part program according to which of the above errors is involved.
- Program SPOS.
- Set the correct master spindle with SETMS.
14093 [Channel %1:] Block %2 path interval <= 0 with polynomial interpolation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In the polynomial interpolation POLY, a negative value or 0 has been programmed under the keyword for the polynomial length PL=...

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
Correct the value given in PL = ...

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14094 [Channel %1:] Block %2 polynomial degree greater than 3 programmed for polynomial interpolation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The polynomial degree in the polynomial interpolation is based on the number of programmed coefficients for an axis. The maximum possible polynomial degree is 3, i.e. the axes are according to the function:

\[f(p) = a_0 + a_1 p + a_2 p^2 + a_3 p^3 \]

The coefficient \(a_0 \) is the actual position at the start of interpolation and is not programmed!

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Reduce the number of coefficients. The polynomial block may have a form no greater than the following:

\[N1 \text{ POLY PO}[X]=(1.11, 2.22, 3.33) \text{ PO}[Y]=(1.11, 2.22, 3.33) \]
\[N1 \text{ PO}[n]=... \text{ PL}=44 \]

\(n \ldots n \ldots \) axis identifier, max. 8 path axes per block

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14095 [Channel %1:] Block %2 radius for circle programming too small

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The radius entered for radius programming is too small, i.e. the programmed radius is smaller than half of the distance between start and end point.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14096 [Channel %1:] Block %2 illegal type conversion

Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
During the program run, a variable value assignment or an arithmetic operation has caused data to be processed in such a way that they have to be converted to another type. This would lead to the value range being exceeded.

Value ranges of the various variable types:
- REAL: Property: Fractional number with dec. pt., value range: +/- (2^-1022-2+1023)
- INT: Property: Integers with signs, value range: +/- (2^31-1)
- BOOL: Property: Truth value TRUE, FALSE, value range: 0,1
- CHAR: Property: 1 ASCII character, value range: 0-255
- STRING: Property: Character string (max. 100 values), value range: 0-255
- AXIS: Property: Axis addresses, value range: Axis names only
- FRAME: Property: Geometric information, value range: As for axis paths

Overview of type conversions:
- from REAL to: REAL: yes, INT: yes*, BOOL: yes*, STRING: -, AXIS: -, FRAME: -
- from INT to: REAL: yes, INT: yes, BOOL: yes, STRING: -, AXIS: -, FRAME: -
- from BOOL to: REAL: yes, INT: yes, BOOL: yes, STRING: -, AXIS: -, FRAME: -
- from CHAR to: REAL: yes, INT: yes, BOOL: yes, STRING: yes, AXIS: -, FRAME: -
- from STRING to: REAL: -, INT: -, BOOL: yes2), CHAR: only if 1 character, STRING: yes, AXIS: -, FRAME: -
- from AXIS to: REAL: -, INT: -, BOOL: -, CHAR: -, STRING: -, AXIS: -, FRAME: -

1) Value <> 0 corresponds to TRUE, value ==0 corresponds to FALSE.
2) String length 0 => FALSE, otherwise TRUE.
3) If only 1 character.

It is not possible to convert from type AXIS and FRAME nor into type AXIS and FRAME.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify the program section such that the value range is not exceeded, e.g. by a modified variable definition.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14097 [Channel %1:] Block %2 string cannot be converted to AXIS type
Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The called function AXNAME - conversion of the transferred parameters of the STRING type to an axis name (return value) of the AXIS type - has not found this axis identifier in the machine data.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Check the transferred parameter (axis name) of the function AXNAME to determine whether a geometry, channel or machine axis of this name has been configured by means of the machine data:
MD10000 $MN_AXCONF_MACHAX_NAME_TAB
MD20060 $MC_AXCONF_GEOAX_NAME_TAB
MD20080 $MC_AXCONF_CHANAX_NAME_TAB

Select the transfer string in accordance with the axis name, and change the axis name in the machine data if necessary. (If a change of name is to take place via the NC part program, this change must first be validated by means of a "POWER-ON").

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14098 [Channel %1:] Block %2 conversion error: no valid number found
Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The string is not a valid INT or REAL number.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Modify part program. If it is an entry, then you can check whether the string is a number via the preset function ISNUMBER (with the same parameter).

Program Continuation: Clear alarm with the RESET key. Restart part program

14099 [Channel %1:] Block %2 result in string concatenation too long

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The result of string chaining returns a string which is greater than the maximum string length laid down by the system.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Adapt part program. With the function STRLEN, it is also possible to query the size of the sum string before executing the chaining operation.

Program Continuation: Clear alarm with the RESET key. Restart part program

14100 [Channel %1:] Block %2 orientation transformation not available

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Up to 4 transformation groupings (transformation types) can be set for each channel via machine data. If the keyword TRAORI(n) (n ... number of the transformation grouping) is used to address a transformation grouping for which the machine data is not defaulted, the alarm message will be triggered.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Press the NC Stop key and select the function "Correction block" with the softkey PROGRAM CORRECT. The correction pointer positions on the incorrect block.
- Check the number of the transformation grouping when calling the part program with the keyword TRAORI(n) (n ... number of the transformation grouping).
- Enter the machine data for this transformation grouping and then activate by "Power On".

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14101 [Channel %1:] Block %2 orientation transformation not active

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Euler angles or a vector have been used in programming an orientation and no orientation transformation is active, i.e. the keyword TRAORI(n) (n ... number of transformation grouping) is missing. Example of correct transformation programming:
N100 ... TRAORI(1)
N110 G01 X... Y... ORIWKS
N120 A3... B3... C3...
N130 A3... B3... C3...
:
N200 TAFOOF

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Before the transformation is applied, the number of the transformation grouping must be specified with the keyword TRAORI(n) (n is between 1 and 4).

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14102 [Channel %1:] Block %2 polynomial degree greater than 5 programmed for orientation vector angle

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
During polynomial interpolation for the orientation vector, a polynomial degree larger than 5 has been programmed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14104 [Channel %1:] Block %2 Active transformation allows neither vector programming nor interpolation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The active orientation transformation does allow neither the programming of vectors for tool orientation nor the vector interpolation (ORIVECT, ORICONxx, usw) of the orientation.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Change the NC program and/or the settings of the machine data

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14110 [Channel %1:] Block %2 Euler angles and orientation vector components programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
An orientation were programmed with Euler angles and the component of an orientation vector at the same time.
Example:
N50 TRAORI (1)
N55 A2=10 B2=20 C3=50 ; alarm, because Euler angle and orientation vector

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program only one type, in other words when transformation is switched on program either Euler angles only or orientation vectors (direction vectors) only.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14111 [Channel %1:] Block %2 Euler angles, orientation vector and transformation axes programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
An orientation has been programmed at the same time as Euler angles or components of an orientation vector and the machine axis influenced by the orientation.
Example:
N50 TRAORI (1)
N55 A2=70 B2=10 C2=0 X50 ; alarm, because Euler angle and axes were programmed

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program only one type, in other words with transformation switched on program either Euler angles only or orientation vectors (direction vectors) only or deselect transformation (TRAFOOF) and set tool orientation by programming the auxiliary axes.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14112 [Channel %1:] Block %2 programmed orientation path not possible
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In 5-axis transformation, the two orientation axes place a coordinate system comprising lengths and circles of latitude on a spherical surface.
If the interpolation traverses the pole point, only the 5th axis will move and the 4th axis will retain its starting position. If a motion is programmed that does not traverse the pole point directly, but passes it very closely, the preset interpolation will be deviated from if the path forms a circle that is defined by the machine data: MD24550 $MC_TRAFO5_NON_POLE_LIMIT_1 (changeover angle that refers to the 5th axis). The interpolated contour is then placed through the pole (in the immediate vicinity of the pole, the 4th axis would otherwise have to accelerate most rapidly and then decelerate again).
For the 4th axis, the result is a position deviation as compared to the programmed value. The maximum permissible angle which the programmed and the interpolated path may include is stored in the MD24540 $MC_TRAFO5_POLE_LIMIT.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: In the vicinity of the pole, always make use of axis programming. Programming of tool orientations close to the pole should generally be avoided because this always leads to problems concerning dynamic response.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14113 [Channel %1:] Block %2 programmed lead angle too large
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No further explanation.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14114 [Channel %1:] Block %2 programmed tilt angle too large
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No further explanation.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14115 [Channel %1:] Block %2 illegal definition of workpiece surface
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The surface normal vectors programmed at the beginning of block and at the end of block point in opposite directions.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14116 [Channel %1:] Block %2 absolute orientation programmed while ORIPATH/ORIPATHS is active
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The orientation has been entered as an absolute value (e.g. by a direction vector or a rotation vector), although ORIPATH or ORIPATHS are active. When ORIPATH/ORIPATHS is active, the orientation is determined from the lead angle, tilt angle and angle of rotation relative to the path tangent and surface normal vector.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14117 [Channel %1:] Block %2 no angle or direction of the cone programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: With taper circumference interpolation of orientation (ORICONCW and ORICONCC), either the opening angle or the direction vector of the taper must be programmed. Otherwise, the change of orientation is not clearly defined.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14118 [Channel %1:] Block %2 no end orientation programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: With taper circumference interpolation of orientation, no end orientation has been programmed. The change of orientation is therefore not clearly defined.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14119 [Channel %1:] Block %2 no intermediate orientation programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: With taper circumference interpolation of orientation with ORICONIO, an intermediate orientation must also be programmed in addition to the end orientation.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14120 [Channel %1:] Block %2 plane determination for programmed orientation not possible
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The programmed orientation vectors (direction vectors) in the beginning of block and end of block point include an angle of 180 degrees. Therefore the interpolation plane cannot be determined.

Example:
N50 TRAORI (1)
N55 A3=0 B3=0 C3=1
N60 A3=0 B3=0 C3=-1; the vector of this block is precisely opposite to that in the preceding block.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify the part program so that the orientation vectors of a block are not directly opposed to each other, for instance by dividing the block up into 2 subblocks.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14121 [Channel %1:] Block %2 no orientation defined (distance equals zero).

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The programmed coordinates for the 2nd space curve with XH, YH, ZH do not define any tool orientation, as the distance of the curve to the TCP is becoming zero.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Change the part program so that the distance between the two curves is not becoming zero and that a tool orientation is defined.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14122 [Channel %1:] Block %2 angle and direction of the cone programmed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: With taper circumference interpolation of orientation with ORICONCW and ORICC, only the opening angle or the direction of the taper may be programmed. Programming of both in one single block is not allowed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14123 [Channel %1:] Block %2 nutation angle of the cone too small

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: With taper circumference interpolation, the programmed opening angle of the taper must be greater than the half of the angle between the start and end orientation. Otherwise, a taper cannot be defined.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14124 [Channel %1:] Block %2 start tangent for orientation is zero

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: With taper circumference interpolation with tangential continuation (ORICONTO), the start tangent of orientation must not be zero.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Overview of Alarms 03/2009

NCK alarms

Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14125 [Channel %1:] Block %2 programmed rotation is not possible

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The programmed rotation of tool orientation cannot be traversed.

Reaction: Correction block is reorganized.
Alarm display.

Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14126 [Channel %1:] Block %2 ORIPATH lift factor impermissible.

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The value programmed with ORIPLF = r is not within the permissible range. The relative retraction factor must lie within interval $0 \leq r < 1$.

Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14127 [Channel %1:] Block %2 rotation programmed several times

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The rotation (3rd degree of freedom of orientation at 6-axis transformations) has been programmed several times.
The rotation is clearly defined by one of the following specifications:
- Specification of the rotary axis positions included in the transformation
- Specification of Euler or RPY angles (A2, B2, C2)
- Specification of the normal orientation vector (AN3, BN3, CN3)
- Specification of the THETA angle of rotation

Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14128 [Channel %1:] Block %2 absolute programming of the orienting rotation with active ORIROTC.

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The rotation of orientation (3rd degree of freedom of orientation for 6-axis transformations) has been programmed with G code ORIROTC active. This is not possible, as the rotation of orientation is oriented relatively to the path tangent when ORIROTC is active.
With ORIROTC, it is only possible to program the angle of rotation THETA that indicates the angle of the rotation vector to the path tangent.

Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14129 [Channel %1:] Block %2 orientation angles and orientation vector components programmed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: An orientation angle and components of an orientation vector were programmed at the same time.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14130 [Channel %1:] Block %2 too many initialization values given

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: On assigning an array by means of SET, more initialization values than existing array elements have been specified in the program run.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Reduce the number of initialization values.

Program Continuation: Clear alarm with the RESET key. Restart part program.

14131 [Channel %1:] Block %2 orientation axes and lead/tilt angles programmed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: An orientation angle and a leading or sideways angle were programmed at the same time.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14132 [Channel %1:] Block %2 orientation axes incorrectly configured

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Possible causes:
- The configuration of the orientation axes does not match the machine kinematics. Also, for example, when the position measuring system has not been set for the rotary axes.
- An axis that is required as orientation axis is currently not available as path axis.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Adapt machine data
Provide the required orientation axes using GET(\ldots) or GETD(\ldots).

Program Continuation: Clear alarm with the RESET key. Restart part program.
14133 [Channel %1:] Block %2 G code for orientation definition not allowed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: It is only possible to program a G code of the 50th G code group if MD21102 $MC_ORI_DEF_WITH_G_CODE is set to TRUE.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Adapt machine data.
Program Continuation: Clear alarm with the RESET key. Restart part program.

14134 [Channel %1:] Block %2 G code for orientation interpolation not allowed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: It will only be possible to program a G code of the 51st G code group, if MD21104 $MC_ORI_IPO_WITH_G_CODE has been set to TRUE.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Adapt machine data.
Program Continuation: Clear alarm with the RESET key. Restart part program.

14136 [Channel %1:] Block %2 Orientation polynomial is not permitted
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Programming of orientation polynomials both for the angles (PO[PHI], PO[PHI]) and for the coordinates of a reference point on the tool (PO[XH], PO[YH], PO[ZH]) is not permitted. Orientation polynomials can only be programmed, if an orientation transformation is active and the orientation is changed by interpolating the vector (ORIVECT, ORICONxxx, ORICURVE), i.e. the orientation must not be changed by interpolating the axis (ORIAXES).
Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.
Remedy: Modify the NC program
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14137 [Channel %1:] Block %2 Polynomials PO[PHI] and PO[PSI] are not permitted
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: A polynomial for the angles PHI and PSI can only be programmed, if the orientation is interpolated in the plane between start and end orientation (ORIVECT, ORIPLANE) or on a taper (ORICONxxx). If interpolation type ORICURVE is active, no polynomials can be programmed for angles PHI and PSI.
Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.
Remedy: Modify the NC program
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14138 [Channel %1:] Block %2 Polynomials PO[XH], PO[YH] and PO[ZH] are not permitted
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Polynomials for the coordinates of a reference point on the tool (PO[XH], PO[YH], PO[ZH]) can only be programmed, if interpolation type ORICURVE is active. If ORIVECT, ORIPLANE, ORICONxxx is active, no polynomials can be programmed for coordinates XH, YH and ZH.
Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.
Remedy: Modify the NC program
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14139 [Channel %1:] Block %2 Polynomial for angle of rotation PO[THT] is not permitted
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: A polynomial for the angle of rotation of orientation (PO[THT]) can only be programmed, if the active transformation supports it.
Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.
Remedy: Modify the NC program
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14140 [Channel %1:] Block %2 position programming without transformation not allowed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Position information was programmed for an axis position but no transformation was active.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Modify the program.
Program Continuation: Clear alarm with the RESET key. Restart part program

14144 [Channel %1:] Block %2 PTP movement not allowed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The PTP G code was programmed for a movement other than G0 or G1.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Modify the program.
Program Continuation: Clear alarm with the RESET key. Restart part program
14146 [Channel %1:] Block %2 CP or PTP movement without transformation not allowed
Parameters: %1 = Channel number %2 = Block number, label
Definitions: The CP or PTP G code was programmed for a movement but no transformation was active.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Modify the program.
Program Continuation: Clear alarm with the RESET key. Restart part program

14147 [Channel %1:] Block %2 spline for orientation not possible.
Parameters: %1 = Channel number %2 = Block number, label
Definitions: If an orientation has been programmed while BSPLINE is active, the interpolation of
tool orientation must be interpolated via a 2nd space curve. This means that G code ORICURVE must be active for the interpolation of the orientation.
Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.
Remedy: Change the NC program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14148 [Channel %1:] Illegal reference system for Cartesian manual traverse
Parameters: %1 = Channel number
Definitions: In the SD42650 $SC_CART_JOG_MODE, an illegal value has been entered for the reference system with Cartesian manual travel.
Reaction: Alarm display.
Remedy: Enter a permitted value in the SD42650 $SC_CART_JOG_MODE.
Program Continuation: Clear alarm with the RESET key. Restart part program

14150 [Channel %1:] Block %2 illegal tool carrier number programmed or declared (MD)
Parameters: %1 = Channel number %2 = Block number, label
Definitions: A toolholder number was programmed which is negative or greater than the MD18088 $MN_MM_NUM_TOOL_CARRIER.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Program valid toolholder number or adapt MD 18088 $MN_MM_NUM_TOOL_CARRIER.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14151 [Channel %1:] Block %2 illegal tool carrier rotation
Parameters: %1 = Channel number %2 = Block number, label
Definitions: A toolholder was activated with an angle of rotation unequal to zero, although the associated axis is not defined. A rotary axis is not defined when all three direction components are zero.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Set angle of rotation to zero, or define the associated rotary axis.
NCK alarms

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14152 [Channel %1:] Block %2 tool carrier: invalid orientation. Error code: %3

Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Error code

Definitions: An attempt was made to define a tool orientation by means of the active frame which cannot be reached with the current toolholder kinematics. This case can always occur when both rotary axes of the toolholder are not perpendicular to one another or when the toolholder has fewer than two rotary axes;
or when rotary axis positions must be set that violate the corresponding axis limitations. Together with the alarm, an error code is displayed that specifies the cause in detail:
The error code has the following meaning:
1: 1st rotary axis of the first solution violates the lower limit
2: 1st rotary axis of the first solution violates the upper limit
10: 2nd rotary axis of the first solution violates the lower limit
20: 2nd rotary axis of the first solution violates the upper limit
100: 1st rotary axis of the second solution violates the lower limit
200: 1st rotary axis of the second solution violates the upper limit
1000: 2nd rotary axis of the second solution violates the lower limit
2000: 2nd rotary axis of the second solution violates the upper limit
3: The required orientation cannot be set with the given axis configuration

Several of the error codes that indicate a violation of the axis limits can occur simultaneously
As, when an axis limit is violated, an attempt is made to reach a valid position within the permissible axis limits by adding or subtracting multiples of 360 degrees, it is - if this is not possible - not unequivocally defined whether the lower or upper axis limit has been violated.

Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.

Remedy: Modify the part program (TOABS instead of TCOFR, activate another Frame. Change toolholder data.
 Change processing level G17-G19)

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14153 [Channel %1:] Block %2 unknown tool carrier type: %3

Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Tool carrier type

Definitions: An invalid tool carrier type was specified in $TC_CARR23[]. Only the following are allowed: t, T, p, P, m, M.

Reaction: Correction block is reorganized.
 Interpreter stop
 Interface signals are set.
 Alarm display.

Remedy: Change the tool carrier data.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14154 [Channel %1:] Block %2 The amount of fine correction in parameter %3 of the orientable toolholder %4 is too large

Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Invalid parameter of the orientable toolholder
 %4 = Number of the orientable toolholder
Definitions: The maximum permissible value of the fine correction in an orientable toolholder is limited by the MD20188 $MC_TOCARR_FINE_LIM_LIN for linear variables, and by the MD20190 $MC_TOCARR_FINE_LIM_ROT for rotary variables. The alarm can only occur if the SD42974 $SC_TOCARR_FINE_CORRECTION is not equal to zero.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Enter a valid fine correction value.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14155 [Channel %1:] Block %2 invalid base frame definition for tool carrier offset

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: If a tool carrier selection causes a change in the table offset, a valid base frame must be defined in order to store this offset; for more information see machine data 20184 (TOCARR_BASE_FRAME_NUMBER).

Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy: Change the NC program or machine data 20184 (TOCARR_BASE_FRAME_NUMBER).

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14156 [Channel %1:] Toolholder selection error at reset

Parameters: %1 = Channel number

Definitions: The settings in MD20110 $MC_RESET_MODE_MASK require that an active orientable toolholder is maintained after the reset. This is done by deselecting the old orientable toolholder and then reselecting it with data that may have been modified. If an error occurs during the reselection, this alarm is issued (as a warning) and then an attempt is made to select the orientable toolholder in the initial setting. If this second attempt is successful, the reset cycle is continued without any further alarms. Typically, the alarm only occurs when the old orientable toolholder has been selected with TCOFR, and its axis directions have been changed in such a way before the reset that a setting suitable for the associated frame is no longer possible. If there is another cause for the alarm, this results in an alarm also being issued when attempting to select in the initial setting. This is then also displayed in plain text.

Reaction: Alarm display.

Remedy: Check the program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14157 [Channel %1:] Block %2 illegal interpolation type with MOVT

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Linear or spline interpolation must be active with MOVT (G0, G1, ASPLINE, BSPLINE, CSPLINE).

Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.

Remedy: Modify program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14159 [Channel %1:] Block %2 more than two angles programmed with ROTS or AROTS
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Frame rotations are described using space angles with the language commands ROTS or AROTS. A maximum of two angles can be programmed.
Reaction: Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.
Remedy: Modify program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14160 [Channel %1:] Block %2 tool length selection without geometry axis specification
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: If variant C (tool length acts on the programmed axis) is activated by machine data MD20380 $MC_TOOL_CORR_MODE_G43G44 for tool length compensation with H word and G43/G44 in ISO_2 mode, at least one geometry axis must be specified.
Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Change MD20380 $MC_TOOL_CORR_MODE_G43G44 or the part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14162 [Channel %1:] Block %2 error %3 on activation of the CUTMOD function
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Error code
Definitions: An error occurred during the activation of the CUTMOD function. The type of error is more closely defined by the error code number:
Error code
1 No valid cutting direction is defined for the active tool.
2 The edge angles (clearance angle and holder angle) of the active tool are both zero.
3 The clearance angle of the active tool has an impermissible value (less than 0 degrees or greater than 180 degrees).
4 The holder angle of the active tool has an impermissible value (less than 0 degrees or greater than 90 degrees).
5 The cutting tip angle of the active tool has an impermissible value (less than 0 degrees or greater than 90 degrees).
6 The cutting edge position - holder angle combination of the active tool is impermissible (with cutting edge positions 1 through 4, the holder angle must be less than or equal to 90 degrees, with cutting edge positions 5 through 8, it must greater than or equal to 90 degrees).
7 Impermissible rotation of the active tool (the tool was rotated through +/-90 degrees (with a tolerance of about 1 degree) out of the active machining plane. As a result, the cutting edge position is no longer defined in the machining plane.
With the aid of MD20125 $MC_CUTMOD_ERR, it can be determined for each of the named errors whether the fault condition is to lead to the issue of an alarm, and whether the alarm is only to be displayed or also trigger a program stop.
Reaction: Interpreter stop
Interface signals are set.
Alarm display.
Remedy: Correct the tool data of the active tool, or modify the part program in the case of error 7.
Alternatively, suppress all error alarms with the aid of MD20125 $MC_CUTMOD_ERR.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14165 [Channel %1:] Block %2 selected ISO H/D number %3 does not match tool %4

Parameters: %1 = Channel number
%2 = Block number, label
%3 = ISO H/D number
%4 = Tool number

Definitions: When an H or D number is programmed in ISO_2 or ISO_3 mode, it must be available in the active tool. The active tool may also be the last tool loaded on the master spindle or master toolholder. This alarm is output if there is no H or D number on this tool.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Set ISO H/D number correctly.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14166 [Channel %1:] Block %2 error %3 when programming a tool length offset with TOFF / TOFFL

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Error code

Definitions: An error occurred while programming a tool length offset with TOFF or TOFFL. More information about the type of error is given by the error code number:
Error code
1At least one tool length offset component has been programmed twice in one block (with TOFF).
2At least one tool length offset component has been programmed twice in one block (with TOFFL).
3Tool length offset components have been programmed in one block with both TOFF and TOFFL.
4An index must be declared when a tool length offset is programmed with TOFF, the form TOFF=.... is not permissible.
5An illegal index was declared when programming TOFFL (permissible values 1..3).
6An illegal axis was declared as the index when programming TOFF. Only geometry axes are permitted.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Correct errors in program block.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14170 [Channel %1:] Block %2 illegal interpolation type with tool length compensation

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: If tool compensation (G43/G44) is activated in language mode ISO_M, the linear type of interpolation must be active.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14180 [Channel %1:] Block %2 H number %3 is not defined
Parameters: %1 = Channel number
%2 = Block number, label
%3 = H number of ISO mode
Definitions: The specified H number is not assigned to a tool (ISO_M).
Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14181 [Channel %1:] Block %2 ISO tool offset %3 not present
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Offset number
Definitions: Only relevant in ISO2 and ISO3 modes:
When selecting the tool offset with H or D: Only tool offsets 1 - 98 are permissible in ISO2 and ISO3 modes.
Exception: The structured cutting edge D1 of the active tool can also be selected with H99 in ISO2 mode or with the offset component in the tool selection in ISO3 mode.
When writing the tool offset with G10: Only tool offsets 1 - 98 are permissible in ISO2 and ISO3 modes.
Tool offset H99 can only be written in Siemens programming mode (G290) with $TC_DP[x,y,z]=.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Correct NC block and select a permissible tool offset in the range 1 to 98.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14182 [Channel %1:] Block %2 different values under H and D addresses
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Only relevant in ISO2 mode:
Tool length and tool radius are programmed with H and D. The programming leads to contradictory offset numbers in the coupled offset memories.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Correct NC block. Only program H or D, or program the same value under H and D addresses. Set MD10890 $MN_EXTERN_TOOLPROG_MODE, Bit6=1. Different values can then be programmed in the H and D addresses.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14183 [Channel %1:] Block %2 H and D addresses must be programmed after Siemens offset
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Only relevant in ISO2 mode:
A tool offset in Siemens mode with D>1 is active and an ISO2 command G43, G44,G49 is applied. Furthermore an ISO offset with H0 - H99 or D0-D98 must be selected.
The alarm is also output, if MD10890 $MN_EXTERN_TOOLPROG_MODE, bit6=1:
If the Siemens offset memory with H99 or a cutting edge has been selected in Siemens mode, both
the tool length and tool radius offsets will have to be reselected the next time the ISO offset memory
is selected.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Correct NC block.
Program H and/or D address in the block.
If MD10890 $MN_EXTERN_TOOLPROG_MODE, bit6=0, only H or D address must be programmed.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14184

[Channel %1:] Block %2 G44 is not possible with tool offset H99

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Only relevant in ISO2 mode:
The structured D number D1 of the active tool has been selected with H99. These offset values cannot
be calculated negatively with G44.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Correct NC block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14185

[Channel %1:] Block %2 D number %3 is not defined

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = D number of ISO mode

Definitions:
The specified D number is not assigned to a tool (language mode ISO_M).

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14186

[Channel %1:] Block %2 ISO2 mode, and toolcarrier or tool adapter are both active (identifier %3)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Identifier

Definitions:
Only relevant in ISO2 mode:
An attempt has been made to activate an ISO2 offset and toolcarrier or tool adapter together.
Identifier 1: ISO2 offset is active (activated in ISO2 mode) and an attempt has been made to activate
an additional toolcarrier in Siemens mode.
Identifier 2: A toolcarrier has been activated in Siemens mode, and a tool offset is now activated in
ISO2 mode.
Identifier 3: A tool is active in the adapter in Siemens mode, and a tool offset is now activated in ISO2
mode.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Correct NC block.
For identifier 1: Select a Siemens offset before activating the toolcarrier.
For identifier 2: Deactivate the toolcarrier before selecting a TLC in ISO2 mode.
For identifier 3: Load a tool (T=0) or activate a tool without an adapter before selecting a TLC in ISO2 mode.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14190 [Channel %1:] Block %2 H number with G49
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: G49 (select tool length compensation) and an H word not equal to H0 have been programmed simultaneously.
Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Modify part program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14195 [Channel %1:] Block %2 D number with G49
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: G49 (select tool length compensation) and an D word not equal to D0 have been programmed simultaneously.
Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.
Remedy: Modify part program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14196 [Channel %1:] Block %2 error %3 on interpreting the contents of $SC_CUTDIRMOD
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Error code
Definitions: An error has occurred during the interpretation of the strings contained in SD42984 $SC_CUTDIRMOD. This setting data is always read when a new edge is selected. The error code indicates the cause of the error:
1: The string only consists of blanks or a sign
2: Unknown frame name after $P_
3: No colon after the first valid frame name
4: Insufficient memory space for creating a frame internally
5: Invalid frame index
6: Further characters found after complete string
7: Second frame name is missing after the colon
8: Impermissible frame rotation (surface normals are rotated against each other by 90 degrees or more)
9: Invalid frame chain (the first frame must come before the second frame in the frame chain)
10: Invalid axis name
11: Axis is not a rotary axis
12: Invalid string that cannot be assigned to any of the error types 1 to 11
20: Invalid angle statement (numerical value)
30: Invalid angle of rotation (not an integer multiple of 90 degrees)

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Enter valid string in SD42984 $SC_CUTDIRMOD.

Program Continuation:
Clear alarm with the RESET key. Restart part program

14197

[Channel %1:] Block %2 D number and H number programmed simultaneously

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A D word and H word have been programmed simultaneously.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14198

[Channel %1:] Block %2 illegal change of tool direction with tool offset

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
If an offset is active in the tool direction, block change is not possible if this would change the assignment of the offset axes to the channel axes (plane change, tool change, cutter <=> turning tool, geometry axis exchange).

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
- Modify part program.
- Reduce the offset in tool direction to zero.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14199

[Channel %1:] Block %2 illegal plane change for tool with diameter component

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
If a tool has a wear or length component which is evaluated as a diameter for the facing axis (bit 0 and/or bit 1 in MD20360 $MC_TOOL_PARAMETER_DEF_MASK is set) and bit 2 of this MD is also set, this tool may only be used in the plane active on tool selection. A plane change results in an alarm.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
Modify part program.
Reset bit 2 in MD20360 $MC_TOOL_PARAMETER_DEF_MASK.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14200 [Channel %1:] Block %2 negative polar radius
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
In the endpoint specification of a traversing block with G00, G01, G02 or G03 in polar coordinates, the polar radius entered for the keyword RP=... is negative.

Definition of terms:
- Specification of end of block point with polar angle and polar radius, referring to the current pole (preparatory functions: G00/G01/G02/G03).
- New definition of the pole with polar angle and pole radius, referring to the reference point selected with the G function. G110 ... last programmed point in the plane, G111 ... zero point of the current work, G112 ... last pole

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct NC part program - permissible inputs for the pole radius are only positive absolute values that specify the distance between the current pole and the block end point. (The direction is defined by the pole angle AP=...).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14210 [Channel %1:] Block %2 polar angle too large
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
In specifying the endpoints in a traversing block with G00, G01, G02 or G03 in polar coordinates, the value range of the polar angle programmed under the keyword AP=... has been exceeded. It covers the range from -360 to +360 degrees with a resolution of 0.001 degrees.

Definition of terms:
- Specification of end of block point with polar angle and polar radius, referring to the current pole (preparatory functions: G00/G01/G02/G03).
- New definition of the pole with polar angle and pole radius, referring to the reference point selected with the G function. G110 ... referred to the last programmed point in the plane, G111 ... referred to the zero point of the current workpiece coordinate system (WCS), G112 ... referred to the last pole

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct NC part program. The permissible input range for the polar angle is between the values -360 degrees and +360 degrees with a resolution of 0.001 degrees.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14250 [Channel %1:] Block %2 negative pole radius
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
In redefining the pole with G110, G111 or G112 in polar coordinates, the pole radius specified under keyword RP=... is negative. Only positive absolute values are permitted.

Definition of terms:
- Specification of end of block point with polar angle and polar radius, referring to the current pole (preparatory functions: G00/G01/G02/G03).
- New definition of the pole with polar angle and pole radius, referring to the reference point selected with the G function. G110 ... last programmed point in the plane, G111 ... zero point of the current work, G112 ... last pole

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the NC part program. Permissible inputs for the pole radius are only positive, absolute values that specify the distance between the reference point and the new pole. (The direction is defined with the pole angle AP=...).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14260 [Channel %1:] Block %2 pole angle too large

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
In redefining the pole with G110, G111 or G112 in polar coordinates, the value range of the pole angle specified under keyword AP=... has been exceeded. It covers the range from -360 to +360 degrees with a resolution of 0.001 degrees.

Definition of terms:
- Specification of end of block point with polar angle and polar radius, referring to the current pole (preparatory functions: G00/G01/G02/G03).
- New definition of the pole with polar angle and pole radius, referring to the reference point selected with the G function. G110 ... last programmed point in the plane, G111 ... zero point of the current work, G112 ... last pole

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct NC part program. The permissible input range for the polar angle is between the values -360 degrees and +360 degrees with a resolution of 0.001 degrees.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14270 [Channel %1:] Block %2 pole programmed incorrectly

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When defining the pole, an axis was programmed that does not belong to the selected processing level. Programming in polar coordinates always refers to the plane activated with G17 to G19. This also applies to the definition of a new pole with G110, G111 or G112.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the NC part program. Only the two geometry axes may be programmed that establish the current machining plane.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14280 [Channel %1:] Block %2 polar coordinates programmed incorrectly

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The end point of the displayed block has been programmed both in the polar coordinate system (with AP=..., RP=...) and in the Cartesian coordinate system (axis addresses X, Y,...).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the NC part program - the axis motion may be specified in one coordinate system only.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14290 [Channel %1:] Block %2 polynomial degree greater than 5 programmed for polynomial interpolation

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A polynomial degree greater than five was programmed for the polynomial interpolation. You can only program polynomials up to the 5th degree.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14300 [Channel %1:] Block %2 overlaid handwheel motion activated incorrectly

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Handwheel override has been called up incorrectly:
- 1st For positioning axes:
 - Handwheel override programmed for indexing axes,
 - No position programmed,
 - FA and FDA programmed for the same axis in the block.
- 2nd For contouring axes:
 - No position programmed,
 - G60 not active,
 - 1st G group incorrect (only G01 to CIP).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14320 [Channel %3:] Axis %4: handwheel %1 used twice (%2)

Parameters:
%1 = Handwheel number
%2 = Use
%3 = Channel
%4 = Axis

Definitions:
Informational alarm indicating that the mentioned handwheel is used twice:
The second parameter provides the explanation:
1: Block with axial handwheel override for this axis cannot be executed as the handwheel
for this axis performs a DRF movement
2: Block with velocity override of the path cannot be executed as the handwheel performs
a DRF movement for this axis of the path
3: Block with contour handwheel cannot be executed as the handwheel performs a DRF movement
for this axis of the path
4: PLC axis with axial handwheel override cannot be started immediately as the handwheel performs
a DRF movement for this axis
5: The axis is a reciprocating axis with axial handwheel override; the reciprocating movement cannot be
started immediately as the handwheel performs a DRF movement for this axis
6: The DRF movement for this axis cannot be executed as an axial handwheel override is active for
this axis with the handwheel
7: The DRF movement for this axis cannot be executed as a velocity override of the path with
the handwheel is active and the axis belongs to the path
8: The DRF movement for this axis cannot be executed as the contour handwheel is active with
this handwheel and the axis belongs to the path
9: The DRF movement for this axis cannot be executed as the axis is a PLC axis with handwheel
override that is active with this handwheel
10: The DRF movement for this axis cannot be executed as the axis is active as reciprocating axis
with handwheel override with this handwheel

Reaction:
Alarm display.

Remedy:
Use the handwheel for one purpose at a time only.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.
14400 [Channel %1:] Block %2 tool radius compensation active at
transformation switchover

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A change of transformation is not allowed when tool radius compensation is active.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Perform tool radius compensation in the NC part program with G40 (in a block with G00 or G01) before
performing a transformation change.

Program Con-
tinuation:
Clear alarm with NC START or RESET key and continue the program.

14401 [Channel %1:] Block %2 transformation not available

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The required transformation is not available.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
Modify part program; program defined transformations only.
Check MD 24... $MC_TRAFO_TYPE_... (assigns the transformation to part program instruction).

Program Con-
tinuation:
Clear alarm with the RESET key. Restart part program

14402 [Channel %1:] Block %2 spline active at transformation change

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A change of transformation is not allowed in a spline curve section. A series of spline blocks must be
concluded.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Con-
tinuation:
Clear alarm with NC START or RESET key and continue the program.

14403 [Channel %1:] Block %2 preprocessing and main run might not be
synchronized

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Positioning axis runs cannot be accurately calculated beforehand. Consequently, the position in the
MCS is not known exactly. It might therefore be possible that a change in the multiple significance of
the transformation has been performed in the main run although no provision was made for this in the
preprocessing run.

Reaction:
Alarm display.

Remedy:
Modify part program. Synchronize preprocessing run and main run.

Program Con-
tinuation:
Clear alarm with the Delete key or NC START.

14404 [Channel %1:] Block %2 illegal parameterization of transformation

Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Error has occurred when selecting transformation.

Possible causes of error:
- An axis traversed by the transformation has not been enabled:
- is being used by another channel (-> enable)
- is in spindle mode (-> enable with SPOS)
- is in POSA mode (-> enable with WAITP)
- is concurrent Pos axis (-> enable with WAITP)
- Parameterization via machine data has an error
- Axis or geometry axis assignment to the transformation has an error.
- Machine data has an error (-> modify machine data, restart)

Please note: Any axes not enabled might be signaled via alarm 14092 or alarm 1011 instead of alarm 14404.

Transformation-dependent error causes can be in: TRAORI: -

TRANSMIT:
- The current machine axis position is unsuitable for selection (e.g. selection in the pole) (-> change position slightly).
- Parameterization via machine data has an error.
- Special requirement with respect to the machine axis has not been fulfilled (e.g. rotary axis is not a modulo axis) (-> modify machine data, restart).

TRACYL:
The programmed parameter is not allowed when transformation is selected.

TRAANG:
- The programmed parameter is not allowed when transformation is selected.
- Parameterization via machine data has an error.
- Parameter is faulty (e.g. TRAANG: unfavorable angle value (-> modify machine data, restart)

Persistent transformation:
- Machine data for persistent transformation are wrong (-> consider dependencies, change machine data, restart)

Only with active "OEM transformation" compile cycle:
The axes included in the transformation must be referenced.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Modify part program or machine data.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14410 [Channel %1:] Block %2 spline active at geometry axis changeover

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
It is not allowed to change the assignment of geometry axes to channel axes in a spline curve definition.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14411 [Channel %1:] Block %2 tool radius compensation active at geometry axis changeover

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
It is not permissible to change the assignment of geometry axes to channel axes when tool radius compensation is active.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14412 [Channel %1:] Block %2 transformation active at geometry axis changeover
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: It is not permissible to change the assignment of geometry axes to channel axes when transformation is active.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14413 [Channel %1:] Block %2 fine tool correction: changeover geometry/channel axis not allowed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: It is not permissible to change the assignment of geometry axes to channel axes during active tool fine compensation.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14414 [Channel %1:] Block %2 GEOAX function: incorrect call
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The parameters for calling the GEOAX(...) are incorrect. Possible causes:
- Uneven number of parameters.
- More than 6 parameters were specified.
- A geometry axis number was programmed which was less than 0 or greater than 3.
- A geometry axis number was programmed more than once.
- An axis identifier was programmed more than once.
- An attempt was made to assign a channel axis to a geometry axis which has the same name as one of the channel axes.
- An attempt was made to assign a channel axis to a geometry axis lacking IPO functionality (see MD30460 SMA_BASE_FUNCTION_MASK, Bit8).
- An attempt was made to remove a geometry axis with the same name as one of the channel axes from the geometry axis grouping.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program or correction block.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14415 [Channel %1:] Block %2 tangent control: changeover geometry/channel axis not allowed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: An assignment change of the geometry axes to channel axes is not permitted with active tangential control.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Change part program and delete active tangential control with TANGDEL.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14420 [Channel %1:] Block %2 index axis %3 frame not allowed

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis

Definitions: The axis is to be traversed as an indexing axis, but a frame is active. This is not allowed by MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Please inform the authorized personnel/service department. Modify part program. Change MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14430 [Channel %1:] Block %2 tangential axis %3 must not be traversed as POS axis

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name

Definitions: A tangentially followed-up axis cannot be traversed as positioning axis.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Change part program and delete active tangential control with TANGDEL.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14432 [Channel %1:] Block %2 rounding length for tangential axis %3 is zero.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name

Definitions: For a tangential axis that is coupled during preparation, a rounding length must be indicated with TANGON() on activating the tangential control, or possibly occurring discontinuities of the tangential axis cannot be smoothed.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Modify part program

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14434 [Channel %1:] Block %2 rel. lift-off path for tangential axis %3 is invalid

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name

Definitions: Factor r as programmed on TLIFT for the relative lift-off path must be within range 0 <= r < 1.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Modify part program

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14500 [Channel %1:] Block %2 illegal DEF or PROC instruction in the part program
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: NC part programs with high-level language elements are divided into a preceding definition part followed by a program part. The transition is not marked specifically; a definition statement is not allowed to follow the 1st program command.
Reaction: Correction block is reorganized.
Interface signals are set. Alarm display.
Remedy: Put definition and PROFC statements at the beginning of the program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14510 [Channel %1:] Block %2 PROC instruction missing on subroutine call
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In subroutine calls with parameter transfer ("call-by-value" or "call-by-reference") the called subroutine must begin with a PROC statement.
Reaction: Correction block is reorganized.
Interface signals are set. Alarm display.
Remedy: Define the subroutine in accordance with the type used.
1. Conventional subroutine structure (without parameter transfer):
 % SPF 123456 : M17
2. Subroutine structure with keyword and subroutine name (without parameter transfer):
 PROC UPNAME : M17 ENDPDC
3. Subroutine structure with keyword and subroutine name (with parameter transfer "call-by-value"):
 PROC UPNAME (VARNAME1, VARNAME2, ...) : M17 ENDPRC
4. Subroutine structure with keyword and subroutine name (with parameter transfer "call-by-reference"):
 PROC UPNAME (Typ1 VARNAME1, Typ2 VARNAME2, ...) : M17 ENDPRC
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14520 [Channel %1:] Block %2 illegal PROC instruction in data definition section
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The PROC statement may only be programmed at the beginning of the subroutine.
Reaction: Correction block is reorganized.
Interface signals are set. Alarm display.
Remedy: Modify NC part program appropriately.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14530 [Channel %1:] Block %2 EXTERN and PROC instruction do not correspond
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Subroutines with parameter transfer must be known before they are called in the program. If the subroutines are always available (fixed cycles) the control establishes the call interfaces at the time of system power-up. Otherwise an EXTERN statement must be programmed in the calling program.
Example:
N123 EXTERN UPNAME (TYP1, TYP2, TYP3, ...)
The type of the variable must match the type given in the definition (PROC statements) or it must be compatible with it. The name can be different.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check the variable types in the EXTERN and the PROC statements for correspondence and correctness.
Program Continuation: Clear alarm with the RESET key. Restart part program

14540 [Channel %1:] Block %2 contour tool: the min. limit angle has been programmed more than once (edge D%3)
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Edge number, label
Definitions: The limit angle of a contour tool must be equal zero in an involved edge only.
Reaction: Correction block is reorganized.
 Local alarm reaction.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm at block end.
Remedy: Change tool definition.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14541 [Channel %1:] Block %2 contour tool: the max. limit angle has been programmed more than once (edge D%3)
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Edge number, label
Definitions: The limit angle of a contour tool must be equal zero in an involved edge only.
Reaction: Correction block is reorganized.
 Local alarm reaction.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm at block end.
Remedy: Change tool definition.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14542 [Channel %1:] Block %2 contour tool: the min. limit angle has not been programmed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: On defining a contour tool, either no limit angle must be indicated, or both the minimum and the maximum limit angle must be programmed once for each.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Change tool definition.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14543

[Channel %1:] Block %2 contour tool: the max. limit angle has not been programmed

Parameters: %1 = Channel number %2 = Block number, label

Definitions: On defining a contour tool, either no limit angle must be indicated, or both the minimum and the maximum limit angle must be programmed once for each.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Change tool definition.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14544

[Channel %1:] Block %2 contour tool: edge D%3 is not positioned between the two border edges

Parameters: %1 = Channel number %2 = Block number, label %3 = Edge number, label

Definitions: On defining a form tool with limit, all edges must be positioned between the edge with the minimum limit angle and the edge with the maximum limit angle when rotating counter-clockwise.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Change tool definition.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14545

[Channel %1:] Block %2 contour tool: edge D%3 completely encircles edge D%4

Parameters: %1 = Channel number %2 = Block number, label %3 = Edge number, label %4 = Edge number, label

Definitions: On defining a contour tool, tangents are placed on the adjacent circular edges. It will not be possible, if one edge is completely encircled by another one.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Change tool definition.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14546 [Channel %1:] Block %2 contour tool: edge D%3 defines a concave corner

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Edge number, label

Definitions: The contour of a contour tool must be convex throughout, i.e. there must not be any concave corners.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Change tool definition.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14547 [Channel %1:] Block %2 contour tool: checksum erroneous or not available

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: When MD20372 $MC_SHAPED_TOOL_CHECKSUM was set, no edge was found for which the tool length components and the tool radius equal the negative sum of the previous edges.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Check tool definition. An edge must exist, the tool length components and tool radius of which equal the negative sum of the previous edges. This will not take the tool length components of the first edge into consideration. On comparing the components, the relevant sums of basic value and wear value are compared with each other, not the part components themselves.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14548 [Channel %1:] Block %2 contour tool: negative radius in edge D%3 is not allowed

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Edge number, label

Definitions: No negative radii are permitted for contour tools, i.e. the sum of basic radius and wear value must be at least 0.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Check tool definition. Change edge radius.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14549 [Channel %1:] Block %2 contour tool: impermissible programming.
Code no. %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Error code
Definitions: Impermissible programming has been found for contour tools on active tool radius compensation. The error cause is explained in detail by the error code.
1: In G code group 17, KONT is active during activation
2: In G code group 17, KONT is active during deactivation
9: In G code group 40, CUTCONOF is not active
10: Reprogramming of G41 / G42 in already active tool radius compensation not permissible
20: Circle with more than one rotation not permissible
21: Ellipse (circle not in compensation level)
23: Involute not permissible
24: Several polynomials not permitted in one block only. These blocks could be created by e.g. COMPCAD or G643.
30: Preprocessing stop not permitted
41: Starting point of first compensation block cannot be reached by anyone of the defined cutting edges
42: End point of last compensation block cannot be reached by anyone of the defined cutting edges

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Change NC program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14550 [Channel %1:] Block %2 contour tool: impermissible tool contour change. Code no. %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Error code

Definitions: A new tool with deviating tool contour was activated for contour tools on active tool radius compensation. The error cause is explained further by an error code.
If the error code is an integer, the lower-value three decimal places specify the number of the edge, in which the error was detected, while the thousandth digit explains the reason in more detail.
-1: The tool was deleted.
-2: The number of contour elements (edges) explaining the tool, has changed.
1000: The edge center has changed
2000: The edge radius has changed.
3000: The initial angle has changed.
4000: The final angle has changed.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Change NC program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14551 [Channel %1:] Block %2 contour tool: angle area of edge D%3 larger than 359 degrees

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Edge number, label

Definitions: A single edge must cover a max. angle area of 359 degrees.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Check tool definition.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14600
[Channel %1:] Block %2 reload buffer %3 cannot be established

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = File name

Definitions:
The download buffer for "execute from external" could not be created. Possible causes:
- Not enough memory available (for minimum see MD18360 $MN_MM_EXT_PROG_BUFFER_SIZE)
- No resources available for HMI NCK communication (see MD18362 $MN_MM_EXT_PROG_NUM)
- The file already exists

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Release memory, e.g. by deleting part programs
- Modify MD18360 $MN_MM_EXT_PROG_BUFFER_SIZE and/or MD18362 $MN_MM_EXT_PROG_NUM.

Program Continuation: Clear alarm with the RESET key. Restart part program

14601
[Channel %1:] Block %2 reload buffer could not be deleted

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The reload buffer for "execute from external" could not be deleted. Possible cause:
- HMI/PLC communication was not terminated.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- All reload buffers are cleared on POWER ON.

Program Continuation: Clear alarm with the RESET key. Restart part program

14602
[Channel %1:] Block %2 timeout while reloading from external.

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
No connection could be made to the HMI while reloading external subprograms (EXTCALL) or executing from external drives) within the monitoring time set in MD10132 $MN_MMC_CMD_TIMEOUT.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check the connection to the HMI
- Increase MD10132 $MN_MMC_CMD_TIMEOUT.

Program Continuation: Clear alarm with the RESET key. Restart part program

14603
[Channel %1:] Block %2 timeout during execution from external source.

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
If a program is selected for execution from external source, it will be expected that the first part program line can be read from the reload buffer within 60s after part program start. Otherwise, part program processing will be aborted with alarm 14603 due to the assumption that the connection to the HMI or the external device is faulted.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Check the connection to the HMI and repeat selection of the program that is to be executed from external source.
Overview of Alarms

Program Continuation:
Clear alarm with the RESET key. Restart part program
- Acknowledge the alarm by pressing the RESET key
- Repeat program selection
- Start the part program

14610 [Channel %1:] Block %2 compensation block not possible

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
An alarm was output which could be eliminated basically via program correction. Since the error occurred in a program which is processed from external, a compensation block/program correction is not possible.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Abort program with reset.
- Correct program on HMI or PC.
- Restart reloading (possibly with block search and interrupt location).

Program Continuation:
Clear alarm with the RESET key. Restart part program

14615 [Channel %1:] An error occurred while handling the function 'syntax check': identifier %3

Parameters:
%1 = Channel number
%2 = Is not used
%3 = Error code

Definitions:
An error occurred while handling the function syntax check via the PI services _N_CHKSEL, _N_CHKRUN, _N_CHKABO and _N_SEL_BL. Parameter %3 describes the error situation more closely:
Value
1: An invalid line number was transferred with the PI service _N_SEL_BL
2: An invalid line number for the range end was transferred with the PI service _N_CHKRUN
3: PI service _N_CHKSEL was activated although a block selection (PI service _N_SEL_BL) was active for the selected program.

Reaction:
Alarm display.

Remedy:
Value
1: Supply PI service _N_SEL_BL with the correct line number
2: Supply PI service _N_CHKRUN with the correct line number for the range end
3: Ensure that the channel is in reset status before activating the PI service _N_CHKSEL.

Program Continuation:
Clear alarm with the Delete key or NC START.

14650 [Channel %1:] Block %2 SETINT instruction with invalid ASUP input

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Asynchronous subroutines (ASUBs) are subroutines that are executed following a hardware input (interrupt routine started by a rapid NCK input).
The NCK input number must lie between 1 and 8. It is assigned a priority from 1 to 128 (1 is the highest priority) in the SETINT instruction with the keyword PRIO = ...
Example:
If NCK input 5 changes to "1 signal", the subroutine ABHEB_Z should be started with the highest priority.
N100 SETINT (5) PRIO = 1 ABHEB_Z
Restriction for SW PLC2xx: The number of the NCK input must be 1 or 2.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program the NCK input of the SETINT statement with a value of not less than 1 or greater than 8.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14660 [Channel %1:] Block %2 SETINT instruction with invalid priority

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: The NCK input number must lie between 1 and 8. It is assigned a priority from 0 to 128 (1 is the highest priority) in the SETINT instruction with the keyword PRIO =

Example:
If NCK input 5 changes to "1-signal" the subroutine ABHEB_Z should be started with the highest priority.

N100 SETINT (5) PRIO = 1 ABHEB_Z

Restriction for SW PLC2xx: The number of the NCK input must be 1 or 2.

Reaction: Correction block is reorganized.

Interface signals are set.

Alarm display.

Remedy: Program the priority of the NCK input with a value of not less than 1 or greater than 128.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14700 [Channel %1:] Block %2 timeout during command to interpreter

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: A timeout has occurred in control-internal commands such as ANWAHL (part program selection),
 RESET (channel reset), REORG (reorganization of the preprocessing buffer) and NEWCONFIG
 (change in the configuration-specific machine data = restart).

Reaction: Interpreter stop

NC Start disable in this channel.

Interface signals are set.

Alarm display.

Remedy: Please inform the authorized personnel/service department.

If the runtime error occurred as the result of a temporary excessive load on the system (e.g. in the HMI area or in OEM application) error-free execution is possible on repeating the program or operator action.

Otherwise, the A&D MC system support should be contacted with a precise description of the error situation:

(contact SIEMENS AG, System Support for A&D MC products, Hotline (Tel.:see alarm 1000)

Program Continuation: Switch control OFF - ON.

14701 [Channel %1:] Block %2 number of available NC blocks reduced by %3

Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Number of non-available blocks

Definitions: After reset, it has been found that the number of available blocks has decreased compared with the
 last reset. This is due to a system error. Part program execution can be resumed after the alarm has
 been acknowledged. If the number of blocks no longer available is less than MD280060
 $MC_MM_IPO_BUFFER_SIZE, then the POWERON alarm 14700 is output.

Reaction: Interpreter stop

NC Start disable in this channel.

Interface signals are set.

Alarm display.

Remedy: Proceed as in the case of a system error.

Program Continuation: Clear alarm with the RESET key. Restart part program
14710 [Channel %1:] Block %2 error in initialization sequence in function %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Identifier of the function which caused the error

Definitions:
Initialization blocks are generated (or not) after control power-up, (program) RESET and (program) START, depending on the settings in machine data MD20110 $MC_RESET_MODE_MASK and MD20112 $MC_START_MODE_MASK.

Errors can occur because of incorrect machine data settings. The errors are output with the same error messages as would appear if the function had been incorrectly programmed in the part program. This alarm is also generated in order to indicate that an error relates to the initialization sequence.

Parameter %3 specifies which function triggers the alarm:
Control power-up and (program) RESET:
Value:
0: Error during synchronization preprocessing/main run
1: Error on selection of tool length compensation
2: Error on selection of transformation
3: Error on selection of work offset

The macro definitions and cycle interfaces are also read in during the power-up procedure. If an error occurs here, this is indicated by value = 4, or value = 5
6: Error creating 2 1/2 D protection zones during power up.
(Program) START:
Value
100: Error during synchronization preprocessing/main run
101: Error on selection of tool length compensation
102: Error on selection of transformation
103: Error on selection of synchronized spindle
104: Error on selection of work offset

Particularly when tool management is active, it is possible that a tool on the spindle or the toolholder is disabled but still needs to be activated.

These tools are automatically activated on RESET. On START, machine data MD22562 $MC_TOOL_CHANGE_ERROR_MODE can be used to specify whether an alarm is to be generated or an automatic bypass strategy selected.

If the parameter contains 3 values from 200 to 203, this means that an insufficient number of NC blocks is available for NC block preparation on certain commands (ASUB start, overstore selection, teach-in).

Remedy: Increase machine data MD28070 $MC_MM_NUM_BLOCKS_IN_PREP.

Reaction:
Interpreter stop
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
If parameter %3= 0 -3:
If the alarm or alarms occur on RESET:
Check the settings of machine data MD20110 $MC_RESET_MODE_MASK, MD20120 $MC_TOOL_RESET_VALUE, MD20121 $MC_TOOL_PRESEL_RESET_VALUE,
MD20122 $MC_TOOL_RESET_NAME (only if tool management is active),
MD20130 $MC_CUTTING_EDGE_RESET_VALUE, MD20132 $MC_SUMCORR_RESET_VALUE,
MD20126 $MC_TOOL_CARRIER_RESET_VALUE,
MD20150 $MC_GCODE_RESET_VALUES, MD20154 $MC_EXTERN_GCODE_RESET_VALUES,
MD20140 $MC_TRAFO_RESET_VALUE,
MD21330 $MC_COUPLE_RESET_MODE_1,
MD24002 $MC_CHBFMODE_RESET_MASK
If parameter %3= 100 - 104:
Check the setting of MD20112 $MC_START_MODE_MASK and the machine data specified under...
If tool management is active, if necessary remove the tool stated in the associated alarm from the toolholder/spindle and cancel the 'disabled' status.
If parameter %3= 4 or 5:
Check macro definitions in _N_DEF_DIR
Check cycle directories _N_CST_DIR and _N_CUS_DIR
If parameter %3= 6:
Alarm 18002 or 18003 was also issued. This alarm contains the number of the incorrectly defined protection zone and an identifier of what is incorrect about the protection zone. The system variables must be appropriately corrected.
If Parameter %3= 200 bis 203:
Increase MD28070 $MC_MM_NUM_BLOCKS_IN_PREP.

Program Continuation:
Clear alarm with the RESET key. Restart part program

14711
[Channel %1:] Transformation selection not possible as axis %2 not available
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
Definitions:
Based on the configuration of machine data MD20110 $MC_RESET_MODE_MASK and MD20140 $MC_TRAFO_RESET_VALUE, a transformation shall be selected by performing a reset or control ramp-up. However, this is not possible as axis %2 required for this is not available. Possible reason:
The axis was occupied by another channel or the PLC.
Reaction:
Interface signals are set.
Alarm display.
Remedy:
- Use the GET command to get axis %2 in the channel in which the transformation is to be selected.
- Select the transformation by means of the part program command.
Program Continuation:
Clear alarm with the RESET key. Restart part program

14720
[Channel %1:] Block %2 axes for centerless transformation not available
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
In the channel not all of the axes/spindles are available that have been defined in machine data for centerless grinding.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Please inform the authorized personnel/service department.
1. Modify part program.
2. Modify machine data:
 24110 TRAFO_AXES_IN_n
 21522 TRACLG_GRINDSPI_NR
 21524 TRACLG_CTRLSPI_NR.
Program Continuation:
Clear alarm with the RESET key. Restart part program
14730 [Channel %1:] Block %2 conflict at activation of centerless transformation
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: - Centerless transformation may not be activated when:
 - G96 is active and regulating spindle is also master spindle.
 - Regulating spindle is in interdependent grouping.
 - Axes of centerless transformation overlap with an active transformation and a tool is active.
 - For grinding or for regulating wheel spindle, tools are active that are not centerless tools (T1, T2).
 - Constant wheel peripheral speed for the regulating spindle is active.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Modify part program.
 - Check tool data.
 - Check machine data.
Program Continuation: Clear alarm with the RESET key. Restart part program

14740 [Channel %1:] Block %2 no tool data available for centerless grinding
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: For centerless grinding, the tool data must be contained in T1, D1 (grinding wheel) or T2,D1 (regulating wheel). An error has been found here.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Modify part program.
 - Check tool data.
 - Check machine data.
Program Continuation: Clear alarm with the RESET key. Restart part program

14745 [Channel %1:] Block %2 centerless grinding not active
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: An attempt has been made to switch off the centerless grinding function even though it was not active.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with the RESET key. Restart part program

14750 [Channel %1:] Block %2 too many auxiliary functions programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: More than 10 auxiliary functions have been programmed in an NC block.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Check whether all auxiliary functions are necessary in one block - modal functions need not be repeated. Create separate auxiliary function block or divide the auxiliary functions over several blocks.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14751 [Channel %1:] Block %2 resources for motion synchronous actions not sufficient (code: %3)

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Identifier

Definitions:
Processing of motion synchronous actions requires resources that are configured via the MD28060 $MC_MM_IPO_BUFFER_SIZE, MD28070 $MC_MM_NUM_BLOCKS_IN_PREP, MD28251 $MC_MM_NUM_SAFE_SYNC_ELEMENTS and MD28250 $MC_MM_NUM_SYNC_ELEMENTS. If these resources are insufficient for executing the part program, then this alarm is issued. Parameter %3 shows which resource has run out:
- Increase identifier <= 2: MD28060 $MC_MM_IPO_BUFFER_SIZE or MD28070 $MC_MM_NUM_BLOCKS_IN_PREP.
- Increase identifier > 2: MD28250 $MC_MM_NUM_SYNC_ELEMENTS, MD28251 $MC_MM_NUM_SAFE_SYNC_ELEMENTS.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct part program or increase resources.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14752 [Channel %1:] Block %2 DELDTG | STOPREOF conflict

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
In a block of motion synchronous actions referring to a motion block, both DELDTG (delete distance-to-go) and STOPREOF (preprocessing stop) have been programmed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
The functions DELDTG and STOPREOF exclude each other in a block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14753 [Channel %1:] Block %2 motion synchronous actions with illegal interpolation type

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The active interpolation type (e.g. 5-axis interpolation) is not allowed for the motion synchronous action or for the function "Several feeds".

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14754 [Channel %1:] Block %2 motion synchronous actions and wrong feed type

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The active feed type is not allowed for the motion synchronous action or for the function "Several feeds".

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14755 [Channel %1:] Block %2 motion synchronous actions without traverse motion

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The programmed motion synchronous action and the function "Several feeds" require a traversing motion or the value of the traversing motion is 0.
This alarm is no longer used after P3.2.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14756 [Channel %1:] Block %2 motion synchronous action and wrong value

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Value of the synchronous action or the function "Several feeds" is not allowed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program. Check whether a negative value was entered for a synchronous action.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14757 [Channel %1:] Block %2 motion synchronous action and wrong type

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Programmed combination between action and type of motion synchronous action is not allowed.
- RET allowed in technology cycle only
- Function "Several feeds" not allowed in technology cycle
- H and M function outputs not allowed with WHENEVER, FROM and DO
- MEASA / MEAWA / MEAC with WHENEVER, FROM and DO not allowed
- DELDTG and STOPREOF allowed only in blockwise synchronous action with WHEN and EVERY

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14758 [Channel %1:] Block %2 programmed value not available

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The synchronous variables $AA_LOAD, $AA_TORQUE, $AA_POWER and $AA_CURR are available only for the SIMODRIVE611D drive. They are activated by the machine data MDC 36730 $MA_DRIVE_SIGNAL_TRACKING. The system variable $VA_IS: Safe Actual Position is available only if the MD36901 $MA_SAFE_FUNCTION_ENABLE has been set and the option $ON_NUM_SAFE_AXES has been set to a sufficient size.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify program or machine data.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14759 [Channel %1:] Block %2 motion synchronous action and wrong axis type
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: When there are several feeds, a spark-out time, or a retraction stroke for path motions, at least one GEO axis must be programmed. If the block also contains synchronous axes and there are several feeds, the feedrate for the synchronous axes is matched implicitly. No retraction stroke takes place for synchronous axes. However, after retraction stroke or spark-out time, the distance-to-go is also deleted in the block for the synchronous axes.
 The alarm is no longer used on P3.2.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Program the axis as positioning axis with axial feed, return stroke or spark-out time.
Program Con-

14760 [Channel %1:] Block %2 auxiliary function of a group programmed repeatedly
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The M and H functions can be divided up as required over machine data in groups in any variation. Auxiliary functions are thus put into groups that mutually preclude several individual functions of one group. Within one group only one auxiliary function is advisable and permissible.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Please inform the authorized personnel/service department. Only program one help function per help function group. (For the group division, see the machine manufacturer's programming guide).
Program Con-

14761 [Channel %1:] Block %2 motion synchronous action: DELDTG function not allowed with active tool radius compensation
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Rapid delete distance-to-go for synchronous actions is not allowed with DELDTG when tool radius compensation is active.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Deactivate tool radius compensation before performing rapid delete distance-to-go and then reselect or as of SW 4.3: "Delete distance-to-go without preparation".
Program Con-

14762 [Channel %1:] Block %2 too many PLC variables programmed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The number of programmed PLC variables has exceeded the maximum permissible number. The number is set in MD 28150 $MC_MM_NUM_VDIVAR_ELEMENTS.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: Modify part program or machine data.
Overview of Alarms 03/2009

NCK alarms

Program Continuation: Clear alarm with the RESET key. Restart part program

14763 [Channel %1:] Block %2 too many link variables programmed

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: The number of NCU link variables programmed exceeds the maximum limit. The number is defined in MD28160 $MC_MM_NUM_LINKVAR_ELEMENTS.

Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.

Remedy: Modify part program or machine data.

Program Continuation: Clear alarm with the RESET key. Restart part program

14764 NCU link cannot transfer all link variables immediately

Definitions: Informational alarm for NC program developer.
 A value assignment to a link variable (e.g. $a_dld[16]=19) is performed in the main run and transferred via NCU link to all NCUs in the link network. The bandwidth of this connection restricts the number of value assignments which can be transferred in one interpolation cycle.
 All value assignments are combined in the next main run block and performed immediately this block is executed. A main run block is the block at which you would stop in single block mode SLB1.
 Examples: Blocks with a real traversing movement (G0 X100), Stopre, G4, WAITM, WAITE,
 The alarm occurs if the number of link variables set in any interpolation cycle exceeds the number that can be transferred. The link variables are not transferred until one of the next interpolation cycles. The assignment is not lost!

Reaction: Alarm display.
 Warning display.

Remedy: Insert main run blocks between the assignments if the program sequence allows. See also $A_LINK_TRANS_RATE.

Program Continuation: Clear alarm with the Delete key or NC START.

14765 NCU link cannot transfer all link variables

Definitions: A value assignment to a link variable (e.g. $a_dld[16]=19) is performed in the main run and transferred via NCU link to all NCUs in the link network. The bandwidth of this connection restricts the number of value assignments which can be transferred in one interpolation cycle. Assignment operations which are not transferred are stored in a buffer memory. This buffer is full!
 All value assignments are combined in the next main run block and performed immediately this block is executed.
 A main run block is the block at which you would stop in single block mode SLB1.
 Examples: Blocks with a real traversing movement (G0 X100), Stopre, G4, WAITM, WAITE,
 Link variable scanning operations are not affected (e.g.: R100= $a_dld[16])

Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.

Remedy: Insert main run blocks which require a sufficient number of interpolation cycles for execution (e.g. G4 F10) between the assignments. A block with an additional preprocessor stop does not improve the situation! See also $A_LINK_TRANS_RATE, for a variable which you can test before an assignment.

Program Continuation: Clear alarm with the RESET key. Restart part program
14766
NCU link is heavily loaded, impending memory shortage

Definitions:
Informational alarm for NC program developer.
The capacity of the NCU link is not large enough to transfer all the data. This non-cyclic data includes link variable assignments, machine data write operations, values for container switches and setting data write operations.
This type of data is buffered and is not lost. The buffer memory is now 70% full.

Reaction:
Alarm display.
Warning display.

Remedy:
The timing of cyclic data should not be distorted in the NC program.

Program Continuation:
Clear alarm with the Delete key or NC START.

14767
Machine data matching via NCU link not complete

Definitions:
A non-released option has been used in the block.

Reaction:
NC not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Change less setting or machine data at the same time.

Program Continuation:
Switch control OFF - ON.

14768
Axial auxiliary function for the NCU link cannot be output

Definitions:
Informational alarm for the part program developer.
An axial auxiliary function transmitted via an NCU link cannot be output as the transmission buffer for the PLC is filled up to 100%.

Reaction:
Alarm display.
Warning display.

Remedy:
In the part program, cyclic data - in this case the output of auxiliary functions for link axes on the interpolating NCU - should be separated with regard to the time.

Program Continuation:
Clear alarm with the Delete key or NC START.

14769
[Channel %1:] Block %2 Spindle %3 Implicit auxiliary function %4 Buffer full

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Spindle number
%4 = Auxiliary function number

Definitions:
A maximum of 5 auxiliary functions of type "M" may be entered in an NC block. The upper limit is the total of programmed and implicitly generated M auxiliary functions. Implicit auxiliary functions M19 and M70 are generated, if in MD35035 $MA_SPIND_FUNCTION_MASK, bit 19 has been set for M19 and/or bit 20 for M70. M19 is generated with SPOS and SPOSA depending on the configuration. The same applies to M70 and transition into axis operation. The address extension corresponds to the spindle number like it is output to the PLC.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Distribute the M auxiliary functions and spindle functions that implicitly generate M19 and M70 to several blocks.
- Deactivate any implicit auxiliary functions that are not required in MD35035 $MA_SPIND_FUNCTION_MASK, bit 19 and/or bit 20.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14770 [Channel %1:] Block %2 auxiliary function programmed incorrectly

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The permissible number of programmed auxiliary functions per NC block has been exceeded or more
than one auxiliary function of the same auxiliary function group has been programmed (M and S func-
tion).
In the user-defined auxiliary functions, the maximum number of auxiliary functions per group in the
NCK system settings has been defined for all auxiliary functions by means of the MD11100
$MN_AUXFU_MAXNUM_GROUP_ASSIGN (default: 1)
For each user-defined auxiliary function to be assigned to a group, the assignment is effected through
4 channel-specific machine data.
Return jump from asynchronous subprogram with M02/M17/M30, whereby the M code is not alone in
the block. This is impermissible if the asynchronous subprogram interrupts a block with WAITE,
WAITM or WAITMC. Remedy: Program M02/M17/M30 alone in the block or replace via RET.
22010 AUXFU_ASSIGN_TYPE: type of auxiliary function, e.g. M
22000 AUXFU_ASSIGN_GROUP: required group
22020 AUXFU_ASSIGN_EXTENSION: any required extension
22030 AUXFU_ASSIGN_VALUE: function value

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the part program - max. 16 auxiliary functions, max. 5 M functions per NC block, max. 1 aux-
iliary function per group.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14780 [Channel %1:] Block %2 unreleased option used (identification %3)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Fine ID

Definitions:
A non-released option has been used in the block.
Identifier Brief description
1 LaserCtrl option
2 ClearCtrl option
3 FeedAdapt option
4 AaTOff option
5 Tang option
6 LeadCtab option
7 ELG option
8 Trafo5 option
9 Traoem option
10 Transmit option
11 Tracon option
12 Tracyl option
13 Traaarg option
14 Oscill option
15 SynSpi option
16 Repos option
17 Spline option
18 Involute option
19 Poly option
20 Compress option
23 Masl option
24 ExtLang or ExtLanguage option not activated
25 TechCycle option
26 Liftfast option
NCK alarms

27 ProgAccel option
33 AllAsupSynact option
34 CmdAxSpind option
35 Mea2 option
36 ProgAnaOut option
37 OptAaTOff option
41 MachineMaintenance option
42 PathFeedSAInput option
45 ElecTransfer option
46 Cut3D option
47 CDA option
48 Reserved: generic coupling option
49 Measuring cycles option
50 ForceControl option

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program, retrofit option.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14782 [Channel %1:] Block %2 non-active function used (identification %3)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Fine ID

Definitions:
A non-active function is used in the block
Brief description of the identification
1 Transformation
2 H number of the tool

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: - Modify part program.
- Activate function.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14783 [Channel %1:] Block %2 coordinate system-specific working area limitation is not active

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
An attempt is made in the block to activate a group of the coordinate system-specific working area limitation.
However, this group is not set up (see MD28600 $MC_MM_NUM_WORKAREA_CS_GROUPS).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
The NC program is stopped. The G code of the group WALCS01 - WALCS10 can be changed.

Remedy: - Modify part program.
- Activate more coordinate system-specific working area limitations.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14790 [Channel %1:] Block %2 axis %3 programmed by PLC

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis

Definitions:
In the NC block, an axis has been programmed that is already being traversed by the PLC.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: - Modify part program, do not use this axis.
 - Stop traversing motion of the axis by the PLC, modify part program (insert WAITP).

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14800 [Channel %1:] Block %2 programmed path speed less or equal to zero

Parameters: %1 = Channel number
 %2 = Block number, label

Definitions: Zero or a negative F or FZ value has been programmed in conjunction with the G functions G93, G94, G95 or G96. The path velocity may be programmed in the range of 0.001 to 999 999.999 [mm/min, mm/rev, mm/tooth, deg/min, deg/rev] for the metric input system and 0.000 1 to 39 999.999 9 [inch/min, inch/rev, inch/tooth] for the inch input system.

Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.

Remedy: Program the path velocity (geometric sum of the velocity components of the geometry axes involved) within the limits given above.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14810 [Channel %1:] Block %2 negative axis speed programmed for positioning axis %3

Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Axis

Definitions: A negative feed (FA value) has been programmed for the displayed axis presently operating as a positioning axis. The positioning velocity may be programmed in the range 0.001 to 999 999.999 [mm/min, deg/min] for the metric input system and 0.000 1 to 39 999.999 9 [inch/min, inch/rev] for the inch input system.

Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.

Remedy: Program the positioning velocity within the limits given above.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14811 [Channel %1:] Block %2 incorrect value range for acceleration of axis/spindle %3

Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Axis, spindle

Definitions: A value outside of the permissible input range of the programmed acceleration has been used. Values of between 1 and 200 % are possible.

Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.

Remedy: Adjust the value range in accordance with the Programming Guide. Values of 1 ... 200% are allowed.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14812 [Channel %1:] Block %2 SOFTA not available for axis %3

Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Axis

Definitions: SOFT is to be set as type of motion control for an axis. This is not possible because a bent acceleration characteristic has been selected for this axis via machine data.

Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.

Remedy: Modify part program or machine data.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14815 [Channel %1:] Block %2 negative thread pitch change programmed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: A negative thread pitch change has been programmed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Correct the value assignment. The programmed F value should be greater than zero. Zero is allowed but has no effect.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14820 [Channel %1:] Block %2 negative value for maximum spindle speed programmed with constant cutting speed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: For the function "Constant cutting speed G96" a maximum spindle speed can be programmed with the keyword LIMS=.... The values are in the range 0.1 - 999 999.9 [rev/min].

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Program the maximum spindle speed for the constant cutting speed within the limits given above. The keyword LIMS is modal and can either be placed in front of or within the block that selects the constant cutting speed.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14821 [Channel %1:] Block %2 error in selection or deselection of GWPS

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: On selecting GWPS programming (constant grinding wheel surface speed) with GWPSON, one of the following errors occurred:
- An attempt has been made to select the GWPS programming for a spindle that has already been assigned to another tool by TMON, GWPSON, CLGON or activation of the tool length compensation.
- An attempt has been made to select a tool which has not been defined.
- An attempt has been made to select an edge (implicitly) which has not been defined (implicit selection: D1 of a tool, if no tool has been specified.)
- Selection does not refer to a grinding-specific tool (400-499).
- An attempt has been made to select GWPS for the active tool, although the TLC is not switched on.
- Selection refers to an invalid spindle number.
- A grinding wheel radius equal to zero has been specified.

On deselecting GWPS programming with GWPSOFF, one of the following errors occurred:
- Deselection does not refer to a grinding-specific tool (400-499).
- An attempt has been made to deselect GWPS for the active tool, although the tool length compensation has not been activated.
- Deselection refers to an invalid spindle number.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: - Check GWPSON and GWPSOF command.
- Check tool compensation data:
 $TC_DP1 : 400 - 499;
 $TC_TGP1: Spindle number.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14822 [Channel %1:] Block %2 incorrect programming of GWPS

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When selecting GWPS (constant grinding wheel peripheral speed) with GWPSON or programming
the GWPS with "S[spindle number] = value" one of the following errors has occurred:
Invalid spindle number.
Invalid parameter number for radius calculation in $TC_TPG9.
The following values are valid:
3 for $TC_DP3 (length 1)
4 for $TC_DP4 (length 2)
5 for $TC_DP5 (length 3)
6 for $TC_DP6 (radius)
Invalid angle in $TC_TPG8.
The following values are valid: -90 <= $TC_TPG8 < +90.
A grinding wheel radius equal to zero was specified.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Check tool compensation data.
- $TC_DP1 : 400 - 499.
- $TC_TPG1: Spindle number.
- $TC_TPG8: Inclination angle for slope grinding wheel.
- $TC_TPG9: Compensation parameters for radius computation, e.g. 3 for $TC_GP3.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14823 [Channel %1:] Block %2 error on selection or deselection of tool
monitoring

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
On selecting tool monitoring with TMON, one of the following errors occurred:
- Selection does not refer to a grinding-specific tool (400-499).
- Selection refers to an invalid spindle number.
- An attempt has been made to select tool monitoring for a spindle that is already assigned to another
tool by TMON, GWPSON, CLGON or activation of tool length compensation.
- An attempt has been made to select a tool that has not been defined.
- An attempt has been made to select an edge (implicitly) that has not been defined. (Implicit selec-
tion: D1 of a tool, if no edge has been specified.)
- An attempt has been made to select tool monitoring for the active tool, although no tool length com-
 pensation has been activated.
- Invalid parameter number for radius calculation in $TC_TPG9.
The following values are valid:
3 for $TC_DP3 (length 1)
4 for $TC_DP4 (length 2)
5 for $TC_DP5 (length 3)
6 for $TC_DP6 (radius)
A grinding wheel radius equal to zero has been specified.
On deselecting tool monitoring with TMOF, one of the following errors occurred:
- Deselection does not refer to a grinding-specific tool (400-499).
- An attempt has been made to deselect tool monitoring for the active tool, although tool length com-
 pensation is not active.
- Deselection refers to an invalid spindle number.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Check TMON and TMOF command.
Check tool compensation data.
- $TC_DP1 : 400 - 499.
- $TC_TPG1: Spindle number.
- $TC_TPG8: Inclination angle for slope grinding wheel.
- $TC_TPG9: Parameter number for radius computation, e.g. 3 for $TC_GP3.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14824 [Channel %1:] Block %2 conflict with GWPS
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The functions of constant grinding wheel surface speed GWPS and constant cutting speed G96 S...
have been activated at the same time for a spindle.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14830 [Channel %1:] Block %2 wrong feed type selected
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: G97 has been programmed in the displayed block although G96 was not (or G97 already) active previously.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Remove G97 from the displayed block and program the correct feed type (G93, G94, G95 or G96) for
the machining section which follows.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14840 [Channel %1:] Block %2 incorrect value range for constant cutting speed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The programmed cutting speed is not within the input range
Input range metric: 0.01 to 9 999.99 [m/min]
Input range inch: 0.1 to 99 999.99 [inch/min]
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Program cutting speed under address S within the permissible range of values.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

14850 [Channel %1:] Block %2 changing the reference axis for a constant cutting speed not allowed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The attempt was made via the SCC[AX] instruction to change the reference axis for a constant cutting speed.
This is not allowed if the indicated axis is no geometry axis.
Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy: Please inform authorized personnel/service.
When programming SCC[AX] indicate a geometry axis known in the channel.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
14860 [Channel %1] Block %2 Selection of the tool cutting rate not allowed.
Cause %3
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Cause of the error
Definitions:
Selection of the cutting rate SVC is not permissible in the current state
Causes of the problem: the following function is active.
1: Constant cutting rate G96, G961 or G962 active
2: SPOS/SPOSA/M19 (spindle positioning mode) active
3: M70/axis mode active
4: SUG active
Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy:
Activate the speed control mode for the spindle prior to programming SVC, for example with M3, M4
or M5.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14861 [Channel %1] Block %2 SVC programmed, but no tool offset active
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Cutting velocity SVC programmed in the block, but no tool offset active.
Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy:
Select an appropriate tool prior to the SVC instruction.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14862 [Channel %1] Block %2 SVC has been programmed, but the radius of the
active tool correction is zero
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
A cutting velocity SVC has been programmed in the block, but the radius of the active tool offset is
zero.
The radius of the active tool offset consists of the offset parameters $TC_DP6, $TC_DP12,
$TC_SCPx6 and $TC_ECPx6.
Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy:
Select an appropriate tool offset with a positive tool radius prior to the SVC instruction.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14863 [Channel %1] Block %2 The programmed SVC value is zero or negative
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The programmed value for the cutting velocity SVC is zero or negative.
Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
Remedy:
Program an SVC value larger than zero.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
14900 [Channel %1:] Block %2 center point and end point programmed simultaneously

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When programming a circle by means of the opening angle, the circle center point was programmed together with the circle end point. This is too much information for the circle. Only one of the two points is allowed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Select the programming variant guaranteeing that the dimensions are definitely taken over from the workpiece drawing (avoidance of calculation errors).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14910 [Channel %1:] Block %2 invalid angle of aperture for programmed circle

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When programming a circle by means of the opening angle, a negative opening angle or an opening angle greater than or equal to 360 degrees has been programmed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program opening angle within the allowed range of values between 0.0001 and 359.9999 [degrees].

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

14920 [Channel %1:] Block %2 intermediate point of circle incorrect

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
When programming a circle by means of an intermediate point (CIP) all 3 points (initial, end and intermediate points) are on a straight line and the intermediate point (programmed by means of interpolation parameters I, J, K) is not located between the initial and end points.
If the circle is the component of a helix, the specified number of turns (keyword TURN=...) determines further block processing:
- TURN>0: alarm display because the circle radius is infinitely great.
- TURN=0 and CIP specified between initial and end points. A straight line is generated between the initial and end points (without alarm message).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Locate the position of the intermediate point with the parameters I, J and K in such a way that it actually is located between the initial and end points of the circle or do not make use of this type of circle programming and instead program the circle with radius or opening angle or center point parameters.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

15000 [Channel %1:] Block %2 channel-sync command using illegal marker

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A WAITM/WAITMC/SETM/CLEARM instruction was programmed with a marker number of less than 1 or greater than the maximum number of markers.
Exception: CLEARM(0) is allowed and clears all markers in the channel.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the instruction accordingly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
15010 [Channel %1:] Block %2 program coordination instruction with invalid channel number

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A WAITM, WAITMC,INIT or START instruction was programmed with an invalid channel number.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the instruction accordingly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

15020 Channel %1 block %2 CHANDATA instruction cannot be executed. Channel %3 is not active

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = String (CHANDATA parameter)

Definitions:
With a CHANDATA instruction, the data input for a channel is selected that has not been activated. For structural reasons, the input of multi-channel data must take place twice.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
- Activate the channel concerned by means of machine data or option data or
- Delete the CHANDATA instruction and all following assignments to channel data. This error message occurs regularly when first reading in an INITIAL Init block with which a multi-channel system is to be installed. In this case:
1. NCK Restart must be executed in order to activate the global machine data already input for the installation of the other channels.
2. Input of the INITIAL Init block must be repeated.

Program Continuation:
Switch control OFF - ON.

15021 [Channel %1:] Block %2 CHANDATA instruction with invalid channel number

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A CHANDATA instruction is used to enter data for an illegal channel, e. g. <1,> maximum number of channels, not the active channel.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program CHANDATA instruction in accordance with the actual configuration.

Program Continuation:
Clear alarm with the RESET key. Restart part program.
15025 **CHANDATA(%2): channel is not active. Channel data will be ignored.**

Parameters:
- %1 = Channel number
- %2 = CHANDATA parameter

Definitions:
With a CHANDATA instruction, the data input for a channel is selected that has not been activated.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
This is an informational alarm referring to the fact that the file loaded into the NCK contains data of an inactive channel. The number of the inactive channel is specified. Subsequently, the data of this channel are not available in the NCK.

The alarm may have two causes:
1. The channel is supposed to be activated by a following NCK RESET/POWER ON, i.e. the file must subsequently be reloaded. If the alarm occurs again, the reason is: (2) the specified channel is actually not supposed to be activated, however, the file contains the relevant data.

For the 2nd reason, please check whether the system has correctly not activated the channel mentioned.

If the channel has been activated, operation may be continued after another NCK RESET/POWER ON without further measures, i.e. reloading the file is not required. If the channel has not been activated, make sure that the channel inactivated by mistake is re-activated.

If the settings of the channel activation are part of the file to be loaded (e.g. archive file), the file must either be modified with the relevant program or the file has to be created once more in the same system with the correct channel number.

Similar alarms: 15020, 15021.

Program Continuation:
Switch control OFF - ON.

15030 **[Channel %1:] Block %2 different measurement system settings**

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The INCH or METRIC instruction describes the system of measurement in which the data blocks have been read from the control. In order to prevent the incorrect interpretation of data intended for a particular system of measurement, a data block is only accepted if the above instruction matches the active system of measurement.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Change the system of measurement or load a data block which matches the system of measurement.

Program Continuation:
Clear alarm with the RESET key. Restart part program

15100 **[Channel %1:] Block %2 REORG abort caused by log file overflow**

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
In order to synchronize the preprocessing run and the main run with REORG, the control accesses modification data which are maintained in a logfile. The alarm indicates that no more capacity is available in the logfile for the specified block in the channel.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:
Please inform the authorized personnel/service department. No remedial measures are available for the further execution of the current part program, however:
1. Reduce log file size requirement by:
 - Reducing the distance between the preprocessing and the main run via appropriate preprocessing stops STOPPRE.
2. Increase the size of the logfile by means of the channel-specific machine data:
 - Modify MD28000 $MC_MM_REORG_LOG_FILE_MEM and
 - Modify MD 28010 $MC_MM_NUM_REORG_LUD_MODULES

Program Continuation:
Clear alarm with the RESET key. Restart part program
15110 [Channel %1:] Block %2 REORG not possible
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: In order to synchronize the preprocessing run and the main run with REORG, the control accesses modification data which are maintained in a logfile. The alarm indicates that no more capacity is available in the logfile for the specified block in the channel.
 The alarm message means that the logfile has been deleted in order to obtain additional memory for program reorganization. Consequently, it is no longer possible to REORG the preprocessing memory up to the next coincidence point.
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. No remedial measures are available for the further execution of the current part program, however:
 1. Reduce log file size requirement by:
 Reducing the distance between the preprocessing and the main run via appropriate preprocessing stops (STOPRE).
 2. Increase the size of the logfile by means of the channel-specific machine data:
 Modify MD28000 $MC_MM_REORG_LOG_FILE_MEM and
 Modify MD MD28010 $MC_MM_NUM_REORG_LUD_MODULES
Program Con-
continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

15120 If a power failure occurs now, the last data changed will be lost;
 index/buffer size = %1
Parameters: %1 = Index/buffer size
Definitions: Notification alarm. The alarm has no negative impact on the current machining.
 One of the system-internal data buffers, in which the last changed, buffered data are stored, has overflowed because the current data change rate is too high.
 The alarm warns that a spontaneous power failure in this situation (mains fault, disconnect the system from the power supply) would cause a loss of the immediately previously changed buffered data (tool data, parts programs, R parameters, GUDs,...)
 If the system is operated in an environment in which a power failure cannot occur, then the output of this alarm can be prevented via machine data MD18232 $MN_MM_ACTFILESYS_LOG_FILE_MEM[index] = 0.
 For information, parameter %1 specifies the index of the machine data, and the buffer size set there.
Reaction: Alarm display.
Remedy: If the alarm is present only sporadically, it can simply be regarded as a notification.
 The regular control behavior is not affected.
 If one does not want to or cannot eliminate the cause, then the alarm can be suppressed by setting MD11415 $MN_SUPPRESS_ALARM_MASK_2; Bit3=1 ("H8").
 If the alarm is permanently present, please inform the authorized personnel/service department.
 The value of MD18232 $MN_MM_ACTFILESYS_LOG_FILE_MEM[index] will then have to be increased.
Program Con-
continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
15122 Power ON after power failure: %1 data were restored, of which %2 machine data, %3 errors.

Parameters:
%1 = Number of data
%2 = Number of machine data
%3 = Number of errors occurred

Definitions:
Notification alarm. The alarm has no negative effect as long as %3 the number of errors occurred is zero.
%1 indicates the number of elementary and complex data restoring steps which were taken after a power OFF during power ON or during a power failure to restore the persistent NCK data.
%2 indicates the number of restored machine data. If the value is larger than zero, another warm restart (NCK reset) may be necessary to make the - possibly configuring - machine data changes prior to the power failure effective.
%3 indicates the number of errors occurred during data restoring.

Reaction:
Alarm display.

Remedy:
As long as %3 number of errors occurred is zero, the alarm is only informative.
Further machining with the data is not recommended.
Please load a suitable archive file before continuing machining to avoid subsequent problems.
Please inform the authorized personnel/service department.
File /_N_MPF_DIR/_N_SIEMDISTAGMEMPF_MPF contains information that may help Siemens for error diagnosis.

Program Continuation:
Clear alarm with the RESET key. Restart part program

15150 [Channel %1:] Block %2 reload from external aborted

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Execution from external was aborted because the reload buffer does not have enough machine function blocks (traversing blocks, auxiliary function, dwell time etc.). Background: When already executed machine function blocks are released, memory becomes available in the reload buffer. If machine function blocks are no longer released, nothing can be reloaded - this results in a deadlock situation.
Example: Definition of extremely long curve tables via execution from external.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Insert machine function blocks in the part program.
- Increase the size of the reload buffer (MD18360 $MN_MM_EXT_PROG_BUFFER_SIZE).
- Decrease the size of the curve table (Note: Blocks within CTABDEF/CTABEND are not machine function blocks).

Program Continuation:
Clear alarm with the RESET key. Restart part program

15160 [Channel %1:] Block %2 wrong preprocessing configuration

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
A block element is required, but the block element memory is empty.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Modify the block search configuration in MD28060 $MC_MM_IPO_BUFFER_SIZE (decrease size of IPO buffer if necessary) or MD28070 $MC_MM_NUM_BLOCKS_IN_PREP.

Program Continuation:
Clear alarm with the RESET key. Restart part program
15165 [Channel %1:] Block %2 error when translating or interpreting Asup %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = String

Definitions:
At part program start and at start of an ASUB under Reset condition, the relevant data of all the ASUBs that can be activated at that time are processed:
- PLC ASUBs
- With MD20108 $MC_PROG_EVENT_MASK configured event-controlled program calls
- ASUB after block search (MD11450 $MN_SEARCH_RUN_MODE bit 1=1)
- Editable system ASUB ($MN_ASUP_EDITABLE)

If an error occurs (converter or interpreter), alarm 15165 will be output first and then a converter or interpreter alarm that describes more details of the error. Alarm 15165 will cause an interpreter stop. A compensation block will not be possible.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program

15166 [Channel %1:] User system asup _N_ASUP_SPF not available

Parameters:
%1 = Channel number

Definitions:
By means of the MD11610 $MN_ASUP_EDITABLE the function "User-defined system asup" has been activated. However, the relevant user program could not be found in the specified search path:
- 1. /_N_CUS_DIR/ N_ASUP_SPF
- 2. /_N_CMA_DIR/ N_ASUP_SPF

The default system asups are used.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Load the user-defined system asup in /_N_CUS_DIR/ N_ASUP_SPF or /_N_CMA_DIR/ N_ASUP_SPF laden.

Program Continuation:
Clear alarm with the RESET key. Restart part program

15170 [Channel %1:] Block %2 program %3 could not be compiled

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = String

Definitions:
An error has occurred in compile mode. The (compiler) error message refers to the program specified here.

Reaction:
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with the Delete key or NC START.

15171 [Channel %1:] Block %2 compiled program %3 older than the relevant subroutine

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Compiled program file name

Definitions:
When calling a precompiled subroutine, it was noticed that the compiled program is older than the relevant SPF file. The compiled program was deleted and during start the subroutine is executed instead of the compiled program.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Perform another precompilation.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
15172 [Channel %1:] Block %2 subroutine %3. No interface available at time of preprocessing.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Subroutine name

Definitions: In compilation mode no program interface of the subroutine to be called was available at the time of pre-compilation.

Reaction: Interpreter stop
Interface signals are set.
Alarm display.

Remedy: Modify parts program or recreate program interfaces and pre-compile programs again.

Program Continuation: Clear alarm with the RESET key. Restart part program

15173 [Channel %1:] Block %2 variable %3 was unknown at the time of preprocessing.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Variable

Definitions: At the time of program precompilation, variable %3 was not known to the control.

Reaction: Interpreter stop
Interface signals are set.
Alarm display.

Remedy: Correct the part program or introduce the variable at the time of precompilation, i.e. activate the new GUD variable prior to precompilation. Then restart precompilation.

Program Continuation: Clear alarm with the RESET key. Restart part program

15175 [Channel %1:] Block %2 program %3. Interfaces could not be built

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = String

Definitions: An error has occurred in interface generation mode. The (compiler) error message refers to the program specified here. In particular when loading new cycle program on the NCK, problems can occur if the value settings in MD18170 $MN_MM_NUM_MAX_FUNC_NAMES and MD18180 $MN_MM_NUM_MAX_FUNC_PARAM are too small.

Reaction: Alarm display.

Remedy: - Modify part program.
- If new cycle programs have been loaded on the NCK, you will normally need to increase the values of MD18170 $MN_MM_NUM_MAX_FUNC_NAMES and MD18180 $MN_MM_NUM_MAX_FUNC_PARAM. See also the explanations for alarm 6010.

Program Continuation: Clear alarm with the Delete key or NC START.

15176 [Channel %1:] Block %2 Program%3 may only be executed after Power ON

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = File name

Definitions: If an encrypted program is loaded to the NCK, an NCK reset (restart) must be performed afterwards, because internal data for efficient processing of the encrypted program are preprocessed during NCK power-up. On calling an encrypted NC program it has now been detected that these data do not exist or are obsolete compared to the current version of the encrypted NC program.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Perform an NCK reset (restart).
Overview of Alarms

NCK alarms

Program Continuation: Clear alarm with the RESET key. Restart part program

15177 [Channel %1:] Block %2 Error on preprocessing of program %3, error code: %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = File name
%4 = Error code

Definitions: If an encrypted program is loaded to the NCK, an NCK reset (restart) must be performed afterwards, because internal data for efficient processing of the encrypted program are preprocessed during NCK power-up. The following problem has occurred:
Error code 1: Error on read-in of program %4
Error code 2: There is not enough DRAM memory available for storing the preprocessed data.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Error code 1: Encrypt and load program %4 again. Then perform an NCK reset (restart).
Error code 2: Increase system SL 710-740, 802D, 828D: $MN_MM_T_FILE_MEM_SIZE.
Increase system SL 840 DI: $MN_MM_DRAM_FILE_MEM_SIZE.
Then perform an NCK reset (restart).

Program Continuation: Clear alarm with the RESET key. Restart part program

15180 [Channel %1:] Block %2: Error on editing program %3 as INI/DEF file.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = String

Definitions: Errors were found when processing an initialization program (INI file), or a GUD or macro definition file (DEF file).
The error message which is then displayed refers to the program specified here.

Reaction: Alarm display.

Remedy: Correct the initialization program (INI file), or the GUD or macro definition file (DEF file).
In connection with Alarm 12380 or 12460, also change the memory configuration.

Program Continuation: Clear alarm with the Delete key or NC START.

15185 [Channel %1:] %2 errors in INI file

Parameters:
%1 = Channel number
%2 = Number of detected errors

Definitions: Errors were found when processing initialization program _N_INITIAL_INI.
This alarm will also be output, if errors are found during editing of _N_INITIAL_INI in the GUD definition files or if errors are found on ramp-up in the macro definition files.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Correct the INI or DEF file or correct the MD and create a new INI file (via "Upload").

Program Continuation: Switch control OFF - ON.
15186 [Channel %1:] %2 errors in GUD, macro or INI file
Parameters: %1 = Channel number
%2 = Number of detected errors
Definitions: %2 errors were found when processing GUD/macro definition files (DEF files) or initialization files (INI files).
Alarm 15180 has already informed about the corresponding file.
Prior to that the errors shown were reported by error-specific alarms, e.g. 12080 "syntax error".
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Modify definition file or initialization file
Program Continuation: Clear alarm with the RESET key. Restart part program

15187 [Channel %1:] Error during execution of PROGEVENT file %3.
Parameters: %1 = Channel number
%2 = Is not used
%3 = PROGEVENT file name
Definitions: An error has occurred on executing PROGEVENT.
With alarm 15187, the name of the program that was started as PROGEVENT is displayed. Alarm 15187 is displayed together with the alarm that describes the error cause. Alarm 15187 is also output when the alarm occurs in a subroutine started from PROGEVENT.
Reaction: Interface signals are set.
Alarm display.
Remedy: Correct the PROGEVENT file (subroutine).
Program Continuation: Clear alarm with the Delete key or NC START.

15188 [Channel %1:] Error during execution of ASUB file %3.
Parameters: %1 = Channel number
%2 = Is not used
%3 = ASUB file name
Definitions: An error has occurred on executing an ASUB.
Alarm 15188 displays the name of the program that was started as ASUB. Alarm 15188 is output together with the alarm that describes the error cause. Alarm 15188 is also output when the alarm occurs in a subroutine started from the ASUB.
Reaction: Interface signals are set.
Alarm display.
Remedy: Correct the ASUB file (subroutine).
Program Continuation: Clear alarm with the Delete key or NC START.

15190 [Channel %1:] Block %2 not enough free memory for subroutine call
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The following deadlock has been found in the interpreter: Memory is needed for calling a subroutine.
The module memory is, however, empty and there is no prospect of module memory becoming free again by executing the preprocessing/main run queue, because this queue is empty.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Increase machine data MD28010 $MC_MM_NUM_REORG_LUD_MODULES / MD28040 $MC_MM_LUD_VALUES_MEM / MD18210 $MN_MM_USER_MEM_DYNAMIC or program a preprocessing stop STOPRE before calling the subroutine.
15300 \[\text{Channel} \ %1:\ \text{Block} \ %2\ \text{invalid number-of-passed-blocks during block search}\]

Parameters:
- \%1 = Channel number
- \%2 = Block number, label

Definitions:
In the function "Block search with calculation" a negative number of passes has been entered in column P (number of passes). The permissible range of values is P 1 - P 9 999.

Reaction:
Alarm display.

Remedy:
Enter only positive number of passes within the range of values.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

15310 \[\text{Channel} \ %1:\ \text{Block} \ %2\ \text{file requested during block search is not available}\]

Parameters:
- \%1 = Channel number
- \%2 = Block number, label

Definitions:
During block search, a target has been specified with a program that has not been loaded.

Reaction:
Alarm display.

Remedy:
Correct the specified search target accordingly or reload the file.

Program Continuation:
Clear alarm with the Delete key or NC START.

15320 \[\text{Channel} \ %1:\ \text{Block} \ %2\ \text{invalid block search command}\]

Parameters:
- \%1 = Channel number
- \%2 = Block number, label

Definitions:
The block search command (type of search target) is smaller than 1 or greater than 5. It is entered in column type of the block search window. The following block search orders are allowed.

<table>
<thead>
<tr>
<th>Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Search for block number</td>
</tr>
<tr>
<td>2</td>
<td>Search for label</td>
</tr>
<tr>
<td>3</td>
<td>Search for string</td>
</tr>
<tr>
<td>4</td>
<td>Search for program name</td>
</tr>
<tr>
<td>5</td>
<td>Search for line number in a file</td>
</tr>
</tbody>
</table>

Reaction:
Alarm display.

Remedy:
Modify the block search command.

Program Continuation:
Clear alarm with the Delete key or NC START.

15330 \[\text{Channel} \ %1:\ \text{Block} \ %2\ \text{invalid block number as search target}\]

Parameters:
- \%1 = Channel number
- \%2 = Block number, label

Definitions:
Syntax error! Positive integers are allowed as block numbers. Block numbers must be preceded by ":" and subblocks by an "N".

Reaction:
Alarm display.

Remedy:
Repeat the input with corrected block number.

Program Continuation:
Clear alarm with the Delete key or NC START.

15340 \[\text{Channel} \ %1:\ \text{Block} \ %2\ \text{invalid label as search target}\]

Parameters:
- \%1 = Channel number
- \%2 = Block number, label

Definitions:
Syntax error! A label must have at least 2 but no more than 32 characters, and the first two characters must be alphabetic or underscore characters. Labels must be concluded with a colon.

Reaction:
Alarm display.

Remedy:
Repeat the input with corrected label.

Program Continuation:
Clear alarm with the Delete key or NC START.
15350 [Channel %1:] Block %2 search target not found
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The specified program has been searched to the end of the program without the selected search target having been found.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check the part program, change the block search (typing error in the part program) and restart the search.
Program Continuation: Clear alarm with the RESET key. Restart part program.

15360 [Channel %1:] Illegal target of block search (syntax error)
Parameters: %1 = Channel number
Definitions: The specified search target (block number, label or string) is not allowed in block search.
Reaction: Alarm display.
Remedy: Correct target of block search.
Program Continuation: Clear alarm with the Delete key or NC START.

15370 [Channel %1:] Target of block search not found
Parameters: %1 = Channel number
Definitions: In a block search, an impermissible search target has been specified (e.g. negative block number).
Reaction: Alarm display.
Remedy: Check the specified block number, label or character string. Repeat entry with correct search target.
Program Continuation: Clear alarm with the Delete key or NC START.

15380 [Channel %1:] Block %2 illegal incremental programming in axis %3
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Axis
Definitions: The first axis programming after "search to block end point" is performed incrementally. This is not allowed in the following situations:
 - After searching the target a transformation change has taken place.
 - A frame with rotation component is active. The programmed axis is involved in the rotation.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Find search destination in which the axes are programmed using an absolute reference.
 Deactivate adding of the accumulated search position with SD42444
 $SC_TARGET_BLOCK_INCR_PROG = FALSE.
 Use search run with calculation "at contour".
Program Continuation: Clear alarm with the RESET key. Restart part program

15390 [Channel %1:] Block %2 %3 not executed during block search
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Source symbol
Definitions: During block search, commands for switching, deleting and defining of the electronic gear are not executed and not gathered but simply skipped.
Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Set the desired gear status via asynchronous subprogram.
Program Continuation: Clear alarm with the Delete key or NC START.

15395 [Channel %1:] Master-slave not executable during block search

Parameters: %1 = Channel number

Definitions: A master-slave coupling is to be closed in the part program via the instruction MASLON. The position offset $P_SEARCH_MASLD, however, cannot be correctly calculated during block search, as the axes to be coupled are located in different channels.

Reaction: Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy: Make sure that all relevant axes are in the same channel.

Program Continuation: Clear alarm with the RESET key. Restart part program.

15400 [Channel %1:] Block %2 selected initial INIT block does not exist

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The operator has selected an INI block for a read, write or execution function which:
1. Does not exist in the NCK range or
2. Does not have the necessary protection level required for performing the function.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Check whether the selected INI block is contained in the file system of the NCK. The present protection level must be selected to be at least equal to (or greater than) the protection level that has been defined for the read, write or execution function at the time of creating the file.

Program Continuation: Clear alarm with the RESET key. Restart part program.

15410 [Channel %1:] Block %2 initialization file contains invalid M function

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The only M function allowed in an Init block is the M02, M17 or M30 end-of-program function.

Reaction: Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy: Remove all M functions from the Init block except for the end identifier.
- An Init block may contain value assignments only (and global data definitions if they are not defined again in a program that can be executed later) but no motion or synchronous actions.

Program Continuation: Clear alarm with the RESET key. Restart part program.
15420 [Channel %1:] Block %2 instruction in current mode not allowed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The alarm is output in the following situation:
The interpreter has detected an illegal instruction (e.g. a motion command) while processing an INI file or a definition file (macro or GUD). In a GUD file, the access security for a machine data is to be changed with REDEF, although an ACCESS file (_N_SACCESS_DEF, _N_MACCESS_DEF, _N_UACCESS_DEF) is available. Access rights for machine data can only be changed then via one of the ACCESS files with REDEF.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Correct the INI, GUD or macro file.
- Correct part program.
Program Continuation: Clear alarm with the RESET key. Restart part program

15450 [Channel %1:] Block %2 compiled program cannot be stored
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In the compile mode, a compiled program could not be stored. One of the following reasons applies:
- Not enough memory
- Intermediate code line (compile) too large
Reaction: Alarm display.
Remedy: Create space in work memory or modify part program (make it less complex).
Program Continuation: Clear alarm with the Delete key or NC START.

15460 [Channel %1:] Block %2 syntax error when locking
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The addresses programmed in the block are not compatible with the modal syntax-determining G function.
Example: N100 G01 ... I .. J.. K.. LF
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Correct the displayed block and ensure that the G functions and addresses in the block are in agreement.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

15500 [Channel %1:] Block %2 illegal angle of shear
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The function CSHEAR has been called with an illegal (impossible) angle of shear, e.g. when the sum of angles between the axis vectors is greater than 360 degrees.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Program the angle of shear in accordance with the geometrical conditions of the machine and work-piece system.
Program Continuation: Clear alarm with the RESET key. Restart part program
15700 [Channel %1:] Block %2 illegal cycle alarm number %3
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Cycle alarm number
Definitions: A SETAL command has been programmed with a cycle alarm number smaller than 60 000 or greater
 than 67 999.
 Alarm reaction of Siemens standard cycles:
 Nos. 61 000 - 61 999: Interpreter stop; delete with Reset
 Nos. 62 000 - 62 999: Compensation block; delete with NC Start
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Program alarm number in the SETAL instruction in the correct range.
Program Continuation: Clear alarm with the RESET key. Restart part program

15800 [Channel %1:] Block %2 wrong starting conditions for CONTPRON/CONDCON
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: There is an error in the start conditions for CONTPRON/CONDCON:
 - G40 not active
 - SPLINE or POLY active
 - Unknown machining type programmed
 - Transferred machining direction not defined
 - Definition of LUDs in incorrect subroutine level
 - Transferred circle coordinates
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with the RESET key. Restart part program

15810 [Channel %1:] Block %2 wrong array dimension for CONTPRON/CONDCON
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The number of columns for the array created for CONTPRON/CONDCON does not conform to the
current programming guide.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with the RESET key. Restart part program

15900 [Channel %1:] Block %2 touch probe not allowed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Measure with deletion of distance-to-go
 In the part program, an illegal probe has been programmed with the command MEAS (measure with
deletion of distance-to-go). The probe numbers
 0 ... no probe
 1 ... probe 1
 2 ... probe 2
 are allowed, whether the probe is actually connected or not.
Example:
N10 MEAS=2 G01 X100 Y200 Z300 F1000
Probe 2 with deletion of distance-to-go

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Include a probe number within the limits given above in the keyword MEAS=... This must correspond to the hardware connection of the probe.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

15910
[Channel %1:] Block %2 touch probe not allowed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Measure without deletion of distance-to-go
In the part program, an illegal probe has been programmed with the command MEAW (measure without distance-to-go). The probe numbers
0 ... no probe
1 ... probe 1
2 ... probe 2
are allowed, whether the probe is actually connected or not.

Example:
N10 MEAW=2 G01 X100 Y200 Z300 F1000
Probe 2 without deletion of distance-to-go

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Include a probe number within the limits given above in the keyword MEAW=... This must correspond to the hardware connection of the probe.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

15950
[Channel %1:] Block %2 no traverse motion programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Measure with deletion of distance-to-go
In the part program, no axis or a traversing path of zero has been programmed with the command MEAS (measure with deletion of distance-to-go).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the part program and add the axis address or the traversing path to the measurements block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

15960
[Channel %1:] Block %2 no traverse motion programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Measure without deletion of distance-to-go
In the part program, no axis or a traversing path of zero has been programmed with the command MEAW (measure without deletion of distance-to-go).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the part program and add the axis address or the traversing path to the measurements block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
16000 [Channel %1:] Block %2 invalid value for lifting direction
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
During the “rapid lift from contour” (keyword: LIFTFAST), a code value for the lifting direction (keyword: ALF=...) which lies outside the permissible range (permissible value range: 0 to 8) was programmed.
With active cutter radius compensation:
Code numbers 2, 3 and 4 cannot be used in G41
Code numbers 6, 7 and 8 cannot be used in G42 because they code the direction to the contour.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Program the lifting direction under ALF=... within the permissible limits.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16005 [Channel %1:] Block %2 invalid value for lifting distance
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Mistake in programming: the value for the lifting path must not be negative.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Modify part program.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16010 [Channel %1:] Block %2 machining stop after lift fast
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
LIFTFAST without interrupt routine (Asup) has been programmed. The channel is stopped after the lift motion has been carried out.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
After the channel stop, the axes must be retracted manually in JOG and the program aborted with Reset.
Program Continuation:
Clear alarm with the RESET key. Restart part program

16015 [Channel %1:] Block %2 wrong axis identifier %3
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name
Definitions:
Axis names from different coordinate systems were used to program axes for LIFTFAST. The retraction movement is no longer clear.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Use axis names from one coordinate system.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
16016 [Channel %1:] Block %2 no retraction position programmed for axis %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name

Definitions: The retraction enable was programmed for LIFTFAST without defining a retraction position for the axis. The retraction movement is no longer clear.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Program a retraction position for the relevant axis.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16017 Channel %1 Axis %2 Identifier %3, LIFTFAST ignores this axis, current axis not capable of retraction

Parameters:
- %1 = Channel
- %2 = Axis, spindle
- %3 = Identifier

Definitions: LIFTFAST cannot be applied to the axis.
Alarm can be suppressed via MD11415 $MN_SUPPRESS_ALARM_MASK_2 bit 11.
Identifier (parameter 3) is bit-coded and displays some possible causes for the alarm:
- 0x01 Axis is in another channel
- 0x02 Axis is in spindle mode (e.g. SPOS)
- 0x04 Axis is PLC axis
- 0x08 Axis is oscillating axis
- 0x10 Axis is neutral axis
- 0x20 Axis is coupled slave axis
- 0x40 Axis is in static synchronized action

Overview of reactions of common programming to LIFTFAST:

<table>
<thead>
<tr>
<th>Axis</th>
<th>Synact</th>
<th>Reaction to LIFTFAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td></td>
<td>STOP + LIFTFAST</td>
</tr>
<tr>
<td>POS</td>
<td></td>
<td>STOP + LIFTFAST</td>
</tr>
<tr>
<td>POS</td>
<td>non-modal</td>
<td>STOP + LIFTFAST</td>
</tr>
<tr>
<td>POS</td>
<td>modal</td>
<td>STOP + LIFTFAST</td>
</tr>
<tr>
<td>POS</td>
<td>stati.</td>
<td>RUN + SHOWALARM 16017</td>
</tr>
<tr>
<td>POSA</td>
<td></td>
<td>STOP + LIFTFAST</td>
</tr>
<tr>
<td>MOV</td>
<td>non-modal</td>
<td>STOP + LIFTFAST</td>
</tr>
<tr>
<td>MOV</td>
<td>modal</td>
<td>STOP + LIFTFAST</td>
</tr>
<tr>
<td>MOV</td>
<td>stati.</td>
<td>RUN + SHOWALARM 16017</td>
</tr>
<tr>
<td>PLC</td>
<td></td>
<td>RUN + SHOWALARM 16017</td>
</tr>
<tr>
<td>Oscill.</td>
<td></td>
<td>RUN + SHOWALARM 16017</td>
</tr>
<tr>
<td>SPOS</td>
<td>non-modal</td>
<td>STOP + SHOWALARM 16017</td>
</tr>
<tr>
<td>SPOS</td>
<td>modal</td>
<td>STOP + SHOWALARM 16017</td>
</tr>
<tr>
<td>SPOS</td>
<td>stati.</td>
<td>RUN + SHOWALARM 16017</td>
</tr>
<tr>
<td>SPOSA</td>
<td></td>
<td>STOP + SHOWALARM 16017</td>
</tr>
</tbody>
</table>

Reaction: Alarm display.

Remedy: Remove axis from POLFMLIN or POLFMASK.
Alarm can be suppressed via MD11415 $MN_SUPPRESS_ALARM_MASK_2 bit 11.
At the time of LIFTFAST, an axis for LIFTFAST is programmed, but the status of the axis does not allow LIFTFAST (e.g. oscillating axis or spindle), or the axis is not in the channel. LIFTFAST should only be applied to those axes that are capable of retracting at that time; POLFMASK or POLFMLIN should be adapted accordingly.

Program Continuation: Clear alarm with the Delete key or NC START.
16020 [Channel %1:] Repositioning in block %2 is not possible
Parameters:
 %1 = Channel number
 %2 = Block number, label
Definitions:
 Programming or operator action incorrect:
 Repositioning via REPOS command is only possible in an asynchronous subprogram (interrupt routine).
 If the REPOS command was programmed, e.g. in the main program or in a cycle, part program execution is aborted with alarm 16020.
 In addition, the alarm is output in the following situations:
 - Access to $AC_RETPOINT (repositioning point) outside an ASUP (e.g. in the main program)
 - An axis to be repositioned was an oscillating axis with synchronous infeed (OSCILL) in the interrupted block and is now in a state that does not allow it to be traversed as an oscillating axis. Remedy: Change the axis to "neutral axis" state before repositioning.
 - An axis to be repositioned was an infeed axis for a oscillating axis in the interrupted block; now it can no longer be traversed as one. Remedy: Change the axis back to "POS axis" state before repositioning.
Reaction:
 Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy:
 Modify the part program if necessary.
Program Continuation:
 Clear alarm with the RESET key. Restart part program

16025 [Channel %1:] Block %2 impermissible axis exchange in REPOS command by axis %3.
Parameters:
 %1 = Channel number
 %2 = Block number, label
 %3 = Axis identifier
Definitions:
 With the REPOS command, an axis or spindle was programmed that was in the NEUTRAL state at that time. As the REPOS command cannot execute any implicit GET, these axes/spindles cannot be repositioned. Part program editing is therefore aborted.
Reaction:
 Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy:
 Assign the axes/spindles that are to be repositioned to the channel via GET command prior to the REPOS command.
 Example:
 GET(A); assign the A axis to the channel
 REPOSL A; reposition the geometry axes and A axis
Program Continuation:
 Clear alarm with the RESET key. Restart part program

16100 [Channel %1:] Block %2 spindle %3 not available in the channel
Parameters:
 %1 = Channel number
 %2 = Block number, label
 %3 = String
Definitions:
 Incorrect programming:
 This channel does not recognize the spindle number.
 The alarm can occur together with a dwell or a spindle function.
Reaction:
 Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy:
 Please inform the authorized personnel/service department.
 Check the part program to determine whether the programmed spindle number is correct and whether the program is run in the correct channel.
 Check MD35000 $MA_SPIND_ASSIGN_TO_MACHAX for all machine axes to see whether one of them contains the programmed spindle number. This machine axis number must be entered in a channel axis of the machine data MD20070 $MC_AXCONF_MACHAX_USED.
NCK alarms

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16105 [Channel %1:] Block %2 spindle %3 cannot be assigned
Parameters: %1 = Channel number
%2 = Block number, label
%3 = String
Definitions: Mistake in programming: The programmed spindle is not assigned a real spindle by the spindle number converter. The alarm can be issued after improper use of SD42800 $SC_SPIND_ASSIGN_TAB[].
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Correct setting data or modify part program.
Program Continuation: Clear alarm with the RESET key. Restart part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16110 [Channel %1:] Block %2 spindle %3 for dwell time not in control mode
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis, spindle
Definitions: The spindle can be in the positioning mode, oscillating mode and control mode. With the M command M70 it can be changed from a spindle to an axis. The control mode is divided into the speed-controlled and position-controlled mode, and it is possible to alternate between these with the keywords SPCON and SPCOF.
Positioning mode:
Position control (spindle position under SPOS/SPOSA)
Oscillating mode:
Speed control (M41 - M45 or M40 and S...)
Control mode:
Speed control (spindle speed under S..., M3/M4/M5)
Position control (SPCON/SPCOF, spindle speed under S..., M3/M4/M5)
Axis mode:
Position control (M70/M3, M4, M5, axis position under user-selectable axis name)
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Check part program for correct spindle number.
With M3, M4 or M5 put the required spindle into control mode before calling the dwell time.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16111 [Channel %1:] Block %2 spindle %3 No speed programmed
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Spindle
Definitions: Programming of a speed is expected.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Program speed with S[spindle number]=...
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16112 [Channel %1:] Block %2 following spindle %3 Impermssible programming
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Spindle
Definitions: With synchronous spindle-VV-coupling an additional motion for the following spindle can only be pro-
grammed with M3, M4, M5 and S... The paths created by specified positions cannot be maintained
safely for a velocity coupling, especially if a position control is missing. If dimensional accuracy or
reproducibility are not important, the alarm can be suppressed with MD11410
$MN_SUPPRESS_ALARM_MASK Bit27 = 1.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Use synchronous spindle-DV-coupling or program direction of rotation and speed.

Program Con-
tinuation: Clear alarm with NC START or RESET key and continue the program.

16120 [Channel %1:] Block %2 invalid index for tool fine compensation

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Mistake in programming: The 2nd parameter in the PUTFTOC command indicates for which tool
parameter the value is to be corrected (1 - 3 tool lengths, 4 tool radius). The programmed value is
beyond the permitted range.
Permissible values are 1 - 4 if on-line tool radius compensation is allowed (see MD20254
$MC_ONLINE_CUTCOM_ENABLE); otherwise values 1 - 3.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program: Length 1 - 3 or 4 permissible for radius.

Program Con-
tinuation: Clear alarm with NC START or RESET key and continue the program.

16130 [Channel %1:] Block %2 command not allowed with FTOCON

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: - Case 1: A plane change is not allowed if the modal G function FTOCON: “fine tool compensation” is
active.
- Case 2: Transformation selection is allowed only for zero transformation or transformation inclined
axis, Transmit or Tracyl if FTOCON is active.
- Case 3: Tool change is not allowed with M06 if FTOCON has been active since the last tool change.
- Case 4: Orientable tool holder is active.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program: Deselect fine tool compensation with FTOCOF.

Program Con-
tinuation: Clear alarm with NC START or RESET key and continue the program.

16140 [Channel %1:] Block %2 FTOCON not allowed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The tool fine compensation (FTOC) is not compatible with the currently active transformation.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program: Deselect fine tool compensation with FTOCOF.

Program Con-
tinuation: Clear alarm with NC START or RESET key and continue the program.

16150 [Channel %1:] Block %2 invalid spindle number with PUTFTOCF

Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The spindle number programmed for PUTFTOC or PUTFTOCF is beyond the permitted range for the spindle numbers.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program. Is the programmed spindle number available?

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16200 [Channel %1:] Block %2 spline and polynomial interpolation not available

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The spline and polynomial interpolation are options that are not contained in the basic version of the control.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Do not program spline and polynomial interpolation, or retrofit the necessary option.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16300 [Channel %1:] Block %2 denominator polynomial with zero places within parameter range not allowed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The programmed denominator polynomial (with PL [] = ..., i.e. without specification of geometry axis) has a zero place within the defined parameter range (PL = ...). This means that the quotient of the numerator polynomial and the denominator polynomial is infinite or indeterminate.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify the polynomial block so that there is no zero place within the polynomial length in the denominator polynomial.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16400 [Channel %1:] Block %2 positioning axis %3 cannot participate in spline

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: An axis assigned to a spline grouping (n) with SPLINEPATH (n, AX1, AX2, ...) has been programmed as positioning axis with POS or POSA.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Do not assign the positioning axis to the spline grouping.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16410 [Channel %1:] Block %2 axis %3 is not a geometry axis

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: A geometry axis has been programmed that cannot be imaged on any machine axis in the current transformation (possibly there is no transformation active at the moment).
Example: Without transformation: Polar coordinate system with X, Z, and C axis With transformation: Cartesian coordinate system with X, Y, and Z, e.g. with TRANSMIT.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Activate transformation type with TRAORI (n) or do not program geometry axes that do not participate in the transformation grouping.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16420 [Channel %1:] Block %2 axis %3 programmed repeatedly
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: It is not allowed to program an axis more than once.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Delete the axis addresses that have been programmed more than once.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16421 [Channel %1:] Block %2 angle %3 programmed repeatedly in the block
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Angle

Definitions: It is not allowed to program more than one PHI or PSI angle for an orientation vector in the same block.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16422 [Channel %1:] Block %2 angle %3 programmed repeatedly in the block
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Angle

Definitions: It is not allowed to program more than one rotation angle THETA for the orientation in one block. The angle of rotation can either be programmed explicitly with THETA or by programing with Euler angles or RPY angles.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16423 [Channel %1:] Block %2 angle %3 programmed repeatedly in the block
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Angle

Definitions: It is not allowed to program more than one polynomial for the orientation rotation angle with PO[THT] in one block.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
NCK alarms

Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16424 [Channel %1:] Block %2 coordinate %3 programmed repeatedly in the block

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Coordinate

Definitions: It is not allowed to program a coordinate of the 2nd contact point of the tool for description of the tool orientation several times in one block.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16430 [Channel %1:] Block %2 geometry axis %3 cannot traverse as positioning axis in rotated coordinate system

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: In the rotated coordinate system, traversing of a geometry axis as positioning axis (i.e. along its axis vector in the rotated coordinate system) would mean traversing of several machine axes. This is in conflict with the positioning axis concept, however, in which one axis interpolator runs in addition to the path interpolator!

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Traverse geometry axes as positioning axes only with rotation deactivated.
Deactivate rotation:
Keyword ROT without further specification of axis and angle.
Example: N100 ROT

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16440 [Channel %1:] Block %2 rotation programmed for non-existent geometry axis

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: A rotation of a geometry axis which does not exist was programmed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16500 [Channel %1:] Block %2 chamfer or rounding negative

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: A negative chamfer or rounding has been programmed under the keywords CHF= ..., RND=... or RNDM=...

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Values for chamfers, roundings and modal roundings must be programmed with positive values only.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
16510 [Channel %1:] Block %2 no facing axis for diameter programming available

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Diameter programming has been activated although no transverse axis with diameter programming has been applied.
Transverse axes can be applied with MD20100 $MC_DIAMETER_AX_DEF or MD30460 $MA_BASE_FUNCTION_MASK bit2 for diameter programming.
Diameter programming can be applied through:
- basic position DIAMON or DIAM90 of the G 29 group during booting
- programming of DIAMON or DIAM90
- programming of DIAMONA[AX], DIAM90A[AX] or DAC, DIC, RAC, RIC

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
When programming DIAMON/DIAM90, a traverse axis must be configured via MD20100 $MC_DIAMETER_AX_DEF.
When programming DIAMONA[AX], DIAM90A[AX] or DAC, DIC, RAC, RIC, the AX axis must be a transverse axis for diameter programming configured via MD30460 $MA_BASE_FUNCTION_MASK bit2.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16520 [Channel %1:] Axis %2, diameter programming active, function %3 is not executed

Parameters:
%1 = Channel
%2 = Axis, spindle
%3 = NC function

Definitions:
The function is not executed with diameter programming active for the stated axis.
The following functions may be affected:
1 - Axis exchange
2 - Axis container rotation

Reaction:
Interpreter stop
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Disable diameter programming of the axis before activating the function.

Program Continuation:
Clear alarm with the RESET key. Restart part program

16600 [Channel %1:] Block %2 spindle %3 gear stage change not possible

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Spindle number

Definitions:
The programmed speed is outside the speed range of the set gear stage. In order to execute the programmed speed, the gear stage must be changed. In order to be able to execute the automatic gear stage change (M40 is active), the spindle must be in speed control operation.
The alarm will no longer be output after having set bit 30 (0x40000000) in MD11410 $MN_SUPPRESS_ALARM_MASK. However, the function will not be affected by this.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
The changeover to speed control operation is performed by programming M3, M4 or M5. The M functions can be written together with the S word in the same block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
16670
[Channel %1:] Block %2 following axis/spindle %3 maximum number of CP modules (%4) has been exceeded

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Max. number of CP modules

Definitions:
An attempt was made to activate more generic couplings than are configured in MD18450 $MN_MM_NUM_CP_MODULES.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Reduce the number of defined or active couplings, or increase the number of coupling modules configured in MD18450 $MN_MM_NUM_CP_MODULES.
If necessary, buy another option stage of the generic coupling.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16671
[Channel %1:] Block %2 following axis/spindle %3 maximum number of CP modules (%4) has been exceeded

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Max. number of CP modules

Definitions:
An attempt was made to activate more generic couplings than are configured in MD18450 $MN_MM_NUM_CP_MODULES.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Reduce the number of defined or active couplings, or increase the number of coupling modules configured in MD18450 $MN_MM_NUM_CP_MODULES.
If necessary, buy another option stage of the generic coupling.

Program Continuation:
Clear alarm with the RESET key in all channels. Restart part program.

16672
[Channel %1:] Block %2 leading axis/spindle %3 maximum number of CP master values (%4) exceeded

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Max. number of CP master values

Definitions:
An attempt was made to activate more master values of generic couplings than are configured in MD18452 $MN_MM_NUM_CP_MODUL_LEAD.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Reduce the number of defined or active master values, or increase the total number of master values configured in MD18452 $MN_MM_NUM_CP_MODUL_LEAD.
If necessary, buy another option stage of the generic coupling.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
16673 [Channel %1:] Block %2 leading axis/spindle %3 maximum number of CP master values (%4) exceeded

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Max. number of CP master values

Definitions:
An attempt was made to activate more master values of generic couplings than are configured in MD18452 $MN_MM_NUM_CP_MODUL_LEAD.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Reduce the number of defined or active master values, or increase the total number of master values configured in MD18452 $MN_MM_NUM_CP_MODUL_LEAD.
If necessary, buy another option stage of the generic coupling.

Program Continuation:
Clear alarm with the RESET key in all channels. Restart part program.

16675 Channel %1 block %2 following axis/spindle %3 coupling module already defined in channel %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis/spindle
%4 = Channel number

Definitions:
An attempt was made to define or activate a CP coupling, although a coupling had already been defined or activated on this following axis/spindle in another channel.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Change the part program: A CP coupling module must not be simultaneously defined in multiple channels for the same following axis/spindle.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

16678 [Channel %1:] Block %2 following axis/spindle %3 status %4 impermissible traversing instruction

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Status

Definitions:
An additional traversing in the following axis/spindle is not permitted in the current status of the generic coupling.
Example: CPOF=X G0 X100 is not permitted.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.
A motion in the following axis/spindle can be programmed with CPFPOS, CPON or CPOF

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16680 [Channel %1:] Block %2 following axis/spindle %4 instruction %3 programmed repeatedly

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = CP instruction
%4 = Axis name, spindle number
Definitions: The stated instruction has been programmed repeatedly in the block for the same following axis/spindle of a generic coupling.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16681 [Channel %1:] Block %2 following axis/spindle %3 CPFPOS not permitted (reason %4)

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Reason

Definitions: CPFPOS must not be declared for a following axis/spindle of a generic coupling in the current status. The reasons for this may be:
- Reason 1: The coupling does not completely switch off, at least one leading axis/spindle remains active in the coupling.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: The following remedies are available for the reasons stated below:
- Reason 1: Only declare CPFPOS when switching off the coupling, if it is completely closed.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16682 [Channel %1:] Block %2 following axis/spindle %3 instructions %4 are not possible.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = CP instruction

Definitions: The stated instructions are not permitted together in one block for a following axis/spindle of a generic coupling.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
16684 [Channel %1:] Block %2 following axis/spindle %3 instructions %4 are not possible separately.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = CP instructions

Definitions:
The stated instructions are only permitted together in one block for a following axis/spindle of a generic coupling.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16685 [Channel %1:] Block %2 following axis/spindle %3 instructions %4 are not possible separately.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = CP instructions

Definitions:
The stated instructions are only permitted together in one block for a following axis/spindle of a generic coupling.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

16686 [Channel %1:] Block %2 following axis/spindle %3 type of coupling/instruction %4 is not possible.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = CP instructions

Definitions:
The stated instruction is not permitted for the stated type of generic coupling.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16687 [Channel %1:] Block %2 following axis/spindle %3 type of coupling/instruction %4 is not possible.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = CP instructions

Definitions:
The stated instruction is not permitted for the stated type of generic coupling.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
16688 [Channel %1:] Block %2 following axis/spindle %3 coupling type %4 maximum number of master values exceeded

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Coupling type

Definitions: The maximum number of master values has been exceeded for the stated type of generic coupling.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program, reduce number of master values or use a different type of coupling.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16689 [Channel %1:] Block %2 following axis/spindle %3 coupling type %4 maximum number of master values exceeded

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Coupling type

Definitions: The maximum number of master values has been exceeded for the stated type of generic coupling.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Modify part program, reduce number of master values or use a different type of coupling.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16690 [Channel %1:] Block %2 following axis/spindle %3 changing the reference system %4 is not possible.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Reference system

Definitions: An attempt was made to change the reference system with generic coupling active.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.
End coupling and reactivate with desired reference system.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16691 [Channel %1:] Block %2 following axis/spindle %3 changing the reference system %4 is not possible.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Reference system

Definitions: An attempt was made to change the reference system with generic coupling active.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Modify part program.
End coupling and reactivate with desired reference system.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
16692 [Channel %1:] Block %2 following axis/spindle %3 maximum number of couplings in the block %4 has been exceeded

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Maximum number of couplings

Definitions: The maximum number of generic couplings in the block has been exceeded.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.
Reduce the number of generic couplings programmed in the block.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16694 [Channel %1:] Block %2 following axis/spindle %3 status/instruction %4 is not possible.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Status, instruction

Definitions: The stated instruction is not permitted for the current status of the generic coupling.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16695 [Channel %1:] Block %2 following axis/spindle %3 status/instruction %4 is not possible.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Status, instruction

Definitions: The stated instruction is not permitted for the current status of the generic coupling.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16696 [Channel %1:] Block %2 following axis/spindle %3 coupling has not been defined.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: An instruction to an undefined coupling is to be executed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.
Define the coupling and activate, if necessary, before the instruction.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
16697 [Channel %1:] Block %2 following axis/spindle %3 coupling has not been defined.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: An instruction to an undefined coupling is to be executed.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Modify part programm.
Define the coupling and activate, if necessary, before the instruction.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16698 [Channel %1:] Block %2 following axis/spindle %3 leading axis/spindle %4 has not been defined.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Axis name, spindle number

Definitions: An instruction to an undefined leading axis/spindle of a coupling is to be executed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part programm.
Define the leading axis/spindle and activate, if necessary, before the instruction.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16699 [Channel %1:] Block %2 following axis/spindle %3 leading axis/spindle %4 has not been defined.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Axis name, spindle number

Definitions: An instruction to an undefined leading axis/spindle of a coupling is to be executed.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Modify part programm.
Define the leading axis/spindle and activate, if necessary, before the instruction.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16700 [Channel %1:] Block %2 axis %3 invalid feed type

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: In a thread cutting function, the feed has been programmed in a unit that is impermissible.
G33 (thread with constant lead) and the feed have not been programmed with G94 or G95.
G33 (thread with constant lead) is active (modal) and G63 is programmed additionally in a following block. (Conflict situation! G63 is in the 2nd G group, G33, G331 and G332 are in the 1st G group).
G331 or G332 (rigid tapping) and the feed have not been programmed with G94.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Use only the feed type G94 or G95 in the thread cutting functions.
After G33 and before G63, deselect the thread cutting function with G01.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16710 [Channel %1:] Block %2 axis %3 master spindle not programmed
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: A master spindle function has been programmed (G33, G331, G95, G96) but the speed or the direction of rotation of the master spindle is missing.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Add S value or direction of rotation for the master spindle in the displayed block.
Program Continuation: Clear alarm with the RESET key. Restart part program

16715 [Channel %1:] Block %2 axis %3 spindle not in standstill
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Spindle number
Definitions: In the applied function (G74, reference point approach), the spindle must be stationary.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Program M5 or SPOS/SPOSA in front of the defective block in the part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16720 [Channel %1:] Block %2 axis %3 thread pitch is zero
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: No pitch was programmed in a thread block with G33 (thread with constant pitch) or G331 (rigid tapping).
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: The thread pitch must be programmed for the specified geometry axis under the associated interpolation parameters.
X -> I
Y -> J
Z -> K
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16730 [Channel %1:] Block %2 axis %3 wrong parameter
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions:
In G33 (tapping with constant pitch) the pitch parameter was not assigned to the axis that determines the velocity.
For longitudinal and face threads, the thread pitch for the specified geometry axis must be programmed under the associated interpolation parameter.
X -> I
Y -> J
Z -> K
For taper threads, the address I, J, K depends on the axis with the longer path (thread length). A 2nd lead for the other axis is, however, not specified.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Assign lead parameters to the axis that determines the velocity.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16740 [Channel %1:] Block %2 no geometry axis programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
No geometry axis was programmed for tapping (G33) or for rigid tapping (G331, G332). The geometry axis is, however, essential if an interpolation parameter has been specified.
Example:
N100 G33 Z400 K2 ; thread pitch 2mm, thread end Z=400 mm
N200 SPOS=0 ; position spindle in axis mode
N201 G90 G331 Z-50 K-2 ; tapping to Z=-50, counterclockwise
N202 G332 Z5 ; retraction, direction reversal automatic
N203 S500 M03 ; spindle again in spindle mode

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Specify geometry axis and corresponding interpolation parameters.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16746 [Channel %1:] Block %2 spindle %3 selected gear stage %4 not installed

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Spindle number
%4 = Gear stage

Definitions:
The first gear stage data block is active. The required gear stage is not installed in the 1st gear stage data block. The number of gear stages installed is configured in MD35090 $MA_NUM_GEAR_STEPS.
Examples of the occurrence of the alarm with 3 three gear stages installed (MD 35090 $MA_NUM_GEAR_STEPS = 3):
* ... M44 or M45 has been programmed for the spindle concerned
* ...M70 has been programmed and MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE is larger than 3.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program: Only those valid gear stages can be entered which have also been installed according to MD35090 $MA_NUM_GEAR_STEPS.
Limit M70 configuration (MD 35014 $MA_GEAR_STEP_USED_IN_AXISMODE) to MD35090 $MA_NUM_GEAR_STEPS.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
16747 [Channel %1:] Block %2 spindle %3 inserted gear stage %4 for tapping not installed

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Spindle number
%4 = Gear stage

Definitions:
The second gear stage data block has been activated for tapping with G331. However, the current gear stage has not been installed in the second gear stage data block. The number of gear stages installed is configured in MD35092 $MA_NUM_GEAR_STEPS2. The gear stage cannot be changed in traversing blocks. The gear stage appropriate for the speed must be loaded before the traversing block.

Reaction:
Correction block is reorganized.
Alarm display.

Remedy:
Procedure for automatically engaging the suitable gear stage prior to thread cutting:
* Program the spindle speed (S) in a G331 block without axis motions and prior to thread cutting, e.g. G331 S1000.
* Activate M40 for the spindle.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16748 [Channel %1:] Block %2 spindle %3 gear stage %4 expected

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Spindle number
%4 = Gear stage

Definitions:
G331 activates the second gear stage data block for tapping. The programmed speed (S) of the master spindle lies outside the speed range of the active gear stage in the current traversing block. The gear stage cannot be changed in the traversing block. The gear stage appropriate for the speed must be loaded prior to the traversing block.

Reaction:
Correction block is reorganized.
Alarm display.

Remedy:
Procedure for automatically engaging the suitable gear stage prior to thread cutting:
* Program the spindle speed (S) in a G331 block without axis motions and prior to thread cutting, e.g. G331 S1000.
* Activate M40 for the spindle.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16750 [Channel %1:] Block %2 axis %3 SPCON not programmed

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
For the programmed function (rotary axis, positioning axis), the spindle must be in position control mode.

Reaction:
Correction block is reorganized.
Alarm display.

Remedy:
Program position control of the spindle with SPCON in the previous block.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16751 [Channel %1:] Block %2 spindle/axis %3 SPCOF not executable

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: For the programmed function, the spindle must be in the open-loop control mode. In the positioning or axis mode, the position control must not be deselected.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Put the spindle into open-loop control mode in the preceding block. This can be done with M3, M4 or M5 for the relevant spindle.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16755 [Channel %1:] Block %2 no stop required
Parameters: %1 = Channel number
%2 = Block number, label

Definitions: No Stop is needed for the programmed function. A Stop is necessary after SPOSA or after M5 if the next block is to be loaded only after a spindle stop.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Do not write instruction.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16757 [Channel %1:] Block %2 for following spindle %3 coupling as leading spindle/axis already existing
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Following spindle number

Definitions: A coupling has been switched on in which the following spindle/axis has already been active as leading spindle/axis in another coupling. Chained couplings cannot be processed.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Check in the parts program whether the following spindle/axis is already active as leading spindle/axis in another coupling.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16758 [Channel %1:] Block %2 for leading spindle %3 coupling as following spindle/axis already existing
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Leading spindle number

Definitions: A coupling has been switched on in which the leading spindle/axis has already been active as following spindle/axis in another coupling. Chained couplings cannot be processed.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Check in the parts program whether the leading spindle/axis is already active as following spindle/axis in another coupling.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16760 [Channel %1:] Block %2 axis %3 S value missing
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: No spindle speed has been given for rigid tapping (G331 or G332).

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.
Overview of Alarms 03/2009

NCK alarms

Remedy: Program the spindle speed under address S in [rpm] (in spite of axis mode); the direction of rotation is given by the sign of the spindle lead:
- Positive thread pitch: Rotational direction as M03.
- Negative thread pitch: Rotational direction as M04 N2.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16761 [Channel %1:] Block %2 axis/spindle %3 not programmable in the channel
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: Mistake in programming: The axis/spindle cannot be programmed in the channel at this time. This alarm can occur when the axis/spindle is being used by another channel or by the PLC.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program. Use "GET()".
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16762 [Channel %1:] Block %2 spindle %3 thread function is active
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Spindle number
Definitions: Incorrect programming: the spindle function can currently not be executed. This alarm occurs when the spindle (master spindle) is linked with the axes by an interpolation function.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program. Deselect thread cutting or tapping.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16763 [Channel %1:] Block %2 axis %3 programmed speed is illegal (zero or negative)
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: A spindle speed (S value) was programmed with the value zero or with a negative value.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: The programmed spindle speed (S value) must be positive. Depending on the application case, the value zero can be accepted (e.g. G25 SD).
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16770 [Channel %1:] Block %2 axis %3 no measuring system available
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: One of the following spindle functions has been programmed, the position control requires:
SPCON,
SPOS, SPOSA,
COUPON,
G331/G332.
The position control requires at least one measuring system.
No measuring system has been configured in MD30200 $MA_NUM_ENCS of the programmed spindle.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Retrofit a measuring system.

Program Continuation:
16771 [Channel %1:] Block %3 following axis %2 overlaid movement not enabled

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label

Definitions: No gear synchronization and no overlay movement can be executed because this is not enabled at the VDI interface.

Reaction: Alarm display.

Remedy: Set the NC/PLC interface signal DB31, ... DBX26.4 (enable following axis overlay).

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

16772 [Channel %1:] Block %2 axis %3 is the slave axis, the coupling is being opened

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis, spindle

Definitions: The axis is active as a slave axis in a coupling. In the REF operation mode, the coupling is opened.
The alarm can be suppressed by means of MD11410 $MN_SUPPRESS_ALARM_MASK Bit29 = 1.

Reaction: Alarm display.

Remedy: The coupling will be closed again after having exited the REF operation mode.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

16773 [Channel %1:] Axis %2 is the following axis. The axis/spindle disables of leading axes %3 and %4 differ from one another.

Parameters: %1 = Channel number
%2 = Axis, spindle
%3 = Axis, spindle
%4 = Axis, spindle

Definitions: The axis is active in a coupling as a following axis. The master axes have different states regarding axis/spindle disable.
The alarm can be suppressed with MD11415 $MN_SUPPRESS_ALARM_MASK_2, bit0 = 1.

Reaction: Alarm display.

Remedy: Set the same axis/spindle disable for all master axes.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

16774 [Channel %1:] Synchronization aborted for slave axis/spindle %2

Parameters: %1 = Channel number
%2 = Axis name, spindle number
Definitions: For the indicated axis, the synchronization procedure (EGOSYN or EGOSYNE) was canceled. There are several reasons for aborting the synchronization process:
- RESET
- End of program
- Axis goes to follow-up mode
- Rapid stop caused by an alarm

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: If the cancel of the synchronization procedure can be tolerated or is intended, the alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK Bit31 = 1.
If it is not possible to cancel the synchronization procedure, you can achieve it by specifying the block change criterion FINE in EGOSYN or EGOSYNE.

Program Continuation:
Clear alarm with the RESET key. Restart part program

16776 [Channel %1:] Block %2 curve table %3 does not exist for axis %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of curve table
%4 = Axis name, spindle number

Definitions: An attempt was made to couple axis %4 with curve table number %3, but no curve table of this number exists.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Modify the NC part program so that the required curve table exists when axis link is to be activated.

Program Continuation:
Clear alarm with the RESET key. Restart part program

16777 [Channel %1:] Block %2 coupling: following axis %3 for lead axis %4 not available

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Axis name, spindle number

Definitions: A coupling has been switched on in which the slave spindle/axis is currently not available. Possible causes:
- The spindle/axis is active in the other channel.
- The spindle/axis has been accessed by the PLC and has not yet been released.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Put the master spindle/axis with spindle/axis exchange into the necessary channel or release from the PLC.

Program Continuation:
Clear alarm with the RESET key. Restart part program

16778 [Channel %1:] Block %2 coupling: Ring coupling at following axis %3 and leading axis %4 impermissible

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Axis name, spindle number
Definitions: A coupling has been switched on which results in a cyclic coupling, allowance being made for further couplings. This cyclic coupling cannot be uniquely computed.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Configure link in accordance with the MD or correct NC part program (MD21300 $MC_COUPLE_AXIS_1).

Program Continuation: Clear alarm with the RESET key. Restart part program

16779

[Channel %1:] Block %2 coupling: too many couplings for axis %3, see active leading axis %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Axis name, spindle number

Definitions: More leading axes and spindles were defined for the specified axis/spindle than are allowed. The last parameter to be specified is a leading value object/leading axis to which the specified axis/spindle is already linked.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Modify part program.

Program Continuation: Clear alarm with the RESET key. Restart part program

16780

[Channel %1:] Block %2 following spindle/axis missing

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The following spindle/axis has not been written in the part program.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16781

[Channel %1:] Block %2 master spindle/axis missing

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The master spindle/axis has not been programmed in the part program.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16782

[Channel %1:] Block %2 following spindle/axis %3 not available

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: A coupling has been switched on in which the slave spindle/axis is currently not available. Possible causes:
- The spindle/axis is active in the other channel.
- The spindle/axis has been accessed by the PLC and has not yet been released.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Please inform the authorized personnel/service department. Put the master spindle/axis with spindle/axis exchange into the necessary channel or release from the PLC.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16783 [Channel %1:] Block %2 master spindle/axis %3 not available
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: A coupling has been switched on in which the master spindle/axis is currently not available. Possible causes:
- Setpoint linkage has been selected and spindle/axis is active in the other channel.
- The spindle/axis has been accessed by the PLC and has not yet been released.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Please inform the authorized personnel/service department. Put the master spindle/axis with spindle/axis exchange into the necessary channel or release from the PLC.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16785 [Channel %1:] Block %2 identical spindles/axes %3
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: A coupling has been switched on in which the following spindle/axis is identical to the master spindle/axis.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Configure link accordingly in MD21300 $MC_COUPLE_AXIS_1)
- or modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16786 [Channel %1:] Block %2 coupling to master spindle %3 already exists
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Leading spindle number

Definitions: A coupling is to be switched on, in which the slave axis is already actively coupled with the other master axis. Only one master spindle is allowed for the synchronous spindle function. The already active master spindle is displayed as last alarm parameter.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Prior to switching on the new coupling, separate the existing coupling. If several master spindles/axes are required, the ELO function will have to be used.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16787 [Channel %1:] Block %2 coupling parameter not changeable
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The specified coupling is write-protected. Therefore, the coupling parameters cannot be modified.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Remove write protection (see channel MD21340 $MC_COUPLE_IS_WRITE_PROT_1)
- or modify part program.

Program Continuation: Clear alarm with the RESET key. Restart part program.

16788 [Channel %1:] Block %2 cyclic coupling

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: A coupling has been switched on which results in a cyclic coupling, allowance being made for further couplings. This cyclic coupling cannot be uniquely computed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Configure link accordingly in MD21300 $MC_COUPLE_AXIS_1
- or modify part program.

Program Continuation: Clear alarm with the NC START or RESET key and continue the program.

16789 [Channel %1:] Block %2 multiple link

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: A coupling has been switched on in which the axes/spindles have already been assigned by another coupling. Parallel couplings cannot be processed.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Check in the part program whether another link already exists for the axes.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16790 [Channel %1:] Block %2 Parameter is zero or missing

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: A coupling has been switched on in which a relevant parameter has been specified with zero or has not been written (e.g. denominator in the transmission ratio, no slave axis).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Configure link accordingly in SD42300 $SC_COUPLE_RATIO_1
- or correct part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16791 [Channel %1:] Block %2 parameter is not relevant

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: A coupling has been switched on in which a non-relevant parameter has been written (e.g. parameter for ELG).

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.
NCK alarms

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16792

[Channel %1:] Block %2 too many couplings for axis/spindle %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions:
For the specified axis/spindle, more master axes/spindles have been defined than are allowed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16793

[Channel %1:] Block %2 coupling of axis %3 prohibits transformation change

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions:
The specified axis is a slave axis in a transformation grouping. When the coupling is switched on, the transformation cannot be changed to another one.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program. Switch off coupling(s) of this axis before changing transformation or do not change the transformation.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16794

[Channel %1:] Block %2 coupling of axis/spindle %3 prohibits reference point approach

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Axis name, spindle number

Definitions:
The specified axis is a (gantry) slave axis and cannot therefore approach the reference point.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program. Switch off coupling(s) of this axis before reference point approach or do not reference. A gantry slave axis cannot reference for itself.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16795

[Channel %1:] Block %2 string cannot be interpreted

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
A coupling has been switched on in which a non-interpretable string has been written (e.g. block change behavior).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16796

[Channel %1:] Block %2 coupling not defined

Parameters:
- %1 = Channel number
- %2 = Block number, label
Definitions: A coupling is to be switched the parameters of which have neither been programmed nor configured.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Correct NC part program or MD, program the coupling with COUPDEF or configure by means of MD.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16797 [Channel %1:] Block %2 coupling is active
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: An operation is to be performed in which no coupling may be active, e.g. COUPDEL or TANGDEL must not be used on active couplings.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Correct NC part program, deselect the link with COUPOF or TANGOF.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16798 [Channel %1:] Block %2 axis %3 is following axis and prohibits axis container rotation
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: The programmed axis/spindle is active as a slave axis/spindle in a coupling. When the coupling is active, the axis container cannot be rotated.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program. Deactivate the coupling(s) for this axis/spindle before rotating the axis container or execute the axis container rotation at a later time.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16799 [Channel %1:] Block %2 axis %3 is master axis and prohibits axis container rotation
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: The programmed axis/spindle is active as a master axis/spindle in a coupling. When the coupling is active, the axis container cannot be rotated.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Modify part program. Deactivate the coupling(s) for this axis/spindle before rotating the axis container or execute the axis container rotation at a later time.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
16800 [Channel %1:] Block %2 traverse instruction DC/CDC for axis %3 not allowed

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
The keyword DC (Direct Coordinate) can only be used for rotary axes. This causes approach of the programmed absolute position along the shortest path.
Example:
N100 C=DC(315)

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
Replace the keyword DC in the displayed NC block by specifying AC (Absolute Coordinate).
If the alarm display is the result of an error in the axis definition, the axis can be declared as a rotary axis by means of the axis-specific MD30300 $MA_IS_ROT_AX.
Corresponding machine data:
Modify MD30310: $MA_ROT_IS_MODULO
Modify MD30320: $MA_DISPLAY_IS_MODULO

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16810 [Channel %1:] Block %2 traverse instruction ACP for axis %3 not allowed

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
The keyword ACP (Absolute Coordinate Positive) is only allowed for "modulo axes". It causes approach of the programmed absolute position in the specified direction.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
In the displayed NC block, replace the keyword ACP by specifying AC (Absolute Coordinate).
If the alarm display is based on an incorrect axis definition, the axis with the axis-specific MD30300 $MA_IS_ROT_AX and MD30310 $MA_ROT_IS_MODULO can be declared a rotary axis with modulo change.
Corresponding machine data:
Modify MD30320 $MA_DISPLAY_IS_MODULO

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

16820 [Channel %1:] Block %2 traverse instruction ACN for axis %3 not allowed

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
The keyword ACN (Absolute Coordinate Negative) is only allowed for "modulo axes". It causes approach of the programmed absolute position in the specified direction.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
In the displayed NC block, replace the keyword ACN by specifying AC (Absolute Coordinate).
If the alarm display is based on an incorrect axis definition, the axis with the axis-specific machine data MD30300: $MA_IS_ROT_AX and MD30310: $MA_ROT_IS_MODULO can be declared a rotary axis with modulo change.
Corresponding machine data:
MD30320: $MA_DISPLAY_IS_MODULO
Program Continuation: Clear alarm with the RESET key. Restart part program.

16830 [Channel %1:] Block %2 incorrect position programmed for axis/spindle %3
Parameters: %1 = Channel number, %2 = Block number, label, %3 = Axis name, spindle number Definitions: A position beyond the range of 0 - 359.999 has been programmed for a modulo axis. Reaction: Correction block is reorganized. Interface signals are set. Alarm display. Remedy: Program position in the range 0 - 359.999. Program Continuation: Clear alarm with NC START or RESET key and continue the program.

16903 [Channel %1:] Program control: action %2<ALNX> not allowed in the current state
Parameters: %1 = Channel number, %2 = Action number/action name Definitions: The relevant action cannot be processed now. This can occur, for instance, during read-in of machine data. Reaction: Alarm display. Remedy: Wait until the procedure is terminated or abort with Reset and repeat the operation. Program Continuation: Clear alarm with the Delete key or NC START.

16904 [Channel %1:] Program control: action %2<ALNX> not allowed in the current state
Parameters: %1 = Channel number, %2 = Action number/action name Definitions: The operation (program, JOG, block search, reference point, etc.) cannot be started or continued in the current status. Reaction: Alarm display. Remedy: Check the program status and channel status. Program Continuation: Clear alarm with the Delete key or NC START.

16905 [Channel %1:] Program control: action %2<ALNX> not allowed
Parameters: %1 = Channel number, %2 = Action number/action name Definitions: Operation cannot be started or continued. A start is only accepted when an NCK function can be started. Example: A start is accepted in JOG mode when, for example, the function generator is active or a JOG movement has first been stopped with the Stop key. Reaction: Alarm reaction in Automatic mode. Remedy: Check the program status and channel status. Program Continuation: Clear alarm with the Delete key or NC START.

16906 [Channel %1:] Program control: action %2<ALNX> is aborted due to an alarm
Parameters: %1 = Channel number, %2 = Action number/action name Definitions: The action was aborted due to an alarm. Reaction: Alarm display. Remedy: Eliminate the error and acknowledge the alarm. Then repeat the operation. Program Continuation: Clear alarm with the Delete key or NC START.
16907 [Channel %1:] Action %2<ALNX> only possible in stop state
Parameters: %1 = Channel number
 %2 = Action number/action name
Definitions: This action may only be performed in Stop state.
Reaction: Alarm display.
Remedy: Check the program status and channel status.
Program Continuation: Clear alarm with the Delete key or NC START.

16908 [Channel %1:] Action %2<ALNX> only possible in reset state or at the block end
Parameters: %1 = Channel number
 %2 = Action number/action name
Definitions: This action may only be performed in Reset state or at end of block.
In JOG mode, no axis that is traversed as geometry axis in the switched coordinate system, must be active as PLC or command axis (started through static synchronized action) on mode change. This means that axes like that must be in the state 'neutral axis' again.
Reaction: Alarm display.
Remedy: Check the program status and channel status.
Check in JOG mode whether the axes are PLC or command axes.
Program Continuation: Clear alarm with the Delete key or NC START.

16909 [Channel %1:] Action %2<ALNX> not allowed in current mode
Parameters: %1 = Channel number
 %2 = Action number/action name
Definitions: A different operating mode must be activated for the activated function.
Reaction: Alarm display.
Remedy: Check operation and operating state.
Program Continuation: Clear alarm with the Delete key or NC START.

16911 [Channel %1:] Mode change is not allowed
Parameters: %1 = Channel number
Definitions: The change from overstoring into another operating mode is not allowed.
Reaction: Alarm display.
Remedy: After overstoring is terminated, it is possible to change to another operating state again.
Program Continuation: Clear alarm with the Delete key or NC START.

16912 [Channel %1:] Program control: action %2<ALNX> only possible in reset state
Parameters: %1 = Channel number
 %2 = Action number/action name
Definitions: This action can only be performed in Reset state.
Example: Program selection through HMI or channel communication (INIT) can only be performed in Reset state.
Reaction: Alarm display.
Remedy: Reset or wait until processing is terminated.
Program Continuation: Clear alarm with the Delete key or NC START.
16913 [Mode group %1:] [Channel %2:] Mode change: action %3<ALNX> not allowed
Parameters:
%1 = Channel number
%2 = Mode group number
%3 = Action number/action name
Definitions:
The change to the desired mode is not permitted. The change can only take place in the Reset state.
Example:
Program processing is halted in AUTO mode by NC Stop. Then there is a mode change to JOG mode
(program status interrupted). From this operating mode, it is only possible to change to AUTO mode
and not to MDI mode!
Reaction:
Alarm display.
Remedy:
Either activate the Reset key to reset program processing, or activate the mode in which the program
was being processed previously.
Program Continuation:
Clear alarm with the Delete key or NC START.

16914 [Mode group %1:] [Channel %2:] Mode change: action %3<ALNX> not allowed
Parameters:
%1 = Channel number
%2 = Mode group number
%3 = Action number/action name
Definitions:
Incorrect mode change, e.g.: Auto -> MDIREF.
Reaction:
Alarm display.
Remedy:
Check operation or selected mode.
Program Continuation:
Clear alarm with the Delete key or NC START.

16915 [Channel %1:] Action %2<ALNX> not allowed in the current block
Parameters:
%1 = Channel number
%2 = Action number/action name
Definitions:
If traversing blocks are interrupted by asynchronous subroutines, then it must be possible for the interrupt-
tered program to continue (reorganization of block processing) after termination of the asynchronous
subroutine.
The 2nd parameter describes which action wanted to interrupt block processing.
Reaction:
Alarm display.
Remedy:
Let the program continue to a reorganized NC block or modify part program.
Program Continuation:
Clear alarm with the Delete key or NC START.

16916 [Channel %1:] Repositioning: action %2<ALNX> not allowed in the current state
Parameters:
%1 = Channel number
%2 = Action number/action name
Definitions:
Repositioning of block processing is presently not possible. A mode change cannot take place.
The 2nd parameter describes which action should be used to perform repositioning.
Reaction:
Alarm display.
Remedy:
Let the program continue to a repositioned NC block or modify part program.
Program Continuation:
Clear alarm with the Delete key or NC START.

16918 [Channel %1:] For action %2<ALNX> all channels must be in reset state
Parameters:
%1 = Channel number
%2 = Action number/action name
Definitions:
All channels must be in the initial setting in order to carry out the action! (For example, for machine
data loading)
Reaction:
Alarm display.
Remedy:
Either wait until the channel status is aborted or press the Reset key.
Program Continuation:
Clear alarm with the Delete key or NC START.
16919 [Channel %1:] Action %2<ALNX> is not allowed due to a pending alarm
Parameters: %1 = Channel number
 %2 = Action number/action name
Definitions: This action cannot be performed due to an alarm, or the channel is in the fault condition.
Reaction: Alarm display.
Remedy: Press the RESET key.
Program Continuation: Clear alarm with the Delete key or NC START.

16920 [Channel %1:] Action %2<ALNX> is already active
Parameters: %1 = Channel number
 %2 = Action number/action name
Definitions: An identical action is still being processed.
Reaction: Alarm display.
Remedy: Wait until the previous procedure has been terminated and then repeat the operation.
Program Continuation: Clear alarm with the Delete key or NC START.

16921 [Mode group %2:] [Channel %1:] Machine data: channel/mode group assignment not allowed or assigned twice
Parameters: %1 = Channel number
 %2 = Mode group number
Definitions: On powering up, an illegal channel/mode group assignment was detected.
Reaction: Mode group not ready.
 Channel not ready.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Check MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP.
Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

16922 [Channel %1:] Subprograms: action %2<ALNX> maximum nesting depth exceeded
Parameters: %1 = Channel number
 %2 = Action number/action name
Definitions: Various actions can cause the current procedure to be interrupted. Depending on the action, asynchronous subroutines are activated. These asynchronous subroutines can be interrupted in the same manner as user programs. Unlimited nesting depth is not possible for asynchronous subroutines due to memory limitations.
Example: An interrupt interrupts the current program processing. Other interrupts with higher priorities interrupt processing of the previously activated asynchronous subroutines.
Possible actions are: DryRunOn/Off, DecodeSingleBlockOn, delete distance-to-go, interrupts
Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: Do not trigger the event on this block.
Program Continuation: Clear alarm with the RESET key. Restart part program.
16923 [Channel %1:] Program control: action %2<ALNX> not allowed in the current state
Parameters: %1 = Channel number
%2 = Action number/action name
Definitions: The current processing cannot be stopped since a preprocessing process is active. This applies, for example, to the loading of machine data, and in block searches until the search target is found.
Reaction: Interface signals are set.
Alarm display.
Remedy: Cancel by pressing RESET!
Program Continuation: Clear alarm with the Delete key or NC START.

16924 [Channel %1:] Caution: program test modifies tool management data
Parameters: %1 = Channel number
Definitions: Tool management data is changed during program testing. It is not possible to automatically rectify the data after termination of the program testing. This error message prompts the user to make a backup copy of the data or to reimport the data after the operation is terminated.
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. Save tool data on HMI and reimport data after "ProgtestOff".
Program Continuation: Clear alarm with the Delete key or NC START.

16925 [Channel %1:] Program control: action %2<ALNX> not allowed in the current state, action %3<ALNX> active
Parameters: %1 = Channel number
%2 = Action number/action name
%3 = Action number/action name
Definitions: The action has been refused since a mode or sub-mode change (change to automatic mode, MDI, JOG, overstoring, digitizing, etc.) is taking place.
Example: This alarm message is output if the Start key is pressed during a mode or sub-mode change from, for example, automatic to MDI, before the NCK has confirmed selection of the mode.
Reaction: Alarm display.
Remedy: Repeat action.
Program Continuation: Clear alarm with the Delete key or NC START.

16926 [Channel %1:] Channel coordination: action %2 not allowed in block %3, marker %4 is already set
Parameters: %1 = Channel number
%2 = Action
%3 = Block number
%4 = Marker number
Definitions: The action was denied, the marker was already set. Check the program.
Example:
SETM(1) ; CLEARM(1) ; Marker must be reset first.
SETM(1)
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Repeat action.
Program Continuation: Clear alarm with the RESET key. Restart part program
16927 [Channel %1:] Action %2<ALNX> at active interrupt treatment not allowed
Parameters:
%1 = Channel number
%2 = Action number/action name
Definitions:
This action may not be activated during interrupt processing (e.g. mode change).
Reaction:
Alarm display.
Remedy:
Reset or wait until interrupt processing is terminated.
Program Continuation:
Clear alarm with the Delete key or NC START.

16928 [Channel %1:] Interrupt treatment: action %2<ALNX> not possible
Parameters:
%1 = Channel number
%2 = Action number/action name
Definitions:
A program interrupt has been activated in a non REORG capable block.
Examples of possible program interrupts in this case:
- Traversing to fixed stop
- Vdi channel delete distance-to-go
- Vdi axial delete distance-to-go
- Measuring
- Software limit
- Axis interchange
- Axis comes from tracking
- Servo disable
- Gear stage change at actual gear stage unequal to setpoint gear stage.
The block affected is a:
- collection block from block search (except for the last collection block)
- Block in overstore interrupt.
Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
Do not trigger the event on this block.
Program Continuation:
Clear alarm with the RESET key. Restart part program.

16930 [Channel %1:] Preceding block and current block %2 must be separated through an executable block
Parameters:
%1 = Channel number
%2 = Block number
Definitions:
The language functions WAITMC, SETM, CLEARM and MSG must be packed in separate NC blocks due to the language definition. To avoid velocity drops, these blocks are attached to the next NC block internally in the NCK (for MSG only in path control mode, for WAITMC to the previous NC block). For this reason, there must always be an executable block (not a calculation block) between the NC blocks. An executable NC block always includes e.g. travel movements, a help function, Stopre, dwell time etc.
Reaction:
Correction block is reorganized.
Interpreter stop
Interface signals are set.
Alarm display.
Remedy:
Program an executable NC block between the previous and the current NC block.
Example:
N10 SETM.
N15 STOPRE ; insert executable NC block.
N20 CLEARM.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
16931 [Channel %1:] Subprograms: action %2<ALNX> maximum nesting depth exceeded
Parameters:
%1 = Channel number
%2 = Action number/action name
Definitions:
Various actions can cause the current procedure to be interrupted. Depending on the action, asynchronous subroutines (ASUBs) are activated. These ASUBs can be interrupted in the same manner as the user program. Unlimited nesting depth is not possible for ASUBs due to memory limitations. Example: In the case of an approach block in a repositioning procedure do not interrupt repeatedly, instead wait until processing is completed. Possible actions are: mode change, SlashOn/Off, overstoring.

Reaction: Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Initiate a block change and repeat the action.

Program Continuation: Clear alarm with the Delete key or NC START.

16932 [Channel %1:] Conflict when activating user data type %2
Parameters:
%1 = Channel number
%2 = Data type
Definitions:
The "activate user data" function (PI service _N_SETUDT) modifies a data block (tool offset, settable zero offset or base frame) which is also written by the NC blocks in preparation. In the event of a conflict, the value entered by the HMI is reset. Parameter %2 specifies which data block is affected:
1: Active tool offset
2: Base frame
3: Active zero offset

Reaction: Alarm display.

Remedy: Check the inputs on the HMI and repeat if necessary.

Program Continuation: Clear alarm with the Delete key or NC START.

16933 [Channel %1:] Interrupt treatment: action %2<ALNX> not allowed in the current state
Parameters:
%1 = Channel ID
%2 = Action number/action name
Definitions:
If a temporary standstill has occurred because of a Reorg event across block boundaries, it is possible that a block without Reorg capability has been loaded. In this situation, it is unfortunately necessary to abort the Reorg event handling! Reorg events are, e.g. abort subprogram, delete distance-to-go and interrupts.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Abort program with the RESET key.

Program Continuation: Clear alarm with the RESET key. Restart part program

16934 [Channel %1:] Interrupt treatment: action %2<ALNX> not possible due to stop
Parameters:
%1 = Channel ID
%2 = Action number/action name
Definitions:
Reorg events are, e.g. abort subprogram, delete distance to go and interrupts, axis exchange, termination of follow-up mode. Two Reorg events overlap in this situation. The 2nd Reorg event coincides with the 1st block generated by the previous event. (e.g. an axis exchange is induced twice in rapid succession). Axis exchange leads to Reorg in the channels in which an axis is removed without preparation. This block must be stopped in the above sequence in order to prevent the interpolator buffer from overflowing. This can be achieved by pressing the Stop or StopAll key, configuring an alarm with INTERPRETERSTOP or by decode single block.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
The program must be aborted with Reset.

Program Continuation:
Clear alarm with the RESET key. Restart part program

16935 [Channel %1:] Action %2<ALNX> not possible due to search run
Parameters:
%1 = Channel ID
%2 = Action number/action name

Definitions:
The action is not allowed as block search is currently running via program test. Block search via program test: "PI Service _N_FINDBL with mode parameter 5_.
With this block search type, it is not permissible to activate program test or dry run feedrate.

Reaction:
Alarm display.

Remedy:
Activate the action after block search is terminated.

Program Continuation:
Clear alarm with the Delete key or NC START.

16936 [Channel %1:] Action %2<ALNX> not possible due to active dry run
Parameters:
%1 = Channel ID
%2 = Action number/action name

Definitions:
This action is not allowed as dry run feedrate is currently active.
Example: It is not permissible to activate block search via program test (PI service _N_FINDBL with mode parameter 5) when dry run feedrate is active.

Reaction:
Alarm display.

Remedy:
Abort program with the RESET key.

Program Continuation:
Clear alarm with the Delete key or NC START.

16937 [Channel %1:] Action %2<ALNX> not possible due to program test
Parameters:
%1 = Channel ID
%2 = Action number/action name

Definitions:
This action is not allowed as program test is currently active.
Example: It is not permissible to activate block search via program test (PI service _N_FINDBL with mode parameter 5) when program test is active.

Reaction:
Alarm display.

Remedy:
Deactivate program test.

Program Continuation:
Clear alarm with the Delete key or NC START.

16938 [Channel %1:] Action %2<ALNX> aborted due to active gear change
Parameters:
%1 = Channel ID
%2 = Action number/action name

Definitions:
Reorganization events are, among others, subprogram abort, delete distance-to-go and interrupts, axis exchange, exiting the correction state. These events wait for the end of a gear change. However, the maximum waiting period has elapsed.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Program must be aborted with Reset and, if necessary, MD10192 $MN_GEAR_CHANGE_WAIT_TIME must be increased.
[Channel %1:] Action %2<ALNX> rejected due to active gear change

Parameters:
%1 = Channel ID
%2 = Action number/action name

Definitions:
Reorganization events that are possible in Stop state, e.g. mode change, are waiting for the end of the gear change. However, the maximum waiting period has elapsed.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Repeat action or increase MD10192 $MN_GEAR_CHANGE_WAIT_TIME.

Program Continuation:
Clear alarm with the Delete key or NC START.

[Channel %1:] Action %2<ALNX> wait for gear change

Parameters:
%1 = Channel ID
%2 = Action number/action name

Definitions:
Reorganization events are waiting for the end of a gear change. The alarm is displayed during the waiting period.

Reaction:
Alarm display.
Warning display.

Remedy:
Alarm is suppressed by means of MD11411 $MN_ENABLE_ALARM_MASK bit 1 = 0.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

[Channel %1:] Action %2<ALNX> rejected because no program event has been executed yet

Parameters:
%1 = Channel ID
%2 = Action number/action name

Definitions:
The setting of the MD20108 $MC_PROG_EVENT_MASK forces an asynchronous subprogram to be triggered automatically on RESET or PowerOn. The implicitly triggered asynchronous subprograms are normally called "Event-triggered program call" or "Program event".
In the alarm situation, this asynchronous subprogram could not yet be activated; that is why the action (normally start of part program) must be rejected.
Reasons for the fact that the asynchronous subprogram could not be triggered:
1. The asynchronous subprogram does not exist (/_N_CMA_DIR/_N_PROG_EVENT_SPF)
2. The asynchronous subprogram is allowed to start in the referenced state only (see MD11602 $MN_ASUP_START_MASK)
3. READY is missing (because of alarm)

Reaction:
Alarm display.

Remedy:
Load program
Check MD11602 $MN_ASUP_START_MASK
Acknowledge alarm

Program Continuation:
Clear alarm with the Delete key or NC START.

[Channel %1:] Start program command action %2<ALNX> not possible

Parameters:
%1 = Channel ID
%2 = Action number/action name

Definitions:
Currently, the alarm occurs only in combination with the SERUPRO action. SERUPRO stands for search via program test.
SERUPRO is currently searching the search target and has therefore switched this channel to the program test mode. With the START program command in channel 1, another channel 2 would actually be started, which means that axes would really be started during the search action.
If this alarm is switched off (see help), the user can make use of the above behavior by initially selecting via PLC the program test mode in channel 2, leaving channel 2 executing until its natural end, stopping channel 2 in order to deselect program test again.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Overview of Alarms 03/2009

NCK alarms

Remedy: Alarm can be switched off with MD10708 $MN_SERUPRO_MASK bit 1.

Program Continuation: Clear alarm with the RESET key. Restart part program.

16943 [Channel %1:] Action %2<ALNX> not possible due to ASUP

Parameters: %1 = Channel ID
%2 = Action number/action name

Definitions: The action in the 2nd parameter was rejected, since an asynchronous subprogram is currently active. Currently, only the integrated search run is rejected with this alarm. The integrated search run is activated, if search run is triggered in the Stop program state. In other words: Parts of a program have already been executed and a following program part is "skipped" with search run in order to continue the program afterwards.
The event is not possible if the program is stopped within an asynchronous subprogram or if an asynchronous subprogram had been selected before the event. An asynchronous subprogram is selected, when the triggering asynchronous subprogram event arrives, but the asynchronous subprogram cannot be started (e.g. the asynchronous start program is not started because of a read-in disable or because the Stop key is active).
In this case, it is irrelevant whether a user ASUP or a system ASUP has been triggered. User ASUPs are activated via FC-9 or via the fast inputs.
The following events lead to system ASUPS:
- Mode change
- Overstore on
- Canceling subprogram level
- Switching on of single block, type 2
- Setting machine data effective
- Setting user data effective
- Change skip levels
- Dry run on/off
- Program test off
- Correction block alarms
- Editing modi in Teach
- External zero offset
- Axis exchange
- Delete distance-to-go
- Measuring

Reaction: Alarm display.

Remedy: Repeat the action after the end of the asynchronous subprogram.

Program Continuation: Clear alarm with the Delete key or NC START.

16944 [Channel %1:] Action %2<ALNX> not possible due to active search blocks

Parameters: %1 = Channel ID
%2 = Action number/action name

Definitions: The NCK is currently processing either the action blocks of the search run or the approach motion after the search run. In this situation, the action (2nd parameter of the alarm) must be rejected. Currently, only the integrated search run is rejected with this alarm. The integrated search run is activated, if search run is triggered in the Stop program state. In other words: Parts of a program have already been executed and a following program part is "skipped" with search run in order to continue the program afterwards.

Reaction: Alarm display.

Remedy: Repeat the action after the approach motion of the search run.

Program Continuation: Clear alarm with the Delete key or NC START.
16945 [Channel %1:] Action %2<ALNX> delayed up to the block end
Parameters:
%1 = Channel ID
%2 = Action number/action name
Definitions:
The currently executing action (e.g. dry run on/off, change skip levels, etc.) should be active immediately, but it can become active not earlier than at the end of the block, since a thread is currently being machined. The action is activated with a slight delay.
Example: Dry run is started in the middle of the thread, then traversing at high speed does not start before the next block.
Reaction:
Alarm display.
Remedy:
Alarm can be switched off via MD11410 $MN_SUPPRESS_ALARM_MASK bit17==1.
Program Continuation:
Clear alarm with the Delete key or NC START.

16946 [Channel %1:] Start via START is not allowed
Parameters:
%1 = Channel ID
Definitions:
This alarm is active with "Group Serupro" only. "Group Serupro" is activated by means of MD10708 $MN_SERUPRO_MASK, Bit 2 and enables the retrace support of entire channel groups during block search.
The MD22622 $MC_DISABLE_PLC_START specifies which channel is generally started from the PLC and which channel is only allowed to be started from another channel via the START part program command.
This alarm occurs if the channel was started via the START part programm command and MD22622 $MC_DISABLE_PLC_START==FALSE was set.
Reaction:
Alarm display.
Remedy:
Modify MD22622 $MC_DISABLE_PLC_START of switch off "Group Serupro" (see MD10708 $MN_SERUPRO_MASK).
Program Continuation:
Clear alarm with the Delete key or NC START.

16947 [Channel %1:] Start via PLC is not allowed
Parameters:
%1 = Channel ID
Definitions:
This alarm is active with "Group Serupro" only. "Group Serupro" is activated by means of MD10708 $MN_SERUPRO_MASK, Bit 2 and enables the retrace support of entire channel groups during block search.
The machine data MD22622 $MC_DISABLE_PLC_START specifies which channel is generally started from the PLC and which channel is only allowed to be started from another channel via the START part program command.
This alarm occurs if the channel was started via the PLC and MD22622 $MC_DISABLE_PLC_START==TRUE was set.
Reaction:
Alarm display.
Remedy:
Modify MD22622 $MC_DISABLE_PLC_START of switch off "Group Serupro" (see MD10708 $MN_SERUPRO_MASK).
Program Continuation:
Clear alarm with the Delete key or NC START.

16948 Channel %1 dependent channel %2 still active
Parameters:
%1 = Channel ID
%2 = Channel ID
Definitions:
This alarm is active with "Group Serupro" only. "Group Serupro" is activated by means of MD10708 $MN_SERUPRO_MODE, bit 2" and enables the retrace support of entire channel groups during block search.
A _dependent channel_ is a channel that had indirectly been started by the currently active channel. The currently active channel was started via PLC. This channel must be terminated (i.e. reached M30) before the current channel is terminated. This alarm occurs if the currently active channel is terminated before the dependent channel.
Reaction:
Alarm display.
Remedy:
Switch off "Group Serupro" (see MD10708 $MN_SERUPRO_MASK) or install WAITE.
Program Continuation:
Clear alarm with the Delete key or NC START.
16949 Correspondence between marker of channel %1 and channel %2 is invalid.

Parameters: %1 = Channel ID
%2 = Channel ID

Definitions:
This channel defines a WAIT marker with other channels, which on their part have no correspondence with this wait marker.
This channel's WAIT marker has no explicit counterpart in the other channel; i.e. the channels do not mutually wait.

Example
Ch 3Ch 5Ch 7
WAITM(99,3,5) WAITM(99,3,5) WAITM(99,5,7)
The wait markers in channels 3 and 5 mutually wait for each other and channel 7 only waits for channel 5. Therefore, channel 7 may continue when 5 and 7 have reached the wait marker, but channel 3 is still far in front of the wait marker.
When it continues, channel 7 deletes its wait marker. When wait marker 99 is reached again, you can no longer determine the behavior precisely.

Reaction: Alarm display.

Remedy:
In each wait marker, list all channels with which you want to synchronize, or suppress the alarm with MD11410 $MN_SUPPRESS_ALARM_MASK, bit 23.

Sample solution A:
Ch 3Ch 5Ch 7
WAITM(99,3,5,7) WAITM(99,3,5,7) WAITM(99,3,5,7)

Sample solution B:
Ch 3Ch 5Ch 7
WAITM(99,3,5) WAITM(99,3,5)
WAITM(88,5,7) WAITM(88,5,7)

Sample solution C:
Ch 3Ch 5Ch 7
WAITM(88,5,7) WAITM(88,5,7)
WAITM(99,3,5) WAITM(99,3,5)

Program Continuation:
Clear alarm with the Delete key or NC START.

16950 [Channel %1:] Search run with hold block

Parameters: %1 = Channel ID

Definitions:
Informational alarm.
The search run was not performed on the interruption block, instead, it touches down shortly before that. This so-called "hold block" is generated by the part program command IPTRLOCK, or implicitly defined by MD22680 $MC_AUTO_IPTR_LOCK. This is to prevent you from performing a search run in critical program areas (e.g. gear hobbing). The alarm also displays that, instead of searching for the block that actually was interrupted before, another block is being searched for. This behavior is desired and the alarm serves only informational purposes.

Reaction: Alarm display.

Remedy:
MD11410 $MN_SUPPRESS_ALARM_MASK, MD22680 $MC_AUTO_IPTR_LOCK and language command IPTRLOCK

Program Continuation:
Clear alarm with the Delete key or NC START.

16951 [Channel %1:] Search run in a protected program section.

Parameters: %1 = Channel ID

Definitions:
A part programmer can define protected part program sections with the language commands IPTR-LOCK and IPTRUNLOCK. Every search run in these program sections will then be acknowledged with alarm 16951. In other words: When the alarm appears, the user has started a search run (Serupro type) and the search target lies in a protected area. A protected area can also be defined implicitly with the MD22680 $MC_AUTO_IPTR_LOCK.
NCK alarms

Note:
The alarm can only be generated if the simulation has been completed during the search run. The alarm cannot be output immediately at the start of the search run.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
MD11410 $MN_SUPPRESS_ALARM_MASK, MD22680 $MC_AUTO_IPTR_LOCK and language command IPTRLOCK

Program Continuation:
Clear alarm with the RESET key. Restart part program

16952
[Channel %1:] Start program command not possible due to MDI

Parameters:
%1 = Channel ID

Definitions:
NCK is currently executing an ASUB in MDI mode. In this constellation, parts program command "Start" is not allowed for another channel. Attention: If an asup is started from JOG, the NCK can internally change to MDI, if the NCK was previously in MDI and not in RESET. Note: Without this alarm, the MDI buffer of the other channel would always be started.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Start ASUB in AUTO or ->JOG in AUTO

Program Continuation:
Clear alarm with the RESET key. Restart part program

16953
[Channel %1:] For slave axis %2 SERUPRO not allowed, as master axis %3 not subject to axis/spindle disable

Parameters:
%1 = Channel number
%2 = Slave axis name, following spindle number
%3 = Master axis name, master spindle number

Definitions:
Currently, the alarm occurs only in combination with the SERUPRO action. SERUPRO stands for search via program test. SERUPRO is possible only with an active coupling, if the axis/spindle disable is active for all master axes/spindles of the slave axis/spindle

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Set axis/spindle disable of the master axis

Program Continuation:
Clear alarm with the RESET key. Restart part program

16954
[Channel %1:] Block %2 programmed stop prohibited in stop delay area

Parameters:
%1 = Channel ID
%2 = Block number, label

Definitions:
In a program area (stop delay area) that is bracketed with DELAYFSTON and DELAYFSTOF, a program command was used that causes a stop. No commands other than G4 are permissible that might cause a stop even though only shortly. A stop delay area can also be defined by MD11550 $MN_STOP_MODE_MASK.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
MD11550 $MN_STOP_MODE_MASK and language command DELAYFSTON DELAYFSTOF

Program Continuation:
Clear alarm with the RESET key. Restart part program
16955 [Channel %1:] Stop in stop delay area is delayed
Parameters:
%1 = Channel ID
Definitions:
In a program area (stop delay area) that is bracketed by DELAYFSTON and DELAYFSTOF, an event has been detected that causes a stop. The stop is delayed and executed after DELAYFSTOF. A stop delay area can also be defined by MD11550 $MN_STOP_MODE_MASK.
Reaction:
Interface signals are set.
Alarm display.
Remedy:
MD11550 $MN_STOP_MODE_MASK and language command DELAYFSTON DELAYFSTOF
Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

16956 [Channel %1:] Program %2 cannot be started due to global start disable.
Parameters:
%1 = Channel ID
%2 = String (path with program name)
Definitions:
The program selected in this channel cannot be started as "Global start disable" had been set.
Note:
PI "_N_STRTLK" sets the "Global start disable" and PI "_N_STRTUL" deletes the "Global start disable". The alarm is switched on with MD11411 $MN_ENABLE_ALARM_MASK bit 6.
Reaction:
Alarm display.
Remedy:
Delete the "Global start disable" and restart.
Program Continuation:
Clear alarm with the Delete key or NC START.

16957 [Channel %1:] Stop-Delay area is suppressed
Parameters:
%1 = Channel ID
Definitions:
The program area (Stop-Delay area), which is bracketed by DELAYFSTON and DELAYFSTOF, could not be activated. Every stop therefore becomes effective immediately and is not delayed!
This occurs every time, when braking into a stop Stop-Delay area, i.e. a braking process starts before the Stop-Delay area and ends not earlier than in the Stop-Delay area.
If the Stop-Delay area is entered with override 0, the Stop-Delay area can also not be activated. Example: a G4 before the Stop-Delay area allows the user to reduce the override to 0. The next block in the Stop-Delay area then starts with override 0 and the alarm situation described occurs.
MD11411 $MN_ENABLE_ALARM_MASK, bit 7 switches on this alarm.
Reaction:
Interface signals are set.
Alarm display.
Remedy:
MD11550 $MN_STOP_MODE_MASK and language command DELAYFSTON DELAYFSTOF
Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

16959 [Channel %1:] Action %2<ALNX> prohibited during simulation block search.
Parameters:
%1 = Channel number
%2 = Action number/action name
Definitions:
The function (2nd parameter) must not be activated during simulation search.
Reaction:
Alarm display.
Remedy:
Wait for search end.
Program Continuation:
Clear alarm with the Delete key or NC START.

16960 [Channel %1:] Action %2<ALNX> prohibited during EXECUTE PROGRAM AREA.
Parameters:
%1 = Channel number
%2 = Action number/action name
Definitions:
The function (2nd parameter) must not be activated during EXECUTE PROGRAM AREA.
Reaction:
Alarm display.
Remedy:
Wait for end of program area EXECUTE.
16961 [Channel %1:] Action %2<ALNX> prohibited during syntax check.

Parameters:
%1 = Channel number
%2 = Action number/action name

Definitions:
The function (2nd parameter) must not be activated during the syntax check.

Comment: The syntax check is served by the following PI services:
_N_CHKSEL _N_CHKRUN _N_CHKABO

Reaction: Alarm display.
Remedy: Wait for the end of the syntax check, or
Cancel the syntax check with reset, or
Cancel the syntax check with PI _N_CHKABO.

Program Continuation:
Clear alarm with the Delete key or NC START.

16962 [Channel %1:] NCK computing time reduced, start is not allowed.

Parameters:
%1 = Channel number

Definitions:
The computing time available to the NCK has been reduced, starts have therefore been locked. The computer performance is inadequate for smooth program execution. The computing time of the NCK may have been reduced by the HMI because of an HMI part program simulation.

Reaction: Alarm display.
Remedy: Wait for the simulation to end or press RESET in any channel.

Program Continuation:
Clear alarm with the Delete key or NC START.

17000 [Channel %1:] Block %2 maximum number of symbols exceeded

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The maximum number of symbols defined by machine data MD28020 $MC_MM_NUM_LUD_NAMES_TOTAL has been exceeded.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Modify machine data
- Reduce the number of symbols (variables, subroutines, parameters)

Program Continuation:
Clear alarm with the RESET key. Restart part program

17001 [Channel %1:] Block %2 no memory left for tool/magazine data

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The number of following tool/magazine data variables in the NC are given by machine data:
- Number of tools + number of grinding data blocks: MD18082 $MN_MM_NUM_TOOL
- Number of cutting edges: MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA
Tools, grinding data blocks, cutting edges can be used independently of the tool management. The memory for the following data is available only if the corresponding bit has been set in MD18080 $MN_MM_TOOL_MANAGEMENT_MASK.
- Number of monitoring data blocks: MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA
- Number of magazines: MD18084 $MN_MM_NUM_MAGAZINE
- Number of magazine locations: MD18086 $MN_MM_NUM_MAGAZINE_LOCATION
The following variable is determined by software configuration: Number of magazine spacing data blocks: P2 permits 32 such spacing data blocks.
Definition:
- 'Grinding data blocks': Grinding data can be defined for a tool from type 400 to 499. Such a data block occupies as much additional memory as that provided for a cutting edge.
- 'Monitoring data blocks': Each cutting edge of a tool can be supplemented by monitoring data.
- If the alarm occurs while writing from one of the parameters $TC_MDP1/$TC_MDP2/$TC_MLSR, check whether machine data MD18077 $MN_MM_NUM_DIST_REL_PER_MAGLOC / MD18076$MN_MM_NUM_LOCS_WITH_DISTANCE have been correctly set. MD18077 $MN_MM_NUM_DIST_REL_PER_MAGLOC defines the number of different Index1 statements that may be made for an Index2 value. MD18076 $MN_MM_NUM_LOCS_WITH_DISTANCE defines the number of different buffer storage locations that may be named in Index2.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
- Modify machine data
- Modify NC program, i.e. reduce number of rejected variable.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17010
[Channel %1:] Block %2 no memory left

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
When executing/reading files from the active working memory, it was found that there is not enough memory space (e.g. for large multidimensional arrays or when creating tool offset memory).

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Make arrays smaller or make more memory space available for memory management of subroutine calls, tool offsets and user variables (machine data MM_...).
See /FB/, S7 Memory Configuration

Program Continuation:
Clear alarm with the RESET key. Restart part program

17018
[Channel %1:] Block %2 incorrect value for parameter %3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Parameter name

Definitions:
An incorrect value has been assigned to the stated parameter.
Only the following values are permissible for the parameter $P_WORKAREA_CS_COORD_SYSTEM
=1 for workpiece coordinate system
=3 for settable zero system.

Reaction:
Interpreter stop
Interface signals are set.
Alarm display.

Remedy:
Assign another value.

Program Continuation:
Clear alarm with the RESET key. Restart part program

17020
[Channel %1:] Block %2 illegal array index 1

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
General:
A read or write access has been programmed to an array variable with an invalid 1st array index. The valid array indices must lie within the defined array size and the absolute limits (0 - 32,766).

PROFIBUS I/O:
An invalid slot / I/O area index was used while reading/writing data.
Cause:
1. Slot / I/O area index >= max. number of available slot / I/O areas.
2. Slot / I/O area index references a slot / I/O area that has not been configured.
3. Slot / I/O area index references a slot / I/O area that has not been released for a system variable.

The following applies specifically: If the alarm occurs while writing from one of the parameters $TC_MDP1/$TC_MDP2/$TC_MLSR, check whether MD18077 $MN_MM_NUMDIST_REL_PER_MAGLOC has been set correctly.

MD18077 $MN_MM_NUMDIST_REL_PER_MAGLOC defines the number of different Index1 statements that may be made for an Index2 value.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the specification of array elements in the access instruction to match the defined size. If an SPL is used in Safety Integrated, the field index via optional data may be subject to additional restrictions.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17030 [Channel %1:] Block %2 illegal array index 2

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
General:
A read or write access has been programmed to an array variable with an invalid 2nd array index. The valid array indices must lie within the defined array size and the absolute limits (0 - 32,766).

PROFIBUS I/O:
An attempt was made to read/write data outside the slot / I/O area limits of the stated slot / I/O area.

The following applies specifically: If the alarm occurs while writing one of the parameters $TC_MDP1/$TC_MDP2/$TC_MLSR, check whether MD18076 $MN_MM_NUMLOCS_WITHDISTANCE has been set correctly.

$MN_MM_NUMLOCS_WITHDISTANCE defines the number of different buffer storage locations that may be named in Index2.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the specification of array elements in the access instruction to match the defined size.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17035 [Channel %1:] Block %2 illegal array index 1

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
General:
A read or write access has been programmed to an array variable with an invalid 3rd array index. The valid array indices must lie within the defined array size and the absolute limits (0 - 32,766).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Correct the specification of array elements in the access instruction to match the defined size.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
17040 [Channel %1:] Block %2 illegal axis index
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: A read or write access has been programmed to an axial variable in which the axis name cannot be unambiguously imaged on a machine axis.
Example:
Writing of an axial machine data
$MA_...[X]= ... ; but geometry axis X cannot be imaged on a machine axis because of a transformation!
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Deselect transformation before writing into the axial data (keyword: TRAFOOF) or use the machine axis names as axis index.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17050 [Channel %1:] Block %2 illegal value
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: A value has been programmed that exceeds the value range or the limit value of a variable or a machine data.
Example: - in a string variable (e.g. GUD or LUD) a string shall be written that exceeds the string length agreed upon in the variable definition.
- if an invalid value is to be written in a tool or magazine management variable (e.g. invalid cutting edge number in $TC_DPCE[x,y] or invalid magazine location number in $TC_MDP2[x,y]).
- an invalid value is to be written in $P_USEKT or $A_DPB_OUT[x,y].
- an invalid value is to be written in a machine data (e.g. MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP[0] = 0).
- on accessing an individual frame element, a frame component other than TRANS, ROT, SCALE or MIRROR was addressed or the function CSCALE has been given a negative scale factor.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Address frame components only with the keywords provided; program the scale factor between the limits of 0.000 01 to 999.999 99.
Program Continuation: Clear alarm with the RESET key. Restart part program

17055 [Channel %1:] Block %2 GUD variable not existing
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The required GUD variable was not found for a MEACALC procedure during read or write access.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Check whether all the GUDs were created for MEACALC.
DEF CHANNEL INT _MVAR, _OVI[11]
DEF CHANNEL REAL _OVR[32], _EV[20], _MV[20], _SPEED[4], _SM_R[10], _ISP[3]
DEF NCK REAL _TP[3,10], _WP[3,11], _KB[3,7], _CM[8], _MFS[6]
DEF NCK BOOL _CBIT[16]
DEF NCK INT _CVAL[4].
Program Continuation: Clear alarm with the RESET key. Restart part program
17060 [Channel %1:] Block %2 requested data area too large
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The maximum memory space of 8 KB available for a symbol has been exceeded.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Reduce array dimensions.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17070 [Channel %1:] Block %2 data is write-protected
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: An attempt was made to write into a write-protected variable (e.g. a system variable). Safety Integrated: Safety system variables can only be written into via the safety SPL program.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Please inform the authorized personnel/service department. Modify part program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17080 [Channel %1:] Block %2 %3 value below lower limit
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = MD
Definitions: An attempt was made to write into a machine data with a value smaller than the defined lower limit.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Please inform the authorized personnel/service department. Determine the input limits of the machine data and assign a value within these limits.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17090 [Channel %1:] Block %2 %3 value exceeds upper limit
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = MD
Definitions: An attempt was made to write into a machine data with a value greater than the defined upper limit.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Please inform the authorized personnel/service department. Determine the input limits of the machine data and assign a value within these limits.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
17095 [Channel %1:] Block %2 invalid value
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
An attempt was made to write an invalid value, e.g. zero, into a machine data.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Correct the value assignment, e.g. a value within the value range not equal to zero.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17100 [Channel %1:] Block %2 digital input/comparator no. %3 not activated
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Input number
Definitions:
Either an attempt was made to read a digital input via the system variable $A_{IN}[n]$ and this input has not been activated via NCK MD10350 $MN_{FASTIO}_DIG_NUM_INPUTS$; or to read a comparator input via system variable $A_{INCO}[n]$ and this input belongs to a comparator which has not been activated.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Please inform the authorized personnel/service department. Modify part program or machine data accordingly.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17110 [Channel %1:] Block %2 digital output no. %3 not activated
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = No. of output
Definitions:
An attempt was made to read or set a digital NCK output (connector X 121) via the system variable $A_{OUT}[n]$ with the index [n] greater than the specified upper limit in MD10360 $MN_{FASTIO}_DIG_NUM_OUTPUTS$.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Program index [n] of the system variable $A_{OUT}[n]$ only between 0 and the value in MD10360 $MN_{FASTIO}_DIG_NUM_OUTPUTS$.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17120 [Channel %1:] Block %2 analog input no. %3 not activated
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Input number
Definitions:
An attempt has been made by means of the system variable $A_{INA}[n]$ to read an analog input n that has not been activated by the MD10300 $MN_{FASTIO}_ANA_NUM_INPUTS$.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Please inform the authorized personnel/service department. Modify part program or machine data accordingly.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
17130 [Channel %1:] Block %2 analog output no. %3 not activated

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = No. of output

Definitions:
An attempt has been made by means of the system variable $A_OUTA[n]$ to write or read an analog output n that has not been activated by the MD10310 $\text{MN_FASTIO_ANA_NUM_OUTPUTS}$.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Modify part program or machine data accordingly.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17140 [Channel %1:] Block %2 NCK output %3 is assigned to a function via machine data

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = No. of output

Definitions:
The programmed digital/analog output is assigned to an NC function (e.g. software cams).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Use another output or deactivate concurrent NC function via MD.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17150 [Channel %1:] Block %2 maximum of %3 NCK outputs programmable in the block

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Quantity

Definitions:
No more than the specified number of outputs may be programmed in an NC block.
The quantity of hardware outputs is defined in the MDs:
MD10360 $\text{MN_FASTIO_DIG_NUM_OUTPUTS}$ and
MD10310 $\text{MN_FASTIO_ANA_NUM_OUTPUTS}$

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program fewer digital/analog outputs in a block. The specified maximum number applies in each case separately for analog or digital outputs. If necessary, program two NC blocks.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17160 [Channel %1:] Block %2 no tool selected

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
An attempt has been made to access the current tool offset data via the system variables:
$P_\text{AD}[n]$: Contents of the parameter (n: 1 - 25)
P_TOOL: Active D number (tool edge number)
$P_\text{TOOLL}[n]$: Active tool length (n: 1-3)
P_TOOLR: Active tool radius
although no tool had been selected previously.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Overview of Alarms 03/2009

NCK alarms

Remedy: Program or activate a tool offset in the NC program before using the system variables.

Example:
N100 G T5 D1 ... LF

With the channel-specific machine data:
Modify MD22550 $MC_TOOL_CHANGE_MODE
New tool offset for M function
Modify MD22560 $MC_TOOL_CHANGE_M_CODE
M function with tool change
It is established whether a tool offset is activated in the block with the T word or whether the new offset
values are allowed for only when the M word for tool change occurs.

Program Con-
tinuation:

17170 [Channel %1:] Block %2 number of symbols too large

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The predefined symbols could not be read in during power-up.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: --

Program Con-
tinuation:
Clear alarm with the RESET key. Restart part program

17180 [Channel %1:] Block %2 illegal D number

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: In the displayed block, access is made to a D number that is not defined and therefore is not available.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Check tool call in the NC parts program:
- Correct tool correction number D programmed? If no D number is specified with the tool change com-
mmand, then the D number set by MD20270 $MC_CUTTING_EDGE_DEFAULT will be active automat-
ically. It is D1 by default.
- Tool parameters (tool type, length,...) defined? The dimensions of the tool edge must have been
entered previously either through the operator panel or through a tool data file in NCK.

Description of the system variables $TC_DPx[t; d] as included in a tool data file.
- x ... Correction parameter number P
- t ... Associated tool number T
- d ... Tool correction number D

Program Con-
tinuation:
Clear alarm with NC START or RESET key and continue the program.
17181 [Channel %1:] Block %2 T no.= %3, D no.= %4 not existing
Parameters: %1 = Channel number
%2 = Block number, label
%3 = T number
%4 = D number
Definitions: A programmed D number was not recognized by the NC. By default, the D number refers to the specified T number. If the flat D number function is active, T= 1 is output.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: If the program is incorrect, remedy the error with a correction block and continue the program.
If the data block is missing, download a data block for the specified T/D values onto the NCK (via HMI with overstore) and continue the program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17182 [Channel %1:] Block %2 illegal sum correction number
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: An attempt was made to access a non-defined total offset of the current tool edge.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Access the total offset memory with $TC_SCP*, $TC_ECP*, check the total offset selection DLx or tool selection Ty or offset selection Dz.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17183 [Channel %1:] Block %2 H number already available in T no.= %3, D no.= %4
Parameters: %1 = Channel number
%2 = Block number, label
%3 = T number
%4 = D number
Definitions: Each H number (except for H=0) must be assigned in a TO unit only once. The indicated edge already has the H number. If the H number shall be assigned more than once, MD10890 $MN_EXTERN_TOOLPROG_MODE, bit 3 must be set = 1.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: - Change program:
- Select different H number
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17188 [Channel %1:] D number %2 defined in tool T no. %3 and %4
Parameters: %1 = Channel number
%2 = Offset number D
%3 = T number of first tool
%4 = T number of second tool
Definitions: The specified D number %2 in the TO unit of channel %1 is not unique. The specified T numbers %3 and %4 each have an offset with number %2. If tool management is active: The specified T numbers belong to tool groups with different names.
Reaction: Interface signals are set.
Alarm display.
Remedy: 1. Ensure that the D numbers within the TO unit are unique.
2. If unique numbering is not necessary for subsequent operations, do not use the command.
Program Continuation: Clear alarm with the Delete key or NC START.
17189 [Channel %1:] D number %2 of tools defined on magazine/location %3 and %4

Parameters:
%1 = Channel number
%2 = Offset number D
%3 = Magazine/location number of first tool, ’/’ as separator
%4 = Magazine/location number of second tool, ’/’ as separator

Definitions:
The specified D number %2 in the TO unit of channel %1 is not unique. The specified T numbers %3 and %4 each have an offset with number %2.
If tool management is active:
The specified T numbers belong to tool groups with different names.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
1. Ensure that the D numbers within the TO unit are unique, e.g. by renaming the D numbers.
2. If unique numbering is not necessary for subsequent operations, do not use the command.

Program Continuation:
Clear alarm with the Delete key or NC START.

17190 [Channel %1:] Block %2 illegal T number %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = T number

Definitions:
In the displayed block, access is made to a tool that is not defined and therefore not available. The tool has been named by its T number, its name or its name and duplo number.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Check tool call in the NC part program:
- Correct tool number T.. programmed?
- Tool parameters P1 - P25 defined? The dimensions of the tool edge must have been entered previously either through the operator panel or through the V.24 interface.
Description of the system variables $P_DP x [n, m]
 n ... Associated tool number T
 m ... Tool edge number D
 x ... Parameter number P

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17191 [Channel %1:] Block %2 T= %3 not existing, program %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = T number or T identifier
%4 = Program name

Definitions:
A tool identifier which the NCK does not recognize was programmed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
If the program pointer is at an NC block which contains the specified T identifier: If the program is incorrect, remedy the error with a correction block and continue the program. If the data block is missing, create one. You can do this by downloading a data block with all the defined D numbers onto the NCK (via MMC with overstore) and continue the program.
If the program pointer is at an NC block which does not contain the specified T identifier: The error occurred at an earlier point in the program where the T command appeared, but the alarm was not output until the change command was detected.
If the program is incorrect - T5 programmed instead of T55 - the current block can be corrected with a correction block; i.e. if only M06 is entered, you can correct the block with T55 M06. The incorrect T5 line remains in the program until it is terminated by a RESET or end of program.
In complex program structures with indirect programming, it may not be possible to correct the program. In this case, you can only intervene locally with an overstore block - with T55 in the example. If the data block is missing, create one. You can do this by downloading the data block of the tool with all the defined D numbers onto the NCK (via MMC with overstore), program the T command with overstore, and continue the program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17192 [TO unit %1:] Invalid tool designation of "%2", duplo no. %3. No more replacement tools possible in %4.

Parameters:
- %1 = TO unit
- %2 = Tool identifier
- %3 = Duplonummer
- %4 = Group identifier

Definitions: The tool with the specified tool identifier, duplo number cannot accept the group identifier. Reason: The maximum number of replacement tools allowed has already been defined. The name allocation causes the tool to be reallocated to a tool group which already contains the maximum number of replacement tools allowed on this machine.

Reaction: Interface signals are set.
Alarm display.

Remedy: Use fewer replacement tools or request a different maximum setting from the machine manufacturer.

Program Continuation: Clear alarm with the Delete key or NC START.

17193 [Channel %1:] Block %2 the active tool is no longer on toolholder no./spindle no. %3, program %4

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Toolholder no., spindle no.
- %4 = Program name

Definitions: The tool at the specified toolholder/spindle at which the last tool change was carried out as master toolholder or master spindle, has been replaced.

Example:
N10 SETHTH(1)
N20 T=“Wz1”; Tool change at master toolholder 1
N30 SETMTH(2)
N40 T1=“Wz2”; Toolholder 1 is only a secondary toolholder.
Changing the tool does not result in correction deselection.
N50 D5; New correction selection. At present, there is no active tool which D can refer to, i.e. D5 refers to T no. = 0, which results in zero correction.

Reaction: Interface signals are set.
Alarm display.

Remedy:
- Modify program:
- Set desired spindle as master spindle or toolholder as master toolholder.
- Then, if required, reset master spindle or master toolholder.

Program Continuation: Clear alarm with the Delete key or NC START.

17194 [Channel %1:] Block %2 no suitable tool found

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
- An attempt was made to access a tool which has not been defined.
- The specified tool does not permit access.
- A tool with the desired properties is not available.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Check access to tool:
- Are the parameters of the command correctly programmed?
- Does the status of the tool prevent access?

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
17195 **Channel %1 block %2 illegal tool holder number %3**

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Tool holder number

Definitions:
In the displayed block, a tool holder that is not defined is accessed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Check the programming of the tool holder in the NC program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17200 **[Channel %1:] Block %2: Data of tool %3 cannot be deleted.**

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = T number

Definitions:
An attempt has been made to delete from the part program the tool data for a tool currently being processed. Tool data for tools involved in the current machining operation may not be deleted. This applies both for the tool preselected with T or that has been changed in place of another, and also for tools for which the constant grinding wheel peripheral speed or tool monitoring is active.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Check access to tool offset memory by means of $TC_DP1[t.d] = 0 or deselect tool.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17202 **[Channel %1:] Block %2 deleting magazine data not possible**

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
An attempt was made to delete magazine data which cannot currently be deleted. A magazine with the 'tool in motion' status active cannot be deleted. A tool adapter which is currently allocated to a magazine location cannot be deleted. A tool adapter cannot be deleted if MD18104 $MN_MM_NUM_TOOL_ADAPTER has the value -1.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
If an attempt to delete a magazine fails
$TC_MAP1[m] = 0 ; Delete magazine with m=magazine no.
$TC_MAP1[0] = 0 ; Delete all magazines
$TC_MAP6[m] = 0 ; Delete magazines and all their tools you must ensure that the magazine does not have the 'tool in motion' status at the time of the call.
If an attempt to delete a tool adapter fails
$TC_ADPTT[a] = -1 ; Delete adapter with number a
$TC_ADPTT[0] = -1 ; Delete all adapters
then the data association with the magazine location or locations must first be canceled with
$TC_MPP7[m,p] = 0 ; m = magazine no., p = no. of the location to which the adapter is assigned.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
17210 [Channel %1:] Block %2 access to variable not possible

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The variable cannot be written/read directly from the part program. It is allowed only in motion synchronous actions.
Example for variable:
$SP.ACTID (which planes are active)
$AA.DTEPB (axial distance-to-go for reciprocating infeed)
$A.IN (test input)

Safety Integrated: Safety PLC system variables can only be read during the safety SPL startup phase.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17212 [Channel %1:] Tool management: Load manual tool %3, duplo no. %2 onto spindle/toolholder %4

Parameters: %1 = Channel number
%2 = Duplo no.
%3 = Tool identifier
%4 = Toolholder number (spindle number)

Definitions: Indicate that the specified manual tool must be loaded in the specified toolholder or spindle before the program is continued. A manual tool is a tool whose data are known to the NCK but which is not assigned to a magazine location and is thus not fully accessible to the NCK, and usually also to the machine, for an automatic tool change.

Reaction: Alarm display.

Remedy: Make sure that the specified tool is loaded in the toolholder. The alarm is cleared automatically after PLC acknowledgement of the tool change on command.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

17214 [Channel %1:] Tool management: remove manual tool %3 from spindle/toolholder %2

Parameters: %1 = Channel number
%2 = Toolholder number (spindle number)
%3 = Tool identifier

Definitions: Indicates that the specified manual tool must be removed from the specified toolholder or spindle before the program is continued. A manual tool is a tool whose data are known to the NCK but which is not assigned to a magazine location and is thus not fully accessible to the NCK, and usually also to the machine, for an automatic tool change.

Reaction: Alarm display.

Remedy: Make sure that the specified tool is removed from the toolholder. The alarm is cleared automatically after PLC acknowledgement of the tool change on command. Manual tools can only be used efficiently if this is supported by the PLC program.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
17216 [Channel %1:] Remove manual tool from toolholder %4 and load manual tool %3 %2
Parameters: %1 = Channel number
 %2 = Duplo no.
 %3 = Tool identifier
 %4 = Toolholder number (spindle number)
Definitions: Indicates that the specified manual tool must be loaded in the specified toolholder or spindle before the program is continued and that the manual tool located there must be removed. A manual tool is a tool whose data are known to the NCK but which is not assigned to a magazine location and is thus not fully accessible to the NCK, and usually also to the machine, for an automatic tool change.
Reaction: Alarm display.
Remedy: Make sure that the manual tools are exchanged. The alarm is cleared automatically after PLC acknowledgement of the tool change on command. Manual tools can only be used efficiently if this is supported by the PLC program.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

17220 [Channel %1:] Block %2 tool not existing
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: If an attempt is made to access a tool that has not or not yet been defined, via T no., tool name, or tool name and duplo number, e.g. if tools shall be positioned in magazine locations via programming of $TC_MPP6 = 'toolNo'. It will only be possible, if both the magazine location and the tool determined by 'toolNo' have been defined.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Correct the NC program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17224 [Channel %1:] Block %2 tool T/D= %3 - tool type %4 is not permitted
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Incorrect T no. / D no.
 %4 = Incorrect tool type
Definitions: On this system, it is not possible to select tool offsets of the indicated tool types.
The variety of tool types can both be limited by the machine OEM and be reduced on individual control models.
Only use tools of the tool types permitted for this system.
Check whether an error has occurred on defining the tool.
Reaction: Correction block is reorganized.
 Interpreter stop
 Interface signals are set.
 Alarm display.
Remedy: Correct the NC program or correct the tool data
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
17230 [Channel %1:] Block %2 Duplo no. already assigned
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: If an attempt is made to write a tool Duplo number to the name of which another tool (another T number) already exists with the same Duplo number.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Correct the NC program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17240 [Channel %1:] Block %2 illegal tool definition
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: If an attempt is made to modify a tool data that would subsequently damage the data consistency or lead to a conflicting definition, this alarm will appear.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Correct the NC program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17250 [Channel %1:] Block %2 illegal magazine definition
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: If an attempt is made to modify a magazine data that would subsequently damage the data consistency or lead to a conflicting definition, this alarm will appear.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Correct the NC program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17260 [Channel %1:] Block %2 illegal magazine location definition
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: This alarm occurs if an attempt is made to change a magazine location data which would subsequently damage the data consistency or lead to a conflicting definition. Example: If parameter $TC_MPP1 (= type of location) is described with 'spindle/toolholder location', then this may conflict with the limiting MD18075 $MN_MM_NUM_TOOLHOLDERS. The remedy is then either - if permitted by the control model - to increase the value of MD18075 $MN_MM_NUM_TOOLHOLDERS or to correct the magazine definition.
Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy: Correct the NC program.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

17262 [Channel %1:] Block %2 illegal tool adapter operation
Parameters: %1 = Channel number
%2 = Block number, label
Definitions:
If an attempt is made to define or cancel a tool adapter assignment with reference to a magazine location and this magazine location already has another tool adapter and/or a tool is located in the adapter or - when canceling an assignment - a tool is still at the location, this alarm will appear. If machine data MD18108 $MN_MM_NUM_SUMCORR has the value -1, adapters cannot be generated by a write operation to an adapter which is not already defined. While the machine data has this value, you can only write adapter data to adapters which have already been (automatically) assigned to magazine locations.

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
- Assign max. one adapter to a magazine location.
- The magazine location must not contain a tool.
- MD18108 $MN_MM_NUM_SUMCORR has value -1: If an alarm occurs when writing one of the system variables $TC_ADPTx (x=1,2,3,T), the write operation must be modified such that only adapter data which are already associated with the magazine locations are written.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17270 [Channel %1:] Block %2 call-by-reference: illegal variable
Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Machine data and system variables must not be transferred as call-by-reference parameters.

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
Modify NC program: Assign the value of the machine data or of the system variable to a program-local variable and transfer this as parameter.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17500 [Channel %1:] Block %2 axis %3 is not an indexing axis
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
An indexing axis position has been programmed for an axis with the keywords CIC, CAC or CDC that has not been defined as indexing axis in the machine data.

Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.

Remedy:
Please inform the authorized personnel/service department. Remove programming instruction for indexing axis positions (CIC, CAC, CDC) from the NC part program or declare the relevant axis to be an indexing axis.

Indexing axis declaration:
Modify MD30500: $MA_INDEX_AX_ASSIGN_POS_TAB (indexing axis assignment)
The axis will become an indexing axis when an assignment to an indexing position table was made in the stated MD. 2 tables are possible (input value 1 or 2). Modify MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1
Modify MD10920 $MN_INDEX_AX_LENGTH_POS_TAB_2 (Number of positions for 1st/2nd indexing axis)
Standard value: 0 Maximum value: 60
Modify MD10910 $MN_INDEX_AX_POS_TAB_1 [n]
Modify MD10930 $MN_INDEX_AX_POS_TAB_2 [n]
(Positions of the 1st indexing axis) The absolute axis positions are entered. (The list length is defined via MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17501 [Channel %1:] Block %2 indexing axis %3 with Hirth tool system is active
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name
Definitions: The 'Hirth tooth system' function is activated for the indexing axis. This axis can therefore approach only indexing positions, another travel movement of the axis is not possible.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
Correct part program.
Correct FC16 or FC18 call.
Deselect machine data MD30505 $MA_HIRTH_IS_ACTIVE.

Program Continuation: Clear alarm with the RESET key. Restart part program

17502 [Channel %1:] Block %2 indexing axis %3 with Hirth tooth system stop is delayed

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name

Definitions: For the indexing axis, the 'Hirth tooth system' function is activated and the override has been set to 0 or another stop condition (e.g. VDI interface signal) is active. Since it is possible to stop only on indexing axes, the next possible indexing position is approached. The alarm is displayed until this position is reached or the stop condition is deactivated.

Reaction: Alarm display.

Remedy: Wait until the next possible indexing position is reached or set override > 0 or deactivate another stop condition.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

17503 [Channel %1:] Block %2 indexing axis %3 with Hirth tooth system and axis not referenced

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name

Definitions: The 'Hirth tooth system' function is activated for the indexing axis and the axis is to be traversed although it is not referenced.

Reaction: Alarm display.

Remedy: Reference axis.

Program Continuation: Clear alarm with the Delete key or NC START.

17510 [Channel %1:] Block %2 invalid index for indexing axis %3

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions: The programmed index for the indexing axis is beyond the position table range.
Example:
Perform an absolute approach of the 56th position in the list allocated via the axis-specific MD30500 $MA_INDEX_AX_ASSIGN_POS_TAB with the 1st positioning axis, the number of positions is e.g. only 40 (MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1 = 40).
N100 G.. U=CAC (56)
Or, with equidistant distances, the programmed index is smaller or equal 0.
Or, an attempt is made with a MOV movement to travel to a position outside the permitted area.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program the indexing axis position in the NC part program in accordance with the length of the current position table, or add the required value to the position table and adjust the length of the list.
Overview of Alarms 03/2009

NCK alarms

Program Continuation:
Clear alarm with the RESET key. Restart part program

17600 [Channel %1:] Block %2 preset on transformed axis %3 not possible
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions:
The programmed PRESET axis is involved in the current transformation. This means that setting the actual value memory (PRESET) is not possible for this axis.
Example:
Machine axis A should be set to the new actual value A 100 at the absolute position A 300.

N100 G90 G00 A=300
N101 PRESETON A=100
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Avoid preset actual value memory for axes which are participating in a transformation or deselect the transformation with the keyword TRAFOOF.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17605 [Channel %1:] Block %2 axis %3 transformation active: inhibits rotation of axis container
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions:
The programmed axis/spindle is active in a transformation and the axis container cannot be rotated for this reason.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Modify part program. Deactivate the transformation for this axis/spindle before rotating the axis container or perform the axis container rotation later.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17610 [Channel %1:] Block %2 axis %3 involved in the transformation, action cannot be carried out
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions:
The axis is involved in the active transformation. It can therefore not execute the demanded action, traversing as positioning axis, enable for axis exchange.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Deselect the transformation with TRAFOOF ahead of time or remove the action from the part program block
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
17620 [Channel %1:] Block %2 approaching fixed point for transformed axis %3 not possible

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
In the displayed block, an axis is programmed for the fixed point approach (G75) that is involved in the active transformation. Fixed point approach is not performed with this axis!

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Remove G75 instruction from the part program block or previously deselect transformation with TRAFOOF.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17630 [Channel %1:] Block %2 referencing for transformed axis %3 not possible

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
In the displayed block, an axis is programmed for reference point approach (G74) that is involved in the active transformation. Reference point approach is not performed with this axis!

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Remove G74 instruction, or the machine axes involved in transformation, from the part program block or previously deselect the transformation with TRAFOOF.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17640 [Channel %1:] Block %2 spindle operation for transformed axis %3 not possible

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
The axis programmed for the spindle operation is involved in the current transformation as geometry axis. This is not allowed.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
First switch off the transformation function.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17650 [Channel %1:] Block %2 machine axis %3 not programmable

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
The machine axis cannot be used in an active transformation. You may be able to program the function in a different coordinate system. For example, it may be possible to specify the retraction position in the basic coordinate system or the workpiece coordinate system. The axis identifier is used to select the coordinate system.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Deactivate the transformation or use another coordinate system.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
17800 [Channel %1:] Block %2 illegally coded position programmed

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The position number n specified with the keyword FP=n is not permissible. Two (2) absolute axis positions can be directly defined as fixed points by the axis-specific machine data MD30600 $MA_FIX_POINT_POS[n].

Or, if position numbers 3 and/or 4 are to be used, then machine data MD30610 $MA_NUM_FIX_POINT_POS must be set accordingly.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Program keyword FP with machine fixed points 1 or 2.
Example:
Approach fixed point 2 with machine axes X1 and Z2.
N100 G75 FP=2 X1=0 Z2=0
Or modify MD30610 $MA_NUM_FIX_POINT_POS and, if necessary, MD30600 $MA_FIX_POINT_POS[].

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

17810 [Channel %1:] Axis %2 not referenced

Parameters:
%1 = Channel number
%2 = Axis number

Definitions:
A function has been activated for the axis in JOG mode, e.g. fixed-point approach, JOG to position, JOG in circles, but the axis has not been referenced.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Reference axis.

Program Continuation:
Clear alarm with the Delete key or NC START.

17811 [Channel %1:] Fixed-point approach not possible for axis %2 in JOG, reason %3

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Cause

Definitions:
A ‘fixed-point approach in JOG’ has been requested for an axis. This is not possible because:
Reason 1: The axis is involved in the active transformation.
Reason 2: The axis is a following axis in an active coupling.
The fixed point approach will therefore not be executed.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Deselect fixed-point approach in JOG, or previously deselect the transformation with TRAFOOF or disband the coupling.

Program Continuation:
Clear alarm with the Delete key or NC START.

17812 [Channel %1:] Axis %2 fixed-point approach in JOG: Fixed point %3 changed

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Fixed-point number

Definitions:
‘Fixed-point approach in JOG’ is active for the axis, but another fixed point has been selected, or the fixed-point approach has been deactivated. The approach motion is canceled.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Trigger JOG motion again.

Program Continuation:
Clear alarm with the Delete key or NC START.
17813 [Channel %1:] Axis %2 fixed-point approach in JOG and override motion active
Parameters: %1 = Channel number
 %2 = Axis name, spindle number
Definitions: 'Fixed-point approach in JOG' is active for the axis, but another offset motion - for example a synchro-
 nization offset $AA_OFF - has been interpolated simultaneously.
 The position of the selected fixed-point is not reached if offset values are changed during the travers-
 ing motion.
 The target point then becomes "fixed-point position + change in offset value".
 The end point will be reached if the traversing motion is restarted after the offset value has been
 changed.
 (For example: incremental traversing in which the traversing motion stops intermittently).
Reason: Restarting the motion takes the current offset value into account.
Reaction: Interface signals are set.
 Alarm display.
Remedy: Trigger JOG motion again.
Program Continuation: Clear alarm with the Delete key or NC START.

17814 [Channel %1:] Axis %2 fixed-point position not available
Parameters: %1 = Channel number
 %2 = Axis name, spindle number
 %3 = Number of fixed-point position
Definitions: No fixed-point position is available for the fixed point selected in JOG mode. See MD30610 $MA_NUM_FIX_POINT_POS.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Adapt MD30610 $MA_NUM_FIX_POINT_POS and, if necessary, MD30600 $MA_FIX_POINT_POS[].
 Deselect fixed-point approach or select a valid fixed point, and restart the JOG motion.
Program Continuation: Clear alarm with the Delete key or NC START.

17815 Indexing axis %1 fixed point %2 unequal indexing position
Parameters: %1 = Axis number
 %2 = Array index of machine data
Definitions: The axis is a referenced indexing axis, and the fixed-point number %2 to be approached in JOG mode
 (defined in MD30600 $MA_FIX_POINT_POS) does not coincide with an indexing position. In JOG
 mode, referenced indexing axes approach indexing positions.
Reaction: NC not ready.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: MD30600 $MA_FIX_POINT_POS[] or adapt the indexing positions.
Program Continuation: Clear alarm with the RESET key. Restart part program

17820 [Channel %1:] JOG to position not possible for axis %2, reason %3
Parameters: %1 = Channel number
 %2 = Axis name, spindle number
 %3 = Cause
Definitions: A 'JOG to position' has been requested for an axis. This is not possible because:
 Reason 1: The axis is involved in the active transformation.
 Reason 2: The axis is a following axis in an active coupling.
 The JOG to position will therefore not be executed.
Reaction: Interface signals are set.
 Alarm display.
Remedy: Deselect 'JOG to position', or previously deselect the transformation with TRAFOOF or disband the coupling.

Program Continuation: Clear alarm with the Delete key or NC START.

17821 [Channel %1:] Axis %2 JOG to position and override motion active

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: 'JOG to position' is active for the axis, but an offset motion - for example a synchronization offset $AA_OFF - has been interpolated simultaneously.
The position of the SD43320 $SA_JOG_POSITION is not reached if offset values are changed during the traversing motion.
The target point then becomes "Jog position + change in offset value".
The position SD43320 $SA_JOG_POSITION will be reached if the traversing motion is restarted after the offset value has been changed.
(For example: incremental traversing in which the traversing motion stops intermittently).

Reason: Restarting the motion takes the current offset value into account.

Reaction: Interface signals are set.
Alarm display.

Remedy: Trigger JOG motion again.

Program Continuation: Clear alarm with the Delete key or NC START.

17822 [Channel %1:] Axis %2 JOG to position: Position changed

Parameters: %1 = Channel number

Definitions: An axis motion is active for the axis with 'JOG to position' but the position, that is the content of SD43320 $SA_JOG_POSITION, has been changed. The approach motion is canceled.

Reaction: Interface signals are set.
Alarm display.

Remedy: Trigger JOG motion again.

Program Continuation: Clear alarm with the Delete key or NC START.

17823 [Channel %1:] Axis %2 JOG to position deactivated

Parameters: %1 = Channel number

Definitions: An axis motion is active for the axis with 'JOG to position' but 'JOG to position' has been deactivated.
The approach motion is canceled.

Reaction: Interface signals are set.
Alarm display.

Remedy: Trigger JOG motion again.

Program Continuation: Clear alarm with the Delete key or NC START.

17825 Indexing axis %1 $SA_JOG_POSITION unequal indexing position

Parameters: %1 = Axis number

Definitions: The axis is a referenced indexing axis and 'JOG to position' is activated in JOG mode, but SD43320 $SA_JOG_POSITION does not coincide with an indexing position. In JOG mode, referenced indexing axes approach indexing positions.

Reaction: NC not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Modify SD43320 $SA_JOG_POSITION or indexing positions.

Program Continuation: Clear alarm with the RESET key. Restart part program.
17830 [Channel %1:] JOG in a circle is activated, but the axis %2 required for this is not a geometry axis.

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
The function JOG in circles has been activated, but the axis required for this has not been defined as a geometry axis.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Define axis as geometry axis.

Program Continuation:
Clear alarm with the Delete key or NC START.

17831 [Channel %1:] JOG a circle is not possible, reason %2

Parameters:
%1 = Channel number
%2 = Cause

Definitions:
The JOG in circles was activated, but this is not possible because:
1. The current positions of the axes involved lie outside the selected pitch circle.
2. The current positions of the axes involved, with pitch circle selected and tool radius offset active, are too near to the center of the circle.
3. The current positions of the axes involved, with tool radius offset active, are too near to the limiting circle during internal machining.
4. The current positions of the axes involved, with tool radius offset active, are too near to the limiting circle during external machining.
5. The current positions of the axes involved in internal machining are outside the defined circle.
6. The current positions of the axes involved in external machining are inside the defined circle.
10. A rotation is acting on the current plane, that is the current plane is inclined in space. This is not currently supported.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Define axis as geometry axis.

Program Continuation:
Clear alarm with the Delete key or NC START.

17833 [Channel %1:] JOG a circle is active and JOG circles deactivated

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
A circular motion is active but 'JOG in circles' has been deactivated. The circular motion is canceled.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Reactivate 'JOG circles' and trigger JOG motion again.

Program Continuation:
Clear alarm with the Delete key or NC START.
17900 [Channel %1:] Block %2 axis %3 is no machine axis

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number

Definitions:
At this point, the block context calls for a machine axis. This is the case with:
- G74 (reference point approach)
- G75 (fixed point approach)
If a geometry or additional axis identifier is used, then it must also be allowed as machine axis identifier (MD10000 $MN_AXCONF_MACHAX_NAME_TAB).

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Use machine axis identifier when programming.

Program Continuation:
Clear alarm with the RESET key. Restart part program

18000 [Channel %1:] Block %2 NCK-specific protection zone %3 wrong. Error code %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of NCK protection zone
%4 = Error specification

Definitions:
There is an error in the definition of the protection zone. The error number gives the specific reason for the alarm:

<table>
<thead>
<tr>
<th>No.</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Incomplete or conflicting contour definition.</td>
</tr>
<tr>
<td>2</td>
<td>Contour encompasses more than one surface area.</td>
</tr>
<tr>
<td>3</td>
<td>Tool-related protection zone is not convex.</td>
</tr>
<tr>
<td>4</td>
<td>If both boundaries are active in the 3rd dimension of the protection zone and both limits have the same value.</td>
</tr>
<tr>
<td>5</td>
<td>The number of the protection zone does not exist (negative number, zero or greater than the maximum number of protection zones).</td>
</tr>
<tr>
<td>6</td>
<td>Protection zone definition consists of more than 10 contour elements.</td>
</tr>
<tr>
<td>7</td>
<td>Tool-related protection zone is defined as inside protection zone.</td>
</tr>
<tr>
<td>8</td>
<td>Incorrect parameter used.</td>
</tr>
<tr>
<td>9</td>
<td>Protection zone to be activated is not defined.</td>
</tr>
<tr>
<td>10</td>
<td>Incorrect modal G code used for protection zone definition.</td>
</tr>
<tr>
<td>11</td>
<td>Contour definition incorrect or frame activated.</td>
</tr>
<tr>
<td>12</td>
<td>Other, not further specified errors.</td>
</tr>
</tbody>
</table>

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Modify definition of the protection zone and check MD.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

18001 [Channel %1:] Block %2 channel-specific protection zone %3 incorrect. Error code %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of the channel-specific protection zone
%4 = Error specification
Definitions: There is an error in the definition of the protection zone. The error number gives the specific reason for the alarm.
No. Meaning
1: Incomplete or conflicting contour definition.
2: Contour encompasses more than one surface area.
3: Tool-related protection zone is not convex.
4: If both boundaries are active in the 3rd dimension of the protection zone and both limits have the same value.
5: The number of the protection zone does not exist (negative number, zero or greater than the maximum number of protection zones).
6: Protection zone definition consists of more than 10 contour elements.
7: Tool-related protection zone is defined as inside protection zone.
8: Incorrect parameter used.
9: Protection zone to be activated is not defined.
10: Incorrect modal G code used for protection zone definition.
11: Contour definition incorrect or frame activated.
12: Other, not further specified errors.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Please inform the authorized personnel/service department. Modify definition of the protection zone and check MD.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

18002 [Channel %1:] Block %2 NCK protection zone %3 cannot be activated. Error code %4

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of NCK protection zone
%4 = Error specification

Definitions: An error has occurred on activating the protection zone. The error number gives the specific reason for the alarm.
No. Meaning
1: Incomplete or conflicting contour definition.
2: Contour encompasses more than one surface area.
3: Tool-related protection zone is not convex.
4: If both boundaries are active in the 3rd dimension of the protection zone and both limits have the same value.
5: The number of the protection zone does not exist (negative number, zero or greater than the maximum number of protection zones).
6: Protection zone definition consists of more than 10 contour elements.
7: Tool-related protection zone is defined as inside protection zone.
8: Incorrect parameter used.
9: Protection zone to be activated is not defined or number of contour element <2 or >MAXNUM_CONTOURNO_PROTECTAREA.
10: Error in internal structure of the protection zones.
11: Other, not further specified errors.
12: The number of protection zones simultaneously active exceeds the maximum number (channel-specific machine data).
13,14: Contour element for protection zones cannot be created.
15,16: No more memory space for the protection zones.
17: No more memory space for the contour elements.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
If the alarm is output on ramp-up (2nd parameter: "INIT" instead of block number), "Channel not ready to operate" will be set.
Remedy: Please inform the authorized personnel/service department.
1. Reduce the number of simultaneously active protection zones (MD).
2. Modify part program:
 - Delete other protection zones.
 - Preprocessing stop.
When the alarm occurs during control ramp-up, the system variables $SN_PA... have to be corrected for the specified protection zone. Afterwards perform a restart. If the erroneous data cannot be recognized, the protection zone’s immediate activation can be removed, and the system variables of the protection zone can be written again by means of NPROTDEF.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
If the alarm occurs during NC program execution, the current block can be changed. This way, the NPROT parameters can also be adjusted. However, if there is an error in the definition of the protection zone, the NC program must be aborted and the definition must be corrected under NPROTDEF.
If the alarm occurs on control ramp-up, system variables $SN_PA... must be corrected for the specified protection zone. This can be done by downloading an Initial.ini file that includes the relevant corrected date. If afterwards a restart is performed again, the alarm will have been removed provided that the data are consistent.

18003 [Channel %1:] Block %2 channel-specific protection zone %3 cannot be activated. Error code %4

Parameters: %1 = Channel number %2 = Block number, label %3 = Number of the channel-specific protection zone %4 = Error specification

Definitions: An error has occurred on activating the protection zone. The error number gives the specific reason for the alarm.
No. Meaning
1: Incomplete or conflicting contour definition.
2: Contour encompasses more than one surface area.
3: Tool-related protection zone is not convex.
4: If both boundaries are active in the 3rd dimension of the protection zone and both limits have the same value.
5: The number of the protection zone does not exist (negative number, zero or greater than the maximum number of protection zones).
6: Protection zone definition consists of more than 10 contour elements.
7: Tool-related protection zone is defined as inside protection zone.
8: Incorrect parameter used.
9: Protection zone to be activated is not defined or number of the contour element <2 or >MAXNUM_CONTORNO_PROTECTAREA.
10: Error in internal structure of the protection zones.
11: Other, not further specified errors.
12: The number of protection zones simultaneously active exceeds the maximum number (channel-specific machine data).
13,14: Contour element for protection zones cannot be created.
15,16: No more memory space for the protection zones.
17: No more memory space for the contour elements.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.
If the alarm is output on ramp-up (2nd parameter: "INIT" instead of block number), "Channel not ready to operate" will be set.

Remedy: Please inform authorized personnel / the service department.
1. Reduce the number of simultaneously active protection zones (MD).
2. Modify part program:
 - Delete other protection zones.
 - Preprocessing stop.
When the alarm occurs on control ramp-up, system variables $SC_PA... must be corrected for the specified protection zone. Afterwards perform a restart. If the erroneous data cannot be recognized, the protection zone’s immediate activation can be removed, and the system variables of the protection zone can be written again by means of CPROTDEF.
18004 [Channel %1:] Block %2 orientation of workpiece-related protection zone %3 does not correspond to the orientation of tool-related protection zone %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of workpiece-related protection zone
%4 = Number of tool-related protection zone

Definitions:
The orientation of the workpiece-related protection zone and the orientation of the tool-related protection zone differ. If the protection zone number is negative, then this is an NCK protection zone.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Modify the protection zone definition or do not simultaneously activate protection zones that have different orientations.
- Check machine data and modify the protection zone definition if necessary.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

18005 [Channel %1:] Block %2 serious error in definition of NCK-specific protection zone %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Protection zone number

Definitions:
The protection zone definition must be terminated with EXECUTE before a preprocessing stop is performed. This also applies to any that are initiated implicitly such as with G74, M30, M17.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

18006 [Channel %1:] Block %2 serious error in definition of channel-specific protection zone %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Protection zone number

Definitions:
The protection zone definition must be terminated with EXECUTE before a preprocessing stop is performed. This also applies to any that are initiated implicitly such as with G74, M30, M17.

Reaction:
Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Modify part program.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
18100

[Channel %1:] Block %2 invalid value assigned to FXS[]

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The following values are valid at the present time:
0: "Deselect traverse against fixed stop"
1: "Select traverse against fixed stop" valid.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
--

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

18101

[Channel %1:] Block %2 invalid value assigned to FXST[]

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Only the range 0.0 - 100.0 is valid at the present time.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
--

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

18102

[Channel %1:] Block %2 invalid value assigned to FXSW[]

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Only positive values including zero are valid at the present time.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
--

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

18200

[Channel %1:] Block %2 curve table: block search stop not allowed with definition CTABDEF

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Program instructions that lead to a preprocessing stop are not allowed within a curve table definition.
The system variable $P_CTABDEF can be queried to check whether a table definition is currently active.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Put the block in parenthesis using "IF NOT($P_CTABDEF) ... ENDIF" or remove the instruction that causes the preprocessing stop. Then start the part program again.

Program Continuation:
Clear alarm with the RESET key. Restart part program

18201

[Channel %1:] Block %2 curve table: table %3 does not exist

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of curve table
Definitions: An attempt was made to use a curve table whose table number is not known in the system lpar.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Change the table number in the program instruction or define the curve table with the desired table number.

Program Continuation: Clear alarm with the RESET key. Restart part program

18202 [Channel %1:] Block %2 curve table: instruction CTABEND without CTABDEF not allowed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The CTABEND instruction, which is used to terminate the definition, has been programmed in the program without starting a curve table definition with CTABDEF, or the CTABDEF and CTABEND instructions were not programmed in the same program level.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Remove the CTABEND command or add the CTABDEF(..) command at the appropriate program location. The CTABDEF and CTABEND instructions must be programmed in the same program level (main or subroutine). Start the program again.

Program Continuation: Clear alarm with the RESET key. Restart part program

18203 [Channel %1:] Block %2 curve table: instruction CTABDEF not within CTABDEF

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In the program, the instruction CTABDEF that starts the definition of curve tables, is programmed within the definition part of a curve table. This is not allowed, as the current curve table must be completed with CTABEND first.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Remove command CTABEND from program or insert instruction CTABDEF (..) in the relevant program position. Instructions CTABDEF and CTABEND must be programmed in the same program level (main program or subroutine). Start the program again.

Program Continuation: Clear alarm with the RESET key. Restart part program

18204 [Channel %1:] Block %2 curve table: instruction SUPA not within CTABDEF

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: G code SUPA is not allowed for the definition of a curve table, as it triggers a preprocessing stop.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Remove G code SUPA from the curve table definition. If possible, use G codes G53 or G153 instead of SUPA.

Program Continuation: Clear alarm with the RESET key. Restart part program
18300 [Channel %1:] Block %2 frame: fine shift not possible
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Allocation of a fine shift to settable frames or the basic frame is not possible since MD18600 $MN_MM_FRAME_FINE_TRANS is not equal to 1.
Reaction:
Interpreter stop
Interface signals are set.
Alarm display.
Remedy:
Please inform the authorized personnel/service department. Modify program or set MD18600 $MN_MM_FRAME_FINE_TRANS to 1.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

18310 [Channel %1:] Block %2 frame: illegal rotation
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Rotations are not possible with NCU global frames.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
Modify part program.
Program Continuation:
Clear alarm with the RESET key. Restart part program

18311 [Channel %1:] Block %2 frame: illegal instruction
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
An attempt was made to read or write a frame which does not exist.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
Modify part program.
Program Continuation:
Clear alarm with the RESET key. Restart part program

18312 [Channel %1:] Block %2 frame: fine shift not configured
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Fine shift must be configurd with G58 and G59.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
Modify machine data.
Program Continuation:
Clear alarm with the RESET key. Restart part program

18313 [Channel %1:] Block %2 frame: illegal switchover of geometry axes
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: It is not allowed to change the geometry axis assignment because the current frame contains rotations.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy: Change NC program or set other mode with MD10602 $M_FRAME_GEOAX_CHANGE_MODE.

Program Continuation:
Clear alarm with the RESET key. Restart part program

18314
[Channel %1:] Block %2 frame: type conflict

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions: It is not possible to chain global frames and channel-specific frames. The alarm occurs if a global frame is programmed with a channel axis name and no machine axis on this NCU is assigned to the channel axis. Channel-specific frames cannot be programmed with machine axis names if there is no corresponding channel axis on this NCU.

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy: Modify part program.

Program Continuation:
Clear alarm with the RESET key. Restart part program

18400
[Channel %1:] Block %2 language change not possible:%3

Parameters:
- %1 = Channel number
- %2 = Block number, label
- %3 = Cause

Definitions: The selection of an external NC language is not possible due to the reason specified. The following reasons are possible (see parameter 3):
1. Invalid machine data settings
2. Active transformation

Reaction:
- Interpreter stop
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy: Remedy the specified cause of the error before selecting the language.

Program Continuation:
Clear alarm with the RESET key. Restart part program

20000
[Channel %1:] Axis %2 reference cam not reached

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number

Definitions: After starting the reference point approach, the rising edge of the reduction cam must be reached within the section defined in the MD34030 $MA_REFP_MAX_CAM_DIST (phase 1 of referencing). (This error occurs only with incremental encoders).

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
Overview of Alarms 03/2009

NCK alarms

Remedy: Please inform the authorized personnel/service department.
There are 3 possible causes of error:
1. The value entered in MD34030 $MA_REFP_MAX_CAM_DIST is too small.
Determine the maximum possible distance from the beginning of reference motion up to the reduction
.cam and compare with the value in MD34030 $MA_REFP_MAX_CAM_DIST, increase the value in
.the MD if necessary.
2. The cam signal is not received by the PLC input module.
Operate the reference point switch manually and check the input signal on the NC/PLC interface
(route: Switch! Connector! Cable! PLC input! User program).
3. The reference point switch is not operated by the cam.
Check the vertical distance between reduction cam and activating switch.

Program Continuation: Clear alarm with the RESET key. Restart part program

20001 [Channel %1:] Axis %2 no cam signal present

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: At the beginning of phase 2 of reference point approach, the signal from the reduction cam is no longer
available.
Phase 2 of reference point approach begins when the axis remains stationary after deceleration to the
reduction cam. The axis then starts in the opposite direction in order to select the next zero marker of
the measuring system on leaving the reduction cam or approaching it again (negative/positive edge).

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Check whether the deceleration path
after the approach velocity is greater than the distance to the reference point cam - in which case the
axis cannot stop until it is beyond the cam. Use a longer cam or reduce the approach velocity in
MD34020 $MA_REFP_VELO_SEARCH_CAM.
 When the axis has stopped at the cam, it must be checked whether the signal DB31, ... DBX12.7
(Deceleration reference point approach) is still available at the interface to the NCK.
- Hardware: Wire break? Short circuit?
- Software: User program?

Program Continuation: Clear alarm with the RESET key. Restart part program

20002 [Channel %1:] Axis %2 zero mark not found

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: The hardware zero mark of the incremental position encoder or the substitute zero mark of the abso-
lute position encoder is not within a defined section.
Phase 2 of the reference point approach ends when the zero mark of the encoder has been detected
after the rising/falling edge of the NC/PLC interface signal DB31, ... DBX12.7 (Deceleration reference
point approach) has given the trigger start. The maximum distance between the trigger start and the
zero mark that follows is defined in the MD34060 $MA_REFP_MAX_MARKER_DIST.
The monitor prevents a zero mark signal from being overtraveled and the next being evaluated as ref-
erence point signal. (Faulty cam adjustment or excessive delay by the PLC user program).

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
Check the cam adjustment and make sure that the distance is sufficient between the end of the cam
and the zero marker signal that follows. The path must be greater than the axis can cover in the PLC
cycle time.
Increase the MD34060 $MA_REFP_MAX_MARKER_DIST, but do not select a value greater than the
distance between the 2 zero markers. This might result in the monitor being switched off.

Program Continuation: Clear alarm with the RESET key. Restart part program
20003 [Channel %1:] Axis %2 measuring system error

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
In a measuring system with distance-coded reference marks, the distance between two adjacent markers has been found to be more than twice the value entered in MD34300 $MA_ENC_REFP_MARKER_DIST. The control does not issue the alarm until it has again detected a distance that is too long after having made a 2nd attempt in reverse direction with half the traversing velocity.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Determine the distance between 2 odd reference marks (reference mark interval). This value (which is 20.00 mm on Heidenhain scales) must be entered in MD34060 $MA_REFP_MAX_MARKER_DIST. Check the reference track of the scale including the electronics for the evaluation.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

20004 [Channel %1:] Axis %2 reference mark missing

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
In the distance-coded length measurement system, 2 reference marks were not found within the defined searching distance (axis-specific MD34060 $MA_REFP_MAX_MARKER_DIST). A reduction cam is not required for distance-coded scales (but an existing cam will be evaluated). The conventional direction key determines the direction of search. The searching distance MD34060 $MA_REFP_MAX_MARKER_DIST, within which the two reference marks are expected is counted commencing at the start point.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department.
Determine the distance between 2 odd reference point markers (reference point marker interval). This value (which is 20.00 mm on Heidenhain scales) must be entered in the MD34060 $MA_REFP_MAX_MARKER_DIST.
Check the reference point track of the scale including the electronics for the evaluation.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

20005 [Channel %1:] Axis %2 reference point approach aborted

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
Referencing could not be completed for all stated axes (e.g., abort caused by missing servo enable, measuring system switchover, release of direction key, etc.).
In distance-coded measuring systems, the alarm will also be displayed if the value 1 has been set in MD34000 $MA_REFP_CAM_IS_ACTIV (reference cams) and one of the conditions stated in the remedy has been fulfilled.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Check the possible reasons for termination:
- Servo enable missing: NC/PLC interface signal DB31, ... DBX2.1 (Servo enable)
- Measuring system switchover: NC/PLC interface signal DB31, ... DBX1.5 / 1.6 (Position measuring system 1/2)
- Traversing key + or - missing: NC/PLC interface signal DB31, ... DBX4.7 / 4.6 (Traversing keys plus/minus)
- Feed override = 0
- The feed disable is active
- Exact stop not reached within MD36020 $MA_POSITIONING_TIME.
The axis-specific MD34110 $MA_REFP_CYCLE_NR determines which axes are involved in the channel-specific referencing.

Value Meaning
-1: No channel-specific referencing, NC Start without referencing.
0: No channel-specific referencing, NC Start with referencing.
1-8: Channel-specific referencing. The number entered here corresponds to the referencing sequence. (When all axes with contents 1 have reached the reference point, then the axes with contents 2 start, etc.).

Program Continuation: Clear alarm with the RESET key. Restart part program

20006 [Channel %1:] Axis %2 reference point creep velocity not reached
Parameters: %1 = Channel number
%2 = Axis name, spindle number
Definitions: In phase 2 of reference point approach (wait for zero mark), the cam end was reached but the reference point approach velocity was not within the tolerance window. (This can occur when the axis is already at the end of the cam at the beginning of reference point approach. Phase 1 is therefore considered as being already concluded and will not be started.) Phase 2 has been interrupted (this time before the cam) and the reference point approach will be started once again automatically with phase 1. If the approach velocity is not reached at the 2nd attempt either, referencing will be stopped and the alarm displayed.
Approach velocity: MD34040 $MA_REFP_VELO_SEARCH_MARKER
Velocity tolerance: MD35150 $MA_SPIND_DES_VELO_TOL.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
Reduce the MD for the approach velocity MD34040 $MA_REFP_VELO_SEARCH_MARKER and/or increase the MD for the velocity tolerance MD35150 $MA_SPIND_DES_VELO_TOL.

Program Continuation: Clear alarm with the RESET key. Restart part program

20007 [Channel %1:] Axis %2 reference point approach requires 2 measuring systems
Parameters: %1 = Channel number
%2 = Axis name, spindle number
Definitions: 2 encoders are needed for setting MD34200 $MA_ENC_REFP_MODE = 6!

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
Modify reference mode MD34200 $MA_ENC_REFP_MODE or install and configure a second encoder.

Program Continuation: Clear alarm with the RESET key. Restart part program
20008 [Channel %1:] Axis %2 reference point approach requires second referenced measuring system

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: When setting MD34200 $MA_ENC_REFP_MODE = 6 the 2nd encoder must first be referenced.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Modify referencing mode MD34200 $MA_ENC_REFP_MODE or reference 2nd encoder.

Program Continuation: Clear alarm with the RESET key. Restart part program

20050 [Channel %1:] Axis %2 handwheel mode active

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: The axes cannot be traversed in JOG mode using the traversing keys because traversing is still taking place via the handwheel.

Reaction: Alarm display.

Remedy: Decide whether the axis is to be traversed by means of the direction keys or the handwheel. End handwheel travel and delete the axial distance-to-go if necessary (NC/PLC interface signal DB31, ... DBX2.2 (Delete distance-to-go/Spindle reset)).

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20051 [Channel %1:] Axis %2 handwheel mode not possible

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: The axis is already traveling via the traversing keys, so handwheel mode is no longer possible.

Reaction: Alarm display.

Remedy: Decide whether the axis is to be traversed by means of the jog keys or via the handwheel.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20052 [Channel %1:] Axis %2 already active

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: The axis is to traverse as a machine axis in JOG mode using the direction keys on the machine control panel. However, this is not possible because:
1. It is already traversing as a geometry axis (through the channel-specific interface DB21-30 DBX12.6 / 12.7 (Traversing keys -/+)) or DB21-30 DBX16.6 / 16.7 (Traversing keys -/+)) or DB21-30 DBX20.6 / 20.7 (Traversing keys -/+)) or
2. It is already traversing as a machine axis (through the axis-specific interface DB31, ... DBX4.7 / 4.6 (Traversing keys plus/minus)) or
3. A frame is valid for a rotated coordinate system, and another geometry axis involved in this is already traversing in JOG mode by means of the direction keys.

Reaction: Alarm display.

Remedy: Stop traversing through the channel or axis interface or stop the other geometry axis.

Program Continuation: Clear alarm with the Delete key or NC START.

20053 [Channel %1:] Axis %2 DRF, FTOCON, external zero point offset not possible

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: The axis is traversed in a mode (e.g. referencing) that allows no additional overlaid interpolation.

Reaction: Alarm display.

Remedy: Wait until the axis has reached its reference position or terminate reference point approach with "Reset" and start DRF once again.
20054 [Channel %1:] Axis %2 wrong index for indexing axis in JOG mode

Parameters:
%1 = Channel number
%2 = Axis name, spindle number

Definitions:
1. The displayed indexing axis is to be traversed incrementally in JOG mode (by 1 indexing position). However, no further indexing position is available in the selected direction.
2. The axis is stationary at the last indexing position. In incremental traversing the working area limitation or the software limit switch is reached without an indexing position being located in front of it at which a stop could be made.

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Correct (add to) the list of indexing positions by means of the machine data
- MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1
- MD10910 $MN_INDEX_AX_POS_TAB_1
- MD10920 $MN_INDEX_AX_LENGTH_POS_TAB_2
- MD10930 $MN_INDEX_AX_POS_TAB_2

or set the working area limits or the software limit switches to other values.

20055 [Channel %1:] Master spindle not present in JOG mode

Parameters:
%1 = Channel number

Definitions:
The displayed axis is to be traversed as machine axis in JOG mode with revolutional feed, but no master spindle has been defined from which the actual speed could have been derived.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy:
Please inform the authorized personnel/service department.
If the revolutional feed is also to be active in JOG mode, then a master spindle must be declared via the channel-specific MD20090 $MC_SPIND_DEF_MASTER_SPIND. In this case you have to open a screen in the PARAMETER operating area with the softkeys "SETTINGDATA" and "JOG DATA" and preselect the G function G95 there. The JOG feedrate can then be entered in [mm/rev]. If 0 mm/rev is set as JOG feed, the control takes the value assigned in the axis-specific MD 32050 $MA_JOG_REV_VELO or in the case of rapid traverse overlay MD32040 $MA_JOG_REV_VELO_RAPID.
The revolutional feed in JOG mode is deactivated by changing the G function from G95 to G94.

20056 [Channel %1:] Axis %2 no revolutional feedrate possible. Axis/spindle %3 stationary

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Axis name, spindle number

Definitions:
An axis is to travel in JOG with revolutional feed, but the spindle/axis the feed is to be derived from is 0.

Reaction:
Alarm display.

Remedy:
Traverse the spindle/axis from which the feed is to be derived.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

20057 [Channel %1:] Block %2 revolutional feedrate for axis/spindle %3 is <= zero

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
Definitions: Revolitional feed has been programmed for an axis/spindle, but the velocity was not programmed or the programmed value is smaller than or equal to zero.

Reaction: Correction block is reorganized.
Local alarm reaction.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
- Correct the part program or
- Specify the correct feed for PLC axes at the VDI interface,
- Specify feed for oscillating axes in the SD43740 $SA_OSCILL_VELO.

Program Continuation: Clear alarm with the RESET key. Restart part program

20058 [Channel %1:] Axis %2 revolitional feedrate: illegal feed source

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: An axis/spindle is to be traversed at revolitional feedrate. The reference axis/spindle defined in SD 43300 $SA_ASSIGN_FEED_PER_REV_SOURCE refers to itself. The coupling caused cannot be executed.

Reaction: Alarm display.

Remedy: The reference axis/spindle must be modified accordingly in SD 43300.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20059 [Channel %1:] Axis %2 already active due to %3

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Cause

Definitions: The axis (machine axis, geometry axis or orientation axis) is to be traversed in operation mode "Automatic&Jog" (see MD10735 $MN_JOG_MODE_MASK) by using the direction keys or a handwheel. This is not possible, as (see parameter 3):
1. the axis is active as a rotating spindle
2. the axis is a PLC axis
3. the axis is active as an asynchronous reciprocating axis
4. the axis is active as a command axis
5. the axis is active as a slave axis
6. a frame applies for a rotated coordinate system and an axis involved in the required JOG movement of the geometry axis is not available for this
7. an axis container rotation is activated via NCU link
Note: This alarm identifies an axis not capable of JOG which received a JOG order. In this case, the NCK will not proceed according to "Internal JOG".

Reaction: Alarm display.

Remedy: Wait for the axis to traverse or abort with distance-to-go delete or RESET.

Program Continuation: Clear alarm with the Delete key or NC START.

20060 [Channel %1:] Axis %2 cannot be traversed as geometry axis

Parameters: %1 = Channel number
%2 = Axis name

Definitions: The axis is currently not in "Geometry axis" state. Therefore, it cannot be traversed in JOG mode as geometry axis.
If the abbreviation WCS (workpiece coordinate system) is displayed in the "Position" screen, then only the geometry axes can be traversed by means of the direction keys! (MCS ... Machine coordinate system; all machine axes can now be traversed by using the direction keys on the machine control panel).

Reaction: Alarm display.

Remedy: Check the operating steps to establish whether geometry axes really must be traversed, otherwise switch over to the machine axes by activating the "WCS/MCS" key on the machine control panel.
20061 [Channel %1:] Axis %2 cannot be traversed as orientation axis

Parameters:
- %1 = Channel number
- %2 = Axis name

Definitions:
The axis is not an orientation axis and can therefore not be traversed as an orientation axis in JOG mode.

Reaction:
Alarm display.

Remedy:
Register the axis as an orientation axis.

Program Continuation:
Clear alarm with the Delete key or NC START.

20062 [Channel %1:] Axis %2 already active

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number

Definitions:
The displayed axis is already traversing as a machine axis. Therefore, it cannot be operated as a geometry axis.
Traversing an axis can take place in JOG mode through 2 different interfaces.
1. As a geometry axis: via the channel-specific interface DB21-30 DBX12.6 / 12.7 (Traversing keys -/+)
2. As a machine axis: via the axis-specific interface DB31, ... DBX4.7 / 4.6 (Traversing keys plus/minus)
With the standard machine control panel, it is not possible to operate an axis as a machine axis and as a geometry axis at the same time.

Reaction:
Alarm display.

Remedy:
Do not start the geometry axis until the traversing motion as machine axis has been concluded.

Program Continuation:
Clear alarm with the Delete key or NC START.

20063 [Channel %1:] Axis %2 orientation axes cannot be traversed without transformation

Parameters:
- %1 = Channel number
- %2 = Axis name

Definitions:
An attempt was made to move an orientation axis in JOG mode without an active orientation transformation.

Reaction:
Alarm display.

Remedy:
Activate an orientation transformation.

Program Continuation:
Clear alarm with the Delete key or NC START.

20064 [Channel %1:] Axis %2 selection of several axes with an active taper angle is not permitted.

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number

Definitions:
With an active taper angle, only one geometry axis at the time can be traversed in JOG mode by pressing traversing keys. Simultaneous traversing of a geometry axis as a machine axis is not permitted either.

Reaction:
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Starting the geometry axis only if traversing of the other geometry axis or machine axis completed.

Program Continuation:
Clear alarm with the RESET key in all channels. Restart part program.
20065 [Channel %1:] Master spindle not defined for geometry axes in JOG mode

Parameters: %1 = Channel number

Definitions: The displayed axis is to be traversed as geometry axis in JOG mode with rotary feed, but no master spindle has been defined from which the actual speed could be derived.

Reaction: Local alarm reaction.
Interface signals are set.
Alarm display.

Remedy: If the revolutional feedrate is to be active in JOG mode too, then a master spindle must be declared in the channel-specific machine data MD20090 $MC_SPIND_DEF_MASTER_SPIND. In this case, you have to open a screen in the PARAMETER operating area with the softkeys “SETTINGDATA” and “JOG DATA”, and preselect the G function G95 there. The JOG feedrate can then be entered in [mm/rev]. (If 0 mm/rev is set as JOG feedrate, the control takes the value assigned in the axis-specific machine data MD32050 $MA_JOG_REV_VELO or in the case of rapid traverse override MD32040 $MA_JOG_REV_VELO_RAPID).

Program Continuation: Clear alarm with the Delete key or NC START.

20070 [Channel %1:] Axis %2 software limit switch %3

Parameters: %1 = Channel number
%2 = Axis number
%3 = “+” or “-”

Definitions: The axis is traversed by the PLC as a concurrent positioning axis and the corresponding software limit switch is violated for the axis. No traversing.

With an additional message to alarm 20140, the axis is traversed as a command axis.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. Specify smaller target position. Modify MD for SW limit switch. Possibly activate another SW limit switch. Retract axis via JOG.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20071 [Channel %1:] Axis %2 working area limit %3

Parameters: %1 = Channel number
%2 = Axis number
%3 = “+” or “-”

Definitions: The displayed axis is operated as a “concurrent positioning axis” and the corresponding working area limitation active for the axis is violated. No traversing movement.

With an additional message to alarm 20140, the axis is traversed as a command axis.

Reaction: Alarm display.

Remedy: - Specify smaller target position.
- Deactivate working area limitation.
- Set working area limitation differently.
- Retract axis with JOG.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20072 [Channel %1:] Axis %2 is not an indexing axis

Parameters: %1 = Channel number
%2 = Axis number

Definitions: The displayed axis is operated as a concurrent positioning axis. Its target position is parameterized in the FC INDEX-AXIS as indexing position number, but the axis is not an indexing axis.

Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. The FC POS-AXIS for linear and rotary axes should be used or the axis should be declared as an indexing axis. Corresponding machine data for indexing axis declaration:

- Modify MD30500 $MA_INDEX_AX_ASSIGN_POS_TAB
- Modify MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1
- Modify MD10910 $MN_INDEX_AX_POS_TAB_1
- Modify MD10920 $MN_INDEX_AX_LENGTH_POS_TAB_2
- Modify MD10930 $MN_INDEX_AX_POS_TAB_2

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20073 [Channel %1:] Axis %2 cannot be repositioned

Parameters:

- %1 = Channel number
- %2 = Axis number

Definitions:
The concurrent positioning axis cannot be positioned because it has already been restarted via the VDI interface and is still active. No repositioning motion takes place and the motion initiated by the VDI interface is not affected.

Reaction: Alarm display.

Remedy: None.

Program Continuation: Clear alarm with the Delete key or NC START.

20074 [Channel %1:] Axis %2 wrong index position

Parameters:

- %1 = Channel number
- %2 = Axis name, spindle number

Definitions:
For a concurrent positioning axis declared as indexing axis, the PLC has given an index number that is not available in the table.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. Check the indexing axis number given by the PLC and correct this if necessary. If the indexing axis number is correct and the alarm results from an indexing position table that has been set too short, check the machine data for indexing axis declaration.

- Modify MD30500 $MA_INDEX_AX_ASSIGN_POS_TAB
- Modify MD10900 $MN_INDEX_AX_LENGTH_POS_TAB_1
- Modify MD10910 $MN_INDEX_AX_POS_TAB_1
- Modify MD10920 $MN_INDEX_AX_LENGTH_POS_TAB_2
- Modify MD10930 $MN_INDEX_AX_POS_TAB_2

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20075 [Channel %1:] Axis %2 can currently not oscillate

Parameters:

- %1 = Channel number
- %2 = Axis number

Definitions:
The axis cannot perform an oscillating movement now because it is already being traversed, e.g. in JOG mode.

Reaction: Alarm display.

Remedy: End the other traversing motion.

Program Continuation: Clear alarm with the Delete key or NC START.

20076 [Channel %1:] Axis %2 oscillating - mode change not possible

Parameters:

- %1 = Channel number
- %2 = Axis number

Definitions:
The axis is performing an oscillating movement. Mode change is not possible because oscillation is not allowed in the selected mode.

Reaction:

- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Do not initiate mode change. Cause the PLC to check the axis and make sure in the PLC program that the axis ends oscillation if such mode changes take place.

Program Continuation: Clear alarm with the RESET key. Restart part program

20077

[Channel %1:] Axis %2 programmed position is behind software limit switch %3

Parameters:
- %1 = Channel number
- %2 = Axis number
- %3 = “+” or “-”

Definitions: The axis is traversed as an oscillating axis and the target position (reversal position or end position) is located behind the corresponding software limit switch. The axis is not traversed.

Reaction:
- Local alarm reaction.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Specify smaller target position.
- Modify MD for SW limit switch.
- Possibly activate another SW limit switch.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

20078

[Channel %1:] Axis %2 programmed position is behind working area limit %3

Parameters:
- %1 = Channel number
- %2 = Axis number
- %3 = “+” or “-”

Definitions: The axis is traversed as an oscillating axis and the target position (reversal position or end position) is located behind the corresponding effective working area limitation. The axis is not traversed.

Reaction:
- Local alarm reaction.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Specify smaller target position.
- Deactivate working area limitation.
- Set working area limitation differentially.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

20079

[Channel %1:] Axis %2 oscillation path %3 <= 0

Parameters:
- %1 = Channel number
- %2 = Axis number
- %3 = Length

Definitions: The axis is traversed as an oscillating axis and the distance to be traversed is smaller than or equal to zero. For example, both reversal points are situated on an identical position, one reversal point was shifted against the oscillating direction beyond the other reversal point. The axis is not traversed.

Reaction:
- Local alarm reaction.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Specify correct target position (reversal position, end position).

Program Continuation:
- Clear alarm with the RESET key. Restart part program

20080

[Channel %1:] Axis %2 no handwheel assigned for override

Parameters:
- %1 = Channel number
- %2 = Axis number
Definitions: No handwheel has been assigned for this specified axis after handwheel overlay has been started in automatic mode. If the axis identifier is missing in the alarm with active velocity overlay $V_D > 0$, then the 1st geometry axis has not been defined in the NC channel. In this case the block is executed without handwheel control.

Reaction: Alarm display.

Remedy: If handwheel control is required, a handwheel must be activated.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20081 [Channel %1:] Axis %2 braking position cannot be accepted as a new reversing position

Parameters: %1 = Channel number %2 = Axis number

Definitions: On changing the reciprocation reversal from external sources, the braking position cannot be accepted as a new reversing position, since changing the reversal point via handwheel or JOG key is active.

Reaction: Alarm display.

Remedy: Deselect VDI signal "Change reversal point" and reselect it either
- with "Reciprocation reversal from external sources" or
- by changing the reversal point by means of handwheel or
- by changing the reversal point via JOG key.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20082 [Channel %1:] Axis %2 coordinate system-specific working area limit %3

Parameters: %1 = Channel number %2 = Axis number %3 = "+" or "-"

Definitions: The displayed axis is operated as a "concurrent positioning axis", and the corresponding active coordinate system-specific working area limitation for the axis is violated. No traversing movement.

Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Specify smaller target position.
Deactivate working area limitation.
Set working area limitation differentially.
Retract axis with JOG.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20083 [Channel %1:] Axis %2 programmed position lies behind the coordinate system-specific working area limit %3

Parameters: %1 = Channel number %2 = Axis number %3 = "+" or "-"

Definitions: The axis is traversed as a reciprocating axis, and the target position (reversal position or end position) is located behind the corresponding, valid, coordinate system-specific working area limitation. The axis is not traversed.

Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Specify smaller target position.
Deactivate working area limitation.
Set working area limitation differentially.

Program Continuation: Clear alarm with the RESET key. Restart part program.
20085 [Channel %1:] Contour handwheel: traverse direction or overtravel of beginning of block not allowed

Parameters: %1 = Channel number

Definitions: Travel takes place on the path with the contour handwheel in the opposite direction to the programmed travel direction and the starting point of the path has been reached at the start of the block.

Reaction: Alarm display.

Remedy: Turn the contour handwheel in the opposite direction.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20090 Axis %1 travel to fixed stop not possible. Check programming and axis data.

Parameters: %1 = Axis name, spindle number

Definitions: 1. The "Traverse against fixed stop" function has been programmed with FXS[AX]=1 but the axis does not (yet) support this. Check MD37000 $MA_FIXED_STOP_MODE. This function is not available for gantry axes and simulated axes.
 2. On selection, no movement was programmed for axis AX. AX is a machine axis identifier.
 3. It is always necessary to program a traversing movement in the selection block for the axis/spindle for which the "Traverse against fixed stop" function is activated.

The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
 Channel not ready.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
 Channel not ready.

Remedy: Please inform the authorized personnel/service department.
 - Check the axis type.
 - Check MD37000 $MA_FIXED_STOP_MODE.
 - Is a machine axis movement missing in the approach block?

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

20091 Axis %1 has not reached fixed stop

Parameters: %1 = Axis name, spindle number

Definitions: On attempting to traverse against a fixed stop, the programmed end position has been reached or the traversing movement has been aborted. The alarm can be concealed by means of the MD37050 $MA_FIXED_STOP_ALARM_MASK.

The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
 Channel not ready.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
 Channel not ready.

Remedy: Correct the part program and the settings:
 - Has the traversing block been aborted?
 - If the axis position does not correspond to the programmed end position, then correct the end position.
 - If the programmed end position is in the part, the triggering criterion must be checked.
 - Has the contour deviation leading to triggering been dimensioned too large? Has the torque limit been set too high?

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.
NCK alarms

20092 Axis %1 travel to fixed stop still active
Parameters: %1 = Axis name, spindle number
Definitions: An attempt has been made to move an axis while it is in fixed stop or while the deselection function has not yet been completed. The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.
Remedy: Please inform the authorized personnel/service department.
Check the following:
- Has the axis at the fixed stop also been moved by a traversing movement of geometry axes?
- Is a selection carried out even though the axis is stationary at the stop?
- Has the deselection process been interrupted by a RESET?
- Has the PLC switched the acknowledgement signals?
Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

20093 Axis %1 standstill monitoring at fixed-stop end point has been triggered
Parameters: %1 = Axis name, spindle number
Definitions: The position of the axis has been beyond the zero speed window ever since selection has been completed. The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.
Remedy: Please inform the authorized personnel/service department.
- Check the mechanical components, e.g. has the stop broken away? Has the part to be clamped given way?
- Position window for zero speed control too small (MD37020 $MA_FIXED_STOP_WINDOW_DEF) (SD43520 $SA_FIXED_STOP_WINDOW). Default is 1 mm in each case.
Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

20094 Axis %1 function has been aborted
Parameters: %1 = Axis name, spindle number
Definitions: The function has been aborted. The possible reasons for this are:
- Because a pulse disable has occurred, the torque can no longer be provided.
- The PLC has removed the acknowledgments.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.
Remedy: Check whether
- there is a pulse disable from the infeed/regenerative-feedback unit or from the PLC?
- the acknowledgement bits have been deleted by the PLC even though NCK has not requested deselection?
Program Continuation: Clear alarm with the DELETE key or NC START.

20095 Axis %1 illegal torque, current torque %2

Parameters: %1 = Axis name, spindle number
%2 = Current holding torque when brake test selected

Definitions: The current holding torque, when brake test selected, cannot be attained with the present parameterization of the brake test.

Reaction: Alarm display.

Remedy: Check the parameterization for the brake test function check:
- The torque for the counterweight in the drive machine data p1532 should be nearly the same as the current holding torque. The current holding torque is displayed in the alarm text.
- The torque set for the brake test MD36966 $MA_SAFE_BRAKETEST_TORQUE must be greater than the current holding torque.

Program Continuation: Clear alarm with the DELETE key or NC START.

20096 Axis %1 brake test aborted, additional information %2

Parameters: %1 = Axis name, spindle number
%2 = Error information based on $VA_FXS_INFO

Definitions: The brake test has detected a problem. The additional info provides more detailed information on the cause of the alarm. The explanation can be found in the $VA_FXS_INFO system variable documentation.

Additional information:
0: No additional information available.
1: Axis type is not a PLC or command axis.
2: End position reached, motion completed.
3: Cancel by NC RESET (key reset).
4: Moved out of monitoring window.
5: Torque reduction rejected by drive.
6: PLC has cancelled enables.

Reaction: Interface signals are set.

Alarm display.

Remedy: Note the supplementary conditions of the brake test, see additional info.

Program Continuation: Clear alarm with the DELETE key or NC START.

20097 Axis %1 incorrect travel direction brake test

Parameters: %1 = Axis name, spindle number

Definitions: Due to the selected travel direction, the brake test for the current load torque is performed with an incorrect torque.

Reaction: Alarm display.

Remedy: - Perform the brake test for the other travel direction
- Adjust drive parameter p1532 better to the current weight ratio. The alarm will occur only if the current torque deviates from drive parameter p1532 by more than 7.5% of MD36966 $MA_SAFE_BRAKETEST_TORQUE when the brake is released.
- Activate the automatic determination of the load torque at the beginning of the brake test via MD36968 $MA_SAFE_BRAKETEST_CONTROL, bit 0 = 1.

Program Continuation: Clear alarm with the DELETE key or NC START.

20100 [Channel %1:] :Invalid configuration for digitizing

Parameters: %1 = Channel number

Definitions: - The digitizing function expects the definition of 3 geometry axes in the channel.
- At the available baud rate for a transmission of the actual positions and setpoint velocities between the NC and the digitizing device, the interpolation cycle must be set to a minimum of 5ms.

Reaction: Interface signals are set.

Alarm display.

Remedy: Please inform authorized personnel / the service department.
- Define 3 geometry axes for the digitizing channel by means of machine data.
- Use an interpolation cycle greater than 5ms.
Overview of Alarms

NCK alarms

Program Continuation:

Switch control OFF - ON.

20101

Definition: Timeout during initialization of communication with the digitizer

The attempt to synchronize the communications link to the digitizing unit and to transfer the machine parameters was aborted after the preset timeout limit of 15 seconds was exceeded.

Reaction: Interface signals are set. Alarm display.

Remedy: Check the connection to the digitizing unit (RS422 cable, supply voltage) and whether the digitizing unit is switched on.

Program Continuation:

Clear alarm with the Delete key or NC START.

20102

[Channel %1:] No or invalid trafo at digitizing active

Parameters: %1 = Channel number

Definition: Prerequisite for the 3+2 axis digitizing is an active kinematic transformation. Permitted transformations are the general 5-axis transformation and the universal inclinable head.

Reaction: Interface signals are set. Alarm display.

Remedy:
- Before digitizing, activate a permitted transformation.
- Select 3-axis mode for digitizing via machine data.

Program Continuation:

Clear alarm with the Delete key or NC START.

20103

[Channel %1:] Digitizing module does not support 3+2 axes digitizing

Parameters: %1 = Channel number

Definition: Prerequisite for 3+2 axis digitizing is that the NCU and the digitizing module both have the 3+2 axis mode.

Reaction: Interface signals are set. Alarm display.

Remedy:
- SW update for the digitizing module.
- Select 3-axis mode for the digitizing via machine data.

Program Continuation:

Clear alarm with the Delete key or NC START.

20105

[Channel %1:] Axes stopped by digitizer. Error code: %2

Parameters: %1 = Channel number %2 = Error code of digitizing unit

Definition: The digitizing unit has recognized an error in the communication and signaled this to the NC.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Error code 1: Check cable connection leading to the digitizing unit. Other error codes: See manual for digitizing unit.

Program Continuation:

Clear alarm with the RESET key. Restart part program.

20106

The digitizer has triggered an emergency stop.

Definition: The digitizing unit has recognized a serious error and triggered an emergency stop. Cause: See display on the digitizing unit.

Reaction:
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:

Program Continuation:

Clear alarm with the RESET key. Restart part program.
20108 Invalid data package received from the digitizer. Error codes %1, %2
Parameters: %1 = Error code of cyclic packet
 %2 = Error code of out-of-band packet
Definitions: A data packet received by the digitizing unit could not be evaluated.
Reaction: Channel not ready.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Error code: 0, 0: Check cable connection
 leading to the NC. Other error codes: e.g. wrong header, incorrect checksum (development documenta-
 tion).
Program Con-
 tinuation: Clear alarm with the RESET key. Restart part program

20109 Error in communication with the digitizer: status code of com-circuit: %1
Parameters: %1 = Status byte
Definitions: The circuit for serial communication with the digitizing unit signals a transmission error via its status
 byte (framing error, parity etc.).
Reaction: Channel not ready.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: Please inform the authorized personnel/service department. Check connection cable leading to the
 digitizing unit: In particular screening.
Program Con-
 tinuation: Clear alarm with the RESET key. Restart part program

20120 Axis %1: too many compensation relations
Parameters: %1 = Axis name, spindle number
Definitions: Interpolatory compensation with tables. For each axis, the maximum number of compensation rela-
 tionships defined may be no more than the number of axes in the system. In this alarm, the interpola-
 tory compensation in the axis is switched off automatically.
Reaction: Interface signals are set.
 Alarm display.
Remedy: Check table parameters $AN_CEC_OUTPUT_AXIS and correct and/or switch off one or more tables
 (SD41300 $SN_CEC_TABLE_ENABLE).
Program Con-
 tinuation: Clear alarm with the RESET key. Restart part program

20121 Axis %1: Configuration error in compensation table %2
Parameters: %1 = Axis name, spindle number
 %2 = Compensation table
Definitions: Interpolatory compensation with tables. The settings for the specified table are not allowed.
 $AN_CEC_MAX >= $AN_CEC_MIN and $AN_CEC_STEP != 0 apply to system variables. This table
 is switched off automatically.
Reaction: Interface signals are set.
 Alarm display.
Remedy: Please inform the authorized personnel/service department. Check and correct the characteristic data
 in the compensation table. If the error cannot be found, the alarm can be suppressed by switching off
 the table ($SN_CEC_TABLE_ENABLE) or switching off compensation in the axis
 ($MA_CEC_ENABLE).
Program Con-
 tinuation: Clear alarm with the RESET key. Restart part program

20122 Compensation table %1: invalid axis assignment
Parameters: %1 = Compensation table
Definitions: Interpolatory compensation with tables. The input or output axes assignment in the given table is not allowed. $\text{AN}_\text{CEC}_\text{INPUT}_\text{AXIS}$ and $\text{AN}_\text{CEC}_\text{OUTPUT}_\text{AXIS}$!= 0 apply to system variables. This table is automatically switched off.

Reaction: Interface signals are set. Alarm display.

Remedy: Please inform the authorized personnel/service department. Check and correct the axis assignment in the compensation table. If the error cannot be found, the alarm can be suppressed by switching off the table ($\text{SN}_\text{CEC}_\text{TABLE}_\text{ENABLE}$) or switching off compensation in the axis ($\text{MA}_\text{CEC}_\text{ENABLE}$).

Program Continuation: Clear alarm with the RESET key. Restart part program.

20123 Axis %1: different output assignment of multiplied tables

Parameters: %1 = Axis name, spindle number

Definitions: Interpolatory compensation with tables. The two tables whose outputs are to be multiplied together have different output axes assigned to them. The compensation in this axis is automatically switched off.

Reaction: Interface signals are set. Alarm display.

Remedy: Please inform the authorized personnel/service department. Check and correct the characteristic data in the compensation table ($\text{AN}_\text{CEC}_\text{OUTPUT}_\text{AXIS}$ and $\text{AN}_\text{CEC}_\text{MULT}_\text{BY}_\text{TABLE}$). If the error cannot be found, the alarm can be suppressed by switching off the compensation in the axis ($\text{MA}_\text{CEC}_\text{ENABLE}$) or the tables, ($\text{SN}_\text{CEC}_\text{TABLE}_\text{ENABLE}$).

Program Continuation: Clear alarm with the RESET key. Restart part program.

20124 Axis %1: sum of compensation values too large

Parameters: %1 = Axis name, spindle number

Definitions: The sum of the compensation values from all tables assigned to the axis had exceeded the limit value MD32720 $\text{MA}_\text{CEC}_\text{MAX}_\text{SUM}$ and had to be limited. Contour errors could have occurred as a result.

Reaction: Interface signals are set. Alarm display.

Remedy: Check characteristic data of the compensation tables assigned to the axis. Check characteristic curves in the tables (AN_CEC).

Program Continuation: Clear alarm with the RESET key. Restart part program.

20125 Axis %1: change of compensation value is too rapid

Parameters: %1 = Axis name, spindle number

Definitions: The compensation value has changed more rapidly than has been allowed for in MD32730 $\text{MA}_\text{CEC}_\text{MAX}_\text{VELO}$. It had to be limited temporarily. The missing section is repeated later but contour errors might have occurred.

Reaction: Interface signals are set. Alarm display.

Remedy: Check characteristic data of the compensation tables assigned to the axis. Check characteristic curves in the tables (AN_CEC). Possibly one of the input axes has moved more rapidly than provided for.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

20130 [Channel %1:] Contour tunnel monitoring

Parameters: %1 = Channel number
Definitions: The tool tip has exited the tunnel placed around the desired contour, i.e. the distance between tool tip and desired contour was greater than specified in the MD21050 $MC_CONTOUR_TUNNEL_TOL. The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Please inform the authorized personnel/service department. Check the following points in turn:
1. Is the machine in working order? That is, has the alarm been tripped by a sluggish axis, tool breakage or collision?
2. If the machine is in working order, reduce the velocity or improve the controller setting.
3. Possibly increase the size of the tunnel and monitor errors via analog output in order to ascertain the cause.

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

20139 [Channel %1:] Block %2 motion-synchronous action: invalid marker
Parameters:
%1 = Channel number
%2 = Block number
Definitions: Setting or deleting of a marker in the motion-synchronous action is not possible. Possible causes:
SETM(): Maximum number of markers exceeded; marker has already been set.
CLEARM(): Specified marker is not within permissible value range.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: SETM(): use marker in valid value range; do not set the marker again.
CLEARM(): use marker in valid value range.

Program Continuation: Clear alarm with the RESET key. Restart part program

20140 [Channel %1:] Motion synchronous action: traversing of command axis
%2 see NC alarm %3
Parameters:
%1 = Channel number
%2 = Axis
%3 = NC alarm
Definitions: An NC alarm was detected for a command axis which is to be traversed from a synchronous action. The NC alarm is indicated by an MMC alarm number in the 3rd parameter.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: See help information for the additional alarms.

Program Continuation: Clear alarm with the RESET key. Restart part program

20141 [Channel %1:] Motion synchronous action: illegal axis type
Parameters:
%1 = Channel number
Definitions: The requested command is not permissible in the current axis status for the command axis or spindle. This alarm occurs with command axes (POS, MOV), spindle commands from motion synchronous actions (M3/M4/M5, SPOS), coupled motion (TRAILON, TRAILOF) and lead value coupling (LEADON, LEADOF).

Reaction: NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy: First stop the axis or deactivate the coupling, then select a new status.

Program Continuation: Clear alarm with the RESET key. Restart part program

20142 [Channel %1:] Command axis %2: rotation of axis container already enabled

Parameters: %1 = Channel number
%2 = Axis

Definitions: The synchronized action instruction is not allowed on a spindle enabled for the axis container rotation. The alarm only occurs if the spindle is handed to another NCU.

Reaction: NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy: Initiate the synchronized action instruction before the axis container rotation enable or after the end of the rotation (depending on the application).

Program Continuation: Clear alarm with the RESET key. Restart part program

20143 [Channel %1:] Axis %2 command axis cannot be started as it is controlled by the PLC

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: An attempt has been made to start a command axis by means of a block-related or modal synchronous action. This start is not possible as the axis is controlled by the PLC.

Reaction: Alarm display.

Remedy: End control of the axis by the PLC and therefore return it to the channel or start the command axis with a static synchronous action.

Program Continuation: Clear alarm with the Delete key or NC START.

20144 [Channel %1:] Block %2 motion synchronous action: system variable access not possible

Parameters: %1 = Channel number
%2 = Block number

Definitions: When using system variables, it is assumed that a read/write operation can access the required data successfully. In accesses to encoder actual values or digital I/Os, the result depends on the availability of the corresponding hardware components. If an access within synchronized actions does not return a valid value, alarm 20144 is output. Outside synchronized actions, such a read/write access causes block execution to be interrupted until the result is available. Block execution is subsequently continued.

Reaction: NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy: Before reading/writing system variables, ensure that it is possible to access the required hardware components.

Program Continuation: Clear alarm with the RESET key. Restart part program
20145 [Channel %1:] Block %2 motion synchronous action: arithmetic error
Parameters: %1 = Channel number
%2 = Block number
Definitions: In calculating an arithmetic expression for a motion synchronous action, an overflow has occurred (e.g. division by zero).
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Correct error in expression.
Program Continuation: Clear alarm with the RESET key. Restart part program

20146 [Channel %1:] Block %2 motion synchronous action: nesting depth exceeded
Parameters: %1 = Channel number
%2 = Block number
Definitions: For calculating arithmetic expressions in motion synchronous blocks, an operand stack with a fixed set size is used. With very complex expressions, this stack can overflow.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Correct error in expression.
Program Continuation: Clear alarm with the RESET key. Restart part program

20147 [Channel %1:] Block %2 motion synchronous action: command not executable
Parameters: %1 = Channel number
%2 = Block number
Definitions: One of the commands for the synchronous action block cannot be executed, e.g. it is not possible to perform a Reset to the synchronous action.
Measurement level 2
- Embargo version does not allow measurement from a synchronized action
- MEASA was programmed in a synchronized action
- Measurement is already active
- Programming error (see alarm 21701)
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Change synchronous action.
Program Continuation: Execute the measurement task from an NC program first, in order to improve the error diagnostics. Only include it in the synchronized action when the first error-free run has been performed.
Clear alarm with the RESET key. Restart part program

20148 [Channel %1:] Block %2 motion synchronous action: internal error %3
Parameters: %1 = Channel number
%2 = Block number
%3 = Error code
Definitions: An internal error has occurred during processing of a synchronous action. The error code is for diagnostics purposes. Please make a note and contact the manufacturer.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Change synchronous action.
Program Continuation: Clear alarm with the RESET key. Restart part program

20149 [Channel %1:] Block %2 motion synchronous action: illegal index
Parameters: %1 = Channel number
%2 = Block number
Definitions: An invalid index was used for accessing a variable in the motion-synchronous action.
Example: ... DO $R[\$AC_MARKER[1]] = 100
This error occurs if the value of marker 1 is greater than the maximum permissible R parameter number.

PROFIBUS/PROFINET I/O:
An invalid slot / I/O area index was used while reading/writing data.
Cause:
1.: Slot / I/O area index >= max. number of available slots / I/O areas.
2.: Slot / I/O area index references a slot / I/O area that has not been configured.
3.: Slot / I/O area index references a slot / I/O area that has not been released for a system variable.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: For information only.
Program Continuation: Clear alarm with the RESET key. Restart part program

20150 [Channel %1:] Tool management: PLC terminates interrupted command
Parameters: %1 = Channel number
Definitions: Indication that the PLC has terminated an interrupted command (with alarm output) from the tool management - tool change.

Reaction: Interface signals are set.
Alarm display.
Remedy: For information only.
Program Continuation: Clear alarm with the Delete key or NC START.

20160 [Channel %1:] Tool management: PLC can terminate only incorrectly aborted commands
Parameters: %1 = Channel number
Definitions: Indication that the PLC wanted to interrupt an active command from the tool management (tool change); or that there is no command active for cancel. NCK refuses because the channel status is either ‘active’ (cancel is then not allowed), or ‘reset’ (then there is nothing to cancel).

Reaction: Interface signals are set.
Alarm display.
Remedy: For information only.
Program Continuation: Clear alarm with the Delete key or NC START.

20170 [Channel %1:] Machine data $AC_FIFO invalid
Parameters: %1 = Channel number
Definitions: the structure of the FIFO variable $AC_FIFO1 - $AC_FIFO10 determined by machine data MD2860 $MC_NUM_AC_FIFO, MD28262 $MC_START_AC_FIFO, MD28264 $MC_LEN_AC_FIFO, MD28266 $MC_MODE_AC_FIFO cannot be stored in the R parameter field defined in MD28050 $MC_MM_NUM_R_PARAM.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Increase the number of the R parameters or reduce the FIFO elements.

MD28050 $MC_MM_NUM_R_PARAM = MD28262 $MC_START_AC_FIFO + MD28260 $MC_MM_NUM_R_PARAM = MD28264 $MC_LEN_AC_FIFO + MD28260 $MC_NUM_AC_FIFO * (MD28264 $MC_LEN_AC_FIFO + 6)
Program Continuation: Switch control OFF - ON.

20200 [Channel %1:] Invalid spindle number %2 with tool fine compensation
Parameters: %1 = Channel number target channel
%2 = Spindle number
Definitions: There is no spindle/axis assignment in the target channel for the spindle specified in the PUTFTOC command.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Modify program in channel that writes the tool fine compensation.
Program Continuation: Clear alarm with the RESET key. Restart part program

20201 [Channel %1:] Spindle %2 no tool assigned
Parameters: %1 = Channel number
%2 = Spindle number
Definitions: In order to make allowance for the fine tool compensation for the tool currently in the spindle, a spindle/tool assignment must be active. This is not presently the case for the programmed spindle in the target channel of fine tool compensation.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: 1. Modify the part program (write the tool fine compensation).
2. Establish spindle/tool assignment by programming:
 - TMON (tool monitoring)
 - GWPSION (tool selection)
Program Continuation: Clear alarm with the RESET key. Restart part program

20203 [Channel %1:] No active tool
Parameters: %1 = Channel number
Definitions: A tool fine compensation has been written for the active tool of channel %1 with PUTFTOC. No tool is active in this channel. Therefore, the compensation cannot be assigned.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Correct the program.
Program Continuation: Clear alarm with the RESET key. Restart part program

20204 [Channel %1:] PUTFTOC command not allowed with FTOCOF
Parameters: %1 = Channel number
Definitions: A tool fine compensation has been written for channel %1 with PUTFTOC. The tool fine compensation is not active in this channel. FTOCON must be active in the target channel of the PUTFTOC command.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Correct the program in the machining channel: Select FTOCON so that the channel is ready to receive the PUTFTOC command.
Program Continuation:
Clear alarm with the RESET key. Restart part program

20210

Parameters:
\%1 = Channel number
\%2 = Spindle number
\%3 = Block number, label

Definitions:
It was not possible to calculate a tool diameter (no speed specified for the spindle) for centerless grinding because it was not allowed by the input positions. The old S value still applies.

Reaction:
Alarm display.

Remedy:
- Modify program
- Select new traversing positions for centerless axes
- or suppress computation by G00.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

20211

Parameters:
\%1 = Channel number
\%2 = Spindle number
\%3 = Block number, label

Definitions:
The support point calculated for centerless grinding is beyond the range limits.

Machine data:
Modify MD21518 $MC_TRACLG_CONTACT_UPPER_LIMIT
Modify MD21520 $MC_TRACLG_CONTACT_LOWER_LIMIT

Reaction:
Alarm display.

Remedy:
- Check centerless axis positions and machine data.
- Modify program.
- Select new traversing positions for centerless axes
- or suppress computation by G00.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

20300

Parameters:
\%1 = Channel number
\%2 = Axis name, spindle number

Definitions:
On traversing the displayed (virtual) orientation axis, a tool orientation is to be set for which the kinematics of this machine are not possible.

Reaction:
Alarm display.

Remedy:
Cancel the JOG movement and specify another (possible) change of orientation.

Program Continuation:
Clear alarm with the Delete key or NC START.

21550

Parameters:
\%1 = Channel number
\%2 = Axis name
\%3 = Cause

Definitions:
It has been tried to retract a following axis of an axis coupling or an output axis of a transformation through the master axis or input axis of a transformation. This is not permitted in the current situation. Possible reasons:
1. No permissible direction of retraction
2. Coupling not synchronous
3. Retraction not permitted for the active coupling
4. Reserved
5. Retraction not permitted for the active transformation

Reaction:
NC Start disable in this channel.
Alarm display.
Remedy: Remedy for error cause:
1 Define another travel direction
2 Deactivate the coupling and travel the axis/axes separately
3 Deactivate the coupling and travel the axis/axes separately
4 Reserved
5 Deactivate the transformation and travel the axis/axes separately

Program Continuation: Clear alarm with the RESET key. Restart part program

21610 [Channel %1:] Axis %2 encoder %3 frequency exceeded

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = String (encoder number)

Definitions: The maximum permissible frequency of the currently active encoder (axis-specific interface signal DB31,...DBX1.5 / 1.6 (position measuring system 1/2)) in the axis-specific MD36300 $MA_ENC_FREQ_LIMIT [n] (n ... encoder number, 1 or 2) has been exceeded. The reference of the actual value to the mechanical slide position may have been lost. The alarm can be reprogrammed in MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Remedy: Check MD36300 $MA_ENC_FREQ_LIMIT [n] and NC/PLC interface signal DB31,...DBX1.5 / 1.6 (position measuring system 1/2).

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

21612 [Channel %1:] Axis %2: enable reset, cause %3

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Cause of the alarm

Definitions: Causes of alarm:
0: The cause of the alarm cannot be precisely determined.
1: The interface signal DB31,...DBX2.1 (Servo enable) is missing
2: The interface signal DB31, ... DBX21.7 (Pulse enable) is missing
3: Drive signal DB31, ... DBX93.7 (Impulses enabled) is not set
4: Drive signal DB31, ... DBX93.5 (Drive ready) is not set

One of the motion-enabling signals (e.g. "Servo enable", "Pulse enable", parking/encoder selection (only for axes) or drive-specific enables (such as terminal 663 with SIMODRIVE 611D) has been reset for the displayed axis. The alarm can be reported with positioning axes, spindles and for axes from the geometry grouping. The axes entered in the channel-specific MD array MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB are regarded as axes belonging to the geometry grouping. Servo enable must exist for all available geometry axes, regardless of whether or not they are currently in motion.

Occurs in connection with SAFETY function: If a test stop is performed with linked axes, the alarm is issued if a motion command from the ELG grouping is pending during the test stop of the slave axis.

Reaction: The NC switches to follow-up mode. NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.
Overview of Alarms

NCK alarms

Remedy: Please inform the authorized personnel/service department.
Check the interface signals DB31, ... DBX2.1 (Servo enable), DB31, ... DBX21.7 (Pulse enable),
check the drive signals DB31, ... DBX93.7 (Pulses enabled), DB31, ... DBX93.5 (Drive ready) for
example with the PLC status display in the DIAGNOSTICS operating area. Check the encoder selection
(for axes) as well as other signals enabling motion (such as SIMODRIVE 611D terminal 663 etc.)
according to the drive type used.
When the terminal enables of the drive have failed, trace back the wiring or hardware function (for
example relay function) or proceed as stated in the relevant drive documentation.
With SAFETY: With active actual-value linkage, output of the error message on the slave axis can be
prevented by increasing MD36060 $MA_STANDSTILL_VELO_TOL (default value is 5 mm).

Program Con-

21613 Axis %1 measuring system changing
Parameters: %1 = Axis name, spindle number
Definitions: The measuring system for this axis is changing.
Reaction: Alarm display.
Remedy: -
Program Con-

21613 Axis %1 measuring system changing
Parameters: %1 = Axis name, spindle number
Definitions: The measuring system for this axis is changing.
Reaction: Alarm display.
Program Con-

21614 [Channel %1:] Axis %2 hardware limit switch %3
Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = String (+, - or +/-)
Definitions: The signal DB31, ... DBX12.1 / 12.0 (Hardware limit switch plus/minus) has been set at the NC/PLC
interface.
Reaction: NC Start disable in this channel.
Alarm display.
Remedy: Please inform the authorized personnel/service department.
1. With axes that have already been referenced, the software limit switch 1 or 2 should respond before
the hardware limit switch is reached. Check MD36110 $MA_POS_LIMIT_PLUS, MD36100
$MA_POS_LIMIT_MINUS, MD36130 $MA_POS_LIMIT_PLUS2 and MD36120
$MA_POS_LIMIT_MINUS2 and the NC/PLC interface signal for the selection DB31, ... DBX12.3 /
12.2 (1st/2nd software limit switch plus/minus) and correct, if necessary (PLC user program).
2. If the axis has not yet been referenced, it is possible to depart from the hardware limit switch in the
opposite direction in JOG mode.
3. Check the PLC user program and the connection from the switch to the PLC input module, provided
the axis has not reached the hardware limit switch at all.
Program Con-

21615 [Channel %1:] Axis %2 taken from traverse mode to follow-up mode
Parameters: %1 = Channel number
%2 = Axis name, spindle number
Definitions: This axis has been taken from traverse mode and put into "Follow-up" mode, for instance because the
pulse enable for the drive has been reset.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: -
Program Con-

21615 [Channel %1:] Axis %2 taken from traverse mode to follow-up mode
Parameters: %1 = Channel number
%2 = Axis name, spindle number
Definitions: This axis has been taken from traverse mode and put into "Follow-up" mode, for instance because the
pulse enable for the drive has been reset.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: -
Program Con-

Clear alarm with the RESET key. Restart part program
Clear alarm with the RESET key. Restart part program
21616 [Channel %1:] Block %2 overlaid motion active at transformation switchover

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The overlaid motion in the BCS changes its significance because of the transformation change and can therefore lead to undesired axis movements.

Reaction:
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Take out the overlaid movement.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

21617 [Channel %1:] Block %2 transformation does not allow to traverse the pole

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The preset curve passes through the pole or a forbidden area of the transformation.

Reaction:
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Modify the part program (if the alarm has occurred in AUTO mode).
To escape from the alarm position, transformation must be deselected (it is not enough to try a RESET if the transformation remains active when RESET is applied).

Program Continuation:
Clear alarm with the RESET key. Restart part program

21618 [Channel %1:] As from block %2 transformation active: overlaid motion too great

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The share of overlaid motion on the transformation-related axes is so high that the path movement planned by the preparation no longer sufficiently corresponds to the actual ratio for the interpolation.
Strategy of singularities, monitoring of working range limitation and dynamic Look Ahead are possibly no longer correct.

Reaction:
Alarm display.

Remedy:
With overlaid motion it is necessary to keep a sufficiently large path safety distance with regard to poles and working range limitations.

Program Continuation:
Clear alarm with the Delete key or NC START.
Overview of Alarms 03/2009

NCK alarms

21619 [Channel %1:] Block %2 transformation active: motion not possible
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The machine kinematics does not allow the specified motion. Transformation-dependent error causes can be in:
 TRANSMIT: A (circular) area exists around the pole, where positioning is not possible. The area is caused by the fact that the tool reference point cannot be traversed as far as into the pole. The area is defined by:
 - the machine data (MD249.. $MC_TRANSMIT_BASE_TOOL_...)
 - the active tool length compensation (see $TC_DP..).
 Whether the tool length compensation is included in the calculation depends on the working plane selected (see G17...). The machine stops at the edge of the area where positioning is not possible.

Reaction: Local alarm reaction.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.

Remedy: Modify part program. Change the incorrectly specified tool length compensation.
Note: RESET alone is not enough if transformation also remains active during RESET.

Program Continuation: Clear alarm with the RESET key. Restart part program

21620 [Channel %1:] Axis %2 Emergency braking ramp activated
Parameters: %1 = Channel number
 %2 = Axis name, spindle number
Definitions: The axial emergency braking ramp has been activated for the specified axis/spindle
The following causes are possible for activation of the emergency braking ramp:
Alarm 26052: Path velocity for auxiliary function output too high
Alarm 1012 : System error with ID 550006
Alarm 1016 : System error with ID 550003, 550005 and 550010
Context-sensitive braking request with priority 13 is active

Reaction: NC Start disable in this channel.
 Local alarm reaction.
 The NC switches to follow-up mode.
 Interface signals are set.
 Alarm display.

Remedy: Please inform the authorized personnel/service department. Remove or reset the cause of the alarm.

Program Continuation: Clear alarm with the RESET key. Restart part program

21650 [Channel %1:] Axis %2 overlaid motion not allowed
Parameters: %1 = Channel number
 %2 = Axis name, spindle number
Definitions: An overlaid motion was requested for the axis, however, this is not allowed due to the MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED.

Reaction: Local alarm reaction.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Deselect the overlaid motion or change MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED.

Program Continuation: Clear alarm with the RESET key. Restart part program

21660 [Channel %1:] Block %2 axis %3 conflict between SYNACT: $AA_OFF and CORROF
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Axis name

Definitions: The machine kinematics does not allow the specified motion. Transformation-dependent error causes can be in:
 SYNACT: $AA_OFF and CORROF
Definitions: When deselecting the position offset ($AA_OFF) via the part program command CORROF (<axis>, "AA_OFF") an active synchronized action is detected that immediately sets $AA_OFF for the axis (DO_$AA_OFF[<axis>] =<value>). Deselectation is executed and $AA_OFF not set again.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify part program.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

21665 [Channel %1:] $AA_TOFF cleared

Parameters: %1 = Channel number

Definitions: If the tool position is changed with RESET and $AA_TOFF is active during RESET, the position offset ($AA_TOFF) is cleared.

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: Modify the RESET setting in $AA_TOFF_MODE.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

21670 [Channel %1:] Block %2 illegal change of tool direction with $AA_TOFF active

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: If an offset has been activated in tool direction by means of $AA_TOFF[i], no block is allowed to be activated in which the offset axis assignment i is modified (plane change, tool change cutting tool <-> turning tool, transformation change, TRAFOOF, TCARR=0, geometry axis exchange)

Reaction: Correction block is reorganized.
Local alarm reaction.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: - Modify part program
- Program TOFFOF()

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

21700 [Channel %1:] Block %3 axis %2 touch probe already deflected, edge polarity not possible

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number

Definitions: The probe programmed under the keyword MEAS or MEAW is already deflected and has switched.
For a further measuring operation, the probe signal must first be canceled (quiescent state of the probe).
The axis display is of no significance at the present time but an axis-specific evaluation has been planned for later stages of development.

Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Verify the starting position of the measuring operation or check the probe signals in the PLC interface DB10 DBX107.0 / 107.1 (Probe actuated key 1/key 2). Are the cables and connectors in good order?
Overview of Alarms 03/2009

NCK alarms

Program Continuation: Clear alarm with the RESET key. Restart part program.

21701 [Channel %1:] Block %3 axis %2 measurement not possible
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number

Definitions:
Measurement level 2 (MEASA, MEAWA, MEAC).
There is an error in the programmed measurement task.
Possible causes:
- Invalid measurement mode
- Invalid probe
- Invalid encoder
- Invalid number of measurement signal edges
- Identical measurement signal edges are only programmable in mode 2
- Invalid FIFO number
- Mismatch between the number of FIFOs programmed and the number of probes used in the measurement task.
Further causes:
A measurement task is already active (e.g. from a synchronized action).

Reaction:
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct the measurement tasks.

Program Continuation: Clear alarm with the RESET key. Restart part program.

21702 [Channel %1:] Block %3 axis %2 measurement aborted
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number

Definitions:
The measurement block has ended (the programmed end position of the axis has been reached) but the activated touch probe has not yet responded.
Measurement level 2 (MEAWA, MEASA, MEAC)
Measured values cannot be converted to the workpiece coordinate system. The measured values of the GEO axes programmed in the measurement task are only available in the machine coordinate system.
Causes:
Not all GEO axes were programmed in the measurement task. At least one measured value is therefore missing for conversion back into the workpiece coordinate system.
Further causes:
The measurement tasks programmed for all GEO axis are not identical.

Reaction:
Alarm display.

Remedy:
Verify the traversing movement in the measurements block.
- Is it necessary in all cases for the activated probe to have switched up to the specified axis position?
- Are the probe, cable, cable distributor, terminal connections in good order?
Either program all GEO axes explicitly or program the traversing movement with the POS[axis] command.

Program Continuation: Clear alarm with the Delete key or NC START.

21703 [Channel %1:] Block %3 axis %2 touch probe not deflected, illegal edge polarity
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number
Definitions: The selected probe is not (!) deflected and therefore cannot record any measured value from the deflected to the non-deflected state. Measurement level 2 (MEAWA, MEASA, MEAC)
The degree of deflection of the probe at the start of the measurement task is identical to the first programmed measurement signal edge. The test is only performed in mode 2.

Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: - Check probe
- Check start positioning for measuring
- Check program

Program Continuation: Clear alarm with the RESET key. Restart part program

21740 Output value at analog output no. %1 has been limited
Parameters: %1 = No. of output
Definitions: The value range of the analog output n is limited by MD10330 $MN_FASTIO_ANA_OUTPUT_WEIGHT[n].

Reaction: Alarm display.

Remedy: With $A_OUTA[.] = x no greater values can be programmed than permitted in the respective machine data.

Program Continuation: Clear alarm with the Delete key or NC START.

21750 Error during output of cam switching signals via timer
Definitions: The signal output activated by the MD10480 $MN_SW_CAM_TIMER_FASTOUT_MASK via the hardware timer (independent of the clock grid) did not work. Cause: interpolation cycle is greater than 15 ms.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Please inform the authorized personnel/service department. Shorten interpolation cycle (if at all possible).

Program Continuation: Switch control OFF - ON.

21760 [Channel %1:] Block %2 too many auxiliary functions programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The number of programmed auxiliary functions has exceeded the maximum permissible amount. This alarm can occur in conjunction with motion synchronous actions: The maximum number of auxiliary functions must not be exceeded in motion block and motion synchronous actions.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Modify part program.

Program Continuation: Clear alarm with the RESET key. Restart part program
21800 [Channel %1:] Workpiece setpoint %2 reached
Parameters:
%1 = Channel number
%2 = Workpiece setpoint
Definitions:
This alarm is activated via MD27880 $MC_PART_COUNTER, bit 1: The number of counted workpieces ($AC_ACTUAL_PARTS or $AC_SPECIAL_PARTS) is equal or already greater than the programmed value for the number of required workpieces ($AC_REQUIRED_PARTS). At the same time, the channel VDI signal "Workpiece setpoint reached" is output. The value for the number of counted workpieces ($AC_ACTUAL_PARTS) is reset, while the value of $AC_SPECIAL_PARTS is retained.
Note:
The setpoint/actual comparisons of the workpieces are only made after an NC start under the condition that $AC_REQUIRED_PARTS > 0. If $AC_REQUIRED_PARTS has a negative value, all workpiece counts activated through MD27880 $MC_PART_COUNTER are frozen at the values they have reached, and the nominal/actual comparison is discontinued.
Reaction:
NC not ready.
Interface signals are set.
Alarm display.
Remedy:
No program interrupt. Delete alarm display.
Program Continuation:
Clear alarm with the Delete key or NC START.

22000 [Channel %1:] Block %3 spindle %2 gear stage change not possible
Parameters:
%1 = Channel number
%2 = Spindle number
%3 = Block number, label
Definitions:
A gear stage change for the spindle will not be possible, if:
- thread cutting (G33, G34, G35) is active
- the spindle is active as master or slave spindle in a coupling
- the spindle is being positioned
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
The gear stage is to be set prior to the corresponding machining step.
If it is necessary, however, to change the gear stage within one of the above mentioned functions, this function must be switched off for the time of the gear stage change. Thread cutting is deselected with G1; synchronous spindle coupling is switched off with COUPOF; the spindle positioning operation is exited with M3, M4 or M5.
Program Continuation:
Clear alarm with the RESET key. Restart part program

22005 [Channel %1:] Spindle %2 selected gear stage %3 not installed
Parameters:
%1 = Channel number
%2 = Spindle number
%3 = Gear stage
Definitions:
The first gear stage data block is active. The required gear stage is not installed in the 1st gear stage data block. The number of installed gear stages is configured in MD35090 $MA_NUM_GEAR_STEPS.
Examples for the occurrence of the alarm with 3 gear stages installed (MD35090 $MA_NUM_GEAR_STEPS = 3):
* ...DO M44 or DO 45 was programmed in synchronized action for the spindle concerned.
* ...DO M70 was programmed and MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE was larger than 3.
Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Modify part program: Only those valid gear stages can be entered which have also been installed according to MD35090 $MA_NUM_GEAR_STEPS.
Limit M70 configuration (MD 35014 $MA_GEAR_STEP_USED_IN_AXISMODE) to MD35090 $MA_NUM_GEAR_STEPS.
NCK alarms

Program Continuation: Clear alarm with the RESET key. Restart part program

22010 [Channel %1:] Block %3 spindle %2 actual gear stage differs from requested gear stage

Parameters: %1 = Channel number
%2 = Spindle number
%3 = Block number, label

Definitions: The requested gear stage change has been concluded. The actual gear stage reported by the PLC as being engaged is not the same as the required gear stage called for by the NC. Note: Wherever possible, the requested gear stage should always be engaged.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. Correct the PLC program.

Program Continuation: Clear alarm with the Delete key or NC START.

22011 [Channel %1:] Block %3 spindle %2 change to programmed gear stage not possible

Parameters: %1 = Channel number
%2 = Spindle number
%3 = Block number, label

Definitions: With the ‘DryRun’, ‘ProgramTest’ and ‘SearchRunByProgTest’ functions deselected, it is not possible in the Repos module to carry out a gear stage change to a previously programmed gear stage. This is the case, if the spindle is in the deselection block not active in speed control mode, as a slave axis or in a transformation. Execution of a gear stage change is avoided if the above mentioned functions are deselected by resetting bit 2 of MD35035 $MA_SPIND_FUNCTION_MASK.

Reaction: Alarm display.

Remedy: Change deselection block or block search target block to speed control mode (M3, M4, M5, SBCOF). Set bit 2 of MD35035 $MA_SPIND_FUNCTION_MASK to 0.

Program Continuation: Clear alarm with the Delete key or NC START.

22012 [Channel %1:] Block %2 leading spindle %3 is in simulation.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Leading spindle number

Definitions: When coupling, no synchronism can be achieved if the lead spindle/axis is in simulation mode and the following spindle/axis is not.

Reaction: Alarm display.

Remedy: Set the following spindle/axis to simulation mode, or do not simulate the lead spindle/axis (MD30130 $MA_CTRLOUT_TYPE). If the differing settings have been selected on purpose, the alarm can be suppressed with the MD11410 $MN_SUPPRESS_ALARM_MASK Bit21 = 1.

Program Continuation: Clear alarm with the Delete key or NC START.

22013 [Channel %1:] Block %2 dependent spindle %3 is in simulation.

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of following spindle

Definitions: When coupling, no synchronism can be achieved if the following spindle/axis is in simulation mode and the lead spindle/axis is not.

Reaction: Alarm display.

Remedy: Set the lead spindle/axis to simulation mode, or do not simulate the following spindle/axis (MD30130 $MA_CTRLOUT_TYPE). If the differing settings have been selected on purpose, the alarm can be suppressed with the MD11410 $MN_SUPPRESS_ALARM_MASK, Bit21 = 1.

Program Continuation: Clear alarm with the Delete key or NC START.
22014 [Channel %1:] Block %2. The dynamics of leading spindle %3 and dependent spindle %4 is too variably

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Leading spindle number
%4 = Number of following spindle

Definitions: If the spindles / axes differ strongly in their dynamic behavior during coupling, synchronism cannot be achieved. The dynamics are dependent on many settings: default feedforward control, parameter block data, first of all the servo gain factor, symmetrizing time, etc., feedforward control mode and feedforward setting parameter, FIPO mode, jerk filter and dynamic filter settings, DSC on/off. Among these are the following machine data: MD32620 $MA_FFW_MODE, MD32610 $MA_VELO_FFW_WEIGHT, MD33000 $MA_FIPO_TYPE, VEL_FFW_TIME, MD32200 $MA_POSCTRL_GAIN, MD32410 $MA_AX_JERK_TIME, MD32644 $MA_STIFFNESS_DELAY_TIME, MD10082 $MN_CTRLOUT_LEAD_TIME

Reaction: Alarm display.

Remedy: Use spindles/axes with the same dynamics. If the differing settings have been selected on purpose, the alarm can be suppressed with the MD11410 $MN_SUPPRESS_ALARM_MASK Bit21 = 1.

Program Continuation: Clear alarm with the Delete key or NC START.

22015 [Channel %1:] Block %2 following spindle %3 No dynamic response for supplementary motion

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of following spindle

Definitions: The difference motion of the slave spindle cannot be executed due to a lack of available velocity. The coupling consumes the entire available dynamic response. The slave spindle is already rotating at maximum speed. In the part program a deadlock might occur. The alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK bit26 = 1.

Reaction: Alarm display.

Remedy: Reduce the speed of the master spindle

Program Continuation: Clear alarm with the Delete key or NC START.

22016 [Channel %1:] Block %2 following spindle %3 in the range of reduced acceleration capability

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of following spindle

Definitions: The following spindle is driven with position control. Additional motion components of the following spindle shall not leave the linear range of the motor used. Otherwise deviations in the contour or servo alarms may occur. Monitoring refers to the configuration in MD35220 $MA_ACCEL_REDUCTION_SPEED_POINT. If the situation is mastered by the user, the alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK Bit25 = 1.

Reaction: Alarm display.

Remedy: Use coupling type VV and safeguard SPCOF for master and following spindle.

Program Continuation: Clear alarm with the Delete key or NC START.
22018 [Channel %1:] Block %2 following axis/spindle %3 time monitoring: 'Synchronism fine' not reached

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Following axis/spindle number

Definitions:
After reaching the setpoint-side synchronism, the time until reaching the actual value-side synchronism is fine monitored.
The tolerance is not reached within the time window defined in MD37240 $MA_COUP_SYNC_DELAY_TIME[0]:
 MD37210 $MA_COUPLE_POS_TOL_FINE and MD37230 $MA_COUPLE_VELO_TOL_FINE

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department.

The interrelation between MD37240 $MA_COUP_SYNC_DELAY_TIME[0] and MD37210 $MA_COUPLE_POS_TOL_FINE or MD37230 $MA_COUPLE_VELO_TOL_FINE must be adapted to the mechanical conditions.

Program Continuation:
Clear alarm with the Delete key or NC START.

22019 [Channel %1:] Block %2 following axis/spindle %3 time monitoring: 'Synchronism coarse' not reached

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Following axis/spindle number

Definitions:
After reaching the setpoint-side synchronism, the time until reaching the actual value-side synchronism is coarsely monitored.
The tolerance is not reached within the time window defined in MD37240 $MA_COUP_SYNC_DELAY_TIME[0]:
 MD37200 $MA_COUPLE_POS_TOL_COARSE or MD37220 $MA_COUPLE_VELO_TOL_COARSE

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department.

The interrelation between MD37240 $MA_COUP_SYNC_DELAY_TIME[1] and MD37200 $MA_COUPLE_POS_TOL_COARSE or MD37220 $MA_COUPLE_VELO_TOL_COARSE must be adapted to the mechanical conditions.

Program Continuation:
Clear alarm with the Delete key or NC START.

22020 [Channel %1:] Block %3 spindle %2 gear step change position not reached

Parameters:
%1 = Channel number
%2 = Spindle number
%3 = Block number, label

Definitions:
Through the configuration of MD35010 $MA_GEAR_STEP_CHANGE_ENABLE[AXn] = 2, the spindle is traversed to the position stored in MD35012 $MA_GEAR_STEP_CHANGE_POSITION[AXn] before the actual gear step change. The required gear step change position has not been reached.

Reaction:
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct sequence in the PLC.

Program Continuation:
Clear alarm with the RESET key. Restart part program

22022 [Channel %1:] Block %2 spindle %3 gear stage %4 is expected for axis mode.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Spindle
%4 = Gear stage
Definitions: The gear stage required for axis mode has not been installed.

A gear stage has been configured in MR35014 $MA_GEAR_STEP_USED_IN_AXISMODE, in which the spindle is to be in axis mode. This gear stage is checked whenever the spindle is switched into axis mode. The configured gear stage is compared with the gear stage output by the PLC (NC/PLC interface signal DB31, ... DBX16.0, . . . 2 (Actual gear stage A through C)).

This alarm will be output if the gear stages are not the same.

Reaction: Interface signals are set.

Alarm display.

Remedy: Program M70 before the switch to axis mode. The gear stage configured in MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE is then automatically loaded.

No gear stage change is required if the configured gear stage is already active. M40 remains active beyond the gear stage change.

Consider MD20094 $MC_SPIND_RIGID_TAPPING_M_NR.

Program Continuation: Clear alarm with the Delete key or NC START.

22030 [Channel %1:] Block %2 following spindle %3 Impermissible programming

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Spindle

Definitions: With synchronous spindle-VV-coupling an additional motion for the following spindle can only be programmed with M3, M4, M5 and S... The paths created by specified positions cannot be maintained safely for a velocity coupling, especially if a position control is missing. If dimensional accuracy or reproducibility are not important, the alarm can be suppressed with MD11410 $MN_SUPPRESS_ALARM_MASK Bit27 = 1.

Reaction: NC Start disable in this channel.

Alarm display.

NC Stop on alarm.

Remedy: Use synchronous spindle-DV-coupling or program direction of rotation and speed.

Program Continuation: Clear alarm with the RESET key. Restart part program

22033 [Channel %1:] Block %2 Axis/spindle %3 'Correct synchronism' diagnostics %4

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis/spindle number
%4 = Diagnostics

Definitions: The following situation occurred during 'Correct synchronism':
- Diagnosis 1: An existing override motion is terminated on key reset.
- Diagnosis 2: The override motion has been deleted.
- Diagnosis 3: Writing of override value not allowed. Synchronism override is deleted.
- Diagnosis 4: Override motion is stopped temporarily (e.g. G74 reference point approach)
- Diagnosis 5: Delay of override motion: acceleration capacity used up by other motions.
- Diagnosis 6: Delay of override motion: velocity used up by other motions.
- Diagnosis 7: Delay of override motion: the maximum speed is limited to 0. System variable $AC_SMAXVELO_INFO[n] shows the reason for this.
- Diagnosis 8: Delay of override motion: the maximum acceleration capacity is limited to 0.

MD11411 $MN_ENABLE_ALARM_MASK activates this alarm:
- Bit 9 = 1 for diagnosis 1 to 6
- Bit 12 = 1 for diagnosis 7 to 8

Reaction: Alarm display.

Remedy: Deactivate the alarm with MD 11411 $MN_ENABLE_ALARM_MASK Bit9 = 0 or Bit12 = 0.

Program Continuation: Clear alarm with the Delete key or NC START.
22034 [Channel %1:] Block %2 following spindle %3 PLC signal 'Enable override' has been set.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Number of following spindle

Definitions:
PLC signals DB31..DBX31.6 'Correct synchronism' and DB31.., DBX26.4 'Override enable' must not be set at the same time with CPSETTYPE="COUP". If an overlaid movement exists for the following spindle, override value $AA_COUP_CORR[Sn] cannot be calculated properly.

Reaction: Alarm display.
Remedy: Set PLC signal DB31.., DBX26.4 'Override enable' to 0.
Program Continuation: Clear alarm with the Delete key or NC START.

22035 [Channel %1:] Block %2 following axis/spindle %3 unable to determine the offset value (reason %4).

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Following axis/spindle number
%4 = Reason

Definitions:
The determination of the override value ($AA_COUP_CORR[Sn]) intended by the NC/PLC signal DB31, ... DBX31.6 (Correct synchronism) cannot be executed. The override value cannot be calculated properly. The reasons for this may be:
- Reason 1: The following axis is not configured as a spindle.
- Reason 2: The coupling has more than one active leading axis.
- Reason 3: The leading axis is not configured as a spindle.
- Reason 4: The coupling factor is neither 1 nor -1 (the quotient from CPLNUM and CPLDEN).
- Reason 5: CPLSETVAL = "cmdvel".
- Reason 6: An independent motion component of the following spindle is active (VDI interface signal DB31.., DBX98.4 = 1).
- Reason 7: There is no following spindle synchronism on the setpoint side.
- Reason 8: The synchronism on the setpoint side has decreased again.

Reaction: Alarm display.
Remedy: The following remedies are available for the indicated reasons:
- Reasons 1 to 5: The coupling has to be reconfigured/reprogrammed.
- Reasons 6 and 7: Wait until VDI interface signals DB31.., DBX99.4 'Synchronization running' = 0 and DB31.., DBX98.4 'Overlaid movement' = 0 before setting VDI interface signal DB31...DBX31.6 'Correct synchronism'.
- Reason 8: Wait until the following axle/spindle can follow the leading values before setting VDI interface signal DB31.., DBX31.6 'Correct synchronism'.

Program Continuation: Clear alarm with the Delete key or NC START.

22036 [Channel %1:] Block %2 Axis/spindle %3 Synchronism override not possible (reason %4)

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Axis/spindle number
%4 = Reason

Definitions:
The synchronism override intended by setting the VDI interface signal DB31...DBX31.6 'Correct synchronism' or writing variable $AA_COUP_CORR[Sn] cannot currently be considered. The reasons may be:
- Reason 1: Reference point approach or zero mark synchronization for spindles is active.
- Reason 2: Deletion of synchronism override is active.
- Reason 3: Writing is not allowed.

Reaction: Alarm display.
Remedy: Wait until the conditions for override value processing are available again prior to setting VDI interface signal DB31...DBX31.6 'Correct synchronism' or writing variable $AA_COUP_CORR[Sn]:
- Reason 1: Reference point approach / zero mark synchronization completed.
- Reason 2: Deletion of synchronism override completed.
- Reason 3: Writing allowed.
Program Continuation: Clear alarm with the Delete key or NC START.

22037 [Channel %1:] Block %2 Axis/spindle %3 'Correct synchronism' is being ignored
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis/spindle number
Definitions: VDI interface signal DB31...DBX31.6 'Correct synchronism' is being ignored, because VDI interface signal DB31...DBX31.7 'Delete synchronism override' has been set.
Reaction: Alarm display.
Remedy: Reset the two VDI interface signals DB31...DBX31.7 'Delete synchronism override' and DB31...DBX31.6 'Correct synchronism', before the latter signal can be set again.
Program Continuation: Clear alarm with the Delete key or NC START.

22038 [Channel %1:] Block %2 Axis/Spindle %3 'Delete synchronism override' is being ignored
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis/spindle number
Definitions: VDI interface signal DB31...DBX31.7 'Correct synchronism' is being ignored, because VDI interface signal DB31...DBX31.6 'Delete synchronism override' has been set.
Reaction: Alarm display.
Remedy: Reset the two VDI interface signals DB31...DBX31.6 'Correct synchronism' and DB31...DBX31.7 'Delete synchronism override', before the latter signal can be set again.
Program Continuation: Clear alarm with the Delete key or NC START.

22040 [Channel %1:] Block %3 spindle %2 is not referenced with zero marker
Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
Definitions: The current position is not referenced with the measuring system position although reference is made to it.
Reaction: Alarm display.
Remedy: Correct NC part program. Create the zero mark synchronization by positioning, by rotation (at least 1 revolution) in speed control mode or G74 before switching the alarm generating function on.
If this has been intentionally programmed, the alarm can be suppressed in the cyclic check with position control already enabled by means of MD11410 $MN_SUPPRESS_ALARM_MASK Bit21 = 1.
Program Continuation: Clear alarm with the Delete key or NC START.

22045 Block %2 spindle/axis %3 not available in channel %1 because active in channel %4
Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis name, spindle number
%4 = Number of the channel in which the spindle/axis is currently active.
Definitions: The specified spindle/axis is required in channel %1 for the correct execution of a function. The spindle/axis is currently active in the %4 channel. The constellation can only occur with replacement axes.
Problem case: A synchronized spindle coupling was programmed. The master spindle/axis is not contained in the channel programmed for the coupling at the time the coupling is activated. The master spindle/axis can be moved by FC18 or synchronized actions. When using FC18, please note that the master spindle/axis must be assigned to the channel which activates the coupling. When FC18 terminates, the master spindle/axis must not be assigned to another channel via PLC while the coupling is still active (VDI interface signals).
Reaction: Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: - Program a GET for the master spindle/axis in the NC program before activating the coupling, or
- Assign the master spindle/axis to the channel that activated the coupling via PLC.

Program Continuation: Clear alarm with the Delete key or NC START.

22050 [Channel %1:] Block %3 spindle %2 no transition from speed control mode to position control mode

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label

Definitions: - An oriented spindle stop (SPOS/SPOSA) has been programmed or the position control of the spindle was switched on with SPCON but no spindle encoder has been defined.
- When switching on the position control, the spindle speed is greater than the limiting speed of the measuring system.

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
- Spindle without attached encoder: Any NC language elements requiring the encoder signals must not be used.
- Spindle with attached encoder: Enter the number of spindle encoders used in the MD30200 $MA_NUM_ENCS.

Program Continuation: Clear alarm with the RESET key. Restart part program.

22051 [Channel %1:] Block %3 spindle %2 reference mark not found

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label

Definitions: When referencing, the spindle turned through a greater distance than given in the axis-specific MD34060 $MA_REFP_MAX_MARKER_DIST, without receiving a reference mark signal. The check is performed for spindle positioning with SPOS or SPOSA when the spindle has not previously run with speed control (S=...).

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Check and correct the MD34060 $MA_REFP_MAX_MARKER_DIST. The value entered states the distance in [mm] or [degrees] between 2 zero markers.

Program Continuation: Clear alarm with the RESET key. Restart part program.

22052 [Channel %1:] Block %3 spindle %2 no standstill on block change

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label

Definitions: The displayed spindle has been programmed as spindle or as axis even though a positioning operation is still running from the previous block (with SPOSA ... spindle positioning beyond block limits). Example:
N100 SPOSA [2] = 100
N125 S2 = 1000 M2 = 04 ; Error, if spindle S2 from block N100 is still running!

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Before programming the spindle/axis again using the SPOSA instruction, a WAITS command should be activated in order to wait for the programmed spindle position.

Example:
N100 SPOSA [2] = 100
N125 WAITS (2)
N126 S2 = 1000 M2 = 04

Program Continuation: Clear alarm with the RESET key. Restart part program

22053 [Channel %1:] Block %3 spindle %2 reference mode not supported

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label

Definitions: In the case of SPOS/SPOSA with an absolute encoder, only the referencing mode MD34200 $MA_ENC_REFP_MODE = 2 is supported! SPOS/SPOSA does not support MD34200 $MA_ENC_REFP_MODE = 6 at all!

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Modify setting of MD34200 $MA_ENC_REFP_MODE or change to JOG+REF and then reference.

Program Continuation: Clear alarm with the RESET key. Restart part program

22054 [Channel %1:] Block %3 spindle %2 improper punching signal

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label

Definitions: If the punching signal is irregular between the punching strokes, this alarm is generated according to a machine data.

Reaction: Alarm display.

Remedy: Indicates poor condition of the punching hydraulics.

Program Continuation: Clear alarm with the Delete key or NC START.

22055 [Channel %1:] Block %3 spindle %2 configured positioning speed is too high

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label

Definitions: The current position is not referenced with the measuring system position although reference is made to it.

Reaction: Alarm display.

Remedy: Correct NC part program. Create the zero mark synchronization by positioning, by rotation (at least 1 revolution) in speed control mode or G74 before switching the alarm generating function on.

Program Continuation: Clear alarm with the Delete key or NC START.
22057 [Channel %1:] Block %2 for following spindle %3 coupling as leading spindle/axis already existing

Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Axis name, spindle number

Definitions: A coupling has been switched on in which the following spindle/axis has already been active as leading spindle/axis in another coupling. Chained couplings cannot be processed.

Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.

Remedy: Check in the parts program whether the following spindle/axis is already active as leading spindle/axis in another coupling.

Program Continuation: Clear alarm with the RESET key. Restart part program

22058 [Channel %1:] Block %2 for leading spindle %3 coupling as following spindle/axis already existing

Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Axis name, spindle number

Definitions: A coupling has been switched on in which the leading spindle/axis has already been active as following spindle/axis in another coupling. Chained couplings cannot be processed.

Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.

Remedy: Check in the parts program whether the leading spindle/axis is already active as following spindle/axis in another coupling.

Program Continuation: Clear alarm with the RESET key. Restart part program

22060 [Channel %1:] Position control expected for axis/spindle %2

Parameters: %1 = Channel number
 %2 = Axis name, spindle number

Definitions: The programmed coupling type (DV, AV) or the programmed function requires position control.

Reaction: Alarm display.

Remedy: Activate position control, e.g. by programming SPCON.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

22062 [Channel %1:] Axis %2 reference point approach: zero marker search velocity (MD) is not reached

Parameters: %1 = Channel number
 %2 = Axis name, spindle number

Definitions: The configured zero marker search velocity is not reached.

Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department.
 Check active spindle speed limitations. Configure a lower zero marker search velocity MD34040 $MA_REFP_VEL0_SEARCH_MARKER. Check the tolerance range for the actual velocity MD35150 $MA_SPIND_DES_VEL0_TOL. Set a different referencing mode MD34200 $MA_ENC_REFP_MODE != 7.

Program Continuation: Clear alarm with the RESET key. Restart part program
Overview of Alarms 03/2009

NCK alarms

22064 [Channel %1:] Axis %2 reference point approach: zero marker search velocity (MD) is too high

Parameters: %1 = Channel number %2 = Axis name, spindle number

Definitions: The configured zero marker search velocity is too high. The encoder limit frequency is exceeded for the active measuring system.

Reaction: NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Configure a lower zero marker search velocity MD34040 $MA_REFP_VELO_SEARCH_MARKER. Check the encoder frequency configuration MD36300 $MA_ENC_FREQ_LIMIT and MD36302 $MA_ENC_FREQ_LIMIT_LOW. Set a different referencing mode MD34200 $MA_ENC_REFP_MODE=7.

Program Continuation: Clear alarm with the RESET key. Restart part program

22065 [Channel %1:] Tool management: Tool motion is not possible as tool %2 is not in magazine %4.

Parameters: %1 = Channel number %2 = String (identifier) %3 = -Not used- %4 = Magazine no.

Definitions: The desired tool motion command - triggered from the MMC or PLC - is not possible. The specified tool is not contained in the specified magazine. (NCK cannot contain tools that are not assigned to a magazine. With this kind of tool, no operations (motion, change) can be performed.)

Reaction: NC Start disable in this channel. Interface signals are set. Alarm display.

Remedy: Check that the specified tool is contained in the desired magazine, or program another tool to be changed.

Program Continuation: Clear alarm with the Delete key or NC START.

22066 [Channel %1:] Tool management: Tool change is not possible as tool %2 is not in magazine %4.

Parameters: %1 = Channel number %2 = String (identifier) %3 = -Not used- %4 = Magazine no.

Definitions: The desired tool change is not possible. The specified tool is not contained in the specified magazine. (NCK cannot contain tools that are not assigned to a magazine. With this kind of tool, no operations (motion, change) can be performed.)

Reaction: NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. - Check that the specified tool is contained in the desired magazine, or program another tool to be changed. - Check whether the settings in machine data MD20110 $MC_RESET_MODE_MASK, MC20112 $MC_START_MODE_MASK and the associated machine data MD20122 $MC_TOOL_RESET_NAME match the current definition data.

Program Continuation: Clear alarm with the RESET key. Restart part program
22067
[Channel %1:] Tool management: tool change not possible since there is no tool available in tool group %2

Parameters:
%1 = Channel number
%2 = String (identifier)

Definitions:
The desired tool change is not possible. The specified tool group does not contain a tool which is ready for use and could be used for tool change. It is possible that all of the tools in question have been set to the 'Disabled' state by the tool monitoring function.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy:
- Ensure that the specified tool group contains a tool that is ready for use when tool change is requested.
- This can be achieved, for example, by replacing disabled tools, or
- by releasing a disabled tool manually.
- Check whether the tool data are correctly defined. Have all intended tools in the group been defined with the specified identifier and loaded?

Program Continuation:
Clear alarm with the RESET key. Restart part program.

22068
[Channel %1:] Block %2 tool management: no tool available in tool group %3

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = String (identifier)

Definitions:
The specified tool group does not contain a tool which is ready for use and could be used for tool change. It is possible that all of the tools in question have been set to the 'Disabled' state by the tool monitoring function. The alarm can occur for example in conjunction with the alarm 14710 (error on INIT block generation). In this specific situation, NCK attempts to replace the disabled tool located on the spindle with an available replacement tool (which does not exist in this error condition). The user must resolve this conflict, for example, by removing the tool located on the spindle from the spindle by issuing a movement command (e.g. through MMC operation).

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Ensure that the specified tool group contains a tool that is ready for use when tool change is requested.
- This can be achieved, for example, by replacing disabled tools, or
- by releasing a disabled tool manually.
- If an alarm occurs on programming TCA: Has the duplo number been programmed >0?
- Check whether the tool data are correctly defined. Have all intended tools in the group been defined/loaded with the specified identifier?

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
22069 [Channel %1:] Block %2 tool management: No tool available in tool group %3, program %4

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = String (identifier)
%4 = Program name

Definitions:
The specified tool group does not contain a tool which is ready for use and could be used for tool change. It is possible that all of the tools in question have been set to the 'Disabled' state by the tool monitoring function. Parameter %4 = program name facilitates the identification of the program containing the programming command (tool selection) that caused the error. This can be a subprocess or cycle, etc., which can no longer be identified from the display. If the parameter is not specified, it is the currently displayed program.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Ensure that the specified tool group contains a tool that is ready for use when tool change is requested.
- This can be achieved, for example, by replacing disabled tools, or
- by releasing a disabled tool manually.
- Check whether the tool data are correctly defined. Have all intended tools in the group been defined with the specified identifier and loaded?

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

22070 [TO unit %1:] Please change tool %2 into magazine. Repeat data backup

Parameters:
%1 = TO unit
%2 = T number of tool

Definitions:
The alarm can only occur when the tool management function is active in the NCK. (TOOLMAN = tool management) A data backup of the tool/magazine data has been started. During the backup, the system detected that tools are still located in the buffer magazine (= spindle, gripper, ...). During the backup, these tools will lose the information which defines the magazine and location to which they are allocated.
It is therefore practical -assuming that the data are to be stored exactly as before - to ensure that all tools have been deposited in the magazine before the data backup!!
If this is not the case, some magazine locations will have the 'reserved' status when the data are loaded again. This 'reserved' status must then be reset manually.
For tools with fixed location coding, the loss of the information allocating their location in the magazine has the same effect as a general empty location search when they are returned to the magazine.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
Ensure that no tools are located in the buffer magazine before the data backup. Repeat the data backup after removing the tools from the buffer magazine.

Program Continuation:
Clear alarm with the Delete key or NC START.

22071 [TO unit %1:] Tool %2 is active, but not in the magazine area under consideration

Parameters:
%1 = TO unit
%2 = Tool identifier
%3 = -Not used-

Definitions:
The alarm can only occur when the tool management function is active in the NCK. Either the language command SETTA has been programmed or the corresponding operator action has been carried out via MMC, PLC, The alarm can also be triggered automatically by the NCK in the wear grouping function. It is detected that more than one tool from the tool group (tools with the same name/identifier) has the status "active".
The specified tool is either from a non-considered magazine, from a non-considered wear grouping, or from a non-active wear grouping in a buffer location (is neither magazine nor wear grouping).

Reaction: Interface signals are set. Alarm display.
Remedy: The alarm is intended for information purposes. If only one tool in a group can be active at a time for technological reasons or for reasons of display, the "active" status must be canceled for the tool causing the error.
Otherwise, the alarm can be ignored or even suppressed via the MD11410 $MN_SUPPRESS_ALARM_MASK.
Typical reasons of display are present, if the operator works with the function 'definite D numbers', which can be displayed on Siemens MMC in a definite form only, if exactly one tool from a tool group has the status 'active'.
Before machining can be started or before the SETTA (or corresponding MMC operation, ...) language command is used, all tools of the magazine should have the status "not active".
One option to achieve this is programming SETTIA (or corresponding MMC operation, ...).

Program Continuation:
Clear alarm with the Delete key or NC START.

22100 [Channel %1:] Block %3 spindle %2 chuck speed exceeded
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
Definitions:
The actual spindle speed is higher than the maximum speed configured in MD35100 $MA_SPIND_VELO_LIMIT plus a tolerance of 10 percent (fixed setting).
The alarm should not occur after correct optimization of the drive actuator and gear configuration.
This alarm can be reconfigured with MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready to operate) to 'BAG not ready'.
Note: Reconfiguring affects all alarms with alarm response 'Chan not ready'.

Remedy: Please inform the authorized personnel/service department. Check the setup and optimization data of the drive actuator in accordance with the Installation and Start-up Guide and make corrections. Increase the tolerance window in MD35150 $MA_SPIND_DES_VELO_TOL.

Program Continuation:
Clear alarm with the RESET key in all channels of this mode group. Restart part program.

22101 [Channel %1:] Block %3 spindle %2 maximum speed for encoder resynchronization exceeded
Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
Definitions:
The maximum encoder speed was exceeded with G33, G95, G96 or G97. Reference to actual speed and actual position is no longer possible. The NC reduces the setpoint speed with the above functions until the active encoder is able to measure again. The alarm is issued if the encoder still reports the fault.

Reaction: NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm.
Remedy: - Program speed limit with G26.
- Reduce the maximum speed in the appropriate machine data.

Program Continuation:
Clear alarm with the RESET key. Restart part program.
Overview of Alarms 03/2009

NCK alarms

22150 [Channel %1:] Block %3 spindle %2 maximum speed for position control exceeded
Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = Block number, label
Definitions: The maximum encoder speed was exceeded with SPCON. Position control is no longer possible. The NC reduces the setpoint speed with the above functions until the active encoder is able to measure again. The alarm is issued if the encoder still reports the fault.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: - Program speed limit with G26.
- Reduce the maximum speed in the appropriate machine data.
Program Continuation: Clear alarm with the RESET key. Restart part program

22200 [Channel %1:] Spindle %2 axis stopped during tapping
Parameters: %1 = Channel number
%2 = Axis name, spindle number
Definitions: When tapping with compensating chuck (G63) the drilling axis was stopped via the NC/PLC interface and the spindle continues to rotate. The thread and possibly also the tap were damaged as a result.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Provide an interlock in the PLC user program so that no axis stop can be initiated when tapping is active. If the tapping operation is to be terminated under critical machine conditions, the spindle and the axis should be stopped simultaneously if at all possible. Slight differences are then accommodated by the compensating chuck.
Program Continuation: Clear alarm with the RESET key. Restart part program

22250 [Channel %1:] Spindle %2 thread might be damaged
Parameters: %1 = Channel number
%2 = Axis name
%3 = Block number
Definitions: When DECODING SINGLE BLOCK has been selected and there is a chain of thread blocks, then machining pauses occur at the block limits until the next block is executed with the new NC Start. In normal single block mode, the program is stopped by a higher-level logic only at the block boundaries at which no contour distortions or contour errors can occur. With chained thread blocks, this is the last thread block!
Reaction: Alarm display.
Remedy: If only one thread block has been programmed, the alarm message can be ignored.
If there are several consecutive thread blocks, this machining section must not be executed in the automatic DECODING SINGLE BLOCK mode.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
22270 [Channel %1:] Block %2 maximum tapping speed reached

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Position

Definitions: The following additional parameters are output in order to ascertain the problem:
1. 'Position' (without a preceding axis identifier): The maximum feed of the thread axis is reached at the displayed axis position.
2. 'Master spindle': The position control for the spindle has been changed during thread cutting. This can lead to inaccurate thread cutting.
3. 'Thread axis, velocity': The axis to which the lead refers is displayed. This cannot follow the spindle specifications. The maximum possible axis velocity is shown as a parameter.

The velocity of the thread axis basically depends on:
- The programmed thread pitch
- The programmed thread pitch change and thread length (G34, G35)
- The defined spindle speed (part program, FC18, synchronized action)
- The spindle override (path and individual axis overrides are ineffective)

Reaction: Alarm display.

Remedy: Reduce the spindle speed (pitch, pitch change).

Program Continuation: Clear alarm with the Delete key or NC START.

22275 [Channel %1:] Block %2 zero velocity of thread axis at position %3 reached

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Position

Definitions: An axis standstill was reached at the specified position during thread cutting with G35 due to the linear decrease in the thread pitch. The standstill position of the thread axis depends on:
- Programmed thread pitch decrease
- Thread length

Reaction: Alarm display.

Remedy: Change at least one of the above factors.

Program Continuation: Clear alarm with the Delete key or NC START.

22280 [Channel %1:] In block %2: Prog. acceleration path too short %3, %4 required

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Prog. acceleration path
%4 = Required acceleration path

Definitions: In order to stay within the programmed acceleration path, the acceleration caused an overload on the thread axis. In order to accelerate the axis with the programmed dynamic response, the length of the acceleration path must be at least as large as the value in parameter %4.

The alarm is of the technological type and is output whenever bit 2 in MD11411 $MN_ENABLE_ALARM_MASK is enabled. The MMC softkey ‘Technology support’ sets and clears this bit in the MD.

Reaction: Alarm display.

Remedy: Modify part program or reset MD11411 $MN_ENABLE_ALARM_MASK bit 2.

Program Continuation: Clear alarm with the Delete key or NC START.
22290 [Channel %1:] Spindle operation for transformed spindle/axis %2 not possible (reason: error code %3).

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Error code

Definitions:
It is impermissible to start a spindle as long as it is being used by a transformation. Reason: spindle usage in a transformation requires axis operation, which must not be exited.

This alarm may have the following reasons:
- Error code 1: M3, M4 or M5 per synchronized action;
- Error code 2: M41 through M45 per synchronized action;
- Error code 3: SPOS, M19 per synchronized action;
- Error code 11: DB31, ... DBX30.0 (Spindle stop);
- Error code 12: DB31, ... DBX30.1 (Spindle start clockwise rotation);
- Error code 13: DB31, ... DBX30.2 (Spindle start counterclockwise rotation);
- Error code 14: DB31, ... DBX30.4 (Spindle positioning).

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Resolve the conflict, for example by deactivating transformation prior to spindle start.

Program Continuation:
Clear alarm with the Delete key or NC START.

22295 Channel %1 Spindle %2 DBB30 function not possible (cause: error code %3)

Parameters:
- %1 = Channel number
- %2 = Axis name, spindle number
- %3 = Error code

Definitions:
The function request by PLC via DBB30 interface could not be executed. The cause is specified by the error code.

Error codes:
- Error code 1: internal use
- Error code 2: internal use
- Error code 3: internal use
- Error code 4: internal use
- Error code 5: Switchover to command axis not possible
- Error code 6: Switchover to PLC axis not possible
- Error code 20: internal use
- Error code 21: internal use
- Error code 22: internal use
- Error code 23: MD 30132 IS_VIRTUAL_AX has been set
- Error code 50: internal use
- Error code 51: internal use
- Error code 70: internal use

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Remedy conflict.

Program Continuation:
Clear alarm with the Delete key or NC START.
22296 Channel %1 Spindle %2 Error on gear stage change (cause: error code %3)

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Error code

Definitions:
An error occurred during gear stage change. The cause is specified by the error code.

Error codes:
- Error code 1 : internal use
- Error code 2 : internal use
- Error code 3 : internal use
- Error code 4 : internal use
- Error code 5 : Switchover to command axis not possible
- Error code 6 : Switchover to PLC axis not possible
- Error code 20 : internal use
- Error code 21 : internal use
- Error code 22 : internal use
- Error code 23 : MD 30132 IS_VIRTUAL_AX has been set
- Error code 50 : internal use
- Error code 51 : internal use
- Error code 70 : internal use

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Remedy conflict.

Program Continuation:
Clear alarm with the Delete key or NC START.

22297 Channel %1 Spindle %2 FC18 function not possible (cause: error code %3)

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = Error code

Definitions:
The function request by PLC via FC18 interface could not be executed. The cause is specified by the error code.

Error codes:
- Error code 1 : internal use
- Error code 2 : internal use
- Error code 3 : internal use
- Error code 4 : internal use
- Error code 5 : Switchover to command axis not possible
- Error code 6 : Switchover to PLC axis not possible
- Error code 20 : internal use
- Error code 21 : internal use
- Error code 22 : internal use
- Error code 23 : MD 30132 IS_VIRTUAL_AX has been set
- Error code 50 : internal use
- Error code 51 : internal use
- Error code 70 : internal use

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Remedy conflict.

Program Continuation:
Clear alarm with the Delete key or NC START.

22320 [Channel %1:] Block %2 PUTFTOCF command could not be transferred

Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: The cyclic transfer of the PUTFTOCF data block (fine tool compensation) could not be performed because the transfer area is already occupied.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check the part program, in particular with regard to the other channels. Is a data block being transferred by another channel?

Program Continuation: Clear alarm with the RESET key. Restart part program

22321 [Channel %1:] Axis %2 PRESET not allowed during traverse motion

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: A preset command was given from MMC or PLC while an axis was traveling in JOG mode.

Reaction: Interface signals are set.
Alarm display.

Remedy: Wait until the axis is stationary.

Program Continuation: Clear alarm with the Delete key or NC START.

22322 [Channel %1:] Axis %2 PRESET: illegal value

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: The entered Preset value is too large (number format overflow).

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Use more realistic (smaller) Preset values.

Program Continuation: Clear alarm with the RESET key. Restart part program

22400 [Channel %1:] Option 'contour handwheel' not set

Parameters: %1 = Channel number

Definitions: The function 'contour handwheel' was activated without the neccessary option.
If the alarm occurs
- on selection of the contour handwheel via the PLC, then the contour handwheel has to be deselected in order to continue with the program
- on account of programming FD=0, then the program can be corrected and continued with the compensation block and NCSTART.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department.
- Set option
- Cancel the activation of the function 'contour handwheel'
- Modify part program.

Program Continuation: Clear alarm with the Delete key or NC START.

25000 Axis %1 hardware fault of active encoder

Parameters: %1 = Axis name, spindle number
Definitions:
The signals of the currently active position actual value encoder (NC/PLC interface signal DB31, ... DBX1.5 = 1 (Position measuring system 1) or DB31, ... DBX1.6 = 1 (Position measuring system 2)) are missing, do not have the same phase, or exhibit grounding/short-circuit. The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

For PROFIdrive only:
MD36310 $MA_ENCZERO_MONITORING >100 replaces the existing PowerOn alarm by the Reset alarm 25010.

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Axes of this channel must be re-referenced.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department. Check measuring circuit connectors for correct contacting. Check encoder signals and replace the encoder if faults are found.
Monitoring can be switched off by setting MD36310 $MA_ENCZERO_MONITORING[n] to 100 (n = encoder number: 1,2).

Program Continuation:
Switch control OFF - ON.

25001 Axis %1 hardware fault of passive encoder

Parameters:
%1 = Axis name, spindle number

Definitions:
The signals from the currently inactive position actual value encoder are missing, or they are not of the same phase, or they exhibit grounding/short-circuit.
For PROFIdrive only:
MD36310 $MA_ENCZERO_MONITORING >100 replaces the existing PowerOn alarm by the Reset alarm 25011.
MD36310 $MA_ENCZERO_MONITORING >100 replaces the existing Reset alarm by the Cancel alarm 25011.

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Check measuring circuit connectors for correct contacting. Check encoder signals and replace the encoder if faults are found. Switch off monitoring with the corresponding interface signal DB31, ... DBX1.5 / 1.6 = 0 (Position measuring system 1/2).
Monitoring can be switched off by setting MD36310 $MA_ENCZERO_MONITORING[n] to 100 (n = encoder number: 1,2).

Program Continuation:
Clear alarm with the RESET key. Restart part program

25010 Axis %1 pollution of measuring system

Parameters:
%1 = Axis name, spindle number

Definitions:
The encoder used for position control sends a contamination signal (only in measuring systems with contamination signal).
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
For PROFIdrive only:
MD36310 $MA_ENCZERO_MONITORING >100 returns the existing Reset alarm instead of the Power-on alarm 25000.

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Axes of this channel must be re-referenced.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.
Remedy: Please inform the authorized personnel/service department. Check the measuring system in accordance with the instructions given by the measuring device manufacturer.

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25011 Axis %1 pollution of passive encoder
Parameters: %1 = Axis name, spindle number
Definitions: The encoder not used for position control sends a contamination signal (only in measuring systems with contamination signal).

For PROFIdrive only:
MD36310 $MA_ENC_ZERO_MONITORING >100 returns the existing Reset alarm instead of the Power-on alarm 25001.
MD36310 $MA_ENC_ZERO_MONITORING >100 returns the existing Cancel alarm instead of the Reset alarm 25001.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. Check the measuring system in accordance with the instructions given by the measuring device manufacturer.

Monitoring can be switched off by setting MD36310 $MA_ENC_ZERO_MONITORING[n] to 100 (n = encoder number: 1, 2).

Program Continuation: Clear alarm with the Delete key or NC START.

25020 Axis %1 zero mark monitoring of active encoder
Parameters: %1 = Axis name, spindle number
Definitions: For PROFIdrive:
The position encoder pulses between 2 zero mark pulses are counted, and the plausibility is assessed (The functionality and possibly the parameterisation of the plausibility check is done on the drive side, please refer to the relevant drive documentation for details.), and reported in a PROFIdrive message frame (encoder interface) to the control, which then issues the present alarm.
The alarm can be reprogrammed in MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Axes of this channel must be re-referenced.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Please inform the authorized personnel/service department.
The differences can result from transmission errors, disturbances, encoder hardware faults or from the evaluation electronics in the encoder used for position control. The actual value branch must therefore be checked:
1. Transmission path: Check the actual-value connectors for correct contacting, encoder cable for continuity, and also check for short-circuits and grounding (loose contact?).
2. Encoder pulses: Is the encoder power supply within the tolerance limits?
3. Evaluation electronics: Replace or reconfigure the drive or encoder module used.
Monitoring can be switched off by setting MD36310 $MA_ENC_ZERO_MONITORING [n] to 0 or 100 (n = encoder number: 1, 2).

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25021 Axis %1 zero mark monitoring of passive encoder
Parameters: %1 = Axis name, spindle number
Definitions: Monitoring relates to the encoder that is not used by the position control. (NC-PLC interface signal DB31, ... DBX1.5 = 0 (Position measuring system 1) or DB31, ... DBX1.6 = 0 (Position measuring system 2)).
More detailed explanations are similar to those for alarm 25020.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. The differences can result from transmission errors, disturbances, encoder hardware faults or from the evaluation electronics in the encoder not used for position control. The actual value branch must therefore be checked:
1. Transmission path: Check the actual-value connectors for correct contacting, encoder cable for continuity, and also check for short-circuits and grounding (loose contact?).
2. Encoder pulses: Is the encoder power supply within the tolerance limits?
3. Evaluation electronics: Replace or reconfigure the drive or encoder module used.
Monitoring can be switched off by setting MD36310 $MA_ENC_ZERO_MONITORING[n] to 0 or 100 (n = encoder number: 1, 2).

Program Continuation: Clear alarm with the Delete key or NC START.

25022 Axis %1 encoder %2 warning %3

Parameters: %1 = Axis name, spindle number
%2 = Encoder number
%3 = Error fine coding

Definitions: This alarm only occurs with absolute encoders:
a. Warning notice of missing absolute encoder adjustment (on the SIMODRIVE 611D or with PROFIdrive drives), that is if MD34210 $MA_ENC_REFP_STATE equals 0. In this case, fine error code 0 is returned.
b. If, on the SIMODRIVE 611D only, zero mark monitoring has been activated for the absolute encoder (see MD36310 $MA_ENC_ZERO_MONITORING): In this case, the absolute position of the absolute encoder could not be read without error:
Breakdown of fine error codes:
(Bit 0 not used)
Bit 1 Parity error
Bit 2 Alarm bit of the encoder
Bit 3 CRC error
Bit 4 Timeout - start bit for EnDat transfer is missing
This alarm is only displayed, as the absolute position itself is not required at this time for control/contour.
A frequent occurrence of this alarm indicates that the absolute encoder transfer or the absolute encoder itself is faulty, and that an incorrect absolute value could be determined in one of the next encoder selection or power on situations.

Reaction: Alarm display.

Remedy: a. Verify encoder adjustment (machine reference) or readjust encoder.
b. Replace the encoder, replace or screen the encoder cable (or deactivate zero mark monitoring).

Program Continuation: Clear alarm with the Delete key or NC START.
25030 Axis %1 actual velocity alarm limit
Parameters: %1 = Axis name, spindle number
Definitions: If the axis has at least one active encoder, then the actual speed of the axis is cyclically checked in the IPO cycle. If there are no errors, the actual velocity can never become greater than specified in the axis-specific MD36200 $MA_AX_VELO_LIMIT (threshold for velocity monitoring). This threshold value in [mm/min, rev/min] is input by an amount that is about 5 to 10% greater than that which can occur at maximum traversing velocity. Drive errors can result in the velocity being exceeded and the alarm is then triggered.

The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Please inform the authorized personnel/service department.
- Check the speed setpoint cable (bus cable).
- Check the actual values and direction of position control.
- Change the position control direction if the axis rotates uncontrollably -> axis-specific MD32110 $MA_ENC_FEEDBACK_POL [n] = < -1, 0, 1 >.
- Increase the monitoring limit value in MD 36200 $MA_AX_VELO_LIMIT.

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25031 Axis %1 actual velocity warning limit
Parameters: %1 = Axis name, spindle number
Definitions: The present velocity actual value is more than 80% of the limit value defined in the machine data. (Internal test criterion activated by MD36690 $MA_AXIS_DIAGNOSIS, bit0)

Reaction: Alarm display.

Remedy: -

Program Continuation: Clear alarm with the Delete key or NC START.

25040 Axis %1 standstill monitoring
Parameters: %1 = Axis name, spindle number
Definitions: The NC monitors to ensure that the position is held at zero speed. Monitoring is started after a time that can be set for a specific axis in the MD36040 $MA_STANDSTILL_DELAY_TIME after interpolation has ended. A constant check is made to determine whether the axis remains within the tolerance range given in MD36030 $MA_STANDSTILL_POS_TOL.

The following cases are possible:
1. The NC/PLC interface signal DB31, ... DBX2.1 (Servo enable) is zero because the axis has jammed mechanically. Due to mechanical influences (e.g. high machining pressure), the axis is pushed outside the permissible position tolerance.
2. With closed position control loop (without jamming) - NC/PLC interface signal DB31, ... DBX2.1 (Servo enable) is "1" - the axis is pushed away from its position by mechanical forces with a small gain in the position control loop.

The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.
Remedy: Please inform the authorized personnel/service department.
- Check MD36040 $MA_STANDSTILL_DELAY_TIME and MD36030 $MA_STANDSTILL_POS_TOL; increase if necessary. The value must be greater than the machine data "Exact stop - coarse" (MD36000 $MA_STOP_LIMIT_COARSE).
- Estimate machining forces and reduce if necessary by setting a lower feed or a higher rotational speed.
- Increase clamping pressure.
- Increase the gain in the position control loop by improved optimization (Kv factor MD32200 $MA_POSCTRL_GAIN, SIMODRIVE611D drive).

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25042 Axis %1 standstill monitoring during torque/force limitation

Parameters: %1 = Axis name, spindle number

Definitions: The defined end position was not reached within the time specified in the machine data.

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
- If the drive torque (FXST) was set too low with the result that the force of the motor was not sufficient to reach the end position -> increase FXST.
- If the machined part is slowly deformed, there may be a delay in reaching the end position -> increase MD36042 $MA_FOC_STANDSTILL_DELAY_TIME.

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25050 Axis %1 contour monitoring

Parameters: %1 = Axis name, spindle number

Definitions: The NCK calculates for each interpolation point (setpoint) of an axis the actual value that should result based on an internal model. If this calculated actual value and the true machine actual value differ by a larger amount than given in the MD36400 $MA_CONTOUR_TOL, then the program is aborted and the alarm message is issued.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department.
- Check whether the tolerance value set in MD36400 $MA_CONTOUR_TOL is too small.
- Check optimization of the position controller (Kv factor in the MD32200 $MA_POSCTRL_GAIN) to establish whether the axis follows the given setpoint without overshooting. Otherwise, the speed controller optimization must be improved or the Kv servo gain factor must be reduced.
- Improvement of speed controller optimization
- Check the mechanics (smooth running, inertial masses).

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.
25060 **Axis %1 speed setpoint limitation**

Parameters: %1 = Axis name, spindle number

Definitions:
The speed setpoint has exceeded its upper limit for a longer period than allowed. The maximum speed setpoint is limited to a certain percentage by the axis-specific MD36210 $MA_CTRLOUT_LIMIT. The input value of 100% corresponds to the rated speed of the motor and hence the rapid traverse velocity (exemplary default value: 840D=110%).

For SINAMICS: Drive parameter p1082 also has a limiting effect.

If the values are exceeded for a short time, then this is tolerated provided they do not last longer than allowed for in the axis-specific MD36220 $MA_CTRLOUT_LIMIT_TIME. The setpoint is limited during this time to the maximum value that has been set in (MD36210 $MA_CTRLOUT_LIMIT).

The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Please inform the authorized personnel/service department. This alarm should not occur if the drive controller has been set correctly and the machining conditions are those that normally prevail.
- Check actual values: Local sluggishness of the carriage, speed dip by torque surge due to contact with workpiece/tool, travel against fixed obstacle, etc.
- Check direction of position control: Does the axis continue to rotate without control (not on SIMODRIVE 611D drives)?

Program Continuation:
Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25070 **Axis %1 drift value too large**

Parameters: %1 = Axis name, spindle number

Definitions:
Only with analog drives!
The permissible maximum value of drift (internal, integrated drift value of automatic drift compensation) was exceeded during the last compensation operation. The permissible maximum value is defined in the axis-specific MD36710 $MA_DRIFT_LIMIT. The drift value itself is not limited.

Automatic drift compensation: MD36700 $MA_DRIFT_ENABLE=1

The difference between actual and setpoint position (drift) is checked cyclically in the IPO cycle when the axes are at zero speed. The difference is automatically compensated to zero by slowly integrating an internal drift value.

Drift compensation by hand: MD36700 $MA_DRIFT_ENABLE=0

A static offset can be added to the speed setpoint in the MD36720 $MA_DRIFT_VALUE. This is not included in the drift monitoring because it acts like a voltage zero offset.

Reaction:
Alarm display.

Remedy:
Please inform the authorized personnel/service department. Adjust the drift compensation with the automatic drift compensation switched off at the drive until the position lag is approximately zero. Then reactivate the automatic drift compensation in order to balance out the dynamic drift changes (effects of heating up).

Program Continuation:
Clear alarm with the Delete key or NC START.

25080 **Axis %1 positioning monitoring**

Parameters: %1 = Axis name, spindle number

Definitions:
For blocks in which "exact stop" is effective, the axis must have reached the exact stop window after the positioning time given in the axis-specific MD36020 $MA_POSITIONING_TIME.

Exact stop coarse: MD36000 $MA_STOP_LIMIT_COARSE

Exact stop fine: MD36010 $MA_STOP_LIMIT_FINE

The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
Reaction:

Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:

Please inform the authorized personnel/service department. Check whether the exact stop limits (coarse and fine) correspond to the dynamic possibilities of the axis, otherwise increase them, if necessary in connection with the positioning time set in MD36020 $MA_POSITIONING_TIME.
Check speed controller/position controller optimization; select highest possible gain.
Check setting of Kv factor (MD32200 $MA_POSCTRL_GAIN) and increase, if required.

Program Continuation:

Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25100 Axis %1 measuring system switchover not possible

Parameters:

%1 = Axis name, spindle number

Definitions:

The prerequisites are not satisfied for the required encoder switchover:
1. The newly selected encoder must be in the active state: (DB31, ... DBX1.5 / 1.6 = 1 (Position measuring system 1/2).
2. The actual value difference between the two encoders is greater than the value in the axis-specific MD36500 $MA_ENC_CHANGE_TOL ("Maximum tolerance for position actual value switchover"). Activation of the measuring system concerned takes place in accordance with the NC/PLC interface signals DB31, ... DBX1.5 (Position measuring system 1) and DB31, ... DBX1.6 (Position measuring system 2), i.e. the position control is now operated with this measuring system. The other measuring system is switched over to follow-up mode. If both interface signals are set to "1", then only the 1st measuring system is active; if both interface signals are set to "0", the axis is parked.
Changeover takes place as soon as the interface signals have changed, even if the axis is in motion.

Reaction:

NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:

Please inform the authorized personnel/service department. When referencing the active position actual value encoder, the actual value system of the inactive encoder is set to the same reference point value as soon as phase 3 has been concluded. A later positional difference between the two actual value systems can have occurred only as the result of an encoder defect or a mechanical displacement between the encoders.
- Check the encoder signals, actual value cable, connectors.
- Check the mechanical fastenings (displacement of the measuring head, mechanical twisting possible).
- Increase the axis-specific MD 36500 $MA_ENC_CHANGE_TOL.
Program continuation is not possible. The program must be aborted with "RESET", then program execution can be reinitiated with NC START, if necessary at the interruption point after "Block search with/without calculation".

Program Continuation:

Clear alarm with the RESET key. Restart part program

25105 Axis %1 measuring systems differ considerably

Parameters:

%1 = Axis name, spindle number

Definitions:

The two measuring systems differ considerably, i.e. the cyclically monitored actual value difference between the two measuring systems is greater than the associated tolerance value set in the machine data MD36510 $MA_ENC_DIFF_TOL. This can only occur when both measuring systems are active (MD30200 $MA_NUM_ENCS = 2) and referenced. The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
Overview of Alarms 03/2009

NCK alarms

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Please inform the authorized personnel/service department. Check machine data for the active, selected encoders. Check the machine data relating to encoder (MD36510 $MA_ENC_DIFF_TOL) tolerance.

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

25110 Axis %1 selected encoder not available

Parameters: %1 = Axis name, spindle number

Definitions: The selected encoder does not correspond to the maximum number of encoders in the axis-specific MD30200 $MA_NUM_ENCS, i.e. the 2nd encoder does not exist.

Reaction: Alarm display.

Remedy: Please inform the authorized personnel/service department. Check the machine data relating to encoder (MD36510 $MA_ENC_DIFF_TOL) tolerance.

Program Continuation: Clear alarm with the Delete key or NC START.

25200 Axis %1 requested set of parameters invalid

Parameters: %1 = Axis name, spindle number

Definitions: A new parameter set has been requested for the positioning control. The number of this parameter set is beyond the permissible limit (8 parameter sets: 0 ... 7 available).

Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Please inform the authorized personnel/service department. Check the axis-specific/spindle-specific interface signals DB31, ... DBX9.0 - .2 (Select parameter set servo A, B, C).

One parameter set includes the following machine data:
- MD31050 $MA_DRIVE_AX_RATIO_DENOM [n]
- MD31060 $MA_DRIVE_AX_RATIO_NUMERA [n]
- MD32200 $MA_POSCTRL_GAIN [n]
- MD32800 $MA_EQUIV_CURRCTRL_TIME [n]
- MD32810 $MA_EQUIV_SPEEDCTRL_TIME [n]
- MD32910 $MA_DYN_MATCH_TIME [n]
- MD36200 $MA_AX_VELO_LIMIT [n]

Program Continuation: Clear alarm with the RESET key. Restart part program

25201 Axis %1 drive fault

Parameters: %1 = Axis name, spindle number

Definitions: For PROFIdrive:
The drive signals a serious fault which prevents the drive from being ready. The exact cause of the fault can be found by evaluating the additionally output drive alarms (It may be necessary to activate these diagnostic alarms by parameterizing the MDs DRIVE_FUNCTION_MASK, PROFIBUS_ALARM_ACCESS etc):
Alarms 380500 and 380501 (or the corresponding alarm numbers implemented on the HMI side). The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
25202
Axis %1 waiting for drive

Parameters:
%1 = Axis name, spindle number

Definitions:
Drive group error (self-clearing).

Reaction:
Interface signals are set.
Alarm display.

Remedy:
For PROFIdrive only:
Wait for the drive. This alarm reveals similar problems to alarm 25201 (see that alarm). It is continuously active during power-up if the drive does not communicate (e.g. if the PROFIBUS connector has fallen out). Otherwise, the alarm is active only briefly and is replaced by alarm 25201 after an internal timeout in the event of a permanent problem.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

26000
Axis %1 clamping monitoring

Parameters:
%1 = Axis name, spindle number

Definitions:
The clamped axis has been pushed out of its setpoint position. The permissible difference is defined in the axis-specific MD36050 $MA_CLAMP_POS_TOL. Clamping an axis is activated with the axis-specific interface signal DB31, ... DBX2.3 (Clamping process active). The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Determine the position deviation to the setpoint position and, depending on the results, either increase the permissible tolerance in the MD or mechanically improve the clamping (e.g. increase clamping pressure).

Program Continuation:
Clear alarm with the RESET key in all channels of this mode group. Restart part program.
26001
Axis %1 parameterization error: friction compensation

Parameters:
%1 = Axis name, spindle number

Definitions:
The parameterization of the adaptation characteristic in the quadrant error compensation is not allowed because acceleration value 2 (MD32560 $MA_FRICT_COMP_ACCEL2) is not between acceleration value 1 (MD32550 $MA_FRICT_COMP_ACCEL1) and acceleration value 3 (MD32570 $MA_FRICT_COMP_ACCEL3).
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready. The NC switches to follow-up mode. Issue a warning.
Channel not ready. NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm. Channel not ready.

Remedy:
Please inform the authorized personnel/service department. Check the setting parameters of the quadrant error compensation (friction compensation), if necessary switch off the compensation with MD32500 $MA_FRICT_COMP_ENABLE.

Program Continuation:
Clear alarm with the RESET key in all channels of this mode group. Restart part program.

26002
Axis %1 encoder %2 parameterization error: number of encoder marks

Parameters:
%1 = Axis name, spindle number
%2 = Encoder number

Definitions:
1. Rotary measuring system (MD31000 $MA_ENC_IS_LINEAR[]==FALSE)
The number of encoder marks set in MD31020 $MA_ENC_RESOL[] does not correspond to the value in the drive machine data (SIMODRIVE 611D: MD1005 $MD_ENC_RESOL_MOTOR; PROFIdrive: p979) or zero has been entered in one of the two machine data.
2. Absolute measuring system with EnDat interface (MD5790 $MD_ENC_TYPE[]==4)
On absolute encoders, the resolution of the incremental and absolute tracks supplied by the drive is also checked for consistency.
For PROFIdrive drives:
Compare drive parameter p979 (and possibly other internal drive, manufacture-specific parameters stated in the relevant drive documentation).

Reaction:
Mode group not ready. The NC switches to follow-up mode. Channel not ready. NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm. Channel not ready.

Remedy:
Please inform the authorized personnel/service department. Adjust machine data.
For absolute encoders, possibly pending drive alarms indicating encoder problems should be evaluated. They could be the cause of incorrect entries of MD1022 $MD_ENC_ABS_RESOL_MOTOR/MD1032 $MD_ENC_ABS_RESOL_DIRECT, which the drive reads out of the encoder itself.

Program Continuation:
Switch control OFF - ON.

26003
Axis %1 parameterization error: lead screw pitch

Parameters:
%1 = Axis name, spindle number

Definitions:
The pitch of the ballscrew/trapezoidal leadscrew set in the axis-specific MD31030 $MA_LEADCSCREW_PITCH is zero.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Determine the leadscrew pitch (specify the machine manufacturer or pitch measurement with spindle cover removed) and enter it in the MD31030: $MA_LEADSCREW_PITCH (mostly 10 or 5 mm/rev.).

Program Continuation: Switch control OFF - ON.

26004 Axis %1 encoder %2 parameterization error: grid point distance with linear encoders

Parameters: %1 = Axis name, spindle number %2 = Encoder number

Definitions: The scale division of the linear scale set in the axis-specific MD31010 $MA_ENC_GRID_POINT_DIST is zero or differs from the corresponding drive parameters. For a better understanding of the interrelations see the explanations for alarm 26002, which refer to rotatory encoders.

The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Please inform the authorized personnel/service department.
Enter the encoder grid point distance according to the data given by the machine (or measuring device) manufacturer in the MD31010 $MA_ENC_GRID_POINT_DIST.

Program Continuation: Switch control OFF - ON.

26005 Axis %1 parameterization error: output rating

Parameters: %1 = Axis name, spindle number

Definitions: For analog drives:
The output evaluation of the analog speed setpoint set in the MD32250 $MA_RATED_OUTVAL or in MD 32260 $MA_RATED_VELO is zero.
For PROFIdrive drives: (AD14, SIMODRIVE 611U, SINAMICS):
The effective output evaluation of the speed setpoint interface is zero:

- b. The corresponding drive-side standardizing parameter is zero, invalid or unreadable/unavailable although an automatic interface scaling adjustment has been selected on account of MD32250 $MA_RATED_OUTVAL=0.
The drive parameter defining the standard is not determined by PROFIdrive, but is specific to the manufacturer (see the relevant drive documentation: For SIMODRIVE 611U: p880; for SINAMICS: p2000).
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.
Remedy: Please inform the authorized personnel/service department. The nominal output voltage in [%] of the maximum setpoint value (10 V) is entered in the MD32250 $MA_RATED_OUTVAL, at which the rated motor speed in [degrees/s] is to be reached (MD32260 $MA_RATED_VELO).

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

26006 Axis %1 encoder %2 encoder type/output type %3 not possible

Parameters: %1 = Axis name, spindle number %2 = Encoder number %3 = Encoder type/output type

Definitions: Not every encoder type or output type can be used with every control or drive variant.

Permissible settings:
MD30240 $MA_ENC_TYPE
= 0 Simulation (always permissible)
= 1 Raw signal incremental encoder (SIMODRIVE 611D and PROFIdrive)
= 4 Absolute encoder (EnDat with SIMODRIVE 611D; all drive-side absolute encoders supported by PROFIdrive)
MD30130 $MA_CTRLOUT_TYPE
= 0 Simulation
= 1 Standard (SIMODRIVE 611D and PROFIdrive drives)

The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy: Please inform the authorized personnel/service department.

Check machine data MD30240 $MA_ENC_TYPE and/or MD30130 $MA_CTRLOUT_TYPE and make the necessary corrections.

Program Continuation: Switch control OFF - ON.

26007 Axis %1 QEC: invalid coarse step size

Parameters: %1 = Axis name, spindle number

Definitions: The course step width for QEC must be within the range 1 <= course step width <= maximum value of MD18342 $MN_MM_QEC_MAX_POINTS (currently 1025), because a greater number of values would exceed the available memory space.

Reaction: Alarm display.

Remedy: Modify the system variable $AA_QEC_COARSE_STEPS accordingly.

Program Continuation: Clear alarm with the RESET key. Restart part program

26008 Axis %1 QEC: invalid fine step size

Parameters: %1 = Axis name, spindle number

Definitions: The fine step size for quadrant error compensation $AA_QEC_FINE_STEPS must be in the range 1 <= fine step size <= 16 because this value has an influence on the computation time of the QEC.

Reaction: Alarm display.

Remedy: Modify the system variable $AA_QEC_FINE_STEPS accordingly.

Program Continuation: Clear alarm with the RESET key. Restart part program

26009 Axis %1 QEC: memory overflow

Parameters: %1 = Axis name, spindle number

Definitions: The product of the data $AA_QEC_COARSE_STEPS+1 and $AA_QEC_FINE_STEPS must not exceed the maximum number of the characteristic curve points (MD38010 $MA_MM_QEC_MAX_POINTS). With a direction-dependent characteristic, this criterion applies to 2 * ($AA_QEC_COARSE_STEPS+1) * $AA_QEC_FINE_STEPS!
Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. Either increase MD38010 $MA_MM_QEC_MAX_POINTS or reduce $AA_QEC_COARSE_STEPS and/or $AA_QEC_FINE_STEPS.
Program Continuation: Clear alarm with the RESET key. Restart part program.

26010 Axis %1 QEC: invalid acceleration characteristic
Parameters: %1 = Axis name, spindle number
Definitions: $AA_QEC_ACCEL_1/2/3: The acceleration characteristic is divided into three areas. In each area there is a different quantization of the acceleration steps. The defaults should be changed only if compensation is inadequate in these acceleration areas.
The defaults are as follows:
- $AA_QEC_ACCEL_1 with approx. 2% of maximum acceleration ($AA_QEC_ACCEL_3),
- $AA_QEC_ACCEL_2 with approx. 60% of maximum acceleration ($AA_QEC_ACCEL_3),
- $AA_QEC_ACCEL_3 with maximum acceleration (MD32300 $MA_MAX_AX_ACCEL).

Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. Enter the values correctly:
0 < $AA_QEC_ACCEL_1 < $AA_QEC_ACCEL_2 < $AA_QEC_ACCEL_3.
Program Continuation: Clear alarm with the RESET key. Restart part program.

26011 Axis %1 QEC: invalid measuring periods
Parameters: %1 = Axis name, spindle number
Definitions: $AA_QEC_MEAS_TIME_1/2/3: measuring time to determine the error criterion.
The measuring period begins when the criterion for activating the compensation value has been satisfied (the desired velocity changes the sign). The end is defined by the machine data values. In general, different measuring times are required for the three characteristic ranges. The presets should be changed only if a problem occurs. The three data apply in each case for the three corresponding acceleration ranges.
1. $AA_QEC_MEAS_TIME_1 specifies the measuring time (for determining the error criterion) for accelerations in the range between 0 and $AA_QEC_ACCEL_1.
2. $AA_QEC_MEAS_TIME_2 specifies the measuring time in the range from $AA_QEC_ACCEL_1 to $AA_QEC_ACCEL_2.
3. $AA_QEC_MEAS_TIME_3 specifies the measuring time in the range from $AA_QEC_ACCEL_2 to $AA_QEC_ACCEL_3 and beyond.

Reaction: Alarm display.
Remedy: Please inform the authorized personnel/service department. Enter the values correctly: 0 < $AA_QEC_MEAS_TIME_1 < $AA_QEC_MEAS_TIME_2 < $AA_QEC_MEAS_TIME_3.
Program Continuation: Clear alarm with the RESET key. Restart part program.

26012 Axis %1 QEC: feed forward control not active
Parameters: %1 = Axis name, spindle number
Definitions: The error criterion for determining the quadrant error necessitates a correctly set feedforward control.
The alarm can be reprogrammed in the MD11412 $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Alarm display.
Channel not ready.

Remedy: Switch on feedforward control and set it correctly.
Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

26014 Axis %1 machine data %2 invalid value
Parameters: %1 = Axis name, spindle number
%2 = String: MD identifier
Definitions: Machine data includes a value that is not valid.

Reaction:
- NC not ready.
- The NC switches to follow-up mode.
- Mode group not ready, also effective for single axes
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Repeat entry with correct value and then Power On.

Program Continuation:
- Switch control OFF - ON.

26015 Axis %1 machine data %2[%3] invalid value

Parameters:
- %1 = Axis name, spindle number
- %2 = String: MD identifier
- %3 = Index: MD array index

Definitions: Machine data includes a value that is not valid.

Reaction:
- NC not ready.
- The NC switches to follow-up mode.
- Mode group not ready, also effective for single axes
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Repeat entry with correct value and then Power On.

Program Continuation:
- Switch control OFF - ON.

26016 Axis %1 machine data %2 invalid value

Parameters:
- %1 = Axis name, spindle number
- %2 = String: MD identifier

Definitions: Machine data includes a value that is not valid.

Reaction:
- NC not ready.
- The NC switches to follow-up mode.
- Mode group not ready, also effective for single axes
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Repeat entry with correct value and then Reset.

Program Continuation:
- Clear alarm with the RESET key in all channels of this mode group. Restart part program.

26017 Axis %1 machine data %2[%3] invalid value

Parameters:
- %1 = Axis name, spindle number
- %2 = String: MD identifier
- %3 = Index: MD array

Definitions: Machine data includes a value that is not valid.

Reaction:
- NC not ready.
- The NC switches to follow-up mode.
- Mode group not ready, also effective for single axes
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Repeat entry with correct value and then Reset.

Program Continuation:
- Clear alarm with the RESET key in all channels of this mode group. Restart part program.
26018 **Axis %1 setpoint output drive %2 used more than once**

Parameters:
- %1 = Axis name, spindle number
- %2 = Drive number

Definitions:
The same setpoint assignment has been allocated more than once.
MD30110 $MA_CTRLOUT_MODULE_NR contains the same value for different axes.
PROFIdrive: The stated MDs contain the same values for different axes, or different entries in $MN_DRIVE_LOGIC_ADDRESS contain the same values.

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Please inform the authorized personnel/service department. Avoid dual assignment of the setpoint by correcting MD30110 $MA_CTRLOUT_MODULE_NR. Also check the selected bus type MD30100 $MA_CTRLOUT_SEGMENT_NR.

Program Continuation:
Switch control OFF - ON.

26019 **Axis %1 encoder %2 measurement not possible with this controller module**

Parameters:
- %1 = NC axis number
- %2 = Encoder number

Definitions:
If the MD MD13100 $MN_DRIVE_DIAGNOSIS[8] contains a value not equal to zero, then the control has found at least one control module which does not support measuring. Measuring was programmed from the part program for the associated axis.

Reaction:
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
If possible, modify the measuring motion such that the axis concerned does not have to travel; do not program this axis in the MEAS block again. However, it is then no longer possible to query a measured value for this axis. Otherwise, exchange the controller module for one that supports measuring. See MD13100 $MN_DRIVE_DIAGNOSIS[8].

Program Continuation:
Clear alarm with the RESET key. Restart part program

26022 **Axis %1 encoder %2 measurement with simulated encoder not possible**

Parameters:
- %1 = NC axis number
- %2 = Encoder number

Definitions:
Alarm occurs on the control when a measurement was made without the encoder hardware (simulated encoder).

Reaction:
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
- Please inform the authorized personnel/service department.
- If possible, modify the measuring motion such that the axis concerned does not have to travel; do not program this axis in the MEAS block again. However, it is then no longer possible to query a measured value for this axis.
- Ensure that measurement is not taking place with simulated encoders (MD30240 $MA_ENC_TYPE).

Program Continuation:
Clear alarm with the RESET key. Restart part program

26024 **Axis %1 machine data %2 value changed**

Parameters:
- %1 = Axis name, spindle number
- %2 = String: MD identifier
Definitions: The machine data contains an invalid value and therefore has been changed by the software.

Reaction: Alarm display.

Remedy: Check MD.

Program Continuation: Clear alarm with the RESET key. Restart part program

26025 Axis %1 machine data %2[%3] value changed

Parameters:
- %1 = Axis name, spindle number
- %2 = String: MD identifier
- %3 = Index: MD array index

Definitions: The machine data contains an invalid value. It was therefore changed by the software internally to a valid value.

Reaction: Alarm display.

Remedy: Check MD.

Program Continuation: Clear alarm with the RESET key. Restart part program

26026 Axis %1 SINAMICS drive parameter P2038 value is not allowed.

Parameters:
- %1 = Axis name, spindle number

Definitions:
- For SINAMICS drives only:
 - The interface mode, which is set via drive parameter P2038, has not been set to SIMODRIVE 611 universal.
 - The alarm can be disabled by MD13070 $MN_DRIVE_FUNCTION_MASK - bit15.
 - However, the following must be noted:
 - The device-specific assignment of the bits in the control and status words may be different.
 - The drive data sets can be created at will, and need not be subdivided into groups of 8. (For details see also SINAMICS Commissioning Manual). So the parameters of motors 2-4 may be incorrectly assigned.

Reaction: NC not ready.
- The NC switches to follow-up mode.
- Mode group not ready, also effective for single axes
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Set P2038 = 1 or
- Set P0922 = 100...199 or
- Set bit 15 of MD13070 $MN_DRIVE_FUNCTION_MASK (note the boundary conditions, see above) and execute a Power ON in each case.

Program Continuation: Switch control OFF - ON.

26030 Axis %1 encoder %2 absolute position lost

Parameters:
- %1 = Axis name, spindle number
- %2 = Encoder number

Definitions:
- The absolute position of the absolute encoder has become invalid because
 - on changing parameter block a changed gear stage ratio was identified between encoder and processing or
 - the encoder has been replaced (the absolute encoder's serial number has changed, see MD34230 $MA_ENC_SERIAL_NUMBER, and drive-specific parameters).

Reaction: Mode group not ready.
- The NC switches to follow-up mode.
- Channel not ready.
- NC Start disable in this channel.
- Axes of this channel must be re-referenced.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
- Channel not ready.
Remedy: Please inform the authorized personnel/service department. Rereferencing/resynchronization of the absolute encoder; attach absolute encoder on the load side and configure correctly (e.g. MD 31040 $MA_ENC_IS_DIRECT).

If an absolute encoder with a serial number is replaced, the drive BOT file for this drive must be saved (because of the new serial number).

Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

26031 Axis %1 configuration error master-slave
Parameters: %1 = Axis name, spindle number
Definitions: The alarm is output when the same machine axis has been configured as a master and a slave axis. Each of the axes in the master/slave link can be operated either as master or slave.
Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: - Check machine data for all linked axes and correct if necessary:
- MD 37250 $MA_MS_ASSIGN_MASTER_SPEED_CMD
- MD 37252 $MA_MS_ASSIGN_MASTER_TORQUE_CTR.

Program Continuation: Clear alarm with the RESET key. Restart part program

26032 [Channel %1:] Axis %2 master-slave not configured
Parameters: %1 = Channel number
%2 = Axis name, spindle number
Definitions: The master-slave coupling could not be activated because of incomplete configuration.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check the current configuration of the master-slave coupling.
The configuration can be modified via the MASLDEF instruction or the machine data MD37250 $MA_MS_ASSIGN_MASTER_SPEED_CMD and MD37252 $MA_MS_ASSIGN_MASTER_TORQUE_CTR.

Program Continuation: Clear alarm with the RESET key. Restart part program

26050 Axis %1 parameter set change from %2 to %3 not possible
Parameters: %1 = Axis name, spindle number
%2 = Index: current parameter block
%3 = Index: new parameter block
Definitions: The parameter block change cannot be performed without jumps. This is due to the content of the parameter block to be switched on, e.g. different load gear factors.
Reaction: The NC switches to follow-up mode.
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: In the following cases, the parameter block change is carried out via MD31060 $MA_DRIVE_AX_RATIO_NUMERA and MD31050 $MA_DRIVE_AX_RATIO_DENOM without an alarm, even with different load gear ratio settings:
1. If no position control is active (e.g. in follow-up mode or if spindle is in speed-controlled mode).
2. For position control with the direct encoder.
3. For position control with the indirect encoder (the calculated load position difference must not exceed the value indicated in MD36500 $MA_ENC_CHANGE_TOL).

Program Continuation: Clear alarm with the RESET key. Restart part program
26051 [Channel %1:] In block %2 unanticipated stop crossed in continuous path mode
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The path interpolation did not stop, as required, at the end of the block, but will only decelerate to a standstill in the next block. This error situation occurs if the stop at block change was not planned by the path interpolation or was not detected early enough. A possible cause is that the PLC changed the spindle speed when MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START > 0, and the machine has to wait until the spindle has returned to the setpoint range. Another possible cause is that a synchronized action needs to be finished before the path interpolation continues. The alarm is only output if MD11400 $MN_TRACE_SELECT = 'H400'. The alarm output is normally suppressed. - MD11400 $MN_TRACE_SELECT has SIEMENS password protection.
Reaction:
Alarm display.
Remedy:
MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START = 1. Program G09 before the alarm output in the block to allow the path interpolation to stop as planned.
Program Continuation:
Clear alarm with the Delete key or NC START.

26052 [Channel %1:] In block %2: path velocity too high for auxiliary function output
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
This alarm usually occurs in a block with auxiliary function output during a movement. In this case, the wait for acknowledgement of the auxiliary function was longer than planned. The alarm also occurs if internal control inconsistencies cause continuous path mode (G64, G641, ...) to be blocked unexpectedly. The path interpolation stops abruptly at the end of the block indicated in the message (regenerative stop). On the next block change, the path continues unless the abrupt stop has caused an error in the position controller (e.g. because MD36400 $MA_CONTOUR_TOL setting was over-sensitive).
Reaction:
Alarm display.
Remedy:
- If the alarm occurred in a block with auxiliary function output during the movement: from SW 5.1 or higher, increase machine MD10110 $MN_PLC_CYCLE_TIME_AVERAGE or
- Program G09 in the block indicated in the message to allow the path interpolation to stop as planned.
Program Continuation:
Clear alarm with the Delete key or NC START.

26053 [Channel %1:] Block %2 interpolation problem in Look Ahead (module %3, identifier %4)
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Module identifier
%4 = Error code
Definitions:
Synchronism between interpolation and preparation is faulty.
Reaction:
Interpreter stop
Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
Please contact Siemens.
Program Continuation:
Clear alarm with the RESET key. Restart part program

26054 [Channel %1:] Block %2 interpolation warning in Look Ahead (module %3, problem %4)
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Module identifier
%4 = Error code
Definitions: The computer performance is inadequate to create a smooth path velocity profile. This can lead to drops in velocity.

Reaction: Local alarm reaction.
Alarm display.
Warning display.

Remedy: Change parameterization. Increase interpolation cycle.

Program Continuation: Clear alarm with the Delete key or NC START.

26070 [Channel %1:] Axis %2 cannot be controlled by the PLC, max. number exceeded

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: An attempt was made to define more axes than allowed as PLC-controlled axes.

Reaction: Interface signals are set.
Alarm display.

Remedy: Check the option 'Number of PLC-controlled axes' and correct if necessary or reduce the number of requests for PLC-controlled axes.

Program Continuation: Clear alarm with the Delete key or NC START.

26072 [Channel %1:] Axis %2 cannot be controlled by the PLC

Parameters: %1 = Channel number
%2 = Axis name, spindle number

Definitions: Axis cannot be made a PLC-controlled axis. For the time being, the axis cannot be controlled at any state from the PLC.

Reaction: Interface signals are set.
Alarm display.

Remedy: Use Release or Waitp to make the axis a neutral one.

Program Continuation: Clear alarm with the Delete key or NC START.

26074 [Channel %1:] Switching off PLC control of axis %2 not allowed in the current state

Parameters: %1 = Channel
%2 = Axis, spindle

Definitions: The PLC can return the control rights for an axis to program processing only, if the axis is in READY state.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Reset VDI interface signal "PLC controls axis", then activate "Axial reset" and repeat process.

Program Continuation: Clear alarm with the Delete key or NC START.

26075 [Channel %1:] Axis %2 not available for the NC program, as exclusively controlled by the PLC

Parameters: %1 = Channel
%2 = Axis, spindle

Definitions: The axis is exclusively controlled by the PLC. Therefore, the axis is not available for the NC program.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Have the axis not exclusively controlled by the PLC, but only temporarily. Change MD30460 $MA_BASE_FUNCTION_MASK, bit 4.

Program Continuation: Clear alarm with the RESET key. Restart part program.
26076 [Channel %1:] Axis %2 not available for NC program, firmly assigned PLC axis

Parameters:
%1 = Channel
%2 = Axis, spindle

Definitions:
The axis is a firmly assigned PLC axis. The axis is therefore not available for the NC program.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Do not define axis as a firmly assigned PLC axis. Change of MD30460 $MA_BASE_FUNCTION_MASK bit5.

Program Continuation:
Clear alarm with the RESET key. Restart part program

26100 Axis %1 drive %2 sign of life missing

Parameters:
%1 = Axis name, spindle number
%2 = Drive number

Definitions:
Special case: The output of drive number=0 indicates that a computing timeout occurred on the IPO level (see also alarm 4240)

Reaction:
NC not ready.
The NC switches to follow-up mode.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Restart drive, check drive software.

Program Continuation:
Switch control OFF - ON.

26101 Axis %1 drive %2 communication failure

Parameters:
%1 = Axis name, spindle number
%2 = Drive number

Definitions:
For PROFIdrive only:
The drive is not communicating.

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Axes of this channel must be re-referenced.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
- Check the bus configuration.
- Check the interface (connector removed, option module inactive, etc.).

Program Continuation:
Clear alarm with the RESET key. Restart part program

26102 Axis %1 drive %2 sign of life missing

Parameters:
%1 = Axis name, spindle number
%2 = Drive number

Definitions:
For PROFIdrive only:
The sign-of-life cell is no longer being updated by the drive.

Reaction:
Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Axes of this channel must be re-referenced.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
- Check the cycle settings.
- Increase the cycle time if necessary.
- Power-up the drive again.
- Check drive software.

Program Continuation: Clear alarm with the RESET key. Restart part program

26105 Drive of axis %1 not found

Parameters: %1 = Axis name, spindle number

Definitions: For PROFIdrive only:
The drive configured for the specified axis could not be found. For example, a PROFIBUS slave was configured on the NC but is not contained in SDB-Type-2000.

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Possible causes:
- MD30130 $MA_CTRLOUT_TYPE not equal to 0 as a result of an oversight; the drive should actually be simulated (= 0).
- MD30110 $MA_CTRLOUT_MODULE_NR entered incorrectly, i.e. the logical drive numbers were exchanged and an invalid value is stored for this drive in MD13050 $MN_DRIVE_LOGIC_ADDRESS (see 3.) or a drive number which does not exist on the bus was entered (check the number for slaves, for example).
- MD13050 $MN_DRIVE_LOGIC_ADDRESS contains values which were not configured on the Profibus (i.e. the values are not in SDB-Type-2000) or different addresses were selected for the input and output slots of the drive in the Profibus configuration.

Program Continuation: Switch control OFF - ON.

26106 Encoder %2 of axis %1 not found

Parameters: %1 = Axis name, spindle number
%2 = Encoder number

Definitions: For PROFIdrive only:
The encoder configured for the specified axis could not be found. For example, a PROFIBUS slave was configured on the NC but it is not contained in the SDB or defective hardware was reported for it.

Reaction: Mode group not ready.
The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Possible causes:
- MD 30240 $MA_ENC_TYPE not equal to 0 as a result of an oversight; the encoder should actually be simulated (= 0).
- MD 30220 $MA_ENC_MODULE_NR entered incorrectly, i.e. the logical drive numbers were transposed and an invalid value is stored for this drive in MD13050 $MN_DRIVE_LOGIC_ADDRESS (see next paragraph), or a drive number which does not exist on the bus was entered (check the number for slaves, for example).
- MD 13050 $MN_DRIVE_LOGIC_ADDRESS contains values which were not configured on the Profibus (i.e. the values are not in SDB Type 2000) or different addresses were selected for the input and output slots of the drive in the Profibus configuration.
- A fatal encoder error was detected during the selection of the encoder (encoder defective, removed), so that park status cannot be left (in such a case, this alarm is triggered instead of alarm 25000/25001 - please refer to them for other possible causes of the error).
Program Continuation: Switch control OFF - ON.

26120 [Channel %1:] Axis %2 $AA_ESR_ENABLE = 1 but axis should be set to NEUTRAL
Parameters:
%1 = Channel
%2 = Axis, spindle
Definitions:
One axis with ESR configuration and $AA_ESR_ENABLE[Achse] = 1 should be set to NEUTRAL.
However, neutral axes (apart from single axes) cannot execute an ESR.
Reaction:
Alarm display.
Remedy:
Set $AA_ESR_ENABLE[Achse] = 0 before setting axis to NEUTRAL.
Alarm can be suppressed via MD11415 $MN_SUPPRESS_ALARM_MASK_2 bit 6 = 1.
Program Continuation: Clear alarm with the Delete key or NC START.

26121 [Channel %1:] Axis %2 is NEUTRAL and $AA_ESR_ENABLE = 1 should be set
Parameters:
%1 = Channel
%2 = Axis, spindle
Definitions:
$AA_ESR_ENABLE[Achse] = 1 should not be set to neutral axes (apart from single axes).
Neutral axes (apart from single axes) cannot execute an ESR.
Reaction:
Alarm display.
Remedy:
Do not apply $AA_ESR_ENABLE[Achse] = 1 to neutral axes (apart from single axes).
Alarm can be suppressed via MD11415 $MN_SUPPRESS_ALARM_MASK_2 bit 6 = 1.
Program Continuation: Clear alarm with the Delete key or NC START.

26122 [Channel %1:] Axis %2, $AA_ESR_ENABLE = 1, axis exchange not executed in this state
Parameters:
%1 = Channel
%2 = Axis, spindle
Definitions:
With $AA_ESR_ENABLE[Achse] = 1 axis exchange not permitted.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
Set $AA_ESR_ENABLE[Axis] = 0 before axis exchange.
Program Continuation: Clear alarm with the RESET key. Restart part program
Set $AA_ESR_ENABLE[Axis] = 0

26123 [Channel %1:] Axis %2, $AA_ESR_ENABLE = 1 should be set, but MD37500 $MA_ESR_REACTION = 0
Parameters:
%1 = Channel
%2 = Axis, spindle
Definitions:
$AA_ESR_ENABLE[Axis] = 1 should only be set on axes with MD37500 $MA_ESR_REACTION[Achse] > 0.
The following example brings about the alarm:
N100 $MA_ESR_REACTION[AX1] = 21
N110 $AA_ESR_ENABLE[AX1] = 1
N120 NEWCONF
because MD37500 $MA_ESR_REACTION[AX1] = 21 will become known to the NCK at the time of
N120 NEWCONF.
Correct would be:
N100 $MA_ESR_REACTION[AX1] = 21
N110 NEWCONF
N120 $AA_ESR_ENABLE[AX1] = 1
Reaction:
Alarm display.
Remedy: Before setting $AA_ESR_ENABLE[\text{axis}] = 1$, MD37500 $MA_ESR_REACTION[\text{axis}] > 0$ must be set. When setting MD37500 $MA_ESR_REACTION[\text{axis}]$ in the parts program, e.g. NEWCONF must be called before $AA_ESR_ENABLE[\text{axis}]$. Alarm can be suppressed via MD11415 $MN_SUPPRESS_ALARM_MASK_2$ bit 6 = 1.

Program Continuation: Clear alarm with the Delete key or NC START.

26124
[Channel %1:] Axis %2, $AC_ESR_TRIGGER$ triggered but axis is NEUTRAL and cannot execute ESR

Parameters:
%1 = Channel
%2 = Axis, spindle

Definitions:
Channel-specific ESR ($AC_ESR_TRIGGER$) triggered, but one axis with ESR configuration is NEUTRAL at the time of triggering.
Neutral axes are ignored with ESR (apart from single axes which react only to $AA_ESR_TRIGGER[Ax]$).

Reaction:
Alarm display.

Remedy:
$AA_ESR_ENABLE[Achse] = 1$ should not be set with neutral axes.
Alarm can be suppressed via MD11415 $MN_SUPPRESS_ALARM_MASK_2$ bit 6 = 1.

Program Continuation: Clear alarm with the Delete key or NC START.

26200
[Channel %1:] Block %2: The names of the kinematic chains $NK_CHAIN_NAME[%3]$ and $NK_CHAIN_NAME[%4]$ are the same

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Index of 1st chain
%4 = Index of 2nd chain

Definitions:
There are (at least) two kinematic chains with the same name. The names of the kinematic chains must be clear and identifiable.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Change name of involved kinematic chains

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26202
[Channel %1:] Block %2: The names of the kinematic chain links $NK_NAME[%3]$ and $NK_NAME[%4]$ are the same

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Index of 1st chain element
%4 = Index of 2nd chain element

Definitions:
There are (at least) two kinematic chain links with the same name. The names of the kinematic chain links must be clear and identifiable.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
- Change the names of the kinematic chain links involved

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26204
[Channel %1:] Block %2: The chain element %3 referred to in $NK_NEXT[%4]$ is already contained in the chain

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Name of the next chain link
%4 = Index of the chain element
Definitions: In one chain link, the next link of the chain is indicated as a chain link already in existence in the chain. This allows you to define a not permitted closed chain.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Define the kinematic chain in such a way that no closed chain results.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26206 [Channel %1:] Block %2: The chain element %3, referred to in $NK_1ST_ELEM[%4], was not found

Parameters: %1 = Channel number %2 = Block number, label %3 = Name of first chain link %4 = Index of chain

Definitions: The chain link indicated as the first link in a kinematic chain was not found.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Indicate in $NK_1ST_ELEM[...] the name of an existing chain link.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26208 [Channel %1:] Block %2: Chain element %3, referred to in $NK_NEXT[%4], was not found

Parameters: %1 = Channel number %2 = Block number, label %3 = Name of the next chain link %4 = Index of chain link

Definitions: The chain link indicated as the next link in a kinematic chain was not found.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Indicate in $NK_1ST_NEXT[...] the name of an existing chain link.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26210 [Channel %1:] Block %2: Chain %3, referred to in $NK_NEXTP[%4], was not found

Parameters: %1 = Channel number %2 = Block number, label %3 = Name of the next chain link %4 = Index of chain link

Definitions: The stated parallel chain was not found.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Enter the name of an existing chain in $NK_NEXTP[...]

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26212 [Channel %1:] Block %2: Maximum number of %3 chain elements exceeded

Parameters: %1 = Channel number %2 = Block number, label %3 = Maximum number of chain links
Definitions: The maximum permitted number of chain links contained in all chains is too large. When determining the maximum number, a single chain link contained in several chains is counted several times.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Reduce number of chain links contained in all chains. This can be achieved e.g. by deactivating individual and currently not required chains and by entering the zero string in the name of the chain.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26214 [Channel %1:] Block %2: The maximum permissible value of fine offset in chain element %3 was exceeded

Parameters: %1 = Channel number %2 = Block number, label %3 = Fine offset value

Definitions: The value in $NK_OFF_FINE or in a component of $NK_OFF_DIR is higher than the limit value allowed by $NK_LIMIT_FINE. For chain elements that describe an axis, the alarm refers to $NK_OFF_FINE, otherwise to $NK_OFF_DIR.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Reduce the value in the specified component, or increase the permissible limit value in $NK_LIMIT_FINE.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26216 [Channel %1:] Block %2: The axis direction in chain element %3 has not been defined.

Parameters: %1 = Channel number %2 = Block number, label %3 = Fine offset value

Definitions: The chain element describes an axis, the direction of which is defined by the value included in $NK_OFF_DIR. The definition is valid only if the value of the vector is higher than 1.0e-6.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Enter a valid vector in $NK_OFF_DIR, or change the chain element type.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26218 [Channel %1:] Block %2: Invalid name in %3[%4]

Parameters: %1 = Channel number %2 = Block number, label %3 = Name of the system variable %4 = Index of the system variable

Definitions: A system variable of type STRING contains an invalid name.

Reaction: Correction block is reorganized. Interface signals are set. Alarm display.

Remedy: Use a permissible name. The permissible names can be found in the documentation of the system variables involved.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
26222 [Channel %1:] Block %2: The names of the protection areas $NP_PROT_NAME[%3] and $NP_PROT_NAME[%4] are the same
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Index of 1st protection area
%4 = Index of 2nd protection area
Definitions:
Two protection areas were assigned the same name. The names of the protection areas must be clear and identifiable.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Rename one of the protection areas involved.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

26224 [Channel %1:] Block %2: The names of the protection area elements $NP_NAME[%3] and $NP_NAME[%4] are the same
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Index of 1st protection area element
%4 = Index of 2nd protection area element
Definitions:
Two protection area elements were assigned the same name. The names of the protection area elements must be clear and identifiable.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Rename one of the protection area elements involved.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

26226 [Channel %1:] Block %2: Invalid protection area type in $NP_TYPE[%3]
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Index of protection area element
Definitions:
An invalid protection area type was indicated. The permitted protection area types are defined by the machine date MD18898 $MN_PROT_AREA_3D_TYPE_NAME_TAB.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Indicate valid protection area type.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

26227 [Channel %1:] Block %2: CAD file not found: %3
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = File name
Definitions:
A CAD file referenced with $NP_TYPE was not found.
Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.
Remedy:
Correct the name in $NP_TYPE or load the CAD file of this name into the control.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
26228 [Channel %1:] Block %2: The protection area element %3, referred to in $NP_1ST_PROT[%4], was not found

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Name of next protection area element
%4 = Index of protection area

Definitions:
The protection area element indicated first in a protection area was not found.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Indicate in $NP_1ST_PROT[...] the name of an existing protection area element.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

26230 [Channel %1:] Block %2: Protection area element %3, referred to in $NP_NEXT[%4], was not found

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Name of next protection area element
%4 = Index of protection area

Definitions:
The protection area element indicated next in a protection area was not found.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Indicate in $NP_NEXT[...] the name of an existing protection area element.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

26231 [Channel %1:] Block %2: The protection zone or the CAD file %3 referred to in $TC_TP_PROTA[%4] was not found.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Name of tool protection zone (element)
%4 = T number of tool

Definitions:
Tool parameter $TC_TP_PROTA refers to a protection zone and a CAD file. The protection zone and CAD file were not found.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Enter in $TC_TP_PROTA[...] the name of an existing protection zone and the name of an existing CAD file.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

26232 [Channel %1:] Block %2: Maximum number of %3 protection area elements exceeded

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Name of next protection area element

Definitions:
The maximum number of permitted protection zone elements has been exceeded.

Reaction:
Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy:
Reduce number of protection areas or protection area elements.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.
26233 [Channel %1:] Block %2: The maximum permissible number of tool protection zone elements has been exceeded.

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The maximum permissible number of protection zone elements reserved for the tool has been exceeded.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Increase the number of protection zone elements reserved for the tool (MD18893 $MN_MM_MAXNUM_3D_T_PROT_ELEM) or reduce the complexity of the tool descriptions.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26234 [Channel %1:] Block %2: The protection area $NP_PROT_NAME[%3] does not contain any protection area elements

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Index of protection area

Definitions: A protection area must contain at least one protection area element.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Change definition of protection area or delete protection area.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26236 [Channel %1:] Block %2: Protection area element %3, referred to in $NP_NEXT[%4], is already contained in the definition chain

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Index of protection area element
%4 = Index of protection area element

Definitions: A closed definition chain was found, i.e. a protection area element contains the protection area of which it is a part.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Change definition of protection area or delete protection area.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26238 [Channel %1:] Block %2: Protection area %3, referred to in $NP_ADD[%4], was not found

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Name of the protection area to be added
%4 = Index of protection area

Definitions: The protection area to be added to the current protection area element was not found.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Indicate in $NP_ADD[...] the name of an existing protection area element, define a protection area with the name indicated or delete entry.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
26240 [Channel %1:] Block %2: The protection area indicated in $NP_ADD[%3] is linked with a kinematic chain
Parameters:
%1 = Channel number
%2 = Block number
%3 = Index of protection area element
Definitions:
Protection areas added to an existing protection area via $NP_ADD[...], must not be linked to a kinematic chain, e.g. $NP_CHAIN_NAME[...] and $NP_CHAIN_ELEM[...] must be empty.
Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.
Remedy:
Enter in $NP_ADD[...] a protection area not linked with a kinematic chain or delete the reference to a kinematic chain in the protection area to be added or delete the entry in $NP_ADD[...].
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

26241 [Channel %1:] Block %2: The tool protection zone %3 ($NP_PROT_NAME[%4]) contains a reference to a kinematic chain.
Parameters:
%1 = Channel number
%2 = Block number
%3 = Name of 1st protection area
%4 = Index of protection area
Definitions:
Defined tool protection zones, which are referred to by the content of tool parameter $TC_TP_PROTA[T_NUMMER], must not contain any reference to a kinematic chain.
Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.
Remedy:
Delete the entries in $NP_CHAIN_NAME und $NP_CHAIN_ELEM for the protection zone affected. In $TC_TP_PROTA, refer to a protection zone that is not attached to a kinematic chain.
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

26242 [Channel %1:] Block %2: Name of the kinematic chain in $NP_CHAIN_NAME[%3] not defined
Parameters:
%1 = Channel number
%2 = Block number
%3 = Index of protection area
Definitions:
The name of the element of a kinematic chain was indicated in the protection area in $NP_CHAIN_ELEM[...]. In this case, it is mandatory to indicate the name itself of the kinematic chain in $NP_CHAIN_NAME[...].
Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.
Remedy:
Indicate in $NP_CHAIN_NAME[...] the name of a kinematic chain or delete the entry in $NP_CHAIN_ELEM[...].
Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

26244 [Channel %1:] Block %2: Protection area %3, referred to in $NP_ADD[%4], is already contained in the definition chain
Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Index of protection area
%4 = Index of protection area element
Definitions:
A closed definition chain was found, i.e. a protection area element contains the protection area of which it is a part.
Reaction:
Correction block is reorganized. Interface signals are set. Alarm display.
Overview of Alarms 03/2009

NCK alarms

Remedy: Change definition of the protection area or delete protection area.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26246 [Channel %1:] Block %2: Parameter $NP_PARA[%3,%4] is invalid
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Index of protection area element
 %4 = Index of parameters
Definitions: An invalid parameter value to define a protection area element was indicated.
 Parameter values must not be negative.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Indicate valid parameter value.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26248 [Channel %1:] Block %2: The contents (%4) of parameter $NP_BIT_NO[%3] are invalid
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Programmed bit index
 %4 = Index of parameters
Definitions: Invalid bit number indicated for the switchover of a preactivated protection area between the states activated / deactivated.
 Bit number must have a value between -1 and 63.
 Whereby -1 means that no interface bit was assigned to the protection area.
 Values between 0 and 63 indicate the index of the interface bit through which the activation state of the protection area is switched over.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Indicate valid index
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26250 [Channel %1:] Block %2: The names of the protection area groups $NP_NAME[%3] and $NP_NAME[%4] are the same
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Index of 1st protection area group
 %4 = Index of 2nd protection area group
Definitions: Two protection area groups were assigned the same name. The names of the protection area groups must be clear and identifiable.
Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Rename one of the protection area groups involved.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26252 [Channel %1:] Block %2: Element %4 of the protection area group %3 is not linked with a kinematic chain
Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = Index of 1st protection area group
 %4 = Index of 2nd protection area group
Definitions: Protection areas being elements of a protection area group must be linked with a kinematic chain. Protection areas that are not assigned to any kinematic chain are not relevant for collision monitoring, because their position in the space has not been defined.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Defining the assignment of a protection area to a kinematic chain.
Deleting the protection area from the protection area group.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26254 [Channel %1:] Block %2: The protection area referred to in element %4 of protection area group %3 was not found

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Number of protection area group
%4 = Number of the element of the protection area group

Definitions: The protection area to be added to the current protection area group was not found.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Indicate in $NP_MEMBER_X[...] the name of an existing protection area, define a protection area with the indicated name or delete entry.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26256 [Channel %1:] Block %2: The protection area group %3 referred to in $NP_ADD_GROUP[%4] was not found

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Name of the protection area group to be added
%4 = Index of protection area group

Definitions: The protection area group to be added to the current protection area group was not found.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Indicate in $NP_ADD_GROUP[...] the name of an existing protection area group, define a protection area group with the name indicated or delete entry.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26260 [Channel %1:] Block %2: Collision of the two protection areas %3 and %4

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Name of 1st protection area
%4 = Name of 2nd protection area

Definitions: The two protection areas named collide in the indicated block, i.e. the distance between the two protection areas is smaller than the value defined by MD10619 $MN_COLLISION_TOLERANCE.

Reaction: Correction block is reorganized.
Alarm display.
NC Stop on alarm.

Remedy: Change NC program or definition of the protection areas involved.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26261 [Channel %1:] The two protection zones %2 and %3 collide

Parameters: %1 = Channel number
%2 = Name of 1st protection area
%3 = Name of 2nd protection area
Definitions: The two stated protection zones collide.

Reaction: Interpreter stop
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Change NC program or definition of the protection areas involved.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26262 [Channel %1:] Not enough memory space during collision test of the two protection zones %2 and %3. Currently available memory space: %4KB.

Parameters:
%1 = Channel number
%2 = Name of 1st protection area
%3 = Name of 2nd protection area
%4 = Currently available memory

Definitions: The collision check of two protection zones requires temporary internal memory space, the size of which depends on the number of elements contained in the protection zones, the spacing of the protection zones, and the number of machine axes.
The size of the available memory space can be changed in MD18896 $MN_MM_MAXNUM_3D_COLLISION.

Reaction: Correction block is reorganized.
Alarm display.
NC Stop on alarm.

Remedy: Change NC program or definition of the protection areas involved.
Adjust MD18896 $MN_MM_MAXNUM_3D_COLLISION.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26263 [Channel %1:] Block %2: Not enough memory space for determining the distance between two protection zones. Currently available memory space: %3KB.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Currently available memory

Definitions: The determination of the distance between two protection zones with the function PROTDFCT requires temporary internal memory space, the size of which depends on the number of elements contained in the protection zones, and their positions relative to one another.
The size of the available memory space can be changed in MD18896 $MN_MM_MAXNUM_3D_COLLISION.

Reaction: Correction block is reorganized.
Alarm display.
NC Stop on alarm.

Remedy: Change NC program or definition of the protection areas involved.
Adjust MD18896 $MN_MM_MAXNUM_3D_COLLISION.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26264 [Channel %1:] Block %2: The protection area with the name %3 was not found.

Parameters:
%1 = Channel number
%2 = Block number
%3 = Name of protection area

Definitions: One protection area with the name indicated was not found (e.g. during function call PROTA).

Reaction: Correction block is reorganized.
Alarm display.
NC Stop on alarm.

Remedy: Indicate the name of an existing protection area or define the protection area with the name indicated.
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
26266 [Channel %1:] Block %2: The protection area with the name %3 was programmed several times.

Parameters:
%1 = Channel number
%2 = Block number
%3 = Name of protection area

Definitions:
The name of a protection area was programmed several times (e.g., during the function call PROTA).

Reaction:
Correction block is reorganized.
Alarm display.
NC Stop on alarm.

Remedy:
Indicate each required name of a protection area only once.

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

26268 [Channel %1:] Block %2: Protection area %3 has not been assigned an interface bit

Parameters:
%1 = Channel number
%2 = Block number
%3 = Name of protection area

Definitions:
an attempt was made to preactivate a protection area to which no interface bit was assigned. Protection areas can be preactivated only if an interface bit was defined in $NP_BIT_NO[..] through which switchover between activated and deactivated state is possible in a preactivated protection area.

Reaction:
Correction block is reorganized.
Alarm display.
NC Stop on alarm.

Remedy:
Assign an interface bit to the protection area or select another activation mode (active / inactive).

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

26270 [Channel %1:] Block %2: Invalid activation parameter during the PROTA function call

Parameters:
%1 = Channel number
%2 = Block number

Definitions:
The activation parameter of the PROTA function contains an invalid value. Only the following values are permitted:
"A" or "a" (= activated)
"I" or "i" (= inactivated)
"P" or "p" (= preactivated)
"R" or "r" (= take over activation state from protection area definitions)

Reaction:
Correction block is reorganized.
Alarm display.
NC Stop on alarm.

Remedy:
Indicate a valid activation parameter ("A", "a", "I", "i", "P", "p", "R", "r").

Program Continuation:
Clear alarm with NC START or RESET key and continue the program.

26272 [Channel %1:] Block %2: The contents (%3) of parameter $NP_INIT_STAT[%4] are invalid

Parameters:
%1 = Channel number
%2 = Block number
%3 = Programmed state
%4 = Index of parameters

Definitions:
an invalid activation state was indicated for a protection area. Only the following values are permitted:
"A" or "a" (= activated)
"I" or "i" (= inactivated)
"P" or "p" (= preactivated)

Reaction:
Correction block is reorganized.
Alarm display.
NC Stop on alarm.
Remedy: Indicate a valid activation parameter ("A", "a", "I", "i", "P", "p").

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26274 [Channel %1:] Block %2: Chain %3 referred to in $NP_CHAIN_NAME[%4] was not found

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Name of the chain
%4 = Index of protection area

Definitions: The kinematic chain referred to in the protection area definition ($NP_CHAIN_NAME[...]) was not found.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Indicate in $NP_CHAIN_NAME[...] the name of an existing kinematic chain or define a chain with the name indicated.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26276 [Channel %1:] Block %2: Chain element %3 referred to in $NP_CHAIN_ELEM[%4] was not found

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Name of the chain element
%4 = Index of protection area

Definitions: The kinematic chain element referred to in the protection area definition ($NP_CHAIN_ELEM[...]) was not found.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Indicate in $NP_CHAIN_ELEM[...] the name of an existing chain element or define a chain element with the name indicated.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26278 [Channel %1:] Block %2: The axis or frame name %3 contained in $NK_AXIS[%4] is unknown

Parameters: %1 = Channel number
%2 = Block number, label
%3 = Axis or frame name
%4 = Index of the chain element

Definitions: An unknown name was entered in the element of a kinematic chain in the component $NK_AXIS[...].
The name entered must be either a machine axis identifier or the name of a variable made available by the OEM software.

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Enter a valid name in $NK_AXIS[...].
In a regular case (without OEM software), that is a machine axis identifier.
An empty string is also a valid name. That defines a constant chain link.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26280 [Channel %1:] Axis %2 risk of collision %3 %4

Parameters: %1 = Channel number
%2 = Axis name, spindle number
%3 = 1st protection zone
%4 = 2nd protection zone
Definitions: The indicated axis was stopped due to the risk of collision.

Reaction: Alarm display.

Remedy: In JOG mode: Retract axis from danger zone.
In automatic mode: Determine reason for the risk of collision and eliminate. Possible reasons: wrong NC program, too large handwheel overrides, axis couplings and vice-versa impairing of two channels.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

26281 [Channel %1:] Axis %2 risk of collision %3 %4

Parameters:
%1 = Channel number
%2 = Axis name, spindle number
%3 = 1st protection zone
%4 = 2nd protection zone

Definitions: The stated axis was stopped due to the risk of collision. The programmed path may have been left because it was not possible to stop in time on the path (exceptional situation).

Reaction: Local alarm reaction.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm at block end.

Remedy: In JOG mode: Retract axis from danger zone.
In automatic mode: Determine reason for the risk of collision and eliminate. Possible reasons: wrong NC program, too large handwheel overrides, axis couplings and vice-versa impairing of two channels.

Program Continuation: The stated axis was stopped due to the risk of collision. The programmed path may have been left because it was not possible to stop in time on the path (exceptional situation).

26282 [Channel %1:] Block %2: Invalid definition of the protection zones or the kinematic chains.

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: There are no valid definitions of the protection zones and / or the kinematic chains. This alarm only occurs if an error occurred the last time the procedure PROTA was called, and its cause has not been eliminated.

Reaction: Correction block is reorganized.
Alarm display.
NC Stop on alarm.

Remedy: Protection zones and kinematic chains must be defined without errors. This is achieved by calling the procedure PROTA and closing it without errors.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26284 [Channel %1:] Block %2: The call of the function / procedure %3 is only permissible if the function 'Collision monitoring' is present.

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = Funktionsname

Definitions: The function or procedure stated in the alarm text (e.g. PROTA or PROTD) can only be called if the function "Collision avoidance" is present.

Reaction: Correction block is reorganized.
Alarm display.
NC Stop on alarm.

Remedy: The function "Collision avoidance" must be activated. For this, the MD18890 $MN_MM_MAXNUM_3D_PROT_AREAS must contain a value greater than zero.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.
26286 [Channel %1:] Axis %2 risk of collision preactivated protection zones
interface signal(s) %3

Parameters: %1 = Channel number
 %2 = Axis name, spindle number
 %3 = Interface signal(s)

Definitions: A collision was detected involving at least one preactivated protection zone.
 Such a collision can occur if the interface signal assigned to a preactivated protection zone has been
 activated. That is if a preactivated protection zone has become an active protection zone.
 Either a preactivated and a (static) active protection zone can be involved in the collision, or two pre-
 activated protection zones can be involved. The number(s) of the interface signals assigned to the
 preactivated protection zones involved are output in the alarm text.

Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 Alarm reaction in Automatic mode.
 NC Stop on alarm.

Remedy: Reset activating interface signals.
 Redefine protection zones.
 Retract

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26290 [Channel %1:] Block %2: Maximum number of %4 protection zone facets exceeded in CAD file %3

Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = File name
 %4 = Maximum number of protection zone facets

Definitions: The maximum permissible number of protection zone facets has been exceeded.

Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.

Remedy: Increase the number of allowed Protection Area Facet elements (MD18895
 $MN_MM_MAXNUM_3D_FACETS) or reduce the number of defined facets in the CAD file.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26292 [Channel %1:] Block %2: Maximum number of %4 input points exceeded in CAD file %3

Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = File name
 %4 = Maximum number of input points

Definitions: The maximum permissible number of input points has been exceeded.

Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.

Remedy: Increase the number of allowed Protection Area Facet elements (MD18895
 $MN_MM_MAXNUM_3D_FACETS) or reduce the number of defined facets in the CAD file.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26294 [Channel %1:] Block %2: CAD file %3 is not a valid VRML file

Parameters: %1 = Channel number
 %2 = Block number, label
 %3 = File name

Definitions: The CAD file does not contain valid VRML data.

Reaction: Correction block is reorganized.
 Interface signals are set.
 Alarm display.
Remedy: Check the format of the input CAD/VRML data.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

26296 [Channel %1:] Block %2: CAD file %3 is not a valid STL file

Parameters:
%1 = Channel number
%2 = Block number, label
%3 = File name

Definitions: The CAD file does not contain any valid STL data

Reaction: Correction block is reorganized.
Interface signals are set.
Alarm display.

Remedy: Check the format of the CAD/STL file.

Program Continuation: Clear alarm with NC START or RESET key and continue the program.

27000 Axis %1 is not safely referenced

Parameters:
%1 = Axis number

Definitions: There are two reasons for this alarm:
- the machine position has not yet been acknowledged by the user,
- the machine position has not yet been verified through follow-up referencing.

Even if the axis is already referenced, there is no confirmation that referencing has supplied the correct result. For example, wrong results can occur if the axis was moved after the control was switched off, with the result that the standstill position saved prior to switching off is no longer correct. To make sure that this does not happen, the user must acknowledge the displayed actual position after the first referencing process.

When the user enable has first been set, follow-up referencing must be carried out each time the control is rebooted (with absolute encoders, this follow-up referencing is executed automatically). This procedure is carried out to verify the standstill position saved prior to switching off of the control.

Via the MD $MN_SAFE_ALARM_SUPPRESS_LEVEL (MD>=3), the alarm display can be set in such a way that the group alarm 27100 is displayed for all SI axes.

Reaction:
Alarm display.
SGA "Axis safely referenced" is not set. SE will be switched off, if the actual safety position has not yet been confirmed by a user agreement. If the user agreement has been set, SE will remain active. The safe cams are calculated and output. However, their significance is limited as referencing has not been confirmed.

Remedy:
Traverse the axis to a known position, change to operating mode "Referencing" and press softkey "Agreement". Check the positions displayed in the agreement screen on the machine. If they match the expected or known position, confirm this by using the toggle key. If the user agreement has already been set, reference the axis again.
The user agreement can be changed only via keyswitch position 3 or after password entry.

WARNING:
If the axis is not referenced safely and the user agreement is not available, the following will apply:
- the safe cams are not yet safe
- the safe end positions are not yet active.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
27001 Axis %1 error in a monitoring channel, code %2, values: NCK %3, drive %4

Parameters:
%1 = Axis number
%2 = Additional info cross-comparison index
%3 = NCK comparison value extension
%4 = Additional info comparison value drive

Definitions:
Between the two monitoring channels (NCK and drive) a mutual comparison of the state of the safety-related monitoring functions is performed cyclically. For each NCK/drive combination the comparison is performed separately.

Per monitoring cycle (MD10091 $MN_INFO_SAFETY_CYCLE_TIME) a criterion of a comparison list is compared between NCK and drive, in the next monitoring cycle the next criterion, etc. As soon as the complete comparison list has been executed, execution of the comparisons starts again. The resulting total comparison time for an execution of the list is displayed in MD10092 $MN_INFO_CROSSCHECK_CYCLE_TIME (factor x MD10091 $MN_INFO_SAFETY_CYCLE_TIME - the factor may differ in the various software versions).

The alarm "Defect in a monitoring channel" is output, if the mutual comparison of the two monitoring channels has found a difference between input data or results of the monitoring operations. One of the monitors no longer functions reliably.

The cross-checking index output under %2 is also called STOP F code. In alarm 27001 the STOP F code is also output, at which the NCK has found a cross checking error for the first time.

The STOP F code of the drive (belonging to alarm F30611) can be found in the diagnosis screen or in parameter r795. If there is a difference in several comparison steps, several STOP F codes can be displayed at these positions alternatively.

There are fault profiles that can be detected by several comparisons of the comparison list, i.e. the displayed STOP F code value does not always provide clear information about the error cause. The relevant procedure is explained with the individual error codes:

- 0 No error found in this channel; following alarm to drive alarm F01711.
- 1 Result list 1: Difference in SBH, SG, SBR or SE result, e.g. due to different activation of the monitoring channels. For further information see drive parameters r9710[0], r9710[1].
- 2 Result list 2: Difference in SN, n_x result. For further information see drive parameters r9711[0], r9711[1].
- 3 Actual value difference greater than setting in MD36942 $MA_SAFE_POS_TOL.
- 4 Not assigned.
- 5 Function enables MD36901 $MA_SAFE_FUNCTION_ENABLE.
- 6 Velocity limit MD36931 $MA_SAFE_VELO_LIMIT[0].
- 7 Velocity limit MD36931 $MA_SAFE_VELO_LIMIT[1].
- 8 Velocity limit MD36931 $MA_SAFE_VELO_LIMIT[2].
- 9 Velocity limit MD36931 $MA_SAFE_VELO_LIMIT[3].
- 10 Tolerance for safe operational stop MD36930 $MA_SAFE_STANDSTILL_TOL.
- 11 Safe position limit MD36934 $MA_SAFE_POS_LIMIT_PLUS[0].
- 12 Safe position limit MD36935 $MA_SAFE_POS_LIMIT_MINUS[0].
- 13 Safe position limit MD36934 $MA_SAFE_POS_LIMIT_PLUS[1].
- 14 Safe position limit MD36935 $MA_SAFE_POS_LIMIT_MINUS[1].
- 15 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[0] + MD36940 $MA_SAFE_CAM_TOL.
- 16 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[0].
- 17 Cam position MD36936 $MA_SAFE_CAM_POS_MINUS[0] + MD36940 $MA_SAFE_CAM_TOL.
- 18 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[0].
- 19 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[1] + MD36940 $MA_SAFE_CAM_TOL.
- 20 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[1].
- 21 Cam position MD36936 $MA_SAFE_CAM_POS_MINUS[1] + MD36940 $MA_SAFE_CAM_TOL.
- 22 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[1].
- 23 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[2] + MD36940 $MA_SAFE_CAM_TOL.
- 24 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[2].
- 25 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[2] + MD36940 $MA_SAFE_CAM_TOL.
- 26 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[2].
- 27 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[3] + MD36940 $MA_SAFE_CAM_TOL.
- 28 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[3].
- 29 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[3] + MD36940 $MA_SAFE_CAM_TOL.
- 30 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[3].
- 31 Actual position tolerance MD36942 $MA_SAFE_POS_TOL. MD36949 $MA_SAFE_SLIP_VELO_TOL for active actual value synchronization (slippage).
- 32 Ref. position tolerance MD36944 $MA_SAFE_REFP_POS_TOL.
- 33 Delay SG[x] -> SG[y] MD36951 $MA_SAFE_VELO_SWITCH_DELAY.
- 34 Delay cross-comparison MD36950 $MA_SAFE_MODE_SWITCH_TIME.
- 35 Delay pulse disable Stop B MD36956 $MA_SAFE_PULSE_DISABLE_DELAY.
- 36 Delay pulse disable test stop MD36957 $MA_SAFE_PULSE_DISABLE_DIS_CHECK_TIME.
- 37 Delay Stop C -> SBH MD36952 $MA_SAFE_STOP_SWITCH_TIME_C.
- 38 Delay Stop D -> SBH MD36953 $MA_SAFE_STOP_SWITCH_TIME_D.
- 39 Delay Stop E -> SBH MD36954 $MA_SAFE_STOP_SWITCH_TIME_E.
- 40 Stop reaction on SG exceeded MD36961 $MA_SAFE_VELO_STOP_MODE.
- 41 Stop reaction on SE exceeded MD36962 $MA_SAFE_POS_STOP_MODE.
- 42 Standstill speed MD36960 $MA_SAFE_STANDSTILL_VELO_TOL.
- 43 Memory test, stop reaction.
- 44 Actual position + SG[0] MD36931 $MA_SAFE_VELO_LIMIT[0].
- 45 Actual position - SG[0] MD36931 $MA_SAFE_VELO_LIMIT[0].
- 52 Standstill position + tolerance MD36930 $MA_SAFE_STANDSTILL_TOL.
- 53 Standstill position - tolerance MD36930 $MA_SAFE_STANDSTILL_TOL.
- 54 Actual position + n_x + tolerance MD36946 $MA_SAFE_VELO_X + MD36942 $MA_SAFE_POS_TOL.
- 55 Actual position + n_x MD36946 $MA_SAFE_VELO_X.
- 56 Actual position - n_x MD36946 $MA_SAFE_VELO_X.
- 57 Actual position - n_x - tolerance MD36946 $MA_SAFE_VELO_X - MD36942 $MA_SAFE_POS_TOL.
- 58 Active external standstill request.
- 59 SG override factor 1 MD36932 $MA_SAFE_VELO_OVR_FACTOR[0].
- 60 SG override factor 2 MD36932 $MA_SAFE_VELO_OVR_FACTOR[1].
- 61 SG override factor 3 MD36932 $MA_SAFE_VELO_OVR_FACTOR[2].
- 62 SG override factor 4 MD36932 $MA_SAFE_VELO_OVR_FACTOR[3].
- 63 SG override factor 5 MD36932 $MA_SAFE_VELO_OVR_FACTOR[4].
- 64 SG override factor 6 MD36932 $MA_SAFE_VELO_OVR_FACTOR[5].
- 65 SG override factor 7 MD36932 $MA_SAFE_VELO_OVR_FACTOR[6].
- 66 SG override factor 8 MD36932 $MA_SAFE_VELO_OVR_FACTOR[7].
- 67 SG override factor 9 MD36932 $MA_SAFE_VELO_OVR_FACTOR[8].
- 68 SG override factor 10 MD36932 $MA_SAFE_VELO_OVR_FACTOR[9].
- 69 SG override factor 11 MD36932 $MA_SAFE_VELO_OVR_FACTOR[10].
- 71 SG override factor 13 MD36932 $MA_SAFE_VELO_OVR_FACTOR[12].
- 72 SG override factor 14 MD36932 $MA_SAFE_VELO_OVR_FACTOR[13].
- 73 SG override factor 15 MD36932 $MA_SAFE_VELO_OVR_FACTOR[14].
- 74 SG override factor 16 MD36932 $MA_SAFE_VELO_OVR_FACTOR[15].
- 75 Velocity limit n_x + MD36946 $MA_SAFE_VELO_X + MD36942 $MA_SAFE_POS_TOL.
- 76 Stop reaction SG1 MD36963 $MA_SAFE_VELO_STOP_REACTION[0].
- 77 Stop reaction SG2 MD36963 $MA_SAFE_VELO_STOP_REACTION[1].
- 78 Stop reaction SG3 MD36963 $MA_SAFE_VELO_STOP_REACTION[2].
- 79 Stop reaction SG4 MD36963 $MA_SAFE_VELO_STOP_REACTION[3].
- 80 Modulo value for safe cam MD36905 $MA_SAFE_MODULO_RANGE.
- 81 Actual velocity tolerance MD36948 $MA_SAFE_STOP_VELO_TOL.
- 82 SG override factor SGE 0...15 = active SGE position. -1 = SG override inactive (neither SG2 nor SG4 active, or function is not selected in MD36901 $MA_SAFE_FUNCTION_ENABLE).
- 83 Acceptance test time different MD36958 $MA_SAFE_ACCEPTANCE_TST_TIMEOUT.
- 84 Delay time Stop F -> Stop B MD36955 $MA_SAFE_STOP_SWITCH_TIME_F.
- 85 Delay time pulse disable bus failure MD10089 $MN_SAFE_PULSE_DIS_TIME_BUSFAIL.
- 86 Single encoder system MD36914 $MA_SAFE_SINGLE_ENC.
- 87 Encoder assignment MD36912 $MA_SAFE_ENC_INPUT_NR.
- 88 Cam enable MD36903 $MA_SAFE_CAM_ENABLE.
- 89 Encoder limit frequency MD36926 $MA_SAFE_ENC_FREQ_LIMIT.
- 90 Cam SGA outside MD36940 $MA_SAFE_CAM_TOL different.
- 91 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[4] + MD36940 $MA_SAFE_CAM_TOL.
- 92 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[4].
- 93 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[4] + MD36940 $MA_SAFE_CAM_TOL.
- 94 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[4].
- 95 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[5] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 96 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[5]$.
- 97 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[5] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 98 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[5]$.
- 99 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[6] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 100 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[6]$.
- 101 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[6] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 102 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[6]$.
- 103 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[7] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 104 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[7]$.
- 105 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[7] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 106 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[7]$.
- 107 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[8] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 108 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[8]$.
- 109 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[8] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 110 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[8]$.
- 111 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[9] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 112 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[9]$.
- 113 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[9] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 114 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[9]$.
- 115 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[10] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 116 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[10]$.
- 117 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[10] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 118 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[10]$.
- 119 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[11] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 120 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[11]$.
- 121 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[11] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 122 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[11]$.
- 123 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[12] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 124 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[12]$.
- 125 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[12] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 126 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[12]$.
- 127 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[13] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 128 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[13]$.
- 129 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[13] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 130 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[13]$.
- 131 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[14] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 132 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[14]$.
- 133 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[14] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 134 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[14]$.
- 135 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[15] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 136 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[15]$.
- 137 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[15] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 138 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[15]$.
- 139 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[16] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
- 140 Cam position MD36936 $\text{MA_SAFE_CAM_POS_PLUS}[16]$.
- 141 Cam position MD36937 $\text{MA_SAFE_CAM_POS_MINUS}[16] + \text{MD36940 _MA_SAFE_CAM_TOL}$.
$MA_SAFE_CAM_TOL.$
- 142 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[16].
- 143 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[17] + MD36940
$MA_SAFE_CAM_TOL.$
- 144 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[17].
- 145 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[17] + MD36940
$MA_SAFE_CAM_TOL.$
- 146 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[17].
- 147 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[18] + MD36940
$MA_SAFE_CAM_TOL.$
- 148 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[18].
- 149 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[18] + MD36940
$MA_SAFE_CAM_TOL.$
- 150 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[18].
- 151 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[19] + MD36940
$MA_SAFE_CAM_TOL.$
- 152 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[19].
- 153 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[19] + MD36940
$MA_SAFE_CAM_TOL.$
- 154 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[19].
- 155 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[20] + MD36940
$MA_SAFE_CAM_TOL.$
- 156 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[20].
- 157 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[20] + MD36940
$MA_SAFE_CAM_TOL.$
- 158 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[20].
- 159 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[21] + MD36940
$MA_SAFE_CAM_TOL.$
- 160 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[21].
- 161 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[21] + MD36940
$MA_SAFE_CAM_TOL.$
- 162 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[21].
- 163 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[22] + MD36940
$MA_SAFE_CAM_TOL.$
- 164 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[22].
- 165 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[22] + MD36940
$MA_SAFE_CAM_TOL.$
- 166 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[22].
- 167 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[23] + MD36940
$MA_SAFE_CAM_TOL.$
- 168 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[23].
- 169 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[23] + MD36940
$MA_SAFE_CAM_TOL.$
- 170 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[23].
- 171 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[24] + MD36940
$MA_SAFE_CAM_TOL.$
- 172 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[24].
- 173 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[24] + MD36940
$MA_SAFE_CAM_TOL.$
- 174 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[24].
- 175 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[25] + MD36940
$MA_SAFE_CAM_TOL.$
- 176 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[25].
- 177 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[25] + MD36940
$MA_SAFE_CAM_TOL.$
- 178 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[25].
- 179 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[26] + MD36940
$MA_SAFE_CAM_TOL.$
- 180 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[26].
- 181 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[26] + MD36940
$MA_SAFE_CAM_TOL.$
- 182 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[26].
- 183 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[27] + MD36940
$MA_SAFE_CAM_TOL.$
- 184 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[27].
- 185 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[27] + MD36940 $MA_SAFE_CAM_TOL.
- 186 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[27].
- 187 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[28] + MD36940 $MA_SAFE_CAM_TOL.
- 188 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[28].
- 189 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[28] + MD36940 $MA_SAFE_CAM_TOL.
- 190 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[28].
- 191 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[29] + MD36940 $MA_SAFE_CAM_TOL.
- 192 Cam position MD36936 $MA_SAFE_CAM_POS_PLUS[29].
- 193 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[29] + MD36940 $MA_SAFE_CAM_TOL.
- 194 Cam position MD36937 $MA_SAFE_CAM_POS_MINUS[29].
- 195 Cam track assignment SN1 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[0].
- 196 Cam track assignment SN2 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[1].
- 197 Cam track assignment SN3 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[2].
- 198 Cam track assignment SN4 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[3].
- 199 Cam track assignment SN5 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[4].
- 200 Cam track assignment SN6 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[5].
- 201 Cam track assignment SN7 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[6].
- 202 Cam track assignment SN8 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[7].
- 203 Cam track assignment SN9 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[8].
- 204 Cam track assignment SN10 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[9].
- 205 Cam track assignment SN11 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[10].
- 207 Cam track assignment SN13 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[12].
- 208 Cam track assignment SN14 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[13].
- 209 Cam track assignment SN15 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[14].
- 210 Cam track assignment SN16 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[15].
- 211 Cam track assignment SN17 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[16].
- 212 Cam track assignment SN18 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[17].
- 213 Cam track assignment SN19 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[18].
- 214 Cam track assignment SN20 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[19].
- 215 Cam track assignment SN21 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[20].
- 216 Cam track assignment SN22 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[21].
- 217 Cam track assignment SN23 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[22].
- 218 Cam track assignment SN24 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[23].
- 219 Cam track assignment SN25 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[24].
- 220 Cam track assignment SN26 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[25].
- 221 Cam track assignment SN27 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[26].
- 222 Cam track assignment SN28 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[27].
- 223 Cam track assignment SN29 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[28].
- 224 Cam track assignment SN30 MD36938 $MA_SAFE_CAM_TRACK_ASSIGN[29].
- 225 Result list 3: Differences in the results for "Safe cam track" for cams SN1..6.
- 226 Result list 4: Differences in the results for "Safe cam track" for cams SN7..12.
- 227 Result list 5: Differences in the results for "Safe cam track" for cams SN13..18.
- 228 Result list 6: Differences in the results for "Safe cam track" for cams SN19..24.
- 229 Result list 7: Differences in the results for "Safe cam track" for cams SN25..30.
- 1000 Control timer expired: If one channel informs another of an SGE change, this control timer is used to check whether the update timer in the other channel has expired.
- 1001 (only assigned on drive, see alarm F01711).
- 1002 User confirmation inconsistent: Data for user confirmation different in both monitoring channels after 2 seconds.

%3 = state of the NCK user acknowledgement.
%4 = state of the 611D user acknowledgement.
- 1003 Reference tolerance MD36944 $MA_SAFE_REFP_POS_TOL exceeded.
- 1004 Plausibility error in user confirmation.
- 1005 Pulses already disabled on test stop selection.
- 1007 (only assigned on drive, see alarm F01711).
- 1008 (only assigned on drive, see alarm F01711).
- 1009 Pulses not disabled after MD36957 $MA_SAFE_PULSE_DIS_CHECK_TIME test stop time.
- 1010 Pulses not disabled during test of the external pulse suppression after MD36957
 $MA_SAFE_PULSE_DIS_CHECK_TIME test stop time.
- 1011 NCK/drive acceptance test states are different.
- 1012 only in drive; see F01711
- 1013 NCK user acknowledgement from PLC SRAM and NCK user acknowledgement from the NCK
 machine data are different.
- 1014 NCK axis number from PLC SRAM and NCK axis number from the ramp up are different.
- 1016 only in drive, see F01711
- 1020 Communication disrupted between NCK monitoring channel and drive monitoring channel.
- 1024 NCK standstill position from PLC SRAM and NCK standstill position from the NCK machine
 data are different.
- 1025 Plausibility error in park selection: Encoder reports parking without user request.
- 1026 Plausibility error in cam synchronisation between NCK and PLC ("Safe cam track" function).

Reaction:
NC Start disable in this channel.
Alarm display.
If safe monitoring was active, STOP B was also triggered automatically. In this case, a power OFF/ON
of the control will be required.

Remedy:
Find the difference between the monitoring channels. Error code %2 shows the cause of the alarm.
It is possible that safety-relevant machine data are no longer the same (reload if required) or
that the safety-relevant inputs do not have the same level (check).
If an error like that cannot be found, an error in the CPU may have occurred such as a memory cell
that has "fallen over". This error may be temporary (remove with Power ON) or permanent (replace
hardware, if it is displayed again after Power ON).
Error codes for STOP F for 840D/SIMODRIVE 611D:

0: No error in this channel. Look for the cause in the other channel.
1: Result list 1. Unequal control of the functions via the SGEs; analyze precise error coding in
 SINAMICS r9710[0], r9710[1].
2: Result list 2. Check cam tolerance, analyze precise error coding in SINAMICS r9711[0], r9711[1].
3: Actual position. Incorrect encoder evaluation (check MDs). Differently stored standstill position.
4: No cross-comparison.
5: Function enables. Enter equal MDs.
6: Limit value for SG1. Enter equal MDs.
7: Limit value for SG2. Enter equal MDs.
8: Limit value for SG3. Enter equal MDs.
9: Limit value for SG4. Enter equal MDs.
10: Standstill tolerance. Enter equal MDs.
11: Upper limit value SE1. Enter equal MDs.
12: Lower limit value SE1. Enter equal MDs.
13: Upper limit value SE2. Enter equal MDs.
14: Lower limit value SE2. Enter equal MDs.
15: Safe cam 1+ (+tolerance). Enter equal MDs.
16: Safe cam 1+. Enter equal MDs.
17: Safe cam 1- (+tolerance). Enter equal MDs.
18: Safe cam 1- Enter equal MDs.
19: Safe cam 2+ (+tolerance). Enter equal MDs.
20: Safe cam 2+. Enter equal MDs.
21: Safe cam 2- (+tolerance). Enter equal MDs.
22: Safe cam 2- Enter equal MDs.
23: Safe cam 3+ (+tolerance). Enter equal MDs.
24: Safe cam 3+. Enter equal MDs.
25: Safe cam 3- (+tolerance). Enter equal MDs.
26: Safe cam 3- Enter equal MDs.
27: Safe cam 4+ (+tolerance). Enter equal MDs.
28: Safe cam 4+. Enter equal MDs.
29: Safe cam 4- (+tolerance). Enter equal MDs.
30: Safe cam 4- Enter equal MDs.
31: Position tolerance. Enter equal MDs.
32: Reference position tolerance. Enter equal MDs.
Overview of Alarms

NCK alarms

33: Time velocity changeover. Enter equal MDs.
34: Tolerance time SGE changeover. Enter equal MDs.
35: Delay time pulse deletion. Enter equal MDs.
36: Time for check of pulse suppression. Enter equal MDs.
37: Transition time STOP C to SBH. Enter equal MDs.
38: Transition time STOP D to SBH. Enter equal MDs.
39: Transition time STOP E to SBH. Enter equal MDs.
40: Stop reaction to SG. Enter equal MDs.
41: Stop reaction to SE. Enter equal MDs.
42: Creep speed pulse deletion. Enter equal MDs.
43: Memory test stop reaction.
44: Actual position value + limit value SG1.
45: Actual position value - limit value SG1.
46: Actual position value + limit value SG2.
47: Actual position value - limit value SG2.
48: Actual position value + limit value SG3.
49: Actual position value - limit value SG3.
50: Actual position value + limit value SG4.
52: Standstill position + tolerance.
53: Standstill position - tolerance.
54: Actual position value "+ nx" + tolerance.
55: Actual position value "+ nx".
56: Actual position value "- nx".
57: Actual position value "- nx" + tolerance.
58: Current stop request.
59: SG override factor 1. Enter equal MDs.
60: SG override factor 2. Enter equal MDs.
61: SG override factor 3. Enter equal MDs.
62: SG override factor 4. Enter equal MDs.
63: SG override factor 5. Enter equal MDs.
64: SG override factor 6. Enter equal MDs.
65: SG override factor 7. Enter equal MDs.
66: SG override factor 8. Enter equal MDs.
67: SG override factor 9. Enter equal MDs.
68: SG override factor 10. Enter equal MDs.
69: SG override factor 11. Enter equal MDs.
70: SG override factor 12. Enter equal MDs.
71: SG override factor 13. Enter equal MDs.
72: SG override factor 14. Enter equal MDs.
73: SG override factor 15. Enter equal MDs.
74: SG override factor 16. Enter equal MDs.
75: Velocity limit "nx". Enter equal MDs.
76: Stop reaction with SG1. Enter equal MDs.
77: Stop reaction with SG2. Enter equal MDs.
78: Stop reaction with SG3. Enter equal MDs.
79: Stop reaction with SG4. Enter equal MDs.
80: Modulo value for safe cams. Enter equal MDs.
81: Velocity tolerance for safe braking ramp. Enter equal MDs.
82: SG correction factor SGEs. Actuate equal SGEs.
83: Acceptance test duration. Enter equal MDs.
84: Stop F -> Stop B delay time. Enter equal MDs.
85: Bus failure pulse suppression delay time. Enter equal MDs.
86: Match MD36914 $MA_SAFE_SINGLE_ENC and drive parameter p9526
87: Match MD36912 $MA_SAFE_ENC_INPUT_NR and p9526
88: Match MD36903 $MA_SAFE_CAM_ENABLE and drive parameter p9503
89: Encoder limit frequency. Enter equal MDs.
90: Check cam positions, MD36940 $MA_SAFE_CAM_TOL
91: Safe cam 5+ (+ tolerance). Enter equal MDs.
92: Safe cam 5+. Enter equal MDs.
93: Safe cam 5- (+ tolerance). Enter equal MDs.
94: Safe cam 5-. Enter equal MDs.
95: Safe cam 6+ (+ tolerance). Enter equal MDs.
96: Safe cam 6+. Enter equal MDs.
97: Safe cam 6- (+ tolerance). Enter equal MDs.
98: Safe cam 6-. Enter equal MDs.
99: Safe cam 7+ (+ tolerance). Enter equal MDs.
100: Safe cam 7+. Enter equal MDs.
101: Safe cam 7- (+ tolerance). Enter equal MDs.
102: Safe cam 7-. Enter equal MDs.
103: Safe cam 8+ (+ tolerance). Enter equal MDs.
104: Safe cam 8+. Enter equal MDs.
105: Safe cam 8- (+ tolerance). Enter equal MDs.
106: Safe cam 8-. Enter equal MDs.
107: Safe cam 9+ (+ tolerance). Enter equal MDs.
108: Safe cam 9+. Enter equal MDs.
109: Safe cam 9- (+ tolerance). Enter equal MDs.
110: Safe cam 9-. Enter equal MDs.
111: Safe cam 10+ (+ tolerance). Enter equal MDs.
112: Safe cam 10+. Enter equal MDs.
113: Safe cam 10- (+ tolerance). Enter equal MDs.
114: Safe cam 10-. Enter equal MDs.
115: Safe cam 11+ (+ tolerance). Enter equal MDs.
116: Safe cam 11+. Enter equal MDs.
117: Safe cam 11- (+ tolerance). Enter equal MDs.
118: Safe cam 11-. Enter equal MDs.
119: Safe cam 12+ (+ tolerance). Enter equal MDs.
120: Safe cam 12+. Enter equal MDs.
121: Safe cam 12- (+ tolerance). Enter equal MDs.
122: Safe cam 12-. Enter equal MDs.
123: Safe cam 13+ (+ tolerance). Enter equal MDs.
124: Safe cam 13+. Enter equal MDs.
125: Safe cam 13- (+ tolerance). Enter equal MDs.
126: Safe cam 13-. Enter equal MDs.
127: Safe cam 14+ (+ tolerance). Enter equal MDs.
128: Safe cam 14+. Enter equal MDs.
129: Safe cam 14- (+ tolerance). Enter equal MDs.
130: Safe cam 14-. Enter equal MDs.
131: Safe cam 15+ (+ tolerance). Enter equal MDs.
132: Safe cam 15+. Enter equal MDs.
133: Safe cam 15- (+ tolerance). Enter equal MDs.
134: Safe cam 15-. Enter equal MDs.
135: Safe cam 16+ (+ tolerance). Enter equal MDs.
136: Safe cam 16+. Enter equal MDs.
137: Safe cam 16- (+ tolerance). Enter equal MDs.
138: Safe cam 16-. Enter equal MDs.
139: Safe cam 17+ (+ tolerance). Enter equal MDs.
140: Safe cam 17+. Enter equal MDs.
141: Safe cam 17- (+ tolerance). Enter equal MDs.
142: Safe cam 17-. Enter equal MDs.
143: Safe cam 18+ (+ tolerance). Enter equal MDs.
144: Safe cam 18+. Enter equal MDs.
145: Safe cam 18- (+ tolerance). Enter equal MDs.
146: Safe cam 18-. Enter equal MDs.
147: Safe cam 19+ (+ tolerance). Enter equal MDs.
148: Safe cam 19+. Enter equal MDs.
149: Safe cam 19- (+ tolerance). Enter equal MDs.
150: Safe cam 19-. Enter equal MDs.
151: Safe cam 20+ (+ tolerance). Enter equal MDs.
152: Safe cam 20+. Enter equal MDs.
153: Safe cam 20- (+ tolerance). Enter equal MDs.
154: Safe cam 20-. Enter equal MDs.
155: Safe cam 21+ (+ tolerance). Enter equal MDs.
156: Safe cam 21+. Enter equal MDs.
157: Safe cam 21- (+ tolerance). Enter equal MDs.
158: Safe cam 21-. Enter equal MDs.
159: Safe cam 22+ (+ tolerance). Enter equal MDs.
160: Safe cam 22+. Enter equal MDs.
161: Safe cam 22- (+ tolerance). Enter equal MDs.
162: Safe cam 22-. Enter equal MDs.
163: Safe cam 23+ (+ tolerance). Enter equal MDs.
164: Safe cam 23+. Enter equal MDs.
165: Safe cam 23- (+ tolerance). Enter equal MDs.
166: Safe cam 23-. Enter equal MDs.
167: Safe cam 24+ (+ tolerance). Enter equal MDs.
168: Safe cam 24+. Enter equal MDs.
169: Safe cam 24- (+ tolerance). Enter equal MDs.
170: Safe cam 24-. Enter equal MDs.
171: Safe cam 25+ (+ tolerance). Enter equal MDs.
172: Safe cam 25+. Enter equal MDs.
173: Safe cam 25- (+ tolerance). Enter equal MDs.
174: Safe cam 25-. Enter equal MDs.
175: Safe cam 26+ (+ tolerance). Enter equal MDs.
176: Safe cam 26+. Enter equal MDs.
177: Safe cam 26- (+ tolerance). Enter equal MDs.
178: Safe cam 26-. Enter equal MDs.
179: Safe cam 27+ (+ tolerance). Enter equal MDs.
180: Safe cam 27+. Enter equal MDs.
181: Safe cam 27- (+ tolerance). Enter equal MDs.
182: Safe cam 27-. Enter equal MDs.
183: Safe cam 28+ (+ tolerance). Enter equal MDs.
184: Safe cam 28+. Enter equal MDs.
185: Safe cam 28- (+ tolerance). Enter equal MDs.
186: Safe cam 28-. Enter equal MDs.
187: Safe cam 29+ (+ tolerance). Enter equal MDs.
188: Safe cam 29+. Enter equal MDs.
189: Safe cam 29- (+ tolerance). Enter equal MDs.
190: Safe cam 29-. Enter equal MDs.
191: Safe cam 30+ (+ tolerance). Enter equal MDs.
192: Safe cam 30+. Enter equal MDs.
193: Safe cam 30- (+ tolerance). Enter equal MDs.
194: Safe cam 30-. Enter equal MDs.
195: Cam track assignment SN1. Enter equal MDs and check cam enable and parameterization.
196: Cam track assignment SN2. Enter equal MDs and check cam enable and parameterization.
197: Cam track assignment SN3. Enter equal MDs and check cam enable and parameterization.
198: Cam track assignment SN4. Enter equal MDs and check cam enable and parameterization.
199: Cam track assignment SN5. Enter equal MDs and check cam enable and parameterization.
200: Cam track assignment SN6. Enter equal MDs and check cam enable and parameterization.
201: Cam track assignment SN7. Enter equal MDs and check cam enable and parameterization.
202: Cam track assignment SN8. Enter equal MDs and check cam enable and parameterization.
203: Cam track assignment SN9. Enter equal MDs and check cam enable and parameterization.
204: Cam track assignment SN10. Enter equal MDs and check cam enable and parameterization.
205: Cam track assignment SN11. Enter equal MDs and check cam enable and parameterization.
206: Cam track assignment SN12. Enter equal MDs and check cam enable and parameterization.
207: Cam track assignment SN13. Enter equal MDs and check cam enable and parameterization.
208: Cam track assignment SN14. Enter equal MDs and check cam enable and parameterization.
209: Cam track assignment SN15. Enter equal MDs and check cam enable and parameterization.
210: Cam track assignment SN16. Enter equal MDs and check cam enable and parameterization.
211: Cam track assignment SN17. Enter equal MDs and check cam enable and parameterization.
212: Cam track assignment SN18. Enter equal MDs and check cam enable and parameterization.
213: Cam track assignment SN19. Enter equal MDs and check cam enable and parameterization.
214: Cam track assignment SN20. Enter equal MDs and check cam enable and parameterization.
215: Cam track assignment SN21. Enter equal MDs and check cam enable and parameterization.
216: Cam track assignment SN22. Enter equal MDs and check cam enable and parameterization.
217: Cam track assignment SN23. Enter equal MDs and check cam enable and parameterization.
218: Cam track assignment SN24. Enter equal MDs and check cam enable and parameterization.
219: Cam track assignment SN25. Enter equal MDs and check cam enable and parameterization.
220: Cam track assignment SN26. Enter equal MDs and check cam enable and parameterization.
221: Cam track assignment SN27. Enter equal MDs and check cam enable and parameterization.
222: Cam track assignment SN28. Enter equal MDs and check cam enable and parameterization.
223: Cam track assignment SN29. Enter equal MDs and check cam enable and parameterization.
224: Cam track assignment SN30. Enter equal MDs and check cam enable and parameterization.
225: Result list 3. Check cam tolerances, evaluate precise error coding in drive r9735[0,1].
226: Result list 4. Check cam tolerances, evaluate precise error coding in drive r9736[0,1].
227: Result list 5. Check cam tolerances, evaluate precise error coding in drive r9737[0,1].
228: Result list 6. Check cam tolerances, evaluate precise error coding in drive r9738[0,1].
229: Result list 7. Check cam tolerances, evaluate precise error coding in drive r9739[0,1].
1000: Control timer expired. Too many switching operations on the SGEs (e.g. due to contact problems, loose contact).
1001: Incorrect control timer initialization. See F01711.
1002: User confirmation timer expired.
1003: Reference tolerance violated. Comparison of the reference position with the current safe actual position.
1004: Plausibility of user confirmation is violated.
1005: Pulses already deleted during test stop selection. Test stop selection with missing pulse enable, error in the wiring of the SGE "Pulses have been deleted".
1007: Communication failure between PLC and drive.
1008: Incorrect data transfer between PLC and drive.
1009: Trigger a subsequent stop after test stop. Check the wiring. Check the SGE configuration via MD36976 $MA_SAFE_PULSE_STATUS_INPUT. Check the time level for test stop.
1012: Restore data consistency by Power ON.
1013: Restore data consistency by Power ON.
1014: Restore data consistency by Power ON.
1016: Check communication between control and drive
1020: Cyclic communication between NCK and drive no longer functioning.
1024: Restore data consistency by Power ON.
1025: Plausibility violation in park selection. Check encoder hardware and communication with encoder.
1026: Check communication between PLC and Antrieb and between PLC and NCK.

Program Continuation: Clear alarm with the RESET key. Restart part program. If STOP B was triggered, a power OFF/ON of the control will be required.

27002 Axis %1 test stop is running
Parameters: %1 = Axis number
Definitions: Proper functioning of the switch-off path is just being tested by setting of the SGE "Test stop selection".
Reaction: Alarm display.
Remedy: The message serves only for user information.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
The alarm will disappear automatically after expiry of the delay time - defined in MD $MA_SAFE_PULSE_DIS_CHECK_TIME - and after removal of SGE "Test stop selection", if the control recognizes pulse suppression, i.e. the test has been completed successfully. An unsuccessful test can be recognized by alarm 27001 with error code 1005 or by alarm 27024.

27003 Checksum error found: %1 %2
Parameters: %1 = Note on code section or table
%2 = Table number
Definitions: Checksum error in safety-relevant code or safety-relevant data. The safe monitoring functions (Safety Integrated) in the NCK could be affected.
Reaction: Alarm display.
Remedy: Continue to work very carefully. Power OFF/ON of the control required. If this error occurs again, contact your service personnel.
Program Continuation: Switch control OFF - ON.

27004 Axis %1, difference safe input %2, NCK %3, drive %4
Parameters: %1 = Axis number
%2 = Monitoring input
%3 = Interface identifier NCK input
%4 = Interface identifier drive input
Definitions: A difference has been found on the specified safe input. The state of the specified input signal differed in the two monitoring channels NCK and SIMODRIVE611D during the duration set in $MA_SAFE_MODE_SWITCH_TIME.

Monitoring in question (%2):
- SS/SV = Difference in SGE "Deselection of safe operating stop/Safe velocity"
- SS = Difference in SGE "Safe operating stop"
- SV = Difference in SGE "Selection safe velocity"
- SP = Difference in SGE "Selection safe limit position"
- SVOVR = Difference in SGEs "Selection SG correction"

Interface identifier NCK input (%3):
- DMP<drv><mod><bit>=<value>
 - <drv> = Drive number of terminal block (1...31)
 - <mod> = Submodule number (1...8)
 - <bit> = Terminal number (1...16)
 - <value> = Value of NCK SGE (0,1)

SPL For when the SGE is parameterized at the SPL interface.
- <io> = Parameterizable system variable range (01=$A_INSID, 02=$A_INSED)
- <dword> = System variable double word (1,2)
- <bit> = Bit number in system variable double word (1...32)
- <value> = Value of NCK SGE (0,1)

Onboard input For when the SGE is parameterized at an onboard input.
- <bit> = Input number = 01 ...04
- <value> = Value of NCK SGE = 0,1

Interface identifier drive input (%4):
- DBX<byte><bit>=<value >
 - <byte> = Byte number in axial DB (22, 23, 32, 33)
 - <bit> = Bit number in byte (0...7)
 - <value> = Value of drive SGE (0,1)

This alarm can be hidden by setting MD $MN_SAFE_DIAGNOSIS_MASK, bit 0 = 0.

Reaction: Alarm display.
Remedy: Check settings for safe input signals (NCK I/Os, PLC DB parameters).
Program Continuation: Clear alarm with the RESET key. Restart part program

27005 Axis %1 error in data cross check: static actual value difference

Parameters: %1 = Axis number

Definitions: Via the data cross check between NCK and SIMODRIVE611D monitoring channel, a difference in actual values was detected, which is greater than the maximum tolerance defined in MD $MA_SAFE_POS_TOL. This can be checked by means of the safe position values for the two monitoring channels displayed in the service menu.

The alarm is displayed only, if monitoring with absolute reference (SE/SN) has been enabled for the specified axis and if the user enable has been set. The alarm is cleared, as soon as the user enable is deleted or the actual value difference between the two monitoring channels falls again below the maximum permissible difference.

Reaction: Alarm display.
Remedy: If the alarm is present statically, the user enable must be deleted. When the control is then rebooted, the machine can be brought to the safe state again and operation resumed by a new referencing process and setting of the user enable. Prior to setting the user enable, the actual position of the axis displayed in the "User enable" screen must be compared with the current machine position. This is obligatory to ensure the proper functioning of the safe limit positions (SE) and safe cams (SN).

A change of the user acknowledgement is only possible with key switch position 3 or after input of a password.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

27006 Axis %1 Test ext. pulse deletion running

Parameters: %1 = Axis number

Definitions: The correct functioning of the external pulse disable is being checked now by setting the "Test stop of external shutdown" SGE.

Reaction: Alarm display.
Remedy: Alarm disappears automatically when the test has been exited by deleting the "Test stop of external shutdown" SGE.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

27007 Axis %1 acceptance test mode is active
Parameters: %1 = Axis number
Definitions: Via the operator panel, an SI acceptance test has been started for example with the acceptance test wizard. The acceptance test mode is activated via the NCK and drive for the time of this acceptance test. In the acceptance test mode, SI PowerOn alarms can be acknowledged with the Reset key.
Reaction: Alarm display.
Remedy: Deselect the acceptance test, for example with the acceptance test wizard or wait until completed (acceptance test time can be parameterized via MD $MA_SAFE_ACCEPTANCE_TST_TIMEOUT).
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

27008 Axis %1 SW limit switch deactivated
Parameters: %1 = Axis number
Definitions: Via the HMI, the SI acceptance test Safe limit position has been started, for example with the acceptance test wizard. For these acceptance tests, the single-channel software limit switches are deactivated for the axis/spindle, in order to assure that the safe limit positions can be approached.
Reaction: Alarm display. Deactivation of the single-channel software limit switch for the displayed axis/spindle.
Remedy: Deselect the acceptance test, for example with the acceptance test wizard, or wait until completed.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

27010 Axis %1 tolerance for safe standstill exceeded
Parameters: %1 = Axis number
Definitions: The axis has moved too far away from the setpoint position. It is further away than allowed in MD $MA_SAFE_STANDSTILL_TOL. The alarm can be reprogrammed in the MD $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
Reaction: Mode group not ready. Channel not ready. NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm. Channel not ready. Stop of the axis with the setpoint speed value=0 (STOP B). As soon as the actual speed value is smaller than defined in MD $MA_SAFE_STANDSTILL_VELO_TOL, but the latest after time-out in MD $MA_SAFE_PULSE_DISABLE_DELAY, the pulses will be suppressed (STOP A).
Remedy: Check the tolerance of zero speed monitoring: does the value match the precision and control dynamics of the axis? If not, increase tolerance. If yes, check the machine for any damage and rectify it.
Program Continuation: Switch control OFF - ON.

27011 Axis %1 safe velocity exceeded
Parameters: %1 = Axis number
Definitions: The axis has moved too quickly and faster than allowed in MD $MA_SAFE_VELO_LIMIT. With active SBH/SG and a 1-encoder system, the velocity which corresponds to an encoder limit frequency of MD SAFE_ENC_FREQ_LIMIT has been exceeded.
Reaction: NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm. Axis stop with STOP A, C, D or E, depending on the configuration in MD $MA_SAFE_VELO_STOP_MODE or MD $MA_SAFE_VELO_STOP_REACTION.
Remedy: If no obvious operator error occurred: check the input value of the MD, check SGEs: was the correct safe velocity selected? If the MDs and SGEs are o.k., check the machine for any damage and rectify it.
Overview of Alarms 03/2009

NCK alarms

Program Continuation: Clear alarm with the RESET key. Restart part program

27012 Axis %1 safe end position exceeded
Parameters: %1 = Axis number
Definitions: The axis has exceeded the limit position entered in MD $MA_SAFE_POS_LIMIT_PLUS or MD $MA_SAFE_POS_LIMIT_MINUS.
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Stop the axis with STOP C, D or E, depending on the configuration in MD $MA_SAFE_POS_STOP_MODE.
Remedy: If no obvious operator error occurred: Check the input value of the machine data and check the SGEs: was the correct one of 2 limit positions selected? If the MDs and SGEs are o.k., check the machine for any damage and rectify it.
Program Continuation: Clear alarm with the RESET key. Restart part program

27013 Axis %1 Safe monitoring for acceleration exceeded
Parameters: %1 = Axis number
Definitions: After the initiation of STOP B or C, the velocity exceeded the tolerance value entered in MD $MA_SAFE_STOP VELO_TOL.
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.
Pulse interlock by triggering a STOP A.
Remedy: Check MD $MA_SAFE_STOP VELO_TOL. Check the braking behavior of the affected drive.
Program Continuation: Switch control OFF - ON.

27020 Axis %1 stop E triggered
Parameters: %1 = Axis number
Definitions: This alarm is output together with alarms 27011 "Safe velocity exceeded" or 27012 "Safe limit position exceeded" (when configured as such in MD $MA_SAFE VELO STOP_MODE, $MA_SAFE VELO_STOP_REACTION or MD: $MA_SAFE_POS_STOP_MODE).
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Trigger a LIFTFAST ASUB and internal activation of the safe operational stop (SBH) after expiry of the time set in MD $MA_SAFE_STOP_SWITCH TIME E.
Remedy: Eliminate causes of the alarms "Safe velocity exceeded" or "Safe limit position exceeded" (see description of these alarms).
Program Continuation: Clear alarm with the RESET key. Restart part program

27021 Axis %1 stop D triggered
Parameters: %1 = Axis number
Definitions: This alarm is output together with alarms 27011 "Safe velocity exceeded" or 27012 "Safe limit position exceeded" (when configured as such in $MA_SAFE VELO STOP_MODE, $MA_SAFE VELO_STOP_REACTION or $MA_SAFE_POS_STOP_MODE).
Reaction: NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm. Trigger a "Deceleration on the path" and internal activation of the safe operational stop (SBH) after expiry of the time set in MD $MA_SAFE_STOP_SWITCH_TIME_D.

Remedy: Eliminate causes of alarm "Safe velocity exceeded" or "Safe limit position exceeded" (see description of these alarms).

Program Continuation: Clear alarm with the RESET key. Restart part program

27022 Axis %1 stop C triggered

Parameters: %1 = Axis number

Definitions: This alarm is output together with alarms 27011 "Safe velocity exceeded" or 27012 "Safe limit position exceeded" (when configured as such in $MA_SAFE_VELO_STOP_MODE, $MA_SAFE_VELO_STOPREACTION or $MA_SAFE_POS_STOP_MODE).

Reaction: NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm. Trigger a "Deceleration on the current limit" and internal activation of the safe operational stop (SBH) after expiry of the time set in MD $MA_SAFE_STOP_SWITCH_TIME_C.

Remedy: Eliminate causes of alarm "Safe velocity exceeded" or "Safe limit position exceeded" (see description of these alarms).

Program Continuation: Clear alarm with the RESET key. Restart part program

27023 Axis %1 stop B triggered

Parameters: %1 = Axis number

Definitions: This alarm is output together with alarm 27010 "Tolerance for safe operational stop exceeded" or after alarm 27001 "STOP F triggered". The alarm can be reprogrammed in MD ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction: Mode group not ready. Channel not ready. NC Start disable in this channel. Interface signals are set. Alarm display. NC Stop on alarm. Channel not ready. Trigger a "Deceleration on the current limit" and activation of the timer for a switchover after STOP A (see MD $MA_SAFE_PULSE_DISABLE_DELAY).

Remedy: Eliminate causes of alarm "Tolerance for safe standstill exceeded" or "STOP F triggered" (see description of these alarms).

Program Continuation: Switch control OFF - ON.
27024 **Axis %1 stop A triggered**

Parameters:
%1 = Axis number

Definitions:
This alarm follows an
- alarm 27011 "Safe velocity exceeded" (when configured as such in $MA_SAFE_VELO_STOP_MODE, $MA_SAFE_VELO_STOP_REACTION),
- alarm 27013 "Safe monitoring for acceleration exceeded",
- alarm 27023 "Stop B triggered",
- unsuccessful test stop.
The alarm can be reprogrammed in the MD ALARM_REACTION_CHAN_NOREADY (channel not ready).

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.
Trigger a "Pulse suppression".

Remedy:
Eliminate causes of
- alarm "Save velocity exceeded",
- alarm "Safe monitoring for acceleration exceeded",
- alarm "Stop B triggered",
- unsuccessful test stop
(see description of these alarms).

Program Continuation:
Switch control OFF - ON.

27030 **Axis %1 function not supported on this SIMODRIVE611D module**

Parameters:
%1 = Axis number

Definitions:
SINUMERIK Safety Integrated can be used only with the SIMODRIVE611D Performance control modules with 2 measuring circuits per drive and cutoff relay. An attempt has been made to activate a safety function although no such module is plugged in.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Replace module or switch off safety functions in MD $MA_SAFE_FUNCTION_ENABLE.

Program Continuation:
Switch control OFF - ON.

27031 **Axis %1 limit value for safe velocity %2 at gear ratio %3 too large (max. %4)**

Parameters:
%1 = Axis number
%2 = Limit value index
%3 = Number of the transmission ratio
%4 = Maximum velocity

Definitions:
All limit values in MD $MA_SAFE_VELO_LIMIT have to be set in a way that the limit frequency of the amplitude monitoring in the measuring circuit hardware is not exceeded. The limit value which did not fulfill this condition is indicated as second parameter (1 for SG1, 2 for SG2, etc.). The third parameter indicates the gear stage, e.g. 1 for gear stage 1, 2 for gear stage 2, etc. The fourth parameter indicates the maximum velocity which can be entered to just maintain the limit frequency in safe operation.
The alarm can be reprogrammed in the MD ALARM_REACTION_CHAN_NOREADY (channel not ready).
NCK alarms

27032 Axis %1 checksum error of safe monitoring. Confirmation and acceptance test required.

Parameters:
- %1 = Axis number

Definitions:
The relevant MDs for parameterization of the axial safety functionality are protected by a checksum. The alarm indicates that the current checksum no longer corresponds to the stored checksum, this means that an MD has either been changed without authorization or is faulty.

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Check MDs. Have the checksum recalculated. Re-accept safety functions (motion monitoring).

Program Continuation:
- Switch control OFF - ON.
Definitions:

The parameterization of machine data \%2 is incorrect. An additional indication is the array index of the machine data. If the machine data is a single machine data, a zero is specified as array index. This alarm occurs in the following contexts:

- 1. Conversion of the specified MD into the internal calculation format will cause an overflow.
- 2. The values entered in MD $MA_SAFE_POS_LIMIT_PLUS$ and $MA_SAFE_POS_LIMIT_MINUS$ have been interchanged. The upper limit is less than or equal to the lower limit.
- 3. For an axis with safety functions, the setpoint/actual channel assignment in MD $MA_CTRL_ENC_SEGMENT_NR$, MD $MA_CTRL_OUT_SEGMENT_NR$ was not made on the drive bus. No module number was stated for a setpoint/actual value assignment in MD $MA_CTRL_OUT_MODULE_NR$, MD $MA_SAFE_ENC_MODULE_NR$.
- 4. The number of drives has changed. On reading back the standstill position and the associated drive number, a difference has been found to the current drive configuration.
- 5. A safety function has been enabled in MD $MA_SAFE_FUNCTION_ENABLE$ without the safety functions SBH/SG having been enabled.
- 6. Error on parameterizing the input/output assignments for the SGEs/SGAs.
- 7. A zero has been entered in MD $MA_SAFE_ENC_GRID_POINT_DIST$.
- 8. A zero has been entered in MD $MA_SAFE_ENC_RESOL$.
- 9. Different settings have been made in MD $MA_IS_ROT_AX$ and MD $MA_SAFE_IS_ROT_AX$.
- 10. A non-existent measuring circuit has been parameterized in MD $MA_SAFE_ENC_INPUT_NR$.
- 11. In MD $MA_SAFE_ENC_MODULE_NR$, the number of a drive has been entered that either does not exist or has been detected as inactive. With an inactive drive, MD $MA_SAFE_ENC_TYPE$ was not reset to 0.
- 12. In MD $MA_SAFE_ENC_TYPE$, an encoder type has been parameterized that does not match the physically present type.
- 13. In MD $MA_SAFE_ENC_TYPE$, an incorrect encoder type has been entered for an active drive ($MA_SAFE_ENC_TYPE = 0, 2, 3$ or 5).
- 14. When setting the parameters for the motor encoder in MD $MA_SAFE_ENC_INPUT_NR$, the measuring circuit of the 2nd measuring system is also used to ensure double-redundancy. The 2nd measuring circuit of this drive module has also been parameterized in the data of another axis, therefore there is a dual assignment. The 2nd measuring circuit connection cannot be used for the actual value acquisition in this parameterization.
- 15. In MD $MA_SAFE_POS_TOL$ a value greater than 10mm was entered for a linear axis.
- 16. In MD $MA_SAFE_REFP_POS_TOL$, a value greater than 1mm was entered for a linear axis.
- 17. The limit values for the "n<n_x" monitoring, calculated from MD $MA_SAFE_VELO_X$ and MD $MA_SAFE_POS_TOL$, are of equal size.
- 18. One of the activated cam positions is outside the actual value modulo range.
- 19. The parameterized cam modulo range MD $MA_SAFE_MODULO_RANGE$ is not a multiple integer of 360 degrees.
- 20. The parameterized cam modulo range MD $MA_SAFE_MODULO_RANGE$ and the modulo range in MD MA_MODULO_RANGE cannot be divided as integers into one another.
- 21. The "Actual value synchronisation 2-encoder system" function (slippage) is selected for a single-encoder system, or a function with an absolute reference (SE/SN) is active at the same time.
- 22. Alarms $27000/300950$ should be suppressed for parking (MD $MA_SAFE_PARK_ALARM_SUPPRESS_!=0$). The SGA "Axis safely referenced" must be configured in MD $MA_SAFE_REFP_STATUS_OUTPUT$.
- 23. An axial SGE/SGA was configured at the SPL interface (segment number = 4) and the function enable for the external stops (MD $MA_SAFE_FUNCTION_ENABLE$, bit6) is missing.
- 24. An axial SGE/SGA was parameterized at the SPL interface (segment number = 4) and the SGE "Deselect ext. Stop A" (assignment via MD $MA_SAFE_EXT_STOP_INPUT[0]$) was parameterized inverted (bit31 = 1) or the SGE "Deselect ext. Stop A" was not parameterized at the SPL interface A_OUTSI.
- 25. The function "Save actual value with incremental encoder" is enabled via MD $MA_ENC_REFP_STATE$ for the parameterizable incremental encoder, and a monitoring function with absolute reference (SE/SN) is enabled via MD $MA_SAFE_FUNCTION_ENABLE$. It is not permissible to combine these functions.
- 26. A value greater than 1000 mm/min was entered for a linear axis in MD $MA_SAFE_STANDSTILL_VELO_TOL$.

© Siemens AG, 2009. All Rights Reserved

SINUMERIK 840D sl, 840Di sl, SINAMICS, Diagnostics Manual (DAsl), 03/2009

Overview of Alarms 03/2009

NCK alarms
- 27. A value greater than 20000 mm/min was entered for a linear axis in MD $MA_SAFE_STOP_VELO_TOL.
- 28. A value greater than 1000 mm/min was entered for a linear axis in MD $MA_SAFE_VELO_X.
- 29. A value greater than 1000 mm/min was entered for a linear axis in $MA_SAFE_SLIP_VELO_TOL.
- 30. A value greater than the maximum settable encoder limit frequency for the safe operation of a single-encoder system was set in MD $MA_SAFE_ENC_FREQ_LIMIT.
- 31. A value greater than 300kHz for a Performance-1 or Standard-2 control module was set in MD $MA_SAFE_CTRL_FREQ_LIMIT.
- 32. MD $MA_SAFE_EXT_PULSE_ENAB_OUTPUT was not or not correctly parameterized. A parameterization of this MD is required if in MD $MA_SAFE_PULSE_ENABLE_OUTPUT, bit30 is set to 1, i.e. internal pulse suppression is being used.
- 33. The MD $MN_SAFE_SPL_STOP_MODE has been parameterized to the value of 4 (Stop E) without having enabled the external Stop E in all the axes with SI function enables (MD $MA_SAFE_FUNCTION_ENABLE not equal to 0).
- 34. Testing the mechanical system of the brakes was enabled in MD $MA_FIXED_STOP_MODE (bit1 = 1), without previously enabling the safe operation function for this axis in MD $MA_SAFE_FUNCTION_ENABLE. Testing the mechanical system of the brakes is permitted only with safety functions in this axis.
- 35. Illegal values have been parameterized in MD $MA_SAFE_VELO_STOP_MODE or MD $MA_SAFE_VELO_STOP_REACTION.
- 36. In MD $MA_SAFE_FUNCTION_ENABLE, the cam synchronization was activated via bit7 without enabling any cams via bit8...bit15.
- 37. The cam is enabled both via $MA_SAFE_FUNCTION_ENABLE and via $MA_SAFE_CAM_ENABLE
- 38. In MD $MA_SAFE_DRIVE_PS_ADDRESS an invalid value was parameterized or the same address was assigned to several axes.
- 39. The internal default of MD $MA_SAFE_ENC_PULSE_SHIFT from drive parameterization could not be executed, as some values outside the specified range would have to be defaulted in this case. Adjust the encoder parameterization in the drive.
- 40. The MD $MA_SAFE_VELO_OVR_FACTOR was parameterized with digits behind the decimal point.
- 41. The logical basic address configured in the hardware configuration and that addressed via MDs $MA_SAFE_CTRLOUT_MODULE_NR, $MN_SAFE_DRIVE_LOGIC_ADDRESS are not the same or the slot addressed by them has the wrong length.
- 42. The cam position $MA_SAFE_CAM_POS_PLUS[n] or $MA_SAFE_CAM_POS_MINUS[n] has been parameterized too close to the modulo limit.
- 43. "Safe cams" are enabled in bit 8...15 of $MA_SAFE_FUNCTION_ENABLE and at the same time the "Safe cam track" function is enabled in $MA_SAFE_CAM_ENABLE.
- 44. The minus cam position $MA_SAFE_CAM_POS_MINUS[n] is greater than the plus cam position $MA_SAFE_CAM_POS_PLUS[n]. This is not permitted for the "Safe cam track" function.
- 45. The distance between 2 cams on one cam track ($MA_SAFE_CAM_POS_MINUS[n] and $MA_SAFE_CAM_POS_PLUS[m]) is too small. ("Safe cam track" function)
- 46. The cam length, that is the distance between a plus cam position ($MA_SAFE_CAM_POS_PLUS[n]) and a minus cam position ($MA_SAFE_CAM_POS_MINUS[n]), is too small. ("Safe cam track" function)
- 47. Identical values have been entered in $MA_SAFE_CAM_TRACK_ASSIGN[n] for at least 2 cams enabled in $MA_SAFE_CAM_ENABLE. ("Safe cam track" function)
- 48. The value parameterized in $MA_SAFE_CAM_TRACK_ASSIGN[n] for a cam enabled in $MA_SAFE_CAM_ENABLE is invalid. ("Safe cam track" function)
- 49. More than 15 cams have been assigned to one cam track by $MA_SAFE_CAM_TRACK_ASSIGN[n]. ("Safe cam track" function)
- 50. Cam modulo functionality has been selected in $MA_SAFE_MODULO_RANGE, however this is not supported for the "Safe cam track" function.
- 51. Setting $MA_SAFE_FUNCTION_ENABLE bit7 is not permitted if the "Safe cam track" function is enabled. The cam synchronization is implicitly enabled.
- 52. Only 840D sl: The parameterized monitoring cycle $MN_INFO_SAFETY_CYCLE_TIME does not match the monitoring cycle (p9500) parameterized in the drive monitoring channel.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check and change the specified MD. Allow the checksum to be recalculated. Re-accept safety functions.

Program Continuation: Switch control OFF - ON.

27034 Parameterization of MD %1[%2] invalid.

Parameters: %1 = MD identifier
%2 = Machine data index

Definitions: The parameterization of machine data %1 is incorrect. This alarm occurs in the following contexts:
- An invalid value has been set for MD $MN_SAFE_ALARM_SUPPRESS_LEVEL.
- An invalid value has been set for MD $MN_SAFE_RDP_CONNECTION_NR.
- An invalid value has been set for MD $MN_SAFE_SDP_CONNECTION_NR.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check and correct the specified machine data.

Program Continuation: Switch control OFF - ON.

27035 Axis %1 new hardware component, confirmation and functional test required.

Parameters: %1 = Axis number

Definitions: The IDs for the corresponding hardware components (encoder, motor module) read out by the drive do not match the NCK parameterization.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: The following has to be done if the alarm occurs during the start-up:
- Confirm the checksum SAFE_ACT_CHECKSUM[1] (key switch position 3 or password has to be entered). Continue the start-up.

The following has to be done if the alarm occurs after an encoder module or a DRIVE-CLiQ motor has been replaced:
- In the Diagnostics operating area, confirm the hardware checksum with softkey in SAFE_ACT_CHECKSUM[1] (key switch position 3 or password has to be entered)
- Readjust the actual value encoder.
- Check the SI actual value acquisition: velocities, traversing direction, absolute position (set user acknowledgement if necessary)
- Document the new checksum value in SAFE_ACT_CHECKSUM[1] and the last entry in the change history in MD SAFE_CONFIG_CHANGE_DATE[0]
- Document the hardware and software version data of the new component.

Program Continuation: Switch control OFF - ON.

27036 Axis %1 encoder parameterization MD %2[%3] has been adjusted.

Parameters: %1 = Axis number
%2 = MD identifier
%3 = Machine data index

Definitions: Encoder parameterization of the encoder read out by the drive for the SI monitoring functions does not match NCK parameterization in the displayed MD. The relevant NCK MD has been adjusted.
Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

In addition, a Stop F is triggered that may cause follow-up alarm 27001 with error code 0 as well as alarms 27023 and 27024.
Alarm 27001 with error code 0 can be avoided by alarm reduction (SMA_SAFE_ALARM_SUPPRESS_LEVEL higher or equal to 1).

Remedy:
Continue the start-up operation; correct the checksums.

Program Continuation:
Switch control OFF - ON.

27037
Axis %1 and %2 with the same PROFIsafe address %3.

Parameters:
%1 = Axis number
%2 = Axis number
%3 = PROFIsafe address

Definitions:
The PROFIsafe addresses of these two axes read out by the drive are identical.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Set the correct PROFIsafe addresses of the drives.

Program Continuation:
Switch control OFF - ON.

27038
Axis %1 value %2 in drive parameter %3 violates the limits of NCK MD %4.

Parameters:
%1 = Axis number
%2 = Value in drive parameter
%3 = Drive parameter number, for example parameter 979.
%4 = NCK machine data name.

Definitions:
A SINAMICS drive delivers values in a parameter that violate the permissible value range or the min/max value for an NCK machine data.

Reaction:
Alarm display.

Remedy:
Examine why incorrect values are entered in the mentioned drive parameter (979 (PROFIdrive encoder format), 47x (DQL format) or 9527 (encoder module type)) (for example, internal software errors in the drive, see drive documentation).

Program Continuation:
Switch control OFF - ON.

27039
Axis %1 parameterization MD %2[%3] changed, confirmation and functional test required.

Parameters:
%1 = Axis number
%2 = MD identifier
%3 = Machine data index

Definitions:
The parameterization read out by the drive for the SI monitoring functions does not match the NCK parameterization in the displayed MD.
The relevant NCK MD has been adjusted.
The following relation exists between the NCK MDs and the drive parameters:
- $MA_SAFE_BRAKETEST_TORQUE_NORM corresponds to p2003

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Continue with start up, correct checksum.
- If MD $MA_SAFE_BRAKETEST_TORQUE_NORM is displayed:
 The change to p2003 must be taken into account in the parameterization of MD $MA_SAFE_BRAKETEST_TORQUE. The holding torque to be parameterized for the brake test must be reset.
 $MA_SAFE_BRAKETEST_TORQUE = desired test torque of the brake / p2003 * 100.
 Then an acceptance test of the functioning of the brake test must be made.

Program Continuation:
Switch control OFF - ON.

27040 Axis %1 waiting for motor module.
Parameters: %1 = Axis name, spindle number
Definitions: Alarm on ramp-up as long as the motor module is not yet ready for SI.
Communication to the motor module is not yet active on ramp-up, the safety functions are not yet available.
The alarm indication can be set in MD $MN_SAFE_ALARM_SUPPRESS_LEVEL so that only one alarm is displayed for all axes.

Reaction: Interface signals are set.
Alarm display.
Remedy: The alarm will remain present during ramp-up if the drive does not communicate. Otherwise the alarm will only be displayed briefly and then deleted automatically.
Possible causes for the continual presence of this alarm:
- The safe motion monitoring is only activated in $MA_SAFE_FUNCTION_ENABLE, but not in the corresponding parameter of the assigned drive (p9501).
- The axis -> drive assignment in MD $MA_SAFE_CTRLOUT_MODULE_NR, MD $MN_SAFE_DRIVE_LOGIC_ADDRESS or p0978 is incorrect.
- PROFIBUS connector has fallen out.
Check the correctness of parameter p9501 and the assignment of the drive in MD $MA_SAFE_CTRLOUT_MODULE_NR and $MN_SAFE_DRIVE_LOGIC_ADDRESS, p0978.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

27050 Axis %1 SI communication failure.
Parameters: %1 = Axis number
Definitions: Communication with the drive for Safety Integrated motion monitoring is additionally monitored.
This monitoring has found an error.

Reaction: NC Start disable in this channel. Interface signals are set.
Alarm display.
NC Stop on alarm.
In addition, a STOP F is triggered that may cause follow-up alarm 27001 with error code 0 as well as alarms 27023 and 27024. Alarm 27001 with error code 0 can be avoided by alarm reduction($MN_SAFE_ALARM_SUPPRESS_LEVEL higher or equal to 1).

Remedy: Check the connections between NCK and drive.
Check the configuration of the PROFIBUS telegram (e.g. SI slot configured).
Check the assignment of the NCK SI axis to the SI slot ($MA_SAFE_CTRLOUT_MODULE_NR, $MN_SAFE_DRIVE_LOGIC_ADDRESS).
Check for compliance with the EMC requirements.
Check the assignment of the telegram configuration for the slave OM

Program Continuation: Clear alarm with the RESET key. Restart part program

27060 Axis %1 Drive assignment checksum error. Confirmation and acceptance test required!
Parameters: %1 = Axis number
Definitions: The axial MDs $MA_SAFE_... and $MN_SAFE_DRIVE_LOGIC_ADDRESS are protected by a checksum. The alarm indicates that the current checksum no longer corresponds to the stored checksum, this means that an MD has either been changed without authorization or is faulty.
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check machine data, have the checksum recalculated and confirm. Re-accept the safety functions (connections NCK axis - drive/encoder).

Program Continuation: Switch control OFF - ON.

27070 Checksum error parameterization SPL and SPL interfaces. Confirmation and acceptance test required!

Definitions: The NCK MDs $MN_SAFE_IN/OUT...,$MN_PROFISAFE...,$MN_SAFE_SDP/RDP... are protected by a checksum. The alarm indicates that the current checksum no longer corresponds to the stored checksum, this means that an MD has either been changed without authorization or is faulty.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check machine data, have the checksum recalculated and confirm. Re-accept the safety functions (PROFIsafe, DMP assignment SPL-I/Os, FSEND/FRECV).

Program Continuation: Switch control OFF - ON.

27071 Checksum error safe PLC parameterization. Confirmation and acceptance test required!

Definitions: The NCK MDs $MN_SAFE_USER_DATA are protected by a checksum. The alarm indicates that the current checksum no longer corresponds to the stored checksum, this means that an MD has either been changed without authorization or is faulty.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check machine data, have the checksum recalculated and confirm. Re-accept the safety functions (PROFIsafe, DMP assignment SPL-I/Os, FSEND/FRECV).

Program Continuation: Switch control OFF - ON.

27072 Checksum error enable safe communication. Confirmation and acceptance test required!

Definitions: The NCK MDs $MN_PROFISAFE..._ENABLE,$MN_SAFE_SDP/SDP_Enable are protected by a checksum. The alarm indicates that the current checksum no longer corresponds to the stored checksum, this means that an MD has either been changed without authorization or is faulty.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check machine data, have the checksum recalculated and confirm. Re-accept the safety functions (PROFIsafe, FSEND/FRECV).

Program Continuation: Switch control OFF - ON.
27073 Checksum error S7 PROFIsafe configuration. Confirmation and acceptance test required!

Definitions: The F parameters required for PROFIsafe communication are protected by a checksum. The alarm indicates that the current checksum no longer corresponds to the stored checksum, this means that an MD has either been changed without authorization or is faulty.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check the PROFIsafe configuration on the S7 side. Have the checksum recalculated. Re-accept safety functions (PROFIsafe I/Os).

Program Continuation: Switch control OFF - ON.

27090 Error in data cross check NCK-PLC, %1[%2], NCK: %3; %4<ALSI>

Parameters: %1 = Name of system variable in which the error was detected
%2 = System variable array index extension
%3 = NCK comparison value extension
%4 = Cross-check array index extension

Definitions: Differences in the compared data have occurred in a cyclic data cross-check between NCK and PLC. Parameter %1 specifies the incorrect system variable ($A_INS1, $A_OUTSI, $A_INSE, $A_OUTSE or $A_MARKERSI) with array index %2.

Special cases:
- Display "Error in NCK-PLC data cross-check, $MN_PREVENT_SYNACT_LOCK[0], ..." means that the SPL commissioning status has been set differently in the NCK and PLC.
- Display "Error in NCK-PLC data cross-check, $MN_SPL_STOP_MODE[0], ..." means that the SPL stop reaction (Stop D or E) has been set differently in the NCK and PLC.
- Display "Error in NCK-PLC data cross-check, $MN_SAFE_SPL_USER_DATA[n], ..." means that different user data have been set in NCK and PLC.
- Display "Error in NCK-PLC data cross-check, TIMEOUT[0], NCK: 0" means that the communication between NCK and PLC is generally disturbed and that a data cross-check can no longer be performed.
- Display "Error in NCK-PLC data cross-check, $A_FSDP_ERR_REAC[n], $A_FRDP_SUBS[n], $A_FRDP_ERR_REAC[n]..." means that different system variables have been specified in NCK and PLC.

With data cross-check errors on system variables $A_INS1, the hardware assignment parameterized in MD $MN_SAFE_IN_HW_ASSIGN[0...7] is displayed in addition to the affected system variables in alarm parameter %1, so that the affected hardware connection is shown directly by the specifications in the alarm line.

Example: Error in NCK-PLC data cross-check, DMP 04.03 bit 01=$A_INS1[2], NCK: 1;
The specifications in the example (04.03) correspond to the entries made in the machine data $MN_SAFE_IN_HW_ASSIGN[0...7] for the stated system variable.
They specify:
DMP 04.xx The drive number of the affected terminal block (value range = 01...21).
DMP xx.03 Module number of the input module (value range = 01...08).
The stated numbers are shown as hexadecimal numbers as in MD $MN_SAFE_IN_HW_ASSIGN[0...7].
The specification of the bit numbers begins with the value 0 (value range = 00...15), the same as the numbering of the inputs on the DMP modules.
When assigning the SPL inputs to the NC inputs on the extended alarm text is as follows:
Error in NCK-PLC data cross-check, NC-Onboard-In 01=$A_INS1[1], NCK: 1; 2.
With parameter %4, a specific alarm message can be configured on HMI for all listed system variables:
%4 = 0: Error SPL commissioning status ($MN_PREVENT_SYNACT_LOCK[0,1] - DB18 DBX36.0)
%4 = 0: Error SPL stop reaction ($MN_SAFE_SPL_STOP_MODE - DB18 DBX36.1),
%4 = 0: Error SPL user data ($MN_SAFE_SPL_USER_DATA - DB18 DBD256,260,264,268)
Overview of Alarms

NCK alarms

%4 = 0: Error FSENDDP error reaction ($A_FSDP_ERR_REAC[n] - DB18 DBW190, DBW210, DBW246)
%4 = 0: Error FREQVDP error reaction ($A_FRDP_ERR_REAC[n] - DB18 DBW222, DBW234, DBW244)
%4 = 0: Error FREQVDP replacement values ($A_FRDP_SUBS[n] - DB18 DBW220, DBW232, DBW244)
%4 = 1,... 64: Error in system variable $A_INSE[1...64]
%4 = 65...128: Error in system variable $A_OUTSE[1...64]
%4 = 129...192: Error in system variable $A_INSI[1...64]
%4 = 193...256: Error in system variable $A_OUTSI[1...64]
%4 = 257...320: Error in system variable $A_MARKERSI[1...64]

In order to parameterize alarm 27090, file ALSI_xx.com must be incorporated in the data management and declared in HMI via MBDE.INI in the section[IndexTextFiles] ALSI=f:\dh\mb.dir\alsi_. The machine manufacturer can redefine this file, in order to incorporate additional text passages in the alarm that make sense for their system. If the file is redefined, the newly created file has to be declared in the system via MBDE.INI.

The display of alarm 27090 can be modified via MD $MN_SAFE_ALARM_SUPPRESS_LEVEL: MD $MN_SAFE_ALARM_SUPPRESS_LEVEL = 2 : Alarm 27090 will now only displayed for the first data difference found.

Reaction:
Alarm display.
Trigger a STOP D/E (settable via MD $MN_SPL_STOP_MODE) on all axes with safety functionality, as soon as the SPL start-up phase (MD $MN_PREVENT_SYNACT_LOCK[0,1] unequal to 0) is completed.

Remedy:
Analyze the value displayed and evaluate DB18: SPL_DELTA on the PLC side.
Find the difference between the monitoring channels. Possible causes:
- Incorrect wiring
- Incorrect SPL
- Incorrect assignment of the axial SGEs to internal interface $A_OUTSI
- Incorrect assignment of the axial SGAs to internal interface $A_INSI
- Incorrect assignment of the SPL SGEs to external interface $A_INSE
- Incorrect assignment of the SPL SGAs to external interface $A_OUTSE
- Different SPL startup status set in NCK and PLC
- Different SPL stop reaction set in NCK and PLC

Program Continuation:
Clear alarm with the RESET key. Restart part program

27091 Error in data cross check NCK-PLC, stop of %1
Parameters:
%1 = Extension indicating the monitoring channel that triggered the stop
Definitions:
The monitoring channel specified in %1 (NCK or PLC) has triggered a stop D or E (depending on the parameterization in MD $MN_SAFE_SPL_STOP_MODE). The alarm 27090 provides further information about the cause for the stop D/E.

Reaction:
Alarm display.
Trigger a STOP D/E (settable via MD $MN_SPL_STOP_MODE) on all axes with safety functionality, as soon as the SPL start-up phase (MD $MN_PREVENT_SYNACT_LOCK[0,1] unequal to 0) is completed.

Remedy:
Evaluate the alarm parameters of alarm 27090 and amend the SPL, or check the I/O modules/wiring or the internal SPL interfaces to the safety monitoring channels in the NCK and drive SIMODRIVE611D.

Program Continuation:
Clear alarm with the RESET key. Restart part program

27092 Communication broken off during NCK PLC data cross check, error detected by %1
Parameters:
%1 = Extension indicating the monitoring channel that detected the error
Definitions:
The delay time (1s) for communication monitoring was exceeded in the monitoring channel specified in %1 (NCK or PLC). The other monitoring channel did not send a new data packet within this time.

Reaction:
Alarm display.
A timer of 5 secs is started, after the expiry of which
- the external NCK SPL outputs are deleted
- the PLC changes to stop.

Remedy:
Check the system components (the PLC must have the correct version of FB15 and DB18).
Overview of Alarms 03/2009

NCK alarms

Program Continuation:
Switch control OFF - ON.

27093 Checksum error NCK-SPL, %1, %2, %3
Parameters:
%1 = Extension indicating the type of error
%2 = Extension indicating the reference variable
%3 = Extension indicating the actual variable

Definitions:
A checksum error has occurred in the NCK SPL. The file /_N_CST_DIR/_N_SAFE_SPF was subsequently modified. The safe programmable logic (SPL) in the NCK may be corrupted. Parameter %1 indicates the type of modification:
- %1 = FILE_LENGTH: the file length has changed.
- %1 = FILE_CONTENT: the file contents have changed.
%2 specifies the reference variable (file length, checksum of file contents), %3 specifies the actual variable which is calculated cyclically.

Reaction:
Alarm display.

Remedy:
Check the file and the time of the last modification to the file. Reload the original file and start the monitoring system again with a Power On.

Program Continuation:
Switch control OFF - ON.

27094 Write access to system variable %1 only allowed from NCK-SPL
Parameters:
%1 = Name of safety system variable concerned

Definitions:
Write access to a safety system variable is only allowed from the part program /_N_CST_DIR/_N_SAFE_SPF. If this error occurs, an instruction from another part program was detected.

Reaction:
Alarm display.

Remedy:
Check the part programs you are using for write accesses to safety system variables.

Program Continuation:
Clear alarm with the RESET key. Restart part program

27095 %1 SPL protection not activated
Parameters:
%1 = Name of the component on which the protection is not activated (NCK or PLC)

Definitions:
The protection features are not activated for the SPL. The startup phase of the SPL is not yet complete. No stop reaction (Stop D or E) was initiated on an error in data cross-comparison between NCK and PLC.

Reaction:
Alarm display.

Remedy:
- Remedy for NCK: Activate the protection features with MD $MN_PREVENT_SYNACT_LOCK[0,1].
 The number range of the synchronized action IDs used in the SPL must be entered in this MD.
- Remedy for PLC: Activate the protection features by setting the appropriate data bit in DB18.

Program Continuation:
Clear alarm with the RESET key. Restart part program

27096 SPL start not allowed
Definitions:
To start the SPL in protected state (MD $MN_PREVENT_SYNACT_LOCK[0,1] not equal 0) Safety Integrated functionality must first be activated for at least one axis (via MD $MA_SAFE_FUNCTION_ENABLE). Without this functionality it is only possible to operate SPL in start-up state.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Channel not ready.

Remedy:
Start up axial Safety Integrated functionality or remove the SPL protection via MD $MN_PREVENT_SYNACT_LOCK[0,1].

Program Continuation:
Switch control OFF - ON.
27097 SPL start not executed
Definitions: SPL start not executed after predefined timeout in MD SAFE_SPL_START_TIMEOUT.
Reaction: Alarm display.
Remedy: Find the cause of the failure of the SPL to start. Possible causes may be:
- There is an NC or drive error (e.g. after encoder replacement, EMERGENCY STOP, PROFIsafe
 alarms)
- There is a syntax error in the SPL
- Safety Integrated alarm present (e.g. "Safe limit position overrun")
- Name or path of SPL for PROG_EVENT Start written incorrectly; make sure upper and lower cases
 are used correctly
- Simultaneous start of an ASUB and PROG_EVENT, parameterization MD 11602 (stop causes e.g.
 read-in disable)
- Problems when calling FB4/FC9
This alarm can be masked via MD $MN_SAFE_DIAGNOSIS_MASK, Bit 1 = 1.
Program Con-

27098 SPL commissioning phase terminated
Definitions: The SPL commissioning phase has just been terminated by changing MD
$MN_PREVENT_SYNACT_LOCK. After the next Power ON, file /_N_CST_DIR/_N_SAFE_SPF is
subject to the monitoring mechanisms defined for the SPL (access protection, checksum calculation).
Changes to the SPL can only be made in the unprotected mode.
Reaction: Alarm display.
Remedy: Perform a control Power ON. Check and document any changes to the logic in the SPL by means of
an acceptance test.
Program Con-

27099 Double assignment in SPL assignment MD %1[%2] - MD %3[%4]
Parameters: %1 = MD name 1
%2 = MD array index for MD name 1
%3 = MD name 2
%4 = MD array index for MD name 2
Definitions: Different applications have double assigned SPL inputs ($A_INSE) in the displayed machine data.
These could be:
- PROFIsafe communication
- F_DP communication
Possible values for alarm parameters %1 and %3:
- $MN_PROFISAFE_IN_ASSIGN
- $MN_SAFE_RDP_ASSIGN
Reaction: Alarm display.
Remedy: Correct the MD.
Program Con-

27100 At least one axis is not safely referenced
Definitions: There are two reasons for this alarm:
- the machine position of at least one of the axes monitored with SI has not yet been acknowledged
 by the user, or
- the machine position of at least one of the axes monitored with SI has not yet been verified through
 follow-up referencing.
Even if the axis is already referenced, there is no confirmation that referencing has supplied the cor-
rect result. For example, wrong results can occur if the axis was moved after the control was switched
off, with the result that the standstill position saved prior to switching off is no longer correct. To make
sure that this does not happen, the user must acknowledge the displayed actual position after the first
referencing process.
When the user enable has first been set, follow-up referencing must be carried out each time the control is booted (with absolute encoders, this follow-up referencing is executed automatically). This procedure is carried out to verify the standstill position saved prior to switching off of the control.

Via the MD $MN_SAFE_ALARM_SUPPRESS_LEVEL (MD>=3), the alarm display can be set in such a way that an alarm is given for each axis individually which has not been safely referenced.

Reaction:
Alarm display.

SGA "Axis safely referenced" is not set. SE will be switched off, if the actual safety position has not yet been confirmed by a user agreement. If the user agreement has been set, SE will remain active. The safe cams are calculated and output. However, their significance is limited as referencing has not been confirmed.

Remedy:
Move all SI axes to known positions and change to "Referencing" mode. Check the positions on the machine displayed in the user confirmation field and set "User confirmation" via the selection/toggle key. If the user confirmation for the axes has already been set, reference the axes again.

Changing the user confirmation will be possible only in key switch position 3 or after password entry.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

27101 Axis %1 difference in function safe operational stop, NCK: %2 drive: %3

Parameters:
- %1 = Axis number
- %2 = Monitoring status safe operating stop
- %3 = Monitoring status safe operating stop

Definitions:
During cross-comparison of result list 1 a difference was detected between the NCK and drive monitoring channels in the status of safe operating stop monitoring.

Safe operating stop: Bit 0,1 in result list 1
Monitoring status (%2, %3):
- OFF = Monitoring is inactive in this monitoring channel
- OK = Monitoring is active in this monitoring channel, limit values are not violated
- L+ = Monitoring is active in this monitoring channel, upper limit exceeded
- L- = Monitoring is active in this monitoring channel, lower limit exceeded

Reaction:
Alarm display.

If a safe monitoring was active, STOP B was also triggered automatically. In this case, a power OFF/ON of the control will be required.

Remedy:
Check whether the safe inputs have switched to the same status in both monitoring channels within the permissible time tolerance.

For further diagnostics, the drive parameters r9710[0], r9710[1] and the servo trace signals "Result list 1 NCK" and "Result list 1 drive" can be used.

Program Continuation:
Clear alarm with the RESET key. Restart part program.

27102 Axis %1 difference in function safe velocity %2, NCK: %3 drive: %4

Parameters:
- %1 = Axis number
- %2 = SG level for which the difference was determined
- %3 = Monitoring status safe velocity
- %4 = Monitoring status safe velocity

Definitions:
During cross-comparison of result list 1 a difference was detected between the NCK and drive monitoring channels in the status of safe velocity monitoring.

- Safe velocity 1: Bit 6, 7 in result list 1
- Safe velocity 2: Bit 8, 9 in result list 1
- Safe velocity 3: Bit 10, 11 in result list 1
- Safe velocity 4: Bit 12, 13 in result list 1

Monitoring status (%3, %4):
- OFF = Monitoring is inactive in this monitoring channel
- OK = Monitoring is active in this monitoring channel, limit values are not violated
- L+ = Monitoring is active in this monitoring channel, upper limit exceeded
- L- = Monitoring is active in this monitoring channel, lower limit exceeded

Reaction:
Alarm display.

If a safe monitoring was active, STOP B was also triggered automatically. In this case, a power OFF/ON of the control will be required.

Remedy:
Check whether the safe inputs have switched to the same status in both monitoring channels within the permissible time tolerance.

For further diagnostics, the drive parameters r9710[0], r9710[1] and the servo trace signals "Result list 1 NCK" and "Result list 1 drive" can be used.
27103 Axis %1 difference in function safe limit position %2, NCK: %3 drive: %4

Parameters:
- %1 = Axis number
- %2 = Number of safe limit position
- %3 = Monitoring status safe limit position
- %4 = Monitoring status safe limit position

Definitions:
During cross-comparison of result list 1 a difference was detected between the NCK and drive monitoring channels in the status of safe limit position monitoring.
- Safe limit position 1: Bit 2, 3 in result list 1
- Safe limit position 2: Bit 4, 5 in result list 1

Monitoring status (%3, %4):
- OFF = Monitoring is inactive in this monitoring channel
- OK = Monitoring is active in this monitoring channel, limit values are not violated
- L+ = Monitoring is active in this monitoring channel, upper limit exceeded
- L- = Monitoring is active in this monitoring channel, lower limit exceeded

Reaction:
Alarm display.

If a safe monitoring was active, STOP B was also triggered automatically. In this case, a power OFF/ON of the control will be required.

Remedy:
Check whether the safe inputs have switched to the same status in both monitoring channels within the permissible time tolerance.

For further diagnostics, the drive machine data 1391, 1392 and the servo trace signals "Result list 1 NCK" and "Result list 1 drive" can be used.

For further diagnostics, the drive parameters r9710[0], r9710[1] and the servo trace signals "Result list 1 NCK" and "Result list 1 drive" can be used.

Program Continuation:
Clear alarm with the RESET key. Restart part program

27104 Axis %1 difference in function safe cam plus %2, NCK: %3 drive: %4

Parameters:
- %1 = Axis number
- %2 = Cam number
- %3 = Monitoring status safe cam plus
- %4 = Monitoring status safe cam plus

Definitions:
During cross-comparison of result list 2 ("Safe cams" function) and result list 3/4/5/6/7 ("Safe cam track" function), the status of safe cam plus monitoring was found to be different in the NCK and drive monitoring channels.

The following applies to the "Safe cams" function:
- Safe cam 1+: bit 0, 1 in result list 2
- Safe cam 2+: bit 4, 5 in result list 2
- Safe cam 3+: bit 8, 9 in result list 2
- Safe cam 4+: bit 12,13 in result list 2

The following applies to the "Safe cam track" function: (each of result lists 3-7 contains 6 cam results)
- Safe cam 1+: bit 0, 1 in result list 3
- Safe cam 2+: bit 4, 5 in result list 3
- Safe cam 3+: bit 8, 9 in result list 3
- Safe cam 4+: bit 12,13 in result list 3
- Safe cam 5+: bit 16,17 in result list 3
- Safe cam 6+: bit 20,21 in result list 3
- Safe cam 7+: bit 0, 1 in result list 4
- Safe cam 8+: bit 4, 5 in result list 4
- Safe cam 9+: bit 8, 9 in result list 4
- Safe cam 10+: bit 12,13 in result list 4
- Safe cam 11+: bit 16,17 in result list 4
- Safe cam 12+: bit 20,21 in result list 4
- Safe cam 13+: bit 0, 1 in result list 5
- Safe cam 14+: bit 4, 5 in result list 5
- Safe cam 15+: bit 8, 9 in result list 5

Program Continuation:
Clear alarm with the RESET key. Restart part program
Overview of Alarms

NCK alarms

- Safe cam 16+: bit 12,13 in result list 5
- Safe cam 17+: bit 16,17 in result list 5
- Safe cam 18+: bit 20,21 in result list 5
- Safe cam 19+: bit 0, 1 in result list 6
- Safe cam 20+: bit 4, 5 in result list 6
- Safe cam 21+: bit 8, 9 in result list 6
- Safe cam 22+: bit 12,13 in result list 6
- Safe cam 23+: bit 16,17 in result list 6
- Safe cam 24+: bit 20,21 in result list 6
- Safe cam 25+: bit 0, 1 in result list 7
- Safe cam 26+: bit 4, 5 in result list 7
- Safe cam 27+: bit 8, 9 in result list 7
- Safe cam 28+: bit 12,13 in result list 7
- Safe cam 29+: bit 16,17 in result list 7
- Safe cam 30+: bit 20,21 in result list 7

Monitoring status (%3, %4):
- OFF = Monitoring is inactive in this monitoring channel
- OK = Monitoring is active in this monitoring channel, limit values are not violated
- L+ = Monitoring is active in this monitoring channel, upper limit exceeded
- L- = Monitoring is active in this monitoring channel, lower limit exceeded

Reaction:
Alarm display.
If a safe monitoring was active, STOP B was also triggered automatically. In this case, a power OFF/ON of the control will be required.

Remedy:
Check whether the safe actual values are the same in both monitoring channels.
The drive parameters r9711[0,1] (diagnostics result list 2 [NCK, drive]) and r9735[0,1] / r9736[0,1] / r9737[0,1] / r9738[0,1] / r9739[0,1] (diagnostics result list 3/4/5/6/7 [NCK, drive]) can be used for further diagnostics.
A diagnosis is also possible using the servo trace signals "Result list 2/3/4/5/6/7 NCK" and "Result list 2/3/4/5/6/7 drive".

Program Continuation:
Clear alarm with the RESET key. Restart part program

27105 Axis %1 difference in function safe cam minus %2, NCK: %3 drive: %4

Parameters:
%1 = Axis number
%2 = Cam number
%3 = Monitoring status safe cam minus
%4 = Monitoring status safe cam minus

Definitions:
During cross-comparison of result list 2 ("Safe cams" function) and result list 3/4/5/6/7 ("Safe cam track" function), the status of safe cam minus monitoring was found to be different in the NCK and drive monitoring channels.
The following applies to the "Safe cams" function:
- Safe cam 1-: bit 2, 3 in result list 2
- Safe cam 2-: bit 6, 7 in result list 2
- Safe cam 3-: bit 10, 11 in result list 2
- Safe cam 4-: bit 14, 15 in result list 3
- Safe cam 5-: bit 18,19 in result list 3
- Safe cam 6-: bit 22,23 in result list 3
- Safe cam 7-: bit 2, 3 in result list 4
- Safe cam 8-: bit 6, 7 in result list 4
- Safe cam 9-: bit 10,11 in result list 4
- Safe cam 10-: bit 14,15 in result list 4
- Safe cam 11-: bit 18,19 in result list 4
- Safe cam 12-: bit 22,23 in result list 4
- Safe cam 13-: bit 2, 3 in result list 5
- Safe cam 14-: bit 6, 7 in result list 5
- Safe cam 15-: bit 10,11 in result list 5
- Safe cam 16-: bit 14,15 in result list 5
- Safe cam 17-: bit 18,19 in result list 5
- Safe cam 18-: bit 22,23 in result list 5
- Safe cam 19-: bit 2, 3 in result list 6
- Safe cam 20-: bit 6, 7 in result list 6
- Safe cam 21-: bit 10,11 in result list 6
- Safe cam 22-: bit 14,15 in result list 6
- Safe cam 23-: bit 18,19 in result list 6
- Safe cam 24-: bit 22,23 in result list 6
- Safe cam 25-: bit 2, 3 in result list 7
- Safe cam 26-: bit 6, 7 in result list 7
- Safe cam 27-: bit 10,11 in result list 7
- Safe cam 28-: bit 14,15 in result list 7
- Safe cam 29-: bit 18,19 in result list 7
- Safe cam 30-: bit 22,23 in result list 7

Monitoring status (%3, %4):
- OFF = Monitoring is inactive in this monitoring channel
- OK = Monitoring is active in this monitoring channel, limit values are not violated
- L+ = Monitoring is active in this monitoring channel, upper limit exceeded
- L- = Monitoring is active in this monitoring channel, lower limit exceeded

Reaction: Alarm display.
If a safe monitoring was active, STOP B was also triggered automatically. In this case, a power OFF/ON of the control will be required.

Remedy: Check whether the safe actual values are the same in both monitoring channels. The drive parameters r9711[0,1] (Diagnostics result list 2 [NCK, drive]) and r9735[0,1] / r9736[0,1] / r9737[0,1] / r9738[0,1] / r9739[0,1] (Diagnostics result list 3/4/5/6/7 [NCK, drive]) can be used for further diagnostics. A diagnosis is also possible using the servo trace signals "Result list 2/3/4/5/6/7 NCK" and "Result list 2/3/4/5/6/7 drive".

Program Continuation: Clear alarm with the RESET key. Restart part program

27106
Axis %1 difference in function safe velocity nx, NCK: %2 drive: %3

Parameters:
%1 = Axis number
%2 = Monitoring status safe velocity nx
%3 = Monitoring status safe velocity nx

Definitions: During cross-comparison of result list 2 a difference was detected between the NCK and drive monitoring channels in the status of safe velocity monitoring.
- Safe velocity nx+: Bit 16, 17 in result list 2
- Safe velocity nx-: Bit 18, 19 in result list 2

Monitoring status (%2, %3):
- OFF = Monitoring is inactive in this monitoring channel
- OK = Monitoring is active in this monitoring channel, limit values are not violated
- L+ = Monitoring is active in this monitoring channel, upper limit exceeded
- L- = Monitoring is active in this monitoring channel, lower limit exceeded

Reaction: Alarm display.
If a safe monitoring was active, STOP B was also triggered automatically. In this case, a power OFF/ON of the control will be required.

Remedy: Check whether the safe actual values in both monitoring channels are the same. For further diagnostics the drive parameters r9711[0,1] and the servo trace signals "Result list 2 NCK" and "Result list 2 drive" can be used.

Program Continuation: Clear alarm with the RESET key. Restart part program

27107
Axis %1 difference in function cam modulo monitoring, NCK: %2 drive: %3

Parameters:
%1 = Axis number
%2 = Monitoring status safe cam modulo range
%3 = Monitoring status safe cam modulo range
Overview of Alarms 03/2009

Definitions:
During cross-comparison of result list 2 a difference was detected between the NCK and drive monitoring channels in the status of cam modulo monitoring.
Safe cam modulo range: Bit 20, 21 in result list 2
Monitoring status (%2, %3):
- OFF = Monitoring is inactive in this monitoring channel
- OK = Monitoring is active in this monitoring channel, limit values are not violated
- L+ = Monitoring is active in this monitoring channel, upper limit exceeded
- L- = Monitoring is active in this monitoring channel, lower limit exceeded

Reaction:
Alarm display.
If a safe monitoring was active, STOP B was also triggered automatically. In this case, a power OFF/ON of the control will be required.

Remedy:
Check whether the safe actual values in both monitoring channels are the same.
For further diagnostics the drive parameters r9711[0,1] and the servo trace signals "Result list 2 NCK" and "Result list 2 drive" can be used.

Program Continuation:
Clear alarm with the RESET key. Restart part program

27110 Axis %1 fault during data transmission index%2.
Parameters:
%1 = Axis number
%2 = Index in data cross-check.
Definitions:
Faulty communication between NCK and drive caused that data cross-check of data and indicated index could not be executed three times in a row.

Reaction:
Alarm display.
In addition, a Stop F is triggered that may cause follow-up alarm 27001 with error code 0 as well as alarms 27023 and 27024.
Alarm 27001 with error code 0 can be avoided by alarm reduction (MA_SAFE_ALARM_SUPPRESS_LEVEL higher or equal to 1).

Remedy:
Verification of compliance with the EMC regulations.
Replace the hardware.

Program Continuation:
Clear alarm with the RESET key. Restart part program

27111 Axis %1 fault during encoder evaluation of the safe actual value.
Parameters:
%1 = Axis number
Definitions:
The redundantly determined safe actual value does not match the fine resolution actual value of the same encoder.

Reaction:
Alarm display.
In addition, a Stop F is triggered that may cause follow-up alarm 27001 with error code 0 as well as alarms 27023 and 27024.
Alarm 27001 with error code 0 can be avoided by alarm reduction (MA_SAFE_ALARM_SUPPRESS_LEVEL higher or equal to 1).

Remedy:
Verification of compliance with the EMC regulations.
Replace the hardware.

Program Continuation:
Clear alarm with the RESET key. Restart part program

27112 Axis %1 CRC error of the safe actual value.
Parameters:
%1 = Axis number
Definitions:
An error has been detected on verifying data consistency of the safe actual value (CRC).

Reaction:
Alarm display.
In addition, a Stop F is triggered that may cause follow-up alarm 27001 with error code 0 as well as alarms 27023 and 27024.
Alarm 27001 with error code 0 can be avoided by alarm reduction (MA_SAFE_ALARM_SUPPRESS_LEVEL higher or equal to 1).
Remedy: Possible causes of the continual presence of this alarm:
- The NCK monitoring channel for safe motion monitoring is not communicating with the monitoring channel of the assigned drive but with that of another axis. Check the correctness of the assignment of the drive in the hardware configuration, $MA_SAFE_CTRLOUT_MODULE_NR, $MN_SAFE_DRIVE_LOGIC_ADDRESS, and p0978.
- Interference in the communication between NCK and drive. Check compliance with the EMC guidelines. Exchange hardware.

Program Continuation: Clear alarm with the RESET key. Restart part program

27113

Axis %1 hardware encoder error of the safe actual value.

Parameters: %1 = Axis number

Definitions: Encoder evaluation outputs a hardware error. The reasons may be pollution in the visual encoder evaluation or problems during signal transmission.

Reaction: Alarm display.
In addition, a Stop F is triggered that may cause follow-up alarm 27001 with error code 0 as well as alarms 27023 and 27024.
Alarm 27001 with error code 0 can be avoided by alarm reduction ($MA_SAFE_ALARM_SUPPRESS_LEVEL higher or equal to 1).

Remedy: Verification of compliance with the EMC regulations.
Replace the encoder hardware.

Program Continuation: Clear alarm with the RESET key. Restart part program

27124

Stop A triggered at least in 1 axis

Definitions: This is only an informational alarm indicating that Stop A has been triggered in at least 1 axis and Power On is required for alarm acknowledgment.
This alarm occurs if the alarm priority function was activated in MD $MN_SAFE_ALARM_SUPPRESS_LEVEL.

Reaction: Interface signals are set.
Alarm display.
Trigger a "Pulse suppression" for the affected axis.

Remedy: Find the error cause by means of further alarm messages.

Program Continuation: Switch control OFF - ON.

27140

Waiting for motor module of at least one axis.

Definitions: Alarm during ramp-up as long as the motor module of at least one axis is not yet ready for SI.
Communication to the motor module during ramp-up has not yet been activated; the safety functions of at least one axis are not yet available.
Via MD $MN_SAFE_ALARM_SUPPRESS_LEVEL (MD<3) the alarm display can be set to display for each axis individually whether communication has been activated.

Reaction: Interface signals are set.
Alarm display.

Remedy: The alarm will remain present during ramp-up if at least one drive does not communicate. Otherwise, the alarm will only briefly be displayed, and then be deleted automatically.
Possible causes of the continued presence of the alarm:
- Safe motion monitoring has only been activated in $MA_SAFE_FUNCTION_ENABLE, but not in the corresponding parameter of the assigned drive (p9501).
- The axis -> drive assignment is incorrect in MD $MA_SAFE_CTRLOUT_MODULE_NR, MD $MN_SAFE_DRIVE_LOGIC_ADDRESS or p0978.
- PROFIBUS plug has fallen out.
Check the correctness of parameter p9501 or the assignment of the drives in MD $MA_SAFE_CTRLOUT_MODULE_NR, $MN_SAFE_DRIVE_LOGIC_ADDRESS, p0978.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
27200 PROFIsafe: cycle time %1 [ms] too long
Parameters: %1 = Parameterized cycle time
Definitions: The PROFIsafe communication cycle time resulting from MD $MN_PROFISAFE_IPO_TIME_RATIO and MD $MN_IPO_CYCLE_TIME exceeds the permissible limit value (25 ms).
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Adapt cycle time via MD $MN_PROFISAFE_IPO_TIME_RATIO or correct the reduction of the IPO cycle.
Program Continuation: Switch control OFF - ON.

27201 PROFIsafe: MD %1[%2]: bus segment %3 error
Parameters: %1 = MD name
%2 = MD array index
%3 = Parameterized bus segment
Definitions: An incorrect bus segment was entered in the specified machine data. The value must be 5.
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Correct the MD.
Program Continuation: Switch control OFF - ON.

27202 PROFIsafe: MD %1[%2]: address %3 error
Parameters: %1 = MD name
%2 = MD array index
%3 = Parameterized PROFIsafe address
Definitions: An incorrect PROFIsafe address was entered in the specified machine data. The value must be greater than 0.
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Correct the MD.
Program Continuation: Switch control OFF - ON.

27203 PROFIsafe: MD %1[%2]: SPL assignment error
Parameters: %1 = MD name
%2 = MD array index
Definitions: The parameterization of the specified machine data for the link between the SPL interface and a PROFIsafe module is incorrect because of the following reasons:
- Bit values greater than definition of SPL interface (bit value > 64)
- Number of bits too high for this PROFIsafe module (upper bit value - lower bit value + 1 > 8)
- No SPL assignment parameterized (both bit values equal to zero)
- Incorrect SPL assignment (bit value equals zero)
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Correct the MD.

Program Continuation: Switch control OFF - ON.

27204 PROFIsafe: double assignment MD %1[%2] - MD %3[%4]

Parameters:
- %1 = MD name 1
- %2 = MD array index for MD name 1
- %3 = MD name 2
- %4 = MD array index for MD name 2

Definitions:
A double assignment has illegally been parameterized in the specified machine data:
A_{INSE} parameterized on DMP as well as PROFIsafe modules. Involved MDs:
- MD $MN_{SAFE_IN_HW_ASSIGN}$
- MD $MN_{PROFISAFE_IN_ASSIGN}$
A_{INSE} parameterized on several PROFIsafe modules. Involved MD:
- MD $MN_{PROFISAFE_IN_ASSIGN}$

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Correct the MD.

Program Continuation: Switch control OFF - ON.

27205 PROFIsafe: number of signals in MD %1 [%2] <> MD %3[%4]

Parameters:
- %1 = MD name 1
- %2 = MD array index for MD name 1
- %3 = MD name 2
- %4 = MD array index for MD name 2

Definitions:
The parameterized number or the signals used must be the same in both machine data.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Correct the MD.

Program Continuation: Switch control OFF - ON.

27206 PROFIsafe: MD %1[%2] maximum number of F user data (%3 bits) exceeded.

Parameters:
- %1 = MD name
- %2 = MD array index for MD name
- %3 = Maximum F user data bits.

Definitions:
The parameterized data indicated in the machine data are outside the F user data range of the F module.

Note:
When machine data PROFISAFE_IN/OUT_ADDRESS is displayed, the sub slot address parameterized in it will exceed the F user data range of the F module.
NCK alarms

27207
PROFIsafe: MD %1[%2] max. sub slot number: %3 exceeded

Parameters:
- %1 = MD name
- %2 = MD array index for MD name
- %3 = Max. number of sub slots

Definitions: The sub slot parameterized in the indicated machine data exceeds the max. permissible number of sub slots per PROFIsafe module.

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Correct the MD.

Program Continuation:
Switch control OFF - ON.

27208
PROFIsafe: MD %1[%2]: max. sub-slot address %3 exceeded.

Parameters:
- %1 = MD name
- %2 = MD array index
- %3 = Maximum sub-slot address.

Definitions: A sub-slot address was entered in the MD that is too high. The entered value must not exceed the displayed maximum sub-slot address.

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
Reduce the number of sub slots by changing the splitting of F user data of the PROFIsafe module.

Program Continuation:
Switch control OFF - ON.

27220
PROFIsafe: Number of NCK F modules (%1) <> Number of S7 F modules (%2)

Parameters:
- %1 = Number of parameterized NCK F modules
- %2 = Number of parameterized S7 F modules

Definitions: The number of F modules parameterized via the NCK machine data $MN_PROFISAFE_IN/OUT_ADDRESS is:
- Greater than the number of PROFIBUS slaves in the S7 PROFIBUS configuration.
- Smaller than the number of F modules in the S7 PROFIBUS configuration,
- greater than the number of F modules known in the S7 PROFIBUS configuration.
If alarm parameter %2 = 0, then none of the configured F modules were found in the S7 PROFIBUS configuration.
In most cases, the reason for the alarm is an error in the parameterization of the PROFIsafe master address.

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
NCK alarms

Remedy: Check the F parameterization in MD $MN_PROFISAFE_IN/OUT_ADDRESS.
Check the F configuration in the S7 PROFIBUS configuration.
Check the parameterized PROFIsafe master address in MD $MN_PROFISAFE_MASTER_ADDRESS and in the S7 PROFIBUS configuration.

Program Continuation: Switch control OFF - ON.

27221 PROFIsafe: NCK F module MD %1[%2] unknown

Parameters: %1 = MD name
%2 = MD array index

Definitions: The F module parameterized in the specified machine data is unknown under this PROFIsafe address in the S7 PROFIBUS configuration.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check the PROFIsafe addresses in the NCK MD and S7 PROFIBUS configuration.

Program Continuation: Switch control OFF - ON.

27222 PROFIsafe: S7 F module PROFIsafe address %1 unknown

Parameters: %1 = PROFIsafe address

Definitions: The F module with the specified PROFIsafe address has not been parameterized as an F module in the NCK MD.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check the S7 PROFIBUS configuration. Enter the module in the NCK MD.

Program Continuation: Switch control OFF - ON.

27223 PROFIsafe: NCK F module MD %1[%2] is not a %3 module

Parameters: %1 = MD name
%2 = MD array index
%3 = Module type

Definitions: The F module parameterized in the specified NCK MD has not been entered as input/output module in the S7 PROFIBUS configuration.
- %3 = INPUT: NCK F parameterization expects INPUT module
- %3 = OUTPUT: NCK F parameterization expects OUTPUT module
- %3 = IN/OUT: NCK F parameterization expects INPUT or OUTPUT module

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check the module in the S7 PROFIBUS configuration.

Program Continuation: Switch control OFF - ON.

27224 PROFIsafe: F module MD %1[%2] - MD %3[%4]: double assignment of PROFIsafe address

Parameters: %1 = MD name 1
%2 = MD array index 1
%3 = MD name 2
%4 = MD array index 2
Definitions: In the NCK MD or in the S7 F parameters, the same PROFIsafe address has been parameterized for the F modules parameterized in the specified machine data. Therefore, no clear communication link is possible between F master and F slave.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check and correct the S7 F parameterization and NCK MD.

Program Continuation: Switch control OFF - ON.

27225 PROFIsafe: slave %1, configuration error %2

Parameters: %1 = PROFIBUS slave address
%2 = Configuration error

Definitions: An error occurred during the evaluation of the S7 PROFIBUS configuration for the specified slave. This is further specified in alarm parameter %2.
%2 = PRM header: the PRM telegram for this slave could not clearly be interpreted.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check and correct the S7 PROFIBUS configuration.

Program Continuation: Switch control OFF - ON.

27240 PROFIsafe: DP M not running up, DP info: %1

Parameters: %1 = Current information from the DP interface NCK-PLC

Definitions: There is no DP configuration available to the NCK after the time specified via the MD $MN_PLC_RUNNINGUP_TIMEOUT.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: - Increase MD $MN_PLC_RUNNINGUP_TIMEOUT
- Check the PLC operating status.
- Check the PLC operating system software version.
- Delete the F parameterization in the NCK MD.

Program Continuation: Switch control OFF - ON.

27241 PROFIsafe: DP M version different, NCK: %1, PLC: %2

Parameters: %1 = DP interface version of the NCK
%2 = DP interface version of the PLC

Definitions: The NCK and PLC components have different implementations of the DP interface. The F communication cannot be initialized.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: - Check the PLC operating system and NCK software versions.
- Upgrade the PLC operating system.
- Delete the NCK F parameterization.
Program Continuation:
Switch control OFF - ON.

27242
PROFIsafe: F module %1, %2 faulty

Parameters:
%1 = PROFIsafe address
%2 = Incorrect F parameter

Definitions:
An error was detected during the evaluation of the F parameters.
%2 = F_WD_Timeout: The monitoring time parameterized in Step 7 is too small for the PROFIsafe cycle time defined by the MD $MN_PROFISAFE_IPO_TIME_RATIO.
%2 = CRC2_Len: CRC message length faulty.
%2 = F_Data_Len: the telegram length defined for the specified module is incorrect.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
%2 = CRC1: PLC overall reset, reload the S7 F configuration.
%2 = F_WD_Timeout: reparameterize the PROFIsafe cycle time or F monitoring time.
%2 = CRC2_Len: PLC overall reset, reload the S7 F configuration.
%2 = F_Data_Len: PLC overall reset, reload the S7 F configuration.

Program Continuation:
Switch control OFF - ON.

27250
PROFIsafe: configuration in DP M changed; error code %1 - %2

Parameters:
%1 = NCK project number
%2 = Current PLC project number

Definitions:
The DP master shows a modified S7 PROFIBUS configuration. Error-free operation can no longer be guaranteed.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Communication with F slaves is finished.
A STOP D/E (settable via MD $MN_SPL_STOP_MODE) is triggered on all axes with safety functionality.

Remedy:
Restart the PLC/NCK.

Program Continuation:
Switch control OFF - ON.

27251
PROFIsafe: F module %1, %2 reports error %3

Parameters:
%1 = PROFIsafe address
%2 = Reporting component (master/slave)
%3 = Error code

Definitions:
An error occurred in the PROFIsafe communication between the F master and the specified F module which was detected by the component (master/slave) shown in parameter %2.
The error code specifies the error type:
- %3 = TO: The parameterized communication timeout was exceeded
- %3 = CRC: A CRC error was detected
- %3 = CN: An error in the time sequence of the F messages was detected
- %3 = SF: F master error, NCK/PLC are no longer synchronous
- %3 = EA: Communication error, slave sends empty messages

Reaction:
Mode group not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Trigger a STOP D/E (settable via MD $MN_SPL_STOP_MODE) on all axes with safety functionality.
Overview of Alarms 03/2009

NCK alarms

Remedy: Check the DP wiring. Restart F slave modules. Restart the NCK/PLC.

Program Continuation: Clear alarm with the RESET key. Restart part program

27252 PROFIsafe: Slave %1, sign-of-life error

Parameters: %1 = DP slave address

Definitions: The specified DP slave no longer communicates with the master.

Reaction: Mode group not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Trigger a STOP D/E (settable via MD $MN_SPL_STOP_MODE) on all axes with safety functionality.

Remedy: Check the DP wiring. Restart F slave modules. Restart the NCK/PLC.

Program Continuation: Clear alarm with the RESET key. Restart part program

27253 PROFIsafe: communication fault F master component %1, error %2

Parameters: %1 = Error component (NCK/PLC)
%2 = Error code

Definitions: The F master signals that the communication between the NCK and PLC is no longer working.
The error code %1 specifies the cause:
- %1 = PLC: The PLC does not execute the OB40 request.
- %1 = PLC-DPM: DP master is no longer in OPERATE status.
Parameter %2 provides further information about the error's cause:
- %2 = 1,2,4: PLC processing of the OB40 not finished.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Trigger a STOP D/E (settable via MD $MN_SPL_STOP_MODE) on all axes with safety functionality.

Remedy: Extend the PROFIsafe cycle time via MD $MN_PROFISAFE_IPO_TIME_RATIO.

Program Continuation: Switch control OFF - ON.

27254 PROFIsafe: F module %1, error on channel %2; %3<ALSI>

Parameters: %1 = PROFIsafe address
%2 = Channel type, channel number
%3 = System variable array index extension

Definitions: The F module signals that an error occurred in the interface of the specified channel.
This alarm is only triggered for ET200S F modules.
The type of channel (input or output channel) is indicated by the abbreviations IN and OUT in %2.
A specific alarm message can be programmed for each of the system variables on the HMI via parameter %3:
- %3 = 1...64: Error in system variables $A_INSE[1...64]
- %3 = 65...128: Error in system variables $A_OUTSE[1...64]
- %3 = -1: Error in an input or output channel for which there is no SPL assignment

Reaction: Mode group not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Trigger a STOP D/E (settable via MD $MN_SPL_STOP_MODE) on all axes with safety functionality.

Remedy: Check wiring. Wiring OK: replace F module.

Program Continuation: Clear alarm with the RESET key. Restart part program
27255
PROFIsafe: F module %1, general error

Parameters:
- %1 = PROFIsafe address

Definitions:
The specified PROFIsafe module signals an error. A more exact specification of the error's cause cannot be made without further assistance.
This alarm is triggered for all types of PROFIsafe slaves.

Reaction:
- Mode group not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
- Trigger a STOP D/E (settable via MD $MN_SPL_STOP_MODE) on all axes with safety functionality.

Remedy:
- Check wiring.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

27256
PROFIsafe: Current cycle time %1 [ms]> parameterized cycle time

Parameters:
- %1 = Current PROFIsafe communication cycle time

Definitions:
The current PROFIsafe communication cycle time is greater than the value set via MD $MN_PROFI SAFE_IPO_TIME_RATIO. The parameterized PROFIsafe communication cycle time is continually exceeded on the PLC side.

Reaction:
- Mode group not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
- Trigger a STOP D/E (settable via MD $MN_SPL_STOP_MODE) on all axes with safety functionality.

Remedy:
- Adapt cycle time via MD $MN_PROFI SAFE_IPO_TIME_RATIO.
- The value displayed in parameter %1 has to be set at least.
- The set cycle time affects the runtime load of the PLC module. This also has to be taken into consideration when making the setting.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

27257
PROFIsafe: %1 %2 reports system error %3 (%4)

Parameters:
- %1 = Type of communication
- %2 = PROFIsafe address
- %3 = Error code
- %4 = Component

Definitions:
A system error has been detected in the PROFIsafe communication. Depending on the error, the relevant PROFIsafe driver or the entire PROFIsafe communication will be stopped.

In %1 the communication type is displayed:
- %1 = F module
- %1 = SPL
- %2 = PROFIsafe address of the affected F module (with %1 = F module)
- %2 = - (with %1 = SPL)

In %3 the detected error cause is displayed:
- %3 = SF: Asynchronous error state (StateFault)
- %3 = SP: No update of the SPL input/output data (SPL I/O communication)

In %4 the affected component is displayed:
- %4 = NCK
- %4 = PLC

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.
- STOP D/E (settable via MD $MN_SPL_STOP_MODE) triggered on all axes with safety functionality.
- Stop of the affected PROFIsafe drivers. Stopped PROFIsafe drivers of F modules of type F-DI or F-DIO output failsafe values (0) as F user data to the SPL.

Remedy:
- Power OFF/ON of the control. If the error occurs again, inform the service department.
Program Continuation: Switch control OFF - ON.

27299 PROFIsafe: Diagnostics %1 %2 %3 %4
Parameters:
%1 = Error code 1
%2 = Error code 2
%3 = Error code 3
%4 = Error code 4
Definitions:
Internal error in the NCK PROFIsafe implementation.
Reaction:
Alarm display.
Remedy:
Make a note of the error text and contact Siemens A&D MC, Hotline
- Tel 0180 / 5050 - 222 (Germany)
- Fax 0180 / 5050 - 223
- Tel +49-180 / 5050 - 222 (International)
- Fax +49-180 / 5050 - 223
- email techsupport@ad.siemens.de
Program Continuation: Clear alarm with the Delete key or NC START.

27300 F_DP: Cycle time %1 [ms] is too long
Parameters:
%1 = Parameterized cycle time
Definitions:
The F_DP communication cycle time resulting from MD $MN_SAFE_SRDP_IPO_TIME_RATIO and $MN_IPO_CYCLE_TIME exceeds the permissible limit value of 250ms.
Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
Correct cycle time via MD $MN_SAFE_SRDP_IPO_TIME_RATIO and/or $MN_IPO_CYCLE_TIME
Program Continuation: Switch control OFF - ON.

27301 F_DP: MD %1[%2]: SPL interface faulty
Parameters:
%1 = MD name
%2 = MD array index
Definitions:
The SPL interface in the displayed MD is incorrect: Possible causes:
- Bit values greater than definition of SPL interface (bit value > 64)
- Number of bits too high (upper bit value - lower bit value > 16)
- No SPL assignment parameterized (both bit values equal to zero)
- Incorrect SPL assignment (bit value equals zero)
Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
Correct the MD.
Program Continuation: Switch control OFF - ON.

27302 F_DP: Double assignment MD %1[%2] - MD %3[%4]
Parameters:
%1 = MD name 1
%2 = MD array index for MD name 1
%3 = MD name 2
%4 = MD array index for MD name 2
Definitions: An illegal double assignment has been parameterized in the stated MD:
- %1 and %3 = $MN_SAFE_RDP_ASSIGN:
 SPL inputs (%A_INSE) are multiply occupied by F_DP communication.
- %1 and %3 = $MN_SAFE_SDP_FILTER:
 F user data of an F_SENDDP are multiply occupied by sub-slots
- %1 and %3 = $MN_SAFE_SDP_LADDR, $MN_SAFE_RDP_LADDR:
 Logical basic addresses are multiply occupied by SPL connections
- %1 and %3 = $MN_SAFE_SDP_FILTER:
 System variable assignments are multiply occupied by SPL connections
- %1 and %3 = $MN_SAFE_SDP_ID, $MN_SAFE_RDP_ID:
 Parameter DP_DP_ID is multiply occupied by different SPL connections
%2 and %4: MD index of SPL connection

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct the MD.

Program Continuation:
Switch control OFF - ON.

27303 F_DP: Number of signals in MD %1 [%2] <> MD %3[%4]

Parameters:
%1 = MD name 1
%2 = MD array index for MD name 1
%3 = MD name 2
%4 = MD array index for MD name 2

Definitions:
Different numbers of F user data signals have been parameterized in machine data
$MN_SAFE_SDP/RDP_ASSIGN, $MN_SAFE_SDP/RDP_FILTER.

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Correct the stated MD.

Program Continuation:
Switch control OFF - ON.

27305 F_DP: Parameter MD %1 [%2] <> MD %3[%4]

Parameters:
%1 = MD name 1
%2 = MD array index for MD name 1
%3 = MD name 2
%4 = MD array index for MD name 2

Definitions:
An SPL connection has been parameterized with multiple SPL interfaces (sub-slots), in which different
values have been entered in the F_DP communication parameters or the SPL connection number (%1
and %3).
Note: SPL interfaces (sub-slots) of an SPL connection are characterized by equal values for:
- F_DP communication parameter
- SPL connection number
Values for %1 and %3:
$MN_SAFE_SDP/RDP_LADDR or
$MN_SAFE_SDP/RDP_TIMEOUT or
$MN_SAFE_SDP/RDP_CONNECTION_NR
$MN_SAFE_SDP/RDP_ERR_REAC
$MN_SAFE_RDP_SUBS

Reaction:
Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Correct the MD.

Program Continuation: Switch control OFF - ON.

27306 **F_DP:** Maximum number of active SPL connections (%1) exceeded for %2.

Parameters:
%1 = Maximum possible number of SPL connections
%2 = F_SENDP/F_RECVDP

Definitions: More than the permissible number of SPL connections %1, marked by different identifiers ($MN_SAFE_SDP/RDP_ID), have been parameterized for %2 in the active parameter data records.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Correct the identifiers of the active SPL connections or deactivate SPL connections ($MN_SAFE_SDP/RDP_ENABLE_MASK).

Program Continuation: Switch control OFF - ON.

27350 **F_DP:** %1 communication, connection %2 reports error %3

Parameters:
%1 = Type of communication
%2 = Name or DP_DP_ID of the communication relationship
%3 = Error code

Definitions: The F_DP communication with the external communication partner is disturbed, and the programmed error reaction is $A_FSDP_/FRDP_ERR_REAC = 0 or 1.
The communication type is displayed in %1:
%1 = F_SENDDP
%1 = F_RECVDP
The name or the DP_DP_ID (identifier) of the SPL connection is displayed in %2.
The detected cause of the error is displayed in %3.
%3 = SN: An error has been detected in the message sequence.
%3 = CRC: A CRC error has been detected.
%3 = TO: The parameterized communication timeout was exceeded.
All values stated for %3 can also be displayed in combination according to the fault profile.

Reaction: Mode group not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check the PROFIBUS communication and the communication partner.
Note: A user acknowledgment via DB18.FRDP_ACK_REI only acknowledges the F_DP communication. The alarm is still displayed and must be acknowledged separately via NC RESET.
Note to %3 = LS: Internal system error, can only be eliminated by PowerOn.

Program Continuation: Clear alarm with the RESET key. Restart part program.

27351 **F_DP:** %1 communication, connection %2 reports error %3

Parameters:
%1 = Type of communication
%2 = Name or DP_DP_ID of the SPL connection
%3 = Error code
Definitions: The F_DP communication with the external communication partner is disturbed, and the programmed error reaction is $A_FSDP_/FRDP_ERR_REAC = 2 (alarm, display only). The communication type is displayed in %1:

%1 = F_SENDDP
%1 = F_RECVDP

The name or the DP_DP_ID (identifier) of the F_DP communication relationship is displayed in %2.
The detected cause of the error is displayed in %3.

%3 = SN: An error has been detected in the message sequence.
%3 = CRC: A CRC error has been detected.
%3 = TO: The parameterized communication timeout was exceeded.

All values stated for %3 can also be displayed in combination according to the fault profile.

Reaction: Alarm display.

1. F_SENDDP/F_RECVDP: system variable $A_FSDP/FRDP_ERROR = TRUE
2. F_SENDDP/F_RECVDP: system variable $A_FSDP/FRDP_DIAG <> 0
3. F_RECVDP: system variable $A_FRDP_ACK_REQ = TRUE
4. F_RECVDP: Output of the substitute values defined in system variable $A_FRDP_SUBS

Remedy: Check the PROFIBUS communication and the communication partner
User acknowledgment via DB18.FRDP_ACK_REI or NC-RESET
Note to %3 = LS: Internal system error, can only be eliminated by PowerOn.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

27352 F_DP: Communication error %1, error %2

Parameters:
%1 = Error component (NCK/PLC)
%2 = Error code

Definitions: The communication between the NCK and PLC is no longer working.
Error code %1 specifies the cause:

%1 = PLC: The PLC is no longer executing the OB40 request.
Parameter %2 provides further information about the cause of the error:
%2 <> 0: PLC processing of the OB40 not finished.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Trigger a STOP D/E (settable via MD $MN_SPL_STOP_MODE) on all axes with safety functionality.

Remedy: Check whether the set F_DP cycle is too short.

Program Continuation:
Switch control OFF - ON.

27353 F_DP: Current cycle time %1 [ms] > parameterized cycle time

Parameters:
%1 = Current F_DP communication cycle time

Definitions: The current F_DP communication cycle time is greater than the value set via MD $MN_SAFE_SRDP_IPO_TIME_RATIO. The parameterized communication cycle time is continually exceeded on the PLC side.

Reaction: Mode group not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Trigger a STOP D/E (settable via MD $MN_SPL_STOP_MODE) on all axes with safety functionality.

Remedy: Adapt cycle time via MD $MN_SAFE_SRDP_IPO_TIME_RATIO.
At least the value displayed in parameter %1 has to be set.
The set cycle time affects the runtime load of the PLC module. This also has to be taken into consideration when making the setting.

Program Continuation:
Clear alarm with the RESET key. Restart part program
Overview of Alarms

NCK alarms

27354
F_DP: %1 communication, connection %2 reports SFC%3 error %4

Parameters:
- %1 = Type of communication
- %2 = Name or DP_DP_ID of the communication relationship
- %3 = SFC block number
- %4 = Error code

Definitions:
- The F_DP communication with the external communication partner is disturbed. The PLC reports an error when trying to access via the parameterized interface.
- The communication type is displayed in %1:
 - %1 = F_SENDDP
 - %1 = F_RECVDP
- The name or the DP_DP_ID (identifier) of the SPL connection is displayed in %2.
- The PLC block that detected an error is displayed in %3.
- The detected cause of the error is displayed in %4.

This alarm can be masked with MD $MN_SAFE_DIAGNOSIS_MASK, bit 2 = 1.

Reaction:
- Alarm display.

Remedy:
- Check the PROFIBUS communication and the communication partner
- Check the parameterized, logical basic address in $MN_SAFE_SDP/RDP_LADDR.

Program Continuation:
- Clear alarm with the RESET key. Restart part program

27355
F_DP: %1 communication, connection %2 reports system error %3 (%4)

Parameters:
- %1 = Type of communication
- %2 = Name or DP_DP_ID of the SPL connection
- %3 = Error code
- %4 = Component

Definitions:
- A system error has been detected during F_DP communication. Depending on the error, the relevant PROFIsafe driver or the entire F_DP communication will be stopped.
- The communication type is displayed in %1:
 - %1 = F_SENDDP
 - %1 = F_RECVDP
 - %1 = SPL
- The name or the DP_DP_ID (identifier) of the SPL connection (with %1 = F_SENDDP or F_RECVDP)
 - %2 = - (with %1 = SPL)
- The detected error cause is displayed in %3:
 - %3 = SF: asynchronous error state (StateFault)
 - %3 = LS: sign-of-life monitoring (LifeSign)
 - %3 = TD: discrepancies in the F telegram data (TelegramDiscrepancy)
 - %3 = OD: discrepancies in the output data (OutputDataDiscrepancy)
 - with %1 = F_SENDDP:
 - $A_FSDP_ERR_REAC - DB18.DBW190,200,210
 - with %1 = F_RECVDP:
 - $A_FRDP_SUBS - DB18.DBW220,232,244
 - $A_FRDP_ERR_REAC - DB18.DBW222,234,246
- %3 = SP: no update of the SPL input/output data (SPL I/O-communication)
- The mentioned values for %3 can be displayed also combined depending on the fault profile.
- The affected component is displayed in %4:
 - %4 = NCK
 - %4 = PLC
 - %4 = system variable (with %3 = OD)

Reaction:
- Mode group not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Power OFF/ON of the control. If the error occurs again, inform the service department.

Program Continuation:
- Switch control OFF - ON.
27900 PROFIBUS DP: SI fault on axis %1, code %2, value %3, time %4.

Parameters:
%1 = Axis number
%2 = Fault code of the drive (r9747).
%3 = Fault value of the drive (r9749)
%4 = Fault time of the drive (r9748).

Definitions: Error in a SINAMICS drive.

Reaction: Alarm display.

Remedy: See drive documentation for fault codes/fault values.

Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

27901 PROFIBUS DP: SI fault on axis %1, code %2, value %3, time %4.

Parameters:
%1 = Axis number
%2 = Fault code of the drive (r9747).
%3 = Fault value of the drive (r9749)
%4 = Fault time of the drive (r9748).

Definitions: Error in a SINAMICS drive.

Reaction: Alarm display.

Remedy: See drive documentation for fault codes/fault values.

Program Continuation: Clear alarm with the RESET key. Restart part program

28000 NCU link connection to all other NCUs of the link network has been aborted

Definitions: All NCUs in the NCU link network exchange data cyclically (sign-of-life). If this alarm occurs, sign-of-life signals have not been received from any other NCUs on the NCU network. This fault in the link can have various causes:
- Defective hardware.
- The machine data which configure the NCU link are not the same on all NCUs.
- An identical interpolator cycle time has not been selected on all NCUs.

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check the IPO cycle on all the NCUs.
If necessary, check NCU link-specific alarms first.

Program Continuation: Switch control OFF - ON.

28001 NCU link connection to the NCU %1 of the link network has been aborted

Parameters: %1 = NCU number

Definitions: All NCUs in the NCU link network exchange data cyclically (sign-of-life). If this alarm occurs, sign-of-life signals have not been received from one other NCU on the NCU network. (see alarm parameters) This fault in the link can have various causes:
- Defective hardware.
- The machine data which configure the NCU link are not identical on all NCUs.
- An identical interpolator cycle time has not been selected on all NCUs.

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: - Check the IPO cycle on all the NCUs.
- If necessary, check NCU link-specific alarms first.

Program Continuation: Switch control OFF - ON.
28002 Error on activation of machine data, NCU network-wide machine data were modified by NCU %1

Parameters: %1 = NCU number

Definitions: During the activation of machine data with NEWCONFIG or during an operator panel RESET, NCU network-wide machine data were modified on another NCU. This alarm can only occur when a link connection is active.

Reaction: NC not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Repeat the operator action or, if NEWCONFIG is activated by an NC program, terminate the program with Reset.

Program Continuation: Clear alarm with the RESET key. Restart part program

28004 NCU link: NCU %1 of the link network is not on the bus

Parameters: %1 = NCU number

Definitions: Error message of the NCU link module. When the NCU link was powered up, the local NCU (indicated by the alarm) detected that the NCU with the number in the alarm parameter was not on the bus although it should be connected according to the MD settings.
This fault in the link can have various causes:
- Defective hardware.
- The machine data which configure the NCU link are not identical on all NCUs.
- An identical interpolator cycle time has not been selected on all NCUs.

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check the machine data configuration and link hardware.

Program Continuation: Switch control OFF - ON.

28005 NCU link: NCU %1 of the link network not running synchronously

Parameters: %1 = NCU number

Definitions: Error message of the NCU link module. When the NCU link was powered up, the local NCU (indicated by the alarm) detected that the NCU with the number in the alarm parameter was not running synchronously.
This fault in the link can have various causes:
- The machine data which configure the NCU link are not identical on all NCUs.
- An identical interpolator cycle time has not been selected on all NCUs.

Reaction: NC not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy: Check machine data configuration.

Program Continuation: Switch control OFF - ON.
NCK alarms

28007 NCU link: conflict in configuration data of NCU %1

Parameters: %1 = NCU number

Definitions: Error message of the NCU link module. When the NCU link was powered up, the local NCU (indicated by the alarm) detected a conflict between its configuration and the configuration of the NCU in the alarm parameter.

Example: MD18782 $MN_MM_LINK_NUM_OF_MODULES defines the number of nodes on the NCU link network. The alarm occurs if this MD has a different setting on different NCUs.

Reaction:
- NC not ready.
- Channel not ready.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy: Check machine data configuration.

Program Continuation: Switch control OFF - ON.

28008 NCU link: conflict in timer setting of NCU %1

Parameters: %1 = NCU number

Definitions: Error message of the NCU link module. When the NCU link was powered up, the local NCU (indicated by the alarm) detected a conflict between its timer configuration and the configuration of the NCU in the alarm parameter.

Reaction:
- NC not ready.
- Channel not ready.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy: Check machine data configuration.

Program Continuation: Switch control OFF - ON.

28009 NCU link: conflict in bus parameters of NCU %1

Parameters: %1 = NCU number

Definitions: Error message of the NCU link module. When the NCU link was powered up, the local NCU (indicated by the alarm) detected a conflict between its timer bus configuration and the configuration of the NCU in the alarm parameter.

Reaction:
- NC not ready.
- Channel not ready.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy: Check machine data configuration.

Program Continuation: Switch control OFF - ON.

28010 NCU link: the NCU %1 has not received a message

Parameters: %1 = NCU number

Definitions: Error message of the NCU link module. During operation of the NCU link, a message from the local NCU to the NCU specified in the alarm parameter has failed. A hardware error may have occurred (e.g. sporadic disturbances on the communication line).

Reaction:
- NC not ready.
- Channel not ready.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy: The message does not fail until several attempts have been made to repeat the communication. The number of repetitions can be increased with MD12550 $MN_LINK_RETRY_CTR.
Overview of Alarms 03/2009

NCK alarms

Program Continuation: Switch control OFF - ON.

28011 IPO time insufficient for NCU link. Link cycle time: %1

Parameters: %1 = Microseconds

Definitions: Error message of the NCU link module. All messages must be transmitted within one interpolator cycle. This applies particularly to message retries. The time was not sufficient! The parameter indicates how many microseconds the NCU link module needs in order to send the message.

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Increase the interpolator cycle time, i.e. modify one of the following MDs on all NCUs.
 - IPO_SYSCLOCK_TIME_RATIO
 - SYSCLOCK_CYCLE_TIME

Program Continuation: Switch control OFF - ON.

28012 NCU link: synchronization cycle signal failure %1 times

Parameters: %1 = Number of cycles

Definitions: Error message of the NCU link module that does not occur at NCU 1. The NCU's are synchronized via their own NCU-link clock line. A large number of cycle signals are missing. The parameter indicates how many cycles have failed.

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Check the hardware.

Program Continuation: Switch control OFF - ON.

28020 NCU link: too many link axes configured %1

Parameters: %1 = Number of link axis connections

Definitions: Unfortunately, the communication capacity of the NCU link is insufficient for this link axis configuration. The link axis configuration is determined by the following MDs:
- MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB
- MD12701 $MN_AXCT_AXCONF_ASSIGN_TAB1 ... and all further container def.

Reaction:
- NC not ready.
- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.
- NC Stop on alarm.

Remedy:
- Connect a smaller number of axes across the link or combine the axes in fewer containers.
- Machine data to be changed:
 - MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB
 - MD12701 $MN_AXCT_AXCONF_ASSIGN_TAB1 ... and all further container def.

Program Continuation: Switch control OFF - ON.
28030 Serious alarm on NCU %1, axes in follow-up mode
Parameters: %1 = NCU number
Definitions: All axes are trailing because of a serious alarm on another NCU.
Reaction: NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Acknowledge the alarm on the NCU.
Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

28031 Serious alarm on NCU %1 not yet acknowledged, axes still in follow-up mode
Parameters: %1 = NCU number
Definitions: A serious alarm was not yet acknowledged on another NCU. Consequently, all the axes continue to trail.
Reaction: NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Acknowledge the alarm on the NCU.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

28032 Emergency stop activated on NCU %1, axes in follow-up mode
Parameters: %1 = NCU number
Definitions: The emergency stop request is active at the PLC-NCK interface on one NCU in the NCU group. Consequently, all axes are following.
Reaction: NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Remedy the cause of the emergency stop on the NCU, and acknowledge the emergency stop via the PLC-NCK interface.
Program Continuation: Clear alarm with the RESET key in all channels of this mode group. Restart part program.

28033 Emergency stop on NCU %1, axes still in follow-up mode
Parameters: %1 = NCU number
Definitions: The emergency stop request is active at the PLC-NCK interface on one NCU in the NCU group. Consequently, all axes are following.
Reaction: NC not ready.
Mode group not ready, also effective for single axes
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Remedy the cause of the emergency stop on the NCU, and acknowledge the emergency stop via the PLC-NCK interface.
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
29033 [Channel %1:] Axis exchange of axis %2 not possible, PLC axis movement not yet completed

Parameters:
%1 = Channel number
%2 = Axis

Definitions:
A PLC axis has not yet reached its end position and cannot be returned to a channel or neutralized.
This alarm should not occur when PLC data block FC18 is used.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.

Remedy:
Wait until the axis has reached the end position or terminate the movement with delete distance to go.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61000 [Channel %1:] Block %2: No tool offset active

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: LONGHOLE, SLOT1, SLOT2, POCKET1 bis POCKET4, CYCLE63, CYCLE64, CYCLE71, CYCLE72, CYCLE90, CYCLE93 through CYCLE96, CYCLE952.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
D-correction must be programmed before the cycle call.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61001 [Channel %1:] Block %2: Thread pitch incorrectly defined

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE84, CYCLE840, CYCLE96, CYCLE97.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Check parameter for the thread size or setting for the pitch (contradict each other).

Program Continuation:
Clear alarm with the RESET key. Restart part program

61002 [Channel %1:] Block %2: Type of machining incorrectly defined

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The value of the VARI parameter for the machining has been incorrectly specified. Alarm triggered by following cycles: SLOT1, SLOT2, POCKET1 to POCKET4, CYCLE63, CYCLE64, CYCLE71, CYCLE72, CYCLE76, CYCLE77, CYCLE93, CYCLE95, CYCLE97, CYCLE98.

Remedy:
Modify VARI parameter.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61003 [Channel %1:] Block %2: No feed programmed in cycle

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The parameter for the feed has been incorrectly specified. Alarm triggered by following cycles: CYCLE71, CYCLE72.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Modify feed parameter.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61004

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The geometry-axes sequence is wrong. CYCLE328

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
--

Program Continuation:
Clear alarm with the RESET key. Restart part program

61005

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
With an application on the lathe with no Y-axis in the G18 plane. Alarm triggered by following cycle: CYCLE86.

Remedy:
Check parameter on cycle call.

61006

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The tool radius is too large for machining. Alarm triggered by following cycles: CYCLE63, CYCLE64, CYCLE930, CYCLE951, E_CP_CE, E_CP_CO, E_CP_DR, E_PO_CIR, E_PO_REC, F_CP_CE, F_CP_DR, F_PO_CIR, F_PO_REC.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Select a smaller tool.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61007

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The tool radius is too small for machining. Alarm triggered by following cycles: CYCLE92, E_CP_CO, E_SL_CIR, F_CP_CO, F_PARTOF, F_SL_CIR.

Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Select a larger tool.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61008

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered by following cycles:

Remedy:
Select a tool.

61009

Parameters:
- %1 = Channel number
- %2 = Block number, label
Definitions: No tool (T) has been programmed before the cycle call. Alarm triggered by following cycles: CYCLE71, CYCLE72.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program tool (T).
Program Continuation: Clear alarm with the RESET key. Restart part program

61010 [Channel %1:] Block %2: Finishing allowance too large
Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The finishing allowance for the base is greater than the total depth. Alarm triggered by following cycle: CYCLE72.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Reduce finishing allowance.
Program Continuation: Clear alarm with the RESET key. Restart part program

61011 [Channel %1:] Block %2: Scaling not permissible
Parameters: %1 = Channel number
%2 = Block number, label

Definitions: A scale factor is active which is illegal for this cycle. Alarm triggered by following cycles: CYCLE71, CYCLE72.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Modify scale factor.
Program Continuation: Clear alarm with the RESET key. Restart part program

61012 [Channel %1:] Block %2: Different scaling in planes
Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64, CYCLE76, CYCLE77.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61013 [Channel %1:] Block %2: Basic settings were changed, program cannot be executed
Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The basic settings are not compatible with the generated program. Alarm triggered by following cycles: E_CP_CE, E_CP_CO, E_CP_DR, F_CP_CE, F_CP_CO, F_CP_DR.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check and, if necessary, change the basic settings.
Program Continuation: Clear alarm with the RESET key. Restart part program

61014 [Channel %1:] Block %2: Return plane exceeded
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: CYCLE72.
Remedy: Check parameter RTP.

61015 [Channel %1:] Block %2: Contour is not defined
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61016 [Channel %1:] Block %2: System frame for cycles missing
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: All measuring cycles can trigger this alarm.
Remedy: Set MD 28082: MM_SYSTEM_FRAME_MASK, Bit 5=1.

61017 [Channel %1:] Block %2: function %4 not present in NCK
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61018 [Channel %1:] Block %2: function %4 not executable with NCK
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61019 [Channel %1:] Block %2: Parameter %4 incorrectly defined
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: CYCLE60, CYCLE63, CYCLE64, CYCLE83, CYCLE952.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NCK alarms

Remedy: Check the value of the parameter.
Program Continuation: Clear alarm with the RESET key. Restart part program

61020 [Channel %1:] Block %2: Machining not possible with active TRANSMIT/TRACYL
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Clear alarm with the RESET key. Restart part program
Program Continuation:

61021 [Channel %1:] Block %2: Parameter %4 value too high
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Clear alarm with the RESET key. Restart part program
Program Continuation:

61022 [Channel %1:] Block %2: Parameter %4 value too low
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Clear alarm with the RESET key. Restart part program
Program Continuation:

61023 [Channel %1:] Block %2: Parameter %4 value must be unequal to zero
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Clear alarm with the RESET key. Restart part program
Program Continuation:
61024 [Channel %1:] Block %2: Parameter %4 check value
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61025 [Channel %1:] Block %2: Check tool carrier position
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61026 [Channel %1:] Block %2: Cycle cannot be executed with NC function %4.
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61027 [Channel %1:] Block %2: Subroutine %4 does not exist
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE62
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check CYCLE62 call
- Check whether the subroutines specified on CYCLE62 call exist in the program storage
Program Continuation: Clear alarm with the RESET key. Restart part program

61099 [Channel %1:] Block %2: Internal cycle error (%4)
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: .
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Program Continuation: Clear alarm with the RESET key. Restart part program.

61101 [Channel %1:] Block %2: Reference point defined incorrectly
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64, CYCLE71, CYCLE72, CYCLE81 to CYCLE90, CYCLE840, SLOT1, SLOT2, POCKET1 to POCKET4, LONGHOLE.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: With an incremental specification of the depth, either different values have to be selected for the reference point (reference plane) and the retraction plane, or an absolute value must be specified for the depth.

Program Continuation: Clear alarm with the RESET key. Restart part program.

61102 [Channel %1:] Block %2: No spindle direction programmed
Parameters: %1 = Channel number
%2 = Block number, label
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Parameter SDIR (or SDR in CYCLE840) must be programmed.

Program Continuation: Clear alarm with the RESET key. Restart part program.

61103 [Channel %1:] Block %2: Number of holes is zero
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No value for the number of holes has been programmed. Alarm triggered by following cycles: HOLES1, HOLES2.
Remedy: Check parameter NUM.

Program Continuation: Clear alarm with the RESET key. Restart part program.

61104 [Channel %1:] Block %2: Contour violation of slots
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Incorrect parameterization of the milling pattern in the parameters which define the position of the slots/elongated holes on the circle and their form. Alarm triggered by following cycles: SLOT1, SLOT2, LONGHOLE.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --

Program Continuation: Clear alarm with the RESET key. Restart part program.

61105 [Channel %1:] Block %2: Milling cutter radius too large
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The diameter of the cutter used is too large for the form to be machined. Alarm triggered by following cycles: SLOT1, SLOT2, POCKET1 to POCKET4, LONGHOLE, CYCLE90.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Either a tool with a smaller radius has to be used or the contour must be modified.
Program Continuation: Clear alarm with the RESET key. Restart part program

61106 [Channel %1:] Block %2: Number of or distance between circular elements
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Incorrect parameterization of NUM or INDA. The layout of the circle elements within a full circle is not possible. Alarm triggered by following cycles: HOLES2, LONGHOLE, SLOT1, SLOT2.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Correct parameterization.
Program Continuation: Clear alarm with the RESET key. Restart part program

61107 [Channel %1:] Block %2: First drilling depth incorrectly defined
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: First drilling depth is in the opposite direction to the total drilling depth. Alarm triggered by following cycle: CYCLE83.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Modify drilling depth.
Program Continuation: Clear alarm with the RESET key. Restart part program

61108 [Channel %1:] Block %2: Illegal values for radius and insertion depth parameters
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The radius (_RAD1) and insertion depth (_DP1) parameters for defining the helix path for the depth infeed have been incorrectly specified. Alarm triggered by following cycles: POCKET3, POCKET4.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Modify parameter.
Program Continuation: Clear alarm with the RESET key. Restart part program

61109 [Channel %1:] Block %2: Milling direction parameter incorrectly defined
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The value of the parameter for the cutting direction _CDIR has been incorrectly defined. Alarm triggered by following cycles: CYCLE63, CYCLE64, POCKET3, POCKET4.
Remedy: - Change milling direction.
- During pocket machining (CYCLE63), the selected milling direction must match the milling direction of centering/rough drilling.
Program Continuation: Clear alarm with the RESET key. Restart part program
61110 [Channel %1:] Block %2: Finishing allowance at bottom > depth infeed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The finishing allowance at the base has been specified greater than the maximum depth infeed. Alarm triggered by following cycles: POCKET3, POCKET4.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Either reduce finishing allowance or increase depth infeed.
Program Continuation: Clear alarm with the RESET key. Restart part program

61111 [Channel %1:] Block %2: Infeed width > Tool diameter
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The programmed infeed width is greater than the diameter of the active tool. Alarm triggered by following cycles: CYCLE71, POCKET3, POCKET4.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Infeed width must be reduced.
Program Continuation: Clear alarm with the RESET key. Restart part program

61112 [Channel %1:] Block %2: Tool radius negative
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The radius of the active tool is negative. This is illegal. Alarm triggered by following cycles: CYCLE72, CYCLE76, CYCLE77, CYCLE90.
Remedy: Change the tool radius.
Program Continuation: Clear alarm with the RESET key. Restart part program

61113 [Channel %1:] Block %2: Parameter for corner radius too large
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The parameter for the corner radius _CRAD has been specified too large. Alarm triggered by following cycle: POCKET3.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Reduce corner radius.
Program Continuation: Clear alarm with the RESET key. Restart part program

61114 [Channel %1:] Block %2: Machining direction G41/G42 incorrectly defined
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The machining direction of the cutter radius compensation G41/G42 has been incorrectly selected. Alarm triggered by following cycle: CYCLE72.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Change machining direction.
Program Continuation: Clear alarm with the RESET key. Restart part program

61115 [Channel %1:] Block %2: Approach or retract mode (straight / circle / plane / space) incorrectly defined

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The approach or retract mode to/from the contour has been incorrectly defined. Alarm triggered by following cycle: CYCLE72.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check parameter _AS1 or _AS2.

Program Continuation: Clear alarm with the RESET key. Restart part program

61116 [Channel %1:] Block %2: Approach or retract path = 0

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The approach or retract path has been specified with zero. Alarm triggered by following cycle: CYCLE72.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check parameter _LP1 or _LP2.

Program Continuation: Clear alarm with the RESET key. Restart part program

61117 [Channel %1:] Block %2: Active tool radius <= 0

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The radius of the active tool is negative or zero. Alarm is triggered by following cycles: CYCLE63, CYCLE71, POCKET3, POCKET4.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Modify radius.

Program Continuation: Clear alarm with the RESET key. Restart part program

61118 [Channel %1:] Block %2: Length or width = 0

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The length or width of the milling area is illegal. Alarm triggered by following cycle: CYCLE71.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check parameters _LENG and _WID.

Program Continuation: Clear alarm with the RESET key. Restart part program

61119 [Channel %1:] Block %2: Nominal or core diameter programmed incorrectly

Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The nominal or core diameter was incorrectly programmed. Alarm triggered by following cycles: CYCLE70, E_MI_TR, F_MI_TR.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check thread geometry.
Program Continuation: Clear alarm with the RESET key. Restart part program

61120 [Channel %1:] Block %2: Thread type inside / outside not defined

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The thread type (internal/external) was not defined. Alarm triggered by following cycles: CYCLE70.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: The internal/external thread type must be entered.
Program Continuation: Clear alarm with the RESET key. Restart part program

61121 [Channel %1:] Block %2: Number of teeth per cutting edge is missing

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: No value was entered for the number of teeth per cutting edge. Alarm triggered by following cycles: CYCLE70.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Enter the number of teeth/cutting edges for the active tool into the tool list.
Program Continuation: Clear alarm with the RESET key. Restart part program

61122 [Channel %1:] Block %2: Safety distance incorrectly defined in plane

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The safety clearance is negative or zero. This is not allowed.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Define the safety clearance.
Program Continuation: Clear alarm with the RESET key. Restart part program

61123 [Channel %1:] Block %2: CYCLE72 cannot be simulated

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE72.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program
61124 [Channel %1:] Block %2: Infeed width is not programmed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE71.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: With active simulation without tool, a value for the infeed width _MIDA must always be programmed.
Program Continuation: Clear alarm with the RESET key. Restart part program

61125 [Channel %1:] Block %2: Technology selection parameter incorrectly defined
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE84, CYCLE840.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check technology selection parameter (_TECHNO).
Program Continuation: Clear alarm with the RESET key. Restart part program

61126 [Channel %1:] Block %2: Thread length too short
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE840.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Program lower spindle speed or raise reference point (reference plane).
Program Continuation: Clear alarm with the RESET key. Restart part program

61127 [Channel %1:] Block %2: Wrong definition of tapping axis transformation ratio (machine data)
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE84, CYCLE840.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check machine data 31050 and 31060 in the appropriate gear stage of the drilling axis.
Program Continuation: Clear alarm with the RESET key. Restart part program

61128 [Channel %1:] Block %2: Insertion angle = 0 for insertion with oscillation or helix
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: SLOT1.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check parameter _STA2.
Program Continuation: Clear alarm with the RESET key. Restart part program

61129 [Channel %1:] Block %2: perpendic. approach and retraction during contour milling only allowed with G40
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE72.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61130 [Channel %1:] Block %2: positions of parallel axes cannot be compensated. No workpiece reference agreed.
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE69.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61131 [Channel %1:] Block %2: parameter _GEO incorrect, _GEO=%4
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE69.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61132 [Channel %1:] Block %2: Parallel axis parameters incorrect, check values for parallel axis parameters ABS/INK
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE69.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61133 [Channel %1:] Block %2: 3rd parallel axis parameter incorrect, check axis name or GUD _SCW_N[]
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE69.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61134 [Channel %1:] Block %2: Rotary axis parameters incorrect, check values for rotary axis parameters ABS/INK

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE69.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61135 [Channel %1:] Block %2: incorrect parameter sequence for approaching target position: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE69.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61136 [Channel %1:] Block %2: no 3rd geometry axis agreed in GUD _SCW_N[]

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE69.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61137 [Channel %1:] Block %2: swiveling and parallel axes cycle are mutually exclusive because of workpiece reference $P_WPFRAME

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE69.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Overview of Alarms 03/2009

NCK alarms

Program Continuation: Clear alarm with the RESET key. Restart part program

61138 [Channel %1:] Block %2: parameter %4 incorrectly defined for tool monitoring in cycles

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE69.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61139 [Channel %1:] Block %2: error in function Tool monitoring in cycles

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE69.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61150 [Channel %1:] Block %2: Tool cannot be aligned --> error code: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE800.

Remedy: Causes of error:
1st error code = A -> only new swivel plane permitted, see parameter _ST

61151 [Channel %1:] Block %2: Orientation of tool not possible --> error code: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE800.

Remedy: Causes of error:
1st error code = A -> only additive swivel plane permitted, see parameter _ST

61152 [Channel %1:] Block %2: B axis kinematics (turning technology) either not or incorrectly set up in Start-up of swivel cycle --> error code: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE800.

Remedy: Causes of error:
1st error code = A123 -> B axis not an automatic rotary axis under ShopTurn (123 corresponds to parameter _TCBA)
2nd error code = B123 -> B axis not activated in swiveling start-up (kinematics)
(123 corresponds to $TC_CARR37[n], n ... number of the swivel data record)

61153 [Channel %1:] Block %2: No 'Rotary axes direct' swivel mode possible - --> error code: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE800.

© Siemens AG, 2009. All Rights Reserved

SINUMERIK 840D sl, 840Di sl, SINAMICS, Diagnostics Manual (DAsl), 03/2009
Remedy: Causes of error:
1st error code = A -> No tool or cutting edge (D1..) active

61154 [Channel %1:] Block %2: Final depth wrongly programmed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE63, CYCLE64, CYCLE899
Remedy: Input of end depth possible only absolutely or incrementally

61155 [Channel %1:] Block %2: Unit for plane infeed wrongly programmed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE899
Remedy: Unit for plane infeed possible only in mm or % of tool diameter

61156 [Channel %1:] Block %2: Depth calculation wrongly programmed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE899
Remedy: Depth calculation possible only with or without SDIS

61157 [Channel %1:] Block %2: Reference point wrongly programmed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE63, CYCLE64, CYCLE899
Remedy: Check reference point in screen form, input only -X, centred or +X

61158 [Channel %1:] Block %2: Machining plane wrongly programmed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE63, CYCLE64, CYCLE899, CYCLE952
Remedy: Check machining plane (G17, G18 or G19)

61159 [Channel %1:] Block %2: Machining plane on cycle call differs from the one in the position pattern
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE899
Remedy: Adjust the machining plane on cycle call to the machining plane in the position pattern.

61160 [Channel %1:] Block %2: Residual material remains stationary, reduce plane infeed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE899
Remedy: Reduce plane infeed or slot width, or use milling cutter with larger diameter

61161 [Channel %1:] Block %2: Centering diameter or tool parameter (diameter, tip angle) are incorrect
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE81
Remedy: - Diameter of centering with tip angle of active tool not possible
- Entered workpiece diameter, tool diameter or tip angle of tool incorrect
- Diameter of tool only has to be entered if centering is to be on workpiece diameter.
Program Continuation: Clear alarm with the RESET key. Restart part program
Overview of Alarms 03/2009

NCK alarms

61162 [Channel %1:] Block %2: Tool parameter diameter or tip angle incorrect

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm is triggered by the following cycle: CYCLE81

Remedy: - The tool parameter diameter or tip angle must be greater than zero
- Tip angle must be less than 180°

Program Continuation: Clear alarm with the RESET key. Restart part program

61175 [Channel %1:] Block %2: angle of aperture programmed too small

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The angle of aperture of the text (DF) in the engraving cycle is too small. This means that the text for engraving does not fit in the specified angle.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Enter a larger angle of aperture.

Program Continuation: Clear alarm with the RESET key. Restart part program

61176 [Channel %1:] Block %2: text length programmed too small

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The text length (DF) in the engraving cycle is too short. This means that the text for engraving is longer than the specified text length.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Enter longer text length

Program Continuation: Clear alarm with the RESET key. Restart part program

61177 [Channel %1:] Block %2: polar text length > 360 degrees

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: In the engraving cycle, the polar text length must not exceed 360 degrees.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Enter shorter text length.

Program Continuation: Clear alarm with the RESET key. Restart part program

61178 [Channel %1:] Block %2: code page not present

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The specified code page is not supported by the cycle.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Use code page 1252.

Program Continuation: Clear alarm with the RESET key. Restart part program
61179 [Channel %1:] Block %2: character does not exist, no.: %4
Parameters:
%1 = Channel number
%2 = Block number, label
%4 = Character number
Definitions:
The character entered in the text for engraving cannot be milled.
Remedy:
Enter another character.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61180 [Channel %1:] Block %2: No name assigned to swivel data record
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Although there are several swivel data blocks, no unique names have been assigned. Alarm triggered by following cycles: CYCLE800.
Remedy:
Assign unique name to swivel data block ($TC_CARR34[n]) if machine data 18088 $MN_MM_NUM_TOOL_CARRIER is >1.

61181 [Channel %1:] Block %2: NCK software version is insufficient for the Swivel function
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Swivelling is not possible with the current NCK software version. Alarm triggered by following cycles: CYCLE800.
Remedy:
Upgrade NCK software to NCK 75.00 or higher.

61182 [Channel %1:] Block %2: Name of swivel data record unknown: %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The specified name of the swivel data block is unknown. Alarm triggered by following cycles: CYCLE800.
Remedy:
Check name of swivel data record $TC_CARR34[n].

61183 [Channel %1:] Block %2: Swivel CYCLE800: Retraction mode parameter lies outside value range: %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The value of the retraction mode parameter (_FR) lies outside the valid range. Alarm triggered by following cycles: CYCLE800.
Remedy:
Swivel CYCLE800: Check transfer parameter _FR. Value range 0 to 8

61184 [Channel %1:] Block %2: No solution possible with current input angle values
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The surface defined via the input angle cannot be processed with the machine. Alarm triggered by following cycles: CYCLE800.
Remedy:
-Check the angles entered for swiveling the machining plane: %4
-Parameter _MODE coding incorrect, e.g. rotation axis-wise YXY

61185 [Channel %1:] Block %2: Invalid angular ranges of rotary axes in swivel data record: %4
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: The angular range of the rotary axes is invalid. Alarm triggered by following cycles: CYCLE800.
Check commissioning of the swivel CYCLE800.
Parameter $TC_CARR30[n]$ to $TC_CARR33[n]$ n number of swivel data record
Example: Rotary axis 1 modulo 360 degrees: $\rightarrow TC_CARR30[n]=0 \ TC_CARR32[n]=360$

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check start-up swivel cycle CYCLE800.

61186 [Channel %1:] Block %2: Invalid rotary axis vectors --> Check commissioning of swivel CYCLE800

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: No or incorrect entry for rotary axis vector V1 or V2. Alarm triggered by following cycles: CYCLE800.
Check rotary axis vector V1: $TC_CARR7[n], TC_CARR8[n], TC_CARR9[n]
Check rotary axis vector V2: $TC_CARR10[n], TC_CARR11[n], TC_CARR12[n]

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check rotary axis vector V1: $TC_CARR7[n], TC_CARR8[n], TC_CARR9[n]
Check rotary axis vector V2: $TC_CARR10[n], TC_CARR11[n], TC_CARR12[n]

61187 [Channel %1:] Block %2: Check start-up swivel cycle CYCLE800 --> Error code: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The alarm is triggered by the following cycles: CYCLE800.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Error code: See current cycles software version notes in siemense.txt
Clear alarm with the RESET key. Restart part program.

61188 [Channel %1:] Block %2: No axis name agreed for rotary axis 1 --> Check commissioning of swivel CYCLE800

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: No axis name was specified for the rotary axis 1. Alarm triggered by following cycles: CYCLE800.
Check axis name of rotary axis 1 see parameter $TC_CARR35[n]$ n number of swivel data record

Remedy: Check axis name of rotary axis 1 see parameter $TC_CARR35[n]$ n number of swivel data record

61189 [Channel %1:] Block %2: Swivel direct: Invalid rotary axis positions: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Swivel direct: Check input values of rotary axes. Alarm triggered by following cycles: CYCLE800.
Swivel mode direct: Check input values of rotary axes or commissioning of swivel CYCLE800.

Reaction: Swivel mode direct: Check input values of rotary axes or commissioning of swivel CYCLE800.
Check angular range of rotary axes in swivel data record n:
Rotary axis 1: $TC_CARR30[n], TC_CARR32[n]
Rotary axis 2: $TC_CARR31[n], TC_CARR33[n]

61190 [Channel %1:] Block %2: Unable to retract prior to swiveling --> Error code: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: See error code for error causes. The alarm is triggered by the following cycles: CYCLE800.
Remedy: Check commissioning of swiveling CYCLE800. Parameter $TC_CARR37[n]$ 7th and 8th decimal place
n number of swivel data record
Error code:
A: Retraction Z not set up
B: Retraction Z XY not set up
C: Retraction in tool direction max. not set up
D: Retraction in tool direction incremental not set up
E: Retraction in tool direction: NC function CALCPOSI reports error
F: Retraction in tool direction: no tool axis existing
G: Retraction in tool direction max.: negative retraction path
H: Retraction in tool direction incremental: negative retraction path
I: Retraction not possible

61191 [Channel %1:] Block %2: Multi-axis transformation not set up. Error code: %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: See error code for error cause. The alarm is triggered by the following cycles: CYCLE800, 832.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Error code:
Number or parameter name of multi-axis transformation
Program Continuation: Clear alarm with the RESET key. Restart part program

61192 [Channel %1:] Block %2: Additional multi-axis transformations not set up. Error code: %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: See error code for error cause. The alarm is triggered by the following cycles: CYCLE800, 832.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Error code:
Number or parameter name of multi-axis transformation
Program Continuation: Clear alarm with the RESET key. Restart part program

61193 [Channel %1:] Block %2: compressor option not set up
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The alarm is triggered by the following cycles: CYCLE832.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61194 [Channel %1:] Block %2: spline interpolation option not set up
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The alarm is triggered by the following cycles: CYCLE832.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61196 [Channel %1:] Block %2: No swiveling in JOG --> Multi-axis transformations and TCARR activated at the same time

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Multi-axis transformations (TRAORI) and Toolcarrier (TCARR) activated at the same time.
Alarm triggered by following cycles: CYCLE800.

Remedy: Deselection of multi-axis transformation with TRAFOOF
or deselection of Toolcarrier (TCARR) with CYCLE800()

61197 [Channel %1:] Block %2: Swiveling - plane not allowed --> Error code %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE800.

Remedy: Error code:
Program Continuation: Clear alarm with the RESET key. Restart part program

61198 [Channel %1:] Block %2: Swiveling with kinematic chain --> Error code: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE800.

Remedy: Error code:
Program Continuation: Clear alarm with the RESET key. Restart part program

61199 [Channel %1:] Block %2: Swiveling - tool not allowed --> Error code: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: See error code for error cause. Alarm triggered by following cycles: CYCLE800.

Remedy: Error code:
A: Orientation of tool and change of swivel data record not allowed
Program Continuation: Clear alarm with the RESET key. Restart part program

61200 [Channel %1:] Block %2: Too many elements in machining block

Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The machining block contains too many elements. Alarm triggered by following cycles: CYCLE76, CYCLE77, CYCLE78, E_CALL, E_DR, E_DR_BGF, E_DR_BOR, E_DR_01, E_DR_PEC, E_DR_REA, E_DR_SIN, E_DR_TAP, E_MI_TR, E_PI_CIR, E_PI_REC, E_PO_CIR, E_PO_REC, E_PS_CIR, E_PS_FRA, E_PS_HIN, E_PS_MRXP, E_PS_POL, E_PS_ROW, E_PS_SEQ, E_PS_XYA, E_SL_LON, F_DR, F_DR_PEC, F_DR_REA, F_DR_SIN, F_DR_TAP, F_MI_TR, F_PI_CIR, F_PI_REC, F_PO_CIR, F_PO_REC, F_PS_CIR, F_PS_MRXP, F_PS_ROW, F_PS_SEQ, F_SL_LON

Remedy: Check the machining block, delete some elements if required.

61201 [Channel %1:] Block %2: Wrong sequence in machining block
Parameters: %1 = Channel number, %2 = Block number, label
Definitions: The sequence of elements in the machining block is invalid. Alarm triggered by following cycles: E_CP_CE, E_CP_DR, E_MANAGE, F_CP_CE, F_CP_DR, F_MANAGE.
Reaction: Interpreter stop
NC Start disable in this channel. Interface signals are set. Alarm display.
Remedy: Sort the sequence in the machining block.
Program Continuation: Clear alarm with the RESET key. Restart part program

61202 [Channel %1:] Block %2: No technology cycle
Parameters: %1 = Channel number, %2 = Block number, label
Definitions: No technology cycle was programmed in the machining block. Alarm triggered by following cycles: E_CP_CE, E_CP_DR, E_MANAGE, F_CP_CE, F_CP_DR, F_MANAGE.
Reaction: Interpreter stop
NC Start disable in this channel. Interface signals are set. Alarm display.
Remedy: Program a technology block.
Program Continuation: Clear alarm with the RESET key. Restart part program

61203 [Channel %1:] Block %2: No position cycle
Parameters: %1 = Channel number, %2 = Block number, label
Definitions: No positioning cycle was programmed in the machining block. Alarm triggered by following cycles: E_CP_CE, E_CP_DR, E_MANAGE, F_CP_CE, F_CP_DR, F_MANAGE.
Reaction: Interpreter stop
NC Start disable in this channel. Interface signals are set. Alarm display.
Remedy: Program positioning block.
Program Continuation: Clear alarm with the RESET key. Restart part program

61204 [Channel %1:] Block %2: Technology cycle unknown
Parameters: %1 = Channel number, %2 = Block number, label
Definitions: The specified technology cycle in the machining block is unknown. Alarm triggered by following cycles: E_CP_CE, E_CP_DR, E_MANAGE, F_CP_CE, F_CP_DR, F_MANAGE.
Reaction: Interpreter stop
NC Start disable in this channel. Interface signals are set. Alarm display.
Remedy: Delete and reprogram the technology block.
61205 [Channel %1:] Block %2: Position cycle unknown

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The specified positioning cycle in the machining block is unknown.
Alarm triggered by following cycles: E_MANAGE, F_MANAGE.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Delete and reprogram the positioning block.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61210 [Channel %1:] Block %2: Block search element not found

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The element specified for the block search does not exist.
Alarm triggered by following cycles: E_MANAGE, E_PS_CIR, E_PS_MRX, E_PS_POL, E_PS_SEQ,
E_PS_XYA, F_MANAGE, F_PS_CIR, F_PS_MRX, F_PS_SEQ

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Repeat block search.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61211 [Channel %1:] Block %2: Absolute reference missing

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
An incremental indication was made, but the absolute reference is unknown.
Alarm triggered by following cycles: E_MI_CON, E_MI_PL, E_PI_CIR, E_PI_REC, E_PO_CIR,
E_PO_REC, E_PS_CIR, E_PS_HIN, E_PS_MRX, E_PS_POL, E_PS_SEQ, E_PS_XYA, E_SL_CIR,
E_SL_LON, F_PS_CIR, F_PS_MRX, F_PS_SEQ

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Program an absolute position prior to using incremental indications.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61212 [Channel %1:] Block %2: Wrong tool type

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The tool type is not suitable for machining.
Alarm triggered by following cycles: CYCLE63, CYCLE64, CYCLE92, CYCLE951, CYCLE952,
E_DR, E_DR_O1, E_DR_PEC, E_DR_SIN, E_MI_TXT, F_DR, F_DR_PEC, F_DR_SIN, F_DRILL,
F_DRILLC, F_DRILLD, F_DRM_DR, F_DRM_PE, F_DRM_SI, F_GROOV, F_MI_TXT, F_MT_LEN,
F_PARTOF, F_ROU_Z, F_ROUGH, F_SP_EF, F_TAP, F_TR_CON, F_UCUT_T

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Select a new tool type.

Program Continuation:
Clear alarm with the RESET key. Restart part program
61213 [Channel %1:] Block %2: Circle radius too small
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The programmed circle radius is too small.
 Alarm triggered by following cycles: CYCLE77, E_CR_HEL, E_PI_CIR, E_PO_CIR, E_PO_REC,
 F_PI_CIR, F_PO_CIR, F_PO_REC
Remedy: Correct the circle radius, center point or end point.

61214 [Channel %1:] Block %2: No pitch programmed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: No thread/helical pitch has been entered.
 Alarm triggered by following cycles: E_CR_HEL, E_PO_CIR, E_PO_REC, F_PO_CIR, F_PO_REC.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Program a pitch.
Program Continuation: Clear alarm with the RESET key. Restart part program

61215 [Channel %1:] Block %2: Unfinished dimension incorrectly programmed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Check the blank spigot dimensions. The blank spigot must be larger than the production part spigot.
 Alarm triggered by following cycles: CYCLE76, CYCLE77, E_PI_CIR, E_PI_REC, E_PO_CIR,
 E_PO_REC, F_PI_CIR, F_PI_REC, F_PO_CIR, F_PO_REC
Remedy: Check parameters _AP1 and _AP2.

61216 [Channel %1:] Block %2: Feed/tooth only possible with cutting tools
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Feed per tooth is only possible with milling tools.
 Alarm triggered by following cycles: E_TFS, F_TFS.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: As alternative, set a different feed type.
Program Continuation: Clear alarm with the RESET key. Restart part program

61217 [Channel %1:] Block %2: Cutting speed programmed for tool radius 0
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: To be able to work with cutting speed, the tool radius has to be specified.
 Alarm triggered by following cycles: E_DR_SIN, E_DR_TAP, E_TFS, F_DR_SIN, F_DR_TAP,
 F_DRILLC, F_DRM_TA, F_TAP, F_TFS
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Enter a value for cutting speed.
Program Continuation: Clear alarm with the RESET key. Restart part program
61218 [Channel %1:] Block %2: Feed/tooth programmed, but number of tools equals zero

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
For feed per tooth, the number of teeth has to be specified.
Alarm triggered by following cycles: E_TFS, E_DR_BGF, F_TFS.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Enter the number of teeth on the milling tool in the "Tool list" menu.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61219 [Channel %1:] Block %2: Tool radius too large

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The tool radius is too large for machining.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Select a suitable tool.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61220 [Channel %1:] Block %2: Tool radius too small

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The tool radius is too small for machining.
Alarm triggered by following cycles: CYCLE78.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Select a suitable tool.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61221 [Channel %1:] Block %2: No tool active

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
No tool active.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Select a suitable tool.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61222 [Channel %1:] Block %2: Plane infeed greater than tool diameter

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
The plane infeed must not be greater than the tool diameter.
Alarm triggered by following cycles: CYCLE79, E_MI_PL, E_PO_CIR, E_PO_REC, F_PO_CIR, F_PO_REC.
NCK alarms

Overview of Alarms

61223
[Channel %1:] Block %2: Approach path too small
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The approach path must not be less than zero.
Alarm triggered by following cycles: E_MI_CON, F_MI_CON.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Enter a greater value for the approach path.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61224
[Channel %1:] Block %2: Retract path too small
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The retract path must not be less than zero.
Alarm triggered by following cycles: E_MI_CON, F_MI_CON.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Enter a greater value for the retract path.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61225
[Channel %1:] Block %2: Swivel data record unknown
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
An attempt was made to access a swivel data block which has not been defined.
Alarm triggered by following functions: E_TCARR, F_TCARR.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Select another swivel data block or define a new swivel data block.
Program Continuation:
Clear alarm with the RESET key. Restart part program

61226
[Channel %1:] Block %2: Inclinable head cannot be exchanged
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The parameter "Swivel data block" is set to "No". In spite of this, an attempt has been made to change the swivel head.
Alarm triggered by following functions: E_TCARR, F_TCARR.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Set the parameter "Swivel data block" in the start-up screen "Rotary axes" to "Automatic" or "Manual".
Program Continuation:
Clear alarm with the RESET key. Restart part program
61230 [Channel %1:] Block %2: Tool probe diameter too small
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The tool probe has not been calibrated correctly.
Alarm triggered by following cycles: E_MT_CAL, E_MT_RAD, E_MT_LEN.
Remedy:
840D:
Check the following variables in data block E_MESS_MT_DR[n] or E_MESS_MT_DL[n] for probe n+1
840D sl:
Check the following machine data: 51778 $MNS_J_MEA_T_PROBE_DIAM_LENGTH[n] or 51780 $MNS_J_MEA_T_PROBE_DIAM_RAD[n] for probe n+1

61231 [Channel %1:] Block %2: ShopMill program %4 not executable, as not tested by ShopMill
Parameters: %1 = Channel number
%2 = Block number, label
%4 = Program name
Definitions: Before a ShopMill program can be executed, it has to be tested by ShopMill.
Alarm triggered by following cycle: E_HEAD.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: The program first has to be simulated in ShopMill or loaded into the operating mode "Machine auto" by ShopMill.
Program Continuation: Clear alarm with the RESET key. Restart part program

61232 [Channel %1:] Block %2: Impossible to load magazine tool
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Only manual tools may be loaded into a swivel head in which only manual tools can be loaded.
The alarm is triggered by the following cycles: E_TD, E_TFS, F_TFS
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Load a manual tool into the swivel head or set the parameter "Tool change" in the start-up screen form "Rotary axes" to "Automatic".
Program Continuation: Clear alarm with the RESET key. Restart part program

61233 [Channel %1:] Block %2: Thread angle wrongly defined
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The thread angles were specified too large or too small.
Alarm triggered by following cycles: E_TR_CON, F_TR_CON
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Check thread geometry.
Program Continuation: Clear alarm with the RESET key. Restart part program

61234 [Channel %1:] Block %2: ShopMill subroutine %4 cannot be executed, as not tested by ShopMill
Parameters: %1 = Channel number
%2 = Block number, label
%4 = Subroutine name
Definitions: Before a ShopMill subroutine can be used, it has to be tested by ShopMill. Alarm triggered by following cycle: E_HEAD.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: The subroutine first has to be simulated in ShopMill or loaded into the ShopMill operating mode "Machine auto".

Program Continuation: Clear alarm with the RESET key. Restart part program

61235

[Channel %1:] Block %2: ShopTurn program %4 cannot be executed as not tested by ShopTurn.

Parameters: %1 = Channel number
%2 = Block number, label
%4 = Program name

Definitions: Before a ShopTurn program can be executed, it has to be tested by ShopTurn. Alarm triggered by following cycle: F_HEAD

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Simulate the subroutine first in ShopTurn or load it into the ShopTurn operating mode "Machine auto".

Program Continuation: Clear alarm with the RESET key. Restart part program

61236

[Channel %1:] Block %2: ShopTurn subroutine %4 cannot be executed as not tested by ShopTurn.

Parameters: %1 = Channel number
%2 = Block number, label
%4 = Subroutine name

Definitions: Before a ShopTurn subroutine can be used, it has to be tested by ShopTurn. Alarm triggered by following cycle: F_HEAD.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Simulate the subroutine first in ShopTurn or load it into the ShopTurn operating mode "Machine auto".

Program Continuation: Clear alarm with the RESET key. Restart part program

61237

[Channel %1:] Block %2: Retraction direction unknown. Withdraw tool manually!

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: The tool is in the retraction area and it is unknown in which direction it can be travelled out of it. Alarm triggered by following cycle: F_SP_RP

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Manually retract the tool from the retraction area defined in the program header and restart the program.

Program Continuation: Clear alarm with the RESET key. Restart part program
61238 [Channel %1:] Block %2: Machining direction unknown!
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The direction of the next machining is unknown.
Alarm triggered by following cycle: F_SP_RP.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Please contact the responsible Siemens regional office.
Program Continuation: Clear alarm with the RESET key. Restart part program

61239 [Channel %1:] Block %2: Tool change point lies within retraction area!
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The tool change point has to be far enough outside the retraction area so that when the revolver is
swiveled, no tool extends into the retraction area.
The alarm is triggered by the following cycle: F_SP_RP
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Specify another tool change point.
Program Continuation: Clear alarm with the RESET key. Restart part program

61240 [Channel %1:] Block %2: Wrong feed type
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The feed type is not possible for this machining.
Alarm triggered by following cycles: F_DRM_DR, F_DRM_PE, F_DRM_RE, F_DRM_SI, F_GROOV,
F_MIM_TR, F_ROUGH, F_SP_EF, F_UCUT_T, CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Check feed type
Program Continuation: Clear alarm with the RESET key. Restart part program

61241 [Channel %1:] Block %2: Retraction plane not defined for this machining direction
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: No retraction plane has been defined for the selected machining direction.
Alarm triggered by following cycles: F_SP_RP, F_SP_RPT.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Define the missing retraction plane.
Program Continuation: Clear alarm with the RESET key. Restart part program
61242 [Channel %1:] Block %2: Wrong machine direction
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The machining direction has been specified incorrectly.
Alarm triggered by following cycles: F_DR, F_DR_PEC, F_DR_REA, F_DR_SIN, F_DR_TAP,
F_DRILL, F_DRILLC, F_DRILLD, F_DRM_DR, F_DRM_PE, F_DRM_RE, F_DRM_SI, F_DRM_TA,
F_MI_CONV, F_MI_EDG, F_MI_TR, F_MI_TXT, F_MIM_TR, F_PI_CIR, F_PI_REC, F_PO_CIR,
F_PO_REC, F_SL_CIR, F_SL_LON, F_TAP.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check the programmed machining direction.
Program Continuation: Clear alarm with the RESET key. Restart part program

61243 [Channel %1:] Block %2: Correct tool change point, tool tip in
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The tool change point must be situated so far outside the retraction area that no tool protrudes into
the retraction area on turret swivelling.
Alarm triggered by following cycle: F_SP_RP
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Specify another tool change point.
Program Continuation: Clear alarm with the RESET key. Restart part program

61244 [Channel %1:] Block %2: Pitch change causing
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The specified pitch change causes a reversal of the thread direction.
Alarm triggered by following cycle: CYCLE99
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check thread pitch change and thread geometry.
Program Continuation: Clear alarm with the RESET key. Restart part program

61245 [Channel %1:] Block %2: Machining plane does not match modal
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Machining plane does not match modal one.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check the machining plane.
Program Continuation: Clear alarm with the RESET key. Restart part program

61246 [Channel %1:] Block %2: Safety distance too small
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The safety clearance is too small for machining.
Alarm triggered by following cycle: CYCLE79.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Increase safety clearance.
Program Continuation: Clear alarm with the RESET key. Restart part program

61247 [Channel %1:] Block %2: Blank radius too small
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The blank radius is too small for machining.
Alarm triggered by following cycle: CYCLE79.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Increase blank radius.
Program Continuation: Clear alarm with the RESET key. Restart part program

61248 [Channel %1:] Block %2: Infeed too small
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The infeed is too small for machining.
Alarm triggered by following cycle: CYCLE79.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Increase infeed.
Program Continuation: Clear alarm with the RESET key. Restart part program

61249 [Channel %1:] Block %2: Number of edges too small
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The number of edges is too small.
Alarm triggered by following cycle: CYCLE79.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Increase number of edges.
Program Continuation: Clear alarm with the RESET key. Restart part program

61250 [Channel %1:] Block %2: Width across flats/edge length too small
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The width across flats/edge length is too small.
Alarm triggered by following cycle: CYCLE79.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Increase key width/edge length.
61251 [Channel %1:] Block %2: Width across flats/edge length too large
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The width across flats/edge length is too large.
Alarm triggered by following cycle: CYCLE79.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Decrease key width/edge length.
Program Continuation: Clear alarm with the RESET key. Restart part program

61252 [Channel %1:] Block %2: Chamfer/radius too large
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Chamfer/radius is too large.
Alarm triggered by following cycle: CYCLE79.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Decrease chamfer/radius.
Program Continuation: Clear alarm with the RESET key. Restart part program

61253 [Channel %1:] Block %2: No finishing allowance programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No finishing allowance has been entered.
Alarm triggered by following cycles: E_PO_CIR, E_PO_REC, E_SL_CIR, E_SL_LON, F_PO_CIR,
F_PO_REC, F_SL_CIR, F_SL_LON.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Program a finishing allowance.
Program Continuation: Clear alarm with the RESET key. Restart part program

61254 [Channel %1:] Block %2: Error while traveling to fixed stop
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Error on travelling to fixed stop.
Alarm triggered by following cycle: F_SUB_SP.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: specify another Z1 position for gripping the counterspindle.
Program Continuation: Clear alarm with the RESET key. Restart part program
61255 [Channel %1:] Block %2: Error during cut-off: Tool broken?
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Cut-off could not be completed. A tool breakage might have occurred.
Alarm triggered by following cycles: F_PARTOF, F_SUB_SP.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Check the tool.
Program Continuation: Clear alarm with the RESET key. Restart part program.

61256 [Channel %1:] Block %2: Mirroring not allowed at program start. Deselect work offset!
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Mirroring impermissible at program start.
Alarm triggered by following cycle: F_HEAD.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Deselect work offset.
Program Continuation: Clear alarm with the RESET key. Restart part program.

61257 [Channel %1:] Block %2: incomplete installation of counterspindle
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Start-up of the counterspindle is incomplete.
Alarm triggered by following cycle: F_SUB_SP.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Check display machine data 9803, 9851, 9852, 9853 and 9854.
Program Continuation: Clear alarm with the RESET key. Restart part program.

61258 [Channel %1:] Block %2: set parameters for counterspindle chuck in the spindle image
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The parameters for the counterspindle chuck have not been set in the spindle view.
Alarm triggered by following cycle: F_SUB_SP.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Specify parameters "ZL1", "ZL2" and "ZL3" in mask "Tools work offset" > "Spindles".
Program Continuation: Clear alarm with the RESET key. Restart part program.

61259 [Channel %1:] Block %2: program contains new machining steps from ShopMill %4
Parameters: %1 = Channel number
%2 = Block number, label
%4 = ShopMill version
Definitions: The program has been created with a ShopMill version that is higher than the existing one.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Delete the machining step and reprogram machining if required.

Program Continuation: Clear alarm with the RESET key. Restart part program

61260 [Channel %1:] Block %2: program contains new machining steps from ShopTurn %4

Parameters:
%1 = Channel number
%2 = Block number, label
%4 = ShopTurn version

Definitions: The program has been created with a ShopMill version that is higher than the existing one.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Delete the machining step and reprogram machining if required.

Program Continuation: Clear alarm with the RESET key. Restart part program

61261 [Channel %1:] Block %2: center offset too large

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The center offset on center drilling is larger than permissible.
Alarm triggered by following cycles: F_DRILL, F_DRILLD.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Enter smaller center offset (see display machine data 9862).

Program Continuation: Clear alarm with the RESET key. Restart part program

61262 [Channel %1:] Block %2: pitch not possible with selected tool

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The pitch of the tap does not match the programmed pitch.
Alarm triggered by following cycles: F_DR_TAP, F_DRM_TA, F_TAP.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Use a tap with the programmed pitch.

Program Continuation: Clear alarm with the RESET key. Restart part program

61263 [Channel %1:] Block %2: Chained ShopMill program blocks not permissible in subprogram on pos. pattern

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: If a subroutine is called from a position pattern, the subroutine itself must not include a position pattern.
The alarm is triggered by the following cycle: E_MANAGE

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Reprogram machining.
NCK alarms

Program Continuation: Clear alarm with the RESET key. Restart part program

61264 [Channel %1:] Block %2: Chained ShopTurn program blocks not permissible in subprogram on pos. pattern

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: If a subroutine is called from a position pattern, the subroutine itself must not include a position pattern.
Alarm triggered by following cycle: F_MANAGE.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Reprogram machining.
Program Continuation: Clear alarm with the RESET key. Restart part program

61265 [Channel %1:] Block %2: Too many restrictions, use rectangular pocket

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In face milling a maximum of only 3 sides can be delimited.
Alarm triggered by following cycle: CYCLE61

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Use pocket cycle.
Program Continuation: Clear alarm with the RESET key. Restart part program

61266 [Channel %1:] Block %2: Illegal machining direction

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In face milling, the delimitations and the direction of machining do not match.
Alarm triggered by following cycle: CYCLE61

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Select another direction of machining.
Program Continuation: Clear alarm with the RESET key. Restart part program

61267 [Channel %1:] Block %2: Plane infeed too large, residual corners remain

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: In face milling, the plane infeed must not exceed 85%.
Alarm triggered by following cycle: CYCLE61

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Select a smaller plane infeed, as otherwise residual corners will be left over.
Program Continuation: Clear alarm with the RESET key. Restart part program

61268 [Channel %1:] Block %2: Illegal machining direction, residual corners are left over.

Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In face milling, the machining direction does not match the selected delimitations. Alarm triggered by following cycle: CYCLE61.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: The machining direction must be selected to match the delimitations.
Program Continuation: Clear alarm with the RESET key. Restart part program

61269 [Channel %1:] Block %2: External tool diameter too small
Parameters: %1 = Channel number
%2 = Block number, label
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Check angle and diameter of the tool used.
Program Continuation: Clear alarm with the RESET key. Restart part program

61270 [Channel %1:] Block %2: Chamfer width too small
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Chamfer width selected too small. Alarm triggered by the following cycles: E_SP_CHA, F_SP_CHA.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Increase the chamfer width.
Program Continuation: Clear alarm with the RESET key. Restart part program

61271 [Channel %1:] Block %2: Chamfer width > tool radius
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Chamfer width larger than tool radius. Alarm triggered by the following cycles: E_SP_CHA, F_SP_CHA.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Use a larger tool.
Program Continuation: Clear alarm with the RESET key. Restart part program

61272 [Channel %1:] Block %2: Insertion depth too small
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Insertion depth on chamfering too small. Alarm triggered by the following cycles: E_SP_CHA, F_SP_CHA.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Increase the insertion depth.
Program Continuation: Clear alarm with the RESET key. Restart part program

61273 [Channel %1:] Block %2: Insertion depth too large
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Insertion depth on chamfering too large.
Alarm triggered by following cycles: E_SP_CHA, F_SP_CHA.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Decrease the insertion depth.
Program Continuation: Clear alarm with the RESET key. Restart part program

61274 [Channel %1:] Block %2: Invalid tool angle
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Invalid tool angle.
Alarm triggered by following cycles: E_SP_CHA, F_SP_CHA.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Check tool angle
Program Continuation: Clear alarm with the RESET key. Restart part program

61275 [Channel %1:] Block %2: Target point violates software limit switch!
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Due to a swivel action, the end point is outside the software limit switches.
Alarm triggered by following cycle: E_SP_RP.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Select another retraction plane or approach a suitable interpolation point.
Program Continuation: Clear alarm with the RESET key. Restart part program

61276 [Channel %1:] Block %2: External tool diameter required for restrictions
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Outer tool diameter required in case of delimitations.
Alarm triggered by following cycle: CYCLE61.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Specify the outer tool diameter.
Program Continuation: Clear alarm with the RESET key. Restart part program

61277 [Channel %1:] Block %2: Tool diameter larger than restriction
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Tool diameter larger than delimitation.
Alarm triggered by following cycle: CYCLE61.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Use a smaller tool.

Program Continuation: Clear alarm with the RESET key. Restart part program.

61278 \[Channel %1: \] Block %2: If tool angle is larger than 90°, both tool diameters must be equal

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: For tool angles larger than 90°, the two tool diameters must be identical.
Alarm triggered by following cycle: CYCLE61.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Correct the tool angle or the tool diameters.

Program Continuation: Clear alarm with the RESET key. Restart part program.

61279 \[Channel %1: \] Block %2: If tool angle equals 90°, both tool diameters must be equal

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: For tool angles equal to 90°, the two tool diameters must be identical.
Alarm triggered by following cycle: CYCLE61.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Correct the tool angle or the tool diameters.

Program Continuation: Clear alarm with the RESET key. Restart part program.

61280 \[Channel %1: \] Block %2: Mirroring in WO %4 missing

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: If the program starts with a counterspindle movement, a work offset with mirroring will have to be selected.
Alarm triggered by following cycle: F_SUB_SP

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Select the mirroring for the work offset used.

Program Continuation: Clear alarm with the RESET key. Restart part program.

61281 \[Channel %1: \] Block %2: starting point of machining outside retraction planes

Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The starting point of machining is outside the retraction planes.
Alarm triggered by following cycle: F_SP_RP.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Adjust the retraction planes.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61282 [Channel %1:] Block %2: end point of machining outside retraction planes

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The end point of machining is outside the retraction planes.
Alarm triggered by following cycle: F_SP_RP.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Adjust the retraction planes.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61283 [Channel %1:] Block %2: direct approach not possible, as tool change required

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: After block search a position is to be reached by direct approach, but a tool change is required before.
Alarm triggered by following cycle: F_TFS.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
First execute a manual tool change, then restart the block search.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61284 [Channel %1:] Block %2: starting point cannot be approached without collision. Pre-position tool manually

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: The starting point cannot be approached without collisions.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Preposition the tool manually.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61285 [Channel %1:] Block %2: parking position is below return plane XRA.

Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: The parking position is below retraction plane XRA. Alarm triggered by following cycle: F_SP_RP.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Move the parking position above retraction plane XRA.

Program Continuation: Clear alarm with the RESET key. Restart part program

61286 [Channel %1:] Block %2: machining not possible, check tool angle.

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Machining not possible with the specified tool. Alarm triggered by following cycles: F_UCUT_T.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Use a suitable tool.

Program Continuation: Clear alarm with the RESET key. Restart part program

61287 [Channel %1:] Block %2: no master spindle active.

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: No master spindle active. Alarm triggered by following cycle: CYCLE63, CYCLE64, F_TFS.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Activate the master spindle (machine data 20090).

Program Continuation: Clear alarm with the RESET key. Restart part program

61288 [Channel %1:] Block %2: Main spindle not set up

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: F_SP_INI

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Enter channel axis number of main spindle in MD52206 $MCS_AXIS_USAGE.

Program Continuation: Clear alarm with the RESET key. Restart part program

61289 [Channel %1:] Block %2: Counterspindle not set up

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: F_SP_INI

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Enter channel axis number of counterspindle in MD52206 $MCS_AXIS_USAGE.

Program Continuation: Clear alarm with the RESET key. Restart part program
61290 [Channel %1:] Block %2: Tool spindle not set up
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: F_SP_INI
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Enter channel axis number of tool spindle in MD52206 $MCS_AXIS_USAGE.
Program Continuation: Clear alarm with the RESET key. Restart part program

61291 [Channel %1:] Block %2: Linear axis of counterspindle not set up
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: F_SP_INI
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Enter channel axis number of linear axis of counterspindle in MD52206 $MCS_AXIS_USAGE.
Program Continuation: Clear alarm with the RESET key. Restart part program

61292 [Channel %1:] Block %2: B axis not set up
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: F_SP_INI
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Enter channel axis number of B axis in MD52206 $MCS_AXIS_USAGE.
Program Continuation: Clear alarm with the RESET key. Restart part program

61293 [Channel %1:] Block %2: Tool %4 has no spindle rotation direction
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm will be triggered by the following cycles: E_TFS, F_TFS
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Select spindle rotation direction in tool list.
Program Continuation: Clear alarm with the RESET key. Restart part program

61300 [Channel %1:] Block %2: Probe defective
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Interpreter stop
Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program
61301 [Channel %1:] Block %2: Probe not switching
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The measuring distance was completely traversed, but no switching signal was generated at the measuring input.
Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy:
- Check measuring input.
- Check measuring distance.
- Probe defective.

61302 [Channel %1:] Block %2: Probe - collision
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The measuring probe collided with an obstacle when being positioned.
Alarm can be triggered by the following measuring cycles: all measuring cycles.
Remedy:
- Check spigot diameter (may be too small)
- Check measuring distance (may be too long)

61303 [Channel %1:] Block %2: Safety margin exceeded
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The measuring result differs greatly from the specified value.
Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy:
- Check setpoint value and parameter _TSA

61304 [Channel %1:] Block %2: Allowance
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Program Continuation:
Clear alarm with the RESET key. Restart part program

61305 [Channel %1:] Block %2: Dimension too small
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Program Continuation:
Clear alarm with the RESET key. Restart part program

61306 [Channel %1:] Block %2: Permissible measuring difference exceeded
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
Alarm triggered by following cycles: CYCLE971, CYCLE972, CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE982, CYCLE994.
Remedy:
- Check setpoint value and parameter _TDIF

61307 [Channel %1:] Block %2: Incorrect measuring variant
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: The value of parameter _MVAR is impermissible.

61308 [Channel %1:] Block %2: Check measuring path
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: A traversing path for measuring is generated with a size specified by parameter _FA (in 840D) or DFA (in 840D sl). It describes the maximum distance before and after the expected switching position (workpiece edge) and must have a value greater than 0.
For 840D:
- Check parameter _FA
For 840D sl:
- Check parameter DFA

61309 [Channel %1:] Block %2: Check probe type
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Probe type: 3D probe inactive.
This alarm is generated by all cycles except CYCLE971, CYCLE972, CYCLE982.
Remedy: The probe has to be of the "3D probe" type in the tool management.
Tool type of the workpiece probe in the TO memory is impermissible.
For CYCLE971: no permissible tool probe type entered in _TP[x,8], or check the permissible working plane G17...G19 in the case of tool type "Wheel".

61310 [Channel %1:] Block %2: Scale factor is active
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Scale factor = scaling is active.
Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Switch off the active scale factor in the program. Measuring is not possible with an active scale factor.

61311 [Channel %1:] Block %2: No D number active
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No tool offset for the measuring probe (for workpiece measurement) or no tool offset for the active tool (for tool measurement) is selected.
Alarm can be triggered by the following measuring cycles: all measuring cycles.
Remedy: Select the tool's tool edge number D.

61312 [Channel %1:] Block %2: Check measuring cycle number
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The alarm can be triggered by the following measuring cycles: all measuring cycles.
Remedy: Measuring cycle called is impermissible...

61313 [Channel %1:] Block %2: Check probe number
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Check parameter _PRNUM in connection with the following data fields and machine data:
For 840D:
- Create data field _WP[], _TP[] and _TPW[] for additional tool or workpiece probe and adjust _CVAL[0]/_CVAL[1] accordingly.
Bei 840D sl:
- Check the following machine data: 51600 $MNS_MEA_CAL_WP_NUM, 51602 $MNS_MEA_CAL_TP_NUM and 51603 $MNS_MEA_CAL_TPW_NUM

61314 [Channel %1:] Block %2: Check selected tool type
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm is triggered: CYCLE971, CYCLE972, CYCLE982.

Remedy: Tool type impermissible for tool measurement/tool probe calibration.

61315 [Channel %1:] Block %2: Check position of cutting edge
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: Alarm is triggered: CYCLE972, CYCLE973, CYCLE974, CYCLE982, CYCLE994.
Remedy: Check tool edge position (probe) in TO memory.

61316 [Channel %1:] Block %2: Center and radius cannot be determined
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: No circle can be calculated from the measured points, as all measured points lie on a straight line. The alarm is triggered by: CYCLE979
Remedy: Program change

61317 [Channel %1:] Block %2: Check number of circle calculation points
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: Parameterization faulty; requires 3 or 4 points to calculate the center point. Alarm is triggered: CYCLE979.
Remedy: Change parameterization of CYCLE116.

61318 [Channel %1:] Block %2: Check weighting factor
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: Alarm is triggered: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994, CYCLE998.
Remedy: Check parameter (_K).

61319 [Channel %1:] Block %2: Check call parameter CYCLE114
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: Internal error in measuring cycles. Alarm is triggered: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994, CYCLE998.
Remedy: Check call parameter CYCLE114.

61320 [Channel %1:] Block %2: Check tool number
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: For 840D:
- Check parameters _TNUM, _TNAME.
Bei 840D sl:
- Check parameter T.
With active tool management, parameter T=0 (_TNUM=0), and parameter _TNAME is empty or the specified tool name is unknown to the tool management.

61321 [Channel %1:] Block %2: Check WO memory number
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: Alarm is triggered: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994, CYCLE998.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: For 840D:
- Check parameter _KNUM
For 840D sl:
- Check the the number entered for the work offset compensation
Program Continuation: Clear alarm with the RESET key. Restart part program

61322
[Channel %1:] Block %2: Check 4th digit of _KNUM

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The stated digit of _KNUM includes invalid values. Also check _MVAR.
Alarm is triggered: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994, CYCLE998, CYCLE114.

Remedy: Check parameter for tool offset target (_KNUM) and measurement variant (_MVAR)

61323
[Channel %1:] Block %2: Check 5th digit of _KNUM

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The stated digit of _KNUM includes invalid values. Also check _MVAR.
Alarm is triggered: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994, CYCLE998, CYCLE114.

Remedy: Check parameter for tool offset target (_KNUM) and measurement variant (_MVAR)

61324
[Channel %1:] Block %2: Check 6th digit of _KNUM

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
The stated digit of _KNUM includes invalid values. Also check _MVAR.
Alarm is triggered: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994, CYCLE998, CYCLE114.

Remedy: Check parameter for tool offset target (_KNUM) and measurement variant (_MVAR)

61325
[Channel %1:] Block %2: Check measuring axis/offset axis

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm is triggered by: all measuring cycles except CYCLE979

Remedy:
For 840D:
- Check parameters for measuring axis _MA
For 840D sl:
- Check parameters for measuring axis (X, Y, Z)

61326
[Channel %1:] Block %2: Check measuring direction

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered: CYCLE973, CYCLE976.

Remedy: Parameter for measuring direction _MD has an incorrect value.

61327
[Channel %1:] Block %2: Program reset required

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
NC reset required.
Alarm is triggered: all measuring cycles except for CYCLE973, CYCLE976.

Remedy: Execute NC reset.

61328
[Channel %1:] Block %2: Check D number

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
D number in parameter _KNUM is 0.
The alarm can be triggered by all measuring cycles.

Remedy: Check parameter for tool offset target (_KNUM)

61329
[Channel %1:] Block %2: Check rotary axis

Parameters:
- %1 = Channel number
- %2 = Block number, label

Definitions:
Alarm triggered: CYCLE998
Remedy: No name assigned to the axis number specified in the parameter of the rotary axis (_RA), or this axis is not configured as a rotary axis.
Check MD 20080 and MD 30300.

61330 [Channel %1:] Block %2: Coordinate rotation active
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No measuring possible in the rotated coordinate system. Alarm is triggered: CYCLE972, CYCLE973, CYCLE974, CYCLE994.
Remedy: Check the conditions for measuring.

61331 [Channel %1:] Block %2: Angle too large, change measuring axis
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Parameter starting angle (_STA) is too large for the specified measuring axis. Alarm is triggered: CYCLE998.
Remedy: Select another metering axis.

61332 [Channel %1:] Block %2: Modify tool tip position
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The tool tip is below the measuring probe surface (e.g. for a ring gauge or cube). Alarm is triggered: CYCLE971, CYCLE972, CYCLE982, E_MT_CAL, E_MT_LEN, E_MT_RAD.
Remedy: Place the tool above the measuring probe surface.

61333 [Channel %1:] Block %2: Check calibration block number
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered: CYCLE973
Remedy: Parameter _CALNUM is too large, reduce it to a permissible value
- Increase the maximum value of _CVAL[2] in GUD6
For 840D:
- Check following machine data: 51601 $MNS_MEA_CAL_EDGE_NUM

61334 [Channel %1:] Block %2: Check safety area
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered: CYCLE977
Remedy: Check the parameters for the safety area
For 840D: _SZA or _SZO
For 840D sl: XS, YS or ZS

61336 [Channel %1:] Block %2: Geometry axes do not exist
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No geometry axes configured. Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Machine data in MD 20060 must be changed.

61337 [Channel %1:] Block %2: Check measuring input
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Overview of Alarms 03/2009

NCK alarms

© Siemens AG, 2009. All Rights Reserved

Program Con-

Clear alarm with the RESET key. Restart part program

61338 [Channel %1:] Block %2: Positioning speed equal to zero
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: For some measuring versions, for example measuring spigots, in addition to the actual measuring
paths, intermediate paths are generated that are traversed with a specified feed.
The values for the feed are specified:
- For 840D sl: in setting data 55631 $SCS_MEA_FEED_PLANE_VALUE and 55632
 $SCS_MEA_FEED_FEEDAX_VALUE

61339 [Channel %1:] Block %2: Correction factor for rapid traverse speed = 0
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: For 840D: Check parameter _SPEED[0] in GUD6
 For 840D sl: Check setting data 55630 $SCS_MEA_FEED_RAPID_IN_PERCENT

61340 [Channel %1:] Block %2: Incorrect alarm number
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Internal error in measuring cycles.

61341 [Channel %1:] Block %2: Probe not calibrated in active plane.
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE974, CYCLE977, CYCLE978, CYCLE979.
Remedy: Calibrate the probe prior to calling a cycle.

61342 [Channel %1:] Block %2: Upgrade NCK software version
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Up to measuring cycle software 6.2: _SI[1] in GUD6 has no value or a value < 3
 As from measuring cycle software 6.3: Upgrade NCK software version.

61343 [Channel %1:] Block %2: No tool available for specified tool name
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Check tool name.

61344 [Channel %1:] Block %2: Several tools are active
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Remove tool from another spindle.

61345 [Channel %1:] Block %2: D number of tool offset, too many digits
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Reduce the D number in _KNUM, check software or MD of flat D number.
61346 [Channel %1:] Block %2: Distance between starting point and measuring point <=0
Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm is triggered by the following cycles: CYCLE961.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: 840D:
- Parameter _SETV[0] or _SETV[1] is empty or less than 0.
840D sl:
- Parameter X1 or Y1 is empty or less than 0.

Program Continuation: Clear alarm with the RESET key. Restart part program

61347 [Channel %1:] Block %2: Angle 1st edge - 2nd edge equals 0
Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm is triggered by the following cycles: CYCLE961.

Remedy: Parameter following angle (_INCA) equals 0.

61348 [Channel %1:] Block %2: Angle rel. to reference edge equals 0
Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61349 [Channel %1:] Block %2: Distance upper probe edge - measuring position = 0 for tool radius measurement
Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm is triggered by the following cycles: CYCLE971.
The distance between the upper and lower edges of the tool probe equals 0; relevant for radius measurement.
For 840D: Check parameter _TP[x,9]
For 840D sl: Check setting data 54634 $SNS_MEA_TP_CAL_MEASURE_DEPTH

Remedy: Check length and radius of the active tool in the compensation data memory.

61350 [Channel %1:] Block %2: Feed, speed not programmed for tool measurement with rotating spindle
Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm is triggered by the following cycles: CYCLE971.
The measuring feed and/or spindle speed during tool measurement with rotating spindle is not specified in the GUD variable _MFS.

Remedy: Check parameter _MFS[0]

61351 [Channel %1:] Block %2: Tool length or radius is 0
Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm is triggered by the following cycles: CYCLE971.
For the active tool, the length or radius equal zero.

Remedy: Check length and radius of the active tool in the compensation data memory.
61352
[Channel %1:] Block %2: Path for logfile not permitted
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE106.
The specified path for the log file is incorrect.
Remedy:
Check parameter _PROTNAME[1]

61353
[Channel %1:] Block %2: Path for logfile not found
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE106.
The specified directory does not exist or the specified path is incorrect.
Remedy:
Check parameter _PROTNAME[1]

61354
[Channel %1:] Block %2: File for logfile not found
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE106.
No name specified for the log file.
Remedy:
Check parameter _PROTNAME[1]

61355
[Channel %1:] Block %2: Incorrect file type for logfile
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE106.
The file extension for the log file is incorrect.
Remedy:
Check parameter _PROTNAME[1]

61356
[Channel %1:] Block %2: File for logfile is being used
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE106.
The log file is already used by an NC program.
Remedy:
Check parameter _PROTNAME[1]

61357
[Channel %1:] Block %2: No resources free
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE106.
Not enough NC memory space available.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Delete the files.
Program Continuation: Clear alarm with the RESET key. Restart part program

61358
[Channel %1:] Block %2: Error during recording
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE106.
Internal error
Remedy:
Call the hotline!

61359
[Channel %1:] Block %2: - continue with RESET
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions:
The alarm is triggered by the following cycles: CYCLE106.
Internal error
Remedy: Call the hotline!

61360 [Channel %1:] Block %2: Log job undefined - continue with RESET
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycle: CYCLE106.
Cycle CYCLE106 was called by an incorrect parameter.
Remedy: Check cycle call for CYCLE106, specifically the call parameter.

61361 [Channel %1:] Block %2: Variable cannot be recorded
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE105.
The value specified in _PROTVAL[] cannot be logged.
Remedy: Check parameter _PROTVAL[].

61362 [Channel %1:] Block %2: Cycle118: No. of values too large
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE118.
The value specified in _PROTVAL[] cannot be logged.
Remedy: Reduce the 4th parameter (PAR4) of CYCLE118.

61363 [Channel %1:] Block %2: Max. no. of value lines for recording exceeded
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Maximum number of value lines exceeded.
Alarm triggered by following cycle: CYCLE105.
Remedy: Reduce the number of value lines.
Check parameter _PROTFORM[4].

61364 [Channel %1:] Block %2: Check distance from measuring point 1 to measuring point 2
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: CYCLE998
Remedy: Check parameter incremental infeed depth (_ID)

61365 [Channel %1:] Block %2: Check circular feed
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm triggered by following cycles: CYCLE979
Remedy: For 840D:
- Check parameter _RF
For 840D sl:
- Check parameter FP

61366 [Channel %1:] Block %2: Direction of rotation for tool measurement with rotating spindle not specified.
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE971
Remedy: For 840D:
- Check parameter _CM[5] in GUD6, permissible values are 3 (corresponds to M3) and 4 (corresponds to M4)
For 840D sl:
- Check setting data 54674 $SNS_MEA_CM_SPIND_ROT_DIR, permissible values are 3 (corresponds to M3) and 4 (corresponds to M4)
61367 [Channel %1:] Block %2: Parameters _SETV[0...3] or _SETV[4...7] are identical

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE961.

Remedy:
Specify different positions for the relevant points of _SETV[0...7].

61368 [Channel %1:] Block %2: Straights through parameter _SETV[0...3] or _SETV[4...7] do not intersect

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE961.

Remedy:
Specify different positions for the relevant points of _SETV[0...7].

61369 [Channel %1:] Block %2: Position of corner not clearly definable, check parameter _SETV[0...7]

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE961.

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Define P1 and P2 or P3 and P4 in a way that the intersection of the straights determined by these points is outside the sections formed by P1 and P2 or P3 and P4.

Program Continuation:
Clear alarm with the RESET key. Restart part program

61370 [Channel %1:] Block %2: _PROTVAL[0] - _PROTVAL[5] do not have any entries

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE105.

Remedy:
Enter values in _PROTVAL[0...5].

61371 [Channel %1:] Block %2: Product of column width and number of columns exceeds 200 characters per line

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE105.

Remedy:
Reduce the column width (_PROTFORM[4]) or number of columns (_PROTVAL[2...5]).

61372 [Channel %1:] Block %2: selected meas.variant requires SPOS-capable spindle

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
Change measuring variant or check machine equipment.

61373 [Channel %1:] Block %2: Mono-directional probe requires SPOS-capable spindle

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
Check machine equipment.
61401 [Channel %1:] Block %2: Probe does not switch, traversing path limited by software limit position.

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE961, CYCLE971, CYCLE976, CYCLE977, CYCLE978, CYCLE998

Remedy:
The position defined by a setpoint value cannot be reached as this would mean overrunning the software limit position.
- Check specified setpoint value.

61402 [Channel %1:] Block %2: Probe collision, traversing path limited by software limit position

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm triggered by following cycles: CYCLE977

Remedy:
For the measuring variants Measure web/shaft, the position path in the plane was limited by the software limit position. The probe switched in the following infeed along the infeed axis.
Check programmed position of software limit position.

61403 [Channel %1:] Block %2: Work offset correction not executed

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
Call the SIEMENS hotline

61404 [Channel %1:] Block %2: Tool correction not executed

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
Check the dependent tool specifications.

61405 [Channel %1:] Block %2: Tool environment does not exist

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
Correct the name of the tool environment (_TENV) or create this environment.

61406 [Channel %1:] Block %2: Check DL number

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
For 840D: Check parameter _DLNUM
For 840D sl: Check parameter DL
Check the number of the sum offset and that of the setup offset.

61407 [Channel %1:] Block %2: Check 7th digit and higher of _KNUM

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
Check parameter _KNUM.
Check the the number of the sum offset and that of the setup offset.

61408 [Channel %1:] Block %2: total offsets not present

Parameters:
%1 = Channel number
%2 = Block number, label channel number

Definitions:
Alarm can be triggered by following measuring cycles: all measuring cycles.

Remedy:
Set MD 18080, Bit 8=1
61409 [Channel %1:] Block %2: set up offsets not present
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: Set MD 18112, Bit 4=1

61410 [Channel %1:] Block %2: access to nonexistent tool element or property
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: The variable to be corrected requires an option or an increase in MD values.

61411 [Channel %1:] Block %2: Check the distribution of measuring points on the plane.
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE997, CYCLE119
Remedy: Check the setpoint and actual values

61412 [Channel %1:] Block %2: channel basic frame not present
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE997, CYCLE119
Remedy: Set MD 28081>0, $P_CHBFRMASK>0

61413 [Channel %1:] Block %2: check setpoint of ball diameter, _SETVAL<=0
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE997
Remedy: Check setpoint value of spherical diameter.

61414 [Channel %1:] Block %2: distortion of triangle over limit
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE997, CYCLE119
Remedy: Check the setpoint and actual values

61415 [Channel %1:] Block %2: Check probe / machining plane
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE971
Remedy: Enter permissible probe for machining plane:
- For 840D: Check the variables _TP[x,8] and _TPW[x,8] in GUD6
- For 840D sl: Check the setting data 54633 $SNS_MEA_TP_TYPE and 54648 $SNS_MEA_TPW_TYPE
or change the machining plane.

61416 [Channel %1:] Block %2: adapt array size %4!
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: For 840D:
Match _CVAL entry to the number of existing probe and calibration block data fields, that means:
- Adapt _TP[]/ _CVAL[0] field size, or
- Adapt _WP[]/ _CVAL[1] field size, or
- Adapt _KP[]/ _CVAL[2] field size, or
- Adapt _TWP[]/ _CVAL[3].

For 840D s l:
Check machine data for the number of probe and calibration block data fields, that means:
- Workpiece probe 51600$MNS_MEA_CAL_WP_NUM or
- Calibration block 51601$MNS_MEA_CAL_EDGE_NUM or
- Workpiece probe in MCS 51602$MNS_MEA_CAL_TP_NUM or
- Workpiece probe in WCS 51603$MNS_MEA_CAL_TPW_NUM

61417 [Channel %1:] Block %2: Probe will collide with the carrier of the reference groove.
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE973
Remedy: Take up collision-free initial position of the axes involved in the measuring process.

61418 [Channel %1:] Block %2: Protocol file too small, check MD11420: LEN_PROTOCOL_FILE.
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycle: CYCLE106
Remedy: Check MD11420: LEN_PROTOCOL_FILE.

61419 [Channel %1:] Block %2: Check probe calibration with reference to center of ball/circumference of ball.
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE974, CYCLE994, CYCLE977, CYCLE978, CYCLE997, CYCLE998
Remedy: The workpiece probe must be calibrated according to its use in the measuring cycles.

61420 [Channel %1:] Block %2: Check calibration of multi/mono probes.
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE974, CYCLE994, CYCLE977, CYCLE978, CYCLE997, CYCLE998
Remedy: The workpiece probe must be calibrated according to its type and use.

61421 [Channel %1:] Block %2: Software release of measuring cycles or NCK inadequate or set up incorrectly --> error code %4
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996
Remedy: Causes of error:
 DEF CHAN REAL _OVR[72] (up to MZ06.03.xxx.xx =32)

61422 [Channel %1:] Block %2: Parameter _MVAR incorrect --> Error code: %4
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996
Remedy: Causes of error:
1. Error code = A -> _MVAR = 9x identifier CYCLE996 measure kinematics
2. Error code = B -> Parameter for normalizing (_MVAR) incorrect
3. Error code = C -> Measurement variant "compute only" active, but rotary axis 1 or 2 not measured
(see also parameter _OVR[40])

61423 [Channel %1:] Block %2: Parameter _TNUM not agreed or not created
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996
Remedy: Causes of error:
1. Parameter CYCLE996 _TNUM incorrect or equals zero
2. No swivel data record created -> MD18088 = 0

61424 [Channel %1:] Block %2: Parameter _SETVAL for diameter of calibration ball incorrect
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996
Remedy: Check parameter _SETVAL.

61425 [Channel %1:] Block %2: Parameter for measuring axis rotary axis 1 or 2 incorrect -> Error code: %4
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996
Remedy: Causes of error:
1. Error code = A -> Rotary axis number incorrect (1 or 2)
2. Error code = B -> No name agreed for rotary axis 1
3. Error code = C -> Rotary axis vector 1 equals zero
4. Error code = D -> No name agreed for rotary axis 2
5. Error code = E -> Rotary axis vector 2 equals zero

61426 [Channel %1:] Block %2: Sum of the active offsets does not equal zero - > Error code: %4
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996
Remedy: Causes of error:
Check the overview of active offsets ($P_ACTFRAME)
1. Error code = A -> Sum of the translatory offsets of the geometry axes <> 0
2. Error code = B -> Sum of the fine offsets of the geometry axes <> 0
3. Error code = C -> Sum of the rotary components of the geometry axes <> 0
4. Error code = D -> Sum of the translatory offsets of rotary axis 1 <> 0
5. Error code = E -> Sum of the translatory offsets of rotary axis 2 <> 0

61427 [Channel %1:] Block %2: Tool data of the active workpiece probe incorrect or inactive --> Error code: %4
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996
Remedy: Causes of error:
1. Error code = A -> Workpiece probe (or tool edge) inactive
2. Error code = B -> Length L1 of the workpiece probe = 0

61428 [Channel %1:] Block %2: Error while creating log file -> Error code: %4
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996
Remedy: Causes of error:
1. Error code = A -> Number of log files in the current directory > 99
2. Error code = B -> Log files too long. Rename or delete log files, check MD11420 $MN_LEN_PROTOCOL_FILE.

61429 [Channel %1:] Block %2: Measuring axis (rotary axis 1 or 2) not in basic or intended position -> Error code: %4
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996
Remedy: Causes of error:
1. Error code = A -> Rotary axis 1 not in basic position on 1st measurement
2. Error code = B -> Rotary axis 2 not in basic position on 1st measurement
3. Error code = C -> Rotary axis 2 not in intended position on 2nd or 3rd measurement in comparison to 1st measurement, see parameters _OVR[63 to 65]
4. Error code = D -> Rotary axis 1 not in intended position on 2nd or 3rd measurement in comparison to 1st measurement, see parameters _OVR[60 to 62]

61430 [Channel %1:] Block %2: Kinematic vectors not computed -> Error code: %4
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycles: CYCLE996
Remedy: Causes of error:
1. Error code = A -> Plausibility of the input points PM1, PM2, PM3 not fulfilled, resulting side lengths must not be equal to zero
 (Notice: even in the case of side lengths not equal to zero, there is a risk of not being able to form a triangle, check => check PM1...3.)
2. Error code = B -> Enclosed angle at PM1 between the spread vectors PM1PM2 and PM1PM3 is equal to zero 0.
 Starting points do not form a triangle.
3. Error code = C -> Enclosed angle at PM2 between the spread vectors PM2PM1 and PM2PM3 is equal to 0.
 Starting points do not form a triangle.
4. Error code = D -> Enclosed angle at PM3 between the spread vectors PM3PM1 and PM3PM2 is equal to 0.
 Starting points do not form a triangle.
5. Error code = E -> Normalizing interpolation point: Invalid axis name defined for computation
6. Error code = F -> Normalizing interpolation point: Invalid plane defined for computation

61440 [Channel %1:] Block %2: Position of cutting edge cannot be determined
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycle: CYCLE982
Remedy: A turning tool with a cutting edge position between 1 and 8 must be used as the tool type. Check the entered cutting edge position with reference to the basic position of the tool carrier.

61441 [Channel %1:] Block %2: Position of cutting edge is not in the machining plane.
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycle: CYCLE982
Remedy: The position of the cutting edge of the turning tool (cutting tip) is no longer in the machining plane (interpolation plane), this can be caused, for example, by a tool carrier with orientation capability. Correct the tool carrier position.

61442 [Channel %1:] Block %2: Tool carrier not parallel to the geometry axes
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following measuring cycle: CYCLE982
Overview of Alarms 03/2009

NCK alarms

Remedy: As a result of incorrect positioning of the orientable tool carrier, tool lengths L1,2,3 are not parallel to the geometry axes. Optimize the axes of the tool carrier.

61443 [Channel %1:] Block %2: Advance angle _INCA=0 or greater/less than +/-90° or +/-120°

Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following measuring cycle: CYCLE979

Remedy: Check the value in the parameter advance angle _INCA. If 3-point measurement is selected, _INCA must not be greater/less than +/-120°, and with 4-point measurement _INCA must not be greater/less than +/-90°. The advance angle _INCA must always be parameterized unequal to "zero".

61444 [Channel %1:] Block %2: Current measuring speed is not identical to the calibration speed

Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following measuring cycles: CYCLE974, CYCLE994, CYCLE977, CYCLE978, CYCLE979, CYCLE998, E_MS_CAN, E_MS_HOL, E_MS_POC, E_MS_PIN, E_MS_SPI

Remedy: 1. Repeat the calibration on the basis of the desired measuring speed.
2. Match the current measuring speed to the calibration speed.
 Note: In each case, the relevant calibration speed is stored in each calibration data record.

61501 [Channel %1:] Block %2: Simulation is active

Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycles: all grinding cycles

Remedy: Reset simulation

Program Continuation: Clear alarm with the RESET key. Restart part program

61502 [Channel %1:] Block %2: No tool offset active

Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycles: all grinding cycles

Remedy: A tool number must be programmed

Program Continuation: Clear alarm with the RESET key. Restart part program

61503 [Channel %1:] Block %2: tool nose radius compensation left or right

Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycles: CYCLE410, CYCLE411, CYCLE412, CYCLE413, CYCLE414, CYCLE415, CYCLE416, CYCLE420

Remedy: A tool offset value has to be programmed

Program Continuation: Clear alarm with the RESET key. Restart part program

61504 [Channel %1:] Block %2: _KNG incorrect for setup

Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycle: setup function

Remedy: Clear alarm with the RESET key. Restart part program
61505 [Channel %1:] Block %2: retraction path < 1mm
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE420
Remedy: Increase retraction path
Program Continuation: Clear alarm with the RESET key. Restart part program

61506 [Channel %1:] Block %2: infeed path < 1mm
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE420
Remedy: Increase infeed path
Program Continuation: Clear alarm with the RESET key. Restart part program

61507 [Channel %1:] Block %2: safety clearance < 1mm
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61508 [Channel %1:] Block %2: Incorrect default setting for shoulder position
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61509 [Channel %1:] Block %2: Incorrect default setting for dresser position
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61510 [Channel %1:] Block %2: Test run feed is active
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE410, CYCLE411, CYCLE413, CYCLE415, CYCLE420
Remedy: Switch off test run feed
Program Continuation: Clear alarm with the RESET key. Restart part program

61511 [Channel %1:] Block %2: Incorrect shoulder position or tool edge D1/D2
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program
Overview of Alarms 03/2009

NCK alarms

61512 [Channel %1:] Block %2: Incorrect longitudinal position
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61513 [Channel %1:] Block %2: Dresser left and inclined grinding wheel
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61514 [Channel %1:] Block %2: Grinding wheel type missing
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: setup function
Remedy: Program Continuation: Clear alarm with the RESET key. Restart part program

61515 [Channel %1:] Block %2: Retraction path <= dressing amount
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE416
Remedy: Program Continuation: Change retraction path

61517 [Channel %1:] Block %2: Angle of inclined grinding wheel missing
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE416
Remedy: Program Continuation: Enter angle under $TC_TPG8

61518 [Channel %1:] Block %2: Shoulder height of grinding wheel must be > grinding wheel radius
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE432
Remedy: Program Continuation: Change shoulder height or grinding wheel radius

61519 [Channel %1:] Block %2: Incorrect type of machining
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE63, CYCLE64, CYCLE410, CYCLE411, CYCLE412, CYCLE413, CYCLE415, CYCLE962
Remedy: Program Continuation: Assign a value between 1 and 3 to parameter B_ART

© Siemens AG, 2009. All Rights Reserved
SINUMERIK 840D sl, 840Di sl, SINAMICS, Diagnostics Manual (DAsl), 03/2009
61520 [Channel %1:] Block %2: Additional offsets not set
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE413, CYCLE420, CYCLE433
Remedy: Set MD18094 MM_NUM_CC_TDA_PARAM=10
Program Continuation: Clear alarm with the RESET key. Restart part program

61521 [Channel %1:] Block %2: Current grinding wheel too wide
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE411, CYCLE415
Remedy: Reduce width of grinding wheel
Program Continuation: Clear alarm with the RESET key. Restart part program

61522 [Channel %1:] Block %2: Overlap >= current grinding wheel width
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE411
Remedy: Reduce overlap
Program Continuation: Clear alarm with the RESET key. Restart part program

61523 [Channel %1:] Block %2: Zero signal of calipers missing
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE410, CYCLE411, CYCLE413
Remedy: Check calipers signal
Program Continuation: Clear alarm with the RESET key. Restart part program

61524 [Channel %1:] Block %2: Incorrect oblique angle
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE413
Remedy: Oblique plunge angles must be >-90° and <90°
Program Continuation: Clear alarm with the RESET key. Restart part program

61525 [Channel %1:] Block %2: Incorrect grinding wheel type
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE413
Remedy: Change grinding wheel type $TC_TPC1
Program Continuation: Clear alarm with the RESET key. Restart part program

61526 [Channel %1:] Block %2: Workpiece radius = 0
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE414
Remedy: Enter workpiece radius > 0
Program Continuation: Clear alarm with the RESET key. Restart part program

61527 [Channel %1:] Block %2: Grinding wheel radius >= workpiece radius
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE414
Remedy: Change grinding wheel radius or workpiece radius
Program Continuation: Clear alarm with the RESET key. Restart part program

61529 [Channel %1:] Block %2: Dimensional notation INCH programmed
Parameters: %1 = Channel number %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE410, CYCLE411, CYCLE412, CYCLE413, CYCLE414, CYCLE415, CYCLE420
Remedy: Basic system MD $MN_SCALING_SYSTEM_IS_METRIC does not correspond to programmed G command (G group 13).
Program Continuation: Clear alarm with the RESET key. Restart part program

61530 [Channel %1:] Block %2: Default longitudinal position incorrect
Parameters: %1 = Channel number %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE420
Remedy: Check longitudinal position parameter
Program Continuation: Clear alarm with the RESET key. Restart part program

61531 [Channel %1:] Block %2: Longitudinal position not registered in Z
Parameters: %1 = Channel number %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE420
Remedy: Increase infeed path parameter
Program Continuation: Clear alarm with the RESET key. Restart part program

61532 [Channel %1:] Block %2: Value for _LAGE is incorrect
Parameters: %1 = Channel number %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE414
Remedy: Correct parameter content for _LAGE
Program Continuation: Clear alarm with the RESET key. Restart part program

61533 [Channel %1:] Block %2: No length L1 entered under D...
Parameters: %1 = Channel number %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE416, CYCLE420
Remedy: Enter length L1 in the tool offset D of the grinding wheel
Program Continuation: Clear alarm with the RESET key. Restart part program

61540 [Channel %1:] Block %2: Incorrect D number / dresser D field active
Parameters: %1 = Channel number %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE401, CYCLE402, CYCLE403, CYCLE443
Remedy: A tool D number must be programmed that is < _GC_DNUM
Program Continuation: Clear alarm with the RESET key. Restart part program

61541 [Channel %1:] Block %2: Incorrect grinding wheel type entered
Parameters: %1 = Channel number %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE432, CYCLE434, CYCLE435, CYCLE436, CYCLE438, CYCLE439, CYCLE444, CYCLE447

Remedy: Select a valid grinding wheel type in tool management

Program Continuation: Clear alarm with the RESET key. Restart part program

61542 [Channel %1:] Block %2: Incorrect grinding wheel reference point selected when selecting the dresser coordinate system

Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycles: CYCLE435, CYCLE441, CYCLE447

Remedy: A tool D number must be programmed that is < _GC_DNUM

Program Continuation: Clear alarm with the RESET key. Restart part program

61543 [Channel %1:] Block %2: Incorrect dresser selected when selecting the dresser coordinate system

Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycles: CYCLE402, CYCLE435, CYCLE442, CYCLE447

Remedy: A dresser number >0 and <4 must be selected

Program Continuation: Clear alarm with the RESET key. Restart part program

61544 [Channel %1:] Block %2: Grinding wheel diameter worn down

Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycle: CYCLE438

Remedy: New grinding wheel required, or check limit values in the grinding wheel data

Program Continuation: Clear alarm with the RESET key. Restart part program

61545 [Channel %1:] Block %2: Width of grinding wheel worn down

Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycle: CYCLE438

Remedy: New grinding wheel required, or check limit values in the grinding wheel data

Program Continuation: Clear alarm with the RESET key. Restart part program

61546 [Channel %1:] Block %2: Dresser %4, wear limit length 1 reached

Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycle: CYCLE438

Remedy: New dresser required, or check limit values of dresser

Program Continuation: Clear alarm with the RESET key. Restart part program

61547 [Channel %1:] Block %2: Dresser %4, wear limit length 2 reached

Parameters: %1 = Channel number
%2 = Block number, label channel number

Definitions: The alarm can be triggered by the following grinding cycle: CYCLE438

Remedy: New dresser required, or check limit values of dresser

Program Continuation: Clear alarm with the RESET key. Restart part program
61548 [Channel %1:] Block %2: Dresser %4, wear limit length 3 reached
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE438
Remedy: New dresser required, or check limit values of dresser
Program Continuation: Clear alarm with the RESET key. Restart part program

61549 [Channel %1:] Block %2: Incorrect dresser type selected
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE402, CYCLE421, CYCLE422, CYCLE423, CYCLE424
Remedy: Check dresser type on input
Program Continuation: Clear alarm with the RESET key. Restart part program

61555 [Channel %1:] Block %2: Diameter of grinding wheel ==0, GWPS cannot be calculated
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE446
Remedy: Check diameter
Program Continuation: Clear alarm with the RESET key. Restart part program

61556 [Channel %1:] Block %2: Impossible chamfer and radius of left edge of wheel
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE432
Remedy: Check values in grinding wheel data
Program Continuation: Clear alarm with the RESET key. Restart part program

61557 [Channel %1:] Block %2: Impossible chamfer and radius of right edge of wheel
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE432
Remedy: Check values in grinding wheel data
Program Continuation: Clear alarm with the RESET key. Restart part program

61558 [Channel %1:] Block %2: Chamfer / radius + shoulder height are less than the retraction height of the left edge of the grinding wheel
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE432
Remedy: Check values in grinding wheel data
Program Continuation: Clear alarm with the RESET key. Restart part program

61559 [Channel %1:] Block %2: Chamfer / radius + shoulder height are less than the retraction height of the right edge of the grinding wheel
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE432
Remedy: Check values in grinding wheel data
Program Continuation: Clear alarm with the RESET key. Restart part program

61560 [Channel %1:] Block %2: Infeed in Z direction too big per stroke, or wheel too narrow
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE427, CYCLE428
Remedy: Reduce infeed path parameter or use other tool
Program Continuation: Clear alarm with the RESET key. Restart part program

61561 [Channel %1:] Block %2: Feed left wheel edge <=0
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE432
Remedy: Check values in grinding wheel data
Program Continuation: Clear alarm with the RESET key. Restart part program

61562 [Channel %1:] Block %2: Feed right wheel edge <=0
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE432
Remedy: Check values in grinding wheel data
Program Continuation: Clear alarm with the RESET key. Restart part program

61563 [Channel %1:] Block %2: Feed on the diameter <=0
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE432
Remedy: Check values in grinding wheel data
Program Continuation: Clear alarm with the RESET key. Restart part program

61564 [Channel %1:] Block %2: Feed insertion <=0
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE434, CYCLE444
Remedy: Check values in grinding wheel data
Program Continuation: Clear alarm with the RESET key. Restart part program

61565 [Channel %1:] Block %2: Feed dressing <=0
Parameters:
%1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycles: CYCLE434, CYCLE444
Remedy: Check values in grinding wheel data
Program Continuation: Clear alarm with the RESET key. Restart part program

61601 [Channel %1:] Block %2: Finished part diameter too small
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: The programmed radius of the machined part is too small. Alarm triggered by following cycles: CYCLE94, CYCLE96.
Remedy: Check parameter SPD or DIATH.
Overview of Alarms 03/2009

NCK alarms

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61602 [Channel %1:] Block %2: Tool width incorrectly defined
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Plunge cutter is larger than the programmed groove width. Alarm triggered by following cycle: CYCLE93.
Remedy: Check tool or change program.
Program Continuation:
Clear alarm with the RESET key. Restart part program.

61603 [Channel %1:] Block %2: Recess type incorrectly defined
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Radii/chamfers at the groove base do not match the groove width. Face groove on a contour element running parallel to the longitudinal axis is not possible. Alarm triggered by following cycle: CYCLE93.
Remedy: Check parameter VARI.
Program Continuation:
Clear alarm with the RESET key. Restart part program.

61604 [Channel %1:] Block %2: Active tool violates programmed contour
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Contour violation in the relief cut elements due to the tool clearance angle of the tool used. Alarm triggered by following cycle: CYCLE95.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: Use a different tool or check the contour subroutine.
Program Continuation:
Clear alarm with the RESET key. Restart part program.

61605 [Channel %1:] Block %2: Contour incorrectly programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Illegal relief cut element detected. Alarm triggered by following cycles: CYCLE76, CYCLE77, CYCLE95.
Remedy: Check contour program.
Program Continuation:
Clear alarm with the RESET key. Restart part program.

61606 [Channel %1:] Block %2: Error during contour preparation
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: An error has been found on conditioning the contour. This alarm is always related to one of NCK alarms 10930...10934, 15800 or 15810. Alarm triggered by following cycle: CYCLE95.
Remedy: Check contour subroutine.
Program Continuation:
Clear alarm with the RESET key. Restart part program.

61607 [Channel %1:] Block %2: Starting point incorrectly programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The starting point reached before the cycle call does not lie outside the rectangle described by the contour subroutine. Alarm triggered by following cycle: CYCLE95.
Remedy: Check starting point prior to cycle call.
Program Continuation:
Clear alarm with the RESET key. Restart part program.
61608 [Channel %1:] Block %2: Incorrect tool point direction programmed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE94, CYCLE96.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: A cutting edge position 1...4, matching the undercut form, must be programmed.
Program Continuation: Clear alarm with the RESET key. Restart part program

61609 [Channel %1:] Block %2: Shape incorrectly defined
Parameters: %1 = Channel number
 %2 = Block number, label
Remedy: Check parameter for the undercut form or groove form or pocket.
Program Continuation: Clear alarm with the RESET key. Restart part program

61610 [Channel %1:] Block %2: No infeed depth programmed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE76, CYCLE77, CYCLE96.
Remedy: Check parameter MID.
Program Continuation: Clear alarm with the RESET key. Restart part program

61611 [Channel %1:] Block %2: No point of intersection found
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: No intersection could be calculated with the contour. Alarm triggered by following cycle: CYCLE95.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check contour programming or modify infeed depth.
Program Continuation: Clear alarm with the RESET key. Restart part program

61612 [Channel %1:] Block %2: Thread finishing not possible
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE97, CYCLE98.
Remedy: Check the conditions for thread finishing.

61613 [Channel %1:] Block %2: Undercut position incorrectly defined
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE94, CYCLE96.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check value in parameter _VARI.
Program Continuation: Clear alarm with the RESET key. Restart part program
61700 [Channel %1:] Block %2: Name of program to be generated is missing
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check parameter PRG
 Program Continuation: Clear alarm with the RESET key. Restart part program

61701 [Channel %1:] Block %2: Contour %4 does not exist
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check parameter CON
 - Check contour call
 - Check whether the contours exist in the program storage (workpieces, subroutines or part programs)
 Program Continuation: Clear alarm with the RESET key. Restart part program

61702 [Channel %1:] Block %2: Label %4 not existing in machined part contour
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check whether the labels exist in the machined part contour
 Program Continuation: Clear alarm with the RESET key. Restart part program

61703 [Channel %1:] Block %2: Label %4 not existing in the blank contour
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check whether the labels exist in the blank contour
 Program Continuation: Clear alarm with the RESET key. Restart part program

61704 [Channel %1:] Block %2: Machined part contour missing
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check contour call
Program Continuation: Clear alarm with the RESET key. Restart part program.

61705 [Channel %1:] Block %2: Blank contour missing
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check contour call
Program Continuation: Clear alarm with the RESET key. Restart part program.

61706 [Channel %1:] Block %2: Error in machined part contour %4
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check programming of machined part contour
Program Continuation: Clear alarm with the RESET key. Restart part program.

61707 [Channel %1:] Block %2: Error in the blank contour %4
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check programming of the blank contour
Program Continuation: Clear alarm with the RESET key. Restart part program.

61708 [Channel %1:] Block %2: Too many contours specified
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check number of contours
 - Max. two contours (machined part and blank contours)
 - Min. one contour (machined part contour)
Program Continuation: Clear alarm with the RESET key. Restart part program.

61709 [Channel %1:] Block %2: Cutting edge radius too small
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check cutting edge radius of the tool in tool management
Program Continuation: Clear alarm with the RESET key. Restart part program

61710 [Channel %1:] Block %2: Calculation has been cancelled
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Calculation has been cancelled by PI service; please try again
Program Continuation: Clear alarm with the RESET key. Restart part program

61711 [Channel %1:] Block %2: Infeed D is larger than the tip width of the tool
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check infeed D in connection with the tip width of the tool in tool management.
Program Continuation: Clear alarm with the RESET key. Restart part program

61712 [Channel %1:] Block %2: Infeed DX or DZ is larger than tip length of tool
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check infeed DX or DZ in connection with tip length of the tool in tool management.
Program Continuation: Clear alarm with the RESET key. Restart part program

61713 [Channel %1:] Block %2: Tool radius larger than half the tip width
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check tool radius and tip width of tool (plunge cutter, cutting tool)
Program Continuation: Clear alarm with the RESET key. Restart part program

61714 [Channel %1:] Block %2: System error contour turning %4
Parameters: %1 = Channel number
%2 = Block number, label
 Definitions: Alarm triggered by following cycle: CYCLE952.

 Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

 Remedy: Call the SIEMENS hotline

 Program Continuation: Clear alarm with the RESET key. Restart part program

 61730 [Channel %1:] Block %2: Machining range outside delimitation

 Parameters: %1 = Channel number
 %2 = Block number, label

 Definitions: Alarm triggered by following cycle: CYCLE952

 Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

 Remedy: - Check machining range and delimitation

 Program Continuation: Clear alarm with the RESET key. Restart part program

 61731 [Channel %1:] Block %2: Unable to determine contour direction

 Parameters: %1 = Channel number
 %2 = Block number, label

 Definitions: Alarm triggered by following cycle: CYCLE952

 Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

 Remedy: - Check contours
 - Check whether the contour starting point exists

 Program Continuation: Clear alarm with the RESET key. Restart part program

 61732 [Channel %1:] Block %2: No material available for machining

 Parameters: %1 = Channel number
 %2 = Block number, label

 Definitions: Alarm triggered by following cycle: CYCLE952

 Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

 Remedy: - Check programming of the blank and machined part contour, particularly their position towards each other

 Program Continuation: Clear alarm with the RESET key. Restart part program

 61733 [Channel %1:] Block %2: Cutting edge not compatible with cutting direction

 Parameters: %1 = Channel number
 %2 = Block number, label

 Definitions: Alarm triggered by following cycle: CYCLE952

 Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.

 Remedy: - Check cutting edge position and cutting direction in tool management

 Program Continuation: Clear alarm with the RESET key. Restart part program
61734 [Channel %1:] Block %2: Machined part contour is outside the blank contour
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check programming of the machined part and blank contour, particularly their position towards each other
Program Continuation: Clear alarm with the RESET key. Restart part program.

61735 [Channel %1:] Block %2: Infeed D larger than the tip length of the tool
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check infeed D in relation to the tip length of the tool in tool management
Program Continuation: Clear alarm with the RESET key. Restart part program.

61736 [Channel %1:] Block %2: Machining cutting depth larger than maximum depth of cut of the tool
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program.

61737 [Channel %1:] Block %2: Machining cutting depth smaller than minimum depth of cut of the tool
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program.
61738 [Channel %1:] Block %2: Incorrect cutting edge position
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check cutting edge position in tool management
Program Continuation: Clear alarm with the RESET key. Restart part program

61739 [Channel %1:] Block %2: Blank must be closed contour
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check whether the blank contour is closed
Program Continuation: Clear alarm with the RESET key. Restart part program

61740 [Channel %1:] Block %2: Collision through approach
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Select the starting position to enable collision-free approach of the contour
Program Continuation: Clear alarm with the RESET key. Restart part program

61741 [Channel %1:] Block %2: Axis in negative range
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check the position of the axis in the ordinate
Program Continuation: Clear alarm with the RESET key. Restart part program

61742 [Channel %1:] Block %2: Retraction plane %4 is within the machining range
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE952
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - On internal machining check machining range in relation to the entered retraction distance ($SCS_TURN_ROUGH_I_RELEASE_DIST)
Overview of Alarms

NCK alarms

Program Continuation:
Clear alarm with the RESET key. Restart part program

61800 [Channel %1:] Block %2: Ext. CNC system missing
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Machine data for external language MD18800: $MN_MM_EXTERN_LANGUAGE or option bit 19800 $ON_EXTERN_LANGUAGE is not set.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:

Program Continuation:
Clear alarm with the RESET key. Restart part program

61801 [Channel %1:] Block %2: Wrong G code selected
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
In the program call CYCLE300<value> an impermissible numerical value was programmed for the entered CNC System, or in the Cycles Setting Datum an incorrect value for the G Code System was set.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:

Program Continuation:
Clear alarm with the RESET key. Restart part program

61802 [Channel %1:] Block %2: Wrong axis type
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The programmed axis is assigned to a spindle
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:

Program Continuation:
Clear alarm with the RESET key. Restart part program

61803 [Channel %1:] Block %2: Programmed axis not available
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
The programmed axis is not in the system.
Alarm triggered by following cycles: CYCLE83, CYCLE84, CYCLE840.
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Check parameter _AXN.
Check MD20050-20080.
Program Continuation:
Clear alarm with the RESET key. Restart part program
61804 [Channel %1:] Block %2: Progr. position exceeds reference point
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The programmed intermediate position or actual position is behind the reference point.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61805 [Channel %1:] Block %2: Value programmed absolute and incremental
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The programmed intermediate position is both absolutely as well as incrementally programmed.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61806 [Channel %1:] Block %2: Wrong axis assignment
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The axis-assignment sequence is wrong.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61807 [Channel %1:] Block %2: Wrong spindle direction programmed (active)
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE840.
 The programmed spindle direction contradicts the spindle direction planned for the cycle.
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Check parameters SDR and SDAC.
Program Continuation: Clear alarm with the RESET key. Restart part program

61808 [Channel %1:] Block %2: Final drilling depth or single drilling depth missing
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: The total depth Z or individual drilling depth Q is missing from the G8x block (initial cycle call).
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61809 [Channel %1:] Block %2: Drill position not permissible
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: --
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61810 [Channel %1:] Block %2: ISO G code not possible
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In the call block an impermissible ISO axis name was programmed.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61811 [Channel %1:] Block %2: ISO axis name illegal
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In the call block an impermissible numerical value was programmed.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61812 [Channel %1:] Block %2: Value(s) in external cycle call wrongly defined
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: In the call block an impermissible numerical value was programmed.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61813 [Channel %1:] Block %2: GUD value wrongly defined
Definitions: An impermissible numerical value was entered in the cycles-setting data.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Continuation:
Clear alarm with the RESET key. Restart part program.

61814 [Channel %1:] Block %2: Polar coordinates not possible with cycle
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: --
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61815 [Channel %1:] Block %2: G40 not active
Parameters: %1 = Channel number
%2 = Block number
Definitions: G40 was inactive before the cycle call.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61816 [Channel %1:] Block %2: Axes not on reference point
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: --
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61817 [Channel %1:] Block %2: Axis coordinates within protection zone
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: --
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61818 [Channel %1:] Block %2: Axis range limits are equal
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: --
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: --
Program Continuation: Clear alarm with the RESET key. Restart part program

61900 [Channel %1:] Block %2: Name of program to be generated is missing

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check parameter PRG

Program Continuation: Clear alarm with the RESET key. Restart part program

61901 [Channel %1:] Block %2: Contour %4 does not exist

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check contour call
- Check whether the contours exist in the program storage (workpieces, subroutines or part programs)

Program Continuation: Clear alarm with the RESET key. Restart part program

61902 [Channel %1:] Block %2: Label %4 not existing in the pocket contour

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check whether the labels exist in the pocket contour

Program Continuation: Clear alarm with the RESET key. Restart part program

61903 [Channel %1:] Block %2: Label %4 not existing in the blank contour

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check whether the labels exist in the blank contour

Program Continuation: Clear alarm with the RESET key. Restart part program

61904 [Channel %1:] Block %2: Label %4 not existing in the island contour

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check whether the labels exist in the island contour
Program Continuation: Clear alarm with the RESET key. Restart part program

61905 [Channel %1:] Block %2: Label %4 not existing in the spigot contour
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check whether the labels exist in the spigot contour
Program Continuation: Clear alarm with the RESET key. Restart part program

61906 [Channel %1:] Block %2: Label %4 not existing in the contour
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE64
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check whether the labels exist in the contour
Program Continuation: Clear alarm with the RESET key. Restart part program

61907 [Channel %1:] Block %2: Pocket contour missing
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check contour call
Program Continuation: Clear alarm with the RESET key. Restart part program

61908 [Channel %1:] Block %2: Blank contour missing
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check contour call
Program Continuation: Clear alarm with the RESET key. Restart part program

61909 [Channel %1:] Block %2: Error in pocket contour %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check programming of the pocket contour
Program Continuation: Clear alarm with the RESET key. Restart part program

61910 [Channel %1:] Block %2: Error in the blank contour %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check programming of the blank contour
Program Continuation: Clear alarm with the RESET key. Restart part program

61911 [Channel %1:] Block %2: Error in island contour %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check programming of the island contour
Program Continuation: Clear alarm with the RESET key. Restart part program

61912 [Channel %1:] Block %2: Error in spigot contour %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check programming of the spigot contour
Program Continuation: Clear alarm with the RESET key. Restart part program

61913 [Channel %1:] Block %2: Error in contour %4
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE64
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Check programming of the contour
Program Continuation: Clear alarm with the RESET key. Restart part program

61914 [Channel %1:] Block %2: Too many contours specified
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
61915 [Channel %1:] Block %2: Cutter radius too small
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check the radius of the milling cutter in tool management
Program Continuation: Clear alarm with the RESET key. Restart part program

61916 [Channel %1:] Block %2: Calculation has been cancelled
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Calculation has been cancelled by PI service; please try again
Program Continuation: Clear alarm with the RESET key. Restart part program

61917 [Channel %1:] Block %2: Combination of centering/predrilling and spigot not allowed
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Machining of spigot in conjunction with predrilling/centering not allowed!
Program Continuation: Clear alarm with the RESET key. Restart part program

61918 [Channel %1:] Block %2: Cut. radius for residual mach. must be smaller than cut. radius for ref. tool
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check cutter radius for residual machining which must be smaller than cutter radius for reference tool
Program Continuation: Clear alarm with the RESET key. Restart part program

61919 [Channel %1:] block %2: Radius of the reference tool is too small
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check the radius of the reference tool.

Program Continuation: Clear alarm with the RESET key. Restart part program

61920 [Channel %1:] block %2: System error contour milling %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Call the SIEMENS hotline

Program Continuation: Clear alarm with the RESET key. Restart part program

61930 [Channel %1:] Block %2: No contour available

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check contour call
- Check whether the contours exist in the program storage (workpieces, subroutines or part programs)

Program Continuation: Clear alarm with the RESET key. Restart part program

61931 [Channel %1:] Block %2: Contour not closed

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check whether the contours are closed

Program Continuation: Clear alarm with the RESET key. Restart part program

61932 [Channel %1:] Block %2: Selfcutting contour

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Modify contour programming

Program Continuation: Clear alarm with the RESET key. Restart part program
61933 [Channel %1:] Block %2: Too many contour elements
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Modify contour programming and thereby try to reduce the number of contour elements
Program Con-
continuation:
 Clear alarm with the RESET key. Restart part program

61934 [Channel %1:] Block %2: Programming of the machining plane not
 allowed here
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Modify contour programming
Program Con-
continuation:
 Clear alarm with the RESET key. Restart part program

61935 [Channel %1:] Block %2: Programming of the inch/metric measuring
 system not allowed here
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Modify contour programming
Program Con-
continuation:
 Clear alarm with the RESET key. Restart part program

61936 [Channel %1:] Block %2: G0 is not allowed in contour programming
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Modify contour programming, replace G0 by G1
Program Con-
continuation:
 Clear alarm with the RESET key. Restart part program

61937 [Channel %1:] Block %2: Pocket depth programmed incorrectly
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: - Check parameter Z1
61938 [Channel %1:] Block %2: No starting point specified

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check parameter for specified starting point,
- for G17: XS, YS
- for G18: ZS, XS
- for G19: YS, ZS

61939 [Channel %1:] Block %2: No center point specified for circle

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check contour programming, particularly circular-path programming

61940 [Channel %1:] Block %2: Specified starting point programmed incorrectly

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Correct specified starting point

61941 [Channel %1:] Block %2: Helix radius too small

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions:
Alarm triggered by following cycles: CYCLE63

Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Increase helix radius

61942 [Channel %1:] Block %2: Helix violates contour

Parameters:
%1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check helix radius and reduce in size, if possible
Program Con-
tinuation: Clear alarm with the RESET key. Restart part program

61943 [Channel %1:] Block %2: Approach/retract motion violates contour

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Reduce safety clearance SC, if possible
Program Con-
tinuation: Clear alarm with the RESET key. Restart part program

61944 [Channel %1:] Block %2: Ramp path too short

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check insertion angle, possibly use different insertion mode
- Use tool with smaller radius
Program Con-
tinuation: Clear alarm with the RESET key. Restart part program

61945 [Channel %1:] Block %2: Plane infeed too large, residual corners remaining

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Check parameter for plane infeed
- for G17: DXY
- for G18: DZX
- for G19: DYZ
Program Con-
tinuation: Clear alarm with the RESET key. Restart part program

61946 [Channel %1:] Block %2: Island contour existing twice

Parameters:
%1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycles: CYCLE63, CYCLE64

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: - Delete double island contour
Overview of Alarms

NCK alarms

Program Continuation:
Clear alarm with the RESET key. Restart part program.

61947 [Channel %1:] Block %2: Spigot contour existing twice
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Delete double spigot contour
Program Continuation:
Clear alarm with the RESET key. Restart part program.

61948 [Channel %1:] Block %2: No material available for machining
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check programming of the contours
Program Continuation:
Clear alarm with the RESET key. Restart part program.

61949 [Channel %1:] Block %2: Island is outside the pocket
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63, CYCLE64
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
- Check programming of the island/pocket contour
Program Continuation:
Clear alarm with the RESET key. Restart part program.

61950 [Channel %1:] Block %2: No residual material available
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
--
Program Continuation:
Clear alarm with the RESET key. Restart part program.

61951 [Channel %1:] Block %2: Cutter radius for residual material too large
Parameters:
%1 = Channel number
%2 = Block number, label
Definitions:
Alarm triggered by following cycles: CYCLE63
Reaction:
Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Use cutter with smaller radius
Program Continuation: Clear alarm with the RESET key. Restart part program

61952 [Channel %1:] Block %2: Radius of the residual material cutter too small in relation to the reference cutter
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycles: CYCLE63
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy: - Use a cutter with a larger radius for residual machining
Program Continuation: Clear alarm with the RESET key. Restart part program

62000 [Channel %1:] Block %2: Insert new tool
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Please load new tool.
Remedy: --
Program Continuation: Clear alarm with the Delete key or NC START.

62100 [Channel %1:] Block %2: No drilling cycle active
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No modal drilling cycle has been called before the drilling pattern cycle call. Alarm triggered by following cycles: HOLES1, HOLES2.
Remedy: Check whether a drilling cycle was called prior to calling the drilling pattern cycle.
Program Continuation: Clear alarm with the Delete key or NC START.

62101 [Channel %1:] Block %2: Milling direction incorrect - G3 is generated
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Synchronous or reverse rotation programmed. But the spindle does not rotate at a cycle call.
Remedy: Check value in parameter CDIR.

62102 [Channel %1:] Block %2: pocket not completely solidly machined during finishing
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Reaction: Alarm display.
Remedy: Program Continuation: Clear alarm with the Delete key or NC START.

62103 [Channel %1:] Block %2: No finishing allowance programmed
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: No finishing allowance is programmed, although it is necessary for this machining.
Reaction: Alarm display.
Remedy: Program a finishing allowance.
Program Continuation: Clear alarm with the Delete key or NC START.
62104 [Channel %1:] Block %2: Drilling cycle incorrectly defined
Parameters: %1 = Channel number
%2 = Block number, label
Definitions:
Reaction: Alarm display.
Remedy: Program Continuation: Clear alarm with the Delete key or NC START.

62105 [Channel %1:] Block %2: Number of columns or lines equals zero
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE801.
Remedy: Check parameters _NUM1 and _NUM2.

62106 [Channel %1:] Block %2: incorrect value for monitoring status in tool monitoring
Parameters: %1 = Channel number
%2 = Block number, label
Definitions:
Reaction: Alarm display.
Remedy: Program Continuation: Clear alarm with the Delete key or NC START.

62107 [Channel %1:] Block %2: parameter %4 incorrectly defined for tool monitoring in cycles
Parameters: %1 = Channel number
%2 = Block number, label
Definitions:
Reaction: Alarm display.
Remedy: Program Continuation: Clear alarm with the Delete key or NC START.

62108 [Channel %1:] Block %2: error in function Tool monitoring in cycles
Parameters: %1 = Channel number
%2 = Block number, label
Definitions:
Reaction: Alarm display.
Remedy: Program Continuation: Clear alarm with the Delete key or NC START.

62180 [Channel %1:] Block %2: Set rotary axes %4 [deg]
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE800.
Note on 62180 and 62181: Sample display of the swivel angle to be set for a manual rotary axis in CYCLE800:
62181 "Set rotary axis B: 32.5 [grd]"
Remedy: Settable angles for manual rotary axes.

62181 [Channel %1:] Block %2: Set rotary axis %4 [deg]
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Alarm triggered by following cycle: CYCLE800.
Note on 62180 and 62181:
Sample display of the swivel angle to be set for a manual rotary axis in CYCLE800:
62181 "Set rotary axis B: 32.5 [grd]"

Remedy: Settable angle for manual rotary axis.

62182 [Channel %1:] Block %2: load inclinable head: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: No swivel head is active. Alarm triggered by following cycles: E_TCARR, F_TCARR.

Reaction: Alarm display.

Remedy: Request to load a swivel head.

Program Continuation: Clear alarm with the Delete key or NC START.

62183 [Channel %1:] Block %2: unload inclinable head: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE800.

Reaction: Alarm display.

Remedy: --

Program Continuation: Clear alarm with the Delete key or NC START.

62184 [Channel %1:] Block %2: replace inclinable head: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE800.

Reaction: Alarm display.

Remedy: --

Program Continuation: Clear alarm with the Delete key or NC START.

62185 [Channel %1:] Block %2: angle adapted to angle grid: %4

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: %4 difference angle with Hirth tooth system
Alarm triggered by following cycle: CYCLE800.

Remedy: Check commissioning of swivel CYCLE800.

62186 [Channel %1:] Block %2: No swiveling in JOG -> WO G%4 active and total basic WO (G500) contain rotations

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE800.
On swiveling in JOG no rotation can be written to the work offset WO, if rotations are already contained in the total basic WO or in the basic reference
Error 62186 message can be masked -> see setting data 55410 $SCS_MILL_SWIVEL_ALARM_MASK

Remedy: %4 number of the active work offset WO.

62187 [Channel %1:] Block %2: Swiveling in JOG --> G500 active and total basic WO or basic reference contain rotations

Parameters: %1 = Channel number
%2 = Block number, label

Definitions: Alarm triggered by following cycle: CYCLE800.
During swiveling in JOG, it is not possible to write a rotation into the work offset WO, if, with active G500, rotations are already contained in the total basic WO or in the basic reference
Error message 62187 can be masked -> see setting data 55410 $SCS_MILL_SWIVEL_ALARM_MASK
Remedy: See notes for 62186 and 62187.

62200 [Channel %1:] Block %2: Start spindle
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: Stop prior to thread machining, as the spindle is in stop position. Alarm triggered by following cycles: ASUP, E_TR_CON, F_TR_CON.
Remedy: Start the tool spindle before machining the thread.

62201 [Channel %1:] Block %2: Z offset does not influence the retraction planes.
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: The retraction planes refer to the workpiece. Therefore, programmable offsets do not influence the retraction planes. Alarm triggered by following cycle: F_SP_RP.
Remedy: Ensure that the offset will not cause a collision. Then start the NC. The alarm can be suppressed via display machine data 9898.

62202 [Channel %1:] Block %2: NOTICE: tool travels directly to machining!
Parameters: %1 = Channel number
%2 = Block number, label
Definitions: After block search a position is to be reached by direct approach. Alarm triggered by following cycle: F_TFS.
Remedy: Check whether the desired position can be reached without collision. Then execute an NC start.

62300 [Channel %1:] Block %2: Check number of empirical value memory
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: --
Reaction: Alarm display.
Remedy: Check setpoint value
Program Continuation: Clear alarm with the Delete key or NC START.

62303 [Channel %1:] Block %2: Safety margin exceeded
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: Alarm can be triggered by following measuring cycles: all measuring cycles.
Remedy: - Check setpoint value and parameter _TSA

62304 [Channel %1:] Block %2: Allowance
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994.
Reaction: Alarm display.
Remedy: The difference between actual and setpoint value is larger than upper tolerance limit (parameter _TUL).
Program Continuation: Clear alarm with the Delete key or NC START.

62305 [Channel %1:] Block %2: Dimension too small
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycles: CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE994
62306 [Channel %1:] Block %2: Permissible measuring difference exceeded

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE971, CYCLE972, CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE982, CYCLE994

Remedy:
The difference between actual and setpoint value is smaller than lower tolerance limit (parameter _TLL).

62307 [Channel %1:] Block %2: Maximum number of characters per line exceeded.

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE971, CYCLE972, CYCLE974, CYCLE977, CYCLE978, CYCLE979, CYCLE982, CYCLE994

Remedy:
The difference between actual and setpoint value is larger than tolerance parameter _TDIF, tool data are not corrected.

62308 [Channel %1:] Block %2: Variable column width not possible

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE105.

Remedy:
Increase the value in _PROTFORM[1]

62309 [Channel %1:] Block %2: Insufficient column width

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE105.

Remedy:
Adjust _PROTFORM[5] or change the header at variable column width.

62310 [Channel %1:] Block %2: The max. number of characters per line is limited to 200 characters per line

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
Alarm triggered by following cycles: CYCLE105.
The maximum number of characters per line has been limited to 200 characters per line.

Remedy:

62311 [Channel %1:] Block %2: The maximum number of characters per line _PROTFORM[1] is adjusted.

Parameters:
- %1 = Channel number
- %2 = Block number, label channel number

Definitions:
The alarm is triggered by the following cycles: CYCLE105
Max. number of characters per line _PROTFORM[1] has been adjusted.

Remedy:

Program Continuation:
Clear alarm with the Delete key or NC START.
62312 [Channel %1:] Block %2: probe is not perpendicular to plane!
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions:
Reaction: Alarm display.
Remedy: Clear alarm with the Delete key or NC START.
Program Con-
tinuation:

62313 [Channel %1:] Block %2: The number of lines per page _PROTFORM[0]
is incorrect and is automatically adjusted.
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: Alarm triggered by following cycle: CYCLE106.
Remedy: Check _PROTFORM[0] in the program.

62314 [Channel %1:] Block %2: Traverse path limitation via software end
 position, collision detection activated, continue with NC START / cancel
 with RESET.
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE977
Remedy: Position the workpiece to be measured further away from the software end positions.

62315 [Channel %1:] Block %2: Overwrite swivel data record TCARR = %4, yes
 -> NC start, no -> reset
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE996
Remedy:

62316 [Channel %1:] Block %2: Overwrite TRAORIdata, yes -> NC start, no ->
 reset
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE996
Remedy:

62317 [Channel %1:] Block %2: Tolerance of the linear vector %4 exceeded
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE996
Remedy:

62318 [Channel %1:] Block %2: Tolerance of the rotary axis vector %4 exceeded
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: The alarm is triggered by the following cycle: CYCLE996
Remedy:

62335 [Channel %1:] Block %2: No internal correction of the calibration data
Parameters: %1 = Channel number
 %2 = Block number, label channel number
Definitions: Alarm triggered by the following cycles: CYCLE961, CYCLE977, CYCLE978, CYCLE979,
 CYCLE996, CYCLE997, CYCLE998
Remedy: Check probe alignment/spindle position!
The alignment (programmed position) of the tool probe in the workspindle must be identical during calibration and measuring!
If these positions vary, the calibration data cannot be corrected cycle-internally with regards to a coordinate rotation of the workplane around the infeed axis!

62500 [Channel %1:] Block %2: GWPS has been limited
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE446
Remedy: Check limit value for GWPS and program a lower value in the NC program if necessary
Program Continuation: Clear alarm with the Delete key or NC START.

62501 [Channel %1:] Block %2: Speed has been limited
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE446
Remedy: Check limit value for speed and program a lower value in the NC program if necessary
Program Continuation: Clear alarm with the Delete key or NC START.

62502 [Channel %1:] Block %2: Dresser %4, GWPS has been limited
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE421
Remedy: Check limit value for GWPS and program a lower value in the NC program if necessary
Program Continuation: Clear alarm with the Delete key or NC START.

62503 [Channel %1:] Block %2: Dresser %4, speed has been limited
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions: The alarm can be triggered by the following grinding cycle: CYCLE421
Remedy: Check limit value for speed and program a lower value in the NC program if necessary
Program Continuation: Clear alarm with the Delete key or NC START.

62999 [Channel %1:] Block %2:
Parameters: %1 = Channel number
%2 = Block number, label channel number
Definitions:
Remedy:
Program Continuation: Clear alarm with the Delete key or NC START.
75000 [Channel %1:] CLC: incorrect MD configuration, error code: %2

Definitions:
On ramp-up the following error was found in the clearance control machine data:

Error code = -1: The intermediate points of one of the two sensor characteristics are not rising or falling strictly monotonously.

Error code = -2: One of the two sensor characteristics has less than 2 valid intermediate points.

Error code = -3: One of the two sensor characteristics has more than 5 intermediate points with negative velocity or more than 5 intermediate points with positive velocity.

Error code = -4: The digital input for sensor collision monitoring as set in MD $MC_CLC_SENSOR_TOUCHED_INPUT has not been activated on the control (10350 $MN_FASTIO_DIG_NUM_INPUTS).

Error code = -5: No rapid input was assigned to the special function "Fast retraction in the position controller" via MD $MC_CLC_SENSOR_TOUCHED_INPUT.

Error code = -6: The axis selected for the clearance control in MD $MC_CLC_AXNO is not active in the channel.

Error code = -7: The 5-axis transformation (24100 $MC_TRAFO_TYPE_x) selected for the clearance control in MD $MC_CLC_AXNO is not configured in the channel.

Error code = -8: More than one of the axes involved in the clearance control is the master axis of a gantry grouping 37100 $MA_GANTRY_AXIS_TYPE.

Error code = -9: One of the axes involved in the clearance control is the slave axis of a gantry grouping 37100 $MA_GANTRY_AXIS_TYPE.

Error code = -10: Export versions will only enable activation of an axial clearance control, if less than four simultaneously interpolating axes have been configured.

Error code = -11: In MD $MC_CLC_PROG_ORI_AX_MASK, no or three axes exactly may be configured for CLC(3). When three axes are configured, these must be assigned to the channel with $MC_AXCONF_MACHAX_USED.

Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Alarm display.

Remedy: Modify relevant machine data

Program Continuation: Switch control OFF - ON.

75005 [Channel %1:] CLC: block %2 General programming error

Parameters: %1 = Channel number
%2 = Block number

Definitions:
The activation / deactivation command for the clearance control "CLC(,..)" accepts only the values 3, 2, 1, 0 and -1 as call parameters. This alarm signals that parameters are incorrect or missing. The activation command CLC(2) with monitoring of the sensor collision signal is accepted only if a valid digital input is configured for the monitoring signal in MD $MC_CLC_SENSOR_TOUCHED_INPUT.

Reaction: Interpreter stop
Alarm display.

Remedy: Modify part program. Configure the digital input for the collision evaluation in MD if necessary.

Program Continuation: Clear alarm with the RESET key. Restart part program.

75010 [Channel %1:] CLC: block %2 CLC_LIM value exceeds MD limit

Parameters: %1 = Channel number
%2 = Block number

Definitions:
One of the limits for the position offset of the clearance control programmed with CLC_LIM(...) is greater than the permissible limitation set in the associated MD $MC_CLC_SENSOR_LOWER_LIMIT[1] or $MC_CLC_SENSOR_UPPER_LIMIT[1].

Reaction: Interpreter stop
Alarm display.

Remedy: Modify parts program. Extend limitation in appropriate machine date.

Program Continuation: Clear alarm with the RESET key. Restart part program.

75015 [Channel %1:] CLC: block %2 CLC(0) with active TOC

Parameters: %1 = Channel number
%2 = Block number
Definitions: The 3D clearance control has been switched off with CLC(0) while tool radius compensation is still active (G41/G42). Since CLC(0) empties the internal block buffer and accepts the current traversed position offset of the clearance control as a "contour jump" in the interpreter, TRC must be deactivated when this command is issued.

Reaction: Interpreter stop
Alarm display.

Remedy: Modify part program: Switch off active G41/G42 before CLC(0) or do not switch off clearance control, but just "freeze" temporarily (CLC_GAIN=0.0) or cancel the position offset mechanically with CLC(-1).

Program Continuation: Clear alarm with the RESET key. Restart part program.

75016
[Channel %1:] CLC: block %2 orientation changed for TRAFOOF

Parameters: %1 = Channel number
%2 = Block number

Definitions: 1. The 2D/3D clearance control has been switched off before the transformation. The tool direction according to G17/G18/G19 has been applied as the control direction. Switching on the transformation with rotary axis settings that define a different tool orientation requires an orientation step change and is therefore rejected.
2. The transformation has been switched off temporarily (TRAFOOF) while clearance control is still active. When the transformation is switched on again, the tool orientation must be the same as when it was switched off, i.e. the rotary axes must not be moved while the transformation is deactivated.

Reaction: NC Start disable in this channel.
Alarm display.
NC Stop on alarm.

Remedy: Modify part program: Do not switch on the clearance control until the transformation is already active or make sure that the required conditions relating to orientation are observed.

Program Continuation: Clear alarm with the RESET key. Restart part program.

75018
[Channel %1:] CLC: block %2 in programmable direction, error ID: %3

Parameters: %1 = Channel number
%2 = Block number
%3 = Error ID

Definitions: The subfunction of the 3D clearance control programmed with CLC(3) "Closed-loop control in programmable direction" reports an error:
Error ID:
0:CLC(3) was programmed without having set the corresponding option bit or without having entered an axis screen with three validly configured, simulated axes in MD $MC_CLC_PROG_ORI_AX_MASK.
1:The plane in which the closed-loop control direction is to be re-oriented, has not been defined. Probably, two directions programmed one after the other, are anti-parallel.

Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Modify MD or the part program.

Program Continuation: Clear alarm with the RESET key in all channels. Restart part program.
75019 [Channel %1:] CLC: error ID: %2, angle %3
Parameters:
%1 = Channel number
%2 = Error ID
%3 = Angle
Definitions:
The subfunction of the 3D clearance control programmed with CLC(3)
"Closed-loop control in programmable direction" reports an error:
Error ID:
1.The clearance control direction has not been defined. Probably, [0,0,0] has been
programmed for the three simulated axes specifying the direction components.
In the "angle" parameter, zero is output.
2.The max. permissible angle between the orientation of the blast tool and
the programmed control direction was exceeded.
The permissible angle is set in machine data $MC_CLC_PROG_ORI_MAX_ANGLE.
The angle triggering the alarm is output in the 3rd alarm parameter.
Reaction:
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy:
Enlarge the monitoring angle or modify the programming in the part program.
Program Continuation:
Clear alarm with the RESET key. Restart part program

75020 [Channel %1:] CLC: position offset at lower limit %2
Parameters:
%1 = Channel number
%2 = Limit value
Definitions:
The position offset generated by the overlaid motion has reached the limit set in MD
$MC_CLC_SENSOR_LOWER_LIMIT or programmed with CLC_LIM(......).
Depending on the setting in bit 0 of MD $MC_CLC_SPECIAL_FEATURE_MASK the following cancel
criterion applies:
Bit 0 = 0: Cancel key
Bit 0 = 1: Reset key
Reaction:
NC Start disable in this channel.
Alarm display.
NC Stop on alarm.
Remedy:
Check position and form of the workpiece. If necessary, program further limits.
Program Continuation:
Clear alarm with the Delete key or NC START.

75021 [Channel %1:] CLC: position offset at upper limit %2
Parameters:
%1 = Channel number
%2 = Limit value
Definitions:
The position offset generated by the overlaid motion has reached the limit set in MD
$MC_CLC_SENSOR_UPPER_LIMIT or programmed with CLC_LIM(......).
Depending on the setting in bit 1 of MD $MC_CLC_SPECIAL_FEATURE_MASK the following cancel
criterion is active:
Bit 1 = 0: Cancel key
Bit 1 = 1: Reset
Reaction:
NC Start disable in this channel.
Alarm display.
NC Stop on alarm.
Remedy:
Check position and form of the workpiece. If necessary, program further limits.
Program Continuation:
Clear alarm with the Delete key or NC START.
75025 [Channel %1:] CLC: stopped because sensor head has been touched
Parameters: %1 = Channel number
Definitions: The collision monitor of the sensor tip has signaled "Sensor touched". A retraction motion to the upper limit of the position offset ($MC_CLCSENSOR_UPPER_LIMIT) is started using the max available velocity and acceleration reserves. The feedrate override setting has no effect on this retraction motion. The path motion is stopped at the same time.
Reaction: Alarm display.
NC Stop on alarm.
Remedy: The part program can be continued with NC start. The overlaid motion then returns to the control distance.
Program Continuation: Clear alarm with the Delete key or NC START.

75050 [Channel %1:] MCSC: wrong MD configuration, error code %2
Parameters: %1 = Channel number
%2 = Error code
Definitions: Incorrect configuration in MD $MA_CC_MASTER_AXIS
Error code = 2: This axis indicated in the alarm message or the CC_Master axis is a spindle.
Error code = 4: Coupling between rotary and linear axes impermissible.
Error code = 8: Coupled axes must not be exchanged between channels.
Reaction: Interpreter stop
Alarm display.
Remedy: Check machine data.
Program Continuation: Clear alarm with the RESET key. Restart part program

75051 [Channel %1:] MCSC: CC_COPON CC_COPOFF error code %2
Parameters: %1 = Channel number
%2 = Error code
Definitions: Error code = 1: Wrong argument programmed
Error code = 10: An axis for which no coupling has been defined, was programmed in CC_COPON (axis identifier).
Error code = 20: Too many arguments programmed.
Error code = 100: Internal error
Error code = 200: Internal error
Reaction: Interpreter stop
Alarm display.
Remedy: Modify part program.
Program Continuation: Clear alarm with the RESET key. Restart part program

75060 [Channel %1:] MCSC: tolerance window exceeded axis %2
Parameters: %1 = Channel number
%2 = Axis name
Definitions: The actual position value difference between the CC_Slave axis indicated in the alarm message and its CC_Master axis is outside the configured tolerance window.
Reaction: NC Start disable in this channel.
Alarm display.
NC Stop on alarm.
Remedy: Check configured tolerance window.
Compare dynamic settings of involved axes.
Check mechanical components of axes.
Program Continuation: Clear alarm with the RESET key. Restart part program
75061 [Channel %1:] MCSC: MD modification on active coupling axis %2
Parameters: %1 = Channel number
%2 = Axis name
Definitions: Machine data MD 63000 CC_MASTER_AXIS has been changed when the coupling was active.
Reaction: Alarm display.
NC Stop on alarm.
Remedy: Reset machine data to its old value, switch off the coupling and then enter the new value.
Program Continuation: Clear alarm with the RESET key. Restart part program

75062 [Channel %1:] MCSC: axes to be coupled are not in standstill axis %2
Parameters: %1 = Channel number
%2 = Axis name
Definitions: The CC_Master and/or CC_Slave axes were not at standstill when the coupling was switched on.
Reaction: Alarm display.
NC Stop on alarm.
Remedy: Input G601 for path axes or program a stop preprocessor (STOPRE) before coupling with CC_COPON.
Program Continuation: Clear alarm with the RESET key. Restart part program

75070 [Channel %1:] MCSC: wrong machine data for collision protection axis %2
Parameters: %1 = Channel number
%2 = Axis name
Definitions: Incorrect machine data for collision protection.
Reaction: Interpreter stop
Alarm display.
Remedy: Correct machine data. The axes must be either both rotary axes or both linear axes!
Program Continuation: Clear alarm with the RESET key. Restart part program

75071 [Channel %1:] MCSC: collision monitoring axis %2
Parameters: %1 = Channel number
%2 = Axis name
Definitions: The collision monitor has responded because the deceleration precomputation has detected that the distance between the axes has fallen below the configured distance.
Reaction: Alarm display.
NC Stop on alarm.
Remedy: Traverse the axis out of the danger area in manual mode.
Program Continuation: Clear alarm with the RESET key. Restart part program

75090 Axis %1 stopped by external process monitoring system
Parameters: %1 = Axis number
Definitions: An external process monitoring system has stopped the axis, as tool breakage is to be expected or has already occurred.
Reaction: The NC switches to follow-up mode.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Change current tool, if required.
Program Continuation: Clear alarm with the RESET key. Restart part program
75200 [Channel %1:] RCTR: incorrect MD configuration, error in MD: %2
Parameters:
%1 = Channel number
%2 = MD name
Definitions:
The following error was detected in the handling transformation machine data:
TRAFO6_TIRORO: The orientation entered in MD TRAFO6_TIRORO_RPY is impermissible.
TRAFO6_TFLWP: The orientation entered in MD TRAFO6_TFLWP_RPY is impermissible.
TRAFO6_TX3P3: The orientation entered in MD TRAFO6_TX3P3_RPY is impermissible.
TRAFO6_MAIN_LENGTH_AB: The value entered in MD TRAFO6_MAIN_LENGTH_AB is incorrect.
Reaction:
Channel not ready.
Alarm display.
Remedy:
Correct machine data.
Program Continuation:
Switch control OFF - ON.

75210 [Channel %1:] RCTR: number of axes/axis assignment inconsistent
Parameters:
%1 = Channel number
Definitions:
On transformation selection an incorrect axis assignment is detected:
The axes entered in MD TRAFO_AXES_IN_1 do not match MD TRAFO6_NUM_AXES.
Reaction:
Interpreter stop
Alarm display.
Remedy:
Correct machine data.
Program Continuation:
Clear alarm with the RESET key. Restart part program

75212 [Channel %1:] RCTR: incorrect TRAFO_TYPE_x: use 4100
Parameters:
%1 = Channel number
Definitions:
The transformer type entered in MD TRAFO_TYPE_x is incorrect
Reaction:
Interpreter stop
Alarm display.
Remedy:
TRAFO_TYPE 4100 is to be used
Program Continuation:
Clear alarm with the RESET key. Restart part program

75214 [Channel %1:] RCTR: MD cannot be changed while transformation active.
Parameters:
%1 = Channel number
Definitions:
An attempt has been made to modify machine data of an active transformation via NEWCONF.
This is not permissible, because a change to the machine data directly affects the current axis position, which is transformed from the basic coordinate system into the machine coordinate system in real time. Changing the transformation data during an active transformation would cause the axis positions to jump.
Reaction:
Interpreter stop
Alarm display.
Remedy:
Switch off transformation with TRAFOOF before the machine data is taken over by means of NEWCONF.
Program Continuation:
Clear alarm with the RESET key. Restart part program

75250 [Channel %1:] RCTR: tool parameters incorrect interpreter
Parameters:
%1 = Channel number
Definitions:
On block interpretation incorrect tool parameters are detected:
Reaction:
Interpreter stop
Alarm display.
Remedy:
Correct tool parameters.
Program Continuation:
Clear alarm with the RESET key. Restart part program
75255 [Channel %1:] RCTR: unreachable position interpreter
Parameters: %1 = Channel number
Definitions: On block interpretation a non-approachable position is detected:
Reaction: Interpreter stop
 Alarm display.
Remedy: Modify part program.
Program Continuation:
 Clear alarm with the RESET key. Restart part program

75260 [Channel %1:] RCTR: block: %2, tool parameters incorrect on block editing
Parameters: %1 = Channel number
 %2 = Block number
Definitions: On block editing incorrect tool parameters are detected:
Reaction: Interpreter stop
 Local alarm reaction.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Correct tool parameters.
Program Continuation:
 Clear alarm with the RESET key. Restart part program

75265 [Channel %1:] RCTR: block: %2, unreachable position on block editing
Parameters: %1 = Channel number
 %2 = Block number
Definitions: On block editing a non-approachable position is detected:
Reaction: Interpreter stop
 Local alarm reaction.
 NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Continuation:
 Clear alarm with the RESET key. Restart part program

75270 [Channel %1:] RCTR: tool parameters incorrect on interpolation
Parameters: %1 = Channel number
Definitions: On interpolation incorrect tool parameters are detected:
Reaction: NC Start disable in this channel.
 Alarm display.
 NC Stop on alarm.
Remedy: Correct tool parameters.
Program Continuation:
 Clear alarm with the RESET key. Restart part program

75273 [Channel %1:] RCTR: Transformation violates software limit switch
Parameters: %1 = Channel number
Definitions: A violation of the software limit switch of an axis has been detected while traversing with transformation active in JOG mode.
Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
 NC Stop on alarm.
Remedy: JOG traverse in opposite direction.
Program Continuation:
 Clear alarm with the RESET key. Restart part program
75274 [Channel %1:] RCTR: Excessive velocity near pole, error code %2
Parameters: %1 = Channel number
%2 = Error code
Definitions: Excessive velocity of the machine axes involved can occur when traversing near the pole with active transformation, especially in JOG mode. The alarm is triggered if excessive velocity or acceleration occurs for an output axis of the transformation (MCS).
Error code:
0: Position jump
1: Excessive velocity
2: Excessive acceleration
Reaction: NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Reduce velocity. Avoid JOG traverse near pole.
Program Continuation: Clear alarm with the RESET key. Restart part program

75275 [Channel %1:] RCTR: block: %2, unreachable position on interpolation
Parameters: %1 = Channel number
%2 = Block number
Definitions: On block interpolation a non-approachable position is detected:
Reaction: NC Start disable in this channel.
Alarm display.
NC Stop on alarm.
Remedy: Modify part program.
Program Continuation: Clear alarm with the RESET key. Restart part program

75500 [Channel %1:] HSLC: Configuration error ID=%2
Parameters: %1 = Channel number
Definitions: The function CC_FASTON or CC_FASTON_CONT cannot be executed because the following MD configuration is incorrect:
ID=2: The NCK system function "Timer-controlled cam signal output" (see Description of Functions "Software cams, Position switching signals (N3)") is configured with machine data MD 10480 $MN_SW_CAM_TIMER_FASTOUT_MASK > 0 at the same time as the function HSLC. As there is only one hardware timer on the NCU, only one of the two functions can be used.
ID=4: Programming CC_FASTON and CC_FASTON_CONT requires internal block memory:
In order to activate the compile cycle CCHSLC, the entries have to be increased in the following machine data:
MD 28090 $MC_MM_NUM_CC_BLOCK_ELEMENTS by 1 element
MD 28100 $MC_MM_NUM_CC_BLOCK_USER_MEM by 2 [KB]
Reaction: Alarm display.
Remedy: Modify the stated MD settings
Program Continuation: Clear alarm with the RESET key. Restart part program
75501 [Channel %1:] HSLC: CC_FASTON_CONT velocity too high
Parameters: %1 = Channel number
Definitions: The path-related switching signal output switched on by the part rogramm command
CC_FASTON_CONT(PATH_DISTANCE_ON, PATH_DISTANCE_OFF)
cannot output all switching signals correctly at the current velocity.
Reason: A maximum of one switching edge can be output per IPO cycle (see $MN_IPO_CYCLE_TIME).
The current path velocity is so high that there is more than one switching edge to be output within one path
distance PATH_DISTANCE_ON or PATH_DISTANCE_OFF.
Example:
IPO cycle = 2ms (position-control cycle = 1ms)
PATH_DISTANCE_ON = 0.667
PATH_DISTANCE_OFF = 0.667
Maximum path velocity in which no switching edges are lost: 20000 mm/min
When alarm 75501 occurs, the function skips the output of two successive switching edges. This does
not affect the position of subsequent switching edges.
Note: Whether the omission of a signal from the previous switching signal leaves a high or low level
present, is purely coincidental.
Reaction: Alarm display.
Remedy: - Lengthen the operating travels programmed in the command CC_FASTON_CONT
- Program the path velocity or reduce it with the override switch
- Set a shorter IPO cycle (machine manufacturer only)
Program Con-
tinuation: Clear alarm with the Delete key or NC START.

75600 [Channel %1:] RESU: wrong MD configuration. Error code %2
Parameters: %1 = Channel number %2 = Error code
Definitions: The following errors were detected in the machine data of the retrace support function when ramping
up:
Error code = 4 : Machine date $MC_MM_NUM_CC_BLOCK_ELEMENTS or
$MC_MM_NUM_CC_BLOCK_USER_MEM must be increased.
Error code = 5 : Insufficient heap memory for compile cycles available. Adjust machine data
$MC_RESU_RING_BUFFER_SIZE, $MC_RESU_SHARE_OF_CC_HEAP_MEM and
$MC_MM_NUM_CC_HEAP_MEM.
Error code = 6 : The machine data $MN_ASUP_START_MASK and
$MN_ASUP_START_PRIO_LEVEL are not set correctly.
Error code = 11: Machine data $MC_AXCONF_GEOAX_NAME_TAB[n],
$MN_INTERMEDIATE_POINT_NAME_TAB[n] and $MN_IPO_PARAM_NAME_TAB[n] are not set
correctly for RESU:
Error code = 13: With bit 2 = 0 of MD $MC_RESU_SPECIAL_FEATURE_MASK it was specified that
the retraction program cc_resu.mpf is to be stored in the DRAM parts program memory. However, no
DRAM parts program memory was requested via MD $MN_MM_DRAM_FILE_MEM_SIZE. Remedy:
Either set MD $MN_MM_DRAM_FILE_MEM_SIZE to a value inequal to zero or set bit 2 of MD
$MC_RESU_SPECIAL_FEATURE_MASK equal to one.
Reaction: Mode group not ready.
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Correct machine data.
Program Con-
tinuation: Switch control OFF - ON.
75601 [Channel %1:] RESU: block %2 invalid parameter in CC_PREPRE()
Parameters: %1 = Channel number
 %2 = Block number, label
Definitions: Only the values <arg> = -1 0 or 1 are valid parameters for programming CC_STOPRE(<arg>).
Reaction: Interpreter stop
 Interface signals are set.
 Alarm display.
Remedy: Modify part program.
Program Con-
 Clear alarm with the RESET key. Restart part program

75604 [Channel %1:] RESU: Return traveling not possible, error code %2
Parameters: %1 = Channel number
 %2 = Error code
Definitions: Return traveling is not possible, as the following error was detected:
 Error code = 1 : The current reverse block for return traveling is likely to be a block of cc_resu_ini.spf
 or cc_resu_end.spf programmed with a block number. It is impermissible to program block numbers
 in the subroutines cc_resu_ini.spf and cc_resu_end.spf, as they have an internal meaning.
 Error code = 2 : Unable to create cc_resu.mrp, as DRAM is insufficient.
 Error code = 4 : The selected continuation block is likely to be a block of cc_resu_ini.spf or
 cc_resu_end.spf programmed with block number. It is impermissible to program block numbers in the
 subroutines cc_resu_ini.spf and cc_resu_end.spf, as they have an internal meaning.
Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: Error code = 1 or 4 : Remove all block numbers from cc_resu_ini.spf and cc_resu_end.spf and their
 subroutines.
 Error code = 2 : Assign a higher value to machine date $MN_MM_DRAM_FILE_MEM_SIZE.
Program Con-
 Clear alarm with the RESET key. Restart part program

75605 [Channel %1:] RESU: internal error, error code %2
Parameters: %1 = Channel number
 %2 = Error code
Definitions: With this alarm, RESU-internal error states are displayed which, together with the transferred error
 number, provide information on the error cause and error location.
Reaction: NC Start disable in this channel.
 Interface signals are set.
 Alarm display.
Remedy: If this error occurs, please contact us on the SINUMERIK Hotline of the SIEMENS AG, specifying the
 error number.
Program Con-
 Clear alarm with the RESET key. Restart part program

75606 [Channel %1:] RESU: retraceable contour was shortened
Parameters: %1 = Channel number
Definitions: The block search buffer is full. Therefore the retraceable contour had to be shortened.
Reaction: Alarm display.
Remedy: This alarm has no effect on the current machining. If the alarm continues to occur frequently, the rea-
 son should be eliminated: adjust machine data $MC_RESU_RING_BUFFER_SIZE,
 $MC_RESU_SHARE_OF_CC_HEAP_MEM and $MC_MM_NUM_CC_HEAP_MEM.
Program Con-
 Clear alarm with the Delete key or NC START.
75607 [Channel %1:] RESU: resynchronisation not possible
Parameters:
%1 = Channel number
Definitions: The block search triggered by the compile cycle has been terminated with an error. It can have the following cause: The control is not in the correct operating mode, e.g. in JOG_ AUTO instead of in AUTO.
Reaction: Interface signals are set.
Alarm display.
Remedy: Switch the control to the AUTO operating mode and restart resynchronisation.
Program Continuation: Clear alarm with the Delete key or NC START.

75608 [Channel %1:] RESU: NC memory limit reached, RAM type %2
Definitions: A memory limit was reached on writing to file cc_resu.mpf. The possible area for return traveling is shortened.
RAM type = 1: File cc_resu.mpf is created in the buffer memory (SRAM). The buffer memory is therefore full. If the buffer memory is used and if alarm 75608 with RAM type 1 is output, system alarm 6500 will be output simultaneously.
RAM type = 2: The memory limit was reached on creating file cc_resu.mpf in the dynamic memory (DRAM part program memory).
Reaction: Alarm display.
Remedy: RAM type = 1: Increase size of buffer memory ($MN_MM_USER_MEM_BUFFERED) or the available space in the buffer memory, e.g. by unloading unused parts programs. Alternatively the ring buffer can be decreased via MD $MC_RESU_RING_BUFFER_SIZE.
Program Continuation: Clear alarm with the Delete key or NC START.

75609 [Channel %1:] RESU: POS axis not permitted, axis type %2, block no. %3
Parameters:
%1 = Channel number
%2 = Axis type
%3 = Block number
Definitions: A geometry axis is traversed as a positioning axis with CC_PREPRE active. This programming is not permissible.
Reaction: Interpreter stop
NC Start disable in this channel.
Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: In order to traverse a geometry axis as positioning axis, RESU must be switched off temporarily (with CC_PREPRE(0)) or completely. In order to make the internal axis state change from the geometry axis as positioning axis after traversing, a block without traveling motion must be programmed, if required: e.g. X=IC(0)
Program Continuation: Clear alarm with the RESET key. Restart part program

75610 [Channel %1:] RESU: NC start currently not possible
Definitions: While RESU is active, no NC START must be performed in certain situations. If NC START is confirmed nevertheless, execution will be blocked and alarm 75610 will be displayed. This applies in the following situations:
- On requesting return traveling: NC START is blocked when return traveling program cc_resu.mpf has been created and selected.
- After having triggered continuation under NC STOP condition: as long as the internally started block search or the finally started Asup cc_resu bs_asup.spf is running.
Reaction: Interface signals are set.
Alarm display.
Remedy: Wait for completion of the current internal procedure. Then delete the alarm with NC START and continue
Program Continuation: Clear alarm with NC START or RESET key and continue the program.
75651 [Channel %1:] PROT: Incorrect configuration no. %2
Parameters: %1 = Channel number
%2 = Error code
Definitions: Invalid configuration of the axis collision protection PROT
Significance of the displayed error numbers:
1: The axes of one pair are not of the same axis type (linear / rotary axis)
2: A selected axis pair includes an axis not activated in any channel
8: In the assignment $MN_CC_PROTECT_PAIRS[n] only one axis was entered
16: MD $MN_CC_PROTECT_SAFE_DIR[n] or $MN_CC_PROTECT_OFFSET[n] were changed in active collision monitoring
32: The current position difference between the axes to be monitored is smaller than the monitoring window $MN_CC_PROTECT_WINDOW[n]
Reaction: Mode group not ready.
Interface signals are set.
Alarm display.
Remedy: Still missing
Program Continuation: Clear alarm with the RESET key. Restart part program

75653 [Channel %1:] PROT: Collision protection stops axis %2
Parameters: %1 = Channel number
%2 = Axis number
Definitions: The axis collision protection function PROT has detected a risk of collision, and stopped the critical axes.
Reaction: Interface signals are set.
Alarm display.
NC Stop on alarm.
Remedy: Retract axis in JOG. Modify part program if necessary.
Program Continuation: Clear alarm with the RESET key. Restart part program
2.2 HMI-Alarms

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Parameters</th>
<th>Definitions</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>100001</td>
<td>Function %1 not yet implemented!</td>
<td>%1 = --</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100002</td>
<td>MS DOS test version!</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100003</td>
<td>Test version only!</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100004</td>
<td>Function %1 not yet finally implemented!</td>
<td>%1 = --</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100006</td>
<td>Block stored</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100007</td>
<td>Program stored</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100008</td>
<td>Cannot save</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100009</td>
<td>Error in tk_getHandle</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100010</td>
<td>Error in task communication</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100011</td>
<td>Incorrect NCK version</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100012</td>
<td>Configuration error: %1, %2</td>
<td>%1 = --</td>
<td>%2 = --</td>
<td>--</td>
</tr>
<tr>
<td>100013</td>
<td>Selected program already opened by another application</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>100014</td>
<td>No operating area configured for this access level</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
100015 Error in '%1' : %nlog file : %2
Parameters: %1 = --
 %2 = --
Definitions: --
Remedy: --

100099 Additional value
Definitions: --
Remedy: --

100100 Record length %1 reached
Parameters: %1 = --
Definitions: --
Remedy: --

100101 No dynamic memory available
Definitions: --
Remedy: --

100102 Buffer limit for selection reached
Definitions: --
Remedy: --

100103 Area disabled for input
Definitions: --
Remedy: --

100104 Buffer is empty
Definitions: --
Remedy: --

100105 Search string '%1' not found
Parameters: %1 = --
Definitions: --
Remedy: --

100106 Error on saving
Definitions: This message will be displayed on editing a file (part program), if a memory operation could not be
 performed correctly.
Reaction: Alarm display.
Remedy: If there is no memory space left in the NCK, it will not be possible to save anything. Other contents
 (files, programs) must be deleted.
 If the error occurs when the program is started immediately after the change, the changes will not
 become effective. The program should be stopped immediately. The change must be repeated and
 the program must be started after a small delay (approx. 1 sec.).
 If the error occurs when a program is changed during execution, only a program reset will help.

100107 Error on opening %1
Parameters: %1 = --
Definitions: --
Remedy: --

100108 Write access not allowed in this state
Definitions: --
Remedy: --

100109 No block marked
Definitions: --
Remedy: --
100110 Read access not allowed in this state
Definitions: --
Remedy: --

100111 Actual changes not yet effective
Definitions: --
Remedy: --

100112 Search string '%1' found
Parameters: %1 = --
Definitions: --
Remedy: --

100113 Search string '%1' replaced by '%2'
Parameters: %1 = --
%2 = --
Definitions: --
Remedy: --

100114 Please wait, storing program (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

100115 Please wait, flashing file %1 !!!
Parameters: %1 = --
Definitions: --
Remedy: --

100116 Please wait, selected group is being copied!
Definitions: --
Remedy: --

100117 Please wait, selected group is being deleted!
Definitions: --
Remedy: --

100118 'Skip blocks' ignored for this file!
Definitions: --
Remedy: --

100119 Please wait, copied data is being inserted!
Definitions: --
Remedy: --

100120 Value is too large for%nfield %1
Parameters: %1 = --
Definitions: --
Remedy: --

100121 Value is too small for%nfield %1
Parameters: %1 = --
Definitions: --
Remedy: --

100122 No input rights
Definitions: --
Remedy: --
100123 Invalid character %1
Parameters: %1 = --
Definitions: --
Remedy: --

100124 Above number range %n%1
Parameters: %1 = --
Definitions: --
Remedy: --

100125 Below number range %n%1
Parameters: %1 = --
Definitions: --
Remedy: --

100126 Division by 0
Definitions: --
Remedy: --

100130 Display editing suppressed
Definitions: --
Remedy: --

100131 MACRO nesting > 10! MACRO (%1) is ignored.
Parameters: %1 = --
Definitions: --
Remedy: --

100132 Pocket calculator mode active - see info
Definitions: --
Remedy: --

100133 Maximum input length reached
Definitions: --
Remedy: --

100134 Sign change - position of cursor changed!
Definitions: --
Remedy: --

100135 Value too large for display field -> input ignored
Definitions: --
Remedy: --

100136 Value too small for display field -> input ignored
Definitions: --
Remedy: --

100137 Tolerance not implemented: %1
Parameters: %1 = --
Definitions: --
Remedy: --

100140 Please wait, reading file. (%1)
Parameters: %1 = --
Definitions: --
Remedy: --
100141 Please wait, storing file (%1)
Parameters: %1 = --
Definitions: --
Remedy: --

100142 Error on opening the file!
Definitions: --
Remedy: --

100143 Error on reading the file!
Definitions: --
Remedy: --

100144 Error on saving the file
Definitions: --
Remedy: --

100145 File was stored without error!
Definitions: --
Remedy: --

100146 Block marking is active, no changes possible!
Definitions: --
Remedy: --

100150 Directory could not be read
Definitions: --
Remedy: --

100151 Please wait, copying file %1
Parameters: %1 = --
Definitions: --
Remedy: --

100152 Error on executing from external
Definitions: --
Remedy: --

100153 USB device no longer available,%nexecution from external source no longer possible.
Definitions: --
Reaction: Alarm display.
Remedy: --

100154 USB device no longer available,%nexecution of Extcall no longer possible.
Definitions: --
Reaction: Alarm display.
Remedy: --

100155 USB device no longer available, editing is%naborted. The last changes are lost.
Definitions: --
Reaction: Alarm display.
Remedy: --

100156 USB device no longer available,%ncopying was aborted.
Definitions: --
Reaction: Alarm display.
Remedy: --

100157 USB device no longer available.
Definitions: --
Reaction: Alarm display.

100160 Testing in block, please wait!
Definitions: --
Remedy: --

100161 The number of lines is being calculated, please wait!
Definitions: --
Remedy: --

100162 Caution: Marked line is write-protected!
Definitions: --
Remedy: --

100170 File is binary: editing and paging not possible!
Definitions: --
Remedy: --

100200 Error on reading NCK data: %1
Parameters: %1 = --
Definitions: --
Remedy: --

100201 Error on writing NCK data: %1
Parameters: %1 = --
Definitions: --
Remedy: --

100202 Channel group outside area (%1): %2
Parameters: %1 = --
%2 = --
Definitions: --
Remedy: --

100203 Channel switchover key not effective
Definitions: --
Remedy: --

100204 Channel on NCU does not exist or is not active
Definitions: --
Remedy: --

100300 ‘%1’ not found, continue search without filter!
Parameters: %1 = --
Definitions: The search term entered in a list image (e.g. general machine data) was not found.
Remedy: --

100301 Table cannot be fully generated!
Definitions: The list image could not be generated due to insufficient memory.
Remedy: System error, a rebooting may be necessary.

100302 No data available - or no access authorization!
Definitions: The list image can not be generated, as this data is currently not available.
Example: Local user data is not defined.
Remedy: --
100303 Paging not possible
Definitions: You cannot page over, for example, axes, drives or channels, as more axes, drives or channels are not configured.
Remedy: --

100304 "%1" not found.
Parameters: %1 = --
Definitions: --
Remedy: --

100350 Display MD saved
Definitions: - The display machine data is saved via the softkey "Save" in the operating area start-up, image machine data - display machine data.
- The display machine data is saved in the start-up basic display after pressing the softkey "LCD brighter" or "LCD darker" (this setting will remain at the next start-up).
- As of SW 4.1: If the display options are changed in the machine data images, the change will be saved in the display machine data that is not visible to the user.
Remedy: --

100351 Display MD cannot be accepted
Definitions: Saving the display machine data was rejected by the NCK.
Remedy: --

100360 Logic drive data saved
Definitions: --
Remedy: --

100361 Error on saving logic drive data
Definitions: --
Remedy: --

100362 Please wait, saving data
Definitions: --
Remedy: --

100363 Password has been changed, please confirm first
Definitions: --
Remedy: --

100402 Temporarily no access rights %1!
Parameters: %1 = --
Definitions: --
Remedy: --

100403 No access rights %1!
Parameters: %1 = --
Definitions: --
Remedy: --

100405 Error var. access: Variable address wrong %1
Parameters: %1 = --
Definitions: --
Remedy: --

100406 Error var. access: Format unknown %1
Parameters: %1 = --
Definitions: --
Remedy: --
100407 Error var. access: Format wrong %1
Parameters: %1 = --
Definitions: --
Remedy: --

100410 Error var. access: Variable does not exist %1
Parameters: %1 = --
Definitions: --
Remedy: --

100411 Error var. access: Value < minimum value %1
Parameters: %1 = --
Definitions: --
Remedy: --

100412 Error var. access: Value > maximum value %1
Parameters: %1 = --
Definitions: --
Remedy: --

100413 Error var. access: Value illegal %1
Parameters: %1 = --
Definitions: --
Remedy: --

100414 Error on loading operating area notebooks
Definitions: --
Remedy: --

100415 Error on saving operating area notebooks
Definitions: --
Remedy: --

100500 COMIC: Syntax error in HMI()
Definitions: --
Remedy: --

100501 COMIC: Function not available HMI(.. %1 ..)
Parameters: %1 = --
Definitions: --
Remedy: --

100511 Please wait, calculating stock removal program %1
Parameters: %1 = --
Definitions: --
Remedy: --

100512 Please wait, copying stock removal program %1
Parameters: %1 = --
Definitions: --
Remedy: --

100513 Stock removal DLL does not exist
Definitions: --
Remedy: --

100514 Stock removal DLL already started
Definitions: --
Remedy: --
100550 Error TA: Syntax error in %1 in line %2
Parameters: %1 = --
 %2 = --
Definitions: --
Remedy: --

100555 Error TA: Branch point not found in %1
Parameters: %1 = --
Definitions: --
Remedy: --

100560 Automatic test machine started
Definitions: --
Remedy: --

100565 Automatic test machine stopped
Definitions: --
Remedy: --

100570 Error TA: %1 not found
Parameters: %1 = --
Definitions: --
Remedy: --

100600 Error on trying to read text file %1
Parameters: %1 = --
Definitions: --
Remedy: --

100620 Error on trying to open font file %1
Parameters: %1 = --
Definitions: --
Remedy: --

100648 The selected language was not installed without error
Definitions: --
Remedy: --

100649 MMC0_TXV.INI file not found
Definitions: --
Remedy: --

100650 No NC/PLC found! NC/PLC being simulated!
Definitions: --
Remedy: --

100651 Network driver error!
Definitions: --
Remedy: --

100652 Network driver error! (network connection correct?)
Definitions: --
Remedy: --

100653 Network driver error! (DHCP/IP address correct?)
Definitions: --
Remedy: --

100850 Note : PCU 20 memory limit exceeded
Definitions: --
Remedy: --

100851 Kernel error: No memory available any more
Definitions: --
Remedy: --

100852 Notice: Active memory statistics are reducing performance
Definitions: --
Remedy: --

100860 Max. 8 characters allowed for the name!
Definitions: --
Remedy: --

100900 Press Input key to select
Definitions: --
Remedy: --

100901 No data changed
Definitions: --
Remedy: --

100910 Remote diagnostics: Error 00 -int4f_func(CREATE_SRV)-
Definitions: --
Remedy: --

100911 Remote diagnostics: Error 01 -int4f_func(ACCEPT)-
Definitions: --
Remedy: --

100912 Remote diagnostics: Error 02 -initTeleService()-
Definitions: --
Remedy: --

100913 Remote diagnostics: Error 03 -initTeleService()-
Definitions: --
Remedy: --

100914 Remote diagnostics: Error 04 -no free memory-
Definitions: --
Remedy: --

100915 Remote diagnostics: Error 05 -get_gosal_struk-
Definitions: --
Remedy: --

100916 Remote diagnostics: Error 06 -synchronizeRemote()-
Definitions: --
Remedy: --

100917 Remote diagnostics: Error 07 -socket(device/function %2):# %1
Parameters: %1 = --
 %2 = --
Definitions: --
Remedy: --

100918 Remote diagnostics: Error 08 -socket(device %2)-timeout
Parameters: %1 = --
Definitions: --
Remedy: --
100921 Remote diagnostics: Waiting for connection to port:%1
Parameters: %1 = --
Definitions: --
Remedy: --

100922 Remote diagnostics: No connection by remote PC, timeout
Definitions: --
Remedy: --

100923 Remote diagnostics: Connection aborted by remote PC
Definitions: --
Remedy: --

100924 Remote diagnostics: SW option not set
Definitions: --
Remedy: --

100925 Remote diagnostics: Connection to remote PC has been terminated
Definitions: --
Remedy: --

100930 No other settings relevant if no ping server
Definitions: --
Remedy: --

100931 Settings have been saved
Definitions: --
Remedy: --

100932 !Error(file access): Cannot save
Definitions: --
Remedy: --

100933 Timeout: Semaphore not enabled
Definitions: --
Remedy: --

100934 Remote diagnostics: Error 10 -SendFileToRemote()- %1
Parameters: %1 = --
Definitions: --
Remedy: --

100935 Remote diagnostics: No response from remote PC (timeout)
Definitions: --
Remedy: --

100936 Remote diagnostics: Remote diag. port at default setting(5800)!
Definitions: --
Remedy: --

100937 Remote diagnostics: Connection established to %1
Parameters: %1 = --
Definitions: --
Remedy: --

100938 Delete a connection in menu Start-up>>Log.drive>>Conn.
Definitions: --
Remedy: --
101000 No connection to PLC !
Definitions: The connection to the PLC cannot be made while booting, e.g. wrong PLC basic program.
Remedy: --

101001 Cannot read PLC system status list !
Definitions: After the connection has been made, the system status list cannot be read.
Remedy: Switch controller off/on

101002 Password is not valid !
Definitions: The password entered is wrong.
Remedy: Enter a valid password.

101003 Password has been set for %1 !
Parameters: %1 = Access-level system, manufacturer, service or user.
Definitions: The password for system, manufacturer, service or user was set successfully.
Remedy: --

101004 Password has been changed for %1 !
Parameters: %1 = Access-level system, manufacturer, service or user.
Definitions: The password for system, manufacturer, service or user was changed successfully.
Remedy: --

101005 Passwords do not correspond !
Definitions: When the password was changed, the password entered first does not match the one entered second.
Remedy: Enter valid passwords.

101006 Password has been deleted !
Definitions: The password was deleted via the softkey "Delete password".
Remedy: Enter password.

101007 Password has not been set !
Definitions: To delete the password, a higher access authorization is required (at least user).
Remedy: Set the password with a higher access level.

101008 Current access level: %1
Parameters: %1 = Access-level system, manufacturer, service or user.
Definitions: When selecting the alarm image, the current access level is displayed: system, manufacturer, service or user or keyswitch positions 3/2/1/0.
Remedy: --

101013 Input error - see Help key (i)
Definitions: PLC status A syntax error occurred while entering a value in the PLC status.
The input syntax is explained in a help image.
Remedy: --

101014 Error on reading PLC-data !
Definitions: --
Remedy: --

101015 Error on writing PLC-data !
Definitions: --
Remedy: --

101016 Error: Operand address greater than 65535 !!
Definitions: The value range of the operand address was exceeded.
Remedy: Use a smaller value range for the operand address.

101017 No PLC input masks found !
Definitions: There are no *.plc input masks in the target system.
Remedy: --
101018 Read-in possible only in active PLC status!
Definitions: The current PLC status mode is not active, e.g. if the softkey "Change" was pressed.
Remedy: Switch the PLC status to active.

101019 Not possible to initialize the HMI internal PLC status!
Definitions: --
Remedy: --

101020 Not possible to backup the HMI internal PLC status!
Definitions: --
Remedy: --

101100 No access rights!
Definitions: The access level set is too low to open the selected window.
Remedy: Enter a higher password.

101110 Error on overall reset
Definitions: --
Remedy: --

101111 No axes configured!
Definitions: Due to an incomplete start-up, the image "Service axis" or "Axis machine data" cannot be selected.
Remedy: Complete start-up.

101112 No drives configured!
Definitions: Due to an incomplete start-up, the image "Service drive" cannot be selected.
Remedy: Complete start-up.

101113 No channels configured!
Definitions: Due to an incomplete start-up, the image "Channel machine data" cannot be selected.
Remedy: Complete start-up.

101114 No MSD configured!
Definitions: Due to an incomplete start-up or missing MSD drives, the image "MSD machine data" cannot be selected.
Remedy: --

101115 No FDD configured!
Definitions: Due to an incomplete start-up or missing FDD/SLM drives, the image "FDD machine data" cannot be selected.
Remedy: --

101130 Error return value undefined: %1 %2
Parameters: %1 = --
%2 = --
Definitions: A function was called up in the start-up area that then, for unknown reasons, could not be executed.
Remedy: When provided with the issued digits, the service may be able to help.

101131 No controller disable on PI Start
Definitions: --
Remedy: --

101132 Impermissible value execution argument
Definitions: --
Remedy: --

101133 MDx120 CURRCTRL_GAIN could not be calculated
Definitions: --
Remedy: --
<table>
<thead>
<tr>
<th>Alarms ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101134</td>
<td>MDx407 SPEEDCTRL_GAIN_1 could not be calculated</td>
</tr>
<tr>
<td>101135</td>
<td>MDx409 SPEEDCTRL_INTEGRATOR_TIME_1 could not be calculated</td>
</tr>
<tr>
<td>101136</td>
<td>MDx150 FIELDCTRL_GAIN could not be calculated</td>
</tr>
<tr>
<td>101137</td>
<td>MDx141 MAGNETIZING_REACTANCE = 0</td>
</tr>
<tr>
<td>101138</td>
<td>MDx139/Mdx140 MD_STATOR-/ROTOR_LEAKAGE_REACTANCE = 0</td>
</tr>
<tr>
<td>101139</td>
<td>MDx134 MOTOR NOMINAL_FREQUENCY = 0</td>
</tr>
<tr>
<td>101140</td>
<td>MDx138 ROTOR_COLD_RESISTANCE = 0</td>
</tr>
<tr>
<td>101141</td>
<td>MDx117 MOTOR_INERTIA = 0</td>
</tr>
<tr>
<td>101142</td>
<td>MDx146≤ MDx142 MOTOR_MAX_ALLOWED_SPEED< FIELD_WEAKENING_SPEED</td>
</tr>
<tr>
<td>101143</td>
<td>MDx142 FIELD_WEAKENING_SPEED = 0</td>
</tr>
<tr>
<td>101144</td>
<td>MDx118 MOTOR_STANDSTILL_CURRENT = 0</td>
</tr>
<tr>
<td>101145</td>
<td>MDx1104/1118 MOTOR_MAX_CURRENT/MOTOR_STANDSTILL_CURRENT > 900.0</td>
</tr>
<tr>
<td>101146</td>
<td>Boot file(s) saved</td>
</tr>
<tr>
<td>101147</td>
<td>Boot file(s) deleted</td>
</tr>
<tr>
<td>101148</td>
<td>Controller MD calculated</td>
</tr>
</tbody>
</table>
Overview of Alarms 03/2009

HMI-Alarms

Remedy: --

101149 Display MD accepted
Definitions: --
Remedy: --

101150 MD set to active
Definitions: Activation of the machine data in the start-up area, machine data images, was successful.
Remedy: --

101151 Start-up successful
Definitions: In the start-up area, image NC start-up, one of the three functions
- normal booting
- booting with default values
- start of the software update
was successfully initiated.
Remedy: --

101152 Error during communication with NCK
Definitions: --
Remedy: --

101153 Erroneous HMI NCK communication %1 %2
Parameters: %1 = Error class
%2 = Error code
Definitions: In the start-up area the softkey "Calculate controller data", for example, was pressed.
An unspecific error message is sent from the NCK or drive as acknowledgement for this function call.
By using the two hexadecimal values (error class, error code), the start-up engineer can perform an
error diagnostics.
Remedy: --

101154 PI service refused
Definitions: The current status of the NKC/drive does not permit the function that was selected.
Remedy: See the Installation and Start-up Guide.

101155 Path %1 does not exist
Parameters: %1 = Path
Definitions: During a file function, e.g. saving boot files, an attempt was made to access
a non-existent path.
Remedy: Switch the control OFF/ON or see the Installation and Start-up Guide.

101156 Function impermissible
Definitions: The selected function is impermissible.
Remedy: See the Installation and Start-up Guide.

101157 File %1 does not exist
Parameters: %1 = File name
Definitions: In the start-up area the softkey "delete boot files", for example, was pressed, although no boot files
are yet available.
Remedy: --

101158 Function in current operating mode not allowed
Definitions: The drive’s current status does not permit this function.
Remedy: --

101159 Remote block in incorrect state
Definitions: The drive’s current status does not permit this function.
Remedy: --

101160 Date and time of PLC set
Definitions: In the PLC status, the time or date was changed.
Remedy: --

101161 The drive is not in cyclic mode!
Definitions: The start-up is not completely carried out, therefore, the function "Calculate motor data" cannot be selected.
Remedy: --

101162 MDx134/MDx400 MOTOR_NOMINAL_FREQUENCY/MOTOR_RATED_SPEED illeg.
Definitions: --
Remedy: --

101163 MDx130 MOTOR_NOMINAL_POWER <= 0
Definitions: --
Remedy: --

101164 MDx132 MOTOR_NOMINAL_VOLTAGE <= 0
Definitions: --
Remedy: --

101165 MDx103 MOTOR_NOMINAL_CURRENT <= 0
Definitions: --
Remedy: --

101166 MDx129 POWER_FACTOR_COS_PHI illegal
Definitions: --
Remedy: --

101167 MDx134/MDx400 MOTOR_NOMINAL_FREQUENCY/MOTOR_RATED_SPEED illeg.
Definitions: --
Remedy: --

101168 Warning MDx142 FIELD_WEAKENING_SPEED<MDx400 MOTOR_RATED_SPEED
Definitions: --
Remedy: --

101169 Date and time could not be set!
Definitions: --
Remedy: --

101200 Safety Integrated data copied
Definitions: The SI data copying function was successful.
Remedy: --

101201 Safety Integrated data confirmed
Definitions: The SI data confirmation function was successful.
Remedy: --

101202 Copying SI data from axis %1 to drive %2
Parameters: %1 = Axis name
%2 = Drive number
Definitions: This message is output during the SI data copying function.
Remedy: --

101203 SI data not copied completely
Definitions: An error occurred during the SI data copying function; this caused the SI data to be copied incompletely or not at all.
Remedy: --
101204 SI data not confirmed
Definitions: The SI data confirmation function was not executed because an error occurred during the processing.
Remedy: --

101205 Drive data changed? -> Don’t forget to save bootfiles!
Definitions: When exiting the drive machine data images, the operator is reminded to save the boot files so that drive machine data that may have been changed is not lost.
Remedy: --

101206 Search operation in progress, please wait ...
Definitions: The search function was initiated in the machine data images.
Remedy: --

101207 Positioning to %1...
Parameters: %1 = --
Definitions: A list image, e.g. general machine data, has been selected.
The HMI is attempting to position at the last selected datum in this image.
Remedy: --

101208 SI data are confirmed: axis %1
Parameters: %1 = --
Definitions: In the start-up area the function "Confirm Safety Integrated Data" has been started.
The message was output during this function in order to provide the user with an acknowledgement regarding the operation of the function.
Remedy: --

101209 SI data are confirmed: drive %1
Parameters: %1 = --
Definitions: In the start-up area the function "Confirm Safety Integrated Data" has been started.
The message was output during this function in order to provide the user with an acknowledgement regarding the operation of the function.
Remedy: --

101210 Machine data being prepared for display
Definitions: A list image in the machine data was selected for which display options are active.
This image's machine data is individually checked to see whether it is permitted to be displayed.
Remedy: --

101211 Address of NCK not changed!
Definitions: An attempt was made to change the bus address of the NCK in the start-up area.
The change was rejected by the NCK; the reason is unknown.
Remedy: --

101212 Address of NCK changed
Definitions: The NCK's bus address was set to the specified value.
Remedy: --

101213 Invalid NCK address!
Definitions: The value specified for the new NCK bus address is too large.
Remedy: --

101214 Initialization of this window unsuccessful!
Definitions: An attempt was made to select the image of the NCK address in the start-up area.
An error occurred while determining the nodes on the bus. Due to inconsistent data, this image cannot be displayed.
Remedy: --
101300 Please wait - Language being changed
Definitions: In the start-up area the softkey "Change language" was pressed. The screen content is being restructured.
Remedy: --

101301 Versions saved -> output via %1
Parameters: %1 = --
Definitions: --
Remedy: --

101310 Error in %1: line %2: error in XML structure
Definitions: --
Remedy: Correct the error in the indicated line.

101311 Error in %1: line %2: path not found !
Definitions: --
Remedy: Correct the indicated line of the path.

101312 Error in %1: line %2: path incorrect !
Definitions: --
Remedy: Correct the indicated line of the path.

101400 License key set.
Definitions: --
Remedy: --

101401 License key NOT sufficient.
Definitions: --
Remedy: --

101402 Error on writing back the options.
Definitions: --
Remedy: --

101403 Please wait - licence screen is being prepared. (%1)
Parameters: %1 = --
Definitions: --
Remedy: --

101500 No other drives possible; option not set.
Definitions: --
Remedy: --

101600 Unknown error code: %1
Definitions: --
Remedy: --

101601 Impermissible parameter number
Definitions: --
Remedy: --

101602 Parameter value cannot be changed
Definitions: --
Remedy: --

101603 Low or high limit exceeded
Definitions: --
Remedy: --
101604 Faulty subindex
Definitions: --
Remedy: --

101605 No array
Definitions: --
Remedy: --

101606 Incorrect data type
Definitions: --
Remedy: --

101607 Setting not permitted (can only be reset)
Definitions: --
Remedy: --

101608 Description element cannot be changed
Definitions: --
Remedy: --

101609 No description data available
Definitions: --
Remedy: --

101610 No operational priority.
Definitions: --
Remedy: --

101611 No text array available
Definitions: --
Remedy: --

101612 Request cannot be executed because of operating state
Definitions: --
Remedy: --

101613 Value impermissible
Definitions: --
Remedy: --

101614 Response too long
Definitions: --
Remedy: --

101615 Parameter address impermissible
Definitions: --
Remedy: --

101616 Illegal format
Definitions: --
Remedy: --

101617 Number of values are not consistent
Definitions: --
Remedy: --

101618 Drive object does not exist
Definitions: --
Remedy: --
101619 Parameter currently deactivated.
Definitions: --
Remedy: --

101620 Device buffer too small to answer the job.
Definitions: --
Remedy: --

101621 free
Definitions: --
Remedy: --

101622 Value impermissible
Definitions: --
Remedy: --

101623 Parameter is indexed
Definitions: --
Remedy: --

101624 Request not supported
Definitions: --
Remedy: --

101625 No write access with active controller.
Definitions: --
Remedy: --

101626 Unknown unit.
Definitions: --
Remedy: --

101627 Write access only in start-up state Encoder (p10=4).
Definitions: --
Remedy: --

101628 Write access only in start-up state Motor (p10=3).
Definitions: --
Remedy: --

101629 Write access only in start-up state Power Section (p10=2).
Definitions: --
Remedy: --

101630 Write access only in rapid start-up state (p10=1).
Definitions: --
Remedy: --

101631 Write access only in start-up state Ready (p10=0).
Definitions: --
Remedy: --

101632 Write access only in start-up state Parameter Reset (p10=30).
Definitions: --
Remedy: --

101633 Write access only in start-up state Safety (p10=95).
Definitions: --
Remedy: --
101634 Write access only in start-up state Techn.Application/Units (p10=5).
Definitions: --
Remedy: --

101635 Write access only in start-up state (p10 unequal 0).
Definitions: --
Remedy: --

101636 Write access only in start-up state Download (p10=29).
Definitions: --
Remedy: --

101637 Parameter must not be written in download.
Definitions: --
Remedy: --

101638 Write access only in start-up state Drive Configuration (device: p9=3).
Definitions: --
Remedy: --

101639 Write access only in start-up state Drive Type Definition (device: p9=2).
Definitions: --
Remedy: --

101640 Write access only in start-up state Data Block Base Configuration
(device: p9=4).
Definitions: --
Remedy: --

101641 Write access only in start-up state Device Configuration (device: p9=1).
Definitions: --
Remedy: --

101642 Write access only in start-up state Device Download (device: p9=29).
Definitions: --
Remedy: --

101643 Write access only in start-up state Device Parameter Reset (device: p9=30).
Definitions: --
Remedy: --

101644 Write access only in start-up state Device Ready (device: p9=0).
Definitions: --
Remedy: --

101645 Write access only in start-up state Device (device: p9 unequal 0).
Definitions: --
Remedy: --

101646 No parameterization enable
Definitions: --
Remedy: --

101647 Parameter must not be written in download.
Definitions: --
Remedy: --

101648 Transfer of the control right is disabled via BI p806.
Definitions: --
HMI-Alarms

03/2009

Overview of Alarms

Remedy: --

101649 Desired BICO interconnection impossible, since BICO output does not supply float value

Definitions: --

Remedy: --

101650 Free BICO interconnection disabled via p300,p400 oder p922.

Definitions: --

Remedy: --

101651 No access method defined.

Definitions: --

Remedy: --

101652 Below currently valid limit

Definitions: --

Remedy: --

101653 Above currently valid limit

Definitions: --

Remedy: --

101654 Parameter not accessible from BOP.

Definitions: --

Remedy: --

101655 Parameter not readable from BOP.

Definitions: --

Remedy: --

101656 Write access not permitted.

Definitions: --

Remedy: --

102000 Error %1 %2

Parameters: %1 = -- %2 = --

Definitions: --

Remedy: --

102001 No data selected

Definitions: --

Remedy: --

102002 Write error on disk

Definitions: --

Remedy: --

102003 No data found for archiving

Definitions: --

Remedy: --

102004 No name entered

Definitions: --

Remedy: --

102005 Data cannot be created here

Definitions: --

Remedy: --
102006 Error on copying %1
Parameters: %1 = --
Definitions: --
Remedy: --

102007 Error on deleting %1
Parameters: %1 = --
Definitions: --
Remedy: --

102008 Invalid file name
Definitions: --
Remedy: --

102009 RS232C stop accepted - please wait!
Definitions: --
Remedy: --

102010 RS232C transmission error has occurred -> error log
Definitions: --
Remedy: --

102011 You cannot copy and paste the file in this path
Definitions: --
Remedy: --

102012 RS232C transmission stopped
Definitions: --
Remedy: --

102013 Error: RS232C running
Definitions: --
Remedy: --

102014 V24.DLL cannot be loaded
Definitions: --
Remedy: --

102015 RS232C ready %1 %2
Parameters: %1 = --
%2 = --
Definitions: --
Remedy: --

102016 Operating area change disabled
Definitions: --
Remedy: --

102017 Please select drive/path for archive
Definitions: --
Remedy: --
103000 No correction block in the NCK
Definitions: The following is valid up to SW 3.x:
The correction block window cannot be opened. No program correction is possible in the operating mode "Machine".
The following is valid up to SW 4.1:
The correction block window can be opened in the "Stop program" state.
The program that is currently being executed is opened for editing.
The program part that has not yet been recorded by the NCK's program processing can be changed permanently.
Remedy: --

103001 Selection only possible after enable or in RESET state
Definitions: In order to execute the desired function, the current channel has to be in the RESET state, e.g. "Program selection".
Remedy: Trigger reset.

103002 Copying to clipboard not possible
Definitions: The NCK rejects a copy-action to the clipboard because, for example, no more memory is available or the maximum manageable amount of programs has been exceeded.
Remedy: Delete the programs not currently required.

103003 MDI buffer cannot be deleted
Definitions: The NCK rejects a deletion of the clipboard because the clipboard is currently being executed.
Remedy: Wait until the MDI program has been executed or trigger an NC reset.

103004 Block search not possible
Definitions: The search run cannot be started because the channel is active.
Remedy: Wait until the program has been executed or trigger an NC reset.

103005 Block search backwards only possible without calculation
Definitions: --
Remedy: --

103006 Block search without calculation possible on MP level only
Definitions: No subroutine calls can be processed during a block search without calculation.
Remedy: If subroutines are to be processed, a search run with calculation has to be performed.

103007 You cannot terminate overstore in this channel state
Definitions: Overstore cannot be ended because the channel is still active.
Remedy: Wait until the overstore procedure has finished or trigger an NC reset.

103008 Block search started in channel %1 - please wait!
Parameters: %1 = Channel number
Definitions: The started block search is not yet finished.
Remedy: Text is deleted automatically after the end of the block search.
Wait until the block search has finished or trigger an NC reset.

103009 Conflict between search type and search target!
Definitions: The search target entered is not compatible with the search type:
The block number initial character "N" or ":" is missing, only the digits 0 to 9 are allowed.
Remedy: Correct the entry to correspond with the type.
The following is valid up to SW 3.x: The faulty entry is deleted, and the cursor proceeds to the next field.
As of SW 4.1: The faulty entry is retained, and the cursor remains at the field.
103010 Invalid file name
Definitions: The file name entered:
Must not have more than 32 characters (letters, digits, underscore; including the block and program
ID:_N_ and _MPF), amounts to 25 assignable characters.
Cannot have any separators (e.g.: /).
Must have letters at the first and second position.
Remedy: --

103011 No program selected - block search ended
Definitions: At the moment, no program is selected, therefore, no search run is possible.
Remedy: Select a program.

103012 Safety function not active
Definitions: --
Remedy: --

103013 No agreement could be given
Definitions: --
Remedy: --

103014 Please first reference axis
Definitions: The reference point approach was not yet performed or finished.
Remedy: Perform reference point approach.

103015 NOTICE! Dimension system is changed from inch to metric
Definitions: --
Remedy: --

103016 NOTICE! Dimension system is changed from metric to inch
Definitions: --
Remedy: --

103017 Scratching impossible due to rotation in %1
Parameters: %1 = --
Definitions: --
Remedy: --

103018 Swivel: Adjustment terminated
Definitions: --
Remedy: --

103019 Swivel: Adjustment not possible
Definitions: --
Remedy: --

104000 Actual tool not found
Definitions: If the cursor in the window "Magazine list" is at a blank line, then no tool will be found after pressing
the softkey "Tool data".
Remedy: Place the cursor on the tool.

104001 No additional tools available
Definitions: After pressing the softkey "T No. +" or "T No. -" the next-highest or next-lowest tool number is searched for.
If no other tools are available, this message will be output.
Remedy: --

104002 No additional tool edges available
Definitions: After pressing the softkey "D No. +" or "D No. -" the next-highest or next-lowest cutting edge is searched for.
If no other cutting edges are available, this message will be output.
Remedy: --

104003 There are no tools
Definitions: No tools were set up.
Remedy: Set up tools.

104004 No active workpiece available
Definitions: After pressing the softkey "Current T+D No." in the "Tool overview" window, no tool was found because no subroutine is active or in the active subroutine no tool is selected.
Remedy: Select a tool.

104005 There is no active cutting edge
Definitions: A tool has been selected, but not a cutting edge.
Remedy: Select a cutting edge.

104006 No TO area available in current channel
Definitions: No TO area is assigned to the current channel.
Remedy: Assign the current channel a TO area via the machine data, or switch channel.

104007 Error on creating tool
Definitions: The tool could not be created, as, for example, the maximum number of possible tools has already been reached.
Remedy: Extend the maximum number of tools via the machine data, or delete unnecessary tools.

104008 Error on creating tool edge
Definitions: No new cutting edge could be created, as, for example, the maximum number of cutting edges has already been reached.
Remedy: Delete unnecessary cutting edges.

104009 Error while writing tool type
Definitions: --
Remedy: --

104010 Error while writing tool position
Definitions: --
Remedy: --

104011 Error on deleting tool
Definitions: The tool cannot be deleted. It may currently be active.
Remedy: --

104012 No master spindle available
Definitions: No master spindle was configured.
Remedy: Configure a master spindle via the machine data.

104013 Error on deleting area
Definitions: --
Remedy: --

104014 Incorrect input
Definitions: The entered value is impermissible, e.g., it lies outside the input limits.
Remedy: Please observe the value range.

104015 Number of parameters per tool edge is zero
Definitions: The number of parameters per cutting edge was not configured.
Remedy: Configure the number of parameters per cutting edge via the machine data.

104016 No spindles available
Definitions: No spindle was configured.
Remedy: Configure a spindle via the machine data.
<table>
<thead>
<tr>
<th>Alarm Code</th>
<th>Description</th>
<th>Definitions</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>104017</td>
<td>No settable frame currently active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104018</td>
<td>Tool not available</td>
<td>The specified tool does not exist.</td>
<td></td>
</tr>
<tr>
<td>104019</td>
<td>Tool type not available</td>
<td>The specified tool type does not exist.</td>
<td>Specify a valid tool type.</td>
</tr>
<tr>
<td>104020</td>
<td>No empty location found</td>
<td>There is no empty location with the specified search parameters.</td>
<td>Correct search parameters.</td>
</tr>
<tr>
<td>104021</td>
<td>Error on searching for empty location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104022</td>
<td>Error in present location search</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104023</td>
<td>Error in Tool Load</td>
<td>An error occurred while a tool was being loaded; the procedure has been aborted.</td>
<td>Check loader.</td>
</tr>
<tr>
<td>104024</td>
<td>Error in Tool Unload</td>
<td>An error occurred while a tool was being unloaded; the procedure has been aborted.</td>
<td>Check unloader.</td>
</tr>
<tr>
<td>104025</td>
<td>No magazine configured</td>
<td>No magazine was configured.</td>
<td>Configure a magazine via the machine data.</td>
</tr>
<tr>
<td>104026</td>
<td>NOTICE! Tool Load running!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104027</td>
<td>NOTICE! Tool Unload running!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104028</td>
<td>Error on accessing general tool data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104029</td>
<td>You cannot load into this location</td>
<td>The location may already be occupied.</td>
<td>Select another loading location.</td>
</tr>
<tr>
<td>104030</td>
<td>No more data found</td>
<td>All existing data was already displayed.</td>
<td></td>
</tr>
<tr>
<td>104031</td>
<td>There is no preselected tool</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
104032 There is no preselected cutting edge
Definitions: --
Remedy: --

104033 Error on Delete cutting edge
Definitions: --
Remedy: --

104034 No work offset selected
Definitions: --
Remedy: --

104035 Position minus coarse offset was transferred
Definitions: --
Remedy: --

104100 PA: Error on opening the menu
Definitions: --
Remedy: --

104101 PA: Error on opening the window
Definitions: --
Remedy: --

104102 PA: Error on reading number of T numbers
Definitions: --
Remedy: --

104103 PA: Error on reading number of params/cut-edges
Definitions: --
Remedy: --

104104 PA: Error on reading actual tool
Definitions: --
Remedy: --

104105 PA: Error on reading actual D no.
Definitions: --
Remedy: --

104106 PA: No space in global memory
Definitions: --
Remedy: --

104107 PA: Error on reading notebook
Definitions: --
Remedy: --

104108 PA: Error on reading cutting edge parameters
Definitions: --
Remedy: --

104109 PA: Error on reading number of cutting edges
Definitions: --
Remedy: --

104110 PA: Error on reading tool
Definitions: --
Remedy: --
104111 PA: Error on reading number of tools
Definitions: --
Remedy: --

104112 PA: Error on reading TO area
Definitions: --
Remedy: --

104113 PA: Error on reading tool number
Definitions: --
Remedy: --

104114 PA: Error on writing notebook
Definitions: --
Remedy: --

104115 PA: Error on reading JOG feed unit
Definitions: --
Remedy: --

104116 PA: JOG feed unit not G94 or G95
Definitions: --
Remedy: --

104117 PA: Error on writing JOG feed unit
Definitions: --
Remedy: --

104118 PA: Error on reading JOG feed
Definitions: --
Remedy: --

104119 PA: Feed value outside range
Definitions: --
Remedy: --

104120 PA: Error on writing JOG feed value
Definitions: --
Remedy: --

104121 PA: Error on reading number of spindles
Definitions: --
Remedy: --

104122 PA: Error on reading spindle status
Definitions: --
Remedy: --

104123 PA: Error on reading spindle names
Definitions: --
Remedy: --

104124 PA: Error on reading tool type
Definitions: --
Remedy: --

104125 PA: Next tool has no cutting edges
Definitions: --
Remedy: --
104126 PA: Error on reading global basic unit
Definitions: --
Remedy: --

104127 PA: Error on reading number of geometry axes
Definitions: --
Remedy: --

104128 PA: Error on reading number of add. axes
Definitions: --
Remedy: --

104129 PA: Error on reading number of mach. axes
Definitions: --
Remedy: --

104130 PA: Error on reading number of spindles
Definitions: --
Remedy: --

104131 PA: Error on reading number of R variables
Definitions: --
Remedy: --

104132 PA: Error on reading number of user frames
Definitions: --
Remedy: --

104133 PA: Error on reading cont./JOG mode
Definitions: --
Remedy: --

104134 PA: Error on writing cont./JOG mode
Definitions: --
Remedy: --

104135 PA: Error on activating the user frame
Definitions: --
Remedy: --

104136 PA: Error in getting WO data Block %1 column index %2
Parameters: %1 = --
 %2 = --
Definitions: --
Remedy: --

104137 PA: Error in writing WO data Block %1 column index %2
Parameters: %1 = --
 %2 = --
Definitions: --
Remedy: --

104201 Error on setting/resetting semaphores
Definitions: --
Remedy: --

104202 Tool identifier not defined
Definitions: --
Remedy: --
104203 Blank in tool identifier not allowed
Definitions: --
Remedy: --

104204 No new tool created
Definitions: --
Remedy: --

104205 Tool exists already
Definitions: --
Remedy: --

104206 No magazine available
Definitions: --
Remedy: --

104207 The magazine is not defined
Definitions: --
Remedy: --

104208 The tool size (L, R, T, B) must have a value between 1 and 7
Definitions: --
Remedy: --

104209 Dummy tool cannot be created
Definitions: --
Remedy: --

104210 Tool not available
Definitions: --
Remedy: --

104211 Tool number equals 0
Definitions: --
Remedy: --

104212 Tool already loaded
Definitions: --
Remedy: --

104213 Location already loaded
Definitions: --
Remedy: --

104214 Error on positioning magazine
Definitions: --
Remedy: --

104215 Error on unloading tools
Definitions: --
Remedy: --

104216 Error on relocating tools
Definitions: --
Remedy: --

104217 Error on loading tools
Definitions: --
Remedy: --
104218 NOTICE! Tool Unload running!
Definitions: --
Remedy: --

104219 NOTICE! Tool Load running!
Definitions: --
Remedy: --

104220 NOTICE! Relocation of tool running!
Definitions: --
Remedy: --

104221 Error on creating tool
Definitions: --
Remedy: --

104222 Illegal parameters
Definitions: --
Remedy: --

104223 Error on reading TD block
Definitions: --
Remedy: --

104224 Illegal tool type
Definitions: --
Remedy: --

104225 No TO memory available in channel
Definitions: --
Remedy: --

104226 Error on reading notebook
Definitions: --
Remedy: --

104227 Error on writing notebook
Definitions: --
Remedy: --

104228 Error on searching for empty location
Definitions: --
Remedy: --

104229 Empty location not found
Definitions: --
Remedy: --

104230 NOTICE!: Loaded tool cannot be deleted!
Definitions: --
Remedy: --

104231 Error on reading number of cutting edges
Definitions: --
Remedy: --

104232 Error on reading number of user cutting edges
Definitions: --
Remedy: --
104233 Load point not found
Definitions: --
Remedy: --

104234 Only memory block from 0..14 possible for NB
Definitions: --
Remedy: --

104235 Only 1..15 lines allowed in table
Definitions: --
Remedy: --

104236 Load points: %1
Parameters: %1 = --
Definitions: --
Remedy: --

104237 Current location (load point) of real magazine: %1
Parameters: %1 = --
Definitions: --
Remedy: --

104238 Empty location %1 found
Parameters: %1 = --
Definitions: --
Remedy: --

104239 Syntax error. Only these letters are allowed: %1
Parameters: %1 = --
Definitions: --
Remedy: --

104240 Location %1 found
Parameters: %1 = --
Definitions: --
Remedy: --

104241 Magazine %1 found
Parameters: %1 = --
Definitions: --
Remedy: --

104242 Illegal location number
Definitions: --
Remedy: --

104243 Illegal magazine number
Definitions: --
Remedy: --

104244 Error on reading user cutting edge data
Definitions: --
Remedy: --

104245 Error on writing user cutting edge data
Definitions: --
Remedy: --
104246 Error on reading user tool data
Definitions: --
Remedy: --

104247 Error on writing user tool data
Definitions: --
Remedy: --

104248 Error on reading monitoring data
Definitions: --
Remedy: --

104249 Error on writing monitoring data
Definitions: --
Remedy: --

104250 Location not empty or not available
Definitions: --
Remedy: --

104251 Only one magazine available!
Definitions: --
Remedy: --

104252 Only 0 or 1 allowed for tool life/quantity monitoring!
Definitions: --
Remedy: --

104253 Only tool life or quantity monitoring possible
Definitions: --
Remedy: --

104254 Illegal magazine or location number
Definitions: --
Remedy: --

104255 Function Current location not valid for buffer
Definitions: --
Remedy: --

105000 Error %1 ! %2
Parameters: %1 = --
%2 = --
Definitions: System-intemal error.
A memory-access has failed - should not occur in normal operation.
Remedy: --

105001 Cycles description "%1" not available
Parameters: %1 = --
Definitions: The cycle description sc.com was not found in the NCK file system.
Remedy: --

105002 File %1 exists already!
Parameters: %1 = --
Definitions: The file name entered is already in this directory.
Remedy: --

105003 Workpiece %1 exists already
Parameters: %1 = --
Definitions: The workpiece name entered is already in this directory.
Remedy: --

105004 Paste buffer is empty! First COPY then PASTE
Definitions: No file could be inserted, as no file was copied to the clipboard.
Remedy: --

105005 Only tools can be inserted here
Definitions: The file type of the previously copied file is not _wpd and cannot be inserted into the workpiece directory.
Remedy: --

105006 Only files can be inserted here
Definitions: A file of the file type _wpd, i.e. a workpiece, was copied from the workpiece directory and an attempt was made to insert it into a program directory.
Remedy: --

105007 No name entered
Definitions: --
Remedy: Wait until the loading procedure is terminated.

105008 Write memory error on cycle call
Definitions: The resources of the HMI are exhausted. No more dynamic memory is available.
Remedy: --

105009 No write access to data
Definitions: The file is write-protected.
Remedy: --

105010 No data selected
Definitions: The cursor is not placed on a valid file name.
Remedy: --

105011 Cycles overview %1 not available
Parameters: %1 = --
Definitions: The cycle description sc.com was not found in the NCK file system.
Remedy: --

105012 Program not or only partially editable (NC Reset)
Definitions: The selected program is currently being executed.
Remedy: --

105013 Copied data can be inserted with SK 'Paste'
Definitions: The copied data is in the clipboard and can be inserted anywhere via the softkey "Paste".
Remedy: --

105014 Error on copying ! %1
Parameters: %1 = --
Definitions: The file could not be copied.
Remedy: --

105015 Error on renaming ! %1
Parameters: %1 = --
Definitions: The file could not be renamed.
Remedy: --

105016 Error on deleting ! %1
Parameters: %1 = --
Definitions: The file could not be deleted.
105017 Selection possible only after enable or in RESET state %1
Parameters: %1 = --
Definitions: The selected program is either being currently executed or was not yet enabled.
Remedy: --

105018 Error on generating program ! %1
Parameters: %1 = --
Definitions: The program could not be created; there may no longer be sufficient memory.
Remedy: --

105019 Error on opening window ! %1
Parameters: %1 = --
Definitions: The window could not be opened.
System error that should not occur in normal operation.
Remedy: --

105020 Error on closing window ! %1
Parameters: %1 = --
Definitions: The window could not be closed.
System error that should not occur in normal operation.
Remedy: --

105021 Error on generating workpiece ! %1
Parameters: %1 = --
Definitions: The workpiece could not be created.
Remedy: --

105022 Error on enable ! %1
Parameters: %1 = --
Definitions: The program could not be enabled.
Remedy: --

105023 File %1 exists already !
Parameters: %1 = --
Definitions: The file cannot be copied to this directory, as a file with the same name is already here.
Remedy: --

105024 Check values! - At least 1 value not within input limits!
Definitions: An invalid value was entered in the cycle parameter image.
Remedy: --

105025 Please wait, structuring directory !
Definitions: The data required for the display of the directory is being determined.
Remedy: --

105026 NOTICE! Simulated program not identical to edited program!
Definitions: The program being executed is not identical to the program opened in the editor.
Remedy: --

105027 Selection is being made
Definitions: --
Remedy: --

105028 Selection is impossible
Definitions: --
Remedy: --
105030 Please wait, renumbering in progress (%1)!
Parameters: %1 = --
Definitions: The part program's blocks are serially numbered.
Remedy: --

105031 Renumbering has been aborted!
Definitions: Renumbering of the part program was aborted. Insufficient part program memory may be the cause of the error.
Remedy: --

105032 Renumbering finished!
Definitions: Renumbering of the part program was completed without errors.
Remedy: --

105033 Renumbering incomplete, max. block length exceeded (%1)
Parameters: %1 = --
Definitions: --
Remedy: --

105041 Block number will be too large!
Definitions: The set increment and the size of the program cause the block number to be greater than 999999.
Remedy: --

105042 Block number not allowed!
Definitions: The first block number is less than 0 or greater than 999999.
Remedy: --

105043 Increment not allowed!
Definitions: The increment was entered as a negative.
Remedy: --

105050 Please wait: graphics being output!
Definitions: The help displays are being prepared for display.
Remedy: --

105051 %1
Parameters: %1 = --
Definitions: The dynamic long texts for the cycle parameterization are output here.
Remedy: --

105052 Error in description of cycles of %1!
Parameters: %1 = --
Definitions: The cycle description sc.com, uc.com contains a line that cannot be interpreted. This line is output via <xxx>.
Remedy: --

105053 No cycle available in current line!
Definitions: The editor's cursor is in a line that does not contain a cycle. A recompilation is not possible.
Remedy: --

105054 Error on calling of description of cycles!
Definitions: One of the sc.com, cov.com cycle description files contains a non-interpretable parameter. Initialization of the cycles is aborted.
Remedy: --

105060 Please wait: initialization of cycles support
Definitions: The cycle description files are interpreted and prepared for display on the screen.
Remedy: --
105061 Error on opening of file %1!
Parameters: %1 = --
Definitions: The specified file could not be opened.
System-internal error that does not occur in normal operation.
Remedy: --

105062 Error on closing of file %1!
Parameters: %1 = --
Definitions: The specified file could not be closed.
System-internal error that does not occur in normal operation.
Remedy: --

105063 Error on positioning in file %1!
Parameters: %1 = File name
Definitions: No positioning could be done in the specified file.
System-internal error that does not occur in normal operation.
Remedy: --

105064 Error on reading file %1!
Parameters: %1 = --
Definitions: The specified file could not be read.
System-internal error that does not occur in normal operation.
Remedy: --

105070 Please wait: initialization of simulation started!
Definitions: The graphic travel path is being initialized.
Remedy: --

105071 Simulation could not be loaded!
Definitions: --
Remedy: --

105072 Error while activating the file!
Definitions: --
Remedy: --

105075 Channel %1 not enough geo axes, contour definition not possible!
Parameters: %1 = --
Definitions: The default axis names for the required axes are used.
Remedy: --

105076 Only 2 geo axes defined in channel %1-> working plane %2 fixed!
Parameters: %1 = -- %2 = --
Definitions: --
Remedy: --

105080 File already selected: %1
Parameters: %1 = --
Definitions: --
Remedy: --

105081 Contents were saved in %1.
Parameters: %1 = --
Definitions: --
Remedy: --

105082 Selection of 2nd file not possible. Device was removed.
Parameters: %1 = --
Definitions: --
Remedy: --

107000 Error on reading a notebook
Definitions: --
Remedy: --

107001 Error on reading MCU data
Definitions: --
Remedy: --

107002 Error on writing MCU data
Definitions: --
Remedy: --

107003 MCU: No memory available
Definitions: --
Remedy: --

107004 MCU: File not available
Definitions: --
Remedy: --

107010 MCU: Please wait. Data is being saved!
Definitions: --
Remedy: --

107011 MCU: Saving of data successfully carried out!
Definitions: --
Remedy: --

107021 MCU.INI: Number of axes incorrect
Definitions: --
Remedy: --

107022 MCU.INI: File does not exist / contains error (%1)
Parameters: %1 = --
Definitions: --
Remedy: --

107023 MCU.INI: Data for an axis contain error
Definitions: --
Remedy: --

107024 MCU.INI: Not all axes specified
Definitions: --
Remedy: --

107031 MCU: Command unknown
Definitions: --
Remedy: --

107032 MCU: Error in server management block
Definitions: --
Remedy: --

107033 MCU: No table management block available
Definitions: --
Remedy: --
107034 MCU: Error in table management block
Definitions: --
Remedy: --

107035 MCU: Tool data not saved
Definitions: --
Remedy: --

107036 MCU: Tool data not stored on FEPROM
Definitions: --
Remedy: --

107041 MCU: Incorrect value for work offset
Definitions: --
Remedy: --

107042 MCU: Incorrect value for feedrate
Definitions: --
Remedy: --

107043 MCU: Value of traversing path / position incorrect
Definitions: --
Remedy: --

107050 MCU: Program is running, cannot be selected!
Definitions: --
Remedy: --

107051 MCU: Please wait, reading traversing program!
Definitions: --
Remedy: --

107052 MCU: Please wait, transferring traversing program!
Definitions: --
Remedy: --

107053 MCU: Traversing program exists already!
Definitions: --
Remedy: --

107054 MCU: Traversing program not available!
Definitions: --
Remedy: --

107055 MCU: Active program cannot be changed!
Definitions: --
Remedy: --

107058 MCU: Transfer of traversing program terminated without errors!
Definitions: --
Remedy: --

107059 MCU: Transfer of traversing program aborted!
Definitions: --
Remedy: --

107061 MCU: Program number exists already!
Definitions: --
Remedy: --
107062 MCU: Program number not permissible (1 ... 199)!
Definitions: --
Remedy: --

107063 MCU: Block number not permissible %1!
Parameters: %1 = --
Definitions: --
Remedy: --

107064 MCU: G function not allowed!
Definitions: --
Remedy: --

107065 MCU: Tool offset number (D.) not permissible (0 ... 20)!
Definitions: --
Remedy: --

107066 MCU: During a dwell time, only M functions are permissible!
Definitions: --
Remedy: --

107067 MCU: Insertion of a block not possible!
Definitions: --
Remedy: --

107068 MCU: Subroutine call allowed only with quantity!
Definitions: --
Remedy: --

107069 MCU: Appending a block not possible!
Definitions: --
Remedy: --

107080 MCU: Unknown error at %1
Parameters: %1 = --
Definitions: --
Remedy: --

107081 MCU: Command being processed (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107082 MCU: Command number unknown (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107083 MCU: Acknowledgment op code wrong (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107084 MCU: Drive not digital (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --
107085 MCU: Servo number unknown (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107086 MCU: Wait for stop acknowledgment (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107087 MCU: Unknown management status (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107088 MCU: Not allowed in this PLC mode (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107090 MCU: Syntax error (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107091 MCU: Coordinating rules violated (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107092 MCU: Protection level of function inadequate (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107093 MCU: PI service unknown (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107094 MCU: Context is not supported (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107095 MCU: Serious error has occurred (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107096 MCU: PDU magnitude wrong (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --

107100 MCU: Unknown error has occurred (%1)!
Parameters: %1 = --
Definitions: --
Remedy: --
108000 No dynamic memory available
Definitions: --
Remedy: --
108001 No entry in diagnostics file
Definitions: --
Remedy: --
108002 There are too many entries/errors
Definitions: --
Remedy: --
108003 Change of state
Definitions: --
Remedy: --
108004 Communications error to the HiGraph task
Definitions: --
Remedy: --
108005 Too many demands on HiGraph task
Definitions: --
Remedy: --
108006 No entries for HiGraph diagnostics (e.g. Z_FEHLER_ALT)
Definitions: --
Remedy: --
108007 Not possible to proceed to next transition
Definitions: --
Remedy: --
108008 Not possible to proceed to previous transition
Definitions: --
Remedy: --
108009 Switch on to next condition not possible
Definitions: --
Remedy: --
108010 Switch on to previous condition not possible
Definitions: --
Remedy: --
108011 No matching allocation found
Definitions: --
Remedy: --
108012 Zoom is empty
Definitions: --
Remedy: --
109000 New NCK address has been transferred to NCK
Definitions: --
Remedy: --
109001 No switchover: Switchover disable set in current PLC
Definitions: HMI would like to go offline from this NCU.
The HMI switchover is disabled in the HMI PLC online interface in DB19.
(MMCx_SHIFT_LOCK = TRUE, x = 1,2)
Remedy: --

109002 No switchover: Target PLC used, try again
Definitions: HMI would like to go online to this NCU.
HMI has called the target PLC and is waiting for an acknowledgement.
The HMI does not receive an acknowledgement because the HMI parameter interface in DB19 is occupied by another HMI.
Remedy: Repeat the operation at a later point in time, as the HMI parameter interface in DB19 is only temporarily occupied.

109003 No switchover: Switchover disable set in target PLC
Definitions: HMI would like to go online to this NCU.
The HMI switchover is disabled in the HMI PLC online interface in DB19.
(MMCx_SHIFT_LOCK = TRUE, x = 1,2)
Remedy: The HMI switchover is disabled/enabled in the machine manufacturer's PLC program.
Reference to the machine manufacturer's documentation.

109004 No switchover: PLC occupied by higher-priority HMIs
Definitions: The HMI is attempting to switch to an NCU that is occupied by two higher-priority HMIs.
Remedy: Switch one of the two higher-priority HMIs to another NCU.

109005 No switchover: No HMI displaceable on target PLC
Definitions: HMI would like to go online to this NCU.
At this NCU, two HMIs are online, on which uninterruptable processes are active (e.g. data transfer between HMI and NCU).
Remedy: Wait until at least one of the two HMIs can be displaced, and repeat the switchover.

109006 No switchover: Selected channel invalid
Definitions: The HMI was switched to a channel that does not exist on this NCU.
Remedy: Set up the channel or adapt the parameterization of the NETNAMES.INI.

109007 Channel switchover running
Definitions: The channel switchover has been initiated.
A different HMI may have to be displaced.
Remedy: --

109008 Activation running
Definitions: The switchover from the passive operating mode to the active operating mode has been initiated.
Remedy: --

109009 Switchover: error in internal state
Definitions: --
Remedy: --

109010 Displacement: error in internal state
Definitions: --
Remedy: --

109011 Switchover: trace file cannot be created
Definitions: --
Remedy: --

109012 Operator units switchover, PLC timeout: 002
Definitions: --
Remedy: --
109013 Activation denied
Definitions: --
Remedy: --

110000 No data available for display
Definitions: --
Remedy: --

110001 Cannot read ACC variable:%1
Parameters: %1 = --
Definitions: --
Remedy: --

110002 No memory available
Definitions: --
Remedy: --

110003 COM file not found: %1
Parameters: %1 = --
Definitions: --
Remedy: --

110004 Screen not found: %1
Parameters: %1 = --
Definitions: --
Remedy: --

112045 Several approach points required
Definitions: Several insertion points are required for machining the contour pocket. The machining breaks up into several individual machinings. The program can be started. This alarm is only a warning. Residual material will remain.
Reaction: Alarm display.
Remedy: By using a smaller milling cutter, the machining could be done with an insertion point.
Program Continuation: Internal

112046 Main contour cannot be traced
Definitions: The pocket contour cannot be bypassed with the specified milling cutter. Residual material will remain. The program can be started. This alarm is only a warning.
Reaction: Alarm display.
Remedy: By using a smaller milling cutter, the pocket contour could be bypassed.
Program Continuation: Internal

112052 No residual material available
Definitions: No residual material has been determined.
Reaction: Alarm display.
Remedy: Check parameters in the residual material cycle.
Program Continuation: Clear alarm with the Delete key or NC START.
112057 Programmed helix violates contour
Definitions: The starting point for helical insertion was so selected, that the helix violates the programmed contour. The program can be started. This alarm is only a warning.
Reaction: Alarm display.
Remedy: Select another starting point; use a smaller helix radius.
Program Continuation: Internal

112099 System error contour pocket %1
Definitions: While the contour pocket was being calculated, an error occurred. The contour pocket cannot be calculated. The program cannot be started.
Reaction: Alarm display.
Remedy: Please contact the hotline of Siemens AG, A&D MC and provide with the error message.
Program Continuation: Internal

112100 Error on renumbering. %n Initial state restored.
Definitions: The softkey "Renumber" was pressed in the program editor. This caused an error during serial numbering that damaged the program in the memory, making it necessary to reload the initial program into the memory. The program was not renumbered.
Reaction: Alarm display.
Remedy: Make room in the memory, e.g. by deleting an old program. Select "Renumber" again.
Program Continuation: Internal

112200 The contour is a step in the current program sequence. Machining not enabled
Definitions: The contour is an element from a loaded program and cannot be deleted or renamed.
Reaction: Alarm display.
Remedy: Remove the contour from the loaded program.
Program Continuation: Internal

112201 Contour is step in current automatic chain %n Machining not possible.
Definitions: The contour is an element of a program loaded under "Machine auto" and cannot be deleted or renamed.
After the program has been started, the integrated contours cannot be changed under "Program" while the program is running.
Reaction: Alarm display.
Remedy: Stop the program and load it under "Program". Remove the contour from the program.
Program Continuation: Internal

112210 Tool axis cannot be changed. Not enough NC-%n memory.
Definitions: If the tool axis is reselected, the NC program has to be generated again. Hereby the old NC program is saved first. Then the new program is generated. Here, the NC memory is insufficient to save the new program. The reselection of the tool axis was not carried out.
Reaction: Alarm display.
Remedy: Free memory space must be created on the NC, and it must be enough for the program to be processed (e.g. by deleting programs that are no longer required).
Program Continuation: Internal
112211 Tool preselection cannot be processed.%nNot enough NC memory.
Definitions: When tool preselection is processed, the NC program has to be generated again. Hereby the old NC program is saved first. Then the new program is generated. Here, the NC memory is insufficient to save the new program. The tool preselection is not processed.
Reaction: Alarm display.
Remedy: Free memory space must be created on the NC, and it must be enough for the program to be processed (e.g. by deleting programs that are no longer required).
Program Continuation: Internal

112300 Tool management concept 2 not possible%nMagazine not completely loaded.
Definitions: The magazine is not completely loaded with tools. In the magazine of tool management type 2, the number of tools specified in machine data 18082 has to be created.
Reaction: Alarm display.
Remedy: Installation and start-up: Create the correct number of tools.
Program Continuation: Internal

112301 Tool management concept 2 not possible%nMagazine not sorted like tool list.
Definitions: The magazine list sorting does not correspond to that of the tool list.
Reaction: Alarm display.
Remedy: Start-up: Assign tools according to their T numbers to the magazine locations.
Program Continuation: Internal

112320 Replace manual tool:%n%1.
Definitions: The operator is prompted to replace the indicated manual tool.
Reaction: Alarm display.
Remedy: Replace the manual tool.
Program Continuation: Internal

112321 Load manual tool:%n%1.
Definitions: The operator is prompted to load the specified manual tool.
Reaction: Alarm display.
Remedy: Load the manual tool.
Program Continuation: Internal

112322 Exchange manual tool:%n%1 -> %2.
Definitions: The operator is prompted to replace the specified manual tool by the new manual tool.
Reaction: Alarm display.
Remedy: Replace the manual tool.
Program Continuation: Internal

112323 Replace inclinable head:%n%1
Definitions: The operator is prompted to remove the specified swivel head from the spindle.
Reaction: Alarm display.
Remedy: Replace swivel head. When doing this, please follow the machine manufacturer's instructions.
Program Continuation: Internal
112324 Load inclinable head:%n%1
Definitions: The operator is prompted to load the specified swivel head into the spindle.
Reaction: Alarm display.
Remedy: Load swivel head.
When doing this, please follow the machine manufacturer's instructions.
Program Continuation: Internal

112325 Exchange inclinable head:%n%1 -> %2
Definitions: The operator is prompted to replace the specified swivel head in the spindle with the new swivel head.
Reaction: Alarm display.
Remedy: Exchange swivel head.
When doing this, please follow the machine manufacturer's instructions.
Program Continuation: Internal

112326 Set inclinable head%n%1%2
Definitions: The operator is prompted to set the swivel head in accordance with the specified data.
Reaction: Alarm display.
Remedy: Set swivel head.
When doing this, please follow the machine manufacturer's instructions.
Program Continuation: Internal

112327 Angle not in allowed area:%n%1%2
Definitions: The programmed machining cannot be carried out with the swivel head.
Reaction: Alarm display.
Remedy: If necessary, clamp the workpiece differently.
Program Continuation: Internal

112328 Angle adapted to angle grid:%n%1%2
Definitions: Due to the angle grid, the swivel head could not be set exactly to the specified angle.
Reaction: Alarm display.
Remedy: Machining can be continued with the specified values, but it will not correspond exactly to the program-
ing.
Program Continuation: Internal

112329 Set inclinable head/swivel table:%n%1%2
Definitions: The operator is prompted to set the swivel head/table in accordance with the specified data.
Reaction: Alarm display.
Remedy: Set swivel head/table.
When doing this, please follow the machine manufacturer's instructions.
Program Continuation: Internal

112330 Set swivel table:%n%1%2
Definitions: The operator is prompted to set the swivel table in accordance with the specified data.
Reaction: Alarm display.
Remedy: Set swivel table.
When doing this, please follow the machine manufacturer's instructions.
Program Continuation: Internal

112340 Approval not possible, as axes have not%nbeen referenced!
Definitions: In Safety Integrated a user acknowledgement can only be made after the reference point has been
approached.
Reaction: Alarm display.
Remedy: Approach reference point.
Program Continuation: Clear alarm with the Delete key or NC START.

112350 No swivel data created!
Definitions: There are no swivel data blocks.
Reaction: Alarm display.
Remedy: Set up swivel data blocks (see /FBSP/, ShopMill Description of Functions)
Program Continuation: Internal

112360 Step was not transferred into program chain%nas program run active.
Definitions: The program that you want to change is being executed in the operating mode "Machine auto". You can only change programs that are not being executed in the operating mode "Machine auto".
Reaction: Alarm display.
Remedy: Stop the program run in the "Machine auto" operating mode.
Program Continuation: Internal

112400 Not stored in the Tool Management: Program: %1
Definitions: The tool specified in the program does not exist.
Reaction: Alarm display.
Remedy: The tool must be created before the data is saved.
Program Continuation: Internal

112401 Tool could not be set up: %1
Definitions: When reading in the tool data, a tool could not be created.
Reaction: Alarm display.
Remedy: Check tool management.
Program Continuation: Internal

112402 Work offsets: error on writing
Definitions: Data could not be written to the NC.
Reaction: Alarm display.
Remedy: Should the alarm be displayed again after a new try, please contact the hotline of Siemens AG, A&D MC.
Program Continuation: Clear alarm with the Delete key or NC START.

112420 Error on changing over inch/metric!%nCheck all data!
Definitions: The switchover of the data for the inch/metric conversion was not completed. This alarm can only appear in the event of hardware defects.
Reaction: NC Start disable in this channel. Alarm display.
Remedy: The following data must be checked:
Display MD's:
MD9655: $MM_CMM_CYC_PECking_DIST
MD9656: $MM_CMM_CYC_DRILL_RELEASE_DIST
MD9658: $MM_CMM_CYC_MIN_COUNT_PO_TO_RAD
MD9664: $MM_CMM_MAX_INP_FEED_P_MIN
MD9665: $MM_CMM_MAX_INP_FEED_P_ROT
MD9666: $MM_CMM_MAX_INP_FEED_P_TOOTH
MD9670: $MM_CMM_START_RAD_CONTOUR_POCKET
MD9752: $MM_CMM_MEASURING_DISTANCE
MD9753: $MM_CMM_MEAS_DIST_MAN
MD9754: $MM_CMM_MEAS_DIST_TOOL_LENGTH
MD9755: $MM_CMM_MEAS_DIST_TOOL_RADIUS
MD9756: $MM_CMM_MEASURING_FEED
MD9757: $MM_CMM_FEED_WITH_COLL_CTRL
MD9758: $MM_CMM_POS_FEED_WITH_COLL_CTRL
MD9759: $MM_CMM_MAX_CIRC_SPEED_ROT_SP
MD9761: $MM_CMM_MIN_FEED_ROT_SP
MD9762: $MM_CMM_MEAS_TOL_ROT_SP
MD9765: $MM_CMM_T_PROBE_DIAM_LENGTH_MEAS
MD9766: $MM_CMM_T_PROBE_DIAM_RAD_MEAS
MD9767: $MM_CMM_T_PROBE_DIST_RAD_MEAS
MD10240: $MN_SCALING_SYSTEM_IS_METRIC
MD20150 [12]: $MC_GCODE_RESET_VALUES

Tool data for various cutting edges D: length Z, radius R, wear length radius Z and R.
Zero offsets: Basic offset position in X, Y, Z, as well as A, C (if available) zero offset.
Settings in operating mode MANUAL: Retraction plane, safety clearance.

Program Continuation: Internal

112500 Error in NC interpreter % module %1.
Definitions: The ShopMill program cannot be opened.
Reaction: Alarm display.
Remedy: Alarm display

Program Continuation: Internal

112501 Error in EASYSTEP chain: %nNon-interpretable step in line %1.
Definitions: The ShopMill program cannot be opened.
Reaction: Alarm display.
Remedy: Correct the faulty line.

Program Continuation: Internal

112502 Not enough memory space %n Cancel in line %1.
Parameters: %1 = Line number
Definitions: The program cannot interpret a program block with contour programming. Contour not in the directory.
Program is not loaded.
The program cannot interpret a program block with contour programming. Contour not in the directory.
Reaction: Alarm display.
Remedy: Load contour into the directory.

Program Continuation: Internal

112503 ShopMill: %1
Definitions: A system error has occurred.
Reaction: Alarm display.
Remedy: Please contact the hotline of Siemens AG, A&D MC and provide with the error message.

Program Continuation: Clear alarm with the Delete key or NC START.

112504 File does not exist or is faulty %n %1
Parameters: %1 = File name
Definitions: The program cannot interpret a program block with contour programming.
Contour not in the directory.
Reaction: NC Start disable in this channel.
Alarm display.
Remedy: Load contour into the directory.

Program Continuation: Internal
112505 Error on interpreting contour:%n%1
Parameters: %1 = Contour name
Definitions: Contour is faulty.
Reaction: NC Start disable in this channel.
Alarm display.
Remedy: Check the contour's machining sequence.
Program Continuation: Internal

112506 Maximum number of contour elements exceeded:%n%1
Definitions: The maximum permissible number of 50 contour elements was exceeded when interpreting the machining sequence of a contour.
Reaction: Alarm display.
Remedy: Check the contour's machining sequence and, if necessary, edit it.
Program Continuation: Internal

112541 Program cannot be interpreted
Definitions: The program cannot be interpreted as a ShopMill program during loading, as the program header is missing.
Reaction: NC Start disable in this channel.
Alarm display.
Remedy: --
Program Continuation: Internal

112542 GUD variable does not exist or%array dimension too small:%1
Definitions: The required GUD variable was not found on read or write access.
Reaction: Alarm display.
Remedy: Load the correct GUD variable.
Program Continuation: Internal

112543 Prog. was created with higher software version
Definitions: The part program has been created with a software version higher than the existing one.
Reaction: Alarm display.
Remedy: Delete the machining step and reprogram machining if required.
Program Continuation: Clear alarm with the Delete key or NC START.

112544 Program cannot be opened.%nIt is already being edited.
Definitions: Program is already open in HMI Advanced (Program or Services operating area).
Reaction: Alarm display.
Remedy: Close program in HMI Advanced (Program or Services operating area).
Program Continuation: Clear alarm with the Delete key or NC START.

112546 Program cannot be opened.%nNo read access to the file.
Definitions: The file has no write access for the current access level.
Reaction: Alarm display.
Remedy: Set read access with keyswitch or via password.
Program Continuation: Internal

112550 Sequencer programming is not opened.
Definitions: Option 'Sequencer programming' has not been set.
Reaction: Alarm display.
Remedy: The program is opened as G code.
112560 USB device no longer available, execution from external source no longer possible.
Definitions: --
Reaction: Alarm display.
Remedy: --

112561 USB device no longer available, execution of Extcall no longer possible.
Definitions: --
Reaction: Alarm display.
Remedy: --

112562 USB device is no longer available, editing is canceled. The last changes have been lost.
Definitions: --
Reaction: Alarm display.
Remedy: --

112563 USB device is not available, program editing is canceled. Last changes have been lost.
Definitions: --
Reaction: Alarm display.
Remedy: --

112564 USB device no longer available, copying was aborted.
Definitions: --
Reaction: Alarm display.
Remedy: --

112565 USB device no longer available.
Definitions: --
Reaction: Alarm display.
Remedy: --

112600 Spindle not synchronized
Definitions:
Reaction: Alarm display.
Remedy: Synchronize the spindle.
Program Continuation: Internal

112601 ShopTurn: %1
Definitions: A system error has occurred.
Reaction: Alarm display.
Remedy: Please contact the hotline of Siemens AG, A&D MC and provide with the error message.
Program Continuation: Clear alarm with the Delete key or NC START.

112604 Connection to the PLC broken off
Definitions: Acknowledgement to the PLC user program, that the connection with the PCU has been broken off. ShopMill PLC is terminated.
Reaction: Alarm display.
Remedy: Check the PLC user program.
Program Continuation: Internal
112605 Asynchronous subprogram was not executed
Definitions: The input values could not be correctly processed by the NC.
Reaction: Alarm display.
Remedy: Perform an NCK reset
Program Continuation: Internal

112611 NC start not possible: Deselect single block
Definitions: A program was activated with block search while a single block has been active.
Reaction: Alarm display.
Remedy: Deselect the single block.
Program Continuation: Internal

112620 Language %1 not installed.
Definitions: Language not installed.
Reaction: Alarm display.
Remedy: Install language.
Program Continuation: Internal

112650 Unknown PLC error
Definitions: The PLC has announced an error that is unknown in the operator panel.
Reaction: NC Start disable in this channel.
Alarm display.
Remedy: Press POWER ON, inform Siemens.
Program Continuation: Internal

112999 Faulty graphic data. Exit graphic and restart
Definitions: More data was generated than can be read from the operator panel.
Stop the graphic.
Remedy: Deselect the graphic and then select it again.

113000 Invalid value - value range: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113001 Incorrect configuration in line %1
Parameters: %1 = --
Definitions: --
Remedy: --

113002 Insufficient access level!
Definitions: --
Remedy: --

113003 Error when writing variable %1
Parameters: %1 = --
Definitions: --
Remedy: --

113004 Insufficient dynamic memory
Definitions: --
Remedy: --

113005 Incorrect NC file positioning: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113006 NC program is not open %1
Parameters: %1 = --
Definitions: --
Remedy: --

113007 Cannot read NC block, no.: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113008 NC block cannot be written, no.: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113009 File name missing for copy
Definitions: --
Remedy: --

113010 Cannot open file: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113011 Cannot write file: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113012 Cannot write NC file: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113013 Cannot read NC file: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113014 Invalid NC file name: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113015 DLL not loaded: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113016 No link to %1
Parameters: %1 = --
Definitions: --
Remedy: --

113017 Incorrect DDE address: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113018 Invalid command: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113019 Invalid data format: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113020 Cursor data item cannot be written
Definitions: --
Remedy: --

113021 Error on data access: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113022 No variables exist
Definitions: --
Remedy: --

113023 Impossible to enter code: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113024 Invalid mask property: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113025 Invalid action: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113026 Invalid type of action: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113027 No mask defined
Definitions: --
Remedy: --

113028 You cannot insert here
Definitions: --
Remedy: --

113029 Mask '%1' being generated - please wait ...
Parameters: %1 = --
Definitions: --
Remedy: --
113030 PLC connection '%1' not in 'common.com'
Parameters: %1 = --
Definitions: --
Remedy: --

113031 PLC interpreter: %1 bytes not allocated
Parameters: %1 = --
Definitions: --
Remedy: --

113032 Invalid PLC command: %1
Parameters: %1 = --
Definitions: --
Remedy: --

113033 Block cannot be recompiled
Definitions: --
Remedy: --

113034 No softkey is allowed in this state - ignored
Definitions: --
Remedy: --

113100 Internal error %1
Parameters: %1 = --
Definitions: --
Remedy: --

120000 Area %1 cannot be loaded! Acknowledge alarm, press area switchover key!
Parameters: %1 = Operating area name
Definitions: One of the applications listed in the REGIE.INI could not be started.
Reaction: Alarm display.
Remedy: Check whether the entry in REGIE.INI is correct.
Program Continuation: Internal

120001 Area %1 cannot be selected. Please deactivate area %2
Parameters: %1 = Operating area name
%2 = Operating area name
Definitions: Within the scope of an area switchover, a different area is to be terminated (unloaded).
However, the area refuses this.
The area switchover does not take place.
Reaction: Alarm display.
Remedy: Try again and, if possible, first close the area that could not be deactivated.
Program Continuation: Internal

120002 Area %1 is still active. Please deactivate area %1
Parameters: %1 = Operating area name
Definitions: When the MMC system is closed (closing the master control), an area is to be terminated.
However, the area refuses this.
The system was NOT closed.
Reaction: Alarm display.
Remedy: Try again and, if possible, first close the area that could not be deactivated.
Program Continuation: Internal
120003
Area %1 cannot be deactivated. Please try again
Parameters: %1 = Operating area name
Definitions: Within the scope of an area switchover, an area is to be deselected. However, the area refuses this. The area switchover does not take place.
Reaction: Alarm display.
Remedy: Try again and, if possible, first close the area that could not be deactivated.
Program Continuation: Internal

120005
Please acknowledge the dialog box in area %1
Parameters: %1 = Operating area name
Definitions: The area %1 could not be deselected, as in this area a dialog box is still open.
Reaction: Alarm display.
Remedy: Close the dialog box in area %1!
Program Continuation: Internal

120006
The channel switchover is currently disabled by area %1.
Parameters: %1 = Operating area name
Definitions: The area %1 has disabled the channel switchover at the moment, as it is performing a critical operation (e.g. execution from external sources, etc.), during which no channel switchover may occur.
Reaction: Alarm display.
Remedy: Wait until the critical operation is finished or end the critical operation manually.
Program Continuation: Internal

120007
The channel switchover is currently disabled.
Definitions: The channel switchover is currently disabled, as a critical operation, during which no channel switchover may occur, is being carried out.
Reaction: Alarm display.
Remedy: Wait until the critical operation is finished or end the critical operation manually.
Program Continuation: Internal

120008
Control unit switchover, PLC timeout: %1
Parameters: %1 = --
Definitions:
001: MMC would like to go offline from this NCU. MMC has made the offline request in the online PLC and is waiting for the positive / negative acknowledgement from the PLC.
002: MMC would like to go online to this NCU. MMC has called the target PLC and is waiting for the release to go online.
003: MMC has requested the active operating mode and is waiting for acknowledgement from the PLC.
Remedy: Check whether the switchover blocks are loaded and started in the online PLC.

120010
PCU temperature alarm
Definitions: The temperature sensor on the PCU module has reached the response threshold. Interface bit DB10.DB103.6 will be set.
Remedy: Switch off the PCU and let it cool off. Improve the ventilation of the PCU module. Check the function of the fan of the PCU module (fan defect). If the error is displayed again, please inform the authorized service personnel.
120011 Request for authority to operate from another station.

Definitions: The operator of another station requests authority to operate. This can be refused to him through Recall. After approx. 5 seconds, the authority to operate will automatically be transferred to the other station.

Reaction: Alarm display.

Remedy: The alarm automatically disappears after approx. five seconds or if the Recall key is pressed within this time limit.

Program Continuation: Internal

120020 PCU fan monitoring CPU fan

Definitions: Low fan speed of CPU fan. Interface bit DB10.DB103.4 is being set.

Remedy: Switch off the PCU, let it cool off and have the function of the CPU fan of PCU module checked by qualified service personnel (fan problem). Spare part description: Manual Operator Components SINUMERIK 840D/840Di/810D section PCU 50 V3 spare parts, replacement of device fan.

120021 PCU fan monitoring housing fan 1

Definitions: Low fan speed of PCU casing fan 1. Interface bit DB10.DB103.4 is being set.

Remedy: Switch off the PCU, let it cool off and have the function of casing fan 1 of PCU module checked by qualified service personnel (fan problem). Spare part description: Manual Operator Components SINUMERIK 840D/840Di/810D section PCU 50 V3 spare parts, replacement of device fan.

120022 PCU fan monitoring housing fan 2

Definitions: Low fan speed of PCU casing fan 2. Interface bit DB10.DB103.4 is being set.

Remedy: Switch off the PCU, let it cool off and have the function of casing fan 2 of PCU module checked by qualified service personnel (fan problem). Spare part description: Manual Operator Components SINUMERIK 840D/840Di/810D section PCU 50 V3 spare parts, replacement of device fan.

120029 PCU: fatal hard disk error

Definitions: A high number of write/read errors was found on the hard disk. This indicates a hardware failure to come soon (S.M.A.R.T error). Interface bit DB10.DB103.3 is being set.

120120 %1 see explanation

Parameters: %1 = Alarm texts are displayed below in respect of individual causes of the alarm

Definitions: Alarm text: Alarm list is full. Pending alarms/messages could not be entered into the alarm list due to lack of space. The alarm cannot be deleted, as this event has made the alarm list permanently inconsistent. Alarm text: Number of alarm texts too high. The number of alarm texts is currently limited to 5000. This limit has been exceeded by the alarm text configuration. Alarm text: File %1 not found. Alarm text: Input/output error in file %1. Alarm text: Input/output error. Alarm text: Error on reading from the index file. Alarm text: Error on writing into the index file. Alarm text: Syntax error in alarm text file %1. Alarm texts are stored in files. One of these files could not be accessed properly.
Overview of Alarms 03/2009

HMI-Alarms

© Siemens AG 2009 All Rights Reserved

SINUMERIK 840D sl, 840Di sl, SINAMICS, Diagnostics Manual (DAsl), 03/2009

Reaction: Alarm display.
Remedy: Expand the alarm list (Enter maximum number in the file mbdde.ini in the section [Alarms]). Then perform a cold restart for the operator panel.
Redeem the number of alarm texts. Then perform a cold restart for the operator panel.
Make sure that the MMC memory on the hard disk is available after booting, or re-install the MMC software.
When entering your own alarm texts, check whether the path and file name are entered correctly in mbdde.ini.

Program Continuation: Internal

120200 Image preparation suppressed

Definitions: The control is so heavily loaded by the processing of a subroutine, that it cannot keep all the display values up-to-date.

Reaction: Alarm display.
Remedy: The alarm disappears automatically as soon as the overload situation has been eliminated.
If this alarm occurs often, the start-up engineer will have to take appropriate measures (e.g. reduce IPO clock pulse rate).

Program Continuation: Internal

120201 Communication failure

Definitions: The operator panel is connected with the NC and PLC via a serial bus. This alarm occurs when the communication to these components is interrupted.
In connection with this alarm, all display values connected with the NC/PLC become invalid.
Such faults are normal while the controls are ramping up (e.g. after resetting).

Reaction: Alarm display.
Remedy: The alarm disappears automatically as soon as the fault situation has ended.
If this alarm is continuously present, a wide variety of faults may be the cause. (e.g. wire breakage, NC/PLC not ramped up, faulty address/data transfer rate configuration of one of the bus nodes, etc.).

Program Continuation: Internal

120202 Waiting for a connection to the NC/PLC

Definitions: The operator panel is connected to the NC and PLC via a serial bus. This alarm occurs if the MMC is started for the first time and the NC/PLC ramp-up is not yet finished or the communication to these components is faulty.
In connection with this alarm, all display values connected with the NC/PLC become invalid.
Such faults are normal while the controls are ramping up (e.g. after resetting).

Reaction: Alarm display.
Remedy: The alarm disappears automatically as soon as the fault situation has ended.
If this alarm is continuously present, a wide variety of faults may be the cause. (e.g. wire breakage, NC/PLC not ramped up, faulty address/data transfer rate configuration of one of the bus nodes, etc.).

Program Continuation: Internal
120203 Communication failure

Definitions: The operator panel is connected to the NC and PLC via a serial bus. This alarm occurs if the MMC is started for the first time and the NC/PLC ramp-up is not yet finished or the communication to these components is faulty. In connection with this alarm, all display values connected with the NC/PLC become invalid. Such faults are normal while the controls are ramping up (e.g. after resetting).

Reaction: Alarm display.

Remedy: The alarm disappears automatically as soon as the fault situation has ended. If this alarm is continuously present, a wide variety of faults may be the cause. (e.g. wire breakage, NC/PLC not ramped up, faulty address/data transfer rate configuration of one of the bus nodes, etc.).

Program Continuation: Internal

120301 Faulty entry for hardkey 'Program' in Keys.ini.

Definitions: The configuration in Keys.ini is wrong.

Reaction: Alarm display.

Remedy: In Keys.ini, the parameter ChildTask:=26 has to be set in the line KEY2.0=.

The alarm can also be acknowledged manually via diagnostics.

Program Continuation: Internal

120302 The selection is not possible. A program has to have been edited first via the area 'Program'.

Definitions: A program can only be selected via the hardkey program if a program has already been edited in the program area.

Reaction: Alarm display.

Remedy: The alarm disappears automatically as soon as a program is edited or simulated in the program area. The alarm can also be acknowledged manually via diagnostics.

Program Continuation: Internal
120303 The selection is not possible. The edited file %1 no longer exists.

Parameters: %1 = Program name with path
Definitions: The file edited last in the program area has in the meantime been deleted.
Reaction: Alarm display.
Remedy: The alarm disappears automatically as soon as a program is edited or simulated in the program area.
The alarm can also be acknowledged manually via diagnostics.
Program Continuation: Internal

120304 The selection is not possible. The file %1 has insufficient read rights.

Parameters: %1 = Program name with path
Definitions: The file has insufficient read rights for the current access level.
Reaction: Alarm display.
Remedy: Set the required read rights by means of keyswitch or password entry.
The alarm disappears automatically as soon as a program is edited or simulated in the program area.
The alarm can also be acknowledged manually via diagnostics.
Program Continuation: Internal

120305 Selection is not possible. The file %1 is currently being edited.

Parameters: %1 = Program name with path
Definitions: The file is currently open in another application (e.g. services) with an editor.
Reaction: Alarm display.
Remedy: Change the program in the already open editor.
The alarm disappears automatically as soon as a program is edited or simulated in the program area.
The alarm can also be acknowledged manually via diagnostics.
Program Continuation: Internal

120306 The selection is not possible. The file %1 is selected and active in channel %2.

Parameters: %1 = Program name with path
%2 = Channel number
Definitions: --
Reaction: Alarm display.
Remedy: Stop the program with the NCU's channel reset and make the selection again.
The alarm disappears automatically as soon as a program is edited or simulated in the program area.
The alarm can also be acknowledged manually via diagnostics.
Program Continuation: Internal

120307 File %1 cannot be opened for the editor because it is selected in channel %2 for execution by external sources.

Parameters: %1 = Program name with path
%2 = Channel number
Definitions: --
Reaction: Alarm display.
Remedy: A different program on the NCU or for execution from external sources has to be selected.
The alarm disappears automatically as soon as a program is edited or simulated in the program area.
The alarm can also be acknowledged manually via diagnostics.
Program Continuation: Internal

120308 In the event of an emergency stop, the program %1 can only be changed in the machine/program correction area.

Parameters: %1 = Program name with path
Definitions: --
Reaction: Alarm display.
Remedy: Switch to the machine area and change the program with the program correction function.
The alarm disappears automatically as soon as a program is edited or simulated in the program area.
The alarm can also be acknowledged manually via diagnostics.

Program Continuation: Internal

120309 The selection is not possible. Please close the simulation and repeat the selection.
Definitions: The simulation is currently active in the program area.
A simultaneous editing is not possible.
Reaction: Alarm display.
Remedy: Close the simulation and make the selection again.
The alarm disappears automatically as soon as a program is edited or simulated in the program area.
The alarm can also be acknowledged manually via diagnostics.

Program Continuation: Internal

120310 The selection is not possible. Please wait for the pending action or terminate it, then repeat the selection.
Definitions: In the program area, programs are currently being copied, loaded or unloaded.
A simultaneous editing is not possible.
Reaction: Alarm display.
Remedy: Wait until the action is completed or terminate the action via the softkey "Cancel", and then repeat the selection.
The alarm disappears automatically as soon as a program is edited or simulated in the program area.
The alarm can also be acknowledged manually via diagnostics.

Program Continuation: Internal

120400 The settings for the acyclic links with the drive units are not yet effective. Switch off/on HMI!
Definitions: A file transfer from/to a drive unit has failed as the settings for acyclic links with the drive units become effective only after an HMI reboot.
Reaction: Alarm display.
Remedy: Switch off/on HMI and then repeat the process leading to the alarm.

Program Continuation: Internal

120401 SINAMICS: Write job for parameter %1, value %2, area %3: %4s timeout!
Parameters: %1 = Number of parameter the value of which is to be written.
%2 = Value to be written
%3 = Area (drive object class to which the write job was addressed)
%4 = Time passed without the write job being acknowledged by the drive unit.
Definitions: The write job of a SINAMICS parameter was not not acknowledged within 10 seconds by the drive unit.
If the write job is not acknowledged within the next 10 seconds, the alarm will again be triggered.
The waiting period for the acknowledgement of a write job is a maximum of 130 seconds, i.e. if the timeout specified in the alarm is 130 seconds, it is assumed that the write job has failed. Otherwise it can be assumed that the write job was successful despite the timeout.
Reaction: Alarm display.
Remedy: As long as the timeout specified in the alarm is less than 130 seconds, acknowledge alarm, otherwise switch off/on control, drive system and HMI, and then repeat the process leading to the alarm.

Program Continuation: Internal

120402 Bus%1 Slave%2: %3: First commissioning of SINAMICS required!
Parameters: %1 = Bus number
%2 = Slave address
%3 = Name of the affected drive unit
Definitions: The drive unit with the bus number and slave address specified in the alarm is in ‘First commissioning’ state.

Reaction: Alarm display.

Remedy: Execute first commissioning for the affected drive unit. To do so, switch in the HMI to the dialog ‘First commissioning > Drive system > Drive unit’, select the affected drive unit, and follow the instructions of the HMI.

120403 Bus%1.Slave%2: %3: Check/acknowledge topology!

Parameters: %1 = Bus number
%2 = Slave address
%3 = Name of the affected drive unit

Definitions: The drive unit with the bus number and slave address specified in the alarm has detected an illegal difference between reference topology and actual topology during the ramp-up when checking the DRIVE-CLiQ topology.

For this reason, the drive unit has stopped the ramp-up in the ‘Topology error’ state.

Reaction: Alarm display.

Remedy: - Check actual topology and possibly replug in line with the actual topology.
- Check DRIVE-CLiQ cables for breakage and problems with contacts.
- Test DRIVE-CLiQ components for operational functioning.

Note: Under ‘Commissioning > Drive system > Drive unit > Topology’, HMI offers a suitable diagnosis (e.g. reference/actual value comparison).

Program Continuation: Internal

120404 Setting up acyclic link %1 failed.%nSwitch off/on control, drives and HMI.

Parameters: %1 = Name of connection

Definitions: Setting up an acyclic link with a drive unit for file transfer from/to this drive unit has failed.
The file could not be transferred from/to this drive unit.
The affected drive unit has the bus number and slave address specified in the link name: /DRIVE_<Bus number>,<Slave address>.

Reaction: Alarm display.

Remedy: Execute the following measures in the sequence specified until the process leading to the alarm can be repeated successfully:
1. Switch off/on control, drives and HMI, and then repeat the process leading to the alarm.
2. Load PROFIBUS configuration (HW Config) with same PLC and CP-Subnet-ID in PLC and CP, switch off/on control and HMI, and then repeat the process leading to the alarm.
3. Return to factory settings of the affected drive unit, switch off/on control, drives and HMI, and then repeat the process leading to the alarm.
4. Contact Siemens AG, Industry Sector, I DT MC, Hotline (Phone/Fax: see Alarm 1000) regarding the error text.

Program Continuation: Internal

120405 SINAMICS: Firmware update for DRIVE-CLiQ components is running.%nP lease wait for the firmware update to be completed!

Definitions: The firmware update is being executed for at least one DRIVE-CLiQ component.

Reaction: Alarm display.

Remedy: None required.
Please wait for the firmware update to be completed.
Completion of the firmware update is signaled by alarm 120406.

Program Continuation: Internal

120406 SINAMICS: Firmware update of DRIVE-CLiQ components completed.%nSwitch off/on drive system!

Definitions: Firmware update of all DRIVE-CLiQ components completed.

Reaction: Alarm display.
Remedy: Switch off/on drive system including all DRIVE-CLiQ components.

Program Continuation: Internal

129900 Data of passive drives are not backed up!
Definitions: This indicates that passive drives are not backed up as well when an upgrade is made.
Reaction: Alarm display.
Remedy: If the drive shall be backed up as well, it must be enabled. If the note shall not be displayed again, set the drive to "0" in machine data 30240 ENC_TYPE and 30130 CTRLOUT_TYPE.

Program Continuation: Internal

129901 Time determination is being initialized. Please wait...
Definitions: This indicates that the time determination is being initialized and that the operator shall not yet press NC Start or execute other operator actions.
Reaction: Alarm display.
Remedy: Not necessary. After completion of the initialization, the dialog box will be faded out again automatically.

Program Continuation: Internal

129902 Recorded data are being processed. Please wait...
Definitions: This indicates that data recorded by time determination are currently processed and that the operator shall not yet press NC Start or execute other operating actions.
Reaction: Alarm display.
Remedy: Not necessary. After completion of the initialization, the dialog box will be faded out again automatically.

Program Continuation: Internal

129903 Time determination is active.
Definitions: This indicates that time determination is enabled and that the user can press NC Start.
Reaction: Alarm display.
Remedy: Not necessary. As soon as all channels viewed for time determination are in Reset again, this message will be cancelled automatically.

Program Continuation: Internal

129904 %1: Current NCK Version %2 is too low for time measurement. Version 500000 or higher will be required.
Parameters: %1 = Name of the NCU according to NETNAMES.INI
%2 = Current NCU version
Definitions: The version of the specified NCU is too old (< 500000).
Remedy: Upgrade or replace the relevant NCU for the required software version in order to use the time determination.

129905 %1: Unable to determine the NCK version for time measurement.
Parameters: %1 = Name of the NCU according to NETNAMES.INI
Definitions: The version of the specified NCU could not be determined.
Remedy: Connect to the NCU and restart the PCU if required.

129906 %1: Unable to determine the number of channels.
Parameters: %1 = Name of the NCU according to NETNAMES.INI
Definitions: The number of channels of the specified NCU could not be determined.
Remedy: Connect to the NCU and restart the PCU if required.

129907 %1: The max. number of channels could not be determined.
Parameters: %1 = Name of the NCU according to NETNAMES.INI
Definitions: The maximum number of channels of the specified NCU could not be determined.
Remedy: Connect to the NCU and restart the PCU if required.

129908 %1: Unable to determine active channels.
Parameters: %1 = Name of the NCU according to NETNAMES.INI
Definitions: The active channels of the specified NCU could not be determined.
Remedy: Connect to the NCU and restart the PCU if required.

129909 %1: Unable to determine the name of channel %2.
Parameters: %1 = Name of the NCU according to NETNAMES.INI
%2 = Channel number
Definitions: The channel name of the specified NCU could not be determined.
Remedy: Connect to the NCU and restart the PCU if required.

129910 %1: Unable to determine general machine data.
Parameters: %1 = Name of the NCU according to NETNAMES.INI
Definitions: The general machine data of the specified NCU could not be determined.
Remedy: Connect to the NCU and restart the PCU if required.

129911 %1: Unable to determine machine data $MN_MM_PROTOC_NUM_FILES[1,10].
Parameters: %1 = Name of the NCU according to NETNAMES.INI
Definitions: Machine data $MN_MM_PROTOC_NUM_FILES[1,10] of the specified NCU could not be determined.
Remedy: Connect to the NCU and restart the PCU if required.

129912 %1: Unable to determine machine data $MN_MM_PROTOC_NUM_ETPD_STD_LIST[1,10].
Parameters: %1 = Name of the NCU according to NETNAMES.INI
Definitions: Machine data LINKITEM_MIN_MM_PROTOC_NUM_ETPD_STD_LIST[1,10] of the specified NCU could not be determined.
Remedy: Connect to the NCU and restart the PCU if required.

129913 %1: Unable to determine machine data $MN_MM_PROTOC_NUM_ETPD_OEM_LIST[1,10].
Parameters: %1 = Name of the NCU according to NETNAMES.INI
Definitions: Machine data LINKITEM_MIN_MM_PROTOC_NUM_ETPD_OEM_LIST[1,10] of the specified NCU could not be determined.
Remedy: Connect to the NCU and restart the PCU if required.

129914 %1: Unable to determine channel-specific machine data.
Parameters: %1 = Name of the NCU according to NETNAMES.INI
Definitions: The channel-specific machine data of the specified NCU could not be determined.
Remedy: Connect to the NCU and restart the PCU if required.

129915 %1: Unable to determine active user for channel %2.
Parameters: %1 = Name of the NCU according to NETNAMES.INI
%2 = Channel number
Definitions: The "active user" of the specified channel of the specified NCU could not be determined.
Remedy: Connect to the NCU and restart the PCU if required.

129930 %1: Min. %2 log files are required for the requested time determination ($MN_MM_PROTOC_NUM_FILES[%3])
Parameters: %1 = Name of the NCU according to NETNAMES.INI
%2 = Number of log files required
%3 = User index
Definitions: Time measuring of the configured workpiece requires at least the specified number of log files.
Remedy: Set general machine data $MN_MM_PROTOC_NUM_FILES[%3] of NCU %1 to value %2.
129931 %1: Min. %2 ETPD lists are required for the requested time determination
($MN_MM_PROTOC_NUM_ETPD_STD_LIST[%3])
Parameters: %1 = Name of the NCU according to NETNAMES.INI
%2 = Number of ETPD lists required
%3 = User index
Definitions: Time measuring of the configured workpiece requires at least the specified number of ETPD lists.
Remedy: Set general machine data $MN_MM_PROTOC_NUM_ETPD_STD_LIST[%3] of NCU %1 to value %2.

129932 DAT: The configured NCU (%1) for part program %2 in channel %3 is invalid.
Parameters: %1 = Name of the NCU according to NETNAMES.INI
%2 = Name of the part program
%3 = Channel number
Definitions: The specified combination of NCU, part program and channel is invalid for time measuring of the configured workpiece.
Remedy: Part program %2 can only be assigned to a channel in an NCU configured in NETNAMES.INI.

129933 DAT: The configured channel (%1) for part program %2 in NCU %3 is invalid.
Parameters: %1 = Channel number
%2 = Name of the part program
%3 = Name of the NCU according to NETNAMES.INI
Definitions: The specified combination of NCU, part program and channel is invalid for time measuring of the configured workpiece.
Remedy: Correct the corresponding entry in the DAT file belonging to the workpiece.

129934 DAT: Part program %1 has been configured more than once.
Parameters: %1 = Name of the part program
Definitions: For time measuring of the configured workpiece, the specified part program is configured for several channels.
Remedy: Correct the corresponding entry in the DAT file belonging to the workpiece.

129935 NC configuration not yet determined.
Definitions: Unable to determine the configuration of the NCs.
Remedy: Ensure that communication to the NC has been activated and all machine data required for time measuring have been set correctly.

129936 Initialization not yet executed.
Definitions: An order has been sent to the ITS server although the server has not been initialized yet.
Remedy: Execute your operation again later.

129937 Workpiece selection missing.
Definitions: The ITS server has not yet received any DAT file for time measuring, or the contents of the DAT file is faulty.
Remedy: Select a workpiece for execution prior to executing a time measurement.

129938 Status of workpiece (%1) could not be determined.
Parameters: %1 = Workpiece name
Definitions: The state ?editable? of the DAT file or the workpiece could not be determined.
Remedy: Restart communication to the NC, if required.

129939 Workpiece (%1) is currently being machined.
Parameters: %1 = Workpiece name
Definitions: The DAT file or workpiece is currently disabled.
Remedy: Close the open DAT file or the corresponding workpiece in MCSE, if required.

129940 Error in workpiece (%1).
Parameters: %1 = Workpiece name
Definitions: The ITS server has not yet been initialized, it cannot, therefore, execute the order.
Remedy: Execute your operation again later.

129941 Not all involved channels are in RESET.
Definitions: At least one of the channels configured in the workpiece for time measuring is not in the "Reset" state.
Remedy: Ensure that all channels configured in the workpiece for time measurement are in the "Reset" state.

129942 Not all involved channels are in AUTO.
Definitions: At least one channel/mode group configured in the workpiece for time measurement is not in the "AUTO" mode.
Remedy: Ensure that all channels/mode groups configured in the workpiece for time measurement are in the "AUTO" state.

129943 %1: Invalid configuration of $AN_TIMER.
Parameters: %1 = NCU name
Definitions: Setting AN_TIMERNr of section [DAT] in ITS.INI is incompatible with the setting in machine data 18710 $MN_MM_NUM_AN_TIMER.
Remedy: The value in general machine data 18710 $MN_MM_NUM_AN_TIMER must be at least "1". The value set for AN_TIMERNr of section [DAT] in ITS.INI must be higher than "0" and smaller than or equal to the value of general machine data 18710 $MN_MM_NUM_AN_TIMER. The following rule applies:
0 < AN_TIMERNr <= $MN_MM_NUM_AN_TIMER

129944 %1: $AN_TIMER[%2] not running.
Parameters: %1 = NCU name
%2 = Index of system variable $AN_TIMER used.
Definitions: The $AN_TIMER[AN_TIMER_No] configured with setting AN_TIMERNr of section [DAT] in ITS.INI has not been started.
Remedy: Ensure that system variable $AN_TIMER[AN_TIMER_No] with value "0" is initialized and started on NCU ramp-up; for example, with AN_TIMER_No = 1 the system variable must be initialized with NC instruction $AN_TIMER[1] = 0.

129945 %1: The current NCK version (%2) is too old for this type of time measuring.
Parameters: %1 = NCU name
%2 = NCK software version of NCU %1.
Definitions: Measuring method "1" configured with setting MeasureMode of section [DAT] in ITS.INI cannot be used, as the current NCK version is too old.
Remedy: Either upgrade NCK software to at least 511300 or select measuring method "0".

129946 General error. See entry in log file ITSx.LOG.
Definitions: A general error has occurred that is specified in detail in log file "ITSx.LOG". The files are stored in sub-directory "SEditor" of the "TMP" directory in HMI Advanced.
Remedy: Follow the instructions in log file "ITSx.LOG" or contact the Siemens hotline.

142000 Operator at the machine is waiting for support via remote diagnostics!
%1 %2 %3 %4
Parameters: %1 = IP address for existing Internet connection via modem
Definitions: Will be triggered in "User Controlled" mode, if user uses "Request Support" function.
Reaction: Alarm display.
Remedy: Acknowledge alarm
Program Continuation: Internal

142001 Operator at the machine is waiting for support via remote diagnostics!
%1 %2 %3 %4
Parameters: %1 = IP address for existing Internet connection via modem
Definitions: Will be triggered in "User Controlled" mode, if user uses "Request Support" function.
Reaction: Alarm display.
Remedy: Acknowledge alarm
142002 Operator at the machine is waiting for support via remote diagnostics!
 \(%1 \%2 \%3 \%4 \)
Parameters: \(%1 = \) IP address for existing Internet connection via modem
Definitions: Will be triggered in "User Controlled" mode, if user uses "Request Support" function.
Reaction: Alarm display.
Remedy: Acknowledge alarm

142003 Operator at the machine is waiting for support via remote diagnostics!
 \(%1 \%2 \%3 \%4 \)
Parameters: \(%1 = \) IP address for existing Internet connection via modem
Definitions: Will be triggered in "User Controlled" mode, if user uses "Request Support" function.
Reaction: Alarm display.
Remedy: Acknowledge alarm

142004 Operator at the machine is waiting for support via remote diagnostics!
 \(%1 \%2 \%3 \%4 \)
Parameters: \(%1 = \) IP address for existing Internet connection via modem
Definitions: Will be triggered in "User Controlled" mode, if user uses "Request Support" function.
Reaction: Alarm display.
Remedy: Acknowledge alarm

142005 Machine ready for remote diagnostics! \(%1 \%2 \%3 \%4 \)
Parameters: \(%1 = \) IP address for existing Internet connection via modem
Definitions: Are triggered in "PLC Controlled" mode
Reaction: Alarm display.
Remedy: Acknowledge alarm

142006 Machine ready for remote diagnostics! \(%1 \%2 \%3 \%4 \)
Parameters: \(%1 = \) IP address for existing Internet connection via modem
Definitions: Are triggered in "PLC Controlled" mode
Reaction: Alarm display.
Remedy: Acknowledge alarm

142007 Machine ready for remote diagnostics! \(%1 \%2 \%3 \%4 \)
Parameters: \(%1 = \) IP address for existing Internet connection via modem
Definitions: Are triggered in "PLC Controlled" mode
Reaction: Alarm display.
Remedy: Acknowledge alarm

142008 Machine ready for remote diagnostics! \(%1 \%2 \%3 \%4 \)
Parameters: \(%1 = \) IP address for existing Internet connection via modem
Definitions: Are triggered in "PLC Controlled" mode
Reaction: Alarm display.
Overview of Alarms 03/2009

HMI-Alarms

Remedy: Acknowledge alarm
Program Continuation: Internal

142009 Machine ready for remote diagnostics! %1 %2 %3 %4
Parameters: %1 = IP address for existing Internet connection via modem
Definitions: Are triggered in "PLC Controlled" mode
Reaction: Alarm display.
Remedy: Acknowledge alarm
Program Continuation: Internal

142010 Operator at the machine is waiting for support via remote diagnostics!
Parameters: %1 = IP address for existing Internet connection via modem
Definitions: Will be triggered in "User Controlled" mode, if user explicitly selects and starts a host object.
Reaction: Alarm display.
Remedy: Acknowledge alarm
Program Continuation: Internal

142011 Operator at the machine is waiting for support via remote diagnostics!
Parameters: %1 = IP address for existing Internet connection via modem
Definitions: Will be triggered in "User Controlled" mode, if user uses "Request Support" function.
Reaction: Alarm display.
Remedy: Acknowledge alarm
Program Continuation: Internal

149000 Job execution failed
Definitions: -
Remedy: -
Program Continuation: Internal

149001 No boot script available
Definitions: -
Remedy: -
Program Continuation: Internal

149002 Error during execution of script
Definitions: -
Remedy: -
Program Continuation: Internal

149005 A job could not be fetched from the server.
Definitions: -
Remedy: -
Program Continuation: Internal

149006 The job fetched from the server does not contain any data.
Definitions: -
Remedy: -
Program Continuation: Internal
149007 The server certificate has expired, or the date and time settings on the computer are incorrect.
Definitions:
Remedy:
Program Continuation: Internal

149008 Access to the ePS configuration failed for unknown reasons.
Definitions:
Remedy:
Program Continuation: Internal

149009 The ePS configuration could not be initialized.
Definitions:
Remedy:
Program Continuation: Internal

149010 The ePS machine identity could not be initialized.
Definitions:
Remedy:
Program Continuation: Internal

149200 The boot script has not received a valid service script ID from the ePS server.
Definitions:
Remedy:
Program Continuation: Internal

149201 The boot script has not received a service script from the ePS server.
Definitions:
Remedy:
Program Continuation: Internal

149202 The boot script could not start the service script.
Definitions:
Remedy:
Program Continuation: Internal

149203 The service script could not start the data transfer service script.
Definitions:
Remedy:
Program Continuation: Internal

149305 PLC monitor canceled during access to the controller.
Definitions:
Remedy:
Program Continuation: Internal

149306 PLC monitor failed while generating the data access object, or there is a hotlink error.
Definitions:
Remedy:
Program Continuation: Internal
149307 PLC monitor canceled during timeout during initial RESET.
Definitions: -
Remedy: -
Program Continuation: Internal

149308 PLC monitor canceled due to faulty trigger.
Definitions: -
Remedy: -
Program Continuation: Internal

149310 NC monitor canceled on account of access error to the controller.
Definitions: -
Remedy: -
Program Continuation: Internal

149311 NC monitor failed while generating the DataAccess object.
Definitions: -
Remedy: -
Program Continuation: Internal

149315 PLC DataUpload failed while generating the DataAccess object.
Definitions: -
Remedy: -
Program Continuation: Internal

149316 PLC DataUpload canceled on account of missing parameters.
Definitions: -
Remedy: -
Program Continuation: Internal

149317 PLC DataUpload canceled because the timer could not be started.
Definitions: -
Remedy: -
Program Continuation: Internal

149320 NC monitor canceled because the generation of the DataAccess object failed.
Definitions: -
Remedy: -
Program Continuation: Internal

149321 NC monitor canceled on account of missing parameters.
Definitions: -
Remedy: -
Program Continuation: Internal
149322 NC monitor canceled because the timer could not be started.
Definitions: -
Remedy: -
Program Continuation: Internal

150201 Communication to %1 failed
Parameters: %1 = Source URL of the component involved
Definitions: The operator panel is connected to the NC and PLC by a communications bus.
This alarm occurs when the communication to these components is interrupted.
In connection with this alarm, all display values connected with the NC/PLC become invalid.
Such faults are normal while the controls are ramping up (e.g. after resetting).
Reaction: Alarm display.
Remedy: The alarm disappears automatically as soon as the fault situation has ended.
If this alarm is continuously present, a wide variety of faults may be the cause. (e.g. wire breakage,
NC/PLC not ramped up,
faulty address/data transfer rate configuration of one of the bus nodes, etc.).
Program Continuation: Internal

150202 Waiting for a connection to %1
Parameters: %1 = Source URL of the component involved
Definitions: The operator panel is connected to the NC and PLC by a communications bus.
This alarm occurs if the MMC is started for the first time and the NC/PLC ramp-up has not yet finished
or the communication to these components is faulty.
In conjunction with this alarm, all display values connected with the NC/PLC become invalid.
Such faults are normal while the controls are starting up (e.g. after resetting).
Reaction: Alarm display.
Remedy: The alarm disappears automatically as soon as the fault situation has ended.
If this alarm is continuously present, a wide variety of faults may be the cause. (e.g. wire breakage,
NC/PLC not ramped up, faulty address/data transfer rate configuration of one of the bus nodes, etc.).
Program Continuation: Internal

150204 ----- Start alarm acquisition -----
Definitions: The alarm indicates the start or restart of alarm acquisition in the alarm log.
If the alarm log has been configured so that it is persistently written into the file system, a further alarm
is written into the log at each new start. The alarm thus separates the individual time intervals during
which alarm acquisition is active.
The coming and going time stamps are identical, and correspond to the time of the start/restart of the
alarm acquisition.
The alarm is only visible in the alarm log.
Reaction: Alarm display.
Remedy: The alarm can but need not be deleted as it is only visible in the alarm log.
Program Continuation: Internal
201000 \(<\text{location}>\text{Internal software error}\)
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: An internal software error has occurred.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

201001 \(<\text{location}>\text{Internal software error}\)
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: An internal software error has occurred.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

201002 \(<\text{location}>\text{Internal software error}\)
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: An internal software error has occurred.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

201003 \(<\text{location}>\text{Acknowledgement delay when accessing the memory}\)
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: A memory area was accessed that does not return a “READY”.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- contact the Hotline.
201004 <location>Internal software error
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An internal software error has occurred.
Fault value (r0949, hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- read out diagnostics parameter (r9999).
- contact the Hotline.
See also: r9999 (Software error internal supplementary diagnostics)

201005 <location>Firmware download for DRIVE-CLiQ component unsuccessful
Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: It was not possible to download the firmware to a DRIVE-CLiQ component.
 Fault value (r0949, interpret hexadecimal):
 yyyyhex: yy = component number, xxxx = fault cause
 xxxx = 000B hex = 11 dec:
 DRIVE-CLiQ component has detected a checksum error.
 xxxx = 000F hex = 15 dec:
 The selected DRIVE-CLiQ component did not accept the contents of the firmware file.
 xxxx = 0012 hex = 18 dec:
 Firmware version is too old and is not accepted by the component.
 xxxx = 0013 hex = 19 dec:
 Firmware version is not suitable for the hardware release of the component.
 xxxx = 0065 hex = 101 dec:
 After several communication attempts, no response from the DRIVE-CLiQ component.
 xxxx = 008B hex = 139 dec:
 Initially, a new boot loader is loaded (must be repeated after POWER ON).
 xxxx = 008C hex = 140 dec:
 Firmware file for the DRIVE-CLiQ component not available on the memory card.
 xxxx = 008F hex = 143 dec:
 Component has not changed to the mode for firmware download. It was not possible to delete the
 existing firmware.
 xxxx = 0090 hex = 144 dec:
 When checking the loaded firmware (checksum) the component identified an error. It is possible that
 the file on the memory card is defective.
 xxxx = 0091 hex = 145 dec:
 Checking the loaded firmware (checksum) was not completed by the component in the appropriate
 time.
 xxxx = 009C hex = 156 dec:
 Component with the specified component number is not available (p7828).
 xxxx = Additional values:
 Only for internal Siemens troubleshooting.
 Remedy:
- check the selected component number (p7828).
- check the DRIVE-CLiQ connection.
- save suitable firmware file for download in the directory /siemens/sinamics/code/sac/.
- after POWER ON has been carried out again for the DRIVE-CLiQ component, download the firm-
 ware again. Depending on p7826, the firmware will be automatically downloaded.

201006 <location>Firmware update for DRIVE-CLiQ component required
Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The firmware of a DRIVE-CLiQ component must be updated as there is no suitable firmware or firmware version in the component for operation with the Control Unit.

Alarm value (r2124, interpret decimal):
Component number of the DRIVE-CLiQ component.

Remedy: Firmware update using the commissioning software:
The firmware version of all of the components on the "Version overview" page can be read in the Project Navigator under "Configuration" of the associated drive unit and an appropriate firmware update can be carried out.
Firmware update via parameter:
- take the component number from the alarm value and enter into p7828.
- start the firmware download with p7829 = 1.

201007 <location>POWER ON for DRIVE-CLiQ component required

Message value: Component number: %1

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: A DRIVE-CLiQ component must be powered up again (POWER ON) as, for example, the firmware was updated.
Alarm value (r2124, interpret decimal):
Component number of the DRIVE-CLiQ component.

Note:
For a component number = 1, a POWER ON of the Control Unit is required.

Remedy: Switch off the power supply of the specified DRIVE-CLiQ component and switch it on again.

201009 <location>CU: Control module overtemperature

Message value: -

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: The temperature (r0037[0]) of the control module (Control Unit) has exceeded the specified limit value.

Remedy:
- check the air intake for the Control Unit.
- check the fan for the Control Unit (only for CU310).

Note:
The alarm automatically disappears after the limit value has been undershot.

201010 <location>Drive type unknown

Message value: %1

Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY

Cause: An unknown drive type was found.
Fault value (r0949, interpret decimal):
Drive object number (refer to p0101, p0107).

Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

201011 <location>Download interrupted

Message value: -

Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The project download was interrupted.
- the project download was prematurely ended by the user or by the commissioning software (e.g. STARTER, SCOUT).
- the communication cable was interrupted (e.g. cable breakage, cable withdrawn).
Note: The response to an interrupted download is the state “first commissioning”.
Remedy: - check the communication cable.
- download the project again.
- boot from previously saved files (power-down/power-up or p0976).

201012 <location>Project conversion error
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: When converting the project of an older firmware version, an error occurred.
Fault value (r0949, interpret decimal):
Parameter number of the parameter causing the error.
For fault value = 600, the following applies:
The temperature evaluation is no longer assigned to the power unit but to the encoder evaluation.
Notice:
Monitoring of the motor temperature is no longer ensured.
Remedy: Check the parameter indicated in the fault value and correctly adjust it accordingly.
Re fault value = 600:
Parameter p0600 must be set to the values 1, 2 or 3 in accordance with the assignment of the internal encoder evaluation to the encoder interface.
Value 1 means: The internal encoder evaluation is assigned to the encoder interface 1 via p0187.
Value 2 means: The internal encoder evaluation is assigned to the encoder interface 2 via p0188.
Value 3 means: The internal encoder evaluation is assigned to the encoder interface 3 via p0189.
If necessary, the internal encoder evaluation must be assigned to an encoder interface via parameters p0187, p0188 or p0189 accordingly.
- If necessary, upgrade the firmware to a later version.

201015 <location>Internal software error
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: An internal software error has occurred.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

201016 <location>Firmware changed
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: At least one firmware file in directory /SIEMENS/SINAMICS/ has been changed without authorization with respect to version shipped from factory. No changes are permitted in this directory.
Alarm value (r2124, interpret decimal):
0: Checksum of one file is incorrect.
1: File missing.
2: Too many files.
3: Incorrect firmware version.
4: Incorrect checksum of the back-up file.
See also: r9925 (Firmware file incorrect)

Remedy: For the non-volatile memory for the firmware (memory card, device memory), restore the version shipped from factory.
Note: The file involved can be read out using parameter r9925.
See also: r9926 (Firmware check status)

201017 <location>Component lists changed
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or ADDON/SINAMICS/DATA has been illegally changed with respect to that supplied from the factory. No changes are permitted in this directory.
Alarm value (r2124, interpret decimal):
The problem is indicated in the first digit of the alarm value:
1: File does not exist.
2: Firmware version of the file does not match the software version.
3: The file checksum is incorrect.
The second digit of the alarm value indicates in which directory the file is located:
0: Directory /SIEMENS/SINAMICS/DATA/
1: Directory ADDON/SINAMICS/DATA/
The third digit of the alarm value indicates the file:
0: File MOTARM.ACX
1: File MOTSRM.ACX
2: File MOTSLM.ACX
3: File ENCDATA.ACX
4: File FILTDATA.ACX
5: File BRKDATA.ACX
Remedy: For the memory card file involved, restore the status originally supplied from the factory.

201030 <location>Sign-of-life failure for master control
Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, VECTOR
Reaction: A_INFEED: OFF1 (NONE, OFF2)
SERVO: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
VECTOR: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: For active PC master control, no sign-of-life was received within the monitoring time. The master control was returned to the active BICO interconnection.
Remedy: Set the monitoring time higher at the PC or, if required, completely disable the monitoring function. For the commissioning software, the monitoring time is set as follows: <Drive> -> Commissioning -> Control panel -> Button "Fetch master control" -> A window is displayed to set the monitoring time in milliseconds.
Notice: The monitoring time should be set as short as possible. A long monitoring time means a late response when the communication fails!
201031 <location>Sign-of-life failure for AOP OFF in REMOTE

Message value: -

Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR

Reaction: A_INFEEF: OFF1 (NONE, OFF2) SERVO: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2) VECTOR: OFF3 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)

Acknowledge: IMMEDIATELY

Cause: With the "OFF in REMOTE" mode active, no sign-of-life was received within 3 s.

Remedy: - check the data cable connection at the serial interface for the Control Unit (CU) and Advanced Operator Panel (AOP).
- check the data cable between the CU and AOP.

201033 <location>Units changeover: Reference parameter value invalid

Message value: Parameter: %1

Drive object: A_INF, B_INF, S_INF, SERVO, TM41, VECTOR

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: When changing over the units to the referred representation type, it is not permissible for any of the required reference parameters to be equal to 0.0

Fault value (r0949, parameter):
Reference parameter whose value is 0.0.

See also: p0349 (System of units, motor equivalent circuit diagram data), p0505 (Selecting the system of units), p0595 (Selecting technological units)

Remedy: Set the value of the reference parameter to a number different than 0.0.

201034 <location>Units changeover: Calculation parameter values after reference value change unsuccessful

Message value: Parameter: %1

Drive object: A_INF, B_INF, S_INF, SERVO, TM41, VECTOR

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: The change of a reference parameter meant that for an involved parameter the selected value was not able to be recalculated in the per unit representation. The change was rejected and the original parameter value restored.

Fault value (r0949, parameter):
Parameter whose value was not able to be re-calculated.

Remedy: Select the value of the reference parameter such that the parameter involved can be calculated in the per unit representation.

201035 <location>ACX: Boot from the back-up parameter back-up files

Message value: %1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: When the Control Unit is booted, no complete data set was found from the parameter back-up files. The last time that the parameterization was saved, it was not completely carried out. Instead, a back-up data set or a back-up parameter back-up file is downloaded.

Alarm value (r2124, interpret hexadecimal):
Only for internal Siemens troubleshooting.

Remedy: If you have saved the project using the commissioning software, carry out a new download for your project. Save using the function "Copy RAM to ROM" or with p0977 = 1 so that all of the parameter files are again completely written to the memory card card.
201036 <location>ACX: Parameter back-up file missing
Message value: %1
Drive object: All objects
Reaction: A_INFEED: NONE (OFF2)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: When downloading the device parameterization, a parameter back-up file associated with a drive object cannot be found. Neither a PSxxxyyy.ACX, a PSxxxyyy.NEW nor a PSxxxyyy.BAK parameter back-up file exists on the CompactFlash card for this drive object.
Fault value (r0949, interpret hexadecimal):
Byte 1: yyy in the file name PSxxxyyy.ACX
yyy = 000 --> consistency back-up file
yyy = 001 ... 062 --> drive object number
yyy = 099 --> PROFiBUS parameter back-up file
Byte 2, 3, 4:
Only for internal Siemens troubleshooting.
Remedy: If you have saved the project data using the commissioning software, carry out a new download for your project. Save using the function "Copy RAM to ROM" or with p0977 = 1 so that all of the parameter files are again completely written to the CompactFlash card.
If you have not saved the project data, then first commissioning of the system has to be carried out again.

201037 <location>ACX: Re-naming the parameter back-up file unsuccessful
Message value: %1
Drive object: All objects
Reaction: A_INFEED: NONE (OFF2)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Re-naming after saving a parameter back-up file on the CompactFlash card or in the volatile memory was unsuccessful.
One of the parameter back-up files to be re-named had the "read only" attribute. The parameter back-up files are saved on the CompactFlash card in the directory \USER\SINAMICS\DATA.
It is possible that the CompactFlash card is defective.
Fault value (r0949, interpret hexadecimal):
Byte 1: yyy in the file names PSxxxyyy.* or CAxxxyyy.* or CCxxxyyy.*
yyy = 000 --> consistency back-up file
yyy = 099 --> PROFiBUS parameter back-up file PSxxx099.*
Byte 2: xxx in the file name PSxxxyyy.*
xxx = 000 --> data save started with p0977 = 1
xxx = 010 --> data save started with p0977 = 10
xxx = 011 --> data save started with p0977 = 11
xxx = 012 --> data save started with p0977 = 12
Byte 4, 3:
Only for internal Siemens troubleshooting.
Remedy: - check whether one of the files to be overwritten has the attribute "read only" and change this file attribute to "writable". Check all of the files (PSxxxyyy.*, CCxxxyyy.*, CAxxxyyy.*) that belong to drive yyy designated in the fault value.
- replace the CompactFlash card.

201038 <location>ACX: Loading the parameter back-up file unsuccessful
Message value: %1
Drive object: All objects
Reaction: A_INFEED: NONE (OFF2)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: An error occurred when loading PSxxxxyy.ACX or PTxxxxyy.ACX files from the CompactFlash card or from the volatile memory of the Control Unit.
Fault value (r0949, interpret hexadecimal):
Byte 1: yyy in the file name PSxxxxyy.ACX
yyy = 000 --> consistency back-up file
yyy = 001 ... 062 --> drive object number
yyy = 099 --> PROFIBUS parameter back-up file
Byte 4, 3, 2:
Only for internal Siemens troubleshooting.

Remedy: - If you have saved the project data using the commissioning software, carry out a new download for your project. Save using the function "Copy RAM to ROM" or with p0977 = 1 so that all of the parameter files are again completely written to the CompactFlash card.
- replace the CompactFlash card.

201039 <location>ACX: Writing to the parameter back-up file was unsuccessful

Message value: %1
Drive object: All objects
Reaction: A_INFEED: NONE (OFF2)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)

Remedy: - check the file attribute of the files (PSxxxxyy.***, CAxxxxyy.***, CCxxxxyy.***) and, if required, change from "read only" to "writeable".
- check the free memory space on the CompactFlash card. Approx. 40 kbyte of free memory space is required for every drive object in the system.
- replace the CompactFlash card.

201040 <location>Save parameter settings and carry out a POWER ON

Message value: -
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON

Cause: A parameter was changed in the drive system which means that it is necessary to save the parameters and re-boot (e.g. p0110).

Remedy: - save the parameters (p0971/p0977).
- carry out a POWER ON (power off/on) for all components.
201041 <location>Parameter save necessary
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Defective or missing files were detected on the memory card when booting.
Fault value (r0949, interpret decimal):
1: Source file cannot be opened.
2: Source file cannot be read.
3: Target directory cannot be set up.
4: Target file cannot be set up/opened.
5: Target file cannot be written to.
Additional values:
Only for internal Siemens troubleshooting.
Remedy:
- save the parameters (p0977).
- download the project again to the drive unit.
- update the firmware
- if required, replace the Control Unit and/or memory card card.

201042 <location>Parameter error during project download
Message value:
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF2 (NONE, OFF1, OFF3)
VECTOR: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter value).
For the specified parameter, it was detected that dynamic limits were exceeded that may possibly depend on other parameters.
Fault value (r0949, interpret hexadecimal):
cbbbaaaa hex
aaaa = parameter
bb = index
c = fault cause
0: Parameter number illegal.
1: Parameter value cannot be changed.
2: Lower or upper value limit exceeded.
3: Sub-index incorrect.
4: No array, no sub-index.
5: Data type incorrect.
6: Setting not permitted (only resetting).
7: Descriptive element cannot be changed.
9: Descriptive data not available.
11: No master control.
15: No text array available.
17: Task cannot be executed due to operating status.
20: Illegal value.
21: Response too long.
22: Parameter address illegal.
23: Format illegal.
24: Number of values not consistent.
25: Drive object does not exist.
101: Presently de-activated.
104: Illegal value.
107: Write access not permitted when controller enabled.
108: Unit unknown.
109: Write access only in the commissioning state, encoder (p0010 = 4).
110: Write access only in the commissioning state, motor (p0010 = 3).
111: Write access only in the commissioning state, power unit (p0010 = 2).
112: Write access only in the quick commissioning mode (p0010 = 1).
113: Write access only in the ready mode (p0010 = 0).
114: Write access only in the commissioning state, parameter reset (p0010 = 30).
115: Write access only in the Safety Integrated commissioning state (p0010 = 95).
116: Write access only in the commissioning state, technological application/units (p0010 = 5).
117: Write access only in the commissioning state (p0010 not equal to 0).
118: Write access only in the commissioning state, download (p0010 = 29).
119: Parameter may not be written in download.
120: Write access only in the commissioning state, drive basis configuration (device: p0009 = 3).
121: Write access only in the commissioning state, define drive type (device: p0009 = 2).
122: Write access only in the commissioning state, data set basis configuration (device: p0009 = 4).
123: Write access only in the commissioning state, device configuration (device: p0009 = 1).
124: Write access only in the commissioning state, device download (device: p0009 = 29).
125: Write access only in the commissioning state, device parameter reset (device: p0009 = 30).
126: Write access only in the commissioning state, device ready (device: p0009 = 0).
127: Write access only in the commissioning state, device (device: p0009 not equal to 0).
128: Parameter may not be written in download.
130: Transfer of the master control is inhibited via Bi: p0806.
131: Required BICO interconnection not possible because BICO output does not supply floating value.
132: Free BICO interconnection inhibited via p0922.
133: Access method not defined.
200: Below the valid values.
201: Above the valid values.
202: Cannot be accessed from the Basic Operator Panel (BOP).
203: Cannot be read from the Basic Operator Panel (BOP).
204: Write access not permitted.

Remedy:
- enter the correct value in the specified parameter.
- identify the parameter that restricts the limits of the specified parameter.

201043 <location>Fatal error at project download
Message value:
Drive object: All objects
Reaction: A_INFEED: OFF2 (OFF1)
SEROV: OFF2 (OFF1, OFF3)
VECTOR: OFF2 (OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: A fatal error was detected when downloading a project using the commissioning software.
Fault value (r0949, interpret decimal):
1: Device status cannot be changed to Device Download (drive object ON?).
2: Incorrect drive object number.
3: A drive object that has already been deleted is deleted again.
4: Deleting of a drive object that has already been registered for generation.
5: Deleting a drive object that does not exist.
6: Generating an undeleted drive object that already existed.
7: Regenerating a drive object already registered for generation.
8: Maximum number of drive objects that can be generated exceeded.
9: Error while generating a device drive object.
10: Error while generating target topology parameters (p9902 and p9903).
11: Error while generating a drive object (global component).
12: Error while generating a drive object (drive component).
13: Unknown drive object type.
14: Drive status cannot be changed to Ready (p0947 and p0949).
15: Drive status cannot be changed to Drive Download.
16: Device status cannot be changed to Ready.
17: It is not possible to download the topology. The component wiring should be checked, taking into account the various messages/signals.
18: A new download is only possible if the factory settings are restored for the drive unit.
20: The configuration is inconsistent (e.g. CAN for Control Unit, however no CAN configured for drive objects A_INF, SERVO or VECTOR).

Remedy:
- use the current version of the commissioning software.
- modify the offline project and carry out a new download (e.g. compare the number of drive objects, motor, encoder, power unit in the offline project and at the drive).
- change the drive state (is a drive rotating or is there a message/signal?).
- carefully note any other messages/signals and remove their cause.

201044 <location>CU CompactFlash: Descriptive data error

Message value:
%1
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: An error was detected when loading the descriptive data saved on the CompactFlash card.
Remedy: Replace the CompactFlash card.

201045 <location>CU CompactFlash: Configuring data invalid

Message value:
%1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An error was detected when evaluating the parameter files PSxxxxyy.ACX, PTxxxxyy.ACX, CAxxx-yyyy.ACX or CCxxxxyy.ACX saved on the CompactFlash card. Alarm value (r2124, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy: Restore the factory setting using (p0976 = 1) and re-load the project to the drive unit. Operation without any restrictions is then possible. After downloading the project, save the parameterization in STARTER using the function "Copy RAM to ROM" or with p0977 = 1. This means that the incorrect parameter files are overwritten on the CompactFlash card.

201049 <location>CU CompactFlash: It is not possible to write to file

Message value:
%1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted. Alarm value (r2124, interpret decimal): Drive object number.
Remedy: Check whether the "write protected" attribute has been set for the files on the CompactFlash card under .../USER/SINAMICS/DATA/... When required, remove write protection and save again (e.g. set p0971 to 1).

201050 <location>CompactFlash card and device not compatible

Message value:
-
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (NONE, OFF1, OFF3) VECTOR: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: The CompactFlash card and the device type do not match (e.g. a CompactFlash card for SINAMICS S is inserted in SINAMICS G).
Remedy: - insert the matching CompactFlash card
- use the matching Control Unit or power unit.

201051
<location>Drive object type is not available

Message

value: %1

Drive object: All objects

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: The drive object type in conjunction with the selected application-specific view is not available. The required descriptive file (PDxxxyyy.ACX) does not exist on the CompactFlash card.

Fault value (r0949, interpret decimal):

Index of p0103 and p0107.

See also: p0103, r0103, p0107, r0107

Remedy: - for this drive object type (p0107), select a valid application-specific view (p0103).
- save the required descriptive file (PDxxxyyy.ACX) on the CompactFlash card.

See also: p0103, r0103, p0107, r0107

201052
<location>CU: System overload calculated for the complete target topology

Message

value: %1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: A system overload was calculated based on a complete active target topology.

Alarm value (r2124, interpret decimal):

2: Computing time load too high.
6: Cyclic computing time load too high.

Remedy: - reduce the sampling time.
- only use one data set (CDS, DDS).
- de-activate the function module.
- de-activate the drive object.
- remove the drive object from the target topology.

Note: After executing the appropriate counter-measure, a new calculation must be initiated with p9974 = 1.

201053
<location>CU: System overload measured

Message

value: %1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: A system overload was determined based on measured values.

Alarm value (r2124, interpret decimal):

2: Computing time load too high.
6: Cyclic computing time load too high.

See also: r9976 (System load)

Remedy: - reduce the sampling time.
- only use one data set (CDS, DDS).
- de-activate the function module.
- de-activate the drive object.
- remove the drive object from the target topology.

201064
<location>CU: Internal error (CRC)

Message

value: -

Drive object: All objects

Reaction: NONE

Acknowledge: NONE
Cause: CRC error in the Control Unit program memory
Remedy: - carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

201065 <location>Drive: Fault on non-active encoder
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: One or several inactive encoders indicate an error.
Remedy: Remove the error for the inactive encoder.

201099 <location>Tolerance window of time synchronization exited
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The time master exited the selected tolerance window for time synchronization.
See also: p3109 (RTC real time synchronization, tolerance window)
Remedy: Select the re-synchronization interval so that the synchronization deviation between the time master
and drive system lies within the tolerance window.
See also: r3108 (RTC last synchronization deviation)

201100 <location>CU: Memory card withdrawn
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The memory card (non-volatile memory) was withdrawn during operation.
Notice:
It is not permissible for the memory card to be withdrawn or inserted under voltage.
Remedy: - power down the drive system.
- re-insert the memory card that was withdrawn - this card must match the drive system.
- power up the drive system again.

201105 <location>CU: Insufficient memory
Message value: %1
Drive object: All objects
Reaction: OFF1
Acknowledge: POWER ON
Cause: Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, OA applications, blocks, etc).
Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy: - change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc).
- use an additional Control Unit.

201107 <location>CU: Save to CompactFlash card unsuccessful
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A data save to the CompactFlash card was not able to be successfully carried out.
- CompactFlash card is defective.
- CompactFlash card does not have sufficient memory space.
Fault value (r0949, interpret decimal):
1: The file on the RAM was not able to be opened.
2: The file on the RAM was not able to be read.
3: A new directory was not able to be created on the CompactFlash card.
4: A new file was not able to be created on the CompactFlash card.
5: A new file was not able to be written to the CompactFlash card.
Remedy:
- try to save again.
- use another CompactFlash card.

201110 <location>CU: More than one SINAMICS G on one Control Unit
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: More than one SINAMICS G type power unit is being operated from the Control Unit.
Fault value (r0949, interpret decimal):
Number of the second drive with a SINAMICS G type power unit.
Remedy: Only one SINAMICS G drive type is permitted.

201111 <location>CU: impermissible mixed operation of drive units
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Illegal operation of various drive units on one Control Unit:
- SINAMICS S together with SINAMICS G
- SINAMICS S together with SINAMICS S Value or Combi
Fault value (r0949, interpret decimal):
Number of the first drive object with a different power unit type.
Remedy: Only power units of one particular drive type may be operated with one Control Unit.

201112 <location>CU: Power unit not permissible
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The connected power unit cannot be used together with this Control Unit.
Fault value (r0949, interpret decimal):
1: Power unit is not supported (e.g. PM240).
2: DC/AC power unit connected to CU310 not permissible.
Remedy: Replace the power unit that is not permissible by a component that is permissible.

201120 <location>Terminal initialization has failed
Message value: %1
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An internal software error has occurred when initializing the terminal functions on the CU3xx, the TB30 or the TM31.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

201122
Message: Frequency at the measuring probe input too high

Drive object: All objects

Reaction: OFF1 (OFF2)

Acknowledge: IMMEDIATELY

Cause: The frequency of the pulses at the measuring probe input is too high.
Fault value (r0949, interpret decimal):
1: DI/DO 9 (X122.8)
2: DI/DO 10 (X122.10)
4: DI/DO 11 (X122.11)
8: DI/DO 13 (X132.8)
16: DI/DO 14 (X132.10)
32: DI/DO 15 (X132.11)
1001: DI/DO 9 (X122.8), initialization error
1002: DI/DO 10 (X122.10), initialization error
1004: DI/DO 11 (X122.11), initialization error
1008: DI/DO 13 (X132.8), initialization error
1016: DI/DO 14 (X132.10), initialization error
1032: DI/DO 15 (X132.11), initialization error

Remedy:
- Reduce the frequency of the pulses at the measuring probe input.

201150
Message: CU: Number of instances of a drive object type exceeded

Drive object: All objects

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: The maximum permissible number of instances of a drive object type was exceeded.
Fault value (r0949, interpret decimal):
Byte 1: Drive object type (p0107).
Byte 2: Max. permissible number of instances for this drive object type.
Byte 3: Current number of instances for this drive object type.

Remedy:
- power down the unit.
- suitably restrict the number of instances of a drive object type by reducing the number of inserted components.
- re-commission the unit.

201200
Message: CU: Time slice management internal software error

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY (POWER ON)

Cause: A time slice management error has occurred.
It is possible that the sampling times have been inadmissibly set.
Fault value (r0949, interpret hexadecimal):
998: Too many time slices occupied by OA (e.g. DCC)
999: Too many time slices occupied by the basic system
Too many different sampling times may have been set.
Further values for internal Siemens troubleshooting.

Remedy:
- check the sampling time setting (p0112, p0115, p4099).
- contact the Hotline.
201205 <location>CU: Time slice overflow
Message
value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: Insufficient processing time is available for the existing topology.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: - reduce the number of drives.
- increase the sampling times.

201210 <location>CU: Basic clock cycle selection and DRIVE-CLiQ clock cycle do not match
Message
value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The parameter to select the basic clock cycle does not match the drive topology. Drives connected to
the same DRIVE-CLiQ port of the Control Unit have been assigned different basic clock cycles.
Fault value (r0949, interpret decimal):
The fault value specifies the parameter involved.
See also: r0111 (Basic sampling time selection)
Remedy: Only those drive objects may be connected to the same DRIVE-CLiQ socket of the Control Unit that
should run with the same basic clock cycle.
For example, Active Line Modules and Motor Modules should be inserted at different DRIVE-CLiQ
sockets as their basic clock cycles and current controller clock cycles are generally not identical.
See also: r0111 (Basic sampling time selection)

201220 <location>CU: Bas clk cyc too low
Message
value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The parameter for the basic clock cycle is set too short for the number of connected drives.
Fault value (r0949, interpret decimal):
The fault value specifies the parameter involved.
See also: r0110 (Basic sampling times)
Remedy: - increase the basic clock cycle.
- reduce the number of connected drives and start to re-commission the unit.
See also: r0110 (Basic sampling times)

201221 <location>CU: Bas clk cyc too low
Message
value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The closed-loop control / monitoring cannot maintain the envisaged clock cycle.
The runtime of the closed-loop control/monitoring is too long for the particular clock cycle or the com-
puting time remaining in the system is not sufficient for the closed-loop control/monitoring.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: Increase the basic clock cycle of DRIVE-CLiQ communication.
See also: p0112 (Sampling times pre-setting p0115)
201223CU: Sampling time inconsistent

Message: %1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: When changing a sampling time (p0115[0], p0799 or p4099), inconsistency between the clock cycles has been identified.

Alarm value (r2124, interpret decimal):
1: Value, low minimum value.
2: Value, high maximum value.
3: Value not a multiple of 1.25 µs.
4: Value does not match clock-cycle synchronous PROFIBUS operation.
5: Value not a multiple of 125 µs.
6: Value not a multiple of 250 µs.
7: Value not a multiple of 375 µs.
8: Value not a multiple of 400 µs.
10: Special restriction of the drive object violated.
20: For a SERVO with a 62.5 µs sampling time, more than a maximum of two SERVO-type drive objects were detected on the DRIVE-CLiQ line (no other drive object is permitted on this line).
21: Value can be a multiple of the current controller sampling time of a servo or vector drive in the system (e.g. for TB30, the values of all of the indices should be taken into account).
30: Value less than 31.25 µs.
31: Value less than 62.5 µs.
32: Value less than 125 µs.
40: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than 125 µs. Further, none of the nodes has a sampling time of less than 125 µs.
41: A chassis unit was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than 250 µs.
42: An Active Line Module was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is less than 125 µs.
43: A Voltage Sensing Module (VSM) was identified on the DRIVE-CLiQ line as a node. Further, the highest common denominator of the sampling times of all of the nodes connected to the line is not equal to the current controller sampling time of the drive object of the VSM.
44: The highest common denominator of the sampling times of all of the components connected to the DRIVE-CLiQ line is not the same for all components of this drive object (e.g. there are components on different DRIVE-CLiQ lines on which different highest common denominators are generated).
52: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than 31.25 µs.
54: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than 62.5 µs.
56: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than 125 µs.
58: Nodes have been identified on the DRIVE-CLiQ line whose highest common denominator of the sampling times is less than 250 µs.
99: Inconsistency of cross drive objects detected.
116: Recommended clock cycle in r0116[0...1].

Note:
The topology rules should be noted when connecting up DRIVE-CLiQ.
The rules are, provided in the following document:
SINAMICS S120 Function Manual Drive Functions
The parameters of the sampling times can also be changed with automatic calculations.

Remedy:
- check the DRIVE-CLiQ cables.
- set a valid sampling time.
See also: p0115, p0799, p4099
201224 <location>CU: Pulse frequency inconsistent
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: When changing the minimum pulse frequency (p0113) inconsistency between the pulse frequencies was identified.
Alarm value (r2124, interpret decimal):
1: Value, low minimum value.
2: Value, high maximum value.
3: Resulting sampling time is not a multiple of 1.25 µs.
4: Value does not match clock-cycle synchronous PROFIBUS operation.
10: Special restriction of the drive object violated.
99: Inconsistency of cross drive objects detected.
116: Recommended clock cycle in r0116[0...1].
Remedy: Set a valid pulse frequency.
See also: p0113 (Minimum pulse frequency, selection)

201250 <location>CU: CU-EEPROM incorrect read-only data
Message value: %1
Drive object: All objects
Reaction: NONE (OFF2)
Acknowledge: POWER ON
Cause: Error when reading the read-only data of the EEPROM in the Control Unit.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON.
- replace the Control Unit.

201251 <location>CU: CU-EEPROM incorrect read-write data
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Error when reading the read-write data of the EEPROM in the Control Unit.
Alarm value (r2124, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
For alarm value r2124 < 256, the following applies:
- carry out a POWER ON.
- replace the Control Unit.
For alarm value r2124 >= 256, the following applies:
- for the drive object with this alarm, clear the fault memory (p0952 = 0).
- as an alternative, clear the fault memory of all drive objects (p2147 = 1).
- replace the Control Unit.

201255 <location>CU: Option Board EEPROM read-only data error
Message value: %1
Drive object: All objects
Reaction: NONE (OFF2)
Acknowledge: POWER ON
Cause: Error when reading the read-only data of the EEPROM in the Option Board.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON.
- replace the Control Unit.
201256 <location>CU: Option Board EEPROM read-write data error
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Error when reading the read-write data of the EEPROM in the Option Board. Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON.
- replace the Control Unit.

201303 <location>DRIVE-CLiQ component does not support the required function
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A function requested by the Control Unit is not supported by a DRIVE-CLiQ component. Fault value (r0949, interpret decimal):
1: The component does not support the de-activation.
101: The Motor Module does not support an internal armature short-circuit.
102: The Motor Module does not support the de-activation.
201: The Sensor Module does not support actual value inversion (p0410.0 = 1) when using a Hall sensor (p0404.6 = 1) for the commutation.
202: The Sensor Module does not support parking/unparking.
203: The Sensor Module does not support the de-activation.
204: The firmware of this Terminal Module 15 (TM15) does not support the application TM15DI/DO.
205: The Sensor Module does not support the selected temperature evaluation (r0458).
206: The firmware of this Terminal Modules TM41/TM31/TM15 refers to an old firmware version. It is urgently necessary to upgrade the firmware to ensure disturbance-free operation.
207: The power unit with this hardware version does not support operation with drive supply voltages of less than 380 V.
Remedy: Upgrade the firmware of the DRIVE-CLiQ component involved.
Re fault value = 205:
Check parameter p0600 and p0601 and if required, adapt interpretation.
Re fault value = 207:
Replace the power unit or if required set the device supply voltage higher (p0210).

201304 <location>Firmware version of DRIVE-CLiQ component is not up-to-date
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The memory card contains a more recent firmware version than the one in the connected DRIVE-CLiQ component. Alarm value (r2124, interpret decimal):
Component number of the DRIVE-CLiQ component involved.
Remedy: Update the firmware (p7826, p7829 and commissioning software).

201305 <location>Topology: Component number missing
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The component number from the topology was not parameterized (p0121 (for power unit, refer to p0107), p0131 (for servo/vector drives, refer to p0107), p0141, p0151, p0161).
Fault value (r0949, interpret decimal):
The fault value includes the particular data set number. The fault also occurs if speed encoders were configured (p0187 ... p0189), however, no component numbers exist for them. In this case, the fault value includes the drive data set number plus 100 * encoder number (e.g. 3xx, if a component number was not entered into p0141 for the third encoder (p0189)).
Remedy: Enter the missing component number or remove the component and restart commissioning.
See also: p0121, p0131, p0141, p0142, p0151, p0161, p0186, p0187, p0188, p0189

201306 <location>Firmware of the DRIVE-CLiQ component being updated

Message value:
%1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Firmware update is active for at least one DRIVE-CLiQ component.
Alarm value (r2124, interpret decimal):
Component number of the DRIVE-CLiQ component.
Remedy: None necessary. This alarm automatically disappears after the firmware has been updated.

201314 <location>Topology: Component must not be present

Message value:
Component number: %1, Component class: %2, Connection number: %3
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: For a component, "de-activate and not present" is set but this component is still in the topology.
Alarm value (r2124, interpret hexadecimal):
Byte 1: Component number
Byte 2: Component class of the component
Byte 3: Connection number
Note: Component class and connection number are described in F01375.
Remedy: - remove the corresponding component.
- change the setting "de-activate and not present".
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
See also: p0105, p0125, p0145, p0155

201315 <location>Drive object not ready for operation

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: For the active drive object involved, at least one activated component is missing.
Note: All other active and operational drive objects can be in the "RUN" state.
Remedy: The alarm automatically disappears again with the following actions:
- de-activate the drive object involved (p0105 = 0).
- de-activate the components involved (p0125 = 0, p0145 = 0, p0155 = 0, p0165 = 0).
- re-insert the components involved.
See also: p0105, p0125, p0145, p0155
201316 <location>Drive object inactive and again ready for operation
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: If, when inserting a component of the target topology, an inactive, non-operational drive object becomes operational again. The associated parameter of the component is, in this case, set to "activate" (p0125, p0145, p0155, p0165). Note: This is the only message that is displayed for a de-activated drive object.
Remedy: The alarm automatically disappears again with the following actions:
- activate the drive object involved (p0105 = 1).
- again withdraw the components involved.
See also: p0105 (Activate/de-activate drive object)

201317 <location>De-activated component again present
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: If a component of the target topology for an active drive object is inserted and the associated parameter of the component is set to "de-activate" (p0125, p0145, p0155, p0165). Note: This is the only message that is displayed for a de-activated component.
Remedy: The alarm automatically disappears again with the following actions:
- activate the components involved (p0125 = 1, p0145 = 1, p0155 = 1, p0165 = 1).
- again withdraw the components involved.
See also: p0125, p0145, p0155

201318 <location>BICO: De-activated interconnections present
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: This alarm is output:
If an inactive/non-operational drive object is again active/ready for operation and r9498[] or r9499[] are not empty and the connections listed in r9498[] and r9499 have actually been changed
Remedy: Clear alarm:
Set p9496 to 1 or 2 or de-activate DO again

201319 <location>Inserted component not initialized
Message value:
Drive object: A_INF, B_INF, CU_LINK, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The inserted component has still not been initiated, as the pulses are enabled.
Remedy: Pulse inhibit
<table>
<thead>
<tr>
<th>Alarm Code</th>
<th>Description</th>
<th>Message Value</th>
<th>Drive Object</th>
<th>Reaction</th>
<th>Acknowledge</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>201320</td>
<td>Topology: Drive object number does not exist in configuration</td>
<td>%1</td>
<td>All objects</td>
<td>NONE</td>
<td>NONE</td>
<td>A drive object number is missing in p0978</td>
<td>Index of p0101 under which the missing drive object number can be determined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alarm value (r2124, interpret decimal):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Index of p0978 under which the missing drive object number can be determined.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201321</td>
<td>Topology: Drive object number does not exist in configuration</td>
<td>%1</td>
<td>All objects</td>
<td>NONE</td>
<td>NONE</td>
<td>p0978 contains a drive object number that does not exist.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alarm value (r2124, interpret decimal):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Index of p0978 under which the drive object number can be determined.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201322</td>
<td>Topology: Drive object number present twice in configuration</td>
<td>%1</td>
<td>All objects</td>
<td>NONE</td>
<td>NONE</td>
<td>A drive object number is present more than once in p0978.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alarm value (r2124, interpret decimal):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Index of p0978 under which the involved drive object number is located.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201323</td>
<td>Topology: More than two partial lists created</td>
<td>%1</td>
<td>All objects</td>
<td>NONE</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of Alarms 03/2009

SINAMICS-Alarms

2-652

© Siemens AG 2009 All Rights Reserved

SINUMERIK 840D sl, 840Di sl, SINAMICS, Diagnostics Manual (DAsl), 03/2009

Cause:
Partial lists are available more than twice in p0978. After the second 0, all must be 0.
Alarm value (r2124, interpret decimal):
Index of p0978 under which the illegal value is located.

Remedy:
Set p0009 to 1 and change p0978:

Rules:
- p0978 must include all of the drive object numbers (p0101).
- it is not permissible for a drive object number to be repeated.
- by entering a 0, the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0, all values must be 0.
- dummy drive object numbers (255) are only permitted in the first partial list.

201324

<location>Topology: Dummy drive object number incorrectly created

Message
value:

 Drive object: All objects
 Reaction: NONE
 Acknowledge: NONE

Cause:
In p0978, dummy drive object numbers (255) are only permitted in the first partial list.
Alarm value (r2124, interpret decimal):
Index of p0978 under which the illegal value is located.

Remedy:
Set p0009 to 1 and change p0978:

Rules:
- p0978 must include all of the drive object numbers (p0101).
- it is not permissible for a drive object number to be repeated.
- by entering a 0, the drive objects with PZD are separated from those without PZD.
- only 2 partial lists are permitted. After the second 0, all values must be 0.
- dummy drive object numbers (255) are only permitted in the first partial list.

201330

<location>Topology: Quick commissioning not possible

Message
value:

 Drive object: All objects
 Reaction: NONE
 Acknowledge: NONE

Cause:
Unable to carry out a quick commissioning. The existing actual topology does not fulfill the requirements.
Alarm value (r2124, interpret hexadecimal):
ccccbbaa hex: cccc = preliminary component number, bb = supplementary information, aa = fault cause
aa = 01 hex = 1 dec: On one component illegal connections were detected.
- bb = 01 hex = 1 dec: For a Motor Module, more than one motor with DRIVE-CLiQ was detected.
- bb = 02 hex = 2 dec: For a motor with DRIVE-CLiQ, the DRIVE-CLiQ cable is not connected to a Motor Module.

aa = 02 hex = 2 dec: The topology contains too many components of a particular type.
- bb = 01 hex = 1 dec: There is more than one master Control Unit.
- bb = 02 hex = 2 dec: There is more than 1 infeed (8 for a parallel circuit configuration).
- bb = 03 hex = 3 dec: There are more than 10 Motor Modules (8 for a parallel circuit configuration).
- bb = 04 hex = 4 dec: There are more than 9 encoders.
- bb = 05 hex = 5 dec: There are more than 8 Terminal Modules.
- bb = 07 hex = 7 dec: Unknown component type
- bb = 08 hex = 8 dec: There are more than 6 drive slaves.
- bb = 09 hex = 9 dec: Connection of a drive slave not permitted.
- bb = 0a hex = 10 dec: There is no drive master.
- bb = 0b hex = 11 dec: There is more than one motor with DRIVE-CLiQ for a parallel circuit.
- cccc: Not used.
aa = 03 hex = 3 dec:
More than 16 components are connected at a DRIVE-CLiQ socket of the Control Unit.
- bb = 0, 1, 2, 3 means e.g. detected at the DRIVE-CLiQ socket X100, X101, X102, X103.
- cccc: Not used.

aa = 04 hex = 4 dec:
The number of components connected one after the other is greater than 125.
- bb: Not used.
- cccc = preliminary component number of the first component and component that resulted in the fault.

aa = 05 hex = 5 dec:
The component is not permissible for SERVO.
- bb = 01 hex = 1 dec: SINAMICS G available.
- bb = 02 hex = 2 dec: Chassis available.
- cccc = preliminary component number of the first component and component that resulted in the fault.

aa = 06 hex = 6 dec:
On one component illegal EEPROM data was detected. These must be corrected before the system continues to boot.
- bb = 01 hex = 1 dec: The Order No. [MLFB] of the power unit that was replaced includes a space retainer. The space retainer (*) must be replaced by a correct character.
- cccc = preliminary component number of the component with illegal EEPROM data.

aa = 07 hex = 7 dec:
The actual topology contains an illegal combination of components.
- bb = 01 hex = 1 dec: Active Line Module (ALM) and Basic Line Module (BLM).
- bb = 02 hex = 2 dec: Active Line Module (ALM) and Smart Line Module (SLM).
- bb = 03 hex = 3 dec: SIMOTION control (e.g. SIMOTION D445) and SINUMERIK component (e.g. NX15).
- bb = 04 hex = 4 dec: SINUMERIK control (e.g. SINUMERIK 730.net) and SIMOTION component (e.g. CX32).
- cccc: Not used.

Note:
Connection type and connection number are described in F01375.
See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology)

Remedy:
- adapt the output topology to the permissible requirements.
- carry out commissioning using the commissioning software.
- for motors with DRIVE-CLiQ, connect the power and DRIVE-CLiQ cable to the same Motor Module (Single Motor Module: DRIVE-CLiQ at X202, Double Motor Module: DRIVE-CLiQ from motor 1 (X1) to X202, from motor 2 (X2) to X203).

Re aa = 06 hex = 6 dec and bb = 01 hex = 1 dec:
Correct the order number when commissioning using the commissioning software.
See also: p0097 (Select drive object type), r0098 (Actual device topology), p0099 (Device target topology)

201331 <location>Topology: At least one component not assigned to a drive object

Message value:
Component number: %1

Drive object:
All objects

Reaction: NONE

Acknowledge: NONE

Cause:
At least one component is not assigned to a drive object.
- when commissioning, a component was not able to be automatically assigned to a drive object.
- the parameters for the data sets are not correctly set.
Alarm value (r2124, interpret decimal):
Component number of the unassigned component.
Remedy: This component is assigned to a drive object. Check the parameters for the data sets. Examples: - power unit (p0121). - motor (p0131, p0186). - encoder interface (p0140, p0141, p0187 ... p0189). - encoder (p0140, p0142, p0187 ... p0189). - Terminal Module (p0151). - option board (p0161).

201340 <location>Topology: Too many components on one line
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: For the selected communications clock cycle, too many DRIVE-CLiQ components are connected to one line of the Control Unit. Fault value (r0949, interpret hexadecimal): xyy hex: x = fault cause, yy = component number or connection number.
1yy: The communications clock cycle of the DRIVE-CLiQ connection on the CU is not sufficient for all read transfers.
2yy: The communications clock cycle of the DRIVE-CLiQ connection on the CU is not sufficient for all write transfers.
3yy: Cyclic communication is fully utilized.
4yy: The DRIVE-CLiQ cycle starts before the earliest end of the application. An additional dead time must be added to the control. Sign-of-life errors can be expected.
5yy: Internal buffer overflow for net data of a DRIVE-CLiQ connection.
6yy: Internal buffer overflow for receive data of a DRIVE-CLiQ connection.
7yy: Internal buffer overflow for send data of a DRIVE-CLiQ connection.
Remedy: Check the DRIVE-CLiQ connection:
Reduce the number of components on the DRIVE-CLiQ line involved and distribute these to other DRIVE-CLiQ connections of the Control Unit. This means that communication is uniformly distributed over several communication lines.
Re fault value = 1yy - 4yy in addition:
- increase the sampling times (p0112, p0115).

201354 <location>Topology: Actual topology indicates an illegal component
Message value:
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The actual topology indicates at least one illegal component. Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = cause.
xx = 1: Component at this Control Unit not permissible.
xx = 2: Component in combination with another component not permissible.
Note: Pulse enable is prevented.
Remedy: Remove the illegal components and restart the system.
201355	<location>Topology: Actual topology changed
Message value: | %1
Drive object: | All objects
Reaction: | NONE
Acknowledge: | IMMEDIATELY
Cause:
The device target topology (p0099) does not correspond to the device actual topology (r0098).
The fault only occurs if the topology was commissioned using the automatic internal device mechanism and not using the commissioning software.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
See also: r0098 (Actual device topology), p0099 (Device target topology)
Remedy:
One of the following counter-measures can be selected if no faults have occurred in the topology detection itself:
If commissioning was still not completed:
- carry out a self-commissioning routine (starting from p0009 = 1).
General: Set p0099 to r0098, set p0009 to 0; for existing Motor Modules, this results in servo drives being automatically generated (p0107).
Generating servo drives: Set p0097 to 1, set p0009 to 0.
Generating vector drives: Set p0097 to 2, set p0009 to 0.
Generating vector drives with parallel circuit: Set p0097 to 12, set p0009 to 0.
In order to set configurations in p0108, before setting p0009 to 0, it is possible to first set p0009 to 2 and modify p0108. The index corresponds to the drive object (p0107).
If commissioning was already completed:
- re-establish the original connections and re-connect power to the Control Unit.
- restore the factory setting for the complete equipment (all of the drives) and allow automatic self-commissioning again.
- change the device parameterization to match the connections (this is only possible using the commissioning software).
Notice:
Topology changes that result in this fault being generated cannot be accepted by the automatic function in the device, but must be transferred using the commissioning software and parameter download. The automatic function in the device only allows constant topology to be used. Otherwise, when the topology is changed, all of the previous parameter settings are lost and replaced by the factory setting.
See also: r0098 (Actual device topology)

201360	<location>Topology: Actual topology is illegal
Message value: | Fault cause: %1, preliminary component number: %2
Drive object: | All objects
Reaction: | NONE
Acknowledge: | IMMEDIATELY
Cause:
The detected actual topology is not permissible.
Fault value (r0949, interpret hexadecimal):
ccccbaaa hex: cccc = preliminary component number, aa = fault cause
aa = 01 hex = 1 dec:
Too many components were detected at the Control Unit. The maximum permissible number of components is 199.
aa = 02 hex = 2 dec:
The component type of a component is not known.
aa = 03 hex = 3 dec:
The combination of ALM and BLM is not permitted.
aa = 04 hex = 4 dec:
The combination of ALM and SLM is not permitted.
aa = 05 hex = 5 dec:
The combination of BLM and SLM is not permitted.
aa = 06 hex = 6 dec:
A CX32 was not directly connected to a permitted Control Unit.
aa = 07 hex = 7 dec:
An NX10 or NX15 was not directly connected to a permitted Control Unit.

aa = 08 hex = 8 dec:
A component was connected to a Control Unit that is not permitted for this purpose.

aa = 0A hex = 10 dec:
Too many components of a certain type detected.

aa = 0B hex = 11 dec:
Too many components of a certain type detected at a single line.

Note:
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

Remedy:
Re fault cause = 1:
Change the configuration. Connect less than 199 components to the Control Unit.

Re fault cause = 2:
Remove the component with unknown component type.

Re fault cause = 3, 4, 5:
Establish a valid combination.

Re fault cause = 6, 7:
Connect the expansion module directly to a permitted Control Unit.

Re fault cause = 8:
Remove component.

Re fault cause = 10, 11:
Reduce the number of components.

201361 <location>Topology: Actual topology contains SINUMERIK and SIMOTION components

Message value:

%1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause:
The detected actual topology contains SINUMERIK and SIMOTION components.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

Fault value (r0949, interpret hexadecimal):
ddccbbbaa hex: cc = fault cause, bb = component class of the actual topology, aa = component number of the component

cc = 01 hex = 1 dec:
An NX10 or NX15 was connected to a SIMOTION control.

cc = 02 hex = 2 dec:
A CX32 was connected to a SINUMERIK control.

Remedy:
Re fault cause = 1:
Replace all NX10 or NX15 by a CX32.

Re fault cause = 2:
Replace all CX32 by an NX10 or NX15.

201375 <location>Topology: Actual topology, duplicate connection between two components

Message value:

Preliminary component number: %1, component class: %2, connection number: %3

Drive object: All objects

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause:
When detecting the actual topology, a ring-type connection was detected.

Fault value (r0949, interpret hexadecimal):
cbbbaaaa hex:
cc = connection number
bb = component class
aaaa = preliminary component number of a component included in the ring
Component class:
1: Control Unit
2: Motor Module
3: Line Module
4: Sensor Module (SM)
5: Voltage Sensing Module (VSM)
6: Terminal Module (TM)
7: DRIVE-CLiQ Hub Module
8: Controller Extension 32 (CX32, NX10, NX15)
49: DRIVE-CLiQ components (non-listed components)
50: Option slot (e.g. Terminal Board 30)
60: Encoder (e.g. EnDat)
70: Motor with DRIVE-CLiQ

Component type:
Precise designation within a component class (e.g. "SMC20").
Connection number:
Consecutive numbers, starting from zero, of the appropriate connection or slot (e.g. DRIVE-CLiQ connection X100 on the Control Unit has the connection number 0).

Remedy:
Output the fault value and remove the specified connection.
Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201380
<location>Topology: Actual topology, defective EEPROM</location>
Message value:
Preliminary component number: %1

Drive object: All objects
Reaction: NONE
Acknowledge: POWER ON
Cause: When detecting the actual topology, a component with a defective EEPROM was detected. Fault value (r0949, interpret hexadecimal):
bbbabaaa hex:
aaaa = preliminary component number of the defective components

Remedy:
Output the fault value and remove the defected component.

201381
<location>Topology: Comparison power unit shifted</location>
Message value:
Component number: %1, Component class: %2, Component (target): %3, Connection number: %4

Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a power unit in the actual topology that has been shifted with respect to the target topology. Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number
cc = component number
bb = component class
aa = component number of the component shifted in the target topology

Note:
The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201382 <location>Topology: Comparison Sensor Module shifted

Message value:
Component number: %1, Component class: %2, Component (target): %3, Connection number: %4

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: The topology comparison has detected a Sensor Module in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number
cc = component number
bb = component class
aa = component number of the component shifted in the target topology
Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201383 <location>Topology: Comparison Terminal Module shifted

Message value:
Component number: %1, Component class: %2, Component (target): %3, Connection number: %4

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: The topology comparison has detected a Terminal Module in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number
cc = component number
bb = component class
aa = component number of the component shifted in the target topology
Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note:
Under "Topology → Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201384 <location>Topology: Comparison DRIVE-CLiQ Hub Module shifted
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a DRIVE-CLiQ Hub Module in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
 dd = connection number
 cc = component number
 bb = component class
 aa = component number of the component shifted in the target topology
Note:
The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note:
Under "Topology → Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201385 <location>Topology: Comparison CX32 shifted
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a controller extension 32 (CX32) in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
 dd = connection number
 cc = component number
 bb = component class
 aa = component number of the component shifted in the target topology
Note:
The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201386 <location>Topology: Comparison DRIVE-CLiQ component shifted
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a DRIVE-CLiQ component in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number
c = component number
bb = component class
aa = component number of the component shifted in the target topology
Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201387 <location>Topology: Comparison option slot component shifted
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a option slot component in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:
dd = connection number
c = component number
bb = component class
aa = component number of the component shifted in the target topology
Note: The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).

Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201388 <location>Topology: Comparison EnDat encoder shifted</location>
Message value:
Component number: %1, Component class: %2, Component (target): %3, Connection number: %4

Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected an EnDat encoder in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):

ddccbbbaa hex:
 dd = connection number
 cc = component number
 bb = component class
 aa = component number of the component shifted in the target topology

Note:
The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

201389 <location>Topology: Comparison motor with DRIVE-CLiQ shifted</location>
Message value:
Component number: %1, Component class: %2, Component (target): %3, Connection number: %4

Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a motor with DRIVE-CLiQ in the actual topology that has been shifted with respect to the target topology.
Alarm value (r2124, interpret hexadecimal):

ddccbbbaa hex:
 dd = connection number
 cc = component number
 bb = component class
 aa = component number of the component shifted in the target topology

Note:
The connection in the actual topology where the shifted component was detected is described in dd, cc and bb.
Component class and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
- undo the change to the actual topology by changing over the DRIVE-CLiQ cables.
- commissioning software: Go online, upload the drive unit, adapt the topology offline and download the modified project.
- automatically remove the topology error (p9904).
Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201416 <location>Topology: Comparison additional component in actual topology

Message value:
Component number: %1, Component class: %2, Connection number: %3

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: The topology comparison has found a component in the actual topology which is not specified in the target topology. The alarm value includes the component number and connection number of the component with which the additional component is connected. Alarm value (r2124, interpret hexadecimal):

ddccbbaa hex:
cc = connection number
bb = component class of the additional component
aa = component number
Note:
- component class and connection number are described in F01375.
- components that are connected to this additional component are not operational.

Remedy: Adapting the topologies:
- remove the additional component in the actual topology.
- download the target topology that matches the actual topology (commissioning software).
Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201420 <location>Topology: Comparison a component is different

Message value:
Component number: %1, component class target: %2, component class actual: %3, fault cause: %4

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: The topology comparison has detected differences in the actual and target topologies in relation to one component. There are differences in the electronic rating plate. Alarm value (r2124, interpret hexadecimal):

ddccbbaa hex: aa = component number of the component, bb = component class of the target topology, cc = component class of the actual topology, dd = fault cause
\[dd = 01\text{ hex} = 1\text{ dec}:
\text{Different component type.}\]
\[dd = 02\text{ hex} = 2\text{ dec}:
\text{Different Order No.}\]
\[dd = 03\text{ hex} = 3\text{ dec}:
\text{Different manufacturer.}\]
\[dd = 04\text{ hex} = 4\text{ dec}:
\text{Connection changed over for a multi-component slave (e.g. Double Motor Module) or defective EEPROM data in the electronic rating plate.}\]
\[dd = 05\text{ hex} = 5\text{ dec}:
\text{A CX32 was replaced by an NX10 or NX15.}\]
\[dd = 06\text{ hex} = 6\text{ dec}:
\text{An NX10 or NX15 was replaced by a CX32.}\]
Note:
Component class and component type are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:
Adapting the topologies:
- check the component soft-wired connections against the hardware configuration of the drive unit in the commissioning software and correct differences.
- parameterize the topology comparison of all components (p9906).
- parameterize the topology comparison of one components (p9907, p9908).

Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201421

<location>Topology: Comparison different components

Message value:
Component number: %1, component class target: %2, component class actual: %3, fault cause: %4

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause:
The topology comparison has detected differences in the actual and target topologies in relation to one component. The component class, the component type or the number of connections differ.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex: aa = component number of the component, bb = component class of the target topology, cc = component class of the actual topology, dd = fault cause

dd = 01 hex = 1 dec:
Different component class.

dd = 02 hex = 2 dec:
Different component type.

dd = 03 hex = 3 dec:
Different Order No.

dd = 04 hex = 4 dec:
Different number of connections.

Note:
Component class, component type and connection number are described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

Remedy:
Check the component soft-wired connections against the hardware configuration of the drive unit in the commissioning software and correct differences.

Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201425

<location>Topology: Comparison serial number of a component is different

Message value:
Component number: %1, Component class: %2, Differences: %3

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause:
The topology comparison has detected differences in the actual and target topologies in relation to one component. The serial number is different.
Alarm value (r2124, interpret hexadecimal):
ddccbbaa hex:

c = number of differences
bb = component class
aa = component number of the component

Note:
The component class is described in F01375.
The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy:

- change over the actual topology to match the target topology.
- download the target topology that matches the actual topology (commissioning software).
- byte cc:
 - cc = 1 --> can be acknowledged using p9904 or p9905.
 - cc > 1 --> can be acknowledged using p9905 and can be de-activated using p9906 or p9907/p9908.

Note:

Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

See also: p9904, p9905, p9906, p9907, p9908

201428

Topo: Comparison connection of a component is different

Message value:

Component number: %1, Component class: %2, Connection number1: %3, Connection number2: %4

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause:

The topology comparison has detected differences in the actual and target topologies in relation to one component. A component was connected to another connection.

The different connections of a component are described in the alarm value:

Alarm value (r2124, interpret hexadecimal):

ddccbbaa hex:
 - dd = connection number of the target topology
 - cc = connection number of the actual topology
 - bb = component class
 - aa = component number

Note:

Component class and connection number are described in F01375.

The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.

Remedy:

- change over the actual topology to match the target topology.
- download the target topology that matches the actual topology (commissioning software).
- automatically remove the topology error (p9904).

Note:

Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

See also: p9904 (Topology comparison, acknowledge differences)

201429

Topology: Comparison connection is different for more than one component

Message value:

Component number: %1, Component class: %2, Connection number1: %3, Connection number2: %4

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause:

A topology comparison has found differences between the actual and target topology for several components. A component was connected to another connection.

The different connections of a component are described in the alarm value:

Alarm value (r2124, interpret hexadecimal):

ddccbbaa hex:
 - dd = connection number of the target topology
 - cc = connection number of the actual topology
 - bb = component class
 - aa = component number

Note:

Component class and connection number are described in F01375.

The drive system is no longer booted. In this state, the drive control (closed-loop) cannot be enabled.
Remedy: Adapting the topologies:
- change over the actual topology to match the target topology.
- download the target topology that matches the actual topology (commissioning software).

Note: In the software, a Double Motor Module behaves just like two separate DRIVE-CLiQ nodes. If a Double Motor Module is re-inserted, this can result in several differences in the actual topology.
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201451 <location>Topology: Target topology is invalid

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: An error was detected in the target topology.
The target topology is invalid.
Fault value (r0949, interpret hexadecimal):
ccccbbbaa hex: cccc = index error, bb = component number, aa = fault cause
aa = 1B hex = 27 dec: Error not specified.
aa = 1C hex = 28 dec: Value illegal.
aa = 1D hex = 29 dec: Incorrect ID.
aa = 1E hex = 30 dec: Incorrect ID length.
aa = 1F hex = 31 dec: Too few indices left.
aa = 20 hex = 32 dec: component not connected to Control Unit.
Remedy: Reload the target topology using the commissioning software.

201470 <location>Topology: Target topology ring-type connection

Message value: Component number: %1, Component class: %2, Connection number: %3
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A ring-type connection was detected when writing to the target topology.
Fault value (r0949, interpret hexadecimal):
ddccbbbaa hex:
c = connection number
bb = component class
aa = component number of a component included in the ring
Note: Component class and connection number are described in F01375.
Remedy: Read out the fault value and remove one of the specified connections.
Then download the target topology again using the commissioning software.
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201475 <location>Topology: Target topology duplicate connection between two components

Message value: Component number: %1, Component class: %2, Connection number1: %3, Connection number2: %4
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: When writing the target topology, a duplicate connection between two components was detected.
Fault value (r0949, interpret hexadecimal):
ddccbbaa hex:
- dd = connection number 2 of the duplicate connection
- cc = connection number 1 of the duplicate connection
- bb = component class
- aa = component number of one of the components connected twice

Note:
Component class and connection number are described in F01375.

Remedy:
Read out the fault value and remove one of the two specified connections.
Then download the target topology again using the commissioning software.

Note:
Under “Topology --> Topology view” the commissioning software offers improved diagnostics capa-
bility (e.g. setpoint/actual value comparison).

201481 <location>Topology: Comparison power unit missing in the actual topology
Message value:
Component number: %1

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause:
The topology comparison has detected a power unit in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal):
Component number of the additional target components.

Remedy:
- delete the drive belonging to the power unit in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- check that the power unit is working properly.

Note:
Under “Topology --> Topology view” the commissioning software offers improved diagnostics capa-
bility (e.g. setpoint/actual value comparison).

201482 <location>Topology: Comparison Sensor Module missing in the actual topology
Message value:
Component number: %1

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause:
The topology comparison has detected a Sensor Module in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal):
Component number of the additional target components.

Remedy:
- re-configure the drive belonging to the Sensor Module in the commissioning software project (encoder configuration) and download the new configuration to the drive unit.
- delete the drive belonging to the Sensor Module in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- check that the Sensor Module is working properly.

Note:
Under “Topology --> Topology view” the commissioning software offers improved diagnostics capa-
bility (e.g. setpoint/actual value comparison).
201483 <location>Topology: Comparison Terminal Module missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a Terminal Module in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal):
Component number of the additional target components.
Remedy:
- delete the Terminal Module in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- check that the Terminal Module is working properly.
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201484 <location>Topology: Comparison DRIVE-CLiQ Hub Module missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a DRIVE-CLiQ Hub Module in the target topology that does not exist in the actual topology.
Alarm value (r2124, interpret decimal):
Component number of the additional target components.
Remedy:
- delete the DRIVE-CLiQ Hub Module in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- test the DRIVE-CLiQ Hub Module to ensure that it functions correctly.
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201485 <location>Topology: Comparison CX32 missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a controller extension 32 (CX32) in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal):
Component number of the additional target components.
Remedy:
- delete the CX32 / NX in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- check that CX32/NX functions correctly.

Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201486 <location>Topology: Comparison DRIVE-CLiQ components missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
The topology comparison has detected a DRIVE-CLiQ component in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal):
Component number of the additional target components.
Remedy:
- delete the drive belonging to this component in the commissioning software project and download the new configuration to the drive unit.
- re-configure the drive belonging to this component in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check the 24 V supply voltage.
- check that the component is working properly.

Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201487 <location>Topology: Comparison option slot components missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
The topology comparison has detected an option slot module in the target topology that is not available in the actual topology.
Alarm value (r2124, interpret decimal):
Component number of the additional target components.
Remedy:
- delete the option board in the commissioning software project and download the new configuration to the drive unit.
- re-configure the drive unit in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check that the option board is functioning correctly.

Note:
Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).
201488 <location>Topology: Comparison EnDat encoder missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected an EnDat encoder in the target topology that is not available in the actual topology. Alarm value (r2124, interpret decimal): Component number of the additional target components.
Remedy: - re-configure the drive belonging to the encoder in the commissioning software project (encoder configuration) and download the new configuration to the drive unit.
- delete the drive belonging to the encoder in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201489 <location>Topology: Comparison motor with DRIVE-CLiQ missing in the actual topology

Message value: Component number: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The topology comparison has detected a motor with DRIVE-CLiQ in the target topology that is not available in the actual topology. Alarm value (r2124, interpret decimal): Component number of the additional target components.
Remedy: - re-configure the drive belonging to this motor in the commissioning software project and download the new configuration to the drive unit.
- re-configure the drive belonging to this motor in the commissioning software project and download the new configuration to the drive unit.
- check that the actual topology matches the target topology and if required, change over.
- check DRIVE-CLiQ cables for interruption and contact problems.
- check that the motor is working properly.
Note: Under "Topology --> Topology view" the commissioning software offers improved diagnostics capability (e.g. setpoint/actual value comparison).

201505 <location>BICO: Interconnection cannot be established

Message value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A PROFdrive telegram has been set (p0922). An interconnection contained in the telegram was not able to be established. Fault value (r0949, interpret decimal): Parameter receiver that should be changed.
Remedy: Establish another interconnection.
201506 <location>BICO: No standard telegram
Message Parameter: %1
value:
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The standard telegram in p0922 is not maintained and therefore p0922 is set to 999.
Fault value (r0949, interpret decimal):
BICO parameter for which the write attempt was unsuccessful.
Remedy: Again set the required standard telegram (p0922).

201507 <location>BICO: Interconnections to inactive objects present
Message %1
value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: There are BICO interconnections as signal sink from a drive object that is either inactive/not operational.
The BI/CI parameters involved are listed in r9498.
The associated BO/CO parameters are listed in r9499.
The list of the BICO interconnections to other drive objects is displayed in r9491 and r9492 of the de-activated drive object.
Note: r9498 and r9499 are only written to, if p9495 is not set to 0.
Alarm value (r2124, interpret decimal):
Number of BICO interconnections found to inactive drive objects.
Remedy:
- set all open BICO interconnections centrally to the factory setting with p9495 = 2.
- make the non-operational drive object active/operational again (re-insert or activate components).

201508 <location>BICO: Interconnections to inactive objects exceeded
Message
value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The maximum number of BICO interconnections (signal sinks) when de-activating a drive object was exceeded.
When de-activating a drive object, all BICO interconnections (signal sinks) are listed in the following parameters:
- r9498[0...29]: List of the BI/CI parameters involved.
- r9499[0...29]: List of the associated BO/CO parameters.
Remedy: The alarm automatically disappears as soon as no BICO interconnection (value = 0) is entered in r9498[29] and r9499[29].
Notice: When re-activating the drive object, all BICO interconnections should be checked and if required, re-established.

201510 <location>BICO: Signal source is not float type
Message Parameter: %1
value:
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The requested connector output does not have the correct data type. This interconnection is not established.
Fault value (r0949, interpret decimal):
Parameter number to which an interconnection should be made (connector output).
Remedy: Interconnect this connector input with a connector output having a float data type.
201511 <location>BICO: Interconnection between different normalizations

Message value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The requested interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values.
- the BICO output has different normalized units than the BICO input.
- message only for interconnections within a drive object.
Example: The BICO output has, as normalized unit, voltage and the BICO input has current.
This means that the factor p2002 (contains the reference value for current) / p2001 (contains the reference value for voltage) is calculated between the BICO output and BICO input.
Fault value (r0949, interpret decimal):
Parameter number of the BICO input (signal sink).
Remedy: No correction needed.

201512 <location>BICO: No normalization available

Message value: %1
Drive object: All objects
Reaction: A_INFEED: OFF2 (OFF1)
SERVO: OFF2
VECTOR: OFF2
Acknowledge: POWER ON
Cause: An attempt was made to determine a conversion factor for a normalization that does not exist.
Fault value (r0949, interpret decimal):
Unit (e.g. corresponding to SPEED) for which an attempt was made to determine a factor.
Remedy: Apply normalization or check the transfer value.

201513 <location>BICO: Spanning DO between different normalizations

Message value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The requested interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values.
An interconnection is made between different drive objects and the BICO output has different normalized units than the BICO input or the normalized units are the same but the reference values are different.
Example: The BICO output has, as standard unit, voltage and the BICO input has current; both lie in different drive objects.
This means that the factor p2002 (contains the reference value for current) / p2001 (contains the reference value for voltage) is calculated between the BICO output and BICO input.
Fault value (r0949, interpret decimal):
Parameter number of the BICO input (signal sink).
Remedy: None necessary.

201514 <location>BICO: Error when writing during a reconnect

Message value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: During a reconnect operation (e.g. while booting or downloading - but can also occur in normal operation) a parameter was not able to be written to.
Example: When writing to a double word BICO input in the second index, the memory areas overlap (e.g. p8861). The parameter is then reset to the factory setting.
Alarm value (r2124, interpret decimal):
Parameter number of the BICO input (signal sink).
Remedy: None necessary.

201515 <location>BICO: Writing to parameter not permitted as the master control is active

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: While changing the number of CDS or when copying from CDS, the master control was active.
Remedy: None necessary.

201590 <location>Drive: Motor maintenance interval expired

Message value:
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The selected service/maintenance interval for this motor was reached.
Alarm value (r2124, interpret decimal):
Motor data set number.
See also: p0650 (Actual motor operating hours), p0651 (Motor operating hours maintenance interval)
Remedy: carry out service/maintenance and reset the service/maintenance interval (p0651).

201600 <location>SI CU: STOP A initiated

Message value:
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-based "Safety Integrated" function in the Control Unit (CU) has detected a fault and initiated a STOP A (pulse suppression via the safety shutdown path of the Control Unit).
- forced checking procedure of the safety shutdown path of the Control Unit unsuccessful.
- subsequent response to fault F01611 (defect in a monitoring channel).
Fault value (r0949, interpret decimal):
0: Stop request from the Motor Module.
1005: Pulses suppressed although STO not selected and there is no internal STOP A present.
1010: Pulses enabled although STO is selected or an internal STOP A is present.
1015: Feedback of the safe pulse suppression for Motor Modules connected in parallel are different.
9999: Subsequent response to fault F01611.
Remedy: - select Safe Torque Off and de-select again.
- replace the Motor Module involved.
Re fault value = 9999:
- carry out diagnostics for fault F01611.
Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill
201611 <location>SI CU: Defect in a monitoring channel
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-based "Safety Integrated" function in the Control Unit (CU) has detected a fault in the data cross-check between the CU and Motor Module (MM) and initiated a STOP F. As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.
Fault value (r9949, interpret decimal):
0: Stop request from the Motor Module.
1 to 999: Number of the cross-checked data that resulted in this fault. This number is also displayed in r9795.
1: SI monitoring clock cycle (r9780, r9880).
2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.
3: SI SGE changeover tolerance time (p9650, p9850).
4: SI transition period STOP F to STOP A (p9658, p9858).
5: SI enable Safe Brake Control (p9602, p9802).
6: SI Motion enable, safety-relevant functions (p9501, internal value).
7: SI pulse suppression delay time for Safe Stop 1 (p9652, p9852).
8: SI PROFIsafe address (p9610, p9810).
1000: Watchdog timer has expired. Within a period corresponding to approximately 5 * p9650, too many switching operations have occurred at terminal EP of the Motor Module, or STO (including subsequent responses) has been triggered too frequently via PROFIsafe/TM54F.
1001, 1002: Initialization error, change timer / check timer.
2000: Status of the STO selection on the Control Unit and Motor Module are different.
2001: Feedback signal for safe pulse suppression on the Control Unit and Motor Module are different.
2002: Status of the delay timer SS1 on the Control Unit and Motor Module are different.
2004: Status of the STO selection for modules connected in parallel are different.
2005: Feedback signal of the safe pulse suppression on the Control Unit and Motor Modules connected in parallel are different.
Remedy: Re fault value = 1 to 5 and 7 to 999:
- check the cross-checked data that resulted in a STOP F.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 6:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 1000:
- check the EP terminal at the Motor Module (contact problems).
- PROFIsafe: rectify contact problems/faults on the PROFIBUS master/PROFINET controller.
- check the wiring of the fail-safe inputs on TM54F (contact problems).
Re fault value = 1001, 1002:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- check the tolerance time SGE changeover and if required, increase the value (p9650/p9850, p9652/p9852).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
- check the causes of STO selection in r9772. Active SMM functions (p9501=1) can also cause STO to be selected.
- replace the Motor Module involved.
Note:
CU: Control Unit
EP: Enable Pulses (pulse enable)
MM: Motor Module
SGE: Safety-relevant input
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill
SMM: see r9772

201612 <location>SI CU: STO inputs for power units connected in parallel different</location>
Message value: Fault cause: %1 bin
Drive object: SERVO, VECTOR
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-based "Safety Integrated" function on the Control Unit (CU) has identified different states of the AND'ed STO inputs for power units connected in parallel and has initiated a STOP F. As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.
Fault value (r0949, interpret binary): Binary image of the digital inputs of the Control Unit that are used as signal source for the function "Safe Torque Off".
Remedy: - check the tolerance time SGE changeover and if required, increase the value (p9650).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
Note:
CU: Control Unit
SGE: Safety-relevant input
SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill

201620 <location>SI CU: Safe Torque Off active</location>
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The "Safe Torque Off" (STO) function has been selected on the Control Unit (CU) and is active.
Note: This message does not result in a safety stop response.
Remedy: None necessary.
Note:
CU: Control Unit
SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill

201621 <location>SI CU: Safe Stop 1 active</location>
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The "Safe Stop 1" (SS1) function has been selected on the Control Unit (CU) and is active.
Note: This message does not result in a safety stop response.
Remedy: None necessary.

Note:
CU: Control Unit
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)

201625 <location>SI CU: Sign-of-life error in safety data

Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-based "Safety Integrated" function in the Control Unit (CU) has detected an error in the sign-of-life of the safety data between the CU and Motor Module (MM) and initiated a STOP A.
- there is either a DRIVE-CLiQ communication error or communication has failed.
- a time slice overflow of the safety software has occurred.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
- select Safe Torque Off and de-select again.
- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- de-select all drive functions that are not absolutely necessary.
- reduce the number of drives.
- check the electrical cabinet design and cable routing for EMC compliance

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

201630 <location>SI CU: Brake control error

Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-based "Safety Integrated" function in the Control Unit (CU) has detected a brake control error and initiated a STOP A.
Fault value (r0949, interpret decimal):
10, 11: Fault in "open holding brake" operation.
- Parameter p1278 incorrectly set.
- No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC deactivated)).
- Ground fault in brake cable.
20: Fault in "brake open" state.
- Short-circuit in brake winding.
30, 31: Fault in "close holding brake" operation.
- No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC deactivated)).
- Short-circuit in brake winding.
40: Fault in "brake closed" state.
50: Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module (brake control).
Note:
The following causes may apply to fault values:
- motor cable is not shielded correctly.
- defect in control circuit of the Motor Module.
Remedy:
- check parameter p1278 (for SBC, only p1278 = 0 is permissible).
- select Safe Torque Off and de-select again.
- check the function of the motor holding brake.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing).
- replace the Motor Module involved.

Operation with Safe Brake Module:
- check the Safe Brake Modules connection.
- replace the Safe Brake Module.

Note:
CU: Control Unit
SBC: Safe Brake Control
SI: Safety Integrated

201649 <location>SI CU: Internal software error
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
An internal error in the Safety Integrated software on the Control Unit has occurred.
Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- re-commission the "Safety Integrated" function and carry out a POWER ON.
- upgrade the Control Unit software.
- contact the Hotline.
- replace the Control Unit.
Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

201650 <location>SI CU: Acceptance test required
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
The drive-based "Safety Integrated" function in the Control Unit requires an acceptance test.
Note:
This fault results in a STOP A that can be acknowledged.
Fault value (r0949, interpret decimal):
130: Safety parameters for the Motor Module not available.
1000: Reference and actual checksum on the Control Unit are not identical (booting).
- at least one checksum-checked piece of data is defective.
2000: Reference and actual checksum on the Control Unit are not identical (commissioning mode).
- reference checksum incorrectly entered into the Motor Module (p9899 not equal to r9898).
- when de-activating the safety functions, p9501 or p9503 are not deleted.
2001: Reference and actual checksum on the Motor Module are not identical (commissioning mode).
- reference checksum incorrectly entered into the Motor Module (p9899 not equal to r9898).
- when de-activating the safety functions, p9501 or p9503 are not deleted.
2002: Enable of safety-related functions between the Control Unit and Motor Module differ (p9601 not equal to p9801).
2003: Acceptance test is required as a safety parameter has been changed.
2004: An acceptance test is required because a project with enabled safety-functions has been downloaded.
2005: The Safety LogBook has identified that a functional safety checksum has changed. An acceptance test is required.
2010: Safe Brake Control is enabled differently between the Control Unit and Motor Module (p9602 not equal to p9802).
2020: Error when saving the safety parameters for the Motor Module.
3003: Acceptance test is required as a hardware-related safety parameter has been changed.
3005: The Safety LogBook has identified that a hardware-related safety checksum has changed. An acceptance test is required.
9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.

Remedy:

Re fault value = 130:
- carry out safety commissioning routine.
Re fault value = 1000:
- again carry out safety commissioning routine.
- replace the CompactFlash card.
Re fault value = 2000:
- check the safety parameters in the Control Unit and adapt the reference checksum (p9799).
Re fault value = 2001:
- check the safety parameters in the Motor Module and adapt the reference checksum (p9899).
Re fault value = 2002:
- enable the safety-related functions in the Control Unit and check in the Motor Module (p9601 = p9801).
Re fault value = 2003, 2004, 2005:
- Carry out an acceptance test and generate an acceptance report.
The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the documentation for SINAMICS Safety Integrated.
The fault with fault value 3005 can only be acknowledged when the "STO" function is deselected.
Re fault value = 2010:
- check enable of the safety-related brake control in the Control Unit and Motor Module (p9602 = p9802).
Re fault value = 2020:
- again carry out safety commissioning routine.
- replace the CompactFlash card.
Re fault value = 3003:
- carry out the function checks for the modified hardware and generate an acceptance report.
The procedure when carrying out an acceptance test as well as an example of the acceptance report are provided in the following literature:
SINAMICS S120 Function Manual Safety Integrated
Re fault value = 3005:
- carry out the function checks for the modified hardware and generate an acceptance report.
The fault with fault value 3005 can only be acknowledged when the "STO" function is deselected.
Re fault value = 9999:
- carry out diagnostics for the other safety-related fault that is present.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated
STO: Safe Torque Off
See also: p9799 (SI reference checksum SI parameters (Control Unit)), p9899 (SI reference checksum SI parameters (Motor Module))

201651 <location>SI CU: Synchronization safety time slices unsuccessful
Message value: %1
Drive object: A_INF, B_INF, CU_LINK, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
The "Safety Integrated" function requires a synchronization of the safety time slices between the Control Unit (CU) and Motor Module (MM) and between the Control Unit and the higher-level control. This synchronization routine was unsuccessful.

Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
150: Fault in the synchronization to the PROFIBUS master.
All other values: Only for internal Siemens troubleshooting.
See also: p9510 (SI Motion clock-cycle synchronous PROFIBUS master)

Remedy:
Re fault value = 150:
- check the setting of p9510 (SI Motion clock-cycle synchronous PROFIBUS master) and if required, correct.
General:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- upgrade the software of the higher-level control.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

201652

Message value: %1

Drive object: SERVO, VECTOR

Reaction: OFF2

Acknowledge: IMMEDIATELY (POWER ON)

Cause:
One of the Safety Integrated monitoring clock cycles is not permissible:
- the drive-based monitoring clock cycle cannot be maintained due to the communication conditions required in the system.
- the monitoring clock cycle for safe motion monitoring functions with the higher-level control is not permissible (p9500).
- The sampling time for the current controller (p0112, p0115) cannot be supported.

Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
- for enabled drive-based SI monitoring (p9601/p9801 > 0):
 Minimum setting for the monitoring clock cycle (in µs).
- with the motion monitoring function enabled (p9501 > 0):
 100: No matching monitoring clock cycle was able to be found.
 101: The monitoring clock cycle is not an integer multiple of the actual value sensing clock cycle.
 102: An error has occurred when transferring the DP clock cycle to the Motor Module (MM).
 103: An error has occurred when transferring the DP clock cycle to the Sensor Module.
 104,105:
 - four times the sampling time of the current controller is greater than 1 ms when operating with a non-clock-cycle synchronous PROFIBUS.
 - Four times the sampling time of the current controller is greater than the DP clock cycle when operating with a clock-cycle synchronous PROFIBUS.
 - the DP clock cycle is not an integer multiple of the sampling time of the current controller.
 106: The monitoring clock cycle does not match the monitoring clock cycle of the TM54F.
 107: Four times the sampling time of the current controller is greater than the actual value sensing clock cycle (p9511) or the actual value sensing clock cycle is not an integer multiple of the sampling time of the current controller.
 108: The parameterized actual value sensing clock cycle cannot be set on this component
Remedy: For enabled drive-based SI monitoring (p9601/p9801 > 0):
- upgrade the Control Unit software.
- correct the monitoring clock cycle (p9500) and carry out POWER ON.
Re fault value 101:
- the actual value sensing clock cycle is per default the position control clock cycle / DP clock cycle.
- for the drive-based motion monitoring functions (p9601/p9801bit 2 = 1) the actual value sensing clock cycle can be directly parameterized in p9511/p9311.
Re fault value = 104, 105:
- set a separate actual value sensing clock cycle in p9511.
- restrict operation to a maximum of two vector drives. For the standard settings in p0112, p0115, the current controller sampling time is automatically reduced to 250 µs. If the standard values were changed, then the current controller sampling time (p0112, p0115) should be appropriately set.
- increase the DP clock cycle for operation with a clock-cycle synchronous PROFIBUS so that there is a multiple clock cycle ratio of at least 4:1 between the DP clock cycle and the current controller sampling time.
Re fault value 106:
- set the parameters for the monitoring clock cycles the same (p10000 and p9500 / p9300).
Re fault value 107:
- set an actual value sensing clock cycle in p9511 that matches the current control clock cycle.
Re fault value 108:
- set a suitable actual value sensing clock cycle in p9511.
- if, when operating with clock-cycle synchronous PROFIBUS, the DP clock cycle is used as actual value sensing clock cycle (p9511 = 0) a suitable DP clock cycle must be configured.
A suitable multiple of the DP clock cycle (e.g. 1,2,3,4,5,6,8,10) must be parameterized on the D410.
Otherwise, the clock cycle must be set to less than 8 ms.
Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

201653 <location>SI CU: PROFIBUS configuration error
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: There is a PROFIBUS configuration error for using Safety Integrated monitoring functions with a higher-level control (SINUMERIK or F-PLC).
Note:
For safety functions that have been enabled, this fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
200: A safety slot for receive data from the control has not been configured.
210, 220: The configured safety slot for the receive data from the control has an unknown format.
230: The configured safety slot for the receive data from the F-PLC has the incorrect length.
240: The configured safety slot for the receive data from the SINUMERIK has the incorrect length.
250: A PROFIsafe slot is configured in the higher-level F control, however PROFIsafe is not enabled in the drive.
300: A safety slot for the send data to the control has not been configured.
310, 320: The configured safety slot for the send data to the control has an unknown format.
330: The configured safety slot for the send data to the F-PLC has the incorrect length.
340: The configured safety slot for the send data to the SINUMERIK has the incorrect length.
Remedy:
Re fault value = 250:
- remove the PROFIsafe configuring in the higher-level F control or enable PROFIsafe in the drive.
The following generally applies:
- check the PROFIBUS configuration of the safety slot on the master side and, if necessary, correct.
- upgrade the Control Unit software.
201655 <location>SI CU: Align monitoring functions
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An error has occurred when aligning the Safety Integrated monitoring functions on the Control Unit (CU) and Motor Module (MM). Control Unit and Motor Module were not able to determine a common set of supported SI monitoring functions.
- there is either a DRIVE-CLiQ communication error or communication has failed.
- Safety Integrated software releases on the Control Unit and Motor Module are not compatible with one another.
Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- check the electrical cabinet design and cable routing for EMC compliance
Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

201656 <location>SI CU: Motor Module parameter error
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: When accessing the Safety Integrated parameters for the Motor Module (MM) on the CompactFlash card, an error has occurred.
Note:
This fault results in a STOP A that can be acknowledged.
Fault value (r0949, interpret decimal):
129: Safety parameters for the Motor Module corrupted.
131: Internal Motor Module software error.
132: Communication errors when uploading or downloading the safety parameters for the Motor Module.
255: Internal software error on the Control Unit.
Remedy:
- re-commission the safety functions.
- upgrade the Control Unit software.
- upgrade the Motor Module software.
- replace the CompactFlash card.
Re fault value = 132:
- check the electrical cabinet design and cable routing for EMC compliance
Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

201659 <location>SI CU: Write request for parameter rejected
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The write request for one or several Safety Integrated parameters on the Control Unit (CU) was rejected.

Note: This fault does not result in a safety stop response.

Fault value (r0949, interpret decimal):
1: The Safety Integrated password is not set.
2: A reset of the drive parameters was selected. However, the Safety Integrated parameters cannot be reset, as Safety Integrated is presently enabled.
3: The interconnected STO input is in the simulation mode.
10: An attempt was made to enable the STO function although this cannot be supported.
11: An attempt was made to enable the SBC function although this cannot be supported.
12: An attempt was made to enable the SBC function although this cannot be supported for a parallel circuit configuration.
13: An attempt was made to enable the SS1 function although this cannot be supported.
14: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version of the PROFIsafe driver used on the CU and MM is different.
15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported.
16: An attempt was made to enable the STO function although this cannot be supported when the internal voltage protection (p1231) is enabled.

See also: p0970, p3900, r9771, r9871

Remedy:

Re fault value = 1:
- set the Safety Integrated password (p9761).

Re fault value = 2:
- inhibit Safety Integrated and again reset the drive parameters.

Re fault value = 3:
- end the simulation mode for the digital input (p0795).

Re fault value = 10, 11, 12, 13, 14, 15:
- check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved.
- use a Motor Module that supports the required function ("Safe Torque Off", "Safe Brake Control", "PROFIsafe/PROFIsafe V2", "motion monitoring functions integrated in the drive").
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Re fault value = 16:
- inhibit the internal voltage protection (p1231).

Note:
CU: Control Unit
MM: Motor Module
SBC: Safe Brake Control
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill
See also: p9501, p9601, p9620, p9761, p9801

201660 <location>SI CU: Safety-related functions not supported

Message value: -

Drive object: SERVO, VECTOR

Reaction: OFF2

Acknowledge: IMMEDIATELY (POWER ON)

Cause: The Motor Module (MM) does not support the safety-related functions (e.g. the Motor Module version is not the correct one). Safety Integrated cannot be commissioned.

Note: This fault does not result in a safety stop response.

Remedy:
- use a Motor Module that supports the safety-related functions.
- upgrade the Motor Module software.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated
201663 <location>SI CU: Copying of SI parameters rejected
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: One of the following values is stored in p9700 or has been entered offline: 87 or 208. This is the reason that the system is attempting to copy the SI parameters from the Control Unit to the Motor Module during booting. However, no safety function is selected on the Control Unit (p9501 = 0, p9601 = 0) which is why the copy operation is rejected.
Note: This fault does not result in a safety stop response.
See also: p9700 (SI Motion copy function)
Remedy:
- set p9700 = 0.
- check p9501 and p9601 and correct if necessary.
- start the copy function again by entering the appropriate value in p9700.

201664 <location>SI CU: No automatic firmware update
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: When booting, parameter p7826 "automatic firmware update" did not have the value "1" that is required for the automatic firmware upgrade/downgrade. This means that when the safety functions are enabled, an inadmissible combination of versions can occur.
Note: This fault does not result in a safety stop response.
See also: p7826 (Firmware update automatic)
Remedy:
For enabled drive-based SI monitoring:
1. Set parameter p7826 to the value 1
2. Save the parameter (p0977 = 1) and carry out a power-on reset
When de-activating the drive-based SI monitoring (p9601 = 0), the alarm can be acknowledged after exiting the safety commissioning mode.

201670 <location>SI Motion: Invalid parameterization Sensor Module
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The parameterization of a Sensor Module used for Safety Integrated is not permissible.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
1: No encoder was parameterized for Safety Integrated.
2: An encoder was parameterized for Safety Integrated that does not have an A/B track (sine/cosine).
3: The encoder data set selected for Safety Integrated is still not valid.
4: A communication error with the encoder has occurred.
10: For an encoder used for Safety Integrated, not all of the Drive Data Sets (DDS) are assigned to the same Encoder Data Set (EDS) (p0187 ... p0189).
Remedy: Re fault value = 1, 2:
- use and parameterize an encoder that Safety Integrated supports (encoder with track A/B sine-wave, p0404.4 = 1).
Re fault value = 3:
- check whether the drive or drive commissioning function is active and if required, exit this (p0009 = p00010 = 0), save the parameters (p0971 = 1) and carry out a POWER ON.
Re fault value = 4:
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Sensor Module involved and if required, carry out a diagnostics routine for the faults identified.
Re fault value = 10:
- align the EDS assignment of all of the encoders used for Safety Integrated (p0187 ... p0189).

Note: SI: Safety Integrated

201671 <location>SI Motion: Parameterization encoder error
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The parameterization of the encoder used by Safety Integrated is different to the parameterization of the standard encoder.
Note: This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
Parameter number of the non-corresponding safety parameter.
Remedy: Align the encoder parameterization between the safety encoder and the standard encoder.
Note: SI: Safety Integrated

201672 <location>SI Motion: Motor Module software/hardware incompatible
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The existing Motor Module software does not support safe motion monitoring or is not compatible to the software on the Control Unit or there is a communications error between the Control Unit and Motor Module.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
1: The existing Motor Module software does not support the safe motion monitoring function.
4, 5, 7: The existing Motor Module software is not compatible to the software on the Control Unit.
2, 3, 6, 8: There is a communications error between the Control Unit and Motor Module.
Remedy: - check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out the appropriate diagnostics routine for the particular faults.
Re fault value = 1:
- use a Motor Module that supports safe motion monitoring
Re fault value = 4, 5, 7:
- upgrade the Motor Module software.
Re fault value = 2, 3, 6, 8:
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Note: SI: Safety Integrated
201673
Message
SI Motion: Sensor Module software/hardware incompatible

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1</td>
<td>Location or parameter value</td>
</tr>
</tbody>
</table>

Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The existing Sensor Module software and/or hardware does not support the safe motion monitoring function with the higher-level control.
Note: This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:
- upgrade the Sensor Module software.
- use a Sensor Module that supports the safe motion monitoring function.
Note: SI: Safety Integrated

201680
Message
SI Motion CU: Checksum error safety monitoring functions

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1</td>
<td>Location or parameter value</td>
</tr>
</tbody>
</table>

Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The actual checksum calculated by the drive and entered in r9728 via the safety-relevant parameters does not match the reference checksum saved in p9729 at the last machine acceptance. Safety-relevant parameters have been changed or a fault is present.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret decimal):
0: Checksum error for SI parameters for motion monitoring.
1: Checksum error for SI parameters for actual values.
2: Checksum error for SI parameters for component assignment.
Remedy:
- Check the safety-relevant parameters and if required, correct.
- carry out a POWER ON.
- carry out an acceptance test.
Note: SI: Safety Integrated

201681
Message
SI Motion CU: Incorrect parameter value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter: %1</td>
<td></td>
</tr>
</tbody>
</table>

Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The parameter cannot be parameterized with this value.
Note: This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
Parameter number with the incorrect value.
Remedy: Correct the parameter value.

201682
Message
SI Motion CU: Monitoring function not supported

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1</td>
<td>Location or parameter value</td>
</tr>
</tbody>
</table>

Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The monitoring function enabled in p9501, p9601 or p9801 is not supported in this firmware version.

Note: This fault results in a STOP A that cannot be acknowledged.

Fault value (r0949, interpret decimal):
1: Monitoring function SLP not supported (p9501.1).
2: Monitoring function SCA not supported (p9501.7 and p9501.8 ... 15 and p9503).
3: Monitoring function SLS override not supported (p9501.5).
10: Monitoring functions only supported for a SERVO drive object.
20: Drive-based motion monitoring functions are only supported in conjunction with PROFIsafe (p9501 and p9601.1 ... 2 and p9801.1 ... 2).
21: PROFIsafe only supported in conjunction with motion monitoring functions in the drive (p9501 and p9601.1 ... 2 and p9801.1 ... 2).

Remedy: De-select the monitoring function involved (p9501, p9503, p9601, p9801).

Note:
SCA: Safe Cam / SN: Safe software cam
SI: Safety Integrated
SLP: Safely-Limited Position / SE: Safe software limit switches
SLS: Safely-Limited Speed / SG: Safely reduced speed
See also: p9501 (SI Motion enable safety functions (Control Unit)), p9503 (SI Motion SCA (SN) enable (Control Unit))

201683 <location>SI Motion CU: SOS/SLS enable missing

Message value:
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The safety-relevant basic function "SOS/SLS" is not enabled in p9501 although other safety-relevant monitoring functions are enabled.

Note: This fault does not result in a safety stop response.

Remedy: Enable the function "SOS/SLS" (p9501.0) and carry out a POWER ON.

Note:
SI: Safety Integrated
SLS: Safely-Limited Speed / SG: Safely reduced speed
SOS: Safe Operating Stop / SBH: Safe operating stop
See also: p9501 (SI Motion enable safety functions (Control Unit))

201684 <location>SI Motion: Safely limited position limit values interchanged

Message value: \%1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)

Cause: For the function "Safely-Limited Position" (SE), a lower value is in p9534 than in p9535.

Note: This fault does not result in a safety stop response.

Fault value (r0949, interpret decimal):
1: Limit values SLP1 interchanged.
2: Limit values SLP2 interchanged.

Remedy: Correct the limit values in p9534 and p9535 and carry out a POWER ON.

Note:
SI: Safety Integrated
SLS: Safely-Limited Speed / SG: Safely reduced speed
See also: p9501 (SI Motion enable safety functions (Control Unit))

201685 <location>SI Motion CU: Safely-limited speed limit value too high

Message value: \%1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Overview of Alarms 03/2009

SINAMICS-Alarms

2-686

© Siemens AG 2009 All Rights Reserved

SINUMERIK 840D sl, 840Di sl, SINAMICS, Diagnostics Manual (DAsl), 03/2009

Cause: The limit value for the function "Safely-Limited Speed" (SLS) is greater than the speed that corresponds to an encoder limit frequency of 500 kHz.
Note: This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
Maximum permissible speed.

Remedy: Correct the limit values for SLS and carry out a POWER ON.
Note:
SI: Safety Integrated
SLS: Safely-Limited Speed / SG: Safely reduced speed
See also: p9531 (SI Motion SLS (SG) limit values (Control Unit))

201686 <location>SI Motion: Illegal parameterization cam position
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: At least one enabled "Safety Cam" (SCA) is parameterized in p9536 or p9537 too close to the tolerance range around the modulo position.
The following conditions must be complied with to assign cams to a cam track:
- the cam length of cam x = p9536[x]-p9537[x] must be greater or equal to the cam tolerance + the position tolerance (= p9540 + p9542). This also means that for cams on a cam track, the minus position value must be less than the plus position value.
- the distance between 2 cams x and y (minus position value[y] - plus position value[x] = p9537[y] - p9536[x]) on a cam track must be greater than or equal to the cam tolerance + position tolerance (= p9540 + p9542).
Note:
This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
Number of the "Safe Cam" with an illegal position.
See also: p9501 (SI Motion enable safety functions (Control Unit))
Remedy: Correct the cam position and carry out a POWER ON.
Note:
SCA: Safe Cam / SN: Safe software cam
SI: Safety Integrated
See also: p9536, p9537

201687 <location>SI Motion: Illegal parameterization modulo value SCA (SN)
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The parameterized modulo value for the "Safe Cam" (SCA) function is not a multiple of 360 000 mDegrees.
Note:
This fault does not result in a safety stop response.
Remedy: Correct the modulo value for SCA and carry out a POWER ON.
Note:
SCA: Safe Cam / SN: Safe software cam
SI: Safety Integrated
See also: p9505 (SI Motion SCA (SN) modulo value (Control Unit))

201688 <location>SI Motion CU: Actual value synchronization not permissible
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: It is not permissible to simultaneously enable the actual value synchronization and a monitoring function with absolute reference (SCA/SLP).
Note: This fault results in a STOP A that cannot be acknowledged.

Remedy: Either de-select the function "actual value synchronization" or the monitoring functions with absolute reference (SCA/SLP) and carry out a POWER ON.
Note:
SCA: Safe Cam / SN: Safe software cam
SI: Safety Integrated
SLP: Safely-Limited Position / SE: Safe software limit switches
See also: p9501 (SI Motion enable safety functions (Control Unit))

201680
<location>SI Motion: Axis re-configured
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: POWER ON
Cause: The axis configuration was changed (e.g. changeover between linear axis and rotary axis).
Parameter p0108.13 is internally set to the correct value.
Note: This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
Parameter number of parameter that initiated the change.
See also: p9502 (SI Motion axis type (Control Unit))
Remedy: The following should be carried out after the changeover:
- exit the safety commissioning mode (p0010).
- save all parameters (p0977 = 1 or "copy RAM to ROM").
- carry out a POWER ON.
Once the Control Unit has been switched on, safety message F01680 or F30680 indicates that the checksums in r9398[0] and r9728[0] have changed in the drive. The following must, therefore, be carried out:
- activate safety commissioning mode again.
- complete safety commissioning of the drive.
- exit the safety commissioning mode (p0010).
- save all parameters (p0977 = 1 or "copy RAM to ROM").
- carry out a POWER ON.
Note: For the commissioning software, the units are only consistently displayed after a project upload.

201690
<location>SI Motion: Data save problem for the NVRAM
Message value:
Drive object: All objects
Reaction: A, INFEED: NONE (OFF1, OFF2)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge: POWER ON
Cause: There is not sufficient memory space in the NVRAM on the drive to save parameters r9781 and r9782 (safety logbook).
Note: This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
0: There is no physical NVRAM available in the drive.
1: There is no longer any free memory space in the NVRAM.
Remedy: Re fault value = 0:
- use a Control Unit NVRAM.
Re fault value = 1:
- deselect functions that are not required and that take up memory space in the NVRAM.
- contact the Hotline.
201691 <location>SI Motion: Ti and To unsuitable for DP cycle

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The configured times for PROFIBUS communication are not permitted and the DP cycle is used as the actual value acquisition cycle for the safe movement monitoring functions:
- Isochronous PROFIBUS: the total of Ti and To is too high for the set DP cycle. The DP cycle should be at least 1 current controller cycle greater than the sum of Ti and To.
- Non-isochronous PROFIBUS: the DP cycle must be at least 4 x current controller cycle.

Remedy: Configure Ti and To low so that they are suitable for the DP cycle or increase the DP cycle time. Option for enabled drive-based SI monitoring (p9601/p9801 > 0):
- Use the actual value sampling cycle p9511/p9311 and, therefore, set it independently of the DP cycle.
- See also: p9511 (SI Motion clock cycle actual value sensing (Control Unit))

201696 <location>SI Motion: Testing of the motion monitoring functions selected when booting

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The test of the motion monitoring functions was already illegally active when booting. This is the reason that the test is only carried out again after selecting the forced checking procedure parameterized in p9705.

Note: This message does not result in a safety stop response.
See also: p9705 (SI Motion: Test stop signal source)

Remedy: De-select the forced checking procedure of the safety motion monitoring functions and then select again.
- The signal source for initiation is parameterized in binector input p9705.
Note: SI: Safety Integrated
See also: p9705 (SI Motion: Test stop signal source)

201697 <location>SI Motion: Motion monitoring functions must be tested

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The time set in p9659 for the forced checking procedure of the safety motion monitoring functions has been exceeded. A new test is required. After next selecting the forced checking procedure parameterized in p9705, the message is withdrawn and the monitoring time is reset.

Note: This message does not result in a safety stop response.
See also: p9559 (SI Motion forced checking procedure timer (Control Unit)), p9705 (SI Motion: Test stop signal source)

Remedy: Carry out the forced checking procedure of the safety motion monitoring functions.
- The signal source for initiation is parameterized in BI: p9705.
Note: SI: Safety Integrated
See also: p9705 (SI Motion: Test stop signal source)
201698 <location>SI CU: Commissioning mode active

Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The commissioning of the "Safety Integrated" function is selected. This message is withdrawn after the safety functions have been commissioned. Note: This message does not result in a safety stop response. See also: p0010
Remedy: None necessary. Note: CU: Control Unit SI: Safety Integrated

201699 <location>SI CU: Shutdown path must be tested

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The time set in p9659 for the forced checking procedure of the safety shutdown paths has been exceeded. The safety shutdown paths must be re-tested. After the next time the "STO" function is de-selected, the message is withdrawn and the monitoring time is reset. Note: This message does not result in a safety stop response. See also: p9659 (SI forced checking procedure timer)
Remedy: Select STO and then deselect again. Note: CU: Control Unit SI: Safety Integrated STO: Safe Torque Off / SH: Safe standstill

201700 <location>SI Motion CU: STOP A initiated

Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP A (pulses are suppressed via the safety shutdown path of the Control Unit). Possible causes: - stop request from the higher-level control. - pulses not suppressed after a parameterized time (p9557) after test stop selection. - subsequent response to the message C01706 "SI Motion CU: Safe Acceleration Monitoring limit exceeded". - subsequent response to the message C01714 "SI Motion CU: Safely-Limited Speed exceeded". - subsequent response to the message C01701 "SI Motion CU: STOP B initiated".
Remedy: - remove the fault cause in the control and carry out a POWER ON.
- check the value in p9557, if necessary, increase the value, and carry out POWER ON.
- check the shutdown path of the Control Unit (check DRIVE-CLiq communication).
- carry out a diagnostics routine for message C01706.
- carry out a diagnostics routine for message C01714.
- carry out a diagnostics routine for message C01701.
- replace Motor Module.
- replace Control Unit.

This message can only be acknowledged as follows in the acceptance test mode without POWER ON:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIC: Via the machine control panel.

Note:
SI: Safety Integrated

201706 <location>SI Motion CU: Safe Acceleration Monitor limit exceeded

Message value:
- Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: After initiating STOP B or STOP C, the velocity has exceeded the selected tolerance. The drive is shut down by the message C01700 "SI Motion: STOP A initiated".
Remedy: Check the braking behavior, if required, adapt the tolerance for "Safe Acceleration Monitor".
This message can only be acknowledged as follows in the acceptance test mode without POWER ON:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIC: Via the machine control panel.
Note:
SBR: Safe Acceleration Monitor
SI: Safety Integrated
See also: p9548 (SI Motion SBR actual velocity tolerance (Control Unit))

201707 <location>SI Motion CU: Tolerance for safe operating stop exceeded

Message value:
- Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The actual position has distanced itself further from the target position than the standstill tolerance. The drive is shut down by the message C01701 "SI Motion: STOP B initiated".
Remedy:
- check whether safety faults are present and if required carry out the appropriate diagnostic routines for the particular faults.
- check whether the standstill tolerance matches the accuracy and control dynamic performance of the axis.
- carry out a POWER ON.
This message can only be acknowledged as follows in the acceptance test mode without POWER ON:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel
Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop
See also: p9530 (SI Motion standstill tolerance (Control Unit))

201708
<location>SI Motion CU: STOP C initiated
Message value:
Drive object: SERVO, VECTOR
Reaction: STOP2
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
The drive is stopped via STOP C (braking along the OFF3 deceleration ramp).
"Safe Operating Stop" (SOS) is activated after the parameterized timer has expired.
Possible causes:
- stop request from the higher-level control.
- subsequent response to the message C01714 "SI Motion: Safely reduced speed exceeded".
- subsequent response to the message C01715 "SI Motion: Safe end stop exceeded".
See also: p9552 (SI Motion transition time STOP C to SOS (SBH) (Control Unit))
Remedy:
- remove the cause of the fault at the control.
- carry out a diagnostics routine for message C01714.
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel
Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop

201709
<location>SI Motion CU: STOP D initiated
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
The drive is stopped via a STOP D (braking along the path).
"Safe Operating Stop" (SOS) is activated after the parameterized timer has expired.
Possible causes:
- stop request from the higher-level control.
- subsequent response to the message C01714 "SI Motion: Safely reduced speed exceeded".
- subsequent response to the message C01715 "SI Motion: Safe end stop exceeded".
See also: p9553 (SI Motion transition time STOP D to SOS (SBH) (Control Unit))
Remedy:
- remove the cause of the fault at the control.
- carry out a diagnostics routine for message C01714.
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel
Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop
201710 <location>SI Motion CU: STOP E initiated
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP E (retraction motion).
Safe Operating Stop (SOS) is activated after the parameterized timer has expired.
Possible causes:
- stop request from the higher-level control.
- subsequent response to the message C01714 "SI Motion: Safely reduced speed exceeded".
- subsequent response to the message C01715 "SI Motion: Safe end stop exceeded".
See also: p9554 (SI Motion transition time STOP E to SOS (SBH) (Control Unit))
Remedy: - remove the cause of the fault at the control.
- carry out a diagnostics routine for message C01714.
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel
Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop

201711 <location>SI Motion CU: Defect in a monitoring channel
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: When cross-checking and comparing the two monitoring channels, the drive detected a difference
between the input data or results of the monitoring functions and initiated a STOP F. One of the mon-
itoring functions no longer reliably functions - i.e. safe operation is no longer possible.
If at least one monitoring function is active, then after the parameterized timer has expired, the mes-
sage C01701 "SI Motion: STOP B initiated" is output.
The message value that resulted in a STOP F is displayed in r9725. The described message values
involve the data cross-check between the Control Unit and Motor Module. If the drive is operated
 together with a SINUMERIK, the message values are described in message 27001 of SINUMERIK.
Message value (r9749, interpret decimal):
0 to 999: Number of the cross-checked data that resulted in this fault.
Fault values, which are not listed below, are intended solely for Siemens internal troubleshooting.
0: Stop request from the other monitoring channel.
1: Status image of monitoring functions SOS, SLS or SLP (result list 1) (r9710[0], r9710[1]).
2: Status image of monitoring function SCA or n < nx (result list 2) (r9711[0], r9711[1]).
3: Pos. act. val. (r9712).
4: Error when synchronizing the crosswise data comparison between the two channels.
5: Function enable signals (p9501, p9301).
6: Limit value for SLS1 (p9531[0], p9331[0]).
7: Limit value for SLS2 (p9531[1], p9331[1]).
8: Limit value for SLS3 (p9531[2], p9331[2]).
9: Limit value for SLS4 (p9531[3], p9331[3]).
10: Standstill tol. (p9530, p9330).
31: Pos. tol. (p9542, p9342).
33: Time, velocity changeover (p9551, p9351).
35: Delay time, pulse supp. (p9556, p9356).
36: Checking time, pulse supp (p9557, p9357).
37: Trans. time, STOP C to SOS (p9552, p9352).
38: Trans. time STOP D to SOS (p9553, p9353).
40: Stop response for SLS.
42: Shutdown speed, pulse supp. (p9560, p9360).
43: Memory test, stop response (STOP A).
44: Position actual value + limit value SLS1 / safety monitoring clock cycle.
45: Pos. act. val. - limit value SLS1 / safety monitoring clock cycle.
46: Pos. act. val. + limit value SLS2 / safety monitoring clock cycle.
47: Pos. act. val. - limit value SLS2 / safety monitoring clock cycle.
50: Pos. act. val. + limit value SLS4 / safety monitoring clock cycle.
52: Standstill position + tolerance.
53: Standstill position - tolerance.
54: Pos. act. val. + limit value nx / safety monit. clock cycle + tolerance.
55: Pos. act. val. + limit value nx / safety monit. clock cycle.
56: Pos. act. val. - limit value nx / safety monit. clock cycle.
57: Pos. act. val. - limit value nx / safety monit. clock cycle - tolerance.
58: Current stop request.
75: Velocity limit nx (p9546, p9346).
76: Stop response for SLS1 (p9563[0], p9363[0]).
77: Stop response for SLS2 (p9563[1], p9363[1]).
78: Stop response for SLS3 (p9563[2], p9363[2]).
79: Stop response for SLS4 (p9563[3], p9363[3]).
81: Velocity tolerance for SBR (p9548, p9348).
82: SGEs for SLS correction factor.
83: Acceptance test timer (p9558, p9358).
84: Trans. time STOP F (p9555, p9355).
85: Trans. time bus failure (p9580, p9380).
86: Ident. 1-encoder system.
87: Encoder assignment, 2nd channel (p9526, p9326).
88: Encoder limit freq.
230: Filter time constant for n < nx.
231: Hysteresis tolerance for n < nx.
232: Smoothed velocity actual value.
233: Smoothed velocity actual value + limit value nx / safety monitoring clock cycle + hysteresis tolerance.
234: Smoothed velocity actual value + limit value nx / safety monitoring clock cycle.
235: Smoothed velocity actual value - limit value nx / safety monitoring clock cycle.
236: Smoothed velocity actual value - limit value nx / safety monitoring clock cycle - hysteresis tolerance.
237: SGA n < nx.
1000: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs.
1001: Initialization error of watchdog timer.
1005: Pulses already suppressed for test stop selection.
1011: Acceptance test status between the monitoring channels differ.
1012: Plausibility violation of the actual value from the encoder.
1020: Cyc. communication failure between the monit. cycles.
1021: Cyc. communication failure between the monit. channel and Sensor Module.
1022: Sign-of-life for DQL Sensor Module CU
1032: Sign-of-life for DQL Sensor Module MM
1033: Error occurred during check of offset between POS1 and POS2 for DQL Sensor Module CU
1034: Error occurred during check of offset between POS1 and POS2 for DQL Sensor Module MM
5000 ... 5140: PROFIsafe message values.
5000, 5014, 5023, 5024, 5030 ... 5032, 5042, 5043, 5052, 5053, 5068, 5072, 5073, 5082 ... 5087,
5090, 5091, 5122 ... 5132, 5135, 5140: An internal software error has occurred (only for internal Siemens troubleshooting).
5012: Error when initializing the PROFIsafe driver.
5013: The result of the initialization is different for the two controllers.
5022: Error when evaluating the F parameters. The values of the transferred F parameters do not match the expected values in the PROFIsafe driver.
5025: The result of the F parameterization is different for the two controllers.
5026: CRC error for the F parameters. The transferred CRC value of the F parameters does not match the value calculated in the PST.
5065: A communications error was identified when receiving the PROFIsafe telegram.
5066: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
6000 ... 6166: PROFIsafe message values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
Message values 6000, 6072:
- an internal software error has occurred (only for internal Siemens troubleshooting).
Message values 6064 ... 6071:
- Error when evaluating the F parameters. The values of the transferred F parameters do not match
the expected values in the PROFlsafe driver.
6064: Destination address and PROFlsafe address are different (F_Dest_Add).
6065: Destination address not valid (F_Dest_Add).
6066: Source address not valid (F_Source_Add).
6067: Watchdog time not valid (F_WD_Time).
6068: Incorrect SIL level (F_SIL).
6069: Incorrect F-CRC length (F_CRC_Length).
6070: Incorrect F parameter version (F_Par_Version).
6071: CRC error for the F parameters (CRC1). The transferred CRC value of the F parameters does
not match the value calculated in the PROFlsafe driver.
6165: A communications error was identified when receiving the PROFlsafe telegram.
6166: A time monitoring error (timeout) was identified when receiving the PROFlsafe telegram.
See also: p.9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion, diag-
nostics STOP F)

Remedy:
The following generally applies:
The monitoring clock cycles in both channels should be checked for equality and if required, set the
same.
Re fault value = 0:
- no error was identified in this monitoring channel. Note the error message of the other monitoring
channel (for MM: F30711).
Re fault value = 4:
The monitoring clock cycles in both channels should be checked for equality and if required, set the
same.
Re fault value = 1 ... 999:
- if the fault value is listed under cause: check the cross-checked parameters to which the fault value
refers.
- copy the safety parameters.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- correction of the encoder evaluation. The actual values differ as a result of mechanical faults (V belts,
travel to a mechanical endstop, wear and window setting that is too narrow, encoder fault, ...).
Re fault value = 1000:
- investigate the signal associated with the safety-relevant input (contact problems).
Re fault value = 1001:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 1005:
- check the conditions for pulse enable.
Re fault value = 1011:
- for diagnostics, refer to parameter (r9571).
Re fault value = 1012:
- upgrade the Sensor Module software.
Re fault value = 1020, 1021:
- check the communication link.
- carry out a POWER ON (power off/on) for all components.
- replace the hardware.
Re fault value = 5000, 5014, 5023, 5024, 5030, 5031, 5032, 5042, 5043, 5052, 5053, 5068, 5072,
5073, 5082 ... 5087, 5090, 5091, 5122 ... 5125, 5132 ... 5135, 5140:
- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLIQ communication error between the Control Unit and the Motor
Module involved and, if required, carry out a diagnostics routine for the faults identified.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.
Re fault value = 5012:
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810). It is not permissible for the PROFIsafe address to be 0 or FFFF!
Re fault value = 5013, 5025:
- carry out a POWER ON (power off/on) for all components.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810).
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Re fault value = 5022:
- check the setting of the values of the F parameters at the PROFIsafe slave (F_SIL, F_CRC_Length, F_Par_Version, F_Source_Add, F_Dest_add, F_WD_Time).
Re fault value = 5026:
- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and update.
Re fault value = 5065:
- check the configuration and communication at the PROFIsafe slave (cons. No. / CRC).
- check the setting of the value for F parameters F_WD_Time at the PROFIsafe slave and increase if necessary.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Re fault value = 5066:
- check the setting of the value for F parameters F_WD_Time at the PROFIsafe slave and increase if necessary.
Re fault value = 6000, 6072:
- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.
Re fault value = 6064:
- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave.
- check the setting of the PROFIsafe address of the Control Unit (p9610) and that of the Motor Module (p9810).
Re fault value = 6065:
- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave. It is not permissible for the destination address to be either 0 or FFFF!
Re fault value = 6066:
- check the setting of the value in the F parameter F_Source_Add at the PROFIsafe slave. It is not permissible for the source address to be either 0 or FFFF!
Re fault value = 6067:
- check the setting of the value in the F parameter F_WD_Time at the PROFIsafe slave. It is not permissible for the watch time to be 0!
Re fault value = 6068:
- check the setting of the value in the F parameter F_SIL at the PROFIsafe slave. The SIL level must correspond to SIL2!
Re fault value = 6069:
- check the setting of the value in the F parameter F_CRC_Length at the PROFIsafe slave. The setting of the CRC2 length is 2-byte CRC in the V1 mode and 3-byte CRC in the V2 mode!
Re fault value = 6070:
- check the setting of the value in the F parameter F_Par_Version at the PROFIsafe slave. The value for the F parameter version is 0 in the V1 mode and 1 in the V2 mode!
Re fault value = 6071:
- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and, if required, update.
Re fault value = 6165:
- check the configuration and communication at the PROFIsafe slave.
- check the setting of the value for F parameters F_WD_Time at the PROFIsafe slave and increase if necessary.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
Re fault value = 6166:
- check the configuration and communication at the PROFIsafe slave.
- check the setting of the value for F parameters F_WD_Time at the PROFIsafe slave and increase if necessary.

This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel

See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))

201714

<location>SI Motion CU: Safely-Limited Speed exceeded

Message value: %1

Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive has moved faster than that specified by the velocity limit value (p9531). The drive is stopped as a result of the configured stop response (p9563).

Message value (r9749, interpret decimal):
100: SLS1 exceeded.
200: SLS2 exceeded.
300: SLS3 exceeded.
400: SLS4 exceeded.
1000: Encoder limit frequency exceeded.

Remedy:
- check the traversing/motion program in the control.
- check the limits for "Safely-Limited Speed (SLS) and if required, adapt (p9531).

This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel

Note:
SI: Safety Integrated
SLS: Safely-Limited Speed / SG: Safely reduced speed

See also: p9531 (SI Motion SLS (SG) limit values (Control Unit)), p9563 (SI Motion SLS (SG)-specific stop response (Control Unit))

201745

<location>SI Motion CU: Checking braking torque for the brake test

Message value: -

Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: POWER ON (IMMEDIATELY)
Cause: The normalization of the brake torque for the brake test can be changed using parameter p2003.

An acceptance test must be carried out again for the braking test. This determines whether the braking test is still carried out with the correct braking torque.

Remedy:
- carry out a POWER ON (power off/on) for all components.
- repeat the acceptance test for the safe brake test if the brake test is used.

See also: p2003

201750

<location>SI Motion CU: Hardware fault safety-relevant encoder

Message value: %1

Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The encoder that is used for the safety-relevant motion monitoring functions signals a hardware fault.

Message value (r9749, interpret decimal):
Encoder status word 1, encoder status word 2 that resulted in the message.

Remedy:
- check the encoder connection.
- replace the encoder.

This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel.
201751 <location>SI Motion CU: eff.test error safe encoder

Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The DQ encoder used for the safety-relevant motion monitoring functions signals an effectiveness test error.
Message value (r9749, interpret decimal):
1 - TFD bit in EncoderStatusWord2 set in last effectiveness test set
2 - Actual effectiveness test no. in last effectiveness test set smaller/greater than expected
3 - IG1/IG2 bits in EncoderStatusWord2 in last effectiveness test set longer than expected
4 - F1/F2 bits in EncoderStatusWord2 in last effectiveness test set not dynamized
5 - Effectiveness tests performed too frequently
6 - LS1/LS2 were not frozen during effectiveness test
7 - Effectiveness tests performed too rarely or not at all
Remedy:
- check the encoder connection.
- replace the encoder.
This message can be acknowledged as follows:
- motion monitoring functions integrated in the drive: Via Terminal Module 54F (TM54F) or PROFIsafe
- motion monitoring functions with SINUMERIK: Via the machine control panel.

201796 <location>SI Motion CU: Wait for communication

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The drive waits for communication to be established with SINUMERIK or TM54F to execute the safety-relevant motion monitoring functions.
Note: In this state, the pulses are safely suppressed.
Remedy: After a longer period of time, if the message is not automatically withdrawn, the following checks should be made dependent on the communication:
For communication with SINUMERIK, the following applies:
- check additional messages that are present regarding PROFIBUS communication and resolve.
- check the correct assignment of the axes on the higher-level control to the drives in the drive unit.
- check the enable signal of the safety-relevant motion monitoring functions for the corresponding axis on the higher-level control - and if required, set
For communication with TM54F, the following applies:
- check additional messages that are present regarding DRIVE-CLiQ communication with TM54F and resolve.
- check the setting of p10010. All of the drive objects controlled by the TM54F must be listed.
See also: p9601 (SI enable, functions integrated in the drive (Control Unit)), p9801 (SI enable, functions integrated in the drive (Motor Module)), p10010 (SI drive object assignment)

201798 <location>SI Motion CU: Test stop running

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The test stop is active.
Remedy: None necessary.
The message is withdrawn when the test stop is finished.
Note: SI: Safety Integrated
201799 <location>SI Motion CU: Acceptance test mode active</location>
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The acceptance test mode is active. The POWER ON signals of the safety-relevant motion monitoring functions can be acknowledged during the acceptance test using the RESET button of the higher-level control.
Remedy: None necessary. The message is withdrawn when exiting the acceptance test mode.
Note: SI: Safety Integrated

201800 <location>DRIVE-CLiQ: Hardware/configuration error</location>
Message value: %1
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
 SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
 VECTOR: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A DRIVE-CLiQ connection fault has occurred.
Fault value (r0949, interpret decimal):
100 ... 107:
Communication via DRIVE-CLiQ sockets X100 ... X107 has not switched to cyclic mode. The cause may be an incorrect structure or a configuration that results in an impossible bus timing.
10:
Loss of the DRIVE-CLiQ connection. The cause may be, for example, that the DRIVE-CLiQ cable was withdrawn from the Control Unit or as a result of a short-circuit for motors with DRIVE-CLiQ. This fault can only be acknowledged in cyclic communication.
11:
Repeated faults when detecting the connection. This fault can only be acknowledged in cyclic communication.
12:
A connection was detected but the node ID exchange mechanism does not function. The reason is probably that the component is defective. This fault can only be acknowledged in cyclic communication.
Remedy: Re fault value = 100 ... 107:
- ensure that the DRIVE-CLiQ components have the same firmware releases.
- avoid longer topologies for short current controller clock cycles.
Re fault value = 10:
- check the DRIVE-CLiQ cables at the Control Unit.
- remove any short-circuit for motors with DRIVE-CLiQ.
- carry out a POWER ON.
Re fault value = 11:
- check the electrical cabinet design and cable routing for EMC compliance
Re fault value = 12:
- replace the component involved.

201802 <location>CU DRIVE-CLiQ: POWER ON due to basic sampling times</location>
Message value: %1
Drive object: All objects
Reaction: A_INFEED: OFF2 (OFF1)
 SERVO: OFF2 (IASC/DCBRAKE, OFF1)
 VECTOR: OFF2 (IASC/DCBRAKE, OFF1)
Acknowledge: POWER ON
Cause: It is not possible to change the DRIVE-CLiQ basic sampling times p0110 in operation. POWER ON is required.
Fault value (r0949, interpret decimal):
Index of p0110.
Remedy:
- save (p0971 = 1).
- carry out a POWER ON.

201840 <location>SMI: Component found with changed data
Message value:
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: Another Sensor Module Integrated (SMI) was found.
The reasons could be as follows:
1. A motor with DRIVE-CLiQ (SMI) and another order No. were used as replacement.
2. A Sensor Module Integrated was used as spare part where there is no encoder data and motor data or the incorrect data are present.
Fault value (r0949, interpret hexadecimal):
The value should be interpreted as follows as 8-digit hexadecimal number AAAABBBB:
BBBB = Reserved.
AAAA = Component number of the component involved.
Remedy: Re 1.
- restore the factory setting.
- carry out the first commissioning.
Re 2.
- download the SMI data from the back-up (p4690, p4691).
- carry out a POWER ON (power off/on) for all components.

201900 <location>PROFIBUS: Configuration telegram error
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: A PROFIBUS master attempts to establish a connection using an incorrect configuring telegram.
Alarm value (r2124, interpret decimal):
50: Syntax error.
51: Connection established to more drive objects than configured in the device. The drive objects for
process data exchange and their sequence were defined using p0978.
52: Too many data words for input or output to a drive object. A maximum of 16 words is permitted for
SERVO and VECTOR; and a maximum of 5 words for A_INFEED, TB30, TM31 and CU320.
53: Uneven number of bytes for input or output.
Remedy: Check the bus configuring on the master and slave sides.
Re alarm value = 51:
Check the list of the drive objects with process data exchange (p0978). With p0978[x] = 0, all of the
following drive objects in the list are excluded from the process data exchange.

201901 <location>PROFIBUS: Parameterizing telegram error
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: A PROFIBUS master attempts to establish a connection using an incorrect parameterizing telegram.
Alarm value (r2124, interpret decimal):
1: Incorrect parameterizing bits.
10: Illegal length of an optional parameterizing block.
11: Illegal ID of an optional parameterizing block.
20: Double parameterizing block for clock synchronization.
21: Incorrect parameterizing block for clock synchronization.
22: Incorrect parameterizing bits for clock synchronization.
23: Illegal clock synchronization for PZD interface 2.
30: Double parameterizing block for peer-to-peer data transfer.
31: Incorrect parameterizing block for peer-to-peer data transfer.

Remedy:
Check the bus configuration:
- bus addresses
- slave configuring

201902 <location>IF1: PB/PN clock cycle synchronous operation parameterization not permissible

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Alarm value (r2124, interpret decimal):
0: Bus cycle time Tdp < 0.5 ms.
1: Bus cycle time Tdp > 32 ms.
2: Bus cycle time Tdp is not an integer multiple of the current controller clock cycle.
3: Instant of the actual value sensing Ti > Bus cycle time Tdp or Ti = 0.
4: Instant of the actual value sensing Ti is not an integer multiple of the current controller clock cycle.
5: Instant of the setpoint acceptance To >= Bus cycle time Tdp or To = 0.
6: Instant of the setpoint acceptance To is not an integer multiple of the current controller clock cycle.
7: Master application cycle time Tmapc is not an integer multiple of the bus cycle time Tdp.
8: Bus reserve bus cycle time Tdp - data exchange time Tdx less than two current controller clock cycles.
9: Bus cycle time Tdp has been modified with respect to the first time that the connection was established.
10: Instant of the setpoint acceptance not To <= data exchange time Tdx + To_min.
11: Master application cycle time Tmapc > 14 or Tmapc = 0.
12: PLL tolerance window Tpll_w > Tpll_w_max.
13: Bus cycle time Tdp is not a multiple of all basic clock cycles p0110[x].
14: For COMM BOARD with the setting To - 1 = Tdp - Ti, the instant of the setpoint acceptance is not To <= Data exchange time Tdx + 2 * To_min.
15: This configuration is not permitted for Tdp < 1 ms.
16: Instant of the actual value sensing Ti is less than the permitted value (COMM BOARD: Ti >= 2).
17: The setting (To + Ti = Tdp + 2) is not permitted for COMM BOARD.

Remedy:
- adapt the parameterizing telegram.
- adapt the current and speed controller clock cycle.
- carry out a POWER ON.
- check the number of specific drive object types in the configuration.

Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET

201903 <location>COMM INT: Receive configuration data invalid

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The drive unit did not accept the receive configuration data.
Alarm value (r2124, interpret decimal):
0: Configuration accepted.
1: Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence were defined using p0978.
2: Too many data words for input or output to a drive object. A maximum of 16 words is permitted for SERVO and VECTOR; and a maximum of 5 words for A_INFEED, TB30, TM31 and CU320.
3: Uneven number of bytes for input or output.
4: Setting data for synchronization not accepted.
5: Drive still not in cyclic operation.
6: Buffer system not accepted.
7: Cyclic channel length too short for this setting.
8: Cyclic channel address not initialized.
9: 3-buffer system not permitted.
10: DRIVE-CLiQ fault.
11: CU-Link fault.
12: CX32 not in cyclic operation.

Remedy: Check the receive configuration data.
Re alarm value = 1:
Check the list of the drive objects with process data exchange (p0978). With p0978[x] = 0, all of the following drive objects in the list are excluded from the process data exchange.

201910

<location>PROFIBUS: Setpoint timeout

Message value: -
Drive object: All objects
Reaction:
A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
VECTOR: OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)

Acknowledge: IMMEDIATELY
Cause: The receipt of setpoints from the PROFIBUS interface is interrupted because the bus connection is interrupted or the PROFIBUS master is switched off or was set to the STOP state.
See also: p2047 (PROFIBUS additional monitoring time)
Remedy: Restore the bus connection and set the PROFIBUS master to RUN.
See also: p2047 (PROFIBUS additional monitoring time)

201911

<location>IF1: PB/PN clock cycle synchronous operation clock cycle failure

Message value: -
Drive object: All objects
Reaction: OFF1

Acknowledge: IMMEDIATELY
Cause: The global control telegram to synchronize the clock cycles has failed - in cyclic operation - for several DP clock cycles or has violated the time grid specified in the parameterizing telegram over several consecutive DP clock cycles (refer to the bus cycle time, Tdp and Tpfilw).
Remedy: - check the PROFIBUS cables and connectors.
- check whether communication was briefly or permanently interrupted.
- check the bus and master for utilization level (e.g. bus cycle time Tdp was set too short).
Note: IF1: Interface 1
PB: PROFIBUS
PN: PROFINET
201912 <location>IF1: PB/PN clock cycle synchronous operation sign-of-life failure

Message value: -
Drive object: All objects
Reaction: OFF1
Acknowledge: IMMEDIATELY
Cause: The maximum permissible number of errors in the master sign-of-life (clock synchronous operation) has been exceeded in cyclic operation.
Remedy: - check the physical bus configuration (terminating resistor, shielding, etc.).
- correct the interconnection of the master sign-of-life (p2045).
- check whether the master correctly sends the sign-of-life (e.g. create a trace with STW2.12 ...
STW2.15 and trigger signal ZSW1.3).
- check the permissible telegram failure rate (p0925).
- check the bus and master for utilization level (e.g. bus cycle time Tdp was set too short).
Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET

201913 <location>COMM INT: Monitoring time sign-of-life expired

Message value: -
Drive object: All objects
Reaction: A, INFEED: OFF1 (NONE, OFF2)
SERVO: OFF1 (NONE, OFF2, OFF3)
VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The monitoring time for the sign-of-life counter has expired.
The connection between the drive and the higher-level control (SIMOTION, SINUMERIK) has been interrupted for the following reasons:
- the control was reset.
- the data transfer to the control was interrupted.
Remedy: - wait until the control has re-booted.
- restore data transfer to the control.

201914 <location>COMM INT: Monitoring time configuration expired

Message value: %1
Drive object: All objects
Reaction: A, INFEED: OFF1 (NONE, OFF2)
SERVO: OFF1 (NONE, OFF2, OFF3)
VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The monitoring time for the configuration has expired.
Fault value (r0949, interpret decimal):
0: The transfer time of the send configuration data has been exceeded.
1: The transfer time of the receive configuration data has been exceeded.
Remedy: - acknowledge faults that are present.
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

201920 <location>PROFIBUS: Interruption cyclic connection

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The cyclic connection to the PROFIBUS master is interrupted.
Remedy: Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode.

201921 <location>PROFIBUS: Receive setpoints after To
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Output data of PROFIBUS master (setpoints) received at the incorrect instant in time within the PROFIBUS clock cycle.
Remedy: - check bus configuration.
- check parameters for clock cycle synchronization (ensure To > Tdx).
Note:
To: Time of setpoint acceptance
Tdx: Data exchange time

201930 <location>IF1: PB/PN current controller clock cycle clock cycle synchronous not equal
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The current controller clock cycle of all drives must be set the same for the clock cycle synchronous operation.
Alarm value (r2124, interpret decimal):
Number of the drive object with different current controller clock cycle.
Remedy: Set current controller clock cycles to identical values (p0115[0]).
Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET
See also: p0115

201931 <location>IF1: PB/PN speed controller clock cycle clock cycle synchronous not equal
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The speed controller clock cycle of all drives must be set the same for the clock cycle synchronous operation.
Alarm value (r2124, interpret decimal):
Number of the drive object with the different speed controller clock cycle.
Remedy: Set the speed controller clock cycles the same (p0115[1]).
Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET
See also: p0115

201932 <location>IF1: PB/PN clock cycle synchronization missing for DSC
Message value: -
Drive object: SERVO, TM41
Reaction: NONE
Acknowledge: NONE
Cause: There is no clock cycle synchronization and DSC is selected.

Note: DSC: Dynamic Servo Control

Remedy: Set the clock cycle synchronization when configuring the bus.

201940 <location>IF1: PB/PN clock cycle synchronism not reached

Message value: -

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. It was not possible to synchronize to the clock cycle specified by the master.
- the master does not send a clock synchronous global control telegram although clock synchronous operation was selected when configuring the bus.
- the master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram.
- at least one drive object (that is not controlled from PROFIBUS/PROFINET) has a pulse enable.

Remedy: - check the master application and bus configuration.
- check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master.
- ensure that the pulses of drive objects that are not controlled by PROFIBUS/PROFINET are not enabled. Only enable the pulses after synchronizing the PROFIBUS/PROFINET drives.

Note: IF1: Interface 1
PB: PROFIBUS
PN: PROFINET

201941 <location>IF1: PB/PN clock cycle signal missing when establishing bus communication

Message value: -

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. The global control telegram for synchronization is not being received.

Remedy: Check the master application and bus configuration.

Note: IF1: Interface 1
PB: PROFIBUS
PN: PROFINET

201943 <location>IF1: PB/PN clock cycle signal error when establishing bus communication

Message value: -

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. The global control telegram for synchronization is being irregularly received.
- the master is sending an irregular global control telegram.
- the master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram.
Remedy: - check the master application and bus configuration.
- check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master.

Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET

201944 <location>IF1: PB/PN sign-of-life synchronism not reached

Message value:
-

Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. Synchronization with the master sign-of-life (STW2.12 ... STW2.15) could not be completed because the sign-of-life is changing differently to how it was configured in the Tmapc time grid.

Remedy:
- ensure that the master correctly increments the sign-of-life in the master application clock cycle Tmapc.
- correct the interconnection of the master sign-of-life (p2045).

Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET

201945 <location>PROFIBUS: Connection to the Publisher failed

Message value:
Fault cause: %1 bin

Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: For PROFIBUS peer-to-peer data transfer, the connection to at least one Publisher has failed. Alarm value (r2124, interpret binary):
Bit 0 = 1: Publisher with address in r2077[0], connection failed.
...
Bit 15 = 1: Publisher with address in r2077[15], connection failed.

Remedy:
- check the PROFIBUS cables.
- carry out a first commissioning of the Publisher that has the failed connection.
See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)

201946 <location>PROFIBUS: Connection to the Publisher aborted

Message value:
Fault cause: %1 bin

Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: A_INFEED: OFF1 (NONE, OFF2)
SERVO: OFF1 (NONE, OFF2, OFF3)
VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: At this drive object, the connection to at least one Publisher for PROFIBUS peer-to-peer data transfer in cyclic operation has been aborted. Alarm value (r2124, interpret binary):
Bit 0 = 1: Publisher with address in r2077[0], connection aborted.
...
Bit 15 = 1: Publisher with address in r2077[15], connection aborted.

Remedy:
- check the PROFIBUS cables.
- check the state of the Publisher that has the aborted connection.
See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)
201950 <location>IF1: PB/PN clock cycle synchronous operation synchronization unsuccessful

Message value: -
Drive object: All objects
Reaction: OFF1 (NONE)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Synchronization of the internal clock cycle to the global control telegram has failed. The internal clock cycle exhibits an unexpected shift.
Remedy: Only for internal Siemens troubleshooting.
Note:
IF1: Interface 1
PB: PROFIBUS
PN: PROFINET

201951 <location>CU DRIVE-CLiQ: Synchronization application clock cycle missing

Message value: %1
Drive object: All objects
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: If DRIVE-CLiQ components with different application clock cycle are operated at a DRIVE-CLiQ port, then this requires synchronization with the Control Unit. This synchronization routine was unsuccessful.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade the software of the DRIVE-CLiQ components.
- upgrade the Control Unit software.

201952 <location>CU DRIVE-CLiQ: Synchronization of component not supported

Message value: %1
Drive object: All objects
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The existing system configuration requires that the connected DRIVE-CLiQ components support the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and the application clock cycle. However, not all DRIVE-CLiQ components have this functionality.
Fault value (r0949, interpret decimal):
Component number of the first faulty DRIVE-CLiQ component.
Remedy:
Upgrade the firmware of the component specified in the fault value.
Note:
If required, also upgrade additional components in the DRIVE-CLiQ line.

201953 <location>CU DRIVE-CLiQ: Synchronization not completed

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: After the drive system is powered up, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started but was not completed within the selected time tolerance.
Alarm value (r2124, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: Carry out a POWER ON (power off/on) for all components.
If the error occurs after the drive sampling times were adjusted, and if a TM31 module is being used, the sampling times (p0115, p4099) should be set as integer multiples to the drive clock cycles (p0115).

201954

<location>CU DRIVE-CLiQ: Synchronization unsuccessful

Message value:	%1
Drive object:	All objects
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	After the drive system is powered up, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started and was not able to be successfully completed. Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.

Remedy:
1. Ensure perfect functioning of the DRIVE-CLiQ.
2. Initiate a new synchronization, e.g. as follows:
 - remove the PROFIBUS master and re-insert again.
 - restart the PROFIBUS master.
 - power down the Control Unit and power it up again.
 - press the Control Unit reset button.
 - reset the parameter and download the saved parameters (p0009 = 30, p0976 = 2).

201955

<location>CU DRIVE-CLiQ: Synchronization DO not completed

Message value:	%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	After the drive system is powered up, the synchronization between the basic clock cycle, DRIVE-CLiQ clock cycle and application clock cycle was started but was not completed within the selected time tolerance. Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.

Remedy: Carry out a POWER ON (power off/on) for all components of the DO.

202000

<location>Function generator: Start not possible

Message value:	-
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The function generator has already been started.

Remedy: Stop the function generator and restart again if necessary.
Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4800 (Function generator control)

202005

<location>Function generator: Drive does not exist

Message value:	%1
Drive object:	All objects
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive object specified for connection does not exist.

See also: p4815 (Function generator drive number)
Remedy: Use the existing drive object with the corresponding number.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4815 (Function generator drive number)

202006 <location>Function generator: No drive specified for connection
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: No drive specified for connection in p4815.
See also: p4815 (Function generator drive number)
Remedy: At least one drive to be connected must be specified in p4815.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4815 (Function generator drive number)

202007 <location>Function generator: Drive not SERVO / VECTOR
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The drive object specified for connection is not a SERVO / VECTOR.
See also: p4815 (Function generator drive number)
Remedy: Use a SERVO / VECTOR drive object with the corresponding number.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

202008 <location>Function generator: Drive specified a multiple number of times
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The drive object specified for connection is already specified.
Alarm value (r2124, interpret decimal):
Drive object number of the drive object that is specified a multiple number of times.
Remedy: Specify a different drive object.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

202009 <location>Function generator: Illegal mode
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The set operating mode (p1300) of the drive object is not permissible when using the function generator.
Alarm value (r2124, interpret decimal):
Number of the drive object involved.

Remedy: Change the operating mode for this drive object to p1300 = 20 (encoderless speed control) or p1300 = 21 (speed control with encoder).
Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

202010 <location>Function generator: Speed setpoint from the drive is not zero
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The speed setpoint of a drive selected for connection is greater than the value for the standstill detection set using p1226.
Alarm value (r2124, interpret decimal):
Number of the drive object involved.
Remedy: For all of the drives specified for connection, set the speed setpoints to 0.
Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

202011 <location>Function generator: The actual drive speed is not zero
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The speed actual value of a drive selected for connection is greater than the value for the standstill detection set using p1226.
Alarm value (r2124, interpret decimal):
Number of the drive object involved.
Remedy: Set the relevant drives to zero speed before starting the function generator.
Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

202015 <location>Function generator: Drive enable signals missing
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The master control and/or enable signals are missing to connect to the specified drive.
Alarm value (r2124, interpret decimal):
Number of the drive object involved.
See also: p4815 (Function generator drive number)
Remedy: Fetch the master control to the specified drive object and set all enable signals.
Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
202016 <location>Function generator: Magnetizing running

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Magnetizing has not yet been completed on a drive object specified for connection.
Alarm value (r2124, interpret decimal):
Number of the drive object involved.
See also: p4815 (Function generator drive number)
Remedy: Wait for magnetizing of the motor (r0056.4).
Note:
The alarm is reset as follows:
- restart the function generator.
See also: r0056 (Status word, closed-loop control)

202020 <location>Function generator: Parameter cannot be changed

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: This parameter setting cannot be changed when the function generator is active (p4800 = 1).
See also: p4810, p4812, p4813, p4815, p4820, p4821, p4822, p4823, p4824, p4825, p4826, p4827, p4828, p4829
Remedy: - stop the function generator before parameterizing (p4800 = 0).
- if required, start the function generator (p4800 = 1).
Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4800 (Function generator control)

202025 <location>Function generator: Period too short

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The value for the period is too short.
See also: p4821 (Function generator period)
Remedy: Check and adapt the value for the period.
Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: p4821 (Function generator period)

202026 <location>Function generator: Pulse width too high

Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The selected pulse width is too high.
The pulse width must be less than the period duration.
See also: p4822 (Function generator pulse width)
Remedy: Reduce pulse width.

Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

See also: p4821 (Function generator period), p4822 (Function generator pulse width)

202030 <location>Function generator: Physical address equals zero

Message value:

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: The specified physical address is zero.

See also: p4812 (Function generator physical address)

Remedy: Set a physical address with a value other than zero.

Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

See also: p4812 (Function generator physical address)

202040 <location>Function generator: Illegal value for offset

Message value:

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: The value for the offset is higher than the value for the upper limit or lower than the value for the lower limit.

See also: p4826 (Function generator offset)

Remedy: Adjust the offset value accordingly.

Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

See also: p4826 (Function generator offset), p4828 (Function generator lower limit), p4829 (Function generator upper limit)

202041 <location>Function generator: Illegal value for bandwidth

Message value:

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: The bandwidth referred to the time slice clock cycle of the function generator has either been set too low or too high. Depending on the time slice clock cycle, the bandwidth is defined as follows:
Bandwidth_max = 1 / (2 * time slice clock cycle)
Bandwidth_min = Bandwidth_max / 100000

Example:
Assumption: p4830 = 125 µs
--> Bandwidth_max = 1 / (2 * 125 µs) = 4000 Hz
--> Bandwidth_min = 4000 Hz / 100000 = 0.04 Hz

Note:
p4823: Function generator bandwidth
p4830: Function generator time slice clock cycle
See also: p4823 (Function generator bandwidth), p4830 (Function generator time slice clock cycle)
Remedy: Check the value for the bandwidth and adapt accordingly.

Note:
The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.

202047 <location>Function generator: Time slice clock cycle invalid

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The time slice clock cycle selected does not match any of the existing time slices.
See also: p4830 (Function generator time slice cycle)
Remedy: Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.
Note: The alarm is reset as follows:
- remove the cause of this alarm.
- restart the function generator.
See also: r7901 (Time slice cycle times)

202050 <location>Trace: Start not possible

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The trace has already been started.
See also: p4700 (Trace control)
Remedy: Stop the trace and, if necessary, start again.

202055 <location>Trace: Recording time too short

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The trace duration is too short.
The minimum is twice the value of the trace clock cycle.
See also: p4721 (Trace recording time)
Remedy: Check the selected recording time and, if necessary, adjust.

202056 <location>Trace: Recording cycle too short

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The selected recording cycle is shorter than the selected basic clock cycle 0 (p0110[0]).
See also: p4720 (Trace recording cycle)
Remedy: Increase the value for the trace cycle.

202057 <location>Trace: Time slice clock cycle invalid

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The time slice clock cycle selected does not match any of the existing time slices.
See also: p4723 (Time slice cycle for trace)

Remedy: Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.
See also: r7901 (Time slice cycle times)

202058 <location>Trace: Time slice clock cycle for endless trace not valid

Message value: -

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: The selected time slice clock cycle cannot be used for the endless trace
See also: p4723 (Time slice cycle for trace)

Remedy: Enter the clock cycle of an existing time slice with a cycle time >= 2 ms for up to 4 recording channels
or >= 4 ms from 5 recording channels per trace.
The existing time slices can be read out via p7901.
See also: r7901 (Time slice cycle times)

202059 <location>Trace: Time slice clock cycle for 2 x 8 recording channels not valid

Message value: -

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: The selected time slice clock cycle cannot be used for the setting p4702 = 1 (2 x 8 recording channels).
See also: p4723 (Time slice cycle for trace)

Remedy: Enter the clock cycle of an existing time slice with a cycle time >= 4 ms or reduce the number of recording channels to 4 per trace.
The existing time slices can be read out via p7901.
See also: r7901 (Time slice cycle times)

202060 <location>Trace: Signal to be traced missing

Message value: -

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: - a signal to be traced was not specified.
- the specified signals are not valid.
See also: p4730, p4731, p4732, p4733

Remedy: - specify the signal to be traced.
- check whether the relevant signal can be traced.

202061 <location>Trace: Invalid signal

Message value: -

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: - the specified signal does not exist.
- the specified signal can no longer be traced (recorded).
See also: p4730, p4731, p4732, p4733

Remedy: - specify the signal to be traced.
- check whether the relevant signal can be traced.
202062 <location>Trace: Invalid trigger signal
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
- a trigger signal was not specified.
- the specified signal does not exist.
- the specified signal is not a fixed-point signal.
- the specified signal cannot be used as a trigger signal for the trace.
See also: p4711 (Trace trigger signal)
Remedy:
Specify a valid trigger signal.

202063 <location>Trace: Invalid data type
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
The specified data type to select a signal using a physical address is invalid.
See also: p4711, p4730, p4731, p4732, p4733
Remedy:
Use a valid data type.

202070 <location>Trace: Parameter cannot be changed
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
The trace parameter settings cannot be changed when the trace is active.
See also: p4700, p4710, p4711, p4712, p4713, p4714, p4715, p4716, p4720, p4721, p4722, p4730, p4731, p4732, p4733, p4780, p4781, p4782, p4783, p4789, p4795
Remedy:
- stop the trace before parameterization.
- if required, start the trace.

202075 <location>Trace: Pretrigger time too long
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
The selected pretrigger time must be shorter than the trace time.
See also: p4721 (Trace recording time), p4722 (Trace trigger delay)
Remedy:
Check the pretrigger time setting and change if necessary.

202080 <location>Trace: Delete trace because units changed over
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause:
The trace was deleted due to the fact that the units were changed over or the reference parameters changed.
Remedy:
202099 <location>Trace: Insufficient Control Unit memory</location>
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The memory space still available on the Control Unit is no longer sufficient for the trace function.
Remedy: Reduce the memory required, e.g. as follows:
- reduce the trace time.
- increase the trace clock cycle.
- reduce the number of signals to be traced.
See also: r4708 (Trace memory space required), r4799 (Trace memory location free)

202100 <location>CU: Computing dead time current controller too short</location>
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The value in p0118 produces a dead time of one clock cycle because it is prior to setpoint availability.
A possible cause could be, for example, that the system characteristics no longer match those parameterized after a component has been replaced.
Alarm value (r2134, floating point):
The minimum value for p0118 where a dead time no longer occurs.
Remedy: - set p0118 to a value greater than or equal to the alarm value.
- set p0117 to an automatic setting.
- check the firmware releases of the components involved.
See also: p0117 (Current controller computing dead time mode), p0118 (Current controller computing dead time)

202150 <location>OA: Application cannot be loaded</location>
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The system was not able to load an OA application.
Alarm value (r2124, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.
Note:
OA: Open Architecture
See also: r4950, r4955, p4956, r4957

202151 <location>OA: Internal software error</location>
Message value:
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF2 (NONE, OFF1, OFF3)
VECTOR: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An internal software error has occurred within an OA application.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.
- replace the Control Unit.

Note:
OA: Open Architecture
See also: r4950, r4955, p4956, r4957

202152 <location>OA: Insufficient memory
Message
value: %1
Drive object: All objects
Reaction: IMMEDIATELY (POWER ON)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, OA applications, blocks, etc).
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc).
- use an additional Control Unit.
Note:
OA: Open Architecture

203500 <location>TM: Initialization
Message
value: %1
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: When initializing the Terminal Modules, the terminals of the Control Unit or the Terminal Board 30, an internal software error has occurred.
Fault value (r0949, interpret decimal):
The thousands digit = 1 ... 3:
The component number (p0151) of the module involved is specified at the units, tens and hundreds digit.
Remedy:
- power down the power supply for the Control Unit and power it up again.
- check the DRIVE-CLiQ connection.
- if required, replace the Terminal Module.
The Terminal Module should be directly connected to a DRIVE-CLiQ socket of the Control Unit.
If the fault occurs again, replace the Terminal Module.

203501 <location>TM: Sampling time change
Message
value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The sampling times of the inputs/outputs were changed.
This change only becomes valid after the next boot.
Remedy: Carry out a POWER ON.

203505 <location>TM: Analog input wire breakage
Message
value: %1
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The input current of the Terminal Module analog input has exceeded the threshold value parameterized in p4061[x].
This fault can only occur if p4056[x] = 3 (4 ... 20 mA with monitoring) is set.
Index x = 0: Analog input 0 (X522.1 to .3)
Index x = 1: Analog input 1 (X522.4 to .5)
Fault value (r0949, interpret decimal):
The component number (p0151) of the module involved is specified at the units, tens and hundreds digit.
The thousands digit specifies the analog input involved: 0: Analog input 0 (AI 0), 1: Analog input 1 (AI 1)

Remedy:
Check the connection to the signal source for interruptions.
Check the magnitude of the injected current - it is possible that the infed signal is too low.
Please note that the input has a load resistance of 250 Ohm.
The input current measured by the Terminal Module can be read out from r4052[x].

203506 <location>24 V power supply missing
Message value: %1
Drive object: A_INF, B_INF, CU_L, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The 24 V power supply for the digital outputs (X124) is missing.
Remedy: Check the terminals for the power supply voltage (X124, L1+, M).

203550 <location>TM: Speed setpoint filter natural frequency > Shannon frequency
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The natural filter frequency of the speed setpoint filter (p1417) is greater than the Shannon frequency.
The Shannon frequency is calculated according to the following formula: 0.5 / p0115[0]
See also: p1417
Remedy: Reduce the natural frequency of the speed setpoint filter (PT2 low pass) (p1417).

203590 <location>TM: Module not ready
Message value: %1
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE)
SERVO: NONE (ENCODER, IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF2 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The Terminal Module involved does not send a ready signal and no valid cyclic data.
Fault value (r0949, interpret decimal):
Drive object number of the Terminal Module involved.
Remedy: - check the 24 V power supply.
- check the DRIVE-CLiQ connection.
- check whether the sampling time of the drive object involved is not equal to zero (p4099[0]).

205000 <location>Power unit: Heat sink overtemperature
Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The alarm threshold for overtemperature at the inverter heat sink has been reached. The response is set using p0290.

Remedy: Check the following:
- is the ambient temperature within the defined limit values?
- have the load conditions and the load duty cycle been appropriately dimensioned?
- has the cooling failed?

205001
<location>Power unit: Chip overtemperature

Message value: -

Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached. The response is set using p0290.

If the chip temperature increases by an additional 15 K, then fault F30025 is initiated.

Remedy: Check the following:
- is the ambient temperature within the defined limit values?
- have the load conditions and the load duty cycle been appropriately dimensioned?
- has the cooling failed?
- pulse frequency too high?

See also: r0037, p0290 (Power unit overload response)

205002
<location>Power unit: Air intake overtemperature

Message value: -

Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The alarm threshold for the air intake overtemperature has been reached. For air-cooled power units, the threshold is 42 °C (hysteresis 2 K). The response is set using p0290.

If the air intake temperature increases by an additional 13 K, then fault F30035 is output.

Remedy: Check the following:
- is the ambient temperature within the defined limit values?
- has the fan failed? Check the direction of rotation.

205003
<location>Power unit: Electronics board overtemperature

Message value: -

Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The alarm threshold for the overtemperature of the electronics module has been reached. The response is set using p0290.

If the temperature of the electronics module increases by an additional 5 K, then fault F30036 is initiated.

Remedy: Check the following:
- is the ambient temperature within the defined limit values?
- has the fan failed? Check the direction of rotation.

205004
<location>Power unit: Rectifier overtemperature

Message value: -

Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The alarm threshold for the overtemperature of the rectifier has been reached. The response is set using p0290.

If the temperature of the rectifier increases by an additional 5 K, then fault F30037 is initiated.
Remedy: Check the following:
- is the ambient temperature within the defined limit values?
- have the load conditions and the load duty cycle been appropriately dimensioned?
- has the fan failed? Check the direction of rotation.
- has a phase of the line supply failed?
- is an arm of the supply (incoming) rectifier defective?

205005 <location>Cooling system: Cooling medium flow rate too low
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: Cooling system: Alarm - flow rate has fallen below the alarm value
Remedy:

205006 <location>Power unit: Overtemperature thermal model
Message value: -
Drive object: A_INF, S_INF, SERVO
Reaction: NONE
Acknowledge: NONE
Cause: The temperature difference between the chip and heat sink has exceeded the permissible limit value (for blocksize power units only). Depending on p0290, a suitable overload response is initiated.
See also: r0037
Remedy: None necessary.
The alarm automatically disappears when the limit value is undershot.
Note: If the alarm does not disappear automatically and the temperature continues to rise, this can trigger fault F30024.
See also: p0290 (Power unit overload response)

205006 <location>Power unit: Overtemperature thermal model
Message value: -
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The temperature difference between the chip and heat sink has exceeded the permissible limit value (for blocksize power units only). Depending on p0290, a suitable overload response is initiated.
See also: r0037
Remedy: None necessary.
The alarm automatically disappears when the limit value is undershot.
Note: If the alarm does not disappear automatically and the temperature continues to rise, this can trigger fault F30024.
- If DC brake is active: reduce braking current (see p1232).
See also: p0290 (Power unit overload response)

205007 <location>Power unit: Overtemperature thermal model (chassis PU)
Message value: -
Drive object: A_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The temperature difference between the chip and heat sink has exceeded the permissible limit value (r0293) (for chassis power units only). Depending on p0290, a suitable overload response is initiated.
See also: r0037, r0293 (Power unit alarm threshold model temperature)
Remedy: None necessary. The alarm automatically disappears when the limit value is undershot. See also: p0290 (Power unit overload response)

205050 Parallel circuit: Pulse enable in spite of pulse inhibit
Message value: %1
Drive object: A_INF, B_INF, S_INF, VECTOR
Reaction: A_INFEED: OFF2 (NONE, OFF1)
VECTOR: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: A power unit signals that the pulses are enabled although the pulses are inhibited. Fault value (r0949, interpret decimal): Number of the power unit involved.
Remedy: The power unit is defective and must be replaced.

205051 Parallel circuit: Power unit pulse enable missing
Message value: %1
Drive object: A_INF, B_INF, S_INF, VECTOR
Reaction: A_INFEED: OFF2 (NONE, OFF1)
VECTOR: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: For one or several power units, the pulses were not able to be enabled. Fault value (r0949, interpret decimal): Number of the power unit involved.
Remedy: - acknowledge power unit faults that are still present.
- inhibit the pulses of the power unit involved (p7001).

205052 Parallel circuit: Illegal current dissymmetry
Message value: %1
Drive object: A_INF, B_INF, S_INF, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The deviation of the individual currents of the power units exceeds the alarm threshold specified in p7010.
1: Phase U.
2: Phase V.
3: Phase W.
Remedy: - inhibit the pulses of the faulted power unit (p7001).
- check the connecting cables. Loose contacts can cause current spikes.
- the motor reactors are non-symmetrical or faulty and must be replaced.
- the CTs must be calibrated or replaced.

205053 Parallel circuit: Inadmissible DC link voltage dissymmetry
Message value: -
Drive object: A_INF, B_INF, S_INF, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The deviation of the DC link voltage measured values exceeds the alarm threshold specified in p7011.
Remedy: - inhibit the pulses of the faulted power unit (p7001).
- check the DC link connecting cables.
- the DC link voltage measurement is incorrect and must be calibrated or renewed.
205054 <location>Parallel circuit: Power unit de-activated
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: For the drive object involved, fewer power unit components connected in parallel are active than exist in the target topology. Operation is only possible at reduced power (power de-rating).
Remedy: Re-activate the de-activated power unit components.
See also: p0125 (Activate/de-activate power unit components), p0895 (Activate/de-activate power unit components), p0897 (Parking axis selection)

205055 <location>Power circuit: Power units with different code numbers
Message value: Parameter: %1
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: The code numbers of the power units do not match.
Fault value (r0949, interpret decimal):
Parameter in which the first different power unit code number was detected.
Remedy: For parallel circuit configurations, only power units with identical power unit data may be used.

205056 <location>Parallel circuit: Power unit EPROM versions differ
Message value: Parameter: %1
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: The EEPROM versions of the power units do not match.
Fault value (r0949, interpret decimal):
Parameter in which the first different version number was detected.
Remedy: For parallel circuit configurations, only power units with identical EEPROM versions may be used.

205057 <location>Parallel circuit: Power unit firmware versions differ
Message value: Parameter: %1
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: The firmware versions of the power units connected in parallel do not match.
Fault value (r0949, interpret decimal):
Parameter in which the first different version number was detected.
Remedy: For parallel circuit configurations, only power units with identical firmware versions may be used.

205058 <location>Parallel circuit: VSM EEPROM versions differ
Message value: Parameter: %1
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The EEPROM versions of the Voltage Sensing Modules (VSM) do not match.
Fault value (r0949, interpret decimal):
Parameter in which the first different version number was detected.
Remedy: For parallel circuit configurations, only Voltage Sensing Modules (VSM) with identical EEPROM versions may be used.
205059 <location>Parallel circuit: VSM firmware versions differ
Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The firmware versions of the Voltage Sensing Module (VSM) do not match.
Fault value (r0949, interpret decimal):
Parameter in which the first different version number was detected.
Remedy: For parallel circuit configurations, only Voltage Sensing Modules (VSM) with identical firmware versions may be used.

205060 <location>Parallel circuit: Power unit firmware version does not match
Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Firmware from version V02.30.01.00 is required when connecting the power units in parallel.
Remedy: Update the firmware of the power units (at least V02.30.01.00).

205061 <location>Infeed, number of VSM
Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The number of active Voltage Sensing Modules (VSM) for the drive object infeed with chassis power units is not correct.
For A_Infeed, each active power unit must be assigned an active VSM also for a parallel circuit configuration.
For S_Infeed, the active drive object, must be assigned at least one active VSM.
Fault value (r0949, interpret decimal):
Number of VSMs that are currently assigned to the drive object.
Remedy: Adapts the number of active Voltage Sensing Modules (VSM).

206000 <location>Infeed: Precharging monitoring time expired
Message value:
Drive object: A_INF, B_INF, S_INF
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY
Cause: After the line contactor closes the power unit does not signal the READY state within the monitoring time (p0857).
The end of the DC link pre-charging was not able to be completed for one of the following reasons:
1) There is no line supply voltage connected.
2) The line contactor/line side switch has not been closed.
3) The line supply voltage is too low.
4) Line supply voltage incorrectly set (p0210).
5) The pre-charging resistors are overheated as there were too many pre-charging operations per time unit.
6) The pre-charging resistors are overheated as the DC link capacitance is too high.
7) The pre-charging resistors are overheated because when there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link.
8) The pre-charging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module.
9) The DC link has either a ground fault or a short-circuit.
10) The pre-charging circuit is possibly defective (only for chassis units).
See also: p0210, p0857
Remedy: In general:
- check the line supply voltage at the connecting terminals.
- check the line supply voltage setting (p0210).
- check the monitoring time and, if required, increase (p0857).
- where relevant, observe additional power unit messages/signals (e.g. F30027).
- the following applies to booksize units: Wait (approx. 8 min.) until the pre-charging resistors have cooled down. The infeed unit must be disconnected from the supply for this purpose.
Re 5):
- carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual).
Re 6):
- check the total capacitance of the DC link and if required, correspondingly reduce the maximum permissible DC link capacitance (refer to the appropriate Equipment Manual).
Re 7):
- interconnect the ready for operation signal of the infeed unit (r0863.0) in the enable logic of the drives connected to this DC link.
Re 8):
- check the connections of the external line contactor. The line contactor must be open during the DC link fast discharge.
Re 9):
- check the DC link regarding ground fault or short-circuit.

206010 <location> Infeed: Power unit EP 24 V missing in operation
Message value:
-
Drive object: A_INF, B_INF, S_INF
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: In operation, withdraw the pulse enable at terminal EP at the Line Module (X21.3, X21.4).
Remedy:
- do not open the Line Side Switch in operation - only when the pulses are inhibited.
- check the wiring of the DP input (X21.3, X21.4) at the Line Module to exclude any poor contacts.

206050 <location> Infeed: Smart Mode not supported
Message value:
-
Drive object: A_INF, S_INF
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The power unit does not support the Smart Mode.
Remedy:
- set the suitable sampling time 250 µs <= p0115[0] <= 400 µs (e.g. by setting p0112 and p0115 to the factory setting).
- upgrade the power unit software and/or hardware for the Smart Mode. The availability of the Smart Mode function is displayed in r0192.
- for A_INF the following applies: De-activate the Smart Mode with p3400.0 = 0 and activate the voltage control with p3400.3 = 1. For booksize power units, it must be noted that for a supply voltage p0210 > 415 V only the Smart Mode is possible in the pre-setting. If DC link voltages above 660 V are permissible in the application, then voltage-controlled operation can be activated with p0280, p0210, p3400 and p3510. The information regarding p0210 should be carefully noted.
See also: r0192 (Power unit firmware properties)

206052 <location> Infeed: Filter temperature evaluation not supported
Message value:
-
Drive object: A_INF, S_INF
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: The power unit does not support filter temperature evaluation (r0192.11).
This feature is required when using an Active Interface Module as line filter (p0220 = 41 ... 45).
Remedy: Upgrade the firmware for the power unit to a later version.
See also: r0192 (Power unit firmware properties), p0220 (Infeed line filter type)
206100 <location>Infeed: Shutdown due to line supply undervoltage condition

Message value:

Drive object: A_INF, B_INF, S_INF

Reaction: OFF2 (OFF1)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: The filtered (steady-state) value of the line supply voltage is less than the fault threshold (p0283).

Fault condition: \(V_{\text{rms}} < p0283 \times p0210 \)

Fault value (r0949, floating point):

Current steady-state line supply voltage.

See also: p0283 (Line supply undervoltage, shutdown (trip) threshold)

Remedy:
- check the line supply.
- check the line supply voltage (p0210).
- check the fault threshold (p0283).

206105 <location>Infeed: Line supply undervoltage

Message value:

Drive object: A_INF, B_INF, S_INF

Reaction: NONE

Acknowledge: NONE

Cause: The filtered (steady-state) value of line supply voltage is lower than the alarm threshold (p0282).

Alarm condition: \(V_{\text{rms}} < p0282 \times p0210 \)

Alarm value (r2124, floating point):

Current steady-state line supply voltage.

See also: p0282 (Line supply undervoltage, alarm threshold)

Remedy:
- check the line supply.
- check the line supply voltage (p0210).
- check the alarm threshold (p0282).

206200 <location>Infeed: Failure of one or several line phases

Message value:

Drive object: A_INF, S_INF

Reaction: OFF2 (OFF1)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: Failure overvoltage in one or several line supply phases.

The fault can be output in two operating states:
1. During the power-on phase of the infeed unit.

The measured line supply angle deviates from the regular characteristic for a 3-phase system - the PLL cannot be synchronized.

The fault occurs immediately after power-up if, when operating with a VSM, the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit.
2. While the infeed is operational.

After a voltage dip has been detected or an overvoltage (note A06205) in one or several line phases a fault occurred within 100 ms (also refer to other relevant messages). Generally, before fault message F06200 is output, Alarm A06205 occurs at least once, whose warning value can provide information regarding the cause of the line supply fault.

Probable causes of the fault:
- voltage dip on the line side or phase failure or overvoltage lasting longer than 10 ms.
- overload condition on the load side with peak current.
- commutating reactor missing.

Remedy:
- check the line supply and fuses.
- check the connection and size (rating) of the line commutating reactor.
- check and correct the phase assignment at the VSM (X521 or X522) and at the power unit.
- check the load.
- if failed in operation, carefully note the previous alarm messages A6205 with alarm values.

See also: p3463 (Infeed, line angle change, phase failure detection)
206205 <location>Infeed: Voltage dip in at least one line supply phase

Message value:
Drive object: A_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause:
Voltage dip or overvoltage in one or several line supply phases has been detected in operation. The pulses are then inhibited for a time of at least 8 ms. The operating signal of the infeed unit in r0863.0 remains and the pulse inhibit due to the phase failure is displayed in r3405.2.

Alarm value (r2124, bitwise coded cause of the alarm):
- Bit 0: Line angle deviation (limit value p3463) due to a line supply fault
- Bit 2: Active current deviation
- Bit 3: Line frequency deviation (limit values: 115 % * p0284, 85 % * p0285)
- Bit 4: Line overvoltage (limit value 120 % * p0281 * p0210)
- Bit 5: Line undervoltage (limit value 20 % * p0210)
- Bit 7: Peak current fault
- Bit 8: Smart Mode without VSM (p3400.5 = 0): Line angle deviation
- Bit 9: Smart Mode: DC link voltage dip
- Bit 10: Smart Mode: Line currents not symmetrical

Remedy:
- check the line supply and fuses.
- check the line supply quality and system fault level.
- check the load.

Dependent on the alarm value in r2124, the following applies:
- Bit 0 = 1: Line fault occurred or poor/incorrect controller setting. For poor line quality or frequent line supply changeover operations, when required, limit value p3463 can be increased until the alarm value no longer occurs.
- Bit 2 = 1: Line fault occurred or poor/incorrect controller setting. - check the controller setting and load.
- Bit 3 = 1: Line fault occurred. For poor line quality or frequent line changeover operations, when required, limit values p0284 and p0285 can be increased until the alarm value no longer occurs.
- Bit 4 = 1: Line interrupted or line overvoltage has occurred.
- Bit 5 = 1: Line interrupted or line undervoltage has occurred.
- Bit 7 = 1: Peak current trip due to line fault or overload. Check the load.
- Bit 8 = 1: Line fault occurred.
- Bit 9 = 1: Line undervoltage or overload. Check the load.
- Bit 10 = 1: Line supply interrupted in at least one line phase. Check the fuses.

See also: r3405 (Status word infeed), p3463 (Infeed, line angle change, phase failure detection)

206207 <location>Infeed: Line currents not symmetrical

Message value:
Drive object: A_INF, S_INF
Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
Asymmetry of the currents in the line phase too high. The most probable cause is failure of a line phase.

Remedy:
- check the line supply and fuses.
- check the connection and size (rating) of the line commutating reactor.
- note the previous alarm messages A6205 with alarm values.

206210 <location>Infeed: Summation current too high

Message value:
Drive object: A_INF, B_INF, S_INF
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The smoothed total of the phase currents (i1 + i2 + i3) is greater than 4 % of the maximum power unit current (r0209).
Possible causes:
- the DC link has a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, commutating reactor or line filter
- the zero point calibration of the current measurement was not carried out (p3491, A06602).
- defective current measurement in the power unit.
Fault value (r0949, floating point):
Smoothed total of the phase currents.
Remedy:
- check the DC link for a low-ohmic or high-ohmic ground fault and if present, remove.
- increase the monitoring time of the current offset measurement (p3491).
- if required, replace the power unit.

206215 <location> Infeed: Summation current too high
Message value: %1
Drive object: A_INF, B_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause: The smoothed total of the phase currents (i1 + i2 + i3) is greater than 3 % of the maximum power unit current (r0209).
Possible causes:
- the DC link has a ground fault that results in a high summation current (r0069.6). The DC component in the line currents can damage/destroy the power unit, commutating reactor or line filter
- the zero point calibration of the current measurement was not carried out (p3491, A06602).
- defective current measurement in the power unit.
Alarm value (r2124, floating point):
The calculated present capacitance in µF (rounded-off to an integer number).
The 1st decimal point specifies the number of the phase (1, 2, 3) where the capacitance deviates from the specified value.
Remedy:
- check the parameterized value of the filter capacitance (p0221).
- check the correct wiring of the Voltage Sensing Module (VSM):
 Differential voltages u12 and u23 must be present at the 100 V/690 V inputs of the VSM; the phase currents of the line filter must be connected to the 10 V inputs through a current - voltage converter.
- check the alarm limits for the permissible filter capacitance deviation (p3676).
- check the normalization of the line supply voltage measurement using the VSM (p3660).
- check the normalization of the filter current measurement using the VSM (p3670).
- check the line filter capacitors and if required, replace the line filter.
See also: p0221, p3660, p3670, p3676

206250 <location> Infeed: Defective capacitor(s) in at least one phase of line filter
Message value: %1
Drive object: A_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause: A change in the line filter capacitance was detected in at least line phase.
The voltages and phase currents of the line filter, measured using a Voltage Sensing Module (VSM), indicated a deviation of the filter capacitances from the value parameterized in p0221.
A change or a defect of the line filter capacitors results in a shift of the resonant frequencies and can result in severe damage to the drive system.
Alarm value (r2124, floating point):
The calculated present capacitance in µF (rounded-off to an integer number).
The 1st decimal point specifies the number of the phase (1, 2, 3) where the capacitance deviates from the specified value.
Remedy:
- check the parameterized value of the filter capacitance (p0221).
- check the correct wiring of the Voltage Sensing Module (VSM):
 Differential voltages u12 and u23 must be present at the 100 V/690 V inputs of the VSM; the phase currents of the line filter must be connected to the 10 V inputs through a current - voltage converter.
- check the alarm limits for the permissible filter capacitance deviation (p3676).
- check the normalization of the line supply voltage measurement using the VSM (p3660).
- check the normalization of the filter current measurement using the VSM (p3670).
- check the line filter capacitors and if required, replace the line filter.
See also: p0221, p3660, p3670, p3676
206260 <location>Infeed: Temperature in the line filter too high

Message value: -
Drive object: A_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause: The temperature monitoring in the line filter has responded.
If the temperature remains too high during the complete monitoring time, this results in fault F06261.
Note:
The temperature monitoring is only available for an Active Interface Module.
Remedy:
- check whether the line filter type set in p0220[0] matches the line filter that is actually connected.
Ensure that the line filter specified for the infeed being used is connected or correct the setting of the line filter type in P0220[0].
- temperature monitoring is mandatory for AIM line filters (refer to P0220). Ensure that the line filter temperature switch is correctly and reliably connected to input X21 of the infeed.
- reduce the ambient temperature of the line filter.
- reduce the load on the infeed and the filter module.
- check the magnitude of the line supply voltage.
- the internal fan of the filter module is defective. If required, replace the fan.
- defective temperature switch of the filter module. If required, replace the filter module.

206261 <location>Infeed: Temperature in the line filter permanently too high

Message value: -
Drive object: A_INF, S_INF
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY
Cause: After the temperature monitoring responded, the temperature in the line filter was permanently exceeded.
Note:
The temperature monitoring is only available for an Active Interface Module.
Remedy:
- check whether the line filter type set in p0220[0] matches the line filter that is actually connected.
Ensure that the line filter specified for the infeed being used is connected or correct the setting of the line filter type in P0220[0].
- temperature monitoring is mandatory for AIM line filters (refer to P0220). Ensure that the line filter temperature switch is correctly and reliably connected to input X21 of the infeed.
- reduce the ambient temperature of the line filter.
- reduce the load on the infeed and the filter module.
- check the magnitude of the line supply voltage.
- the internal fan of the filter module is defective. If required, replace the fan.
- defective temperature switch of the filter module. If required, replace the filter module.

206262 <location>Infeed: Temperature switch in the line filter open when powering up

Message value: -
Drive object: A_INF, S_INF
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY
Cause: When powering up the infeed, the temperature in the line filter is too high. Powering up is prevented.
Remedy:
- check whether the line filter type set in p0220[0] matches the line filter that is actually connected.
Ensure that the line filter specified for the infeed being used is connected or correct the setting of the line filter type in P0220[0].
- temperature monitoring is mandatory for AIM line filters (refer to P0220). Ensure that the line filter temperature switch is correctly and reliably connected to input X21 of the infeed.
- the filter temperature is too high. Allow the system to cool down.
- the internal fan of the filter module is defective. If required, replace the fan.
- defective temperature switch of the filter module. If required, replace the filter module.
206300 <location>Infeed: Line voltage too high at power on
Message value: %1
Drive object: A_INF, S_INF
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The RMS line supply voltage Vrms was so high when powering up that controlled operation is not possible without exceeding the permissible maximum voltage in the DC link (p0280).
Fault condition: Vrms * 1.5 > p0280.
Fault value (p0949, floating point): Lowest possible controlled DC link voltage for the line supply voltage presently connected.
See also: p0280 (DC link voltage maximum steady-state)
Remedy:
- check the line supply voltage
- check the maximum DC link voltage and if required, increase (p0280).
- check the line supply voltage and compare with the actual line supply voltage (p0210).
- check whether the power unit is dimensioned for the line supply voltage actually being used.
See also: p0210, p0280

206301 <location>Infeed: Line supply overvoltage
Message value: Line supply voltage: %1
Drive object: A_INF, B_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause: The filtered (steady-state) value of the rms line supply voltage Vrms is higher than the alarm threshold (p0281).
Alarm condition: Vrms > p0281 * p0210.
Alarm value (r2124, floating point): Current steady-state line supply voltage.
See also: p0281 (Line supply overvoltage, alarm threshold)
Remedy:
- check the line supply.
- check the line supply voltage (p0210).
- check the alarm threshold (p0281).
See also: p0210, p0281

206310 <location>Infeed: Supply voltage (p0210) incorrectly parameterized
Message value: Line supply voltage: %1
Drive object: A_INF, B_INF, S_INF
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: After pre-charging was completed, the line supply voltage Vrms was calculated using the measured DC link voltage. This voltage Vrms is not within the tolerance range of the supply voltage.
The following applies for the tolerance range: 85 % * p0210 < Vrms < 110 % * p0210.
Alarm value (r2124, floating point): Line supply voltage Vrms present.
See also: p0210 (Drive unit line supply voltage)
Remedy:
- check the parameterized supply voltage and if required change (p0210).
- check the line supply voltage.
See also: p0210 (Drive unit line supply voltage)

206310 <location>Supply voltage (p0210) incorrectly parameterized
Message value:
Drive object: SERVO
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: For AC/AC drive units, the measured DC voltage lies outside the tolerance range after pre-charging has been completed. The following applies for the tolerance range: \(1.16 \times p0210 < r0070 < 1.6 \times p0210\).

The fault can only be acknowledged when the drive is powered down.

See also: p0210 (Drive unit line supply voltage)

Remedy:
- check the parameterized supply voltage and if required change (p0210).
- check the line supply voltage.

See also: p0210 (Drive unit line supply voltage)

206310

<location>Supply voltage (p0210) incorrectly parameterized

Message value: -

Drive object: VECTOR

Reaction: NONE (OFF1, OFF2)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: For AC/AC drive units, the measured DC voltage lies outside the tolerance range after pre-charging has been completed: \(1.16 \times p0210 < r0070 < 1.6 \times p0210\).

The fault can only be acknowledged when the drive is powered down.

See also: p0210 (Drive unit line supply voltage)

Remedy:
- check the parameterized supply voltage and if required change (p0210).
- check the line supply voltage.

See also: p0210 (Drive unit line supply voltage)

206311

<location>Infeed: Supply voltage (p0210) incorrect

Message value: Line supply voltage: %1

Drive object: A_INF, B_INF, S_INF

Reaction: OFF2 (OFF1)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: The line voltage nominal value indicated in p0210 is outside the nominal voltage range of the power unit.

After pre-charging was completed, the current line supply voltage \(V_{\text{rms}}\) was calculated using the measured DC link voltage. This voltage \(V_{\text{rms}}\) does not lie within the extended tolerance range of the supply voltage set in p0210.

The following applies for the extended tolerance range: \(75 \% \times p0210 < V_{\text{rms}} < 120 \% \times p0210\)

Alarm value (r2124, floating point):

Line supply voltage \(V_{\text{rms}}\) present.

See also: p0210 (Drive unit line supply voltage)

Remedy:
- check the parameterized supply voltage and if required change (p0210).
- check the line supply voltage.

See also: p0210 (Drive unit line supply voltage)

206320

<location>Master/slave: 4-channel multiplexer control not valid

Message value: %1

Drive object: A_INF

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: Values 0, 1, 2 and 3 are valid to control the 4-channel multiplexer via CI: 3572. In this case, an invalid value was identified. The control remains effective with the previous value.

Fault value (r0949, interpret decimal):

Invalid value to control the multiplexer.

See also: p3572 (Master/slave active current setpoint, multiplexer selection)

Remedy:
- check the interconnection to control the multiplexer (CI: p3572).
- check the signal source signal value of the BICO interconnection.

See also: p3572 (Master/slave active current setpoint, multiplexer selection)
206321 <location>Master/slave: 6-channel multiplexer control not valid
Message value:
Drive object: A_INF
Reaction: IMMEDIATELY
Acknowledge: IMMEDIATELY
Cause: Values 0, 1, 2, 3, 4 and 5 are valid to control the 6-channel multiplexer via CI: 3577. In this case, an invalid value was identified. The control remains effective with the previous value.
Fault value (r0949, interpret decimal):
Invalid value to control the multiplexer.
See also: p3577 (Master/slave current distribution factor, multiplexer selection)
Remedy:
- check the interconnection to control the multiplexer (CI: p3577).
- check the signal source signal value of the BICO interconnection.
See also: p3577 (Master/slave current distribution factor, multiplexer selection)

206350 <location>Infeed: Measured line frequency too high
Message value:
Drive object: A_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause: The actual line frequency f line is higher than the parameterized alarm threshold (f_line > p0211 * p0284).
The alarm can be output in two operating states:
1. During the power-on phase of the infeed unit.
Consequence:
- Synchronization of the infeed to the line supply is interrupted and is restarted.
2. While the infeed is operational.
Consequence:
- The infeed remains in the operating (run) state and alarm A6350 is output. This signifies a critical operational fault.
Alarm value (r2124, floating point):
Current line frequency determined.
See also: p0284 (Line supply frequency exceeded, alarm threshold)
Remedy:
- check the parameterized line frequency and if required change (p0211).
- check the alarm threshold (p0284).
- check the line supply.
- check the line supply quality.
See also: p0211 (Rated line freq), p0284 (Line supply frequency exceeded, alarm threshold)

206351 <location>Infeed: Measured line frequency too low
Message value:
Drive object: A_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause: The actual line frequency f_line is lower than the parameterized alarm threshold (f_line < p0211 * p0285).
The alarm can be output in two operating states:
1. During the power-on phase of the infeed unit.
Consequence:
- Synchronization of the infeed to the line supply is interrupted and is restarted.
2. While the infeed is operational.
Consequence:
- The infeed remains in the operating (run) state and alarm A06351 is output. This signifies a critical operational fault.
Alarm value (r2124, floating point):
Current line frequency determined.
See also: p0285 (Line supply frequency undershot, alarm threshold)
Remedy:
- check the parameterized line frequency and if required change (p0211).
- check the alarm threshold (p0285).
- check the line supply.
- check the line supply quality.
See also: p0211 (Rated line freq), p0285 (Line supply frequency undershot, alarm threshold)

206400
<location>Infeed: Line supply data identification selected/active

Message value:
Drive object: A_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause:
The line supply data identification is selected and active.
The line inductance and the DC link capacitance are measured at the next pulse enable.
See also: p3410 (Infeed identification method)
Remedy:
No remedial action required.

206500
<location>Infeed: Line synchronization not possible

Message value:
Drive object: A_INF, S_INF
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
The line synchronization is not possible within the monitoring time.
The infeed was re-synchronized to the line supply because it was interrupted due to a line frequency that was determined to be either too low or too high.
After 20 attempts, synchronization - and therefore also the power-on operation - were interrupted.
Remedy:
- check the parameterized line frequency and if required change (p0211).
- check the setting of the threshold values (p0284, p0285).
- check the line supply.
- when a Voltage Sensing Module (VSM) is used: check the line supply to the VSM terminals X521 or X522.
- check the line supply quality.
See also: p0211 (Rated line freq), p0284 (Line supply frequency exceeded, alarm threshold), p0285 (Line supply frequency undershot, alarm threshold)

206601
<location>Infeed: Current offset measurement interrupted

Message value: %1
Drive object: A_INF, B_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause:
Defective current measurement or a DC current is present during the offset measurement.
Alarm value (r2124, interpret decimal):
1: Excessively high phase current has occurred during the current offset calibration.
2: The measured current offset is greater than the 3% of the maximum permissible converter current (e.g. due to a ground fault in the DC link).
Remedy:
Re alarm value = 1:
- possible counter-measure if there is no line contactor: Power up an adequately long time before OFF1 = 1.
Re alarm value = 2:
- defective current measurement or a DC current is present during the offset measurement.
- check the DC link for a ground fault.

206602
<location>Infeed: Current offset measurement not possible

Message value:
Drive object: A_INF, B_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause: After an OFF1 = 1 no valid current offset measurement was able to be made within the monitoring time (p3491) before closing the line contactor. The current offset is set to 0.

Remedy: - check the DC link for a ground fault. A ground fault can destroy parts and components!
- Check the monitoring time setting and if required increase (p3491). At least 100 ms is required for a valid measurement (p3491 > 100 ms).

Notice: If there is no valid measurement, then under certain circumstances the quality of the DC link control will be reduced.

See also: p3491 (Infeed I-offset measurement monitoring time)

206700

<location>Infeed: Switch line contactor for load condition

Message value:

Drive object: A_INF, B_INF, S_INF

Reaction: NONE (OFF2)

Acknowledge: IMMEDIATELY

Cause: For an ON command, the infeed line contactor should be switched under load.

Remedy: - do not load the DC link if the infeed has not issued an operating signal (r0863.0 = 1).
- after the infeed has been powered down, all power units connected to the DC link should be powered down. To realize this, the operating signal of the infeed (r0863.0) must be suitably interconnected.

206800

<location>Infeed: Maximum steady-state DC link voltage reached

Message value:

Drive object: A_INF, S_INF

Reaction: NONE

Acknowledge: NONE

Cause: The DC link voltage setpoint has reached the maximum steady-state voltage parameterized in p0280. The DC link voltage is increased by the modulation depth reserve controller for the following reasons:
- modulation depth reserve is too low (p3480).
- line supply voltage is too high.
- supply voltage (p0210) parameterized to be too low.
- excessively high setpoint for the reactive line current.

Remedy: - check the line supply voltage setting (p0210).
- check the line supply for an overvoltage condition.
- reduce the modulation depth reserve (p3480).
- reduce the reactive current setpoint.

See also: p0210, p0280, p3480

206810

<location>Infeed: DC link voltage alarm threshold

Message value:

Drive object: A_INF, B_INF, S_INF

Reaction: NONE

Acknowledge: NONE

Cause: In operation, the DC link voltage has dropped to below the alarm threshold. The alarm threshold is obtained from the sum of p0279 and r0296. Possible causes include:
- line supply voltage dip or another line supply fault.
- overload of the infeed.
- for ALM: Incorrect controller parameterization.

See also: p0279 (DC link voltage offset alarm threshold), r0296 (DC link voltage undervoltage threshold)

Remedy: - check the line voltage and line supply quality.
- reduce the power drawn, avoid step-like load changes
- for ALM: Adapt the controller parameterization, e.g. using an automatic line supply identification (p3410 = 4, 5).
206900 <location>Braking Module: Fault (1 -> 0)
Message value: %1
Drive object: A_INF, B_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause: The Braking Module signals a fault (1 -> 0) via X21.4 ("booksize" format) or terminal X21.5 ("chassis" format).
This signal is interconnected via binector input BI: p3866[0...7].
See also: p3866 (Braking Module fault)
Remedy: - reduce the number of braking operations.
- check binector input BI: p3866[0...7] and the wiring from terminal X21.4 ("booksize" format) or terminal X21.5 ("chassis" format).

206901 <location>Braking Module: Pre-alarm I2t shutdown
Message value: %1
Drive object: A_INF, B_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause: The Braking Module signals "Pre-alarm I2t shutdown" via terminal X21.3.
This signal is interconnected via binector input p3865[0...7].
Note: The pre-alarm I2t shutdown is only possible for "booksize" formats. This function is not supported for "chassis" formats.
Remedy: - reduce the number of braking operations.
- check binector input BI: p3865[0...7] and the wiring from terminal X21.3 of the particular Braking Module.

206904 <location>Braking Module internal is inhibited
Message value: %1
Drive object: B_INF
Reaction: NONE
Acknowledge: NONE
Cause: The internal Braking Module was inhibited via the binector input BI: p3680 = 1 signal.
In the inhibited state, energy cannot be dissipated using the braking resistor.
See also: p3680 (Braking Module internal inhibit)
Remedy: Release the internal Braking Module (BI: p3680 = 0 signal).

206905 <location>Braking Module internal I2t shutdown alarm
Message value: %1
Drive object: B_INF
Reaction: NONE
Acknowledge: NONE
Cause: The internal Braking Module outputs an alarm due to the high I2t value.
80% of the maximum switch-on duration of the braking resistor has been reached.
Note: This message is also displayed via BO: p3685.
See also: r3685 (Digital Braking Module: Pre-alarm I2t shutdown)
Remedy: Reduce the number of braking operations.

206906 <location>Braking Module internal fault
Message value: %1
Drive object: B_INF
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The internal Braking Module outputs a fault due to overcurrent or an excessively high I²t value and is therefore inhibited.

Note:
This message is also displayed via BO: p3686.
Fault value (r0949, interpret bitwise binary):
 Bit 0 = 1: I²t exceeded
 Bit 1 = 1: overcurrent
See also: r3686 (Digital Braking Module Fault)

Remedy: Reduce the number of braking operations.

206907 <location>Braking Module internal overtemperature

Message value:
Drive object: B_INF
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY

Cause: The temperature sensor connected to the braking resistor signals an overtemperature. The Braking Module is still active. If the overtemperature continues for an additional 60s, the Braking Module is shut down (F6908).
See also: r3687 (Digital Braking Module pre-alarm overtemperature)

Remedy:
- reduce the temperature at the sensor.
- check the temperature sensor connection.

206908 <location>Braking Module internal shutdown due to overtemperature

Message value:
Drive object: B_INF
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY

Cause: Shutdown of the Braking Module due to overtemperature at the temperature sensor of the braking resistor for more than 60s.
See also: r3688 (Digital Braking Module fault overtemperature)

Remedy:
- reduce the temperature at the sensor.
- check the temperature sensor connection.

206909 <location>Braking Module internal Vce fault

Message value:
Drive object: B_INF
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: Trip due to Vce fault. Collector emitter voltage dip (Vce)
See also: r3689 (Digital Braking Module Vce fault)

Remedy:
- Power ON
- replace the unit.

207011 <location>Drive: Motor overtemperature

Message value:
Drive object: SERVO, VECTOR
Reaction: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
CAUSE:
KTY:
The motor temperature has exceeded the fault threshold (p0605) or the timer (p0606) after the alarm
threshold was exceeded (p0604) has expired.
The response parameterized in p0610 becomes active.
PTC:
The response threshold of 1650 Ohm was exceeded and the timer (p0606) has expired.
The response parameterized in p0610 becomes active.
Possible causes:
- motor is overloaded.
- motor ambient temperature too high.
- wire breakage or sensor not connected.
Fault value (r0949, interpret decimal):
For SME selected (p0601 = 10), number of the sensor channel leading to the message.
For I2t motor model activated (p0612 bit 0 = yes, p0611 > 0), fault value = 200 refers to a fault that
was initiated by the I2t motor model.
See also: p0604, p0605, p0606, p0610

REMEDY:
- reduce the motor load.
- check the ambient temperature.
- check the wiring and sensor connector.
See also: p0604, p0605, p0606

207012 <location>Drive: I2t motor model overtemperature
Message value:
%1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause:
The thermal I2t motor model identified that the temperature alarm threshold was exceeded.
See also: r0034 (Motor utilization), p0605 (Motor overtemperature fault threshold), p0611 (I2t motor
model thermal time constant)
Remedy:
- check the motor load and if required, reduce.
- check the motor ambient temperature.
- check the thermal time constant p0611.
- check the overtemperature fault threshold p0605 (= alarm threshold for the I2t motor model)

207015 <location>Drive: Motor temperature sensor alarm
Message value:
%1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause:
An error was detected when evaluating the temperature sensor set in p0600 and p0601.
With the fault, the time in p0607 is started. If the fault is still present after this time has expired, then
fault F07016 is output; however, at the earliest, 1 s after alarm A07015.
Possible causes:
- wire breakage or sensor not connected (KTY: R > 1630 Ohm).
- measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Alarm value (r2124, interpret decimal):
For SME selected (p0601 = 10), number of the sensor channel leading to the message.
Remedy:
- check that the sensor is connected correctly.
- check the parameterization (p0600, p0601).
See also: r0035, p0600, p0601, p0607, p4600, p4601, p4602, p4603, r4620

207016 <location>Drive: Motor temperature sensor fault
Message value:
%1
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledgment: IMMEDIATELY
Cause: An error was detected when evaluating the temperature sensor set in p0600 and p0601.
Possible causes:
- wire breakage or sensor not connected (KTY: R > 1630 Ohm).
- measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Note:
If alarm A07015 is present, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 1 s after alarm A07015.
Fault value (r0949, interpret decimal):
For SME selected (p0601 = 10), number of the sensor channel leading to the message.
See also: p0607 (Temperature sensor fault timer)

Remedy:
- check that the sensor is connected correctly.
- check the parameterization (p0600, p0601).
- induction motors: De-activate temperature sensor fault (p0607 = 0).
See also: r0035, p0600, p0601, p0607, p4600, p4601, p4602, p4603, r4620

207080 <location>Drive: Incorrect control parameter
Message
Parameter: %1
Value:
Drive Object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The closed-loop control parameters have been parameterized incorrectly (e.g. p0356 = L_spread = 0).
Fault value (r0949, interpret decimal):
The fault value includes the parameter number involved.
The following parameter numbers only occur as fault values for vector drives:
p0310, for synchronous motors: p0341, p0344, p0350, p0357
The following parameter numbers do not occur as fault values for synchronous motors:
p0354, p0358, p0360
See also: p0310, p0311, p0341, p0344, p0350, p0354, p0356, p0357, p0358, p0360, p0400, p0404,
p0408, p0640, p1082, p1300
Remedy:
Modify the parameter indicated in the fault value (r0949) (e.g. p0640 = current limit > 0).
See also: p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0400, p0404, p0408, p0640,
p1082

207082 <location>Macro: Execution not possible
Message
Fault cause: %1, supplementary information: %2, preliminary parameter number: %3
Value:
Drive Object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The macro cannot be executed.
Fault value (r0949, interpret hexadecimal):
cccbbaa hex:
cccc = preliminary parameter number, bb = supplementary information, aa = fault cause
Fault causes for the trigger parameter itself:
-20: Called file is not valid for parameter 15.
-21: Called file is not valid for parameter 700.
-22: Called file is not valid for parameter 1000.
-23: Called file is not valid for parameter 1500.
-24: Data type of a TAG is incorrect (e.g.: Index, number or bit is not U16).
Fault causes for the parameters to be set:
-25: Error level has an undefined value.
-26: Mode has an undefined value.
-27: A value was entered as string in the tag value that is not "DEFAULT".
-31: Entered drive object type unknown.
-32: A device was not able to be found for the determined drive object number.
-34: A trigger parameter was recursively called.
-35: It is not permissible to write to the parameter via macro.
-36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect.
-37: Source parameter for a BICO interconnection was not able to be determined.
-38: An index was set for a non-indexed (or CDS-dependent) parameter.
-39: No index was set for an indexed parameter.
-41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN.
-42: A value not equal to 0 or 1 was set for a BitOperation.
-43: Reading the parameter to be changed by the BitOperation was unsuccessful.
-51: Factory setting for DEVICE may only be executed on the DEVICE.
-61: The setting of a value was unsuccessful.

Remedy:
- check the parameter involved.
- check the macro file and BICO interconnection.

See also: p0015, p0700, p1000, p1500

207083 <location>Macro: ACX file not found
Message value:
Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The ACX file (macro) to be executed was not able to be found in the appropriate directory.
Fault value (r0949, interpret decimal):
Parameter number with which the execution was started.
See also: p0015, p0700, p1000, p1500
Remedy:
- check whether the file is saved in the appropriate directory on the memory card.

Example:
If p0015 is set to 1501, then the selected ACX file must be located in the following directory:
... /PMACROS/DEVICE/P15/PM001501.ACX

207084 <location>Macro: Condition for WaitUntil not fulfilled
Message value:
Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts.
Fault value (r0949, interpret decimal):
Parameter number for which the condition was set.
Remedy:
Check and correct the conditions for the WaitUntil loop.

207085 <location>Drive: Open-loop/closed-loop control parameters changed
Message value:
Parameter: %1
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Parameters of the open-loop/closed-loop control had to be changed as they exceeded dynamic limits as a result of other parameters.
Fault value (r0949, interpret decimal):
The fault value includes the modified parameter number.
340: The motor and control parameters were automatically calculated (p0340 = 1), because the vector control was subsequently activated as configuration (r0108.2).
See also: p0640, p1082, p1300, p1800
Remedy: It is not necessary to change the parameters as they have already been correctly limited.
207086 <location>Units changeover: Parameter limit violation due to reference value change

Message value: Parameter: %1

Drive object: A_INF, B_INF, S_INF, SERVO, TM41, VECTOR

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: A reference parameter was changed in the system. This resulted in the fact that for the parameters involved, the selected value was not able to be written in the per unit representation (cause: e.g. the steady-state minimum/maximum limit or that defined in the application was violated). The values of the parameters were set to the corresponding violated minimum/maximum limit or to the factory setting.

Fault value (r0949, parameter):
Diagnostics parameter r9450 to display the parameters that were not able to be re-calculated.

Remedy: Check the adapted parameter value and if required correct.
See also: r9450 (Reference value change parameter with unsuccessful calculation)

207087 <location>Drive: Encoderless operation not possible for the selected pulse frequency

Message value: Parameter: %1

Drive object: SERVO

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: Encoderless operation is not possible for the selected pulse frequency (p1800).
Encoderless operation is activated under the following conditions:
- the changeover speed for encoderless operation (p1404) is less than the maximum speed (p0322).
- a control type with encoderless operation has been selected (p1300).
- encoder faults of the motor encoder result in a fault response with encoderless operation (p0491).
See also: p0491, p1300, p1404, p1800

Remedy: Increase the pulse frequency (p1800).
Note: In encoderless operation, the pulse frequency must be at least as high as half the current controller clock cycle (1/p0115[0]).

207088 <location>Units changeover: Parameter limit violation due to units changeover

Message value: Parameter: %1

Drive object: A_INF, B_INF, S_INF, SERVO, TM41, VECTOR

Reaction: IMMEDIATELY

Acknowledge: IMMEDIATELY

Cause: A changeover of units was initiated.
Possible causes for the violation of a parameter limit are:
- when rounding off a parameter corresponding to its decimal places, the steady-state minimum or maximum limit was violated.
- inaccuracies for the data type "Floating Point".
In these cases, when the minimum limit is violated then the parameter value is rounded up and when the maximum limited is violated the parameter value is rounded down.
Fault value (r0949, interpret decimal):
Diagnostics parameter r9451 to display all parameters whose value had to be adapted.
See also: p0100 (IEC/NEMA mot stds), p0349 (System of units, motor equivalent circuit diagram data), p0505 (Selecting the system of units), p0595 (Selecting technological units)

Remedy: Check the adapted parameter values and if required correct.
See also: r9451 (Units changeover adapted parameters)
207089 <location>Changing over units: Adding a function module blocked if units changed over
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An attempt was made to add a function module. This is not permissible if the units have already been changed over.
See also: p0100 (IEC/NEMA mot stds), p0349 (System of units, motor equivalent circuit diagram data), p0505 (Selecting the system of units)
Remedy: Restore units that have been changed over to the default value.

207090 <location>Drive: Upper torque limit less than the lower torque limit
Message value: -
Drive object: SERVO
Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: The upper torque limit is lower than the lower torque limit.
Remedy: P1 must be >= P2 if parameter P1 is connected to p1522 and parameter P2 to p1523.

207100 <location>Drive: Sampling times cannot be reset
Message value: Parameter: %1
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: When resetting drive parameter (p0976) sampling times cannot be reset using p0111, p0112, p0115.
Fault value (r0949, interpret decimal): Parameter whose setting prevents the sampling times being reset.
See also: r0110 (Basic sampling times)
Remedy: - continue to work with the set sampling times.
- before resetting the drive parameters, set the basic clock cycle p0110[0] to the original value.
See also: r0110 (Basic sampling times)

207110 <location>Drive: Sampling times and basic clock cycle do not match
Message value: Parameter: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The parameterized sampling times do not match the basic clock cycle.
Fault value (r0949, interpret decimal): The fault value specifies the parameter involved.
See also: r0110, r0111, p0115
Remedy: Enter the current controller sampling times so that they are identical to the basic clock cycle, e.g. by selecting p0112. Note which basic clock cycle is selected in p0111.
The sampling times in p0115 can only be changed manually in the sampling times presetting "Expert" (p012).
See also: r0110, r0111, p0112, p0115

207200 <location>Drive: Master control ON/OFF1 command present
Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, VECTOR
Reaction: NONE
Acknowledge: NONE
Overview of Alarms 03/2009
SINAMICS-Alarms

207210 <location>Master control PC/AOP inhibited

Cause: The ON/OFF1 command is not 0, either via binector input p0840 (current CDS) or in control word p3982 bit 0.
Remedy: The signal at binector input p0840 (current CDS) as well as p3982 bit 0 must be 0.

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY

Cause: The transfer of master control is disabled via binector input p3985.
Remedy: Change the signal via binector input p3985.

207220 <location>Drive: Master control by PLC missing

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: A_INFEED: OFF1 (NONE, OFF2), SERVO: OFF1 (NONE, OFF2, OFF3, STOP1, STOP2), VECTOR: OFF1 (NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY

Cause: The "master control by PLC" signal was missing in operation.
Remedy: - check the interconnection of the binector input for "master control by PLC" (p0854).
- check the feedback circuit from the line contactor.
Note:
If the drive should continue to operate after withdrawing "master control by PLC" then fault response must be parameterized to NONE or the message type should be parameterized as alarm.

207300 <location>Drive: Line contactor feedback signal missing

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY

Cause: - the line contactor was not able to be closed within the time in p0861.
- the line contactor was not able to be opened within the time in p0861.
- the line contactor has closed although the drive converter is powered down.
Remedy: - check the setting of p0860.
- check the feedback circuit from the line contactor.
- increase the monitoring time in p0861.
See also: p0860 (Line cont. fdbk sig), p0861 (Line contactor monitoring time)

207311 <location>Bypass motor switch

Message value:
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
CAUSE: Fault value: Bit field BYPASS_CONTACTOR_ERROR_STATE
Bit 1 BYPASS_CONTACTOR_ERR_FBK_ON_MISSING
Switch "Closed" feedback signal missing
Bit 2 BYPASS_CONTACTOR_ERR_FBK_OFF_MISSING
Switch "opened" feedback signal missing
Bit 3 BYPASS_CONTACTOR_ERR_TOO_SLOW
Switch feedback signal too slow:
After switching, the system waits for the positive feedback signal. If the feedback signal is received later than the specified time, then a fault trip (shutdown) is issued.
Bit 6 BYPASS_CONTACTOR_ERR_BYPASS_INCONSISTENCY
Drive switch feedback signal is not consistent with the bypass state:
When powering up or for STAGING, the drive switch is closed.
See also: p1260 (Bypass configuration), r1261 (Bypass control/status word), p1266 (Bypass, control command), p1267 (Bypass changeover source configuration), p1269 (Bypass switch feedback signal), p1274 (Bypass switch monitoring time)

REMEDY:
- check the transfer of the feedback signals.
- check the switch

207312 <LOCATION>Bypass LSS:
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
CAUSE: Fault value: Bit field BYPASS_CONTACTOR_ERROR_STATE
Bit 1 BYPASS_CONTACTOR_ERR_FBK_ON_MISSING
Switch "Closed" feedback signal missing
Bit 2 BYPASS_CONTACTOR_ERR_FBK_OFF_MISSING
Switch "opened" feedback signal missing
Bit 3 BYPASS_CONTACTOR_ERR_TOO_SLOW
Switch feedback signal too slow:
After switching, the system waits for the positive feedback signal. If the feedback signal is received later than the specified time, then a fault trip (shutdown) is issued.
Bit 6 BYPASS_CONTACTOR_ERR_BYPASS_INCONSISTENCY
Line Side Switch feedback signal is not consistent with the bypass state:
When powering up or for STAGING, the Line Side Switch is closed without this having been requested from the bypass.
See also: p1260 (Bypass configuration), r1261 (Bypass control/status word), p1266 (Bypass, control command), p1267 (Bypass changeover source configuration), p1269 (Bypass switch feedback signal), p1274 (Bypass switch monitoring time)

REMEDY:
- check the transfer of the feedback signals.
- check the switch

207320 <LOCATION>Drive: Automatic restart interrupted
Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: - The specified number of restart attempts (p1211) has been completely used up because within the monitoring time (p1213) the faults were not able to be acknowledged. The number of restart attempts (p1211) is decremented at each new start attempt.
- there is no active ON command.
- the monitoring time for the power unit has expired (p0857).
- when exiting commissioning or at the end of the motor identification routine or the speed controller optimization, the drive unit is not automatically powered up again.

Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.

Remedy: - increase the number of restart attempts (p1211). The current number of starting attempts is displayed in r1214.
- increase the delay time in p1212 and/or the monitoring time in p1213.
- issue an ON command (p0840).
- either increase or disable the monitoring time of the power unit (p0857).

207321 <location>Drive: Automatic restart active
Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The automatic restart (AR) is active. When the line supply returns and/or the causes of the existing faults are removed the drive is automatically restarted. The pulses are enabled and the motor starts to rotate.

Remedy: - the automatic restart (AR) should, if required, be inhibited (p1210 = 0).
- an automatic restart can be directly interrupted by withdrawing the power-on command (BI: p0840).

207329 <location>Drive: kT estimator, kT(iq) characteristic or voltage compensation does not function
Message value: %1
Drive object: SERVO
Reaction: NONE
Acknowledge: NONE
Cause: A function of the function module "extended torque control" (r0108.1) was activated - however the (complete) function is not available.
Fault value (r0949, interpret decimal):
1 ... 3: The kT estimator is active (p1780.3 = 1) without a functioning compensation of the voltage emulation error in the drive converter. This means that the accuracy is severely restricted.
1: The drive converter voltage emulation error "final value" is 0 (p1952).
2: The drive converter voltage emulation error "current offset" is 0 (p1953).
3: The compensation of the voltage emulation error is disabled (p1780.8 = 0).
4: The kT estimator (p1780.3 = 1), the kT(iq) characteristic (p1780.9 = 1) or the compensation of the voltage emulation error (p1780.8 = 1) was activated without activating the function module "extended torque control" (when the function module is activated, the following must apply: r0108.1 = 1).

Remedy:
Re fault value = 1, 2:
- carry out an identification of the voltage emulation error in the drive converter (p1909.14 = 1, p1910 = 1).
- set the parameter to compensate the voltage emulation error in the drive converter (p1952, p1953).
Re fault value = 3:
- enable the compensation of the voltage emulation error in the drive converter (p1780.8 = 1).
Re fault value = 4:
- activate the function module "extended torque control" (r0108.1 = 1) or de-activate the corresponding functions (p1780.3 = 0, p1780.8 = 0, p1780.9 = 0).

207330 <location>Flying restart: Measured search current too low
Message value: -
Drive object: VECTOR
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: During a flying restart, it was identified that the search current reached is too low. It is possible that the motor is not connected.

Remedy: Check the motor feeder cables.

207331 <location>FlyRestart: Not supported
Message value:
Drive object: VECTOR
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY

Cause: It is not possible to power up with the motor rotating (no flying restart). In the following cases, the "flying restart" function is not supported:
Permanent-magnet synchronous motor (PEM): Encoderless operation without a Voltage Sensing Module (VSM) being connected.

Remedy: - de-activate the "flying restart" function (p1200 = 0).
- change the open-loop/closed-loop control mode (p1300).
- connect a Voltage Sensing Module (VSM) (voltage measurement).

207350 <location>Drive: Measuring probe parameterized to a digital output
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: The measuring probe is connected to a bi-directional digital input/output and the terminal is set as output.
Alarm value (r2124, decimal):
9: DI/DO 9 (X122.8)
10: DI/DO 10 (X122.10)
11: DI/DO 11 (X122.11)
13: DI/DO 13 (X132.8)
14: DI/DO 14 (X132.10)
15: DI/DO 15 (X132.11)

Remedy: - set the terminal as input (p0728).
- de-select the measuring probe (p0488, p0489, p0580).

207400 <location>Drive: DC link voltage maximum controller active
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE

Cause: The DC link voltage controller has been activated because the upper switch-in threshold has been exceeded (r1242). The ramp-down times are automatically increased in order to maintain the DC link voltage (r0026) within the permissible limits. There is a system deviation between the setpoint and actual speeds. When the DC link voltage controller is switched out (disabled), this is the reason that the ramp-function generator output is set to the speed actual value.
See also: p1240 (Vdc controller or Vdc monitoring configuration)

Remedy: If the controller is not to intervene:
- increase the ramp-down times.
- disable the Vdc max controller
If the ramp-down times are not to be changed:
- use a chopper or regenerative feedback unit
207401 <location>Drive: DC link voltage maximum controller de-activated
Message value: -
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause:
The Vdc_max controller can no longer maintain the DC link voltage (r0026) below the limit value (r1242) and was therefore switched out (disabled).
- the line supply voltage is permanently higher than specified for the power unit.
- the motor is permanently in the regenerative mode as a result of a load that is driving the motor.
Remedy:
- check whether the input voltage is within the permissible range.
- check whether the load duty cycle and load limits are within the permissible limits.

207402 <location>Drive: DC link voltage minimum controller active
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause:
The DC link voltage controller has been activated as the lower switch-in threshold has been undershot (r1246).
The kinetic energy of the motor is used in order to buffer the DC link. This brakes the drive.
See also: p1240 (Vdc controller or Vdc monitoring configuration)
Remedy:
The alarm disappears when power supply returns.

207403 <location>Drive: Lower DC link voltage threshold reached
Message value: -
Drive object: SERVO
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause:
The DC link voltage monitoring is active (p1240 = 2, 3) and the lower DC link voltage threshold (p1248) was reached in the "Operation" state.
Remedy:
- check the line supply voltage.
- check the infeed module
- reduce the lower DC link threshold (p1248).
- switch out (disable) the DC link voltage monitoring (p1240 = 0).

207403 <location>Drive: Lower DC link voltage threshold reached
Message value: -
Drive object: VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause:
The DC link voltage monitoring is active (p1240 , p1280 = 5, 6) and the lower DC link voltage threshold (r1246, r1286) was reached in the "Operation" state.
Remedy:
- check the line supply voltage.
- check the infeed module
- adapt the device supply voltage (p0210) or the switch-on level (p1245, p1285).
- disable the DC link voltage monitoring (p1240, p1280 = 0).

207404 <location>Drive: Upper DC link voltage threshold reached
Message value: -
Drive object: SERVO
Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: The DC link voltage monitoring is active (p1240 = 1, 3) and the upper DC link voltage threshold (p1244) was reached in the "Operation" state.

Remedy: - check the line supply voltage.
- check the infeed module or the Braking Module.
- increase the upper DC link voltage threshold (p1244).
- switch out (disable) the DC link voltage monitoring (p1240 = 0).

207404 <location>Drive: Upper DC link voltage threshold reached
Message value: -
Drive object: VECTOR
Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: The DC link voltage monitoring is active (p1240 = 4, 6) and the upper DC link voltage threshold (r1242, r1282) was reached in the "Operation" state.

Remedy: - check the line supply voltage.
- check the infeed module
- adapt the device supply voltage (p0210).
- disable the DC link voltage monitoring (p1240, p1280 = 0).

207405 <location>Drive: Kinetic buffering minimum speed not reached
Message value: -
Drive object: VECTOR
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: During kinetic buffering the speed fell below minimum speed (p1257 or p1297 for vector drives with V/f control) and the line supply did not return.

Remedy: Check the speed threshold for the Vdc_min controller (kinetic buffering) (p1257, p1297).
See also: p1257 (Vdc_min controller speed threshold)

207406 <location>Drive: Kinetic buffering maximum time exceeded
Message value: -
Drive object: VECTOR
Reaction: OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: The maximum buffer time (p1255 and p1295 for vector drives with V/f control) has been exceeded without the line supply having returned.

Remedy: Check the time threshold for Vdc-min controller (kinetic buffering) (p1255, p1295).
See also: p1255 (Vdc_min controller time threshold)

207409 <location>Drive: V/f control, current limiting controller active
Message value: %1
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The current limiting controller of the V/f control was activated because the current limit was exceeded.

Remedy: The alarm is automatically withdrawn when increasing the current limit (p0640), reducing the load or using a slower up ramp for the setpoint (reference) speed.

207410 <location>Drive: Current controller output limited
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following:
- motor not connected or motor contactor open.
- no DC link voltage present.
- Motor Module defective.
- the "flying restart" function is not activated.

Remedy:
- connect the motor or check the motor contactor.
- check the DC link voltage (r0070).
- check the Motor Module.
- activate the "flying restart" function (p1200).

207411 <location>Drive: Flux controller output limited
Message value:
Drive object: SERVO
Reaction: SERVO: OFF2 (NONE, OFF1) VECTOR: OFF2
Acknowledge: IMMEDIATELY
Cause: The specified flux setpoint cannot be reached although 90% of the maximum current has been specified.
- incorrect motor data.
- motor data and motor configuration (star/delta) do not match.
- the current limit has been set too low for the motor.
- induction motor (encoderless, open-loop controlled) in I2t limiting.
- the Motor Module is too small.

Remedy:
- correct the motor data.
- check the motor configuration.
- correct the current limits (p0640, p0323).
- reduce the induction motor load.
- if required, use a larger Motor Module.

207411 <location>Drive: Flux setpoint not reached when building up excitation
Message value:
Drive object: VECTOR
Reaction: SERVO: OFF2 (NONE, OFF1) VECTOR: OFF2
Acknowledge: IMMEDIATELY
Cause: When quick magnetizing is configured (p1401 Bit6 = 1) the specified flux setpoint is not reached although 90 % of the maximum current is specified.
- incorrect motor data.
- motor data and motor configuration (star/delta) do not match.
- the current limit has been set too low for the motor.
- induction motor (encoderless, open-loop controlled) in I2t limiting.
- the Motor Module is too small.

Remedy:
- correct the motor data.
- check the motor configuration.
- correct the current limits (p0640).
- reduce the induction motor load.
- if required, use a larger Motor Module.
- check motor supply cable.
- check power unit.

207412 <location>Drive: Commutation angle incorrect (motor model)
Message value:
Drive object: SERVO, VECTOR
Reaction: ENCODER (NONE, OFF2)
Acknowledge: IMMEDIATELY
Cause:

An incorrect commutation angle was detected, that can result in a positive coupling in the speed controller.

Possible causes:
- the motor encoder is incorrectly adjusted with respect to the magnet position.
- the motor encoder is damaged.
- the angular commutation offset is incorrectly set (p0431).
- data to calculate the motor model has been incorrectly set (p0356 (motor-stator leakage inductance) and/or p0350 (motor-stator resistance) and/or p0352 (cable resistance).
- the changeover speed for the motor model is too low (p1752). The monitoring function only becomes effective above the changeover speed.
- the motor encoder speed signal is faulted.
- the control loop is instable due to incorrect parameterization.

Fault value (r0949, interpret decimal):

SERVO:

0: The comparison of the pole position angle from the encoder and the motor model resulted in an excessively high value (> 80 ° electrical).
1: -

VECTOR:

0: The comparison of the pole position angle from the encoder and the motor model resulted in an excessively high value (> 45 ° electrical).
1: The change in the speed signal from the motor encoder has changed by > p0492 within a current controller clock cycle.

Remedy:

- if the encoder mounting was changed - re-adjust the encoder.
- replace the defective motor encoder.
- correctly set the angular commutation offset (p0431).
- correctly set the motor stator resistance, cable resistance and motor-stator leakage inductance (p0350, p0352, p0356).
- increase the changeover speed for the motor model (p1752). The monitoring is completely de-activated for p1752 > p1082 (maximum speed)

Note:

For High Dynamic Motors (1FK7xxx-7xxx), for applications with a higher current, if necessary, the monitoring should be disabled.

207413

<location>Drive: Commutation angle incorrect (pole position identification)

Message value:

-

Drive object: SERVO, VECTOR

Reaction: ENCODER (NONE, OFF2)

Acknowledge: IMMEDIATELY

Cause:

An incorrect commutation angle was detected, that can result in a positive coupling in the speed controller.
- within the pole position identification routine (p1982 = 2):
 A difference of > 45° electrical to the encoder angle was determined.
- for VECTOR, within the encoder adjustment (p1990 = 2):
 A difference of > 6 ° electrical to the encoder angle was determined.

Remedy:

- correctly set the angular commutation offset (p0431).
- re-adjust the motor encoder after the encoder has been replaced.
- replace the defective motor encoder.
- check the pole position identification routine. If the pole position identification routine is not suitable for this motor type, then disable the plausibility check (p1982 = 0).

207414

<location>Drive: Encoder serial number changed

Message value:

-

Drive object: SERVO

Reaction: ENCODER (NONE, OFF2)

Acknowledge: IMMEDIATELY
Cause: The serial number of the motor encoder of a synchronous motor has changed. The change was only checked for encoders with serial number (e.g. EnDat encoders) and build-in motors (e.g. p0300 = 401) or third-party motors (p0300 = 2).

Cause 1: The encoder was replaced.
Cause 2: A third-party, build-in or linear motor was re-commissioned.
Cause 3: The motor with integrated and adjusted encoder was replaced.
Cause 4: The firmware was updated to a version that checks the encoder serial number.

Remedy: Carry out an automatic adjustment using the pole position identification routine. First, accept the serial number with p0440 = 1. Acknowledge the fault. Initiate the pole position identification routine with p1990 = 1. Then check that the pole position identification routine is correctly executed.

SERVO:
If a pole position identification technique is selected in p1980, and if p0301 does not contain a motor type with an encoder adjusted in the factory, then p1990 is automatically activated.

or
Set the adjustment via p0431. In this case, the new serial number is automatically accepted.

or
Mechanically adjust the encoder. Accept the new serial number with p0440 = 1.

Re causes 3, 4:
Accept the new serial number with p0440 = 1.

207415 <location>Drive: Angular commutation offset transfer running
Message value:
Drive object: SERVO
Reaction: OFF2
Acknowledge: NONE
Cause: The angular commutation offset was automatically determined using p1990 = 1. This fault causes the pulses to be suppressed - this is necessary to transfer the angular commutation offset to p0431.
See also: p1990 (Encoder adjustment, determine angular commutation offset)

Remedy: The fault can be acknowledged without any additional measures.

207416 <location>Drive: Flux controller configuration
Message value:
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The configuration of the flux control (p1401) is contradictory. Alarm value (r2124, interpret hexadecimal):
ccbbaaaa hex
aaaa = parameter
bb = index
cc = fault cause
cc = 01 hex = 1 dec:
Quick magnetizing (p1401.6) for soft start (p1401.0).
cc = 02 hex = 2 dec:
Quick magnetizing (p1401.6) for flux build-up control (p1401.2).
cc = 03 hex = 3 dec:
Quick magnetizing (p1401.6) for Rs identification after restart (p0621 = 2).
Remedy:
Re fault cause = 1:
- Shut down soft start (p1401.0 = 0).
- Shut down quick magnetizing (p1401.6 = 0).
Re fault cause = 2:
- De-energize flux build-up control (p1401.2 = 0).
- Shut down quick magnetizing (p1401.6 = 0).
Re fault cause = 3:
- Re-parameterize Rs identification (p0621 = 0, 1)
- Shut down quick magnetizing (p1401.6 = 0).

207420 <<location>> Drive: Current setpoint filter natural frequency > Shannon frequency
Message value:
Drive object: SERVO
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: One of the filter natural frequencies is greater than the Shannon frequency.
The Shannon frequency is calculated according to the following formula: 0.5 / p0115[0]
Fault value (r0949, interpret hexadecimal):
Bit 0: Filter 1 (p1658, p1660)
Bit 1: Filter 2 (p1663, p1665)
Bit 2: Filter 3 (p1668, p1670)
Bit 3: Filter 4 (p1673, p1675)
Bit 8 ... 15: Data set number (starting from zero).
Remedy:
- reduce the numerator or denominator natural frequency of the current setpoint filter involved.
- reduce the current controller sampling time (p0115[0]).
- switch out the filter involved (p1656).

207421 <<location>> Drive: Speed setpoint filter natural frequency > Shannon frequency
Message value:
Drive object: SERVO
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: One of the filter natural frequencies is greater than the Shannon frequency.
The Shannon frequency is calculated according to the following formula: 0.5 / p0115[1]
Fault value (r0949, interpret hexadecimal):
Bit 0: Filter 1 (p1417, p1419)
Bit 1: Filter 2 (p1423, p1425)
Bit 8 ... 15: Data set number (starting from zero).
Remedy:
- reduce the numerator or denominator natural frequency of the speed setpoint filter involved.
- reduce the speed controller sampling time (p0115[1]).
- switch out the filter involved (p1414).

207422 <<location>> Drive: Reference model natural frequency > Shannon frequency
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The natural filter frequency of the PT2 element for the reference model (p1433) is greater than the Shannon frequency.
The Shannon frequency is calculated according to the following formula: 0.5 / p0115[1]
Remedy:
- reduce the natural frequency of PT2 element for reference model (p1433).
- reduce the speed controller sampling time (p0115[1]).
207423 <location>Drive: APC filter natural frequency > Shannon frequency
Message value: %1
Drive object: SERVO
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: One of the filter natural frequencies is greater than the Shannon frequency.
The Shannon frequency is calculated according to the following formula: 0.5 / (p0115[1] * x)
Fault value (r0949, interpret hexadecimal):
Bit 0: Filter 1.1 (p3711, p3713), x = 1
Bit 4: Filter 2.1 (p3721, p3723), x = p3706
Bit 5: Filter 2.2 (p3726, p3728), x = p3706
Bit 8: Filter 3.1 (p3731, p3733), x = p3707
Bit 9: Filter 3.2 (p3736, p3738), x = p3707
Bit 16 ... 32: Data set number (starting from zero)
Remedy: - reduce the numerator or denominator natural frequency of the filter involved.
- reduce the speed controller sampling time (p0115[1]) or the sub-sampling (p3706, p3707).
- switch out the filter involved (p3704).

207424 <location>Drive: Operating condition for APC not valid
Message value: Fault cause: %1 bin
Drive object: SERVO
Reaction: NONE
Acknowledge: NONE
Cause: The APC function (Advanced Positioning Control) has identified an invalid operating condition.
Alarm value (r2124, interpret hexadecimal):
Bit 0 = 1: APC is operating without encoder
Bit 1 = 1: The load measuring system for APC, selected using p3701, has a fault. The APC function is disabled.
Bit 2 = 1: The load measuring system for APC, selected using p3701, has a fault. The pulse de-coupling is dis-
abled, i.e. the speed of the motor measuring system is used as speed for the closed-loop motor speed control.
Remedy: Re bit 0:
Only use the APC function in operation with an encoder.
Re Bit 1, 2:
Check the load measuring system.

207425 <location>Drive: APC monitoring time for speed limit expired
Message value: -
Drive object: SERVO
Reaction: OFF1
Acknowledge: IMMEDIATELY
Cause: The limit value (p3778) for the speed/velocity was exceeded for a time longer than that set in the mon-
itoring time (p3779).
Note: APC: Advanced Positioning Control
Remedy: - check the measured value.
- check the limit value and monitoring time (p3778, p3779).

207429 <location>Drive: DSC without encoder not possible
Message value: -
Drive object: SERVO
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The function DSC (Dynamic Servo Control) was activated although there is no encoder.

See also: p1191 (DSC position controller gain KPC)

Remedy: If there is no encoder and CI: p1191 (DSC position controller gain) is interconnected, then connector input CI: p1191 must have a 0 signal.

207430
Drive: Changeover to open-loop torque controlled operation not possible

Message

- **Value:**

Drive object: SERVO

Reaction: OFF2 (NONE, OFF1, OFF3)

Acknowledge: IMMEDIATELY

Cause: For encoderless operation, the converter cannot change over to closed-loop torque-controlled operation (BI: p1501).

Remedy: Do not attempt to cover over to closed-loop torque-controlled operation.

207431
Drive: Changeover to encoderless operation not possible

Message

- **Value:**

Drive object: SERVO

Reaction: OFF2 (OFF1)

Acknowledge: IMMEDIATELY

Cause: For closed-loop torque control, the converter cannot change over to encoderless operation (p1404).

Remedy: Do not attempt to change over to encoderless operation.

207432
Drive: Synchronous motor without overvoltage protection

Message

%1

Drive object: SERVO

Reaction: OFF2 (OFF1)

Acknowledge: IMMEDIATELY

Cause: Under voltage conditions, a synchronous motor can generate an overvoltage condition that can destroy the drive system.

Fault value (r0949, interpret hexadecimal): Associated Drive Data Set (DDS).

Remedy: Overvoltage protection can be implemented in the following ways:
- limit the maximum speed (p1082) without any additional protection.

The maximum speed without protection is calculated as follows:

 - Rotary motors: $p1082 \text{ [rpm]} \leq 11.695 \times \frac{p0297}{p0316} \text{ [Nm/A]}

 - Linear motors: $p1082 \text{ [m/min]} \leq 73.484 \times \frac{p0297}{p0316} \text{ [N/A]}

 - use a voltage protection module (VPM) in conjunction with the function "Safe Torque Off" (p9601, p9801).

 When a fault condition exists, the VPM short-circuits the motors. During the short-circuit, the pulses must be suppressed - this means that the terminals for the function "Safe Torque Off" must be connected to the VPM.

 When using a VPM, p0643 must be set to 1.

 - activating the internal voltage protection (IVP) with p1231 = 3.

 See also: p0643 (Overvoltage protection for synchronous motors), p1231 (Armature short-circuit / DC brake configuration)

207433
Drive: Closed-loop control with encoder is not possible as the encoder has not been unparked

Message

%1

Drive object: SERVO

Reaction: NONE (OFF1, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: The changeover to closed-loop control with encoder is not possible as the encoder has not been unparked.
Overview of Alarms 03/2009

SINAMICS-Alarms

Remedy:
- check whether the encoder firmware supports the "parking" function (r0481.6 = 1).
- upgrade the firmware.

Note:
For long-stator motors (p3870.0 = 1), the following applies:
The encoder must have completed the unparking procedure (r3875.0 = 1) before a changeover can be made to closed-loop control with encoder. The encoder is unparked with a 0/1 edge at BI: p3876 and remains unparked until a 0 signal is again present.

207434
<location>Drive: It is not possible to change the direction of rotation with the pulses enabled

Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A drive data set was selected - with the pulses enabled - which has a different parameterized direction of rotation (p1821).
It is only possible to change the motor direction of rotation using p1821 when the pulses are inhibited.
Remedy:
- change over the drive data set with the pulses inhibited.
- ensure that the changeover to a drive data set does not result in the motor direction of rotation being changed (i.e. for these drive data sets, the same value must be in p1821).
See also: p1821

207435
<location>Drive: Setting the ramp-function generator for sensorless vector control

Message value: Parameter: %1
Drive object: SERVO, VECTOR
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: During operation with sensorless vector control (r1407.1) the ramp-function generator was stopped (p1141) or bypassed (p1122). An internal setting command of the ramp-function generator output caused the set setpoint speed to be frozen or was not able to be realized.
Remedy:
- de-activate the holding command for the ramp-function generator (p1141).
- do not bypass the ramp-function generator (p1122).
- suppress the fault (p2101, p2119). This is necessary if the ramp-function generator is held using jogging and the speed setpoint is simultaneously inhibited (r0898.8).
Note:
For sensorless vector control it is not practical to read-in the main setpoint of the speed control via p1155 or p1160 (p0922). In this case, the main setpoint should be injected before the ramp-function generator (p1070). The reason for this is that the ramp-function generator output is automatically set when transitioning from closed-loop speed controlled into open-loop speed controlled operation.

207440
<location>EPOS: Jerk time is limited

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The calculation of the jerk time Tr = MAX(p2572, p2573) / p2574 resulted in an excessively high value so that the jerk time is internally limited to 1000 ms.
Note:
The alarm is also output if jerk limiting is not active.
Remedy:
- increase the jerk limiting (p2574).
- reduce maximum acceleration or maximum deceleration (p2572, p2573).
See also: p2572 (EPOS maximum acceleration), p2573 (EPOS maximum deceleration), p2574 (EPOS jerk limiting)
207441 <location>LR: Save the position offset of the absolute encoder adjustment

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The status of the absolute encoder adjustment has changed.
In order to permanently save the determined position offset (p2525) it must be saved in a non-volatile
fashion (p0971, p0977).
Remedy: None necessary.
This alarm automatically disappears after the offset has been saved.
See also: p2507 (LR absolute encoder adjustment status), p2525 (LR encoder adjustment, offset)

207442 <location>LR: Multiturn does not match the modulo range

Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The ratio between the multiturn resolution and the modular range (p2576) is not an integer number.
This results in the adjustment being set back, as the position actual value cannot be reproduced after
power-off/power-on.
Remedy: Make the ration between the multiturn resolution and the modulo range an integer number.
The ratio v is calculated as follows:
1. Motor encoder without position tracking:
 \[v = \frac{p0421 \times p2506 \times p0433 \times p2505}{p0432 \times p2504 \times p2576} \]
2. Motor encoder with position tracking for the measuring gear:
 \[v = \frac{p0412 \times p2506 \times p2505}{p2504 \times p2576} \]
3. Motor encoder with position tracking for the load gear:
 \[v = \frac{p2721 \times p2506 \times p0433}{p0432 \times p2576} \]
4. Motor encoder with position tracking for the load and measuring gear:
 \[v = \frac{p2721 \times p2506}{p2576} \]
5. Direct encoder without position tracking:
 \[v = \frac{p0421 \times p2506 \times p0433}{p0432 \times p2576} \]
6. Direct encoder with position tracking for the measuring gear:
 \[v = \frac{p0412}{p2576} \]
Note: With position tracking, it is recommended that p0412 and p2721 are changed.
See also: p0412, p0432, p0433, p2504, p2505, p2506, p2576, p2721

207443 <location>LR: Reference point coordinate not in the permissible range

Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The reference point coordinate received when adjusting the encoder via connector input p2599 lies
outside the half of the encoder range and cannot be set as current axis position.
Fault value (r0949, interpret decimal):
Maximum permissible value for the reference point coordinate.
Remedy: Set the reference point coordinate to a lower value than specified in the fault value.
See also: p2598 (EPOS reference point coordinate, signal source), p2599 (EPOS reference point
coordinate value)
207446 <location>Load gear: Position tracking cannot be reset
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The position tracking cannot be reset.
Remedy: Reset the position tracking as follows:
- select encoder commissioning (p0010 = 4).
- reset position tracking, position (p2720.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).

207447 <location>Load gear: Position tracking, maximum actual value exceeded
Message value: Component number: %1, encoder data set: %2, drive data set: %3
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: When the position tracking of the load gear is configured, the drive/encoder (motor encoder) identifies a maximum possible absolute position actual value (r2723) that can no longer be represented within 32 bits.
Maximum value: p0408 * p2721 * 2^p0419
Fault value (r0949, interpret hexadecimal):
cobbbaa hex
aa = encoder data set
bb = component number
cc = drive data set
See also: p0408, p0419, p2721
Remedy:
- reduce the fine resolution (p0419).
- reduce the multiturn resolution (p2721).
See also: p0419 (Fine resolution absolute value Gx_XIST2 (in bits)), p2721 (Load gear, rotary absolute gearbox, revolutions, virtual)

207448 <location>Load gear: Position tracking, linear axis has exceeded the maximum range
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: For a configured linear axis/no modulo axis, the currently effective motor encoder (encoder 1) has exceeded the maximum possible traversing range.
For the configured linear axis, the maximum traversing range is defined to be 64x (+/- 32x) of p0421.
It should be read in p2721 and interpreted as the number of load revolutions.
Note:
Here, only the motor encoder in the currently effective drive data set is monitored. The currently effective drive data set is displayed in x = r0051 and the corresponding motor encoder is specified in p0187[x].
Remedy:
The fault should be resolved as follows:
- select encoder commissioning (p0010 = 4).
- reset position tracking, position (p2720.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and the absolute encoder adjusted.
207449 <location>Load gear: Position tracking, current position outside tolerance window</location>

Message value: %1

Drive object: SERVO, VECTOR

Reaction: OFF1 (NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: When powered down, the currently effective motor encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.

Note:
Here, only the motor encoder in the currently effective drive data set is monitored. The currently effective drive data set is displayed in x = r0051 and the corresponding motor encoder is specified in p0187[x].

Fault value (r0949, interpret decimal):
Deviation (difference) to the last encoder position in increments of the absolute value after the measuring gear - if one is being used. The sign designates the traversing direction.

Note:
The deviation (difference) found is also displayed in r2724.

See also: p2722 (Load gear, position tracking tolerance window), r2724 (Load gear position difference)

Remedy:
Reset the position tracking as follows:
- select encoder commissioning (p0010 = 4).
- reset position tracking, position (p2720.2 = 1).
- de-select encoder commissioning (p0010 = 0).

The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
See also: p0010, p2507

207450 <location>LR: Standstill monitoring has responded</location>

Message value: -

Drive object: SERVO, VECTOR

Reaction: OFF1 (OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: After the standstill monitoring time (p2543) expired, the drive left the standstill window (p2542).
- position actual value inversion incorrectly set (p0410).
- standstill window set too small (p2542).
- standstill monitoring time set too low (p2543).
- position loop gain too low (p2538).
- position loop gain too high (instability/oscillation, p2538).
- mechanical overload.
- check the connecting cable, motor/drive converter (phase missing, interchange).
- when selecting motor identification, select tracking mode (BI: p2655[0] = 1 signal).
- when selecting function generator, select tracking mode (BI: p2655[0] = 1 signal) and de-activate position control (BI:p2550 = 0 signal).

Remedy:
Check the causes and resolve.

207451 <location>LR: Position monitoring has responded</location>

Message value: -

Drive object: SERVO, VECTOR

Reaction: OFF1 (OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: When the position monitoring time (p2545) expired, the drive had still not reached the positioning window (p2544).
- positioning window parameterized too small (p2544).
- position monitoring time parameterized too short (p2545).
- position loop gain too low (p2538).
- position loop gain too high (instability/oscillation, p2538).
- drive mechanically locked.
Remedy: Check the causes and resolve.

207452 <location>LR: Following error too high

Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The difference between the position setpoint position actual value (following error dynamic model, r2563) is greater than the tolerance (p2546).
- the drive torque or accelerating capacity exceeded.
- position measuring system fault.
- position control sense incorrect.
- mechanical system locked.
- excessively high traversing velocity or excessively high position reference value (setpoint) differences

Remedy: Check the causes and resolve.

207453 <location>LR: Position actual value preprocessing error

Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: An error has occurred during the position actual value preprocessing.
Remedy: Check the encoder for the position actual value preprocessing.
See also: p2502 (LR encoder assignment)

207454 <location>LR: Position actual value preprocessing does not have a valid encoder

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: One of the following problems has occurred with the position actual value preprocessing:
- an encoder is not assigned for the position actual value preprocessing (p2502 = 0).
- an encoder is assigned, but no encoder data set (p0187 = 99 or p0188 = 99 or p0189 = 99).
- an encoder an an encoder data set have been assigned, however, the encoder data set does not contain any encoder data (p0400 = 0) or invalid data (e.g. p0408 = 0).
Remedy: Check the drive data sets, encoder data sets and encoder assignment.
See also: p0187, p0188, p0189, p0400, p2502

207455 <location>EPOS: Maximum velocity limited

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The maximum velocity (p2571) is too high to correctly calculate the modulo correction.
Within the sampling time for positioning (p0115[5]), with the maximum velocity, a maximum of the half modulo length must be moved through. p2571 was limited to this value.
Remedy: - reduce the maximum velocity (p2571).
- increase the sampling time for positioning (p0115[5]).
207456 <location>EPOS: Setpoint velocity limited
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The current setpoint velocity is greater than the parameterized maximum velocity (p2571) and is therefore limited.
Remedy: - check the entered setpoint velocity.
- reduce the velocity override (CI: p2646).
- increase the maximum velocity (p2571).
- check the signal source for the externally limited velocity (CI: p2594).

207457 <location>EPOS: Combination of input signals illegal
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An illegal combination of input signals that are simultaneously set was identified. Alarm value (r2124, interpret decimal):
0: Jog 1 and jog 2 (p2589, p2590).
1: Jog 1 or jog 2 and direct setpoint input/MDI (p2589, p2590, p2647).
2: Jog 1 or jog 2 and start referencing (p2589, p2590, p2595).
3: Jog 1 or jog 2 and activate traversing task (p2589, p2590, p2631).
4: Direct setpoint input/MDI and starting referencing (p2647, p2595).
5: Direct setpoint input/MDI and activate traversing task (p2647, p2595).
6: Start referencing and activate traversing task (p2595, p2631).
Remedy: Check the appropriate input signals and correct.

207458 <location>EPOS: Reference cam not found
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: After starting the search for reference, the axis moved through the maximum permissible distance to search for the reference cam without actually finding the reference cam.
Remedy: - check the "reference cam" binector input (BI: p2612).
- check the maximum permissible distance to the reference cam (p2606).
- if axis does not have any reference cam, then set p2607 to 0.
See also: p2606 (EPOS search for reference, reference cam, maximum distance), p2607 (EPOS search for reference, reference cam present), p2612 (EPOS search for reference, reference cam)

207459 <location>EPOS: No zero mark
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: After leaving the reference cam, the axis has traversed the maximum permissible distance between the reference cam and zero mark without finding the zero mark.
Remedy: - check the encoder regarding the zero mark
- check the maximum permissible distance between the reference cam and zero mark (p2609).
- use an external encoder zero mark (equivalent zero mark) (p0495).
See also: p0495 (Equivalent zero mark, input terminal), p2609 (EPOS search for reference, max. distance ref. cam and zero mark)
207460 <location>EPOS: End of reference cam not found

Message value:
-
Drive object: SERVO, VECTOR
Reaction: OFF 1 (OFF 2, OFF 3)
Acknowledge: IMMEDIATELY
Cause: During the search for reference, when the axis reached the zero mark it also reached the end of the traversing range without detecting an edge at the binector input "reference cam" (BI: p2612). Maximum traversing range: -2147483648 [LU] ... -2147483647 [LU]
Remedy:
- check the "reference cam" binector input (BI: p2612).
- repeat the search for reference.
See also: p2612 (EPOS search for reference, reference cam)

207461 <location>EPOS: Reference point not set

Message value:
-
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: When starting a traversing block/direct setpoint input, a reference point is not set (r2684.11 = 0).
Remedy: Reference the system (search for reference, flying referencing, set reference point).

207462 <location>EPOS: Selected traversing block number does not exist

Message value:
%1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: A traversing block selected via BI: p2625 to BI: p2630 was started via BI: p2631 = 0/1 edge "Activate traversing task".
- the number of the started traversing block is not contained in p2616[0...n].
- the started traversing block is suppressed.
Alarm value (r2124, interpret decimal):
Number of the selected traversing block that is also not available.
Remedy:
- correct the traversing program.
- select an available traversing block number.

207463 <location>EPOS: External block change not requested in the traversing block

Message value:
%1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: For a traversing block with the block change enable CONTINUE_EXTERNAL_ALARM, the external block change was not requested.
Alarm value (r2124, interpret decimal):
Number of the traversing block.
Remedy: Resolve the reason as to why the edge is missing at binector input (BI: p2632).

207464 <location>EPOS: Traversing block is inconsistent

Message value:
%1
Drive object: SERVO, VECTOR
Reaction: OFF 1 (OFF 2, OFF 3)
Acknowledge: IMMEDIATELY
Cause: The traversing block does not contain valid information.
Alarm value (r2124, interpret decimal):
Number of the traversing block with invalid information.
Remedy: Check the traversing block and where relevant, take into consideration alarms that are present.

207465 <location>EPOS: Traversing block does not have a subsequent block
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: There is no subsequent block in the traversing block.
Alarm value (r2124, interpret decimal):
Number of the traversing block with the missing subsequent block.
Remedy: - parameterize this traversing block with the block change enable END.
- parameterize additional traversing blocks with a higher block number and for the last block, using the block change enable END.

207466 <location>EPOS: Traversing block number assigned a multiple number of times
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The same traversing block number was assigned a multiple number of times.
Alarm value (r2124, interpret decimal):
Number of the traversing block that was assigned a multiple number of times.
Remedy: Correct the traversing blocks.

207467 <location>EPOS: Traversing block has illegal task parameters
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The task parameter in the traversing block contains an illegal value.
Alarm value (r2124, interpret decimal):
Number of the traversing block with an illegal task parameter.
Remedy: Correct the task parameter in the traversing block.

207468 <location>EPOS: Traversing block jump destination does not exist
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: In a traversing block, a jump was programmed to a non-existent block.
Alarm value (r2124, interpret decimal):
Number of the traversing block with a jump destination that does not exist.
Remedy: - correct the traversing block.
- add the missing traversing block.
207469 <location>EPOS: Traversing block < target position < software limit switch minus

Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: In the traversing block the specified absolute target position lies outside the range limited by the software limit switch minus.
Alarm value (r2124, interpret decimal):
Number of the traversing block with illegal target position.
Remedy:
- correct the traversing block.
- change software limit switch minus (CI: p2578, p2580).

207470 <location>EPOS: Traversing block> target position > software limit switch plus

Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: In the traversing block the specified absolute target position lies outside the range limited by the software limit switch plus.
Alarm value (r2124, interpret decimal):
Number of the traversing block with illegal target position.
Remedy:
- correct the traversing block.
- change software limit switch plus (CI: p2579, p2581).

207471 <location>EPOS: Traversing block target position outside the modulo range

Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: In the traversing block the target position lies outside the modulo range.
Alarm value (r2124, interpret decimal):
Number of the traversing block with illegal target position.
Remedy:
- in the traversing block, correct the target position.
- change the modulo range (p2576).

207472 <location>EPOS: Traversing block ABS_POS/ABS_NEG not possible

Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: In the traversing block the positioning mode ABS_POS or ABS_NEG were parameterized with the modulo correction not activated.
Alarm value (r2124, interpret decimal):
Number of the traversing block with the illegal positioning mode.
Remedy: Correct the traversing block.
207473 <location>EPOS: Beginning of traversing range reached
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: When traversing, the axis has moved to the traversing range limit.
Remedy: Move away in the positive direction.

207474 <location>EPOS: End of traversing range reached
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: When traversing, the axis has moved to the traversing range limit.
Remedy: Move away in the negative direction.

207475 <location>EPOS: Target position < start of traversing range
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The target position for relative traversing lies outside the traversing range.
Remedy: Correct the target position.

207476 <location>EPOS: Target position > end of the traversing range
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The target position for relative traversing lies outside the traversing range.
Remedy: Correct the target position.

207477 <location>EPOS: Target position < software limit switch minus
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: In the current traversing operation, the target position is less than the software limit switch minus.
Remedy: - correct the target position.
- change software limit switch minus (CI: p2578, p2580).
See also: p2578 (EPOS software limit switch minus signal source), p2580 (EPOS software limit switch minus), p2582 (EPOS software limit switch activation)

207478 <location>EPOS: Target position > software limit switch plus
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: In the current traversing operation, the target position is greater than the software limit switch plus.
Remedy: - correct the target position.
 - change software limit switch plus (CI: p2579, p2581).
See also: p2579 (EPOS software limit switch plus signal source), p2581 (EPOS software limit switch plus), p2582 (EPOS software limit switch activation)

207479 <location>EPOS: Software limit switch minus reached

Message value:

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The axis is at the position of the software limit switch minus. An active traversing block was interrupted.

Remedy: - correct the target position.
 - change software limit switch minus (CI: p2578, p2580).
See also: p2578 (EPOS software limit switch minus signal source), p2580 (EPOS software limit switch minus), p2582 (EPOS software limit switch activation)

207480 <location>EPOS: Software limit switch plus reached

Message value:

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The axis is at the position of the software limit switch plus. An active traversing block was interrupted.

Remedy: - correct the target position.
 - change software limit switch plus (CI: p2579, p2581).
See also: p2579 (EPOS software limit switch plus signal source), p2581 (EPOS software limit switch plus), p2582 (EPOS software limit switch activation)

207481 <location>EPOS: Axis position < software limit switch minus

Message value:

Drive object: SERVO, VECTOR

Reaction: OFF1 (OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: The current position of the axis is less than the position of the software limit switch minus.

Remedy: - correct the target position.
 - change software limit switch minus (CI: p2578, p2580).
See also: p2578 (EPOS software limit switch minus signal source), p2580 (EPOS software limit switch minus), p2582 (EPOS software limit switch activation)

207482 <location>EPOS: Axis position > software limit switch plus

Message value:

Drive object: SERVO, VECTOR

Reaction: OFF1 (OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: The current position of the axis is greater than the position of the software limit switch plus.

Remedy: - correct the target position.
 - change software limit switch plus (CI: p2579, p2581).
See also: p2579 (EPOS software limit switch plus signal source), p2581 (EPOS software limit switch plus), p2582 (EPOS software limit switch activation)
207483 <location>EPOS: Travel to fixed stop clamping torque not reached

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The fixed stop in the traversing block was reached without the clamping torque/clamping force having been achieved.
Remedy: - Check the maximum torque-generating current (r1533).
- check the torque limits (p1520, p1521).
- check the power limits (p1530, p1531).
- check the BICO interconnections of the torque limits (p1522, p1523, p1528, p1529).

207484 <location>EPOS: Fixed stop outside the monitoring window

Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF3 (OFF1, OFF2)
Acknowledge: IMMEDIATELY
Cause: In the "fixed stop reached" state, the axis has moved outside the defined monitoring window (p2635).
Remedy: - check the monitoring window (p2635).
- check the mechanical system.

207485 <location>EPOS: Fixed stop not reached

Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: In a traversing block with the task FIXED STOP, the end position was reached without detecting a fixed stop.
Remedy: - check the traversing block and locate the target position further into the workpiece.
- check the "fixed stop reached" control signal (p2637).
- if required, reduce the maximum following error window to detect the fixed stop (p2634).

207486 <location>EPOS: Intermediate stop missing

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: In the modes "traversing blocks" or "direct setpoint input/MDI" at the start of motion, the binector input "no intermediate stop/intermediate stop" (BI: p2640) did not have a 1 signal.
Remedy: Connect a 1 signal to the binector input "no intermediate stop/intermediate stop" (BI: p2640) and re-start motion.
See also: p2640 (EPOS intermediate stop (0 signal))

207487 <location>EPOS: Reject traversing task missing

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: In the modes "traversing blocks" or "direct setpoint input/MDI" at the start of motion, the binector input "do not reject traversing task/reject traversing task" (BI: p2641) does not have a 1 signal.
Remedy: Connect a 1 signal to the binector input "do not reject traversing task/reject traversing task" (BI: p2641) and re-start motion.
See also: p2641 (EPOS reject traversing task (0 signal))
207488 <location>EPOS: Relative positioning not possible
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: In the mode "direct setpoint input/MDI", for continuous transfer (p2649 = 1) relative positioning was selected (BI: p2648 = 0 signal).
Remedy: Check the control.

207489 <location>EPOS: Reference point correction outside the window
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: For the function "flying referencing" the difference between the measured position at the measuring probe and the reference point coordinate lies outside the parameterized window.
Remedy: - check the mechanical system.
- check the parameterization of the window (p2602).

207490 <location>EPOS: Enable signal withdrawn while traversing
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: - for a standard assignment, another fault may have occurred as a result of withdrawing the enable signals.
- the drive is in the "switching on inhibited" state (for a standard assignment).
Remedy: - set the enable signals or check the cause of the fault that first occurred and then result (for a standard assignment).
- check the assignment to enable the basic positioning function.

207491 <location>EPOS: STOP cam minus reached
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF3
Acknowledge: IMMEDIATELY
Cause: A zero signal was detected at binector input BI: p2569, i.e. the STOP cam minus was reached. For a positive traversing direction, the STOP cam minus was reached - i.e. the wiring of the STOP cam is incorrect.
See also: p2569 (EPOS STOP cam minus)
Remedy: - leave the STOP cam minus in the positive traversing direction and return the axis to the valid traversing range.
- check the wiring of the STOP cam.

207492 <location>EPOS: STOP cam plus reached
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF3
Acknowledge: IMMEDIATELY
Cause: A zero signal was detected at binector input BI: p2570, i.e. the STOP cam plus was reached. For a negative traversing direction, the STOP cam plus was reached - i.e. the wiring of the STOP cam is incorrect.
See also: p2570 (EPOS STOP cam plus)
Remedy: Leave the STOP cam plus in the negative traversing direction and return the axis to the valid traversing range.
- check the wiring of the STOP cam.

207493 <location>LR: Overflow of the value range for position actual value

Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause: The value range (-2147483648 ... 2147483647) for the position actual value representation was exceeded.
When the overflow occurs, the "referenced" or "adjustment absolute measuring system" status is reset.

Fault value (r0949, interpret decimal):
1: The position actual value (r2521) has exceeded the value range.
2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range.
3: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value.

Remedy: If required, reduce the traversing range or position resolution (p2506).
Increase the fine resolution of absolute position actual value (p0419).
Reference to fault value = 3:
If the value for the maximum possible absolute position (LU) is greater than 4294967296, an adjustment cannot be made due to an overflow.

For rotary encoders, the maximum possible absolute position (LU) is calculated as follows:
1. Motor encoder without position tracking:
p2506 * p0433 * p2505 / (p0432 * p2504)
p2506 * p0433 * p2505 * p0421 / (p0432 * p2504) for multiturn encoders
2. Motor encoder with position tracking for measuring gear:
p2506 * p0412 * p2505 / p2504
3. Motor encoder with position tracking for load gear:
p2506 * p2721 * p0433 / p0432
4. Motor encoder with position tracking for load and measuring gear:
p2506 * p2721
5. Direct encoder without position tracking:
p2506 * p0433 / p0432
p2506 * p0433 * p0421 / p0432 for multiturn encoders
6. Direct encoder with position tracking for measuring gear:
p2506 * p0412

207494 <location>LR: Drive Data Set changeover in operation

Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause: A drive data set changeover (DDS changeover) when the mechanical relationships change (p2503 .. 2506), the direction of rotation (p1821) or the encoder assignment (p2502) were requested during operation.

Remedy: To changeover the drive data set, initially, exit the "operation" mode.

207495 <location>LR: Reference function interrupted

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Overview of Alarms 03/2009

SINAMICS-Alarms

Cause: An activated reference function (reference mark search or measuring probe evaluation) was interrupted.
- an encoder fault has occurred (Gn_ZSW.15 = 1).
- position actual value was set during an activated reference function.
- simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 signal).
- activated reference function (reference mark search or measuring probe evaluation) was de-activated (BI: p2508 and BI: p2509 = 0 signal).

Remedy:
- check the causes and resolve.
- reset the control (BI: p2508 and BI: p2509 = 0 signal) and activate the requested function.

207496 <location>EPOS: Enable not possible

Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: It is not possible to enable the basic positioner because at least one signal is missing.
Alarm value (r2124, interpret decimal):
1: EPOS enable missing (BI: p2656).
2: Position actual value, valid feedback signal missing (BI: p2658).
See also: p2656 (EPOS enable basic positioner), p2658 (EPOS pos. actual value valid, feedback signal)

Remedy: Check the appropriate binector inputs and signals.

207497 <location>LR: Position setting value activated

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The position actual value is set to the value received via CI: p2515 while BI: p2514 = 1 signal. A possible system deviation cannot be corrected.

Remedy: None necessary.
The alarm automatically disappears with BI: p2514 = 0 signal.

207498 <location>LR: Measuring probe evaluation not possible

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: When evaluating the measuring probe, an error occurred.
Alarm value (r2124, interpret decimal):
6: The input terminal for the measuring probe is not set.
4098: Error when initializing the measuring probe.
4100: The measuring pulse frequency is too high.
> 50000: The measuring clock cycle is not a multiple integer of the position controller clock cycle.
Remedy: De-activate the measuring probe evaluation (Bi: p2509 = 0 signal).
Re alarm value = 6:
Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
Re alarm value = 4096:
Check the Control Unit hardware.
Re alarm value = 4100:
Reduce the frequency of the measuring pulses at the measuring probe.
Re alarm value > 50000:
Set the clock cycle ratio of the measuring clock cycle to the position controller clock cycle to an integer multiple.
To do this, the currently effective measuring clock cycle can be determined from the alarm value as follows:
Tmeas[125µs] = alarm value - 50000.
With PROFIBUS, the measuring clock cycle corresponds to the PROFIBUS clock cycle r2064[1].
Without PROFIBUS, the measuring clock cycle is an internal cycle time that cannot be influenced.

207499

Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF3
Acknowledge: IMMEDIATELY
Cause: The reversing cam MINUS was approached in the positive traversing direction or the reversing cam PLUS was approached in the negative traversing direction.
See also: p2613 (EPOS search for reference reversing cam minus), p2614 (EPOS search for reference reversing cam plus)
Remedy: - check the wiring of the reversing cam (Bi: p2613, Bi: p2614).
- check the traversing direction to approach the reversing cam.

207500

Message value: Drive data set: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Only for controlled line supply infeed/regenerative feedback units:
The power unit data set was not configured - this means that a data set number was not entered into the drive data set.
Fault value (r0949, interpret decimal):
Drive data set number of p0185.
Remedy: The index of the power unit data set associated with the drive data set should be entered into p0185.

207501

Message value: Drive data set: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Only for power units:
The motor data set was not configured - this means that a data set number was not entered into the associated drive data set.
Fault value (r0949, interpret decimal):
The fault value includes the drive data set number of p0186.
Remedy: The index of the motor data set associated with the drive data set should be entered into p0186.
See also: p0186 (Motor Data Sets (MDS) number)
207502 Drive: Encoder Data Set EDS not configured

Message: Drive data set: %1

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: Only for power units:
The encoder data set was not configured - this means that a data set number was not entered into the associated drive data set.

Fault value (r0949, interpret decimal):
The fault value includes the drive data set number of p0187, p0188 and p0189.
The fault value is increased by 100 * encoder number (e.g. for p0189: Fault value 3xx with xx = data set number).

Remedy: The index of the encoder data set associated with the drive data set should be entered into p0187 (1st encoder), p0188 (2nd encoder) and p0189 (3rd encoder).

207504 Drive: Motor data set is not assigned to a drive data set

Message: %1

Drive object: SERVO, TM41, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: A motor data set is not assigned to a drive object.
All of the existing motor data sets in the drive data sets must be assigned using the MDS number (p0186[0...n]). There must be at least as many drive data sets as motor data sets.

Alarm value (r2124, interpret decimal):
Number of the motor data set that has not been assigned.

Remedy: In the drive data sets, assign the non-assigned motor data set using the MDS number (p0186[0...n]).
- check whether all of the motor data sets are assigned to drive data sets.
- if required, delete superfluous motor data sets.
- if required, set up new drive data sets and assign to the corresponding motor data sets.
See also: p0186 (Motor Data Sets (MDS) number)

207509 Drive: Component number missing

Message: %1

Drive object: SERVO, TM41, VECTOR

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: A Drive Data Set (DDS) is assigned to a Motor Data Set (MDS) or Encoder Data Set (EDS) that does not have a component number.
Alarm value (r2124, interpret decimal):
nmmmmxxyyy
nn: Number of the MDS/EDS.
mmm: Parameter number of the missing component number.
xx: Number of the DDS that is assigned to the MDS/EDS.
yyy: Parameter number that references the MDS/EDS.
Example:
p0131[5] = 0: There is no component number set in MDS 5.
Alarm value = 0513107186

Remedy: In the drive data sets, no longer assign MDS/EDS using p0186, p0187, p0188, p0189 or set a valid component number.
See also: p0131, p0141, p0142, p0186, p0187, p0188, p0189
207510 <location>Drive: Identical encoder in the drive data set
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: More than one encoder with identical component number is assigned to a single drive data set. In one drive data set, it is not permissible that identical encoders are operated together.
Fault value (r0949, interpret decimal): 1000 * first identical encoder + 100 * second identical encoder + drive data set.
Example: Fault value = 1203 means:
In drive data set 3, the first (p0187[3]) and second encoder (p0188[3]) are identical.
Remedy: Assign the drive data set to different encoders.
See also: p0141, p0187, p0188, p0189

207511 <location>Drive: Encoder used a multiple number of times
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Each encoder may only be assigned to one drive and within a drive must - in each drive data set - either always be encoder 1, always encoder 2 or always encoder 3. This unique assignment has been violated.
Fault value (r0949, interpret decimal): The two parameters in coded form, that refer to the same component number.
First parameter:
Index: First and second decimal place (99 for EDS, not assigned DDS)
Parameter number: Third decimal place (1 for p0187, 2 for p0188, 3 for p0189, 4 for EDS not assigned DDS)
Drive number: Fourth and fifth decimal place
Second parameter:
Index: Sixth and seventh decimal place (99 for EDS, not assigned DDS)
Parameter number: Eighth decimal place (1 for p0187, 2 for p0188, 3 for p0189, 4 for EDS, not assigned DDS)
Drive number: Ninth and tenth decimal place
See also: p0141 (Encoder interface (Sensor Module) component number)
Remedy: Correct the double use of a component number using the two parameters coded in the fault value.

207512 <location>Drive: Encoder data set changeover cannot be parameterized
Message value: %1
Drive object: SERVO, TM41, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Using p0141, a changeover of the encoder data set is prepared that is illegal. In this firmware release, an encoder data set changeover is only permitted for the components in the actual topology.
Alarm value (r2124, interpret decimal): Incorrect EDS data set number.
See also: p0187 (Encoder 1 encoder data set number), p0188 (Encoder 2 encoder data set number), p0189 (Encoder 3 encoder data set number)
Remedy: Every encoder data set must be assigned its own dedicated DRIVE-CLiQ socket. The component numbers of the encoder interfaces (p0141) must have different values within a drive object.
The following must apply:
p0141[0] not equal to p0141[1] not equal to ... not equal to p0141[n]
207514 <location>Drive: Data structure does not correspond to the interface module

Message value: -
Drive object: SERVO, TM41, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The interface mode "SIMODRIVE 611 universal" was set (p2038 = 1) and the data structure does not correspond to this mode.
For the data structure, the following rule must be complied with.
Within the group of 8 drive data sets, the assignment to the motor data set must be set the same:
See also: p0180, p0186, p2038
Remedy: - structure the data according to the rules of the "SIMODRIVE 611 universal" interface mode.
- check the interface mode (p2038).

207515 <location>Drive: Power unit and motor incorrectly connected

Message value: %1
Drive object: SERVO, TM41, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A power unit (via PDS) was assigned to a motor (via MDS) in a drive data set that is not connected in the target topology.
Alarm value (r2124, interpret decimal):
Number of the incorrectly parameterized drive data set.
Remedy: - assign the drive data set to a combination of motor and power unit permitted by the target topology.
- adapt the target topology.
See also: p0121 (Power unit component number), p0131 (Motor component number), p0186 (Motor Data Sets (MDS) number)

207516 <location>Drive: Re-commission the data set

Message value: %1
Drive object: SERVO, TM41, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The assignment between the drive data set and motor data set (p0186) or between the drive data set and the encoder data set was modified (p0187). This is the reason that the drive data set must be re-commissioned.
Fault value (r0949, interpret decimal):
Drive data set to be re-commissioned.
Remedy: Commission the drive data set specified in the fault value (r0949).

207517 <location>Drive: Encoder data set changeover incorrectly parameterized

Message value: %1
Drive object: SERVO, TM41, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: An MDS cannot have different motor encoders in two different DDS.
The following parameterization therefore results in an error:
p0186[0] = 0, p0187[0] = 0
p0186[0] = 0, p0187[0] = 1
Alarm value (r2124, interpret decimal):
The lower 16 bits indicate the first DDS and the upper 16 bits indicate the second DDS.
Remedy: If you wish to operate a motor once with one motor encoder and then another time with the other motor encoder, then you must set up two different MDSs, in which the motor data are the same.

Example:
\[p0186[0] = 0, p0187[0] = 0 \]
\[p0186[0] = 1, p0187[0] = 1 \]

207518 <location>Drive: Motor data set changeover incorrectly parameterized

Message value: %1

Drive object: SERVO, TM41, VECTOR

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: The system has identified that two motor data sets were incorrectly parameterized.

Parameter r0313 (calculated from p0314, p0310, p0311), r0315 and p1982 may only have different values if the motor data sets are assigned different motors. p0827 is used to assign the motors and/contacts.

It is not possible to toggle between motor data sets.

Alarm value (r2124, interpret hexadecimal):

\[\text{xxxxyyyy} \]

\[\text{xxxx: First DDS with assigned MDS, yyyy: Second DDS with assigned MDS} \]

Remedy: Correct the parameterization of the motor data sets.

207519 <location>Drive: Motor changeover incorrectly parameterized

Message value: %1

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: With the setting p0833.0 = 1, a motor changeover via the application is selected. This is the reason that p0827 must have different values in the appropriate motor data set.

Alarm value (r2124, interpret hexadecimal):

\[\text{xxxxyyyy} \]

\[\text{xxxx: First MDS, yyyy: Second MDS} \]

Remedy: - parameterize the appropriate motor data sets differently (p0827).
- select the setting p0833.0 = 0 (motor changeover via the drive).

207520 <location>Drive: Motor cannot be changed over

Message value: %1

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The motor cannot be changed over.

Alarm value (r2124, interpret decimal):

1:

The contactor for the motor that is presently active cannot be opened, because for a synchronous motor, the speed (r0063) is greater than the speed at the start of field weakening (p3048). As long as r0063 > p0348, the current in the motor does not decay in spite of the pulses being suppressed.

2:

The "contactor opened" feedback signal was not detected within 1 s.

3:

The "contactor closed" feedback signal was not detected within 1 s.

Remedy:

Re alarm value = 1:

Set the speed lower than the speed at the start of field weakening (r0063 < p0348).

Re alarm value = 2, 3:

Check the feedback signals of the contactor involved.
207530	Drive: Drive Data Set DDS not present
Message value: -
Drive object: SERVO, TM41, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The selected drive data set is not available (p0837 > p0180). The drive data set was not changed over. See also: p0180, p0820, p0821, p0822, p0823, p0824, r0837
Remedy: - select the existing drive data set.
- set up additional drive data sets.

207541	Drive: Data set changeover not possible
Message value: -
Drive object: SERVO, TM41, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The selected drive data set changeover and the assigned motor changeover are not possible and are not carried out. For synchronous motors, the motor contactor may only be switched for actual speeds less than the speed at the start of field weakening (r0063 < p0348). See also: r0063, p0348
Remedy: Reduce the speed below the speed at the start of field weakening.

207550	Drive: Not possible to reset encoder parameters
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: When carrying out a factory setting (e.g. using p0970 = 1), it was not possible to reset the encoder parameters. The encoder parameters are directly read out of the encoder via DRIVE-CLiQ. Alarm value (r2124, interpret decimal): Component number of the encoder involved.
Remedy: - repeat the operation.
- check the DRIVE-CLiQ connection.

207551	Drive encoder: No commutation angle information
Message value: Fault cause: %1, drive data set: %2
Drive object: SERVO, VECTOR
Reaction: OFF2 (IASC/DCBRAKE)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The commutation angle information is missing. This means that synchronous motors cannot be controlled (closed-loop control)
Fault value (r0949, interpret decimal): yyyyxxxx dec: yyyy = fault cause, xxxx = drive data set
yyyy = 1 dec: The motor encoder used does not supply an absolute commutation angle.
yyyy = 2 dec: The selected ratio of the measuring gear does not match the motor pole pair number.
Remedy: Re fault cause = 1:
- check the encoder parameterization (p0404).
- use an encoder with track C/D, EnDat interface of Hall sensors.
- use an encoder with sine-wave A/B track for which the motor pole pair number (r0313) is an integer multiple of the encoder pulse number (p0408).
- activate the pole position identification routine (p1982 = 1).
Re fault cause = 2:
- the quotient of the pole pair number divided by the ratio of the measuring gear must be an integer number: \((p0314 \times p0433) / p0432\).

Note:
For operation with track C/D, this quotient must be less than 8.
See also: p0402, p0404, p0432, p0433

207552 <location>Drive encoder: Encoder configuration not supported

Message value: Fault cause: %1, component number: %2, encoder data set: %3

Drive object: SERVO, VECTOR
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The requested encoder configuration is not supported. Only bits may be requested in p0404 that are signaled as being supported by the encoder evaluation in r0456.
Fault value (r0949, interpret decimal):
Low word low byte: Encoder data set number
Low word high byte: Component number
High word:
The encoder evaluation does not support a function selected in p0404.
1: sin/cos encoder with absolute track (this is supported by SME25).
3: Squarewave encoder (this is supported by SMC30).
4: sin/cos encoder (this is supported by SMC20, SM20, SME20, SME25).
12: sin/cos encoder with reference mark (this is supported by SME20).
15: Commutation with zero mark for separately-excited synchronous motors with VECTORMV.
23: Resolver (this is supported by SMC10, SM10).
65535: Other function (compare r0456 and p0404).
See also: p0404 (Encoder configuration effective), r0456 (Encoder configuration supported)

Remedy:
- check the encoder parameterization (p0400, p0404).
- use the matching encoder evaluation (r0456).

207553 <location>Drive encoder: Sensor Module configuration not supported

Message value: Encoder data set: %1, first incorrect bit: %2, incorrect parameter: %3

Drive object: SERVO, VECTOR
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The Sensor Module does not support the requested configuration.
If p0430 (cc = 0) incorrect, the following applies:
- In p0430 (requested functions), at least 1 bit was set that is not set in r0458 (supported functions) (exception: bits 19, 28, 29, 30, 31).
- p1982 > 0 (pole position identification requested), but r0458.16 = 0 (pole position identification not supported).
If p0437 (cc = 1) incorrect, the following applies:
- In p0437 (requested functions), at least 1 bit was set that is not set in r0459 (supported functions).
Fault value (r0949, interpret hexadecimal):
ddccbbaa hex
aa: encoder data set no.
b: first incorrect bit
c: incorrect parameter
c = 0: incorrect parameter is p0430
c = 1: incorrect parameter is p0437
d: reserved (always 0)
207555 <location>Drive encoder: Configuration position tracking

Message
Component number: %1, encoder data set: %2, drive data set: %3, fault cause: %4
value:

Drive object: SERVO, VECTOR
Reaction: OFF2 (IASC/DCTRL, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)

Cause:
The configuration of the position tracking is not supported.
Position tracking can only be activated for absolute encoders.
For linear axes, it is not possible to simultaneously activate the position tracking for load- and measuring gear.

Fault value (r0949, interpret hexadecimal):

ddccbbaa hex
aa = encoder data set
bb = component number
cc = drive data set
dd = fault cause

dd = 00 hex = 0 dez
An absolute encoder is not being used.

dd = 01 hex = 1 dez
Position tracking cannot be activated because the memory of the internal NVRAM is not sufficient or a Control Unit does not have an NVRAM.

dd = 02 hex = 2 dez
For a linear axis, the position tracking was activated for the load and measuring gear.

dd = 03 hex = 3 dez
Position tracking cannot be activated because position tracking with another gear ratio, axis type or tolerance window has already been detected for this encoder data set.

dd = 04 hex = 4 dez
A linear encoder is being used.
See also: p0404 (Encoder configuration effective), p0411 (Measuring gear, configuration)

Remedy:
- use an absolute encoder.
- if necessary, de-select the position tracking (p0411 for the measuring gear, p2720 for the load gear).
- use a Control Unit with sufficient NVRAM.
- Only activate position tracking of the load gear in the same encoder data set if the gear ratio (p2504, p2505), axis type (p2720.1) and tolerance window (p2722) are also the same.

207556 <location>Measuring gear: Position tracking, maximum actual value exceeded

Message
Component number: %1, encoder data set: %2
value:

Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY

Cause:
When the position tracking of the measuring gear is configured, the drive/encoder identifies a maximum possible absolute position actual value (r0483) that cannot be represented within 32 bits.

Maximum value: p0408 * p0412 * 2^p0419
Fault value (r0949, interpret decimal):

Low word low byte: Encoder data set number
Low word high byte: Component number
See also: p0408, p0412, p0419

Remedy:
- reduce the fine resolution (p0419).
- reduce the multiturn resolution (p0412).
See also: p0412 (Measuring gear, rotary absolute gearbox, revolutions, virtual), p0419 (Fine resolution absolute value Gx_XIST2 (in bits))
207557 <location>Encoder 1: Reference point coordinate not in the permissible range</location>
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The reference point coordinate received when adjusting the encoder via connector input Cl:p2599 lies outside the half of the encoder range and cannot be set as current axis position. The maximum permissible value is displayed in the supplementary information.
Remedy: Set the reference point coordinate less than the value from the supplementary information.
See also: p2598 (EPOS reference point coordinate, signal source)

207558 <location>Encoder 2: Reference point coordinate not in the permissible range</location>
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The reference point coordinate received when adjusting the encoder via connector input Cl:p2599 lies outside the half of the encoder range and cannot be set as current axis position. The maximum permissible value is displayed in the supplementary information.
Remedy: Set the reference point coordinate less than the value from the supplementary information.
See also: p2598 (EPOS reference point coordinate, signal source)

207559 <location>Encoder 3: Reference point coordinate not in the permissible range</location>
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The reference point coordinate received when adjusting the encoder via connector input Cl:p2599 lies outside the half of the encoder range and cannot be set as current axis position. The maximum permissible value is displayed in the supplementary information.
Remedy: Set the reference point coordinate less than the value from the supplementary information.
See also: p2598 (EPOS reference point coordinate, signal source)

207560 <location>Drive encoder: Number of pulses is not to the power of two</location>
Message value: Encoder data set: %1
Drive object: SERVO, VECTOR
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: For rotary absolute encoders, the pulse number in p0408 must be to the power of two. Fault value (r0949, interpret decimal):
The fault value includes the encoder data set number involved.
Remedy: - check the parameterization (p0408, p0404.1, r0458.5).
- if required, upgrade the Sensor Module firmware.

207561 <location>Drive encoder: Number of multiturn pulses is not to the power of two</location>
Message value: Encoder data set: %1
Drive object: SERVO, VECTOR
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The multiturn resolution in p0421 must be to the power of two.
Fault value (r0949, interpret decimal):
The fault value includes the encoder data set number involved.

Remedy: - check the parameterization (p0421, p0404.1, r0458.5).
- if required, upgrade the Sensor Module firmware.

207562 <location>Drive, encoder: Position tracking, incremental encoder not possible
Message value: Fault cause: %1, component number: %2, encoder data set: %3
Drive object: SERVO, VECTOR
Reaction: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The requested position tracking for incremental encoders is not supported.
Fault value (r0949, interpret hexadecimal):
ccccbaaa hex
aa = encoder Data Set number
bb = component number
cccc = fault cause
cccc = 00 hex = 0 dec
The encoder type does not support the "Position tracking incremental encoder" function.
cccc = 01 hex = 1 dec
Position tracking cannot be activated because the memory of the internal NVRAM is not sufficient or a Control Unit does not have an NVRAM.
cccc = 04 hex = 4 dec
A linear encoder is used that does not support the position tracking function.
See also: p0404 (Encoder configuration effective), p0411 (Measuring gear, configuration), r0456 (Encoder configuration supported)
Remedy: - check the encoder parameterization (p0400, p0404).
- use a Control Unit with sufficient NVRAM.
- if required, deselect position tracking for the incremental encoder (p0411.3 = 0).

207565 <location>Drive: Encoder error in PROFIdrive encoder interface 1
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An encoder error was signaled for encoder 1 via the PROFIdrive encoder interface (G1_ZSW.15).
Alarm value (r2124, interpret decimal):
Error code from G1_XIST2, refer to the description regarding r0483.
Note: This alarm is only output if p0480[0] is not equal to zero.
Remedy: Acknowledge the encoder error using the encoder control word (G1_STW.15 = 1).

207566 <location>Drive: Encoder error in PROFIdrive encoder interface 2
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An encoder error was signaled for encoder 2 via the PROFIdrive encoder interface (G2_ZSW.15).
Alarm value (r2124, interpret decimal):
Error code from G2_XIST2, refer to the description regarding r0483.
Note: This alarm is only output if p0480[1] is not equal to zero.
Remedy: Acknowledge the encoder error using the encoder control word (G2_STW.15 = 1).
207567 <location>Drive: Encoder error in PROFIdrive encoder interface 3
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An encoder error was signaled for encoder 3 via the PROFIdrive encoder interface (G3_ZSW.15).
Alarm value (r2124, interpret decimal): Error code from G3_XIST2, refer to the description regarding r0483.
Note: This alarm is only output if p0480[2] is not equal to zero.
Remedy: Acknowledge the encoder error using the encoder control word (G3_STW.15 = 1).

207569 <location>Encoder could not be identified
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: During encoder identification (servicing) with p0400 = 10100, the encoder could not be identified.
Either the wrong encoder has been installed or no encoder has been installed, the wrong encoder cable has been connected or no encoder cable has been connected, or the DRIVE-CLiQ component has not been connected to DRIVE-CLiQ.
Note: Encoder identification must be supported by the encoder and is possible in the following cases:
Encoder with EnDat interface, motor with DRIVE-CLiQ.
Remedy: - Check and, if necessary, connect the encoder and/or encoder cable.
- Check and, if necessary, establish the DRIVE-CLiQ connection.
- In the case of encoders that cannot be identified (e.g. encoders without EnDat interface), the correct encoder type must be entered in p0400.

207575 <location>Drive: Motor encoder not ready
Message value: -
Drive object: SERVO, TM41, VECTOR
Reaction: OFF2 (ENCODER)
Acknowledge: IMMEDIATELY
Cause: The motor encoder signals that it is not ready.
- initialization of encoder 1 (motor encoder) was unsuccessful.
- the function "parking encoder" is active (encoder control word G1_STW.14 = 1).
- the encoder interface (Sensor Module) is de-activated (p0145).
- the Sensor Module is defective.
Remedy: Evaluate other queued faults via encoder 1.

207576 <location>Drive: Encoderless operation due to a fault active
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: Encoderless operation is active due to a fault (r1407.13).
The required response when an encoder fault occurs is parameterized in p0491.
See also: p0491 (Motor encoder fault response ENCODER)
207577 <location>Encoder 1: Measuring probe evaluation not possible

Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause:
When evaluating the measuring probe, an error occurred.
Alarm value (r2124, interpret decimal):
6: The input terminal for the measuring probe is not set.
4098: Error when initializing the measuring probe.
4100: The measuring pulse frequency is too high.
4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle.
Remedy:
De-activate the measuring probe evaluation (BI: p2509 = 0 signal).
Re alarm value = 6:
Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
Re alarm value = 4098:
Check the Control Unit hardware.
Re alarm value = 4100:
Reduce the frequency of the measuring pulses at the measuring probe.
Re alarm value = 4200:
Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple.

207578 <location>Encoder 2: Measuring probe evaluation not possible

Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause:
When evaluating the measuring probe, an error occurred.
Alarm value (r2124, interpret decimal):
6: The input terminal for the measuring probe is not set.
4098: Error when initializing the measuring probe.
4100: The measuring pulse frequency is too high.
4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle.
Remedy:
De-activate the measuring probe evaluation (BI: p2509 = 0 signal).
Re alarm value = 6:
Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
Re alarm value = 4098:
Check the Control Unit hardware.
Re alarm value = 4100:
Reduce the frequency of the measuring pulses at the measuring probe.
Re alarm value = 4200:
Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple.

207579 <location>Encoder 3: Measuring probe evaluation not possible

Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause:
When evaluating the measuring probe, an error occurred.
Alarm value (r2124, interpret decimal):
6: The input terminal for the measuring probe is not set.
4098: Error when initializing the measuring probe.
4100: The measuring pulse frequency is too high.
4200: The PROFIBUS clock cycle is not a multiple of integer of the position controller clock cycle.
Remedy: De-activate the measuring probe evaluation (BI: p2509 = 0 signal).
Re alarm value = 6:
Set the input terminal for the measuring probe (p0488, p0489 or p2517, p2518).
Re alarm value = 4098:
Check the Control Unit hardware.
Re alarm value = 4200:
Reduce the frequency of the measuring pulses at the measuring probe.
Re alarm value = 4200:
Set the clock cycle ratio between the PROFIBUS clock cycle and the position controller clock cycle to an integer multiple.

207580 <location>Drive: No Sensor Module with matching component number
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: A Sensor Module with the component number specified in p0141 was not found.
Alarm value (r2124, interpret decimal):
Encoder data set involved (index of p0141).
Remedy: Correct parameter p0141.

207581 <location>Encoder 1: Position actual value preprocessing error
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred during the position actual value preprocessing.
Remedy: Check the encoder for the position actual value preprocessing.
See also: p2502 (LR encoder assignment)

207582 <location>Encoder 2: Position actual value preprocessing error
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred during the position actual value preprocessing.
Remedy: Check the encoder for the position actual value preprocessing.
See also: p2502 (LR encoder assignment)

207583 <location>Encoder 3: Position actual value preprocessing error
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred during the position actual value preprocessing.
Remedy: Check the encoder for the position actual value preprocessing.
See also: p2502 (LR encoder assignment)

207584 <location>Encoder 1: Position setting value activated
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The position actual value is set to the value received via CI: p2515 while BI: p2514 = 1 signal. A possible system deviation cannot be corrected.

Remedy: None necessary.

The alarm automatically disappears with BI: p2514 = 0 signal.

207585 <location>Encoder 2: Position setting value activated

Message value:

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The position actual value is set to the value received via CI: p2515 while BI: p2514 = 1 signal. A possible system deviation cannot be corrected.

Remedy: None necessary.

The alarm automatically disappears with BI: p2514 = 0 signal.

207586 <location>Encoder 3: Position setting value activated

Message value:

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The position actual value is set to the value received via CI: p2515 while BI: p2514 = 1 signal. A possible system deviation cannot be corrected.

Remedy: None necessary.

The alarm automatically disappears with BI: p2514 = 0 signal.

207587 <location>Encoder 1: Position actual value preprocessing does not have a valid encoder

Message value:

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The following problem has occurred during the position actual value preprocessing.
- an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400 = 0) or invalid data (e.g. p0408 = 0).

Remedy: Check the drive data sets, encoder data sets.
See also: p0187, p0188, p0189, p0400, p2502

207588 <location>Encoder 2: Position actual value preprocessing does not have a valid encoder

Message value:

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The following problem has occurred during the position actual value preprocessing.
- an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400 = 0) or invalid data (e.g. p0408 = 0).

Remedy: Check the drive data sets, encoder data sets.
See also: p0187, p0188, p0189, p0400, p2502
207589 <location>Encoder 3: Position actual value preprocessing does not have a valid encoder

Message value:

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The following problem has occurred during the position actual value preprocessing.
- an encoder data set has been assigned, however, the encoder data set does not contain any encoder data (p0400 = 0) or invalid data (e.g. p0408 = 0).

Remedy: Check the drive data sets, encoder data sets.
See also: p0187, p0188, p0189, p0400, p2502

207590 <location>Encoder 1: Drive Data Set changeover in operation

Message value:

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment (p2502) was requested in operation.

Remedy: To changeover the drive data set, initially, exit the "operation" mode.

207591 <location>Encoder 2: Drive Data Set changeover in operation

Message value:

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment (p2502) was requested in operation.

Remedy: To changeover the drive data set, initially, exit the "operation" mode.

207592 <location>Encoder 3: Drive Data Set changeover in operation

Message value:

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: A Drive Data Set changeover (DDS) with a change of the mechanical relationships and the encoder assignment (p2502) was requested in operation.

Remedy: To changeover the drive data set, initially, exit the "operation" mode.

207593 <location>Encoder 1: Value range for position actual value exceeded

Message value:

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The value range (-2147483648 ... 2147483647) for the position actual value representation was exceeded.
When the overflow occurs, the "referenced" or "adjustment absolute measuring system" status is reset.
Fault value (r0949, interpret decimal):
1: The position actual value (r2521) has exceeded the value range.
2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range.
3: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value.

Remedy:
If required, reduce the traversing range or position resolution.
Re alarm value = 3:
Reducing the position resolution and conversion factor:
- reduce the length unit (LU) per load revolution for rotary encoders (p2506).
- increase the fine resolution of absolute position actual values (p0419).

207594 <location>Encoder 2: Value range for position actual value exceeded

Message value:
%1

Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE

Cause:
The value range (-2147483648 ... 2147483647) for the position actual value representation was exceeded. When the overflow occurs, the "referenced" or "adjustment absolute measuring system" status is reset.

Fault value (r0949, interpret decimal):
1: The position actual value (r2521) has exceeded the value range.
2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range.
3: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value.

Remedy:
If required, reduce the traversing range or position resolution.
Re alarm value = 3:
Reducing the position resolution and conversion factor:
- reduce the length unit (LU) per load revolution for rotary encoders (p2506).
- increase the fine resolution of absolute position actual values (p0419).

207595 <location>Encoder 3: Value range for position actual value exceeded

Message value:
%1

Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE

Cause:
The value range (-2147483648 ... 2147483647) for the position actual value representation was exceeded. When the overflow occurs, the "referenced" or "adjustment absolute measuring system" status is reset.

Fault value (r0949, interpret decimal):
1: The position actual value (r2521) has exceeded the value range.
2: The encoder position actual value Gn_XIST2 (r0483) or the absolute value after the load gear (r2723) has exceeded the value range.
3: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range for displaying the position actual value.

Remedy:
If required, reduce the traversing range or position resolution.
Re alarm value = 3:
Reducing the position resolution and conversion factor:
- reduce the length unit (LU) per load revolution for rotary encoders (p2506).
- increase the fine resolution of absolute position actual values (p0419).
207596 <location>Encoder 1: Reference function interrupted
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An activated reference function (reference mark search or measuring probe evaluation) was interrupted.
- an encoder fault has occurred (Gn_ZSW.15 = 1).
- position actual value was set during an activated reference function.
- simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 signal).
- activated reference function (reference mark search or measuring probe evaluation) was de-activated (BI: p2508 and BI: p2509 = 0 signal).
Remedy:
- check the causes and resolve.
- reset the control (BI: p2508 and BI: p2509 = 0 signal) and activate the requested function.

207597 <location>Encoder 2: Reference function interrupted
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An activated reference function (reference mark search or measuring probe evaluation) was interrupted.
- an encoder fault has occurred (Gn_ZSW.15 = 1).
- position actual value was set during an activated reference function.
- simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 signal).
- activated reference function (reference mark search or measuring probe evaluation) was de-activated (BI: p2508 and BI: p2509 = 0 signal).
Remedy:
- check the causes and resolve.
- reset the control (BI: p2508 and BI: p2509 = 0 signal) and activate the requested function.

207598 <location>Encoder 3: Reference function interrupted
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An activated reference function (reference mark search or measuring probe evaluation) was interrupted.
- an encoder fault has occurred (Gn_ZSW.15 = 1).
- position actual value was set during an activated reference function.
- simultaneously activate reference mark search and measuring probe evaluation (BI: p2508 and BI: p2509 = 1 signal).
- activated reference function (reference mark search or measuring probe evaluation) was de-activated (BI: p2508 and BI: p2509 = 0 signal).
Remedy:
- check the causes and resolve.
- reset the control (BI: p2508 and BI: p2509 = 0 signal) and activate the requested function.

207599 <location>Encoder 1: Adjustment not possible
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range (-2147483648 ... 2147483647) for displaying the position actual value.

Remedy: If the value for the maximum possible absolute position (LU) is greater than 4294967296, an adjustment cannot be made due to an overflow.

For rotary encoders, the maximum possible absolute position (LU) is calculated as follows:

1. Motor encoder without position tracking:
 \(p2506 \times p0433 \times p2505 / (p0432 \times p2504) \)
 \(p2506 \times p0433 \times p2505 \times p0421 / (p0432 \times p2504) \) for multiturn encoders
2. Motor encoder with position tracking for measuring gear:
 \(p2506 \times p0412 \times p2505 / p2504 \)
3. Motor encoder with position tracking for load gear:
 \(p2506 \times p2721 \times p0433 / p0432 \)
4. Motor encoder with position tracking for load and measuring gear:
 \(p2506 \times p2721 \)
5. Direct encoder without position tracking:
 \(p2506 \times p0433 / p0432 \)
 \(p2506 \times p0433 \times p0421 / p0432 \) for multiturn encoders
6. Direct encoder with position tracking for measuring gear:
 \(p2506 \times p0412 \)

207600

<location>Encoder 2: Adjustment not possible

Message value: Drive data set: %1

Drive object: SERVO, VECTOR

Reaction: OFF1 (NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range (-2147483648 ... 2147483647) for displaying the position actual value.

Remedy: If the value for the maximum possible absolute position (LU) is greater than 4294967296, an adjustment cannot be made due to an overflow.

For rotary encoders, the maximum possible absolute position (LU) is calculated as follows:

1. Motor encoder without position tracking:
 \(p2506 \times p0433 \times p2505 / (p0432 \times p2504) \)
 \(p2506 \times p0433 \times p2505 \times p0421 / (p0432 \times p2504) \) for multiturn encoders
2. Motor encoder with position tracking for measuring gear:
 \(p2506 \times p0412 \times p2505 / p2504 \)
3. Motor encoder with position tracking for load gear:
 \(p2506 \times p2721 \times p0433 / p0432 \)
4. Motor encoder with position tracking for load and measuring gear:
 \(p2506 \times p2721 \)
5. Direct encoder without position tracking:
 \(p2506 \times p0433 / p0432 \)
 \(p2506 \times p0433 \times p0421 / p0432 \) for multiturn encoders
6. Direct encoder with position tracking for measuring gear:
 \(p2506 \times p0412 \)

207601

<location>Encoder 3: Adjustment not possible

Message value: Drive data set: %1

Drive object: SERVO, VECTOR

Reaction: OFF1 (NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: The maximum encoder value times the factor to convert the absolute position (r0483 and/or r2723) from increments to length units (LU) has exceeded the value range (-2147483648 ... 2147483647) for displaying the position actual value.
Remedy: If the value for the maximum possible absolute position (LU) is greater than 4294967296, an adjustment cannot be made due to an overflow.

For rotary encoders, the maximum possible absolute position (LU) is calculated as follows:

1. Motor encoder without position tracking:
 \[p_{2506} \times p_{0433} \times p_{2505} / (p_{0432} \times p_{2504}) \]
 \[p_{2506} \times p_{0433} \times p_{2505} \times p_{0421} / (p_{0432} \times p_{2504}) \] for multiturn encoders

2. Motor encoder with position tracking for measuring gear
 \[p_{2506} \times p_{0412} / p_{2505} \]

3. Motor encoder with position tracking for load gear:
 \[p_{2506} \times p_{2721} \times p_{0433} / p_{0432} \]

4. Motor encoder with position tracking for load and measuring gear:
 \[p_{2506} \times p_{2721} \]

5. Direct encoder without position tracking:
 \[p_{2506} \times p_{0433} / p_{0432} \]
 \[p_{2506} \times p_{0433} \times p_{0421} / p_{0432} \] for multiturn encoders

6. Direct encoder with position tracking for measuring gear:
 \[p_{2506} \times p_{0412} \]

207800 <location>Drive: No power unit present</location>

Message value:

Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: The power unit parameters cannot be read or no parameters are stored in the power unit.

Connection between the Control Unit and the Motor Module was interrupted or is defective.

This fault also occurs if an incorrect topology was selected in the commissioning software and this parameterization is then downloaded to the Control Unit.

See also: r0200 (Power unit current code number)

Remedy:
- connect the data line to power unit and restart the Control Unit (POWER ON).
- check or replace the Control Unit.
- check the cable between the Control Unit and Motor Module.
- after correcting the topology, the parameters must be again downloaded using the commissioning software.

207801 <location>Drive: Motor overcurrent</location>

Message value:

Drive object: SERVO

Reaction: OFF2 (NONE, OFF1, OFF3)

Acknowledge: IMMEDIATELY

Cause: The permissible motor limit current was exceeded.

- effective current limit set too low.
- current controller not correctly set.
- motor was braked with an excessively high stall torque correction factor.
- V/f operation: Up ramp was set too short or the load is too high.
- V/f operation: Short-circuit in the motor cable or ground fault.
- V/f operation: Motor current does not match the current of Motor Module.

Note:
Synchronous motor: Limit current= 1.3 * p0323
Induction motor: Limit current= 1.3 * r0209

Remedy:
- check the current limits (p0323, p0640).
- check the current controller (p1715, p1717).
- reduce the stall torque correction factor (p0326).
- increase the up ramp (p1318) or reduce the load.
- check the motor and motor cables for short-circuit and ground fault.
- check the Motor Module and motor combination.
207801 <location>Drive: Motor overcurrent
Message value:
Drive object: VECTOR
Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: The permissible motor limit current was exceeded.
- effective current limit set too low.
- current controller not correctly set.
- motor was braked with an excessively high stall torque correction factor.
- V/f operation: Up ramp was set too short or the load is too high.
- V/f operation: Short-circuit in the motor cable or ground fault.
- V/f operation: Motor current does not match the current of Motor Module.
Note: Limit current = 2 * Minimum(p0640, 4 * p0305) >= 2 * p0305
Remedy: - check the current limits (p0640).
- vector control: Check the current controller (p1715, p1717).
- V/f control: Check the current limiting controller (p1340 ... p1346).
- increase the up ramp (p1120) or reduce the load.
- check the motor and motor cables for short-circuit and ground fault.
- check the Motor Module and motor combination.

207802 <location>Drive: Infeed or power unit not ready
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: After an internal power-on command, the infeed or drive does not signal ready.
- monitoring time is too short.
- DC link voltage is not present.
- associated infeed or drive of the signaling component is defective.
- supply voltage incorrectly set.
Remedy: - increase the monitoring time (p0857).
- ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed.
- replace the associated infeed or drive of the signaling component.
- check the line supply voltage setting (p0210).
See also: p0857 (Power unit monitoring time)

207805 <location>Infeed: Power unit overload I2t
Message value:
Drive object: A_INF, B_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause: Alarm threshold for I2t overload (p0294) of the power unit exceeded.
Remedy: - reduce the continuous load.
- adapt the load duty cycle.

207805 <location>Drive: Power unit overload I2t
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: Alarm threshold for I2t overload (p0294) of the power unit exceeded.
The response parameterized in p0290 becomes active.
See also: p0290 (Power unit overload response)
Remedy:
- reduce the continuous load.
- adapt the load duty cycle.
- check the assignment of the rated currents of the motor and Motor Module.

207810 <location>Drive: Power unit EEPROM without rated data

Message value: -

Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: No rated data are stored in the power unit EEPROM.
See also: p0205, r0206, r0207, r0208, r0209

Remedy: Replace the power unit or inform Siemens Customer Service.

207815 <location>Drive: Power unit has been changed

Message value: Parameter: %1

Drive object: A_INF, B_INF, S_INF

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: The code number of the current power unit does not match the saved number. The fault only occurs if the comparator in p9906 or p9908 is not at f 2 (low) or 3 (minimum).
Fault value (r0949, interpret decimal): Number of the incorrect parameter.
See also: r0200 (Power unit current code number), p0201 (Power unit code number)

Remedy: Connect the original power unit and power up the Control Unit again (POWER ON) or set p0201 to r0200 and exit commissioning with p0010 = 0.
For infeeds, the following applies:
Commutating reactors or line filters must be used that are specified for the new power unit. A line supply and DC link identification routine (p3410 = 5) must then be carried out. It is not possible to change the power unit without re-commissioning the system if the type of infeed (A_Infeed, B_Infeed, S_Infeed), the type of construction/design (booksize, chassis) or the voltage class differ between the old and new power units.
For inverters, the following applies:
If the new power unit is accepted, then if required, the current limit p0640 can be reduced by a lower maximum current of the power unit (r0209) (torque limits stay the same). If not only the power unit is changed, but also the motor, then the motor must be re-commissioning (e.g. using p0010 = 1). This is also necessary if motor data is still to be downloaded via DRIVE-CLiQ.
See also: r0200 (Power unit current code number)

207815 <location>Drive: Power unit has been changed

Message value: Parameter: %1

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: The code number of the current power unit does not match the saved number. The fault only occurs if the comparator in p9906 or p9908 is not at f 2 (low) or 3 (minimum).
Fault value (r0949, interpret decimal): Number of the incorrect parameter.
See also: r0200 (Power unit current code number), p0201 (Power unit code number)

Remedy: Connect the original power unit and power up the Control Unit again (POWER ON) or set p0201 to r0200 and exit commissioning with p0010 = 0.
For infeeds, the following applies:
Commutating reactors or line filters must be used that are specified for the new power unit. A line supply and DC link identification routine (p3410 = 5) must then be carried out. It is not possible to change the power unit without re-commissioning the system if the type of infeed (A_Infeed, B_Infeed, S_Infeed), the type of construction/design (booksize, chassis) or the voltage class differ between the old and new power units.
For inverters, the following applies:
If the new power unit is accepted, then if required, the current limit p0640 can be reduced by a lower maximum current of the power unit (r0209) (torque limits stay the same).
If not only the power unit is changed, but also the motor, then the motor must be re-commissioning (e.g. using p0010 = 1). This is also necessary if motor data is still to be downloaded via DRIVE-CLIQ.
If the comparison stage in p9906 is set to 2, 3, then commissioning can be exited (p010 = 0) and the fault acknowledged.
See also: r0200 (Power unit current code number)

207820 <location>Drive: Temperature sensor not connected
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The temperature sensor for motor temperature monitoring, specified in p0600, is not available.
- parameter download with "incorrect" setting.
- module with sensor evaluation has been, in the meantime, been removed.
- temperature sensor via Motor Module, not for CU310.
Remedy: - connect the module with temperature sensor.
- set the available temperature sensor (p0600, p0601).
See also: p0600, p0601

207825 <location>Drive: Simulation mode activated
Message value: -
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The simulation mode is activated.
The drive can only be powered up if the DC link voltage is less than 40 V.
Remedy: The alarm automatically disappears if simulation mode is de-activated with p1272 = 0.

207826 <location>Drive: Simulation mode with DC link voltage too high
Message value: -
Drive object: VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The simulation mode is activated and the DC link voltage is greater than the permissible value of 40 V.
Remedy: - switch out (disable) simulation mode (p1272 = 0) and acknowledge the fault.
- reduce the input voltage in order to reach a DC link voltage below 40 V.

207840 <location>Drive: Infeed operation missing
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: The signal "infeed operation" is not present although the enable signals for the drive have been present for longer than the parameterized monitoring time (p0857).
- infeed not operational.
- interconnection of the binector input for the ready signal is either incorrect or missing (p0864).
- infeed is presently carrying out a line supply identification routine.
Remedy: - bring the infeed into an operational state.
- check the interconnection of the binector input for the signal "infeed operation" (p0864).
- increase the monitoring time (p0857),
- wait until the infeed has completed the line supply identification routine.
See also: p0857 (Power unit monitoring time), p0864 (Infeed operation)
207841 <location>Drive: Infeed operation withdrawn
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: The signal "infeed operation" was withdrawn in operation.
- interconnection of the binector input for the signal "infeed operation" is either incorrect or missing (p0864).
- the enable signals of the infeed were disabled.
- due to a fault, the infeed withdraws the signal "infeed operation".
Remedy: - check the interconnection of the binector input for the signal "infeed operation" (p0864).
- check the enable signals of the infeed and if required, enable.
- remove and acknowledge an infeed fault.
Note: If this drive is intended to back-up the DC link regeneratively, then the fault response must be parameterized for NONE, OFF1 or OFF3 so that the drive can continue to operate even after the infeed fails.

207850 <location>External alarm 1
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The BICO signal for "external alarm 1" was triggered.
The condition for this external alarm is fulfilled.
See also: p2112 (External alarm 1)
Remedy: Eliminate the causes of this alarm.

207851 <location>External alarm 2
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The BICO signal for "external alarm 2" was triggered.
The condition for this external alarm is fulfilled.
See also: p2116 (External alarm 2)
Remedy: Eliminate the causes of this alarm.

207852 <location>External alarm 3
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The BICO signal for "external alarm 3" was triggered.
The condition for this external alarm is fulfilled.
See also: p2117 (External alarm 3)
Remedy: Eliminate the causes of this alarm.

207860 <location>External fault 1
Message value: -
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The BICO signal "external fault 1" was triggered.
See also: p2106 (External fault 1)
Remedy: Eliminate the causes of this fault.

207861 <location>External fault 2
Message value: -
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The BICO signal "external fault 2" was triggered.
See also: p2107 (External fault 2)
Remedy: Eliminate the causes of this fault.

207862 <location>External fault 3
Message value: -
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1) SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2) VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The BICO signal "external fault 3" was triggered.
See also: p2108, p3111, p3112
Remedy: Eliminate the causes of this fault.

207890 <location>Internal voltage protection/internal armature short-circuit with Safe Torque Off active
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The internal armature short-circuit (p1231 = 4) is not possible as Safe Torque Off (STO) is enabled. The pulses cannot be enabled.
Remedy: Switch out the internal armature short-circuit (p1231=0) or de-activate Safe Torque Off (p9501 = p9561 = 0).
Note: STO: Safe Torque Off / SH: Safe standstill

207900 <location>Drive: Motor locked/speed controller at its limit
Message value: -
Drive object: SERVO
Reaction: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold set in p2175. This signal can also be initiated if the speed actual value is oscillating and the speed controller output repeatedly goes to its limit.
See also: p2175, p2177
Remedy:
- check that the motor can freely rotate.
- check the torque limit: For a positive direction of rotation r1538, for a negative direction of rotation r1539.
- check the parameter, message "Motor locked" and if required, correct (p2175, p2177).
- check the inversion of the actual value (p0410).
- check the motor encoder connection.
- check the encoder pulse number (p0408).
- for SERVO with encoderless operation and motors with low power ratings (< 300 W), increase the pulse frequency (p1800).
- after de-selecting basic positioning, check the torque limits when motoring (p1528) and when regenerating (p1529).

207900
<location>Drive: Motor locked/speed controller at its limit

Message value:
-

Drive object: VECTOR

Reaction: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)

Acknowledge: IMMEDIATELY

Cause:
Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold set in p2175. This signal can also be initiated if the speed actual value is oscillating and the speed controller output repeatedly goes to its limit.

If the simulation mode is enabled (p1272 = 1) and the closed-loop control with speed encoder activated (p1300 = 21), then the inhibit signal is generated if the encoder signal is not received from a motor that is driven with the torque setpoint of the closed-loop control.

See also: p2175, p2177

Remedy:
- check that the motor can freely rotate.
- check the torque limit: For a positive direction of rotation r1538, for a negative direction of rotation r1539.
- check the parameter, message "Motor locked" and if required, correct (p2175, p2177).
- check the inversion of the actual value (p0410).
- check the motor encoder connection.
- check the encoder pulse number (p0408).
- for SERVO with encoderless operation and motors with low power ratings (< 300 W), increase the pulse frequency (p1800).
- after de-selecting basic positioning, check the torque limits when motoring (p1528) and when regenerating (p1529).

- in the simulation mode and operation with speed encoder, the power unit to which the motor is connected must be powered up and must be supplied with the torque setpoint of the simulated closed-loop control. Otherwise, change over to encoderless control (refer to p1300).

207901
<location>Drive: Motor overspeed

Message value:
-

Drive object: SERVO, VECTOR

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause:
The maximum permissible speed was either positively or negatively exceeded.
The maximum permissible positive speed is formed as follows: Minimum (p1082, CI: p1085) + p2162
The maximum permissible negative speed is formed as follows: Maximum (-p1082, CI: 1088) - p2162

Remedy:
The following applies for a positive direction of rotation:
- check r1084 and if required, correct p1082, CI:p1085 and p2162.

The following applies for a negative direction of rotation:
- check r1087 and if required, correct p1082, CI:p1088 and p2162.

207902
<location>Drive: Motor stalled

Message value:
%

Drive object: SERVO

Reaction: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)

Acknowledge: IMMEDIATELY
Overview of Alarms

SINAMICS-Alarms

Cause: For a vector drive the system has identified that the motor has stall for a time longer than is set in p2178.
Fault value (r0949, interpret decimal):
1: Stall detection using r1408.11 (p1744 or p0492).
2: Stall detection using r1408.12 (p1745).
3: Stall detection using r0056.11 (only for separately excited synchronous motors).
See also: p1744 (Motor model speed threshold stall detection), p2178 (Motor stalled delay time)

Remedy: For closed-loop speed and torque control with speed encoder, the following applies:
- check the speed signal (interrupted cable, polarity, pulse number, broken encoder shaft).
- check the speed encoder, if another speed encoder was selected using the data set changeover.
This must be connected to the same motor that is controlled for the data set changeover.
If there is no fault, then the fault tolerance (p1744 and p0492) can be increased.

For closed-loop speed and torque control without speed encoder, the following applies:
- check whether the drive in the open-loop controlled mode (r1750.0) stalls under load. If yes, then increase the current setpoint using p1610.
- check whether the drive stalls due to the load if the speed setpoint is still zero. If yes, then increase the current setpoint using p1610.
- if the motor excitation (magnetizing) time (r0346) was significantly reduced, then it should be increased again.
- check the current limits (p0640, r067). If the current limits are too low, then the drive cannot be magnetized.
- check the current controller (p1715, p1717) and the speed adaptation controller (p1764, p1767). If the dynamic response was significantly reduced, then this should be increased again.
- check the speed encoder, if another speed encoder was selected using the data set changeover.
This must be connected to the motor that is controlled for the data set changeover.
If there is no fault, then the delay time can be increased (p2178).

For separately-excited synchronous motors (closed-loop control with speed encoder), the following applies:
- check the speed signal (interrupted cable, polarity, pulse number).
- ensure the correct motor parameterization (rating plate and equivalent circuit diagram parameters).
- check the excitation equipment and the interface to the closed-loop control.
- encoder the highest possible dynamic response of the closed-loop excitation current control.
- check the speed control for any tendency to oscillate and if resonance effects occur, use a bandstop filter.
- do not exceed the maximum speed (p2162).
If there is no fault, then the delay time can be increased (p2178).

207902 Drive: Motor stalled
Message value: %1
Drive object: VECTOR
Reaction: OFF2 (NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY

Cause: For a vector drive the system has identified that the motor has stall for a time longer than is set in p2178.
Fault value (r0949, interpret decimal):
1: Stall detection using r1408.11 (p1744 or p0492).
2: Stall detection using r1408.12 (p1745).
3: Stall detection using r0056.11 (only for separately excited synchronous motors).
See also: p1744 (Motor model speed threshold stall detection), p2178 (Motor stalled delay time)

Remedy: It should always be carefully ensured that the motor data identification (p1910) as well as the rotating measurement (p1960) were carried out (also refer to p3925). For synchronous motors with encoder, the encoder must have been adjusted (p1990).
For closed-loop speed and torque control with speed encoder, the following applies:
- check the speed signal (interrupted cable, polarity, pulse number, broken encoder shaft).
- check the speed encoder, if another speed encoder was selected using the data set changeover.
This must be connected to the same motor that is controlled for the data set changeover.
If there is no fault, then the fault tolerance (p1744 and p0492) can be increased.
If the stalled motor should take place in the range of the monitor model and for speeds of less than 30 % of the rated motor speed, then a change can be made directly from the current model into the flux impression (p1401.5 = 1). We therefore recommend that the time-controlled model change is switched in (p1750.4 = 1) or the model changeover limits are significantly increased (p1752 > 0.35 * p0311; p1753 = 5 %).

For closed-loop speed and torque control without speed encoder, the following applies:
- Check whether the drive stalls solely due to the load in controlled mode (r1750.0) or when the speed setpoint is still zero. If so, increase the current setpoint via p1610 or set p1750 bit 2 = 1 (sensorless vector control to standstill for passive loads).
- If the motor excitation time (p0346) was reduced significantly and the drive stalls when it is switched on and run immediately, p0346 should be increased again or quick magnetization (p1401) selected.
- Check the current limits (p0640, r0067, r0289). If the current limits are too low, then the drive cannot be magnetized.
- Check the current controller (p1715, p1717) and the speed adaptation controller (p1764, p1767). If the dynamic response was significantly reduced, then this should be increased again.
- Check the speed encoder, if another speed encoder was selected using the data set changeover. This must be connected to the motor that is controlled for the data set changeover.
- If there is no fault, then the fault tolerance (p1745) or the delay time (p2178) can be increased.

The following generally apply for closed-loop and torque control:
- Check whether the motor cables are disconnected.
- If the fault occurs with fault value 2 when the motor accelerates very quickly in the field weakening range, the deviation between the flux setpoint and actual value can be reduced by increasing p1596; as a consequence, the fault is not signaled.

For separately-excited synchronous motors (closed-loop control with speed encoder), the following applies:
- Check the speed signal (interrupted cable, polarity, pulse number).
- Ensure the correct motor parameterization (rating plate and equivalent circuit diagram parameters).
- Check the excitation equipment and the interface to the closed-loop control.
- Encoder the highest possible dynamic response of the closed-loop excitation current control.
- Check the speed control for any tendency to oscillate and if resonance effects occur, use a bandstop filter.
- Do not exceed the maximum speed (p2162).

If there is no fault, then the delay time can be increased (p2178).

207903

Message value:

- Drive: Motor speed deviation

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The absolute value of the speed difference from the two setpoints (p2151, p2154) and the speed actual value (r2169) exceeds the tolerance threshold (p2163) longer than tolerated (p2164, p2166).

The alarm is only enabled for p2149.0 = 1.

Possible causes could be:
- The load torque is greater than the torque setpoint.
- When accelerating, the torque/current/power limit is reached. If the limits are not sufficient, then it is possible that the drive has been dimensioned too small.
- The speed controller is inhibited (refer to p0856; refer to Kp/Tn adaptation of the speed controller).
- For closed-loop torque control, the speed setpoint does not track the speed actual value.
- For active Vdc controller.
- The encoder pulse number was incorrectly parameterized (p0408).

The signal is not generated if the ramp-function generator tracking prevents the setpoint and actual speed from drifting (moving) apart.

Only for vector drives:
- For V/f control, the overload condition is detected as the Imax controller is active.

See also: p2149 (Monitoring configuration)

Remedy:
- Increase p2163 and/or p2166.
- Increase the torque/current/power limits.
- Enable the speed controller.
- For closed-loop torque control: The speed setpoint should track the speed actual value.
- Correct the encoder pulse number in p0408 or mount the correct tachometer.
207904 <location>External armature short-circuit: Contactor feedback signal "Closed" missing

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: When closing, the contactor feedback signal (p1235) did not issue the signal "Closed" (r1239.1 = 1) within the monitoring time (p1236).
Remedy:
- check that the contactor feedback signal is correctly connected (p1235).
- check the logic of the contactor feedback signal (r1239.1 = 1: "Closed", r1239.1 = 0: "Open").
- if required, set the external armature short-circuit without contactor feedback signal (p1231=2).

207905 <location>External armature short-circuit: Contactor feedback signal "Open" missing

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: When opening, the contactor feedback signal (p1235) did not issue the signal "Open" (r1239.1 = 0) within the monitoring time (p1236).
Remedy:
- check that the contactor feedback signal is correctly connected (p1235).
- check the logic of the contactor feedback signal (r1239.1 = 1: "Closed", r1239.1 = 0: "Open").
- increase the monitoring time (p1236).
- if required, set the external armature short-circuit without contactor feedback signal (p1231=2).

207906 <location>Armature short-circuit / internal voltage protection: Parameterization error

Message value:
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The armature short-circuit is incorrectly parameterized.
Fault value (r0949, interpret decimal):
Low word: Motor data set number
High word: Cause:
1: A permanent-magnet synchronous motor has not been selected.
101: External armature short-circuit: Output (r1239.0) not connected up.
102: External armature short-circuit with contactor feedback signal: No feedback signal connected (BI:p1235).
103: External armature short-circuit without contactor feedback signal: Delay time when opening (p1237) is 0.
201: Internal voltage protection: The maximum output current of the Motor Module (r0289) is less than 1.8 * motor short-circuit current (r0331).
202: Internal voltage protection: A Motor Module in booksize format is not being used.
203: Internal voltage protection: The motor short-circuit current (p0320) is greater than the maximum motor current (p0323).
204: Internal voltage protection: The activation (p1231 = 4) is not given for all motor data sets with synchronous motors (p0300 = 2xx, 4xx).
Remedy: Re cause 1:
- an armature short-circuit / voltage protection is only permissible for permanent-magnetic synchronous motors. The highest position of the motor type in p0300 must either be 2 or 4.

Re cause 101:
- the contactor for the external armature short-circuit configuration should be controlled using output signal r1239.0. The signal can, e.g. be connected to an output terminal BI: p0738. Before this fault can be acknowledged, p1231 must be set again.

Re cause 102:
- if the external armature short-circuit with contactor feedback signal (p1231 = 1) is selected, this feedback signal must be connected to an input terminal (e.g. r722.x) and then connected to BI: p1235.
- alternatively, the external armature short-circuit without contactor feedback signal (p1231 = 2) can be selected.

Re cause 103:
- if the external armature short-circuit without contactor feedback signal (p1231 = 2) is selected, then a delay time must be parameterized in p1237. This time must always be greater than the actual contactor opening time, as otherwise the Motor Module would be short-circuited!

Re cause 201:
- a Motor Module with a higher maximum current or a motor with a lower short-circuit current must be used. The maximum Motor Module current must be higher than 1.8 * short-circuit current of the motor.

Re cause 202:
- for internal voltage protection, use a Motor Module in booksized format.

Re cause 203:
- for internal voltage protection, only use short-circuit proof motors.

Re cause 204:
- The internal voltage protection must either be activated for all motor data sets with synchronous motors (p0300 = 2xx, 4xx) (p1231 = 3) or it must be de-activated for all motor data sets (p1231 not equal to 3). This therefore ensures that the protection cannot be accidentally withdrawn as a result of a data set changeover. The fault can only be acknowledged if this condition is fulfilled.

207907 Internal armature short-circuit: Motor terminals are not at zero potential after pulse suppression
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause:
The function "Internal voltage protection" (p1231 = 3) was activated. The following must be observed:
- when the internal voltage protection is active, after pulse suppression, all of the motor terminals are at half of the DC link voltage (without an internal voltage protection, the motor terminals are at zero potential)!
- it is only permissible to use motors that are short-circuit proof (p0320 < p0323).
- the Motor Module must be able to continually conduct 180% short-circuit current (r0331) of the motor (r0289).
- the internal voltage protection cannot be interrupted due to a fault response. If an overcurrent condition occurs during the active, internal voltage protection, then this can destroy the Motor Module and/or the motor.
- if the Motor Module does not support the autonomous, internal voltage protection (r0192.10 = 0), in order to ensure safe, reliable functioning when the line supply fails, an external 24 V power supply (UPS) must be used for the components.
- if the Motor Module does support the autonomous, internal voltage protection (r0192.10 = 1), in order to ensure safe, reliable functioning when the line supply fails, the 24 V power supply for the components must be provided through a Control Supply Module.
- if the internal voltage protection is active, it is not permissible that the motor is driven by the load for a longer period of time (e.g. as a result of loads that move the motor or another coupled motor).

Remedy:
None necessary.
This a note for the user.
207908 <location>Internal armature short-circuit active
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The Motor Module signals that the motor is short-circuited through the power semiconductors (r1239.5 = 1). The pulses cannot be enabled. The internal armature short-circuit is selected (p1231 = 4): Remedy: For synchronous motors, the armature short-circuit braking is activated if a 1 signal is present via binector input p1230. See also: p1230 (Armature short-circuit / DC brake activation), p1231 (Armature short-circuit / DC brake configuration)

207909 <location>Internal voltage protection: De-activation only effective after POWER ON
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: POWER ON
Cause: The de-activation of the internal voltage protection (p1231 not equal to 3) only becomes effective after POWER ON. The status signal r1239.6 = 1 indicates that the internal voltage protection is ready.
Remedy: None necessary.
This a note for the user.

207910 <location>Drive: Motor overtemperature
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: KTY: The motor temperature has exceeded the fault threshold (p0604 or p0616). VECTOR: The response parameterized in p0610 becomes active. PTC: The response threshold of 1650 Ohm was exceeded. Alarm value (r2124, interpret decimal): SME not selected in p0601: 1: No output current reduction. 2: Output current reduction active. SME selected in p0601 (p0601 = 10): The number specifies the sensor channel that resulted in the alarm being output. See also: p0604 (Motor overtemperature alarm threshold), p0610 (Motor overtemperature response)
Remedy: - check the motor load. - check the motor ambient temperature. - check KTY84.

207913 <location>Excitation current outside the tolerance range
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The difference between the excitation current actual value and setpoint has exceeded the tolerance: abs(r1641 - r1626) > p3201 + p3202 The cause of this fault is again reset for abs(r1641 - r1626) < p3201.
Remedy: - check the parameterization (p1640, p3201, p3202).
- check the interfaces to the excitation equipment (r1626, p1640).
- check the excitation equipment.

207914 <location>Flux out of tolerance
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The difference between the flux actual value and setpoint has exceeded the tolerance:
abs(r0084 - r1598) > p3204 + p3205
The cause of this fault is again reset for abs(r0084 - r1598) < p3204.
The fault is only issued after the delay time in p3206 has expired.
Remedy: - check the parameterization (p3204, p3205).
- check the interfaces to the excitation equipment (r1626, p1640).
- check the excitation equipment,
- check the flux control (p1592, p1597).
- check the control for oscillation and take the appropriate counter measures (e.g. optimize the speed
control loop, parameterize a bandstop filter).

207918 <location>Three-phase setpoint generator operation selected/active
Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: Only for separately excited synchronous motors (p0300 = 5):
The current open-loop/closed-loop control mode is I/f control (open-loop) with a fixed current (p1300 = 18).
The speed is entered via the setpoint channel and the current setpoint is given by the minimum current
(p1620).
It must be ensured that in this mode, the control dynamic performance is very limited. This is the rea-
son that longer ramp-up times should be set for the setpoint speed than for normal operation.
See also: p1620 (Stator current, minimum)
Remedy: Select another open-loop/closed-loop control mode
See also: p1300 (Open-loop/closed-loop control operating mode)

207920 <location>Drive: Torque too low
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The torque deviates from the torque/speed envelope characteristic in the negative direction (too low).
See also: p2181 (Load monitoring response)
Remedy: Adapt the load.

207921 <location>Drive: Torque too high
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The torque deviates from the torque/speed envelope characteristic in the positive direction (too high).
Remedy: Adapt the load.
207922 <location>Drive: Torque outside the tolerance
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The torque deviates from the torque/speed envelope characteristic.
Remedy: Adapt the load.

207923 <location>Drive: Torque too low
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The torque deviates from the torque/speed envelope characteristic in the negative direction (too low).
Remedy: Adapt the load.

207924 <location>Drive: Torque too high
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The torque deviates from the torque/speed envelope characteristic in the positive direction (too high).
Remedy: Adapt the load.

207925 <location>Drive: Torque outside the tolerance
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The torque deviates from the torque/speed envelope characteristic.
Remedy: Adapt the load.

207926 <location>Drive: Envelope curve, parameter invalid
Message value: Parameter: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: Invalid parameter values were entered for the envelope characteristic of the load monitoring.
The following rules apply for the speed thresholds:
p2182 < p2183 < p2184
The following rules apply for the torque thresholds:
p2185 > p2186
p2187 > p2188
p2189 > p2190
Alarm value (r2124, interpret decimal):
Number of the parameter with the invalid value.
Remedy: Set the parameters for the load monitoring according to the applicable rules.
207927 <location>DC brake active
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The motor is braked using DC current - the DC current brake is active.
Remedy: 1) An alarm with alarm response DC brake is active.
 The motor is braked with the DC braking current p1232 for the duration in p1233. If the standstill threshold p1226 is undershot, then braking is prematurely canceled.
 2) The DC braking function was activated at Bico input p1230 for a set DC brake p1230=4. Braking current p1232 should be impressed until the Bico activation is canceled again.

207928 <location>Internal voltage protection initiated
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The Motor Module signals that the motor is short-circuited through the power semiconductors (r1239.5 = 1). The pulses cannot be enabled. The internal voltage protection is selected (p1231 = 3).
Remedy: If the Motor Module supports the autonomous internal voltage protection (r0192.10 = 1), then the Motor Module automatically decides - using the DC link voltage - as to whether the armature short-circuit should be activated.
The armature short-circuit is activated and response OFF2 is initiated if the DC link voltage exceeds 800 V. If the DC link voltage falls below 450 V, then the armature short-circuit is withdrawn.
If the motor is still in a critical speed range, the armature short-circuit is re-activated once the DC link voltage exceeds the threshold of 800 V.
If the autonomous (independent) internal voltage protection is active (r1239.5 = 1) and the line supply returns (450 V < DC link voltage < 800 V), the armature short-circuit is withdrawn after 1 minute.

207930 <location>Drive: Brake control error
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The Control Unit has detected a brake control error.
Fault value (r0949, interpret decimal):
10, 11:
- No brake connected or wire breakage (check whether brake releases for p1278 = 1).
- Ground fault in brake cable.
20:
- Fault in "brake open" state.
- Short-circuit in brake winding.
30, 31:
- Fault in "close holding brake" operation.
- No brake connected or wire breakage (check whether brake releases for p1278 = 1).
- Short-circuit in brake winding.
40:
- Fault in "brake closed" state.
50:
- Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module (brake control).
Note:
The following causes may apply to fault values:
- motor cable is not shielded correctly.
- defect in control circuit of the Motor Module.
See also: p1278 (Brake control, diagnostics evaluation)
Remedy:
- check the motor holding brake connection.
- check the function of the motor holding brake.
- check whether there is a DRIVE-CLIQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing).
- replace the Motor Module involved.

Operation with Safe Brake Module:
- check the Safe Brake Modules connection.
- replace the Safe Brake Module.

See also: p1215 (Motor holding brake configuration), p1278 (Brake control, diagnostics evaluation)

207931
<Message>Brake does not open</Message>
Value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause:
This alarm is output for r1229.4 = 1.
See also: p1216 (Motor holding brake, opening time), r1229 (Motor holding brake status word)
Remedy:
- check the functionality of the motor holding brake.
- check the feedback signal (p1223).

207932
<Message>Brake does not close</Message>
Value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause:
This alarm is output for r1229.5 = 1.
For r1229.5 = 1, OFF/OFF3 are suppressed to prevent the drive accelerating by a load that drives the motor - whereby OFF2 remains effective.
See also: p1217 (Motor holding brake closing time), r1229 (Motor holding brake status word)
Remedy:
- check the functionality of the motor holding brake.
- check the feedback signal (p1222).

207935
<Message>Drv: Motor holding brake detected</Message>
Value: -
Drive object: SERVO, VECTOR
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause:
A motor with integrated motor holding brake was detected where the brake control has not been configured (p1215 = 0). The brake control configuration was then set to “motor holding brake the same as sequence control” (p1215 = 1).
Remedy:
None necessary.
See also: p1215 (Motor holding brake configuration)

207940
<Message>Sync-line-drive: Synchronization error</Message>
Value: -
Drive object: VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause:
After synchronization has been completed, the phase difference (r3808) is greater than the threshold value, phase synchronism (p3813).
OFF1 or OFF3 response, while the closed-loop phase control is active (r3819.6 = 1) or synchronism reached (r3819.2 = 1).
Enable signal withdrawn (p3802 = 0), while the closed-loop phase control was active (r3819.6 = 1).
Remedy: If required increase the threshold value phase synchronism (p3813) for synchronizing the line supply to the drive.
Before OFF1 or OFF3, complete synchronizing (r03819.0 = 0).
Before withdrawing the enable signal (p3802 = 0), reach synchronism (r3819.2 = 1).
See also: p3813 (Sync-line-drive phase synchronism threshold value)

207941 <location>Sync-line-drive: Target frequency not permissible
Message value:
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The target frequency is outside the permissible value range.
Alarm value (r2124, interpret decimal):
1084: Target frequency greater than the positive speed limit, f_sync > f_max (r1084).
1087: Target frequency less than the negative speed limit, f_sync < f_min (r1087).
Remedy: Fulfill the conditions for the target frequency for line-drive synchronization.
See also: r1084, r1087

207942 <location>Sync-line-drive: Setpoint frequency is completely different than the target frequency
Message value:
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: There is a considerable difference between the setpoint frequency and the target frequency (f_set <> f_target). The deviation that can be tolerated is set in p3806.
Remedy: The alarm automatically disappears after the difference that can be tolerated between the setpoint and target frequencies (p3806) is reached.
See also: p3806 (Sync-line-drive frequency difference threshold value)

207943 <location>Sync-line-drive: Synchronization not permitted
Message value:
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: Synchronization is not permitted.
Alarm value (r2124, interpret decimal):
1300: The control mode (p1300) has not been set to encoderless closed-loop speed control or V/f characteristic.
1910: Motor data identification activated.
1960: Speed controller optimization activated.
1990: Encoder adjustment activated.
3801: Voltage Sensing Module (VSM) not found.
3845: Friction characteristic record activated.
Remedy: Fulfill the conditions for the line-drive synchronization.
Re alarm value = 1300:
Set the control mode (p1300) to encoderless closed-loop speed control (p1300 = 20) or V/f characteristic (p1300 = 0...19).
Re alarm value = 1910:
Exit the motor data identification routine (p1910).
Re alarm value = 1960:
Exist the speed controller optimization routine (p1960).
Re alarm value = 1990:
Exit the encoder adjustment (p1990).
Re alarm value = 3801:
Connect-up a Voltage Sensing Module (VSM) and when connecting to an adjacent drive object ensure that the drive objects have the same basis clock cycle.
Re alarm value = 3845:
Exit the friction characteristic record (p3845).

207950 <location>Drive: Incorrect motor parameter
Message value: Parameter: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: - the motor parameters were incorrectly entered while commissioning (e.g. p0300 = 0, no motor)
The braking resistor (p6811) has still not been parameterized - commissioning cannot be completed.
Fault value (r0949, interpret decimal):
The parameter number involved.
See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0315, p0316, p0320, p0322, p0323
Remedy: Compare the motor data with the rating plate data and if required, correct.
See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0316, p0320, p0322, p0323

207955 <location>Drive: Motor has been changed
Message value: Parameter: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The code number of the current motor with DRIVE-CLiQ does not match the saved number.
Fault value (r0949, interpret decimal):
Number of the incorrect parameter.
See also: p0301, r0302
Remedy: Connect the original motor, power up the Control Unit again (POWER ON) and exit the quick commissioning by setting p0010 to 0.
Or set p0300 = 10000 (load the motor parameter with DRIVE-CLiQ) and re-commission.
Quick commissioning (p0010 = 1) is automatically exited with p3900 = 0.
If quick commissioning was exited by setting p0010 to 0, then an automatic controller calculation (p0340 = 1) is not carried out.

207956 <location>Drive: Motor code does not match the list (catalog) motor
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The motor code of the current motor with DRIVE-CLiQ does not match the possible list motor types (refer to the selection, p0300).
Fault value (r0949, interpret decimal):
Motor code of the motor with DRIVE-CLiQ
Remedy: Use a motor with DRIVE-CLiQ and the matching motor code.
The first three digits of the motor code generally correspond to the matching list motor type.

207960 <location>Drive: Incorrect friction characteristic
Message value: Parameter: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
SINAMICS-Alarms

03/2009 Overview of Alarms

© Siemens AG 2009 All Rights Reserved
SINUMERIK 840D sl, 840Di sl, SINAMICS, Diagnostics Manual (DAsl), 03/2009

Cause:
The friction characteristic is incorrect.

Alarm value (r2124, interpret decimal):
1538:
The friction torque is greater than the maximum from the upper effective torque limit (p1538) and zero. This is the reason that the output of the friction characteristic (r3841) is limited to this value.

1539:
The friction torque is less than the minimum from the lower effective torque limit (p1539) and zero. This is the reason that the output of the friction characteristic (r3841) is limited to this value.

3820 ... 3829:
Incorrect parameter number. The speeds entered in the parameters for the friction characteristic do not correspond to the following condition:
0.0 < p3820 < p3821 < ... < p3829 <= p0322 or p1082, if p0322 = 0
Therefore the output of the friction characteristic (r3841) is set to zero.

3830 ... 3839:
Incorrect parameter number. The torques entered in the parameters for the friction characteristic do not correspond to the following condition:
0 <= p3830, p3831 ... p3839 <= p0333
Therefore the output of the friction characteristic (r3841) is set to zero.

See also: r3840 (Friction characteristic, status word)

Remedy:
Fulfill the conditions for the friction characteristic.
Re alarm value = 1538:
Check the upper effective torque limit (e.g. in the field weakening range).
Re alarm value = 1539:
Check the lower effective torque limit (e.g. in the field weakening range).
Re alarm value = 3820 ... 3839:
Fulfill the conditions to set the parameters of the friction characteristic.
Re alarm value = 3820 ... 3839:
If the motor data (e.g. the maximum speed p0322) are changed during commissioning (p0010 = 1, 3), then the technological limits and threshold values, dependent on this, must be re-calculated by selecting p0340= 5).

207961 Drive: Friction characteristic record activated
Message value:

Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE

Cause:
The automatic friction characteristic record is activated.
The friction characteristic is recorded at the next power-on command.

Remedy:
None necessary.
The alarm disappears automatically after the friction characteristic record has been successfully completed or the record is de-activated (p3845 = 0).

207963 Drive: Friction characteristic record interrupted
Message value:

Drive object: SERVO, VECTOR
Reaction: OFF1
Acknowledge: IMMEDIATELY

Cause:
The conditions to record the friction characteristic are not fulfilled.
Fault value (r0949, interpret decimal):
0046: Missing enable signals (r0046).
1082: The highest speed value to be approached (p3829) is greater than the maximum speed (p1082).
1084: The highest speed value to be approached (p3829) is greater than the maximum speed (r1084, p1083, p1085).
1087: The highest speed value to be approached (p3829) is greater than the maximum speed (r1087, p1086, p1088).
1110: Friction characteristic record, negative direction selected (p3845) and negative direction inhibited (p1110).
1111: Friction characteristic record, positive direction selected (p3845) and positive direction inhibited (r1111).
1198: Friction characteristic record selected (p3845 > 0) and negative (p1110) and positive directions (p1111) inhibited (r1198).
1300: The control mode (p1300) has not been set to closed-loop speed control.
1755: For encoderless closed-loop control (p1300 = 20), the lowest speed value to be approached (p3820) is less than or equal to the changeover speed, open-loop controlled operation (p1755).
1910: Motor data identification activated.
1960: Speed controller optimization activated.
3820 ... 3829: Speed (p382x) cannot be approached.
3840: Friction characteristic incorrect.
3845: Friction characteristic record de-selected.

Remedy:
Fulfill the conditions to record the friction characteristic.

Re fault value = 0046:
Establish missing enable signals.
Re fault value = 0840:
Select OFF1 (p0840) only after the friction characteristic record has been completed.
Re fault value = 1082, 1084, 1087:
Select the highest speed value to be approached (p3829) less than or equal to the maximum speed (p1082, r1084, r1087).
Re-calculate the speed points along the friction characteristic (p0340 = 5).
Re fault value = 1110:
Select the friction characteristic record, positive direction (p3845).
Re fault value = 1111:
Select the friction characteristic record, negative direction (p3845).
Re fault value = 1198:
Enable the permitted direction (p1110, p1111, r1198).
Re fault value = 1300:
Set the control mode (p1300) on the closed-loop speed control (p1300 = 20, 21).
Re fault value = 1755:
For encoderless closed-loop speed control (p1300 = 20) select the lowest speed value to be approached (p3820) greater than the changeover speed of open-loop controlled operation (p1755).
Re-calculate the speed points along the friction characteristic (p0340 = 5).
Re fault value = 1910:
Exit the motor data identification routine (p1910).
Re fault value = 1960:
Exit the speed controller optimization routine (p1960).
Re fault value 3820 ... 3829:
- check the load at speed p382x.
- check the speed signal (r0063) for oscillation at speed p382x. If required, check the speed controller settings.
Re fault value = 3840:
Make the friction characteristic error-free (p3820 - p3829, p3830 - p3839, p3840).
Re fault value = 3845:
Activate the friction characteristic record (p3845).

207965 <location>Drive: Save required
Message value:
Drive object: SERVO
Reaction: NONE
Acknowledge: NONE
Cause:
The angular commutation offset (p0431) was re-defined and has still not been saved.
In order to permanently accept the new value, it must be saved in a non-volatile fashion (p0971, p0977).
See also: p0431 (Angular commutation offset), p1990 (Encoder adjustment, determine angular commutation offset)
Remedy:
None necessary.
This alarm automatically disappears after the data has been saved.
See also: p0971 (Save drive object parameters), p0977 (Save all parameters)
207966 <location>Drive: Check the commutation angle

Message value: -
Drive object: SERVO
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: The speed actual value was inverted and the associated angular commutation offset is not equal to zero and is therefore possibly incorrect.
Remedy: Angular commutation offset after the actual value inversion or determine it again (p1990=1).

207967 <location>Drive: Automatic encoder adjustment incorrect

Message value: %1
Drive object: VECTOR
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: A fault has occurred during the automatic encoder adjustment or the pole position identification.
Only for internal Siemens troubleshooting.
Remedy: Carry out a POWER ON.

207968 <location>Drive: Lq-Ld measurement incorrect

Message value: %1
Drive object: VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A fault has occurred during the Lq-Ld measurement.
Fault value (r0949, interpret decimal):
10: Stage 1: The ratio between the measured current and zero current is too low.
12: Stage 1: The maximum current was exceeded.
15: Second harmonic too low.
16: Drive converter too small for the measuring technique.
17: Abort due to pulse inhibit.
Remedy: Re fault value = 10:
Check whether the motor is correctly connected.
Replace the Motor Module involved.
De-activate traversing (p1909).
Re fault value = 12:
Check whether motor data have been correctly entered.
De-activate traversing (p1909).
Re fault value = 16:
De-activate traversing (p1909).
Re fault value = 17:
Repeat traversing.

207969 <location>Drive: Incorrect pole position identification

Message value: %1
Drive object: VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A fault has occurred during the pole position identification routine.
Fault value (r0949, interpret decimal):
1: Current controller limited
2: Motor shaft locked.
4: Encoder speed signal not plausible.
10: Stage 1: The ratio between the measured current and zero current is too low.
11: Stage 2: The ratio between the measured current and zero current is too low.
12: Stage 1: The maximum current was exceeded.
13: Stage 2: The maximum current was exceeded.
14: Current difference to determine the +d axis too low.
15: Second harmonic too low.
16: Drive converter too small for the measuring technique.
17: Abort due to pulse inhibit.
18: First harmonic too low.
20: Pole position identification requested with the motor shaft rotating and activated flying restart function.

Remedy:
Re fault value = 1:
Check whether the motor is correctly connected.
Check whether motor data have been correctly entered.
Replace the Motor Module involved.

Re fault value = 2:
Open the motor holding brake (p1215) and bring the motor into a no-load condition.

Re fault value = 4:
Check whether the encoder pulse number (p0408) and gearbox factor (p0432, p0433) are correct.
Check whether the motor pole pair number is correct (p0314).

Re fault value = 10:
When selecting p1980 = 4: Increase the value for p0325.
When selecting p1980 = 1: Increase the value for p0329.
Check whether the motor is correctly connected.
Replace the Motor Module involved.

Re fault value = 11:
Increase the value for p0329.
Check whether the motor is correctly connected.
Replace the Motor Module involved.

Re fault value = 12:
When selecting p1980 = 4: Reduce the value for p0325.
When selecting p1980 = 1: Reduce the value for p0329.
Check whether motor data have been correctly entered.

Re fault value = 13:
Reduce the value for p0329.
Check whether motor data have been correctly entered.

Re fault value = 14:
Increase the value for p0329.

Re fault value = 15:
Increase the value for p0325.
Motor not sufficiently anisotropic, change the technique (p1980==1 or 10).

Re fault value = 16:
De-activate traversing/moving (p1982).

Re fault value = 17:
Repeat traversing.

Re fault value = 18:
Increase the value for p0329.
Saturation not sufficient, change the technique (p1980==10).

Re fault value = 20:
Before carrying out a pole position identification routine ensure that the motor shaft is absolutely stationary (zero speed).

207970 <location>Drive: Automatic encoder adjustment incorrect
Message value: %1
Drive object: VECTOR
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: A fault has occurred during the automatic encoder adjustment.
Fault value (r0949, decimal):
1: Current controller limited
2: Motor shaft locked.
4: Encoder speed signal not plausible.
10: Stage 1: The ratio between the measured current and zero current is too low.
11: Stage 2: The ratio between the measured current and zero current is too low.
12: Stage 1: The maximum current was exceeded.
13: Stage 2: The maximum current was exceeded.
14: Current difference to determine the +d axis too low.
15: Second harmonic too low.
16: Drive converter too small for the measuring technique.
17: Abort due to pulse inhibit.

Remedy:
Re fault value = 1:
Check whether the motor is correctly connected.
Check whether motor data have been correctly entered.
Replace the Motor Module involved.

Re fault value = 2:
Open the motor holding brake (p1215) and bring the motor into a no-load condition.

Re fault value = 4:
Check whether the speed actual value inversion is correct (p0410.0).
Check whether the motor is correctly connected.
Check whether the encoder pulse number (p0408) and gearbox factor (p0432, p0433) are correct.
Check whether the motor pole pair number is correct (p0314).

Re fault value = 10:
Increase the value for p0325.
Check whether the motor is correctly connected.
Replace the Motor Module involved.

Re fault value = 11:
Increase the value for p0329.
Check whether the motor is correctly connected.
Replace the Motor Module involved.

Re fault value = 12:
Reduce the value for p0325.
Check whether motor data have been correctly entered.

Re fault value = 13:
Reduce the value for p0329.
Check whether motor data have been correctly entered.

Re fault value = 14:
Increase the value for p0329.
Increase the value for p0325.

Re fault value = 15:
Increase the value for p0325.

Re fault value = 16:
De-activate traversing/moving (p1982).

Re fault value = 17:
Repeat traversing.

207971 <location>Drive: Angular commutation offset determination activated
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE

Cause:
The automatic determination of the angular commutation offset (encoder adjustment) is activated (p1990 = 1).
The automatic determination is carried out with the next power-on command.
For SERVO and fault F07414 present, the following applies:
The determination of the angular commutation offset is automatically activated (p1990 = 1), if a pole position identification technique is set in p1980.
See also: p1990 (Encoder adjustment, determine angular commutation offset)
Remedy:
None necessary.
The alarm automatically disappears after determination or for the setting p1990 = 0.
207980 <location>Drive: Rotating measurement activated
Message value: -
Drive object: SERVO
Reaction: NONE
Acknowledge: NONE
Cause: The rotating measurement is activated. For the rotating measurement, the motor can accelerate up to the maximum speed and with maximum torque. Only the parameterized current limit (p0640) and the maximum speed (p1082) are effective. The behavior of the motor can be influenced using the direction inhibit (p1959.14, p1959.15) and the ramp-up/ramp-down time (p1958). The rotating measurement is carried out at the next power-on command. See also: p1960
Remedy: None necessary.
The alarm automatically disappears after the rotating measurement has been successfully completed or for the setting p1960 = 0.

207980 <location>Drive: Rotating measurement activated
Message value: -
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The rotating measurement (automatic speed controller optimization) is activated. The rotating measurement is carried out at the next power-on command. See also: p1960
Remedy: None necessary.
The alarm disappears automatically after the speed controller optimization has been successfully completed or for the setting p1900 = 0.

207981 <location>Drive: Enable signals for the rotating measurement missing
Message value: -
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The rotating measurement cannot be started due to missing enable signals.
Remedy: - acknowledge faults that are present.
- establish missing enable signals.
See also: r0002, r0046

207982 <location>Drive: Rotating measurement encoder test
Message value: %1
Drive object: VECTOR
Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY
Cause: A fault has occurred during the encoder test. Fault value (r0949, interpret decimal):
1: The speed did not reach a steady-state condition.
2: The speed setpoint was not able to be approached as the minimum limiting is active.
3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
4: The speed setpoint was not able to be approached as the maximum limiting is active.
5: The encoder does not supply a signal.
6: Incorrect polarity.
7: Incorrect pulse number.
8: Noise in the encoder signal or speed controller unstable.
9: Voltage Sensing Module (VSM) incorrectly connected.
Remedy:

Re fault value = 1:
- check the motor parameters.
- carry out a motor data identification routine (p1910).
- if required, reduce the dynamic factor (p1967 < 25 %).
Re fault value = 2:
- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
Re fault value = 3:
- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
Re fault value = 4:
- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
Re fault value = 5:
- check the encoder connection. If required, replace the encoder.
Re fault value = 6:
- check the connection assignment of the encoder cable. Adapt the polarity (p0410).
Re fault value = 7:
- adapt the pulse number (p0408).
Re fault value = 8:
- check the encoder connection and encoder cable. It is possible that there is a problem associated with the ground connection.
- reduce the dynamic response of the speed controller (p1460, p1462 and p1470, p1472).
Re fault value = 9:
- check the connections of the Voltage Sensing Module (VSM).
Note:
The encoder test can be switched out (disabled) using p1959.0.
See also: p1959

207983
<location>Drive: Rotating measurement saturation characteristic

Message value:
%1

Drive object: VECTOR

Reaction: OFF1 (NONE, OFF2)

Acknowledge: IMMEDIATELY

Cause:
A fault has occurred while determining the saturation characteristic.
Fault value (r0949, interpret decimal):
1: The speed did not reach a steady-state condition.
2: The rotor flux did not reach a steady-state condition.
3: The adaptation circuit did not reach a steady-state condition.
4: The adaptation circuit was not enabled.
5: Field weakening active.
6: The speed setpoint was not able to be approached as the minimum limiting is active.
7: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
8: The speed setpoint was not able to be approached as the maximum limiting is active.
9: Several values of the determined saturation characteristic are not plausible.
10: Saturation characteristic could not be sensibly determined because load torque too high.

Remedy:
Re fault value = 1:
- the total drive moment of inertia is far higher than that of the motor (p0341, p0342).
De-select rotating measurement (p1960), enter the moment of inertia p0342, re-calculate the speed controller p0340 = 4 and repeat the measurement.
Re fault value = 1 ... 4:
- increase the measuring speed (p1961) and repeat the measurement.
Re fault value = 1 ... 4:
- check the motor parameters (rating plate data). After the change: Calculate p0340 = 3.
- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3.
- carry out a motor data identification routine (p1910).
- if required, reduce the dynamic factor (p1967 < 25 %).
Re fault value = 5:
- the speed setpoint (p1961) is too high. Reduce the speed.
Re fault value = 6:
- adapt the speed setpoint (p1961) or minimum limiting (p1080).
Re fault value = 7:
- adapt the speed setpoint (p1961) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
Re fault value = 8:
- adapt the speed setpoint (p1961) or maximum limit (p1082, p1083 and p1086).

Re fault value = 9, 10:
- the measurement was carried out at an operating point where the load torque is too high. Select a more suitable operating point, either by changing the speed setpoint (p1961) or by reducing the load torque. The load torque may not be varied while making measurements.

Note:
The saturation characteristic identification routine can be disabled using p1959.1.
See also: p1959

207984
<location>Drive: Speed controller optimization, moment of inertia

Message value: %1
Drive object: VECTOR
Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY
Cause:
A fault has occurred while identifying the moment of inertia.
Fault value (r0949, interpret decimal):
1: The speed did not reach a steady-state condition.
2: The speed setpoint was not able to be approached as the minimum limiting is active.
3. The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
4. The speed setpoint was not able to be approached as the maximum limiting is active.
5: It is not possible to increase the speed by 10% as the minimum limiting is active.
6: It is not possible to increase the speed by 10% as the suppression (skip) bandwidth is active.
7: It is not possible to increase the speed by 10% as the maximum limiting is active.
8: The torque difference after the speed setpoint step is too low in order to be able to still reliably identify the moment of inertia.
9: Too few data to be able to reliably identify the moment of inertia.
10: After the setpoint step, the speed either changed too little or in the incorrect direction.
11: The identified moment of inertia is not plausible.

Remedy:
Re fault value = 1:
- check the motor parameters (rating plate data). After the change: Calculate p0340 = 3.
- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3.
- carry out a motor data identification routine (p1910).
- if required, reduce the dynamic factor (p1967 < 25 %).
Re fault value = 2, 5:
- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
Re fault value = 3, 6:
- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
Re fault value = 4, 7:
- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
Re fault value = 8:
- the total drive moment of inertia is far higher than that of the motor (refer to p0341, p0342). De-select rotating measurement (p1960), enter the moment of inertia p342, re-calculate the speed controller p0340 = 4 and repeat the measurement.
Re fault value = 9:
- check the moment of inertia (p0341, p0342). After the change, re-calculate (p0340 = 3 or 4)
Re fault value = 10:
- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3.
Note:
The moment of inertia identification routine can be disabled using p1959.2.
See also: p1959

207985
<location>Drive: Speed controller optimization (oscillation test)

Message value: %1
Drive object: VECTOR
Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY

Note:
The saturation characteristic identification routine can be disabled using p1959.2.
See also: p1959
Cause: A fault has occurred during the vibration test.
Fault value (r0949, interpret decimal):
1: The speed did not reach a steady-state condition.
2: The speed setpoint was not able to be approached as the minimum limiting is active.
3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
4: The speed setpoint was not able to be approached as the maximum limiting is active.
5: Torque limits too low for a torque step.
6: No suitable speed controller setting was found.

Remedy:
Re fault value = 1:
- check the motor parameters (rating plate data). After the change: Calculate p0340 = 3.
- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3.
- carry out a motor data identification routine (p1910).
- if required, reduce the dynamic factor (p1967 < 25 %).
Re fault value = 2:
- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
Re fault value = 3:
- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
Re fault value = 4:
- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
Re fault value = 5:
- increase the torque limits (e.g. p1520, p1521).
- reduce the dynamic factor (p1967).
- disable the vibration test (p1959.4 = 0) and repeat the rotating measurement.
See also: p1959

207986 <location>Drive: Rotating measurement ramp-function generator
Message value:
%1
Drive object: VECTOR
Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY
Cause: During the rotating measurements, problems with the ramp-function generator occurred.
Fault value (r0949, interpret decimal):
1: The positive and negative directions are inhibited.
Remedy:
Re fault value = 1:
Enable the direction (p1110 or p1111).

207987 <location>Drive: Rotating measurement, no encoder available
Message value:
%1
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: No encoder available. The rotating measurement was carried out without encoder.
Remedy:
Connect encoder or select p1960 = 1, 3.

207988 <location>Drive: Rotating measurement, no configuration selected
Message value:

Drive object: VECTOR
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY
Cause: When configuring the rotating measurement (p1959), no function was selected.
Remedy:
Select at least one function for automatic optimization of the speed controller (p1959).
See also: p1959
207989

Drive: Rotating measurement leakage inductance (q-axis)

Message value: %1

Drive object: VECTOR
Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY

Cause:
An error has occurred while measuring the dynamic leakage inductance.
Fault value (r0949, interpret decimal):
1: The speed did not reach a steady-state condition.
2: The speed setpoint was not able to be approached as the minimum limiting is active.
3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
4: The speed setpoint was not able to be approached as the maximum limiting is active.
5: The 100% flux setpoint was not reached.
6: No Lq measure not possible because field weakening is active.
7: Speed actual value exceeds the maximum speed p1082 or 75% of the rated motor speed.
8: Speed actual value is below 2% of the rated motor speed.

Remedy:
Re fault value = 1:
- check the motor parameters.
- carry out a motor data identification routine (p1910).
- if required, reduce the dynamic factor (p1967 < 25%).
Re fault value = 2:
- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
Re fault value = 3:
- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
Re fault value = 4:
- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
Re fault value = 5:
- flux setpoint p1570 = 100% and current setpoint p1610 = 0% kept during the Lq measurement.
Re fault value = 6:
- reduce the regenerative load so that the drive does not reach field weakening when accelerating.
- reduce p1965 so that the q leakage inductance is recorded at lower speeds.
Re fault value = 7:
- increase p1082 if this is technically permissible.
- reduce p1965 so that the q leakage inductance is recorded at lower speeds.
Re fault value = 8:
- reduce the load when motoring so that the drive is not braked.
- increase p1965 so that the measurement is possibly done at higher speeds.

Note:
The measurement of the q leakage inductance can be disabled using p1959.5. If only p1959.5 is set,
then only this measurement is carried out if p1960 is set to 1, 2 and the drive is powered up.
See also: p1959

207990

Drive: Incorrect motor data identification

Message value: %1

Drive object: SERVO, VECTOR
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY

Cause:
A fault has occurred during the identification routine.
Fault value (r0949, interpret decimal):
1: Current limit value reached.
2: Identified stator resistance lies outside the expected range 0.1 ... 100% of Zn.
3: Identified rotor resistance lies outside the expected range 0.1 ... 100% of Zn.
4: Identified stator reactance lies outside the expected range 50 ... 500% of Zn.
5: Identified magnetizing reactance lies outside the expected range 50 ... 500% of Zn.
6: Identified rotor time constant lies outside the expected range 10 ms ... 5 s.
7: Identified total leakage reactance lies outside the expected range 4 ... 50% of Zn.
8: Identified stator leakage reactance lies outside the expected range 2 ... 50% of Zn.
9: Identified rotor leakage reactance lies outside the expected range 2 ... 50% of Zn.
10: Motor has been incorrectly connected.
11: Motor shaft rotates.
20: Identified threshold voltage of the semiconductor devices lies outside the expected range 0 ... 10 V.
30: Current controller in voltage limiting.
40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies.
50: With the selected current controller sampling rate, the pulse frequency cannot be implemented.

Note:
Percentage values are referred to the rated motor impedance:
\[Z_n = \frac{V_{mot, nom}}{\sqrt{3}} \cdot \frac{1}{I_{mot, nom}} \]

101: Voltage amplitude even at 30% maximum current amplitude is too low to measure the inductance.
102, 104: Voltage limiting while measuring the inductance.
103: Maximum frequency exceeded during the rotating inductance measurement.
110: Motor not finely synchronized before the rotating measurement.
111: The zero mark is not received within 2 revolutions.
112: Fine synchronization is not realized within 8 seconds after the zero mark has been passed.
113: The power, torque or current limit is zero.
120: Error when evaluating the magnetizing inductance.
125: Cable resistance greater than the total resistance.
126: Series inductance greater than the total leakage inductance.
127: Identified leakage inductance negative.
128: Identified stator resistance negative.
129: Identified rotor resistance negative.
130: Drive data set changeover during the motor data identification routine.
140: The setpoint channel inhibits both directions.
160: Accelerating when determining \(kT \), moment of inertia or reluctance torque too short or the accelerating time is too long.
173: Internal problem.
180: Identification speed (maximum speed, rated speed, 0.9 * p0348) less than p1755.
190: Speed setpoint not equal to zero.
191: An actual speed of zero is not reached.
192: Speed setpoint not reached.
193: Inadmissible motion of the motor when identifying the voltage emulation error.
194: Supplementary torque (r1515) not equal to zero.
195: Closed-loop torque control active.
200, 201: Not possible to identify the voltage emulation error characteristic of the drive converter (p1952, p1953).

Remedy:
Re fault value = 0:
- check whether the motor is correctly connected. Observe configuration (star/delta).
Re fault value = 1 ... 40:
- check whether motor data have been correctly entered in p0300, p0304 ... p0311.
- is there an appropriate relationship between the motor power rating and that of the Motor Module? The ratio of the Motor Module to the rated motor current should not be less than 0.5 and not be greater than 4.
- check configuration (star/delta).
Re fault value = 2:
- for parallel circuits, check the motor winding system in p7003. If, for power units connected in parallel, a motor is specified with a single-winding system (p7003 = 0), although a multi-winding system is being used, then a large proportion of the stator resistance is interpreted as feeder cable resistance and entered in p0352.
Re fault value = 4, 7:
- check whether inductances are correctly entered in p0233 and p0353.
- check whether motor was correctly connected (star/delta).
Re fault value = 50:
- reduce the current controller sampling rate.
Re fault value = 101:
- increase current limit (p0640) or torque limit (p1520, p1521).
- check current controller gain (p1715).
- reduce current controller sampling time (p0115).
- it may be impossible to completely identify the L characteristic, as required current amplitude is too high.
Re fault value = 102, 104:
- reduce current limit (p0640).
- check current controller P gain.
Re fault value = 103:
- increase external moment of inertia (if possible).
- reduce current controller sampling time (p0115).
Re fault value = 110:
- before rotating measurement, traverse motor over zero mark.
Re fault value = 111:
- it is possible that encoder does not have zero mark. Correct setting in p0404.15.
- encoder pulse number was incorrectly entered. Correct setting in p0408.
- if zero mark signal is defective, replace encoder.
Re fault value = 112:
- upgrade encoder software.
Re fault value = 113:
- check the limits (p0640, p1520, p1521, p1530, p1531), correct the zero values.
Re fault value = 120:
- check current controller P gain (p1715) and if required, reduce.
- increase the pulse frequency (p1800).
Re fault value = 125:
- reduce cable resistance (p0352).
Re fault value = 126:
- reduce series inductance (p0353).
Re fault value = 127, 128, 129:
- it is possible that current controller is oscillating. Reduce p1715 before next measurement.
Re fault value = 130:
- do not initiate a drive data set changeover during motor ident. routine.
Re fault value = 140:
- before the measurement, enable at least one direction (p1110 = 0 or p1111 = 0 or p1959.14 = 1 or p1959.15 = 1).
Re fault value = 160:
- extend accelerating time when determining KT, moment of inertia and reluctance torque, e.g. by increasing max. speed (p1082), increasing moment of inertia or reducing max. current (p0640).
- in encoderless operation with load moment of inertia, parameterize the load moment of inertia (p1498).
- reduce the ramp-up time (p1958).
- increase speed controller P-gain (p1460).
- suppress meas. (p1959).
Re fault value = 173:
- Re fault value = 180:
- increase max. speed (p1082).
- reduce p1755.
Re fault value = 190:
- set speed setpoint to zero.
Re fault value = 191:
- do not start motor data ident. routine while motor is still rotating.
Re fault value = 192:
- check closed-loop speed control (motor rotor may be locked or closed-loop speed control is not functioning).
- for p1215 = 1, 3 (brake the same as the sequence control) check the control sense (p0410.0).
- ensure that enable signals are present during measurement.
- remove any pulling loads from motor.
- increase max. current (p0640).
- reduce max. speed (p1082).
- suppress meas. (p1959).
Re fault value = 193:
- the motor has moved through more than 5° electrical (r0093). Lock motor rotor at one of these pole position angles (r0093): 90 °, 210 ° or 330 ° (+/-5 °) and then start identification.
Re fault value = 194:
- switch out all supplementary torques (e.g. CI: p1511).
- for hanging/suspended axes: Lock motor rotor at one of these pole position angles (r0093): 90 °, 210 ° or 330 ° (+/-1 °) and then start identification.
Re fault value = 195:
- de-select closed-loop torque control (p1300 = 21 or 20, or set the signal source in p1501 to a 0 signal).
Re fault value = 200, 201:
- set pulse frequency to 0.5 ° current controller frequency (e.g. 4 kHz for a current controller clock cycle of 125 us).
- reduce cable length between Motor Module and motor.
- read-out measured values (r1950, r1951) and therefore determine suitable values for p1952, p1953 according to your own estimation.

207991 <location>Drive: Motor data identification activated
Message value:
Drive object: SERVO
Reaction: NONE
Acknowledge: NONE
Cause: The motor data ident. routine is activated.
The motor data identification routine is carried out at the next power-on command.
See also: p1910, p1960
Remedy: None necessary.
The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1910 = 0 or p1960 = 0.

207991 <location>Drive: Motor data identification activated
Message value:
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The motor data ident. routine is activated.
The motor data identification routine is carried out at the next power-on command.
See also: p1910
Remedy: None necessary.
The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1900 = 0.

207993 <location>Drive: Incorrect direction of rotation of the field or encoder actual value inversion
Message value:
Drive object: SERVO
Reaction: OFF2 (NONE)
Acknowledge: IMMEDIATELY
Cause: Either the direction of the rotating field or the encoder actual value has an incorrect sign. The motor data identification automatically changed the actual value inversion (p0410) in order to correct the control sense. This can result in a direction of rotation change. To acknowledge this fault, the correctness of the direction of rotation must first be acknowledged with p1910 = -2.
Overview of Alarms 03/2009

SINAMICS-Alarms

Remedy: Check the direction of rotation, also for the position controller, if one is being used.
If the direction of rotation is correct, the following applies:
No additional measures are required (except p1910 = -2 and acknowledge fault).
If the direction of rotation is incorrect, the following applies:
To change the direction of rotation, two phases must be interchanged and the motor identification routine must be repeated.

207995 <location>Drive: Pole position identification not successful

Message value: %1
Drive object: SERVO
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The pole position identification routine was unsuccessful.
Fault value (r0949, interpret decimal):
1: No current is established.
2: The starting current is not zero.
3: The selected max. distance was exceeded (p1981).
4x: The measuring signal does not permit a clear evaluation.
5: The max. current was exceeded during the measurement.
6: The current measurement must be re-calibrated.
7x: The Sensor Module does not support the pole position identification routine.
70 ... 79: Only for internal Siemens troubleshooting.
8: The pole position identification routine current required is greater than the max. current.
9: The set pole position identification routine current is zero.
10: Data set changeover during the pole position identification.
11: The encoder adjustment to determine the commutation angle (p1990 = 1) and the encoder without zero mark is not finely synchronized or does not have any valid data.
100: Motion-based pole position identification, 1st and 2nd measurement different. Motor locked or current (p1993) too low.
101: Motion-based position position identification, insufficient motion, motor locked or current (p1993) too low.
102: Motion-based pole position identification, brake is being used and is closed. The motion-based position position identification in conjunction with the brake is not permitted.
103: Motion-based pole position identification without encoder.
104: Motion-based pole position identification, speed actual value not zero after stabilizing time.
Note: x = 0 ... 9

Remedy:
Re fault value = 1:
Check the motor connection and DC link voltage.
For the following parameters, set practical values that are not zero (p0325, p0329).
Re fault value = 3:
Increase the max. distance (p1981).
Reduce the currents for the pole position identification routine (p0325, p0329).
Stop the motor in order to carry out the pole position identification routine.
Re fault value = 40 ... 49:
Increase the currents for the pole position identification routine (p0325, p0329).
Stop the motor in order to carry out the pole position identification routine.
Select another technique for pole position identification routine (p1980).
Use another motor, absolute encoder or Hall sensors.
Re fault value = 5:
Reduce the currents for the pole position identification routine (p0325, p0329).
Re fault value = 6:
Re-calibrate the Motor Module.
Re fault value = 7x:
Upgrade the software in the Sensor Module.
Re fault value = 8:
Reduce the currents for the pole position identification routine (p0325, p0329).
The power unit cannot provide the necessary pole position identification routine current (p0209 < p0329, p0325, p1993), replace the power unit by a power unit with a higher max. current.
Re fault value = 9:
Enter a value not equal to zero in the pole position identification routine current (p0329, p0325, p1993).
Re fault value = 10:
Do not initiate a data set changeover during the pole position identification.
Re fault value = 11:
- for incremental encoders without commutation with zero mark (p0404.15 = 0), it does not make sense to adjust the encoder to determine the commutation angle (p1990 = 1). In this case, the function should be de-selected (p1990 = 0) or, for an encoder with suitable zero mark, commutation with zero mark should be selected (p0404.15 = 1).
- for absolute encoders, only adjust the encoder to determine the commutation angle (p1990 = 1) if the encoder supplies commutation information and is finely synchronized (p1992.8 = 1 and p1992.10 = 1). The encoder is possibly parked, de-activated (p0145), not ready to operate or signals a fault condition.
- deselect the encoder adjustment to determine the commutation angle (set p1990 to 0).
Re fault value = 100, 101:
Check and ensure that the motor is free to move.
Increase the current for motion-based pole position identification (p1993).
Re fault value = 102:
If the motor is to be operated with a brake: Select a different technique to identify the pole position (p1980).
If the motor can be operated without a brake: Open the brake (p1215 = 2).
Re fault value = 103:
The motion-based pole position identification can only be carried out using an encoder. Connect an encoder or select another technique for pole position identification routine (p1980).
Re fault value = 104:
Pole position identification, increase the smoothing time, motion-based (p1997).
Pole position identification, increase the rise time, motion-based (p1994).
Pole position identification, check the gain, motion-based (p1995).
Pole position identification, check the integral time, motion-based (p1996).

207996 <location>Drive: Pole position identification routine not carried out
Message value: -
Drive object: SERVO
Reaction: ENCODER (OFF2)
Acknowledge: IMMEDIATELY
Cause: In operation, the operating mode that requires a pole position identification was changed over, which is not possible in this state:
- the drive was changed over, flying, from encoderless operation to operation with encoder without having previously carried out a pole position identification for the encoder. p1404 is then at a value between zero and the max. speed and the pulses in the speed range above p1404 were enabled without a pole position ident. routine having been previously carried out in operation with encoder.
- in operation, an EDS changeover was made to an encoder where it is necessary to carry out a pole position identification. However, this has still not been carried out (p1982 = 1 or 2 and p1992.7 = 0).
Remedy: - for a flying changeover between operation with and without encoder with pole position identification after POWER ON or commissioning (p0010 not equal to zero) enable the pulses once at zero speed. This means that the pole position identification routine is carried out and the result is available for operation.
- carry out the EDS changeover with the pulses inhibited, or, before the changeover, carry out a pole position identification using this data set.

207998 <location>Drive: Motor data identification active on another drive
Message value: %1
Drive object: SERVO
Reaction: NONE
Acknowledge: NONE
Cause: The motor data identification is activated on the drive object specified in the fault value and interlocks the other drive objects so they cannot be powered up.
Fault value (r0949, interpret decimal): Drive object with the active motor data identification.
See also: p1910, p1960

Remedy: - wait for the complete execution of the motor data identification of the drive object designated in the fault value.
- de-select the motor data identification for the drive object designated in the fault value (p1910 = 0 or p1960 = 0).

207999 <location>Drive: Motor data identification cannot be activated</location>
Message
value: %1
Drive object: SERVO
Reaction: NONE
Acknowledge: NONE

Cause: Closed-loop control is enabled on a SERVO drive object type. To select motor data identification, pulses must be suppressed for all SERVO drive objects.
Fault value (r0949, interpret decimal): Drive object with enabled closed-loop control.

Remedy: Withdraw the pulse enable on all drives and re-activate the motor data identification.

208000 <location>TB: +/-15 V power supply faulted</location>
Message
value: %1
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: Terminal Board 30 detects an incorrect internal power supply voltage.
Fault value (r0949, interpret decimal):
0: Error when testing the monitoring circuit.
1: Fault in normal operation.

Remedy: - replace Terminal Board 30.
- replace Control Unit.

208010 <location>TB: Analog-digital converter</location>
Message
value:
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: The analog/digital converter on Terminal Board 30 has not supplied any converted data.

Remedy: - check the power supply.
- replace Terminal Board 30.

208500 <location>COMM BOARD: Monitoring time configuration expired</location>
Message
value: %1
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR

Reaction: A_INFEED: OFF1 (OFF2)
SERVO: OFF1 (OFF2, OFF3)
VECTOR: OFF1 (OFF2, OFF3)

Acknowledge: IMMEDIATELY
Cause: The monitoring time for the configuration has expired.
Fault value (r0949, interpret decimal):
0: The transfer time of the send configuration data has been exceeded.
1: The transfer time of the receive configuration data has been exceeded.
Remedy: Check communication line.

208501 <location>COMM BOARD: Monitoring time process data expired
Message value: -
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: A_INFEE: OFF2 (NONE, OFF1)
SERVO: OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
VECTOR: OFF3 (IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: The set monitoring time expired while transferring process data via COMM BOARD.
See also: p8840 (COMM BOARD monitoring time)
Remedy: - check communications link.
- check the set monitoring time if the error persists.
See also: p8840 (COMM BOARD monitoring time)

208502 <location>COMM BOARD: Monitoring time sign-of-life expired
Message value: -
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: A_INFEE: OFF1 (OFF2)
SERVO: OFF1 (OFF2, OFF3)
VECTOR: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The monitoring time for the sign-of-life counter has expired.
The connection to the COMM BOARD was interrupted.
Remedy: - check communications link.
- check COMM BOARD.

208504 <location>COMM BOARD: Internal cyclic data transfer error
Message value: %1
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The cyclic actual and/or setpoint values were not transferred within the specified times.
Alarm value (r2124, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: Check the parameterizing telegram (Ti, To, Tdp, etc.).

208510 <location>COMM BOARD: Send configuration data invalid
Message value: %1
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: A_INFEE: OFF1 (OFF2)
SERVO: OFF1 (OFF2, OFF3)
VECTOR: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: COMM BOARD did not accept the send-configuration data.
Fault value (r0949, interpret decimal):
Return value of the send-configuration data check.
Remedy: Check the send configuration data.

208511 <location>COMM BOARD: Receive configuration data invalid

Message value: %1

Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The drive unit did not accept the receive configuration data. Alarm value (r2124, interpret decimal):
Return value of the receive configuration data check.
0: Configuration accepted.
1: Connection established to more drive objects than configured in the device. The drive objects for process data exchange and their sequence were defined using p0978.
2: Too many data words for input or output to a drive object. A max. of 16 words is permitted for SERVO and VECTOR; a max. of 5 words for A_INF, TB30, TM31 and CU320.
3: Uneven number of bytes for input or output.
4: Setting data for synchronization not accepted.
5: Drive still not in cyclic operation.
6: Buffer system not accepted.
7: Cyclic channel length too short for this setting.
8: Cyclic channel address not initialized.
9: 3-buffer system not permitted.
10: DRIVE-CLiQ fault.
11: CU-Link fault.
12: CX32 not in cyclic operation.

Remedy: Check the receive configuration data.
Re alarm value = 1:
Check the list of the drive objects with process data exchange (p0978). With p0978[x] = 0, all of the following drive objects in the list are excluded from the process data exchange.

208520 <location>COMM BOARD: Non-cyclic channel error

Message value: %1

Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: The memory or the buffer status of the non-cyclic channel has an error.
Alarm value (r2124, interpret decimal):
0: Error in the buffer status.
1: Error in the memory.

Remedy: Check communication line.

208526 <location>COMM BOARD: No cyclic connection

Message value: -

Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: There is no cyclic connection to the control.

Remedy: Establish the cyclic connection and activate the control with cyclic operation.
For PROFINET, check the parameters "Name of Station" and "IP of Station" (r61000, r61001).
208530 <location>COMM BOARD: Message channel error
Message value: %1
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The memory or the buffer status of the message channel has an error.
Alarm value (r2124, interpret decimal):
0: Error in the buffer status.
1: Error in the memory.
Remedy: Check communication line.

208550 <location>PZD Interface Hardware assignment error
Message value: %1
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The assignment of the hardware to the PZD interface has been incorrectly parameterized.
Alarm value (r2124, interpret decimal):
1: Only one of the two indices is not equal to 99 (automatic).
2: Both PZD interfaces are assigned to the same hardware.
3: Assigned COMM BOARD missing.
4: CBC10 is assigned to interface 1.
See also: p8839 (PZD interface hardware assignment)
Remedy: Correct the parameterization (p8839).

208700 <location>CBC: Communications error
Message value: %1
Drive object: CU_LINK, CU_S, HUB, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: A_INFEED: NONE
SERVO: OFF3 (NONE, OFF1, OFF2)
VECTOR: OFF3 (NONE, OFF1, OFF2)
Acknowledge: IMMEDIATELY
Cause: A CAN communications error has occurred.
Fault value (r0949, interpret decimal):
1: The error counter for the send telegrams has exceeded the BUS OFF value 255. The bus disables the CAN controller.
- bus cable interrupted.
- bus cable not connected.
- incorrect baud rate.
- incorrect bit timing.
2: The master no longer interrogated the CAN node status longer than for its "life time". The "life time" is obtained from the "guard time" (p8604[0]) multiplied by the "life time factor" (p8604[1]).
- bus cable interrupted.
- bus cable not connected.
- incorrect baud rate.
- incorrect bit timing.
- master fault.
Note: The fault response can be set as required using p8641.
See also: p8604 (CBC node guarding), p8641 (CBC abort connection option code)
Remedy:
- check the bus cable
- check the baud rate (p8622).
- check the bit timing (p8623).
- check the master.
See also: p8622 (CBC baud rate), p8623 (CBC bit timing selection)

208700
<location>CBC: Communications error

Message value: %1
Drive object: A_INF, B_INF, S_INF
Reaction:
- A_INFEED: NONE
- SERVO: OFF3 (NONE, OFF1, OFF2)
- VECTOR: OFF3 (NONE, OFF1, OFF2)
Acknowledge: IMMEDIATELY
Cause:
A CAN communications error has occurred.
Fault value (r0949, interpret decimal):
1: The error counter for the send telegrams has exceeded the BUS OFF value 255. The bus disables the CAN controller.
- bus cable interrupted.
- bus cable not connected.
- incorrect baud rate.
- incorrect bit timing.
2: The master no longer interrogated the CAN node status longer than for its "life time". The "life time" is obtained from the "guard time" (p8604[0]) multiplied by the "life time factor" (p8604[1]).
- bus cable interrupted.
- bus cable not connected.
- incorrect baud rate.
- incorrect bit timing.
- master fault.
See also: p8604 (CBC node guarding), p8641 (CBC abort connection option code)

Remedy:
- check the bus cable
- check the baud rate (p8622).
- check the bit timing (p8623).
- check the master.
See also: p8622 (CBC baud rate), p8623 (CBC bit timing selection)

208701
<location>CBC: NMT state change

Message value: %1
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction:
- A_INFEED: OFF2
- SERVO: OFF3
- VECTOR: OFF3
Acknowledge: IMMEDIATELY
Cause: A CANopen NMT state transition from "operational" to "pre-operational" or after "stopped".
Fault value (r0949, interpret decimal):
1: CANopen NMT state transition from "operational" to "pre-operational".
2: CANopen NMT state transition from "operational" to "stopped".
Note:
In the NMT state "pre-operational", process data cannot be transferred and in the NMT state "stopped", no process data and no service data can be transferred.

Remedy: None necessary.
Acknowledge the fault and continue operation.
208751 <location>CBC: Telegram loss
Message value:
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The CAN controller has lost a receive message (telegram).
Remedy: Reduce the cycle times of the receive messages.

208752 <location>CBC: Error counter for error passive exceeded
Message value:
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The error counter for the send or receive telegrams has exceeded the value 127.
Remedy: - check the bus cable
- set a higher baud rate (p8622).
- check the bit timing and if required optimize (p8623).
See also: p8622 (CBC baud rate), p8623 (CBC bit timing selection)

208753 <location>CBC: Message buffer overflow
Message value: %1
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: A message buffer overflow.
Alarm value (r2124, interpret decimal):
1: Non-cyclic send buffer (SDO response buffer) overflow.
2: Non-cyclic receive buffer (SDO receive buffer) overflow.
3: Cyclic send buffer (PDO send buffer) overflow.
Remedy: Check the bus cable.
Set a higher baud rate (p8622).
Check the bit timing and if required optimize (p8623).
Re alarm value = 2:
- reduce the cycle times of the SDO receive messages.
See also: p8622 (CBC baud rate), p8623 (CBC bit timing selection)

208754 <location>CBC: Incorrect communications mode
Message value:
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: In the "operational" mode, an attempt was made to change parameters p8700 ... p8737.
Remedy: Change to the "pre-operational" or "stopped" mode.

208755 <location>CBC: Obj cannot be mapped
Message value:
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
The CANopen object is not provided for the Process Data Object (PDO) Mapping.

Use a CANopen object intended for the PDO mapping or enter 0.

The following objects can be mapped in the Receive Process Data Object (RPDO) or Transmit Process Data Object (TPDO):
- RPDO: 6040 hex, 6060 hex, 60FF hex, 6071 hex; 5800 hex - 580F hex; 5820 hex - 5827 hex
- TPDO: 6041 hex, 6061 hex, 6063 hex, 6069 hex, 606B hex, 606C hex, 6074 hex; 5810 hex - 581F hex; 5830 hex - 5837 hex

Only sub-index 0 of the specified objects can be mapped.

Note:
As long as A08755 is present, the COB-ID cannot be set to valid.

208756
<location>CBC: Number of mapped bytes exceeded

Message value:

Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause:
The number of bytes of the mapped objects exceeds the telegram size for net data. A max. of 8 bytes is permissible.

Remedy:
Map fewer objects or objects with a smaller data type.
See also: p8710, p8711, p8712, p8713, p8714, p8715, p8716, p8717, p8730, p8731, p8732, p8733, p8734, p8735, p8736, p8737

208757
<location>CBC: Set COB-ID invalid

Message value:

Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause:
For online operation, the appropriate COB-ID must be set invalid before mapping.
Example:
Mapping for RPDO 1 should be changed (p8710[0]).
--> set p8700[0] = C00006E0 hex (invalid COB-ID)
--> set p8710[0] as required.
--> p8700[0] enter a valid COB-ID

Remedy:
Set the COB-ID to invalid.

208758
<location>CBC: Number of PDO channels too low

Message value:

Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause:
The number of PDO channels in p8740 has either been set to 0 or too low.
See also: p8740 (CBC channel assignment)

Remedy:
The number of channels set in p8740 must be greater than or equal to the number of PDOs.
There are 2 possibilities:
Increase the number of channels in p8740 and confirm the selection using p8741.
Reduce the number of PDOs by setting the COB-ID to invalid.
See also: p8740 (CBC channel assignment), p8741 (CBC PDO configuration acknowledgement)
208759 <location>CBC: PDO COB-ID already available

Message
value: -

Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: An existing PDO COB-ID was allocated.

Remedy: Select another PDO COB-ID.

213000 <location>License not adequate

Message
value: %1

Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: - for the drive unit, the options that require a license are being used but the licenses are not sufficient.
- an error occurred when checking the existing licenses.

Alarm value (r2124, interpret decimal):
0:
The existing license is not sufficient.
1:
An adequate license was not able to be determined as the memory card with the required licensing data was withdrawn in operation.
2:
An adequate license was not able to be determined, as an error occurred when reading-out the required licensing data from the memory card.
3:
An adequate license was not able to be determined as there is a checksum error in the license key.
4:
An internal error occurred when checking the license.

Remedy:
Re alarm value = 0:
Additional licenses are required and these must be activated (p9920, p9921).
Re alarm value = 1:
With the system powered down, re-insert the memory card that matches the system.
Re alarm value = 2:
Enter and activate the license key (p9920, p9921).
Re alarm value = 3:
Compare the license key (p9920) entered with the license key on the certificate of license.
Re-enter the license key and activate (p9920, p9921).
Re alarm value = 4:
- carry out a POWER ON.
- upgrade firmware to later version.
- contact the Hotline.

213001 <location>Error in license checksum

Message
value: -

Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause: When checking the checksum of the license key, an error was detected.

Remedy:
Compare the license key (p9920) entered with the license key on the certificate of license.
Re-enter the license key and activate (p9920, p9921).
230001 <location>Power unit: Overcurrent

Message value: Fault cause: %1 bin

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: The power unit has detected an overcurrent condition.
- closed-loop control is incorrectly parameterized.
- motor has a short-circuit or fault to ground (frame).
- V/f operation: Rated motor current is significantly greater than that of the Motor Module.
- infeed: High discharge and post-charging current for line supply voltage interruptions.
- infeed: High post-charging currents for overload when motoring and DC link voltage dip.
- infeed: Short-circuit currents at power-on due to the missing commutating reactor.
- power cables are not correctly connected.
- power cables exceed the maximum permissible length.
- power unit defective.

Additional causes for a parallel switching device (r0108.15 = 1):
- a power unit has tripped (powered down) due to a ground fault.
- the closed-loop circulating current control is either too slow or has been set too fast.

Fault value (r0949, interpret bitwise binary):
- Bit 0: Phase U.
- Bit 1: Phase V.
- Bit 2: Phase W.

Note: Fault = 0 means that the phase with overcurrent is not recognized (e.g. for Blocksize device).

Remedy:
- check the motor data - if required, carry out commissioning.
- check the motor circuit configuration (star-delta).
- V/f operation: Increase up ramp.
- V/f operation: Check the assignment of the rated currents of the motor and Motor Module.
- infeed: Check the line supply quality.
- infeed: Reduce the load when motoring.
- infeed: Correct connection of the line commutating reactor.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.
- replace power unit.

For a parallel switching device (r0108.15 = 1) the following additionally applies:
- check the ground fault monitoring thresholds (p0287).
- check the setting of the closed-loop circulating current control (p7036, p7037).

230002 <location>Power unit: DC link voltage, overvoltage

Message value: %1

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: The power unit has detected an overvoltage condition in the DC link.
- motor regenerates too much energy.
- device supply voltage too high.
- when operating with a VSM, the phase assignment L1, L2, L3 at the VSM differs from the phase assignment at the power unit.

Fault value (r0949, interpret decimal):
- DC link voltage [1 bit = 100 mV].
- For SINAMICS GM/SM, the following applies:
 - check the ground fault monitoring thresholds (p0287).
 - check the setting of the closed-loop circulating current control (p7036, p7037).

Fault value (r0949, interpret decimal):
- 32: Overvoltage in the negative partial DC link (VdcP)
- 64: Overvoltage in the positive partial DC link (VdcN)
- 96: Overvoltage in both partial DC links
Remedy: - increase the ramp-down time.
- activate the DC link voltage controller.
- use a brake resistor or Active Line Module.
- increase the current limit of the infeed or use a larger module (for the Active Line Module).
- check the device supply voltage.
- check and correct the phase assignment at the VSM and at the power unit.
See also: p0210, p1240

230003 <location>Power unit: DC link voltage, undervoltage
Message value: -
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The power unit has detected an undervoltage condition in the DC link.
- line supply failure
- line supply voltage below the permissible value.
- line supply infeed failed or interrupted.
Note: The monitoring threshold for the DC link undervoltage is the minimum of the following values:
- for a calculation, refer to p0210.
Remedy:
- check the line supply voltage
- check the line supply infeed and if necessary observe the fault messages of the line supply infeed.
Note: The "ready for operation" signal of the infeed r0863 must be connected to the associated inputs p0864
of the drives.
See also: p0210 (Drive unit line supply voltage)

230004 <location>Power unit: Overtemperature heat sink AC inverter
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The temperature of the power unit heat sink has exceeded the permissible limit value.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- pulse frequency too high.
Fault value (r0949):
Temperature [1 bit = 0.01 °C].
Remedy:
- check whether the fan is running.
- check the fan elements
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- reduce the pulse frequency if this is higher than the rated pulse frequency.
Notice: This fault can only be acknowledged after this alarm threshold for alarm A05000 has been undershot.
See also: p1800 (Pulse frequency)

230005 <location>Power unit: Overload I2t
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The power unit was overloaded (r0036 = 100 %).
- the permissible rated power unit current was exceeded for an inadmissibly long time.
- the permissible load duty cycle was not maintained.
Fault value (r0949, interpret decimal):
I2t [100 % = 16384].
230006
Message
- Value:
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The Thyristor Control Board (TCB) of the Basic Line Module signals a fault.
- there is no line supply voltage.
- the line contactor is not closed.
- the line supply voltage is too low.
- line supply frequency outside the permissible range (45 ... 66 Hz).
- there is a DC link short-circuit.
- there is a DC link short-circuit (during the pre-charging phase).
- voltage supply for the Thyristor Control Board outside the nominal range (5 ... 18 V) and line voltage >30 V.
- there is an internal fault in the Thyristor Control Board.
Remedy: The faults must be saved in the Thyristor Control Board and must be acknowledged. To do this, the supply voltage of the Thyristor Control Board must be switched out for at least 10 s!
- check the line supply voltage
- check or energize the line contactor.
- check the monitoring time and, if required, increase (p0857).
- if required, observe additional power unit messages/signals.
- check the DC link regarding short-circuit or ground fault.
- evaluate diagnostic LEDs for the Thyristor Control Board.

230008
Message
- Value:
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The power unit has detected that the cyclic setpoint telegrams of the Control Unit were not punctually updated for at least two clock cycles within a time interval of 20 ms.
Remedy:
- check the electrical cabinet design and cable routing for EMC compliance
- for projects with the VECTOR drive object, check whether p0117 = 6 has been set on the Control Unit.
See also: p0117 (Current controller computing dead time mode)

230010
Message
- Value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: A DRIVE-CLIQ communication error has occurred between the Control Unit and the power unit involved.
The cyclic setpoint telegrams of the Control Unit were not received on time by the power unit for at least one clock cycle.
Remedy:
- check the electrical cabinet design and cable routing for EMC compliance
230011 <location>Power unit: Line phase failure in main circuit
Message value: -
Drive object: All objects
Reaction: OFF2 (OFF1)
Acknowledge: IMMEDIATELY
Cause: A line phase failure was detected at the power unit.
- the fuse of a phase of a main circuit has ruptured.
- the DC link voltage ripple has exceeded the permissible limit value.
Remedy: Check the fuses in the main circuit.

230012 <location>Power unit: Temperature sensor heat sink wire breakage
Message value: %1
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: The connection to one of the heat sink temperature sensors in the power unit is interrupted.
Fault value (r0949, interpret hexadecimal):
Bit 0: Module slot (electronics slot)
Bit 1: Air intake
Bit 2: Inverter 1
Bit 3: Inverter 2
Bit 4: Inverter 3
Bit 5: Inverter 4
Bit 6: Inverter 5
Bit 7: Inverter 6
Bit 8: Rectifier 1
Bit 9: Rectifier 2
Remedy: Contact the manufacturer.

230013 <location>Power unit: Temperature sensor heat sink short-circuit
Message value: %1
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: The heat sink temperature sensor in the Motor Module is short-circuited.
Fault value (r0949, interpret hexadecimal):
Bit 0: Module slot (electronics slot)
Bit 1: Air intake
Bit 2: Inverter 1
Bit 3: Inverter 2
Bit 4: Inverter 3
Bit 5: Inverter 4
Bit 6: Inverter 5
Bit 7: Inverter 6
Bit 8: Rectifier 1
Bit 9: Rectifier 2
Remedy: Contact the manufacturer.

230016 <location>Power unit: Load supply switched out
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The following applies for CU31x and CUA31:
The DC link voltage is too low.
Fault value (r0949, interpret decimal): DC link voltage in [V].

Remedy: The following applies for CU31x and CUA31:
Under certain circumstances, the AC line supply is not switched in.

230017 Message value: Fault cause: %1 bin
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The following applies for CU31x and CUA31:
The DC link voltage is too low.
Fault value (r0949, interpret decimal): DC link voltage in [V].
Remedy: The following applies for CU31x and CUA31:
Under certain circumstances, the AC line supply is not switched in.

230020 Message value: Fault cause: %1
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A configuration is requested that is not supported by the power unit.
Fault value (r0949, interpret hexadecimal):
0: Autonomous operation is requested but is not supported.
Remedy: Re fault value = 0:
If internal voltage protection is active (p1231 = 3), de-activate it if necessary.
See also: p1231 (Armature short-circuit / DC brake configuration)
230021 <location>Power unit: Ground fault</location>
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Power unit has detected a ground fault.
- ground fault in the power cables
- winding fault or ground fault at the motor.
- CT defective.
Additional cause for CU310/CUA31:
- when the brake is applied, this causes the hardware DC current monitoring to respond.
Additional cause for parallel switching devices (r0108.15 = 1):
- the closed-loop circulating current control is either too slow or has been set too fast.
Fault value (r0949, interpret decimal):
Absolute value, summation current [32767 = 271 % rated current].
Remedy:
- check the power cable connections.
- check the motor.
- check the CT.
The following applies additionally for CU310 and CUA31:
- check the cables and contacts of the brake connection (a wire is possibly broken).
For parallel switching devices (r0108.15 = 1) the following additionally applies:
- check the ground fault monitoring thresholds (p0287).
- check the setting of the closed-loop circulating current control (p7036, p7037).
See also: p0287 (Ground fault monitoring thresholds)

230022 <location>Power unit: Monitoring V_ce</location>
Message value: Fault cause: %1 bin
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: In the power unit, the monitoring of the collector-emitter voltage (V_ce) of the semiconductor has responded.
Possible causes:
- fiber-optic cable interrupted.
- power supply of the IGBT gating module missing.
- short-circuit at the Motor Module output.
- defective semiconductor in the power unit.
Fault value (r0949, interpret binary):
Bit 0: Short-circuit in phase U
Bit 1: Short circuit in phase V
Bit 2: Short-circuit in phase W
Bit 3: Light transmitter enable defective
Bit 4: V_ce group fault signal interrupted
See also: r0949 (Fault value)
Remedy:
- check the fiber-optic cable and if required, replace.
- check the power supply of the IGBT gating module (24 V).
- check the power cable connections.
- select the defective semiconductor and replace.

230023 <location>Power unit: Overtemperature thermal model alarm</location>
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The temperature difference between the heat sink and chip has exceeded the permissible limit value.
- the permissible load duty cycle was not maintained.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- pulse frequency too high.
See also: r0037

Remedy:
- adapt the load duty cycle.
- check whether the fan is running.
- check the fan elements
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- reduce the pulse frequency if this is higher than the rated pulse frequency.

230024 <location>Power unit: Overtemperature thermal model

Message value: -
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: The temperature difference between the heat sink and chip has exceeded the permissible limit value.
- the permissible load duty cycle was not maintained.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- pulse frequency too high.
See also: r0037

Remedy:
- adapt the load duty cycle.
- check whether the fan is running.
- check the fan elements
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- reduce the pulse frequency if this is higher than the rated pulse frequency.

230025 <location>Power unit: Chip overtemperature

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: Chip temperature of the semiconductor has exceeded the permissible limit value.
- the permissible load duty cycle was not maintained.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- pulse frequency too high.
Fault value (r0949):
Temperature difference between the heat sink and chip [1 Bit = 0.01 °C].

Remedy:
- adapt the load duty cycle.
- check whether the fan is running.
- check the fan elements
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- reduce the pulse frequency if this is higher than the rated pulse frequency.

Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05001 has been undershot.
See also: r0037
230027 <location>Power unit: Precharging DC link time monitoring

Message value: Enable signals: %1, Status: %2

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause:
The power unit DC link was not able to be pre-charged within the expected time.
1) There is no line supply voltage connected.
2) The line contactor/line side switch has not been closed.
3) The line supply voltage is too low.
4) Line supply voltage incorrectly set (p0210).
5) The pre-charging resistors are overheated as there were too many pre-charging operations per time unit.
6) The pre-charging resistors are overheated as the DC link capacitance is too high.
7) The pre-charging resistors are overheated because when there is no "ready for operation" (r0863.0) of the infeed unit, power is taken from the DC link.
8) The pre-charging resistors are overheated as the line contactor was closed during the DC link fast discharge through the Braking Module.
9) The DC link has either a ground fault or a short-circuit.
10) The pre-charging circuit is possibly defective (only for chassis units).

Fault value (r0949, interpret binary):
Missing internal enable signals, power unit (lower 16 bit):
(Inverted bit-coded representation FFFF hex -> all internal enable signals available)
Bit 0: Power supply of the IGBT gating shut down
Bit 1: Reserved
Bit 2: Reserved
Bit 3: Ground fault detected
Bit 4: Peak current intervention
Bit 5: I2t exceeded
Bit 6: Thermal model overtemperature calculated
Bit 7: (heat sink, gating module, power unit) overtemperature measured
Bit 8: Reserved
Bit 9: Overvoltage detected
Bit 10: Power unit has completed pre-charging, ready for pulse enable
Bit 11: STO terminal missing
Bit 12: Overcurrent detected
Bit 13: Armature short-circuit active
Bit 14: DRIVE-CLiQ fault active
Bit 15: Uce fault detected, transistor de-saturated due to overcurrent/short-circuit

Status, power unit (upper 16 bit, hexadecimal number):
0: Fault status (wait for OFF and fault acknowledgement)
1: Restart inhibit (wait for OFF)
2: Overvoltage condition detected -> change into the fault state
3: Undervoltage condition detected -> change into the fault state
4: Wait for bypass contactor to open -> change into the fault state
5: Wait for bypass contactor to open -> change into restart inhibit
6: Commissioning
7: Ready for pre-charging
8: Pre-charging started, DC link voltage lower than the minimum switch-on voltage
9: Pre-charging, DC link voltage end of pre-charging still not detected
10: Wait for the end of the de-bounce time of the main contactor after pre-charging has been completed
11: Pre-charging completed, ready for pulse enable
12: It was detected that the STO terminal was energized at the power unit
See also: p0210 (Drive unit line supply voltage)
Remedy: In general:
- check the line supply voltage at the input terminals.
- check the line supply voltage setting (p0210).
- in general for booksize units: Wait (approx. 8 min.) until the pre-charging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply.

Re 5):
- carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual).

Re 6):
- check the total capacitance of the DC link and if required, correspondingly reduce the maximum permissible DC link capacitance (refer to the appropriate Equipment Manual).

Re 7):
- interconnect the ready for operation signal of the infeed unit (r0863.0) in the enable logic of the drives connected to this DC link.

Re 8):
- check the connections of the external line contactor. The line contactor must be open during the DC link fast discharge.

Re 9):
- check the DC link regarding ground fault or short-circuit.

See also: p0210 (Drive unit line supply voltage)

230031 <location>Power unit: Hardware current limiting, phase U

Message value:
-

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause:
Hardware current limit for phase U responded. The pulsing in this phase is inhibited for one pulse period.
- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high.
- power unit defective.

Note: Alarm A30031 is always output if the hardware current limit for phase U, V or W on a Power Module responds.

Remedy:
- check the motor data.
- check the motor circuit configuration (star-delta).
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

230032 <location>Power unit: Hardware current limiting, phase V

Message value:
-

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: Hardware current limit for phase V responded. The pulsing in this phase is inhibited for one pulse period.
- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high.
- power unit defective.

Note: Alarm A30031 is always output if the hardware current limit for phase U, V or W on a Power Module responds.
Remedy:
- check the motor data.
- check the motor circuit configuration (star-delta).
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

230033
message: Power unit: Hardware current limiting, phase W

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period.
- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high
- power unit defective.

Note: Alarm A30031 is always output if the hardware current limit for phase U, V or W on a Power Module responds.

Remedy:
- check the motor data.
- check the motor circuit configuration (star-delta).
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

230035
message: Power unit: Air intake overtemperature

Drive object: All objects

Reaction: OFF1 (OFF2)

Acknowledge: IMMEDIATELY

Cause: The air intake in the power unit has exceeded the permissible temperature limit.
For air-cooled power units, the temperature limit is at 55 °C.
- ambient temperature too high.
- insufficient cooling, fan failure.
Fault value (r0949, interpret decimal): Temperature [1 bit = 0.01 °C].

Remedy:
- check whether the fan is running.
- check the fan elements
- check whether the ambient temperature is in the permissible range.
Notice: This fault can only be acknowledged after this alarm threshold for alarm A05002 has been undershot.

230036
message: Power unit: Electronics board overtemperature

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: The temperature in the module slot of the drive converter has exceeded the permissible temperature limit.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
Fault value (r0949, interpret decimal): Temperature [1 bit = 0.1 °C].
Remedy:
- check whether the fan is running.
- check the fan elements
- check whether the ambient temperature is in the permissible range.

Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05003 has been undershot.

230037
<location> Power unit: Rectifier overtemperature

Message value:
%1

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause:
The temperature in the rectifier of the power unit has exceeded the permissible temperature limit.
- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- line supply phase failure.
Fault value (r0949, interpret decimal):
Temperature [1 bit = 0.01 °C].

Remedy:
- check whether the fan is running.
- check the fan elements
- check whether the ambient temperature is in the permissible range.
- check the line supply phases.

Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05004 has been undershot.

230038
<location> Power unit: Capacitor fan monitoring

Message value:
%1

Drive object: B_INF

Reaction: NONE

Acknowledge: NONE

Cause:
The capacitor fan signals a fault.

Remedy: Replace the capacitor fan in the power unit.

230039
<location> Power unit: Failure capacitor fan

Message value:
%1

Drive object: B_INF

Reaction: OFF1

Acknowledge: IMMEDIATELY

Cause:
The capacitor fan has failed.

Remedy: Replace the capacitor fan in the power unit.

230040
<location> Power unit: Undervolt 24 V

Message value:
%1

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY (POWER ON)

Cause:
Failure of the 24 V power supply for the power unit.
- the 16 V threshold was undershot for longer than 3 ms.
Fault value (r0949, interpret decimal):
24 V voltage [1 bit = 0.1 V].

Remedy: Check the 24 V DC voltage supply to power unit.
230041 <location>Power unit: Undervoltage 24 V alarm
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: 24 V power supply fault for the power unit.
- The 16 V threshold was undershot.
Fault value (r0949, interpret decimal):
24 V voltage [1 bit = 0.1 V].
Remedy: Check the 24 V DC voltage supply to power unit.

230042 <location>Power unit: Fan operating time reached or exceeded
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The maximum operating time of the fan in the power unit is set in p0252.
This message indicates the following:
Fault value (r0949, interpret decimal):
0: The maximum fan operating time is 500 hours.
1: The maximum fan operating time has been exceeded.
Remedy: Replace the fan in the power unit and reset the operating hours counter to 0 (p0251 = 0).
See also: p0251 (Operating hours counter power unit fan), p0252 (Maximum operating time power unit fan)

230043 <location>Power unit: Overvolt 24 V
Message value: -
Drive object: All objects
Reaction: OFF2
Acknowledge: POWER ON
Cause: The following applies for CU31x:
Overvoltage of the 24 V power supply for the power unit.
- The 31.5 V threshold was exceeded for more than 3 ms.
Fault value (r0949):
24 V voltage [1 bit = 0.1 V].
Remedy: Check the 24 V DC voltage supply to power unit.

230044 <location>Power unit: Overvoltage 24 V alarm
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The following applies for CU31x:
24 V power supply fault for the power unit.
- The 32.0 V threshold was exceeded.
Fault value (r0949):
24 V voltage [1 bit = 0.1 V].
Remedy: Check the 24 V DC voltage supply to power unit.

230045 <location>Power unit: Supply undervoltage
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The following applies for CU31x:
- Power supply fault in the power unit.
- The voltage monitoring on the DAC board signals an undervoltage fault on the module.

Remedy: Check the 24 V DC power supply for the power unit and if required replace the module.

230046

<location>Power unit: Undervoltage, alarm

Message value: %1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: Before the last new start, a problem occurred at the power unit power supply.
- The voltage monitoring in the internal FPGA of the PSA signals an undervoltage fault on the module.

Fault value (r0949):
Register value of the voltage fault register.

Remedy: Check the 24 V DC power supply for the power unit and if required replace the module.

230047

<location>Cooling system: Cooling medium flow rate too low

Message value: %1

Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: Cooling system: Fault - flow rate has fallen below the fault value

Remedy:

230050

<location>Power unit: Supply overvoltage

Message value: -

Drive object: All objects

Reaction: OFF2

Acknowledge: POWER ON

Cause: The following applies for CU31x and CUA31:
- The voltage monitoring on the DAC board signals an overvoltage fault on the module.

Remedy:

- check the voltage supply for the Control Unit (24 V).
- If required, replace the module.

230052

<location>EEPROM data error

Message value: %1

Drive object: All objects

Reaction: NONE

Acknowledge: POWER ON

Cause: EEPROM data error of the power unit module.
Fault value (r0949, interpret hexadecimal):

0: The EEPROM data read in from the power unit module is inconsistent.
1: EEPROM data is not compatible to the firmware of the power unit application.

Remedy:

Re fault value = 0:
Replace the power unit module or update the EEPROM data.

Re fault value = 1:
The following applies for CU31x and CUA31:
Update the firmware \SIEMENS\SINAMICS\CODE\SAC\cu31xi.ufw (cua31.ufw)

230062

<location>The bypass contactor was opened under current

Message value: -

Drive object: All objects

Reaction: NONE (OFF1, OFF2)

Acknowledge: IMMEDIATELY (POWER ON)
Cause: The bypass contactor of the infeed unit was damaged by being opened (multiple number of times) while it was conducting current.

Possible causes:
- scheduled opening under load can be necessary, for example, to protect the drive converter group in the event of a ground fault in high frequency spindles.
- incorrect operator control of the infeed can cause the contactor to switch under load. If, in spite of a missing operating enable, the infeed unit draws active motoring power from the DC link.

Remedy: In order to avoid critically damaging the complete drive converter group, it is urgently recommended to replace the damaged infeed unit.

230070 <location>Cycle requested by the power unit module not supported

Message value: %1

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause:
The following applies for CU31x and CUA31:
A cycle is requested that is not supported by the power unit.
Fault value (r0949, interpret hexadecimal):
The following applies for CU31x and CUA31:
0: The current control cycle is not supported.
1: The DRIVE-CLiQ cycle is not supported.
2: Internal timing problem (distance between RX and TX instants too low).
3: Internal timing problem (TX instant too early).

Remedy:
The following applies for CU31x and CUA31:
The power unit only supports the following cycles:
62.5 µs, 125 µs, 250 µs and 500 µs
Fault value (r0949, interpret hexadecimal):
The following applies for CU31x and CUA31:
0: Set a permitted current control cycle.
1: Set a permitted DRIVE-CLiQ cycle.
2/3: Contact the manufacturer (there is possibly an incompatible firmware version).

230071 <location>No new actual values received from the power unit module

Message value: -

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause:
The following applies for CU31x and CUA31:
More than one actual value telegram from the power unit has failed.

Remedy:
The following applies for CU31x and CUA31:
Check the interface (adjustment and locking) to the power unit.

230072 <location>Setpoints are no longer being transferred to the power unit

Message value: -

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause:
The following applies for CU31x and CUA31:
More than one setpoint telegram was not able to be transferred to the power unit.

Remedy:
The following applies for CU31x and CUA31:
Check the interface (adjustment and locking) to the power unit.
230073 <location>Actual value/setpoint preprocessing no longer synchronous to DRIVE-CLiQ</location>
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The following applies for CU31x and CUA31:
Communications to the power unit module are no longer in synchronism with DRIVE-CLiQ.
Remedy: The following applies for CU31x and CUA31:
Wait until synchronization is re-established.

230074 <location>Communications error to the power unit module</location>
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Communication is not possible with the power unit via the plug contact.
Remedy: The following applies for CU31x and CUA31:
Either replace the CU board or the power unit. You must check which of the two components must be replaced by replacing one and then the other component; if neither are available then both components must be returned.

230105 <location>PU: Actual value sensing fault</location>
Message value: -
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA).
The incorrect actual value channels are displayed in the following diagnostic parameters.
Remedy: Evaluate the diagnostic parameters.
If the actual value channel is incorrect, check the components and if required, replace.

230502 <location>Power unit: DC link voltage, overvoltage</location>
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The power unit has detected overvoltage in the DC link with a pulse inhibit.
- device supply voltage too high.
- line reactor incorrectly dimensioned.
Fault value (r0949, interpret decimal):
DC link voltage [1 bit = 100 mV].
See also: r0070 (Actual DC link voltage)
Remedy: - check the device supply voltage (p0210).
- check the dimensioning of the line reactor.
See also: p0210 (Drive unit line supply voltage)

230600 <location>SI MM: STOP A initiated</location>
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
The drive-based "Safety Integrated" function in the Motor Module (MM) has detected a fault and initiated STOP A (pulse suppression via the safety shutdown path of the Motor Module).
- forced checking procedure of the safety shutdown path of the Motor Module unsuccessful.
- subsequent response to fault F30611 (defect in a monitoring channel).
Fault value (r0949, interpret decimal):
0: Stop request from the Control Unit.
1005: Pulses suppressed although STO not selected and there is no internal STOP A present.
1010: Pulses enabled although STO is selected or an internal STOP A is present.
1020: Internal software error in the "Internal voltage protection" function. The "Internal voltage protection" function is withdrawn. A STOP A that cannot be acknowledged is initiated.
9999: Subsequent response to fault F30611.

Remedy:
- select Safe Torque Off and de-select again.
- replace the Motor Module involved.
Re fault value = 1020:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- replace the Motor Module.
Re fault value = 9999:
- carry out diagnostics for fault F30611.

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill

230611 <location>SI MM: Defect in a monitoring channel
Message value: %1

Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)

Cause:
The drive-based "Safety Integrated" function in the Motor Module (MM) has detected a fault in the data cross-check between the Control Unit (CU) and MM and initiated a STOP F.
As a result of this fault, after the parameterized transition has expired (p9858), fault F30600 is output (SI MM: STOP A initiated).
Fault value (r0949, interpret decimal):
0: Stop request from the Control Unit.
1 to 999: Number of the cross-checked data that resulted in this fault. This number is also displayed in r9895.
1: SI monitoring clock cycle (r9780, r9880).
2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.
3: SI SGE changeover tolerance time (p9650, p9850).
4: SI transition period STOP F to STOP A (p9658, p9858).
5: SI enable Safe Brake Control (p9602, p9802).
6: SI Motion enable, safety-relevant functions (p9501, internal value).
7: SI pulse suppression delay time for Safe Stop 1 (p9652, p9852).
8: SI PROFIsafe address (p9610, p9810).
1000: Watchdog timer has expired. Within a period corresponding to approximately 5 * p9850, too many switching operations have occurred at the safety-relevant inputs of the Control Unit, or STO (including subsequent responses) has been triggered too frequently via PROFIsafe/TM54F.
1001, 1002: Initialization error, change timer / check timer.
2000: Status of the STO selection on the Control Unit and Motor Module are different.
2001: Feedback signal for safe pulse suppression on the Control Unit and Motor Module are different.
2002: Status of the delay timer SS1 on the Control Unit and Motor Module are different.
Remedy: Re fault value = 1 to 5 and 7 to 999:
- check the cross-checked data that resulted in a STOP F.
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 6:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 1000:
- check the wiring of the safety-relevant inputs (SGE) on the Control Unit (contact problems).
- PROFIsafe: rectify contact problems/faults on the PROFINET master/PROFINET controller.
- check the wiring of the fail-safe inputs on TM54F (contact problems).
Re fault value = 1001, 1002:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Re fault value = 2000, 2001, 2002:
- check the tolerance time SGE changeover and if required, increase the value (p9650/p9850, p9652/p9852).
- check the wiring of the safety-relevant inputs (SGE) (contact problems).
- check the cause of STO selection in r9772. Active SMM functions (p9501=1) can also cause STO to be selected.
- replace the Motor Module involved.
Note:
CU: Control Unit
MM: Motor Module
SGE: Safety-relevant input
Si: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill
SMM: see r9772

230620 <location>SI MM: Safe Torque Off active

Message value:
- Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The "Safe Torque Off" function was selected on the Motor Module (MM) via the input terminal and is active.
Note: This message does not result in a safety stop response.
Remedy:
None necessary.
Note:
MM: Motor Module
Si: Safety Integrated
STO: Safe Torque Off / SH: Safe standstill

230621 <location>SI MM: Safe Stop 1 active

Message value:
- Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The "Safe Stop 1" function (SS1) was selected on the Motor Module (MM) and is active.
Note: This message does not result in a safety stop response.
Remedy: None necessary.

Note:
MM: Motor Module
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)

230625 <location>SI MM: Sign-of-life error in safety data

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The drive-based "Safety Integrated" function on the Motor Module (MM) has detected an error in the sign-of-life of the safety data between the Control Unit (CU) and MM and initiated a STOP A.
- there is either a DRIVE-CLiQ communication error or communication has failed.
- a time slice overflow of the safety software has occurred.
Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:
- select Safe Torque Off and de-select again.
- carry out a POWER ON (power off/on) for all components.
- check whether there is a DRIVE-CLiQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- de-select all drive functions that are not absolutely necessary.
- reduce the number of drives.
- check the electrical cabinet design and cable routing for EMC compliance

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

230630 <location>SI MM: Brake control error

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The drive-based "Safety Integrated" function on the Motor Module (MM) has detected a brake control error and initiated a STOP A.
Fault value (r0949, interpret decimal): 10:
- Fault in "open holding brake" operation.
 - Parameter p1278 incorrectly set.
 - No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC deactivated)).
 - Ground fault in brake cable.
30:
- Fault in "close holding brake" operation.
 - No brake connected or wire breakage (check whether brake releases for p1278 = 1 and p9602/p9802 = 0 (SBC deactivated)).
 - Short-circuit in brake winding.
40:
- Fault in "brake closed" state.
60, 70:
- Fault in the brake control circuit of the Control Unit or communication fault between the Control Unit and Motor Module (brake control).
Note:
The following causes may apply to fault values:
- motor cable is not shielded correctly.
- defect in control circuit of the Motor Module.
Remedy:
- check parameter p1278 (for SBC, only p1278 = 0 is permissible).
- select Safe Torque Off and de-select again.
- check the motor holding brake connection.
- check the function of the motor holding brake.
- check whether there is a DRIVE-CLIQ communication error between the Control Unit and the Motor Module involved and, if required, carry out a diagnostics routine for the faults identified.
- check that the electrical cabinet design and cable routing are in compliance with EMC regulations (e.g. shield of the motor cable and brake conductors are connected with the shield connecting plate and the motor connectors are tightly screwed to the housing).
- replace the Motor Module involved.
Operation with Safe Brake Module:
- check the Safe Brake Modules connection.
- replace the Safe Brake Module.
Note:
MM: Motor Module
SBC: Safe Brake Control
SI: Safety Integrated

230640 <location>SI MM: Fault in the shutdown path of the second channel

Message value:
%1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The Motor Module has detected a communications error with the higher-level control or the TM54F to transfer the safety-relevant information.
Note: This fault results in a STOP A that can be acknowledged.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: For the higher-level control, the following applies:
- check the PROFINet address in the higher-level control and Motor Modules and if required, align.
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.
For TM54F, carry out the following steps:
- start the copy function for the node identifier (p9700 = 1D hex).
- acknowledge hardware CRC (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.
The following generally applies:
- upgrade the Motor Module software.
Note:
MM: Motor Module
SI: Safety Integrated
See also: p9810 (SI PROFINet address (Motor Module))

230649 <location>SI MM: Internal software error

Message value:
%1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An internal error in the Safety Integrated software on the Motor Module has occurred.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- carry out a POWER ON (power off/on) for all components.
- re-commission the Safety Integrated function and carry out a POWER ON.
- upgrade the Motor Module software.
- contact the Hotline.
- replace the Motor Module.

Note:
MM: Motor Module
SI: Safety Integrated

230650
Message value:
All objects
Reaction:
OFF2
Acknowledge:
IMMEDIATELY (POWER ON)

Remedy:
- carry out safety commissioning routine.
- again carry out safety commissioning routine.
- replace the CompactFlash card.
Cause:
The drive-based "Safety Integrated" function is requesting synchronization of the safety time slices on the Control Unit and Motor Module. This synchronization routine was unsuccessful.

Note:
This fault results in a STOP A that cannot be acknowledged.

Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.

Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.

Note:
MM: Motor Module
SI: Safety Integrated

230652 <location>SI MM: Illegal monitoring clock cycle

Message value: %1

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY (POWER ON)

Cause:
The Safety Integrated monitoring clock cycle cannot be maintained due to the communication conditions requested in the system.

Note:
This fault results in a STOP A that cannot be acknowledged.

Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.

Remedy:
- Upgrade the Motor Module software.

Note:
MM: Motor Module
SI: Safety Integrated

230655 <location>SI MM: Align monitoring functions

Message value: %1

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY (POWER ON)

Cause:
An error has occurred when aligning the Safety Integrated monitoring functions on the Control Unit (CU) and Motor Module (MM). Control Unit and Motor Module were not able to determine a common set of supported SI monitoring functions.
- there is either a DRIVE-CLiQ communication error or communication has failed.
- Safety Integrated software releases on the Control Unit and Motor Module are not compatible with one another.

Note:
This fault results in a STOP A that cannot be acknowledged.

Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.

Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade the Motor Module software.
- upgrade the Control Unit software.
- check the electrical cabinet design and cable routing for EMC compliance

Note:
CU: Control Unit
MM: Motor Module
SI: Safety Integrated

230656 <location>SI MM: Motor Module parameter error

Message value: %1

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY (POWER ON)
Cause: When accessing the Safety Integrated parameters for the Motor Module (MM) on the CompactFlash card, an error has occurred.
Note: This fault results in a STOP A that can be acknowledged.
Fault value (r0949, interpret decimal):
129: Safety parameters for the Motor Module corrupted.
131: Internal software error on the Control Unit.
255: Internal Motor Module software error.
Remedy:
- re-commission the safety functions.
- upgrade the Control Unit software.
- replace the CompactFlash card.
Note:
MM: Motor Module
SI: Safety Integrated

230659 <location>SI MM: Write request for parameter rejected
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The write request for one or several Safety Integrated parameters on the Motor Module (MM) was rejected.
Note: This fault does not result in a safety stop response.
Fault value (r0949, interpret decimal):
10: An attempt was made to enable the STO function although this cannot be supported.
11: An attempt was made to enable the SBC function although this cannot be supported.
13: An attempt was made to enable the SS1 function although this cannot be supported.
14: An attempt was made to enable the safe motion monitoring function with the higher-level control, although this cannot be supported.
15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported.
16: An attempt was made to enable the PROFIsafe communication - although this cannot be supported or the version of the PROFIsafe driver used on the CU and MM is different.
See also: r9771 (SI common functions (Control Unit)), r9871 (SI common functions (Motor Module))
Remedy: Re fault value = 10, 11, 13, 14, 15, 16:
- check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved.
- use a Motor Module that supports the required function ("Safe Torque Off", "Safe Brake Control", "PROFIsafe/PROFIsafe V2", "motion monitoring functions integrated in the drive").
- upgrade the Motor Module software.
- upgrade the Control Unit software.
Note:
CU: Control Unit
MM: Motor Module
SBC: Safe Brake Control
SI: Safety Integrated
SS1: Safe Stop 1 (corresponds to Stop Category 1 acc. to EN60204)
STO: Safe Torque Off / SH: Safe standstill

230672 <location>SI Motion: Control Unit software incompatible
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The existing Control Unit software does not support the safe drive-based motion monitoring function.

Note: This fault results in a STOP A that cannot be acknowledged.

Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.

Remedy: - check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry out diagnostics for the faults involved.
- use a Control Unit that supports the safe motion monitoring function.
- upgrade the Control Unit software.

Note:
Si: Safety Integrated

230680 <location>SI Motion MM: Checksum error safety monitoring functions
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The actual checksum calculated by the Motor Module and entered in r9398 over the safety-relevant parameters does not match the reference checksum saved in p9399 at the last machine acceptance. Safety-relevant parameters have been changed or a fault is present.

Note: This fault results in a STOP A that cannot be acknowledged.

Fault value (r0949, interpret decimal):
0: Checksum error for Si parameters for motion monitoring.
1: Checksum error for Si parameters for component assignment.

Remedy: - Check the safety-relevant parameters and if required, correct.
- set the reference checksum to the actual checksum.
- carry out a POWER ON.
- carry out an acceptance test.

Note:
Si: Safety Integrated

230681 <location>SI Motion MM: Incorrect parameter value
Message value: Parameter: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The parameter value cannot be parameterized with this value.

Note: This message does not result in a safety stop response.

Fault value (r0949, interpret decimal):
Parameter number with the incorrect value.

Remedy: Correct the parameter value.

230682 <location>SI Motion MM: Monitoring function not supported
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The monitoring function enabled in p9301, p9501, p9601 or p9801 is not supported in this firmware version.

Note: This message does not result in a safety stop response.

Fault value (r0949, interpret decimal):
30: The firmware version of the Motor Module is older than the version of the Control Unit.
Remedy: - De-select the monitoring function involved (p9301, p9301, p9303, p9601, p9801).
- Upgrade the Motor Module firmware.
See also: p9301, p9501, p9503, p9601, p9801

230683 <location>SI Motion MM: SOS/SLS enable missing
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The safety-relevant basic function "SOS/SLS" is not enabled in p9301 although other safety-relevant monitoring functions are enabled.
Note: This message does not result in a safety stop response.
Remedy: Enable the function "SOS/SLS" (p9301.0).
Note: SI: Safety Integrated
SLS: Safely-Limited Speed / SG: Safely reduced speed
SOS: Safe Operating Stop / SBH: Safe operating stop
See also: p9301 (SI Motion enable safety functions (Motor Module))

230685 <location>SI Motion MM: Safely-Limited Speed limit value too high
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The limit value for the function "Safely-Limited Speed" (SLS) is greater than the speed that corresponds to an encoder limit frequency of 500 kHz.
Note: This message does not result in a safety stop response.
Fault value (x9949, interpret decimal): Maximum permissible speed.
Remedy: Correct the limit values for SLS and carry out a POWER ON.
Note: SI: Safety Integrated
SLS: Safely-Limited Speed / SG: Safely reduced speed
See also: p9331 (SI Motion SLS limit values (Motor Module))

230688 <location>SI Motion MM: Actual value synchronization not permissible
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: It is not permissible to simultaneously enable the actual value synchronization and a monitoring function with absolute reference (SCA/SLP).
Note: This fault results in a STOP A that cannot be acknowledged.
Remedy: Either de-select the function "actual value synchronization" or the monitoring functions with absolute reference (SCA/SLP) and carry out a POWER ON.
Note: SCA: Safe Cam / SN: Safe software cam
SI: Safety Integrated
SLP: Safely-Limited Position / SE: Safe software limit switches
See also: p9501 (SI Motion enable safety functions (Control Unit))
230700 <location>SI Motion MM: STOP A initiated

Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP A (pulses are suppressed via the safety shutdown path of the Control Unit).
Possible causes:
- stop request from the Control Unit.
- pulses not suppressed after a parameterized time (p9357) after test stop selection.
- subsequent response to the message C30706 "SI Motion MM: Safe Acceleration Monitoring, limit exceeded".
- subsequent response to the message C30714 "SI Motion MM: Safely-Limited Speed exceeded".
- subsequent response to the message C30701 "SI Motion MM: STOP B initiated".
Remedy:
- remove the cause to the fault on the Control Unit.
- check the value in p9357, if required, increase the value.
- check the shutdown path of the Control Unit (check DRIVE-CLiQ communication).
- carry out a diagnostics routine for message C30706.
- carry out a diagnostics routine for message C30714.
- carry out a diagnostics routine for message C30701.
- replace Motor Module.
- replace Control Unit.
This message can only be acknowledged in the acceptance test mode without POWER ON via the Terminal Module 54F (TM54F) or PROFIsafe.
Note:
SI: Safety Integrated

230701 <location>SI Motion MM: STOP B initiated

Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF3
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP B (braking along the OFF3 ramp).
As a result of this fault, after the time parameterized in p9356 has expired, or the speed threshold parameterized in p9360 has been undershot, message C30700 "SI Motion MM: STOP A initiated" is output.
Possible causes:
- stop request from the Control Unit.
- subsequent response to the message C30714 "SI Motion MM: Safely limited speed exceeded".
- subsequent response to the message C30711 "SI Motion MM: Defect in a monitoring channel".
Remedy:
- remove the fault cause in the control and carry out a POWER ON.
- carry out a diagnostics routine for message C01714.
- carry out a diagnostics routine for message C01711.
This message can only be acknowledged in the acceptance test mode without POWER ON via the Terminal Module 54F (TM54F) or PROFIsafe.
Note:
SI: Safety Integrated

230706 <location>SI Motion MM: Safe Acceleration Monitor limit exceeded

Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: After initiating STOP B or STOP C, the velocity has exceeded the selected tolerance.
The drive is shut down by the message C30700 "SI Motion MM: STOP A initiated".
Remedy: Check the braking behavior, if required, adapt the tolerance for "Safe Acceleration Monitor". This message can only be acknowledged in the acceptance test mode without POWER ON via the Terminal Module 54F (TM54F) or PROFIsafe.

Note:
SBR: Safe Acceleration Monitor
SI: Safety Integrated
See also: p9548 (SI Motion SBR actual velocity tolerance (Control Unit))

230707 <location>SI Motion MM: Tolerance for safe operating stop exceeded

Message value:

Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The actual position has distanced itself further from the target position than the standstill tolerance. The drive is shut down by the message C30701 "SI Motion MM: STOP B initiated".
Remedy:
- check whether safety faults are present and if required carry out the appropriate diagnostic routines for the particular faults.
- check whether the standstill tolerance matches the accuracy and control dynamic performance of the axis.
- carry out a POWER ON.
This message can only be acknowledged in the acceptance test mode without POWER ON via the Terminal Module 54F (TM54F) or PROFIsafe.

Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop
See also: p9530 (SI Motion standstill tolerance (Control Unit))

230708 <location>SI Motion MM: STOP C initiated

Message value:

Drive object: SERVO, VECTOR
Reaction: STOP2
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP C (braking along the OFF3 ramp). "Safe Operating Stop" (SOS) is activated after the parameterized timer has expired. Possible causes:
- stop request from the higher-level control.
- subsequent response to the message C30714 "SI Motion MM: Safely limited speed exceeded".

See also: p9552 (SI Motion transition time STOP C to SOS (SBH) (Control Unit))

Remedy:
- remove the cause of the fault at the control.
- carry out a diagnostics routine for message C30714.
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.

Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop

230709 <location>SI Motion MM: STOP D initiated

Message value:

Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive is stopped via a STOP D (braking along the path). "Safe Operating Stop" (SOS) is activated after the parameterized timer has expired. Possible causes:
- stop request from the Control Unit.
- subsequent response to the message C30714 "SI Motion: Safely limited speed exceeded".

See also: p9353 (SI Motion transition time STOP D to SOS (Motor Module)), p9553 (SI Motion transition time STOP D to SOS (SBH) (Control Unit))
Remedy:
- remove the cause of the fault at the control.
- carry out a diagnostics routine for message C30714.
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.

Note:
SI: Safety Integrated
SOS: Safe Operating Stop / SBH: Safe operating stop

230711 <location>SI MM MM: Defect in a monitoring channel
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause:
When cross-checking and comparing the two monitoring channels, the drive detected a difference between the input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer reliably functions - i.e. safe operation is no longer possible.
If at least one monitoring function is active, then after the parameterized timer has expired, the message C30701 "SI Motion: STOP B initiated" is output. The message is output with message value 1031 when the Sensor Module hardware is replaced.
Message value (r9749, interpret decimal):
0 ... 999: Number of the cross-checked data that resulted in this message. Refer to safety message C01711 for a description of the individual data.
The significance of the individual message values is described in safety message C01711 of the Control Unit.
1000: Watchdog timer has expired. Too many signal changes have occurred at safety-relevant inputs.
1001: Initialization error of watchdog timer.
1005: Pulses already suppressed for test stop selection.
1011: Acceptance test status between the monitoring channels differ.
1012: Plausibility violation of the actual value from the encoder.
1020: Cyc. communication failure between the monit. cycles.
1021: Cyc. communication failure between the monit. channel and Sensor Module.
1023: Error during the effectivity test in the Sensor Module.
1031: Data transfer error between the monitoring channel and the Sensor Module.
5000 ... 5140: PROFIsafe message values.
The significance of the individual message values is described in safety message C01711 of the Control Unit.
6000 ... 6166: PROFIsafe message values (PROFIsafe driver for PROFINET DP V1/V2 and PROFINET).
The significance of the individual message values is described in safety message C01711 of the Control Unit.
See also: p9555 (SI Motion transition time STOP F to STOP B (Control Unit)), r9725 (SI Motion, diagnostics STOP F)
Remedy:
Re message value = 1030:
- check the encoder connection.
- if required, replace the encoder.
Re message value = 1031:
When replacing a Sensor Module, carry out the following steps:
- start the copy function for the node identifier on the drive (p9700 = 1D hex).
- acknowledge the hardware CRC on the drive (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.
The following always applies:
- check the encoder connection.
- if required, replace the encoder.
Re other message values:
- The significance of the individual message values is described in safety message C01711 of the Control Unit.

Note:
This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
See also: p9300 (SI Motion monitoring clock cycle (Motor Module)), p9500 (SI Motion monitoring clock cycle (Control Unit))
230714 SI Motion MM: Safely-Limited Speed exceeded

- **Message value:** %1
- **Drive object:** SERVO, VECTOR
- **Reaction:** NONE
- **Acknowledge:** IMMEDIATELY (POWER ON)
- **Cause:** The drive had moved faster than that specified by the velocity limit value (p9331). The drive is stopped as a result of the configured stop response (p9363).
 - Message value (r9749, interpret decimal):
 - 100: SLS1 exceeded.
 - 200: SLS2 exceeded.
 - 300: SLS3 exceeded.
 - 400: SLS4 exceeded.
 - 1000: Encoder limit frequency exceeded.
- **Remedy:**
 - check the traversing/motion program in the control.
 - check the limits for "Safely-Limited Speed" (SLS) and if required, adapt (p9331).
 - This message can only be acknowledged via the Terminal Module 54F (TM54F) or PROFIsafe.
- **Note:**
 - SI: Safety Integrated
 - SLS: Safely-Limited Speed / SG: Safely reduced speed
 - See also: p9331 (SI Motion SLS limit values (Motor Module)), p9363 (SI Motion SLS stop response (Motor Module))

230798 SI Motion MM: Test stop running

- **Message value:** -
- **Drive object:** SERVO, VECTOR
- **Reaction:** NONE
- **Acknowledge:** IMMEDIATELY (POWER ON)
- **Cause:** The test stop is active.
- **Remedy:** None necessary.
 - The message is withdrawn when the test stop is finished.
- **Note:**
 - SI: Safety Integrated

230799 SI Motion MM: Acceptance test mode active

- **Message value:** -
- **Drive object:** SERVO, VECTOR
- **Reaction:** NONE
- **Acknowledge:** IMMEDIATELY (POWER ON)
- **Cause:** The acceptance test mode is active. The POWER ON signals of the safety-relevant motion monitoring functions can be acknowledged during the acceptance test using the acknowledgement functions of the higher-level control.
- **Remedy:** None necessary.
 - The message is withdrawn when exiting the acceptance test mode.
- **Note:**
 - SI: Safety Integrated

230800 Power unit: Group signal

- **Message value:** -
- **Drive object:** All objects
- **Reaction:** OFF2
- **Acknowledge:** NONE
- **Cause:** The power unit has detected at least one fault.
- **Remedy:** Evaluates other current messages.
230801 <location> Power unit DRIVE-CLiQ: Sign-of-life missing
Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit involved. The computing time load might be too high.
Fault value (r0949, interpret hexadecimal):
yyyx hex: yy = component number, xx = fault cause
xx = 0A hex: The sign-of-life bit in the receive telegram is not set.
Remedy: - check the electrical cabinet design and cable routing for EMC compliance
- remove DRIVE-CLiQ components that are not required.
- de-select functions that are not required.
- if required, increase the sampling times (p0112, p0115).
- replace the component involved.

230802 <location> Power unit: Time slice overflow
Message value:
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Time slice overflow.
Remedy: - carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

230804 <location> Power unit: CRC
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: CRC error actuator
Remedy: - carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

230805 <location> Power unit: EPROM checksum error
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted.
Fault value (r0949, interpret hexadecimal):
01: EEPROM access error.
02: Too many blocks in the EEPROM.
Remedy: Replace the module.

230809 <location> Power unit: Switching information not valid
Message value:
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
For 3P gating unit:
The last switching status word in the setpoint telegram is identified by the end ID. Such an end ID was not found.

- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

230810

<location>Power unit: Watchdog timer

Message value:

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: When booting it was detected that the cause of the previous reset was an SAC watchdog timer overflow.

Remedy:
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

230820

<location>Power unit DRIVE-CLiQ: Telegram error

Message value: Component number: %1, fault cause: %2

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit involved.

Fault value (r0949, interpret hexadecimal):

- yyxx hex: yy = component number, xx = fault cause
 - xx = 01 hex: CRC error.
 - xx = 02 hex: Telegram is shorter than specified in the length byte or in the receive list.
 - xx = 03 hex: Telegram is longer than specified in the length byte or in the receive list.
 - xx = 04 hex: The length of the receive telegram does not match the receive list.
 - xx = 05 hex: The type of the receive telegram does not match the receive list.
 - xx = 06 hex: The address of the component in the telegram and in the receive list do not match.
 - xx = 07 hex: A SYNC telegram is expected - but the receive telegram is not a SYNC telegram.
 - xx = 08 hex: No SYNC telegram is expected - but the receive telegram is one.
 - xx = 09 hex: The error bit in the receive telegram is set.
 - xx = 10 hex: The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

230835

<location>Power unit DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY
Cause:

A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit involved. The nodes do not send and receive in synchronism.

Fault value (r0949, interpret hexadecimal):

- yyyx hex: y = component number, x = fault cause
- xx = 21 hex: The cyclic telegram has not been received.
- xx = 22 hex: Timeout in the telegram receive list.
- xx = 40 hex: Timeout in the telegram send list.

Remedy:

- carry out a POWER ON.
- replace the component involved.

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

230836

Message

Component number: %1, fault cause: %2

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause:

A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit involved. Data were not able to be sent.

Fault value (r0949, interpret hexadecimal):

- yyyx hex: y = component number, x = fault cause
- xx = 41 hex: Telegram type does not match send list.

Remedy:

- carry out a POWER ON.

230837

Message

Component number: %1, fault cause: %2

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause:

Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded.

Fault value (r0949, interpret hexadecimal):

- yyyx hex: y = component number, x = fault cause
- xx = 20 hex: Error in the telegram header.
- xx = 42 hex: Send error: The telegram buffer memory contains an error.
- xx = 43 hex: Send error: The telegram buffer memory contains an error.

Remedy:

- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

230845

Message

Component number: %1, fault cause: %2

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause:

A DRIVE-CLiQ communication error has occurred from the Control Unit to the power unit involved.

Fault value (r0949, interpret hexadecimal):

- yyyx hex: y = component number, x = fault cause
- xx = 0B hex: Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

230850 <location>Power unit: Internal software error

Message value:
%1

Drive object: All objects

Reaction: A_INFEED: OFF1 (NONE, OFF2)
SERVO: OFF1 (NONE, OFF2, OFF3)
VECTOR: OFF1 (NONE, OFF2, OFF3)

Acknowledge: POWER ON

Cause: An internal software error in the power unit has occurred.

Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.

Remedy:
- replace power unit.
- if required, upgrade the firmware in the power unit.
- contact the Hotline.

230851 <location>Power unit DRIVE-CLiQ (CU): Sign-of-life missing

Message value:
Component number: %1, fault cause: %2

Drive object: All objects

Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF2 (NONE, OFF1, OFF3)
VECTOR: OFF2 (NONE, OFF1, OFF3)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.

Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.

Remedy:
Upgrade the firmware of the component involved.

230860 <location>Power unit DRIVE-CLiQ (CU): Telegram error

Message value:
Component number: %1, fault cause: %2

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.

Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 11 hex = 17 dec:
CRC error and the receive telegram is too early.
xx = 01 hex = 01 dec:
Checksum error (CRC error).
xx = 12 hex = 18 dec:
The telegram is shorter than that specified in the length byte or in the receive list and the receive tele-
gram is too early.
xx = 02 hex = 02 dec:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 13 hex = 19 dec:
The telegram is longer than that specified in the length byte or in the receive list and the receive tele-
gram is too early.
xx = 03 hex = 03 dec:
Telegram is longer than specified in the length byte or in the receive list.
xx = 14 hex = 20 dec:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
Overview of Alarms 03/2009

SINAMICS-Alarms

xx = 04 hex = 04 dec:
The length of the receive telegram does not match the receive list.

xx = 15 hex = 21 dec:
The type of the receive telegram does not match the receive list and the receive telegram is too early.

xx = 05 hex = 05 dec:
The type of the receive telegram does not match the receive list.

xx = 16 hex = 22 dec:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.

xx = 06 hex = 06 dec:
The address of the power unit in the telegram and in the receive list do not match.

xx = 19 hex = 25 dec:
The error bit in the receive telegram is set and the receive telegram is too early.

xx = 09 hex = 09 dec:
The error bit in the receive telegram is set.

xx = 10 hex = 16 dec:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

230885

<location>CU DRIVE-CLiQ (CU): Cyclic data transfer error

Message value:
- Component number: %1, fault cause: %2

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. The nodes do not send and receive in synchronism.

Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause

xx = 1A hex = 26 dec:
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.

xx = 21 hex = 33 dec:
The cyclic telegram has not been received.

xx = 22 hex = 34 dec:
Timeout in the receive telegram receive list.

xx = 40 hex = 64 dec:
Timeout in the telegram send list.

xx = 62 hex = 98 dec:
Error at the transition to cyclic operation.

Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

230886

<location>PU DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data

Message value:
- Component number: %1, fault cause: %2

Drive object: All objects

Reaction: OFF2

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved. Data were not able to be sent.

Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause

xx = 41 hex:
Telegram type does not match send list.

Remedy: Carry out a POWER ON.
230887

Message: <location>Power unit DRIVE-CLiQ (CU): Component fault
Value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component (power unit) involved. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = component number, xx = fault cause
 xx = 20 hex: Error in the telegram header.
 xx = 42 hex: Send error: The telegram buffer memory contains an error.
 xx = 43 hex: Send error: The telegram buffer memory contains an error.
 xx = 60 hex: Response received too late during runtime measurement.
 xx = 61 hex: Time taken to exchange characteristic data too long.
Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

230895

Message: <location>PU DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: A_INFED: OFF2 (NONE, OFF1)
SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the power unit to the Control Unit involved.
Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = component number, xx = fault cause
 xx = 0B hex: Synchronization error during alternating cyclic data transfer.
Remedy:
Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

230896

Message: <location>Power unit DRIVE-CLiQ (CU): Inconsistent component properties
Value: Component number: %1
Drive object: All objects
Reaction: A_INFED: OFF2 (NONE, OFF1)
SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: The properties of the DRIVE-CLiQ component (power unit), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):
 Component number.
Remedy:
- when replacing cables, only use cables with the same length as the original cables.
- when replacing components, use the same components and firmware releases.
- carry out a POWER ON.
230899 <location>Power unit: Unknown fault
Message: New message: %1
value:
Drive object: All objects
Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A fault occurred on the power unit that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
Fault number.
Note:
If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:
- replace the firmware on the power unit by an older firmware version (r0128).
- upgrade the firmware on the Control Unit (r0018).

230903 <location>Power unit: I2C bus error occurred
Message: %1
value:
Drive object: All objects
Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: Communications error with an EEPROM or A/D converter.
Fault value (r0949, interpret hexadecimal):
80000000 hex:
- internal software error.
00000001 hex ... 0000FFFF hex:
- module fault.
Remedy:
Re fault value = 80000000 hex:
- upgrade firmware to later version.
Re fault value = 00000001 hex ... 0000FFFF hex:
- replace the module.

230907 <location>Power unit: FPGA configuration unsuccessful
Message: -
value:
Drive object:
A_INF, B_INF, CU_CX32, CU_I, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL
Reaction:
A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: For the initialization within the power unit, an internal software error has occurred.
Remedy:
- if required, upgrade the firmware in the power unit.
- replace power unit.
- contact the Hotline.

230920 <location>Power unit: Temperature sensor fault
Message: %1
value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
SINAMICS-Alarms

03/2009

Overview of Alarms

SINUMERIK 840D sl, 840Di sl, SINAMICS, Diagnostics Manual (DAsl), 03/2009

2-861

© Siemens AG 2009 All Rights Reserved

Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm, PT100: R > 375 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm, PT100: R < 30 Ohm).

Remedy:
- check that the sensor is connected correctly.
- replace sensor.

230999 <location>Power unit: Unknown alarm
Message value:
New message: %1

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Alarm value (r2124, interpret decimal):
Alarm number.
Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.

Remedy:
- replace the firmware on the power unit by an older firmware version (r0128).
- upgrade the firmware on the Control Unit (r0018).

231100 <location>Encoder 1: Zero mark distance error
Message value:
%1

Drive object: All objects
Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: ENCODER (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: ENCODER (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT

Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance.
For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs.
This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Fault value (r0949, interpret decimal):
Last measured zero mark distance in increments (4 increments = 1 encoder pulse).
The sign designates the direction of motion when detecting the zero mark distance.
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- replace the encoder or encoder cable.

231101 <location>Encoder 1: Zero marked failed
Message value:
%1

Drive object: All objects
Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT
Cause: The 1.5 x parameterized zero mark distance was exceeded. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Fault value (r0949, interpret decimal):
Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- when p0437.1 is active, check p4686.
- replace the encoder or encoder cable.

231103 <location>Encoder 1: Amplitude error, track R
Message value: R track: %1
Drive object: All objects
Reaction:
A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: PULSE INHIBIT
Cause: The amplitude of the reference track signal (track R) does not lie within the tolerance bandwidth for encoder 1. The fault can be initiated when the unipolar voltage range is exceeded or the differential amplitude is initiated.
Fault value (r0949, interpret hexadecimal):
xxxx hex:
xxxx = Signal level, track R (16 bits with sign).
The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
The response threshold is < 1700 mV and > 3300 mV.
The nominal differential signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold is > 750 mV.
A signal level of 500 mV peak value corresponds to the numerical value of 5333 hex = 21299 dec.
Note: The analog value of the amplitude error is not measured at the same time with the hardware fault output by the sensor module. The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.30 = 1, r0459.31 = 1).
- monitoring active (p0437.30 = 1, p0437.31 = 1).
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment may not be sufficient for the speed range.
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts.
- check whether the zero mark is connected and the signal cables RP and RN connected correctly.
- replace the encoder cable.
- if the coding disk is soiled or the lighting worn, replace the encoder.

231110 <location>Encoder 1: Serial communications error
Message value: Fault cause: %1 bin
Drive object: All objects
Reaction:
A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: PULSE INHIBIT
Cause: Serial communication protocol transfer error between the encoder and evaluation module.
Fault value (r0949, interpret binary):
Bit 0: Alarm bit in the position protocol.
Bit 1: Incorrect quiescent level on the data line.
Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
Bit 5: Internal error in the serial driver: An illegal mode command was requested.
Bit 6: Timeout when cyclically reading.
Bit 8: Protocol is too long (e.g. > 64 bits).
Bit 9: Receive buffer overflow.
Bit 10: Frame error when reading twice.
Bit 11: Parity error.
Bit 12: Data line signal level error during the monoflop time.
Bit 13: Data line incorrect.

Remedy:
Re fault value, bit 0 = 1:
- encoder defective. F31111 may provide additional details.
Re fault value, bit 1 = 1:
- Incorrect encoder type / replace the encoder or encoder cable.
Re fault value, bit 2 = 1:
- Incorrect encoder type / replace the encoder or encoder cable.
Re fault value, bit 3 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable.
Re fault value, bit 4 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
Re fault value, bit 5 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
Re fault value, bit 6 = 1:
- Update the firmware for the Sensor Module.
Re fault value, bit 8 = 1:
- Check the parameterization (p0429.2).
Re fault value, bit 9 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
Re fault value, bit 10 = 1:
- Check the parameterization (p0429.2, p0449).
Re fault value, bit 11 = 1:
- Check the parameterization (p0436).
Re fault value, bit 12 = 1:
- Check the parameterization (p0429.6).
Re fault value, bit 13 = 1:
- Check the data line.

231111 <location>Encoder 1: Absolute encoder EnDat, internal fault/error
Message value:
Fault cause: %1 bin

Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: PULSE INHIBIT

Cause: The EnDat encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Bit 0: Lighting system failed.
Bit 1: Signal amplitude too low.
Bit 2: Position value incorrect.
Bit 3: Encoder power supply overvoltage condition.
Bit 4: Encoder power supply undervoltage condition.
Bit 5: Encoder power supply overcurrent condition.
Bit 6: The battery must be changed.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: Re fault value, bit 0 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 1 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 2 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 3 = 1:
5 V power supply voltage fault.
When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
Re fault value, bit 4 = 1:
5 V power supply voltage fault.
When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
When using a motor with DRIVE-CLiQ: Replace the motor.
Re fault value, bit 5 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 6 = 1:
The battery must be changed (only for encoders with battery back-up).

231112 <location>Encoder 1: Error bit set in the serial protocol
Message value:
%1
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The encoder sends a set error bit via the serial protocol.
Fault value (r0949, interpret binary):
Bit 0: Fault bit in the position protocol.
Remedy: For fault value, bit 0 = 1:
In the case of an EnDat encoder, F31111 may provide further details.

231115 <location>Encoder 1: Amplitude error track A/B fault (A^2 + B^2)
Message value:
A track: %1, B-track: %2
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The amplitude (root of A^2 + B^2) for encoder 1 exceeds the permissible tolerance.
Fault value (r0949, interpret hexadecimal):
yyyyyyyy hex:
yyyy = Signal level, track B (16 bits with sign).
xxxx = Signal level, track A (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response thresholds are < 230 mV (observe the frequency response of the encoder) and > 750 mV.
A signal level of 500 mV peak value corresponds to the numerical value of 5333 hex = 21299 dec.
Note for sensors modules for resolvers (e. g. SMC10):
The nominal signal level is at 2900 mV (2.0 Vrms). The response thresholds are < 1070 mV and > 3582 mV.
A signal level of 2900 mV peak value corresponds to the numerical value of 6666 hex = 26214 dec.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check the Sensor Module (e.g. contacts).
- with measuring systems without their own bearing system: Adjust the scanning head and check the bearing system of the measuring wheel.
- for measuring systems with their own bearing system: Ensure that the encoder housing is not subject to any axial force.

231116
<location>Encoder 1: Amplitude error track A + B
Message value:
A track: %1, B-track: %2
Drive object: All objects
Reaction:A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause:
The amplitude of the rectified encoder signals A and B and the amplitude from the roots of A^2 + B^2 for encoder 1 are not within the tolerance bandwidth.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Signal level, track B (16 bits with sign).
xxxx = Signal level, track A (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response thresholds are < 176 mV (observe the frequency response of the encoder) and > 955 mV.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check the Sensor Module (e.g. contacts).

231117
<location>Encoder 1: Inversion error signals A and B and R
Message value:
Drive object: All objects
Reaction:A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause:
For a square-wave signal encoder (TTL. bipolar. double ended) the A* and B* and R* signals are not inverted with respect to signals A and B and R.
Note:
For CU310, CUA32, D410, SMC30 (only Order No. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1), the following applies:
A squarewave encoder without track R is used and the track monitoring (p0405.2 = 1) is activated.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check the setting of p0405: p0405.2 = 1 is only possible if the encoder is connected at X520.
- check the encoder/cable: Does the encoder supply TTL signals and the associated inverted signals?
Note:
For a squarewave encoder without track R, the following jumpers must be set at the encoder connection:
- pin 10 (reference signal R) <-> pin 7 (encoder power supply, ground)
- pin 11 (reference signal R inverted) <-> pin 4 (encoder power supply)
Encoder 1: Speed difference outside the tolerance range

Message value: %1

Drive object: All objects

Reaction:
- A_INFEED: NONE
- SERVO: ENCODER (IASC/DCBRAKE, NONE)
- VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: PULSE INHIBIT

Cause:
For an HTL/TTL encoder, the speed difference has exceeded the value in p0492 over several sampling cycles. The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.

Encoder 1 is used as motor encoder and can be effective has fault response to change over to encoderless operation.

Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.

See also: p0491, p0492

Remedy:
- check the tachometer feeder cable for interruptions.
- check the grounding of the tachometer shielding.
- if required, increase the maximum speed difference per sampling cycle (p0492).

Encoder 1: Power supply voltage fault

Message value: Fault cause: %1 bin

Drive object: All objects

Reaction:
- A_INFEED: NONE
- SERVO: ENCODER (IASC/DCBRAKE, NONE)
- VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: PULSE INHIBIT

Cause:
Encoder 1 power supply voltage fault.

Note:
If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed.

Fault value (r0949, interpret binary):
Bit 0: Undervoltage condition on the sense line.
Bit 1: Overcurrent condition for the encoder power supply.

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
For fault value, bit 0 = 1:
- correct encoder cable connected?
- check the plug connections of the encoder cable.
- SMC30: Check the parameterization (p0404.22).

For fault value, bit 1 = 1:
- correct encoder cable connected?
- replace the encoder or encoder cable.

Encoder 1: Coarse position error

Message value: -

Drive object: All objects

Reaction:
- A_INFEED: NONE
- SERVO: ENCODER (NONE)
- VECTOR: ENCODER (NONE)

Acknowledge: PULSE INHIBIT

Cause:
For the actual value sensing, an error was detected on the module. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.
231122 <location>Encoder 1: Internal power supply voltage fault
Message value:
Drive object: SERVO, VECTOR
Reaction: NONE (ENCODER, IASC/DCBRAKE)
Acknowledge: IMMEDIATELY
Cause: Fault in internal reference voltage of ASICs for encoder 1.
Fault value (r0949, interpret decimal):
1: Reference voltage error.
2: Internal undervoltage.
3: Internal overvoltage.
Remedy: Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.

231123 <location>Encoder 1: Signal level A/B unipolar outside tolerance
Message value:
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The unipolar level (AP/AN or BP/BN) for encoder 1 is outside the permissible tolerance.
Fault value (r0949, interpret binary):
Bit 0 = 1: Either AP or AN outside the tolerance.
Bit 16 = 1: Either BP or BN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV. The response thresholds are < 1700 mV and > 3300 mV.
Note: The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: - make sure that the encoder cables and shielding are installed in an EMC-compliant manner.
- check the plug connections and contacts.
- check the short-circuit of a signal cable with mass or the operating voltage.
- replace the encoder cable.

231125 <location>Encoder 1: Amplitude error track A/B overcontrolled
Message value:
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The amplitude of track A or B for encoder 1 exceeds the permissible tolerance band.
Fault value (r0949, interpret hexadecimal):
yyyyyyyy hex:
yyyy = Signal level, track B (16 bits with sign).
xxxx = Signal level, track A (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold is > 750 mV. This fault also occurs if the A/D converter is overcontrolled.
A signal level of 500 mV peak value corresponds to the numerical value of 5333 hex = 21299 dec.
Note for sensors modules for resolvers (e. g. SMC10):
The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is > 3582 mV.
A signal level of 2900 mV peak value corresponds to the numerical value of 6666 hex = 26214 dec.
Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- replace the encoder or encoder cable.

231126
<location>Encoder 1: Amplitude AB too high

Message value:

Drive object: All objects

Reaction:
A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: PULSE INHIBIT

Cause:
The amplitude (root of A^2 + B^2 or |A| + |B|) for encoder 1 exceeds the permissible tolerance.
Fault value (r0949, interpret hexadecimal):

```
yyyy = Angle
xxxx = Amplitude, i.e. root from A^2 + B^2 (16 bits without sign)
```

The response threshold for (|A| + |B|) is > 1120 mV or the root of (A^2 + B^2) > 955 mV.
A signal level of 500 mV peak value corresponds to the numerical value of 299A hex = 10650 dec.
The angle 0 ... FFFF hex corresponds to 0 ... 360 degrees of the fine position.
Zero degrees is at the negative zero crossover of track B.

Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- replace the encoder or encoder cable.

231129
<location>Encoder 1: Position difference, hall sensor/track C/D and A/B too large

Message value:

Drive object: All objects

Reaction:
A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: PULSE INHIBIT

Cause:
The error for track C/D is greater than +/-15 ° mechanical or +/-60 ° electrical or the error for the Hall signals is greater than +/-60 ° electrical.
One period of track C/D corresponds to 360 ° mechanical.
One period of the Hall signal corresponds to 360 ° electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A31429.
Fault value (r0949, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1 °).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1 °).
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.
231130 <location>Encoder 1: Zero mark and position error from the coarse synchronization

Message value: Angular deviation, electrical: %1, angle, mechanical: %2

Drive object: All objects

Reaction: A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT

Cause: After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.

When initializing via track C/D (p0404) then it is checked whether the zero mark occurs in an angular range of +/-18 ° mechanical.

When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of +/-60 ° electrical.

Fault value (r0949, interpret hexadecimal):

yyyyxxxx hex

yyyy: Determined mechanical zero mark position (can only be used for track C/D).
xxxx: Deviation of the zero mark from the expected position as electrical angle.

Normalization: 32768 dec = 180 °

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- Check and, if necessary, correct p0431 (trigger via p1990 = 1 if necessary).
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- if the Hall sensor is used as an equivalent for track C/D, check the connection.
- Check connection of track C or D.
- replace the encoder or encoder cable.

231131 <location>Encoder 1: Deviation, position incremental/absolute too large

Message value: %1

Drive object: All objects

Reaction: A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT

Cause: Absolute encoder:

When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected.

Limit value for the deviation:
- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI 1325 > 2 quadrants, EQN 1325 > 50 quadrants).
- other encoders: 15 pulses = 60 quadrants.

Incremental encoder:

When the zero pulse is passed, a deviation in the incremental position was detected.

For equidistant zero marks, the following applies:
- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.

For distance-coded zero marks, the following applies:
- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.

Fault value (r0949, interpret decimal):

Deviation in quadrants (1 pulse = 4 quadrants).

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check whether the coding disk is dirty or there are strong ambient magnetic fields.
- adapt the parameter for the distance between zero marks (p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
231135 <location>Encoder 1: Fault when determining the position

Message Fault cause: %1 bin
value:
Drive object: SERVO, VECTOR
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display)
Bit 1: F2 (safety status display)
Bit 2: Lighting (reserved)
Bit 3: Signal amplitude (reserved)
Bit 4: Position value (reserved)
Bit 5: Overvoltage (reserved)
Bit 6: Undervoltage (reserved)
Bit 7: Overcurrent (reserved)
Bit 8: Battery (reserved)
Bit 16: Lighting (→ F3x135, x = 1, 2, 3)
Bit 17: Signal amplitude (→ F3x135, x = 1, 2, 3)
Bit 18: Singleturn position 1 (→ F3x135, x = 1, 2, 3)
Bit 19: Overvoltage (→ F3x135, x = 1, 2, 3)
Bit 20: Undervoltage (→ F3x135, x = 1, 2, 3)
Bit 21: Overcurrent (→ F3x135, x = 1, 2, 3)
Bit 22: Temperature exceeded (→ F3x405, x = 1, 2, 3)
Bit 23: Singleturn position 2 (safety status display)
Bit 24: Singleturn system (→ F3x135, x = 1, 2, 3)
Bit 25: Singleturn power down (→ F3x135, x = 1, 2, 3)
Bit 26: Multiturn position 1 (→ F3x136, x = 1, 2, 3)
Bit 27: Multiturn position 2 (→ F3x136, x = 1, 2, 3)
Bit 28: Multiturn system (→ F3x136, x = 1, 2, 3)
Bit 29: Multiturn power down (→ F3x136, x = 1, 2, 3)
Bit 30: Multiturn overflow/underflow (→ F3x136, x = 1, 2, 3)
Bit 31: Multiturn battery (reserved)

Remedy: Replace DRIVE-CLiQ encoder.

231136 <location>Encoder 1: Error when determining multiturn information

Message Fault cause: %1 bin
value:
Drive object: SERVO, VECTOR
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display)
Bit 1: F2 (safety status display)
Bit 2: Lighting (reserved)
Bit 3: Signal amplitude (reserved)
Bit 4: Position value (reserved)
Bit 5: Overvoltage (reserved)
Bit 6: Undervoltage (reserved)
Bit 7: Overcurrent (reserved)
Bit 8: Battery (reserved)
Bit 16: Lighting (--> F3x135, x = 1, 2, 3)
Bit 17: Signal amplitude (--> F3x135, x = 1, 2, 3)
Bit 18: Singleturn position 1 (--> F3x135, x = 1, 2, 3)
Bit 19: Overvoltage (--> F3x135, x = 1, 2, 3)
Bit 20: Undervoltage (--> F3x135, x = 1, 2, 3)
Bit 21: Overcurrent (--> F3x135, x = 1, 2, 3)
Bit 22: Temperature exceeded (--> F3x405, x = 1, 2, 3)
Bit 23: Singleturn position 2 (safety status display)
Bit 24: Singleturn system (--> F3x135, x = 1, 2, 3)
Bit 25: Singleturn power down (--> F3x135, x = 1, 2, 3)
Bit 26: Multiturn position 1 (--> F3x136, x = 1, 2, 3)
Bit 27: Multiturn position 2 (--> F3x136, x = 1, 2, 3)
Bit 28: Multiturn system (--> F3x136, x = 1, 2, 3)
Bit 29: Multiturn power down (--> F3x136, x = 1, 2, 3)
Bit 30: Multiturn overflow/underflow (--> F3x136, x = 1, 2, 3)
Bit 31: Multiturn battery (reserved)

Remedy: Replace DRIVE-CLiQ encoder.

231137 <location>Encoder 1: Internal error when determining the position
Message value:
Fault cause: %1 bin
Drive object: SERVO, VECTOR
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Only for internal SIEMENS use.
Remedy: Replace encoder

231138 <location>Encoder 1: Internal error when determining multiturn information
Message value:
Fault cause: %1 bin
Drive object: SERVO, VECTOR
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Only for internal SIEMENS use.
Remedy: Replace encoder

231150 <location>Encoder 1: Initialization error
Message value:
%1
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: Encoder functionality selected in p0404 is not operating correctly.
Fault value (r0949, interpret hexadecimal):
The fault value is a bit field. Every set bit indicates functionality that is faulted.
The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
See also: p0404 (Encoder configuration effective), p0491 (Motor encoder fault response ENCODER)
Remedy: - Check that p0404 is correctly set.
- check the encoder type used (incremental/absolute value) and for SMCxx, the encoder cable.
- if relevant, note additional fault/error messages that describe the fault in detail.
231151 <location>Encoder 1: Encoder speed for initialization AB too high
Message value: %1
Drive object: All objects
Reaction:
 A_INFEED: NONE
 SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
 VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The encoder speed is too high during while initializing the sensor.
Remedy: Reduce the speed of the encoder accordingly during initialization.
If necessary, deactivate monitoring (p0437.29).
See also: p0437 (Sensor Module configuration extended)

231400 <location>Encoder 1: Alarm threshold zero mark distance error
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance.
For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs.
This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Alarm value (r2124, interpret decimal):
 Last measured zero mark distance in increments (4 increments = 1 encoder pulse).
The sign designates the direction of motion when detecting the zero mark distance.
Remedy:
 - check that the encoder cables are routed in compliance with EMC.
 - check the plug connections.
 - check the encoder type (encoder with equidistant zero marks).
 - adapt the parameter for the distance between zero marks (p0424, p0425).
 - replace the encoder or encoder cable.

231401 <location>Encoder 1: Alarm threshold zero marked failed
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The 1.5 x parameterized zero mark distance was exceeded.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Alarm value (r2124, interpret decimal):
 Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).
Remedy:
 - check that the encoder cables are routed in compliance with EMC.
 - check the plug connections.
 - check the encoder type (encoder with equidistant zero marks).
 - adapt the parameter for the distance between zero marks (p0425).
 - replace the encoder or encoder cable.
231405 <location>Encoder 1: Temperature in the encoder evaluation inadmissible
Message
value: %1
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The encoder evaluation for a motor with DRIVE-CLiQ has detected an inadmissible temperature.
The fault threshold is 125 °C.
Alarm value (r2124, interpret decimal):
Measured board/module temperature in 0.1 °C.
Remedy: Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.

231410 <location>Encoder 1: Serial communications
Message
value: Fault cause: %1 bin
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Serial communication protocol transfer error between the encoder and evaluation module.
Alarm value (r2124, interpret binary):
Bit 0: Alarm bit in the position protocol.
Bit 1: Incorrect quiescent level on the data line.
Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
Bit 5: Internal error in the serial driver: An illegal mode command was requested.
Bit 6: Timeout when cyclically reading.
Bit 8: Protocol is too long (e.g. > 64 bits).
Bit 9: Receive buffer overflow.
Bit 10: Frame error when reading twice.
Bit 11: Parity error.
Bit 12: Data line signal level error during the monoflop time.
Remedy: - check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder.

231411 <location>Encoder 1: EnDat encoder signals alarms
Message
value: Fault cause: %1 bin
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The error word of the EnDat encoder has alarm bits that have been set.
Alarm value (r2124, interpret binary):
Bit 0: Frequency exceeded (speed too high).
Bit 1: Temperature exceeded.
Bit 2: Control reserve, lighting system exceeded.
Bit 3: Battery discharged.
Bit 4: Reference point passed.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: Replace encoder.
231412 <location>Encoder 1: Error bit set in the serial protocol
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The encoder sends a set error bit via the serial protocol.
Alarm value (r2124, interpret binary):
Bit 0: Fault bit in the position protocol.
Bit 1: Alarm bit in the position protocol.
Remedy: - carry out a POWER ON (power off/on) for all components.
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder.

231414 <location>Encoder 1: Amplitude error track C or D (C^2 + D^2)
Message value: C track: %1, D track: %2
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude (C^2 + D^2) of track C or D of the encoder or from the Hall signals, is not within the tolerance bandwidth.
Alarm value (r2124, interpret hexadecimal):
yyyyxxx hex:
yyyy = Signal level, track D (16 bits with sign).
xxxx = Signal level, track C (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV ±25/±20 %).
The response thresholds are < 230 mV (observe the frequency response of the encoder) and > 750 mV.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
Note: If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy: - check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check the Sensor Module (e.g. contacts).
- check the Hall sensor box

231415 <location>Encoder 1: Amplitude error track A/B alarm (A^2 + B^2)
Message value: Amplitude: %1, Angle: %2
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude (root of A^2 + B^2) for encoder 1 exceeds the permissible tolerance.
Alarm value (r2124, interpret hexadecimal):
yyyyxxx hex:
yyyy = Angle
xxxx = Amplitude, i.e. root from A^2 + B^2 (16 bits without sign)
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV ±25/±20 %).
The response threshold is < 300 mV (observe the frequency response of the encoder).
A signal level of 500 mV peak value corresponds to the numerical value 299A hex = 10650 dec.
The angle 0 ... FFFF hex corresponds to 0 ... 360 degrees of the fine position. Zero degrees is at the negative zero crossover of track B.
Note for sensors modules for resolvers (e.g. SMC10):
The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is < 1414 mV (1.0 Vrms).
A signal level of 2900 mV peak value corresponds to the numerical value of 3333 hex = 13107 dec.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range.
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check the Sensor Module (e.g. contacts).
- if the coding disk is soiled or the lighting worn, replace the encoder.

231418
<location>Encoder 1: Speed difference per sampling rate exceeded

Message

value: %1

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause:
For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492.
The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
Alarm value (r2124, interpret decimal):
Only for internal Siemens troubleshooting.
See also: p0492

Remedy:
- check the tachometer feeder cable for interruptions.
- check the grounding of the tachometer shielding.
- if required, increase the setting of p0492.

231419
<location>Encoder 1: Track A or B outside the tolerance range

Message

value: %1

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause:
The amplitude, phase or offset correction for track A or B is at the limit.
Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27
Phase: <84 degrees or >96 degrees
SMC20: Offset correction: +/-140 mV
SMC10: Offset correction: +/-650 mV
Alarm value (r2124, interpret hexadecimal):
xxxx1: Minimum of the offset correction, track B
xxxx2: Maximum of the offset correction, track B
xx1xx: Minimum of the offset correction, track A
xxx2x: Maximum of the offset correction, track A
xx1xx: Minimum of the amplitude correction, track B/A
xx2xx: Maximum of the amplitude correction, track B/A
x1xxx: Minimum of the phase error correction
x2xxx: Maximum of the phase error correction
1xxxx: Minimum of the cubic correction
2xxxx: Maximum of the cubic correction
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders).
- check the plug connections (also the transition resistance).
- check the encoder signals.
- replace the encoder or encoder cable.
231421 <location>Encoder 1: Coarse position error

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: For the actual value sensing, an error was detected. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.
Alarm value (r2124, interpret decimal):
3: The absolute position of the serial protocol and track A/B differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.
Remedy: Re alarm value = 3:
- for a standard encoder with cable, if required, contact the manufacturer.
- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with A* and B with B*) or, for a programmable encoder, check the zero offset of the position.

231429 <location>Encoder 1: Position difference, hall sensor/track C/D and A/B too large

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The error for track C/D is greater than +/-15 ° mechanical or +/-60 ° electrical or the error for the Hall signals is greater than +/-60 ° electrical.
One period of track C/D corresponds to 360 ° mechanical.
One period of the Hall signal corresponds to 360 ° electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
Alarm value (r2124, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1 °).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1 °).
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.

231431 <location>Encoder 1: Deviation, position incremental/absolute too large

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: When the zero pulse is passed, a deviation in the incremental position was detected.
For equidistant zero marks, the following applies:
- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
For distance-coded zero marks, the following applies:
- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
Alarm value (r2124, interpret decimal):
Deviation in quadrants (1 pulse = 4 quadrants).
See also: p0491 (Motor encoder fault response ENCODER)
SINAMICS-Alarms

Overview of Alarms

© Siemens AG 2009 All Rights Reserved
SINUMERIK 840D sl, 840Di sl, SINAMICS, Diagnostics Manual (DAsl), 03/2009
2-877

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- remove any dirt from the coding disk or strong magnetic fields.

231432 <location>Encoder 1: Rotor position adaptation corrects deviation
Message
value:

Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected.
Alarm value (r2124, interpret decimal): Last measured deviation of the zero mark distance in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- remove any dirt from the coding disk or strong magnetic fields.

231443 <location>Encoder 1: Signal level C/D unipolar outside tolerance
Message
value:

Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
The unipolar level (CP/CN or DP/DN) for encoder 1 is outside the permissible tolerance.
Alarm value (r2124, interpret binary):
Bit 0 = 1: Either CP or CN outside the tolerance.
Bit 16 = 1: Either DP or DN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
The response thresholds are < 1700 mV and > 3300 mV.
Note:
The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts.
- are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)?
- replace the encoder cable.

231500 <location>Encoder 1: Position tracking traversing range exceeded
Message
value:

Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause:
For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p0412 and interpreted as the number of motor revolutions.
When p0411.0 = 1, the maximum traversing range for a configured linear axis is defined to be 64x (+/- 32x) the setting in p0421.
When p0411.3 = 1, the maximum traversing range for a configured linear axis is preset to the highest possible value and equals +/-p0412/2 (rounded to whole rotations). The highest possible value depends on the pulse number (p0408) and fine resolution (p0419).
Remedy: The fault should be resolved as follows:
- select encoder commissioning (p0010 = 4),
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).

The fault should then be acknowledged and the absolute encoder adjusted.

231501 <location>Encoder 1: Position tracking encoder position outside tolerance window

Message value: %1

Drive object: SERVO, VECTOR

Reaction: OFF1 (NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.

Fault value (r0949, decimal):
Deviation (difference) to the last encoder position in increments of the absolute value.
The sign designates the traversing direction.

Note:
The deviation (difference) found is also displayed in r0477.
See also: p0413 (Measuring gear, position tracking tolerance window), r0477 (Measuring gear, position difference)

Remedy: Reset the position tracking as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).

The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
See also: p0010, p2507

231502 <location>Encoder 1: Encoder with measuring gear, without valid signals

Message value: -

Drive object: SERVO, VECTOR

Reaction: OFF1 (OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: The encoder with measuring gear no longer provides any valid signals.

Remedy: It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.

231503 <location>Encoder 1: Position tracking cannot be reset

Message value: -

Drive object: SERVO, VECTOR

Reaction: OFF1 (NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: The position tracking for the measuring gear cannot be reset.

Remedy: The fault should be resolved as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).

The fault should then be acknowledged and the absolute encoder adjusted.
231800 <location>Encoder 1: Group signal
Message value:
Drive object: All objects
Reaction:
A_INFEED: OFF2 (NONE)
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: NONE
Cause: The motor encoder has detected at least one fault.
Remedy: Evaluates other current messages.

231801 <location>Encoder 1 DRIVE-CLiQ: Sign-of-life missing
Message value:
Drive object: All objects
Reaction:
A_INFEED: OFF2 (NONE)
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex: The sign-of-life bit in the receive telegram is not set.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: - check the electrical cabinet design and cable routing for EMC compliance
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

231802 <location>Encoder 1: Time slice overflow
Message value:
Drive object: All objects
Reaction:
A_INFEED: OFF2 (NONE)
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: Time slice overflow, encoder 1.
Fault value (r0949, interpret decimal):
9: Time slice overflow of the fast (current controller clock cycle) time slice.
10: Time slice overflow of the average time slice.
12: Time slice overflow of the slow time slice.
999: Timeout when waiting for SYNO, e.g. unexpected return to non-cyclic operation.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: Reduce the current controller frequency.

231804 <location>Encoder 1: Checksum error
Message value:
Drive object: All objects
Reaction:
A_INFEED: OFF2 (NONE)
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: A checksum error has occurred when reading-out the program memory on the Sensor Module.
Fault value (r0949, interpret hexadecimal):

yyyyyyyy hex
yyyy: Memory area involved.
xxxx: Difference between the checksum at POWER ON and the current checksum.
See also: p0491 (Motor encoder fault response ENCODER)

Remedy: - check whether the permissible ambient temperature for the component is maintained.
- replace the Sensor Module.

231805 <location>Encoder 1: EPROM checksum error
Message value: %1
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE)
 SERVO: ENCODER (IASC/DCBRAKE, NONE)
 VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted.
Fault value (r0949, interpret hexadecimal):
01: EEPROM access error.
02: Too many blocks in the EEPROM.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: Replace the module.

231806 <location>Encoder 1: Initialization error
Message value: %1
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE)
 SERVO: ENCODER (IASC/DCBRAKE, NONE)
 VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The encoder was not successfully initialized.
Fault value (r0949, interpret hexadecimal):
1, 2, 3: Encoder initialization with the motor rotating.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: Acknowledge the fault.

231811 <location>Encoder 1: Encoder serial number changed
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The serial number of the motor encoder of a synchronous motor has changed. The change was only checked for encoders with serial number (e.g. EnDat encoders) and build-in motors (e.g. p0300 = 401) or third-party motors (p0300 = 2).
Cause 1: The encoder was replaced.
Cause 2: A third-party, build-in or linear motor was re-commissioned.
Cause 3: The motor with integrated and adjusted encoder was replaced.
Cause 4: The firmware was updated to a version that checks the encoder serial number.
Note: With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
When the encoder is adjusted (p2507 = 3), the serial number is checked for changes and if required, the adjustment is reset (p2507 = 1).
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: Re causes 1, 2:
Carry out an automatic adjustment using the pole position identification routine. First, accept the serial number with p0440 = 1. Acknowledge the fault. Initiate the pole position identification routine with p1990 = 1. Then check that the pole position identification routine is correctly executed.

SERVO:
If a pole position identification technique is selected in p1980, and if p0301 does not contain a motor type with an encoder adjusted in the factory, then p1990 is automatically activated.

or
Set the adjustment via p0431. In this case, the new serial number is automatically accepted.
or
Mechanically adjust the encoder. Accept the new serial number with p0440 = 1.

Re causes 3, 4:
Accept the new serial number with p0440 = 1.

231812 <location>Encoder 1: Requested cycle or RX/TX timing not supported
Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A cycle requested from the Control Unit or RX/TX timing is not supported.
Alarm value (r2124, interpret decimal):
0: Application cycle is not supported.
1: DQ cycle is not supported.
2: Distance between RX and TX instants in time too low.
3: TX instant in time too early.

Remedy:

231813 <location>Encoder 1: Hardware logic unit failed
Message value: Fault cause: %1 bin
Drive object: SERVO, VECTOR
Reaction: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Bit 0: ALU watchdog has responded.
Bit 1: ALU has detected a sign-of-life error.

Remedy:
Replace encoder

231820 <location>Encoder 1 DRIVE-CLiQ: Telegram error
Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: A_INFEED: OFF2
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 01 hex:
CRC error.
xx = 02 hex:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 03 hex:
Telegram is longer than specified in the length byte or in the receive list.
xx = 04 hex:
The length of the receive telegram does not match the receive list.
xx = 05 hex:
The type of the receive telegram does not match the receive list.
xx = 06 hex:
The address of the component in the telegram and in the receive list do not match.
xx = 07 hex:
A SYNC telegram is expected - but the receive telegram is not a SYNC telegram.
xx = 08 hex:
No SYNC telegram is expected - but the receive telegram is one.
xx = 09 hex:
The error bit in the receive telegram is set.
xx = 10 hex:
The receive telegram is too early.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

231835
<location>Encoder 1 DRIVE-CLiQ: Cyclic data transfer error
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction:
A_INFEED: OFF2
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:
IMMEDIATELY
Cause:
A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. The nodes do not send and receive in synchronism.

tyxx hex: yy = component number, xx = fault cause
xx = 21 hex:
The cyclic telegram has not been received.
xx = 22 hex:
Timeout in the telegram receive list.
xx = 40 hex:
Timeout in the telegram send list.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
- carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

231836
<location>Encoder 1 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction:
A_INFEED: OFF2
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)
Acknowledge:
IMMEDIATELY
Cause:
A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):

tyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy:
Carry out a POWER ON.
231837 <location>Encoder 1 DRIVE-CLiQ: Component fault

Message value:
Component number: %1, fault cause: %2

Drive object: All objects

Reaction:
A_INFEED: OFF2
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: IMMEDIATELY

Cause:
Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 20 hex:
Error in the telegram header.
xx = 23 hex:
Receive error: The telegram buffer memory contains an error.
xx = 42 hex:
Send error: The telegram buffer memory contains an error.
xx = 43 hex:
Send error: The telegram buffer memory contains an error.
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

231845 <location>Encoder 1 DRIVE-CLiQ: Cyclic data transfer error

Message value:
Component number: %1, fault cause: %2

Drive object: All objects

Reaction:
A_INFEED: OFF2
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: IMMEDIATELY

Cause:
A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
Carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

231850 <location>Encoder 1: Encoder evaluation, internal software error

Message value:
%1

Drive object: All objects

Reaction:
A_INFEED: OFF2 (NONE)
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: POWER ON

Cause:
Internal software error in the Sensor Module of encoder 1.
Fault value (r0949, interpret decimal):
1: Background time slice is blocked.
2: Checksum over the code memory is not OK.
10000: OEM memory of the EnDat encoder contains data that cannot be interpreted.
11000 - 11499: Descriptive data from EEPROM incorrect.
11500 - 11899: Calibration data from EEPROM incorrect.
11900 - 11999: Configuration data from EEPROM incorrect.
16000: DRIVE-CLiQ encoder initialization application error.
16001: DRIVE-CLiQ encoder initialization ALU error.
16002: DRIVE-CLiQ encoder HISI / SISI initialization error.
16003: DRIVE-CLiQ encoder safety initialization error.
16004: DRIVE-CLiQ encoder internal system error.

See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.

231851 <location>Encoder 1 DRIVE-CLiQ (CU): Sign-of-life missing

Message value:
Component number: %1, fault cause: %2

Drive object: All objects

Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: IMMEDIATELY

Cause:
A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyyx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.

Remedy:
Upgrade the firmware of the component involved.

231860 <location>Encoder 1 DRIVE-CLiQ (CU): Telegram error

Message value:
Component number: %1, fault cause: %2

Drive object: All objects

Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge: IMMEDIATELY

Cause:
A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyyx hex: yy = component number, xx = fault cause
xx = 11 hex 17 dec:
CRC error and the receive telegram is too early.
xx = 01 hex = 01 dec:
Checksum error (CRC error).
xx = 12 hex = 18 dec:
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 02 hex = 02 dec:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 13 hex = 19 dec:
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 03 hex = 03 dec:
Telegram is longer than specified in the length byte or in the receive list.
xx = 14 hex = 20 dec:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
Overview of Alarms

xx = 04 hex = 04 dec:
The length of the receive telegram does not match the receive list.
xx = 15 hex = 21 dec:
The type of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 05 hex = 05 dec:
The type of the receive telegram does not match the receive list.
xx = 16 hex = 22 dec:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
xx = 06 hex = 06 dec:
The address of the power unit in the telegram and in the receive list do not match.
xx = 19 hex = 25 dec:
The error bit in the receive telegram is set and the receive telegram is too early.
xx = 09 hex = 09 dec:
The error bit in the receive telegram is set.
xx = 10 hex = 16 dec:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

231885
<location>Encoder 1 DRIVE-CLiQ (CU): Cyclic data transfer error

Message value:
Component number: %1, fault cause: %2

Drive object:
All objects

Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge:
IMMEDIATELY

Cause:
A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 1A hex = 26 dec:
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
xx = 21 hex = 33 dec:
The cyclic telegram has not been received.
xx = 22 hex = 34 dec:
Timeout in the telegram receive list.
xx = 40 hex = 64 dec:
Timeout in the telegram send list.
xx = 62 hex = 98 dec:
Error at the transition to cyclic operation.

Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

231886
<location>Encoder 1 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data

Message value:
Component number: %1, fault cause: %2

Drive object:
All objects

Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: ENCODER (IASC/DCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCBRAKE, NONE)

Acknowledge:
IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.

Remedy:
- carry out a POWER ON.
- check whether the firmware version of the encoder (r0148) matches the firmware version of Control Unit (r0018).

231887 <location>Encoder 1 DRIVE-CLiQ (CU): Component fault
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: ENCODER (IASC/DCCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCCBRAKE, NONE)
Acknowledge: IMMEDIATELY

Cause: Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 1). Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 20 hex:
Error in the telegram header.
xx = 23 hex:
Receive error: The telegram buffer memory contains an error.
xx = 42 hex:
Send error: The telegram buffer memory contains an error.
xx = 43 hex:
Send error: The telegram buffer memory contains an error.
xx = 60 hex:
Response received too late during runtime measurement.
xx = 61 hex:
Time taken to exchange characteristic data too long.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

231895 <location>Encoder 1 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: ENCODER (IASC/DCCBRAKE, NONE)
VECTOR: ENCODER (IASC/DCCBRAKE, NONE)
Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 1) involved to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.

Remedy:
Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
231896 <location>Encoder 1 DRIVE-CLiQ (CU): Inconsistent component properties

Message value: Component number: %1

Drive object: All objects

Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF2 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)
VECTOR: OFF2 (ENCODER, IASC/DCBRAKE, NONE, OFF1, OFF2, STOP1, STOP2)

Acknowledge: IMMEDIATELY

Cause: The properties of the DRIVE-CLiQ component (Sensor Module for encoder 1), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):
Component number.

Remedy:
- when replacing cables, only use cables with the same length as the original cables.
- when replacing components, use the same components and firmware releases.
- carry out a POWER ON.

231899 <location>Encoder 1: Unknown fault

Message value: New message: %1

Drive object: All objects

Reaction:
A_INFEED: OFF2 (NONE, OFF1)
SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: A fault occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
Fault number.
Note:
If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
See also: p0491 (Motor encoder fault response ENCODER)

Remedy:
- replace the firmware on the Sensor Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).

231902 <location>Encoder 1: SPI-BUS error occurred

Message value: %1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: Error when operating the internal SPI bus.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.

Remedy:
- replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.

231903 <location>Encoder 1: I2C-BUS error occurred

Message value: %1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE
Cause: Error when operating the internal I2C bus.
Fault value (r0949, interpret hexadecimal):
- replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.

Remedy:

231905 Encoder 1: Parameterization error

Message value:

Drive object: All objects

Reaction:

A_INFEED: OFF2 (NONE, OFF1)

SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)

VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)

Acknowledge: IMMEDIATELY

Cause:

- A parameter of encoder 1 was detected as being incorrect.
- It is possible that the parameterized encoder type does not match the connected encoder.
- The parameter involved can be determined as follows:
 - determine the parameter number using the fault value (r0949).
 - determine the parameter index (p0187).
- Fault value (r0949, interpret decimal):
 - yyyyxxxx dec: yyyy = supplementary information, xxxx = parameter
 - Supplementary information = 0: No information available.
 - Supplementary information = 1: The component does not support HTL level (p0405.1 = 0) combined with track monitoring A/B <> -A/B (p0405.2 = 1).
 - Supplementary information = 2: A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please start a new encoder identification.
 - Supplementary information = 3: A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please select a listed encoder in p0400 with a code number < 10000.
 - Supplementary information = 4: This component does not support SSI encoders (p0404.9 = 1) without track A/B.
 - Supplementary information = 5: For the SQW encoder, the value in p4686 is greater than that in p0425.
 - Supplementary information = 6: The DRIVE-CLiQ encoder cannot be used with this firmware version.
- See also: p0491 (Motor encoder fault response ENCODER)

Remedy:

- check whether the connected encoder type matches the encoder that has been parameterized.
- correct the parameter specified by the fault value (r0949) and p0187.
- re parameter number 314: Check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 (r0313 * p0433) / p0432 <= 1000).

231915 Encoder 1: Configuration error

Message value:

Drive object: SERVO, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause:

The configuration for encoder 1 is incorrect.
Fault value (r0949, interpret decimal):
1: Re-parameterization between fault/alarm is not permissible.

Remedy:

No re-parameterization between fault/alarm.
231916 <location>Encoder 1: Parameterization error
Message Parameter: %1, supplementary information: %2
value:
Drive object: SERVO, VECTOR
Reaction: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: A parameter of encoder 1 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:
- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).
Fault value (r0949, interpret decimal):
Parameter number
The fault is only output for encoders with r404[0].10 = 1. This corresponds to A31905 for encoders
with r404[0].10 = 0.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: - check whether the connected encoder type matches the encoder that has been parameterized.
- correct the parameter specified by the fault value (r0949) and p0187.

231920 <location>Encoder 1: Temperature sensor fault
Message Fault cause: %1, channel number: %2
value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
Low word low byte: Cause:
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Additional values:
Only for internal Siemens troubleshooting.
Low word high byte: Channel number.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: - check that the encoder cable is the correct type and is correctly connected.
- check the temperature sensor selection in p0600 to p0603.
- replace the Sensor Module (hardware defect or incorrect calibration data).

231999 <location>Encoder 1: Unknown alarm
Message New message: %1
value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: A alarm has occurred on the Sensor Module for encoder 1 that cannot be interpreted by the Control
Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Alarm value (r2124, interpret decimal):
Alarm number.
Note: If required, the significance of this new alarm can be read about in a more recent description of the
Control Unit.
See also: p0491 (Motor encoder fault response ENCODER)
Remedy: - replace the firmware on the Sensor Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).
232100 <location>Encoder 2: Zero mark distance error

Message value: %1

Drive object: All objects

Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT

Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance. For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).

Fault value (r0949, interpret decimal):
Last measured zero mark distance in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- replace the encoder or encoder cable.

232101 <location>Encoder 2: Zero marked failed

Message value: %1

Drive object: All objects

Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT

Cause: The 1.5 x parameterized zero mark distance was exceeded. The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).

Fault value (r0949, interpret decimal):
Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- when p0437.1 is active, check p4686.
- replace the encoder or encoder cable.

232103 <location>Encoder 2: Amplitude error, track R

Message value: R track: %1

Drive object: All objects

Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY
Cause: The amplitude of the reference track signal (track R) does not lie within the tolerance bandwidth for encoder 2.
The fault can be initiated when the unipolar voltage range is exceeded or the differential amplitude is initiated.

Fault value (r0949, interpret hexadecimal):

xxxx hex:
xxxx = Signal level, track R (16 bits with sign).
The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
The response threshold is < 1700 mV and > 3300 mV.
The nominal differential signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold is > 750 mV.
A signal level of 500 mV peak value corresponds to the numerical value of 5333 hex = 21299 dec.

Note:
The analog value of the amplitude error is not measured at the same time with the hardware fault output by the sensor module.
The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.30 = 1, r0459.31 = 1).
- monitoring active (p0437.30 = 1, p0437.31 = 1).

Remedy:
- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment may not be sufficient for the speed range.
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts.
- check whether the zero mark is connected and the signal cables RP and RN connected correctly.
- replace the encoder cable.
- if the coding disk is soiled or the lighting worn, replace the encoder.

232110 <location>Encoder 2: Serial communications error
Message value: Fault cause: %1 bin

Drive object: All objects

Reaction:
A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: PULSE INHIBIT

Cause:
Serial communication protocol transfer error between the encoder and evaluation module.
Fault value (r0949, interpret binary):
Bit 0: Alarm bit in the position protocol.
Bit 1: Incorrect quiescent level on the data line.
Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
Bit 5: Internal error in the serial driver: An illegal mode command was requested.
Bit 6: Timeout when cyclically reading.
Bit 8: Protocol is too long (e.g. > 64 bits).
Bit 9: Receive buffer overflow.
Bit 10: Frame error when reading twice.
Bit 11: Parity error.
Bit 12: Data line signal level error during the monoflop time.
Bit 13: Data line incorrect.

Remedy:
Re fault value, bit 0 = 1:
- encoder defective. F31111 may provide additional details.
Re fault value, bit 1 = 1:
- Incorrect encoder type / replace the encoder or encoder cable.
Re fault value, bit 2 = 1:
- Incorrect encoder type / replace the encoder or encoder cable.
Re fault value, bit 3 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable.
Re fault value, bit 4 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
Re fault value, bit 5 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
Re fault value, bit 6 = 1:
- Update the firmware for the Sensor Module.
Re fault value, bit 8 = 1:
- Check the parameterization (p0429.2).
Re fault value, bit 9 = 1:
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
Re fault value, bit 10 = 1:
- Check the parameterization (p0429.2, p0449).
Re fault value, bit 11 = 1:
- Check the parameterization (p0436).
Re fault value, bit 12 = 1:
- Check the parameterization (p0429.6).
Re fault value, bit 13 = 1:
- Check the data line.

232111

Encoder 2: Absolute encoder EnDat, internal fault/error

Message value:
Fault cause: %1 bin

Drive object:
All objects

Reaction:
A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge:
PULSE INHIBIT

Cause:
The EnDat encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Bit 0: Lighting system failed.
Bit 1: Signal amplitude too low.
Bit 2: Position value incorrect.
Bit 3: Encoder power supply overvoltage condition.
Bit 4: Encoder power supply undervoltage condition.
Bit 5: Encoder power supply overcurrent condition.
Bit 6: The battery must be changed.

Remedy:
Re fault value, bit 0 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 1 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 2 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 3 = 1:
5 V power supply voltage fault.
When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
Re fault value, bit 4 = 1:
5 V power supply voltage fault.
When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
When using a motor with DRIVE-CLiQ: Replace the motor.
Re fault value, bit 5 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 6 = 1:
The battery must be changed (only for encoders with battery back-up).
232112 Encoder 2: Error bit set in the serial protocol

Message value:
%1

Drive object: All objects

Reaction:
A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: PULSE INHIBIT

Cause:
The encoder sends a set error bit via the serial protocol.
Fault value (r0949, interpret binary).
Bit 0: Fault bit in the position protocol.

Remedy:
For fault value, bit 0 = 1:
In the case of an EnDat encoder, F31111 may provide further details.

232115 Encoder 2: Amplitude error track A/B fault (A^2 + B^2)

Message value:
A track: %1, B-track: %2

Drive object: All objects

Reaction:
A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: PULSE INHIBIT

Cause:
The amplitude (root of A^2 + B^2) for encoder 2 exceeds the permissible tolerance.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Signal level, track B (16 bits with sign).
xxxx = Signal level, track A (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response thresholds are < 230 mV (observe the frequency response of the encoder) and > 750 mV.
A signal level of 500 mV peak value corresponds to the numerical value of 5333 hex = 21299 dec.
Note for sensors modules for resolvers (e.g. SMC10):
The nominal signal level is at 2900 mV (2.0 Vrms). The response thresholds are < 1070 mV and > 3562 mV.
A signal level of 2900 mV peak value corresponds to the numerical value of 6666 hex = 26214 dec.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check the Sensor Module (e.g. contacts).
- with measuring systems without their own bearing system: Adjust the scanning head and check the bearing system of the measuring wheel.
- for measuring systems with their own bearing system: Ensure that the encoder housing is not subject to any axial force.

232116 Encoder 2: Amplitude error track A + B

Message value:
Amplitude: %1, Angle: %2

Drive object: All objects

Reaction:
A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY
Cause: The amplitude of the rectified encoder signals A and B and the amplitude from the roots of $A^2 + B^2$ for encoder 2 are not within the tolerance bandwidth.

Fault value (r0949, interpret hexadecimal):
- yyyy = Signal level, track B (16 bits with sign).
- xxxx = Signal level, track A (16 bits with sign).

The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response thresholds are < 176 mV (observe the frequency response of the encoder) and > 955 mV.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.

Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check the Sensor Module (e.g. contacts).

232117 <location>Encoder 2: Inversion error signals A and B and R

Message value:

Drive object: All objects

Reaction:
- A_INFEED: NONE
- SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
- VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: For a square-wave signal encoder (TTL, bipolar, double ended) the A* and B* and R* signals are not inverted with respect to signals A and B and R.

Note: For CU310, CUA32, D410, SMC30 (only Order No. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1), the following applies:
A squarewave encoder without track R is used and the track monitoring (p0405.2 = 1) is activated.

Remedy:
- check the setting of p0405: p0405.2 = 1 is only possible if the encoder is connected at X520.
- check the encoder/cable: Does the encoder supply TTL signals and the associated inverted signals?

Note: For a squarewave encoder without track R, the following jumpers must be set at the encoder connection:
- pin 10 (reference signal R) <-> pin 7 (encoder power supply, ground)
- pin 11 (reference signal R inverted) <-> pin 4 (encoder power supply)

232118 <location>Encoder 2: Speed difference outside the tolerance range

Message value:

Drive object: All objects

Reaction:
- A_INFEED: NONE
- SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
- VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: PULSE INHIBIT

Cause: For an HTL/TTL encoder, the speed difference has exceeded the value in p0492 over several sampling cycles.
The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
Fault value (r0949, interpret decimal):
- Only for internal Siemens troubleshooting.
- See also: p0492

Remedy:
- check the tachometer feeder cable for interruptions.
- check the grounding of the tachometer shielding.
- if required, increase the maximum speed difference per sampling cycle (p0492).
232120 <location>Encoder 2: Power supply voltage fault
Message Fault cause: %1 bin
value:
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: Encoder 2 power supply voltage fault.
Note: If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result
in the encoder being destroyed because the pins of the operating voltage are reversed.
Fault value (r0949, interpret binary):
Bit 0: Undervoltage condition on the sense line.
Bit 1: Overcurrent condition for the encoder power supply.
Remedy: For fault value, bit 0 = 1:
- correct encoder cable connected?
- check the plug connections of the encoder cable.
- SMC30: Check the parameterization (p0404.22).
For fault value, bit 1 = 1:
- correct encoder cable connected?
- replace the encoder or encoder cable.

232121 <location>Encoder 2: Coarse position error
Message -
value:
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (NONE, OFF2, OFF3)
VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: For the actual value sensing, an error was detected on the module. As a result of this error, it must be
assumed that the actual value sensing supplies an incorrect coarse position.
Remedy: Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.

232122 <location>Encoder 2: Internal power supply voltage fault
Message -
value:
Drive object: SERVO, VECTOR
Reaction: NONE (ENCODER, IASC/DCBRAKE)
Acknowledge: IMMEDIATELY
Cause: Fault in internal reference voltage of ASICs for encoder 2.
Fault value (r0949, interpret decimal):
1: Reference voltage error.
2: Internal undervoltage.
3: Internal overvoltage.
Remedy: Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.

232123 <location>Encoder 2: Signal level A/B unipolar outside tolerance
Message Fault cause: %1 bin
value:
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The unipolar level (AP/AN or BP/BN) for encoder 2 is outside the permissible tolerance.
Fault value (r0949, interpret binary):
Bit 0 = 1: Either AP or AN outside the tolerance.
Bit 16 = 1: Either BP or BN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
The response thresholds are < 1700 mV and > 3300 mV.
Note:
The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).

Remedy:
- make sure that the encoder cables and shielding are installed in an EMC-compliant manner.
- check the plug connections and contacts.
- check the short-circuit of a signal cable with mass or the operating voltage.
- replace the encoder cable.

232125 <location>Encoder 2: Amplitude error track A/B overcontrolled
Message value:
A track: %1, B-track: %2
Drive object: All objects
Reaction:
A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The amplitude of track A or B for encoder 2 exceeds the permissible tolerance band.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Signal level, track B (16 bits with sign).
xxxx = Signal level, track A (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold is > 750 mV. This fault also occurs if the A/D converter is overcontrolled.
A signal level of 500 mV peak value corresponds to the numerical value of 5333 hex = 21299 dec.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- replace the encoder or encoder cable.

232126 <location>Encoder 2: Amplitude AB too high
Message value:
Amplitude: %1, Angle: %2
Drive object: All objects
Reaction:
A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The amplitude (root of A^2 + B^2 or |A| + |B|) for encoder 2 exceeds the permissible tolerance.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex:
yyyy = Angle
xxxx = Amplitude, i.e. root from A^2 + B^2 (16 bits without sign)
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold for (|A| + |B|) is > 1120 mV or the root of (A^2 + B^2) > 955 mV.
A signal level of 500 mV peak value corresponds to the numerical value of 299A hex = 10650 dec.
The angle 0 ... FFFF hex corresponds to 0 ... 360 degrees of the fine position. Zero degrees is at the negative zero crossover of track B.
Note:
The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.
Remedy: - check that the encoder cables and shielding are routed in compliance with EMC.
- replace the encoder or encoder cable.

232129 <location>Encoder 2: Position difference, hall sensor/track C/D and A/B too large

Message value: %1
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The error for track C/D is greater than +/-15 ° mechanical or +/-60 ° electrical or the error for the Hall signals is greater than +/-60 ° electrical.
One period of track C/D corresponds to 360 ° mechanical.
One period of the Hall signal corresponds to 360 ° electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A32429.
Fault value (r0949, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1 °).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1 °).
Remedy: - track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.

232130 <location>Encoder 2: Zero mark and position error from the coarse synchronization

Message value: Angular deviation, electrical: %1, angle, mechanical: %2
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.
When initializing via track C/D (p0404) then it is checked whether the zero mark occurs in an angular range of +/-18 ° mechanical.
When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of +/-60 ° electrical.
Fault value (r0949, interpret hexadecimal):
yyyyyyyy hex
yyyy: Determined mechanical zero mark position (can only be used for track C/D).
xxxx: Deviation of the zero mark from the expected position as electrical angle.
Normalization: 32768 dec = 180 °
Remedy: - check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- if the Hall sensor is used as an equivalent for track C/D, check the connection.
- check the connection of track C or D.
- replace the encoder or encoder cable.
232131 <location>Encoder 2: Deviation, position incremental/absolute too large

Message value:
Drive object: All objects
Reaction:
A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause:
Absolute encoder:
When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected.
Limit value for the deviation:
- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQ1 1325 > 2 quadrants, EQN 1325 > 50 quadrants).
- other encoders: 15 pulses = 60 quadrants.
Incremental encoder:
When the zero pulse is passed, a deviation in the incremental position was detected.
For equidistant zero marks, the following applies:
- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
For distance-coded zero marks, the following applies:
- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
Fault value (r0949, interpret decimal):
Deviation in quadrants (1 pulse = 4 quadrants).
Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check whether the coding disk is dirty or there are strong ambient magnetic fields.
- adapt the parameter for the distance between zero marks (p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).

232135 <location>Encoder 2: Fault when determining the position

Message value:
Drive object: SERVO, VECTOR
Reaction:
OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause:
The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word.
Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display)
Bit 1: F2 (safety status display)
Bit 2: Lighting (reserved)
Bit 3: Signal amplitude (reserved)
Bit 4: Position value (reserved)
Bit 5: Overvoltage (reserved)
Bit 6: Undervoltage (reserved)
Bit 7: Overcurrent (reserved)
Bit 8: Battery (reserved)
Bit 16: Lighting (→ F3x135, x = 1, 2, 3)
Bit 17: Signal amplitude (→ F3x135, x = 1, 2, 3)
Bit 18: Singleturn position 1 (→ F3x135, x = 1, 2, 3)
Bit 19: Overvoltage (→ F3x135, x = 1, 2, 3)
Bit 20: Undervoltage (→ F3x135, x = 1, 2, 3)
Bit 21: Overcurrent (→ F3x135, x = 1, 2, 3)
Bit 22: Temperature exceeded (→ F3x405, x = 1, 2, 3)
Bit 23: Singleturn position 2 (safety status display)
Bit 24: Singleturn system (→ F3x135, x = 1, 2, 3)
Bit 25: Singleturn power down (→ F3x135, x = 1, 2, 3)
Bit 26: Multiturn position 1 (→ F3x136, x = 1, 2, 3)
Bit 27: Multiturn position 2 (→ F3x136, x = 1, 2, 3)
Bit 28: Multiturn system (→ F3x136, x = 1, 2, 3)
Bit 29: Multiturn power down (→ F3x136, x = 1, 2, 3)
Bit 30: Multiturn overflow/underflow (→ F3x136, x = 1, 2, 3)
Bit 31: Multiturn battery (reserved)

Remedy:
Replace DRIVE-CLiQ encoder.

232136 <location>Encoder 2: Error when determining multiturn information

Message value:
Fault cause: %1 bin

Drive object:
SERVO, VECTOR

Reaction:
OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge:
PULSE INHIBIT

Cause:
The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word.
Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word
is displayed in the fault value.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display)
Bit 1: F2 (safety status display)
Bit 2: Lighting (reserved)
Bit 3: Signal amplitude (reserved)
Bit 4: Position value (reserved)
Bit 5: Overvoltage (reserved)
Bit 6: Undervoltage (reserved)
Bit 7: Overcurrent (reserved)
Bit 8: Battery (reserved)
Bit 16: Lighting (→ F3x135, x = 1, 2, 3)
Bit 17: Signal amplitude (→ F3x135, x = 1, 2, 3)
Bit 18: Singleturn position 1 (→ F3x135, x = 1, 2, 3)
Bit 19: Overvoltage (→ F3x135, x = 1, 2, 3)
Bit 20: Undervoltage (→ F3x135, x = 1, 2, 3)
Bit 21: Overcurrent (→ F3x135, x = 1, 2, 3)
Bit 22: Temperature exceeded (→ F3x405, x = 1, 2, 3)
Bit 23: Singleturn position 2 (safety status display)
Bit 24: Singleturn system (→ F3x135, x = 1, 2, 3)
Bit 25: Singleturn power down (→ F3x135, x = 1, 2, 3)
Bit 26: Multiturn position 1 (→ F3x136, x = 1, 2, 3)
Bit 27: Multiturn position 2 (→ F3x136, x = 1, 2, 3)
Bit 28: Multiturn system (→ F3x136, x = 1, 2, 3)
Bit 29: Multiturn power down (→ F3x136, x = 1, 2, 3)
Bit 30: Multiturn overflow/underflow (→ F3x136, x = 1, 2, 3)
Bit 31: Multiturn battery (reserved)

Remedy:
Replace DRIVE-CLiQ encoder.

232137 <location>Encoder 2: Internal error when determining the position

Message value:
Fault cause: %1 bin

Drive object:
SERVO, VECTOR

Reaction:
OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge:
PULSE INHIBIT

Cause:
The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Only for internal SIEMENS use.

Remedy:
Replace encoder
232138 <location>Encoder 2: Internal error when determining multiturn information
Message value:
Fault cause: %1 bin
Drive object: SERVO, VECTOR
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLIQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Only for internal SIEMENS use.
Remedy: Replace encoder

232150 <location>Encoder 2: Initialization error
Message value:
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: Encoder functionality selected in p0404 is not operating correctly.
Fault value (r0949, interpret hexadecimal):
The fault value is a bit field. Every set bit indicates functionality that is faulted.
The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
Remedy:
- Check that p0404 is correctly set.
- check the encoder type used (incremental/absolute value) and for SMCxx, the encoder cable.
- if relevant, note additional fault/error messages that describe the fault in detail.

232151 <location>Encoder 2: Encoder speed for initialization AB too high
Message value:
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The encoder speed is too high during while initializing the sensor.
Remedy:
Reduce the speed of the encoder accordingly during initialization.
If necessary, deactivate monitoring (p0437.29).
See also: p0437 (Sensor Module configuration extended)

232400 <location>Encoder 2: Alarm threshold zero mark distance error
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance.
For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs.
This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Alarm value (r2124, interpret decimal):
Last measured zero mark distance in increments (4 increments = 1 encoder pulse).
The sign designates the direction of motion when detecting the zero mark distance.
Remedy: - check that the encoder cables are routed in compliance with EMC.
 - check the plug connections.
 - check the encoder type (encoder with equidistant zero marks).
 - adapt the parameter for the distance between zero marks (p0424, p0425).
 - replace the encoder or encoder cable.

232401 <location>Encoder 2: Alarm threshold zero marked failed

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The 1.5 x parameterized zero mark distance was exceeded.
The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
Alarm value (r2124, interpret decimal):
Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).

Remedy: - check that the encoder cables are routed in compliance with EMC.
 - check the plug connections.
 - check the encoder type (encoder with equidistant zero marks).
 - adapt the parameter for the distance between zero marks (p0425).
 - replace the encoder or encoder cable.

232405 <location>Encoder 2: Temperature in the encoder evaluation inadmissible

Message value: %1
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
 SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
 VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The encoder evaluation for a motor with DRIVE-CLiQ has detected an inadmissible temperature.
The fault threshold is 125 ° C.
Alarm value (r2124, interpret decimal):
Measured board/module temperature in 0.1 °C.

Remedy: Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.

232410 <location>Encoder 2: Serial communications

Message value: Fault cause: %1 bin
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Serial communication protocol transfer error between the encoder and evaluation module.
Alarm value (r2124, interpret binary):
Bit 0: Alarm bit in the position protocol.
Bit 1: Incorrect quiescent level on the data line.
Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
Bit 5: Internal error in the serial driver: An illegal mode command was requested.
Bit 6: Timeout when cyclically reading.
Bit 8: Protocol is too long (e.g. > 64 bits).
Bit 9: Receive buffer overflow.
Bit 10: Frame error when reading twice.
Bit 11: Parity error.
Bit 12: Data line signal level error during the monoflop time.
Remedy: - check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder.

232411 <location>Encoder 2: EnDat encoder signals alarms
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The error word of the EnDat encoder has alarm bits that have been set.
Alarm value (r2124, interpret binary):
Bit 0: Frequency exceeded (speed too high).
Bit 1: Temperature exceeded.
Bit 2: Control reserve, lighting system exceeded.
Bit 3: Battery discharged.
Bit 4: Reference point passed.
Remedy: Replace encoder.

232412 <location>Encoder 2: Error bit set in the serial protocol
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The encoder sends a set error bit via the serial protocol.
Alarm value (r2124, interpret binary):
Bit 0: Fault bit in the position protocol.
Bit 1: Alarm bit in the position protocol.
Remedy: - carry out a POWER ON (power off/on) for all components.
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder.

232414 <location>Encoder 2: Amplitude error track C or D (C^2 + D^2)
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude (C^2 + D^2) of track C or D of the encoder or from the Hall signals, is not within the tolerance bandwidth.
Alarm value (r2124, interpret hexadecimal):

$yyyyxxxx$ hex:
$yyyy = Signal$ level, track D (16 bits with sign).
$xxxx = Signal$ level, track C (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response thresholds are < 230 mV (observe the frequency response of the encoder) and > 750 mV.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
Note: If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.
Remedy: - check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check the Sensor Module (e.g. contacts).
- check the Hall sensor box
232415 <location>Encoder 2: Amplitude error track A/B alarm \((A^2 + B^2)\)

Message
Amplitude: %1, Angle: %2

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause:
The amplitude (root of \(A^2 + B^2\)) for encoder 2 exceeds the permissible tolerance.

Alarm value (r2124, interpret hexadecimal):

```
yyyyxxx hex:
```

```
yyyy = Angle
```

```
xxxx = Amplitude, i.e. root from \(A^2 + B^2\) (16 bits without sign)
```

The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV \(-25%/+20\%\)).

The response threshold is < 300 mV (observe the frequency response of the encoder).

A signal level of 500 mV peak value corresponds to the numerical value 299A hex = 10650 dec.

The angle 0 ... FFFF hex corresponds to 0 ... 360 degrees of the fine position. Zero degrees is at the negative zero crossover of track B.

Note for sensors modules for resolvers (e.g. SMC10):
The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is < 1414 mV (1.0 Vrms).

A signal level of 2900 mV peak value corresponds to the numerical value of 3333 hex = 13107 dec.

Remedy:
- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range.
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check the Sensor Module (e.g. contacts).
- if the coding disk is soiled or the lighting worn, replace the encoder.

232418 <location>Encoder 2: Speed difference per sampling rate exceeded

Message
%1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause:
For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492.

The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.

Alarm value (r2124, interpret decimal):
Only for internal Siemens troubleshooting.
See also: p0492

Remedy:
- check the tachometer feeder cable for interruptions.
- check the grounding of the tachometer shielding.
- if required, increase the setting of p0492.

232419 <location>Encoder 2: Track A or B outside the tolerance range

Message
%1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause:
The amplitude, phase or offset correction for track A or B is at the limit.

Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27

Phase: <84 degrees or >96 degrees

SMC20: Offset correction: +/-140 mV

SMC10: Offset correction: +/-650 mV
Alarm value (r2124, interpret hexadecimal):
xxxx1: Minimum of the offset correction, track B
xxxx2: Maximum of the offset correction, track B
xx1xx: Minimum of the offset correction, track A
xx2xx: Maximum of the offset correction, track A
x1xxx: Minimum of the phase error correction
x2xxx: Maximum of the phase error correction
1xxxx: Minimum of the cubic correction
2xxxx: Maximum of the cubic correction

Remedy:
- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders).
- check the plug connections (also the transition resistance).
- check the encoder signals.
- replace the encoder or encoder cable.

232421 Encoder 2: Coarse position error
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: For the actual value sensing, an error was detected. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.
Alarm value (r2124, interpret decimal):
3: The absolute position of the serial protocol and track A/B differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.

Remedy:
- for a standard encoder with cable, if required, contact the manufacturer.
- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with A* and B with B*).
- or, for a programmable encoder, check the zero offset of the position.

232429 Encoder 2: Position difference, hall sensor/track C/D and A/B too large
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The error for track C/D is greater than +/-15° mechanical or +/-60° electrical or the error for the Hall signals is greater than +/-60° electrical.
One period of track C/D corresponds to 360° mechanical.
One period of the Hall signal corresponds to 360° electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
Alarm value (r2124, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1°).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1°).

Remedy:
- track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.
232431 Encoder 2: Deviation, position incremental/absolute too large

Message

%1

Drive object:

All objects

Reaction:

NONE

Acknowledge:

NONE

Cause:

When the zero pulse is passed, a deviation in the incremental position was detected.

For equidistant zero marks, the following applies:

- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.

For distance-coded zero marks, the following applies:

- The first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.

Alarm value (r2124, interpret decimal):

Deviation in quadrants (1 pulse = 4 quadrants).

Remedy:

- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- remove any dirt from the coding disk or strong magnetic fields.

232432 Encoder 2: Rotor position adaptation corrects deviation

Message

%1

Drive object:

All objects

Reaction:

NONE

Acknowledge:

NONE

Cause:

For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected.

Alarm value (r2124, interpret decimal):

Last measured deviation of the zero mark distance in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.

Remedy:

- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check encoder limit frequency.
- adapt the parameter for the distance between zero marks (p0424, p0425).

232443 Encoder 2: Signal level C/D unipolar outside tolerance

Message

Fault cause: %1 bin

Drive object:

All objects

Reaction:

NONE

Acknowledge:

NONE

Cause:

The unipolar level (CP/CN or DP/DN) for encoder 2 is outside the permissible tolerance.

Alarm value (r2124, interpret binary):

- Bit 0 = 1: Either CP or CN outside the tolerance.
- Bit 16 = 1: Either DP or DN outside the tolerance.

The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.

The response thresholds are < 1700 mV and > 3300 mV.

Note:

The signal level is not evaluated unless the following conditions are satisfied:

- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).

Remedy:

- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts.
- are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)?
- replace the encoder cable.
232500 <location>Encoder 2: Position tracking traversing range exceeded
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p0412 and interpreted as the number of motor revolutions.
When p0411.0 = 1, the maximum traversing range for a configured linear axis is defined to be 64x (+/- 32x) the setting in p0421.
When p0411.3 = 1, the maximum traversing range for a configured linear axis is preset to the highest possible value and equals +/-p0412/2 (rounded to whole rotations). The highest possible value depends on the pulse number (p0408) and fine resolution (p0419).
Remedy: The fault should be resolved as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and the absolute encoder adjusted.

232501 <location>Encoder 2: Position tracking encoder position outside tolerance window
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.
Fault value (r0949, decimal):
Deviation (difference) to the last encoder position in increments of the absolute value.
The sign designates the traversing direction.
Note: The deviation (difference) found is also displayed in r0477.
See also: p0413 (Measuring gear, position tracking tolerance window), r0477 (Measuring gear, position difference)
Remedy: Reset the position tracking as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
See also: p0010, p2507

232502 <location>Encoder 2: Encoder with measuring gear, without valid signals
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The encoder with measuring gear no longer provides any valid signals.
Remedy: It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.
232503 <location>Encoder 2: Position tracking cannot be reset

- **Message:**
 - **value:**
 - **Drive object:** SERVO, VECTOR
 - **Reaction:** OFF1 (NONE, OFF2, OFF3)
 - **Acknowledge:** IMMEDIATELY
 - **Cause:** The position tracking for the measuring gear cannot be reset.
 - **Remedy:**
 - select encoder commissioning (p0010 = 4).
 - reset the position tracking as follows (p0411.2 = 1).
 - de-select encoder commissioning (p0010 = 0).

232700 <location>Encoder 2: Effectivity test does not supply the expected value

- **Message:**
 - **value:** Fault cause: %1 bin
 - **Drive object:** SERVO, VECTOR
 - **Reaction:** NONE
 - **Acknowledge:** NONE
 - **Cause:** The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
 - **Remedy:**
 - Fault value (r0949, interpret binary):
 - Bit x = 1: Effectivity test x unsuccessful.

232800 <location>Encoder 2: Group signal

- **Message:**
 - **value:**
 - **Drive object:** All objects
 - **Reaction:**
 - A_INFEED: OFF2 (NONE)
 - SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
 - VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
 - **Acknowledge:** NONE
 - **Cause:** The motor encoder has detected at least one fault.
 - **Remedy:**
 - Evaluates other current messages.

232801 <location>Encoder 2 DRIVE-CLiQ: Sign-of-life missing

- **Message:**
 - **value:**
 - **Drive object:** All objects
 - **Reaction:**
 - A_INFEED: OFF2 (NONE)
 - SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
 - VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
 - **Acknowledge:** IMMEDIATELY
 - **Cause:**
 - A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
 - Fault value (r0949, interpret hexadecimal):
 - yyxx hex: yy = component number, xx = fault cause
 - xx = 0A hex:
 - The sign-of-life bit in the receive telegram is not set.
 - **Remedy:**
 - check the electrical cabinet design and cable routing for EMC compliance
 - replace the component involved.
 - See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
232802 Encoder 2: Time slice overflow
Message %1
value:
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Time slice overflow, encoder 2.
Fault value (r0949, interpret decimal):
9: Time slice overflow of the fast (current controller clock cycle) time slice.
10: Time slice overflow of the average time slice.
12: Time slice overflow of the slow time slice.
999: Timeout when waiting for SYNO, e.g. unexpected return to non-cyclic operation.
Remedy: Reduce the current controller frequency.

232804 Encoder 2: Checksum error
Message %1
value:
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A checksum error has occurred when reading-out the program memory on the Sensor Module.
Fault value (r0949, interpret hexadecimal):
yyyyyxxx hex
yyyy: Memory area involved.
xxxx: Difference between the checksum at POWER ON and the current checksum.
Remedy: - check whether the permissible ambient temperature for the component is maintained.
- replace the Sensor Module.

232805 Encoder 2: EPROM checksum error
Message %1
value:
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Internal parameter data is corrupted.
Fault value (r0949, interpret hexadecimal):
01: EEPROM access error.
02: Too many blocks in the EEPROM.
Remedy: Replace the module.

232806 Encoder 2: Initialization error
Message %1
value:
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The encoder was not successfully initialized.
Fault value (r0949, interpret hexadecimal):
1, 2, 3: Encoder initialization with the motor rotating.
Remedy: Acknowledge the fault.
232811 <location>Encoder 2: Encoder serial number changed

Message value:
Drive object: All objects
Reaction:
Acknowledge: IMMEDIATELY
Cause: The encoder serial number has changed. The change is only checked for encoders with serial number (e.g. EnDat encoders).
Note: The encoder was replaced.
Note: With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
When the encoder is adjusted (p2507 = 3), the serial number is checked for changes and if required, the adjustment is reset (p2507 = 1).
Remedy: Mechanically adjust the encoder. Accept the new serial number with p0440 = 1.

232812 <location>Encoder 2: Requested cycle or RX-/TX timing not supported

Message value: %1
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A cycle requested from the Control Unit or RX/TX timing is not supported.
Alarm value (r2124, interpret decimal):
0: Application cycle is not supported.
1: DQ cycle is not supported.
2: Distance between RX and TX instants in time too low.
3: TX instant in time too early.
Remedy:

232813 <location>Encoder 2: Hardware logic unit failed

Message value:
Drive object: SERVO, VECTOR
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Bit 0: ALU watchdog has responded.
Bit 1: ALU has detected a sign-of-life error.
Remedy: Replace encoder

232820 <location>Encoder 2 DRIVE-CLiQ: Telegram error

Message value:
Drive object: All objects
Reaction:
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.

Fault value (r0949, interpret hexadecimal):

- **yyxx hex:** yy = component number, xx = fault cause
- **xx = 01 hex:** CRC error.
- **xx = 02 hex:** Telegram is shorter than specified in the length byte or in the receive list.
- **xx = 03 hex:** Telegram is longer than specified in the length byte or in the receive list.
- **xx = 04 hex:** The length of the receive telegram does not match the receive list.
- **xx = 05 hex:** The type of the receive telegram does not match the receive list.
- **xx = 06 hex:** The address of the component in the telegram and in the receive list do not match.
- **xx = 07 hex:** A SYNC telegram is expected - but the receive telegram is not a SYNC telegram.
- **xx = 08 hex:** No SYNC telegram is expected - but the receive telegram is one.
- **xx = 09 hex:** The error bit in the receive telegram is set.
- **xx = 10 hex:** The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

232835 <location>Encoder 2 DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2

Drive object: All objects

Reaction:
- A_INFEED: OFF2
- SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
- VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. The nodes do not send and receive in synchronism.

Fault value (r0949, interpret hexadecimal):

- **yyxx hex:** yy = component number, xx = fault cause
- **xx = 21 hex:** The cyclic telegram has not been received.
- **xx = 22 hex:** Timeout in the telegram receive list.
- **xx = 40 hex:** Timeout in the telegram send list.

Remedy:
- carry out a POWER ON.
- replace the component involved.

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

232836 <location>Encoder 2 DRIVE-CLiQ: Send error for DRIVE-CLiQ data

Message value: Component number: %1, fault cause: %2

Drive object: All objects

Reaction:
- A_INFEED: OFF2
- SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
- VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY
Cause:
A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.

Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.

Remedy:
Carry out a POWER ON.

232837 <location> Encoder 2 DRIVE-CLiQ: Component fault

Message value:
Component number: %1, fault cause: %2

Drive object:
All objects

Reaction:
A_INFEED: OFF2
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge:
IMMEDIATELY

Cause:
Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded.

Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause
xx = 20 hex:
Error in the telegram header.
xx = 32 hex:
Receive error: The telegram buffer memory contains an error.
xx = 33 hex:
Send error: The telegram buffer memory contains an error.
xx = 43 hex:
Send error: The telegram buffer memory contains an error.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

232845 <location> Encoder 2 DRIVE-CLiQ: Cyclic data transfer error

Message value:
Component number: %1, fault cause: %2

Drive object:
All objects

Reaction:
A_INFEED: OFF2
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge:
IMMEDIATELY

Cause:
A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.

Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.

Remedy:
Carry out a POWER ON.

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

232850 <location> Encoder 2: Encoder evaluation, internal software error

Message value:
%1

Drive object:
All objects

Reaction:
A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge:
POWER ON
Cause: Internal software error in the Sensor Module of encoder 2.
Fault value (r0949, interpret decimal):
1: Background time slice is blocked.
2: Checksum over the code memory is not OK.
10000: OEM memory of the EnDat encoder contains data that cannot be interpreted.
11000 - 11499: Descriptive data from EEPROM incorrect.
11500 - 11899: Calibration data from EEPROM incorrect.
11900 - 11999: Configuration data from EEPROM incorrect.
16000: DRIVE-CLiQ encoder initialization application error.
16001: DRIVE-CLiQ encoder initialization ALU error.
16002: DRIVE-CLiQ encoder HISI / SISI initialization error.
16003: DRIVE-CLiQ encoder safety initialization error.
16004: DRIVE-CLiQ encoder internal system error.

Remedy:
- replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.

232851 <location>Encoder 2 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledgment: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.

Remedy:
Upgrade the firmware of the component involved.

232860 <location>Encoder 2 DRIVE-CLiQ (CU): Telegram error
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledgment: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 11 hex = 17 dec:
CRC error and the receive telegram is too early.
xx = 01 hex = 01 dec:
Checksum error (CRC error).
xx = 12 hex = 18 dec:
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 02 hex = 02 dec:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 13 hex = 19 dec:
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 03 hex = 03 dec:
Telegram is longer than specified in the length byte or in the receive list.
xx = 14 hex = 20 dec:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 04 hex = 04 dec:
The length of the receive telegram does not match the receive list.
xx = 15 hex = 21 dec:
The type of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 05 hex = 05 dec:
The type of the receive telegram does not match the receive list.
xx = 16 hex = 22 dec:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
xx = 06 hex = 06 dec:
The address of the power unit in the telegram and in the receive list do not match.
xx = 19 hex = 25 dec:
The error bit in the receive telegram is set and the receive telegram is too early.
xx = 09 hex = 09 dec:
The error bit in the receive telegram is set.
xx = 10 hex = 16 dec:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

232885 <location>Encoder 2 DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
 SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
 VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 1A hex = 26 dec:
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
xx = 21 hex = 33 dec:
The cyclic telegram has not been received.
xx = 22 hex = 34 dec:
Timeout in the telegram receive list.
xx = 40 hex = 64 dec:
Timeout in the telegram send list.
xx = 62 hex = 98 dec:
Error at the transition to cyclic operation.
Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

232886 <location>Encoder 2 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
 SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
 VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = component number, xx = fault cause
 xx = 41 hex:
 Telegram type does not match send list.
Remedy: Carry out a POWER ON.

232887 <location>Encoder 2 DRIVE-CLiQ (CU): Component fault
Message value:
 Component number: %1, fault cause: %2
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
 SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
 VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 2). Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = component number, xx = fault cause
 xx = 20 hex:
 Error in the telegram header.
 xx = 23 hex:
 Receive error: The telegram buffer memory contains an error.
 xx = 42 hex:
 Send error: The telegram buffer memory contains an error.
 xx = 43 hex:
 Send error: The telegram buffer memory contains an error.
 xx = 60 hex:
 Response received too late during runtime measurement.
 xx = 61 hex:
 Time taken to exchange characteristic data too long.
Remedy: - check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

232895 <location>Encoder 2 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value:
 Component number: %1, fault cause: %2
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
 SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
 VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 2) involved to the Control Unit.
Fault value (r0949, interpret hexadecimal):
 yyxx hex: yy = component number, xx = fault cause
 xx = 0B hex:
 Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)
232896 <location>Encoder 2 DRIVE-CLiQ (CU): Inconsistent component properties
Message value: Component number: %1
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: The properties of the DRIVE-CLiQ component (Sensor Module for encoder 2), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):
Component number.
Remedy: - when replacing cables, only use cables with the same length as the original cables.
- when replacing components, use the same components and firmware releases.
- carry out a POWER ON.

232899 <location>Encoder 2: Unknown fault
Message value: New message: %1
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A fault occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
Fault number.
Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy: - replace the firmware on the Sensor Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).

232902 <location>Encoder 2: SPI-BUS error occurred
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Error when operating the internal SPI bus.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: - replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.

232903 <location>Encoder 2: I2C-BUS error occurred
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Error when operating the internal I2C bus.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy:
- replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.

232905 <location>Encoder 2: Parameterization error
Message value: Parameter: %1, supplementary information: %2
Drive object: All objects
Reaction:
A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

Acknowledge: IMMEDIATELY

Cause:
A parameter of encoder 2 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:
- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).
Fault value (r0949, interpret decimal):

Supplementary information = 0:
No information available.
Supplementary information = 1:
The component does not support HTL level (p0405.1 = 0) combined with track monitoring A/B <> -A/B (p0405.2 = 1).
Supplementary information = 2:
A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please start a new encoder identification.
Supplementary information = 3:
A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please select a listed encoder in p0400 with a code number < 10000.
Supplementary information = 4:
This component does not support SSI encoders (p0404.9 = 1) without track A/B.
Supplementary information = 5:
For the SQW encoder, the value in p4686 is greater than that in p0425.
Supplementary information = 6:
The DRIVE-CLIQ encoder cannot be used with this firmware version.

Remedy:
- check whether the connected encoder type matches the encoder that has been parameterized.
- correct the parameter specified by the fault value (r0949) and p0187.
- re parameter number 314: Check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).

232915 <location>Encoder 2: Configuration error
Message value: %1
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE

Cause:
The configuration for encoder 2 is incorrect.
Fault value (r0949, interpret decimal):

1: Re-parameterization between fault/alarm is not permissible.

Remedy: No re-parameterization between fault/alarm.

232916 <location>Encoder 2: Parameterization error
Message value: Parameter: %1, supplementary information: %2
Drive object: SERVO, VECTOR
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledgment: IMMEDIATELY
Cause: A parameter of encoder 2 was detected as being incorrect. It is possible that the parameterized encoder type does not match the connected encoder. The parameter involved can be determined as follows:
- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).

Fault value (r0949, interpret decimal):
Parameter number
The fault is only output for encoders with r404[0].10 = 1. This corresponds to A32905 for encoders with r404[0].10 = 0.

Remedy:
- check whether the connected encoder type matches the encoder that has been parameterized.
- correct the parameter specified by the fault value (r0949) and p0187.

232920 <location>Encoder 2: Temperature sensor fault

Message value:
Fault cause: %1, channel number: %2

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
Low word low byte: Cause:
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Additional values:
Only for internal Siemens troubleshooting.
Low word high byte: Channel number.

Remedy:
- check that the encoder cable is the correct type and is correctly connected.
- check the temperature sensor selection in p0600 to p0603.
- replace the Sensor Module (hardware defect or incorrect calibration data).

232999 <location>Encoder 2: Unknown alarm

Message value:
New message: %1

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: A alarm has occurred on the Sensor Module for encoder 2 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Alarm value (r2124, interpret decimal):
Alarm number.
Note:
If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.

Remedy:
- replace the firmware on the Sensor Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).

233100 <location>Encoder 3: Zero mark distance error

Message value:
%1

Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The measured zero mark distance does not correspond to the parameterized zero mark distance. For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.

The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).

Fault value (r0949, interpret decimal):
Last measured zero mark distance in increments (4 increments = 1 encoder pulse).

The sign designates the direction of motion when detecting the zero mark distance.

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0424, p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- replace the encoder or encoder cable.

233101 <location>Encoder 3: Zero marked failed
Message value: %1
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT

Cause: The 1.5 x parameterized zero mark distance was exceeded.

The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).

Fault value (r0949, interpret decimal):
Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).
- when p0437.1 is active, check p4686.
- replace the encoder or encoder cable.

233103 <location>Encoder 3: Amplitude error, track R
Message value: R track: %1
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: The amplitude of the reference track signal (track R) does not lie within the tolerance bandwidth for encoder 3.

The fault can be initiated when the unipolar voltage range is exceeded or the differential amplitude is initiated.

Fault value (r0949, interpret hexadecimal):
xxxx hex:
xxxx = Signal level, track R (16 bits with sign).

The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
The response threshold is < 1700 mV and > 3300 mV.
The nominal differential signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold is > 750 mV.
A signal level of 500 mV peak value corresponds to the numerical value of 5333 hex = 21299 dec.

Note:
The analog value of the amplitude error is not measured at the same time with the hardware fault output by the sensor module.
The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.30 = 1, r0459.31 = 1).
- monitoring active (p0437.30 = 1, p0437.31 = 1).

Remedy:
- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment may not be sufficient for the speed range.
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts.
- check whether the zero mark is connected and the signal cables RP and RN connected correctly.
- replace the encoder cable.
- if the coding disk is soiled or the lighting worn, replace the encoder.

233110 <location>Encoder 3: Serial communications error

Message value: Fault cause: %1 bin

Drive object: All objects

Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: PULSE INHIBIT

Cause: Serial communication protocol transfer error between the encoder and evaluation module.
Fault value (r0949, interpret binary):
Bit 0: Alarm bit in the position protocol.
Bit 1: Incorrect quiescent level on the data line.
Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
Bit 5: Internal error in the serial driver: An illegal mode command was requested.
Bit 6: Timeout when cyclically reading.
Bit 7: Protocol is too long (e.g. > 64 bits).
Bit 9: Receive buffer overflow.
Bit 10: Frame error when reading twice.
Bit 11: Parity error.
Bit 12: Data line signal level error during the monoflop time.
Bit 13: Data line incorrect.

Remedy:
- encoder defective. F31111 may provide additional details.
- Incorrect encoder type / replace the encoder or encoder cable.
- Incorrect encoder type / replace the encoder or encoder cable.
- Incorrect encoder type / replace the encoder or encoder cable.
- EMC / connect the cable shield, replace the encoder or encoder cable.
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
- EMC / connect the cable shield, replace the encoder or encoder cable, replace the Sensor Module.
- Update the firmware for the Sensor Module.
- Check the parameterization (p0429.2).
- Check the parameterization (p0429.2, p0449).
Re fault value, bit 11 = 1:
- Check the parameterization (p0436).
Re fault value, bit 12 = 1:
- Check the parameterization (p0429.6).
Re fault value, bit 13 = 1:
- Check the data line.

233111 <location>Encoder 3: Absolute encoder EnDat, internal fault/error

Message value:
Fault cause: %1 bin

Drive object:
All objects

Reaction:
A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge:
PULSE INHIBIT

Cause:
The EnDat encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Bit 0: Lighting system failed.
Bit 1: Signal amplitude too low.
Bit 2: Position value incorrect.
Bit 3: Encoder power supply overvoltage condition.
Bit 4: Encoder power supply undervoltage condition.
Bit 5: Encoder power supply overcurrent condition.
Bit 6: The battery must be changed.

Remedy:
Re fault value, bit 0 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 1 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 2 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 3 = 1:
5 V power supply voltage fault.
When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
When a motor encoder with a direct DRIVE-CLiQ connection is used: Replace the motor.
Re fault value, bit 4 = 1:
5 V power supply voltage fault.
When using an SMC: Check the plug-in cable between the encoder and SMC or replace the SMC.
When using a motor with DRIVE-CLiQ: Replace the motor.
Re fault value, bit 5 = 1:
Encoder is defective. Replace the encoder, where the motor encoder has a direct DRIVE-CLiQ socket: Replace the motor.
Re fault value, bit 6 = 1:
The battery must be changed (only for encoders with battery back-up).

233112 <location>Encoder 3: Error bit set in the serial protocol

Message value:
%1

Drive object:
All objects

Reaction:
A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge:
PULSE INHIBIT

Cause:
The encoder sends a set error bit via the serial protocol.
Fault value (r0949, interpret binary):
Bit 0: Fault bit in the position protocol.

Remedy:
For fault value, bit 0 = 1:
In the case of an EnDat encoder, F31111 may provide further details.
233115 <location>Encoder 3: Amplitude error track A/B fault (A^2 + B^2)

Message

A track: %1, B-track: %2

value:

Drive object: All objects

Reaction:

A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge:

PULSE INHIBIT

Cause:

The amplitude (root of A^2 + B^2) for encoder 3 exceeds the permissible tolerance.
Fault value (r0949, interpret hexadecimal):

yyyyyyyy hex:

yyyy = Signal level, track B (16 bits with sign).
xxxx = Signal level, track A (16 bits with sign).

The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response thresholds are < 230 mV (observe the frequency response of the encoder) and > 750 mV.
A signal level of 500 mV peak value corresponds to the numerical value of 5333 hex = 21299 dec.
Note for sensors modules for resolvers (e. g. SMC10):
The nominal signal level is at 2900 mV (2.0 Vrms). The response thresholds are < 1070 mV and > 3592 mV.
A signal level of 2900 mV peak value corresponds to the numerical value of 6666 hex = 26214 dec.

Note:

The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.

Remedy:

- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check the Sensor Module (e. g. contacts).
- with measuring systems without their own bearing system: Adjust the scanning head and check the bearing system of the measuring wheel.
- for measuring systems with their own bearing system: Ensure that the encoder housing is not subject to any axial force.

233116 <location>Encoder 3: Amplitude error track A + B

Message

Amplitude: %1, Angle: %2

value:

Drive object: All objects

Reaction:

A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge:

IMMEDIATELY

Cause:

The amplitude of the rectified encoder signals A and B and the amplitude from the roots of A^2 + B^2 for encoder 3 are not within the tolerance bandwidth.
Fault value (r0949, interpret hexadecimal):

yyyyyyyy hex:

yyyy = Signal level, track B (16 bits with sign).
xxxx = Signal level, track A (16 bits with sign).

The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response thresholds are < 176 mV (observe the frequency response of the encoder) and > 955 mV.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
Note:

The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.

Remedy:

- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check the Sensor Module (e. g. contacts).
233117 <location>Encoder 3: Inversion error signals A and B and R
Message value:
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: For a square-wave signal encoder (TTL, bipolar, double ended) the A* and B* and R* signals are not inverted with respect to signals A and B and R.
Note: For CU310, CUA32, D410, SMC30 (only Order No. 6SL3055-0AA00-5CA0 and 6SL3055-0AA00-5CA1), the following applies:
A squarewave encoder without track R is used and the track monitoring (p0405.2 = 1) is activated.
Remedy: - check the setting of p0405: p0405.2 = 1 is only possible if the encoder is connected at X520.
 - check the encoder/cable: Does the encoder supply TTL signals and the associated inverted signals?
Note: For a squarewave encoder without track R, the following jumpers must be set at the encoder connection:
 - pin 10 (reference signal R) <---> pin 7 (encoder power supply, ground)
 - pin 11 (reference signal R inverted) <---> pin 4 (encoder power supply)

233118 <location>Encoder 3: Speed difference outside the tolerance range
Message value:
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: For an HTL/TTL encoder, the speed difference has exceeded the value in p0492 over several sampling cycles.
The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.
Fault value (r0949, interpret decimal):
 Only for internal Siemens troubleshooting.
See also: p0492
Remedy: - check the tachometer feeder cable for interruptions.
 - check the grounding of the tachometer shielding.
 - if required, increase the maximum speed difference per sampling cycle (p0492).

233120 <location>Encoder 3: Power supply voltage fault
Message value:
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: Encoder 3 power supply voltage fault.
Note: If the encoder cables 6FX2002-2EQ00-.... and 6FX2002-2CH00-.... are interchanged, this can result in the encoder being destroyed because the pins of the operating voltage are reversed.
Fault value (r0949, interpret binary):
 Bit 0: Undervoltage condition on the sense line.
 Bit 1: Overcurrent condition for the encoder power supply.
Remedy: For fault value, bit 0 = 1:
- correct encoder cable connected?
- check the plug connections of the encoder cable.
- SMC30: Check the parameterization (p0404.22).
For fault value, bit 1 = 1:
- correct encoder cable connected?
- replace the encoder or encoder cable.

233121 <location>Encoder 3: Coarse position error
Message value: -
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (NONE, OFF2, OFF3)
VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: For the actual value sensing, an error was detected on the module. As a result of this error, it must be
assumed that the actual value sensing supplies an incorrect coarse position.
Remedy: Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.

233122 <location>Encoder 3: Internal power supply voltage fault
Message value: -
Drive object: SERVO, VECTOR
Reaction: NONE (ENCODER, IASC/DCBRAKE)
Acknowledge: IMMEDIATELY
Cause: Fault in internal reference voltage of ASICs for encoder 3.
Fault value (r0949, interpret decimal):
1: Reference voltage error.
2: Internal undervoltage.
3: Internal overvoltage.
Remedy: Replace the motor with DRIVE-CLiQ or the appropriate Sensor Module.

233123 <location>Encoder 3: Signal level A/B unipolar outside tolerance
Message value: Fault cause: %1 bin
Drive object: All objects
Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The unipolar level (AP/AN or BP/BN) for encoder 3 is outside the permissible tolerance.
Fault value (r0949, interpret binary):
Bit 0 = 1: Either AP or AN outside the tolerance.
Bit 16 = 1: Either BP or BN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
The response thresholds are < 1700 mV and > 3300 mV.
Note: The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (r0459.31 = 1).
- Monitoring active (p0437.31 = 1).
Remedy: - make sure that the encoder cables and shielding are installed in an EMC-compliant manner.
- check the plug connections and contacts.
- check the short-circuit of a signal cable with mass or the operating voltage.
- replace the encoder cable.
233125 <location>Encoder 3: Amplitude error track A/B overcontrolled

Message value: A track: %1, B-track: %2

Drive object: All objects

Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT

Cause: The amplitude of track A or B for encoder 3 exceeds the permissible tolerance band.

Fault value (r0949, interpret hexadecimal):

| yyyy | Signal level, track B (16 bits with sign). |
| xxxx | Signal level, track A (16 bits with sign). |

The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold is > 750 mV. This fault also occurs if the A/D converter is overcontrolled.
A signal level of 500 mV peak value corresponds to the numerical value of 5333 hex = 21299 dec.
Note for sensors modules for resolvers (e. g. SMC10):
The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is > 3582 mV.
A signal level of 2900 mV peak value corresponds to the numerical value of 6666 hex = 26214 dec.
Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- replace the encoder or encoder cable.

233126 <location>Encoder 3: Amplitude AB too high

Message value: Amplitude: %1, Angle: %2

Drive object: All objects

Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT

Cause: The amplitude (root of A^2 + B^2 or |A| + |B|) for encoder 3 exceeds the permissible tolerance.

Fault value (r0949, interpret hexadecimal):

| yyyy | Angle |
| xxxx | Amplitude, i.e. root from A^2 + B^2 (16 bits without sign) |

The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %).
The response threshold for (|A| + |B|) is > 1120 mV or the root of (A^2 + B^2) > 955 mV.
A signal level of 500 mV peak value corresponds to the numerical value of 299A hex = 10650 dec.
The angle 0 ... FFFF hex corresponds to 0 ... 360 degrees of the fine position. Zero degrees is at the negative zero crossover of track B.
Note: The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- replace the encoder or encoder cable.

233129 <location>Encoder 3: Position difference, hall sensor/track C/D and A/B too large

Message value: %1

Drive object: All objects

Reaction: A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: PULSE INHIBIT
Cause: The error for track C/D is greater than +/-15 ° mechanical or +/-60 ° electrical or the error for the Hall signals is greater than +/-60 ° electrical.

One period of track C/D corresponds to 360 ° mechanical.
One period of the Hall signal corresponds to 360 ° electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.

After the fine synchronization using one reference mark or 2 reference marks for distance-coded encoders, this fault is no longer initiated, but instead, Alarm A33429.

Fault value (r0949, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1 °).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1 °).

Remedy:
- track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.

233130
<location>Encoder 3: Zero mark and position error from the coarse synchronization

Message value:
Angular deviation, electrical: %1, angle, mechanical: %2

Drive object: All objects

Reaction:
A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT

Cause:
After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.

When initializing via track C/D (p0404) then it is checked whether the zero mark occurs in an angular range of +/-18 ° mechanical.

When initializing via Hall sensors (p0404) or pole position identification (p1982) it is checked whether the zero mark occurs in an angular range of +/-60 ° electrical.

Fault value (r0949, interpret hexadecimal):
yyyyyyyy hex
yyyy: Determined mechanical zero mark position (can only be used for track C/D).
xxxx: Deviation of the zero mark from the expected position as electrical angle.
Normalization: 32768 dec = 180 °

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- if the Hall sensor is used as an equivalent for track C/D, check the connection.
- check the connection of track C or D.
- replace the encoder or encoder cable.

233131
<location>Encoder 3: Deviation, position incremental/absolute too large

Message value:
%1

Drive object: All objects

Reaction:
A_INFEED: NONE
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

Acknowledge: PULSE INHIBIT

Cause:
Absolute encoder:
When cyclically reading the absolute position, an excessively high difference to the incremental position was detected. The absolute position that was read is rejected.

Limit value for the deviation:
- EnDat encoder: Is supplied from the encoder and is a minimum of 2 quadrants (e.g. EQI 1325 > 2 quadrants, EGN 1325 > 50 quadrants).
- other encoders: 15 pulses = 60 quadrants.
Incremental encoder:
When the zero pulse is passed, a deviation in the incremental position was detected.
For equidistant zero marks, the following applies:
- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.
For distance-coded zero marks, the following applies:
- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.
Fault value (r0949, interpret decimal):
Deviation in quadrants (1 pulse = 4 quadrants).

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check whether the coding disk is dirty or there are strong ambient magnetic fields.
- adapt the parameter for the distance between zero marks (p0425).
- if message output above speed threshold, reduce filter time if necessary (p0438).

233135 <location>Encoder 3: Fault when determining the position

Message value:
Fault cause: %1 bin

Drive object: SERVO, VECTOR
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT

Cause:
The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.
Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display)
Bit 1: F2 (safety status display)
Bit 2: Lighting (reserved)
Bit 3: Signal amplitude (reserved)
Bit 4: Position value (reserved)
Bit 5: Overvoltage (reserved)
Bit 6: Undervoltage (reserved)
Bit 7: Overcurrent (reserved)
Bit 8: Battery (reserved)
Bit 16: Lighting (→ F3x135, x = 1, 2, 3)
Bit 17: Signal amplitude (→ F3x135, x = 1, 2, 3)
Bit 18: Singleturn position 1 (→ F3x135, x = 1, 2, 3)
Bit 19: Overvoltage (→ F3x135, x = 1, 2, 3)
Bit 20: Undervoltage (→ F3x135, x = 1, 2, 3)
Bit 21: Overcurrent (→ F3x135, x = 1, 2, 3)
Bit 22: Temperature exceeded (→ F3x405, x = 1, 2, 3)
Bit 23: Singleturn position 2 (safety status display)
Bit 24: Singleturn system (→ F3x135, x = 1, 2, 3)
Bit 25: Singleturn power down (→ F3x135, x = 1, 2, 3)
Bit 26: Multiturn position 1 (→ F3x136, x = 1, 2, 3)
Bit 27: Multiturn position 2 (→ F3x136, x = 1, 2, 3)
Bit 28: Multiturn system (→ F3x136, x = 1, 2, 3)
Bit 29: Multiturn power down (→ F3x136, x = 1, 2, 3)
Bit 30: Multiturn overflow/underflow (→ F3x136, x = 1, 2, 3)
Bit 31: Multiturn battery (reserved)

Remedy:
Replace DRIVE-CLiQ encoder.

233136 <location>Encoder 3: Error when determining multiturn information

Message value:
Fault cause: %1 bin

Drive object: SERVO, VECTOR
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder supplies status information via bits in an internal status/fault word. Some of these bits cause this fault to be triggered. Other bits are status displays. The status/fault word is displayed in the fault value.

Fault value (r0949, interpret binary):
Bit 0: F1 (safety status display)
Bit 1: F2 (safety status display)
Bit 2: Lighting (reserved)
Bit 3: Signal amplitude (reserved)
Bit 4: Position value (reserved)
Bit 5: Overvoltage (reserved)
Bit 6: Undervoltage (reserved)
Bit 7: Overcurrent (reserved)
Bit 8: Battery (reserved)
Bit 16: Lighting (→ F3x135, x = 1, 2, 3)
Bit 17: Signal amplitude (→ F3x135, x = 1, 2, 3)
Bit 18: Singleturn position 1 (→ F3x135, x = 1, 2, 3)
Bit 19: Overvoltage (→ F3x135, x = 1, 2, 3)
Bit 20: Undervoltage (→ F3x135, x = 1, 2, 3)
Bit 21: Overcurrent (→ F3x135, x = 1, 2, 3)
Bit 22: Temperature exceeded (→ F3x405, x = 1, 2, 3)
Bit 23: Singleturn position 2 (safety status display)
Bit 24: Singleturn system (→ F3x135, x = 1, 2, 3)
Bit 25: Singleturn power down (→ F3x135, x = 1, 2, 3)
Bit 26: Multiturn position 1 (→ F3x136, x = 1, 2, 3)
Bit 27: Multiturn position 2 (→ F3x136, x = 1, 2, 3)
Bit 28: Multiturn system (→ F3x136, x = 1, 2, 3)
Bit 29: Multiturn power down (→ F3x136, x = 1, 2, 3)
Bit 30: Multiturn overflow/underflow (→ F3x136, x = 1, 2, 3)
Bit 31: Multiturn battery (reserved)

Remedy: Replace DRIVE-CLiQ encoder.

233137 <location>Encoder 3: Internal error when determining the position
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary):
Only for internal SIEMENS use.
Remedy: Replace encoder

233138 <location>Encoder 3: Internal error when determining multiturn information
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set. Fault value (r0949, interpret binary):
Only for internal SIEMENS use.
Remedy: Replace encoder
233150 <location>Encoder 3: Initialization error
Message %1
value:
Drive object: All objects
Reaction:
 A_INFEED: NONE
 SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
 VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause:
 Encoder functionality selected in p0404 is not operating correctly.
 Fault value (r0949, interpret hexadecimal):
 The fault value is a bit field. Every set bit indicates functionality that is faulted.
 The bit assignment corresponds to that of p0404 (e.g. bit 5 set: Error track C/D).
Remedy:
 - Check that p0404 is correctly set.
 - check the encoder type used (incremental/absolute value) and for SMCxx, the encoder cable.
 - if relevant, note additional fault/error messages that describe the fault in detail.

233151 <location>Encoder 3: Encoder speed for initialization AB too high
Message %1
value:
Drive object: All objects
Reaction:
 A_INFEED: NONE
 SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
 VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause:
 The encoder speed is too high during while initializing the sensor.
Remedy:
 Reduce the speed of the encoder accordingly during initialization.
 If necessary, deactivate monitoring (p0437.29).
 See also: p0437 (Sensor Module configuration extended)

233400 <location>Encoder 3: Alarm threshold zero mark distance error
Message %1
value:
Drive object: All objects
Reaction:
 NONE
Acknowledge: NONE
Cause:
 The measured zero mark distance does not correspond to the parameterized zero mark distance.
 For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs.
 This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.
 The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).
 Alarm value (r2124, interpret decimal):
 Last measured zero mark distance in increments (4 increments = 1 encoder pulse).
 The sign designates the direction of motion when detecting the zero mark distance.
Remedy:
 - check that the encoder cables are routed in compliance with EMC.
 - check the plug connections.
 - check the encoder type (encoder with equidistant zero marks).
 - adapt the parameter for the distance between zero marks (p0424, p0425).
 - replace the encoder or encoder cable.

233401 <location>Encoder 3: Alarm threshold zero marked failed
Message %1
value:
Drive object: All objects
Reaction:
 NONE
Acknowledge: NONE
Cause: The 1.5 x parameterized zero mark distance was exceeded.

The zero mark distance for the zero mark monitoring is set in p0425 (rotary encoder) or p0424 (linear encoder).

Alarm value (r2124, interpret decimal):
Number of increments after POWER ON or since the last zero mark that was detected (4 increments = 1 encoder pulse).

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- check the encoder type (encoder with equidistant zero marks).
- adapt the parameter for the distance between zero marks (p0425).
- replace the encoder or encoder cable.

233405

<location>Encoder 3: Temperature in the encoder evaluation inadmissible

Message value: %1

Drive object: All objects

Reaction:
A, INFEED: NONE (OFF1, OFF2)
SERVO: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: ENCODER (IASC/DCBRAKE, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: The encoder evaluation for a motor with DRIVE-CLiQ has detected an inadmissible temperature.
The fault threshold is 125 °C.

Alarm value (r2124, interpret decimal):
Measured board/module temperature in 0.1 °C.

Remedy: Reduce the ambient temperature for the DRIVE-CLiQ connection of the motor.

233410

<location>Encoder 3: Serial communications

Message value: Fault cause: %1 bin

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: Serial communication protocol transfer error between the encoder and evaluation module.

Alarm value (r2124, interpret binary):
Bit 0: Alarm bit in the position protocol.
Bit 1: Incorrect quiescent level on the data line.
Bit 2: Encoder does not respond (does not supply a start bit within 50 ms).
Bit 3: CRC error: The checksum in the protocol from the encoder does not match the data.
Bit 4: Encoder acknowledgement error: The encoder incorrectly understood the task (request) or cannot execute it.
Bit 5: Internal error in the serial driver; An illegal mode command was requested.
Bit 6: Timeout when cyclically reading.
Bit 8: Protocol is too long (e.g. > 64 bits).
Bit 9: Receive buffer overflow.
Bit 10: Frame error when reading twice.
Bit 11: Parity error.
Bit 12: Data line signal level error during the monoflop time.

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder.

233411

<location>Encoder 3: EnDat encoder signals alarms

Message value: Fault cause: %1 bin

Drive object: All objects

Reaction: NONE

Acknowledge: NONE
Cause: The error word of the EnDat encoder has alarm bits that have been set.
Alarm value (r2124, interpret binary):
Bit 0: Frequency exceeded (speed too high).
Bit 1: Temperature exceeded.
Bit 2: Control reserve, lighting system exceeded.
Bit 3: Battery discharged.
Bit 4: Reference point passed.

Remedy: Replace encoder.

233412 Encoder 3: Error bit set in the serial protocol

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The encoder sends a set error bit via the serial protocol.
Alarm value (r2124, interpret binary):
Bit 0: Fault bit in the position protocol.
Bit 1: Alarm bit in the position protocol.

Remedy:
- carry out a POWER ON (power off/on) for all components.
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder.

233414 Encoder 3: Amplitude error track C or D (C^2 + D^2)

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude (C^2 + D^2) of track C or D of the encoder or from the Hall signals, is not within the tolerance bandwidth.
Alarm value (r2124, interpret hexadecimal):
yyyyyy hex:
yyy = Signal level, track D (16 bits with sign).
xxxx = Signal level, track C (16 bits with sign).
The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV -25/+20 %). The response thresholds are < 230 mV (observe the frequency response of the encoder) and > 750 mV.
A signal level of 500 mV peak value corresponds to the numerical value 5333 hex = 21299 dec.
Note: If the amplitude is not within the tolerance bandwidth, then it cannot be used to initialize the start position.

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check the Sensor Module (e.g. contacts).
- check the Hall sensor box

233415 Encoder 3: Amplitude error track A/B alarm (A^2 + B^2)

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The amplitude (root of $A^2 + B^2$) for encoder 3 exceeds the permissible tolerance.

Alarm value (r2124, interpret hexadecimal):

$\text{yyyy}xxxx$ hex:

$\text{yyyy} =$ Angle

$\text{xxxx} =$ Amplitude, i.e. root from $A^2 + B^2$ (16 bits without sign)

The nominal signal level of the encoder must lie in the range 375 mV to 600 mV (500 mV \(-25/+20\) %). The response threshold is \(< 300\) mV (observe the frequency response of the encoder).

A signal level of 500 mV peak value corresponds to the numerical value 299A hex = 10650 dec.

The angle 0 … FFFF hex corresponds to 0 … 360 degrees of the fine position. Zero degrees is at the negative zero crossover of track B.

Note for sensors modules for resolvers (e.g. SMC10):

The nominal signal level is at 2900 mV (2.0 Vrms). The response threshold is \(< 1414\) mV (1.0 Vrms). A signal level of 2900 mV peak value corresponds to the numerical value of 3333 hex = 13107 dec.

Note:

The analog values of the amplitude error are not measured at the same time with the hardware fault output by the sensor module.

Remedy:

- check the speed range, frequency characteristic (amplitude characteristic) of the measuring equipment is not sufficient for the speed range.

- check that the encoder cables and shielding are routed in compliance with EMC.

- check the plug connections.

- replace the encoder or encoder cable.

- check the Sensor Module (e.g. contacts).

- if the coding disk is soiled or the lighting worn, replace the encoder.

233418 <location>Encoder 3: Speed difference per sampling rate exceeded

Message value: \%1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause:

For an HTL/TTL encoder, the speed difference between two sampling cycles has exceeded the value in p0492.

The change to the averaged speed actual value - if applicable - is monitored in the current controller sampling time.

Alarm value (r2124, interpret decimal):

For internal Siemens troubleshooting.

See also: p0492

Remedy:

- check the tachometer feeder cable for interruptions.

- check the grounding of the tachometer shielding.

- if required, increase the setting of p0492.

233419 <location>Encoder 3: Track A or B outside the tolerance range

Message value: \%1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause:

The amplitude, phase or offset correction for track A or B is at the limit.

Amplitude error correction: Amplitude B / Amplitude A = 0.78 ... 1.27

Phase: \(<84\) degrees or \(>96\) degrees

SMC20: Offset correction: \(+/-140\) mV

SMC10: Offset correction: \(+/-650\) mV

Alarm value (r2124, interpret hexadecimal):

$\text{xxxx1} =$ Minimum of the offset correction, track B

$\text{xxxx2} =$ Maximum of the offset correction, track B

$\text{xx1x} =$ Minimum of the offset correction, track A

$\text{xx2x} =$ Maximum of the offset correction, track A

$\text{xx1xx} =$ Minimum of the amplitude correction, track B/A

$\text{xx2xx} =$ Maximum of the amplitude correction, track B/A
x1xxx: Minimum of the phase error correction
x2xxx: Maximum of the phase error correction
1xxxx: Minimum of the cubic correction
2xxxx: Maximum of the cubic correction

Remedy:
- check mechanical mounting tolerances for encoders without their own bearings (e.g. toothed-wheel encoders).
- check the plug connections (also the transition resistance).
- check the encoder signals.
- replace the encoder or encoder cable.

233421 <location>Encoder 3: Coarse position error

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
For the actual value sensing, an error was detected. As a result of this error, it must be assumed that the actual value sensing supplies an incorrect coarse position.
Alarm value (r2124, interpret decimal):
3: The absolute position of the serial protocol and track A/B differ by half an encoder pulse. The absolute position must have its zero position in the quadrants in which both tracks are negative. In the case of a fault, the position can be incorrect by one encoder pulse.

Remedy:
- for a standard encoder with cable, if required, contact the manufacturer.
- correct the assignment of the tracks to the position value that is serially transferred. To do this, the two tracks must be connected, inverted, at the Sensor Module (interchange A with A* and B with B*) or, for a programmable encoder, check the zero offset of the position.

233429 <location>Encoder 3: Position difference, hall sensor/track C/D and A/B too large

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause:
The error for track C/D is greater than +/-15 ° mechanical or +/-60 ° electrical or the error for the Hall signals is greater than +/-60 ° electrical.
One period of track C/D corresponds to 360 ° mechanical.
One period of the Hall signal corresponds to 360 ° electrical.
The monitoring responds if, for example, Hall sensors are connected as equivalent for the C/D tracks with the incorrect rotational sense or supply values that are not accurate enough.
Alarm value (r2124, interpret decimal):
For track C/D, the following applies:
Measured deviation as mechanical angle (16 bits with sign, 182 dec corresponds to 1 °).
For Hall signals, the following applies:
Measured deviation as electrical angle (16 bits with sign, 182 dec corresponds to 1 °).

Remedy:
- track C or D not connected.
- correct the direction of rotation of the Hall sensor possibly connected as equivalent for track C/D.
- check that the encoder cables are routed in compliance with EMC.
- check the adjustment of the Hall sensor.

233431 <location>Encoder 3: Deviation, position incremental/absolute too large

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: When the zero pulse is passed, a deviation in the incremental position was detected.

For equidistant zero marks, the following applies:
- The first zero mark passed supplies the reference point for all subsequent checks. The other zero marks must have n times the distance referred to the first zero mark.

For distance-coded zero marks, the following applies:
- the first zero mark pair supplies the reference point for all subsequent checks. The other zero mark pairs must have the expected distance to the first zero mark pair.

Alarm value (r2124, interpret decimal):
Deviation in quadrants (1 pulse = 4 quadrants).

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- remove any dirt from the coding disk or strong magnetic fields.

233432 <location>Encoder 3: Rotor position adaptation corrects deviation
Message value:
%1

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause:
For track A/B, pulses have been lost or too many have been counted. These pulses are presently being corrected.

Alarm value (r2124, interpret decimal): Last measured deviation of the zero mark distance in increments (4 increments = 1 encoder pulse). The sign designates the direction of motion when detecting the zero mark distance.

Remedy:
- check that the encoder cables are routed in compliance with EMC.
- check the plug connections.
- replace the encoder or encoder cable.
- check encoder limit frequency.
- adapt the parameter for the distance between zero marks (p0424, p0425).

233443 <location>Encoder 3: Signal level C/D unipolar outside tolerance
Message value:
Fault cause: %1 bin

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause:
The unipolar level (CP/CN or DP/DN) for encoder 3 is outside the permissible tolerance.

Alarm value (r2124, interpret binary):
Bit 0 = 1: Either CP or CN outside the tolerance.
Bit 16 = 1: Either DP or DN outside the tolerance.
The unipolar nominal signal level of the encoder must lie in the range 2500 mV +/- 500 mV.
The response thresholds are < 1700 mV and > 3300 mV.

Note:
The signal level is not evaluated unless the following conditions are satisfied:
- Sensor Module properties available (ro459.31 = 1).
- Monitoring active (p0437.31 = 1).

Remedy:
- check that the encoder cables and shielding are routed in compliance with EMC.
- check the plug connections and contacts.
- are the C/D tracks connected correctly (have the signal lines CP and CN or DP and DN been interchanged)?
- replace the encoder cable.

233500 <location>Encoder 3: Position tracking traversing range exceeded
Message value:

Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: For a configured linear axis without modulo correction, the drive/encoder has exceeded the maximum possible traversing range. The value should be read in p0412 and interpreted as the number of motor revolutions.
When p0411.0 = 1, the maximum traversing range for a configured linear axis is defined to be 64x (+/- 32x) the setting in p0421.
When p0411.3 = 1, the maximum traversing range for a configured linear axis is preset to the highest possible value and equals +/-p0412/2 (rounded to whole rotations). The highest possible value depends on the pulse number (p0408) and fine resolution (p0419).

Remedy: The fault should be resolved as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and the absolute encoder adjusted.

233501 <location>Encoder 3: Position tracking encoder position outside tolerance window
Message value: %1
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: When powered down, the drive/encoder was moved through a distance greater than was parameterized in the tolerance window. It is possible that there is no longer any reference between the mechanical system and encoder.
Fault value (r0949, decimal):
Deviation (difference) to the last encoder position in increments of the absolute value.
The sign designates the traversing direction.
Note: The deviation (difference) found is also displayed in r0477.
See also: p0413 (Measuring gear, position tracking tolerance window), r0477 (Measuring gear, position difference)
Remedy: Reset the position tracking as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and, if necessary, the absolute encoder adjusted (p2507).
See also: p0010, p2507

233502 <location>Encoder 3: Encoder with measuring gear, without valid signals
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The encoder with measuring gear no longer provides any valid signals.
Remedy: It must be ensured that all of the encoders, with mounted measuring gear, provide valid actual values in operation.

233503 <location>Encoder 3: Position tracking cannot be reset
Message value: -
Drive object: SERVO, VECTOR
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The position tracking for the measuring gear cannot be reset.
Remedy: The fault should be resolved as follows:
- select encoder commissioning (p0010 = 4).
- reset the position tracking as follows (p0411.2 = 1).
- de-select encoder commissioning (p0010 = 0).
The fault should then be acknowledged and the absolute encoder adjusted.

233700 <location>Encoder 3: Effectivity test does not supply the expected value
Message value: Fault cause: %1 bin
Drive object: SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Bit x = 1: Effectivity test x unsuccessful.
Remedy:

233800 <location>Encoder 3: Group signal
Message value: -
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: NONE
Cause: The motor encoder has detected at least one fault.
Remedy: Evaluates other current messages.

233801 <location>Encoder 3 DRIVE-CLiQ: Sign-of-life missing
Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex: The sign-of-life bit in the receive telegram is not set.
Remedy:
- check the electrical cabinet design and cable routing for EMC compliance
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

233802 <location>Encoder 3: Time slice overflow
Message value: %1
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Time slice overflow, encoder 3.
Fault value (r0949, interpret decimal):
9: Time slice overflow of the fast (current controller clock cycle) time slice.
10: Time slice overflow of the average time slice.
12: Time slice overflow of the slow time slice.
999: Timeout when waiting for SYNO, e.g. unexpected return to non-cyclic operation.
Remedy: Reduce the current controller frequency.

233804 <location>Encoder 3: Checksum error

Message value: %1

Drive object: All objects

Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: A checksum error has occurred when reading-out the program memory on the Sensor Module.
Fault value (r0949, interpret hexadecimal):
yyyyyyyy hex
yyyy: Memory area involved.
xxxx: Difference between the checksum at POWER ON and the current checksum.

Remedy:
- check whether the permissible ambient temperature for the component is maintained.
- replace the Sensor Module.

233805 <location>Encoder 3: EPROM checksum error

Message value: %1

Drive object: All objects

Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: Internal parameter data is corrupted.
Fault value (r0949, interpret hexadecimal):
01: EEPROM access error.
02: Too many blocks in the EEPROM.

Remedy: Replace the module.

233806 <location>Encoder 3: Initialization error

Message value: %1

Drive object: All objects

Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: PULSE INHIBIT

Cause: The encoder was not successfully initialized.
Fault value (r0949, interpret hexadecimal):
1, 2, 3: Encoder initialization with the motor rotating.

Remedy: Acknowledge the fault.

233811 <location>Encoder 3: Encoder serial number changed

Message value: -

Drive object: All objects

Reaction: A_INFEED: OFF2 (NONE)
SERVO: OFF1 (NONE, OFF2, OFF3)
VECTOR: OFF1 (NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY
Cause: The encoder serial number has changed. The change is only checked for encoders with serial number (e.g. EnDat encoders).
Cause: The encoder was replaced.

Note: With closed-loop position control, the serial number is accepted when starting the adjustment (p2507 = 2).
When the encoder is adjusted (p2507 = 3), the serial number is checked for changes and if required, the adjustment is reset (p2507 = 1).

Remedy: Mechanically adjust the encoder. Accept the new serial number with p0440 = 1.

233812 <location>Encoder 3: Requested cycle or RX-/TX timing not supported
Message value:
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: A cycle requested from the Control Unit or RX/TX timing is not supported.
Alarm value (r2124, interpret decimal):
0: Application cycle is not supported.
1: DQ cycle is not supported.
2: Distance between RX and TX instants in time too low.
3: TX instant in time too early.

Remedy:

233813 <location>Encoder 3: Hardware logic unit failed
Message value:
Drive object: SERVO, VECTOR
Reaction: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: PULSE INHIBIT

Cause: The DRIVE-CLiQ encoder fault word supplies fault bits that have been set.
Fault value (r0949, interpret binary):
Bit 0: ALU watchdog has responded.
Bit 1: ALU has detected a sign-of-life error.

Remedy: Replace encoder

233820 <location>Encoder 3 DRIVE-CLiQ: Telegram error
Message value:
Drive object: All objects
Reaction: A_INFEED: OFF2
SEVRO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 01 hex: CRC error.
xx = 02 hex: Telegram is shorter than specified in the length byte or in the receive list.
xx = 03 hex: Telegram is longer than specified in the length byte or in the receive list.
xx = 04 hex: The length of the receive telegram does not match the receive list.
xx = 05 hex: The type of the receive telegram does not match the receive list.
xx = 06 hex:
The address of the component in the telegram and in the receive list do not match.

xx = 07 hex:
A SYNC telegram is expected - but the receive telegram is not a SYNC telegram.

xx = 08 hex:
No SYNC telegram is expected - but the receive telegram is one.

xx = 09 hex:
The error bit in the receive telegram is set.

xx = 10 hex:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

233835 <location>Encoder 3 DRIVE-CLiQ: Cyclic data transfer error
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction:
A_INFEED: OFF2
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledgment: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 21 hex:
The cyclic telegram has not been received.
xx = 22 hex:
Timeout in the telegram receive list.
xx = 40 hex:
Timeout in the telegram send list.

Remedy:
- carry out a POWER ON.
- replace the component involved.

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

233836 <location>Encoder 3 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction:
A_INFEED: OFF2
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledgment: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.

Remedy:
Carry out a POWER ON.

233837 <location>Encoder 3 DRIVE-CLiQ: Component fault
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction:
A_INFEED: OFF2
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledgment: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded.

Fault value (r0949, interpret hexadecimal):

- \(yy \times xx \) hex: \(yy \) = component number, \(xx \) = fault cause
- \(xx \) = 20 hex: Error in the telegram header.
- \(xx \) = 23 hex:Receive error: The telegram buffer memory contains an error.
- \(xx \) = 42 hex: Send error: The telegram buffer memory contains an error.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

233845

<location>Encoder 3 DRIVE-CLiQ: Cyclic data transfer error

Message value: Component number: %1, fault cause: %2

Drive object: All objects

Reaction:
- A_INFEED: OFF2
- SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
- VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Control Unit to the encoder involved.

Fault value (r0949, interpret hexadecimal):

- \(yy \times xx \) hex: \(yy \) = component number, \(xx \) = fault cause
- \(xx \) = 0B hex: Synchronization error during alternating cyclic data transfer.

Remedy: Carry out a POWER ON.

See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

233850

<location>Encoder 3: Encoder evaluation, internal software error

Message value: %1

Drive object: All objects

Reaction:
- A_INFEED: OFF2 (NONE)
- SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
- VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: POWER ON

Cause: Internal software error in the Sensor Module of encoder 3.

Fault value (r0949, interpret decimal):

1: Background time slice is blocked.
2: Checksum over the code memory is not OK.
10000 - 11499: Descriptive data from EEPROM incorrect.
11500 - 11899: Calibration data from EEPROM incorrect.
11900 - 11999: Configuration data from EEPROM incorrect.
16000: DRIVE-CLiQ encoder initialization application error.
16001: DRIVE-CLiQ encoder initialization ALU error.
16002: DRIVE-CLiQ encoder HISI / SISI initialization error.
16003: DRIVE-CLiQ encoder safety initialization error.
16004: DRIVE-CLiQ encoder internal system error.

Remedy:
- replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.
233851 Encoder 3 DRIVE-CLiQ (CU): Sign-of-life missing

Message Component number: %1, fault cause: %2
value:

Drive object: All objects

Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.

Remedy: Upgrade the firmware of the component involved.

233860 Encoder 3 DRIVE-CLiQ (CU): Telegram error

Message Component number: %1, fault cause: %2
value:

Drive object: All objects

Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 11 hex = 17 dec:
CRC error and the receive telegram is too early.
xx = 01 hex = 01 dec:
Checksum error (CRC error).
xx = 12 hex = 18 dec:
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 02 hex = 02 dec:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 13 hex = 19 dec:
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 03 hex = 03 dec:
Telegram is longer than specified in the length byte or in the receive list.
xx = 14 hex = 20 dec:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 04 hex = 04 dec:
The length of the receive telegram does not match the receive list.
xx = 15 hex = 21 dec:
The type of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 05 hex = 05 dec:
The type of the receive telegram does not match the receive list.
xx = 16 hex = 22 dec:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
xx = 06 hex = 06 dec:
The address of the power unit in the telegram and in the receive list do not match.

xx = 19 hex = 25 dec:
The error bit in the receive telegram is set and the receive telegram is too early.

xx = 09 hex = 09 dec:
The error bit in the receive telegram is set.

xx = 10 hex = 16 dec:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

233885 <location> Encoder 3 DRIVE-CLiQ (CU): Cyclic data transfer error

Message value:
Component number: %1, fault cause: %2

Drive object: All objects

Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause:
A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyyx hex: yy = component number, xx = fault cause
xx = 1A hex = 26 dec:
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.

Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

233886 <location> Encoder 3 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data

Message value:
Component number: %1, fault cause: %2

Drive object: All objects

Reaction:
A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause:
A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyyx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.

Remedy:
Carry out a POWER ON.
233887 <location>Encoder 3 DRIVE-CLiQ (CU): Component fault
Message Component number: %1, fault cause: %2
value: Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component involved (Sensor Module for encoder 3). Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 20 hex:
Error in the telegram header.
xx = 23 hex:
Receive error: The telegram buffer memory contains an error.
xx = 42 hex:
Send error: The telegram buffer memory contains an error.
xx = 43 hex:
Send error: The telegram buffer memory contains an error.
xx = 60 hex:
Response received too late during runtime measurement.
xx = 61 hex:
Time taken to exchange characteristic data too long.
Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

233895 <location>Encoder 3 DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message Component number: %1, fault cause: %2
value: Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Sensor Module (encoder 3) involved to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

233896 <location>Encoder 3 DRIVE-CLiQ (CU): Inconsistent component properties
Message Component number: %1
value: Drive object: A_INF, B_INF, CU_LINK, S_INF, SERVO, TM15, TM15DI_DO, TM17, TM31, TM41, VECTOR
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: The properties of the DRIVE-CLiQ component (Sensor Module for encoder 3), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced. Fault value (r0949, interpret decimal):
Component number.

Remedy:
- when replacing cables, only use cables with the same length as the original cables.
- when replacing components, use the same components and firmware releases.
- carry out a POWER ON.

233899 <location>Encoder 3: Unknown fault
Message value: New message: %1
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF1 (IASC/DACBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DACBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)

Cause: A fault occurred on the Sensor Module for encoder 3 that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit. Fault value (r0949, interpret decimal):
Fault number.
Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.

Remedy:
- replace the firmware on the Sensor Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).

233902 <location>Encoder 3: SPI-BUS error occurred
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: Error when operating the internal SPI bus. Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.

Remedy:
- replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.

233903 <location>Encoder 3: I2C-BUS error occurred
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: Error when operating the internal I2C bus. Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.

Remedy:
- replace the Sensor Module.
- if required, upgrade the firmware in the Sensor Module.
- contact the Hotline.
233905 <location>Encoder 3: Parameterization error

Message value:
Parameter: %1, supplementary information: %2

Drive object: All objects

Reaction:
A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)
VECTOR: OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

Acknowledge: IMMEDIATELY

Cause:
A parameter of encoder 3 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:
- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).
Fault value (r0949, interpret decimal):
yyyyxxxx dec: yyyy = supplementary information, xxxx = parameter
Supplementary information = 0:
No information available.
Supplementary information = 1:
The component does not support HTL level (p0405.1 = 0) combined with track monitoring A/B <> -A/B (p0405.2 = 1).
Supplementary information = 2:
A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please start a new encoder identification.
Supplementary information = 3:
A code number for an identified encoder has been entered into p0400, however, no identification was carried out. Please select a listed encoder in p0400 with a code number < 10000.
Supplementary information = 4:
This component does not support SSI encoders (p0404.9 = 1) without track A/B.
Supplementary information = 5:
For the SQW encoder, the value in p4686 is greater than that in p0425.
Supplementary information = 6:
The DRIVE-CLiQ encoder cannot be used with this firmware version.

Remedy:
- check whether the connected encoder type matches the encoder that has been parameterized.
- correct the parameter specified by the fault value (r0949) and p0187.
- re parameter number 314: Check the pole pair number and measuring gear ratio. The quotient of the "pole pair number" divided by the "measuring gear ratio" must be less than or equal to 1000 ((r0313 * p0433) / p0432 <= 1000).

233915 <location>Encoder 3: Configuration error

Message value: %1

Drive object: SERVO, VECTOR

Acknowledge: NONE

Cause:
The configuration for encoder 3 is incorrect.
Fault value (r0949, interpret decimal):
1: Re-parameterization between fault/alarm is not permissible.

Remedy:
No re-parameterization between fault/alarm.

233916 <location>Encoder 3: Parameterization error

Message value:
Parameter: %1, supplementary information: %2

Drive object: SERVO, VECTOR

Reaction:
OFF1 (IASC/DCBRAKE, NONE, OFF2, OFF3, STOP1, STOP2)

Acknowledge: IMMEDIATELY

Cause:
A parameter of encoder 3 was detected as being incorrect.
It is possible that the parameterized encoder type does not match the connected encoder.
The parameter involved can be determined as follows:
- determine the parameter number using the fault value (r0949).
- determine the parameter index (p0187).

Fault value (r0949, interpret decimal):
Parameter number
The fault is only output for encoders with r404[0].10 = 1. This corresponds to A33905 for encoders with r404[0].10 = 0.

Remedy:
- check whether the connected encoder type matches the encoder that has been parameterized.
- correct the parameter specified by the fault value (r0949) and p0187.

233920 <location>Encoder 3: Temperature sensor fault
Message value:
Fault cause: %1, channel number: %2

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
Low word low byte: Cause:
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Additional values:
Only for internal Siemens troubleshooting.
Low word high byte: Channel number.

Remedy:
- check that the encoder cable is the correct type and is correctly connected.
- check the temperature sensor selection in p0600 to p0603.
- replace the Sensor Module (hardware defect or incorrect calibration data).

233999 <location>Encoder 3: Unknown alarm
Message value:
New message: %1

Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: A alarm has occurred on the Sensor Module for encoder 3 that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Alarm value (r2124, interpret decimal):
Alarm number.
Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.

Remedy:
- replace the firmware on the Sensor Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).

234207 <location>VSM: Temperature fault threshold exceeded
Message value:
%1

Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE
VECTOR: NONE

Acknowledge: IMMEDIATELY (POWER ON)

Cause: The temperature (r3666) measured using the Voltage Sensing Module (VSM) has exceeded the threshold value (p3668).
This fault can only be initiated if the temperature evaluation was activated (p3665 = 2 for a KTY sensor or p3665 = 1 for a PTC sensor).
Fault value (r0949, interpret decimal):
The hundred thousands and ten thousands position specifies the component number of the VSM where the fault occurred.
234211 <location>VSM: Temperature alarm threshold exceeded

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE

Cause: The temperature (r3666) measured using the Voltage Sensing Module (VSM) has exceeded the threshold value (p3667).
Alarm value (r2124, interpret decimal):
The hundred thousands and ten thousands position specifies the component number of the VSM where the fault occurred.

Remedy:
- check the fan.
- reduce the power.

234800 <location>VSM: Group signal

Message value:
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge: NONE

Cause: The Voltage Sensing Module (VSM) has detected at least one fault.

Remedy: Evaluates other current messages.

234801 <location>VSM DRIVE-CLiQ: Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: CU_CX32, CU_I, CU_LINK, CU_S, HUB, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM).
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex:
The sign-of-life bit in the receive telegram is not set.

Remedy:
- check the DRIVE-CLiQ connection.
- replace the Terminal Module.

234801 <location>VSM DRIVE-CLiQ: Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: A_INF, B_INF, S_INF
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM).
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex:
The sign-of-life bit in the receive telegram is not set.
Remedy:
- check the DRIVE-CLiQ connection.
- replace the Voltage Sensing Module (VSM).

234802
<location>VSM: Time slice overflow

Message value:

Drive object: All objects

Reaction:
A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: Time slice overflow on the Voltage Sensing Module.

Remedy: Replace the Voltage Sensing Module.

234803
<location>VSM: Memory test

Message value:

Drive object: All objects

Reaction:
A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: An error has occurred during the memory test on the Voltage Sensing Module.

Remedy:
- check whether the permissible ambient temperature for the Voltage Sensing Module is being maintained.
- replace the Voltage Sensing Module.

234804
<location>VSM: CRC

Message value:

Drive object: All objects

Reaction:
A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: A checksum error has occurred when reading-out the program memory on the Voltage Sensing Module (VSM).

Remedy:
- check whether the permissible ambient temperature for the component is maintained.
- replace the Voltage Sensing Module.

234805
<location>VSM: EPROM checksum error

Message value:

Drive object: All objects

Reaction:
A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause: Internal parameter data is corrupted.
Fault value (r0949, interpret hexadecimal):
01: EEPROM access error.
02: Too many blocks in the EEPROM.

Remedy:
- check whether the permissible ambient temperature for the component is maintained.
- replace the Voltage Sensing Module (VSM).
234806 <location>VSM: Initialization
Message value: -
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)	SERVO: NONE (OFF1, OFF2, OFF3)	VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: For the Voltage Sensing Module (VSM), a fault has occurred while initializing.
Remedy: Replace the Voltage Sensing Module.

234807 <location>VSM: Sequence control time monitoring
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Error, timeout in the sequence control on the Voltage Sensing Module (VSM).
Remedy: Replace the Voltage Sensing Module.

234820 <location>VSM DRIVE-CLiQ: Telegram error
Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)	SERVO: NONE (OFF1, OFF2)	VECTOR: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module.
Fault value (r0949, interpret hexadecimal):
xx = 01 hex: CRC error.
xx = 02 hex: Telegram is shorter than specified in the length byte or in the receive list.
xx = 03 hex: Telegram is longer than specified in the length byte or in the receive list.
xx = 04 hex: The length of the receive telegram does not match the receive list.
xx = 05 hex: The type of the receive telegram does not match the receive list.
xx = 06 hex: The address of the component in the telegram and in the receive list do not match.
xx = 07 hex: A SYNC telegram is expected - but the receive telegram is not a SYNC telegram.
xx = 08 hex: No SYNC telegram is expected - but the receive telegram is one.
xx = 09 hex: The error bit in the receive telegram is set.
xx = 10 hex: The receive telegram is too early.
Remedy: - carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
234835
VSM DRIVE-CLiQ: Cyclic data transfer error

Message: Component number: %1, fault cause: %2
Drive object: All objects
Reaction:
- A_INFEED: OFF2 (NONE, OFF1)
- SERVO: NONE (OFF1, OFF2)
- VECTOR: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module. The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
- **xx = 21 hex:** The cyclic telegram has not been received.
- **xx = 22 hex:** Timeout in the telegram receive list.
- **xx = 40 hex:** Timeout in the telegram send list.
Remedy:
- carry out a POWER ON.
- replace the component involved.

234836
VSM DRIVE-CLiQ: Send error for DRIVE-CLiQ data

Message: Component number: %1, fault cause: %2
Drive object: All objects
Reaction:
- A_INFEED: OFF2 (NONE, OFF1)
- SERVO: NONE (OFF1, OFF2)
- VECTOR: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
- **xx = 41 hex:** Telegram type does not match send list.
Remedy: Carry out a POWER ON.

234837
VSM DRIVE-CLiQ: Component fault

Message: Component number: %1, fault cause: %2
Drive object: All objects
Reaction:
- A_INFEED: OFF2 (NONE, OFF1)
- SERVO: NONE (OFF1, OFF2)
- VECTOR: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
- **xx = 20 hex:** Error in the telegram header.
- **xx = 23 hex:** Receive error: The telegram buffer memory contains an error.
- **xx = 42 hex:** Send error: The telegram buffer memory contains an error.
- **xx = 43 hex:** Send error: The telegram buffer memory contains an error.
Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.
234845 <location>VSM DRIVE-CLiQ: Cyclic data transfer error
Message value: Component number: %1, fault cause: %2

Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2)
VECTOR: NONE (OFF1, OFF2)

Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the Voltage Sensing Module (VSM).
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.

Remedy: Carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

234850 <location>VSM: Internal software error
Message value: %1

Drive object: All objects
Reaction: A_INFEED: OFF1 (NONE, OFF2)
SERVO: OFF1 (NONE, OFF2, OFF3)
VECTOR: OFF1 (NONE, OFF2, OFF3)

Acknowledge: POWER ON
Cause: An internal software error in the Voltage Sensing Module (VSM) has occurred.
Fault value (r0949, interpret decimal):
1: Background time slice is blocked.
2: Checksum over the code memory is not OK.

Remedy: - replace the Voltage Sensing Module (VSM).
- if required, upgrade the firmware in the Voltage Sensing Module.
- contact the Hotline.

234851 <location>VSM DRIVE-CLiQ (CU): Sign-of-life missing
Message value: Component number: %1, fault cause: %2

Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2)
VECTOR: NONE (OFF1, OFF2)

Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.

Remedy: Upgrade the firmware of the component involved.

234860 <location>VSM DRIVE-CLiQ (CU): Telegram error
Message value: Component number: %1, fault cause: %2

Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2)
VECTOR: NONE (OFF1, OFF2)

Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit.

Fault value (r0949, interpret hexadecimal):
- yyxx hex: yy = component number, xx = fault cause
- xx = 11 hex = 17 dec: CRC error and the receive telegram is too early.
- xx = 01 hex = 01 dec: Checksum error (CRC error).
- xx = 12 hex = 18 dec: The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
- xx = 02 hex = 02 dec: Telegram is shorter than specified in the length byte or in the receive list.
- xx = 13 hex = 19 dec: The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
- xx = 03 hex = 03 dec: Telegram is longer than specified in the length byte or in the receive list.
- xx = 14 hex = 20 dec: The length of the receive telegram does not match the receive list and the receive telegram is too early.
- xx = 04 hex = 04 dec: The length of the receive telegram does not match the receive list.
- xx = 15 hex = 21 dec: The type of the receive telegram does not match the receive list and the receive telegram is too early.
- xx = 05 hex = 05 dec: The type of the receive telegram does not match the receive list.
- xx = 16 hex = 22 dec: The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
- xx = 06 hex = 06 dec: The address of the power unit in the telegram and in the receive list do not match.
- xx = 19 hex = 25 dec: The error bit in the receive telegram is set and the receive telegram is too early.
- xx = 09 hex = 09 dec: The error bit in the receive telegram is set.
- xx = 10 hex = 16 dec: The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

234885 <location>VSM DRIVE-CLiQ (CU): Cyclic data transfer error

Component number: %1, fault cause: %2

Drive object: All objects

Reaction:
- A_INFEED: OFF2 (NONE, OFF1)
- SERVO: NONE (OFF1, OFF2)
- VECTOR: NONE (OFF1, OFF2)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit.
The nodes do not send and receive in synchronism.

Fault value (r0949, interpret hexadecimal):
- yyxx hex: yy = component number, xx = fault cause
- xx = 1A hex = 26 dec: Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
- xx = 21 hex = 33 dec: The cyclic telegram has not been received.
xx = 22 hex = 34 dec:
Timeout in the telegram receive list.
xx = 40 hex = 64 dec:
Timeout in the telegram send list.
xx = 62 hex = 98 dec:
Error at the transition to cyclic operation.

Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

234886 <location>VSM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data

Message value:
Component number: %1, fault cause: %2

Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2)
VECTOR: NONE (OFF1, OFF2)

Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit.
Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.

Remedy:
Carry out a POWER ON.

234887 <location>VSM DRIVE-CLiQ (CU): Component fault

Message value:
Component number: %1, fault cause: %2

Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2)
VECTOR: NONE (OFF1, OFF2)

Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component (Voltage Sensing Module) involved. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 20 hex:
Error in the telegram header.
xx = 23 hex:
Receive error: The telegram buffer memory contains an error.
xx = 42 hex:
Send error: The telegram buffer memory contains an error.
xx = 43 hex:
Send error: The telegram buffer memory contains an error.
xx = 60 hex:
Response received too late during runtime measurement.
xx = 61 hex:
Time taken to exchange characteristic data too long.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.
234895 <location>VSM DRIVE-CLiQ (CU): Alternating cyclic data transfer error
Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: NONE (OFF1, OFF2)
VECTOR: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Voltage Sensing Module (VSM) to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

234896 <location>VSM DRIVE-CLiQ (CU): Inconsistent component properties
Message value: Component number: %1
Drive object: All objects
Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY
Cause: The properties of the DRIVE-CLiQ component (Voltage Sensing Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):
Component number.
Remedy:
- when replacing cables, only use cables with the same length as the original cables.
- when replacing components, use the same components and firmware releases.
- carry out a POWER ON.

234899 <location>VSM: Unknown fault
Message value: New message: %1
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: NONE (OFF1, OFF2, OFF3)
VECTOR: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A fault occurred on the Voltage Sensing Module that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
Fault number.
Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:
- replace the firmware on the Voltage Sensing Module by an older firmware version (r0158).
- upgrade the firmware on the Control Unit (r0018).

234903 <location>VSM: I2C bus error occurred
Message value: -
Drive object: CU_CX32, CU_I, CU_LINK, CU_S, HUB, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred in while accessing via the internal TM I2C bus.
Remedy: Replace the Terminal Module.

234903 <location>VSM: I2C bus error occurred
Message value:
Drive object: A_INF, B_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred in while accessing via the internal TM I2C bus.
Remedy: Replace Voltage Sensing Module (VSM).

234904 <location>VSM: EEPROM
Message value:
Drive object: CU_CX32, CU_I, CU_LINK, CU_S, HUB, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31, TM41,
TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy: Replace the Terminal Module.

234904 <location>VSM: EEPROM
Message value:
Drive object: A_INF, B_INF, S_INF
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy: Replace Voltage Sensing Module (VSM).

234905 <location>VSM: Parameter access
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The Control Unit attempted to write an illegal parameter value to the Voltage Sensing Module (VSM).
Remedy: - check whether the firmware version of the VSM (r0158) matches the firmware version of Control Unit (r0018).
 - if required, replace the Voltage Sensing Module.
Note: The firmware versions that match each other are in the readme.txt file on the memory card.

234920 <location>VSM: Temperature sensor fault
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Remedy: - check that the sensor is connected correctly.
 - replace sensor.
234999 <location>VSM: Unknown alarm
Message value: New message: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: A fault occurred on the Voltage Sensing Module (VSM) an alarm has occurred that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Alarm value (%2124, interpret decimal):
Alarm number.
Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy: - replace the firmware on the Voltage Sensing Module by an older firmware version (r0148).
- upgrade the firmware on the Control Unit (r0018).

235000 <location>TM54F: Sampling time invalid
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: POWER ON
Cause: The set sampling time is invalid.
- not a multiple integer of the DP clock cycle.
Fault value (r0949, floating point):
Recommended valid sampling time.
Remedy: Adapt the sampling time (e.g. set the recommended valid sampling time).
See also: p10000 (SI sampling time)

235001 <location>TM54F: Parameter value invalid
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The entered value is invalid.
Fault value (r0949, interpret decimal):
Parameter number with the invalid value.
Remedy: Correct the parameter value.

235002 <location>TM54F: Commissioning not possible
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The commissioning mode setting was rejected because for at least one drive belonging to the TM54F, the pulses had not been suppressed.
Fault value (r0949, interpret decimal):
Drive object number of the first drive found without pulse suppression.
Remedy: Cancel the pulses for the drive specified in the fault value.

235003 <location>TM54F: Acknowledgement on the Control Unit is required
Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault on the Terminal Module 54F (TM54) was acknowledged using the safe acknowledgement (P10006).
An additional acknowledgement is also required at the Control Unit.

Remedy:

235011
<TM54F: Drive object number assignment illegal>
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A drive object number was assigned twice. Each drive object number can be assigned only once.
Remedy: Correct the assignment of the drive object numbers.
See also: p10010 (SI drive object assignment)

235012
<TM54F: Test stop active>
Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The test stop for the Terminal Module 54F (TM54F) is presently being executed.
Remedy: The alarm disappears automatically after successfully ending or canceling (when a fault condition occurs) the test stop.

235013
<TM54F: Test stop error>
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: An error was detected when carrying out the test stop on the TM54F. As fault response fail-safe input terminal signals are transferred to the motion monitoring functions.
Fault value (r0949, interpret hexadecimal):
0xaaaabbcc hex
aaa: Specifies the DOs or F-DIs (dependent on test step cc) for which the expected state was not assumed. The number is bit-coded (bit 0 = F-DI 0 or F-DO 0; bit 3 = F-DI 3 or F-DO 3).
b: Precise problem:
0x01 = Internal error (error state on the opposite side).
0x02 = Error when comparing the switching signals.
0x03 = Internal error (delay time in the new state has still not expired).
cc: Test step of the test stop in which the error has occurred.
Test stop step cc for slave (hexadecimal):
0x00: Action: L1+ switched out, L2+ switched in - error: Master not in initial state 0x00 and 0x0A.
0x0A: Action: L1+ switched out, L2+ switched in - error: Master not in state 0x15.
0x15: Action: L1+ switched out, L2+ switched out - error: F-DIs 0...4 of the master do not correspond to those of the slave (expected: level 0) or master not in state 0x20.
0x20: Action: L1+ switched out, L2+ switched out - error: Master not in state 0x2B.
0x2B: Action: L1+ switched in, L2+ switched in - error: F-DIs 5...9 of the master do not correspond to those of the slave (expected: level 0) or master not in state 0x36.
0x36: Action: All slave DOs at OFF - error: Master not in state 0x41.
0x41: Action: All slave DOs at OFF - error: Master not in state 0x4C.
0x4C: Action: All slave-DOs at ON - error: State of DI 20...23 does not correspond to the expected state (24V) or the master not in state 0x57.
0x57: Action: All slave DOs at ON - error: Master not in state 0x62.
0x62: Action: All slave-DOs at OFF - error: State of DI 20...23 does not correspond to the expected state (0V) or the master not in state 0x6D.
0x6D: Action: All slave DOs at OFF - error: Master not in state 0x78.
0x78: Action: All slave-DOs at ON - error: State of DI 20...23 does not correspond to the expected state (0V) or the master not in state 0x83.
0x83: Action: All slave DOs at ON - error: Master not in state 0x8E.
0x8E: Action: All slave-DOs at OFF - error: State of DI 20...23 does not correspond to the expected state (0V) or the master not in state 0x99.
0x99: Action: All slave DOs at OFF - error: Master not in state 0xA4.
0xA4: Action: All slave-DOs at OFF - error: State of DI 20...23 do not correspond to the expected state (24V) or the master not in state 0xAF.
0xAF: Action: All slave DOs at the original state - error: Master not in state 0xBA.
0xBA: Action: All slave DOs at the original state - error: Master not in state 0xC5.
0xC5: Action: Return to start state, test stop completed on the slave side. Error: Master not in state 0xD0.

Test stop step cc for master (hexadecimal):
0x0A: No actions - error: Slave not in initial state 0x00.
0x15: No actions - error: Slave not in initial state 0x0A.
0x20: No actions - error: F-DIs 0...4 of the slave do not correspond with those of the master (expected: level 0) or slave not in state 0x15.
0x2B: No actions - error: Slave not in initial state 0x20.
0x36: No actions - error: F-DIs 0...5 of the slave do not correspond with those of the master (expected: level 0) or slave not in state 0x2B.
0x41: Action: All master DOs at OFF - error: Slave not in state 0x36.
0x4C: Action: All master DOs at OFF - error: Slave not in state 0x41.
0x57: Action: All master-DOs at ON - error: State of DI 20...23 of the slave does not correspond to the expected state (24V) or the slave not in state 0x4C.
0x62: Action: All master DOs at ON - error: Slave not in initial state 0x57.
0x6D: Action: All master-DOs at ON - error: State of DI 20...23 of the slave does not correspond to the expected state (0V) or the slave not in state 0x62.
0x78: Action: All master DOs at ON - error: Slave not in state 0x6D.
0x83: Action: All master-DOs at OFF - error: State of DI 20...23 of the slave does not correspond to the expected state (0V) or the slave not in state 0x78.
0x8E: Action: All master DOs at OFF - error: Slave not in state 0x83.
0x99: Action: All master-DOs at OFF - error: State of DI 20...23 of the slave does not correspond to the expected state (0V) or the slave not in state 0x8E.
0xA4: Action: All master DOs at OFF - error: Slave not in state 0x99.
0xAF: Action: All master-DOs at OFF - error: Status of DI 20...23 of the slave does not correspond to the expected state (24V) or the slave not in state 0xA4.
0xBA: Action: All master DOs at the original state - error: Slave not in state 0xAF.
0xC5: Action: All master DOs at the original state - error: Slave not in state 0xBA.
0xD0: Wait for the end of the test stop and return to the start state

Note: A check of the switching state of the F-DIs and F-DOs always refers to the switching operation of the previous state. The actions in one state are always only carried out after the actual state has been checked.

Remedy:
Check the wiring of the F-DIs and F-DOs and restart the test stop. The fault is withdrawn if the test stop is successfully completed.

235014 <location>TM54F: Test stop required

Message value:
-

Drive object:
A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR

Reaction: NONE

Acknowledge: NONE

Cause:
- after powering up the drive, a test stop has still not been carried out.
- a new test stop is required after commissioning.
- the time to carry out the forced checking procedure (test stop) has expired (p10003).

Remedy:
Initiate test stop (BI: p10007).
235015 <location>TM54F: Communication with drive not established
Message value: Fault cause: %1 bin
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: Cyclic communication of one or several drives with the Terminal Module 54F (TM54F) is not active.
Fault value (r0949, interpret binary):
Bit 0 = 1: No communication with drive 1.
... Bit 5 = 1: No communication with drive 6.
For fault value = 0, the following applies:
The number of drive objects specified in p10010 is not equal to the number of drives that have drive-based motion monitoring functions that have been enabled.
The drive object number for drive n is set in p10010[n-1]. When this fault is present, none of the drives that have drive-based motion monitoring functions operating with TM54F, are enabled.
Remedy: For all drive objects specified in p10010, check whether the drive-based motion monitoring functions with TM54F are enabled (p9601).

235016 <location>TM54F: Net data communication with drive not established
Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The cyclic net data communication within the Terminal Module 54F (TM54F) is still not active.
This message is output after the TM54F master and TM54F slave have booted and is automatically withdrawn as soon as communications have been established.
If a drive does not communicate with the TM54F, then none of the drives parameterized in p10010 are enabled.
Remedy: When replacing a Motor Module, carry out the following steps:
- start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.
The following always applies:
- for all drive objects specified in p10010, check whether the drive-based motion monitoring functions with TM54F are enabled (p9601).
- check whether fault F35150 is present and if required, remove the cause of the fault.
See also: r10055 (SI TM54F communication status drive-specific)

235040 <location>TM54F: 24 V undervoltage
Message value: Fault cause: %1 bin
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: For the 24 V power supply for the Terminal Module 54F (TM54F) an undervoltage condition was detected.
As fault response fail-safe input terminal signals are transferred to the motion monitoring functions.
Fault value (r0949, interpret binary):
Bit 0 = 1: Power supply undervoltage at connection X524.
Bit 1 = 1: Power supply undervoltage at connection X514.
Remedy: - check the 24 V DC power supply for the TM54F.
- carry out safe acknowledgement (p10006).
235043 <location>TM54F: 24 V overvoltage

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: For the 24 V power supply for the Terminal Module 54F (TM54F) an overvoltage condition was detected.
As fault response fail-safe input terminal signals are transferred to the motion monitoring functions.
Remedy:
- check the 24 V DC power supply for the TM54F.
- carry out safe acknowledgement (p10006).

235051 <location>TM54F: Defect in a monitoring channel

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The Terminal Module 54F (TM54F) has identified an error in the data cross check between the two control channels. As fault response fail-safe input terminal signals are transferred to the motion monitoring functions.
Fault value (r0949, interpret hexadecimal):
aaaaabbcc hex
aaaa: A value greater than zero indicates an internal software error.
bb: Data to be cross-checked that resulted in the error.
bb = 00 hex: p10000
bb = 01 hex: p10001
bb = 02 hex: p10002
bb = 03 hex: p10006
bb = 04 hex: p10008
bb = 05 hex: p10010
bb = 06 hex: p10011
bb = 07 hex: p10020
bb = 08 hex: p10021
bb = 09 hex: p10022
bb = 0A hex: p10023
bb = 0B hex: p10024
bb = 0C hex: p10025
bb = 0D hex: p10026
bb = 0E hex: p10027
bb = 0F hex: p10028
bb = 10 hex: p10036
bb = 11 hex: p10037
bb = 12 hex: p10038
bb = 13 hex: p10039
bb = 14 hex: p10040
bb = 15 hex: p10041
bb = 16 hex: p10042
bb = 17 hex: p10043
bb = 18 hex: p10044
bb = 19 hex: p10045
bb = 1A hex: p10046
cc: Index of the data to be cross-checked that resulted in the error.
Remedy: Carry out the following steps on the TM54F:
- activate the safety commissioning mode (p0010 = 95).
- start the copy function for SI parameters (p9700 = 57 hex).
- acknowledge complete data change (p9701 = AC hex).
- exit the safety commissioning mode (p0010 = 0).
- save all parameters (p0977 = 1).
- carry out safe acknowledgement (p10006).

For an internal software error (aaaa greater than zero):
- upgrade the software on the TM54F.
- contact the Hotline.
- replace the TM54F.

235052 <location>TM54F: Internal hardware fault
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: IMMEDIATELY (POWER ON)
Acknowledge: IMMEDIATELY
Cause: An internal software/hardware fault on the TM54F was identified.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
- check the electrical cabinet design and cable routing for EMC compliance
- upgrade the software on the TM54F.
- contact the Hotline.
- replace the TM54F.

235053 <location>TM54F: Temperature fault threshold exceeded
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: IMMEDIATELY
Acknowledge: IMMEDIATELY
Cause: The temperature measured using the temperature sensing on the TM54F has exceeded the threshold value to initiate this fault.
As fault response fail-safe input terminal signals are transferred to the motion monitoring functions.
Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy:
- allow the TM54F to cool down.
- carry out safe acknowledgement (p10006).

235054 <location>TM54F: Temperature alarm threshold exceeded
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The temperature measured using the temperature sensing on the TM54F has exceeded the threshold value to initiate this alarm.
Remedy:
- allow the TM54F to cool down.
- carry out safe acknowledgement (p10006).

235075 <location>TM54F: Internal communications
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause:
An internal communications error has occurred in the Terminal Module 54F (TM54F).
This alarm can also occur if the TM54F exists and no safety function has yet been parameterized.
Alarm value (r2124, interpret decimal):
Only for internal Siemens diagnostics.

Remedy:
For internal communication errors:
- check the electrical cabinet design and cable routing for EMC compliance
- upgrade the software on the TM54F.
- contact the Hotline.
- replace the TM54F.
If TM54F exists and no safety function has yet been parameterized:
- None necessary. The alarm disappears automatically after a safety function has been parameterized.

235080 <location>TM54F: Checksum error safety parameters
Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause:
The calculated checksum entered in r10004 over the safety-relevant parameters does not match the reference checksum saved in p10005 at the last machine acceptance.
Fault value (r0949, interpret decimal):
1: Checksum error for functional SI parameters.
2: Checksum error for SI parameters for component assignment.

Remedy:
- Check the safety-relevant parameters and if required, correct.
- set the reference checksum to the actual checksum.
- acknowledge that hardware was replaced
- carry out a POWER ON.
- carry out an acceptance test.

235081 <location>TM54F: Static 1 signal at F-DI for safe acknowledgement
Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause:
A logical "1" signal is present at the F-DI configured in p10006 for more than 10 seconds. A logical "0" signal must be statically applied at the F-DI. This prevents the output of an unintended safe acknowledgement signal (or the "Internal Event Acknowledge" signal) if a wire break occurs or one of the two digital inputs bounces.

Remedy:
Set F-DI (see p10006) to logical "0" signal.

235150 <location>TM54F: Communication error
Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: IMMEDIATELY (POWER ON)
Acknowledge: NONE
Cause:
A communication error between the TM54F master and Control Unit or between the TM54F slave and the Motor Module was detected.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.

Remedy:
When replacing a Motor Module, carry out the following steps:
- start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.
The following always applies:
- check the electrical cabinet design and cable routing for EMC compliance
- upgrade the software on the TM54F.
- contact the Hotline.
- replace the TM54F.

235151 <location>TM54F: Discrepancy error

Message value:
%1

Drive object:
A_INF, B_INF, S_INF, SERVO, TM41, TM54F_MA, TM54F_SL, VECTOR

Reaction:
NONE

Acknowledge:
IMMEDIATELY

Cause:
The safety input terminals or output terminals show a different state longer than that parameterized in p10002.
Fault value (r0949, interpret hexadecimal):
yyyyxxxx hex

xxxx:
The safety-relevant input terminals F-DI indicate a discrepancy.
Bit 0: Discrepancy for F-DI 0
...
Bit 9: Discrepancy for F-DI 9

yyy:
The safety-relevant output terminals F-DO indicate a discrepancy.
Bit 0: Discrepancy for F-DO 0
...
Bit 3: Discrepancy for F-DO 3

Note:
If several discrepancy errors occur consecutively, then this fault is only signaled for the first error that occurs.
The following possibilities exist of diagnosing all of the discrepancy errors:
- in the commissioning software, evaluate the input states and output states of the TM54F. All discrepancy errors are displayed here.
- compare parameters p10051 and p10052 from the TM54F master and TM54F slave for discrepancy.

Remedy:
Check the wiring of the F-DI and F-DO (contact problems).

Note:
A discrepancy of the F-DO also occurs (in this special case, in conjunction with fault F35150 for the TM54F slave), if, after replacing a Motor Module, it was forgotten to acknowledge this.
When replacing a Motor Module, carry out the following steps:
- start the copy function for the node identifier on the TM54F (p9700 = 1D hex).
- acknowledge the hardware CRC on the TM54F (p9701 = EC hex).
- save all parameters (p0977 = 1).
- carry out a POWER ON (power off/on) for all components.

F-DI: Failsafe Digital Input
F-DO: Failsafe Digital Output

Discrepancy errors of the F-DIs can only be completely acknowledged if, after the cause of the error has been resolved, safe acknowledgement was carried out (refer to p10006). As long as safety acknowledgement was not carried out, the corresponding F-DI stays in the safe state.

235200 <location>TM: Calibration data

Message value:
%1

Drive object:
All objects

Reaction:
NONE

Acknowledge:
NONE

Cause:
An error was detected in the calibration data of the Terminal Module.
Alarm value (r2124, interpret decimal):
The hundred thousands and ten thousands location specifies the component Id of the Terminal Module where the fault occurred.
The thousands location specifies whether the analog input 0 (=0) or analog output 1 (= 1) is involved.
The hundreds location specifies the fault type:
0: No calibration data available.
1: Offset too high (> 100 mV).
The tens and ones location specifies the number of the input involved.

Remedy:
- Power down the unit and power up again.
- If the fault is still present, replace the module/board.

235207
<location>TM: Temperature fault/alarm threshold exceeded

Message value:
%1

Drive object: All objects

Reaction:
A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF2 (NONE, OFF1, OFF3)
VECTOR: OFF2 (NONE, OFF1, OFF3)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105) has exceeded the threshold value to initiate this fault (p4102[1]) - or the temperature exceeded the alarm threshold (p4102[0]) for longer than the dead time in parameter p4103.
Please note that this fault can only be initiated if the temperature evaluation was activated (p4100 = 2 for KTY sensor or p4100 = 1 for PTC sensor).
Fault value (r0949, interpret decimal):
The hundred thousands and ten thousands location specifies the component number of the TMxx where the fault occurred.
Alarm: Please note that Fault F35207 only causes the drive to be shut down if there is at least one BICO interconnection between the drive and TM31.

Remedy:
- allow the temperature sensor to cool down.
- if required, set the fault response to NONE (p2100, p2101).

235211 <location>TM: Temperature alarm threshold exceeded

Message value:
%1

Drive object: All objects

Reaction: NONE

Acknowledge: NONE

Cause: The temperature measured using the temperature sensing of the Terminal Module (TM) (r4105) has exceeded the threshold value to initiate this alarm (p4102[0]).

Alarm value (r2124, interpret decimal):
The hundred thousands and ten thousands location specifies the component number of the TMxx where the fault occurred.

Remedy: Allow the temperature sensor to cool down.

235220 <location>TM: Frequency limit reached for signal output

Message value:

Drive object: All objects

Reaction:
A_INFEED: OFF1 (NONE, OFF2)
SERVO: OFF1 (NONE, OFF2, OFF3)
VECTOR: OFF1 (NONE, OFF2, OFF3)

Acknowledge: IMMEDIATELY (POWER ON)

Cause: The signals output from the Terminal Module 41 (TM41) for tracks A/B have reached the limit frequency. The output signals are no longer in synchronism with the specified setpoint.
Remedy: SIMOTION (p4400 = 0) operating mode:
- enter a lower speed setpoint (p1155).
- reduce the encoder pulse number (p0408).
- if the TM41 is configured as technology object in SIMOTION, then this fault is generated if the A/B signals in connector X520 are short-circuited SINAMICS (p4400 = 1) operating mode:
- the fine resolution of TM41 in p0418 does not match that of the connector input that was interconnected at P4420
- the encoder position actual value r0479 interconnected at connector input p4420 has an excessively high actual speed

235221 <location>TM: Setpoint - actual value deviation, outside the tolerance range
Message value: -
Drive object: All objects
Reaction: A_INFEED: OFF1 (NONE, OFF2) SERVO: OFF1 (NONE, OFF2, OFF3) VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The deviation between the setpoint and the output signals (track A/B) exceeds the tolerance of +/-3 %.
Remedy: - reduce the basic clock cycle (p0110, p0111).
- replace the module.

235222 <location>TM: Encoder pulse number not permissible
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The encoder pulse number entered does not match the permissible pulse number from a hardware perspective.
Fault value (r0949, interpret decimal):
1: Encoder pulse number is too high.
2: Encoder pulse number is too low.
4: Encoder pulse number is less than the zero mark offset (p4426).
Remedy: Enter the encoder pulse number in the permissible range (p0408).

235223 <location>TM: Zero mark offset not permissible
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The entered zero mark offset is not permissible.
Fault value (r0949, interpret decimal):
1: Zero mark offset is too high.
See also: p4426 (Incremental encoder emulation, pulses for zero mark)
Remedy: Enter the zero mark offset in the permissible range (p4426).

235224 <location>TM: Zero mark synchronization interrupted
Message value: %1
Drive object: TM41
Reaction: NONE
Acknowledge: NONE
Cause: The zero mark synchronization with the encoder to be emulated was interrupted.

Alarm value (r2124, interpret decimal):
0: The encoder is not in the ready state (e.g. encoder parked)
1: An absolute encoder was connected.
2: The encoder r0479[0...2] interconnected with CI: p4420 is already communicating with another TM41 (precisely one TM41 can be interconnected with a specific r0479[0...2]).
3: The BICO interconnection to Terminal Module 41 (TM41) was removed (CI: p4420 = 0 signal).
4: The encoder connected with CI: p4420 has carried out an EDS changeover (this operation is not supported, set p4420 to 0 and interconnect again).
5: The maximum number of revolutions of the encoder was exceeded.
6: Encoder in an invalid state.
7: Encoder in an invalid state.
8: Encoder in an invalid state (the encoder is not parameterized or the interconnected signal source is not in the cyclic state).

Remedy: None necessary.
- if the encoder changes into the ready state, then a synchronization operation that was previously interrupted is carried out again.
- if the synchronization was interrupted due to the maximum permissible synchronization duration, then a new synchronization is not carried out.
- for an absolute encoder, no synchronization is carried out, the zero mark is always output at the zero revolution of the TM41.

235225 <location>TM: Zero mark synchronization held - encoder not in the ready state
Message value: -
Drive object: TM41
Reaction: NONE
Acknowledge: NONE
Cause: The zero mark synchronization with the encoder to be emulated was held.
The encoder is not in the "ready" state.
Remedy: Bring the encoder into the "ready" state.

235226 <location>TM: Tracks A/B are de-activated
Message value: -
Drive object: TM41
Reaction: NONE
Acknowledge: NONE
Cause: The output of tracks A/B of the Terminal Module 41 (TM41) has been held (frozen).
The encoder emulation of the TM41 hardware is enabled (this is necessary so that no TRI state of the A/B tracks occurs). The hardware receives a setpoint of zero so that no motion occurs at the A/B tracks.
Reasons for this alarm:
- CI: p4420 was not interconnected (in this case, the encoder emulation of the hardware is de-activated)
- the encoder is not in the "ready" state (parking encoder or non-parameterized encoder data set).
- for TM41 there is an additional fault.
Remedy:
- establish an interconnection from CI: p4420.
- bring the encoder into the "ready" state.
- remove any TM41 faults.

235227 <location>EDS changeover not supported
Message value: -
Drive object: TM41
Reaction: NONE
Acknowledge: NONE
Cause: The interconnected encoder has carried out an EDS changeover.
Terminal Module 41 (TM41) does not support this particular application case.
Remedy: CI: Set p4420 = 0 and re-wire.

235228 <location>TM: Sampling time p4099[3] invalid
Message value: -
Drive object: TM41
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The value of the cycle time for the incremental encoder emulation, specified in p4099[3] does not correspond to a valid value. The system has already changed p4099[3] to a valid value. The parameters of the TM41 in question must be saved on the memory card and a POWER ON carried out.
If necessary, the sampling time can be checked again the next time the system is switched on, taking into account any other TM41s located on the same DRIVE-CLiQ line.
The following rules must be observed when setting p4099[3]:
 - if several TM41 are located on a DRIVE-CLiQ line, the same sampling time in p4099[3] must be set for all components.
 - the sampling time of a TM41 in SINAMICS mode (p4400) must correspond to that of the emulated encoder. The encoder sampling time is normally the same as the parameter value p0115[0] of the drive object used to interconnect the TM41 via connector input p4420.
 - it is not possible to operate two TM41s on one line if they emulate encoders with different cycles.
Remedy: None necessary.

235229 <location>TM time slice de-activated
Message value: %1
Drive object: TM41
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The required value of a cycle time in p4099[0...2] is invalid. The corresponding time slice was not activated.
Alarm value (r2124, interpret decimal):
 0: Digital input/outputs (p4099[0])
 1: Analog inputs (p4099[1])
 3: Encoder emulation (p4099[3]).
 4: Encoder emulation speed setpoint (p4099[3]).
 5: Encoder emulation speed setpoint (p4099[3]).
 6 Internal sequence control of the TM41 (internal error)
Remedy: The sampling time p4099[0] may not be zero. Change the sampling time corresponding to the error code.

235230 <location>HW problem with the TM module
Message value: %1
Drive object: A_INF, B_INF, S_INF, SERVO, TM15DI_DO, TM31, TM41, VECTOR
Reaction: A_INFEED: OFF1 (NONE, OFF2) SERVO: NONE VECTOR: NONE
Acknowledge: POWER ON
Cause: The terminal module used has signaled an internal error. Signals of this module may not be evaluated and are potentially incorrect.
Remedy: The module must be replaced if no other alarms that refer to a communications error are present in the system.

235231 <location>TM: Master control by PLC missing
Message value: -
Drive object: TM41
Reaction: NONE
Acknowledge: NONE
Cause: The "master control by PLC" signal was missing in operation.
- interconnection of the binector input for "master control by PLC" is incorrect (p0854).
- the higher-level control has withdrawn the "master control by PLC" signal.
- data transfer via the fieldbus (master/drive) was interrupted.

Note:
This alarm is only decisive in the "SIMOTION" operating mode (p4400 = 0).
In the "SINAMICS" operating mode, the setpoints at P4420 are evaluated independent of binector input p0854.

Remedy:
- check the interconnection of the binector input for "master control by PLC" (p0854).
- check the "master control by PLC" signal and, if required, switch in.
- check the data transfer via the fieldbus (master/drive).
- check the setting of parameter p2037.

Message
value:

Drive object: TM41

Reaction: NONE

Cause:
SINAMICS (p4400 = 1) operating mode:
When parameterizing a Terminal Module 41 (TM41) or when operating a TM41 module, an operating state was reached which required a POWER ON. These include:
- changing the encoder pulse number (p0408).
- changing the fine resolution (p0418).
- withdrawing the DRIVE-CLiQ cable without first deactivating TM41 via p0105.
If this alarm was output, then the zero mark of the TM41 can no longer be output in synchronism to that of the encoder interconnected at p4420.
SIMOTION (p4400 = 0) operating mode:
A previously set zero mark position (p4426) no longer matches encoder position r0479 due to the change in the pulse number (p0408).

Remedy:
The incremental position at output X520 of TM41 can still be evaluated independent of the zero mark. A POWER ON must be carried out if the TM41 zero mark is evaluated.

Message
value:

Drive object: A_INF, B_INF, S_INF, SERVO, TM31, TM41, VECTOR

Reaction: OFF2

Cause:
A function requested by the Control Unit is not supported by a DRIVE-CLiQ component. Fault value (r0949, interpret decimal):
1: This Terminal Module TM31 does not support the motor overtemperature time stage.

Remedy:
Upgrade the firmware of the DRIVE-CLiQ component involved. Re fault value = 1:
If the motor overtemperature time stage is to be used, the TM31 must be replaced. The order number of the replacement module should be 6SL3055-0AA00-3AA1 with software version V2.6 or higher..

Message
value:

Drive object: All objects

Reaction: A_INFEED: OFF2 (NONE, OFF1)
SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)

Cause:
The Terminal Module has detected at least one fault.

Remedy:
Evaluates other current messages.
235801

<location>TM DRIVE-CLiQ: Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved. The sign-of-life bit in the receive telegram is not set.

Remedy: - check the DRIVE-CLiQ connection.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

235802

<location>TM: Time slice overflow

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Time slice overflow on Terminal Module.
Remedy: Replace the Terminal Module.

235803

<location>TM: Memory test

Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred during the memory test on the Terminal Module.
Remedy: - check whether the permissible ambient temperature for the Terminal Module is being maintained.
- replace the Terminal Module.

235804

<location>TM: CRC

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: A checksum error has occurred when reading-out the program memory on the Terminal Module.
Remedy: - check whether the permissible ambient temperature for the component is maintained.
- replace the Terminal Module.

235805

<location>TM: EPROM checksum error

Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: Internal parameter data is corrupted.
Alarm value (r2124, interpret hexadecimal):
01: EEPROM access error.
02: Too many blocks in the EEPROM.
Remedy: - check whether the permissible ambient temperature for the component is maintained.
- replace the Terminal Module 31 (TM31).
235807 <location>TM: Sequence control time monitoring
Message value:
Drive object: All objects
Reaction: NONE
Acknowledgment: NONE
Cause: Error, timeout, sequence control on the Terminal Module.
Remedy: Replace the Terminal Module.

235820 <location>TM DRIVE-CLiQ: Telegram error
Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledgment: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 01 hex:
CRC error.
xx = 02 hex:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 03 hex:
Telegram is longer than specified in the length byte or in the receive list.
xx = 04 hex:
The length of the receive telegram does not match the receive list.
xx = 05 hex:
The type of the receive telegram does not match the receive list.
xx = 06 hex:
The address of the component in the telegram and in the receive list do not match.
xx = 07 hex:
A SYNC telegram is expected - but the receive telegram is not a SYNC telegram.
xx = 08 hex:
No SYNC telegram is expected - but the receive telegram is one.
xx = 09 hex:
The error bit in the receive telegram is set.
xx = 10 hex:
The receive telegram is too early.
Remedy: - carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

235835 <location>TM DRIVE-CLiQ: Cyclic data transfer error
Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledgment: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved.
The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 21 hex:
The cyclic telegram has not been received.
xx = 22 hex:
Timeout in the telegram receive list.
xx = 40 hex:
Timeout in the telegram send list.
Remedy:
- carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

235836
<location>TM DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause:
A DRIVE-CLiQ communication error has occurred from the Terminal Module to the encoder involved. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
 yyyx hex: yy = component number, xx = fault cause
 xx = 41 hex:
 Telegram type does not match send list.
Remedy:
carry out a POWER ON.

235837
<location>PTM DRIVE-CLiQ: Component fault
Message value:
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause:
Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
 yyyx hex: yy = component number, xx = fault cause
 xx = 20 hex:
 Error in the telegram header.
 xx = 23 hex:
 Receive error: The telegram buffer memory contains an error.
 xx = 42 hex:
 Send error: The telegram buffer memory contains an error.
 xx = 43 hex:
 Send error: The telegram buffer memory contains an error.
Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

235845
<location>TM DRIVE-CLiQ: Cyclic data transfer error
Message value:
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause:
A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the encoder involved.
Fault value (r0949, interpret hexadecimal):
 yyyx hex: yy = component number, xx = fault cause
 xx = 0B hex:
 Synchronization error during alternating cyclic data transfer.
Remedy:
carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
235850 <location>TM: Internal software error

Message value: %1
Drive object: All objects
Reaction: A_INFEED: OFF1 (NONE, OFF2)
 SERVO: OFF1 (NONE, OFF2, OFF3)
 VECTOR: OFF1 (NONE, OFF2, OFF3)
Acknowledge: POWER ON
Cause: An internal software error in the Terminal Module (TM) has occurred.
Fault value (r0949, interpret decimal):
1: Background time slice is blocked.
2: Checksum over the code memory is not OK.
Remedy: - replace the Terminal Module (TM).
 - if required, upgrade the firmware in the Terminal Module.
 - contact the Hotline.

235851 <location>TM DRIVE-CLiQ (CU): Sign-of-life missing

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.
Remedy: Upgrade the firmware of the component involved.

235860 <location>TM DRIVE-CLiQ (CU): Telegram error

Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved.
Fault value (r0949, interpret hexadecimal):
xx = 11 hex = 17 dec:
CRC error and the receive telegram is too early.
xx = 01 hex = 01 dec:
Checksum error (CRC error).
xx = 12 hex = 18 dec:
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 02 hex = 02 dec:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 13 hex = 19 dec:
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 03 hex = 03 dec:
Telegram is longer than specified in the length byte or in the receive list.
xx = 14 hex = 20 dec:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 04 hex = 04 dec:
The length of the receive telegram does not match the receive list.
xx = 15 hex = 21 dec:
The type of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 05 hex = 05 dec:
The type of the receive telegram does not match the receive list.
xx = 16 hex = 22 dec:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
xx = 06 hex = 06 dec:
The address of the power unit in the telegram and in the receive list do not match.
xx = 19 hex = 25 dec:
The error bit in the receive telegram is set and the receive telegram is too early.
xx = 09 hex = 09 dec:
The error bit in the receive telegram is set.
xx = 10 hex = 16 dec:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

235885 <location>TM DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause:
A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved.
The nodes do not send and receive in synchronism.
Fault value (c0949, interpret hexadecimal):
yyyy hex: yy = component number, xx = fault cause
xx = 1A hex = 26 dec:
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
xx = 21 hex = 33 dec:
The cyclic telegram has not been received.
xx = 22 hex = 34 dec:
Timeout in the telegram receive list.
xx = 40 hex = 64 dec:
Timeout in the telegram send list.
xx = 62 hex = 98 dec:
Error at the transition to cyclic operation.

Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

235886 <location>TM DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved. Data were not able to be sent.

Fault value (r0949, interpret hexadecimal):

- yyxx hex: yy = component number, xx = fault cause
- xx = 41 hex:
 - Telegram type does not match send list.

Remedy:
- Carry out a POWER ON.

Message value:

235887 <location>TM DRIVE-CLiQ (CU): Component fault

Drive object: All objects

Reaction: OFF1 (OFF2)

Acknowledge: IMMEDIATELY

Cause: Fault detected on the DRIVE-CLiQ component (Terminal Module) involved. Faulty hardware cannot be excluded.

Fault value (r0949, interpret hexadecimal):

- yyxx hex: yy = component number, xx = fault cause
- xx = 20 hex:
 - Error in the telegram header.
- xx = 23 hex:
 - Receive error: The telegram buffer memory contains an error.
- xx = 42 hex:
 - Send error: The telegram buffer memory contains an error.
- xx = 43 hex:
 - Send error: The telegram buffer memory contains an error.
- xx = 60 hex:
 - Response received too late during runtime measurement.
- xx = 61 hex:
 - Time taken to exchange characteristic data too long.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

Message value:

235895 <location>TM DRIVE-CLiQ (CU): Alternating cyclic data transfer error

Drive object: All objects

Reaction: OFF1 (OFF2)

Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communication error has occurred from the Terminal Module (TM) to the Control Unit involved.

Fault value (r0949, interpret hexadecimal):

- yyxx hex: yy = component number, xx = fault cause
- xx = 0B hex:
 - Synchronization error during alternating cyclic data transfer.

Remedy:
- Carry out a POWER ON.
- See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

Message value:

235896 <location>TM DRIVE-CLiQ (CU): Inconsistent component properties

Drive object: All objects

Reaction: A_INFEED: OFF2 (NONE, OFF1)
 SERVO: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)
 VECTOR: OFF2 (IASC/DCBRAKE, NONE, OFF1, OFF3, STOP1, STOP2)

Acknowledge: IMMEDIATELY
Cause: The properties of the DRIVE-CLiQ component (Terminal Module), specified by the fault value, have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g., that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):
Component number.

Remedy:
- when replacing cables, only use cables with the same length as the original cables.
- when replacing components, use the same components and firmware releases.
- carry out a POWER ON.

235899 <location>TG: Unknown fault
Message value: New message: %1
Drive object: All objects
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A fault has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
Fault number.
Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy:
- replace the firmware on the Terminal Module by an older firmware version (r0158).
- upgrade the firmware on the Control Unit (r0018).

235903 <location>TG: I2C bus error occurred
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred while accessing the internal I2C bus of the Terminal Module.
Remedy: Replace the Terminal Module.

235904 <location>TG: EEPROM
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An error has occurred accessing the non-volatile memory on the Terminal Module.
Remedy: Replace the Terminal Module.

235905 <location>TG: Parameter access
Message value: -
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The Control Unit attempted to write an illegal parameter value to the Terminal Module.
Remedy:
- check whether the firmware version of the Terminal Module (r0158) matches the firmware version of Control Unit (r0018).
- if required, replace the Terminal Module.
Note: The firmware versions that match each other are in the readme.txt file on the memory card.
235906 <location>TM: 24 V power supply missing
Message %1
value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The 24 V power supply for the digital outputs is missing.
Alarm value (r2124, interpret hexadecimal):
01: TM17 24 V power supply for DI/DO 0 ... 7 missing.
02: TM17 24 V power supply for DI/DO 8 ... 15 missing.
04: TM15 24 V power supply for DI/DO 0 ... 7 (X520) missing.
08: TM15 24 V power supply for DI/DO 8 ... 15 (X521) missing.
10: TM15 24 V power supply for DI/DO 16 ... 23 (X522) missing.
20: TM41 24 V power supply for DI/DO 0 ... 3 missing.
Remedy: Check the terminals for the power supply voltage (L1+, L2+, L3+, M).

235907 <location>TM: Hardware initialization error
Message %1
value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The Terminal Module was not successfully initialized.
Alarm value (r2124, interpret hexadecimal):
01: TM17 or TM41 - incorrect configuration request.
02: TM17 or TM41 - programming not successful.
04: TM17 or TM41 - invalid time stamp
Remedy: Carry out a POWER ON.

235910 <location>TM: Module overtemperature
Message -
value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The temperature in the module has exceeded the highest permissible limit.
Remedy: - reduce the ambient temperature.
- replace the Terminal Module.

235911 <location>TM: Clock synchronous operation sign-of-life missing
Message -
value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The maximum permissible number of errors in the master sign-of-life (clock synchronous operation) has been exceeded in cyclic operation.
When the alarm is output, the module outputs are reset up to the next synchronization.
Remedy: - check the physical bus configuration (terminating resistor, shielding, etc.).
- check the interconnection of the master sign-of-life (r4201 via p0915).
- check whether the master correctly sends the sign-of-life (e.g. set up a trace with r4201.12 ...
r4201.15 and trigger signal r4301.9).
- check the bus and master for utilization level (e.g. bus cycle time Tdp was set too short).
235920 <location>TM: Temperature sensor fault
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: When evaluating the temperature sensor, an error occurred.
Alarm value (r2124, interpret decimal):
1: Wire breakage or sensor not connected (KTY: R > 1630 Ohm).
2: Measured resistance too low (PTC: R < 20 Ohm, KTY: R < 50 Ohm).
Remedy:
- check that the sensor is connected correctly.
- replace sensor.

235999 <location>TM: Unknown alarm
Message value: New message: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred on the Terminal Module that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Alarm value (r2124, interpret decimal):
Alarm number.
Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:
- replace the firmware on the Terminal Module by an older firmware version (r0158).
- upgrade the firmware on the Control Unit (r0018).

236207 <location>Hub: Overtemperature component
Message value: %1
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: Temperature on DRIVE-CLiQ Hub Module has exceeded fault threshold.
Fault value (r0949, interpret decimal):
Current temperature in 0.1°C resolution.
Remedy:
- Check ambient temperature at component installation location.
- replace the component involved.

236211 <location>Hub: Overtemperature alarm component
Message value: %1
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: Temperature on DRIVE-CLiQ Hub Module has exceeded alarm threshold.
Alarm value (r2124, interpret decimal):
Current temperature in 0.1°C resolution.
Remedy:
- Check ambient temperature at component installation location.
- replace the component involved.
236214 <location>Hub: overvoltage fault 24 V supply
Message value: %1
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: 24 V power supply on DRIVE-CLiQ Hub Module has exceeded fault threshold.
Fault value (r0949, interpret decimal):
Current operating voltage in 0.1 °C resolution.
Remedy: - check the supply voltage of the component involved.
- replace the component involved.

236216 <location>Hub: undervoltage fault 24 V supply
Message value: %1
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction: NONE (OFF1, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: 24 V power supply on DRIVE-CLiQ Hub Module has undershot fault threshold.
Fault value (r0949, interpret decimal):
Current operating voltage in 0.1 °C resolution.
Remedy: - check the supply voltage of the component involved.
- replace the component involved.

236217 <location>Hub: undervoltage alarm 24 V supply
Message value: %1
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: 24 V power supply on DRIVE-CLiQ Hub Module has undershot alarm threshold.
Alarm value (r2124, interpret decimal):
Current operating voltage in 0.1 °C resolution.
Remedy: - check the supply voltage of the component involved.
- replace the component involved.

236800 <location>Hub: group signal
Message value: -
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The DRIVE-CLiQ Hub Module has detected at least one fault.
Remedy: Evaluates other current messages.

236801 <location>Hub DRIVE-CLiQ: sign-of-life missing
Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: DRIVE-CLiQ communication error from Control Unit to DRIVE-CLiQ Hub Module in question.
Alarm value (r2124, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex = 10 dec:
The sign-of-life bit in the receive telegram is not set.
Remedy:
- check the DRIVE-CLiQ connection.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

236802 <location>Hub: Time slice overflow
Message value:
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction: A_INF: OFF2 (NONE)
 SERVO: NONE
 VECTOR: NONE
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A time slice overflow has occurred on the DRIVE-CLiQ Hub Module.
Fault value (r0949, interpret decimal):
xx: Time slice number xx
Remedy:
- reduce the current controller frequency.
- carry out a POWER ON (power off/on) for all components.
- upgrade firmware to later version.
- contact the Hotline.

236804 <location>Hub: Checksum error
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: A checksum error (CRC) occurred when the program memory on the DRIVE-CLiQ Hub Module was read out.
Alarm value (r2124, interpret hexadecimal):
01: EEPROM access error.
02: Too many blocks in the EEPROM.
Remedy:
- check whether the permissible ambient temperature for the component is maintained.
- Replace DRIVE-CLiQ Hub Module.

236805 <location>Hub: EEPROM checksum incorrect
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: The internal parameter data on the DRIVE-CLiQ Hub Module are incorrect.
Alarm value (r2124, interpret hexadecimal):
01: EEPROM access error.
02: Too many blocks in the EEPROM.
Remedy:
- check whether the permissible ambient temperature for the component is maintained.
- Replace DRIVE-CLiQ Hub Module.

236820 <location>Hub DRIVE-CLiQ: Telegram error
Message value:
Drive object: All objects
Reaction: IMMEDIATELY
Acknowledge: IMMEDIATELY
Cause: DRIVE-CLiQ communication error from Control Unit to DRIVE-CLiQ Hub Module in question.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 01 hex = 1 dec:
Checksum error (CRC error).
xx = 02 hex = 2 dec:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 03 hex = 3 dec:
Telegram is longer than specified in the length byte or in the receive list.
xx = 04 hex = 4 dec:
The length of the receive telegram does not match the receive list.
xx = 05 hex = 5 dec:
The type of the receive telegram does not match the receive list.
xx = 06 hex = 6 dec:
The address of the component in the telegram and in the receive list do not match.
xx = 07 hex = 7 dec:
A SYNC telegram is expected - but the receive telegram is not a SYNC telegram.
xx = 08 hex = 8 dec:
No SYNC telegram is expected - but the receive telegram is one.
xx = 09 hex = 9 dec:
The error bit in the receive telegram is set.
xx = 10 hex = 16 dec:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

236835 <location>Hub DRIVE-CLiQ: Cyclic data transfer error
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause:
DRIVE-CLiQ communication error from Control Unit to DRIVE-CLiQ Hub Module in question. The
nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 21 hex = 33 dec:
The cyclic telegram has not been received.
xx = 22 hex = 34 dec:
Timeout in the telegram receive list.
xx = 40 hex = 64 dec:
Timeout in the telegram send list.

Remedy:
- carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

236836 <location>Hub DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause:
DRIVE-CLiQ communication error from Control Unit to DRIVE-CLiQ Hub Module in question. Data
were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex = 65 dec:
Telegram type does not match send list.

Remedy:
Carry out a POWER ON.

236837 <location>Hub DRIVE-CLiQ: Component fault
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded.

Fault value (r0949, interpret hexadecimal):

 yyxx hex: yy = component number, xx = fault cause
 xx = 20 hex = 32 dec: Error in the telegram header.
 xx = 42 hex = 66 dec: Send error: The telegram buffer memory contains an error.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

236845 <location>HUB DRIVE-CLiQ: Cyclic data transfer error

Message
Component number: %1, fault cause: %2

Drive object: All objects

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: DRIVE-CLiQ communication error from Control Unit to DRIVE-CLiQ Hub Module in question. Fault value (r0949, interpret hexadecimal):

 yyxx hex: yy = component number, xx = fault cause
 xx = 0B hex = 11 dec: Synchronization error during alternating cyclic data transfer.

Remedy: Carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

236851 <location>HUB DRIVE-CLiQ (CU): Sign-of-life missing

Message
Component number: %1, fault cause: %2

Drive object: All objects

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit. The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit. Fault value (r0949, interpret hexadecimal):

 yyxx hex: yy = component number, xx = fault cause
 xx = 0A hex = 10 dec: The sign-of-life bit in the receive telegram is not set.

Remedy: Upgrade the firmware of the component involved.

236860 <location>HUB DRIVE-CLiQ (CU): Telegram error

Message
Component number: %1, fault cause: %2

Drive object: All objects

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit. Fault value (r0949, interpret hexadecimal):

 yyxx hex: yy = component number, xx = fault cause
 xx = 11 hex = 17 dec: Checksum error (CRC error) and receive telegram is too early.
 xx = 01 hex = 01 dec: Checksum error (CRC error).
 xx = 12 hex = 18 dec: The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 02 hex = 02 dec:
The telegram is shorter than specified in the length byte or in the receive list.
xx = 13 hex = 19 dec:
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 03 hex = 03 dec:
The telegram is longer than specified in the length byte or in the receive list.
xx = 14 hex = 20 dec:
The length of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 04 hex = 04 dec:
The length of the receive telegram does not match the receive list.
xx = 15 hex = 21 dec:
The type of the receive telegram does not match the receive list and the receive telegram is too early.
xx = 05 hex = 05 dec:
The type of the receive telegram does not match the receive list.
xx = 16 hex = 22 dec:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.
xx = 06 hex = 06 dec:
The address of the power unit in the telegram and in the receive list do not match.
xx = 19 hex = 25 dec:
The error bit in the receive telegram is set and the receive telegram is too early.
xx = 09 hex = 09 dec:
The error bit in the receive telegram is set.
xx = 10 hex = 16 dec:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

236885 <location>Hub DRIVE-CLiQ (CU): Cyclic data transfer error
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause:
DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyyy hex: yy = component number, xx = fault cause
xx = 1A hex = 26 dec:
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.
xx = 21 hex = 33 dec:
The cyclic telegram has not been received.
xx = 22 hex = 34 dec:
Timeout in the telegram receive list.
xx = 40 hex = 64 dec:
Timeout in the telegram send list.
xx = 62 hex = 98 dec:
Error at the transition to cyclic operation.
Remedy:
- Check supply voltage of component involved.
- carry out a POWER ON.
- replace the component involved.

236886 <location>Hub DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
\[yyyx \text{ hex: } y = \text{component number, } x = \text{fault cause} \]
\[xx = 41 \text{ hex} = 65 \text{ dec} \]
Telegram type does not match send list.

Remedy: Carry out a POWER ON.

236887

<location>Hub DRIVE-CLiQ (CU): Component fault

Message value: Component number: %1, fault cause: %2

Drive object: All objects

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: Fault detected on the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module) involved. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
\[yyyx \text{ hex: } y = \text{component number, } x = \text{fault cause} \]
\[xx = 20 \text{ hex} = 32 \text{ dec} \]
Error in the telegram header.
\[xx = 23 \text{ hex} = 35 \text{ dec} \]
Receive error: The telegram buffer memory contains an error.
\[xx = 42 \text{ hex} = 66 \text{ dec} \]
Send error: The telegram buffer memory contains an error.
\[xx = 43 \text{ hex} = 67 \text{ dec} \]
Send error: The telegram buffer memory contains an error.
\[xx = 60 \text{ hex} = 96 \text{ dec} \]
Response received too late during runtime measurement.
\[xx = 61 \text{ hex} = 97 \text{ dec} \]
Time taken to exchange characteristic data too long.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

236895

<location>Hub DRIVE-CLiQ (CU): Alternating cyclic data transfer error

Message value: Component number: %1, fault cause: %2

Drive object: All objects

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: DRIVE-CLiQ communication error from DRIVE-CLiQ Hub Module in question to Control Unit.
Fault value (r0949, interpret hexadecimal):
\[yyyx \text{ hex: } y = \text{component number, } x = \text{fault cause} \]
\[xx = 0B \text{ hex} = 11 \text{ dec} \]
Synchronization error during alternating cyclic data transfer.

Remedy: Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

236896

<location>Hub DRIVE-CLiQ (CU): Inconsistent component properties

Message value: Component number: %1

Drive object: All objects

Reaction: NONE

Acknowledge: IMMEDIATELY

Cause: The properties of the DRIVE-CLiQ component (DRIVE-CLiQ Hub Module) specified by the fault value have changed in an incompatible fashion with respect to the properties when booted. One cause can be, e.g. that a DRIVE-CLiQ cable or DRIVE-CLiQ component has been replaced.
Fault value (r0949, interpret decimal):
Component number.
Remedy: - when replacing cables, only use cables with the same length as the original cables.
- when replacing components, use the same components and firmware releases.
- carry out a POWER ON.

236899 <location>Hub: Unknown fault
Message value: New message: %1
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction: A_INFEED: NONE (OFF1, OFF2)
SERVO: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
VECTOR: NONE (IASC/DCBRAKE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: A fault occurred on the DRIVE-CLiQ Hub Module that cannot be interpreted by the Control Unit firmware. This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Fault value (r0949, interpret decimal):
Fault number.
Note: If required, the significance of this new fault can be read about in a more recent description of the Control Unit.
Remedy: - Replace the firmware on the DRIVE-CLiQ Hub Module with older firmware (r0158).
- upgrade the firmware on the Control Unit (r0018).

236999 <location>Hub: Unknown alarm
Message value: New message: %1
Drive object: A_INF, B_INF, HUB, S_INF, SERVO, TM41, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: An alarm occurred on the DRIVE-CLiQ Hub Module that cannot be interpreted by the Control Unit firmware.
This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
Alarm value (r2124, interpret decimal):
Alarm number.
Note: If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy: - Replace the firmware on the DRIVE-CLiQ Hub Module with older firmware (r0158).
- upgrade the firmware on the Control Unit (r0018).

240000 <location>Fault at DRIVE-CLiQ socket X100
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault has occurred at the drive object at the DRIVE-CLiQ socket X100.
Fault value (r0949, interpret decimal):
First fault that has occurred for this drive object.
Remedy: Evaluate the fault buffer of the specified object.

240001 <location>Fault at DRIVE-CLiQ socket X101
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault has occurred at the drive object at the DRIVE-CLiQ socket X101.
Fault value (r0949, interpret decimal):
First fault that has occurred for this drive object.
Remedy: Evaluate the fault buffer of the specified object.

240002 <location>Fault at DRIVE-CLiQ socket X102
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault has occurred at the drive object at the DRIVE-CLiQ socket X102.
Fault value (r0949, interpret decimal):
First fault that has occurred for this drive object.
Remedy: Evaluate the fault buffer of the specified object.

240003 <location>Fault at DRIVE-CLiQ socket X103
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault has occurred at the drive object at the DRIVE-CLiQ socket X103.
Fault value (r0949, interpret decimal):
First fault that has occurred for this drive object.
Remedy: Evaluate the fault buffer of the specified object.

240004 <location>Fault at DRIVE-CLiQ socket X104
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault has occurred at the drive object at the DRIVE-CLiQ socket X104.
Fault value (r0949, interpret decimal):
First fault that has occurred for this drive object.
Remedy: Evaluate the fault buffer of the specified object.

240005 <location>Fault at DRIVE-CLiQ socket X105
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: A fault has occurred at the drive object at the DRIVE-CLiQ socket X105.
Fault value (r0949, interpret decimal):
First fault that has occurred for this drive object.
Remedy: Evaluate the fault buffer of the specified object.

240100 <location>Alarm at DRIVE-CLiQ socket X100
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred at the drive object at the DRIVE-CLiQ socket X100.
Alarm value (r2124, interpret decimal):
First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.
240101 <location>Alarm at DRIVE-CLiQ socket X101
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred at the drive object at the DRIVE-CLiQ socket X101. Alarm value (r2124, interpret decimal): First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.

240102 <location>Alarm at DRIVE-CLiQ socket X102
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred at the drive object at the DRIVE-CLiQ socket X102. Alarm value (r2124, interpret decimal): First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.

240103 <location>Alarm at DRIVE-CLiQ socket X103
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred at the drive object at the DRIVE-CLiQ socket X103. Alarm value (r2124, interpret decimal): First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.

240104 <location>Alarm at DRIVE-CLiQ socket X104
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred at the drive object at the DRIVE-CLiQ socket X104. Alarm value (r2124, interpret decimal): First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.

240105 <location>Alarm at DRIVE-CLiQ socket X105
Message value: %1
Drive object: All objects
Reaction: NONE
Acknowledge: NONE
Cause: An alarm has occurred at the drive object at the DRIVE-CLiQ socket X105. Alarm value (r2124, interpret decimal): First alarm that has occurred for this drive object.
Remedy: Evaluate the alarm buffer of the specified object.
240799 <location>CX32: Configured transfer end time exceeded
Message value:
Drive object: All objects
Reaction: NONE
Acknowledge: IMMEDIATELY
Cause: The configured transfer end time when transferring the cyclic actual values was exceeded.
Remedy: - carry out a POWER ON (power off/on) for all components.
- contact the Hotline.

240801 <location>CX32 DRIVE-CLiQ: Sign-of-life missing
Message value:
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex:
The sign-of-life bit in the receive telegram is not set.
Remedy: - carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

240820 <location>CX32 DRIVE-CLiQ: Telegram error
Message value:
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 01 hex:
CRC error.
xx = 02 hex:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 03 hex:
Telegram is longer than specified in the length byte or in the receive list.
xx = 04 hex:
The length of the receive telegram does not match the receive list.
xx = 05 hex:
The type of the receive telegram does not match the receive list.
xx = 06 hex:
The address of the component in the telegram and in the receive list do not match.
xx = 07 hex:
A SYNC telegram is expected - but the receive telegram is not a SYNC telegram.
xx = 08 hex:
No SYNC telegram is expected - but the receive telegram is one.
xx = 09 hex:
The error bit in the receive telegram is set.
xx = 10 hex:
The receive telegram is too early.
Remedy: - carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)
240835 <location>CX32 DRIVE-CLiQ: Cyclic data transfer error
Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):
yyx hex: yy = component number, xx = fault cause
xx = 21 hex:
The cyclic telegram has not been received.
xx = 22 hex:
Timeout in the telegram receive list.
xx = 40 hex:
Timeout in the telegram send list.
Remedy:
- carry out a POWER ON.
- replace the component involved.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

240836 <location>CX32 DRIVE-CLiQ: Send error for DRIVE-CLiQ data
Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved. Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.
Remedy:
Carry out a POWER ON.

240837 <location>CX32 DRIVE-CLiQ: Component fault
Message value: Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
yyx hex: yy = component number, xx = fault cause
xx = 20 hex:
Error in the telegram header.
xx = 23 hex:
Receive error: The telegram buffer memory contains an error.
xx = 42 hex:
Send error: The telegram buffer memory contains an error.
xx = 43 hex:
Send error: The telegram buffer memory contains an error.
Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts,...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.
240845 <location>CX32 DRIVE-CLiQ: Cyclic data transfer error
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the Control Unit to the controller extension involved.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.
Remedy: Carry out a POWER ON.
See also: p9916 (DRIVE-CLiQ data transfer error shutdown threshold slave)

240851 <location>CX32 DRIVE-CLiQ (CU): Sign-of-life missing
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
The DRIVE-CLiQ component did not set the sign-of-life to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0A hex:
The sign-of-life bit in the receive telegram is not set.
Remedy: Upgrade the firmware of the component involved.

240860 <location>CX32 DRIVE-CLiQ (CU): Telegram error
Message value:
Component number: %1, fault cause: %2
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 11 hex:
CRC error and the receive telegram is too early.
xx = 01 hex:
CRC error.
xx = 12 hex:
The telegram is shorter than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 02 hex:
Telegram is shorter than specified in the length byte or in the receive list.
xx = 13 hex:
The telegram is longer than that specified in the length byte or in the receive list and the receive telegram is too early.
xx = 03 hex:
Telegram is longer than specified in the length byte or in the receive list.
xx = 14 hex:
The length of the receive telegram does not match the receive list and the receive telegram is too early.

xx = 04 hex:
The length of the receive telegram does not match the receive list.

xx = 15 hex:
The type of the receive telegram does not match the receive list and the receive telegram is too early.

xx = 05 hex:
The type of the receive telegram does not match the receive list.

xx = 16 hex:
The address of the power unit in the telegram and in the receive list does not match and the receive telegram is too early.

xx = 06 hex:
The address of the power unit in the telegram and in the receive list do not match.

xx = 19 hex:
The error bit in the receive telegram is set and the receive telegram is too early.

xx = 09 hex:
The error bit in the receive telegram is set.

xx = 10 hex:
The receive telegram is too early.

Remedy:
- carry out a POWER ON.
- check the electrical cabinet design and cable routing for EMC compliance
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

240885

<location>CX32 DRIVE-CLiQ (CU): Cyclic data transfer error**

Message value:
Component number: %1, fault cause: %2

Drive object:
All objects

Reaction:
OFF2

Acknowledge:
IMMEDIATELY

Cause:
A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
The nodes do not send and receive in synchronism.
Fault value (r0949, interpret hexadecimal):

yyxx hex: yy = component number, xx = fault cause

xx = 1A hex:
Sign-of-life bit in the receive telegram not set and the receive telegram is too early.

xx = 21 hex:
The cyclic telegram has not been received.

xx = 22 hex:
Timeout in the telegram receive list.

xx = 40 hex:
Timeout in the telegram send list.

xx = 62 hex:
Error at the transition to cyclic operation.

Remedy:
- check the power supply voltage of the component involved.
- carry out a POWER ON.
- replace the component involved.

See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

240886

<location>CX32 DRIVE-CLiQ (CU): Error when sending DRIVE-CLiQ data**

Message value:
Component number: %1, fault cause: %2

Drive object:
All objects

Reaction:
OFF2

Acknowledge:
IMMEDIATELY
Overview of Alarms 03/2009

SINAMICS-Alarms

Cause: A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
Data were not able to be sent.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 41 hex:
Telegram type does not match send list.

Remedy: Carry out a POWER ON.

240887 <location>CX32 DRIVE-CLiQ (CU): Component fault

Message value:
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: Fault detected on the DRIVE-CLiQ component involved. Faulty hardware cannot be excluded.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 20 hex:
Error in the telegram header.
xx = 23 hex:
Receive error: The telegram buffer memory contains an error.
xx = 42 hex:
Send error: The telegram buffer memory contains an error.
xx = 43 hex:
Send error: The telegram buffer memory contains an error.
xx = 60 hex:
Response received too late during runtime measurement.
xx = 61 hex:
Time taken to exchange characteristic data too long.

Remedy:
- check the DRIVE-CLiQ wiring (interrupted cable, contacts, ...).
- check the electrical cabinet design and cable routing for EMC compliance
- if required, use another DRIVE-CLiQ socket (p9904).
- replace the component involved.

240895 <location>CX32 DRIVE-CLiQ (CU): Cyclic data transfer error

Message value:
Drive object: All objects
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: A DRIVE-CLiQ communications error has occurred from the controller extension involved to the Control Unit.
Fault value (r0949, interpret hexadecimal):
yyxx hex: yy = component number, xx = fault cause
xx = 0B hex:
Synchronization error during alternating cyclic data transfer.

Remedy: Carry out a POWER ON.
See also: p9915 (DRIVE-CLiQ data transfer error shutdown threshold master)

249150 <location>Cooling system: Fault occurred

Message value:
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: The cooling system signals a general fault.

Remedy:
- check the wiring between the cooling system and the input terminal (Terminal Module).
- check the external control device for the cooling system.
See also: p0266 (Cooling system, feedback signals, signal source)
249151 <location>Cooling system: Conductivity has exceeded the fault threshold

Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The conductivity of the cooling liquid has exceeded the selected fault threshold (p0269[2]).
See also: p0261 (Cooling system, starting time 2), p0262 (Cooling system, fault conductivity delay time), p0266 (Cooling system, feedback signals, signal source)
Remedy: Check the device to de-ionize the cooling liquid.

249152 <location>Cooling system: ON command feedback signal missing

Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The feedback signal of the ON command of the cooling system is missing.
- after the ON command, the feedback signal has not been received within the selected starting time (p0260).
- the feedback signal has failed in operation.
See also: p0260 (Cooling system, starting time 1), r0267 (Cooling system status word)
Remedy: - check the wiring between the cooling system and the input terminal (Terminal Module).
- check the external control device for the cooling system.

249153 <location>Cooling system: Liquid flow too low

Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The drive converter cooling system signals that the cooling liquid flow is too low.
- after the ON command, the feedback signal has not been received within the selected starting time (p0260).
- in operation, the feedback signal has failed for longer than the permitted failure time (p0263).
See also: p0260 (Cooling system, starting time 1), p0263 (Cooling system fault liquid flow, delay time), r0267 (Cooling system status word)
Remedy: - check the wiring between the cooling system and the input terminal (Terminal Module).
- check the external control device for the cooling system.

249154 <location>Cooling system: Liquid leak is present

Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The liquid leakage monitoring function has responded.
Caution: Before this fault is re-parameterized as an alarm, you must ensure that the drive is shut down if cooling water is lost.
See also: r0267 (Cooling system status word)
Remedy: - check the cooling system for leaks in the cooling circuit.
- check the wiring of the input terminal (Terminal Module) used to monitor leaking fluid.
249155 <location>Cooling system: Power Stack Adapter, firmware version too old

Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2
Acknowledge: POWER ON
Cause: The firmware version in the Power Stack Adapter (PSA) is too old and does not support the liquid cooling.
Remedy: Upgrade the firmware. Check EEPROM data.

249156 <location>Cooling system: Cooling liquid temperature has exceeded the fault threshold

Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The cooling liquid intake temperature has exceeded the permanently set fault threshold.
Remedy: Check the cooling system and the ambient conditions.

249170 <location>Cooling system: Alarm has occurred

Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The cooling system signals a general alarm.
Remedy: - check the wiring between the cooling system and the input terminal (Terminal Module).
- check the external control device for the cooling system.

249171 <location>Cooling system: Conductivity has exceeded the alarm threshold

Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO
Reaction: NONE
Acknowledge: NONE
Cause: The conductivity of the cooling liquid has exceeded the selected alarm threshold (p0269[1]).
See also: p0261 (Cooling system, starting time 2), p0262 (Cooling system, fault conductivity delay time), p0266 (Cooling system, feedback signals, signal source)
Remedy: Check the device to de-ionize the cooling liquid.

249171 <location>Cooling system: Conductivity has exceeded the alarm threshold

Message value: -
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The conductivity monitoring of the cooling liquid is set (r0267 bit 7, from p0266 index 7).
See also: p0261, p0262, p0266, r0267
Remedy: Check the device to de-ionize the cooling liquid.
249172 <location>Cooling system: Conductivity actual value is not valid
Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: When monitoring the conductivity of the cooling liquid, there is a fault in the wiring or in the sensor.
Remedy: - check the wiring between the cooling system and the Power Stack Adapter (PSA).
 - check the function of the sensor to measure the conductivity.

249173 <location>Cooling system: Cooling liquid temperature has exceeded the alarm threshold
Message value: -
Drive object: A_INF, B_INF, S_INF, SERVO, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The cooling liquid intake temperature has exceeded the specified alarm threshold.
Remedy: Check the cooling system and the ambient conditions.

249200 <location>Excitation group signal fault
Message value: %1
Drive object: VECTOR
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The excitation sequence control signals a fault.
Fault value (r0949, hexadecimal):
- Bit 0: When powered down or when powering down the excitation, the signal "excitation ready to be powered up feedback signal" was not received within the monitoring time.
- Bit 1: After an ON command, the signal "excitation ready feedback signal" was not received within the monitoring time.
- Bit 2: After the pulses were enabled, the signal "excitation operational feedback signal" was not received within the monitoring time.
- Bit 3: The "excitation group signal fault" signal is present.
Remedy: - check the excitation.
 - check commands, feedback signals and BICO interconnections.

249201 <location>Excitation group signal alarm
Message value: -
Drive object: VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: The "excitation group signal alarm" signal is present.
Remedy: Check the excitation equipment.

250001 <location>COMM BOARD: Alarm 1
Message value: %1
Drive object: A_INF, B_INF, CU_LINK, CU_S, HUB, S_INF, SERVO, TB30, TM15, TM15DI_DO, TM17, TM31,
 TM41, TM54F_MA, TM54F_SL, VECTOR
Reaction: NONE
Acknowledge: NONE
Cause: CBE20: A PROFINET controller attempts to establish a connection using an incorrect configuring telegram. The PROFINET version (V2.1/V2.2) of the project (HW Config) is not compatible with the CBE20 firmware.

Remedy: CBE20: Upgrade the PROFINET version of the project (HW Config) and/or the CBE20 firmware to make them compatible. See also: p8835 (CBE20 firmware selection)
2.4 Drives alarms

300406 Problem in the non-cyclic communication for basic address %1, additional information %2, %3, %4

Definitions:
For PROFIdrive only:
A problem occurred during the non-cyclic communication with the logical start address. The additional information defines the location of the problem. If the logical start address 0 is output, only the additional information is relevant.

Reaction:
Alarm display.
Warning display.

Remedy:
Please inform the authorized personnel/service department. The alarm can be suppressed with MD11411 $MN_ENABLE_ALARM_MASK bit 1 == 0

Program Continuation:
Clear alarm with the Delete key or NC START.

300410 Axis %1 drive %2 error when storing a file (%3, %4)

Parameters:
%1 = NC axis number
%2 = Drive number
%3 = Error code 1
%4 = Error code 2

Definitions:
An attempt to save a data block, e.g., the result of a measuring function, in the file system has failed. On error code 1 == 291: An error occurred during preparation of the ACC information. Basic information prepared on the drive contains an error or has an unknown format.
On error code 1 == 292: Memory shortage during preparation of the ACC information.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
- Please inform the authorized personnel/service department.
- Create more space in the file system. It is normally sufficient to delete 2 NC programs or to free 4 - 8 Kbytes of memory. If these remedies do not work, it will be necessary to increase the number of files per directory or the size of the file system itself (this will require a complete data backup).
 - Change settings of machine data
 - 18280 $MM_NUM_FILES_PER_DIR
 - 18320 $MM_NUM_FILES_IN_FILESYSTEM
 - 18350 $MM_USER_FILE_MEM_MINIMUM
 - and, if necessary, of
 - 18270 $MM_NUM_SUBDIR_PER_DIR,
 - 18310 $MM_NUM_DIR_IN_FILESYSTEM,
 - Power On
 - Reload saved data
- On error code 1 == 291: Replace the drive software and use version with suitable ACC basic information.
- On error code 1 == 292: Replace the drive software and use fewer different versions of the drive software.

Program Continuation:
Clear alarm with the RESET key. Restart part program

300411 Axis %1 drive %2 error when reading a file (%3, %4)

Parameters:
%1 = NC axis number
%2 = Drive number
%3 = Error code 1
%4 = Error code 2

Definitions:
An attempt to read a data block, e.g., a drive boot file, from the file system has failed. The data block or the file system is damaged.

Reaction:
Interface signals are set.
Alarm display.

Remedy:
If the error occurred during power-up, i.e., it is probably connected to a drive boot file, delete all boot files and load them back into the control from the back-up copy.
Program Continuation: Clear alarm with the RESET key. Restart part program.

300412 Error when storing a file (%1, %2)
Parameters: %1 = Error code 1
 %2 = Error code 2
Definitions: An attempt to save a data block, e.g. the result of a measuring function, in the file system has failed.
Reaction: Interface signals are set.
Alarm display.
Remedy: Please inform the authorized personnel/service department. Create more space in the file system. It is normally sufficient to delete 2 NC programs or to free 4 - 8 Kbytes of memory. If these remedies do not work, it will be necessary to increase the number of files per directory or the size of the file system itself. To do so, proceed as follows:
- Save all data
- Change settings of machine data
- 18280 $MM_NUM_FILES_PER_DIR
- 18320 $MM_NUM_FILES_IN_FILESYSTEM
- 18350 $MM_USER_FILE_MEM_MINIMUM
- and, if necessary, of
- 18270 $MM_NUM_SUBDIR_PER_DIR
- 18310 $MM_NUM_DIR_IN_FILESYSTEM
- Power On
- Reload saved data

Program Continuation: Clear alarm with the RESET key. Restart part program.

300413 Error when reading a file (%1, %2)
Parameters: %1 = Error code 1
 %2 = Error code 2
Definitions: An attempt to read a data block, e.g. a drive boot file, from the file system has failed. The data block or the file system is damaged.
Reaction: Interface signals are set.
Alarm display.
Remedy: If the error occurred during power-up, i.e. it is probably connected to a drive boot file, delete all boot files and load them back into the control from the back-up copy.

Program Continuation: Clear alarm with the RESET key. Restart part program.

300423 Measuring result could not be read (%1)
Parameters: %1 = Error code
Definitions: An attempt to read a measurement result has failed:
- Error code = 4: Not enough space for test result
- Error code = 16: Measurement not yet finished
Reaction: Interface signals are set.
Alarm display.
Remedy: Repeat measurement. Alter measuring time if necessary.

Program Continuation: Clear alarm with the RESET key. Restart part program.

380001 PROFIBUS/PROFINET: Startup error, reason %1 parameter %2 %3 %4.
Parameters: %1 = Cause of the error
 %2 = Parameter 1
 %3 = Parameter 2
 %4 = Parameter 3
Definitions:
An error occurred during startup of the PROFIBUS/PROFINET master.

Overview: Cause of the error, Par 1, Par 2, Par 3:
- 01 = DPM version, DPM version, DPA version, --
- 02 = DPM ramp-up timeout, DPM actual value status, DPM setpoint value status, --
- 03 = DPM ramp-up status, DPM actual value status, DPM setpoint value status, DPM error code
- 04 = DPM ramp-up error, DPM actual value status, DPM setpoint value status, DPM error code
- 05 = DPM-PLL sync error, --, --, --
- 07 = Alarm queue too long, Actual number, Setpoint number, --
- 08 = Unknown client, Client ID, --, --
- 09 = Client version, Client ID, Client version, DPA version
- 10 = Too many clients, Client number, max. number of clients, --
- 11 = Log basic address used several times; bus no.; slot no.; log basic address --
- 20 = Slave/device address used several times, slave/device address --
- 21 = Slave/device address unknown, slave/device address, --
- 22 = Errorneous configuration telegram, slave/device address, error code, --
- 23 = OMI incompatible (data), drive version, CDA version, --, --
- 24 = OMI incompatible (driver), drive version, CDA version, --, --
- 25 = CPI initialization failed, error code, --, --, --
- 26 = DMA not active
- 27 = Reserved
- 28 = Reserved
- 29 = Reserved
- The 1000s digit of the error cause = number of the affected bus

Clients are the following components of the control system that use the PROFIBUS/PROFINET:
Client ID = 1: PLC
Client ID = 2: NCK

Possible causes are:
- Error in contents of SDB
- Corruption of parts of the system program
- Hardware defect on NC component

Reaction:
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Remedy for 1-11
1. Check the control project, check MD11240 $MN_PROFIBUS_SDB_NUMBER, and reload it when using a user-specific SDB.
2. If the error still occurs, back up data, and restart the control with the standard values as per the as-delivered condition.
3. In case of correct ramp-up, reload the user data stage by stage.
4. If the error still occurs during ramp-up with standard values, reboot the system from the PC card or update the software.
5. If the error still occurs, replace the hardware.

Remedy for 20-21
1. Check/correct the addresses of the connected slaves/devices.

Remedy for 22
See SINAMICS warning 1903 for a description of the meaning behind the error codes.

1. Control the SDB
 - Check the type and length of the message frame
 - Match slot assignment with P978
2. Evaluate the drive alarms/warnings

Remedy for 23-24
1. Software replacement required
2. Remedy for 25
1. Change the message frame type
2. Reduce the number of slots
3. Reduce the number of slaves/devices
4. Create a new SDB
5. Software must be replaced
If the error has still not been able to be rectified after this procedure, send the error text to the control manufacturer.

Program Continuation:
Switch control OFF - ON.
380003 PROFIBUS/PROFINET: Operating error, reason %1 parameter %2 %3 %4.

Parameters:

- %1 = Cause of the error
- %2 = Parameter 1
- %3 = Parameter 2
- %4 = Parameter 3

Definitions:

An operating error occurred on the PROFIBUS/PROFINET in cyclic mode.

Overview: Cause of the error, Par 1, Par 2, Par 3:

- 01 = unknown alarm, alarm class, logical address, --
- 02 = DPM cycle timeout, DPM actual value status, DPM setpoint value status, --
- 03 = DPM cycle status, DPM actual value status, DPM setpoint value status, DPM error code
- 04 = DPM cycle error, DPM actual value status, DPM setpoint value status, DPM error code
- 05 = Client not registered, client number, max. number of clients, --
- 06 = Synchronisation error, number of sync violation, --, --
- 07 = Spinlock timeout, PLC spinlock, NCK spinlock, --
- 1000s digit of the error cause = number of the affected bus

Alarm class: (see alarm 380 060)
The following can be primary causes:

- For error cause 01: Data transfer error on the PROFIBUS/PROFINET
- For error causes 02, 03, 04: Error in contents of SDB
- For error causes 02, 03, 04, 05, 07: Corruption of parts of system program
- For error cause 06: The PCI bus cycle does not match the expected rate, so synchronization is not possible. The correct PCI bus cycle must be entered.

The error can also be caused by a hardware problem on the MCI module.

Reaction:

- Channel not ready.
- NC Start disable in this channel.
- Interface signals are set.
- Alarm display.

Remedy:

- For error cause 01:
 - Check the electrical and fault-related specifications for PROFIBUS/PROFINET, assess the cable installation
 - Check the terminating resistors of the PROFIBUS connectors (ON setting at ends of cables, otherwise OFF setting required)
 - Check slave/device
 - For error causes 02, 03, 04:
 - Check SDB
 - For error causes 02, 03, 04, 05, 07:
 - Follow the procedure described for troubleshooting alarm 380 001
 - For error cause 06:
 - The correct PCI bus cycle must be entered.
If the error cannot be eliminated by this procedure, send the error text to the control system manufacturer.

Program Continuation:

Clear alarm with the RESET key. Restart part program

380005 PROFIBUS/PROFINET: Bus %3 access conflict, type %1, counter %2

Parameters:

- %1 = Conflict type
- %2 = Serial number within a conflict sequence
- %3 = Number of the affected bus

Definitions:

An access conflict occurred on the PROFIBUS/PROFINET in cyclic mode: An attempt has been made in the NCK to write data to the bus or to read from the bus while cyclic data transfer was active. This may lead to inconsistent data.

Type 1: NCK attempts to read data before the cyclic transfer has finished on the bus.
Type 2: The NCK has not finished writing its data when the cyclic transfer begins again. Counter %2 contains a serial number starting at 1. A maximum of 10 alarms are output in succession. If no conflicts occur in a DP cycle, the counter is reset and new alarms are output again on the next conflict.

Reaction:

Alarm display.
Remedy:
- Check the timing again, in particular ensure that the settings in MD10050 $MN_SYSCLOCK_CYCLE_TIME and MD10062 $MN_POSCTRL_CYCLE_DELAY are correct. MD10062 $MN_POSCTRL_CYCLE_DELAY must be larger for type 1. MD10062 $MN_POSCTRL_CYCLE_DELAY must be smaller for type 2.
- If alarm-free operation cannot be achieved with any MD10062 $MN_POSCTRL_CYCLE_DELAY setting, MD10050 $MN_SYSCLOCK_CYCLE_TIME must be increased.
- If the error cannot be eliminated by this procedure, please make a note of the error text and contact the control system manufacturer.

Program Continuation:
Clear alarm with the Delete key or NC START.

380020
PROFIBUS/PROFINET: Bus %3 SDB %4 error %1 source %2

Parameters:
%1 = Error
%2 = SDB source
%3 = Bus number
%4 = SDB number

Definitions:
Error in SDB for configuring PROFIBUS/PROFINET.
Causes of the error:
- 01 = SDB does not exist in source.
- 02 = SDB from source is too large.
- 03 = SDB from source cannot be activated.
- 04 = Source is empty.
- 05 = Source is not present.
SDB source:
- 99 = Passive file system: _N_SDB_DIR
- 100 = CF card: /siemens/sinumerik/sdb/...
- 101 = CF card: /addon/sinumerik/sdb/...
- 102 = CF card: /oem/sinumerik/sdb/...
- 103 = CF card: /user/sinumerik/sdb/...
Reaction: PROFIBUS/PROFINET is inactive or working with the default SDB.

Reaction:
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
- Check the setting of MD 11240 $MN_PROFIBUS_SDB_NUMBER.
- If source = 100: Check directory _N_SDB_DIR in the passive file system.
- If source = 103-106: Check directories on CF card

Program Continuation:
Switch control OFF - ON.

380021
Profibus-DP: default SDB-Type-2000 was loaded

Definitions:
No user-specific SDB available.
The default SDB was loaded during start-up.
Without process peripherals, the NC is ready for a start-up.
The alarm is triggered the first time the NC is switched on, or once, if the SDB stored in the supported RAM is lost.

Reaction:
Alarm display.

Remedy:
Generate user-specific SDB and load it into the control system, or select and activate standard SDB via MD11240 $MN_PROFIBUS_SDB_NUMBER.
Restart the NC.
If the error occurs again when the NC is switched on the next time, the loaded SDB is incorrect and must be generated again.

Program Continuation:
Clear alarm with the Delete key or NC START.

380022
PROFIBUS/PROFINET: Configuration of DP master bus %1 has been changed

Parameters:
%1 = Number of the affected bus
Definitions: The PROFIBUS configuration on the DP master was changed during operation, e.g. by downloading a new hardware configuration via STEP 7. As the cycle data may also have changed, operation cannot be continued, and a warm start is required.

If the master functionality is within the PLC (as on the 840Di), the PLC will have been stopped for the download, and alarm 2000 (PLC sign-of-life) output.

Reaction: Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: NCK restart
If the error cannot be eliminated by this procedure, please make a note of the error text and contact the control system manufacturer.

Program Continuation: Switch control OFF - ON.

380040 PROFIBUS/PROFINET: Bus %3, configuration error %1, parameter %2

Parameters:
%1 = Cause of the error
%2 = Parameter
%3 = Number of the affected bus

Definitions: The PROFIBUS/PROFINET was not generated in the SDB in accordance with the configuration specifications of the NC in use.

Overview: Cause of the error, Par 1:
- 01 = SDB contains slave/device without diagnostics slot, slave/device address
- 02 = SDB contains too many slot entries, identifier
- 03 = SDB contains no equidistance data, no function.
- 04 = PNIO: SDB contains different Tdp (also TDC) on a device
- 05 = PNIO: SDB contains different Tmapc (also CACF) on a device
- 06 = PNIO: SDB contains different TI on a device
- 07 = PNIO: SDB contains different TO on a device
- 08 = PNIO: SDB contains device numbers that are too high (with values higher than 126)
- 09 = SDB contents are transferred segmented (too many slots/frames)
- 20 = SDB contains too many slaves/devices, quantity.
- 22 = SDB configuration data incorrect, slave/device address, error code
- 23 = Reserved
- 24 = Reserved
- 25 = Reserved
- 26 = Reserved
- 27 = Reserved
- 28 = Reserved
- 29 = Reserved

Reaction: Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: Check that the corresponding SDB
- Contains a diagnostic slot for every slave/device, and
- Contains only slave/device entries relevant to the application.
In general, it is possible to include a superset of slaves/device in the SDB that are partially relevant for different end versions of the product. However, this overloads the NC memory and runtime capacity, and should therefore be avoided in general.
If this alarm occurs, it is necessary to reduce the SDB to a minimum.
If the code for the error cause is 03, check that equidistance is activated in the SDB (e.g. using STEP 7 HW config).
If the alarm continues to occur, please send the error text to the control system manufacturer.

Program Continuation: Switch control OFF - ON.

380050 PROFIBUS/PROFINET: Multiple assignment of inputs on address %1

Parameters:
%1 = Logical address
Definitions: Multiple assignments of input data have been detected in the logical address space. Logical address:
Base address of the address area defined several times

Reaction: Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: The address partitioning should be checked as follows:
Check for multiple assignments in the following machine data:
- MD13050 $MN_DRIVE_LOGIC_ADDRESS[0] - MD13050 $MN_DRIVE_LOGIC_ADDRESS[n-1] : n = highest axis index on control system
- MD12970 $MN_PLC_DIG_IN_LOGIC_ADDRESS, MD12971 $MN_PLC_DIG_IN_NUM : PLC address area for digital inputs
- MD12978 $MN_PLC_ANA_IN_LOGIC_ADDRESS, MD12979 $MN_PLC_ANA_IN_NUM : PLC address area for analog inputs
If no inconsistencies can be found in the parameters, compare these machine data with the configuration in SDB (STEP 7 project). In particular, check that the lengths configured for the individual slots do not result in area overlaps. When you find the cause of the error, change the machine data and/or SDB.

Program Continuation: Switch control OFF - ON.

380051 PROFIBUS/PROFINET: Multiple assignment of outputs on address %1

Parameters: %1 = Logical address

Definitions: Multiple assignments of input data have been detected in the logical address space. Logical address:
Base address of the address area defined several times

Reaction: Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy: The address partitioning should be checked as follows:
Check for multiple assignments in the following machine data:
- MD13050 $MN_DRIVE_LOGIC_ADDRESS[0] - MD13050 $MN_DRIVE_LOGIC_ADDRESS[n-1] : n = highest axis index on control system
- MD12974 $MN_PLC_DIG_OUT_LOGIC_ADDRESS, MD12975 $MN_PLC_DIG_OUT_NUM : PLC address area for digital outputs
- MD12982 $MN_PLC_ANA_OUT_LOGIC_ADDRESS, MD12983 $MN_PLC_ANA_OUT_NUM : PLC address area for analog outputs
If no inconsistencies can be found in the parameters, compare these machine data with the configuration in SDB (STEP 7 project). In particular, check that the lengths configured for the individual slots do not result in area overlaps. When you find the cause of the error, change the machine data and/or SDB.

Program Continuation: Switch control OFF - ON.

380060 PROFIBUS/PROFINET: Alarm %1 on logical address %2 from unassigned slave/device

Parameters: %1 = Alarm class %2 = Logical address

Definitions: SDB contains a slave/device which is not assigned in the NC via the MD parameters (see also alarm 380050/051). The slave/device is however connected to the PROFIBUS/PROFINET, and has reported an alarm.
Alarm class:
- 01 = Station return (or arrival)
- 02 = Station failure
Display alarm, further operation with the NC is possible.

Reaction: Alarm display.

Remedy:
- Enter machine data or
- Modify SDB or
- Disconnect the slave/device from the PROFIBUS/PROFINET or
- Acknowledge the alarm.
Program Continuation:

Clear alarm with the Delete key or NC START.

380070 PROFIBUS/PROFINET: No input slot available for basic address %1 (length %2)

Parameters:
%1 = Logical base address of the requested area
%2 = Size of the area in bytes

Definitions:
An incorrect logical base address was specified for a digital or analog input. Either no slot has been configured for this base address or the requested area extends beyond the end of the slot.
Length=1 indicates a digital input.
Length=2 indicates an analog input.

Reaction:
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Enter correct base addresses in the machine data:
- For length=1: Correct machine data MN_HW_ASSIGN_DIG_FASTIN.
- For length=2: Correct machine data MN_HW_ASSIGN_ANA_FASTIN.
- NCK restart
If the error cannot be eliminated by this procedure, please make a note of the error text and contact the control system manufacturer.

Program Continuation:

Switch control OFF - ON.

380071 PROFIBUS/PROFINET: No output slot available for basic address %1 (size %2)

Parameters:
%1 = Logical base address of the requested area
%2 = Size of the area in bytes

Definitions:
An incorrect logical base address was specified for a digital or analog input. Either no slot has been configured for this base address or the requested area extends beyond the end of the slot.
For length =1 it is a digital output,
For length =2 it is an analog output.

Reaction:
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.

Remedy:
Enter correct base addresses in the machine data:
- For length=1: Correct machine data MN_HW_ASSIGN_DIG_FASTOUT.
- For length=2: Correct machine data MN_HW_ASSIGN_ANA_FASTOUT.
- NCK restart
If the error cannot be eliminated by this procedure, please make a note of the error text and contact the control system manufacturer.

Program Continuation:

Switch control OFF - ON.

380072 PROFIBUS/PROFINET: Output slot for basic address %1 (size %2) not allowed

Parameters:
%1 = Logical base address of the requested area
%2 = Size of the area in bytes

Definitions:
An incorrect logical base address was set for a digital or analog output, the area is resides in the access range of the PLC (PIQ, base addresses < 256).
For length =1 it is a digital output,
For length =2 it is an analog output.

Reaction:
Channel not ready.
NC Start disable in this channel.
Interface signals are set.
Alarm display.
Remedy:
Only use addresses outside the PLC process image (e.g. >= 256) for output slots. Enter correct basic addresses in the machine data:
- For length=1: Correct machine data MN_HW_ASSIGN_DIG_FASTOUT.
- For length=2: Correct machine data MN_HW_ASSIGN_ANA_FASTOUT.
- NCK restart
If the error cannot be eliminated by this procedure, please make a note of the error text and contact the control system manufacturer.

Program Continuation:
Switch control OFF - ON.

380075 PROFIBUS/PROFINET: DP I/O failure bus %2 slave/device %1
Parameters:
%1 = Slave/device address
%2 = Number of the affected bus
Definitions:
Failure of a PROFIBUS/PROFINET slot used by the NCK for digital or analog I/Os.
Reaction:
Alarm display.
Remedy:
Enter correct basic addresses in the machine data:
- For length=1: Correct machine data MN_HW_ASSIGN_DIG_FASTOUT.
- For length=2: Correct machine data MN_HW_ASSIGN_ANA_FASTOUT.
- NCK restart
If the error cannot be eliminated by this procedure, please make a note of the error text and contact the control system manufacturer.

Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

380076 PROFIBUS/PROFINET: No DO1 message frame: Bus %2 slave/device %1
Parameters:
%1 = Slave/device address
%2 = Number of the affected bus
Definitions:
Note for the system startup engineer: A PROFIBUS slave/PROFINET device used as an NCK drive does not have a valid DO1 message frame assignment (see MD13120 $MN_CONTROL_UNIT_LOGIC_ADDRESS with the STEP 7 configuration).
This alarm is indicating, among other things, that the alarm time-of-day synchronization is not working between the controller and this slave/device.
Reaction:
Alarm display.
Remedy:
Enter a valid value in MD13120 $MN_CONTROL_UNIT_LOGIC_ADDRESS.
Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

380500 PROFIBUS/PROFINET: Fault on drive %1, code %2, value %3, time %4
Parameters:
%1 = Axis
%2 = Fault code of drive (P947)/(945)/P824
%3 = Fault value of drive ((P949)/P826)
%4 = Fault time of the drive (P948/P825)
Definitions:
Contents of fault memory of assigned drive.
Reaction:
Alarm display.
Remedy:
See drive documentation for fault codes/fault values.
Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

380501 PROFIBUS/PROFINET: Fault on bus, slave/device, DO ID %1, code %2, value %3, time %4
Parameters:
%1 = 8 bit bus number, 8 bit slave/device number, 16 bit DO ID
%2 = Fault code of drive (P947)
%3 = Fault value of the drive (P949)
%4 = Fault time of the drive (P948)
Definitions:
Contents of the fault memory of the assigned slave/device.
Reaction:
Alarm display.
Remedy:
See drive documentation for fault codes/fault values.
Program Continuation:
Alarm display showing cause of alarm disappears. No further operator action necessary.

380502 PROFIBUS/PROFINET: Bus %1, slave/device %2 configuration changed
Parameters:
%1 = Bus number
%2 = Slave/device address
Definitions: The bus configuration has changed.
Causes:
- Initial start-up
- New slave/device recognized on the bus
Reaction: Interface signals are set.
Alarm display.
Remedy: In order to operate the bus with the new configuration, an additional restart will be required.
Program Continuation: Switch control OFF - ON.

380503 PROFIBUS/PROFINET: Bus %1 configuration changed
Parameters: %1 = Bus number
Definitions: A new SDB with a modified configuration has been provided.
The new settings will be activated only at the next bus power up.
Reaction: Interface signals are set.
Alarm display.
Remedy: In order to operate the bus with the new configuration, an additional restart will be required.
Program Continuation: Switch control OFF - ON.

380598 do not use
Definitions: do not use
Reaction: Alarm display.
Remedy: do not use
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.

380599 do not use
Definitions: do not use
Reaction: Alarm display.
Remedy: do not use
Program Continuation: Alarm display showing cause of alarm disappears. No further operator action necessary.
2.5 PLC alarms

400102 Delete DB 2 in the PLC and restart

Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400103 Delete DB 3 in the PLC and restart

Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400106 Delete DB 6 in the PLC and restart

Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400109 Delete DB 9 in the PLC and restart

Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400110 Delete DB 10 in the PLC and restart

Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400111 Delete DB 11 in the PLC and restart

Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400120 Delete DB 20 in the PLC and restart

Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400121 Delete DB 21 in the PLC and restart

Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal
400122 Delete DB 22 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400123 Delete DB 23 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400124 Delete DB 24 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400125 Delete DB 25 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400126 Delete DB 26 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400127 Delete DB 27 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400128 Delete DB 28 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400129 Delete DB 29 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal
400130 Delete DB 30 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400131 Delete DB 31 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400132 Delete DB 32 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400133 Delete DB 33 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400134 Delete DB 34 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400135 Delete DB 35 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400136 Delete DB 36 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400137 Delete DB 37 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal
400138 Delete DB 38 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400139 Delete DB 39 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400140 Delete DB 40 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400141 Delete DB 41 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400142 Delete DB 42 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400143 Delete DB 43 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400144 Delete DB 44 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400145 Delete DB 45 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal
PLC alarms

400146 Delete DB 46 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400147 Delete DB 47 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400148 Delete DB 48 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400149 Delete DB 49 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400150 Delete DB 50 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400151 Delete DB 51 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400152 Delete DB 52 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400153 Delete DB 53 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal
Delete DB 54 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

Delete DB 55 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

Delete DB 56 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

Delete DB 57 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

Delete DB 58 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

Delete DB 59 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

Delete DB 60 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

Delete DB 61 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal
400171 Delete DB 71 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400172 Delete DB 72 in the PLC and restart
Definitions: --
Reaction: Alarm display.
Remedy: See the machine manufacturer’s information.
Program Continuation: Internal

400173 Delete DB 73 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400174 Delete DB 74 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400176 Delete DB 76 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400177 Delete DB 77 in the PLC and restart
Definitions: The DB created by the basic program and the existing DB differ in size.
Reaction: Alarm display.
Remedy: Displayed DB must be deleted via STEP7. Possibly max. program size of the user program exceeded.
Program Continuation: Internal

400201 PLC STOP due to DB loading in the RUN state: DB%Z
Parameters: %Z = Data block
Definitions: An existing DB was reloaded in the RUN state.
Reaction: Alarm display.
Remedy: Restart required.
Program Continuation: Switch control OFF - ON.

400202 Access error
Definitions: The data could not be accessed.
Reaction: Alarm display.
Remedy: System error, contact the Siemens AG A&D MC Hotline with the error text.
Program Continuation: Switch control OFF - ON.
400203 DB acces error: DB%Z
Parameters: %Z = Data block
Definitions: Data block is either not present or write-protected.
Reaction: Alarm display.
Remedy: The displayed DB has to be reloaded via STEP 7 or its write protection has to be removed. Restart required.
Program Continuation: Switch control OFF - ON.

400204 Restart required
Definitions: DB generated by the basic program are different in size of existing DB.
Reaction: Alarm display.
Remedy: The DB is deleted during the next start-up and it is generated again by the basic program.
Program Continuation: Switch control OFF - ON.

400250 NCK sign-of-life monitoring
Definitions: NCK has not contacted the PLC during cyclic operation. Timer of FB1 parameter NCCyclTimeout was executed without retrigger.
Reaction: Alarm display.
Remedy: NCK restart
Program Continuation: Internal

400251 NCK has not started up
Definitions: NCK has not contacted the PLC.
NCK has not ramped up.
Acknowledgement error during ramp-up: the time limit entered in OB1 / FB1 under parameter address MCP1Cycl or MCP2Cycl has been exceeded.
Reaction: Alarm display.
Remedy: Enter the default values in FB1 correctly.
Carry out a general NCK reset and restart.
Increase the time values in FB1.
Program Continuation: Internal

400252 Error in internal communication with NCK
Definitions: An error has occurred during data transmission between the PLC and the NCK (FM-NC only).
Reaction: Alarm display.
Remedy: NCK restart
Program Continuation: Internal

400253 PLC STOP because of SPL system error
Definitions: After the interruption of the communication between the NCK and the PLC with regard to the SPL data cross-check, the PLC was switched to STOP with a delay of 5 s.
Reaction: Alarm display.
Remedy: Do no longer start SPL. Check the system components (PLC must be provided with the correct version of FB15 and with DB18).
Program Continuation: Switch control OFF - ON.

400254 Checksum error found: %1
Parameters: %1 = Note on code section or table
Definitions: Checksum error in safety-relevant code or safety-relevant data. The safe monitoring functions (Safety Integrated) in the PLC may be damaged.
Reaction: Alarm display.
Remedy: Power OFF/ON of the control. If the error occurs again, inform the service department.
400255 Sign of life monitoring NCK2
Definitions: NCK2 has not contacted the PLC during cyclic operation. Timer of FB1 parameter NCCyclTimeout was executed without retrigger. (FM-NC only).
Reaction: Alarm display.
Remedy: NCK restart
Program Continuation: Switch control OFF - ON.

400256 NCK2 has not run up
Definitions: NCK2 has not run up. NCK has not contacted the PLC. Timer of FB1 parameter NCRunupTimeout has expired. (FM-NC only).
Reaction: Alarm display.
Remedy: General NCK reset and restart.
Program Continuation: NCK restart.

400257 Error in internal communication with NCK2
Definitions: An error has occured during data transmission between the PLC and the NCK. (FM-NC only)
Reaction: Alarm display.
Remedy: NCK restart
Program Continuation: NCK restart.

400260 Failure of machine control panel 1
Definitions: Machine control panel (MCP) at machine control panel interface 1 has failed. Timer of FB1 parameter MCP1Timeout has expired. Incorrect address in DB7 parameter MCP1BusAdr. DB7 parameter MCP1NotSend=TRUE.
Reaction: Alarm display.
Remedy: Check the connection to the MCP. Increase the value of the timer parameter MCP1Timeout. Set MCP1Cycl to the default value. Correct the MCP1BusAdr in the DB7 parameter/compare with the selected address. Set DB7 parameter MCP1NotSend=FALSE.
Program Continuation: Check the connection to the MCP. Increase the value of the timer parameter MCP1Timeout. Set MCP1Cycl to the default value. Correct the MCP1BusAdr in the DB7 parameter/compare with the selected address. Set DB7 parameter MCP1NotSend=FALSE.

400261 Failure of machine control panel 2
Definitions: Machine control panel (MCP) at machine control panel interface 2 has failed. Timer of FB1 parameter MCP2Timeout has expired. Incorrect address in the DB7 parameter MCP2BusAdr. DB7 parameter MCP2NotSend=TRUE.
Reaction: Alarm display.
Remedy: Check the connection to the MCP. Increase the value of the timer parameter MCP2Timeout. Set MCP2Cycl to the default value. Correct the MCP2BusAdr in the DB7 parameter/compare with the selected address. Set DB7 parameter MCP2NotSend=FALSE.
Program Continuation: Check the connection to the MCP. Increase the value of the timer parameter MCP2Timeout. Set MCP2Cycl to the default value. Correct the MCP2BusAdr in the DB7 parameter/compare with the selected address. Set DB7 parameter MCP2NotSend=FALSE.

400262 Failure of handheld unit
Definitions: Handheld unit (HHU) at handheld unit interface has failed. Timer of FB1 parameter HHUTimeout has expired.
Reaction: Alarm display.
Remedy: Check the connection to the HHU. Increase the value of timer parameter HHUTimeout. Set HHUCycl to the default value.
Program Continuation: Check the connection to the HHU. Increase the value of timer parameter HHUTimeout. Set HHUCycl to the default value.

400264 Pointer parameter machine control panel 1 incorrect
Definitions: A pointer is incorrect in the MCP1 parameter range.
Reaction: Alarm display.
Overview of Alarms

PLC alarms

Remedy: Correct the PLC configuration in the FB1 parameters.
Program Continuation: Switch control OFF - ON.

400265 Pointer parameter machine control panel 2 incorrect
Definitions: A pointer is incorrect in the MCP 2 parameter range.
Reaction: Alarm display.
Remedy: Correct the PLC configuration in the FB1 parameters.
Program Continuation: Switch control OFF - ON.

400266 Pointer parameter handheld unit incorrect
Definitions: A pointer is incorrect in the HHU parameter range.
Reaction: Alarm display.
Remedy: Correct the PLC configuration in the FB1 parameters.
Program Continuation: Switch control OFF - ON.

400267 Access error
Definitions: MCP or HHU data could not be accessed
Reaction: Alarm display.
Remedy: Check the MCP or HHU parameters of the FB1.
Program Continuation: Switch control OFF - ON.

400268 Error in internal communication with machine control panel 1, internal error code: %Z
Definitions: Communication error between CP and PLC.
Reaction: Alarm display.
Remedy: Check MCP parameter of FB1, MCP1Stop, switch TRUE->FALSE
Program Continuation: Switch control OFF - ON.

400269 Error in internal communication with machine control panel 2, internal error code: %Z
Definitions: Communication error between CP and PLC.
Reaction: Alarm display.
Remedy: Check MCP parameter of FB1, MCP2Stop, switch TRUE->FALSE
Program Continuation: Switch control OFF - ON.

400270 Error in internal communication with handheld unit, internal error code: %Z
Definitions: Communication error between CP and PLC.
Reaction: Alarm display.
Remedy: Check HHU parameter of FB1, HHUSStop, switch TRUE->FALSE
Program Continuation: Switch control OFF - ON.

400271 Direct keys 1 communication error, internal error code: %Z
Definitions: Communication error between CP and PLC.
Reaction: Alarm display.
Remedy: Check OpKey parameter
Program Continuation: Internal
400272 **Direct keys 2 communication error, internal error code: %Z**
Definitions: Communication error between CP and PLC.
Reaction: Alarm display.
Remedy: Check OpKey parameter
Program Continuation: Internal

400274 **Direct keys 1 failed**
Definitions: Direct keys 1: internal timeout has expired.
Reaction: Alarm display.
Remedy: Check connection to direct key module
Program Continuation: Internal

400275 **Direct keys 2 failed**
Definitions: Direct keys 2: internal timeout has expired.
Reaction: Alarm display.
Remedy: Check connection to direct key module
Program Continuation: Internal

400276 **Pointer parameter direct keys 1 incorrect**
Definitions: Pointer incorrectly defined
Reaction: Alarm display.
Remedy: Correct the pointer
Program Continuation: Switch control OFF - ON.

400277 **Pointer parameter direct keys 2 incorrect**
Definitions: Pointer incorrectly defined
Reaction: Alarm display.
Remedy: Correct the pointer
Program Continuation: Switch control OFF - ON.

400551 **Fault on MPI/DP bus**
Definitions: Error detected on I/O bus
Reaction: Alarm display.
Remedy: Check I/Os, rectify I/O fault
Program Continuation: Internal

400552 **Fault on DP bus**
Definitions: Error detected on I/O bus
Reaction: Alarm display.
Remedy: Check I/Os, rectify I/O fault
Program Continuation: Internal

400553 **Fault on PROFINET bus**
Definitions: Error detected on I/O bus
Reaction: Alarm display.
Remedy: Check I/Os, rectify I/O fault
Program Continuation: Internal
400601 Configuration loading points incorrect
Definitions: The PLC configuration in the DB4 does not match the NC configuration
Reaction: Alarm display.
Remedy: Correct tool management start-up
Program Continuation: Switch control OFF - ON.

400602 Spindle configuration incorrect
Definitions: The PLC configuration in the DB4 does not match the NC configuration
Reaction: Alarm display.
Remedy: Correct tool management start-up
Program Continuation: Switch control OFF - ON.

400603 Revolver configuration incorrect
Definitions: The PLC configuration in the DB4 does not match the NC configuration
Reaction: Alarm display.
Remedy: Correct tool management start-up
Program Continuation: Switch control OFF - ON.

400604 Set change with M06 in the machine data
Definitions: With the magazine type used (box magazine, chain), changing is possible only with M06. If necessary, also check for impermissible settings at revolver magazines.
Reaction: Alarm display.
Remedy: Set the value in the channel-specific machine data TOOL_CHANGE_MODE (MD 22550) to 1.
Program Continuation: Internal

400902 Parameter ChanNo impermissible in FC 9
Definitions: The parameterized channel does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

400903 Parameter IntNo impermissible in FC 9
Definitions: The parameterized interrupt does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

401003 FC 10 system error 0x8083
Definitions: System error SFC52 has occurred.
Reaction: Alarm display.
Remedy: Restart, contact the Siemens AG A&D MC Hotline with the error text.
Program Continuation: Switch control OFF - ON.

401004 FC 10 system error 0x8084
Definitions: System error SFC52 has occurred.
Reaction: Alarm display.
Remedy: Restart, contact the Siemens AG A&D MC Hotline with the error text.
Program Continuation: Switch control OFF - ON.
401005 **FC 10 system error 0x8085**
Definitions: System error SFC52 has occurred.
Reaction: Alarm display.
Remedy: Restart, contact the Siemens AG A&D MC Hotline with the error text.
Program Continuation: Switch control OFF - ON.

401006 **FC 10 system error 0x8086**
Definitions: System error SFC52 has occurred.
Reaction: Alarm display.
Remedy: Restart, contact the Siemens AG A&D MC Hotline with the error text.
Program Continuation: Switch control OFF - ON.

401007 **FC 10 system error 0x8087**
Definitions: System error SFC52 has occurred.
Reaction: Alarm display.
Remedy: Restart, contact the Siemens AG A&D MC Hotline with the error text.
Program Continuation: Switch control OFF - ON.

401502 **Impermissible axis no. parameter in FC 15**
Definitions: The parameterized axis does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

401602 **Impermissible axis no. parameter in FC 16**
Definitions: The parameterized axis does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

401702 **Impermissible spindle IF no. parameter in FC 17**
Definitions: The parameterized spindle does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

401805 **Impermissible axis no. parameter in FC 18**
Definitions: The parameterized axis / spindle does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

401901 **Parameter BAGNo impermissible in FC19**
Definitions: The parameterized mode group, channel does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.
401902 **Parameter ChanNo impermissible in FC19.**
Definitions: The parameterized channel does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

402401 **Parameter BAGNo impermissible in FC24**
Definitions: The parameterized mode group, channel does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

402402 **Parameter ChanNo impermissible in FC24.**
Definitions: The parameterized mode group, channel does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

402501 **Parameter BAGNo impermissible in FC25**
Definitions: The parameterized mode group, channel does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

402502 **Parameter ChanNo impermissible in FC25.**
Definitions: The parameterized mode group, channel does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

402601 **Parameter BAGNo impermissible in FC26**
Definitions: The parameterized mode group, channel does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

402602 **Parameter ChanNo impermissible in FC26**
Definitions: The parameterized mode group, channel does not exist.
Reaction: Alarm display.
Remedy: Correct the parameter.
Program Continuation: Switch control OFF - ON.

410141 **TM: Too many loading points**
Definitions: The PLC configuration in the DB4 has more than 32 loading points
Reaction: Alarm display.
Remedy: Correct tool management start-up
Program Continuation: Switch control OFF - ON.
410142 **TM: Too many toolholders**
Definitions: The PLC configuration in the DB4 has more than 32 toolholders
Reaction: Alarm display.
Remedy: Correct tool management start-up
Program Continuation: Switch control OFF - ON.

410143 **TM: Too many revolvers**
Definitions: The PLC configuration in the DB4 has more than 32 revolvers
Reaction: Alarm display.
Remedy: Correct tool management start-up
Program Continuation: Switch control OFF - ON.

410144 **TOOLMAN: Multiple definition of magazine number %Z**
Definitions: Multiple definition of the magazine number
Reaction: Alarm display.
Remedy: Magazines, spindles, loading points must be uniquely defined in different TO areas
Program Continuation: Switch control OFF - ON.

410150 **Area in M group decoder list is too large**
Definitions: Number of M groups in PLC too large.
Reaction: Alarm display.
Remedy: Reduce the number of groups
Program Continuation: Internal

410151 **Magazine data for tool management missing in the PLC**
Definitions: Magazine data are not available in the PLC. The start-up has not been completed, although the option TOOLMAN has been activated.
Reaction: Alarm display.
Remedy: Softkey 'Create PLC Data' must be pressed during TOOLMAN start-up via HMI Advanced. Or create the data in data block DB4 as from DBB64.
Program Continuation: Internal

410160 **PROFIBUS configuration is too large for DP1**
Definitions: Internal data area is too large for PROFIBUS configuration.
Reaction: Alarm display.
Remedy: Define and load a smaller PROFIBUS configuration
Program Continuation: Internal

410900 **M:N: call waiting was not continued**
Definitions: The switchover sequence started was not completed
Reaction: Alarm display.
Remedy: Reactuate channel menu on HMI
Program Continuation: Internal

410901 **M:N: HMI 1 does not respond to displacement**
Definitions: The HMI that is to be switched over does not respond
Reaction: Alarm display.
Remedy: Reactuate channel menu on HMI
Program Continuation: Internal
410902 \textbf{M:N: HMI 1 does not go offline}
\textbf{Definitions:} The HMI that is to be switched over does not respond
\textbf{Reaction:} Alarm display.
\textbf{Remedy:} Reactuate channel menu on HMI
\textbf{Program Continuation:} Internal

410903 \textbf{M:N: HMI 2 does not respond to displacement}
\textbf{Definitions:} The HMI that is to be switched over does not respond
\textbf{Reaction:} Alarm display.
\textbf{Remedy:} Reactuate channel menu on HMI
\textbf{Program Continuation:} Internal

410904 \textbf{M:N: HMI 2 does not go offline}
\textbf{Definitions:} The HMI that is to be switched over does not respond
\textbf{Reaction:} Alarm display.
\textbf{Remedy:} Reactuate channel menu on HMI
\textbf{Program Continuation:} Internal

410905 \textbf{M:N: No HMI link to assigned interface}
\textbf{Definitions:} The HMI to be switched over is not connecting to the NC
\textbf{Reaction:} Alarm display.
\textbf{Remedy:} Reactuate channel menu on HMI
\textbf{Program Continuation:} Internal

410906 \textbf{M:N: No sign of life of an HMI}
\textbf{Definitions:} Link to NC disconnected
\textbf{Reaction:} Alarm display.
\textbf{Remedy:} Check connection to HMI
\textbf{Program Continuation:} Internal

411101 \textbf{Impermissible Parameter Axis in FB11}
\textbf{Definitions:} Axis parameter not within the permissible range.
\textbf{Reaction:} Alarm display.
\textbf{Remedy:} Use permissible axis number.
\textbf{Program Continuation:} Internal

411501 \textbf{Incorrect version of FB 15, > general reset, do not transmit FB 15 from project}
\textbf{Definitions:} FB 15 does not match the basic program used.
\textbf{Reaction:} Alarm display.
\textbf{Remedy:} General PLC reset. Use correct version of the basic program.
\textbf{Program Continuation:} Internal

411502 \textbf{Incorrect basic PLC program version}
\textbf{Definitions:} FB 15 does not match the basic program used.
\textbf{Reaction:} Alarm display.
\textbf{Remedy:} Load the basic program that matches the NCK version.
\textbf{Program Continuation:} Internal
428201 Diagnostic alarm
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428221 Diagnostic alarm from diagnostics address %Z
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428601 Module failure of the expansion unit
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428602 Recurrence of module failure of the expansion unit
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428603 Module failure of the DP master
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428604 Failure of a DP slave
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428605 Fault in a DP slave
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428606 Expansion unit recurrence, parameterization error
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.
PLC alarms

428607 DP slave recurrence, parameterization error
- **Definitions:** OB82 or OB86 has been triggered.
- **Reaction:** Alarm display.
- **Remedy:** Rectify the cause of the error displayed
- **Program Continuation:** Switch control OFF - ON.

428608 DP slave recurrence, discrepancy between preset and actual configurations
- **Definitions:** OB82 or OB86 has been triggered.
- **Reaction:** Alarm display.
- **Remedy:** Rectify the cause of the error displayed
- **Program Continuation:** Switch control OFF - ON.

428621 Failure of expansion unit
- **Definitions:** OB82 or OB86 has been triggered.
- **Reaction:** Alarm display.
- **Remedy:** Rectify the cause of the error displayed
- **Program Continuation:** Switch control OFF - ON.

428622 Restoration of expansion unit, discrepancy between preset and actual configurations
- **Definitions:** OB82 or OB86 has been triggered.
- **Reaction:** Alarm display.
- **Remedy:** Rectify the cause of the error displayed
- **Program Continuation:** Switch control OFF - ON.

428623 Failure of a DP master system, bus: %2
- **Definitions:** OB82 or OB86 has been triggered.
- **Reaction:** Alarm display.
- **Remedy:** Rectify the cause of the error displayed
- **Program Continuation:** Switch control OFF - ON.

428624 Failure of a DP slave, bus: %2, slave: %1
- **Definitions:** OB82 or OB86 has been triggered.
- **Reaction:** Alarm display.
- **Remedy:** Rectify the cause of the error displayed
- **Program Continuation:** Switch control OFF - ON.

428625 Restoration of DP slave with fault, bus: %2, slave: %1
- **Definitions:** OB82 or OB86 has been triggered.
- **Reaction:** Alarm display.
- **Remedy:** Rectify the cause of the error displayed
- **Program Continuation:** Switch control OFF - ON.

428626 Restoration of expansion unit, parameterization error
- **Definitions:** OB82 or OB86 has been triggered.
- **Reaction:** Alarm display.
- **Remedy:** Rectify the cause of the error displayed
- **Program Continuation:** Switch control OFF - ON.
428627 Restoration of DP slave, parameterization error, bus: %2, slave: %1
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428628 Restoration of DP slave, discrepancy between preset and actual configurations, bus: %2, slave: %1
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428630 Failure of the PROFINET IO system
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428631 Failure of a PROFINET device, device: %Z
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428632 Restoration of PROFINET device with fault, device %Z
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428633 Restoration of PROFINET device, discrepancy between preset and actual configurations, device %Z
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

428634 Restoration of PROFINET device, parameterization error, device %Z
Definitions: OB82 or OB86 has been triggered.
Reaction: Alarm display.
Remedy: Rectify the cause of the error displayed
Program Continuation: Switch control OFF - ON.

800000 Error: HiGraph group no. %A graph no. %N status %Z
Definitions: -
Reaction: Alarm display.
Remedy: -
Program Continuation: Internal
Overview of Alarms

PLC alarms

810001 Error OB event, error analysis via STEP7 required
Definitions: Reduced PLC error message. STEP7 is required for exact analysis.
Reaction: Alarm display.
Remedy: Diagnose with STEP7.
Program Continuation: Internal

810002 Synchronous error, error analysis via STEP7 required
Definitions: Reduced PLC error message. STEP7 is required for exact analysis.
Reaction: Alarm display.
Remedy: Diagnose with STEP7.
Program Continuation: Internal

810003 Asynchronous error, error analysis via STEP7 required
Definitions: Reduced PLC error message. STEP7 is required for exact analysis.
Reaction: Alarm display.
Remedy: Diagnose with STEP7.
Program Continuation: Internal

810004 Stop/cancel event, error analysis via STEP7 required
Definitions: Reduced PLC error message. STEP7 is required for exact analysis.
Reaction: Alarm display.
Remedy: Diagnose with STEP7.
Program Continuation: Internal

810005 Operational state sequence event, error analysis via STEP7 required
Definitions: Reduced PLC error message. STEP7 is required for exact analysis.
Reaction: Alarm display.
Remedy: Diagnose with STEP7.
Program Continuation: Internal

810006 Error communication event, error analysis via STEP7 required
Definitions: Reduced PLC error message. STEP7 is required for exact analysis.
Reaction: Alarm display.
Remedy: Diagnose with STEP7.
Program Continuation: Internal

810007 Error H/F system event, error analysis via STEP7 required
Definitions: Reduced PLC error message. STEP7 is required for exact analysis.
Reaction: Alarm display.
Remedy: Diagnose with STEP7.
Program Continuation: Internal

810008 Error diagnostics data from modules, error analysis via STEP7 required
Definitions: Reduced PLC error message. STEP7 is required for exact analysis.
Reaction: Alarm display.
Remedy: Alarm display, PLC Stop if required.
Program Continuation: Internal
810009 User diagnostics event, error analysis via STEP7 required

Definitions: Reduced PLC error message. STEP7 is required for exact analysis.

Reaction: Alarm display.

Remedy: Diagnose with STEP7.

Program Continuation: Internal

810015 Module diagnostics event, error analysis via STEP 7 required

Definitions: Reduced PLC error message. STEP7 is required for exact analysis.

Reaction: Alarm display.

Remedy: Diagnose with STEP7.

Program Continuation: Internal

830000 Message: HiGraph group no. %A graph no. %N status %Z

Definitions: -

Reaction: Alarm display.

Remedy: -

Program Continuation: Internal
List of Action Numbers

The following list describes the actions stated in the alarm texts under "Action %.." according to their numbers.

No. 1
Definitions: Execute initialization phase (internal, after power on, initialization of tasks)

No. 2
Definitions: Execute reset (VDI signal reset, mode group reset or after power on).
Should not occur in any alarm

No. 3
Definitions: Activate reset INIT blocks.
(Is initiated by the VDI signal reset)
Should not occur in any alarm

No. 4
Definitions: Execute reset. Program end has been detected (NC block M30).
Should not occur in any alarm

No. 5
Definitions: Change the mode to a program operation mode "MDA or automatic"
(VDI signal: mode group signals)
Not permitted if:
1. The channel is active (program running, block search, loading machine data)
2. Has already been started in the other program operation mode.
3. A channel has left the mode group on account of an interrupt.
4. Overstoring
Possible actions:
1. Cancel the program with the Reset button
 or stop the program (not with block search, loading machine data)
2. Cancel the program with the Reset button
3. Cancel the program with the Reset button or wait until the interrupt has finished.
4. Deselect overstore

No. 6
Definitions: Automatic change from an internal mode into the externally set mode.
E.g.: With teach-in: Internal mode = automatic or MDA
Should not occur in any alarm

No. 7
Definitions: Change the mode to a manual mode
(VDI signal: mode group signals, JOG, TEACH_IN, RE)
Not permitted if:
1. The nesting depth is too great
 The current processing procedure can be interrupted by various events.
 ASUB programs are activated according to the event.
 These ASUB programs can be interrupted in the same way as the user program.
 Free nesting depth of the ASUB programs is not possible for memory reasons.
Example:
An interrupt interrupts the current program execution.
Other higher priority interrupts interrupt the previously activated
ASUB program execution.
2. The channel is active (program running, block search, loading machine data)
3. A channel has left the mode group on account of an interrupt.
4. Overstoring
Possible actions:
1. Cancel the program with the Reset button
2. Cancel the program with the Reset button
or stop the program (not with block search, loading machine data)
3. Cancel the program with the Reset button or wait until the interrupt has finished.
4. Deselect overstore

No. 8
Definitions: Select overstore (PI command)
Should not occur in any alarm

No. 9
Definitions: Deselect overstore (PI command)
Should not occur in any alarm

No. 10
Definitions: Execute an "ASUB" user interrupt.
(VDI signal, ASUB interface, digital-analog interface)
Alarms can be switched on by machine data "HW_DEBUG_MASK" (for test purposes only).
Not permitted if:
1. The channel is active on account of block search or loading machine data
2. The channel has stopped, and the ASUB "ASUP_START_MASK" has to be started,
and the current block cannot be reorganized.
3. Reference point approach has not yet been made
Possible actions:
1. Wait until block search or loading machine data has finished,
or cancel the program with the Reset button.
2. Activate block change until NC block can be reorganized
3. Execute reference point approach, or this status can be
ignored by means of machine data "ASUP_START_MASK".

No. 11
Definitions: Execute an "ASUB" user interrupt with fast retraction.
(VDI signal, ASUB interface, digital-analog interface)
as INTERRUPT

No. 12
Definitions: Execute an "ASUB" user interrupt at the block boundary.
(VDI signal, ASUB interface, digital-analog interface)
as INTERRUPT

No. 13
Definitions: Execute a fast retraction
Should not occur in any alarm

No. 14
Definitions: Move tool (only with tool management) (PI command)
Should not occur in any alarm
No. 15
Definitions: Execute delete distance-to-go or axis synchronization.
(VDI signal: delete distance-to-go or follow-up mode)
Follow-up mode: e.g. on enabling axis control
Not permitted if:
1. The nesting depth is too great
2. If there is a reorganize brake error
Possible actions:
1. Cancel program
2. Cancel program

No. 16
Definitions: Cancel the subprogram repetition.
(VDI signal: delete subprogram number of passes)
Not permitted if:
1. The nesting depth is too great
2. If there is a reorganize brake error
Possible actions:
1. Cancel program
2. Cancel program

No. 17
Definitions: Cancel the subprogram execution.
(VDI signal: program level cancel)
Not permitted if:
1. The nesting depth is too great
2. If there is a reorganize brake error
Possible actions:
1. Cancel program
2. Cancel program

No. 18
Definitions: Activate single block.
(VDI signal: activate single block)
Should not occur in any alarm

No. 19
Definitions: Disable single block.
(VDI signal: deactivate single block)
Should not occur in any alarm

No. 20
Definitions: Activate main run single block.
(OPI variable and VDI signal: activate single block)
Should not occur in any alarm

No. 21
Definitions: Activate decoding single block.
(OPI variable and VDI signal: activate single block)
Not permitted if:
1. The nesting depth is too great
2. If there is a reorganize brake error
Possible actions:
1. Wait until previous ASUB has finished or cancel program
2. Cancel program

No. 22
Definitions: Activate main program single block.
(OPI variable and VDI signal: activate single block)
Should not occur in any alarm
No. 23
Definitions: Activate traversing single block.
(OPI variable and VDI signal: activate single block)
Should not occur in any alarm

No. 24
Definitions: Start program execution,
(VDI signal, NC start)
Not permitted if:
1. Program status is active,
2. An alarm response is pending:
 (which prevents a start,
 or compels braking).
3. Reference point approach not yet executed
Possible actions:
1. None
2. Execute alarm clear condition.
3. Execute reference point approach

No. 25
Definitions: Start program execution (Channel communication, NC block:START)
Not permitted if:
1. Program status is active,
2. An alarm response is pending:
 (which prevents a start,
 or compels braking).
3. Reference point approach not yet executed.
4. An incorrect mode has been selected (automatic only).
Possible actions:
1. Protect start with WAITE.
2. Execute alarm clear condition.
3. Execute reference point approach
4. Select program operation mode

No. 26
Definitions: Start continue program execution,
(VDI signal, NC start)
Not permitted if:
1. Program status is active,
2. An alarm response is pending:
 (which prevents a start,
 or compels braking).
3. Reference point approach not yet executed.
Possible actions:
1. None
2. Execute alarm clear condition.
3. Execute reference point approach

No. 27
Definitions: Start continue the selected processing,
(VDI signal, NC start)
(JOG or reference point)
Not permitted if:
1. JOG motion is active,
2. An alarm response is pending:
 (which prevents a start,
 or compels braking).
Possible actions:
1. None
2. Execute alarm clear condition.
No. 28
Definitions: ! Digitize function removed !
Start processing in digitize submode
(VDI signal, NC start)
Not permitted if:
1. JOG motion is active,
2. An alarm response is pending:
 which prevents a start,
 or compels braking.
3. Reference point approach has not yet been executed.
Possible actions:
1. None
2. Execute alarm clear condition.
3. Execute reference point approach

No. 29
Definitions: Stop all axes
(VDI signal, stop all or by means of reset button)
Should not occur in any alarm

No. 30
Definitions: Execute a program stop (NC block M0)
Should not occur in any alarm

No. 31
Definitions: Stop the JOG motion
Should not occur in any alarm

No. 32
Definitions: ! Digitize function removed !
Stop the digitizer processing.
(VDI signal, NC stop)
Should not occur in any alarm

No. 33
Definitions: Start the selected machining
(VDI signal, NC start)
Not permitted if:
1. Process switch is active (mode change,
 enable and disable overstore)
2. An alarm response is pending:
 which prevents a start,
 or compels braking.
3. A process is running (NC program, block search, loading machine data)
Possible actions:
1. None
2. Execute alarm clear condition.
3. None

No. 34
Definitions: Stop the active processing.
(VDI signal, NC stop)
Should not occur in any alarm

No. 35
Definitions: Start machine data processing (PI command)
(INI file is already in the NCK)
Should not occur in any alarm

No. 36
Definitions: Start machine data processing (PI command)
(INI file is located externally (e.g.) on MMC)
Should not occur in any alarm
No. 37
Definitions: Stop on account of mode group single block.
 (VDI signal: single type A, after stop in another channel of this mode group)
 Should not occur in any alarm

No. 38
Definitions: Stop on account of mode group single block.
 (VDI signal: single type B, after stop at the block boundary in the other channel of this mode group)
 Should not occur in any alarm

No. 39
Definitions: Stop because the end of the overstore buffer "_N_OSTOREXX_SYF" has been reached
 Should not occur in any alarm

No. 40
Definitions: Start the preprocessing (NC block, Stopre)
 Should not occur in any alarm

No. 41
Definitions: Stop the processing at the block boundary. (NC block, M00/M01)
 Should not occur in any alarm

No. 42
Definitions: Stop the processing at the block boundary.
 (Alarm, VDI signal: NC stop at the block boundary)
 Should not occur in any alarm

No. 43
Definitions: Stop at ASUB end if started from "stopped" (internal command)
 Should not occur in any alarm

No. 44
Definitions: Select program (PI command)
 Should not occur in any alarm

No. 45
Definitions: Select program that is still located internally (PI command)
 Should not occur in any alarm

No. 46
Definitions: Program selection from another channel (channel communication, NC block INIT)
 Should not occur in any alarm

No. 47
Definitions: Save definition of an activatable ASUB (PI command)
 Should not occur in any alarm

No. 48
Definitions: Sets all machine data with the attribute (NEW_CONF) to active (PI command)
 Should not occur in any alarm

No. 49
Definitions: Clears all alarms with the clear condition CANCELCLEAR (PI command, Cancel key)
 Should not occur in any alarm

No. 50
Definitions: Continue block search (NC block: = Stopre)
 Should not occur in any alarm

No. 51
Definitions: Start block search (PI command)
 Should not occur in any alarm
No. 52
Definitions: Continue block search (PI command)
Should not occur in any alarm

No. 53
Definitions: ! Digitize function removed !
Activate digitization (PI command)
Should not occur in any alarm

No. 54
Definitions: ! Digitize function removed !
Deactivate digitization (PI command)
Should not occur in any alarm

No. 55
Definitions: Enable the function generator (PI command)
Should not occur in any alarm

No. 56
Definitions: !Disable the function generator (PI command)
Should not occur in any alarm

No. 57
Definitions: Wait for a program marker (channel communication, NC block, WAITM)
Should not occur in any alarm

No. 58
Definitions: Wait for a program end (channel communication, NC block, WAITE)
Should not occur in any alarm

No. 59
Definitions: Program selection from the other channel with synchronization
(Channel communication, NC block INIT + SYNC)
Should not occur in any alarm

No. 60
Definitions: Wait until acknowledgement arrives from MMC (NC block, MMC_CMD)
Should not occur in any alarm

No. 61
Definitions: Activate skip slash blocks
(VDI signal: skip block)
Not permitted if:
1. The nesting depth is too great
Possible actions:
1. Wait until previous ASUB has finished or cancel program

No. 62
Definitions: Deactivate skip slash blocks
(VDI signal: skip block)
Not permitted if:
1. The nesting depth is too great
Possible actions:
1. Wait until previous ASUB has finished or cancel program

No. 63
Definitions: Activate test run.
(VDI signal: rapid traverse override)
Not permitted if:
1. The nesting depth is too great
2. If there is a reorganize brake error
Possible actions:
1. Wait until previous ASUB has finished or cancel program
2. Cancel program

No. 64
Definitions: Deactivate test run.
(VDI signal: rapid traverse override)
Not permitted if:
1. The nesting depth is too great
2. If there is a reorganize brake error
Possible actions:
1. Wait until previous ASUB has finished or cancel program
2. Cancel program

No. 65
Definitions: Activate read-in disable for main run block.
(VDI signal: read-in disable)
Should not occur in any alarm

No. 66
Definitions: Deactivate read-in disable for main run block.
(VDI signal: read-in disable)
Should not occur in any alarm

No. 67
Definitions: Stop at the block boundary (alarm)
Should not occur in any alarm

No. 68
Definitions: Stop all axes (alarm)
Should not occur in any alarm

No. 69
Definitions: Activate program test.
(VDI signal: program test)
Not permitted if:
1. Tool management is active
2. The NCK channel status is not Ready
Possible actions:
1. Backup tool data
2. Cancel program or process with reset button
 or wait for end of program

No. 70
Definitions: Deactivate program test.
(VDI signal: program test)
Not permitted if:
1. The NCK channel status is not Ready
Possible actions:
2. Cancel program or process with reset button
 or wait for end of program

No. 71
Definitions: Stop at the end of block preparation (alarm)
Should not occur in any alarm

No. 72
Definitions: Stop at end of block preparation (alarm)
followed by reorganization of the block preparation.
Not permitted if:
1. The nesting depth is too great
Possible actions:
1. Wait until previous ASUB has finished or cancel program
No. 73
Definitions: Conditional stop at the block boundary. There is another stop if there is still a stop reason "Stop at end of block" after continuation by an NC start. Should not occur in any alarm

No. 74
Definitions: Conditional stop at the block boundary. Despite Start, the interpreter or preprocessing does not bring any blocks into the main run. Should not occur in any alarm

No. 75
Definitions: Stop the preprocessing (alarm) Should not occur in any alarm

No. 76
Definitions: Retraction motion with G33 and Stop Should not occur in any alarm

No. 77
Definitions: Conditional wait for a program marker (NC block, WAITMC) Should not occur in any alarm

No. 78
Definitions: Set marker (NC_block, SETM) Should not occur in any alarm

No. 79
Definitions: Delete marker (NC_block, CLEARM) Should not occur in any alarm

No. 80
Definitions: Select an NC block (PI command) Should not occur in any alarm

No. 81
Definitions: Block editing of the NC program currently being processed (PI command) Should not occur in any alarm

No. 82
Definitions: Start a program in the teach-in submode.
(VDI signal, NC start)
See STARTSIG and MODESWITCHTOAPROGMODE

No. 83
Definitions: Continue a program in the teach-in submode.
(VDI signal, NC start)
See STARTSIG and MODESWITCHTOAPROGMODE

No. 84
Definitions: Reorganize block execution Should not occur in any alarm

No. 85
Definitions: Activate a user interrupt "ASUB" in a manual mode (JOG, REF,...).
(VDI signal, ASUB interface, digital-analog interface)
See INTERRUPT

No. 86
Definitions: Activate a user interrupt "ASUB".
Is only executed in channel status READY.
(VDI signal, ASUB interface, digital-analog interface)
See INTERRUPT
No. 87
Definitions: Execute an "ASUB" user interrupt.
(VDI signal, ASUB interface, digital-analog interface)
Collective event for all interrupt signals.
This event decides which actual interrupt one would like to trigger.
Possible candidates are:
 INTERRUPT
 INTERRUPTFASTLIFTOFF
 INTERRUPTBLSYNC
 INTERRUPT_TOPROG_NOEPOS
 INTERRUPT_START
See INTERRUPT

No. 88
Definitions: Stop processing
(VDI signal, mode group stop)
Should not occur in any alarm

No. 89
Definitions: Set all machine data with the attribute (NEW_CONF) to active.
(NC_Satz, NEW_CONF)
Should not occur in any alarm

No. 90
Definitions: Set all machine data with the attribute (NEW_CONF) to active.
(NC_Satz, NEW_CONF with block search)
Should not occur in any alarm

No. 91
Definitions: Start the continuation of the interpreter processing (internal preprocessing stop)
Should not occur in any alarm

No. 92
Definitions: Interlock for data recovery
Is not permitted if:
The NCK channel status is not Stopped

No. 93
Definitions: Set all user data to active.
For example, that means tool lengths newly changed via MMC become active immediately in the current program.
Not permitted if:
 1. The NCK channel status is not Stopped
 2. The channel has stopped, and the current block cannot be reorganized.
Possible actions:
 1. Press stop button/single block/reset/StopAtEnd button (in Auto).
 2. Activate block change until NC block can be reorganized

No. 94
Definitions: Write user PLC version in version file
Should not occur in any alarm

No. 95
Definitions: Change over PI service measuring system
Should not occur in any alarm as, if necessary, the PI service is acknowledged negatively

No. 96
Definitions: Switch off system
(VDI signal)
Should not occur in any alarm
No. 97
Definitions: Connect block search PI in mode 5.
Block search is simulated in this mode
by executing the program under "program test mode"
as far as the search target block.

No. 98
Definitions: Extended Stop and Retract

No. 99
Definitions: Block search (general) is being activated.
Should not occur in any alarm as, if necessary, the PI service is acknowledged negatively.

No. 100
Definitions: Integrated block search, this means that a search run is restarted after a stopped program.

No. 101
Definitions: External work offset is activated via PLC.
To do this the path is stopped, REORG executed,
the interpreter changed over, and then selected and
continued automatically with REPOS.
Not permitted if:
1. The channel is not in AUTO or MDA.
2. The channel has stopped,
 and the current block cannot be reorganized.
Possible actions:
1. Select AUTO or MDA.
2. Activate block change until NC block can be reorganized.

No. 102
Definitions: Single block type 3 is activated.
With single block type 3, there is a stop at all main blocks.
In contrast to single block type 1, the part program command
SBLOF is ignored.

No. 103
Definitions: Stopping a single axis motion
(VDI signal)
Not permitted if:
The axis is not controlled by the PLC
(Exception: "old" behavior in the case of a reciprocating axis)

No. 104
Definitions: Stopping a single axis motion by an alarm
(alarm)
Not permitted if:
The axis is not controlled by the PLC
(Exception: "old" behavior in the case of a reciprocating axis)

No. 105
Definitions: Continuation of a single axis motion
(VDI signal)
Not permitted if:
The axis has not previously stopped
Initially, not for all types of axis

No. 106
Definitions: Canceling a single axis motion
(VDI signal)
Not permitted if:
The axis is not controlled by the PLC
Initially, not for all types of axis
No. 107
Definitions: Delete distance-to-go of a single axis motion (VDI signal)
Not permitted if:
 The axis is not controlled by the PLC
Initially, not for all types of axis

No. 108
Definitions: Activate: The axis is now controlled by the PLC (VDI signal)
Not permitted if:
 The axis is not controlled by the PLC
Initially, not for all types of axis

No. 109
Definitions: Deactivate: The axis is now controlled by the PLC (VDI signal)
Not permitted if:
 The axis is a main run axis or neutral.
Initially, not for all types of axis

No. 110
Definitions: Available soon

No. 111
Definitions: Available soon

No. 112
Definitions: Available soon

No. 113
Definitions: Available soon

No. 114
Definitions: Available soon

No. 115
Definitions: The event is triggered by the positive PLC edge of the signal "Repos mode edge".
Not permitted if:
 1. The channel is active (program running, block search, loading machine data)
Possible actions:
 1. Cancel the program with the Reset button
 or stop the program (not with block search, loading machine data)

No. 116
Definitions: Enable the tool management commands. (CH VDI signal)
Not permitted if:
 1. The NCK channel status is not Ready
Possible actions:
 1. Cancel program or process with reset button
 or wait for end of program

No. 117
Definitions: Disable the tool management commands. (CH VDI signal)
Not permitted if:
 1. The NCK channel status is not Ready
Possible actions:
 1. Cancel program or process with reset button
 or wait for end of program
No. 118 Definitions: Switching over the desired safety limits (SGE) is always permitted

No. 119 Definitions: Stop run, that is the NCK stops automatically at a block defined by the OPI. Not permitted if:
1. Control is not in Automatic.

No. 120 Definitions: Fast retraction with a single axis Not permitted if:
The axis is not controlled by the PLC

No. 121 Definitions: Stop fast retraction with a single axis Not permitted if:
The axis is not controlled by the PLC and the single axis does not execute a fast retraction

No. 122 Definitions: For test purposes only, and only in assert systems.

No. 123 Definitions: PI_N_STRTLK Set global start disable always permitted

No. 124 Definitions: PI_N_STRTUL Reset global start disable always permitted

No. 125 Definitions: Implicit change to JOG mode at the start of a "JOG motion" in Automatic mode. See also $MN_JOG_MODE_MASK Not permitted if:
1. A channel has left the mode group on account of an interrupt.
2. Overstoring Possible actions:
 1. Cancel the program with the Reset button or wait until the interrupt has finished.
 4. Deselect overstore

No. 126 Definitions: Implicit mode change back at the end of a "JOG motion" started in automatic mode. See also $MN_JOG_MODE_MASK Not permitted if:
1. A channel has left the mode group on account of an interrupt.
2. Overstoring Possible actions:
 1. Cancel the program with the Reset button or wait until the interrupt has finished.
 4. Deselect overstore

No. 127 Definitions: Simulation block search is to be started, that means the results of the computation will only be displayed on the HMI, NO traverse after block search. Not permitted if:
1. The NCK channel is not in RESET Possible action:
 1. Press reset
No. 128
Definitions: Execute program area has been rejected.
Not permitted if:
1. The channel is not in RESET.
2. The channel is not in Automatic.
Possible actions:
1. Press reset.
2. Switch to automatic.

No. 129
Definitions: Selection of PI service syntax check ".N_CHKSEL" has been rejected.
Not permitted if:
1. The channel is not in RESET
Possible action:
1. Press reset

No. 130
Definitions: Starting of PI service syntax check ".N_CHKRUN" has been rejected.
Not permitted if:
1. The channel is not in RESET
Possible action:
1. Press reset

No. 131
Definitions: Starting of PI service syntax check "._N_CHKABO" has been rejected.
Not permitted if:
Should not occur.

No. 132
Definitions: PI service ".N_NCKMOD (BIT-1) has been rejected.
Not permitted if:
Should not occur.

No. 133
Definitions: PI service ".N_NCKMOD (BIT-1) has been rejected.
Not permitted if:
Should not occur.
4.1 System Reaction on SINUMERIK Alarms

Names COMPBLOCKWITHREORG
Effect Block preparation has detected an error, which can be rectified by modifying the program. Reorganization is performed after a program modification.
- Correction block with reorganization.

Names COMPENSATIONBLOCK
Effect Block preparation has detected an error, which can be rectified by modifying the program.
- Correction block

Names FOLLOWUP
Effect Follow-up of axes
- NC switches to follow-up mode

Names INTERPRETER STOP
Effect Program execution is aborted after all the prepared blocks (interpolator buffer) have been processed.
- Interpreter stop

Names LOCALREACTION
Effect - Local alarm response

Names NOALARMREACTION
Effect - No alarm reaction
System Reaction on SINUMERIK Alarms

<table>
<thead>
<tr>
<th>Names</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOREADY, NCKREACTIONVIEW</td>
<td>NCK ready off: Active rapid deceleration (i.e. with maximum braking current) of all drives</td>
</tr>
<tr>
<td></td>
<td>Clearing of servo enable for all NC axes Release of NC ready relay</td>
</tr>
<tr>
<td></td>
<td>- NC not ready</td>
</tr>
<tr>
<td>NOREADY, BAGREACTIONVIEW</td>
<td>Mode group ready off: Active rapid deceleration (i.e. with maximum braking current) of</td>
</tr>
<tr>
<td></td>
<td>the drives in this mode group Clearing of servo enable for the NC axes concerned.</td>
</tr>
<tr>
<td></td>
<td>- Mode group not ready</td>
</tr>
<tr>
<td>NOREADY</td>
<td>Channel ready off: Active rapid deceleration (i.e. with maximum braking current) of the</td>
</tr>
<tr>
<td></td>
<td>drives in this channel Clearing of servo enable for the NC axes concerned.</td>
</tr>
<tr>
<td></td>
<td>- Channel not ready</td>
</tr>
<tr>
<td>NONCSTART</td>
<td>It is not possible to start a program in this channel.</td>
</tr>
<tr>
<td></td>
<td>- NC start inhibit in this channel</td>
</tr>
<tr>
<td>NOREFMARK</td>
<td>The axes in this channel have to be rereferenced.</td>
</tr>
<tr>
<td></td>
<td>- Rereference axes in this channel</td>
</tr>
<tr>
<td>SETVDI</td>
<td>VDI interface signal alarm is set.</td>
</tr>
<tr>
<td></td>
<td>- Interface signals are set</td>
</tr>
<tr>
<td>SHOWALARM</td>
<td>Alarm is displayed on MMC.</td>
</tr>
<tr>
<td></td>
<td>Alarm display</td>
</tr>
<tr>
<td>STOPBYALARM</td>
<td>Ramp stop of all channel axes.</td>
</tr>
<tr>
<td></td>
<td>- NC stop for alarm</td>
</tr>
</tbody>
</table>
Names: STOPATENDBYALARM
Effect: Stop at end of block.
 - NC Stop on alarm at end of block

Names: SHOWALARMAUTO
Effect: The alarm is displayed whenever bit 0 of machine data ENABLE_ALARM_MASK is set. The reaction should be set whenever an alarm should only occur during automatic mode without manual operation by the user.
 - Alarm reaction in automatic mode

Names: SHOWWARNING
Effect: The alarm is displayed whenever bit 1 of machine data ENABLE_ALARM_MASK is set. It is designed for warnings which should normally be suppressed.
 - Alarm view

Names: ALLBAGS_NOREADY
Effect: The Ready is canceled in all mode groups. The reaction thus corresponds to an NCK-REACTIONVIEW|NOREADY, the difference being that the NC READY relay is not canceled and the corresponding VDI bit is not set. This is desirable in the event of an emergency stop for example.
 - Mode group not ready

Names: DELAY_ALARM_REACTION
Effect: If this alarm reaction is configured in the alarm handler, all alarm reactions for alarms, which occur at this point, are buffered channel-specifically and are, therefore, not active. The alarms are displayed on the MMC. Mode group and NC-wide reactions are transferred. The reaction is cleared by activating the clearDelayReaction call or by an alarm, which has configured NO_DELAY_ALARM_REACTION. This activates all the delayed alarm reactions.
 - All channel-specific alarm reactions delayed on alarm, alarm display

Names: NO_DELAY_ALARM_REACTION
Effect: The DELAY_ALARM_REACTION state is canceled.
 - The alarm reaction delay is canceled.
4.2 Cancel criteria for alarms

Names ONE_IPO_CLOCK_DELAY_ALARM_REACTION
Effect All alarm reactions are delayed by one cycle when an alarm is output. This functionality became necessary as part of ESR development.
 - All alarm reactions are delayed by one IPO cycle on alarm.

Names CANCELCLEAR
Effect The alarm is cleared by pressing the Cancel key in any channel. It is also cleared by the Start part program key.
 - Clear the alarm with the Clear key or with NC START

Names CLEARHIMSELF
Effect Self-clearing alarm. The alarm is cleared not by an operator action but explicitly by a "clearAlarm" in programmed the NCK source code.
 - Alarm display disappears with alarm cause. No further operator action necessary.

Names NCSTARTCLEAR
Effect The alarm is cleared by starting a program in the channel, in which the alarm occurred. The alarm is also cleared by an NC reset.
 - Clear the alarm with NC START or the RESET key and continue the program.

Names POWERONCLEAR
Effect The alarm is canceled by turning off / turning on the control system (POWER ON).
 - Switch the control OFF - ON.

Names RESETCLEAR
Effect The alarm is cleared by pressing the Reset key in the channel in which the alarm occurred.
 - Clear alarm with the RESET key. Restart part program.

Names BAGRESETCLEAR
Effect The alarm is cleared by a "BAGRESETCLEAR" command or by carrying out a reset in all channels of this mode group.
 - Press the RESET key to clear the alarm in all channels of this mode group. Restart part program.

Names NCKRESETCLEAR
Effect The alarm is cleared by an "NCKRESETCLEAR" command or by carrying out a reset in all channels.
 - Clear alarm in all channels with the RESET key. Restart part program.
4.3 System reactions on SINAMICS Alarms

The errors and states detected by the individual components of the drive system are indicated by alarms. These alarms are categorized into faults and warnings.

General information on faults (alarms)

The following happens when a fault occurs:

- The appropriate fault action is triggered.
- Status signal ZSW1.3 is set.
- The fault is entered in the fault buffer.

Clearing of a fault:

- Clear the cause of the fault
- Acknowledge the fault

General information on warnings (alarms)

The following happens when a warning occurs:

- Status signal ZSW1.7 is set.
- The warning is entered in the warning buffer.

Clearing of a warning:

- Warnings are self-acknowledging, i.e. if the cause has been removed, the warnings reset themselves automatically.

"Reaction" to faults (alarms)

The standard fault reaction specifies the reaction in the event of a fault. For an overview of parameters and function block diagram, please refer to the following publication:

LIS1, Lists 1
Definition of fault reactions

<table>
<thead>
<tr>
<th>Description</th>
<th>Reaction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>None</td>
<td>No reaction when a fault occurs</td>
</tr>
<tr>
<td>OFF1</td>
<td>Brake along the ramp generator deceleration ramp followed by pulse disable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Closed-loop speed control (p1300 = 20, 21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- n_set=0 is input immediately to brake the drive along the deceleration ramp (p1121).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- When zero speed is detected, the motor holding brake (if parameterized) is closed (p1215). The pulses are suppressed when the brake application time (p1217) expires. Zero speed is detected if the actual speed drops below the threshold (p1226) or if the monitoring time (p1227) started when speed setpoint <= speed threshold (p1226) has expired.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Closed-loop torque control (p1300 = 23)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The following applies to closed-loop torque control mode: Reaction as for OFF2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- On switchover to closed-loop torque control mode (p1501):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- There is no special braking reaction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- If the actual speed drops below the speed threshold (p1226), the motor holding brake will be closed if one is parameterized. The pulses are suppressed when the brake application time (p1217) expires.</td>
<td></td>
</tr>
<tr>
<td>OFF2</td>
<td>Internal/external pulse disable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Closed-loop speed and torque control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Instantaneous pulse suppression, the drive "coasts" to a standstill.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The motor holding brake (if parameterized) is closed immediately.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Power-on disable is activated.</td>
<td></td>
</tr>
<tr>
<td>OFF3</td>
<td>Brake along the OFF3 deceleration ramp followed by pulse disable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Closed-loop speed control (p1300 = 20, 21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- n_set=0 is input immediately to brake the drive along the OFF3 deceleration ramp (p1135).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- When zero speed is detected, the motor holding brake (if parameterized) is closed. Pules are suppressed when the brake application time (p1217) expires. Zero speed is detected if the actual speed drops below the threshold in p1226 or if the monitoring time (p1227) started when speed setpoint <= speed threshold (p1226) has expired.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Power-on disable is activated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Closed-loop torque control (p1300 = 23)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Switchover to speed-controlled operation and other reactions as described for speed-controlled operation</td>
<td></td>
</tr>
</tbody>
</table>
Description STOP1
Reaction -
Description Available soon

Description STOP2
Reaction \(n\text{_set} = 0 \)
Description • \(n\text{_set}=0 \) is input immediately to brake the drive along the OFF3 deceleration ramp (p1135).
• The drive remains in closed-loop speed control mode.

Description DCBRAKE
Reaction -
Description Available soon

Description ENCODER
Reaction Internal/external pulse disable (p0491)
Description The fault reaction ENCODER is applied as a function of the setting in p0491.
Factory setting:
\(p0491=0 \rightarrow \) Encoder fault results in OFF2

Acknowledging faults (alarms)
Indicates the standard acknowledgement of the fault after removal of the cause. For an overview of parameters and function block diagram, please refer to the following publication:
LIS1, Lists 1

Description POWER ON
Description • The fault is acknowledged by a POWER ON process (switch drive unit off and on again).
Note:
If this action has not eliminated the fault cause, the fault is displayed again immediately after power up.

Description IMMEDIATELY
Description After correction of the fault, the alarm can be cleared by pressing the RESET key:
•
parameter "pxxxx"

With some alarms, reference is made to a SINAMICS parameter in the fields "cause" and "remedy".

The parameter number consists of a "p" or "r", followed by a 4-digit number (xxxx) and the index (optional), e.g. p0918[0...3].

A detailed description of the SINAMICS parameters is provided in the following publication:

LIS1, Parameter Manual 1 (brief description)
SINAMICS_S List Manual (detailed description)
Appendix A

A.1 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>AV</td>
<td>Job planning</td>
</tr>
<tr>
<td>BA</td>
<td>Operating mode</td>
</tr>
<tr>
<td>BB</td>
<td>Ready to run</td>
</tr>
<tr>
<td>BCD</td>
<td>Binary Coded Decimals: Decimals encrypted in binary code</td>
</tr>
<tr>
<td>CNC</td>
<td>Computerized Numerical Control</td>
</tr>
<tr>
<td>CP</td>
<td>Communications Processor</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CR</td>
<td>Carriage Return</td>
</tr>
<tr>
<td>CRC</td>
<td>Cutter Radius Compensation</td>
</tr>
<tr>
<td>CSB</td>
<td>Central Service Board: PLC module</td>
</tr>
<tr>
<td>CTS</td>
<td>Clear To Send: Signal from serial data interfaces</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital-to-Analog Converter</td>
</tr>
<tr>
<td>DB</td>
<td>Data Block</td>
</tr>
<tr>
<td>DIN</td>
<td>German standard</td>
</tr>
<tr>
<td>DIO</td>
<td>Data Input/Output: Data transfer display</td>
</tr>
<tr>
<td>DRF</td>
<td>Differential Resolver Function: Handwheel jog</td>
</tr>
<tr>
<td>DRY</td>
<td>Dry Run: Dry run feedrate</td>
</tr>
<tr>
<td>DSB</td>
<td>Decoding Single Block</td>
</tr>
<tr>
<td>DSR</td>
<td>Data Send Ready: Signal from serial data interfaces indicating that they are ready to send</td>
</tr>
<tr>
<td>DW</td>
<td>Data Word</td>
</tr>
<tr>
<td>EIA code</td>
<td>Special punched tape code, number of holes per character always odd</td>
</tr>
<tr>
<td>EPROM</td>
<td>Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>ETC</td>
<td>ETC Key: Expansion of the softkey bar in the same menu</td>
</tr>
<tr>
<td>FDB</td>
<td>Product database</td>
</tr>
<tr>
<td>FDD</td>
<td>Feed Drive (spindle)</td>
</tr>
<tr>
<td>FIFO</td>
<td>First In First Out: Memory, which works without address specification where data are read in the same order, in which they were stored.</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM</td>
<td>Function Module</td>
</tr>
<tr>
<td>FM-NC</td>
<td>Function Module Numerical Control</td>
</tr>
<tr>
<td>FRA</td>
<td>Frame block</td>
</tr>
<tr>
<td>FRAME</td>
<td>Coordinate conversion with the components zero (work) offset, rotation, scaling, mirroring</td>
</tr>
<tr>
<td>FST</td>
<td>Feed Stop</td>
</tr>
<tr>
<td>GUD</td>
<td>Global User Data</td>
</tr>
<tr>
<td>HD</td>
<td>Hard Disk</td>
</tr>
<tr>
<td>HHU</td>
<td>Handheld unit</td>
</tr>
<tr>
<td>HMS</td>
<td>High-resolution Measuring System</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>I</td>
<td>Input</td>
</tr>
<tr>
<td>IM</td>
<td>Interface Module</td>
</tr>
<tr>
<td>IM S/R</td>
<td>Interface Module (S=send/R=receive): Interface module for transmitting and receiving data</td>
</tr>
<tr>
<td>INC</td>
<td>Increment</td>
</tr>
<tr>
<td>I/RF</td>
<td>Infeed/Regenerative Feedback unit</td>
</tr>
<tr>
<td>ISO code</td>
<td>Special punched tape code, number of holes per character always even</td>
</tr>
<tr>
<td>K1...K4</td>
<td>Channel 1 to channel 4</td>
</tr>
<tr>
<td>KUE</td>
<td>Gear ratio</td>
</tr>
<tr>
<td>Kv</td>
<td>Servo gain factor</td>
</tr>
<tr>
<td>LAD</td>
<td>Ladder diagram</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display: Opto-electronic display with liquid crystals</td>
</tr>
<tr>
<td>LEC</td>
<td>Leadscrew Error Compensation</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LUD</td>
<td>Local User Data</td>
</tr>
<tr>
<td>MB</td>
<td>MegaByte</td>
</tr>
<tr>
<td>MC</td>
<td>Measuring Circuit</td>
</tr>
<tr>
<td>MCP</td>
<td>Machine Control Panel</td>
</tr>
<tr>
<td>MD</td>
<td>Machine Data</td>
</tr>
<tr>
<td>MDI</td>
<td>Manual Data Input</td>
</tr>
<tr>
<td>MLFB</td>
<td>Machine-readable product designation</td>
</tr>
<tr>
<td>MMC</td>
<td>Man-Machine Communication: User interface on numerical control systems for operator control, programming and simulation</td>
</tr>
<tr>
<td>Mode group</td>
<td>Mode groups</td>
</tr>
<tr>
<td>MPF</td>
<td>Main Program File: NC part program (main program)</td>
</tr>
<tr>
<td>MPI</td>
<td>Multi-Point Interface</td>
</tr>
<tr>
<td>MSD</td>
<td>Main Spindle Drive</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NC</td>
<td>Numerical Control</td>
</tr>
<tr>
<td>NCK</td>
<td>Numerical Control Kernel: NC kernel with block preparation, travel range, etc.</td>
</tr>
<tr>
<td>NCU</td>
<td>Numerical Control Unit</td>
</tr>
<tr>
<td>NURBS</td>
<td>Non-Uniform Rational B Spline</td>
</tr>
<tr>
<td>O</td>
<td>Output</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>OP</td>
<td>Operator Panel</td>
</tr>
<tr>
<td>OPI</td>
<td>Operator Panel Interface: Interface for connection to the operator panel</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PCMCIA</td>
<td>Personal Computer Memory Card International Association: Interface standard</td>
</tr>
<tr>
<td>PG</td>
<td>Programming device</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Control</td>
</tr>
<tr>
<td>PRT</td>
<td>Program test</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory (can be read and written)</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced Instruction Set Computer: Type of processor with small instruction set and ability to process instructions at high speed</td>
</tr>
<tr>
<td>ROV</td>
<td>Rapid Override</td>
</tr>
<tr>
<td>RPA</td>
<td>R Parameter Active: Memory area on the NCK for R parameter numbers</td>
</tr>
<tr>
<td>RTS</td>
<td>Request To Send: Activate transmitter, control signal from serial data interfaces</td>
</tr>
<tr>
<td>SBL</td>
<td>Single Block</td>
</tr>
<tr>
<td>SD</td>
<td>Setting Data</td>
</tr>
<tr>
<td>SEA</td>
<td>Setting Data Active: Memory area for setting data on the NCK</td>
</tr>
<tr>
<td>SKP</td>
<td>SKIP: Skip block</td>
</tr>
<tr>
<td>SM</td>
<td>Signal Module</td>
</tr>
<tr>
<td>SPF</td>
<td>SubProgram File: Subroutine</td>
</tr>
<tr>
<td>SSI</td>
<td>Serial Synchronous Interface</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>T</td>
<td>Tool</td>
</tr>
<tr>
<td>TEA</td>
<td>Testing Data Active: Refers to machine data</td>
</tr>
<tr>
<td>TNRC</td>
<td>Tool Nose Radius Compensation</td>
</tr>
<tr>
<td>TO</td>
<td>Tool Offset Tool Offset</td>
</tr>
<tr>
<td>TOA</td>
<td>Tool Offset Active: Memory area for tool offsets</td>
</tr>
<tr>
<td>TRANSMIT</td>
<td>TRANSform Milling Into Turning: Coordinate conversion on turning machines for milling operations</td>
</tr>
<tr>
<td>UI</td>
<td>User interface</td>
</tr>
<tr>
<td>ZO</td>
<td>Zero Offset</td>
</tr>
<tr>
<td>ZOA</td>
<td>Zero Offset Active: Memory area</td>
</tr>
</tbody>
</table>
Siemens AG
I DT MC MS 1
P. O. Box 3180
D-91050 Erlangen
Federal Republic of Germany

Fax +49 (0) 9131 / 98 - 2176 [Dokumentation]

Suggestions and Corrections

Suggestions
Corrections

for Publication/Manual
SINUMERIK 840D sl, 840Di sl,
SINAMICS

Manufacturer/Service documentation

Diagnostics Manual
Order No.: 6FC5398-6BP10-4BA0
03/2009

Should you come across any printing errors when reading this publication, please notify us on this sheet. Suggestions for improvements are also welcome.

From
Name:
Company/Dept.

Address : ________________________________

Telephone : _____ / ______________________
Telefax : _____ / _________________________
email : _________________________________

Suggestions and Corrections

© Siemens AG, 2009. All rights reserved