
SIEMENS

CPU 928
Programming Guide

Order No.: 6ES5 998-1 PR21
Release 01

Pocket Guide CPU 922CPU 928/CPU 928B/CPU 948

Order No.: 6ES5 997-3UA2.2

is included in the manual

Contents

CPU 928
Programming Guide

C79000-B8576-C633-01

Multiprocessor Communication
User's Guide

C79000-88576-C468-05

1

2

Copyright

Copyright @ Siemens AG 1993 All Rights Reserved

The reproduction, transmission or use of this document or its contents is not permitted without express
written authority.
Offenders will be liable for damages. All rights, including rights created by patent grant or registration of
a utility model or design, are rese~ed.

Disclaimer of Liability

We have checked the contents of this manual for agreement with the hardware and software described.
Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data
in this manual are reviewed regularly and any necessary corrections included in subsequent editions.
Suggestions for improvement are welcomed.

Technical data subject to change.

Safety-related guidelines

This manual contains notices which you should observe to ensure your own personal
safety, as well as to protect the product and connected equipment. These notices are
highlighted in the manual by a warning triangle and are marked as follows according to
the level of danger:

A Warning
indicates that death, severe personal injury or substantial property damage can
result if proper precautions are not taken.

A Caution
indicates that minor personal injury or property damage can result if proper
precautions are not taken.

Only qualified personnel should be allowed to install and work on this equipment. Qualified
persons are defined as persons who are authorized to commission, to ground and to tag
equipment, systems and circuits in accordance with established safety practices and
standards.

Siemens Aktiengesellschaft 6ES5 998-1PR21
EWK Eleklmnikwerk Karlwhe

Printed in the Federal Republic of Germany

SIEMENS

SlMATlC S5
CPU 928
.

Programmer's Guide

Content S

1 Introduction: S5 135U Mode of Operation and Application 1-1

. 1.1 New Features and Functions of the CPU 928 1-7

2 User Program .. 2-1
2.1 Programming Language STEP5 . 2-1
2.1.1 Methods of Representation: LAD. CSF. and STL 2-2
2.1.2 Structured Programming . 2-3
2.1.3 STEP 5 Operations . 2-4
2.1.4 Numeric Representation . 2-5
2.1.5 STEP 5 Blocks . 2-9
2.2 Organization. Program and Sequence Blocks 2-13
2.2.1 Programming . 2-13
2.2.2 Calls . 2-14
2.2.3 Special Organization Blocks . 2-16

. 2.2.4 Special-function Organization Blocks 2-18

. 2.3 Function Blocks 2-19
. 2.3.1 Structure of Function Blocks 2-20

2.3.2 Programming Function Blocks . 2-22
2.3.3 Calling and Assigning Parameter to Function Blocks 2-26
2.3.4 Special Function Blocks . 2-29
2.4 Data Blocks . 2-31
2.4.1 Structure of a Data Block . 2-31
2.4.2 Programming Data Blocks . 2-32
2.4.3 Opening Data Blocks . 2-33
2.4.4 Special Data Blocks . 2-35

3 Program Processing 3-1
3.1 Summary . 3-1
3.1.1 Program Organization . 3-1
3.1.2 Program Storage . 3-5

. 3.1.3 Running the STEP5 User Program 3-6
3.1.4 Running the Program . 3-9
3.2 STEP5 Operation Set with Examples of Programming 3-10

. 3.2.1 Basic Operation Set 3-13
3.2.2 Supplementary Operation Set . 3-37

Operating States ... 4-1
Operating States and Program Levels . 4-1
Operating State STOP . 4-6

. Operating State START-UP 4-9
. Cold Restart and Manual Warm Restart 4-11

. Automatic Warm Restart 4-13
. Interruption during START-UP 4-14

. Operating State RUN 4-16
. CYCLE: Cyclic Program Execution 4-17

. TIME INTERRUPT: Time-driven Program Execution 4-18
CONTROLLER INTERRUPT: Processing of Controllers 4-23

. . . PROCESS INTERRUPT: Interrupt-driven Program Execution 4-24

Handling Interrupts and errors 5-1
Frequent Errors in the User Program . 5-1

. Evaluation of Error information ..5- 2

Control Bits and Interrupt Stack (ISTACK) 5-7
Error Handling Using Organization Blocks 5-18
Errors during START-UP . 5-21
DBO-FE (Error in DB 0) . -5-22
DB1-FE (Error in DB 1) . 5-22
DB2-FE (Error in DB 2) . 5-24
DXO-FE (Error in DX 0) . 5-25
Errors in RUN and START-UP . 5-26
BCF (Command Code Error) . 5-27

. LZF (Execution Time Error) 5-30
ADF (Addressing Error) . 5-34
QV2 (Acknowledgement Delay) . 5-35

. ZYK-FE (Cycle Time Error) 5-36
WECK-FE (Collision of Two Time Interrupts) 5-37
REG-FE (Controller Error) . 5-37
ABBR (Abort) . 5-40

Integrated Special Functions 6-1
Handling of the Registers . 6-5
Access to the Condition Code Byte (OB 110) 6-5
Clear Accus 1. 2. 3 and 4 (OB 111) . 6-7
Roll Up Accu (OB 112) and Roll Down Accu (OB 113) 6-8
Structure Commands . 6-10
Counter Loops (OB 160 through 163) . 6-10
Read Block Stack (BSTACK) (OB 170) . 6-12

. Block Handling 6-16
. Variable Data Block Access (OB 180) 6-16
. Test Data Blocks (DB/DX) (OB 181) 6-20

. Transfer Flags to Data Block (OB 190. 192) 6-22
. . . Transfer Data Fields to Flag Area (OB 191 and OB 193) 6-24

. Transfer Data Blocks to DB-RAM (OB 254. OB 255) 6-29

Multiprocessor Communication (OB 200 through OB 205) 6-31

Page Access . 6-32
Writing Data to a Page (OB 216) . 6-35

. Reading Data from a Page (OB 217) 6-37
. Assigning a Page (OB 218) 6-39

Sign Extension (OB 220) . 6-43
System Functions . 6-44
Switch On/Off "Disable All Interrupts" (OB 120) and
Switch On/Off "Delay All Interrupts" (OB 122) 6-44
Switch On/Off "Disable Individual Time Interrupts"
(OB 121) and Switch On/Off "Delay Individual Time
Interrupts" (OB 122) . 6-46

. Set Cycle Time (OB 221) 6-49
Restart Cycle Time (OB 222) . 6-49
Compare Start-up Modes (OB 223) . 6-50
Transfer Interprocessor Communication IPC Flags as a

. Block (OB 224) 6-50
. Read Word from the System Program (OB 226) 6-51

. Read Check Sum of System Program (OB 227) 6-52
. Read Status Information of Program Level (OB 228) 6-54

Functions for Standard Function Blocks
(OB 230 through OB 237) . -6-56
Shift Register . 6-57

. Initialize Shift Register (OB 240) 6-60
. Process Shift Register (OB 241) 6-63

. Erase Shift Register (OB 242) 6-64

. Control: PID Algorithm 6-65
. Initialize PID Algorithm (OB 250) 6-72

. Process PID Algorithm (OB 251) 6-73

Extended Data Block DX 0 7-1

Memory Assignment and Memory Organization 8-1
. Address Distribution in the CPU 928 8-2

Address Distribution . System- RAM . 8-3
Address Distribution - 1/0 . 8-4
Memory Organization in the CPU 928 . 8-7

. Block Headers in the User Memory and the DB-RAM 8-7
Block Address Lists in Data Block DB 0 8-8

. RI/RJ Area 8-12
RS/RT Area (System Data Assignment) . 8-12

Memory Access Using Absolute Addresses 9-1
Access to Registers and the Memory via an Address in
ACCU 1 . 9-5

Transfer of Memory Blocks . 9-13
BR Register Operations . 9-19
Loading of the BR Register . 9-19
Shifting of the BR Register Contents . 9-20
Access to the Local Memory . 9-21
Access to the Global Memory . 9-21
Access to the Page Frame . 9-24

................................ Multiprocessor Operation 10-1

Notes .. 0-1

Data Exchange between the Processors . 10-3
Interprocessor Communication (IPC) Flags 10-4
Multiprocessor Communication . 10-8
"Protected" Transfer of Connected Data Fields 10-8
1/0 Assignment . 10-9
Data Block DB 1 .. 0-9

Start-up during Multiprocessor Operation 10-12
. Test Operation 10-13

Testing Aids: Online Functions 11-1
Online Function 'STATUS VARIABLES'... 11-3
Online Function 'STATUS ' 11-4
Online Function 'PROCESSING CONTROL'......... 11-5

. Online Function 'CONTROL ' 11-9
Online Function 'CONTROL VARIABLES'......... 11-9

. Online Function 'COMPRESS' memory 11-10
. Online Function 'STARTr/'STOP ' 11-10

. Online Function 'PC OVERALL RESET ' 11-11
Online Function 'OUTPUT ADDRESS ' . 11-11
Online Function 'MEMORY CONFIGURATION ' 1 1-11
Table: Activities at the Checkpoints 11-12

Technical Data S5-135U . A-l
Summary of Error Identifications . B-l
STEP5 Command Summary . C-l
STEP5 Commands
(arranged in alphabetical order) . D-l
STEP5 Commands
(arranged according to command code) . E-l
STEP5 Commands Not Contained in the CPU 928 F-l
Summary of the Program Level Identifiers . G-l
Example: How to Evaluate the ISTACK . H-l

Index

List of Figures. lkamples and Summaries

Important:

This manual refers to the CPU 928 with
MLFB no. -3UA12 (12 MHz).

Where to find what in the manual

Chapter 1 gives an introduction into a processor's mode of operation
and internal structure. It describes the typical S5-135U system
structure as well as the new features and functions of CPU 9 2 8 .

Chapter 2 illustrates the user program structure and explains special
features of the STEP 5 programming language. This is followed by a
description of the various STEP 5 program blocks and how they are
programmed.

Chapter 3 contains information on the cyclic program processing in
CPU 9 2 8 , the organization and storage of programs. A list of the
entire STEP 5 operation set as well as many sample programs have also
been included. (Additional information on STEP 5 operations can be
found in the 'STEP 5 list of operations'. Please, also pay attention
to the specifications made under 'Literature references'.)

Chapter 4 describes the operating states of CPU 928 (START-UP, RUN,
STOP) and defines the term 'program level'. It explains possible
program levels in the individual operating states of the processor.
In addition, you will find important information on time-driven and
interrupt-driven program processing.

Chapter 5 contains detailed information on error diagnostic and error
handling. You will find a description of typical errors in START-UP
and RUN and learn how to detect errors and handle them.
The structure of the interrupt stack (ISTACK) and how to evaluate it
is described by means of examples.

Chapter 6 deals with 'integrated special functions' and gives many
application examples.

Chapter 7 illustrates the structure and the programming of data block
DX 0 which can be used to easily adapt specific features and functions
of CPU 928 to your requirements (incl. samplf programs).

Chapter 8 gives detailed information on the memory areas of CPU 9 2 8 .
Experienced users will learn how system data is assigned.

Chapter 9 is dedicated to very experienced users who have a profound
knowledge of the system. It contains all the STEP 5 commands used to
access the entire memory via absolute addresses and describes the
individual registers of CPU 9 2 8 .

Chapter 10 gives additional information on multiprocessor operation
and describes the structure and the programming of data block DB 1
which is necessary for multiprocessor operation. The particular fea-
tures of test operation are explained at the end of this chapter.

Chapter 11 describes some online functions which you can call at the
programmer to test your program. We will also turn your attention to
pecularities which may arise in connection with CPU 9 2 8 .

Abbreviations

ABBR
Accu 1(2,3,4)-L
Accu 1(2,3,4)-H
Accu 1(2,3,4)-LL
Accu 1(2,3,4)-LH
ADL
BAS P
BCD
BCF
BSTACK
C
CP
CPU
COR
CSF
D, DL/DR, DW, DD

DB
DBA
DBL
DSP 0, DSP 1

DX
EPROM
ERAB
F, FY, FW, FD
F B
FX
I P
ISTACK
LAD
LZF
OB
OB, OW
OR
OS
ov
PB
PB, PW
PC
PG
P I
PI1
PI0
Proc .
PY
QVZ
RAM
RLO
SAC
S B
SF
STA
STL
T
ZYK

Abort
Low word in accumulator 1 (1,2,3), 16 bits
High word in accumulator 1 (2,3,4), 16 bits
Low byte of low word in accu 1 (2,3,4), 8 bits
High byte of low word in accu 1 (2,3,4), 8 bits
Addressing error
Command output inhibit
Binary coded decimal number
Commande code error
Block stack
Counter (counter locations)
Communications processor
Central processing unit
Coordinator
Control system flowchart
Data (1 bit), left-hand/right-hand data (8 bits),
data word (16 bits), data double word (32 bits)
Data block
Data block start address (in register 6)
Data block length (in register 8)
Condition codeword (often referred to as CC 0, CC 1
or ANZ 0, ANZ 1)
Data block extended
Erasable Programmable Read Only Memory
First scan (bit indication)
Flag bit, flag byte, flag word, flag double word
Function block
Extension function block
Intelligent 1/0 module
Interrupt stack
Ladder diagram
Execution time error
Organization block
Byte, word from "extension I/OW range
Or (bit indication)
Latching type overflow (word indication)
Overflow (word indication)
Program block
1/0 byte (PG 675), 1/0 word
Programmable controller
Programmer
Process image
Process image of inputs
Process image of outputs
Processor
1/0 byte (PG 685)
Acknowledgement delay
Random Access Memory
Result of logic operation (bit indication)
STEP address counter (in register 15)
Sequence block
Special function
Status (bit indication)
Statement list
Timer (timer locations)
Cycle error

Literature references

How to program in STEP 5 (introduction) and how to program the
programmable controller SIMATIC S5-135U is explained in the following
manuals :

S5-135U programmieren mit STEP 5 l)
Siemens AG, ISBN 3-8009-1461-1
(S/R processors)

2 Automatisieren mit SIMATIC S5-135U)
Siemens AG, ISBN 3-8009-1522-7
(S/R processors and CPU 928)

Also note the remaining chapters of your manual (Instructions, STEP 5
Operations List) dealing with CPU 928.

l) German version only
2, English version under preparation

iii

1 Introduction: S5 135U Mode of Operation and Application

This chapter is for those users who have not yet worked with a pro-
grammable controller but who have had experience with other microcom-
puter systems.

Structure of the system

A programmable controller (PC) is a computer system that has been
specifically developed for industrial use, e.g. for controlling manu-
facturing machines. PC's have a modular design and consist of a sub-
rack with at least one processor module - from now on simply referred
to as "processor" - and numerous peripheral units. The number and type
of processors used depends on the particular automation task in ques-
t ion.
The S5 135U programmable controller belongs to the SIMATIC S5 family
of stored program controllers. It is a high-performance multiprocessor
device designed for process automation (open and closed-loop control,
signalling, monitoring, logging) that can be used for constructing
simple controls with binary signals as well as for solving extensive
automation tasks.

The central unit of the S5-135U can be configured with

- a processor for single processor operation or

- a coordinator (COR) and up to 4 processors for multiprocessor
operation,

- additional communications processors (CP's):
up to 7 CP's for single processor operation or 4 to 6 (7) CP's for
multiprocessor operation.

The remaining slots in the central controller of the S5 135U are
available for input and output modules. In order to expand the inter-
face system you can attach extension racks (EU's) to the central unit.

Also refer to the catalog "Programmable Controller S5 135UW, ST 54.1
Order no. E86010-K4654-Alll-A3.

The following figure shows the typical construction of an S5-135U
system. The modules highlighted by thicker lines are sufficient for
single processor operation.

,_____-____-____---

Process to be controlled
(open/closed loop)

Fig. 1-1: Typical S5 135U svstem structure

Application

Depending on the particular situation one of the following processors
can be used for simple automation tasks in single processor operation:

- S processor, particularly suitable for open-loop control tasks
(fast bit processing)

- R processor, particularly suitable for closed-loop control tasks
(fast byte processing)

- M processor, designed for measured-value processing; programmable
in Assembler and in high-level programming languages (BASIC, C)

- CPU 9 2 8 , universally applicable, fast bit and byte processing.

In contrast to many other PC's, the S5 135U central controller is able
to operate with several processors simultaneously for more complex
automation tasks, making it a multi~rocessor device.

Multiprocessor operation is useful whenever the process to be con-
trolled is too complex for one processor and when it can be divided
into several more or less independent sub-tasks. Each sub-task can be
assigned to the most suitable processor (see above). Each processor
performs its individual task independent of the other processors.

The processors access the 1/0 modules one after the other using a
common bus (= S5 bus). An additional module, the coordinator, allo-
cates the S5 bus to the processors successively in fixed time periods.
Only the processor the bus has been allocated to is capable of access-
ing the I/O1s.

Processors can exchange data with each other via the S5 bus. This data
exchange makes use of a mailbox on the coordinator.

Hode of operation

Within a processor, the following cycle is constantly repeated:

1. All the input modules assigned to a processor are scanned and the
data read are temporarily stored in the process image of the inputs
(PII) .

2. Data contained in the PI1 is processed by the user program and the
data to be output is entered in the process image of the outputs
(PIO) .

3. Data contained in the PI0 is transferred to the output modules
assigned to a particular processor.

The time which the processor needs in order to perform these tasks is
called the cycle time.

The cycle must be fast enough, to ensure that process states do not
change faster than the processor can react; otherwise the process may
get out of control. Twice the cycle time has to be considered as the
maximum reaction time. The cycle time is dependent on the type and
complexity of the user program (see below) and is often not constant.

An additional time-driven program can be provided for processes need-
ing control signals at regular time intervals. On completion of one of
these intervals the cyclic program is interrupted to allow the time-
driven program to be executed. Up to 9 time-driven programs are pos-
sible in the CPU 928! The cycle time increases by the amount which is
needed for processing the time-driven program.

In the processor, an interrupt-driven program can be assigned to a
process signal that has to be responded to very quickly. After such an
interrupt, the processor breaks off the time-driven or cyclic program
in order to process the interrupt-driven program. The cycle time
increases by the amount which is needed for processing the interrupt-
driven program.

At worst the cycle time is the sum of the time needed for the cyclic
program and the possibly repeatedly called up time- and interrupt-
driven programs.

Each processor monitors the cycle time. It will interrupt the program
if a programmable limit values is exceeded and set itself and the
others in stop status, then it cancels the output signals.

Program

The program found in each processor is divided into two parts, an user
program and a system program.

STEP 5 user programs for the S5 135U are written in the proaramminq
lanauane STEP 5, which is especially designed for PC's (exception: M
processor). The user program is modular and consists of at least one
program module (block). A distinction must be made between two funda-
mental block types:

a) Code blocks: blocks that contain STEP 5 commands.

b) Data blocks: blocks containing the constants and variables for the
STEP 5 program.

The user has no access to the system program. This program supports
all the typical functions of a programmable controller. It includes:

- updating the process images (input, output, interprocessor communi-
cation flag)

- updating the timer locations
- calling the cyclic time-driven and interrupt-driven programs.

I n p u t
m o d u l e s

o u t p u t

m o d u l e s

C o o r d i n a t o r

I

D a t a b l o c k s
f r e e tleld

I m

J
i

A d d i t l o n a l

p r o c e s s o r s

4 b

B l o c k d i a g r a m o f a n S 5 1 9 5 U p r o c e s s o r (r n u l t l p r o c e s s o r o p e r a t i o n)

Internal design of a processor

A processor's memory is divided into several areas, the most important
being :

- user memory (max. 32K words)

The user memory is located on a plug-in RAM or EPROM sub-module and
contains code and data blocks.

- data block - RAM (= DB-RAM, max. 23.375 Kwords)

The DB-RAM is a memory area for data blocks. Data blocks whose
contents the application program has to change, have to be copied
from the EPROM to the DB-RAM.

- flag address area F (256 bytes)

This memory area can be accessed quickly by the user program. It
should ideally be used for data, which are required frequently.
The following types of data can be accessed: single bits, bytes,
words, and double words. Single flag bytes can be used as interpro-
cessor communication flags for data exchange between processors.
Interprocessor communication flags are updated by the system pro-
gram at the end of a cycle by way of a latch in the coordinator.

- process image of the inputs and outputs PII/PIO (each 128 bytes)

The user program can access the process image in the same way as
the interprocessor communication flags. The process image is also
updated by the system program at the end of the cycle.

- 1/0 area (512 bytes)

The user program can bypass the process image and access the peri-
pheral units directly via the S5 bus. Possible types of data are:
bytes and words.

- timers T (128 timer locations for the S and R processor, 256 timer
locations for the CPU 928)

Timer locations are set at a value between 10 ms and 9990 S by the
user program and are counted down in intervals of 10 ms by the
system program.

- counter C (128 counters for the S and R processor, 256 counters for
the CPU 928)

Counter locations are set at a starting value (max. 999) by the
user program and decremented.

STEP 5 commands have access to the following operand areas:

- flag area
- process image of the inputs and outputs
- 1/0 area
- timers
- counters
- current data block

In order to access the above operand areas, STEP 5 commands employ 2
different mechanisms:

- Most of the STEP 5 commands address a storage location relative to
the beginning of an operand area. As long as only these commands
are being used, the program is separated from the operand areas and
cannot overwrite itself if an error occurs.

- A few STEP 5 commands work with absolute addressing. These commands
allow access to the entire memory area.

In comparison with other operand areas, the current data block does
not have any fixed length or start address. It is the data block whose
length and start address are entered in special registers (see below).
The user program can only access the current data block unless
commands for absolute addressing are used. Possible types of data are:
single bits, bytes, words, and double words. Access to the current
data block is slower than access to the flag area.

Besides those memory areas mentioned above, the processor has the
following registers:

- 4 accumulators (32 bits) that serve as multipurpose registers,
e.g. as auxiliary registers for memory-to-memory transfer, or as
registers for operand and arithmetic results.

- 1 instructi'on counter (STEP address counter, SAC) containing the
address of the next command.

- 1 block stack pointer (BSP) that organizes block stack input.

- 1 DBA register (DBA = data block start address) containing the
start address of the current data block.

- 1 DBL register (DBL = data block length) containing the number of
data words in the current data block.

- 1 condition code register.

- 1 BR register (BR = base address register) used for absolute
addressing.

1.1 New Features and Functions of the CPU 928
(for Users of S and R Processors)

S o r o c e s s o r :
f a s t b i t p r o c e s s i n g

- - > open -loop control

R o r o c e s s o r :
f a s t w o r d p rocess ing
- - > c l o s e d - l o o p cont ro l . computing and

P P U 928:
i m p r o v e d c y c l e t ime w i t h
m i x e d p r o g r a m m i n g

(b i t a n d w o r d p rocess ing)
- - > open-loop and closed-loop

c o n t r o l , comput ing.
c o m m u n i c a t i o n s

The CPU 928 is a 40 mm wide module that takes up 2 slots in the central
controller 135U. It combines the advantages of the S processor (fast
bit processing, designed for open-loop control tasks) and the R pro-
cessor (fast byte processing, designed for closed-loop control tasks).
More-over, the CPU 928 is particularly suitable not only for operation
and for observation, but also for monitoring, signalling and for
communication in multiprocessor operations. The CPU 928 is therefore a
universal processor for handling a wide range of automation tasks.

If you are already familiar with the S or R processor in S5 135U, then
the new features and functions of CPU 928 described in the following
chapters should be of particular interest: information given in
italics applies to version 3UA12 onlv!):

Chapter 3.1.1: Program organization

Maximum block nesting depth of the CPU 928 has been increased to '62 '
(CPU 928-3UAll: '30', R processor: '20').

Maximum cycle time permitted is now 6000 ms (CPU 928-3UAll and R
processor: 4000 ms).

Chapter 3.3: Supplementary operations

The STEP 5 operation set has been extended to include the following
new commands:

- commands for adding and subtracting 32-bit fixed-point numbers:
+D, -D, ADD DF (system operations) l)

l) Programming of these commands depends on the type of your PG as
well as on the release of your PG system software

- commands for loading and transferring a word into the RJ or RT
area: L RJ, T RJ, L RT, T RT (supplementary operations)

Chapter 4 .4 .2 : Time interrupts

At present up to 9 time-driven programs may be executed. The indivi-
dual programs are contained in the organization blocks OB 10 to OB 18.
Each OB is called in another time base: OB 10, for instance, is
processed every 10 ms, OB 15 every 500 ms. Time interrupt O B s with a
shorter time base have a higher priority than time interrupts with a
longer time base and, if required, are nested into the latter.

Chapter 5.6: Errors in START and RUN

Error identifiers in accumulators (accu) 1 and 2 have been added to.

Chapter 6: Special integrated functions

CPU 928 has new special functions available. These are:

OB 110 : Access to the condition-code byte
OB 111 ' Clear accus 1, 2, 3 and 4
OB 112 : Roll up accu
OB 113 : Roll down accu
OB 120 : Switch on/off "Inhibit all interrupts"
OB 121 : Switch on/off "Inhibit individual time

interrupts"
OB 122 : Switch on/off "Delay all interrupts"
OB 123 : Switch on/off "Delay individual time

interrupts"
OB 160 to OB 163 : Counter loop
OB 170 : Read block stack (BSTACK)
OB 180 : Random data block access
OB 181 : Test data blocks
OB 190 and OB 192: Transfer flag to data blocks
OB 191 and OB 193: Transfer data blocks to flag area
OB 228 : Read status information from a program level

Chapter 7: Data block DX 0

With the CPU 928 you can activate 256 counter and 256 timer locations
(R processor: 128 counter, 128 timer locations).

The parameters for interrupt-driven program processing have been added
to.

For floating-point arithmetics, DX 0 allows you to set whether the
processor is to calculate with a 16-bit or a 24-bit mantissa.

Chapter 8.1: Memory address space distribution in the CPU 928

The data block RAM of the CPU 928 has been extended to 23.375 K words
(R processor: 11.125 words). This allows you to work with more data
blocks than before.

Furthermore, there are two new operand areas available, each 256 words
long: the RJ and RT area. For access to these areas there are new
STEP 5 commands.

Chapter 9: Memory access via absolute addresses

Those areas in the memory address space whose addressing by the STEP 5
commands LIR, TIR, TNB, and TNW is useful, have been enlarged and
contain less gaps in the CPU 928.

Chapter 9.3: Operations using the BR register

To make absolute addressing eas ier the BR r e g i s t e r (BR = base
address r e g i s t e r) has been introduced.

There are
- new commands used t o load or modify the BR r e g i s t e r (r e f e r t o

9 . 3 . 1) , l)

- new commands t o s h i f t the contents o f individual r e g i s t e r s (r e f e r
t o 9 . 3 . 2) , 1)

- new commands used t o access local or global memory areas (r e f e r t o
9 .3 .3 and 9 . 3 . 4) , l)

- new commands t o access the page frame memory. l)

APPENDIX A and List of operations:

With vers ion 3UA12 (12 MHz), the command execution and system run
times o f CPU 928 have been improved approximately by one t h i r d , com-
pared wi th vers ion 3UAll.

APPENDIX G :

The i d e n t i f i c a t i o n s f o r the individual program processing l e v e l s have
been changed o r added t o .

l) Programming of these commands depends on the type of your PG as
well as on the release of your PG system software

2 User Program

2.1 Programming Language STEP 5

Using the STEP 5 programming language you convert automation tasks
into programs which run on SIMATIC S5 programmable controllers. Simple
binary functions as well as complex digital functions and basic arith-
metic operations can be programmed with STEP 5.

The full range of in the programming language STEP 5 is divided into
three main groups:

Basic Operations:

- can be used in all blocks

- methods of representation:
ladder diagram (LAD)
control system flowchart (CSF)
statement list (STL)

Supplementary Operations:

- only for use in function blocks

- statement list (STL) only method of
representation

System Operations:

- These belong to the supplementary operations group

- Can only be used in function blocks

- The statement list (STL) is the only method of representation

- Only for users with excellent knowledge of the system!

2.1.1 Methods of Representation: IBD, CSF, and STL

When programming with STEP 5, you can choose between the three methods
of representation ladder diagram (LAD), control system flowchart
(CSF), and statement list (STL) so that the programming method can be
adapted to particular application in hand.

The machine code generated by the programmer (PG's) is identical in
all three representation methods.

By keeping t o ce r ta in r u l e s while programming wi th STEP 5 , the PG can
t rans la t e your user program from one method o f representat ion i n t o any
other method!

It is possible to represent your STEP 5 program graphically with the
ladder diagram and control system flowchart while the statement list
lists each STEP 5 command.

to DIN 19239 . ,

Ladder diagram

Programming with
graphic symbols as in
clrcult dlagrdrn

to DIN 19239 to IEC 117-15
DIN 40700
DIN 40719
DIN 19239

Statement list

Programming with
mnemonics of the function
designation

Fig 2.1: Proaramminn language STEP 5 - methods of representation

Control system
flowchart

Programming with
graphic symbols

The programming language GRAPH 5 is used for the graphic representa-
tion of sequence control systems. In the hierarchic order, it is
above the methods of representation LAD, CSF and STL. The program
written in GRAPH 5 with graphic representation is automatically
converted by the programmer into a STEP 5 program.

2.1.2 Structured Programming

The total program of a processor consists of:

System Program: This contains the entire set of instructions and
declarations necessary for implementing internal
restart functions (e.g. saving data in case of power
supply failure, prompting user reactions to inter-
rupts etc.).

It is stored in EPROM's (erasable programmable read-
only memory) and is a fixed component of the pro-
cessor. You as user, do not have access to the system
program.

User Pronram: This contains the entire set of instructions and
declarations programmed by the user for signal pro-
cessing, by means of which the plant (process) is
controlled. The user program can be subdivided into
blocks.

The entire user program can be divided into separate, self-contained
program sections (blocks). The configuration of these blocks in the
user program therefore makes the most important program structures
clear or reflects the relationship between plant (process) and pro-
gram.
This 'structured programming' gives you the following
advantages:

- clear and simple programming even with long programs

- standardizing program sections possible

- simple program organization

- program easy to modify

- simple program testing section by section

- simple commissioning

What i s a block?

A block is a separate part of the user program distinguished by its
function, structure, or application. A distinction must be made be-
tween blocks that contain instructions for signal orocessinq (orga-
nization blocks, program blocks, function blocks, sequence blocks),
and blocks that contain data (data blocks).

2.1.3 STEP 5 Operations

A STEP 5 operation is the smallest independent unit of a user program.
It is a work instruction for the processor and is made up of an
operation and an operand.

Example : :Q F 54.1
/ \

Operation Operand
(What to do?) (With what?)

You can enter (via the assignment list) the operand either as
absolute or symbolic.

Example of an absolute representation: :A 1 1.4
Example of a symbolic representation: :A -Motor1

More information on absolute and symbolic programming can be found in
the instruction manual "Programmable Controller PG 685", order number
C79000-B8576-C373-XX.

STEP 5 operations allow you to:

- perform logic operations on binary data

- load, save, and transfer data

- compare values with each other and process them mathematically

- set time and count values

- convert numeric representations

- structure the user program

- influence program processing, etc.

Most STEP 5 operations use two registers either as the source or the
destination for operands and only the destination for an operation
result: accumulator 1 (accu 1) and accumulator 2 (accu 2). Each accu-
mulator is 32 bits (1 double word) wide.

A detailed description of STEP 5's entire operation set can be
found in Chapter 3.2. Here you will find programming examples of each
STEP 5 command.

In Appendix C there is a list of all available STEP 5 operations and
valid parameters.

2.1.4 Numeric Representation

Before the processor can change, compare or perform logic operations
on numerical values, you must load these values in binary-coded form
in the accumulators.

Depending on the type of operation to be done, STEP 5 allows the
following numeric representations:

binary numbers: a) 16-bit fixed-point numbers

b) 32-bit fixed-point numbers

c) floating-point numbers

decimal numbers: d) BCD-coded numbers

The data format (e.g. KF for fixed point) in which values are to be
entered or displayed is set on the PG. The PG then converts the
internal method of representation into the one required by the user.

Using 16-bit fixed-point numbers and floating-point numbers you can
carry out all arithmetic operations such as compare, add, subtract,
multiply, and divide.

BCD-coded numbers are only used for input and output. You cannot
perform any direct arithmetic operations with these codes.

Comparisons are possible with 32-bit fixed-point numbers. These are
also necessary for converting BCD-coded numbers into floating-point
numbers as an intermediate step. The new commands +D and -D can now
also be used for adding and subtracting.

The STEP 5 language contains conversion operations, which let you
convert numbers to the most important numeric representations
directly.

16-bit and 32-bit fixed-point mnnbers

Fixed-point numbers are whole binary numbers with sign

They are 16 bits (= 1 word), or 32 bits (= 2 words) long, where bit
number 15 or bit number 31 is the sign: "0" = positive number, "1" =
negative number.

Negative numbers are represented in their two's complement.

32-bit fixed-point number:

31 30

Entry of the data format as 16-bit fixed-point on the PG: KF

Entry of the data format as 32-bit fixed-point: only KH

Allowed range of numbers: -32768 to +32767 (16 bits)

-2147483648 to +2147483647 (32 bits)

(To convert a 16-bit fixed-point number into a 32-bit fixed-point num-
ber see Chapter 3.2.2.)

Fixed-point numbers are used to solve simple arithmetic problems and
to compare numerical values. Please note that, since fixed-point
numbers are always integers, there can be no remainder following
division.

Floating-point numbers

Floating-point numbers are positive and negative fractions. They al-
ways occupy a double word (32 bits), and are represented as exponen-
tial~. The mantissa is 24 bits in length, the exponent is 8 bits long.

The exponent determines the magnitude of a floating-point number. The
sign of the exponent will tell you whether or not the floating-point
number is greater or less than 0.1.

The mantissa determines the accuracy of a floating-point number:

- 24-bit mantissa accuracy is: 2-24 = 0.000000059604
(equivalent to 7 decimal places)

- 16-bit mantissa accuracy is: 2-l6 = 0.000015258
(equivalent to 4 decimal places)

If the mantissa sign is "O", then the number is positive; if it is
"l", then the number is negative in two's complement representation.

Floating-point number:

31 30 24 23 22

Exponent Mantissa

The CPU 928 only computes with a 16 bit wide mantissa (bit 8 to 23)
when adding, subtracting, multiplying, and dividing. Low order bits
0 to 7 (to the right) always have the value 'Of!

If a higher accuracy is required for floating-point computing
(accepting a small increase in runtime), you may select the
following setting in DX 0: "Floating-point arithmectic with 24-bit
mantissa" (see Chapter 7).

Entry of data format as floating-point on the PG: KG

Allowed range of numbers: +0.1469368 X 10-38 to
+O. 1701412 X 103' -

Entering floating-point wmbers Z vith the PG:

Mantissa Exponent (base 10) with sign

Mantissa Exponent (base 10) with sign

Use floating-point numbers for solving more complex mathematical
problems, particularly for multiplication and division and when you
are working with very large or very small numbers!

BCD-coded numbers

Decimal numbers are represented as BCD-numbers. A three digit number
with sign occupies 16 bits (1 word) in the accumulator:

bit 15 to 12 11 to 8 7 to 4 3 to 0
sign hundreds tens units

The single digits are positive 4 bit binary numbers between 0000 and
1001 (0 and 9).

Allowed range of values: -999 to +g99

The four left hand bits are reserved for the sign.
sign for a positive number: "0000"
sign for a negative number: "1111"

2.1.5 STEP 5 Blocks

A block is a separate part of the user program distinguished by its
function, structure, or application.

It can be identified by its
- block type (OB, PB, SB, FB, FX, DB, DX) and
- block number (number between 0 and 255).

The STEP 5 programming language differentiates between the following
types of blocks:

STEP 5 blocks

Code I locks Data locks
(contain STEP 5 commands)

b
(contain variables and constants)

I
Function

I
'Normal '

blocks blocks
(complete (basic
instruction operations)
set, para-
meterizable)

I - +-
I
FB

I
FX

I l l
OB SB PB

- organization blocks (OB)

These are the interface between the system program and the user
program, and can be divided into two groups:

OB 1 to 39 are called up by the system program and control program
processing, the startup routine of the processor, and reaction to
faults. The user must program these OB's.

OB 40 to 255 contain special'system program functions. The user
calls these up as required.

- program blocks (PB)

These are used to structure the user program and contain struc-
tured subroutines that are process or function-oriented. Program
blocks usually contain the greater part of the user program.

- function blocks (FB/FX)

These are used to program frequently recurring or complex func-
tions (e.g. digital functions, sequential control, closed loop
control, signalling functions). A function block can be called by
primary blocks many times, each time with new operands assigned.

- sequence blocks (SB)

These are special program blocks that are used for step-by-step
processing of sequence cascades.

- data blocks (DB/DX)

These blocks contain (fixed or variable) data with which the user
program works. This type of block does not contain any STEP 5
instructions and its function is totally different from that of
other blocks.

What does a block consist of?

All blocks comprise - a block header and
- a block body

The block header always has a length of 5 data words. The programmer
automatically enters the following in the header:

- the block start-identifier
- the block type (OB, FB . . .)
- the block number
- the PG identifier
- the library number
- the block length (including block header)

Block header in
program memory : Start I Identifier

Block type I Block number

PGidentifier I L i b r a r y

n u m b e r

Block length incl. header (words)

You can find a precise identification of block type and block number
in Subsection 8.2.1.

Depending on the block type, the block body contains

- STEP5 commands (for OBs, PBs, SBs, FBs, FXs),
- variable or constant data (for DBs, DXs),
- list of formal operands (for FBs, FXs).

For the block types DB, DX, FB, and FX, the programmable controller
produces a block pre-header (DH, DXH, FH, FXH) which contains informa-
tion about data format (with DB and DX) or jump labels (with FB and
FX). Only the programmable controller can evaluate this information,
which is why block pre-headers are not transferred to the PC memory.
As user, you have no direct influence on the contents of a block pre-
header.

A STEP5 block can occupy max. 4096 words in the program memory of the
processor. Do not forget the memory capacity of your PG when entering
or transferring blocks with the programmer.

Of the possible block types, the following are available for
programming :

OB 1 to 39
FB 0 to 255
FX 0 to 255
PB 0 to 255
SB 0 to 255
DB 3 to 255
DX 1 to 255

The data blocks DB 1, DB 2, and DX 0 contain parameters. They are
reserved for specific functions and can therefore not be used for
other purposes.

All programmed blocks are stored in an arbitrary order by the PG in
the program memory (figure). This is a plug-in RAM or EPROM on the
processor. The start addresses of the blocks stored are deposited in
data block DB 0.

R A M Or EPROM

can be plugged T into CPU

Fig.2-2: Block storage in the Dropram memorv

When correcting a block, the 'old' block is declared invalid and the
corrected or new block is entered in the memory. The same procedure
applies to block deletion; instead of actually being deleted, the
blocks are made invalid.

lm'oRTrn!
Deleted and corrected blocks still occupy memory space!

By using the online function 'COMPRESS memory', you gain space in the
memory for new blocks. This function erases all invalid blocks in the
memory and moves the valid ones together (see Chapter 11.6).

2.2 Organization, Program and Sequence Blocks

These three types of block do not differ with respect to programming
and calling. All three types can be programmed in LAD, CSF and STL.

2.2.1 Programming

When programming organization, program and sequence blocks, proceed as
follows :

First, specify the type of block and then the number of the block
to be programmed.

The following numbers are available:

Program blocks 0 through 255
Sequence blocks 0 through 255
Organization blocks 1 through 39

Enter your user program in STEP5.

IHPORTBNT !
When programming PB's, SB's and OBrs only STEP 5-basic o~erations
are alloved!

Terminate program input by entering lfBE1' (block end).

IHPORTBNT!
A STEP5 block should alvays contain a complete program. Logic opera-
tions vithin a block must be complete.

Up to approx. 4000 words are possible within one block (depending on
the type of programmable controller used).

The block header which is automatically generated by the PG requires
5 words in the program memory.

Bbck heada

1
l STEP 5 program

Fig. 2-3: Structure of an organization. program and sequence block

2.2.2 Calls

Blocks have to be enabled for processing. This is achieved by block
calls (see fig.).

Programming of these block calls is possible within an organization,
program, function or sequence block. They are comparable to the jumps
to a subroutine. Each jump causes a block change.

It is possible to execute jumps either as conditional or unconditional
jumps :

* Unconditional call: JU xx

The block called is processed independent of the previous
result of logic operation (=RLO).

The RLO is the signal state within the processor which is used for
further binary signal processing. It is possible to e.g. perform
logic operations on the RLO and the signal state of the operands or
to carry out operations dependent on the previous RLO: The "uncon-
ditional operations" are always executed, the "conditional opera-
tions" only if the RLO is = 1.

The jump instruction JU belongs to the category of unconditional
operations. It has no influence on the RLO which is transferred to
the new block if a jump is carried out. There, an evaluation of the
RLO is possible, however, a further logic operation with it is not.

* Conditional call: JC xx

The jump instruction JC belongs to the category of conditional
operations, i.e. the block called is only processed if the previous
result of logic operation (RLO) is = 1. In the case of the RLO
being = 0, the jump instruction is not executed. However, the RLO
is set to "l"!

Fig. 2-4: Block calls that enable ~rocessinn of a Drogram block.

After the statement BE has been entered, a jump is made back to the
block in which the block call had been programmed. Processing of the
program is continued at the first STEP5 statement after the block
call.

The block end statement BE is processed independent of the result of
logic operation. After BE the result of logic operation can no longer
be logically operated on. However, the result of logic operation/com-
puted result present immediately before the execution of the BE state-
ment is transferred to the block calling and an evaluation is possible
there. When returning from the block called, the contents of accumula-
tors 1, 2, 3 and 4, the condition codes CC 0 and CC 1 as well as the
result of logic operation RLO are not altered.

2.2.3 Special Organization Blocks

The organization blocks are the interface between the system program
and the user program. The organization blocks OB 1 through 39 are part
of the user program which you program just like program, function, or
sequence blocks. You thus have the possibility of influencing the
reaction of the processor, during the start-up, program processing and
in case of errors, by means of programming these OB's. The organiza-
tion blocks become effective the moment they are loaded into the
memory of the programmable controller. This is also possible while the
system is running.

The important point to remember is that these OB's are called by the
system vroEram as a reaction to certain events.

called every 10 msec
called every 20 msec
called every 50 msec
called every 100 msec
called every 200 msec
called every 500 msec
called every 1 sec
called every 2 sec
called every 5 sec

organization of the start-up routine

Organization
block

OB 1

OB 2

OB 10 - 18

called with request "cold restart"
called with request "manual warm restart
called after return of power ("auto. warm restart")

reaction to the following equipment faults or
program errors: 1)
execution time error: call of an unprogrammed block
timeout in the user program
(for direct access to 1/0 modules or other
S5 bus addresses)
timeout when updating process image and
transferring interprocessor communication flags
addressing error
cycle time exceeded
command code error: substitution error

Function and criteria for block call

organization of cyclic program processing
called at the end of a start-up mode

organization of interrupt-driven program processing
called by signal via the S5 bus (process interrupt)

organization of time-driven program processing
(time interrupts)

l) If the OB is not programmed, in the case of an error the processor
will go over to the stop state. EXCEPTION: if OB 23 and 24
(acknowledgement delay) do not exist, there will be no reaction!

stop caused by rogrammer function/stop
switch/S5 bus 17
command code error: operation code illegal
command code error: parameter illegal

Organization
block

OB 31 1 other execution time- errors

Function and criteria for block call

execution time error: transfer error in the data
block
time interrupts

OB 34 I error during controller processing

l) OB 28 is called before a transition to the stop state. The proces-
sor will stop irrespective of whether and how OB 28 is programmed.

After the system program has called the respective organization block,
the user program contained in it will be processed. Usually, the
processor will then return to the program which has been interrupted
by the error organization block (exception: OB 28). For the
behaviour without error OB, refer to Chapter 5.4.

It is possible to have the user program call these organization
blocks for test purposes (JU/JC OBxxx). However, it is not possible to
cause a processor stop by calling OB 28 or to initiate an automatic
warm restart by calling OB 22!

JHPORTBNT!
The special organization blocks are programmed by the user and called
automatically by the system program!

2.2.4 Organization B l o c k s with Special Functions

The following organization blocks contain special functions of the
system program. They cannot be programmed by the user, only called
(this applies to all OB1s with numbers between 40 and 255!). They do
not include a STEP5-program. Special function OBs may be called from
any code block.

Overview 2-5: Orvanization blocks with special functions in the
CPU 928

access to the condition-code byte
clear accus 1, 2, 3 and 4
roll up accu
roll down accu

switch on/off "Inhibit all interrupts"
switch on/off "Inhibit individual time interrupts"
switch on/off "Delay all interrupts"
switch on/off "Delay individual time interrupts"

OB 160 - 163 counter loop

OB 170 read block stack (BSTACK)

variable data block access
test data blocks

OB 190, 192 transfer flags to data blocks
OB 191, 193 transfer data fields to flag area

OB 200, 202 - 205 multiprocessor communication

OB 216 - 218 access to pages

convert accumulator 1 from 16- to 32-bit fixed-
point number by means of sign extension

set and trigger new cycle time
retrigger cycle time
stop if start-up mode for multiprocessor operation
is not uniform
block transfer of interprocessor communication
flags in multiprocessor operation
read contents of a storage location of the system
program in bytes
read check sum of system program memory
read status information of a program level

OB 230 - 237 functions for standard function blocks

initialize shift register
call shift register
clear shift register

OB 250 initialize PID-controller
OB 251 process PID-controller
OB 254, 255 transfer data blocks to DB-RAM

For a detailed description of special functions refer to Chapter 6.

2.3 Function Blocks

Function blocks (FB/FX) are parts of the user program just as e.g.
program blocks. The structure of FX-function blocks is similar to that of
FB-function blocks and they are programmed in the same manner.

Frequently repeated or very complex functions are implemented by means of
these function blocks.

In comparison with the organization, program and sequence blocks there
are four important differences:

- Parameter assignment is possible for function blocks, i.e.: The
formal operands of a function block can be substituted by other
actual operands whenever they are called. This means that function
blocks created for general use are very versatile.

- Programming of function blocks is possible using the complete
operation range of the STEP5 programming language. In addition to
the basic operations used in all types of blocks there are also
supplementary operations as well as system operations available.

IHPORTANT!
Programming of supplementary operations and system operations is
only possible in function blocks.

- It is only possible to program and document function blocks as a
statement list (STL) .
However, calling of function blocks is also possible in control
system flowchart or ladder diagram representation methods and is
represented graphically as a box.

- Designation of function blocks may be carried out using names of up
to 8 characters.

Within the user program, each of the function blocks represents a
complex and self-contained function. The user can

- purchase function blocks directly from SIEMENS as a software
product (standard function blocks on a mini-diskette); these standard
function blocks allow fast and reliable generation of user programs
for signalling, controlling and logging;

- program them himself.

2.3.1 Structure of Function Blocks

The block header (5 words) of a function block does not differ
from that of the other STEP5 blocks.

The structure of its body, however, is fundamentally different
from that of the other types of blocks. It contains the actual
program of the function block. The function to be executed is
written in the programming language STEP5 in the form of a state-
ment list. The function block requires additional memory space
for the data specifying its name and the list of formal operands
between the header and the actual STEP5 user program. Since this
list contains no instructions for the processor it will be skip-
ped by means of an unconditional jump automatically generated by
the PG. This jump instruction is not displayed on the PG!

Operands may be entered into a function block either in an absolute
(e.g. F 2.5) or a symbolic form (e.g. -MOTORl). Before doing this,
you will have to enter the assignment of the symbolic operands into
an assignment list.

If the function block is called, it is only the block body that is
processed.

A function block in the PC memory has the following structure:

Skip list
of formal operands

Name of FB/FX

Formal operand 1

Formal operand 2

Formal operand 3

STEP5
user program

5 words
Block
header

1 1 1 3 words
" Block

body
II

Fig. 2-6: Structure of a function block (FB/FX)

All data which the programmer requires to generate a graphic represen-
tation of the function block when called and all data required for
testing the operands during parameter assignment and programming are
therefore in the memory. An incorrect input will not be accepted by
the programmer.

IKPORTrn!
When dealing vith function blocks, make sure to differentiate between

a) programming an FB/FX and

b) calling an FB/FX and then assigning parameters.

When programming, you determine the function of a block. The operands
entered are formal operands which function as a fill-in.

When calling a block via a primary block (OB, PB, SB, FB, FX) the
formal operands are replaced by actual operands: parameters are
assigned to the function block.

The following pages will help to illustrate these points.

2.3.2 Programming Function Blocks

To enter a function block at the PG proceed as follows:

Input the number of the function block.

IMPORTAXI!!
It is advisable to assign numbers to the user function blocks
in descending order starting with 255 to avoid interfering
with the standard function blocks vith numbers from FB 1 through
FB 199.

Entering a number from 0 through 99 999 as a library number is
possible. This number will be assigned to the function block,
independent of its block number or name.

It is advisable to assign a library number only once in order to
ensure that function blocks are identified uniquely.

m Input the name of the function block. A maximum of 8 characters
is permitted.

Input the formal operands used in the block (40 formal operands
max .)
Specify the following for each of the formal operands:

1. the name of the block parameter,

2. the class of block parameter,

3. the type of block parameter.

Up to 4 characters may be used for the name.

The programmer gives you the following choice for the input of the
class of block parameter:

I = input parameter
Q = output parameter
D = data
B = command
T = timer
C = counter

The parameters marked I, D, B, T and C are shown on the left of the
function symbol, whereas the parameters marked Q are on the right.

For the I, D and Q classes of parameter you must also specify the
type of parameter :

BI/BY/W/D for parameter class I, Q
KM/KH/KY/KS/KF/KT/KC/KG for parameter class D

The parameter type indicates whether the I and Q parameters are
bits, bytes, words or double words and which data format (e.g. bit
pattern or hexadecimal pattern) is valid for D parameters.

B1 for an operand
with bit address

- - -

Class of
parameter

BY for an operand
with byte address

Type of parameter I Permissible actual operands

W for an operand
with word address

D for an operand with
double word address

KM for a bit pattern
(16 positions)

I n.m inputs
Q n.m outputs
F n.m flags

IB n input bytes
QB n output bytes
FY n flag bytes
DL n left-hand data byte
DR n right-hand data byte
PY n peripheral bytes
EB n peripheral bytes

from the extended
interface system

IW n input words
QW n output words
FW n flag words
DW n data words
PW n peripheral words
EW n peripheral words

from the extended
interface system

ID n input double words
QD n output double words
FD n flag double words
DD n date double words

constant S

KY for two absolute
values in bytes
each from 0
through 255

KH for a hexadecimal
pattern,
max. 4 positions

KS for 2 alphanumeric
characters

KT for a time value
(BCD-coded) with
time base
.O to . 3
and time value
0 to 999

The time value or count value must be assigned as a formal operand
or is to be programmed as a constant in the function block.

Then input your STEP5 program as a statement list.

Permissible actual operands

D B n datablocks;
command C DB n is
executed.

FB n function blocks
(permissible only
without parameters)
are called
unconditionally
(JU . .n).

PB n program blocks are
called unconditionally
(JU . .n).

SB n sequence blocks are
called unconditionally
(JU . .n).

T 0 to 255 time 1)

C 0 to 255 counter 1)

Class of
parameter

D

B

T

C

The formal operands are marked by an equality sign placed in front
of the operand (e.g. A =XI). These operands can be called several
times at different locations in the function block.

Type of parameter

KC for a count value
(BCD-coded)
0 to 999

KF for a f ixed-point
numb er
-32768 to +32767

KG for a floating-
point number

No type specification
permissible

No type specification
permissible

No type specification
permissible

llIPORTANT!
If the sequence or the number of the formal operands in the list of
formal operands is altered then the substitution commands in the
STEP5 program of the function block as well as the list of block
parameters in the block initiating the call will have to be
corrected accordingly!

IHPORTrn!
?!fake sure that you alvavs program and alter the function blocks on
either a floppy disk or a Winchester and then transfer them to the
programmable controller.

Terminate the program input with 'BE' (block end).

Example 2-7: Pronrammin~ a function block

NAME:
DECL.:HIKE . I/Q/D/B/T/C: I BI/BY/W/D: B1
DECL.:BERT I/Q/D/B/T/C: I BI/BY/W/D: B1 List of
DECL.:HAlJD I/Q/D/B/T/C: Q BI/BY/W/D: B1 formal operands

it . .- - ..I =HAlJD
-r STEP5 program

Formal Parameter Parameter
operands class type

2.3.3 Calling and Assigning Parameters to Function Blocks

In the STEP5 user program each function blocks can be called wherever
and as often as desired. The STEP 5 program is always written as a
statement list, however, the function block calls can also be in a
graphic representation CSF or LAD).

For calling and assigning parameters proceed as follows:

a Input the call statement for the function block in the block
which is to initiate the call.

It is possible to program a function block call within an
organization, program or sequence block or within another
function block.

The call can be either conditional or unconditional:

* Unconditional call (JU FBn for function blocks or DO FXn for
extended function blocks):

The function block called is processed independent of the
previous result of logic operation.

* Conditional call (JC FBn for function blocks or DOC FXn for
extended function blocks):

The function block called is processed only if the previous
result of logic operation is RLO = 1. If RLO = 0, the jump
statement is not executed, however, the RLO is set to 1.

No further logic operation using the RLO is possible after the
unconditional and conditional call. However, it is transferred to
the function block called when the jump is executed and evaluation
is possible there.

After having input the call statement (e.g. JU FB200) the name as
well as the list of formal operands of the respective function block
will appear automatically:

Now you assign the actual operand valid for this harticular call
to the individual formal operand, i.e. you assign parameters for
the function block.

These actual operands may differ for the individual calls: e.g.
for the first call of the FB200 inputs and outputs, for the
second call flags.

Depending on the list of formal operands it is possible to
assign a maximum of 40 actual operands for every function block
call.

IMPORTNW!!
Before calling a function block and assigning parameters it is impor-
tant to first program this particular function block and copy it onto
the program disk and transfer it directly into the program memory of
the programmable controller!

After the jump to the function block the actual operands of the block
initiating the call are used for the processing of the function block
program instead of the formal operands.

This particular feature of the function block (i.e. parameter assign-
ment) allows for a variety of applications in your user program.

Ekample: Calling a function block and assignment of parameters vith
the representaion methods STL and TAD/CSF in a program
block.

- Representation method STL

PB25

NAME
ZU-E
RME
ESB
UEZ
TIME
ZU-A
BEA
LS L

:J[J FB201
: E-ANTR

DV1
I 3.5
F 2.5
T 2

: KT10.1
DV1

: Q 2.3
: Q 6.0

Formal Actual
operands operands

- Representation method TAD/CSF

FB 201

Fig. 2-8: Callinn a function block and assignment of parameters

The following (complete) example should help to explain the program-
ming, calling and assignment of parameters of a function block. You
can easily execute these operations yourself.

The function block FB 202 is vronrammed:

NAHE: EXAMPLE
DECL. :MIKE I/Q/D/B/T/C: I BI/BY/W/D: B I
DECL.:BERT I/Q/D/B/T/C: I BI/BY/W/D: B1 List of
DECL.:MAUD I/Q/D/B/T/C: Q BI/BY/W/D: B1 formal operands

:A =MIKE
:A =BERT . - . =MUD -r l-

Formal Parameter Paramet er
operands class type

STEP5 program

The function block FB 202 is called in the Program block PB 25 and
parameters are assigned:

- Representation method STL

PB25
: JU FB 202

NAME: EXAMPLE
MIKE : I 13.5
BERT : F 17.7
MAUD : Q 23.0

l- I

- Representation method
LAD/CSF

Formal Actual
operands operands

The following program will be executed after the -lump to FB 202:

2 . 3 . 4 Special Function Blocks

- Standard function blocks

In addition to the function blocks which the user himself programs,
standard function blocks are also available as an off-the-peg software
product. These blocks contain standard functions for general applica-
tions (e.g. signalling functions, sequential controls etc.)

The numbers FB 1 through FB 199 are reserved for the standard function
blocks.

When purchasing the standard function blocks make sure you follow the
special instructions in the system description (areas occupied, con-
ventions etc.).

The standard function blocks for the S5 135U, the execution time, the
memory requirements as well as the variables assigned by the user are
listed in the ST 57 catalogue "Software for U-Range Programmable
Controllers and their Programmers".

Example of a standard function block

Floating point root extractor RAD:GP FB 6 for S5 115U
FB 6 for S5 135U
FB 19 for S5 150U

The function block RAD:GP extracts the root of a floating-point number
(8-bit exponent and 24-bit mantissa), i.e. it finds the square root.
The result is also a floating-point number (8-bit exponent and 24-bit
mantissa). The least significant bit of the mantissa is not rounded.

If necessary, the function block sets the identifier "radicand
negative" for further processing.

Numerical range:
Radicand -0.1469368 exp. -38 to +0.1701412 exp. +39
root +0.3833434 exp. -19 to +0.1304384 exp. +20

Function: Y=K
Y = SQRT; A = RADI

Callinn the function block FB 6:

- Representation method STL - Representation method LAD

: C DB 17

: JU FB 6
NAME : RAD : GP
RADI : D D 5
J : D 15.0
SQRT : DD 10

DD = data double word

The above example shows how the root of a floating-point number, which
is written in DD 5 with an 8-bit exponent and a 24-bit mantissa is
extracted, the result, which is again a 32-bit floating-point number,
is deposited in DD 10. Before this operation takes place, the respec-
tive data block has to be opened. The parameter J (parameter class: Q,
parameter type: BI) indicates the sign of the radicand: J = 1 for a
negative radicand. Flag words assigned: FW 238 through 254.

- Function block FB 0

If the organization block OB 1 is not programmed, then the system
program cyclically calls FB 0 instead of OB 1.

IKPORTBNT !
For this reason, FB 0 should only be used for programming the cyclic
program! (Parameters are not permitted.)

Since the complete operation set of the STEP5 programming language is
available in one function block, the programming of FB 0 instead of OB
1 is especially suitable if you want to process a short and time-
critical program.

If OB 1 as well as FB 0 are programmed then only the organization
block OB 1 is processed cyclically.

2.4 Data Blocks

The fixed and variable data employed by the user program are deposited
in the data blocks (DB/DX). No STEP5 operations are processed in data
blocks.

Data in a data block could be:

- any bit pattern, e.g. for system status,

- numbers (hexadecimal, binary, decimal) for time values, results of
arithmetic operations

- alphanumeric characters, e.g. for messages.

2.4.1 Structure of a Data Block

A data block consists of the following components

- block preheader (DH, DXH)

- block header

- block body.

The block preheader is generated automatically. It contains the data
formats of the data words entered in the block body. The user has no
means of influencing the generation of the block preheader.

IMPORTBNT !
If you transfer a data block from the programmable controller or the
EPROH submodule to a floppy disk, the respective block preheader will
be erased. Due to this you should never alter a data block with
different data formats in the programmable controller and then
transfer it back to the floppy disk, since all data words of this
particular DB are automatically assigned the data format selected in
the presettings mask.

The header is assigned 5 words in the memory and contains

- the block identifier
- the identifier of the programmer
- the block number
- the library number
- the block length (incl. the length of the header)

The block body contains, in ascending order and starting with data
word DW 0, the data words used by the user program. Each of the data
words is assigned 1 word in the memory (16 bits).

A data block can occupy max. 2000 words in the processor memory. When
entering or transferring data blocks with the PG always take into
consideration the storage capacity of your programmer!

DWn 1
Data words

Fig. 2-9: Structure of a data block

2.4.2 Programming Data Blocks

This is how a data block is created:

Input a data block number between 3 and 255 (for DB data blocks)
or between 1 and 255 (for DX data blocks).

IKeoRTANT!
The data blocks DB 0 , DB 1, DB 2 and DX 0 are reserved for specific
functians and thus not freely assignable!

Input the individual data words in the desired data format.

Permissible data formats: Examples :

KM = bit pattern
KH = hexadecimal number
KY = byte
KF = fixed-point number
KG = floating-point number
KS = character (ASCII)
KT = time W. time base specif.(decimal)
KC = counter value
AL = assignment in assignment list

(not with PG software S5DOS)

IMPORTANT!
Input of data vords is terminated with block end statement
'BE' !

2 .4 .3 Opening Data Blocks

A data block (DB/DX) can only be opened unconditionally. This is
possible within an organization, program, sequence or function block.
One data block can be opened several times within the program.

This is how a data block is opened:

DB data block with statement C DB..

DX data block with statement CX DX..

Access to the data stored in the data block opened is possible during
the program processing by means of the load and transfer commands:

The contents of the addressed data word are transferred to accumulator
1 and processed by the processor by means of a load command.

Load commands : L DW. . (word)
L DR. . (right-hand byte)
L DL.. (left-hand byte)
L DD.. (double word)

The data contained in accumulator 1 are transferred to the addressed
data word by means of a transfer command.

Transfer commands T DW..
T DR..
T DL..
T DD..

The contents of a data word are not altered during the loading proce-
dure .
The original contents of a data word are overwritten during the
transfer procedure.

IHPORdffll!
* Before accessing a data word you will have to open the respective

data block in the user program since this is the only means for the
processor to find the correct data word! The addressed data word
must be contained in the block opened, otherwise the system program
will identify a transfer error for command T Dx or will load random
values if command L Ik is entered.

* Using load and transfer commands, access is possible up to data
word number 255 only.

Example: Transferring data vords

The intention is to transfer the contents of data word DW 1 of data
block DB 10 to data word DW 1 of data block DB 20 (cf. fig.).

Input the following statements:

C DBlO (open DB 10)
L DW1 (load DW 1 in the accumulator)
C DB20 (open DB 20)
T DW1 (transfer DW 1 from the accumulator to DW 1)

Fig. 2-10: Oveninn data blocks and accessing data words

After a data block has been opened all subsequent instructions with
the operand range D refer to the block opened.
The data block opened still remains valid, even if the program pro-
cessing is continued in another block by means of a block call (e.g.
JU/JC PB 20).

If another data block is opened in this block, it is valid in the
block opened (PB 20). After the jump has been made back to the block
containing the call, the original data block is again valid.

mPoRTANT!
A data block opened thus remains valid until

a) another data block is opened
or b) a jump back to the primary block i s carried out
or c) the block containing the call is terminated by means

of 'BE'.

Example: Validity range of data blocks

The data block DB 10 is opened in the program block PB 7 (C DB10). The
data contained in this data block are then processed in the subsequent
program processing.

The program block PB 20 is processed after the call (JU PB20).
However, the data block DB 10 is still valid. It is not until the data
block DB 11 (C DB11) is opened that the data area changes. The data
block DB 11 is now valid until the end of program block PB 20 (BE).

After a jump has been made back to program block PB 7, data block DB
10 is again valid.

/// Validity range of DB 10
\\\ Validity range of DB 11

Fig. 2-11: Validity ranne of a data block after it has been called

2.4.4 Special Data Blocks

Data blocks DB 0, DB 1, DB 2 and DX 0 are reserved for specific
functions. They are organized by the system program and are not
freely assignable by the user.

- Data block DB 0 (refer to Subsection 8.2.2)

Data block DB 0 contains the address list with the start addresses
of all blocks in the user memory or the data block RAM of the
processor. This address list is created by the system program
during the initialization (every time the power is turned on and
after an overall reset has taken place) and is updated automatical-
ly when blocks are input or altered by the PG.

- Data block DB 1 (refer to Chapter 10.3)

Data block DB 1 contains the list of digital inputs and outputs (P-
I/Ofs with relative byte addresses from O through 127) as well as
that of interprocessor communication flag inputs and outputs asign-
ed to the processor and, if required, a timer block length.

In the case of multiprocessor operation, the user will have to
create the DB 1 for each of the processors used. The DB 1 is used
for single-processor operation in order to reduce the cycle times,
since only those inputs, outputs, interprocessor communication flag
inputs and outputs or times that are contained in the DB 1, are
updated.

- Data block DB 2 (refer to Subsection 4.4.3)

Data block DB 2 serves for parameter assignment of the compact
closed-loop control R64 by the user. The R64 is available as an
off-the-peg software product. This function operates aided by the
system program.

For more information, refer to description "Compact closed-loop
control in the R processor of the S5 135UW, order-no. C79000-B8576-
C365-03.

- Data block DX 0 (refer to Chapter 7)

By programming the DX 0 data block, you may alter the presettings
of certain system program functions (e.g. when processing the
start-up) and thus adapt the functions of the system program to
your own requirements.

3 Program Processing

The STEP5 user program can be processed in various ways.

The cyclic program processing is normally prevalent:
With this type of processing the organization block OB 1 is run
through cyclically and the user program organized in this block is
processed continuously interspersed with various block calls.

3.1.1 Program Organization

The program organization serves to determine if and in what sequence
the blocks that have been created by you are to be processed. You
therefore program conditional or unconditional calls for the blocks
you require in the organization blocks.

Calling further program, function or sequence blocks in any combina-
tion (successively or nested in one another) is possible in the pro-
gram of the individual organization, program, function or sequence
blocks.

It is advisable to have the user program organized so that important
program structures or system components that are handled by a program
are clearly identifiable.

Example 3-1: Organization of the user program accordinn to the
program structure

Example 3-2: Organization of the user Droaram according to the
system structure

m l ? o R T r n !
Nesting of a maximum of 62 blocks is possible. If more than 62
blocks are called the processor will output an error message.

How to determine the nesting depth of your program:

Add up all organization blocks that you have programmed (in the
example on the following page: 4 OBrs).

Add up the nesting depth of the individual organization blocks
(in the example: 2 + 2 + 1 + 0 = 5).

m Both values added together give you the program nesting depth (in
the following example: 4 + 5 = nesting depth 9).
The value obtained should not exceed 62!

The position of a block in the user memory (or DB-RAM) is determined
by its block start address: This is the address of the location in
the memory where the first STEP5 command is found.

So that the processor can find the block called in the memory (JU/JC '

xx, C DB), the start addresses of all programmed blocks are entered in
the block address list in data block DB 0. DB 0 is organized by the
system program and the user cannot call this block!

After processing a block which has been called the processor must be
able to return to the block containing the original call. The proces-
sor therefore stores the return address whenever a new block is call-
ed. The return address is the address of that location in the memory
where the STEP5 statement which follows the block call is found. The
start address and the length of the data block valid at this particu-
lar point are also stored.

* Return addresses

This data is entered in the block stack (BSTACK). The BSTACK is
filled from the lower end: The first entry is equivalent to BSTACK-
element 62, the second entry to BSTACK-element 61, etc.. If the block
called has been processed completely and the processor has returned to
the original block, the respective entries will be erased.

The block stack is full after 62 entries (BSTACK-element 1). If the
permissible nesting depth is exceeded the processor will stop.

Example: Block nesting depth and block stack (BSTACK)

Program
level

4

Nesting depth 1 2 3 4 5 6 7 8 9
BSTACK element 6 2 6 1 6 0 5 9 5 8 5 7 5 6 5 5 5 4

3.1.2 Program Storage

The processor can only process the user program if it has been loaded
into the program memory. Here, there are two possibilities:

a) If a plug-in RAM-submodule is used, you can transfer your
user program directly from the programmer to the processor.

Fast and frequent alteration of the memory contents is possible
if a RAM module is used. A back-up battery ensures that the user
program is not lost in case of a power failure (refer to the
operating instructions of the central controller S5 135U for
information about the back-up battery).

All programmed blocks are stored in the RAM submodule in an
arbitrary sequence. As soon as you alter a block the sequence of
the blocks in the memory is also changed.

Data blocks DB and DX are deposited in the RAM submodule until it
is full. Then they are deposited in the data block RAM of the
processor.

b) The complete user program is deposited permanently in a plug-in
EPROM module. The user program is completely safe in the EPROM,
even if there is a power failure and back-up battery.

The contents of an EPROM cannot be altered easily. Due to this,
those data blocks that contain variable data and that will be
altered during the processing of the user program, will have to be
copied from the EPROM module to the data block RAM of the proces-
sor during a cold restart (refer to special function OB's 254 and
255, Subsection 6.4.5).

If the processor detects an error while searching the user memory it
will request an overall reset and will go over to the stop status.
After the overall reset, you will again have to load the user program
into the memory.

Fig. 3-4:

TRAM 01 EPROM 4 can be plugged

' into CPU

Blocks in the program memorv

3.1.3 Running the STEP5 User Program

The user program can be run in different ways. With PC's, the usual
method is cyclic program processing.

At the end of the start-up the system program automatically calls the
organization block OB 1 (or FB 0). There the processor starts with the
first STEP5 instruction of the user program and then processes, one
after the other, all instructions in the user program. Once the program
end is reached, the processor starts the next cycle again at the
program start.

The system program executes certain activities during every cycle:

- It starts the cycle time.

- It updates the process image of the inputs.

- It updates the interprocessor communication input flags.

- It calls the user interface.

- It updates the process image of the outputs

- It updates the interprocessor communication output flags.

Cycle time

The system program monitors the time which the processor requires to
run the user program. At the start of the program execution the cycle
time to be monitored is started by the system program.

The standard setting of the maximum permissible value is 150 ms.

You can set the cycle time yourself or restart it while cyclic program
is running (see DX 0, special function OBs 221 and 222).

The total cycle time is the execution time of the user program plus
the execution time required for the cyclic part of the system program
(see fig. on following page).

The execution time of the user program is the sum of the execution
times of all blocks called in one program run (from the OB 1 or FB 0
call to the end). If, for example, you call a certain block n-times,
then you will have to add its execution time n-times.

Process image of the inputs and outputs (PI1 and PIQ)

Before the STEP5 program execution starts the signal states of the
input-I/0 modules are read and transferred to the process image of the
inputs (in the system data register of the processor). Based on the
process image of the inputs the user program now computes the process
image of the outputs. After the STEP5 program has been run, the signal
states of the process image of the outputs are transferred to the
output-I/0 modules.

Thus, the process image is a memory area whose contents are only
output to the I/O's or read in from the I/Ots once Der cvcle.

mPORTrn!
A process image only exists for input and output bytes of the P-
I/OWs with byte addresses from O through 127!

Interprocessor communication flags (IPC flags)

The IPC flags are used for the data exchange between the individual
processors (for multiprocessor operation) as well as between the
processor and the communications processors.

Before the STEP5 program is started the IPC-input flags of the proces-
sor are read-in. After the STEP5 program has been run, the IPC-output
flags are transferred to the communications processors.

OB1 orFBO

Trigger cycle time

Update IPC flag inputs,
provide process image
of inputs (PII) PB 20

Call OBlfFBO

Output process image
of outputs,
update IPC flag outputs

I
Cyclic part of the &em program Cyclic part of the us& program

Fig. 3-5: Cyclic program execution

Breakpoints

Interruption of the cyclic program execution may be caused by

- interrupt-driven program execution

- time-driven program execution

The program can be interrupted or aborted

- if equipment defects or program errors occur

- by the operator (PG function, stop switch).

3.1.4 Running the Program

There are two ways of determining the reactions of the processor
during the start-up, during the cyclic program and in case of a fault
occur ing :

a) by programming the organization blocks OB 1 through OB 34 (inter-
faces between system and user program, see Subsection 2.2.3) and

b) by programming the extended data block DX 0 (see chapter 7).

The organization blocks OB 1 through OB 34 are the interfaces between
the system and the user program since, on the one hand, they are
called by the system program and, on the other hand, can be filled
with STEP5 instructions just like 'normal' blocks. Calling further
blocks is possible in these organization blocks. The STEP5 program
contained in these blocks helps the user to determine the reaction of
the processor to certain events.

The organization blocks OB 1 through OB 34 become effective as soon as
they are loaded into the program memory (even during operation).

If they are not programmed by the user, there will either be no
reaction from the processor at all or - with most faults - it will go
over to the stop state (refer to Chapter 5.4).

Another way of influencing the reaction of the processor is to program
DX 0 .
The functions executed by the system program are preset standard
functions. By specifying certain parameters in DX 0 it is possible to
alter these standard preset values for certain system program func-
t ions.

Just as with the organization blocks, DX 0 can be loaded in the
program memory during operation. However, it rill not become effective
until the next cold restart is carried out.

If DX 0 is not programmed by the user, the preset values are valid.

3.2 STEP5 Operation Set with Examples of Programming

STEP5 operations can be divided into different groups:

- The binary functions include binary logic operations, memory
operations and timer as well as counter operations.

- The digital functions include loading and transfer operations,
comparison operations as well as arithmetic operations.

- The organizational functions include the jump operations, stop and
block end operations, instructions for the generation or calling of
a data block etc..

The accumulators as auxiliary registers

The majority of STEP5 operations make use of two registers (32 bits)
as the source for operands and the destination for results:
accumulator 1 (accu 1) and accumulator 2 (accu 2).

<- - - - High word - - - - >+c-- - - Lowword - - - - >

Accu 1:

3 1 24 23 16 15 8 7 0

The accumulators are changed, depending on the STEP5 instruction to be
executed.

High byte I Low byte

- Accumulator 1 is always used as the destination for loading
operations. The initial contents of accumulator 1 are shifted to
accumulator 2 (stack lift). Accumulators 3 and 4 are not altered
during any loading operation.

High byte 1 Low byte

- Arithmetic instructions operate on the contents of accumulator 1
and accumulator 2, write the result in accumulator 1 and transfer
the contents of accumulator 3 to accumulator 2 and the contents of
accumulator 4 to accumulator 3 (stack drop).

- If a constant (ADD BN/KF) is added to the contents of accumulator 1
the accumulators 2, 3, and 4 are not altered.

R e s u l t b i t s

There are commands for processing information in bits and commands for
processing information in words (8, 16, 32 bits).

For both groups, there are commands which set condition codes and
commands which evaluate condition codes (see annex: operation list,
influencing the condition codes). Corresponding to the two groups of
instructions, bit condition codes (bit 0 through 3) and word condition
codes (bit 4 through 7) exist. The condition code byte can be read out
at the programmer and appears as follows:

Bit 7 6 5 4 3 2 1 0

B i t condition codes:

Word condition codes

ERAB First scan
This is where a logic operation starts. At the end of a
sequence of logic operations (memory operations) the ERAB is
set = 0. Commands which set ERAB = 0 (e.g. result allocation =
42.4) have the effect of limiting the RLO (see annex), i.e. the
result of logic operation will remain constant. Evaluation is
possible (e.g. by means of RLO dependent instructions), how-
ever, no further logic operations with it are possible. It is
not until the next logic statement (= first scan) occurs that
the result of logic operation is again created and ERAB set =
1.

DSPl

Bit condition codes

RLO Result of logic operation
Result of bit wide logic operations. Truth statement for
comparison instructions (see annex: operation list, binary
logic operations and comparison operations).

OR

STA Status
States the logical status of the bit just scanned or set. The
status is updated in the case of binary logic operations
(except A(, 0(,) , 0) and memory operations.

OR Or
Informs the processor that the following AND logic operations
are to be handled before an OR logic operation (AND before OR).

OS STA RLO DSPO EB OV

Word condition codes

OV Overflow
States whether the permissible numeric range was exceeded by the
arithmetic operation just completed.

0 S Overflow, latching
The over bit has been stored. This makes it possible to recog-
nize if an error due to overflow (over) has occurred in the
course of several arithmetic operations.

DSPl and DSPO
Coded result bits. Their interpretation is illustrated in the
following table:

Jump operations are available for an immediate evaluation of the
condition codes (see Subsection 3.2.2).

Shift :
last bit
shifted

0

-

1

Word result
bits

DSPl

0

0

1

Comparison
contents
of accu 1
and accu 2

accu2 = accu 1

accu2 < accu 1

accu2 > accu 1

Fixed point
calculation,
result

result = 0

result < 0

result > 0

DSPO

0

1

0

Logic
operations,
digital

= 0

-

0

3.2.1 Basic Operation S e t

o B i n a r y logic operations

Binary logic operations generate the result of logic operation (RLO)
as their result.

At the start of a logic operation sequence the results from the first
logic operation (first scan) are only dependent on the status of the
scanned signal and whether or not it is negated (N = negation); they
are not, however, dependent on the type of logic operation (0 = OR,
A = AND).

Function

Close brackets
ANDing expressions in brackets
ORing expressions in brackets
ORing AND functions

AND operation
OR operation
with scanning of an input for
signal status "1"
with scanning of an output for
signal status "1"
with scanning of a flag for
signal status "1"
with scanning of a data word for
signal status "1"
with scanning of an input for
signal status "0"
with scanning of an output for
signal status "0"
with scanning of a flag for
signal status "0"
with scanning of a data word for
signal status "0"
with scanning of a timer for
signal status "l"
with scanning of a timer for
signal status "0"
with scanning of a counter for
signal status "1"
with scanning of a counter for
signal status "0"

Operation

1
A (
0 (
0

A
0

I

Q

F

D

N I

N Q

N F

N D

T

N T

C

N C

During a logic operation sequence, the RLO is formed from the type of
logic operation, the previous RLO and the status of the scanned sig-
n&A logic operation sequence is completed by an RLO limiting
(ERAB = 0) command (e.g. memory operations).

Parameter

0.0 to 127.7

0.0 to 127.7

0.0 to 255.7

0.0 to 255.15

0.0 to 127.7

0.0 to 127.7

0.0 to 255.7

0.0 to 255.15

0 to 255

0 to 255

0 to 255

0 to 255

The RLO remains unchanged until the next "first scan". It can be
interpreted, but cannot be further operated on.

Memory operations

ERAB

0-RLO limited
1-firstbit scanned
1
1
0-RLO limited,

end of logic operations sequence

p-

Program

=Q 0.0
A 11.0
A 11.1
A 11.2
=Q 0.1

Loading, transfer and comparison operations

P-

Status

0
1
l
O/>O
0

Function

set
reset
assign

an input in the PI1
an output in the PI0
a flag
adatawordbit

Operation

S
R
- -

I
Q
F
D

RLO

0
>l

0

Parameter

0.0 to 127.7
0.0 to 127.7
0.0 to 255.7
0.0t0255.15

Function

load
transfer

an input byte from/to the PI1
an input word from/to the PI1
an input double word from/to the PI1
an output byte from/to the PI0
an output word from/to the PI0
an output double word from/to the PI0
a flag byte
a flag word
a flag double word
a data (right-hand byte) from DB, DX
a data (left-hand byte) from DB, DX
a data word
a data double word
a peripheral byte of the digital
inputs or outputs (P area)
a peripheral byte of the analog or
digital inputs or outputs (P area)
a byte of the extended I/Ots (0 area)

Operation

L
T

I B
I W
I D
Q B
Q W
Q D
F B
F W
F D
D R
D L
D W
D D
P B/
P Y
P B/
P Y
0 B

Parameter

0 to 127
0 to 126
0 to 124
0 to 127
0 to 126
0 to 124
0 to 255
0 to 254
0 to 252
0 to 255
0 to 255
0 to 255
0 to 254
0 to 127

128 to 255

0 to 255

B8576633-01

m Loading, transfer and comparison operations (continued)

Loading operations write the value addressed in accumulator 1. The
previous contents of accumulator 1 are saved in accumulator 2 (stack
lift).

Operation

L
T

P W

P W

O W

L

K M
K H
K F

K Y

K B
K S

K T
K C
K G

T
C

LC T
LC C

! =
> <
>
> =
<
< =

F
D

Transfer instructions write the contents of accumulator 1 in the
memory location addressed.

l) k0.1469368 X 1 0 ~ ~ ~ through +0.1701412 X 103'

Parameter

0 to 126

128 to 254

0 to 254

16 bit pattern
0 to FFFF
-32 768 to
+32 767
0 - 255 for
each byte
0 to 255
2 alphanum.
character
0.0 to 999.3
0 to 999

0 to 255
0 to 255
0 to 255
0 to 255

Function

load
transfer

a peripheral word of the digital
inputs or outputs (P area)

a peripheral word of the analog or
digital inputs or outputs (P area)
a word of the extended I/Ors (0 area)

load

a constant as bit pattern
a constant in hexadecimal code
a constant as fixed point number

a constant, 2 bytes

a constant, 1 byte
a constant, 2 ASCII characters

a time value (constant)
a counter value (constant)
a constant as floating point number
(32 bit)
a timer value
a counter value
BCD coded loading of a timer value
BCD coded loading of a counter value

compare for equal
compare for not equal
compare for greater than
compare for greater than or equal
compare for less than
compare for less than or equal

two fixed point numbers (16 bits)

I G
two fixed point numbers (32 bits)
two floating point numbers (32 bits)

Examvle: Loading/transferring a byte, word or double word from/to a
memory area organized in bytes (PII, PIO, flags, I/Ors).

:L IW 5 Byte 5 and 6 of the P11 are loaded in accumulator 1.
:L FY 10 Flag bytes 10 through 13 are loaded.

ascending

addresses

3(; 3 0 ; s o \ i l [Accu l

Examvle: Loading/transferring a byte, word or double word from/to a
memory area organized in words.

i

ascending

addresses

4

31 23 15 7 0

m-W 31 23 15 7 0

I T

Accu 1

j + l Accu 1 0

byto

3 1 23 15 7 0

Accu l

l + 1

f t
0 (j

Words or double words are stored in the memory, beginning with the
most significant byte or word in ascending order of addresses. The
excess bits in accumulator 1 are erased when a byte or word is loaded.

I i

0

Accu l 0

0

0 0

0 i Accu l

The loading operations do not affect the condition codes. Transfer
operations will in general clear the OS bit. The result of the compare
commands are the RLO and the word condition codes DSPl and DSPO. The
contents of accumulator 1 and 2 are always compared (see program
examples and operation list).

The I/Ors can be called by loading and transfer operations:

1. directly:
with L/T PY, PW, OB, OW or

2. via the process image:
with L/T IB, IW, ID, QB, QW, QD and with logic operations.

The process image of the outputs is corrected at the same time when
transfer operations T PY 0 through 127 and T PW 0 through 126 are
executed.

The process image is a memory area the contents of which are output to
the 1/0 (process output image, PIO) or read in from the I/Ors (process
input image, PII) only once per cycle. This prevents output "chatter-
ing" due to frequent alterations of the logic condition of a bit with-
in a program cycle.

Please note the follwing points regarding the I/Ors.

- A process image of the inputs and outputs exists for 128 input and
128 output bytes of the P I/Ors with byte addresses from 0 through
127.

- No process image exists for the whole 0 1/0 area and the P 1/0 area
with relative byte addresses from 128 through 255! (see 8.2.1 for
the 1/0 address distribution.)

- Input/output modules with addresses of the 0 1/0 area are only
permissible in expansion units (not in the central controller).

- Use of either P I/Ors or 0 I/Ors is possible in one expansion unit.

- If relative addresses of the P I/O's or 0 I/Ors are used in an
expansion unit, these addresses are no longer permissible for 1/0
modules in the central controller (double addressing!).

Timer and counter operations

In order to load a time by means of a starting command or a counter by
means of a setting command the value must first be loaded in accu-
mulator 1.

The following loading operations are recommended:

For time S : L KT, L IW, L QW, L FW, L DW.

For counters: L KC, L IW, L QW, L FW, L DW.

When the timer or counter operations SP, SD, SE, SS, SF, and S are
executed the value contained in accumulator 1 is transferred to the
timer or counter location (corresponds to the transfer command) and
the respective operation is triggered.

Function

starting a timer as a pulse
starting a timer as an extended pulse
starting a timer as ON delay
starting a timer as a latching ON delay
starting a timer as OFF delay
resetting a timer
setting a counter
resetting a counter
incrementing a counter
decrementing a counter

Operation

S P T
S E T
S D T
S S T
S F T
R T
S C
R C
C U C
C D C

Parameter

0 to 255
0 to 255
0 to 255
0 to 255
0 to 255
0 to 255
0 to 255
0 to 255
0 to 255
0 to 255

If the time or count value is loaded using IW, QW, FW or DW the
corresponding word must have the following structure:

For the time value

Bit no.
1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

Timer value preselected in
BCD code 0...999

Time base preselected in BCD
code
0: 0.01 S
1: 0.1 S
2: 1 S
3: 10 S

These bits are irrelevant,
i.e., they are not considered

when the timer is started

Example: Setting a time of 127 S.

Bit assignment:

I Tim:P" Timer value 127

irrelevant

IKPORTANT!
Whenever a timer is started there is an inaccuracy of one time base
unit !
This means that if you start a timer location using the time base '1'
(= 100 ms) n-times the inaccuracy will be n-times 100 ms.

If timer locations are to be used, select as small a time base as
possible (time base << time value)!

Example: time 4 s not: 1 s X 4
but: 10 ms X 400

For the count value

Count value preselected in
BCD code 0...999

These bits are irrelevant, i.e.,
they are not considered when
the counter is set

Exam~le: Se t t ing a count value of 127

B i t assignment:

irrelevant 1 2 7
\ /

I

Counter value 127

The time o r count value i s s tored i n the timer o r counter loca t ion and
i s binary coded. In order t o scan the timer o r the counter the value
of the t imer o r counter loca t ion can be loaded i n accumulator 1 e i t h e r
d i r e c t l y o r BCD coded.

Direct loading of time values:

Timer value

r---'-'-'-------
I
L-- - - - - - - - - - - - - -

9 o Timer location T 10
c7

L T 10 Direct loading of the binary time value of timer T 10 i n t he
accumulator

The time base i s not loaded.

Direct loading of count values:

Counter value

L C 10 Direct loading of the count value of counter C 10 i n the
accumulator.

l
/ \ r------"----- '-

Coded loading of time values:

I "0" 9 0
L - - - - - - - - - - - - - - -

Time base Timer value

Counter location C 10

I I I Dual

l I

* B C D

r------"-----'- 0

A I
/ 1

l Accu

I "0" 9 L---------------

:-----m----
L - - - - ---- 9 o

Time base Timer value

Accu

Timer location T 10

LC T 10 Coded loading of time value and time increment of time T 10
i n the accumulator

n n

The time increment i s a l so loaded.

Coded loading of count values:

Counter value
l

/ \ r - - - - - - - - - - - - - - -
I
L - , - - - - - - - - - - - - -

9 o Counter location C 10

n

BCD counter value

Dual * B C D

LC C 10 Coded loading of count value of counter C 10 i n the
accumulator

ACCU
I----------

\ A A /
I I l

102 101 100
\ /

I

3 0
r---------

7 4 I " 0 " 1 1 8

With coded loading the status bits 14 and 15 of the timer locations or
12 through 14 of the counter locations will not be loaded. Instead,
accumulator 1 will contain the value 0. The value now in the accumu-
lator can be processed.

m Arithmetic operations

The arithmetic operations use the contents of accumulators 1 and 2
(see operations list). The result is then available in accumulator 1.
The arithmetic registers are changed by an arithmetic operation as
follows :

before: <accu l> <accu 2> <accu 3> <accu 4>

Function

addition of 2 fixed point numbers
(16 bits)
subtraction of 2 fixed point numbers
(16 bits)
multiplication of 2 fixed point numbers
(16 bits)
division of 2 fixed point numbers
addition of 2 floating point numbers
subtraction of 2 floating point numbers
multiplication of 2 floating point
numbers
division of 2 floating point numbers

Operation

+ F

- F

X F

F
+ G
- G
X G

G

The previous contents of accumulator 2 are lost.

Parameters

Note that commands for subtracting and adding of double-word
fixed-point numbers are available in the supplementary operations.

B8576633-01

Block calls

Operation

D O F X

D O C F X

B E
B E C
B E U

Parameters Function

jump unconditional
jump conditional (only when RLO = 1)
to an organization block
to a system program special function
to a program block
to a function block
to a sequence block

m No operation

0 to 255

0 to 255

3 to 255
1 to 255

Operation

unconditional jump to an extended
function block
conditional jump to an extended function
block

DB data block call
DX extended data block call

block end
conditional block end (only when RLO = 1)
unconditional block end

N O P
N O P
B L D

Parameters Function

no operation
no operation
display construction statement for the PG
(is treated as a no operation by the CPU)

Stop statement

Operation Parameters I unction
I CPU stops

Sample programs for logic, memory. timer, counter and compare opera-
t ions

m Logic operations

AND operation

A "1" signal appears at output Q 3.5 when all the inputs have "l"
signals simultaneously
A "0" signal appears at output Q 3.5 if at least one of the
inputs has a "0" signal.
There are no restrictions on the number of scans or on the programming
sequence.

Original

11.11.31.7 7-

03.5

OR operation

STEP 5 representation

A "1" signal appears at output Q 3.2 if at least one of the
inputs has a "1" signal.
A "0" signal appears at output Q 3.2 if all of the inputs have a
"0" signal.
There are no restrictions on the number of scans or on the programming
sequence.

Statement
list

A A 1 1 . 1 11.3
A 11.7
= 03.5

Or~g~nal

1 2 1 7 1 5

0
03.7.

STEP 5 represenlauon

Statement Ladder d~agram Control system flowchan
Lst

0 11.2
0 1 1.7

= 03.2

Ladder diagram

. l I I . 0 3 . y

HHE-4

Control system flowchan

a3.s

Logic operations (cont imsed)

AND before OR operation

Original STEP 5 representat~on

Statement Ladder diagram Control system flowchart
list

A "1" signal appears at output Q 3.1 when the output of at least
one of the ANDing operations is "l".
A "0" signal appears at output Q 3.1 when neither of the ANDing
operations results in "1".

OR before BND operation

A "1" signal appears at output Q 2.1 when input I 6.0 or input I
6.1 and one of the inputs I 6.2 or I 6.3 have a "1" signal.
A "0" signal appears at output Q 2.1 when input I 6.0 has a "0"
signal and the AND condition is not met.

Original

16.0 16.1 16.2 16.3 16.0 16.2 16.3 [l $ v
02.1 a. 1

STEP 5 representadon

Statement
list

0
A 1 6 . 1
A I
0 1 6.2
0 1 6.3
l W , l
= 02.1

Ladder diagram Control system flowchart

m Ugic operations (continued)

OR before AND operation

Original 1 STEP 5 representation I g l e m e n l I Ladder diagram I Control system flowchan

A "1" signal appears at output Q 3.0 when both OR conditions are met.
A "0" signal appears at output Q 3.0 when at least one of the OR
conditions is not met.

Scanning for "OR signal status

A "1" signal appears at output Q 3.0 only when input I 1.5 has a
"1" signal (normally open contact actuated) and input I 1.6 has a
"0" signal (normally closed contact not actuated).

Original

11 511.6

03.0

STEP 5 representation

Control system llowchan

::'zf103,0
Statement
list

A A N l l . 6 1 1 . 5
= 03.0

Ladder diagram

b H , ' d ' q 11,s 11.6

Memory operations

RS flip-flops for latching signal output

A "1" signal at input I 2.7 sets the flip-flop, (signal "1" at
output Q 3 -5) .
If the signal at input I 2.7 changes to " O n , the flip-flop status
remains unchanged, i.e. the signal is latched.
A "1" signal at input I 1.4 resets the flip-flop, (signal "0" at
output Q 3.5).
If the signal at input I 1.4 changes to "O", the flip-flop status
remains unchanged.
If the set signal (input I 2.7) and the reset signal (input I
1.4) appear simultaneously, the scan operation programmed last
(in this case A I 1.4) is effective during the processing of the
remaining program (reset has priority).

Original STEP 5 representation

;;r,,ment I Ladder diagram I Control system flowchan

Hemory operations (continued)

RS fl ip-flop vith flags

A "1" signal at input I 2.6 sets the flip-flop.
If the signal at input I 2.6 changes to "O", the flip-flop status
remains unchanged, i.e. the signal is latched.
A "1" signal at input I 1.3 resets the flip-flop.
If the signal at input I 1.3 changes to "O", the flip-flop status
remains unchanged.
If the set signal (input I 2.6) and the reset signal (input I
1.3) appear simultaneously, the scan operation programmed last
(in this case A I 1.3) is effective during the processing of the
remaining program (reset has priority).

Original

T 6 \ I ~ , ~ ~ I Z . ~

-
1'0

F1.7

F1.7

STEP 5 operation

Control system flowchan Statement
list

A 1 2.6

S 1 . 3 F 1.7
R F 1.7

Ladder diagram

R 0 -------

Memory operations (continued)

Simultation of a momentary contact relay

The AND logic condition (A I 1.7 and AN F 4.0) is fulfilled at
each positive-going edge of the signal at input I 1.7 and flags F
4.0 ("pulse edge flag") and F 2.0 (pulse flag) are set if the RLO
- - "1".
The AND logic condition A I 1.7 and AN F 4.0 is no longer fulfilled
during the next processing cycle since flag F 4.0 has been set.
Flag F 2.0 is reset, i.e. it is "1" during a single program run.

Original

-r-

g$4,. h.;.
F2.0

11.7 nnnnn
nnnnn

F 2.0 U

Binary scaler

-- --

STEP 5 representation

Output Q 3.0 of the binary scaler changes its state at each positive-
going edge of the signal at input I 1.0, i.e. when input I 1.0 changes
from "0" to "1". Consequently, half the input frequency appears at the
binary scaler output.

Statement
list

A 1 1 . 7

AN = F F 4.0 2.0

A AN S 1 F F 2.0 4 .0 1.7

R F 4.0

Original

11.0

V 03.0

F2.0

onnnnn
11.0 m
03.0-

Ladder diagram

E++@
R 0

STEP 5 representation

Control system flowchart

F4.0 l.7.-

R 0

Statement
list

A 1 1 . 0
AN F 1.0
= F 1.1
A F 1.1
S F 1 . 0
AN I 1.0
R F 1 . O
A F 1.1
A Q 3.0
= F 2.0
A F 1.1
AN Q 3.0
AN F 2.0
S Q 3.0
A F 2.0
R Q 3.0

Ladder diagram

F1.l F1.O

F1.1 03.0

-3 H/H/

Control system flowchart

03.0 F2,0

F2.0

Timer operations

Pulse

The timer is started during the first processing cycle if the result
of the logic operation is "l". The timer remains unaffected during
subsequent processing if this results in a "1" signal.
The timer is set to "0" (cleared) if the result of the logic operation
is "0".
The A T and 0 T scans result in a "1" signal as long as the timer is
running.

Original

f In r i
--)--- 11

04.0
04.0

KT 10.2: I . n . .
The timer is loaded with the a 4 . n

specified value (10). cl T L

The number to the right of the
decimal point indicates the time
base :
O = O . O l s 2 = 1 s
1 = 0 . 1 s 3 = 1 0 s

B1 and DE are digital outputs of the timer location. The time value is
binary at output B1 and BCD with time base at output DE.

STEP 5 representation

Control system flowchart

1zj-k 04.0

TV - time value

Statement
list

A 1 3.0

i

Ladder diagram

04.0

Timer operations (continued)

Extended pulse

The timer is started during the first processing cycle if the result
of the logic operation is "l".
The timer remains unaffected if the result of the logic operation is
"0"

The A T or 0 T scans result in a "1" signal as long as the timer is
running .
IW 15:
Setting the time value with the BCD value (18 151 (18 16)

A-
of the operands I, Q, F or D 1-1
(input word value 15 in the example). 1 , W 101 loo, -

Time Time

"On" delay IM*

Original

The timer is started during the first processing cycle if the result
of the logic operation is "l". The timer remains unaffected during
subsequent processing if the result of the logic operation remains
"1".

The timer is set to "0" (cleared) if the result of the logic operation
is "0".
The A T or 0 T scans result in a "1" signal when the time has elapsed
and the result of the logic operation is still present at the input.
KT 9.2:
The timer is loaded with the specified value (9). The number to the
right of the point indicates the time base:
O = O . O l s 2 = 1 s
1 = 0 . 1 s 3 = 1 0 s

I

STEP 5 representation

Original

Control system flowchart Statement
list

A 1 3.5

-+-- 13

Q 4 2 04.2

STEP 5 representation

Ladder diagram

Control system flowchan Statement
list

Ladder diagram

Timer operations (continued)

Latching "On" delay

Orginal STEP 5 representation

Statement Ladder diagram Control system
list flowchart

13.2 13.3
A 1 3.3

A T 4
20s 0 = Q 4.3
H T4 13.2

T4 13.2 Q 4.3

Q 4.3 Q 4.3

The timer is started during the first process-
ing cycle if the result of the logic operation
is "1".
The timer remains unaffected if the result of
the logic operation is "0".
The AT or OT scans result in a "1" signal when
of the time has elapsed. The signal status only
changes to "0" when the timer is reset by the
RT function.

"Off" delay

Orginal

The timer is started when the result of
the logic operation at the start input

A 1 3.4

0 1
T5

Q 4.4

Q 4.4

STEP 5 representation

-

Control system
flowchart

Statement
list

r- changes from "1" to "0". It runs for the 1 3 4 1

time programmed. Qg
The timer is set to zero (reset) if the

'Ladder diagram

+ T * T -

,

* T '
result of the logic operation is "l".
The AT or OT scans result in a "1" signal
if the timer is running or the result of
the logic operation is till present at
the input.

m Counter operations

Set counter

If--- IWM CV

Original

The counter is set during the first processing cycle if the result of
the logic operation is "l". The counter remains unchanged during
subsequent processing (irrespective of whether the result of the logic
operation is "1" or "0"). The counter is set again (pulse edge evalua-
tion) at the next processing cycle if the result of the logic opera-
tion is "1".
The flag necessary for pulse edge evaluation of the set input is
included in the counter word.
B1 and DE are digital outputs of the counter location. The count
values are binary coded at output B1 and BCD at output DE.

Reset counter

I

STEP 5 representation

Original I STEP S representation I f;;tement I Ladder diagram

Control system flowchan Statement
list

I Control system flowchan

Ladder diagram

The counter is set to zero (reset) when the result of the logic
operation is "l".
The counter remains unchanged even if the result of the logic opera-
tion becomes "0".

Counter operations (continued)

Counting up

The value of the addressed counter is incremented by 1 up to a maximum
of 999. The CU function is effective only on a positive-going pulse
edge (from "0" to "1") of the logic operation programmed before CU.
The flags necessary for pulse edge evaluation of the counter inputs
are included in the counter word.
A counter with two different inputs can be used as an up/down counter
by means of the two separate pulse-edge flags for CU and CD.

Original

,,,l@ !! Binav
-- Ca 16b

Counting down

STEP 5 representation

The value of the addressed counter is decremented by 1 to a minimum 0.
The CD function is only effective with a positive-going edge (from "0"
to "1") of the logic operation programmed before CD.
The flags necessary for pulse edge evaluation of the counter inputs
are included in the counter word.
A counter with two different inputs can be used as an up/down counter
by means of the two separate pulse-edge flags for CU and CD.

Statement
list

A 1 4 . 1
CU C 1

Original

Ladder diagram Control system flowchart

STEP S representation

;.;ternent I Ladder diagram I Control system flowchart

Compare operations

Comparing for equal to

The first operand specified is compared
with the following operand according to 1 . I IB 19 1 Accu 2-L

the compare function.
The comparison produces a binary logic
operation result: I 0 I 18 20 I Accu l -L

RLO = "lv1: the condition is fulfilled,
if accu l-L = accu 2-L

RLO = "0": the condition is not
fulfilled, if
accu l-L # accu 2-L

Original

The condition codes DSPl and DSPO are set as explained in 4.1
Accu 2-H and accu l-H remain unaffected during the 16-bit fixed
point comparision.
During fixed point comparison (! = F) and floating point comparison (!
= G) the total contents of accu 1 and accu 2 (32-bit) are compared
with each other.
During the comparison the numerical representation of the operands is
taken into account, i.e. the contents of accu l-L and accu 2-L are
interpreted as a fixed point number.

STEP 5 representation

;;;tement 1 Ladder diagram (~ontroi system flowchat7

Compare operations (continued)

Comparing for not equal to

Original I STEP 5 representation

;;;tement / Ladder diagram I Control system fbwchan

The first operand specified is compared
with the following operand according to

m/ Accu 2-L

to the comparison function.
The comparison produces a binary logic
operation result. F\ ACCU I-L

RLO = "1" the condition is fulfilled,
if accu l-L # accu 2-L

RLO = "0" the condition is not ful-
filled, if
accu l-L = accu 2-L

The condition codes DSPl and DSPO are set according to the table on
page 26.
Accu 2-H and accu l-H remain unaffected during the 16-bit fixed point
comparison.
During the 32-bit fixed point comparison and the floating point com-
parison accu 2-H and accu l-H are involved.
This also applies to comparing for greater than, greater than or equal
to, less than and less than or equal to (see operations list).
With compare operations the numerical representation of the operands
is taken into account, i.e. the contents of accu l-L and accu 2-L are
interpreted as a fixed point number.

3.2.2 Supplementary Operation Set

The supplementary operation set can only be used in the function
blocks (FB and FX). The total operation set for function block there-
fore consists of the basic operations and the supplementary
operations.

The supplementary operations include the system operations: The system
operations allow for you to e . g . overwrite the memory at any position
or alter the contents of the working register of the processor. This
means t ha t you should be extremely care fu l when making use o f the
system operations (if at all).

Refer to chapter 9 "memory access" for more information about the
'system functions'.

The operations are only represented in STL for the function blocks.
This means that programming the function block programs is not
possible graphically (LAD or CSF).

The supplementary operations described in the following may only be
used in the function blocks.

The possible combinations of substitution commands with the actual
operands are also listed.

a Binary logic operations

a Memory operations

Operations

A = 0

AN = 0

0 =D

ON = 0

Description

AND operation, scanning a formal operand for
signal status " l ".

ANDoperation, scanning a formal operand for
signal status "0"

ORoperation, scanning a formal operand for
signal staus "l "

ORoperation, scanning a formal operand for
signal status "0"

Assign formal operand

Inputs, outputs, data and flags addressed in
binary code (parameter class I, Q; parameter
type BI) and alsotimers and counters
(parameter classT, C) are permitted as actual
operands.

Operation

S = 0
RB = 0

= = 0

Description

Set (b~nary) formal operand.

Reset (b~nary) formal operand

Assign result of logic operation to formal
operand.

Assign formal operand.

Inputs, outputs, data and flags addressed in
binary code (parameter class I, Q, parameter
type BI) are permitted asactual operands.

B8576633-01

Timer and counter functions

Operation

FR TO to 255

FR CO t o 255

FR = 0

RD = 0

SP = 0

SR = 0

SEC = 0

SSU = 0

SFD = 0

Description

Enabling a timer for restat2
The operation is only carried out on the l a d -
ing edge of the result o the logic operation.
The timer is restarted if the RLO is " l" at the
time of the start operation.

RLO
for SPT

RLO
for FT

Scan
with AT

Enabling a counter
The operation is only carried out on the lead-
ing edge of the result of the logic operation.
The counter is set (counting up or down) if the
result of the logic operation is " 1 " at the cor-
responding operation.

Enabling a formal operand for a restart (for
description see FRT or FRC depending on for-
mal operand; parameter class: T, C).

Resetting (digital) a formal operand
(parameter class:T, C).

Starting a timer, specified as a formal operand,
as a pulse with the value stored in the accumu-
lator (parameter class: T).

Starting a timer, specified as a formal operand,
as an on-delay with the value stored in the ac-
cumulator (parameter class: T).

Starting a timer,specified as a formal operand,
as an extended pulse with the value stored in
the accumulator or setting a counter specified
as a formal operand for the count value stored
in accu l (parameter class: T, C)

Starting a timer,specified as a formal operand,
asa latching on-delay with the value stored in
theaccu or incrementing a counter specified
asa formal operand (parameter class: T, C).

Starting a timer,specified asa formal operand,
asan off-delay with the value stored in the
accu or decrementing a counter specified as a
formal operand (parameter class: T, C).

Enter formal operand

Timers and counters are permitted as actual
operand. Exceptions: SP and SR (only timers).
The timer or counter value can be assigned as
with basicoperations: or as a formal operand
it can be assigned as follows:

Setthe timer or counter value with the BCD
value, of the IW, QW, FW, DW operands speci-
fied as formal operands (parameter clau: I,
parameter type: W) or as a constant
(parameter class: D, parametertype: KT, KC).

B8576633-01

Examples

r Loading and transfer operations

Exscuted program

:A I 10 .3
:L KT 010.2
:SS T 17
:A T 17
:- Q 18 .4

:A I 10.5
:C0 C 15
: A 1 10.6
:CD C l 5
:A I 10.7
:L KC 100
:S C 15
:M C l5
:- F 58.3

:A I 10.4
:L N 20
:SF T 18
:A T 18
:- F 100.7

F u n c t i o n b l o c k c a l l

: JU FE203
NAXE : rXhKPLE
ANNE: I 10.3
BERT : T 17
F E D : Q 18.4

: JU FB204
NAXE : EXAHPLE
RUTH: I 10 .5
FETE : I 10.6
H h W : I 10.7
D o U : C 15
ELMA : F 58.3

: JO FB205
WAKE : EXAKPLF.
BILL : I 10 .4
CARL : T 18
EGON : N Z 0
DAVE : P 100.7

Prograa i n
f u n c t i o n b l o c k

:A -rWNE
:L KT 010.2
:SS0 -8EP.T
:A. -BERT
:- -FLED

:A -RUTH
:SSU -DoRA
:A -FETE
: SFD -DoRA
:A -KAUD
:L HCLOO
:SEC - D O U
:AN -DoRA
:- -W

:A -BILL
:L -ECON
:SEC -CARL
:A - C m
:- -DAVE

Operation

= n

LD = 0

LW = 1-1

LWD = 1-1

T = 1-1
Enter
formal operand

Description

Loading of a formal operand
The value of the operand specified as a formal
operand is loaded into the accumulator (parameter
class: I, T, C, Q; parameter type: BY, W, D)

Coded loading of a formal operand.
The value of the timer or counter location speci-
fied as a formal operand is loaded in BCD into
the accumulator (parameters: T, C).

Loading the bit pattern of a formal operand.
The bit pattern of the formal operand is loaded
into the accumulator (parameter class: D;
parameter type: KF, KH, KM, KY, KS, KT, KC).

Loading the bit pattern of a formal operand.
The bit pattern of the formal operand is loaded
into the accumulator (parameter class: D;
parameter type: KG).

Transferring to a formal operand.
The accumulator contents are transferred to the
operand specified as a formal operand (parameter
class: I, Q; parameter type: BY, W, D).

Operands corresponding to the basic operations are permitted as actual
operands. For LW, data is permitted in the form of a binary (KM) or
hexadecimal (KH) pattern, 2 numbers in bytes (KY), characters (KS),
fixed point number (KF), time values (KT) and count values (KC). For
LD, a floating point number is permitted as data.

1) System operation

Contrary to areas RI, RJ, and RT, in the RS area only the words RS 60
through RS 63 are free for the user.
Refer to 8 . 2 . 4 "RS/RT areaw for further information.

Description

Loading a word in accumulator 1 from the area
"interface data" (RI area)

Loading a word in accumulator 1 from the area
"interface data" (RJ area)

Loading a word in accumulator 1 from the area
"system data" (RS area)
(free: RS 60 through 63)

Loading a word in accumulator 1 from the area
"system data" (RT area)
(free: RT 0 through 255)

Transferring accumulator 1 to a word from the
area "interface" (RI area)

Transferring accumulator 1 to a word from the
area "interface" (RJ area)

Transferring accumulator 1 to a word from the
area "systemtt (RS area)

Transferring accumulator 1 to a word from the
area "systemw (RT area)

Operation

L RI

L RJ

L RS

L RT

T RI

T RJ

T RS

T RT

Parameter

0 to 255

0 to 255

0 to 255

0 to 255

0 to 255

0 to 255

0 to 255

0 to 255

B8576633-01

m Arithmetic operations

A stack lift is executed into accumulators 3 and 4:

Operation

ENT

Accumulators 1 and 2 are not altered. The previous contents of
accumulator 4 are lost.

Description

Entry of data also used during arithmetic operations in
accumulators 3 and 4:
The contents of accumulators 2 and 3 are loaded in
accumulators 3 and 4.

The following fraction is to be calculated: (30 + 3x4)/6 = 7

Contents
of accumulators
before the
arithmetic oper.

L KF 30
L KF 3
ENT
L KF 4
xF
+ F
L KF 6
/ F

Accu 1

a

Accu 2

b

a

l) System operation

Accu 3

C

C

Description

Add byte constant (fixed point) to accu 1 1)

Add fixed point constant (word) to accu 1 1

Operation

ADD BN l)

ADD KF l)

Accu 4

d

d

Parameters

-128 to +l27

-32768
to +32767

l) System operation
2, Programming depends on the type of PG and its system software

Operation

ADD DF
l> 2>

+D

-D

TAK l)

m Digital logic operations

Parameters

-214743648
to +2147483647

Accumulators 3 and 4 are not affected, but the condition codes DSPl
and DSPO are (see word result bits).

Description

Add fixed point constant (double word) to
accu 1

Add two double word fixed-point constants
(accu 1 + accu 2)

Subtract two double word fixed-point
constants (accu 1 + accu 2)

Swap contents of accu 1 and accu 2

Operation

AW

OW

XOW

By means of two loading operations, accumulators 1 and 2 can be loaded
corresponding to the operands of the loading operation. Then, the
contents of both accumulators can be operated on digitally.

Description

ANDing of accus l-L and 2-L

ORing of accus l-L and 2-L

Exclusive ORing of accus -L1 and 2-L

k ~ o r m e r contents of accu l-L

ANDing IW 2 and IW 1:

Result IW 1

Organizational functions

Jump operations

The destination of unconditional and conditional jumps is specified
symbolically (a maximum of 4 characters beginning with a letter). The
symbolic parameter of the jump instruction is identical to the symbo-
lic address of the statement to be jumped to. When programming, it
should be taken into account that the absolute jump distance does not
cover more than +l27 words and that a STEP 5 statement can consist of
more than one word. Jumps can only be carried out within a block;
jumps across segments are not permissible.

Note: jump statement and jump destination must be in one segment. Per
segment only one symbolic address is permitted for jump destinations.
These conditions do not apply to the JR jump, for which an absolute
jump distance is specified as a parameter.

Operation

JU = addr

Description

Jump unconditional.
An unconditional jump is carried out under all conditions.

JC = addr Jump conditional.
A conditional jump will be carried out if RLO = 1. If
RLO = 0, the statement will not be carried out and the
result of the logic operation will be set to RLO = 1.

JZ = addr Jump condition: DSP1, DSPO.
A jump will only be carried out if DSPl = 0 and DSPO = 0.
The logic operation result is not changed.

JN = addr Jump condition: DSP1, DSPO.
A jump will only be carried out if DSPl # DSPO. The logic
operation result is not changed.

JP = addr Jump condition: DSP1, DSPO.
A jump will only be carried out if DSPl = 1 and DSPO = 0.
The logic operation result is not changed.

JM = addr

An overflow occurs if the permissible area for the numeri-
cal representation involved is exceeded by an arithmetic
operation.

A jump will only be carried out if DSPl = 0 and DSPO = 1.
The logic operation result is not changed.

JO = addr

addr = symbolic address (a maximum of 4 characters)

Jump on overflow.
A jump will be carried out if the condition code OV = 1.
If there is no overflow, (OV = 0) the jump will not be
carried out. The logic operation result is not changed.

addr = symbolic address (a maximum of 4 characters)

Operation

JS = addr

JR
-32768 to
+32767

Shift operations

Description

Jump if the condition code OS (latching overflow) is set
(OS = 1).

Jump via the system software; carried out under all con-
dit ions.

With the shift functions only accu 1 is used. The parameter part of
the commands specifies up to how many positions the accu contents are
shifted or rotated. With SLW, SRW and SSW, only the lower order word
is involved with the shift functions, with SLD, SSD, RLD and RRD the
entire contents of accu 1 (32 bits) are used.
Shift functions are carried out unconditionally.

Operation

SLW 0 to 15

SRW 0 to 15

SLD 0 to 32

SSW 0 to 15

SSD 0 to 32

RLD 0 to 32

RRD 0 to 32

Description

Shifting to the left (zeros are filled in from the
right) .
Shifting to the right (zeros are filled in from the
left).

Shifting a doubleword to the left (zeros are filled in
from the right) .
Shifting to the right with sign.

Shifting a doubleword to the right with sign (sign is
filled in from the left).

Rotating to the left.

Rotating to the right.

The last bit shifted out can be scanned by means of jump functions.
The DSPO and DSPl condition codes are affected.

With JZ, a jump can be carried out if the bit is 0. With JN, a jump
can be carried out if the bit is 1.

DSPl DSPO I Shift: last bit shifted

Examples

STEP5 program:

STEP5 program:

:L EDO
:SLW 4
:SRW 4
:SLD 4
:SSW 4
:SSD 4
:RLD 4
:RRD 4
: BE

Applications:

contents of data words:

KH = 14AF

KH = 4AF0

contents of accumulator 1 (hexadecimal)

2348 ABCD
2348 BCDO
2348 OBCD
3480 BCDO
3480 FBCD
0348 OFBC
3480 FBCO
0348 OFBC

multiplication with the power 2,
e.g. new value = old value X 8

:L FWlO
:SLW 3
:T FWlO Caution: Do not exceed the

positive area limit!

division by the power 2,
e.g. new value = old value : 4

:C DB5
:L DWO
:SRW 2
:T DWO

B8576633-01

Conversion operations

DEF :

Operation

CFW

CSW

CSD

DEF

DUF

DED

DUD

FDG

GFD

The value contained in accu l-L (bit 0 through bit 15) is interpreted
as a BCD-coded number. After the conversion a 16-bit fixed point
number will be contained in accu l-L.

Meaning

Forming of one's complement of accu 1 (16 bit)

Forming of two's complement of accu 1 (16 bit)

Forming of two's complement of accu 1 (32 bit)

Fixed point conversion (16 bit) from BCD to binary

Fixed point conversion (16 bit) from binary to BCD

Doubleword conversion (32 bit) from BCD to binary

Doubleword conversion (32 bit) from binary to BCD

Conversion of a fixed point number (32 bit) to a
floating point number (32 bit):
see OB 220; sign extension

Conversion of a floating point number to a fixed point
number (32 bit)

The value contained in accu l-L (bit 0 through bit 15) is interpreted
as a 16-bit fixed point number. After the conversion a BCD-coded
number will be contained in accu l-L.

vvvv

V (sign): 0 = positive
1 = negative

DED :

The value contained in accu 1 (bit 0 through bit 31) is interpreted as
a BCD-coded number. After the conversion a 32-bit fixed point number
will be contained in accu 1.

The value contained in accu 1 (bit 0 through bit 31) is interpreted as
a 32-bit fixed point number. After the conversion a BCD-coded number
will be contained in accu 1.

vvvv l

V (sign) : 0 = positive
1 = negative

The value contained in accu 1 (bit 0 through bit 31) is interpreted as
a 32-bit fixed point number. After the conversion a floating point
number (exponent and mantissa) will be contained in accu 1.

GFD :

The value contained in accu 1 (bit 0 through bit 31) is interpreted as
a floating point number. After the conversion a 32-fixed point number
will be contained in accu 1.

In this case, floating point numbers 2 0 or 5 -1 are rounded down, if
necessary, to the next smaller integer.

Floating point numbers < 0 and > -1 are rounded up to 0.

Examples: +5 .7 --> 5
-2.3 --> -3
-0.6 --> 0
+0.9 --> 0

GFD

Exponent Mantissa

Examples

The contents of data word 64 are to be inverted bit by bit
('reversed') and deposited in data word 78.

STEP5 program: assignment of data words:

:L DW64
: CFW
:T DW78

The contents of data word 207 are to be interpreted as a fixed point
number and deposited in data word 51 with the sign inverted.

STEP5 program assignment of data words:

:L DW207 KF = + 51
: CSW
:T DW51 KF = - 51

D l to 255 decrement

parameter ' I
I l to 255 increment

The contents of accumulator 1 are decremented or incremented by the
number stated as a parameter. The execution of this operation is
independent of conditions. It is limited to the right-hand byte (with-
out carry).

STEP5 program: assignment of data words:

B8576633-01

m Processing operations

1) System function
2) The value contained in the system data or in the formal operand is

interpreted as the operation code of a STEP5 operation which will
then be executed. Permissible operations as for DO FW and DO DW.

Operation

DO DW 0 to 255
(operation)

DO FW 0 to 254
(operation)

= t
insert
formal
operands

1 2 D1 1 1

1 2 DO RS))
60 through 63

Combination of all operations is permissible with DO DW and DO FW,
except the following :

Description

process data word
The following operation is combined and executed
using the parameter stated in the data word.

process flag word
The following operation is combined and executed
using the parameter stated in the flag.

process formal operands (parameter class: B):
Only C DB, JU PB, JU FB, JU SB may be substituted.

process via a formal operand (indirect)
The number of the formal operand to be executed is
contained in accumulator 1.

instruction contained in the area of the system
data (RS) is to be executed (free system data: RS 60
through 63).

- all two-word and three-word commands, see annex D,
(permissible are G DB, GX DX, SED, SEE, CX DX, DO FX, and DOC FX)

- operations with formal operands in function blocks,

- JU/JU OB, JU/JC PB, FB, . . .
The PG will not verify that the combination is permissible.

> L IB 120 (= command executed)

Example (process data word)

The contents of data words DW 20 through DW 100 are to be set to
signal status "0". The index register for the parameter of the data
words is DW 1.

:L KF 20 supply the index register
:T DW1

MOO1 :L KB 0 reset
:DO DW1
:T DWO
:L DW1 increment index register
:L KF1
: +F
:T DW1
:L KF 100
: <=F
: JC =MOO1 jump, if index is in the area
. . . Further STEP5 program

A~plication: Jump distributor for subroutine method

:DO FW5
: JU =M000 flag word FW 5:

+ :JU =M001
jump : JU =l4002
dis-
placement :JU =M004 - +l27 max.

. .

jump displacement E I I I

. .
: BEU

M001: .
. .
: BEU

M002: .
. .
: BEU

Advantage:
All subroutines are
contained in one block.

Application: Jump distributor for block calls

:DO FWlO flag word FW 10:
: JU PBO

> PBX

block no. X D

B8576633-01

Disable/enable process interrupts

Use of "disable/enable interrupts" is possible, e.g. if interrupt
driven processing is to be suppressed during time driven processing.
This means that interrupt driven processing will no longer be possible
in the program section between the IA and RA commands.

I A

RA

Also refer to Subsection 6.8.1, special function OB 120 "disable
interrupts".

disable interrupt driven processing

enable interrupt driven processing

m Other operations

G DB: Create data block

Command G DBxxx generates a DB data block with number xxx (between 3
and 255) in the internal data block RAM of the processor.

Description

generation of a DB data block in the DB-RAM

generation of a DX data block in the DB-RAM

Operation

G DB

GX DX

Before programming the instruction you must enter the number of data
words which the new DB is to have in accumulator l-L. The block header
is generated by the G DB/GX DX instruction. One data block (including
its header) must not occupy more than 4091 words in memory.

Parameter

3 to 255

1 to 255

The system program will call OB 31 if the data block exists already,
if the length of the data block is illegal or if the space in the DB
RAM is insufficient. The processor will stop due to an execution time
error if OB 31 has not been programmed. The error identifiers are in
accumulator 1.

Command GX DXxxx generates a DX data block in the DB RAM and is
otherwise the same as G DBxxx (permissible parameters: 1 to 255).

SED/SEE: Setting/clearing a semaphore

Operation

SED

SEE

If two or more processors of a programmable controller use certain
global memory areas (I/Ors, CPs, IPs) toaether there is a danger of
one processor overwriting the data of the other or invalid inter-
mediate statuses of data being read out. Due to this coordination of
the access of the individual processors to the common memory areas is
required.

Coordination of the individual processors is possible by means of
semaphores and the SED and SEE commands: Before the semaphores de-
clared (SED) have been set the processors involved in multiprocessor
operation will not access the common memory area. A semaphore xx can
only be set by one single processor. If a processor fails to set the
semaphore, access will be denied.
Further access will also be denied if the processor has again cleared
the semaphore (SEE).

Parameter

0 to 31

0 to 31

All of the processors involved must contain a function block with the
following program structure:

Description

setting a semaphore

clearing a semaphore

(Start)

Set semaphore: SED

memory protected
by semaphores

1 Clear semaphore: SEE

(End)<P

Operation successful?

no

The use of SED and SEE instructions ensures that a processor can
transfer information that belongs together to/from a certain memory
area and is protected from another processor interrupting this
operation.

I n P o R T r n !
The instructions SED rr and SEE rr must be used by all processors
requiring synchronized access to a common global memory area (address-
es > FOOOH).

The SED xx (set semaphore) command occupies a certain byte in the
coordinator for the processor executing the command (that is, if this
byte has not been occupied by another processor). As long as the
processor is entered there the remaining processors are denied reading
or writing access to the memory area protected by the corresponding
semaphore (numbers 0 to 31). This means that the area is blocked for
all other processors.

The SEE xx (clear semaphore) instruction resets the byte in the coor-
dinator. This means that the memory area protected is again available
for the other processors, reading or writing is again possible. Only
the processor responsible for setting of the semaphore can clear it.

Access coordination for
area 10 by semaphore 10

I
I
I

Area l 0
(e.g. OW6)

I I

, SED 10 Request of right to access area 10

L Access rights from KOR for processor 3

+ Data access to area 10

-* SEE 10 Access rights are returned

A A A t A

!
!
!
! v l

Proc 4

:SED 10

4

Proc 3

:SED 10

Proc l

:SED 10

Proc 2

:SED 10

The SED and SEE commands scan the status of a semaphore before it is
set or cleared. The DSPO and DSPl indications are affected in the
following manner:

IMPORTrn!
The process of scanning a semaphore (ereading) and the setting or
clearing the semaphore (=writing) is one unit. During these processes
access to the semaphore will be denied to all other processors!

Please note the points below when using the semaphores:

Evaluation

JZ

JN, JP

DSPl

0

1

- A semaphore is a global variable, i.e the semaphore with number 16
only exists once, even if e.g. three processors are used.

- Use of the SED and SEE commands is required for all processors
whose access to a common memory area is to be coordinated.

DSPO

0

0

- All processors involved will have to run the same start-up mode.
All semaphores will be erased if a cold restart is carried out,
however, they will be retained if a manual or automatic restart is
carried out.

Significance

Semaphore was set by another processor
and setting/clearing is not possible

Semaphore is set/cleared

- Start-up in multiprocessor operation must be synchronized. Due to
this, the test mode is not permissible.

Example for semaphore application

In one S5 135U there are 4 processors which output status messages to
a signalling unit via a common memory area of the 0 I/Ors (OW 6). Each
of the status messages has to be output for 10 seconds, the same or
another processor cannot overwrite the initial message with a new
message until the 10 seconds have elapsed.

Use of the 1/0 word OW 6 (extended I/O, no process image) is controlled
by means of a semaphore. This means that only the processor which
reserved this area with a semaphore can write its message in OW6. The
semaphore will remain set for 10 seconds (TIMER T10). When the timer
reaches "0" the processor will clear the semaphore and thus release
the area for use by other processors. OW 6 may now receive a new
message.

If a processor attempts to set a semaphore and this semaphore has
already been set by another processor then, during the next cycle, the
processor will again attempt to set the semaphore and output its
message.

Execution of the following program is possible with a different mes-
sage for each of the four processors. The following blocks are loaded:

FB 0:

MAIN PROGRAM

5 flags are used:

S IGNAL OUTPUT MESSAGE

RESET SEMAPHORE

F 10.0 = 1: A message has been requested or is being processed.
F 10.1 = 1: The semaphore has been set.
F 10.2 = 1: The timer has been started.
F 10.3 = 1: The message has been transferred.
F 10.4 = 1: The semaphore has been reset.

FBO

NAME :MAIN

:AN E 0.0
: BEC

:L KH2222
:T FW12
:AN F 10.0
:S F 10.0

MOO1 :JU FBlO
NAME :SIGNAL

NAME :SIGNAL

:AN F 10.1
: JC FBlOO

NAME :SEMASET

:A F 10.1
:AN F 10.2
:S F 10.2
:L KT10.2
:SE T 10

:A F 10.2
:AN F 10.3
:JC FBllO

NAME :MESS.OUT

:A F 10.2
:AN F 10.4
:AN T 10
:JC FBlOl

NAME :SEMARESE

:AN F 10.4
: BEC

:L KHOOOO
:T FYlO
: BE

if no message is active

create message and

set flag 'MESSAGE'

call FB 'SIGNAL'

if no semaphore is set,
call FB 'set semaphore'

if semaphore is set
and timer has not been started

start timer

if timer has been started
and no message is transferred,
call FB 'output message'

if timer has been started
and semaphore is not reset
and timer has elapsed
call FB 'reset semaphore'

if semaphore has been reset,

reset all flags

FBlOO

NAME :SEMASET

:SED 10
:JZ =MOO1
:AN F 10.1
:S F 10.1

MOOl :BE

FBllO

NAME :MESS.OUT

FBlOl

NAME :SEMARESE

:SEE 10
:JZ =M001
:AN F 10.4
:S F 10.4

MOOl :BE

set semaphore no. 10

if semaphore has been set,
set flag 'SEMA SET'

transfer message to
I/O ' S

set flag 'TRANSFER MESSAGEf

clear semaphore no. 10

set flag 'SEMAPHORE RESET'

4 Operating States

4.1 Operating States and Program Levels

The processor has three operating states:

operating state STOP

operating state START-UP

operating state RUN

As described in chapter 2, the system program calls the appropriate
organization blocks (OB 1 through OB 34) if certain events occur. In
these blocks the user may determine the further reaction of the pro-
cessor. If, for example, an acknowledgement delay occurs while the
process image is being updated in the RUN state, the system program
calls OB 24.

Some events are only possible in the operating state START-UP, some
only in the operating state RUN and some in START-UP as well as RUN
(see following page).

After an organization block has been called, the processor will exe-
cute the STEP5 user program contained in it. In doing so, a new
register record is created (register: accumulator 1 through 4, block
stack pointer, data block start address, STEP-address counter). If
'normal' program execution has been interrupted due to the occurrence
of the event, then the processor will, after having processed the OB -
including all of the blocks nested in it - continue the program at the
breakpoint. There, the "oldw register contents are again valid.

One or several of these organization blocks are each assigned a
program level: if, e.g. OB 2 is called, this means that the program
level 'PROCESS INTERRUPT' is activated. The program level 'COMMAND
CODE ERROR' is activated if OB 27, OB 29 or OB 30 are called.

The following page provides a summary of the operating states and the
program levels in the S5 135U, CPU 928.

Summary 4-1: Operatin9 states and program levels:

LED STOP: On LEDSTOP: Off for pint
start-up

Program levels in START-UP:

COLD/MANUAL WARM RESTART
AUTOMATIC WARM RESTART
BCF (command code error)
IZF (execution time error)
ADF (addressing error)
QV' (acknowledgement delay)

Program levels in RUN:

CYCLE
TIME INTERRUPT (WECK-AL) 5sec
TIME INTERRUPT (WECK-AL) 2sec
TIME INTERRUPT (WECK-AL) lsec
TIME INTERRUPT (WECK-AL) 500111s
TIME INTERRUPT (WECK-AL) 200ms
TIME INTERRUPT (WECK-AL) looms
TIME INTERRUPT (WECK-AL) 50ms
TIME INTERRUPT (WECK-AL) 20ms
TIME INTERRUPT (WECK-AL) lOms
CONTROLLER INTERRUPT (REG-AL)
PROCESS INTERRUPT (PROZ-AL)
VECK
BEG
ZYK
BCF
IZF
ADF
Q=
ABBR

(cyclic program processing)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven program execution)
(time-driven controller processing)
(interrupt-driven program execution)
(collision of two time interrupts)
(controller error)
(cycle time error)
(command code error)
(execution time error)
(addressing error)
(acknowledgement delay)
(abort)

A program level is further characterized by the following features:

- Every program level has its own specific system program.

The system program updates the process image of the inputs and
outputs, triggers the cycle time and calls the management of the
PG-interface (system checkpoint) in the processing level CYCLE.

- If an interrupt occurs, the system program will create an interrupt
stack (ISTACK) of its own and will enter, among other things, the
level interrupted (see LEVEL) for every program level.

Examp l e :

ISTACK =
image of the level interrupted

- The program levels have a fixed priority. Depending on this
priority, they can interrupt each other and be nested in each
other.

The "start-up levels and the error levels" differ from the "basic
levels" insofar as they are nested immediately and at command
boundaries as soon as the relevant event occurs. They may nested
into the basic levels as well as into each other. When errors
occur, the last error that has occurred will have the highest
priority.

In contrast to this, nesting of a "basic levelv in one of a lower
priority is only possible at the block boundaries unless this
presetting has been changed by specific programming of DX 0 (see
Chapter 7).

Priority of the "basic levels":

CYCLE
TIME INTERRUPTS l)
CONTROLLER INTERRUPT
PROCESS INTERRUPT 1 ascending priority
l) The individual time interrupts are also assigned different

priorities. Shorter time interrupts have a higher priority than
longer ones.

Example :

A process interrupt occurs while a time interrupt is being process-
ed. Since the process interrupt has a higher priority, the process-
ing of the time interrupt level is interrupted at the next block
boundary and the PROCESS INTERRUPT program level is nested in. If,
e.g., an incorrect address occurs while the process interrupt is
being processed, the process interrupt is interrupted immediately
at the next command limit in order to nest in the ADF-level.

- Once an error level (ADF, BCF, LZF, OVZ, REG, ZYK) is activated
which is still not completely processed, it cannot be reactivated
even if another program level has been nested in between. In this
case the PC will immediately pass into the STOP state because a
program level has been called twice (in the ISTACK: 'WPP') (for an
exception of this rule see time interrupts). In depth '01' of the
ISTACK, the identification 'DOPP' as well as the error level that
has been called twice are marked.

Exampl e 1 :

Another addressing error occurs while the ADF-level (user-interface
OB 25) is being processed. Since the ADF-level is still activated,
it cannot be called a second time: the processor stops.

STOP

Example 2 :

When an opcode error occurs at the LZF-program level, the system
program attempts to call the BCF-level (user-interface OB 29).
However, this level has already been activated due to a parameter
error (user-interface OB 3 0) and processing has not been completed
yet. The BCF level cannot be called a second time in this
situation. The processor stops.

STOP
%
\
\

"-,mode error
\
\

substitution error

in case of an ----
opcode error

In case of a
parameter error

The individual program levels with the corresponding user
interfaces are described in detail in the following chapters:

Chapter 4 . 3 describes the "basic levels" in START-UP.

Chapter 4 . 4 describes the "basic levels" in RUN.

Chapters 5.5 and 5.6 describe the "error levels" in START-UP and
RUN.

4.2 Operating State STOP

The operating state STOP is characterized by the following features:

- No user program is executed.

- If a program has been run, the values of counters, times, flags and
process images are retained when the transition is made to the stop
state.

- The BASP signal (command output inhibit) is output. This means that
all digital outputs are inhibited.

Exception: The BASP signal is not output in the test mode!
(Refer to Chapter 10.5 for the test mode.)

- If a program has been run, an interrupt stack (ISTACK) is present
in the stop state.

LED'S on the front panel of the central processing unit:

RUN - LED : off

STOP-LED : on (permanent or flashing)

BASP - LED : on (except in the test mode)

The STOP-LED may indicate the reasons for the present stop page.
A permanently lit or flashing STOP-LED has a special significance which
will be described briefly on the following pages.

The STOP-LED is lit vermanentlv:

The operating state STOP was triggered

in single processor operation:

a) by setting the mode selector from 'RUN' to 'STOP'

b) with online function 'STOP'

c) because of hardware faults (BAU, PEU, NAU)

d) after an overall reset

in mu1 tiprocessor operation:

a) when setting the mode selector on the coordinator to 'STOP'

b) another processor has stopped because of an error (the processor
not responsible for the error displays a permanently lit LED)

c) with online function 'STOP' on one processor

d) with online function 'PROCESSING CONTROL END' on another processor

The STOP-LED flashes slwly: (approx. once every 2 seconds)

A slowly flashing STOP-LED usually signals an error.

In multiprocessor operation a slowly flashing LED identifies the
processor responsible for the stoppage (due to an error).

The STOP-LED flashes slowly:

a) when programming a stop command in the user program

b) in the case of operator error (DB1 errors, selection of an
inadmissible start-up mode etc.)

c) in the case of programming errors or hardware faults (calling a
block that has not been loaded, addressing errors, acknowledgement
delay, command code error etc.);
in order to provide additional information about the cause of the
error the following LED'S will light up:

ADF - LED
QVZ - LED
ZYK-LED

d) with online function 'PROCESSING CONTROL END' for this processor

The STOP-LED flashes uuiclrlv: (approx. twice per second)

A quickly flashing STOP-LED signals the warning message:
"Overall reset has been requested"!

Reauest overall reset

a) The system requests overall reset:

The processor carries out an initialization routine every time the
power is switched on and after an overall reset has been executed.
If errors are detected during the initialization the processor goes
over to the stop state and the LED flashes quickly.

Possible errors: 1. RAM'S are empty

Remedy: Overall reset of processor

2. User EPROM empty or not plugged in

Remedy: plug in programmed EPROM and
execute overall reset of processor

The cause of the problem will have to be eliminated and then an
overall reset of the processor carried out (again).

b) The user requests overall reset:

The operator must take the following action to request an overall
reset:

Switch the mode selector from 'RUN' to 'STOP'.

Result: The processor is in the stop state
The STOP-LED is permanently lit.

Hold the selector switch in the 'OVERALL RESET' position;
at the same time, turn the mode selector from 'STOP' to 'RUN'
and back to 'STOP'.

Result: Overall reset is requested.
The STOP-LED flashes quickly.

IKPORTANT!
If the requested overall reset is not to be executed select a
start-up mode.

Execute overall reset

Irrespective of the origin of the overall reset request, whether
system or user, the overall reset is carried out as follows:

Hold the selector switch in the 'OVERALL RESET' position;
at the same time, switch the mode selector from 'STOP' to 'RUN'
and back to 'STOP'.

Result: Overall reset is executed.
The STOP-LED is permanently lit.

Or: By means of the online function 'ERASE'.
(When executing an overall reset with the PG, a manual reset
request using the switch is not required! The position of the
selector switch and the mode selector is not relevant.)

Result: Overall reset is executed.
The STOP-LED is permanently lit.

IKPORTrn!
If an overall reset has been carried out the only permissible
start-up mode is a cold restart!

Leaving from the stop state: - selection of a start-up mode
(see Chapter 4.3)

- overall reset, then cold restart
- test mode (for multiprocessor
operation, see Chapter 10.5)

4.3 Operating State START-UP

The operating state START-UP is characterized by the following
features:

- The START-UP is the transition from the operating state STOP
to the operating state RUN.

- The operator can select one of three different start-up modes:
cold restart, manual warm restart and automatic warm restart.
The cyclic user program is processed from the very beginning if a
cold restart is carried out. If a manual or automatic warm restart
is carried out, then the cyclic user program will be continued at
the breakpoint.

- For all three types of start-up mode the system calls a different
organization block in which the user can write a suitable start-up
program. The length of the STEP5 start-up program in the OBs is not
limited. There is no monitoring with respect to time. Calling of
further blocks is possible in the start-up OB's.

- The values for counters, timers, flags and process images are
handled differently in each start-up mode.

- The BASP signal (command output inhibit) is output. This means
that all digital outputs are inhibited.
Exception: BASP is not output in the test mode!

(see Chapter 10.5 for the test mode)

LEDs on the front panel of the CPU:

RUN-LED: off

STOP-LED: off

BASP-LED: on (not in the test mode)

Remarks :
Refer to Chapter 10.4 for information about the "Start-up routine
for multiprocessor operation".

This is how a cold restart is triggered:

Hold the selector switch in the 'RESET' position; at the same time
switch the mode selector from 'STOP' to 'RUN'.

Or: By means of online function 'START' (--> cold restart).

A cold restart is required. after

- stack overflow (ISTACK, 'STUEU, STUEB')
- double call of a program level (ISTACK: 'DOPPt)
- overall reset (control bits: 'URGELOE')
- start-up abort (control bits: 'ANL-ABB')
- stop after online function "PROCESSING CONTROL ENDt

A cold restart is alvays permissible unless the system has requested
"overall reset"!

This is how a manual warm restart is trinaered:

The selector switch is in the central position.

Switch the mode selector from 'STOP' to 'RUN'.

Or: With online function 'START' (--> manual warm restart)

A manual warm restart is always permissible, except in situations
where only a cold restart is permitted (see above) or where the system
has requested "overall reset".

Triggerinn the automatic warm restart:

The processor executes an initialization routine after power failure/
power-off during START-UP or RUN followed by power recovery/power-on.
It then automatically attempts to carry out a warm restart.

Conditions : - The switches on all processors and on the
coordinator remain unchanged on 'RUN'.

- No errors have occurred during the
initialization.

If your processor is to carry out an automatic cold restart after a
power failure and a following power recovery, you should change the
presetting by programming the data block DX 0.

m R T m !
A manual or automatic warm restart is only permissible if the user
program has not been altered in the stop state.

4.3.1 Cold Restart and Hanual Warm Restart

The following table contains a comparison between the start-up modes
cold restart and manual warm restart.

Sequence
of events

Triggering :

I I

P- I
System
program
functions :

I

Cold restart

stop switch from STOP position
to RUN position and selector
switch in RESET position

online function START
(cold restart)

if "automatic cold restart"
programmed in DX 0, switch
on power.

- block address list in
DB 0 retained

- erase process image
of inputs

- erase process image
of outputs

- erase flags, timers,
counters

- erase digital/analog I/Ots
(2x128 bytes each)

- erase global interprocessor
communication flags
(256 bytes)

- erase semaphores (all 32)
- DB1 present:
enter digital input/
output and interprocessor
communication flags input/
output in PII/PIO lists

- DB1 not present:
enter actually existing
modules (only digital input/
output) in PII/PIO lists
(interprocessor communic.
flags are ignored)

- evaluate controller
parameter assign. blocks DB

- call user interface
OB 20 (if present)

- synchronize start-up for
multiprocessor operation

Hanual warm restart

stop switch from STOP
position to RUN position
and selector switch in
central position

online function START
(manual warm restart)

- block address list in
DB 0 retained

- flags, timers, counters
retained

- global interprocessor
communication flags
retained

- semaphores retained

- call user interface
OB 21 (if present)

- synchronize start-up
for multiprocessor
operation

Cold restart: Programming the organization block OB 20

If the processor executes a cold restart OB 20 will be called automa-
tically. You can write a STEP5 program in this OB which executes
certain activities once before the cyclic program starts:

Such activities may include e.g.

- set flags
- start timers
- set outputs with direct peripheral access
- prepare the data exchange between the processor and

the 1/0 modules
- carry out the synchronization with CP's

(see Chapter 6.9 for handling block SYNCHRON).

Complete OB 20 with 'BE' (block end)!

The cyclic program starts after OB 20 has been processed by calling OB
1 or FB 0.

If OB 20 is not programmed the processor immediately starts the cyclic
program at the end of a cold restart (after the system functions).

If you have programmed an "automatic cold restart following power
failure1' in DX 0, OB 20 will also be called when the power returns.

Hanual warm restart: Programming organization block OB 21

If the processor carries out a manual warm restart OB 21 will be
called. You can write a STEP5 program in this OB which executes
certain activities once before the cyclic program starts again.

Complete OB 21 with 'BEf (block end)!

After OB 21 has been processed the cyclic program is continued at the
breakpoint with the next instruction:

- The BASP signal (command output inhibit) will remain in effect
during the processing of the remaining cycle and will not be
cancelled until the next (complete) cycle is started.

- The process image of the outputs remains reset at the end of the
remaining cycle and will be updated only at the end of the next
(complete) cycle.

If OB 21 is not programmed the processor will immediately start at the
breakpoint following a manual warm restart.

4.3.2 Automatic Warm Restart

The function of the automatic warm restart is identical with that of
the manual warm restart. The only difference is the way it is
triggered.

Sequence

I
Automatic warm restart

of events
--------------------p--------------------- ..

I
System I

I
Triggering

v

program
functions: 1 - block address lists retained in DB 0

Power return after power failure

- flags, timers, counters retained

- interprocessor communication flags retained

- semaphores retained

4 I - call user interface OB 22

I I - synchronize start-up for multiprocessor operation

Automatic warm restart: Programming organization block OB 22

The processor attempts to continue the interrupted program as soon as
the power returns.
The first step is to call OB 22.
You can write a STEP5 program in this OB which executes certain
activities once, before the cyclic program is started again.

If you wish to prevent the processor from ever carrying out an auto-
matic warm restart then you will have to program a stop instruction in
OB 22 and complete the block with 'BE' (block end)!

OB 22 : STP
: BE

(stop)
(block end)

Result: The processor will go over to the stop state as soon as
the power returns.

After OB 22 has been processed the cyclic program will be continued at
the breakpoint with the next instruction. When the power returns
following a power failure:

- The BASP signal (command output inhibit) will be retained
during the processing of the remaining cycle. It will not be
cancelled until the beginning of the next (complete) cycle.

- The process image of the outputs remains reset at the end of the
remaining cycle and will be updated only at the end of the next
(complete) cycle.

4.3.3 Interruption during START-UP

A start-up program can be interrupted by

- power failure

- mode selector to stop

- program error and hardware faults (see Chapter 5.6)

If the start-up that has been interrupted is to be continued using
one of the three possible start-up modes, the following points should
be noted:

If there is a power failure during the start-up followed by the return
of power, three different situations may arise:

1. The processor is executing a cold restart (OB 20). When the power
returns the organization block OB 22 (automatic warm restart) is
nested in OB 20 at the breakpoint.

2. The processor is executing a manual warm restart (OB 21). When the
power returns the organization block OB 22 (automatic warm restart)
is nested in OB 21 at the breakpoint.

3. The processor is already executing an automatic warm restart (OB
22). When the power returns a second OB 22 will not be nested. The
OB 22 that has been interrupted will not be continued when the
power returns. This block will be aborted and the OB 22 that
has just been called will be processed immediately.

Stop by means of the switch during the start-up and subsequent
manual warm restart

If you abort any start-up with the stop-switch (or the online function
'STOP') and trigger a manual warm restart afterwards, the start-up that
has been interrupted will be continued at the breakpoint and the OB
22 that has just been called will be processed immediately. No OB
21 is nested!

Stop by means of the svitch during the start-up and subsequent cold
restart

If you abort any start-up with the stop-switch (or the online function
'STOP') and trigger a cold restart afterwards, the start-up that
has been interrupted will be aborted and a cold restart will be
carried out (if present, by means of OB 20).

4.4 Operating State RUN

The operating state RUN is characterized by the following features:

- The user program is processed cyclically.

- All counters and timers started in the program "run". The process
images are updated cyclically.

- The BASP signal (command output inhibit) is cancelled. This means
that the digital outputs are released.

- The interprocessor communication flags are updated cyclically.

LEDs on the front panel of the CPU:

RUN-LED: on

STOP-LED: off

BASP-LED: off

IMPORTANT!
If a manual or automatic warm restart has been carried out before the
transition to the operating state RUN, the BASP-LED will remain lit
until the remaining cycle has been processed and the process image
updated.

IMPORTrn!
Reaching the operating state 'RUN' is only possible folloving the
operating state 'START-UP'.

12 basic program levels exist in the operating condition RUN:

1. the cycle:
(Zyklus)

The user program is processed cyclically.

2. 9 time interrupts: The user program is processed time-
(Weckalarm) driven .

3. the controller interrupt: A preset number of controllers is
(Regleralarm) processed time-driven in addition to the

user program.

4. the process interrupt: The user program is processed interrupt-
(ProzeBalarm) driven .

They differ in the following respects:

a) They are triggered by different events.

b) The system program executes different functions for
every program level.

c) A different organization block or function block exists
as the user interface for every program level.

4.4.1 CYCLE: Cyclic Program Execution

The cyclic program execution is the usual mode with programmable
controllers.

Triggering :

If the processor has completed its start-up program without error it
will start the cyclic program.

Functions of the system program:

- Sets the cycle time to be monitored at the start of the
cycle.

- Updates the process image of the inputs (PII).

- Updates the interprocessor communication input flags.

- Calls the user interface: OB 1 is processed.

- Updates the process image of the outputs at the end of the
cycle (PIO).

- Updates the interprocessor communication output flags.

User interface: OB 1 or FB 0

The organization block OB 1 or the function block FB 0 is called as
the user interface for cyclic program execution. The STEP5 user pro-
gram in OB 1 or FB 0 is processed continuously from the very beginning
including different block calls. After the execution of the system
functions the processor will again start at the very beginning with
the first STEP5 instruction in OB 1 (or FB 0).

The program, function and sequence block calls that are to be pro-
cessed in the cyclic program must be programmed in OB 1.

If you have a short and time-critical program which does not require
structured programming then you should program FB 0: Since the
complete STEP5 operation set is available you can save the block calls
and thus reduce the execution time of the program.

IHPORTANT!
Program either OB 1 p= FB 0 .
If both OB 1 and FB 0 are programmed, only OB 1 will be called by the
system program. If you intend to use FB 0 as the user interface no
parameters are permissible in it!

Breakpoints

The cyclic program processing can be interrupted at the block boun-
daries. This is done by means of

- process interrupt driven processing
- controller processing
- time-driven processing

(Interruptions are also possible at the command boundaries by
programming DX O!)

The program can be interrupted or aborted at command boundaries

- if a programming error or a hardware fault occurs

- by the operator (online function, stop-switch).

Note:
Use of the arithmetic registers accumulator 1, 2, 3 and 4 as a data
register is possible across the cycle boundaries - from the end of one
program cycle to the start of the next.

4.4.2 TIME INTEJlRUPT: Time-Driven Program Processing

Time-driven execution means that a time signal (time interrupt)
triggered by an "internal clock" causes the processor to interrupt the
cyclic program and to process a specific program. After this program
has been executed the processor will return to the breakpoint in the
cyclic program and will continue the program from there.

This allows certain program sections to be automatically inserted in
the cyclic program at preset time intervals.

The CPU 928 allows time-driven processing of up to 9 different
programs. Each program is called up in a different time interval.

Triggering :

A time interrupt is triggered automatically at the intervals assigned
to it provided that the appropriate OB has been programmed.

User interface: OB 10 to OB 18

When a specific time interrupt occurs, the appropriate organization
block is called as the user interface at the next block boundary (or
command boundary).

Assignment: Organization block Time interval

called every 10 ms
called every 20 ms
called every 50 ms
called every 100 ms
called every 200 ms
called every 500 ms
called every 1 sec
called every 2 sec
called every 5 sec

You should program e.g. in OB 13 the program section which is to be
inserted into cyclic program processing at intervals of 100 ms.

You may program either all or any number or none of these 9 OBs. If
none of them has been programmed, no time-driven program processing is
executed.

Whenever a time interrupt OB (OB 10 to OB 18) is called, accu 1 gives
information about how many time intervals have occurred since the last
call of this OB. Note the following rule:

Accu 1 := Number of time intervals - 1

If, for instance, the number "5" is in accu 1 when OB 11 is called,
that means that 120 ms (= 6 intervals) have passed since OB 11 has
been called last. As long as there is no collision of two time
interrupts, " O N is transferred to accu 1.

Priority of the time interrupts

Within the basic levels, the program levels TIME INTERRUPTS are
arranged as follows:

CYCLE
TIME INTERRUPTS
CONTROLLER INTERRUPT
PROCESS INTERRUPT

The priority among the individual time interrupts is also fixed:

OB 18 (longest interval)
OB 17
OB 16

OB 11
OB 10 (shortest interval) ? ascending priority

I K P O R M !
Basically, OBs vith shorter intervals have a higher priority and may
interrupt OBs vith longer intervals!

Breakpoints

Time-driven program execution can be interrupted either at the block
boundaries (preset) or the command boundaries (programming DX 0) by
means of

- renewed t ime-driven processing

- controller processing

- process interrupt-driven processing

and only at command boundaries by

- a program error or hardware fault.

Example :

OB 12 (intervals of 50 ms) is called while OB 14 (intervals of 200 ms)
is processed. OB 14 is interrupted at the next block or command
boundary and OB 12 is processed. Only when the latter has completely
been processed (possibly interrupted by a controller interrupt, a
process interrupt, error processing, or an OB 10 or ll), program
execution in OB 14 is resumed and completed.

Collision of two t h e interrupts

IKPORTrn!
Interrupting of time-driven processing by the same time-driven process
is not possible!

If a time interrupt OB that has not been completed is called a second
time because the time interval has run out, this means that there is a
collision of two time interrupts. This error also occurs when an OB is
called a second time without the first call being processed. This may
happen when "Interrupt time interrupts at block boundaries" has been
selected as presetting and your STEP5 program contains large blocks.

When a collision of two time interrupts occurs, the error program
level WECKFE is activated and the system program calls OB 33 as the user
interface. You can program the reaction to this condition in OB 33.

When OB 33 is called, a more detailed description of the first error
occurred is written by the system program into accus 1 and 2:

0016H

0014H

0012H

OOlOH

OOOEH

OOOCH

OOOAH

0008H

0006H

Error identifier
Accul Accu2

Collision of two time interrupts at OB 10 (10ms)

Collision of two time interrupts at OB 11 (20ms)

Collision of two time interrupts at OB 12 (50ms)

Collision of two time interrupts at OB 13 (looms)

Collision of two time interrupts at OB 14 (200ms)

Collision of two time interrupts at OB 15 (500ms)

Collision of two time interrupts at OB 16 (lsec)

Collision of two time interrupts at OB 17 (2sec)

Collision of two time interrupts at OB 18 (5sec)

Description

Remark: The identifier contained in accu 2 identifies the level
(EBENE) of the time interrupt that has caused the error.

If OB 33 is not programmed the processor will go over to the stop
state. This means that 'WECKFE' is marked in the control bits at the
programmer with 'output ISTACK', and the level (EBENE) of the
corresponding time interrupt indicated in the ISTACK.

If the program is to be continued following a collision of two time
interrupts you either have to program the block end statement 'BE' in
OB 33 or alter the presetting in DX 0 so that the program should be
continued if a collision of two time interrupts occurs and OB 33 is
not programmed. After OB 33 has been executed the program will be
continued from the breakpoint in OB 13.

Remarks :

- With regard to the time-driven program processing, please note the
new special functions OB 120, OB 121, OB 122 and OB 123 that enable
you to inhibit or delay the processing of time interrupts for a
specified program section.
(This is possible either for all time interrupts programmed or for
individual ones among them.)

- The 'faster' a time-driven program level is, the bigger is the risk
of a collision of two time interrupts: time interrupts with short
intervals such as the lOms and 20ms-time interrupt normally require
to be set to interruption at command boundaries. Then the
controller interrupt and the process interrupt are to be set to
interruption at the command boundaries, too (see Chapter 7,
programming of DX 0).

4.4.3 CONTROIJXR-IN'lZRRUPT: Processing of Controllers

In addition to cyclic, time and interrupt driven program execution
closed-loop controllers can also be processed in the CPU 928. The
cyclic or time-driven program is interrupted and the respective
controller processed at time intervals determined (= sampling time) by
the user. The processor will then return to the breakpoint in the
cyclic or time-driven program and will continue processing there.

Triggering :

A controller interrupt is triggered after the sampling time which the
user has selected has elapsed.

Functions of the system program:

- manages the user interface for closed-loop controller processing.

- updates the closed-loop controller process image.

User interface: Standard Function Block
"Controller Structure R 64"

The R64-standard function block is called for closed-loop controller
processing as the user interface. With this block, up to 64 loops can
be processed in connection with the controller parameter assignment
block DB 2.

Parameters must be assigned to a specific data block for each of the
controllers. In data block DB 2, the so-called 'controller list', you
determine which controllers are to be processed and when by the system
program. DB 2 is reserved for this particular task!

(You are assisted by a special program package: "COMREG" - order number
for PG 685: 6ES5895-3SAll - when assigning parameters, commissioning
or testing the R64 standard FBs.)

Breakpoints

Interruption of controller processing is possible either at block
boundaries (presetting) or command boundaries (programming DX 0). This
is done by means of:

- process interrupt driven processing.

This can be interrupted at the command boundaries by

- a program error or a hardware fault.

4.4.4 PROCESS INTEXRUPT: Interrupt-driven Program Execution

Interrupt-driven program execution involves an S5 bus signal from a
digital input module capable of interrupts (e.g. 6ES5 432-4UAll) or an
IP-module with a corresponding function causing the processor to
interrupt program processing and to run a special program section.
After the execution of this program the processor will return to the
breakpoint and will continue processing there.

Triggering :

Process interrupts are triggered by an active state of an interrupt
line on the S5 bus. Depending on the module slot, each of the pro-
cessors is assigned one of the 7 interrupt lines (see Instructions
CPU 928).

User interface: OB 2

OB 2 is called as the user interface if a process interrupt occurs.
You have the option of programming a specific program in OB 2
which is to be processed in the case of a process interrupt.

If OB 2 is not programmed the program will not be interrupted. There
will be no interrupt-driven program execution.

Breakpoints

A process interrupt-driven program can a be interrupted by
- a program error or hardware fault.

IHE'ORTAIW!
An interrupt-driven program cannot be interrupted by time-interrupts
or a further process interrupt.

If other process interrupts occur during the interrupt-driven program
they are i~nored until OB 2 has been fully executed (incl. all blocks
called in the OB 2).
Then the processor will return to the breakpoint and will process the
program to the next block boundary.
Only now will another process interrupt be accepted and OB 2 called
again. This means that the cyclic program will be processed even if
there is a permanent interrupt request. (This is not valid if in DX 0
the presetting "process interrupt effective at command boundaries" has
been selected).

Process interrupt signal: level triggered

As a standard function, the process interrupt signal for the CPU 928
is level triggered, i.e.: the active state of the interrupt line
triggers a request which causes OB 2 to be processed at the next block
or command boundary. This request i s stored and on l y r e s e t by the
block-end command (B E) of OB 2.
This leads to the following consequences:
- Multiple interrupts are not recognized.
- Those interrupts which occur during the processing of OB 2 and

which are shorter than OB 2 are not recognized.
- OB 2 will be called even if the signal state of the interrupt line

is passive again when reaching the block boundary (see figure).
The called OB 2 is fully executed. If the signal level is still/again
present at the end of OB 2, a block is processed in the cyclic program
and then OB 2 is called again. If the signal level is no longer
present OB 2 is not called again until the next signal change (from
inactive to active).

S i g n a l l l
(request Is

1
stored)

P r o c e s s interrupt

(at block boundaries)

C y c l e 1 1
Process interrupt signal: edge triggered

This setting is obtained by assigning parameters to DX 0. After the
execution of OB 2 a new process interrupt can m be triggered by a
change of the signal state (from inactive to active). With the edge-
triggered process interrupt, the request to process an OB 2 is also
stored until this OB is fully processed.
Any change of the signal state that may occur while OB 2 is processed
will be ignored.

P r o c e s s Interrupt

(at block boundaries)

s i g n a l I

C y c l e 1 1 i T

I
(request is
stored)

I

Inhibiting the process interrupt driven processing

An interrupt-driven program is inserted in the cyclic program at a
block boundary or a STEP5 command boundary.

This interruption may have a negative effect if a cyclic program
section has to be processed in a given time (in order to e.g. reach a
certain response time) or interruption of a command sequence is not
permissible (e.g. when reading or writing values that belong togeth-
er).

If the interruption of a program section by interrupt-driven process-
ing is = permissible, the following programming possibilities may be
used:

Program this program section so that it does contain a block
change and retain the presetting in DX 0 ("process interrupt at
block boundaries"). Blocks that do not contain a block change
cannot be interrupted.

Write the program yourself in an interrupt-driven program.
Interruption by another interrupt is then not possible.

Program STEP5 command 'IAr (inhibit process interrupt). The command
'RA' (release process interrupt) serves to release the interrupt
processing. No interrupt is serviced between these two commands.
Thus, the program section between these two commands will not be
interrupted by process interrupts occurring.

'IA' and 'RA' are only possible in function blocks (supplementary
operation set)!

Use the new special functions OB 120 and OB 122 that enable you to
inhibit or delay the processing of process interrupts for a speci-
fic program section.

Priority between interrupt-driven and time-driven program execution

If a process interrupt is requested during time-driven program execu-
tion the program is interrupted at the next breakpoint (block or
command boundary) and the process interrupt is serviced. Then the time
driven program execution is continued.

If a time interrupt is requested during interrupt-driven program
execution, the interrupt-driven program is completed first. Only
then, is the time-driven program started.

If a process interrupt and a time interrupt occur simultaneousl~, then
the process interrupt is serviced first at the next breakpoint. Only
when this process interrupt has been executed as well as all the
process interrupts that have occurred in the meantime, will the time
interrupt be processed.

In this particular case, the time-driven processing has the lover
priority!

R e s p o n s e time

The time required to respond to a time interrupt request is equivalent
to the processing time of a block or a STEP5 command (depending on the
selected presetting). If process interrupts exist at the time when the
cyclic program is interrupted, only when all existing process inter-
rupts have been fully executed, will the time-driven program be run.

In this case, the maximum response time between the occurrence and the
servicing of a time interrupt is increased by the execution time of
the process interrupts. If you wish to greatly reduce the possibility
of a collision of two time interrupts for a specific time interrupt
xy, note the following rule:

A + B < C A = total of execution times of all program levels with
a higher priority (process interrupt OBs, controller
interrupt OBs, time interrupt OBs)

B = Execution time of time interrupt OB xy
C = Interval of time interrupt OB xy

The execution time for a time interrupt in-
cluding any process interrupts may not exceed 100 ms!

/ I--il-vl 1 Alarm-
\ , - driven

g<r]-r+7 1 Time- -- = driven

o Breakpoint where an
interrupt or time
driven program execu-
tion may be inserted
as a standard feature
in a cyclic, inter-
rupt or time driven
program.

A time-driven program
can only be interrupt-
ed by a process inter-
rupt and not vice
versa.

Fig. 4.2: Interrupt-driven program execution at block boundaries.

I K P o R T r n !
If you run your user program not only cyclically but also time and/or
interrupt driven, then there is a danger of e.g. the flags that are
used as intermediate flags in the cyclic program being overwritten by
time or interrupt driven processing being inserted in the cyclic
program. For this reason it is important that you "save" the signal
states of the flags in a data block before running a time or interrupt
driven program and load them back into the flags at the end of the
inserted program. For this purpose, there are four special function
OBs available: OB 190 and OB 192 "transfer flags to data block" and OB
191 and 193 "transfer data blocks to flag area" (see corresponding
chapters).

5 Handling Interrupts and Errors

The system program is in a position to detect faulty operation of the
processor, errors in the system program processing or effects of
incorrect programming by the user.

5.1 Frequent Errors i n the U s e r Program

The following list contains the errors which occur most frequently
when the user program is first run. However, these errors may easily
be avoided when creating the program.

For this reason, pay special attention to the following instructions
when programming your STEP5 program:

- When specifying byte addresses for inputs and outputs the corre-
sponding modules for these addresses must be plugged into the
central controller or the expansion unit.

- Ensure that all operands are supplied the correct parameters.

- Outputs, flags, timers and counters should not be processed in
different parts of the program with conflicting operations.

- Ensure that all data blocks called in the program exist and are
long enough.

- Verify that all blocks to be called are actually in the memory.

- Be careful when making subsequent alterations in function blocks.
Check that the FBs have been assigned the correct operands and that
all actual operands have been specified.

- Timers should only be scanned once per cycle (e.g. A Tl).

5.2 Evaluation of Error Information

If an error occurs during the start-up or the cyclic execution of the
user program you have several "information sources" to trace the
particular error.

a) LED'S on the front panel of the processor

Make use of the LED's if the processor stops unexpectedly. These
LED's may give you an indication of the causes of the error:

- STOP-LED is lit permanently

- STOP-LED flashes slowly

- STOP-LED flashes quickly

The different signals of the STOP-LED indicate certain causes of
interruptions and errors.

Refer to Chapter 4.2 'Operating state STOP'.

The error LED'S on the front panel are permanently lit.

- ADF (addressing error)

- QV2 (acknowledgement delay)

- ZYK (cycle time error)

b) Online function 'output ISTACK' (see Subsection 5.3)

The online function 'PC INFO' followed by 'output ISTACKt gives
information on the statuses of the control bits and the contents
of the interrupt stack (= ISTACK).

All information required for a warm restart is entered by the
system program into the ISTACK during the transition to the stop
state. These entries are a valuable help for error diagnosis.
A complete output of the ISTACK is only possible in the stop condi-
t ion.

Before the actual ISTACK is output, the statuses of the control
bits are displayed first. These mark the current operating
status and certain characteristics of the processor and the user
program and give additional information about possible error
causes.

Triggering of the online function 'output ISTACK' is not only
possible in STOP but also in the operating states START-UP and RUN.
In this case, however, the control bits are simply output.

c) System data RS 3 and 4 (see Chapter 5.5)

If your processor returns to the stop state during start-up, due to
an error, the system data words RS 3 and RS 4 help to provide a
more detailed definition of the cause of the error. These are
errors which the system program detects when creating the address
lists in DB 0 or DB 1 or when evaluating DB 2 or DX 0.

System data word RS 3: KH = EA03 (absolute memory address)

System data word RS 4: KH = EA04 (absolute memory address)

The error identifier in the system data word RS 3 helps you to
identify the of error.

The error identifier in the system data word RS 4 helps you to
establish the location of the error.

The error identifiers are in data format KH.

Evaluation of system data word RS 3 and RS 4 with the programmer:

o Using the online function 'OUTP. ADDRESS' (KH = EA03 or EA04)
you can read the contents of the two system data words directly
and determine the cause of the error.

d) Accumulator 1 and accumulator 2 (see Chapter 5.6)

If errors occur in the STEP5 program execution during the start-up
or the cvcle for which a specific organization block exists as the
user interface, then the system program will automatically deposit
additional error information in the accumulators 1 and 2 when the
organization block is called to give a more precise explanation of
the errors.

The error identifier in accumulator 1 helps you to determine the
tvpe of error.

The error identifier in accumulator 2 (if present) helps you to
determine the location of the error.

The error identifiers are in data format KH.

Evaluation of accumulators 1 and 2 vith the programmer:

The online function 'output ISTACK' allows you to read the
contents of both accumulators directly from the ISTACK and
determine the exact cause of the error.

Evaluation of accumulators 1 and 2 vith STEP5:

m Since the error identifiers are automatically deposited in the
accumulators 1 and 2 when an error organization block is called
you can take these identifiers into consideration when program-
ming your error OBs.

Thus it is possible to program different reactions to different
errors in an organization block, depending on the error identi-
fier transferred to it.

e) Online function 'Output BSTACK'

The online functions 'PC INFO' and the subsequent 'BSTACK' allows
you to have the contents of the block stack (= BSTACK) output in
the stop state after an error has occurred (see Subsection 3.1.1).

Starting with OB 1 or FB 0 the BSTACK contains a list of all the
blocks called before the processor stopped. Since the BSTACK is
filled starting at the lower end, the block processed last and thus
the block in which the error has occurred will be in the top line.

The following information is supplied for the evaluation of
the top line :

BAUST.-NR. block type and number of the block processed
(block no.) before the stop state was reached

BAUST.-ADR. absolute start address of this block in the
(block addr.) program memory

RUCKSPR.-ADR. absolute address of the command to be processed
(return addr.) next in this block. Using this command, the

processor will continue the program after the
'manual restart'

REL. -ADR. relative address (= RUCKSPR. -ADR. -BAUST. -ADR.) of
the command to be processed next in this block

(Display of relative addresses by the PG is
possible in the operating mode 'input inhibit'
(key operated switch))

DB-NR.

DB-ADR.

number of the data block called last

absolute start address of this data block
(address of data word DW 0) in the program memory

Example: evaluate 'OUTPUT BSTACK'

BAUST.-NR. BAUST.-ADR. RUCKSPR.-ADR. REL.-ADR. DB-NR. DB-ADR
(block no.) (block addr.) (return addr.)

The above example shows that the stop occurred in OB 23 during the
processing of the STEP5 instruction listed under the absolute
address 'KH0064 - 1 = KH0063' in the memory.

OB 23 (QV2 error OB) has been called in FB 5 at the relative
address 'KH0008 - 1 = KH0007'.

The data block DB 100 has been called in FB 6. Data block 13 was
valid when the processor stopped. DB 13 was called in FB 5.

When searching for the cause of an error make use of all information
available.

This could be:

1. LEDs on the front panel of the processor

Certain signals point to certain causes of errors or interruptions.

2. Online function 'output ISTACK'

The control bits are always output; in the stop state ISTACK is
also output.

3. System data words RS 3 and RS 4:

You will find more exact information about the cause of the error
in the system data words RS 3 and 4 for those errors that occur
during the start-up.

4. Accumulator 1 and 2:

The system program deposits additional error information in
accumulator 1 and accumulator 2 when error organization blocks
are called.

5. Online function 'output BSTACKr:

In the stop state you can identify the block and in it the address
of the command being processed when the error occurred, by reading
the top line of the BSTACK.

5.3 Control Bits and Interrupt Stack

By means of online functions 'PC INFO' (F7) followed by 'output
ISTACK' (F5) you can analyze the operating status, the characteristics
of the processor and the user program as well as possible causes of
errors and interruptions.

IHPORTANT!
Output of control bits is possible in m operating state, output of
the ISTACK in stop.

- The control bits indicate the current or previous operating status
as well as the cause of the error.
If several errors have occurred all errors that have occurred will
be displayed in the control bits.

- The breakpoint (addresses) with the condition code words at that
point and the contents of the accumulators as well as the cause of
the error are entered in the ISTACK. If several errors have
occurred a multi-laver interrupt stack is created:
depth 01 = last cause of error,
depth 02 = next to last cause of error etc..

In the case of an ISTACK overflow an immediate stop will be execut-
ed. A cold restart is required afterwards.

The significance of the abbreviations in the control bits and the
interrupt stack is exlained in the following pages. The abbrevia-
tions are output on the PG 685 programmer.

IHPORTANT
The mask displayed on your PG may differ from the one shown below.
Irrespective of the terms used in your software version, the positions
shovn here are valid.

CONTROL BITS

>>STP<< STP-6 FE-STP BARBEND

>>ANL<< ANL-6 NEUST M W A
X

>>RUN<< RUN-6 EINPROZ BARB
X X

32KWRAM 16KWRAM 8KWRAM EPROM
X

URGLOE URL-IA STP-VER ANL-ABB

DXO-FE FE-22 MOD-FE RAM-FE

N A U P E U B A U STUE-FE

PG-STP STP-SCH STP-BEF MP-STP

A W A ANL-2 NEU-ZUL MWA-ZUL
X X

OBlGEL FBOGEL OBPROZA OBWECKA
X

KM-AUS KM-EIN DIG-EIN DIG-AUS
X X

UA-PC UA-SYS UA-PRFE UA-SCH

DBO-FE DB1-FE DBZ-FE KOR-FE

Z Y K Q V Z A D F WECK-FE

FE-3 L Z F REG - FE DOPP - FE

The statuses of the control bits are displayed on the first page of
the screen when the ISTACK is output on the PG.

The following control bits mark the current or previous operating
status of the processor and supply information about certain charac-
teristics of the processor and the STEP5 user program.

Output o f the control b i t s i s possible i n a l l operating condi t ions .
This allows you to e.g. verify that the organization block OB 2 has
been loaded and whether interrupt-driven program execution is possible
or not.

STP Processor is in the operating state STOP; the following control
bits explain why the processor is in this state

STP-6 not used

FE-STP Error-stop: stop state following NAU (power failure), PEU
(I/Os not ready), BAU (battery not ready), STUEB (BSTACK
overflow), STUEU (ISTACK overflow), DOPP (double error)
or processor fault

BARBEND Finish process check: stop condition after online function
"process control end"
(cold restart required)

PG-STP PG stop: stop status due to command from PG

STP-SCH Stop switch: stop status due to stop switch in the STOP
position

STP-BEF Stop command:
a) Stop status after the processing of STEP5 operation

' STP '
b) Stop status after stop command by the system program

if error organization block has not been programmed.

MP-STP Multiprocessor stop:
a) Selector switch on COR in the STOP position or
b) another processor has stopped during multiprocessor

operation

ANL Processor is in o~eratinn state START-UP:

ANL- 6 not used

NEUST Cold restart is requested or active or was executed as
the last start-up.

M W A Manual warm restart is requested or active or was exe-
cuted as the last start-up.

A W A Automatic warm restart after power failure is requested
or active or was executed as the last start-up.

ANL - 2 not used

NEU-ZUL Cold restart permissible as the next start-up mode

MWA-ZUL Manual warm restart permissible as the next start-up
mode.

RUN Processor is in the o~eratinp, status RUN (cyclic program execu-
tion is active) :

RUN - 6 not used

EINPROZ Single processor operation

BARB Online function "process control" is active

OBlGEL Organization block OB 1 has been loaded into the user
memory.
Cyclic program execution is determined by OB 1.

FBOGEL Function block FB 0 has been loaded into the user memory.
Cyclic program execution is determined by FB 0 if no
OB 1 has been loaded. If FB 0 and OB 1 have been loaded,
then OB 1 is valid for cyclic program execution.

OBPROZA Process interrupt organization block OB 2 has been
loaded, i.e. process interrupt driven program execution
is possible

OBWECKA Time interrupt organization block has been loaded,
i.e. time-driven program execution is possible.

32-

16-

8KWRAM

EPROM

KM-AUS

KM-EIN

DIG-EIN

DIG-AUS

URGELOE

URL- IA
STP-VER

User memory submodule is a RAM with 32 X 21° words.

User memory submodule is a RAM with 16 X 21° words.

User memory submodule is a RAM with 8 X 21° words.

User memory submodule is an EPROM.

Address list for interprocessor communication flag outputs
from DB 1 present

Address list for interprocessor communication flag inputs
from DB 1 present

Address list for digital inputs present

Address list for digital outputs present

Overall reset of processor was carried out (cold restart
required)

Overall reset of the processor being carried out.
Processor has caused stop status in the central

processing unit.

ANL-ABB Abort during the start-up (cold restart required)

UA- PG PG has requested overall reset.

UA-SYS System program has requested overall reset (no start-up
possible); overall reset must be carried out.

UA-PRFE Overall reset request due to processor error

UA-SCH Overall reset requested by operator (switch); carry out
overall reset or select a start-up mode if requested
overall reset is not to be carried out.

The following control bits mark errors which may occur in the opera-
ting states START-UP (e.g. Fn the case of the first cold restart) and
RUN (e.g. in the case of time-driven program execution).

If several errors have occurred, then glJ the errors that have
occurred up to this moment (and that are still to be processed) are
indicated in the last three lines of the control bits mask.
Note the system data RS 2: It contains the UAMK (interrupt condition
codeword, collected) into which all the errors that have occurred and
that are still to be processed have been entered as well (Subsection
8.2.4).

Errors during START-UP:

DXO-FE Parameter assignment error in DX 0.

FE-22 not used

MOD-FE User module contains errors (overall reset required
for RAM).

RAM-FE Operating system RAM or the DB-RAM contains errors
(overall reset requested).

DBO-FE Structure of the block address list in DB 0 is incorrect

DB1-FE Structure of the address list in DB 1 for updating of the
process images is incorrect;

a) DB 1 not programmed with the coordinator plugged-in or in
multiprocessor operation;

b) No acknowledgement from the byte addresses for inputs and
outputs or interprocessor communication flags specified
in DB 1 during a cold restart on the corresponding mod-
ules.

DB2-FE Error during the evaluation of the parameter assignment data
block DB 2 of controller structure R64

Error during START-UP or RUN:

KOR-FE Error during data exchange with the coordinator

NAU Power failure in the central controller

PEU 1/0 not ready = power failure at an expansion unit

BAU Battery defective = failure of the back-up battery (central
controller)

STUE-FE Interrupt or blockstack overflow (nesting depth too great;
cold restart required)

ZYK Cycle time exceeded

Qvz Acknowledgement delay during data exchange with I/OVs

ADF Addressing error at inputs or outputs

(error caused by access to process image with 1/0 modules
addressed that were not plugged-in or defective or not
specified in DB 1 during the last cold restart)

WECK-FE Collision of two time interrupts
Prior to or during processing of a time interrupt OB, it
has been called a second time.

BCF Command code error:

a) Substitution error: STEP5 command processed can not be
substituted

b) Operation code error: STEP5 command processed is wrong
c) Parameter error: parameter of the STEP5 command

processed is wrong

FE-6 not used
FE-5 not used

FE-4 Power-down error:

Processing of a previous power failure (NAU) has been termi-
nated with error by the system program; warm restart is
therefore inhibited.

FE-3 not used

LZF Execution time error:

a) Block called has not been loaded
b) Transfer error with data blocks
c) Other execution time errors

REG-FE Error during the processing of controller structure R64 in
the cycle

DOPP-FE Double error:
A program level (ADF, BCF, LZF, QVZ, REG, ZYK) which is still
active has been activated a second time. (Cold restart required)

Press the return key to terminate the display of the control bits on
your PG screen. The ISTACK is then displayed on the following page.
During transition to the stop status, the system program uses this
storage to enter all data necessary to perform a cold or warm restart.

ILIWIRTAlW!
The mask displayed on your PG may differ from the one shown below.
Irrespective of the terms used in your software version. the positions
shown here are valid.

DEPTH : 0 2

BEF-REG: C70A
RST-STP: 0000

LEVEL : 0004

BRACKETS: KE1 111

RESULT BITS:

CAUSE OF
INTERR. :

SAC : 00F3 DBADDR: 0000 BA-ADD : 0000
FB-NO.: 226 DB-NO. : -NO. :
REL-SAC:0006 DBL-REG: 0000
UAMK: 0100 UALW : 0000

ACCU2: 0000 OOFF ACCU3: 0000 0000 ACCU4: 0000 0000

DSPl DSPO OVFL OVFLS OR STATUS RLO ERAB
X X X

NAU PEU BAU MPSTP ZYK QVZ ADF STP
X X

BCF S-6 LZF REG STUEB STUEU WECK DOPP

The ISTACK contains all the information required to find the instruction
in the user program which was being executed when the processor
stopped.

DEPTH Layer of the ISTACK for error nesting

DEPTH 01 = cause of last trouble
DEPTH 02 = cause of second last trouble

BEF-REG Instruction register:
Contains the machine code (first word) of the last command
executed in an interrupted program level

RST-STP Block stack pointer:
Contains the number of elements entered in the block stack
(BSTACK)

LEVEL-Z States the level of program that has been interrupted

2: 0002 = cold restart
0004 = cycle
0006 = time interrupt 5 sec (OB 18)
0008 = time interrupt 2 sec (OB 17)
OOOA = time interrupt 1 sec (OB 16)
OOOC = time interrupt 500 ms (OB 15)
OOOE = time interrupt 200 ms (OB 14)
0010 = time interrupt 100 ms (OB 13)
0012 = time interrupt 50 ms (OB 12)
0014 = time interrupt 20 ms (OB 11)
0016 = time interrupt 10 ms (OB 10)
0018 = not used
OOlA = not used
OOlC = controller processing
OOlE = not used
0020 = not used
0022 = not used
0024 = process interrupt
0026 = not used
0028 = not used
002A = not used
002C = transition to stop state in multiprocessor

operation, stop switch or PG stop
002E = not used
0030 = time interrupt
0032 = controller error
0034 = cycle time error
0036 = not used
0038 = command code error
003A = execution time error
003C = addressing error
003E = acknowledgement delay
0040 = not used
0042 = not used
0044 = manual warm restart
0046 = automatic warm restart

SAC STEP address counter:

contains the absolute address of the last command executed
in an interrupted program level in the program memorv.
If an error occurs, the SAC will point directly to the
command responsible for the error!

If the error is not at the STEP5 user program, the SAC will
be 'O', the contents of the BEF-REG are irrelevant.

..NO. Type and number of the block processed last.

REL-SAC Relative step address counter:
Contains the relative address (relative to the block start
address) of the command executed last in the block processed
last.

(Display of relative addresses is possible in the operating
mode "input inhibited" (key operated switch) or when the
block is output on the printer.)

UAMK Interrupt condition code word (collected):
The UAMK contains all the errors which have occurred and are
still not fully processed (see "system data assignment",
Subsection 8.2.4).

UALW Interrupt condition inhibit word
(see "system data assignment", Subsection 8.2.4)

DBADDR Absolute start address of the block in the program memory
(DW 0) called last

(DB-ADR = 0000, if no DB has been called)

DB-NO Number of the data block called last

DBL-REG Length of the data block called last

BA-ADD Absolute address in the program memory of the command to be
processed next in the block called last

. . . NO. Type and number of the block called last

ACCU1 . . . 4 Contents of the arithmetic register before transition to the
stop state

In the case of certain errors the system program will
deposit error identifiers in accumulators 1 and 2
during the transition to the stop state. These numbers
supply a more detailed explanation of the causes of the
interrupt ion.

BRACKETS Number of bracketing levels: 'KEx abc'
X = 1 up to 7 levels

a = OR (see bit condition codes)
b = RLO (result of logic operation, see bit condition codes)
c = l: A(
c = 0: O(

RESULT
BITS : see Chapter 3.2

The following abbreviations are the most important causes of errors
and interruptions. Only those causes are marked which have occurred in
the program level being displayed (see LEVEL).

The information about the causes of interruptions is taken from the
interrupt condition code word (UAMK, 16 bits; see Subsection 8.2.4). Some
of this information is identical with that of the control bits.

NAU Power failure in the central controller

PEU I/Ors not ready = power failure in expansion unit

BAU

MP - STP

ZYK

QV2

ADF

STP

BCF

S-6

LZF

REG

STUEB

STUEU

WECK

Battery not ready = failure of back-up battery (central
controller)

Multiprocessor stop:
a) Selector switch at KOR in STOP position or
b) another processor has stopped during multiprocessor

operation

Cycle time exceeded

Acknowledgement delay during data exchange with I/Ots

Addressing error at inputs or outputs

Stop state due to stop switch in STOP position
Stop state due to instruction from the PG
Stop state after processing STEP5 operation 'STP'
Stop state after stop command by system program if error
organization block has not been programmed.

Command code error:
Errors recognized during command decoding

a) Substitution errors: STEP5 command processed can not be
substituted

b) Operation code error: STEP5 command processed is wrong

c) Parameter error: Parameter of STEP5 command
processed is wrong

not used

Execution time error:
Errors recognized during command execution

a) Block called has not been loaded

b) Transfer error with data blocks

c) Other execution time errors

Error during processing of controller structure R64 in cycle

Block stack overflow (nesting depth too great; cold restart
required)

Interrupt stack overflow (nesting depth too great; cold
restart required)

Collision of two time interrupts:
Before or during processing of a time interrupt OB, the same
OB is called a second time.

Double error:
A program level (ADF, BCF, LZF, QVZ, REG, ZYK) which is still
active has been activated a second time.
(Cold restart required)

Evaluating the ISTACK: Examples

The figure below shows the structure of the ISTACK in connection with
the interruptions that have occurred.
1. The program level CYCLE (OB 1) is interrupted by the occurrence of

a time interrupt (100-ms interval).
2. The program level TIME INTERRUPT is activated and OB 13

processed.
3. A process interrupt occurs. This results in the TIME INTERRUPT

level being left, the PROCESS INTERRUPT level being activated and
OB 2 processed.

4. Due to an illegal addressing instruction the ADF level is
activated and OB 25 processed. The user's error routine contains a
stop command (STP) so that the processor aborts the execution of
the program.

Four different program levels have been interrupted before the
processor passes into the stop status. Therefore, if you have the
ISTACK output at the PG, what you receive is a 4-laver ISTACK. The
uppermost layer represents depth 01 with the identification of the
program level (= ADF) which was interrupted U. You may 'switch
down' the ISTACK until you reach depth 04 representing the CYCLE level
which was interrupted first.

1 STP Depth 01

Level: 003C

Depth 02

Level: 0024

Depth 03

Level: 0010 I
\ Depth 04

CYCLE

Program levels

Level: 0004 I
l STACK

Fig. 5-1: The structure of the ISTACK in an example

In the following example, the processor detects an addressing error
when executing the instruction 'A I x.yr in OB 1. This causes OB 25
to be processed. The processor goes into the stop status due to an STP
instruction in PB 5.

Two interrupted program levels lead to a 2-layer ISTACK:

ADF: k7yy/F

DEPTH: 0 2 l
BEF-REG: IAk.yl SAC: OOlA CB-AM)R: BA-ADDR 0000

B S T - S T P : l CB-NO.: l CB-W.: 1 6 -NO.:

=-SAC: OOOA D B L - R E G : l
LEVEL: 0 0 0 4 UAMK: 0 2 0 0 UALW: 0 0 0 0

/ RESULT BITS: l
CAUSE OF INrERRUPTION: ADF

X

I DEPTH: 0 1 l
B E F - R E G : ~ SAC: 1007 CB-PDOR: BA-AODR 0 1 0 6

B S T - S T P : 3 W-NO.: 5 CB-NO.: 1 6 CB-W.: 2 5

i =-SAC: 0 0 0 7 D B L - R E G : 1
LEVEL: 0 0 3 C UAMK: 0 3 0 0 UALW: 0 0 0 0

....... RESULT BITS:

CAUSE OF INTERRUPTION: S T P
X

5.4 Error Handling using Organization Blocks

As soon as the system program has recognized a certain error it will
call the organization block programmed to handle this particular
error. By programming this organization block you can decide how the
processor should react.

You can program the organization block so that

- normal program execution is continued,

- the processor stops

- a special 'error program' is processed.

Organization blocks are available to handle the following causes of
errors :

Reaction if
OB is not
programmed

stop

none

none

stop

stop

stop

stop

stop

stop

stop

stop

stop

stop

Cause of error

Call of a block that has not been loaded (LZF)

Acknowledgement delay in the user program
when accessing 1/0 modules (QVZ)

Acknowledgement delay when updating the
process image and for interprocessor
communication flag transfer (QVZ)

Addressing error (ADF)

Cycle time exceeded (ZYK)

Substitution error (BCF)

Mode selector on STOP, PG
function 'PC-STOP', stop via S5 bus
(multiprocessor operation)

Operation code error (BCF)

Parameter error .(BCF)

Other execution time errors (LZF)

Transfer error with data blocks (LZF)

Collision of two time interrupts (WECK-FE)

Error during the processing of controller
structure R64 (REG-FE)

OB
called

OB 19

OB 23

OB 24

OB 25

OB 26

OB 27

OB 28

OB 29

OB 30

OB 31

OB 32

OB 33

OB 34

If OB's are not ~roarammed the reaction depends on the type of error:

a) no interruption of cyclic program execution

If an acknowledgement delay occurs and OB 23 and OB 24 have not
been loaded the cyclic program execution is not interrupted.
There will be no reaction from the processor.

If the processor is to go over to the stop state following QVZ, the
organization block must include a stop instruction and be completed
with BE.

Program for stop:

: STP
: BE

b) stop state

With all other types of errors the processor will immediately
go over to the stop state if the appropriate organization blocks
have not been programmed by the user.

If it is necessary that one or the other error does not interrupt
cyclic program processing in particular cases (e.g. during
commissioning), all that is required is a block end instruction
in the appropriate organization block.

Program for operation without interruption:

IHPORTrn!
Organiiation block OB 28 is an exception to this rule: A change to
the stop state will always be made in this particular case, irre-
spective of how and vhether OB 28 is programmed.

If you do not intend to program the corresponding organization
block, you have the option of programming data block DX 0 in order
to prevent the processor from going over to the stop state.

Interruptions during the processing of error organization blocks

After the system program has called the error organization block the
user program contained in it will be processed.

If another error occurs during the processing of an organization
block the cyclic program execution will be interrupted at the next
command boundary and the corresponding organization block will be
called.

The organization blocks are processed in the order in which they are
called. The number of error organization blocks that may be nested
into one another depends on

a) the type of errors that have occurred:

Nesting of organization blocks belonging to the same program level
is not possible!
(Refer to the following chapter for the assignment of error-0Bs to
the program levels.)

When processing OB 27 (program level BCF) it is possible to nest in
OB 32 (program processing level LZF), however, OB 2 9 or OB 30 (also
BCF) may not be nested in.

The processor will stop immediately if a program level is called
twice,

b) the number of program levels activated at the time:

When interrupts occur the system program requires extra memory
space for each of the program levels activated in order to create
the ISTACK. If there is no more memory space left, an ISTACK over-
flow is produced.

If this occurs the processor will immediately stop.

c) the number of blocks called at the time:

If an ISTACK overflow occurs the processor will immediately
stop.

5.5 Errors during START-UP

Errors occurring during initialization or start-up may result in the
start-up program being aborted. The processor goes into the stop
status.

Errors occurring in the start-up program (organization blocks OB 20,
21 and 22) are handled in the same way as in cycle.

Exception: In case of a stop during start-up, OB 28 will not be
called.

Possible causes of interruptions and errors without appropriate error
organization block

STP :
Stop command from the system program (at FE-STP) or in the user program

BAU :
Failure of the back-up battery on the central controller

NAU :
Power failure on the central controller

Pm:
Power failure on an expansion unit

s m :
Stack overflow of the interrupt stack (ISTACK)

SrnB :
Stack overflow of the block stack because the nesting depth is too
great

W P P :
Double call of an error program level (for double errors, refer to the
Examples on page 4-4)

m - F E :
Error during initialization: incorrect contents of the operating
system RAM or the DB RAM

MOD -FE
Error during initialization: incorrect contents of the user submodule
(RAM or EPROM submodule)

DBO-FE
Error during creation of the block address list (DB 0)

DB1-FE
Error during evaluation of DB 1 which is performed to create the
address list for the updating of the process image

DB2-FE
Error during evaluation of DB 2 of controller structure R64

DXO -FE
Error during evaluation of DX 0. (A detailed description of DBO-FE,
DB1-FE, DB2-FE and DXO-FE is given on the following pages.)

5.5.1 DBO-FE (Error in DB 0)

Error while setting up the block address list (data block DB 0)

DB 0 is created by the system program following power on.
If a DBO error occurs you will find error identifiers which provide
a more detailed explanation of the error in the system data words RS 3
and RS 4.

Absolute memory address: RS 3 KH = EA03
RS 4 KH = EA04

(Refer to Chapter 5.2 for details about the evaluation of error
identifiers in RS 3 and RS 4.)

Error identifier
RS 3 RS 4

Explanation

8001H yyyyH Incorrect block length
yyyy = address of block with incorrect length

8002H yyyyH Calculated end address of block in the memory
incorrect
yyyy = block address

8003H yyyyH Invalid block identifier
yyyy = address of block with incorrect
identifier

8004H yyyyH

5.5.2 DB1-FE (Error in DB1)

Number of organization block too high
(permissible: OB 1 through OB 39)
yyyy = address of block with incorrect number

8005H yyyyH

Errors while setting up the address list in DB 1 for updating of
process images.

Data block number 0
(permissible: DB 1 through DB 255)
yyyy = address of block with incorrect number

- DB 1 missing in multiprocessor operation or

- incorrect DB1-address list during cold restart

You will also find error identifiers which provide a more detailed
explanation of DB1 errors in the system data words RS 3 and RS 4.

Absolute memory address: RS 3 KH = EA03
RS 4 KH = EA04

(Refer to Chapter 5.2 for details about error evaluation in the
system data words RS 3 and RS 4.)

Error identifier
RS 3 RS 4

0410H YYYYH

Explanation

Invalid identifier
1. Header identifier is missing or incorrect

(permissible KS MASKO1)
2. Invalid identifier

(permissible KH DEOO, DAOO, CEOO, CAOO, BBOO)
3. End delimiter missing or incorrect

(permissible KH EEEE)
yyyy = incorrect identifier

"Digital inputs"
invalid number of addresses (permissible 0...128)
yyyy = invalid number of addresses

"Digital outputs"
invalid number of addresses (permissible 0...128)
yyyy = invalid number of addresses

"Interprocessor communication flag input"
invalid number of addresses (permissible 0...256)
yyyy = invalid number of addresses

"Interprocessor communication flag output1'
invalid number of addresses (permissible 0...256)
yyyy = invalid number of addresses

Invalid number of timer locations
(permissible: 256)
yyyy = incorrect number of timer locations

Acknowledgement delay at digital inputs
yyyy = address of input bytes not acknowl.

Acknowledgement delay at digital outputs
yyyy = address of output bytes not acknowl.

Acknowledgement delay at interprocessor
communication flag inputs
yyyy = address of flag byte not acknowl

Acknowledgement delay at interprocessor
communication flag outputs
yyyy = address of flag byte not acknowl.

5.5.3 DB2-FE (Error in DB2)

Errors during the evaluation of the parameter assignment data block
DB 2 of the controller structure R 64 (controller initialization).

You will find error identifiers which provide a more detailed explana-
tion of DB2 errors in the system data words RS 3 and RS 4.

Absolute memory address: RS 3 KH = EA03
RS 4 KH = EA04

(Refer to Chapter 5.2 for details about the evaluation of error
identifiers in RS 3 and RS 4.)

Error identifier
RS 3 RS 4

0421H DByyH

Explanation

Data block not loaded
yy = number of data block not loaded

0422H FByyH Function block not loaded
yy = number of function block not loaded

0423H FByyH Function block not identified
yy = number of function block not identified

0424H FByyH

0426H

- l Not enough memory space in DB RAM to receive
controller DBs coming in from the user EPROM

Function block with incorrect PG software
loaded
yy = number of function block

0425H DByyH Invalid length of controller data block
yy = number of data block

5 . 5 . 4 DXO-FE (Error in DX 0)

Errors that occur during the evaluation of data block DX 0.

You will find error identifiers which provide a more detailed explana-
tion of DX 0 errors in the system data words RS 3 and RS 4.

Absolute memory address: RS 3 KH = EA03
RS 4 KH = EA04

(Refer to Chapter 5.2 for details about the evaluation of error
identifiers in RS 3 and RS 4.)

Error identifier
RS 3 RS 4

Explanation

Invalid identifier
1. Header identifier is missing or incorrect

(permissible KS MASKO1)
2. Invalid block identifier
3. End delimiter missing or incorrect

(permissible KH EEEE)
yyyy = incorrect identifier

Illegal parameter
yyyy = incorrect parameter

Illegal number of timer locations
(permissible: 0. . ,256)
yyyy = incorrect number of timer locations

Illegal cycle time
(permissible: 1 ms to 6000 ms)
yyyy = incorrect time value

5.6 Errors in RUN and START-UP

In the operating state RUN a cyclic, time,or interrupt driven program
or controller processing can be interrupted at command boundaries if
certain errors/faults occur.

Causes of interruptions occurring during initialization and operating
state START-UP also cause the processor to go into the stop state or
call up the organization block provided for the handling of this
error. Errors occurring in the start-up program are handled the same
as in cycle.

A distinction is made between the causes of interruptions which di-
rectly cause the processor to STOP (e.g. STUEU) and those causes of
interruptions that trigger the system program to call user-programmab-
le organization blocks (e.g. ADF) before the transition is made to the
stop state.

Possible causes of interruptions and errors without appropriate error
organization block

STP :
Stop command from the system program (for machine errors) or in the user
program

BAU :
Failure of the back-up battery on the central controller

mu :
Power failure on the central controller

Pm:
Power failure on an expansion unit

s m :
Stack overflow of the interrupt stack (ISTACK)

STOEB :
Stack overflow of the block stack because the nesting depth is too
great

W P P :
Double call of an error program level (also refer to the examples on
pages 4-4 ff)

An immediate transition to the stop state will be carried out for
all of the errors/faults mentioned above. At the same time, an
ISTACK is created in which the error that has occurred is indicated.

(Refer to Chapter 5.3 for information on how to evaluate the ISTACK)

Possible causes of interruptions and errors with appropriate error
organization block in RULP and START-UP

BCF :
Command code errors 1. Substitution error

2 . Operation code error
3. Parameter error

IZF :
Execution time errors 1. Call of a block that has

not been loaded OB 19
2 . Transfer error OB 32
3 . Other execution time errors OB 31

ADF :
Addressing errors

QVZ :
Acknowledgment delay 1. in the user program when

accessing I/Os
2 . during updating of the

process image

Possible causes of interruptions and errors with appropriate error
organization block in RUN only

ZYK-FE :
Cycle error

UECK-FE :
Collision of two time interrupts

BEG-FE:
Controller error

ABBR :
Abort

You will find more details about these errors in the following
chapters.

5.6.1 BCF (Command Code Error)

A command code error occurs when the processor cannot interpret or
execute a STEP5 command in the user program. All permissible command
codes are listed in the appendix.

The command which is responsible for the command code error is not
executed. If a BCF organization block has been programmed, it is
called up and processed. Then the processor will continue with the
next command in the user program that was interrupted. The processors
stops if no BCF OB has been programmed.

A distinction is made between the following command code errors:

a) BCF = Substitution errors

If an operation using a formal operand is to be executed in a function
block when processing the user program the processor will substitute
this formal operand with the actual operand contained in the function
block call.

The processor identifies an illegal substitution. The system program
will now interrupt program processing and will call organization block
OB 27.

Accumulator 1 contains additional information to explain the error.

Error identifier
accul accu2

Explanat ion

substitution error for command DO RS

substitution error for command DO DW. DO FW

substitution error for command DO=, DI=

substitution error for command L=, T=

substitution error for command A=, AN=, 0=,
ON=, .== , S= and RB=

b) BCF = Operation code errors

An illegal operation code occurs if a command has been programmed that
is not part of the STEP5 range of commands of the processor (e.g.
programming of RU and SU commands is possible with the PG, however,
these commands cannot be interpreted by the R and S processors and the
CPU 928 in the S5 135U).

If the processor identifies an illegal operation code, processing of
the user program is interrupted at this point and organization block
OB 29 is called.

When OB 29 is called, additional information to provide a more de-
tailed explanation of the error is provided in accumulator l.

Operation code errors should not be acknowledged: The processor does
not recognize whether the faulty command is a single or a multi-word
instruction. If the processor has executed OB 29 it attempts to con-
tinue processing the program using the next instruction word. If this
happens to be the second word of a multi-word instruction the proces-
sor will either recognize another command code error or will execute
this particular word as a valid command.

c) BCF = Parameter errors

Error identification
accul accu2

1811H -

1812H

-

1815H -

An illegal parameter occurs if an instruction has been programmed
using a parameter which is illegal for the processor concerned (e.g.
call of a reserved data block) or if a special function is called that
does not exist.

Explanat ion

Command with illegal operation code

Illegal operation code for a command in
which the high-byte of the 1st word
contains the value 68H

Illegal operation code for a command in
which the high-byte of the 1st word
contains the value 78H

Illegal operation code for a command in
which the high-byte of the 1st word
contains the value 70H

Illegal operation code for a command in
which the high-byte of the 1st word
contains the value 60H

If an illegal parameter is identified by the processor the system
program will interrupt the user program and will call OB 30.

If OB 30 has not been programmed the processor will go over to the
stop state.

When OB 30 is called, additional information to provide a more de-
tailed explanation of the error is provided in accumulator l.

Error identifier
accul accu2

1821H -

182BH -

182CH -

182DH -

182EH -

182FH -

Explanat ion

Illegal parameters with:

C DB 0, 1, 2

JU(B) OB 0

JC(B) OB > 39: no special function exists

AX DXO

L FW/T FW/L PW/T PW/L OW/T OW/L DD/T DD/DO
FW 255

L IW/T IW/L QW/T QW 127

Error identifier
accul accu2

Explana t ion

DO=/LC= 0 , 126-255

MBR with constant > OFFFFH (216 - 219 # 0)

5.6.2 LZF (Execution Time Error)

An execution time error occurs if the processor identifies an error
during the processing of a STEP5 command.

The command responsible for the execution time error is not executed.
If a LZF organization block has been programmed, it is called up. Then
the processor will continue with the next command in the user program
that was interrupted. The processor stops if no LZF OB has been
programmed.

A distinction is made between the following execution time errors:

a) IZF = Calling a block that has not been loaded

If a block that does not exist is called in the user program the
system program will identify an error. This applies to all kinds of
blocks for both conditional and unconditional call statements.

If the processor identifies a call for a block that has not been
loaded the system program will call OB 19. In OB 19 you can specify
the reaction of your processor. If OB 19 contains only the BE command
(block end), the processing of the STEP5 programm that has been inter-
rupted will be continued with the next command. If OB 19 is not pro-
grammed the processor will go over to the stop state as soon as a
block that has not been loaded is called.

When OB 19 is called, additional information to provide a more
detailed explanation of the error is provided in accumulator 1.

b) IZF = Transfer errors

Error identifier
accul accu2

lAO lH -

1A02H -

1A03H -

1A0 4H -

1A05H -

When transferring data to a data block (DB, DX) the processor compares
the length of the DB called with the parameters contained in the
transfer command. If the length of the data block is exceeded owing to
the parameters specified the transfer command will not be executed in
order to prevent accidental overwriting of data in the memory.

Explanation

Data block not loaded (command CDB)

Data block not loaded (command CX DX)

Block not loaded (command JU(B) FB, OB,
PB, SB)
Block not loaded (command DO(C)FX)

Data block for OB 254 or 255 not loaded

A transfer error is also identified if an individual bit is to be
scanned or altered within a data word that does not exist.

A transfer error is also recognized if a data word is to be accessed
before a data block has been called (with C DBn or CX DXn).

If the system program identifies a transfer error it will call OB 32.
The command responsible for the transfer error is no longer processed.
If OB 32 has not been programmed the processor will go over to the
stop state.

When OB 32 is called, additional information to provide a more de-
tailed explanation of the error is provided in accumulator l.

Error identifier
accul accu2

lAllh -

1A12H -

1A13H -

1A14H -

1A15H -

Explanat ion

Access to a data word that has not been
defined by means of A/AN D, O/ON D, S/R D,
=D

Transfer error: TDR to a data word that has
not been defined

Transfer error: TDL to a data word that has
not been defined

Transfer error: TDW to a data word that has
not been defined

Transfer error: TDD to a data word that has
not been defined

c) Other execution time errors

This category includes all the execution time errors that do not be-
long to any of the groups of execution time errors already mentioned
(transfer errors or calling a block that has not been loaded).

If the system program identifies a transfer error of this category it
calls the organization block OB 31. The command (or special function)
responsible for the transfer error is no longer processed. If OB 31
has not been programmed the processsor will go over to the stop state
If processing is to be continued when one of the errors listed below
occurs, then the block end statement (BE) in OB 31 is sufficient.

When OB 31 is called, additional information to provide a more de-
tailed explanation of the error is provided in accumulator l.

Error identifier
accul accu2

Explanation

Error with GDB, GXDX: data block exists already

Error with GDB, GXDX: illegal data block
length (< 5 words or > 4 X 21° words)

Error with GDB, GXDX: memory location in RAM
not sufficient

Error at DI=: illegal parameter in
accumulator 1 (< 1 or > 125)

Bracket stack under or overflow after
A(, O(, 1.

Error with C DB or CX DX: block length in
data header too short (length < 5 words)

Function block has been loaded with wrong
PG software

Error with ACR: Invalid page frame number

Special function error with OB 254 or OB 255
(duplication) or OB 250: destination data
block exists already in the DB-RAM

Special function error with OB 254 or OB 255
(copying): destination data block exists
already in the DB-RAM

Special function error with OB 254 or OB 255:
memory space in DB-RAM not sufficient

Special function error with OB 221:
illegal value for new cycle time
(cycle time < lms or > 6000 ms)

Special function error with OB 223: the pro-
cessors participating in multiprocessor opera-
tion use different start-up modes

Error identifier
accul accu2

Special function error with OB 240, OB 241 or
OB 242: illegal shift register or data
block number (no. < 192)

Explanation

Special function error with OB 241: shift
register not initialized

Special function error with OB 240: memory
space in the DB-RAM not sufficient

Special function error with OB 240: data word
DW 0 of data block does not have content '0'

Special function error with OB 240:
illegal shift register length in DW 1
(not between 2 and 256)

Special function error with OB 240: illegal
pointer position or number of pointers

Special function error with OB 120

Special function error with OB 122

Special function error with OB 110

Error with LRW, TRW: The computed memory
address <BR + constant> is outside 0 - EDFFH

Error with LRD, TRD: The computed memory
address <BR + constant> is outside 0 - EDFEH

Error with TSG, LB GB, LW GW, TB GB, TW GW:
the computed linear address <BR + constant> is
outside 0 - EFFFH

Error with LB GW, LW GD, TB GW, TW GD:
the computed linear address <BR + constant> is
outside 0 - EFFEH

Error with LB GD, TB GD:
the computed linear address <BR + constant> is
outside 0 - EFFCH

Error with TSC, LB CB, LW CW, TB CB, TW CW:
the computed page frame address
<BR + constant> is outside F400H - FBFFH

Error with LB CW, LW CD, TB CW, TW CD:
the computed page frame address
<BR + constant> is outside F400H - FBFEH

Error with TNW, TNB: the source block is not
fully contained in one of these areas:
0000-7FFF user memory
8000-DD7F data block RAM
DD80-EDFF system RAM (DBO,RI,RJ,RS,RT,T,C)
EEOO-EFFF flags, process image
F000-FFFF 1/0

Error identifier
accul accu2

1A5 7H -

Error with TNW, TNB: the destination block is
not fully contained in one of these areas:
0000-7FFF user memory
8000-DD7F data block RAM
DD80-EDFF system RAM (DBO,RI,RJ,RS,RT,T,C)
EEOO-EFFF flags, process image
F000-FFFF 1/0

Explanation

Error with LB CD, TB CD:
the computed page frame address
<BR + constant> is outside F400H - FBFCH

5.6.3 ADF (Addressing Errors)

An addressing error occurs if an input or output in the process image
is called by means of a STEP5 operation for which no 1/0 module was
assigned at the time of the last cold restart (I/O module not plugged-
in, defective or not specified in the data block DB 1 of the proces-
sor).

The system program will now interrupt the processing of the user pro-
gram and will call the organization block OB 25. After the program
in OB 25 has been processed the processor will continue with the next
command of the interrupted program, i.e. the STEP5 command responsible
for the ADF is not executed.

If OB 25 is not programmed the processor will go over to the stop
state if an addressing error occurs unless you have specified a con-
tinuation of the program processing in data block DXO for this par-
ticular situation.

Suppressing of the addressing error monitoring is also possible by
programming DXO accordingly.

No error identifiers are written into accu 1 or accu 2 when an -
addressing error occurs.

5 . 6 . 4 QVZ (Acknovledgement Delay)

An acknowledgement delay occurs if an input or output module does not
transmit the RDY-signal (ready) within a given time after it has been
addressed. Cause of this acknowledgement delay may be a defective
module or the removal of the module during operation.

The following acknowledgement delay errors will interrupt the user
program and will trigger an organization block call:

1. Acknowledgement delay in the user program when accessing the CP,
IP, COR or one of the 1/0 modules directly via the S5 bus (e.g.
with load or transfer commands L/T P...or O...):
The system program will call the organization block OB 23.

Accumulators 1 and 2 contain additional information to supply a
more detailed explanation of the error.

2. Acknowledgement delay during the updating of the process image of
inputs and outputs and the transfer of interprocessor communication
flags :
The system program will call the organization block OB 24.

Error identifier
accul accu2

1E2 3H YYYYH

Accumulators 1 and 2 contain additional information to supply a
more detailed explanation of the error.

Explanat ion

Acknowledgement delay (QVZ) in the user
program when accessing I/Ors
yyyy = QVZ-address

Error identifier
accul accu2

1E25H YYYYH

1E26H YYYYH

1E27H YYYYH

1E28H YYYYH

Explanation

Acknowledgement delay during the updating of
the digital outputs
yyyy = address of the output byte which has

not acknowledged

Acknowledgement delay during the updating of
the digital inputs
yyyy = address of the input byte which has

not acknowledged

Acknowledgement delay during the updating of
the interprocessor communication flag outputs
yyyy = address of the flag byte which has

not acknowledged

Acknowledgement delay during the updating of
the interprocessor communication flag inputs
yyyy = address of the flag byte which has

not acknowledged

If the organization blocks called are not programmed the processing of
the user program will be continued. However, an acknowledgement delay
will increase the execution time of the STEP5 command responsible for
the acknowledgement delay.

In the case of an acknowledgment delay, the processor reads the value
"OOH" in order to further process it as a 'substitute' if the QV2 is
acknowledged by the user.

If an acknowledgement delay is to stop the processor the stop command
STP will have to be programmed in OB 23 or 24.

Triggering of a system stop is possible if a QV2 occurs (acknowledge-
ment delay) by programming DXO accordingly, even if OB's 23/24 are not
programmed.

5.6.5 ZYK-FE (Cycle Time Error)

The cycle time includes the total duration of the processing of the
cyclic program. The cycle time preset in the processer may be exceeded
e.g. due to incorrect programming, a program loop in a function block,
a failure of the clock-pulse generator or system activities such as
updating of the process image in connection with large programs.

If the cycle time is exceeded, the system program will interrupt the
user program and will call the organization block OB 26, and the cycle
time will be started again (triggered). If the cycle time expires
once again before OB 26 is fully processed, the processor goes into
the stop state signalling a double error.

The cycle time is variable (1 through 6000 msec) and can be re-
triggered (see above). Irrespective of the cycle time, 150 msec after
the cycle time has expired BASP will be signalled if OB 26 is still
not fully processed at this moment.

If OB 26 is not programmed the processor will stop unless the pre-
setting in DXO has been altered by the user.

The user can preset the cycle time. This is done either by programming
DXO or by calling the special function organization block OB 221.

The cycle time monitoring in a cyclic program can be "retriggered" by
calling SF-OB 222.

error identifiers are written into accu 1 or accu 2 when a cycle
time error occurs.

5.6.6 WECK-FE (Collision of Two Time Interrupts)

If there is a new request for a certain time interrupt OB without the
last one being fully processed, the system program will identify a
collision of two time interrupts and call the organization block
OB 33. Pay also attention to Subsection 4.4.2 "TIME INTERRUPTS".

Additional information is contained in accumulators 1 and 2 to give a
more detailed explanation of the error.

lOOlH 0016H I Collision of two time interrupts at OB 10 (10 ms)
Error identifier
accul accu2

lOOlH
0014H I Collision of two time interrupts at OB 11 (20 ms)

Explanation

lOOlH OOlCH 1 Collision of two time interrupts at 0B 15 (500 ms)

lOOlH 0012H

lOOlH OOlOH

lOOlH OOlEH

Collision of two time interrupts at OB 12 (50 ms)

Collision of two time interrupts at OB 13 (100 ms)

Collision of two time interrupts at OB 14 (200 ms)

lOOlH
OooaH l Collision of two time interrupts at OB 17 (2 sec)

lOOlH OOlAH Collision of two time interrupts at OB 16 (1 sec)

Remark: The identifier contained in accu 2 represents the level
(EBENE) identification of the time interrupt which has caused
the error.

lOOlH 0006H

If OB 33 is not programmed the processor will stop. However, you have
the option of having the program processing continued if a collision
of two time interrupts occurs and OB 33 is not programmed, by program-
ming DXO accordingly.

Collision of two time interrupts at OB 18 (5 sec)

Note that a renewed call of the error program level "Collision of two
time interrupts" which has already been activated does not lead to a
double error (DOPP) !

5.6.7 BEG-FE (Controller Error)

An error during the processing of the standard function blocks
of the controller structure R 64 which is supported by the system
program is identified as a controller error.

IHlWRTrn!
In contrast to e.g. a collision of tvo time interrupts vhich is
identified by the system program when a specific time interrupt OB is
not started and completely processed (see above) within its appro-
priate interval (e.g. 100 ms with OB 13). an incorrect processing of
the controller program will not be identified and displayed in the
ISTACK until the program level 'control' is called.

If a controller error occurs the program level 'control' will be
exited and the level 'controller error' (level (EBENE): 001CH) with
the organization block OB 34 will be called.

Further reaction of the processor depends on the programming of OB 3 4 :

a) If OB 34 is not programmed the processor will stop.
Error identification is possible by outputting the ISTACK.

b) If OB 34 has been programmed the STEP5 program contained in it
(e.g. evaluation of accumulators 1 and 2 and the error handling
dependent on it) will be processed. After that the controller
processing will be continued at the point of interruption.

If controller errors are always to be ignored a block end command BE
in OB 34 is sufficient.

If controller processing is to be continued if a controller error
occurs and OB 34 has not been programmed you will have to alter the
presetting in DXO correspondingly.

If OB 34 is called additional information will be contained in accumu-
lators 1 and 2 to give a more detailed explanation of the error.

Error identifier
accul a c cu2

Explanation

Sampling time error
yy = number of the corresponding controller
data block

Controller data block not loaded
yy = number of the data block not loaded

Controller function block not loaded
yy = number of the function block not loaded

Controller function block not identified
yy = number of function block not identified

Controller function block loaded with incorr.
PG software
yy = function block number

Incorrect length of controller data block
yy = data block number

Acknowledgement delay (QVZ) during
controller processing

The error identifier BEG-FE will be marked in the control bits at the
programmer for all 7 types of errors. The position second to last in
the lowest Line of the control bit mask is not indicated if you are
using a PG without SS-DOS, however, it will be marked as well. In the
ISTACK mask of the 'control' level, BEG has been marked as the cause
of the error/fault.

Sampling time error

After the preset sampling time has elapsed the cyclic program will be
interrupted at the next block boundary and controller processing will
be inserted. It is now possible that "longer" blocks requiring too
much time will be processed and as a consequence, the controller
processing will "get out of step": there is a sampling time error.

A sampling time error can be treated just as the other controller
errors (see a) and b)) or can be suppressed by means of a mask.
Program processing will then not be interrupted if a sampling time
error occurs.

Refer to the description "Compact closed-loop control in the R proces-
sor of the S5135UV, C79000-B8576-C365-~x, page 5-2 onwards!

A sampling time error may be prevented if you alter the presetting in
DXO "processing of the controller and process interrupt at block
boundaries" to "processing of the controller and process interrupt at
command boundaries".

5.6.8 ABBR (Abort)

If a stop state is caused in the operating state RUN by means of

a) Mode selector on the processor from RUN to STOP,

b) Online function 'PC-STOP',

c) Switch on the coordinator to STOP (in multiprocessor operation),

the system program will call OB 28. The processor will stop when OB 28
has been processed.

IMPORTAFKl!!
The transition to the stop state will take place irrespective of how and
whether OB 28 has been programmed.

No error identifiers are written into accu 1 or accu 2. -

6 Integrated Special Functions

The operating system of the CPU 928 provides special functions which
are called, if required, by means of a conditional (JC OB X) or an
unconditional (JU OB X) block call. The organization blocks OB 40
through OB 255 are reserved for these special functions.

These functions are called integrated special functions since they are
a permanent part of the system program. The user may call these spe-
cial functions, however, reading or altering them is not possible.

IKPoRTrn!
The command JU OB > 39 does not function like a 'real' block
change. No interrupts are nested!

Special functions vith pseudo command boundaries

Some of the special functions are long-running special functions
which contain the so-called pseudo command boundaries, i.e.: the
execution of the special function is carried out in several operating
steps. If an error (e.g. ZYK) or an interrupt (e.g. time or process
interrupt at command boundaries) occurs during the execution of one
step then the corresponding organization block will be nested at the
end of this step at a pseudo command boundary.
The special functions that contain pseudo command boundaries are
marked in the following list.

Error during processing of special functions

A distinction can be made between two groups of special functions
based on their individual reaction to errors.

Group 1:

The first group includes all the special functions that cause an error
organization block to be called if error occurs. In this block you can
program the processor's reaction.

If the processor detects e.g. an incorrect parameter assignment while
processing a special function it will recognise an execution time
error and call OB 31. If e.g. the special function called does not
exist it will recognise a command code error and attempt to call OB
30.

If the error OB's 30 and 31 have not been programmed or contain an STP
command then the processor will stop. 'LZF' or 'BCF' will be marked in
the control bits and the ISTACK. Error identifiers that supply a more
detailed explanation of the error are deposited in the accumulators of
the error program level. If OB 30 and OB 31 have been programmed (and
do not contain an STP-command) the user program will be continued with
the next command after OB 30 or 31 has been processed. In this case
the accumulators remain unchanged.

Group 2:

Some special functions use another method to handle special-function-
specific errors: they influence the RLO and DSPO/DSPl.

If an error occurs during the processing of these special functions,
the RLO is usually set (RLO = 1) and an evaluation is possible by
means of JC-command (conditional jump).

Evaluation of the result of logic operation (RLO) is thus possible
as a signal for "error" or "no errorw and a special error program may
be provided to handle any errors which occur.

For some special functions DSPO and DSPl are affected by the pro-
cessing of the special functions and may also be scanned.

Summary of the integrated special functions in the CPU 928

Access to the condition-code byte
Clear accus 1, 2, 3 and 4
Roll up accu
Roll down accu

Switch on/off "Disable all interrupts"
Switch on/off "Disable individual time interrupts"
Switch on/off "Delay all interrupts"
Switch on/off "Delay individual time interrupts"

OB 160 - 163 counter loop

OB 170 read block stack (BSTACK)

variable data block access
test data blocks (DB/DX)

OB 190, 192 transfer flags to data blocks
OB 191, 193 transfer data blocks to flag area

OB 200 l), 202 1)
203, 204 l)
and 205 functions for multiprocessor operation

OB 216 - 218 page access

220 S ign extens ion
221 2, set cycle time
222 restart cycle time
223 compare start-up modes in multiprocessor operation
224 2, transfer interprocessor communication flags in

multiprocessor operation as a block
226 read word from system program
227 read check sum of system program
228 read status information of a program level

OB 230 l) - 237 l) functions for standard function blocks

initialize shift register
process shift register
erase shift register

OB 250 l) initialize PID-controller
OB 251 l) process PID-controller
OB 254 l), 255 l) transfer data blocks (DB/DX) to DB-RAM

l) Special functions with pseudo command boundaries (long-running)

2, The special functions OB 221 and OB 224 were adopted from
the S processor for reasons of compatibility and should not be
programmed in the CPU 928. Instead, this particular system
function should be programmed in the DX 0 (see Chapter 7).

Note :

When specifying the parameters for the individual special function
organization blocks make sure you clarify the following notation:

Notation:

Accu 1: ACCU 1, 32 bits
Accu l-L: Accu 1, low word 16 bits
Accu 1-LL: Accu 1, low word, low byte 8 bits
Accu 1-LH: Accu 1, low word, high byte 8 bits

<- high word ->U- low word ->
I I I

I high byte I low byte (high byte 1 low byte I

Note :

All data that the processor requires in order to be able to execute
the special functions correctly are listed in the following descrip-
tion of the individual special functions under the heading parameters.
Before calling the special function in the STEP5 program you will have
to load these data in the accumulators or in the stipulated storage
locations.

6.1 Handling of the Registers

6.1.1 Access to the Condition Code Byte (OB 110)

The condition code register contains information about the result of
an arithmetic or logic operation and can be evaluated via specific
commands dependent on the condition code.

Using the special-function organization block OB 110 you can load the
condition code register into ACCU 1 or write the content of ACCU 1
into it. In addition, you can set individual condition code bits to
1ror1 Or "111

Occupation of ACCU 1 when accessing the condition code register:

I) I A1 l A0 I OV I OS I OR I STA I RLO I 5
W 0 R D codes I B I T codes

*) Bits 28 to 231 are reserved for extensions and must be "0"
when writing into the condition code register. They are to
be ignored when reading from the condition code register.

Parameters:

1. ACCU 2-L: Function identifier
Possible values 1, 2 or 3

2. ACCU 1: New condition code byte or mask

ACCU 2-L

1

2 new con-
dit ion

ACCU 1

mask

3

code byte
l>

before

new con-
dition
code byte

mask new con-
dit ion
code byte

af terw.

new con-
dition
code byte

Function :

The content of ACCU 1 is loaded
into the condition code register

Every bit marked with "1" in the
mask of ACCU 1 is set to "lW in
the condition code register. The
new condition code byte is loaded
into ACCU 1.

Every bit marked with "l" in the
mask of ACCU 1 is set to "0" in
the condition code register. The
new condition code byte is loaded
into ACCU 1.

l) Restriction: -
The bit codes OR, STA and ER cannot be read since they are con-
stantly influenced bxspecial function OB 110:
OR = 0, STA = 1 and ER = 0

Possible errors:

- Function identifier in ACCU 2-L does not equal 1, 2 or 3.

- In ACGU 1, one of the bits from 28 to 231 is set.

In case of an error, OB 31 (other execution time errors) is called and
the error identifier 1A49H is transferred to ACCU l-L.

Example of application

The OB 110 can be used as an aid to test those commands which evaluate
or influence the condition code register. Testing commands, however,
is not the only application of OB 110. The following example shows
further possible applications.

Distribution of calls

Depending on the contents of flag byte FYO, one out of four subpro-
grams is to be called. These four subprograms are assigned bits FO.0
through F0.3. Only one of these bits may be set.

:L
: SLW
:L
: TAK
: JU
: JOS
:JO
:JM
:JP
. .
. .
. .
: BEU

F000: .
. .
: BEU

Fool: .
. .
: BEU

F002 : .
. .
: BEU

F003 : .

FBO
4
KB1

;shift FO.0 through F0.3 by 4 to the left
;load function identifier

;jump if OS = 1
;jump if OV = 1
;jump if DSPO = 1
;jump if DSPl = 1

;if no bit has been set

. .
: BEU

6.1.2 Clear Accus 1, 2, 3 and 4 (OB 111)

By a single call of special-function organization block OB 111, you
can erase the contents of accus 1 through 4: the four registers are
overwritten with '0'.

Parameters: none

Possible errors: none

6.1.3 Roll Up Accu (OB 112) and Roll Dovn Accu (OB 113)

Using OB 112 and OB 113, you can have the contents of the accus
scrolled up or down:

- OB 112 (Roll UP) moves the contents of accu 1 into accu 2, the
contents of accu 2 into accu 3, etc.

- OB 113 (Roll Down) moves the contents of the accus into the opposite
direction: the contents of accu 1 into accu 4, accu 4 into accu 3,
etc.

Parameters: none

Possible errors: none

The following figure shows the contents of the accus before and after
OB 112 and OB 113 are called.

Accu 4

Accu 3

Accu 2

Accu 1

Accu 4

Accu 3

Accu 2

Accu 1

I ciVD1(,[
I -------

Rdl down

Using the STEP5 commands ENT (Supplementary Operations) and TAK
(System Operations), the contents of the accus can also be shifted,

Note the following different features:

/v

3 1 /

O 31 0

Accu 4 v k & y n g
/ '

Accu 3 -l0

0

/
/

Accu 2

Accu 3

Accu 2 v b ~ ~ ~ ~ ~ ~ g
/
/

". ,/

ENTcommand

TAKcommand

2=.,

Accu 1 -c1'/

6.2 Structure Commands

6.2.1 Counter Loops (OB 160 through 163)

Using these special function organization blocks, you can implement
program loops with extremely favorable execution times.

Each of the 4 special function OB's is assigned a specific system
data word :

You transfer the number of times the loop is to be run (iterations)
into this system data word. If you now call the corresponding special
function OB the loop counter in the system data word will be decre-
mented by one. The loop is run until the loop counter reaches the
value zero.
(If the loop counter contains the value zero before the special func-
tion OB is called it will still be decremented by one if a call is
executed: the loop will be run 65,536 times!)

Loop counter in system data word > 0: RLO is set (RLO = 1)
Loop counter in system data word = 0: RLO is cleared (RLO = 0)

The remaining bit and word condition codes are always cleared.

The accumulators are not altered and not evaluated. This means that
they are still available at the beginning of the next iteration and
will not have to be generated again.

The four organization blocks OB 160, 161, 162, and 163 allow a qua-
druple nesting of loops. This in turn means that you can have four
different loop counters in the system data words RS 60 through 63.

If required, these special functions may be used in combination with
command DO RS (process system data).

Execution time of the special function OB 160 through 163, if the loop
counter was # 1 before the function was called: 12 - 16ps

Parameter:

1. System data word RS 60 - 63: loop counter
possible values: 0 - 65,535 (FFFFH)

Possible errors: none

The desired number of iterations is contained in flag word X.

Initialize loop:

'Loop program':

Manage loop:

Continue :

:L KBO
:L FWx loop counter
: !=F
: JC =M002
:T RS62 transfer loop counter to

system data word

counter loop
with RLO = 1, the loop
will be run again

(Refer to Chapter 9.2 "TNW and TNB: transfer memory blocks" for a
further example.)

6.3 Read Block Stack (BSTACK) (OB 170)

All the blocks are entered in the block stack, starting with OB 1 or
FB 0, that have been called in succession and have not yet been
completely processed.

You may read the entries contained in the BSTACK into a data block
by means of the special function organization block OB 170. This
allows you to determine the number of existing BSTACK entries and thus
the space still available for further entries.

You will be supplied the return address (step address counter =
SAC), the absolute start address of the data block (DBA) valid in
this particular block as well as its length (number of data words
= DBL) for every entry.

I l I W R r n !
Before calling OB 170 a sufficiently long data block (DB or DX)
must be called first! Four data wrds will be required for every
BSTACK entry.

Parameters:

1. Accumulator 2-L: Number of data word (DW n), starting with
which the entries are to be written in the
DB called (offset)

2. Accumulator l-L: required number of BSTACK elements

possible values: 1 - 62

Ex.: If the accumulator l-L contains the
value 'l', you will be supplied the
last BSTACK entry; for '2', the last
and second last, etc.

After successful call of OB 170

- the offset in the data block will remain in accumulator 2-L,

- the number of BSTACK elements actually displayed is in
accumulator l-L,

possible values: 0 - 62, with

displayed number 5 required number

0 = 'no BSTACK entry exists' or 'error'

(Contents of accumulator l-L multiplied by 4 is the number of data
words written in the DB called!)

- the RLO will be cleared.

- the result condition codes DSPO and DSPl can be evaluated
(see below),

- all other bit and word condition codes are cleared.

Possible errors:

- no data block called

- data block called does not exist or length insufficient

- illegal parameters in accumulators 1 and 2

If an error occurs the RLO as well as the result condition codes DSPO
and DSPl will be set (RLO, DSPO and DSPl = l), the remaining bit and
word condition codes are erased. The contents of accumulator 1 will be
set to '0'.

Influencing the result condition codes U, DSPO and DSPl

RLO DSPO DSPl Scan with Significance:

actual number of BSTACK elements
< desired number

actual number of BSTACK elements
= desired number

actual number of BSTACK elements
> desired number

error

This is how the contents of the BSTACK, upon call of OB 170, are
written into the data block called:

A = BSTACK element number (62 - l)

(Already at the time of the output of the last BSTACK element,
calculation of the reserve is possible:
A = 17 --> reserve = A -1 = 16.)

B = depth of BSTACK element (1 - 62)

DWO

Off set -> DWn

DWn+l

DWn+2

DWn+3

DWn+4

DWn+5

DWn+6

DWn+7

I > Entry second to last
in BSTACK (B = 2)

I Older BSTACK entries
You want to read the last 3 BSTACK entries into data block DX 10.
These entries should be written in from data word DW 16 in DX 10.

:CX DX 10 ;call DX 10
:L KY 16 ;BSTACK entries should be written starting with

DW 16
:L KY 3 ;the last 3 BSTACK entries are required
:JU OB 170

6 blocks have been entered in the BSTACK:

BSTACK

Element 1

Element 56

Element 57

Element 58

Element 59

Element 60

Element 61

Element 62

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX H
D e p t h 1

D e p t h 2

D e p t h 3

(last BSTACK entry)

(first BSTACK entry)

After calling the special function OB, DX 10 is occupied as follows:

DWO

Offset-, DW16

DW17

DW18

DW19

DW20

DW2 1

DW2 2

DW2 3

DW24

DW25

DW2 6

DW2 7

Block
header

Accumulator 2-L: 16
Accumulator l-L: 3

RLO = 0
DSPO = 0
DSPl = 1

6.4 Block Handling

6.4.1 Variable Data Block Access (OB 180)

When c a l l i n g a data block by means of C DB and CX DX commands, the
'DBA' r e g i s t e r (data block s t a r t address, r e g i s t e r no. 6) i s loaded
with the address of the data word DW 0 contained i n DBO. The user can
access the DBA r e g i s t e r (16 b i t) by means of the STEP5 program (LIR 6,
T I R 6) .
Access t o data blocks by means of commands such a s L DR 60 o r DO DW
240 e t c . a r e always car r ied out r e l a t i v e t o the data block s t a r t
address.

I M P o R r n !
STEP5 access to data words is only permitted up to data vord DV 255!

In addi t ion t o the DBA r e g i s t e r , the 'DBL' r e g i s t e r (data block
length, r e g i s t e r no. 8) i s loaded every time a data block i s ca l l ed :
it contains the length (i n words) of the DB o r DX data block opened
without the block header.
The user can access the DBL r e g i s t e r (16 b i t) by means of t he STEP5
program (LIR 8 , TIR 8) .

IMPoRTrn!
A maximum length of 4091 data words may be entered in the DBL register
- depending an the memory size of the PG used!
Example :

Addr. (hex.)

5 words

Block header

-----------------v- --------- -
aaaa

bbbb

CCCC

dddd

eeee

f f f f

gggg

hhhh

> DBL

The DBA register contains the address of the memory in which DW 0
is stored, for our example: DBA = 151B (hex.).

The DBL register contains the number of data words, for our example:
DBL = 8 (DW 0 through DW 7).

Since access to data words by means of STEP5 commands L DW, A D, DO DW
etc. is always carried out relative to the DBA, e.g. 3 is added to

. 151B in order to access DW 3. The address 151E contains DW 3. For
writing access the DBL register is used to check whether a transfer
error exists. E.g. T DW 7 is permissible, T DW 8, however, is incor-
rect.

The special function OB 180 shifts the data block start address by a
preset number of data words. This means that you may also access data
blocks longer than 256 data words by means of STEP5 commands.
The STEP5 access range of 256 data words may be shifted as required
within a data block by assigning suitable parameters and then calling
OB 180.

ll@ORTAN!C!
Before OB 180 is called a data block of sufficient length (DB or DX)
must be called first.

Parameters:

1. Accumulator l-L: offset (number of data words by which the
data block start address is to be
shifted)

possible values: contents of accumulator
l-L < DBL !

After successful call of OB 180

- the value of the DBA register (= address of DW 0) will be increased
by the value of accumulator l-L,

- the value of the DBL register will be reduced by the value of
accumulator l-L,

- the RLO will be cleared (RLO = O),

- all other bit and word condition codes will be cleared.

Errors :

- no data block opened

- contents of accumulator l-L 2 DBL

If an error occurs (contents of accumulator l-L 2 DBL) the DBA and DBL
registers will not be affected. The RLO is set (RLO = 1). The remain-
ing bit and word condition codes are erased.
If the DBL register contains the value '0' OB 180 recognizes that no
data block has been opened. The RLO is set (RLO = 1) and an error is
thus signalled.

Reset DBA and DBL to the initial value

Calling the data block again by means of the commands C DB or CX DX
will recreate the initial state.

Example :

The data block start address (DBA = 151B) in DB 17 (DBL = 8) is to
be shifted by two data words.

DB 17
Addr. (hex.)

1516

1517

1518

1519

151A

151B

151C

DBA -> 1510

151E

151F

1520

1521

1522

5 words

Block header

=L- =iz========--

CCCC

dddd

eeee

f f f f

gggg

hhhh

> DBL

DBA after call of OB 180 = 151D (hex.)
DBL after call of OB 180 = 6 (DW 0 through DW 5)

After OB 180 has been called, the data word stored under the address
1520 and with the contents 'ffff' can no longer be addressed with DW
5, but with DW 3 instead etc..

Since the DBL is altered at the same time, the transfer error moni-
toring is guaranteed: the command T DW 5 is permissible, however, the
command T DW 6 is incorrect.

A further increase of the DBA (which means that the DBL will be again
reduced further) is possible by calling OB 180; the C DB 17 command
will recreate the initial state (DBA = 151B, DBL = 8).

If, DB 17 had a length of e.g. 258 data words, then access to DW 256
and DW 257 would no longer be possible by means of STEP5 commands. If
the DBA is shifted by 2, this means that data words 256 and 257 will
now be addressed with "DW 254" and "DW 255".

Possible applications of OB 180

- Accessing DB's which are too long, i.e. for DB's with a length of
more than 261 words (5 words header, DW 0 - DW 255), see above.

- Handling data structures

If a record, which consists of several data words, exists more than
once within a processor and the assignment (significance) is always
the same, then this is referred to as a data structure.

E.g. the description of a (partial) process status could take 20
data words, where the 1st data word is temperature, the 2nd pres-
sure etc.. If this process status is to be stored more than once
and vithin a DB, e.g. because the partial process exists more than
once and/or because historical values are to be stored, then the
special function-OB, OB 180 allows access to each of the structures
with the same commands L DD, S D, T DR etc. with the same para-
meters 0 through 19.

In contrast to other substitution mechanisms (substitution = in-
dexed parameter assignment) the subroutines are simpler and have
better execution times.

(Refer to Chapter 9 "memory access via absolute addresses", register 6
for the DBA register.)

6.4.2 Test Data Blocks (DB/DX) (OB 181)

Using the special function organization block OB 181 allows you to
check.

a) whether a certain DB or DX data block exists,

b) the address of the first data word of the data block,

c) how many data words this data block contains,

d) the memory type and area (user memory: RAM or EPROM, DB-RAM).

Use of the function "test DB/DXW is advisable before the commands
TNB/TNW, G DB/GX DX are input and before the special function organi-
zation blocks OB 2 5 4 and OB 255 are called.

You might, for example, call OB 181 before making a block transfer of
data words in order to ensure that the destination data block is valid
and long enough to accept all the data words to be copied.

Parameters:

1. Accumulatorl-LL: blocknumber
possible values: 1 through 255

2. Accumulator 1-LH: block identifier
possible values: 1 = DB

2 = DX

If the block tested exists in the processor,

- accumulator l-L will contain the address of the first data word
DW 01,

- accumulator 2-L will contain the length of the data block in words
(without header),
example: The value '7' is entered in accumulator 2-L --> Data

block consists of DW 0 through DW 6.

- the RLO will be cleared (RLO = O),

- the word condition codes DSPO and DSPl are affected (see the fol-
lowing list),

- the remaining bit and word condition codes are cleared.

If the block tested does not exist in the memory or the
parameter assignment is incorrect,

- the RLO will be set (RLO = l),

- the word condition codes DSPO and DSPl are affected (see the
following list),

- the remaining bit and word condition codes are cleared,

- the accumulators are not altered.

Errors :

- incorrect block number (illegal: 0)
- incorrect block identifier (illegal: 0, 3 through 255)
- storage error

Summary: Ef fec t on the result condition codes BLO, DSW and DSPl

RLO = 0: DB exists
RLO = 1: DB does not exist or error

DSPl = 0: DB in the user module
DSPl = 1: DB in the DB-RAM

DSPO = 0: DB in the read/write memory
DSPO = 1: DB in the read-only memory

BLO DSPO DSPl Scan with Signif icance
\ \

0 1 0 JM I DB DB in the I
> in the EPROM I user module (read only)

0 0 0 JZ / \
I
'> DB in the

0 0 1 JP DB in the I RAM
DB-RAM / (read/write)/

DB does not exist/storage error/
incorrect parameter assignment

Examples see
Section 8.2.2 "block address lists in the DB-RAM"
Section 9.1 "LIR and TIR: access to registers"
Section 9.2 "TNW and TNB: transfer memory blocks"

6.4 .3 Transfer Flags to Data Block (OB 190 and OB 192)

Organization blocks OB 190 and OB 192 transfer a number of flag bytes
as specified by the user to a data block intended for this purpose.

This may be useful before block calls, in error organization blocks or
when a cyclic program is interrupted by time or interrupt driven
program execution.

You can have these flag bytes transferred back from the data block
afterwards by OB 191 and 193.

~ R ~ !
Before the actual call is executed a data block (DB/DX) must be opened
first!

After OB 190/192 has been called, the flag bytes are buffered in the
data block called beginning with the data word address specified. OB
190/192 will read the area of the flags to be saved from the accumula-
tor.

The special function organization blocks OB 190 and OB 192 are
identical, except for the manner in which they transfer the flag
bytes :

* OB 190 transfers the flags bvte bv bvte.
* OB 192 transfers the flags word bv word.

This is important if the data that have been transferred to the data
block are to be processed subsequently and the data block is not only
used as a simple buffer.

The following figure will help to illustrate this difference:

Flags copied by OB190 : OB192 :

Note: If an odd number of flag bytes is transferred then only half of
the data word of the data block used last will be used. With
OB 190 the data on the left-hand side will remain free, and
with OB 192 the data on the right-hand side.

IllWRTdRT!
Please note the following execution time table (i n p) :

Parameters:

(n = number of flag bytes)

Number of 1st flag byte is even

Number of 1st flag byte is uneven

Specifying the source:

1. Accumulator 2-LH: First flag byte to be transferred
possible values: 0 through 255

OB 190

25 + n * 0.32
25 + n * 0.48

2. Accumulator 2-LL: Last flag byte to be transferred
possible values: 0 through 255

OB 192

40 + n * 0.57
25 + n * 1.8

(Last flag byte >= First flag byte !)

Specifying the destination:

3. Accumulator l-L: Address of the first data word to be written
into in the data block called

If the special function block OB 190/192 is processed correctly the
RLO will be cleared (RLO = 0). The accumulators will not be altered.

The RLO will be set (RLO = 1) in the case of an error, the accumula-
tors will not be altered.

Errors :

- no DB or DX data block has been called

- incorrect flag area (last flag byte < first flag byte)

- address of data word does not exist

- DB or DX data block not long enough

6.4.4 Transfer Data Fields in Flag Area (OB 191 and OB 193)

Using OB 191 and OB 193 you can transfer data from a data block to the
flag area. Thus, it is possible to transfer the flag bytes previously
'saved' in a data block back to the flag area.

OBs 191/193 only differ from OBs 190/192 insofar as source and desti-
nation are reversed:

OB 190/192: flag area -> flag -> data block

OB 191/193: flag area <- data <- data block

l l l W R m !
Before carrying out the actual call a data block (DB/DX) must be
opened first!

The special function organization blocks OB 191 and OB 193 are
identical, except for the manner in which they transfer data:

* OB 191 transfers the data words byte by byte.

* OB 193 transfers the data words word by word.

The following figure will help to illustrate this difference:

Data transferred by means of OB191:

DL DR > flag - - - - - -
15 8 7 0 7 0

Data transferred by means of OB193 :

DL DR - - - - - - > flag
15 8 7 0 7 0

IHPoB!rAwc!
Please note the following execution t h e table (inp):

(n = number of flag bytes) I OB 191 I OB 193

Number of 1st flag byte is even 1 25 + n * 0.32 (40 + n * 0.57
P--

Number of 1st flag byte iTuneven 1 25 + n * 0.48 1 25 + n * 1.8

Parameters:

Specifying the source:

1. Accumulator 2-L: Address of the first data word in the data
block opened which is to be transferred

Specifying the destination :

2. Accumulator 1-LH: First flag byte to be written into
possible values: 0 through 255

3. Accumulator 1-LL: Last flag byte to be written into
possible values: 0 through 255

(last flag byte >= first flag byte !)

If the special function block OB 191/193 is processed correctly the
RLO will be cleared (RLO = 0). The accumulators will not be altered.

The RLO will be set (RLO = 1) in the case of an error, the
accumulators will not be altered.

Errors: see OBs 190/192

Example :

Before the program block PB 12 is called all flags (FYO through FY255)
are to be saved in data block DX 37, starting at address 100.
They are then to be written back again.

Save : : CX DX37 call data block
:L KY0,255 flag area FYO through FY255
:L KBlOO address of 1st data word
: Jll OB190 save flags

Block change: : JU PB12

Rewrite: (data block called already)
:L KBlOO address of 1st data word
:L KY0,255 flag area FYO through FY255
: JU OB191 rewrite flags

OB 190 / OB 191: Example of an application

Flags that are used in a cyclic user program may not be used by
another time or interrupt-driven user program. Each program level must
be assigned a certain section of the flag area.

Ex.: cyclic user program: FYO . . . FY99
time-driven user program: FY100 . . . FY199
interrupt-driven user program: FY200 . . . FY255

However, if in the cyclic user program all the 256 flag bytes are
already in use and if for instance the time-driven user program
requires all the 256 flag bytes too, the flags must be exchanged and
buffered when the program level is changed.

OB13 DBlOO

C DBlOO
FY 0...255 -> DW 0...127
DW 128 . . . 255 -> FY 0...255

t ime-dr iven
user program

C DBlOO
FY 0...255 -> DW 128...255
DW 0...127 -> FY 0...255
BE

DWO

DW127
DW128

DW2 5 5

cyclic user
program

Flag of the
t ime-dr iven
user program

The quickest way to save and load these flags is offered by the
special functions OB 190 and OB 191:

STEP5 program in OB 13

:C DBlOO
:L KY0,255
:L KBO
:JU OB190 > 352ps
:L KB128
:L KY0,255
:JU OB191 /
. .
. .
. .
:C DBlOO
:L KY0,255
:L KB128
:JU OB190
:L KBO
:L KY0,255
:JU OB191
: BE

The time needed to exchange and buffer the flags is 704ius for each
call of OB 13.

Further use of organization blocks OB 190 through OB 193

- In the case of the CPU 928, the commands for single bit processing
(A, 0, ON, AN, S, R, =) which access the flag area are processed
considerably quicker than comparable commands which access data
blocks (see e.g. the 'A M' <-> 'A D' or 'S M' <-> 'S D'! commands).

Due to this you may improve the execution time if you copy data
into the flag area, have them processed there and then return them
to the data block.

- Reversing of high byte and low byte is possible without much
trouble by transferring the data words to the flag area and back by
means of the OB's:

- 'Shif t ing ' of data f i e l d s within a data block i s possible i f you
specify the same DB number but a d i f f e r en t data word when wr i t ing
back from the f l a g a rea .

- It i s j u s t a s simple t o t r ans fe r data f i e l d s (max. 255 bytes) t o
other data blocks (i t may be usefu l t o use OB 1 9 1 ' t e s t data blocks
(DB/DX)' f i r s t) .

6 .4 .5 Transfer Data B l o c k s to DB-RAM (OB 254, OB 255)

The special function organization blocks OB 254 and OB 255 allow you
to transfer data blocks from the user memory to the DB-RAM (data block
storage) of the processor. The execution of OB 254 and OB 255 is
identical, with OB 254 being responsible for DX blocks and OB 255 for
DB blocks.

Use of these special functions is only permissible for a block length
of max. 4K-words (incl. header).

When transferring, you can shift or duplicate data blocks:

- Shifting a data block from the user memory to the DB-RAM

A data block in the user memory is shifted to the DB-RAM, the
original block number is retained. The new start address of the
data block is entered in the address list in DB 0. The old address
of the block is overwritten, i.e. the data block is declared
invalid in the user memory.

Parameters:

1. Accumulator l-L: number of data block to be shifted

2. Accumulator l-H: 0

Errors :

- The data block to be shifted does not exist.

- The block exists already in the DB-RAM.
(Execute function only once - preferrably during the start-up)

- The memory location in the DB-RAM is insufficient.

The function will not be executed if an error occurs. The system
program will identify an execution time error and will call OB 3 1 .
Further reaction to the error depends on the programming of OB 31
(see 'Other execution time errors1).
If OB 31 has not been programmed the processor will go over to the
stop state. Error identifiers are written into accumulator 1 and
provide a more detailed explanation of the error.

Duplication of a data block in the DB-RAM

A data block in the user memory or in the DB-RAM is transferred to
the DB-RAM, where it will be assigned a new block number. The start
address of the new data block is entered in the address list in DB
0. The start address of the old block in DB 0 is retained, i.e. the
original block is still valid.

The start address is not entered in DB 0 until the transfer has
been completely executed and all identifiers have been entered
correctly in the header. This means that the block duplicated is
not identified as valid or existing by the system program until the
transfer has been completely executed.

Parameters:

1. Accumulator l-L: number of data block to be duplicated

2. Accumulator l-H: number of new data block

Errors :

- The data block to be duplicated does not exist.

- The new data block exists already.

- Not enough space in the DB-RAM.

The function will not be executed if an error occurs. The system
program identifies an execution time error and will call OB 31.
Further reaction to the error depends on the programming of OB 31
(see 'Other execution time errors').
If OB 31 has not been programmed the processor will go over to the
stop state. Error identifiers are written into accumulator 1 and
provide a more detailed explanation of the error.

6.5 l4ultiprocessor Communication (OB 200 through OB 205)

The special function organization blocks OB 200 through OB 205 allow
data transfer between the individual processors in multiprocessor
operation, using coordinator KOR C.

OB 200: Initialize

This special function organization block initializes the memory in the
coordinator KOR C which is used to buffer the data blocks to be
transferred.

OB 202: Transmit

This function transfers a data block to the buffer of the KOR C and
specifies the number of data blocks that can still be transmitted.

The special function OB 203 determines the number of free memory
blocks in the buffer of the coordinator KOR C.

OB 204: Receive

This function receives a data block from the buffer of KOR C and
displays the number of data blocks that can still be received.

The special function OB 205 determines the number of memory blocks
occupied in the buffer of the KOR C.

Detailed operating instructions for these particular special function
organization blocks can be found in section 8 of this manual.

6.6 Page Access

Organization blocks OB 216 through 218 allow for access to so-called
pages.

The organization blocks contain the following functions:

OB 216 Writing a byte/word/double word to a page

OB 217 Reading a byte/word/double word from a page

OB 218 Assigning a page by the processor
(for coordination in multiprocessor operation)

On the one hand, these functions are used for test purposes; at the
same time these basic functions allow handling blocks or similar
functions to be programmed.
Use of these special function OB's is advisable for multiprocessor
operation if information from different processors is to be written on
one page or read from one page.

What are pages?

Pages are memory areas which exist once or several times on communica-
tions processors, certain intelligent 1/0 modules and certain coordi-
nators for multiprocessor operation.

Pages are organized in bytes, i.e. each byte may be addressed
individually.

A max. of 255 pages is possible in the programmable controller.

Page size: Memory address space
assigned

1024 bytes F400H - F7FFH

2048 bytes F400H - FBFFH

Memory address area for interface system on the S5 bus

Bit 7 0

Interprocessor
communication

flags
F300 F2000

COR

Memory address space of a

1024 bytes
F7FF

I 2048 bytes I

I Distributed I

Current page number

FFOO 0
Memory address area
exists several times
size: 1024 or 2048 bytes

t + 2
-+ l

When programming the special function OB1s 216, 217, and 218 you
specify which of the 255 pages is to be used. The number of the
"current" page will then be entered automatically in a location with
address FEFF (see figure). All addresses then refer to the page whose
number had been entered.

I +

IMPORTANT!
The location with the address FEW cannot be read.

Page no. 0

+ ,cc+ +

l- +

Notes cm assigning parameters

Writing (OB216) and reading (OB217) of a byte/word/double word is
based on the following representation:

B i t 7 6 5 4 3 2 1 0

Address n

Address n

Address n

Address n+l

Address n+2

Address n+3
l

Low byte

Hbyte Hword

Lbyte Hword

Hbyte Lword

Lbyte Lword E

Representation byte

Representat ion vord

Representation double vord

6 . 6 . 1 Writing Data to a Page (OB 216)

The special function organization block transfers a byte, word or
double word from accumulator 1 (right-justified) to a certain page.

Addressing of the page and transfer of the complete data (1/2/4
bytes) form a program unit which cannot be interrupted.

Parameters:

1. Accumulator 2-L: destination address on page
possible values: 0 - 2047

2. Accumulator 3-LL: current page number
possible values: 0 - 255

3. Accumulator 3-LH: identification of data to be transferred
possible values: 0 = byte

1 = word
2 = double word

If writing to the page is successful,

- the contents of accumulator 1 and accumulator 3 are not altered,

- the accumulator 2-L will contain a value increased by 1/2/4
(depending on the length of the data transferred),

- the RLO is set (RLO = l),

- the remaining bit and word condition codes are cleared
(see result bits).

If writing on the page is not possible:

- the contents of all accumulators are not altered,

- the RLO is cleared,

- all remaining bit and word condition codes are also cleared.

Result bits:

Condition codes + logic decoder

(see Chapter 3 for result condition codes)

DSPl

0: Error
1: Transfer

successful

Errors :
- incorrect length identifier in accumulator 3-LH
- destination address on page incorrect or non-existent
- page number stated does not exist
- page does not exist at all

DSPO

Accumulator assignment b e f o r e writing

OV

X X

X F+ Data (8 bits)

OS

Length identitier j Page number
o : byte (6 bits) : 0 through 255
1 : word(l6bits)
2 : double word (32 bits) :

X X

I

A C C U ~ pp X et---------- D a t a (l 6 bits)

Address (relative to beginning of page)
0...2047 for lenglh identifier (byle)
0...2046 for length identifier l (word)
0...2044 for length identifier 2 (double word)

I. Data (32 bits)

3 1 2 4 2 3 1 6 15 8 7 0

OR STA BLO ERAB

6.6.2 Reading Data from a Page (OB 217)

The special function organization block transfers a byte, word or
double word from a certain page to accumulator 1 (right-justified).

Addressing of the page and transfer of the complete data (1/2/4 bytes)
form an inseparable program unit which must not be interrupted.

Parameter:

1. Accumulator 2-L: source address on page
possible values: 0 - 2047

2. Accumulator 3-LL: current page number
possible values: 0 - 255

3. Accumulator 3-LH: identifier of data to be transferred
possible values: 0 = byte

1 = word
2 = double word

If reading from the page is successful,

- accumulator 1 (right-justified) will contain the value read
(any of the 32 bits remaining are cleared)

- the contents of accumulator 3 are not altered,

- accumulator 2-L will contain a value increased by 1/2/4
(depending on the length of the data transferred),

- the RLO is set (RLO = l),

- the remaining bit and word condition codes are cleared.

If reading from the page is not possible:

- the contents of all accumulators are not altered,

- the RLO is cleared (RLO = O),

- all remaining bit and word condition codes are also cleared.

Errors :
- incorrect length identifier in accumulator 3-LH
- source address on page incorrect or non-existent
- page number stated does not exist
- page does not exist at all

Accumulator assignment a f t e r reading

X X

k 0 k- Data (B bits) ----+

Length identifier j Page number
0 : byte(% b i) : 0 lhrough 255
1 : word(l6 b i i)
2 : doubleword (32 bits) :

X X

I

ACCU~ 1- 0 Data (l 6 bits)

Address (relative to beginning of page)
0+12047+1 for length identifier (bge)
0+22046+2 for length identifier l (word)
0+42044+4 for length identifier 2 (double word)

l+ Data(32 bits)

3 1 2 4 2 3 1 6 15 8 7 0

6.6.3 Assigning a Page (OB 218)

The special function organization block transfers the slot identifier
of 'its' processor to a certain page if the contents of the location
addressed in this particular page are zero. As long as this slot
identifier is entered in the location this particular page will be
reserved for a particular processor and may not be used by other
processors.

The organization block OB 218 is used to synchronize the data transfer
and is extremely important if larger data fields that belong together
are to be transmitted or transferred at once.

Addressing of the page, reading and, if applicable, writing of the
slot identifier form a program unit which cannot be interrupted.

Parameter:

Accumumlator l-L: Destination address of location on page
possible values: 0 - 2047

Accumulator 1-LL: current page number
possible values: 0 - 255

(In this particular case the contents of accumulators 3 and 4 are not
relevant.)

If assigning of the page is successful,
(contents of destination address = 0)

- the contents of the accumulators are not altered,

- the RLO is set (RLO = l),

- the remaining bit and word condition codes are cleared.

If assigning of the page is not possible:
(contents of the destination address # 0)

- the contents of the accumulators are not altered,

- the RLO is cleared (RLO = O),

- all remaining bit and word condition codes are also cleared.

Errors :

- contents of destination address on page not zero

- destination address on page incorrect or non-existent

- page number stated does not exist

- page does not exist at all

Accumulator b e f o r e / a f t e r reading

W-W W-W

Accul

Addess (relative to beginning of page)
0...2047 Accu2

X X

X X

I Page number
X : 0 through 255

Program example

The data words 4 through 11 of DB 45 of a CPU 928 are transferred to
DX 45 (data words 0 through 7) of a second CPU 928 via COR C. Trans-
mitter and receiver (multiprocessor operation) are synchronized by OB
218.

Current page on coordinator: no. 255

Coordination location on page (assign): addr. 53

Data transfer area on page (read and write): addr. 54-69

JC =MOO1
BEA

M001:C DB 45
L KY2,255
L KB54
ENT

TAK

L DD 6
JU OB 216
TAK

L DD 8
JU OB 216
TAK

L DD 10
JU OB 216
TAK

L KY 0,255
L KB53
ENT
L KB 0
JU OB 216
BE

page number
address of coordination location
transfer slot identifier to location
on page
if RLO = 1 (transfer successful) jump to mark
if not, block end

open source data block
2=length id. double word, page no.
start address on page
write to accumulator 3

data words 4 and 5 (=4 bytes)
transfer 1st double word
increment address by 4 (Accu 2-L = 58)
save destination address

transfer 2nd double word

transfer 3rd double word

transfer 4th double word

address with slot identifier

accumulator 1 = 0
clear slot id. --> release data transfer area

L KB 255
L KB53
JIT OB 218
JC =M002
BEU

MOO2:CX DX 50
L KY2,255
L KB54
ENT
L KB 0

L KY 0,255
L KB53
ENT
L KB 0
JU OB216
BE

page number
coordination location
page reserved by 2nd CPU
if RLO = 1, jump to mark

destination data block

write to accumulator 3
write to accumulator 2

read 1st double word
increment address by 4 (Accu 2-L = 58)
transfer accu 1 to data word 0 and 1

read 2nd double word

read 3rd double word

read 4th double word

address with slot identifier

accumulator 1 = 0
clear slot id. --> release data transfer area

6.7 Sign Extension (OB 2 2 0)

This special function extends the sign of a 16-bit fixed point number
in accumulator 1 to the higher order word (accumulator l-H):

The higher order word is loaded with KH = 0000 if bit 215 = 0
(positive number) .
The higher order word is loaded with KH = FFFF if bit 215 = 1
(negative number).

This sign extension is necessary in order to be able to extend a
negative 16-bit fixed point number to a 32-bit fixed point number
before a fixed point-floating point conversion (32-bit, FDG
command) is carried out.

Execution time of special function OB 220: 16ps

Parameters:

1. Accumulator l-L: 16-bit fixed point number

Errors: none

6.8 System Functions

6.8.1 Svitch on/off "Disable all interrupts" (OB 120) and
switch on/off "Delay all interrupts" (OB 122)

A STEP5 program can be interrupted at the block or command boundaries
by programs with a higher priority. Process and time interrupts are
part of these high-priority program levels. The execution time of the
program nested must be added to the execution time of the program
interrupted.

Using special-function organization blocks OB 120 and OB 122 you can
prevent the process and/or time interrupts from being nested at one or
more subsequent block or command boundaries (according to the setting
in DX 0).

OB 120: switch on/off "Disable all interrupts"

The special-function organization block OB 120 influences the
reception of interrupts :

Switch on "Disable interrupts" means that from that point in time on-
wards, no more interrupts are recorded and those interrupts that have
already been recorded (which are waiting e.g. for a block boundary)
are erased. Only if OB 2 (process interrupt) or a time interrupt OB
has already been started, will processing of this OB be brought to an
end.

Switch off "Disable interrupts" means that all interrupts occuring are
immediately recorded, nested at the next block or command boundary
and processed again.

OB 122: svitch on/off "Delay all interrupts"

This special-function organization block influences the processing of
interrupts.

Switch on "Delay interrupts" means that all occurring interrupts are
recorded and interrupts already present remain recorded.
Processing of the recorded interrupts, however, is not started. l)
The block and command boundaries are deactivated for interrupt
processing. Only if OB 2 (process interrupt) or a time interrupt OB
has already been started, will processing of this OB be brought to an
end.

Switch off "Delay interrupts" means that all interrupts recorded are
nested at the next block or command boundary and processed.

l) A collision of two time interrupts occurs if a specific time in-
terrupt is called a second time within the "Delay interrupts"
stage .

In a control w r d with the following assignment, bits are set by OB
120 and OB 122 to indicate interrupts to be disabled or delayed:

Bit 2O : time interrupts

Bit 22: process interrupts

Bits 2l, 23 through 231: reserved; these bits must equal "On!

Meaning :
As long as bit 2O equals 1, all the occurring time interrupts are
disabled or delayed.
As long as bit 22 equals 1, all the occurring process interrupts are
disabled or delayed.
If bit 2O as well as bit 22 are set to "l", no time interrupt nor
process interrupt are recorded.

Parameters:

1. Accu 2-L: function identifier
possible values: 1, 2 or 3

2. Accu 1: new control word or mask

Accu 2-L

1

2

3

Accu
before

control
word

mask

mask

~

. l
after

control
word

new
control
word

new
control
word

Function :

The contents of accu 1 are loaded into
the control word

Every bit marked in the mask in accu 1
with "1" is set to "l" in the control
word. The new control word is loaded
into accu 1.

Every bit marked in the mask in accu 1
with "1" is set to "0" in the control
word. The new control word is loaded
into accu 1.

Errors :

- illegal function identifier in accu 2-L

- one of the reserved bits in accu 1 (2l, 23 through 231) equals "1"

In the case of an error, OB 31 (other execution time errors) is called
and an error identifier transferred to accu 1:

1A47H for OB 120
1A48H for OB 122

Remarks :

- The state of the control word can be scanned using the following
program sequence:
1. Load function identifier 2 or 3 into accu 2-L
2. Load value "0" into accu 1
3. Call up special-function OB 120/122
4. Read accu 1

- The state of the interrupt processing can also be determined by
reading the system data words RS 131 and RS 132.

RS 131 Condition code word "Disable all interrupts" (OB 120)
RS 132 Condition code word "Delay all interrupts" (OB 122)

- To disable and enable the process interrupts you may use the
commands IA and RA in lieue of OB 120:

IA corresponds to :L KB2
:L KM00000000 00000100
: JU OB120

RA corresponds to :L KB3
:L KM00000000 00000100
:JU OB120

6.8 - 2 Switch @off "Disable individual time interruptsw (OB 121) and
switch on/off "Delay individual time interruptsw (OB 123)

Using the special-function organization blocks OB 121 and OB 123, you
can prevent specific time interrupt OBs from being nested at one or
more subsequent block or command boundaries. You may specify, for
example, that a specific program section cannot be interrupted by an
OB 10 (10 ms) or OB 11 (20 ms). All other programmed time interrupts,
however, are processed as usual.

OB 121: switch @off "Disable individual time interrupts"

The special-function organization block OB 121 influences the
reception of time interrupts:

Switch on "Disable individual time interrupts" means that from that
point in time onwards no more time interrupts are recorded and those
interrupts that have already been recorded (which are waiting e.g. for
a block boundary) are erased. Only if a time interrupt OB has already
been started, is processing of this OB brought to an end.

Switch off "Disable individual time interrupts" means that all time
interrupts occurring are immediately recorded, nested at the next
block or command boundary and processed again (according to setting in
DX 0).

OB 123: svitch on/off "Delay individual time interrupts"

This special-function organization block influences the processing of
specific time interrupts.

Switch on "Delay individual time interrupts" means that all occurring
interrupts are recorded and time interrupts being already present
remain recorded. Processing of the time interrupts being marked in the
control word, however, is not started.l)
The block and command boundaries are deactivated for the processing of
these interrupts. Only if one of these time interrupt OB has already
been started, is processing of this OB brought to an end.

Switch off "Delay individual time interrupts" means that all in-
terrupts recorded are nested at the next block or command boundary
(according to setting in DX 0) and processed.

In a control vord with the following assignment, bits are set by OB
121 and OB 123 to indicate interrupts to be disabled or delayed:

Bit 2O: must be "0"
Bit 2l: must be "0"
Bit 22: must be "0"
Bit 23: time interrupt 10 ms (OB 10)
Bit 24: time interrupt 20 ms (OB 11)
Bit 25: time interrupt 50 ms (OB 12)
Bit 26: time interrupt 100 ms (OB 13)
Bit 27: time interrupt 200 ms (OB 14)
Bit 28: time interrupt 500 ms (OB 15)
Bit 29: time interrupt 1 sec (OB 16)
Bit 21°: time interrupt 2 sec (OB 17)
Bit 211: time interrupt 3 sec (OB 18)
Bit 212: must be "OT1
Bit 213: must be "On
Bit 214: must be lfOT1
Bit 215: must be "0"

As long as a bit is set to "l", will the corresponding time interrupt
remain disabled or delayed.

Parameters:

1. Accu 2-L: function identifier
possible values: 1, 2 or 3

2. Accu 1: new control word or mask

before

control I
. l
after

control
word

new
control
word

Function :

mask

The contents of accu 1 are loaded into
the control word

new
control
word

Every bit marked in the mask in accu 1
with "1" is set to "1" in the control
word. The new control word is loaded
into accu 1.

Every bit marked in the mask in accu 1
with "1" is set to "0" in the control
word. The new control word is loaded
into accu 1.

Errors :

- illegal function identifier in accu 2-L

- one of the reserved bits in accu 1 equals "1"

In the case of an error, OB 31 (other execution time errors) is called
and an error identifier is transferred to accu 1:

1A4AH for OB 121
lA4BH for OB 123

Remarks :

- The state of the control word can be scanned using the following
program sequence:
1. Load function identifier 2 or 3 into accu 2-L
2. Load value "0" into accu 1
3. Call up special-function OB 121/123
4. Read accu 1

- The state of the interrupt processing can also be determined by
reading the system data words RS 135 and RS 137.

RS 135 Condition code word
"Disable individual time interrupts" (OB 121)

RS 137 Condition code word
"Delay individual time interrupts" (OB 123)

6 .8 .3 Set C y c l e Time (OB 221)

By calling this special function you can alter the monitoring of the
max. cycle time, (standard preset value 150 ms), to a new value.
The timer for the monitoring is also restarted when the call is exe-
cuted: The current cycle, i.e. the cycle in which OB 221 was called
for the first time, is extended by the new value, beginning from the
time when the special function is called. The cycle time of all sub-
sequent cycles corresponds to the new value (= the time value you
transfer to accumulator 1).

Parameters:

1. Accumulator 1: new cycle time (in milliseconds)
possible values: 1 ms - 6000 ms

Errors :

- cycle time specified not in the range between 1 ms - 6000 ms.

Note:

The special function OB 221 was adopted from the S processor for
reasons of compatibility and should not be programmed in the CPU 928.
Instead, it is advisable to program this system function in DX 0 (see
Chapter 7).

6.8.4 Restart C y c l e Time (OB 222)

The special function OB 222 is responsible for retriggering the cycle
time monitoring, i.e. the timer for this monitoring is restarted.
Calling this special function means that the max. permitted cycle time
is extended by the value set (150 ms as a standard value or specified
in DX 0) beginning from the time of the call was made.

Parameters: none

Errors: none

6.8.5 Compare Start-up Modes (OB 223)

If OB 223 is called - e.g. during the start-up or at the beginning of
the cyclic program - a check is carried out in multiprocessor opera-
tion to establish whether or not the start-up modes of & processors
involved are identical.

If this is not the case the procesor in which OB 223 was called will
detect an execution time error. OB 31 is then called. Accu 1 contains
the error identification 1A3B (hex.). If OB 31 has not been
programmed, the processor goes into the STOP state signalling an LZF
error. Its STOP LED flashes slowly whereas the remaining processors go
into STOP with their LED'S permanently lit.

Parameters: none

Errors: none

6.8.6 Transfer Interprocessor Comrmmication (IPC) Flags as a Block
(OB 224)

The IPC flags specified in DB 1 are transferred, in multiprocessor
operation, if the processor receives the signal allowing access to the
1/0 bus.

If several processors attempt to access the bus simultaneously the
coordinator will output the bus enable signal to one processor after
the other. In this case the processor may only transfer one byte each
time it is given access. This interleaved-transmission may cause IPC
flag information which belongs together to be seperated and in incor-
rect values being used.

By calling the organization block OB 224 you can transfer all IPC
flags specified in DB 1 of the processor as a block: As long as a
processor is transferring IPC flags an interruption by another pro-
cessor will not be possible. Since the next processor will have to
wait until transmission is possible, cyclic program processing will
be delayed by this time (cycle time!).

OB 224 ensures that the complete interprocessor communication flag
information remains together. It must be called during the start-up
program.

a) for all processors involved in IPC flag transfer and
b) for all types of start-up mode used.

Parameters: none

Errors: none

Note:

The special function OB 224 was adopted from the S processor for
reasons of compatibility and should not be programmed in the CPU 928.
Instead, it is advisable to program this system function in DX 0 (see
Chapter 7).

6.8.7 Read Word from the System Program (OB 226)

The system program of the processor has a length of 64 X 21° words and
is located in a memory area which you cannot access with STEP5 com-
mands. However, access is possible using OB 226.

Parameters:

1. Accumulator l-L: address of system program storage location
to be read

Errors: none

After calling OB 226

- the word read is in accumulator 1, right-justified,

- the remaining contents of accumulator 1 are erased,

- the previous contents of accumulator 1 (i.e. the word address) are
now in accumulator 2,

- the previous contents of accumulator 2 are lost.

For more information about OB 226, please refer to the description of
OB 227 and the program example.

6.8.8 Read Check Sum of System Program (OB 227)

The special function organization block OB 227 loads the cross-check
sum from the system program memory area in accumulator 1.

Parameter: none

Errors: none

After calling OB 227

- the check sum read (1 word) is in accumulator 1,
right- justified,

- the remaining contents of accumulator 1 are erased,

- the previous contents of accumulator 1 are in accumulator 2,

- the previous contents of accumulator 2 are lost.

You can check the contents of the system program during cyclic program
processing by

* reading the individual storage locations of the system program
using OB 226,

* adding all storage locations with fixed point addition (command
+F),

* reading the check sum using OB 227 and then

* comparing the check sum read with the sum obtained by fixed point
addition.

Program example

NAME: CHECKSUM

:L KHOOOO
:T W254
:T FW252

MOOl :L FW252
:JlJ 0B226
:L FW254
: +F
:T FW254

:L W252
:L KF+1
: +F
:T FW252

:L KHOOOO
: X F
: JC =MOO1

:JlJ 0B227
:L W254
: !=F
: BEC

: STP
: BE

clear check sum flag
clear address counter

load address of storage location to be read
read word
load check sum flag
add
store check sum flag

increment address counter

if address counter is not '0'

jump to mark MOOl

if address counter is 'O', read check sum
load check sum flag
if identical, block end

if not identical, stop command

6 . 8 . 9 Read Status Information of Program Level (OB 228)

The system program will call the appropriate program level if a parti-
cular event occurs. This means that the program level is then
'activated'.

The organization block OB 228 helps you to specify, whether a certain
program level is activated at a certain time or not. You transfer the
number of the program level, the status of which is to be scanned in
accumulator 1. (The numbers correspond to these numbers entered in the
ISTACK under the heading 'LEVEL'.) When the special function is
called, OB 228 will transfer the status information of the level
specified to accumulator 1.

Parameters:

1. Accumulator l-L: number of program level
(Cf. ISTACK, LEVEL)

possible values (hexadecimal):
02 = cold restart
04 = cycle
06 = time interrupt 5 sec
08 = time interrupt 2 sec
OA = time interrupt 1 sec
OC = time interrupt 500 ms
OE = time interrupt 200 ms
10 = time interrupt 100 ms
12 = time interrupt 50 ms
14 = time interrupt 20 ms
16 = time interrupt 10 ms
18 = not used
1A = not used
1C = controller
1E = not used
20 = not used
22 = not used
24 = process interrupt
26 = not used
28 = not used
2A = not used
2C = abort
2E = not used
30 = collision of two time interrupts
32 = controller error
34 = cycle error
36 = not used
38 = command code error
3A = execution time error
3C = addressing error
3E = acknowledgement delay
40 = not used
42 = not used
44 = manual warm restart
46 = automatic warm restart

Errors: none

After calling OB 228

- the status information is in accumulator 1:

contents of accumulator 1 = 0: program level has not been called

contents of accumulator 1 # 0 program level has been activated

- the previous contents of accumulator 1 are in accumulator 2,

- the previous contents of accumulator 2 are lost.

This means that your program can be executed dependent on the status
of another program level.

You want an acknowledgement delay ignored during the cold restart,
however, not in the other program levels.

At the beginning of OB 23 you call the special function organization
block OB 228 to determine whether the program level COLD RESTART
(number 02) was activated when acknowledgement delay occurred or not.
Further error handling will now be dependent on the status information
obtained:

Accu 1 = 0: COLD RESTART passive ---> acknowledgement delay did
not occur during the
cold restart

---> error program will have to
be run

Accu 1 # 0: COLD RESTART active ---> acknowledgement delay
occurred during the
cold restart

---> acknowledgement delay can
be ignored

OB 228 allows errors to be handled differently, depending on the
situation.

6.9 Functions for Standard Function Blocks
(OB 230 through OB 237)

The special function organization blocks OB 230 through OB 237 are
reserved for handling functions and can only be called in the standard
function blocks FB 120 through FB 127.

These standard function blocks (known as "handling blocks1') control
data transfer across the page area in multiprocessor operation: They
are used if data or parameters as well as control information are to
be transmitted from or to the communications processors.

Overview

The handling blocks are available as a software product on floppy disk
and their use is described in detail in "Programmable controller S5-
135U handling blocks for R processor and CPU 928" (Order number:
C79000-B8576-C366-XX).

Hand l ing
block

SEND

RECEIVE

FETCH

CONTROL

RESET

SYNCHRON

SEND ALL

RECEIVE ALL

Standard
function block

FB 120

FB 121

FB 122

FB 123

FB 124

FB 125

FB 126

FB 127

Special-function
organization block

SF-OB 230

SF-OB 231

SF-OB 232

SF-OB 233

SF-OB 234

SF-OB 235

SF-OB 236

SF-OB 237

6.10 Shift Register

A software shift register consists of rows of 8-bit wide storage
locations. The length of this register is between 1 and max. 256
storage locations.

The data of a shift register is in the data block RAM of the pro-
cessor. Each shift register is invariably assigned to a specific data
block: both of them have the same number (permissible: 192 through
255). When you have set up a shift register with for instance number
210, the appertaining data is contained in data block DB 210.

The DB-RAM contains approx. 23K words (address KH 8000 to KH DD7F).
The data blocks copied by means of OB 254 and 255 (from KH 8000
onwards, ascending) and the shift registers created by the user (from
KH DD7F onwards, descending) are located in this area. If the memory
area of the DB-RAM is insufficient when copying DBs or creating shift
registers, the processor identifies an execution time error and will
call OB 31. Further reaction depends on how OB 31 is programmed (see
'Other execution time errorsr).

You can write data into the shift register or read data from it. This
is done by means of the "pointers": pointers are flag bytes which
contain the contents of individual locations of a shift register.

The following figures show the principle of the software shift
register.

Pointer l Pointer 2 Pointer 3

Fig. 6-1: Schematic dia~ram of the shift repister with 3 pointers and
12 storage locations

The first pointer (= base pointer) is permanently set on the first
storage location of the shift register. The number of this flag byte
is specified by the user. All other pointers are then positioned
relative to the base pointer. Between 1 and 6 pointers max. are
possible per shift register.

When a shift register is processed the information is transferred from
one storage location to the next byte per byte - just as in a hardware
shift register (see fig.). This means that each time the shift
register function is called information is shifted by exactly 1
storage location (C 1 clock pulse), and the pointers are supplied with
new contents. As shown by the arrows the information is 'shifted
through' the complete shift register to the last storage location.
From there the information will again be transferred to storage loca-
tion l, (after 12 cycles for the shift register illustrated below).

Example :

The following illustrations show how information is shifted within a
shift register.

The flag bits are set in the pointers before the special functions are
called:

set flag bit 0 of pointer 1 :S FO.0
set flag bit 3 of pointer 2 :S F1.3
set flag bit 2 of pointer 3 :S F2.2

Then the shift register function is called : JU OB 241

Pointer l Pointer 2 Pointer 3

Fig. 6-2: Schematic dia~ram of the shift renister with 3 pointers and
12 storane locations before the first clock ~ulse

After the special functions have been called the information in the
storage locations 8-bit wide is shifted by one location:

Pointer l Pointer 2 Pointer 3

Fig. 6-3: Schematic diagram of the shift register with 3 pointers and
12 storane locations after the first clock pulse

Evaluation of the information now in the pointers is possible by means
of :L FY 0 etc.

Flag bits 0, 3, and 2 may be scanned at the base pointer: This allows
the complete information in the entries in all pointers to be eva-
luated at the base pointer (for our example this required 12 clock
pulses).

If you want to use a shift register there are 3 special function
organization blocks available:

OB 240: This function initializes a shift register,

OB 241: This function processes a shift register.

OB 242: This function erases a shift register.

6.10.1 Init ial ize Shift Register (OB 240)

Before processing a shift register it must be initialized first. This
is done by calling OB 240 once (ideally in a start-up organization
block).

The parameters which OB 240 requires in order to create a shift regis-
ter are contained in a data block with the number of the shift regis-
ter to be initialized. DB numbers are possible between 192 and 255.

The data block has a fixed structure which must not be changed. It can
have a max. length of 9 data words (DW 0 through DW 8).

The individual data words must be assigned as follows:

0

Shift register length (bytes)

Number of 1st flag byte

Spacing n2

Spacing n3

Spacing nq

Spacing n5

Spacing ng

0

Fig. 6-4: Structure of the data block for the initialization of a
shift register

Data word 0: Contents must always be 0.

Data word 1: The shift register length is the number (in bytes) of
storage locations of the shift register. It can be in
the range between 2 L 5 256.

Data word 2: The number of the first flag byte determines the base
pointer and thus the flag block assigned to the
pointers. If, e.g., you assign two pointers this means
that together with the base pointer you have three
pointers. Then the flag byte specified in the data
block as well as the two following flag bytes will be
reserved.
Make sure that you still have a sufficient number of
flags available for all pointers until the end of the
flag block.

Data word 3
throunh 7 (max.):

Spacing (in bytes) of pointers to base pointer:

n2 = spacing of pointer 2 to base pointer
n3 = spacing of pointer 3 to base pointer
nq = spacing of pointer 4 to base pointer

etc.
(5 entries max.)

Data word
after last
pointer spacing:

(DW 8 for our example) Contents must always be 0.

If only two other pointers are required in addition
to the base pointer the '0' will be contained in
data word DW 5 etc..

All information will be available as fixed point numbers.

lJ!woR!rAm!
* The number of pointers (incl. the base pointer) must not exceed

the length of the shift register!

* The spacing of a pointer to the base pointer must not exceed
the length of the shift register.

* The contents of data word DV 0 and the data word after the last
pointer spacing must always be ' 0 ' .

* The data block must be programmed and called before OB 240 i s
called!

By calling OB 240 a certain memory area at the end of the data block
RAM will be reserved and initialized using the information from this
particular data block.

Memory requirements:

n = shift register length/2 + 8 data words

are required for every shift register, i.e. the length of the DB-RAM
is reduced by n data words. The data block RAM end address is shifted
to the lower addresses.

If a shift register which is to be initialized exists already, the
area already assigned will be initialized again if the new and the
already existing shift registers have identical lengths. If not, the
old area is declared invalid and a new area will be opened.

Parameters:

1. data block called
possible values: DB no. 192 - 255

Errors :

- illegal data block number (<192, >255)

- existing memory location in the DB-RAM insufficient

- formal error in the structure of the data block

- illegal length stated for the shift register

- parameter assignment error at pointers

If an error occurs the processor identifies an execution time error
and will call OB 31. Further reaction depends on the programming of OB
31 (see 'Other execution time errorsr).
If OB 31 has not been programmed the processor will stop. Error iden-
tifiers are written in accumulator 1 and supply a more detailed expla-
nation of the errors.

6.10.2 Process Shift Register (OB 241)

The special function organization block OB 241 processes a shift
register providing it has been initialized first by OB 240.

Max. 64 shift registers can be called in the CPU 928.

Parameters:

1. Accumulator l-L: number of shift register to be processed
possible values: 192 - 255

Before OB 241 is called, certain flag bits are usually set/reset in
the pointers.

The information is shifted byte by byte from one storage location to
the next higher storage location every time OB 241 is called, and the
pointers are supplied with new contents. Calling OB 241 repeatedly
allows information to be 'shifted throughf the complete shift register
to the last storage location. From here it will again be transferred
to storage location 1.

After OB 241 has been called the pointers (6 max. per shift register,
positioned at any point required, except for the base pointer) will be
supplied with the information of the neighbouring storage location.
Evaluation of this information is now possible.

Errors :

- illegal shift register number in accumulator 1

- shift register has not been initialized

If an error occurs the processor identifies an execution time error
and will call OB 31. Further reaction depends on how OB 31 is pro-
grammed (see 'Other execution time errorsr). If OB 31 has not been
programmed the processor will stop. Error identifiers are written in
accumulator 1 and supply a more detailed explanation of the errors.

6.10.3 Erase Shift Register (OB 242)

This special function is used to 'erase' a shift register in the data
block RAM: the entry in address list DB 0 is erased and the corre-
sponding shift register in the DB-RAM is declared invalid. (Note: The
shift registers that have been erased still take up memory space!)

Parameters:

1. accumulator l-L: number of shift register to be erased
possible values: 192 - 255

After calling OB 242 the shift register will be erased and can no
longer be used; if it is to be used again it will have to be re-
initialized.

Errors :

- illegal shift register number in accumulator 1

- shift register has not been initialized

If an error occurs the processor identifies an execution time error
and will call OB 31. Further reaction depends on how OB 31 is pro-
grammed (see 'Other execution time errors'). If OB 31 has not been
programmed the processor will stop. Error identifiers are written in
accumulator 1 and supply a more detailed explanation of the errors.

6.11 Control: PID Algorithm

This chapter is only for those users who wish to work with
PID controllers!
If you do not, the information contained in this
chapter will not be required!

You can call one or more PID controllers in the CPU 928 of the S5
135U.

Each of the controllers must be initialized in the start-up organiza-
tion block. A data block is used for the transfer of parameters.

The actual control algorithm is integrated in the system program and
the user may only call it as an organization block. The data block
again serves as the data interface between the control algorithm and
the user program.

Functional description of the PID controller

Z M a n u a l input: Input of YH if S 3 is in 0 position
lnput of d Y H if S 3 in 1 position

I I
I I
I I
I I
! I
I

I

I
I

I
I

I
I

I
I

I
I

W i
I

I
b

b
PID

I
I a l g o r i t h m
I S 3

0 -X W
YA (S3 in

I
I

Y

I
/
/ I

I -r S 1 . + + A A

I
X 2 i

1
I

I I
I I
L-----------------------.--------------------A

Fig. 6-5: Block dianram of the PID controller

B8576633-01

Index k: k X sampling

A function which corresponds to the switch positions of this block
diagram is obtained by assigning parameters to the PID controller,
i.e. setting the control bits in the control word, STEU.

Switch

S1
STEU bit 1

S 2
STEU bit 0

S 3
STEU bit 3

S 4
STEU bit 4

The continuous controller is intended for fast controlled systems
e.g. in process engineering for pressure, temperature or flow rate
control.

The controller itself is based on a PID algorithm. The output signal
can either be output as a manipulated variable (position algorithm) or
as a change of the manipulated variable (velocity algorithm).

Position

1

0
1

0
1

0
1

The individual P, I, and D actions may be disabled via their respec-
tive parameters R, TI, and TD if the corresponding locations are
preset with zero. This allows simple implementation of all desired
controller structures, e.g. PI, PID or PD controllers.

Effect

The derivative unit is supplied with the
error signal XWk.
The derivative unit can be supplied with
another signal via X Z .

Manual operation
Automatic

Position algorithm
Velocity algorithm

With feedforward control
Without feedforward control

The derivative unit can be supplied either with the error signal XW or
(via the X Z input) any disturbance or the inverted actual value -X.

If a precontrol of the actuator without dynamic behavior is required
to compensate for the influence of a disturbance then a disturbance 2,
which can be measured in the process, can be fed forward to the
control algorithm. In manual operation this is replaced by the pre-
selected manipulated variable YN.

If an inverted control direction is required a negative K value must
be preset.

If the control information (dY or Y) reaches a limit the I action is
automatically disabled in order to prevent a deterioration of the
controller response.

The controller program may be supplied with preset fixed values or
adaptive (dynamic) parameters (K, R, TI, TD). They are input via the
storage locations assigned to the individual parameters.

The PID controller is based on a velocity algorithm according to which
the respective positioning increment dYk is calculated at a particular
point in time t = k*TA according to the following formula:

P action I action D action

dXXXk: Change of variable XXX at time t.

U may either be W or Z, depending on, whether XW or XZ is supplied to
the derivative unit. The following applies:

If XWk is supplied: If XZ is supplied:

If the manipulated variable Yk is required as the controller output at
time tk it is calculated according to the following formula:

With most controller designs it is assumed that R = 1 if a P action is
desired.

The variable R allows the adjustment of the proportional action of the
PID controller.

Data blocks for the PID controller

Control ler spec i f i c data a r e input using a t r ans fe r data block (see
sec t ion 4 .10 .1 and 4.10.2 f o r i n i t i a l i z a t i o n and processing of the
PID c o n t r o l l e r) .

These data must be prese t i n the t r ans fe r data block X:

K, R, TI, TD, W, STEU, YH, BGOG, BGUG

The s t ruc tu re of the t r ans fe r data block i s described i n d e t a i l i n the
remainder of t h i s sec t ion . This data block must cons is t of 49 data
words with numbers from 0 through 48.

Structure of the transfer data block

Addr .
in DB

Numerical
format

-

FLP

FLP

FLP

FLP

FLP

BP

FLP

FLP

FLP

NF

PG
format

Remarks

reserve

proportional coefficient
K > 0: positive control

direction, i.e.
change of actual
value and manip .
variable in same
direct ion

K < 0: negative control
direction, floating
point number range

R parameter, usually = 1
for controllers with P
action; floating point
number range

TI = TA/TN;
floating point number range

TD = TV/TA;
floating point number range

setpoint input here,
if STEU bit 6 = 1, if not
in word no. 19 (-15 Wk <l)

control word

manual value input here,
if STEU bit 6 = 1, if not
in word no. 18 (-15 YHk <l)
value of manip. variable
increments must be input here
for velocity algorithms

upper limit value
-1 5 BGOG 5 1 (YAbax);

! ! BGUG < BGOG !!

lower limit value
-1 5 BGUG 5 I (YAbin);

manual value input here,
if STEU bit 6 = 0,
(-1 5 YH < 1)
value of manip. variable
increments must be input here
for velocity algorithms

setpoint input here,
if STEU bit 6 = 0
(-1 5 Wk < 1)

Addr .
in DB

Name Remarks

bit 0 = 1: positive limit
exceeded;
bit 1 = 1: negative limit
undershot

actual value input for
STEU bit 7 = 0 (-l< Xk <l)

actual value input for
STEU bit 7 = 1 (-l< Xk <l)

disturbance (-l< Zk <l)

disturbance input here if
STEU bit 7 = 1 (-15 Zk <l)

historical value of
disturbance

value supplied to the
derivative unit via input
xz (-15 XZk <l);
input here if STEU bit 7=0

XZ input here, if STEU
bit 7 = 1 (-15 XZk < 1)

historical value of XZk

xzk-l - XZk-2

derivative act ion

historical value of
error signal

Xwk-l - Xwk-2
reserve

historical value of
manipulated variable
calculated Yk-l or
dYk-l before the limiter

output variable

output variable
BGUG < YA < BGOG

1 / 0

I

I

I

I

I

I

-

Q

Q

t

Numerical
format

BP

NF

FLP

NF

FLP

FLP

NF

FLP

FLP

FLP

FLP

FLP

FLP

-

FLP

FLP

NF

I

!

PG
format

KM

KF

KG

KF

KG

KG

KF

KG

KG

KG

KG

KG

KG

-

KG

KG

KF

proposed format
(KH, KM also permissible)

+--------- FLP = floating point number,
NF = normalized fixed-point number

I = input, Q = output

Assignment of the control vord STEU (data word DV 11 in the transfer
DB)

bit no. 'F
CTR-OFF

Significance

= 1: automatic operation
= 0: manual operation

= 1: Another variable which must not be XWI, is
supplied to the derivative unit via XZ input.

= 0: XWk is supplied to the derivative unit.
The XZ input is ignored.

= 1: When the controller is called (OB 251) all
variables (DW 20 through DW 48) except K, R,
TI, TD, BGOG, BGUG, STEU, YHk, Wk, Zk and
Zk-1 in the DB-RAM are erased once. The
controller is disabled. The previous value of
the disturbance is updated.

= 0: Controller on

IVELOC I = 1: Velocity algorithm
= 0: Position algorithm

MAN

NO-Z

PGDG

V W L F

BUMP

= 1: The manipulated variable output last is
retained if VELOC = 0 (position algorithm).
The positioning increment dYk is set = 0 if
VELOC = 1 (velocity algorithm).

= 0: If VELOC = 0 the value of manipulated
variable YA output is brought exponentially in
4 sampling steps to the manually value set
after switchover to manual operation. Then
further manually set values are accepted
directly at the controller output. If VELOC
= 1 the manually set values are immediately
enabled at the controller output. The limits
are valid for manual operation. The following
variables are updated during manual oper.:
1) Xk, XWk-1, and PWk-l
2) XZk, XZk-1, and PZk-l if STEU bit 1 = 1
3) Zk and Zk-1 if STEU bit 5 = 0
The variable dDk-l is set = 0. The algorithm
is not calculated.

= 1: No feedforward control
= 0: With feedforward control
= 1: Wk-, YHk input as floating point number
= 0: input as left point number
= 1: The variables Xk, XZk, and Zk are input as

floating point number
= 0: Input of variables as normal fixed-point number
= 1: No bumpless changeover manual-automatic oper.
= 1: Bumpless changeover manual-automatic oper.

11.9 to 11.15 Without significance

l) Only relevant for manual operation (AUTO = 0).

6.11.1 Initialize PID Algorithm (OB 250)

OB 250 initializes the PID algorithm and is called in the start-up
OB's 20/21/22.

The parameters required for the initialization are contained in the
transfer data block (DB X).

l H P o R r n !
The transfer data block must be called before OB 250 is called.

For data transfer each controller requires its own DBx (X 5 254). The
system program automatically generates a further DB X + 1 by copying
the DB X into the data block RAM. This block is used by the controller
as a data field in cyclic operation, the corresponding DB numbers must
still be available. The data blocks DB X + 1 are the data interfaces
between the controller and the user or I/O's.

Internally OB 250 uses OB 254 or OB 255 (duplication of data blocks).
If an error occurs the processor recognizes an execution time error
and will call OB 31. If OB 31 is not programmed the processor stops.
The error identifiers in accumulator 1 then refer to OB 250.

Note! If DB X + 1 is not kept free during the initialization it will
be used as a controller data field without any warning, that is, as
long as its length is identical with that of a controller DB (48 data
words); data words 20 through 48 will be erased. Otherwise the
processor will stop.

Use of extended data blocks DX is possible instead of DB data blocks.
Initialization is similar to that of DB data blocks.

6.11.2 Process PID Algorithm (OB 251)

OB 251 is called during cyclic program execution and processes the PID
algorithm.

The controller should be called after the sampling time has elapsed.
Keep to the following order:

Call data block DB X + 1

Load input data Xk, XZk, Zk, and YHk or a subset of these

Convert input data to the correct format and transfer to DB X + 1

Call OB 251 (process PID controller)

Load output data YAk from DB X + 1

Convert data and transfer to process I/O.

Format of controller inputs and outputs

Internally the PID control algorithm uses the floating point format
for numerical representation and may be supplied with floating point
values. Supply of the PID controller algorithm is also possible using
the normalized fixed-point format (see bit 6 and 7 in control word
STEU). If this is used the controller will automatically convert the
words to the floating point format with every call.

Adaptation of words from the input and output modules in the STEP5
program is faster if the left point format is used.

W, YH, X, Z, and XZ may be input either as floating or left point
numbers. Different memory locations have been reserved for each
variable in the data transfer block.

Input as normalized fixed-voint number

For explanations referring to the normalized fixed-point number: see
the relevant paragraph.

Note! While keeping within the nominal input ranges of the analog
input modules do not forget that the bit pattern for a certain input
value differs from when the full input range is used. Taking this fact
into consideration is extremely important when it comes to adjusting
the setpoint. Otherwise it is possible that a setpoint input via the
PG will not be reached although the actual value may far exceed the
desired value.

If the analog-to-digital converter used supplies the negative numbers
as number and sign it is important that the two's complement is formed
from these values before transferring them to the controller DB. After
that the binary digit 15 will have to be set = 1.

If the number -0 is possible as number and sign in the form of

for the analog-digital converter used, this must not be converted to
two's complement. The number must be transferred to the controller DB
as +0:

The controller output YA exists in the DB as a normalized fixed-point
and a floating point number. Taking into account the input and output
modules used (ADC, DAC), the format must be converted for normalized
fixed-point inputs and outputs before and after the controller is
called in the STEP5 user program before they are transferred to or
from the controller DB.

General notes

If STOS (STEU bit 8) is set to 0 the changeover from manual to automa-
tic operation will be bumpless; i.e. an error signal of whatever value
is corrected by the I action only. However, if TI = TA/TN is selected =
0 (P or PD controller) the error signal will not cause a change of the
manipulated variable when the changeover takes place.

This can be prevented by means of setting STOS = 1. This means that an
error signal is corrected quickly when there is a manual-automatic
changeover, irrespective of TI = 0. The manipulated variable jump thus
created corresponds to the value of the error signal, which means that
it is not arbitrary in the sense of a disturbance of controller
operation.

Bit 0 and 1 of MERK can be displayed, if desired, in order to show
that the manipulated variable (for velocity algorithm the positioning
increment) lies between the upper and lower limits. Since these bits
are evaluated by the algorithm for disabling the I action, overwriting
is not permitted.

Reloading of controller data blocks DB X + 1 during cyclic operation
is not permitted.

If two or more controllers are cascaded the following is to be taken
into cons iderat ion :

- If the cascade is split either all controllers will have to change
to manual operation simultaneously in order to prevent any con-
troller drift due to the I action or at least the controller of the
outer loop must be operated manually in order to ensure that the
last manipulated variable, which corresponds to the setpoint of the
inner loop, is maintained or changed to a safe value.

- If the cascade is to be closed both loops should simultaneously go
over to automatic or at least the inner circuit in order to ensure
that the manipulated variable of the outer circuit is taken as the
setpoint.

If the controlled system is disconnected from the controller and
directly adjusted at the actuator following changeover to manual
operation then the manipulated variable thus obtained must be supplied
to the controller via the manual input. This in turn ensures that when
the changeover from manual to automatic operation is made the con-
troller output will correspond to the manipulated variable set during
manual operation. In the case of the velocity algorithm this will be
the change of the manipulated variable.

Controller parameters

P controller

The parameter for a P controller is K. K is the quotient of output
and input value: K = Xout/Xin.

PI controller

The parameters for a PI controller are the proportional coefficient K
and the reset time TN. The proportional coefficient K is the quotient
of output and input value and determines the P action. The reset time
TN is the time required to respond achieve the same change in the
manipulated variable due to the I action as is brought about by the P
act ion.

PD controller

The parameters for a PD controller are the proportional coefficient K
(see above) and derivative time constant TV. The derivative time
constant is the time a P controller would require with a constant rate
of change of the input variable in order to bring about the same
change in the output variable that is brought about immediately by the
B action of a PD controller. In order to determine the derivative time
constant a linear change in the input variable is assumed and not a
jump function.

Xout

PID controller

The parameters for a PID controller are the proportional coefficient
K, the reset time TN and the derivative time constant TV. They in turn
determine the P, I, and D actions.

Parameter change

The P action of the manipulated variable is obtained on the basis of
the following formula:

P action = KPeR(XWk - XWk-1)

If K or R are changed during automatic operation this will only have
an effect on subsequent changes of the errors signal XWk. The current
value of the manipulated variable is not affected by the parameter
change. This response allows for a bumpless parameter change.
However, if this response is undesirable it may be eliminated by the
following calculation (example of a KP change). This calculation is to
be executed only once for every parameter change:

If the following program is used in the case of a parameter change the
controller will respond just as an analog controller:

:L KPnew load KPnew
:L KPold load KPold
: -G
:L DD38 m k - 1
: xG
:L DD44 Yk- l
: +G
:T DD44 = Yk-l

Abbreviations for PID controllers

dYk
dZk
FLP
k
K
NF
OG
R
TA
TD
TI
t
TN
TV
UG

Wk
Xk
mTk
Yk
y Ak
Zk

positioning increment calculated
disturbing increment
floating point representation
k times sampling
proportional coefficient
normalized fixed-point representation
upper limit (limiter)
R parameter
sampling time
TV/TA
TA/TN
sampling instant = k*TA
reset time
derivative time constant
lower limit (limiter)
setpoint
actual value
error signal
manipulated variable calculated
manipulated variable (positioning increment or man. variable)
disturbance

Normalized f ixed-point number

One word is required for the representation of a normalized fixed-
point number in a data block. The following example illustrates the
difference between a fraction represented decimally, in binary and the
representation at the programmer using the KF format.

Negative normalized fixed-point numbers in a binary representation are
obtained by creating the complement of two of positive normalized
fixed-point numbers.

Normalized fixed-point numbers (NF) may be converted to the values
represented at the programming unit (KF) on the basis of the following
relation:

Fixed point number

-32767
-24576
-16384
- 8192
0
+ 8192
+l6384
+24576
+32767

Fraction in
decimal repres . binary repres.

with -1 < NF < +l and

-0.999. .
-0.75
-0.5
-0.25
0
+O .25
+0.5
+0.75
+0.999.. .

1000000000000001
1010000000000000
1100000000000000
1110000000000000
0000000000000000
0010000000000000
0100000000000000
0110000000000000
0111111111111111

7 Extended Data Block DX 0

You have the option of adapting certain functions of the system pro-
gram to your requirements by entering different settings in the DX 0
as an alternative to the standard presettings (marked "P" in the
following table) .
The standard presettings of the system program (P) are set automati-
cally during each cold restart. DX 0 is evaluated after that. If DX 0
has not been programmed the standard presettings remain valid. If DX 0
has been programmed the settings entered by the user will be valid.

~ R ~ !
Alteraticm of or input to DX 0 will be effective onlv i f a cold
restart i s carried out.

Structure of DX 0

DX 0 is composed of three sections:

1. the start identifier for DX 0 (DW 0, 1 and 2)

2. several units of different length (depending on the number of
parameters)

3. the end identifier EEEE.

The numerical values stated correspond to the hexadecimal format.

Formal structure:

Bit no. 15 8 7 0

3 1 Field ident. 1 I Field length 1 I

t - - - - - - - - - - - - - - - -
Parameter i . .

.

* - - - - - - - - - - - - - - - -
Parameter

Parameter

Paramet er

Parameter

Field ident. 2 1 Field length 2

-
ASCII M A
characters S K

X 0

m

Field 1

Parameter

Parameter

E E E E

Field 2

Field n

End identifier

Fig. 7-1: Structure of DX 0

hamples for input of DX 0

Start identifier

Field identifier/length DW 3: KH= 0203
Parameter (occupies 1 DW) DW 4: KH= 3001 Field 1
Parameter (occupies 2 DWs) DW 5 : KH= BB00

DW 6: KH: 0000

Field identifier/length DW 7: KH= 0402
Parameter (occupies 2 DWs) DW 8: KH= 1000 Field 2

DW 9: KF= 4000

End identifier DW10 : KH= EEEE

One field in DX 0 consists of 1 to n data words.

These contain - the field identifier
- the field length
- the field parameters.

The field identifier states the significance of the parameters
following. Each block is assigned to a certain system program section
or a certain system function (e.g. field identifier '04' --> cyclic
program execution).

The field length states the number of data words occupied by the
the parameters following.

The possible parameters are listed on the following pages.

Note the following points when assigning parameters to DX 0:

- The order in which you enter the individual fields is unimportant.

- There is no need to specify fields that are not required.

- If a field exists several times the field entered last is valid.

- The order in which you enter the individual parameters is
unimportant.

- There is no need to specify that are not required.

- If a parameter is specified several times the last one is valid.

nrPOBTdRTRT!
After the last field is entered DX 0 must be completed vith the end
identifier EEE!

B8576633-01

P o s s i b l e informat ion in the DX 0

START-UP and RUN

Field
identif .
/length

1000 l P Automatic warm restart after "power on"

Parameter Significance l)

1001

2000

1 3000 I P Addressing error monitoring

Automatic cold restart after "power on"

P Synchronization of start-up for
multiprocessor operation

2001 No synchronization of start-up for
multiprocessor operation

3001

6000

Presetting: yyyy = 256 timer locations,
i.e. 0 to 255

permissible: 0 to 256

No addressing error monitoring

P Floating-point arithmetic with 16-bit
mantissa (optimized speed)

6001

BB00 yyyy

l) P = Presetting if no DX 0 has been loaded or if field is missing

Floating-point arithmetic with 24-bit
mantissa (optimized accuracy)

Number of timer locations to be updated

2, xx = Field length (number of data words assigned to parameters)

3, For updating of timer locations:

- The timer locations T 0 through T 255 are processed as
standard.

- If you enter the number '0' in DX 0, no timer locations
will be processed.

- If a number between '1' and '128' is entered glJ timer
locations from T 0 through T 127 will be processed. If a number
between '129' and '256' is entered timer locations from T 0
through T 255 will be processed.

Cyclic program execution:

Field
identif .
/length

Interrupt processing

Paramet er

04xx 2,

Significance l)

The parameters listed above are valid for the CPU 928
version which works only with the 100-ms time interrupt. The
new version of the CPU 928 allows up to 9 time interrupt OBs
to be programmed. For this version new identifiers for DX 0
have been provided (see next page).

1000 yyyy

4000

4001

06xx 2,

l) P = Presetting if no DX 0 has been loaded or if field is missing

Duration of cycle time in milliseconds
Presetting: yyyy = 150 ms,
permissible: 1 5 yyyy 5 1770 (hex.)

1 ms to 6000 ms (decimal)

P Updating of process image of
interprocessor communication flags
without semaphore protection

Updating of process image of
interprocessor communication flags
semaphore protected (in the field)

2, xx = Field length (number of data words assigned to parameters)

1006

1008

lOOA

lOOC

3) Note:
If you require the processing of interrupts at STEP5 command
boundaries in DX 0, do not forget that, in the case of inter-
ruptions, the commands 'TNB' and 'TNW' will not be processed
completely since they contain pseudo command boundaries. This also
applies to a small number of special function organization blocks,
standard function blocks, and controller FBs.

Processing of time, controller, and
process interrupt at STEP5 command
boundaries 3,

Processing of controller and process
interrupt at STEP5 command boundaries, of
time interrupt at block boundaries

Processing of process interrupt at
STEP5 command boundaries, of controller
and time interrupt at block boundaries

P Processing of time, controller, and
process interrupt at block boundaries

Process interrupt = process-interrupt-driven program processing
Time interrupt = time-driven program processing

By programming the new parameters in DX 0, the following settings for
the processing of interrupts are possible:

Parameters

122C P

1224 1

P = Preset value

Time interrupts I
+ a
2
k +
C .-
V)
V)
0)
0 Former
L parameters

0 Interruption at block boundaries
m lnterruption at command boundaries

Error handling:

Field
ident if.

06xx 2,

l) P = Presetting if no DX 0 has been loaded or if field is missing

Parameter

2000

2001

2, xx = Field length (number of data words assigned to parameters)

Significance l)

P Process interrupt signal, level-triggered

Process interrupt signal, edge-triggered

Collision of two time interrupts processing

P System stop, if event occurs and OB 33
has not been loaded.

No system stop, if event occurs and OB 33
has not been loaded.

Controller error processing

P System stop, if event occurs and OB 34
has not been loaded.

No system stop if event occurs and OB 34
has not been loaded.

Cycle error processing

P System stop, if event occurs and OB 26
has not been loaded.

No system stop, if event occurs and OB 26
has not been loaded.

Command code error processing

P System stop, if event occurs and OB 27/
29/30 has not been loaded.

No system stop, if event occurs and OB 27/
29/30 has not been loaded.

lOxx 2,

Command code error = Substitution error, opcode error,
parameter error

1000

1001

1200

1201

1400

1401

1800

1801

Execution time error = Call of a block that has not been loaded,
transfer error or other execution time errors

I I Execution time error processing

-

Field I Parameter identif .

P System stop, if event occurs and OB 19/
31/32 has not been loaded.

Significance l)

P System stop, if event occurs and OB 25
has not been loaded.

lAO l No system stop, if event occurs and OB 19/
31/32 has not been loaded.

Addressing error processing

I lCOl
P System stop, if event occurs and OB 23/24
has not been loaded.

No system stop, if event occurs and OB 25
has not been loaded.

I Acknowledgement delay error

l) P = Presetting if no DX 0 has been loaded or if field is missing

2, = Field length (number of data words assigned to parameters)

EEEE

lEOl No system stop, if event occurs and OB 23/
24 has not been loaded.

End identifier

Example A: Parameter assignment of the DX 0 :

You intend to use three processors for multiprocessor operation:
processors A, B, and C. Processors A and B cooperate a lot, frequently
exchange data and run an extensive start-up program. Processor C runs
a short and time-critical program and is largely independent of the
other processors.

As a standard feature, all processors start cyclic program processing
together in multiprocessor operation, i.e. the processors wait until
they have all completed their start-up procedures. Then they start
cyclic program processing together.

Since processor C executes its program independent of the other pro-
cessors and has a very short start-up Dronram no start-up synchroni-
zation is required for it. By assigning parameters to DX 0 you can
allow processor C to start cyclic program processing immediately
after the start-up has been completed, without waiting for processors
A and B.

This is how you should program DX 0:

Start identifier DW 0: KH= 4D41
DW 1: KH= 534B
DW 2: KH= 5830

1st field identifier/length DW 3: KH= 0201
Parameter 1 DW 4: KH= 2001
End identifier DW 5: K?+ EEEE

If you have loaded this DX 0 in the program memory it will be effec-
tive as soon as the next cold restart is executed. Since processor C
has an extremely short start-up program and will not wait for proces-
sors A and B the green RUN LED will come on immediately. However, the
BASP signal (command output inhibit) will not be cancelled until all
three processors have completed their start-up. This means that pro-
cessor C is denied access to the digital I/Ors.

lkample B: parameter assignment of the DX 0 :

The following parameter assignment for DX 0 is used to

a) disable address error monitoring,
b) disable timer location updating,
c) set the cycle time to 4 S.

Start identifier DW 0:
DW 1:
DW 2:

1st field identifier/length DW 3:
Parameter DW 4:
Parameter *) DW 5:

DW 6:
2nd field identifier/length DW 7:
Parameter *) DW 8:

DW 9:
End identifier DW10 :

KH= 4D41
KH= 534B
KH= 5830
KH= 0203
KH= 3001
KH= BB00
KH= 0000
KH= 0402
KH= 1000
KH= 4000
KH= EEEE

*) Parameters which occupy two data words must be counted as ' 2 ' when
the unit length is specified.

Assigning these parameters to DX 0 has the following effect on program
execution:

- The section of the process image with no 1/0 modules assigned may
be used as additional "flag area".

- The execution time of the system program is reduced since no timer
locations are updated,

- A cycle error will not be identified unless the execution time of
the cyclic user program together with that of the system program
exceeds 4 S.

8 Memory Assignment and Memory Organization

The total memory area of the CPU 928 is basically divided into the
following areas:

Width :

1. User memory
for OB, FB, FX, PB, SB, DB, DX

2 . DB-RAM
for data blocks, shift registers

3. - interface data area: RI, RJ
- system area: RS, RT
- counters: C
-timers: T

(16 bits)

(16 bits)

(16 bits)
(16 bits)
(16 bits)
(16 bits)

4. -flags: F (8 bits)
- process image of inputs and outputs: PII, PI0 (8 bits)

5. 1/0 area:
- P I/O's
- 0 I/O's
- interprocessor communication flags
- COR
- pages
- distributed I/Ots

(8 bits)

Refer to the memory assignment diagram on the following page for the
exact addresses of the areas.

IHPORTrn!
STEP5 access to a memory location vithin an operand area (e.g. flags)
should never be carried out via the absolute address of this memory
location, but always relative to the base address of the operand area.
The base addresses of all operand areas are stored in the area of the
system data (RS area) (see "system data assignment").

8.1 Address Distribution in the CPU 928

RAM or EPROM
submodules,
plugged into
the processor

User memory
32 x 21° words max.

Data block RAM
23 x 21° words

DB 0 (block address list)

Reserve

System transfer data (RI/RJ area),
system data (RS/RT area), counters,
timers

RAM, processor
internal

EEOO

EFOO

F000

FFFF S5 bus

Flags

PII/PIO area

1/0 ' S
(digital/analog,
CP/IP)

Fig. 8-1: Address distribution in the CPU 928

B8576633-01

8.1.1 Address Distribution - System RAM

E400

E500

E600

E700

E800

E900

EAO 0

EBOO

ECOO

EDOO

EDFF

D B O

Reserve

Reserve

Re serve

Reserve

RI: interface data area

I RJ: extended interface data area

I RS: system data area I
I RT: extended system data area I

Counters (256)

I Timers (256) I
EEOO 1

Flags

RAM
processor
internal

PII/PIO area
EFFF Erno 1

27 20

Fig. 8-2: Address distribution - system-RAM (16 bits)

8.1.2 Address Distribution - 1/0

F000

FCOO

FFOO

Digital 1/0

128 inputs/l28 outputs

Digital or analog
I/O (w/o PII/PIO)
128 inputs/128 outputs

Extended
I/O

Interprocessor
communication flags

COR
(32 semaphores)

Data transfer area
for CP pages

Distributed 1/0
Extended
address volume

FFFF

P area

27

0 area

Fig. 8-3: Address distribution - I/O (8 bits)

B8576633-01

Address areas for 1/0 / programming

EF80

EFFF

Fig. 8-4: Address distribution for I/O / ~roaramming

Is addressed with Parameters

L IB/T IB 0 to 127
L IW/T IW 0 to 126
L ID/T ID 0 to 124
A I/AN 1/0 I/ON I 0.0 to 127.7
S I/R I/=I

L QB/T QB 0 to 127
L QW/T QW 0 to 126
L QD/T QD 0 to 124
AQ/ANQ/O Q/ON Q 0.0 to 127.7
S Q/R Q/=Q

L PY/T PY
L PW/T PW

T PY/T PY 128 to 255
T PW/T PW 128 to 254

L OB/T OB
L OW/T OW

Area
(absolute address)

+ +
EFOO

EF7F

PI1
(process input
image)

+ +

+
PI0
(process output
image)

4.

-l +
F000

F07F

digital 1/0

inputs/outputs
+

P I/O
with process image

+
F080

FOFF

digital or analog
I/o

inputs/outputs
+

P I/O
without process image

+
F100

FlFF

extended
I/o

inputs/outputs
+ +

0 I/O

Access to the 1/0

Using STEP5 commands you can either access the 1/0 directly or via the
process image. Do not forget that a process image exists only for
input and output bytes of the P 1/0 with byte addresses from 0 to 127!

Direct access to the I/O: L/T PY, L/T PW, L/T OB, L/T OW

The inputs and outputs are read or set at the time of command proces-
sing. The outputs in the process image are corrected to match digital
1/0 (0 to 127).

Access to the I/O
via the process imane: L/T IB, L/T IW, L/T ID,

L/T QB, L/T QW, L/T QD,
A/AN/O/ON I, =A etc.

The process image only will be altered at the time of command proces-
sing. It is not until the end of the cycle that the complete new
status of the process image is output to the I/O.

8.2 Memory Organization in the CPU 928

The user memory comprises the memory area from OOOH to 7FFFH. When the
individual blocks of the user program are loaded they are deposited in
the memory in any order (ascending addresses). If the user memory is
full the data blocks will be deposited in the internal DB-RAM (8000H
to DD7FH).

Using the online function 'MEMCON' (maximum memory capacity) you will
be supplied the address (hexadecimal) of the memory location contain-
ing the block end instruction of the last block in the memory.

The 'old' block in the memory will be declared invalid (i.e. the start
identifier is overwritten) if blocks are corrected and a new block
will be entered in the memory. In a similar manner, the blocks in the
memory are not actually erased when blocks are erased, instead they
are simply declared invalid. This means that erased and corrected
blocks still occupy memory area.

The online function 'COMPRESS' eliminates all invalid blocks in
the memory and shifts the valid blocks together.

8.2.1 Block Headers in the U s e r Memory and the DB-RAM

Each of the blocks in the memory starts with a header of 5 words.

1st word: block start identifier: 7070H

2nd word: high byte = block type

01H data block DB
02H sequence block SB
04H program block PB
05H function block FX
08H function block FB
OCH data block DX
10H organization block OB

0 0 block invalid, not entered in
address list DBO

0 1 block in the RAM valid, entered in
address list DBO

Low byte = block number
The block number (0 to 255) is contained in the low byte of
the 2nd header word and is coded as a binary number:
00 to FFH.

3rd word: The identifiers for the programmer are entered in the high
byte of the 3rd word; part of the library number is entered
in the low byte.

4th word: The fourth word contains the remainder of the library
number.

5th word: The length of the block including the header is entered in
the 5th word (low and high byte). The information is in
words.

8.2.2 Block Address Lists in Data Block DB 0

The data block DB 0 contains the address list with the start addresses
of all blocks which exist in the user memory or the DB-RAM of the
processor. This address list is created by the system program after
the power is switched on and updated automatically when blocks are
altered or input with the programmer.

A n address list of 256 words exists for each block type in DB 0 which
is reserved for the corresponding block type. Blocks that have not
been loaded have the start address '0'.

The start addresses of the individual block address lists are also
entered in the system data RS 32 through RS 38:

RS 32: Initial address of DX-address list
RS 33: Initial address of FX-address list
RS 34: Initial address of DB-address list
RS 35: Initial address of SB-address list
RS 36: Initial address of PB-address list
RS 37: Initial address of FB-address list
RS 38: Initial address of OB-address list (only 48 words long)

All of the start addresses always point to the first data word
following the block header:

- in data blocks, to data word DW O!

- in code blocks, to the first STEP5 instruction!
(in FBs, to the JU command)

Entering the block addresses in DB 0 :

n = start address of PB address list (= contents of RS 36)

address PB 0

address PB 1

n+2 I address PB 2 I

addr. PB 178

addr. PB 179

If the value '0' is entered
as the address the block has
not been loaded.

This is how you determine the address of any block in the memory:

-1e: Start address of FB 40

:L RS 37 base address FB address list
:L KB 40 + FB number
: +F = address of the memory location that

contains the start address of FB 40

:LIR 1 load start address of FB 40 in accu 1
(block does not exist if start address = 0)

Example: Start address and length of data block DB 50

a) using indirect memory access

User memory:
15 7 0

0104

0105

0106

0107

0108

0109

OlOA

OlOB

OlOC

OlOD

OlOF

0110

:L RS34
:L KB50
: +F
:LIR 1
:L KBO
: !=F
: JC =NIVO
: ENT
: TAK
:L KF-1
: +F
:LIR 1

NIVO :

load base address of DB address list
calculate address of entry for DB 50
and load initial address
in accu 1

if block does not exist,
jump to NIVO marker

load start address of DB 50 in accu 3
and accu 1

reduce initial address by one,
load block length
in accu 1

Result: accu l-L: length of DB 50
accu 2-L: start address of DB 50

b) 'test data blocks (DB/DX)' using the special function OB 181

OB 181 contains the same function as described in a). In addition,
the OB will test whether the data block is located in the user
memory (RAM or EPROM) or in the DB-RAM.

:L KY1,50 data block DB 50
: JU OB181 "test data block (DB/DX)"
: JC NIVO
:JM =PROM
: JZ =ANWE
:JP =DBRA

NIVO :

: BEU

PROM :

: BEU

A N W E :

: BEU

DBRA :

: BE

data block does not exist

data block located in the
user memory (EPROM module)

data block located in the
user memory (RAM module)

data block is located in the DB-RAM

Result : accu l-L: start address of DB 50
accu 2-L: length of DB 50
RLO = 1: if DB 50 does not exist

8.2.3 IU/RJ Area

The RI area is an area of 256 words in the internal system RAM of the
processor. It occupies addresses from E800H through E8FFH.

The RJ area is an area of 256 words in the internal system RAM of the
processor. It occupies addresses from E900H through E9FFH.

The complete RI area (RI 0 to RI 255) and the complete RJ area (RJ 0
to RJ 255) is available for the user's own requirements.

The RI/RJ area is initialized only during overall reset.

8.2.4 BS/RT Area

The RS area is an area of 256 words in the internal system RAM of the
processor. It occupies addresses from EAOOH through EAFFH.

IllPOam!
Writing is only permissible to system data vords RS 1, RS 60 to RS 63
and RS 133:

- RS 60 to RS 63 are available for user requirements.

- RS 1 and RS 133 have a fixed significance and affect program
processing. Writing is only permissible if valid identifiers are
used!

lnPORTdRT!
All other system data can only be read:

- They contain information for the system programmer and non-public
system variables.

- Writing to these system data may affect the operation of the pro-
grammable controller as well as the programmer connected!

The RT area is an area of 256 words in the internal system RAM of the
processor. It occupies addresses from EBOOH through EBFFH.
The complete RT area (RT 0 to RT 255) is available for the user's own
requirements.

The RS/RT area is initialized only during overall reset.

B8576633-01

System data assignment of RS areas

XXXXXXXXXXXXX: assignment not enabled

8 - 13

Start-up error identifier indication

18

19

2 0

21

22

2 3

I PC-SW issue

End address of user module memory

Base address of system data area

Length of DB address list

Length of SB address list

Length of PB address list

EA12

EA13

EA14

EA15

EA16

EA17

1 24 1 Length of FB address list I EA18.
1 25 1 Length of OB address list I EA19
1 26 1 Length of FX address list EAIA

EAlB

EAlC

EAlD

27

28

29

30 EAlE

Length of DX address list

Length of address list DB (DB 0)

Slot id's I CPU id's 2 (type)
Length of block header information

1 32 1 Base address of DX address list I EA20
3 1

1 33 1 Base address of FX address list I EA21

CPU id's 1 I S W issue PG interface

Base address of PB address list

Base address of FB address list

EAlF

3 4

3 5

Base - - - address of OB address list I EA26

:- : -

I 3 6 l Counter for 1 hour (up to 3599 s ., hex.) EA37

EA3 8
Reserved for handling blocks

EA3B

:- Reserved for user purposes
63

64
Reserved for system program

Base address of DB address list

Base address of SB address list

EA2 2

EA2 3

Information on some system data (on the internal structure of the
processor, the issue of the software, CPU identifier etc.) are also
available using the online function 'SYSTEM PARAMETERS'.

255

As a supplement to the above list the bit assignments of some system
data are shown in the following. Evaluation of these is possible by
means of STEP5 instructions or the PG (for abbreviations see 5.3).

EAFF

System data: BS 0 address: EAOO (HIGH)

System data: BS 0 address: EAOO (LOW)

System data RSO corresponds to the 'CAUSE OF INTERR.' in the ISTACK.
If, e.g., an execution time error occurs during program execution, bit
25 will be set. If program level LZF has been completely processed,
bit 25 will be reset.

Designation:
interrupt condition
code word

DOPP

WECK

STUEU

STUEB

REG

LZF

not assigned

Bit 127 126 125 124 (23 122 12l 12O

I

t

BCF

1 t
L

-
-

I- -

System data: RS 1 address: EAOl (HIGH)

System data: RS 1

Designat ion :

address: EAOl (LOW)

Bit 15 214 213 212 211 210 29 l 2 1 I 1 I I 1 128
t---+---e--t+

t

t

1-

. m , - . .
Designation :

interrupt condition
code erase word

not assigned

ADF

QV2

Bit 127 (26 125 124 1z3 122 1 2 ~ 12" I interrupt condition
code erase word

I-

t -

-

t

RS 1: Active interface, released for the user (see following page)!

not assigned

not assigned

not assigned

not assigned

not assigned

J

I t not assigned -
i---

+
-

-

not assigned

not assigned

not assigned

not assigned

not assigned

not assigned

not assigned

Interrupt condition code erase word (system data RS 1):

Setting of bit 9 or bit 10 of the UALW (interrupt condition code erase
word) will result in the QVZ or ADF follow in^ next being ignored and
program execution therefore not being affected. The system program
will reset the bit if a QVZ or an ADF occurs.

Each program level has a UALW of its own!

The following example shows a test to establish whether a module may
be called using a certain 1/0 address. If the module does not exist an
acknowledgement delay (QVZ) will be prevented by means of the UALW and
a program intended for this particular event will be run. A test also
establishes whether a certain 1/0 address is entered in DB 1. If not,
an addressing error is prevented by means of the UALW and a special
program will be run.

FB 10
NAME: PERITEST
DECL: PADR I/Q/D/B/T/C: E BI/BY/W/D: BY
DECL: MASK I/Q/D/B/T/C: E KM/KH/KY/KS/KF/KT/KC/KG: KM

:L RS1
:T RS60
: LW =MASK
: OW
:T RS1
:L =PADR
:L RS1
: LW =MASK
: AW
:L RS60
:T RS1
: TAK
: BE

FBO
NAME:L

load UALW
and save

set QV2 or ADF bit

rewrite UALW
individual 1/0 access or access to
process image

mask QVZ or ADF bit

rewrite old UALW to allow next
QVZ or ADF to be identified

:JU FBlO
NAME:PERITEST
PADR : PB128
MASK : KMOOOOOlOO 00000000

: JW =M001
. . .
. . .
. . a

M001 :
:JU FBlO

NAME:PERITEST
PADR: QB4
MASK: KM00000010 00000000

: JW =M002
. . S

S . .

a m .

M002 :
: BE

test whether,
using 1/0 address 128
a module can be called

this program section is run if
module cannot be
called

test whether
a module is entered in DB 1
with 1/0 address 4

this program section is run if
1/0 address is not
entered

System data: RS 2 address : EA02 (HIGH)

I + I NAU

Designation :

System data: RS 2 address: EA02 (LOW)

interrupt condition
codeword(collected)

STP

ADF

QVZ

ZYK

Bit l5 214 213 212 2l1 210 29 28 l 2 1 I I I I I I

The interrupt condition code word (collected) (UAKK in the ISTACK, see
following page) may only be read!

t

Bit 127 126 125 124 123 122 12l 12O

t

+ -
k -

+

++

t

F

+

t -

Designation:
interrupt condition
code word (collected)

DOPP

WECK

STUEU

STUEB

REG

LZF

not assigned

BCF

-

BAU

PEU

Interrupt condition code vord (collected) (system data BS 2)

The 16 bits of the interrupt condition code word (collected) corre-
spond to the possible causes of errors listed under 'CAUSE OF INTERR.'
in the ISTACK.

If an error occurs the corresponding bit will be set.

If the processor stops due to an addressing error (ADF) bit 9 in the
UAMK will be set. If, during the processing of the ADF, a command code
error (BCF) occurs bit 7 in the UAMK will also be set.

Contents of UAMK (binary) : 00000010 10000000
Representation (hexadecimal)
in the ISTACK: 0280

In contrast to the ISTACK, where only the last error that occurred is
listed under 'CAUSE OF INTERR.', the UAMK contains all errors added uv
that have occurred up to then (ISTACK depth 05: 5 bits have been set
in the UAMK). The contents of the UAMK can be evaluated if they are
converted from hexadecimal code to binary code. This enables you to
determine the error responsible for the stop page.

The error bits are reset as soon as the corresponding error program
level has been processed completely and exited.

System d a t a : RS 5 a d d r e s s : EA05 (HIGH)

B i t
Designation:

1 5 1 4 1 3 12 11 10 9

12 12 12 12 12 12

12 128 1 s t o p i d e n t i f i e r s

---> 1st l i n e c o n t r o l b i t s

System d a t a : RS 5 a d d r e s s : EA05 (LOW)

I t
STP-SCH

MP-STP

STP-BEF

PU-STP

PRO. CTRLE

FE-STP

n o t a s s i g n e d

PRISTP

I + ANL

- - -> 2nd l i n e c o n t r o l b i t s

System data: RS 6 address: EA06 (HIGH)

---> 3rd line control bits

System data: BS 6 address: EA06 (LOW)

---> 4th line control bits

Bit 12' 126 125 (24 123 122 12l 12O

-+--l

L
I-

i -

-

4..

Designation:
module/
MPL identifiers

DIG-EIN

KM-EIN

KM-AUS

EPROM

8KWRAM

16KWRAM

32KWRAM

System data: RS 7 address: EA07 (HIGH)

---> 5th line control bits

System data: BS 7 address: EA07 (LOW)

Designation:
overall reset
identifiers

UA-SCH

UA-PRFE

UA-SYS

UA-PU

ANL-ABB

STP-VER
-~

URL-IA

URGELOE

Bit 15 214 213 212 211 210 29 l 2 1 I I I I 1 128

Designation:
Bit 127 1 26 1 25 124 123 1 22 12l 12O error identif .

init.

-a

t - DXO-FE

+---+----t---I

---> 6th line control bits

t

I-

i

-
I-

+

System data: RS 8 address: EA08

Designation :
2111210129 128 1 error identif.

HW
-,-,-, -

WECK-FE

STUE-FE

,+S

---> 7th line control bits

I

System data: RS 8 address: EA08 (LOW)

NAU

---> 8th line control bits

Bit 127 126 125 124 123 122 12l 12O

1 t
-

I.

--
t -

+ -

Designation:
error identif .
SW

DOPP-FE

REG-FE

LZF

not assigned

POWER-DOWN-FE

not assigned

not assigned

BCF

System data: RS 29 address: EAlD (HIGH)

RS 29 (HIGH): Active interface, is used by the handling blocks and
for multiprocessor communication as well as by OB 218
and the commands SED and SEE.

Bit 15 214 213 212 11 10 29 l 2 1 I 1 l 2 l 2 1 128
t:

t

+

+

-

I-

+

t-

Designation:
slot
identifier

proc. no. 1

proc. no. 2

proc. no. 3

proc. no. 4

not assigned

not assigned

not assigned

not assigned

System data: RS 29 address: EAlD (LOW)

Designation:
, 1-3, 3-7 2

PC tvpe:
0 1 1 1 S5-135U

Processor tvpe: 0 0 1 1 CPU 928

System data: BS 130 address: EA82 (LOW)

The system data RS 130 is used for displays only.

bit 2O = 0 : program level 'control' activated
bit 2O = 1 : program level 'control' suppressed

Before calling a start-up organization block (OB 20, 21 or 22), the
system program evaluates the data block DB 2 (if present). Depending on
the result of this evaluation, RS 130 will be set or reset by the
system program. Then the system program will call a start-up OB.

If RS 130 (LOW) has been reset, controller processing in cyclic opera-
tion will be executed according to the controller list in DB 2.

System data: RS 131 address: EA83

The system data RS 131 is used for displays only.

For the condition code word "Disable all interrupts" see
Subsection 6.8.1 (OB 120).

EA83 (HIGH) = 0

EA83 (LOW) :

Bit
:signat ion :

12l 12O 1 Disable
I I I interrupts

.me interrupts

I - 0
Process interrupts

I 1 I
P--- 0

Bit = 1 signifies: These interrupts are disabled.

System data: RS 132 address: EA84

The system data RS 132 is used for displays only.

For the condition code word "Delay all interruptsw see Subsection 6.8.1
(OB 120).

EA84 (HIGH) = 0

EA84 (LOW) :

Bit
Designation :

122 12l 12O 1 Delay
interrupts

' 1 1 Tine interrupts

Process interrupts

0

Bit = 1 signifies: These interrupts are delayed.

System data: RS 133 address: EA85 (LOW)

Bit 2O = 0 : Output of the next process image of the digital outputs
Bit 2O = 1 : Suppression of the next process image update of the

digital outputs

Bit 2l = 0 : Next process image of the digital inputs is read
Bit 2l = 1 : Suppression of the next process image update of the

digital inputs

Bit 22 = 0 : Next process image of the interprocessor communication
(IPC) flag inputs is read

Bit 22 = 1 : Suppression of the next process image update of the
IPC flag inputs

Bit 23 = 0 : Output of the next process image of the IPC flag
outputs

Bit 23 = 1 : Suppression of the next process image update of the
IPC flag outputs

Note: Each bit, if set, prevents the update of the process image only
once, afterwards it is immediately reset to '0' by the system
program.

System data: RS 135 address: EA87

The system data RS 135 is used for displays only.

For the condition code word -Disable individual time interruptsw see
Subsection 6.8.2 (OB 121).

EA87 (HIGH) :

Designation:
Bit Disable individual

EA87 (LOW) :

' l ' t Time int. 500 ms (OB 15)
Time int. 1 sec (OB 16)

Time int. 2 sec (OB 17)

- Time int. 5 sec (OB 18)

0

Designation:
Bit 127 (26 (25 124 (23 122 (2l 12O

+ 0

-

1 Time int. 200 ms (08 14)

Disable individual
time interrupts

Time int. 10 ms (OB 10)

Time int. 20 ms (OB 11)

Time int. 50 ms (OB 12)

I

Bit = 1 signifies: This interrupt is disabled.

Time int. 100 ms (OB 13)

System data: RS 137 address: EA89

The system data RS 137 is used for displays only.

For the condition code word "Delay individual time interruptsw see
Subsection 6.8.2 (OB 123).

The structure of system data RS 137 does not differ from that of
RS 135. If a bit is set to "l", processing of the time interrupt in
question is delayed. If the bit is set to "On, the time interrupt is
processed.

9 Memory Access Using Absolute Addresses

The STEP5 programming language contains commands that allow access to
the whole memory area.

rKmRTAle!c!
If these commands are not used properly, STEP 5 blocks and system data
may accidentally be werwritten. This can lead to unexpected and
umanted system statuses. Operations involving absolute addresses
should therefore only be used by users with perfect Bnovledge about
the system.

Local memory
The term 'local memory' is used to identify a memory area located on
each processor (user submodule, DB RAM, RI/RJ/RS/RT area, counters,
timers, flags, process image).

Global memory
There is only one global memory for all processors. It can be
addressed via the S 5 bus.

Memory structure

Memory areas can have a byte or a word structure.

Byte structure: each address points to a byte
Word structure: each address points to a word

The structure of the local memory is fixed (see Chapter 8 "Memory
assignment and memory organization"). The structure of the global
memory depends on the type of the modules inserted.

In ternal . local

m u l t i p l e areas

(p e r p rocessor)

external . global , v ia S5 bus

o n e single a rea

(p e r p r o g r a m m a b l e ~ 0 n t r O l l e r)

Fig. 9-1: Global memory and local memory

The following commands enable you to access local or global memory
areas via absolute addresses.

Access to

a) the local area (0000 to EFFF) and the byte-organized section of the
global area (F000 to F3FF, FCOO to FFFF):
TNB, TNW, LIR, TIR

b) the word-organized section of the local area (0000 to EDFF):
LRW, TRW, LRD, TRD

c) the byte-organized section of the global area (0000 to EFFF):
LB GB, LB GW, LB GD, TB GB, TB GW, TB GD, TSG

d) the word-organized section of the global area (0000 to EDFF):
LW GW, LW GD, TW GW, TW GD, TSG

e) the byte-organized section of the global area (F400 to FBFF, = page
area) :
LB CB, LB CW, LB CD, TB CB, TB CW, TB CD, TSC

f) the word-organized section of the global area (F400 to FBFF, = page
area) :
LW CW, LW CD, TW CW, TW CD, TSC

Access to local/global memory areas via absolute addresses

a c c e s s is n o t p o s s i b l e m a c c e s s is p o s s i b l e

a) L I R . T IR . T N B , T N W

c) L B G B , L B G W . L B G D

T B G B . T B G W . TB G D . T S G

b) L R W . T R W , L R D . T R D

U) L W G W . L W G D

T W G W . T W G D . T S G

e) L B C B . L B C W . L B C D

T B C B , T B C W . T B C D , T S C

l) L W C W . L W C D .

T W C W . T W C D , T S C

9 - 4
GLOBALL.

9.1 Access to Registers and the Memory via
an Address in Accu 1

The registers are special memory locations which the processor
requires for processing the STEP5 program. Each register has a
width of 16 bits. Access to the contents of the registers is possible
by means of the system functions LIR (load indirectly register) and
TIR (transfer indirectly register).

LIR 0.. .l5 Loads the contents of the memory location which has
been addressed via accu l-L into register 0...15

TIR 0...15 Transfers the contents of register 0...15 into the
memory location which has been addressed via accu l-L

The memory location is situated either in the local memory area
(0000 through EFFF) or in the byte-organized section of the global
area (F000 through F3FF, FCOO through FFFF).

Access to the page area w i t h Llll and TIR

The commands LIR and TIR should not be used to access the page area
(F400 - FBFF) in the multiprocessor programmable controller S5-135U.
Use the commands from Subsection 9.3.5 "Access to the page frame" or
the special functions from Chapter 6.6 "Page access".

The following table shows the register assignment for the CPU 928. It
differs from the register assignment of the S or R processor!

register 2: 1 accu 2-H

Register no. Register assignment

register 3: I accu2-L

register 0:

register 1:

register 6: I DBA (data block start address)

accu l-H (left-hand word of accu 1, bits 16 - 31)

accu l-L (right-hand word of accu 1, bits 0 - 15)

register 8: 1 DBL (data block length)

register 9: 1 accu 3-H

Registers 4, 5, 7, 13, and 14 do not exist. LIR/TIR accesses to these
register numbers are treated as 'null operations' (NOP).

register 10:

register 11:

register 12:

register 15:

accu 3-L

accu 4-H

accu 4-L

SAC (STEP address counter)

LIB and TIR access to 16-bit memory areas

1 5 0 1 5 0

Memory location I Register 0...15
is addressed \ /r

Plrxxll-L 1-

1 5 0 1 5 0

\ I Register 0...15
/

Plrxxll-L

TIR0.. .15

LIR and TIB access to 8-bit memory areas

0 1 5 7 0
1 5 Register 0...15

Plrxxll-L I(LIRO ... 15

1 5 0 1 5 7 0

Memory location , Register 0...15
is addressed

Plrxxll-L n TIRO ... 15

If memory areas with a width of only 8 bits are accessed by means of
LIR/TIR (for memory addresses > EEOOH) do not forget that
- only the low byte of the register is transferred by means of TIR

(the high byte of the register is lost) and

- FFH will be written into the high byte of the register if LIR is
used.

Registers 0 to 3 and 9 to 12: accus 1, 2, 3, and 4

The accumulators are used as buffers by the processor during program
execution. By using the TIR/LIR instructions you can transfer the
contents of the accumulators to memory locations addressed absolutely
or load the contents of memory locations addressed absolutely into the
accumulators. The absolute address of the memory location is entered
in accumulator l-L.

Example :

The contents of the memory location with address A000 are loaded into
flag word FW 100.

:L KHAOOO load address A000 of memory location into accu 1
:LIR 1 load contents of memory location addressed by

accu 1 into register 1 = accu 1
:T FWlOO write contents of address A000 in FW 100
: BE

The contents of flag word 200 are transferred to the memory location
with address A000.

:L FW200 load flag word FW 200 into the accu 1
:L KHAOOO load address A000 to which the transfer is to be

made into accu 1 (flag word 200 to accu 2)
:TIR 3 transfer contents of register 3 = accu 2 to the

memory location addressed by accu 1
: BE

Register 6: DBA (data block start address)

If a data block is called by means of the C DB and CX DX commands
register 6 will be loaded with the address of the DUO in the data
block called. (This address is contained in the block address list in
DB 0.)

The DBA register will be retained if

- program execution is continued in another block by means of a jump
instruction (JU/JC) or

- another program level is nested.

It will be altered if

- another data block is called or
- a jump back to a primary block is carried out after a new data

block has been called from the block already called (also refer to
Subsection 2.4.3, "Validity range of data blocks").

Example: CX DX17

DBA

DX 17
addr . (hex.)

The address of the
entered in the DBA
DBA = 151B (hex.).

memory word in which DW 0 has been stored is
register if DX 17 is called; in our example:

Note : The address entered in the DBA register is located in the
ISTACK under 'DB-ADR'.

Access to data words is normally carried out by means of the STEP5
instructions L/T DW, L/T DR, L/T DL, L/T DD, A/O/AN/ON/=/S/R Dx.y.
However, these are permitted only up to data word DW 255. By manipu-
lating the DBA register you may also access data words > 255 by means
of these commands.

Example :

Data word DW 300 of data block DB 100 is loaded by altering register 6.

FB 7
name : LIR/TIR6

:L
: ADD
: LIR
:ADD
: T
:L
: ADD
: LIR

DWlOO
FWlOO

(start address of DB address list) + 100 =
entry of DB 100 in address list

start address of DB 100 (DWO) into accu 1
enter address of DW 200 in DB 100 in
system data word RS 62
load base address of system data
load address of RS 62 into accu 1
load DBA register with contents of address of RS62
i.e.
the data block start is set to DW 200
load DW (200 + 100) = DW 300
deposit DW 300 in flag word FWlOO

Caution :

If you alter the DBA register as described above the DBL register (see
below) will not be altered. This means that transfer error monitoring
is no longer guaranteed!

By using the special function OB 180 "variable data block access" you
can also shift the DBA register by a preselected number of data words.
Since OB 180 alters the DBL register at the same time transfer errors
will still be monitored.

Example :

FB7
name :OB180

:C DBlOO
:L KF200
: JU OB180

: JC =ERR

:L DWlOO
:T FWlOO
: BEU

ERR :

load DBA and DBL registers with the values of
DB 100 and, by means of OB180,
increase the DBA register by 200 and

- reduce the DBL register by 200
error output if DB 100 contains less than
200 data words

load DW 300 and
enter in FW 100

program section for error handling

Register 8: DBL = data block length

In addition to the DBA register the DBL register is loaded each time a
data block is called. It contains the length (in words) of the data
block called without the header.

Prior to every call of OB1 or FBO, the DBL register is set to 'Or.

The DBL register will be retained if

- program execution is continued in another block by means of a jump
instruction (JU/JC) or

- another program level is nested.

It will be altered if

- another data block is called or
- a jump back to a primary block is carried out after a new data

block has been called from the block already called (also refer to
Subsection 2.4.3, "Validity range of data blocks").

1516

1517

1518

1519

151A

> 151B DBA -

151C

151D

151E

151F

1520

1521

1522

P

5 words

Block header
P

aaaa

bbbb

CCCC

dddd

eeee

ffff

gggg

hhhh

The number of existing data words is entered in the DBL register if DX
17 is called, for our example: DBL = 8 (DW 0 to DW 7).

\
DW 0

DW 1

DW 2

DW 3

DW 4

DW 5

DW 6

DW 7
/

Note : The number entered in the DBL register is contained in the
ISTACK under 'DBL-REG'.

> DBL

Register 15: SAC = step address counter

The absolute address of the instruction to be processed next in the
program memory is entered in register 15 during STEP5 program
execution.

Ezample: A constant is written into all data vords of a data block.

The program represented below writes the constant KH A5A5 into all
data words of DB 50. After the STEP5 commands in bold-face type are
altered it may also be used to write any values required into other
data blocks (DB or DX). Non-existent data blocks are identified and
will cause a jump to the NIVO marker.

The start address (DBA) and length (DBL) of the data block are deter-
mined by means of the special function OB 181 'test data block
(DB/DX) ' .
The program makes use of all four accumulators. The figure shows the
assignment of the accumulators during program execution up to the LOOP
marker. Assignment of the accumulator is not altered within the loop.
Initially, accu 1 contains the address of the last data word (DBA +
DBL - 1) and is reduced by one during every loop cycle. Accu 2 con-
tains the address of the first data word (DBA). The loop is inter-
rupted as soon as the contents of accu 1 are less than the contents of
accu 2.
The TIR 10 instruction is used for writing into data words. This
instruction stores the contents of accu 3-L (the constant) under the
address stated in accu l-L.

:L -A5 constant to be written into all data words

:L
: ENT
:JU
: JC
: TAK
: ENT
: +F

LOOP :ADD
: >F
:JC
: TIR
:JU

CONT : .
: BEU

NIVO : .
: BE

KY1,50 type and number of the data block

OB181 special function OB 'test data blocks'
=NIVO abort if DB50 does not exist

accul := address of last data word + 1
accu2 := address of first data word
accu3 := constant

BN-1 overwrite all data words, beginning with last
data word, using the constant contained in

=CONT accu 3-L
10
=LOOP

program continued
. . . after all data words have been overwritten

. . . if DB50 does not exist or if it contains
0 data words

Constant

Constant

Accu 1 ~onnanfy -1 pGG-I----@
JU OB181
JC = NIVO

Accu 4 Constant

Accu 3 Constant

& l - - - D B P ~ ~ 'j-1 DBLI 3 DBA + DBL

TAK ENT + F

Fig. 9-2: Contents of the accumulators durinv Dronram execution

Rote :

The program section beginning at the LOOP marker can be used to over-
write any memory area (e.g.: flags, timers, counters) with a constant.

Example 9-3: Clearinn of all flan bytes (FYO to FY255)

:L KBO constant to be written into all flag bytes

:L RS14 base address of flag area (= address of first
flag byte FYO)

: ENT
:L KF256 + length of flag area
: ENT = (address of last flag byte FY255) + 1
: +F

LOOP :ADD BN-1 all 256 flag bytes, starting with flag byte
:TIR 10 FY255 have the constant contained in accu 3-LL
: JU =LOOP written into them

9.2 Transfer of Memory Blocks

Using the system operations TNB and TNW you can transfer memory blocks
(up to 255 bytes by means of TNB, up to 255 words by means of TNW).

By means of the commands TNB and TNW, you can access the local memory
area as well as the byte-organized section of the global memory (F000
to F3FF, FCOO to FFFF).

Access to the page area vith TNB and TNW

Description

Transfer memory block
(1 to 255 bytes)

Transfer memory block
(1 to 255 words)

Operation

TNB

TNW

The commands TNB and TNW should not be used to access the page area
(F400 - FBFF) in the multiprocessor programmable controller S5-135U.
Instead, use the commands from Subsection 9.3.5 "Access to the page
frame" or the special functions from Chapter 6.6 "Page access1'.

Parameters

0 to 255

0 to 255

The parameter with TNW/TNB states the length (number of words/number
of bytes) of the area to be transferred. Before this operation is
carried out, the end address of the source area must be loaded in accu
2 and the end address of the destination area in accu 1. This means
that the addresses stated are always the uvver (higher) addresses of
source and destination area. The transfer itself for the CPU 928 is
'decremental', i.e. the transfer is executed starting with the highest
address of the source area and is completed with the lowest address.

Source and destination area must be comvletely located in one memory
area and must not overlap. The following memory areas are differen-
tiated by means of area limits:

Addresses (hexadecimal)

1. 0000 to lFFF user memory (16 bit) 8K words
0000 to 3FFF user memory (16 bit) 16K words
0000 to 7FFF user memory (16 bit) 32K words

2. 8000 to DD7F DB-RAM (16 bit)

3. DD80 to EDFF system RAM (16 bit: DBO, RI/RS,
timers, counters, etc.)

4. EEOO to EFFF RAM (8 bit: flags, process image)

5. F000 to FFFF interface system (8 bit)

(see Chapter 8 "Memory assignment")

Pseudo command boundaries at TNB and TEN

The TNB and TNW instructions are long running STEP5 commands which
contain so-called 'pseudo command boundaries': i.e.: data transfer is
carried out in sub-units of different sizes, depending on the source
and destination area. If an error (e.g. ZYK) or an interruption (e.g.
due to a time or process interrupt) occurs during the transfer of a
sub-unit, the corresponding organization block will be nested at
the end of this sub-unit at the pseudo command boundary. Process
interrupt OBs and time interrupt OBs can only be called if the
setting "interruptibility at command boundaries" has been selected in
DX 0.

Exce~tion: If acknowledgement delays and/or addressing errors occur
during the transfer, the complete data field will be transferred
first and the organization block programmed for this particular event
will be called once at the command boundary (only the QVZ-OB if QV2
and ADF occur simultaneously). The lowest address of the field will
always be specified as the QV2 error address. Irrespective of this,
OB 2, OB 10 through Ob 18 or an error organization block may be nested
at the pseudo command boundaries.

'RIB and TIW between 8 and 16 bLt memory areas

Ascend -
i ng
addr.

address destination H
Bvte 2 Bvte 1

Ascending
addresses

v

Destination/
source 1 1 address

Transfer of bytes 1 to 5: L <source address>
L <destination address>
TNB 5

Transfer of bytes 1 to 4: L <source address>
L <destination address>
TNW 2

Copying a field of 4095 data words max. from one DB or DX data block
to another DB or DX data block. The start of the field within the
source and destination data block is determined in each case by one
offset value between 0 and 4095.

KY (type, no.)

source DB
KF (offset)

source DB
KY (type, no.)

>
destination DB
KF (offset)

F

destination DB
KF
(block length)

QTNR

QOFF

ZTNR

ZOFF

FBlO

STAT T

status

The input parameters are checked before copying is carried out. If an
error is recognized bit 27 will be set to 1 in the output parameter
STAT and the type of error will be stated in bits 2O to 22:

0 = no error
1 = error

type of error:
1 = source DB = destination DB
2 = offset or length > 4095
3 = source DB non-existent or illegal
4 = source DB too short
5 = destination DB non-existent or illegal
6 = destination DB in the read only memory

(EPROM module)
7 = destination DB too short

FB 10 is divided into five program sections with the following
functions:

1. Input parameters

- Test whether source and destination data block have the same
type and number or not.

- Test whether input parameters 'source offset', destination
offset', and 'block length' are less than 4096.

2. Source data block

- Test whether source data block exists and is long enough.
- Calculate the absolute address of the last data word in the

destination block.

3. Destination data block

- Test whether destination data block exists and is long enough
and whether located in the RAM submodules.

- Calculate the absolute address of the last data word in the
destination block.

4. Transfer

- Copy by means of TNW instruction.
Fields containing more than 255 words are transferred in sub-
units of 128 words each (instruction TNW 128).
Any remainders are transferred by an additional TNW instruction.

5. Condition code

- Supply of the output parameter 'status' corresponding to the
result of the tests.

Memory locations occupied:

end address of data destination
end address of data source
field length
offset in destination data block
type and number of destination data block
offset in source data block
type and number of source data block
sub-unit counter

Programming function block FB 10

Note: If copying is to be started beginning with data word DW 0 the
program sections printed in italics are not valid. No offset
value is stated.

SEGMENT 1
NAME :DB-DB-TR DATA BLOCK-DATA BLOCK-TRANSFER
DECL :QTNR I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KY
DECL :QOFF I / Q / D / B / T / C : D KM/KH/KY/KS/KF/KT/KC/KG: KF
DECL :ZTNR I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KY
DECL :ZOFF I / Q / D / B / T / C : D KM/KH/KY/KS/KF/KT/KC/KG: KF
DECL :LAEN I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KF
DECL :STAT I/Q/D/B/T/C: A BI/BY/W/D: BY

: LW =QTNR
:T FW254
:LW =ZTNR
:T FW250
: !=F
: JC =F001

:LW =QOFF
:T m252
: LW =ZOFF
:T W248
: OW
: LW =LAEN
:T FW246
: OW
:L KHFOOO
: AW
:JP =F002

:L FW254
: JU OB181
:JC =F003
: TAK
: ENT
:L W252
: ENT
:L W246
: +F
: <F
:JC =F004
:L KB1
: -F
: +F
:T FW244

:L FW250
:JU OB181
:JC =F005
:JM =F006
: TAK
: ENT
:L W248
: ENT
:L FW246
: +F
: <F
:JC F007
:L KB1
: -F
: +F
:T FW242

START INPUT PARAMETERS
TYPE (DB/DX) AND NUMBER OF
SOURCE DATA BLOCK

TYPE (DB/DX) AND NUMBER OF
DESTINATION DATA BLOCK

SOURCE DB = DESTINATION DB ?
JUMP, IF YES

OFFSET IN SOURCE
DATA BLOCK

OFFSET IN DESTINATION
DATA BLOCK

LENGTH (NUMBER OF DATA WORDS) OF
BLOCK TO BE TRANSFERRED
(BLOCK LENGTH)

SOURCE OFFSET, DESTINATION OFFSET OR
LENGTH >= 4096 ?

JUMP, IF YES
END INPUT PARAMETERS

START SOURCE DATA BLOCK
TYPE AND NUMBER OF SOURCE DATA BLOCK
TEST DATA BLOCK
JUMP, IF BLOCK TEST NEGATIVE
Al: NUMBER OF DW, A2: ADDRESS
A3: ADDRESS
OFFSET IN SOURCE DATA BLOCK
A 3 : NUMBER OF DW, A4: ADDRESS
BLOCK LENGTH
OFFSET + BLOCK LENGTH
NUMBER OF DW'S < OFFSET + BLOCK LENGTH ?
JUMP, IF YES
A2: OFFSET + BLOCK LENGTH, A3: ADDRESS
OFFSET + BLOCK LENGTH - 1
OFFSET + BLOCK LENGTH - 1 + ADDRESS
END ADDRESS OF DATA SOURCE
END SOURCE DATA BLOCK

START DESTINATION DATA BLOCK
TYPE AND NUMBER OF DESTINATION DATA BLOCK
TEST DATA BLOCK
JUMP, IF BLOCK TEST NEGATIVE
JUMP, IF BLOCK IN EPROM
Al: NUMBER OF DW, A2: ADDRESS
A3: ADDRESS
OFFSET IN DESTINATION DATA BLOCK
A3: NUMBER OF DW, A4: ADDRESS
BLOCK LENGTH
OFFSET + BLOCK LENGTH
NUMBER OF DW'S < OFFSET + BLOCK LENGTH
JUMP, IF YES
A2: OFFSET + BLOCK LENGTH, A3: ADDRESS
OFFSET + BLOCK LENGTH -1
OFFSET + BLOCK LENGTH -1 + ADDRESS
END ADDRESS OF DATA DESTINATION
END DESTINATION DATA BLOCK

:L KBO
:L FY246
: !=F
:SLW 1
:T RS60
:L W244
:L W242
:JC =REST

LOOP :TNW 128
:ADD KF-128
: TAK
:ADD KF-128
: TAK
:JU OB160
: JC =LOOP

REST :B FW246
: TNW 0

:L KBO
ENDE :T =STAT

: BEU
F001 :L KB129

: JU =END
F002 :L KB130

: JU =END
F003 :L KB131

: JU =END
F004 :L KB132

: JU =END
F005 :L KB133

: JU =END
F006 :L KB134

: JU =END
F007 :L KB135

: JU =END

: BE

START TRANSFER
COMPARISON VALUE
BLOCK LENGTH, HIGH BYTE
BLOCK LENGTH >= 256 WORDS ?
MULTIPLY WITH 2, NUMBER OF SUB-
UNITS WITH 128 WORDS EACH

END ADDRESS OF DATA SOURCE
END ADDRESS OF DATA DESTINATION
JUMP, IF FIELD LENGTH < 256 WORDS
TRANSFER OF A SUB-UNIT
REDUCE SOURCE END ADDRESS BY LENGTH OF
SUB-UNIT

REDUCE DESTINATION END ADDRESS BY LENGTH OF
SUB-UNIT

COUNTING LOOP
JUMP, IF NOT ALL
SUB-UNIT TRANSFERRED

BLOCK LENGTH, LOW BYTE
TRANSFER REST OF FIELD
END OF TRANSFER

START OF CONDITION CODE
IDENTIFIER 00 (HEX.): NO ERROR
OUTPUT PARAMETER STATUS/ERROR

ERROR IDENTIFIER 81 (HEX.):
SOURCE DB = DESTINATION DB

ERROR IDENTIFIER 82 (HEX.):
OFFSET OR LENGTH >= 4096

ERROR IDENTIFIER 83 (HEX.):
SOURCE DB ILLEGAL

ERROR IDENTIFIER 84 (HEX.):
SOURCE DB TOO SHORT

ERROR IDENTIFIER 85 (HEX.):
DESTINATION DB ILLEGAL

ERROR IDENTIFIER 86 (HEX.):
DESTINATION DB IN THE READ/ONLY MEMORY

ERROR IDENTIFIER 87 (HEX.):
DESTINATION DB TOO SHORT

END OF CONDITION CODE

9.3 BR Register Operations

The BR register (base address register, 32 bits) is used by the load
and transfer commands (described in Subsection 9.3.3 ff). A memory
location is accessed if its absolute address equals the total of the
the BR register contents and a constant:

Absolute address = BR register contents + constant

The BR register will be retained if

- program execution is continued in another block by means of a jump
instruction (JU/JC) or

- another program level is nested.

The BR register is set to 'Or before a program level is called.

9.3.1 Loading of the BR Register

To load or alter the contents of the BR register use the following
commands :

l) The bits 220 through 231 are set tp 'Or.

MBR 0 through FFFFF

20-btmnstant

Description

Load a 20-bit constant into the BR register1)

Add a 16-bit constant to the contents of
the BR register

Operation

MBR

ABR

ABR -32767 through +S2767

Parameters

0 to FFFFF

-32768 to
+32767

16-Mmnstant

(Wed -point number)

9 .3 .2 Shifting of the BR Register Contents

For a more flexible use of all the registers new commands have been
introduced. They can be used to alter the contents of individual
registers or to transfer them into other registers.

l) The bits 215 through 231 are set to # O r .

MAS. MBS MSA. MSB

Operation

MAS

MBS

MSA

MS B

MAB

MBA

T A m 1 , B R X X :XsAc
SAC

0 0 ACCU1. BR

MAB. M M

Parameters

-

-

-

-

-

-

Description

Transfer the contents of accu 1 (bit 2O to
214) into the SAC register
(STEP address counter)

Transfer the contents of the BR register
(bit 2O to 214, base address register)
into the SAC register

Transfer the contents of the SAC re ister !? (STEP address counter) into accu 1)

Transfer the contents of the SAC register
(STEP address counter) into the BR register
(base address register) l)

Transfer the contents of accu 1
(bit 2O to 231) into the BR register
(base address register)

Transfer the contents of the BR register
(base address register) into accu 1

9.3.3 Access to the Local Memory

The following commands enable you to access the local, word-organized
memory via absolute addresses. The absolute address equals the total
of the BR register contents and the 16-bit constant contained in the
command (-32768 through +32767).

Operation

LRW

LRD

TRW

TRD

Parameters Description

Load the word that has been addressed by
means of BR register + constant into accu l-L

Load the double word that has been addressed
by means of BR register + constant into accu 1

Transfer the contents of accu l-L into the
word that has been addressed by means of
BR register + constant

Transfer the contents of accu 1 into the
double word that has been addressed by means
of BR register + constant

The absolute address must be within 0 and EDFFH (with LRW, TRW) or 0
and EDFEH (with LRD, TRD). Otherwise, the processor will recognize an
execution time error and call the OB 31. Accu 1 contains error identi-
fiers which describe the error occurred in more detail (see Subsection
5.6.2 "Other execution time errors").

9.3.4 Access to the Global Memory

Use the following commands to access the global byte or word-organized
memory via an absolute address.

Testing and setting of a busy-condition location in the global area

The access of individual processors to common memory areas can be
controlled via a busy-condition location. Each common memory area is
assigned a busy-condition location which is to be checked (tested) by
every processor which is going to access the common memory area. The
busy-condition location contains either the value ' 0 ' or the slot
identifier of the processor which is just using the memory area and
which has to release it by overwriting the busy-condition location
with ' O r .

The command TSG supports the operations necessary to test and set a
busy-condition location.

The absolute address must be within 0 and EFFFH. Otherwise, the pro-
cessor will recognize an execution time error and call the OB 31. Accu
1 contains error identifiers which describe in more detail the error
occurred (see Subsection 5.6.2 "Other execution time errorsw).

Operation

TSG

The Low-byte of the word addressed by means of BR register + constant
is used as the busy-condition location. If the contents of the Low-
byte equal ' O r , the TSG command enters the slot identifier (from
RS 29) into the busy-condition location.

The testing (= reading) and the possible setting (= writing) form a
program unit that cannot be interrupted.

Parameters

-32768 to
+32767

The test result may be evaluated in the condition codes DSPO and DSP1:

Description

Test and set the busy-condition location
that has been addressed by means of
BR register + constant

I B P o R T r n !
The TSG command must be used by glJ the processors vhich are to
perform synchronized accesses to a common global memory area.

DSPO

0

0

1

Also note the explanations on the SED and SEE commands (set/enable
semaphore, Subsection 3.2.2) and on the special-function organization
block OB 218 (Assigning a page, Subsection 6.6.3).

DSPl

0

1

0

Description

Contents ofthebusy-conditionlocationare ' 0 ' ;
the processor enters its slot identifier.

The own slot identifier has already been entered into
the busy-condition location.

The busy-condition location contains a strange slot
identifier.

B8576633-01

Load and transfer operations for the bvte-organized global memory

The absolute address must be within

Operation

LB GB

LB GW

LB GD

TB GB

TB GW

TB GD

- 0 and EFFFH (for LB GB, TB GB)

- 0 and EFFEH (for LB GB, TB GW)

Parameters

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

-32768to
+32767

-32768 to
+32767

- 0 and EFFCH (for LB GD, TB GD).

Description

Load the byte that has been addressed by
means of BR register + constant into accu 1-LL

Load the word that has been addressed by
means of BR register + constant into accu l-L

Load the double word that has been ad-
dressed by means of BR register + constant
into accu 1

Transfer the contents of accu 1-LL into the
byte that has been addressed by means
of BR register + constant

Transfer the contents of accul-Lintothe
word that has been addressed by means
of BR register + constant

Transfer the contents of accu l-L into the
double word that has been addressed by means
of BR register + constant

If these limits are exceeded, the processor will recognize an
execution time error and call the OB 31. Accu 1 contains error
identifiers which describe the error occurred in more detail (see
Subsection 5.6.2 "Other execution time errors").

B8576633-01

Load and transfer operations for the word-orpanized global memory

The absolute address must be between 0 and EFFFH (for LW GW, TW GW) or
0 and EFFEH (for LW GD, TW GD). Otherwise, the processor will recog-
nize an execution time error and call the OB 31. Accu 1 contains error
identifiers which describe the error occurred in more detail (see
Subsection 5.6.2 "Other execution time errors").

Operation

LW GW

LW GD

TW GW

TW GD

9.3.5 Access to the Page Frame

The global area contains a 'windowr located between the addresses
F400H and FBFFH in order to insert one out of max. 256 memory areas
(= pages). One page requires address space of up to 2k and may be byte
or word-organized. Before the page area is accessed, one of the 256
pages must be selected by entering its page number into the Select
register. The writing into the Select register as well as the
subsequent access to the page area cannot be interrupted.

Parameters

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

The following commands enable you to access byte or word-organized
pages via an absolute memory address. The absolute address equals the
total of the BR register contents and the constant contained in the
command (-32768 through +32767).

Description

Load the word that has been addressed by
means of BR register + constant into accu l-L

Load the double word that has been addressed
by means of BR register + constant into
accu l-L

Transfer the contents of accu l-L into the
word that has been addressed by means
of BR register + constant

Transfer the contents of accu 1 into the
double word that has been addressed by
means of BR register + constant

Before the page area is accessed (load/transfer), one of the 256 pages
is to be called. To do this, enter the number of the page to be called
in accu l-L; this number is entered in the Page register by means of
the ACR command. All page operations that follow will write the
contents of the Page register into the Select register before
accessing a page.

The Page register is retained if

- program execution is continued in another block by means of a jump
instruction (JU/JC) or

- another program level is nested.

The Page register is set to '0' before a program level is called.

Calling a page

permissible values: 0 through 255

Operation

ACR

The page number must be between 0 and 255. Otherwise, the processor
will recognize an execution time error and call the OB 31. Accu 1
contains error identifiers which describe the error occurred in more
detail (see Subsection 5.6.2 "Other execution time errors").

Testing and setting of a busy-condition location in the page area

Parameters

The access of individual processors to common memory areas can be
controlled via a busy-condition location. Each common memory area is
assigned a busy-condition location which is to be checked (tested) by
every processor which is going to access the common memory area. The
busy-condition location contains either the value '0' or the slot
identifier of the processor which is just using the memory area and
which has to release it by overwriting the busy-condition location
with '0'.

Description

Call the page whose number is indicated in
accu l-L

The command TSC supports the operations necessary to test and set a
busy-condition location.

The absolute address must be within F400H and FBFFH. Otherwise, the
processor will recognize an execution time error and call the OB 31.
Accu 1 contains error identifiers which describe the error occurred in
more detail (see Subsection 5.6.2 "Other execution time errors").

Operation

TS C

The Low-byte of the word addressed by means of BR register + constant
is used as the busy-condition location. If the contents of the Low-
byte equal 'Or, the TSC command enters the slot identifier (from
RS 29) into the busy-condition location.

Parameters

-32768 to
+32767

Description

Test and set the busy-condition location
of the called page, that has been addressed
by means of BR register + constant

The testing (= reading) and the possible setting (= writing) form a
program unit that cannot be interrupted.

The test result may be evaluated in the condition codes DSPO and DSP1:

nrPORTrn!
The TSC command must be used by the processors which are to
perform synchronized accesses to a common global memory area.

DSPO

0

0

1

Also note the explanations on the SED and SEE commands (set/enable
semaphore, Subsection 3.2.2) and on the special-function organization
block OB 218 (Assigning a page, Subsection 6.6.3).

Load and transfer operations for the bvte-organized pages

DSPl

0

1

0

Description

Contents of the busy-condition location are '0';
the processor enters its slot identifier.

The processor's own slot identifier has already been
entered into the busy-condition location.

The busy-condition location contains a strange slot
identifier.

Operation

LB CB

LB CW

LB CD

Parameters

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

Description

Load the byte that has been addressed by
means of BR register + constant from the page
called into accu 1-LL

Load the word that has been addressed by
means of BR register + constant from the page
called into accu l-L

Load the double word that has been ad-
dressed by means of BR register + constant
from the page called into accu 1

The absolute address must be within

Operation

TB CB

TB CW

TB CD

- F400H and FBFFH (for LB CB, TB CB)

- F400H and FBFEH (for LB CW, TB CW)

Parameters

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

- F400H and FBFCH (for LB CD, TB CD).

Description

Transfer the contents of accu 1-LL into the
byte on the page called that has been ad-
dressed by means of BR register + constant

Transfer the contents of accu l-L into the
word on the page called that has been ad-
dressed by means of BR register + constant

Transfer the contents of accu 1 into the
double word on the page called that has been
addressed by means of BR register + constant

If these limits are exceeded, the processor will recognize an
execution time error and call the OB 31. Accu 1 contains error
identifiers which describe the error occurred in more detail (see
Subsection 5.6.2 "Other execution time errors").

B8576633-01

b a d and transfer operations for the vord-organized pages

The absolute address must be within F400H and FBFFH (for LW CW, TW CW) or
F400H and FBFEH (for LW CD, TW CD). Otherwise, the processor will recog-
nize an execution time error and call the OB 31. Accu 1 contains error
identifiers which describe the error occurred in more detail (see
Subsection 5.6.2 "Other execution time errors").

Operation

LW CW

LW CD

TW CW

TW CD

Parameters

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

-32768 to
+32767

Description

Load the word that has been addressed by
means of BR register + constant from the page
called into accu l-L

Load the double word that has been addressed
by means of BR register + constant from the
page called into accu 1

Transfer the contents of accu l-L into the
word on the page called that has been ad-
dressed by means of BR register + constant

Transfer the contents of accu 1 into the
double word on the page called that has been
addressed by means of BR register + constant

10 Multiprocessor Operation

10-1 Notes

The S5 135 U is particularly suitable for complex control tasks. This
is due to the fact that up to 4 processors (CPU's) can be installed in
the central controller. These processors operate simultaneously, but
independently. You may operate the following processors in different
combinations if multiprocessor operation is required:

- S processor, especially suitable for open-loop control (binary
control tasks), monitoring and signalling; occupies 1 slot.

- R processor, especially suitable for computing and closed-loop
control (digital control tasks), for communication, monitoring and
signalling; occupies 1 slot.

- M processor, suitable for a wide variety of applications, for
programming in higher-level programming languages; occupies 1 slot.

- CPU 928, universal application, especially suitable for open and
closed-loop control and computing (binary and digital control
tasks); occupies 2 slots.

~ t i p r o c e s s o r operation - vhen and hov ?

- If your user program is too extensive for a single processor and if
the memory capacity is inadequate it is advisable to distribute
your program on several processors.

- If a particular section of your plant requires fast processing the
best solution is to separate the corresponding program section from
the total program and have it processed by a 'fastr processor of

. its own.

- If your plant consists of sections with clear demarcation lines and
which run relatively independently of each other then it is best to
have section 1 of the plant processed by processor 1, section 2 by
processor 2 etc..

For multiprocessor operation, refer to the description "Multipro-
cessor operation in the S5 135U" (C79000-B8576-C500-~x). It is
contained in Section 7 of this manual and explains the individual
steps to be taken when commissioning your processor, it contains
operating instructions, describes several typical problems and points
out possible causes of errors.

IMPORTANT!
If a coordinator (= KOR) is plugged into the central controller, it is
in the multiprocessor mode, irrespective of Whether you operate the
coordinator vith one or several processors!

The coordinator's task is to coordinate data exchange between the
individual processors. In order to be able to accomplish this task the
coordinator will have to know how many slots are to be "coordinated",
i.e. how many processors will be assigned access to the S5 bus in
succession.

IMPORTANT!
Do not forget to set the mrmber of the processors used at the coordi-
nator (see instructions of the coordinator)! Check Whether single-
vidth (e.g. R processors) or double-vidth processors (e.g. CPU 928)
are used.

If, e.g. the number '3' is set on the KOR, the KOR will then assign
bus enable signals to three processors, one after the other:
The first three slots to the right of the coordinator are supplied
(no. 17, no. 19, and no. 27, see operating instructions of the CPU
928). In this particular case, the fourth slot (no. 35) will not be
~~DDlied by the KOR. Any processor plugged into this slot will not be
able to access the S5 bus.

IMPORTANT!
Coordinator and processors have to be plugged-in without leaving gaps!

For multiprocessor operation you will have to program the data block
DB 1 for each of the processors involved. This block contains a list
of the digital inputs and outputs as well as the interprocessor commu-
nication flag inputs and outputs assigned to the corresponding pro-
cessor (see 10.3.1)!

10.2 Data Exchange between the Processors

The 'interprocessor communication flags' (see 10.2.1) are available for
cyclic exchange of binary data between the processors or between the
processors and the communications processors.

The 'special functions for multiprocessor operation' OB 200 through
OB 205 support the exchange of large data quantities (e.g. complete
data blocks) between R and M processor and CPU 928 (see 10.2.2)

The 'handling blocks' are available for communication with intelligent
I/Ots (IPs) and communications processors (CPs) (see 6.9).

If you wish to transfer long data fields and to ensure that the other
processors will not interrupt this data transfer the software 'sema-
phore~' can be used (see 3.2.2).

10.2.1 Interprocessor Communication (IPC) Flags

The 'interprocessor communication flags' are available for the cyclic
exchange of binary data. Primarily they are designed for bvte bv bvte
information transfer.

This data transfer is possible between

processor(s) <- > processor(s)
> communications processor(s) processor(s) <-

The system program transfers the IPC flags once per cycle. When data
is transferred between processors the IPC flags are buffered on the
coordinator.

IPC flags are flag bytes. They are defined in DB 1 either as input or
output IPC flags for each processor. If, e.g. you have defined the
flag byte 50 on processor 1 as the IPC flag output its signal state
will be transferred cyclically via the coordinator to the processor,
on which flag byte 50 has been defined as the IPC flag input.

The memory area for the interprocessor communication flags on the
coordinator and the communications processor covers addresses F200H
through FZF'FE. You have 256 IPC flag bytes available for each
processor/communications processor.

Data exchange between processors

Data transfer between individual processors (CPU 928, R, S, and M
processor) is executed via the coordinator. The processors read their
flag bytes defined as IPC input flags in DB1 from the KOR or transfer
their flag bytes defined as IPC output flags to the KOR.

You enable the number of IPC flags required on the coordinator: Divi-
sion of the 256 flag bytes max. in areas of 32 bytes (8 areas) is
possible by setting jumpers. Refer to the operating instructions of
your coordinator.

Example :

Processor 1 Coordinator

IPC
flag outputs:

FY 96 - FY 119

IPC
flag inputs:

FY 120 - FY 125
+

Processor 2
t A

IPC
flag outputs:
FY 120 - FY 125

IPC
flag inputs:
FY 96 - FY 119

+

IKeORTrn!
* Only these flag bytes which have been enabled as IPC flags on the

coordinator can be specified!

Area enabled:
IPC flag

bytes 96 - 127

* If a certain flag byte has been defined as an IPC flag input on one
or more processors it vill have to be defined as an IPC flag output
on another processor. And: A flag byte may only be defined as an
IPC flag output on one processor; however, it can be defined as an
IPC flag input on e.g. three further processors!

+

* The flag bytes not defined as IPC flags on a processor may be used
just like "normal" flags!

* Only specify the number of IPC flags actually required: the lower
the number of IPC flags, the shorter the transfer time!

Data exchange between processors and communications processors

If data are to be transferred between one processor and one
communications processor you will have to enable the number of IPC
flags required on the communications processor (CP). There, you also
have 256 bytes available which may be divided into areas of 32 bytes.

If data are to be transferred from one processor to several communica-
tions processors the areas enabled on the communications processors
are not permitted to overlap, in order to prevent addresses from being
assigned twice.

Example :

Processor 1 CP 1
t

IPC
flag outputs:

CP1: FY96 - FY119

CP2: FY201 - FY205

IPC
flag inputs:

CP1: FY120 -FY125

CP2: FY195 - FY200
-I

t

Area enabled:
IPC

flag bytes 96 - 127
+

Area enabled:
IPC

flag bytes 192 - 223

l-

If your intention is to simultaneously use IPC flags on the coordina-
tor and on one or several communications processors you will also have
to avoid double addressing:

Divide the IPC flags on the KOR and the CPs into areas of 32 bytes;
these IPC flag bytes that you use on the communications processor
should be masked on the coordinator by removing the jumpers (see
operating instructions of the coordinator used).

Once again a flag byte can only be defined as an IPC flag output on
one processor. In contrast, a flag byte may be defined as an IPC input
flag on several processors.

Transfer of interprocessor communication flags in multiprocessor
operation

The IPC flags specified in DB 1 are transferred if the processor
receives the signal from the coordinator which allows access to the
1/0 bus.

If several processors attempt to access the bus simultaneously the
coordinator will output the bus enable signal to the processors, one
after the other. Each processor is permitted to transfer only one byte
at a time. This interleaved transfer may cause the IPC flag informa-
tion that belongs together to be separated and subsequent processing
may then be carried out using incorrect values.

If information consisting of more than 1 byte is to be transferred use
the special function organization block OB 224: By calling OB 224 all
IPC flags specified in DB 1 will be transferred as a block. As long as
a processor is in the process of transferring IPC flags interruption
by another processor is not possible. Since the next processor will
have to wait, this means that cyclic program processing will be de-
layed.
Do not forget that the cycle time may increase considerably if OB 224
is called! (see 6.8.6)

10 .2 .2 Multiprocessor Communication

The special function organization blocks OB 200 through OB 205 allow
large quantities of data to be transferred (e.g. complete data blocks)
between R and M processors and CPU 928 in multiprocessor operation,
with the data being buffered on the coordinator KOR C.

OB 200 initializes the mailbox in the coordinator KOR C, where the
data blocks to be transferred are buffered.

OB 202 transfers a data field to the mailbox of KOR C and states how
many data blocks may still be transferred.

OB 203 determines the number of free memory blocks in the mailbox of
the coordinator KOR C.

OB 204 receives a data block from the mailbox of KOR C and indicates
the number of data blocks that may still be received.

OB 205 determines the number of memory blocks occupied in the mailbox
of KOR C.

A detailed user's guide for this special-function organization block
titled "SIMATIC S5, S5-135U programmable controller, multiprocessing"
can be found in Section 8 of this manual.

10 .2 .3 "Protected" Transfer of Connected Data Fields

If you wish to transfer long data fields and to ensure that the other
processors will not interrupt this data transfer then you can use the
software 'semaphores' (see 3.2,2).

10.3 1/0 Assignment

The 1/0 area of each processor covers the addresses FOOOH through
FFFFH. The 1/0 modules are addressed in this area, the IPC flags and
the page area are located there. Access to this 1/0 area is possible
for processors, both reading or writing is permitted. The coordina-
tor's task is to coordinate access of the individual processors to the
1/0 area.

10.3.1 Data Block DB 1

In multiprocessor operation DB 1 must be programmed for each
processor. This means that you specify the inputs and outputs, the IPC
flag inputs and outputs used by the corresponding processor.

IHPORTAKl!!
Only the inputs and outputs that have been defined in DB 1 are con-
sidered when the process image is updated!

1. On-line via the programmer while the processor is in the stop
state, if the processor is equipped with a user RAM.

2. By programming the user EPROM.

I H P O R r n !
The input or altered DB 1 will be accepted by the processor only
in the start-up mode "cold restartw!

This is hov DB 1 is programmed via masks and softkeys:

DIGITAL INPUTS 0 , 1, 2, 3, 7 , 1 0 , , , , ,

9 P 2 2 2 9 , 9 9 2 ,

DIGITAL OUTPUTS , 0, 2, 4 , 12, 9 S Y ~ Y Y

> 9 2 9 3 9 9 9 2 > Y

IPC FLAG INPUTS , 50, 51, 60, a 9 , Y Y > Y

l # 9 9 9 S 9 Y Y 9 Y

IPCFLAGOUTPUTS , 70, 72,100, 9 9 2 ~ ~ 1)

I S 9 , 3 , , * , * 9

TIMER BLOCK LENGTH , 128,

(Note that a DB 1 entered with "S5-DOS" via the mask may produce an
error when being read with the PG software "Studos"!)

This is hov DB 1 is programmed manually:

The data words 0, 1, and 2 must have the DB 1 start identifier.
This means that they must be permanently assigned with

The individual operand areas are specified from data word 3
onwards.

Enter an identifier for each of the operands:
Possible code words are:

Code word for digital inputs
Code word for digital outputs
Code word for input IPC flags
Code word for output IPC flags
Code word for timer block length

KH = DEOO
KH = DAOO
KH = CEOO
KH = CA00
KH = BB00

After the code word list the numbers of the inputs and outputs used
and the required timer block length in fixed point format.

The last data word will receive the value KH = EEOO as the DB 1 end
identifier .

m R m !
* The sequence of the entries is arbitrary. Note that the process

image of the inputs and outputs is updated in the same order in
dich they have been entered in DB 1.

* Multiple entries of identical bytes, e.g. for test purposes are
possible. Once again note that the process image of bytes entered
several times is updated several times.

* Input KH = EEOO after the last entry in DB 1 as the end identifier!

An example of how to create DB 1 is given on the next page.

Example of DB 1

KH = 4D41;
KH = 534B;
KH = 3031;
KH = DEOO;
KF = +00000;
KF = +00001;
KF = +00002;
KF = +00003;
KF = +00007;
KF = +00010;
KH = DAOO
KF = +00000;
KF = +00002;
KF = +00004;
KF = +00012;
KH = CEOO;
KF = +00050;
KF = +00051;
KF = +00060;
KH = CAOO;
KF = +00070;
KF = +00072;
KF = +00100;
KH = BBOO;
KF = +00127;
KH = EEOO;

DW 0-2:
start identifier
for DB 1

code word for digital inputs
input byte 0
input byte 1
input byte 2
input byte 3

code word for digital outputs
output byte 0
output byte 2

code word for IPC flag inputs
flag byte 50

code word for IPC flag outputs
flag byte 70

code word for timer block length *
timer 0 through timer 127
end identifier

* By entering a timer block length in DB 1 you can specify the
number of timer locations to be updated cyclically by the system
program. This system function should be programmed in DX 0, see
"Extended data block DX 0".

During a cold restart DB 1 is adopted by the system program. It checks
whether the inputs and outputs or IPC flags acknowledge on the appro-
priate modules. If they do not, the processor will stop with a DB 1
error and the STOP led will flash slowly. Your user program will not
be run.

As soon as you have programmed a DB 1 and it has been transmitted to
the processor the start-up mode 'cold restart' the following applies:

- Access to 1/0 modules via the process image is permissible only for
the inputs specified in DB 1 (commands L/T, IB, IW, ID, QB, QW, QD
and logic operations with inputs and outputs).

- Direct loading of 1/0 bytes by passing the process image using the
instructions L PB/PY, PW, OB, OW is possible for all acknowledging
inputs - irrespective of the entries in DB 1.

- Direct transfer (T PB/PY, PW, OB, OW) to the bytes 0 through 127,
however, is possible only for the outputs specified in DB1 since
the process image is also written to with direct transfer. Direct
transfer to byte addresses > 127 is possible whether an entry
has been made in DB 1 or not.

10.4 Start-up during Multiprocessor Operation

This is how the coordinator is started during multiprocessor opera-
t ion :

The mode selectors of all processors plugged-in are set to 'RUN'.
The mode selector of the coordinator is set to 'STOP'.

Switch the mode selector on the coordinator from 'STOP' to 'RUN'.

(Starting up the programmable controller during multiprocessor
operation simply by starting the coordinator is possible only if
the stop state was actually caused by the coordinator.)

The mode selector of all processors plugged-in and of the coordina-
tor are on 'RUN'.

The processor responsible for the stop page is started by means of
the online function "PC start", in the required start-up mode.

The start-up mode of the individual processors now depends on how and
whether their settings have been changed in the meantime, while in the
stop state. This means that it is possible that some processors carry
out a manual warm restart, others, however, a cold restart.

If the processor settings have not been changed in the meantime they
will carry out a manual warm restart (CPU 928 and R processor) or a
manual cold restart without reset (S processor).

IHPoRTrn!
Due to the differing start-up modes it is possible that, if the pro-
grammable controller was in the cycle before the stoppage, incorrect
signal states are transferred from one processor to the other via the
IPC flags. This can be prevented by programming the start-up OBs 20,
21, and 22.

The coordinator is started automatically following a power failure and
a subsequent power return. In this case all S processors will carry
out an automatic cold restart without reset, all CPUs 928 and R pro-
cessors an automatic restart or an automatic cold restart, depending
on the presetting in DX 0.

The start-up of the individual processors is synchronized during
multiprocessor operation, i.e. the individual processors wait until
all others have completed their start-up and then simultaneously start
cyclic operation. In the case of the CPU 928 and the R processor you
have the option of disabling this start-up synchronization by pro-
gramming DX 0.

10.5 Test Operation

This is how test operation is triggered:

The "test operation" function must be enabled at the coordinator.

Switch the mode selector at the KOR from 'STOP' to 'TESTf. The BASP
led will no longer be lit.

e Select the start-up mode for the processors that are to RUN.

Special features during test operation

In the test mode you have the option of starting up the processors
individually or in various combinations. The processors that are in
the stop state can no longer block the whole programmable controller.

The start-up of the individual processors is not synchronized in the
test mode. The processors will start their cyclic program processing
at different times, depending on the length of the start-up OBs 20, 21
or 22.

If an error occurs on one of the processors only this processor will
stop during test operation. The other processors are not affected by
the error.
Exception : During overall reset, with online functions "stop" PC ,

PRO.CTRL, PRO.CTRLE and if there is a DB 1 error at a
processor the complete programmable controller will
stop.

Output of the BASP signal is suppressed for all processors in the test
mode. The digital 1/0 outputs will not be disabled if an error
occurs (exceptions see above).

IHPORTAN!I!!
In test operation, output of the BASP signal is suppressed for every
processor. If an error occurs the digital 1/0 outputs are not disabled
(for exceptions see above).

IHPORTAN!I!!
Make sure to deactivate the test operation mode by means of the
respective setting at the coordinator after the commissioning has been
completed! You rill thus avoid incorrect operation which may lead to
dangerous situatians in the plant/process.

Summary: This is hov to start your multiprocessor controller

Set the number of processors used at the coordinator.
Enable interprocessor communication flags on the coordinator.

Plug-in the processors in the central controller; do not leave
gaps !

Switch on the power supply.

Switch the mode selector at the coordinator to 'STOP'.

Execute overall reset for all processors plugged-in.

Load user program in the processors.

Execute cold restart for all processors.

Switch the mode selector at the coordinator to 'RUN' or 'TEST'.

11 Testing Aids: Online Functions

The online functions are an important aid when it comes to testing
your user program. Refer to your programmer manual for detailed infor-
mation on the operation of the programmer and the application of these
functions. The following chapter will describe some special features
of online functions in connection with the CPU 928.

The online functions are executed at defined points in the programmable
controller. For this purpose, points exist in the system program that
are system checkpoints and points in the user program that are user
checkpoints.

System checkpoints

The system checkpoint exists in the STOP mode. This checkpoint is
called regularly.

The system checkpoint cvcle is called at the end of program processing
level CYCLE during the RUN mode and before the process image is up-
dated.

If the processor is in the WAIT MODE the system checkpoint wait state
will be called regularly.

In addition to that there is a time dependent system checkpoint
timeout. This checkpoint is called if none of the other system check-
points has been reached within 250 ms. This means that nesting of this
system checkpoint is possible during program execution. This may occur
e.g. in the case of a permanent loop in the user program or in cycles
which continue for more than 250 ms.

Processing of a online function at a system checkpoint will be inter-
rupted after 5 ms max. and is continued at the next system checkpoint
(see table 11.11).

User checkpoints

A user checkpoint is used for the test functions 'STATUS' and 'PRO-
CESSING CONTROL'. This checkpoint is called if a command is executed
which has been marked by the PG.

WAIT MODE

Up to now, you are familiar with the STOP, START-UP, and RUN mode. The
processor will adopt another mode if the online function 'PROCESSING
CONTROL' is executed: the WAIT MODE. If the processor is in this mode,
calling of further online functions is possible.

Characteristics of the vait mode

- No user program processing is carried out in the wait mode.

- LEDs on the front panel: RUN LED: off
STOP LED: off
BASP LED : on

- All timers are 'frozen', i.e., no timers run (the timer locations
are not altered). Furthermore all system timers are stopped, just
as during closed-loop control and time-driven processing.

The timers will continue to run after the wait mode has been
left (see Chapter 10.3).

- Causes of interruptions such as PEU, MP-STP or STP-SCH are
recorded in the wait mode, however, no reaction takes place.

If causes of interruptions were recorded in the wait mode,
the corresponding program levels are called immediately after
the wait mode has been left.

If NAU occurs, the wait mode is left and the online function
'PROCESSING CONTROL' aborted. Following power on 'BARBEND' is
marked in the control bits. STOP can only be exited by means of a
cold restart.

11.1 Online Function 'STATUS VARIAJ3LES'

The online function 'STATUS VARIABLES' allows you to have the current
signal statuses of certain operands (process variables) output. This
function activates system checkpoints in the cycle, in the stop mode
and the wait mode. If the system checkpoint is reached the current
signal status of the desired process variable is output. You can
specify all process variables. No ADF is triggered in the area of the
process image.

Running of the function during program execution:

If the function is processed in the START-UP mode or RUN program
execution will be continued until the system checkpoint 'cycle' is
reached. Then the signal status of the operands at the cycle end will
be scanned and output. Inputs are read from the process image. The
signal statuses will be updated while the program is running until the
function is aborted. The signal statuses are not scanned at every
system checkpoint.

If the system checkpoint 'cycle' is not reached no output of the
signal status will be carried out (e.g. in the case of a permanent
loop in the user program)!

Running of the function in the stoo mode:

If the function 'STATUS VARIABLES' is processed in STOP the signal
statuses of the operands will be output as they are at the system
checkpoint 'stop status'. In doing so it is important that the inputs
are scanned and output directly by the 1/0 module. Thus it is possible
to e.g. test whether an 1/0 input signal is actually transferred to
the processor. For multi-processor operation you may specify a l l
inputs irrespective of the assignment made in DB 1. The outputs are
read from the process image.

Running of the function in the wait mode:

Calling of the function 'STATUS VARIABLES' is also possible if the
processor is in the wait mode due to the 'PROCESSING CONTROL' func-
tion. The signal statuses of the operands are scanned and output at
the system checkpoint 'wait mode'. Just as in the stop mode, the inputs
are read directly, the outputs from the process image.

If the processor changes from one operating mode to the other (e.g.
RUN -> STOP -> MANUAL WARM RESTART) the function will remain called.
'STATUS VARIABLES' is terminated by pressing the abort key on the
programmer.

Note: The variables are not output in every cyc le following.

11.2 Online Function 'STATUS'

The online function 'STATUS' allows you to test connected command
sequences in a block at any point in the user program.
The current signal statuses of the operands, the contents of the
accumulators, the RLO etc. are output at the programmer for every
instruction executed in the block. In the same way the parameters
assigned to function blocks can also be tested: The current values of
the actual operands will be displayed.

Calling the function and preselecting the stop points

If you call the 'STATUS' function at the PG and input the block type
and block number (possibly with nesting sequence and search term) of
the block to be tested this means that you preselect a so-called stop
point.

If the function is called during program execution in the START-UP or
RUN mode then program processing will be continued until the command
marked by the preselected stop point is reached in the correct nesting
sequence. Then the commands monitored are executed up to the command
boundary and the results of command execution are output at the PG.

Calling of the 'STATUS' function is also possible in the stop status.
After this has been done, a cold as well as a manual warm restart is
possible. The processor will then process the user program until the
preselected stop point is reached. The data for the desired command
sequence are the output. Thus, the 'STATUS' function is also suitable
for e.g. testing the user program during start-up or in the first
cycle.

Note: The results of command execution are not output in every cycle
following.

Nesting and interruptions

A command sequence marked by a stop point will be executed completely,
even if another program level (e.g. an error OB, a process or time
interrupt) is nested and processed in the meantime.

If an interrupt stops the processor in a nested program level the data
will be output in the stop mode up to the instruction executed last
before the nesting. Data of the remaining instructions are filled with
'0' (also SAC = 0).

If the processor changes from one operating mode to another (e.g. RUN
--> STOP --> manual warm restart) the function will remain called.
'STATUS' is terminated by pressing the abort key on the programmer.

11.3 Online Function 'PROCESSING CONTROL'

The online function 'PROCESSING CONTROL' allows you to check individual
program steps at any location in the user program. This is done by
stopping program execution and having the processor execute one com-
mand after the other. The current signal statuses of the operands, the
contents of the accumulators, the RLO etc. are output at the program-
mer for every command executed.

Calling the function and preselecting the 1st stop point

In order to call the 'PROCESSING CONTROL' function you specify the
block type and block number (possibly with nesting sequence) of the
block to be tested and mark the first command at the PG whose data are
to be output. Thus you preselect the first stop point. 'PRO.CTRLr will
be marked in the control bits. Command output is inhibited (BASP LED =
on).

Note: If test operation has been set at the coordinator, the command
output is not inhibited (BASP LED = off). When commands which
alter the digital peripherals are now being processed or when
the processor is updating the process image, the process inter-
face modules output the corresponding signals.

If you preselect the first stop point during proaram execution in the
START-UP or RUN mode the processor will continue program execution
until the command is reached that has been marked by the preselected
stop point. The command is carried out until the command boundary is
reached. (The DO FW and DO DW commands will be processed including the
command substituted.)
Then the processor will transfer to the wait mode. There the data of
the instruction executed will be output.

Calling the function in the stop mode:

Calling of the 'PROCESSING CONTROL' function and preselection of the
first stop point is also possible in the stop mode. The processor will
remain in the stop state. You may now execute either a cold restart or
a manual warm restart. The processor will run the program until the
command marked is reached and will then proceed as above.

Contiwe function and preselect another stop point

Situation: The processor is in the wait mode.

There are two ways of continuing the 'PROCESSING CONTROL' function.

1. You shift the existing stop point:

The preselected stop point is shifted by one command. The
processor will leave the wait mode and will continue program
execution at this particular instruction. When the instruction has
been processed up to the command boundaries the processor will
again transfer to the wait mode and will output data there.
However, if the subsequent command is reached in a nested program
level, the processor will continue the program. The shifted stop
point will remain set.

Important: A stop point cannot be shifted in the stop status!

2. You preselect a new stop point:

You preselect any command at the PG either in the same or in
another block. The processor will continue the program until the
new stop point is reached. The command will be executed up to the
command boundary. Then the processor will go over to the wait mode
and will output data.

Using 'PROCESSING CONTROL' you may let the processor continue
through another complete cycle (test cycle-by-cycle). To do this,
set the stop point in wait mode to the same command as before.
Make sure that the command is not part of a program loop.
Otherwise, the loop is executed once; the program processing stops
at the cycle boundary.

Note: You can call other functions such as 'OUTPUT DIR',
'STATUS VARIABLES' or 'CONTROL VARIABLE' in the wait
mode.

As soon as the wait mode is left and the program is
continued, the timer and system timers will continue
until the stop point is reached.

Cancelling the stop point:

If a preselected stop point has not yet been reached you can still
cancel it by pressing the abort key on the PG. The processor will then
go over to the wait mode. You can then preselect a new stop point or
call 'PROCESSING CONTROL END'.

Aborting the function:

You may abort the function during the program, in the wait mode or in
the stop status by calling 'PROCESSING CONTROL END'. The processor
will stop (or remain in the stop state). The STOP LED will flash
slowly. 'PRO.CTRLEt will be marked in the control bits. A cold restart
is required afterwards.
If an interface error or NAU occurs during the 'PROCESSING CONTROL'
(interruption at the PG cable) the function will be aborted as above.

Nesting

Nesting of other program levels is possible if 'PROCESSING CONTROL' is
called and before the processor goes over to the wait mode as well as
during the transition from the wait mode.

If the command at the stop point is processed and another program
level is called at this point (e.g. an error OB, a process or time
interrupt), this level will only be nested and processed completely
when the wait mode is left again.

IKPoRTrn!
Data are read and output at the command boundaries. A l l corresponding
nestings have still not been processed.

Shifted
stop oint

I
read data

mode (output data)

command

read data

xxxxxxxxxxxxxxxx Wait mode (output data)

interrupt, error OB

If requests such as PEU, MP-STP, STP-SCH etc. have occurred during the
wait mode they will only be recorded. They will become effective
immediately after the wait mode has been left: A program level is
nested or an interrupt will cause the processor to stop.
Valid is the order of events. Simultaneous requests are prioritized.

Note: When the processor is in the wait mode and there is a nesting
request, you can set a stop point at one of the nesting
commands. At a command that triggers a timeout (QVZ) you may
thus observe the QVZ error OB.

Interruptions

- Program execution (start-up/run) --> stop status

If causes of interruptions occur during program execution (e.g. MP-
STP, PEU, STP-SCH, error OB not programmed etc.) and the preselect-
ed stop point has not yet been reached the processor will immedia-
tely stop. If a start-up (cold restart or manual warm restart) is
carried out the 'PROCESSING CONTROL' function will remain called
and the stop point is still preselected.

- Command execution at the stop point (start-up/run) --> stop status

If, during command processing, stop conditions such as a stop
switch or STEP5 command 'STPr occur at the stop point or shifted
stop point, the processor goes into the stop mode immediately after
command processing has been concluded and transfers the data.
If in stop mode no new stop point is preselected, the processor
goes into the wai t mode following start-up. 'PROCESSING
CONTROL' remains called up.

- Stop mode --> stop status

Causes of interruption that occur in the wait mode (e.g. MP-STP,
PEU or STP-SCH) or that have been produced by previous commands
(errors that lead to STOP) are recorded, however, the processor
remains in the w a i t mode. Only when a new stop point is preselected
in wait mode and the processor leaves this mode, will the causes of
interruption occurred make the processor pass into the s top s t a t e .
The preselected stop point is not reached.
If a subsequent start-up (cold restart or manual warm restart) is
carried out the stop point will still be preselected.

IMPORTANT!
If the mode selector is switched to stop in the wait mode the proces-
sor will not go w e r to the stop status until the wait mode is left.

I m O R T r n !
If causes of interruption during tPROCESSING CONTROL' are responsible
for the processor stopping the 'PROCESSING CONTROL' function (and any
preselected stop point) will remain active after a subsequent start-
"P-

11.4 Online Function 'CONTROL'

By means of the 'CONTROL1 function you can set the output bytes of the
programmable controller to the desired signal status manually and directly
by skipping the process image, or detect process interface modules that
do not acknowledge (digital I/Os 0 to 127) (message to PG). You are
offered the option to directly check and control the process units (motor,
valves) supplied by the outputs.

IKmRTrn!
The 'CONTROL' function is permissible only in the stop mode!

Calling the function

The command output inhibit (BASP = off) is cancelled if the function
is called in the stop mode. the digital I/Ors (FOOOH to F07FH) are
cleared by overwriting each address with value '0'. The function may
not be interrupted during the clearing of the I/O1s.

The 1/0 outputs are controlled byte by byte, directly and without
influencing the process image of outputs! Controlling of 1/0
outputs is possible in multiprocessor operation (irrespective of an
1/0 assignment in DB1).

Execution of a cold restart or a manual warm restart is possible while
the function is active (message "control ready" at the PG). Control-
ling will again be possible after the processor has stopped. The
process interface output modules will not be erased in this particular
case.

Aborting the function

The function is aborted by means of pressing the abort key at the PG.
The command output inhibit will again be output (BASP = on).

11.5 Online Function 'CONTROL VARIABLES'

The online function 'CONTROL VARIABLES" allows you to alter the values of
operands (process variables) once. This is permissible in every
operating mode of the processor. All process variables can be speci-
fied. No ADF is triggered in the area of the process image.

The alteration will become effective at a system checkpoint.

Do not forget that subsequent overwriting of the values controlled is
possible (e.g. by the user program or the process image updating)!

Note: The PG controls the process variables I, Q, F byte by byte and
DW, T, and C word by word.

IKmRTrn!
If you control several operands the bytes altered (for DV, T, C the
words) will be altered one after the other distributed w e r several
system checkpoints.

11.6 Online Function .COMPRESSr Memory

This function is used to shift all valid blocks of the user program
together. This is carried out individually in the RAM module and the
DB-RAM. Gaps that are created when blocks are erased or corrected will
disappear. This is done by shifting a complete block to the beginning
of the memory area. Execution of this operation is possible at system
checkpoints 'cycle' and 'stop'.

The function will be aborted and an error message output if the BSTACK
is not empty at the system checkpoint 'stop'. This is the case if an
interrupt causes a stop during program execution. If this is the case,
further compressing will only be possible in the cycle.

No further block will be shifted if a power failure occurs during
compressing. If the function 'COMPRESS' memory is called again,
shifting will be continued.

IHPORTrn!
The 'COMPRESS' memory function vill identify the folloving errors in
the block memory:
- incorrect block length
- invalidated pattern '7070' in the header
- invalid block type (invalid block mrmber in the case of OBs).

The function is aborted. A message is output at the PG. An overall
reset is then required. The function can be called up again only
after the werall reset.

Note: 'COMPRESS memory' is not permitted as long as 'PROCESSING
CONTROL' is active .

11.7 Online Function 'STARTr/'STOP'

PG operation corresponds to manual operation.
Calling the 'STOP' function allows you to stop the programmable con-
troller. The following will be displayed at the processor connected to
the PG:

STOP-LED: on
BASP-LED: on

'PG-STP' is marked in the control bits. The control bit 'MP-STP' is
set on the other processors in multiprocessor operation.

A processor can be started by a cold restart or a manual warm restart.
The processor will leave the stop state in the case of single-proces-
sor operation. In the case of multiprocessor operation the start-up
mode will be recorded first (control bit 'NEUST' or 'M W A' is set),
however, the processor will remain in the stop state. You can start
the programmable controller by means of 'start system'. This corre-
sponds to the operation of the coordinator (switch set to RUN).

The PG 'START' function offers another alternative: You can select the
start-up mode for all processors one after the other and start the PC
with the last processor.

11.8 Online Function 'PC 0VERAI;L RESET'

Overall reset of a processor is possible from the PG (corresponds to
'Delete all blocks'). The overall reset will be executed uncondition-
ally (see Chapter 4.2).

If the processor is in the operating mode START-UP or RUN when the 'PC
OVERALL RESET' is called a transition to the stop state will be exe-
cuted first. In this case the organization block OB 28 - if loaded -
will be called.

Note: 'PC OVERALL RESET' is not permissible as long as 'PROCESSING
CONTROL' is active.

11.9 Online Function 'OUTPUT ADDRESS'

The 'OUTPUT ADDRESS' function allows you to output the contents of
memory and 1/0 addresses in words hexadecimally at the PG. All
addresses may be called. No ADF is triggered in the area of the
process image, no QV2 is caused in the 1/0 area.

The high byte is represented as 'FF' in the byte addressable area
(flags, process image).

The high byte is output as '00' in the 1/0 area when addresses
acknowledge. If an 1/0 address does not acknowledge the high byte will
be output as 'FF'.

11.10 Online Function 'MEMORY CONFIGURATION'

The 'MEMORY CONFIGURATION' function shows you the highest usable
address of the RAM module ('0' will be displayed for EPROM) and the
last address in the memory submodule occupied by blocks of the user
program.

B8576633-01

11.11 Table: Activities at the Checkpoints

'1 Act iv i t ies that may be distr ibuted over several checkpoints

2, One block mx. per system checkpoint

3, Only i f there i s no BSTACK entry

Act iv i t ies

with online functions

Input address: wri te data l)
Block input: declare block va l id

Erase block

Corrpress memory: s h i f t block 2,

Start/stop

Overall reset

STATUS VAR: read and outp. data

STATUS: read and output data

Processing control: preselecting

the stop point

read data

output data

Control process in t . mod. l)
Control VAR 1)

Table: Activities carried out at system and user checkpoints

System checkpoint

Stop Cycle Wait Time-

mode out

* * * *
* * * *
* * * *
*3) *

* * * *
* * *

* * *

* * * *

* *

*
* * * *

User

checkpoint

*

*

ANNEX A: Technical Data S5 135U

S processor R processor CPU 928

l I I

typic. c m n d execution
times for b i t comnands
with F, 1, Q

D

formal operand

typic. c m n d execution
times for word c m n d s
Loading operations

L FY (byte)
L FW (word)
L FD (double word)

f ixed & float.p.arithrn.

- Added time for process
image updating depend.
on the nunber of 1/0
bytes (n) with
0 c n 5 256

- Added time for transfer
of IPC flags depending
on the nunber of IPC
flags (n) with
0 n 5 256

- Added time for timer
Location proc. depend.
on time uni t length

(ZBL)
ZBL=O
ZBL#O,
n = number of timers

running

(increment 10ms)
- interrupt driven

program execution
extension of cycle t i m
by nesting of an enpty

OB2 (w/o STEP5 c m n d :
at a block boundary

cycl ic program processing
(single process. oper.)
- basic load when

OBI/FBO are called:

every 10 ms
20/us

5 0 1 ~ ~ + ZBL X 9.31~1
+ n X 17.9/us

221 /268/us

every 2.5 ms
5 0 1 ~ ~

6 0 1 ~ ~ + ZBL X 1.561~
+ n X 1.24/us

every 10 ms
5/us

200/us + n X 0.35/us
(fo r 0 < n 5 128)
400/us + n X 0.35/us
(fo r 128 n 5 256)

Response time I 425/us I 300/us 1 280/us

Terms and def in i t ions:

Basic load: Basic load is the part of the cyclic system
execution time which can be measured without update of
the process image and transfer of the IPC flags.

CPU 928

340/us f o r the 1st
t ime in ter rupt OB,

180/us f o r any
other t ime i n te r -
rupt OB being due
a t the same time

10, 20, 50, 100, 200,
500 ms, 1, 2, 5 sec

150 ms
1. ..6000 ms

X

5 32

approx. 23.3

256 each

256 each

Response time: Response time is the time interval from activation of
the program processing level PROCESS-INTERRUPT up to
processing of the first command in OB 2, provided that
OB 2 is called immediately after the detection of the
process interrupt. However, the response time is
increased when the next command or block boundary is
to be waited for.

R processor

375,us

100 ms

150 ms
1.. -4000 ms

X

5 32

approx. 11.1

128 each

256 each

- time-driven
program execution
extension of cycle time
by nesting o f an errpty
OB13(w/o STEP5 comnand)
a t a c m n d boundary

time cycle f o r c a l l i n g
time dr iven program

cycle time monitoring
preset
adjustable between
t r i gge r i ng poss.

s ize o f user memory
(i n K words)

s ize o f memory f o r data
blocks
(DB-RAM i n kwords)

nunber o f t imer and
counter Locations

n u h e r o f f l a g bytes

S processor

3271~s

100 ms

100 ms

X

- < 32

approx. 3.7

128 each

256 each

AlWEX B: Suntmary of Error Identifications

System data 3 and 4

Structure o f a d
0410H

I
Construction o f block address Lists:

Evaluation o f DB

0421H DByyH
0422H FByyH
0423H F B W
04248 FByyH

8001H y y y y H

8002H yyyyH
8003H yyyyH
8004H yyyyH

8005H y y y y H

Evaluation o f DX

0431H y y y y H

0432H yyyyH

0434H yyyyH

Incorrect block Length yyyy=addr. o f block W. incorrect length
Computed end addr. of block i n memory wrong yyyy=block address

I n v a l i d b l o c k i d yyyy=addr. o f block wi th i n v a l i d i d

OB n u h e r too high (perm. :OB 1 t o 39) yyyy=addr. o f block wi th
incorrect nunber

Data block nuhe r 0 (permitted: 1 t o 255) yyyy=addr. o f block wi th

ress l i s t f o r process image updating:
I n v a l i d i d e n t i f i e r yyyy=incorrect i d e n t i f i e r
Incorrect parameter i n address L i s t yyyy=addr. o f input-byte

I 1d ig i t a l inputsuu (permitted: 128) speci f ied i nco r rec t l y
Incorrect parameter i n address L i s t yyyy=addr. o f output-byte

I ud ig i t a l outputst1 (permitted: 128) speci f ied i nco r rec t l y
Incorrect parameter i n address L i s t yyyy=addr. o f f l a g byte

I1IPC f l a g inputu1 (permitted: 256) speci f ied i nco r rec t l y

Incorrect parameter i n address L i s t yyyy=addr. o f f l a g byte

uLIPC f l a g outputu1 (permitted: 256) speci f ied i nco r rec t l y

I n v a l i d no. of t imer locations (perm.:256) w i n c o r r . nunber of
t imer Locations

Acknowledgement delay a t d i g i t a l inputs w a d d r e s s o f input
byte not acknowl.

Acknowledgement delay a t d i g i t a l outputs yyyy=address o f output
byte not acknowl.

Acknowledgement delay a t IPC yyyy=address o f f l a g

f l a g input byte not acknowl.
Acknowledgement delay a t IPC yyyy'address o f f l a g

f tag output byte not acknowl.

2 :
Data block not Loaded yy = nuhe r o f DB not Loaded

Function block not loaded yy = number o f FB not loaded

Function block not recognized yy = number o f FB not recog.

Function block loaded with incorr . yy = number o f funct ion block

PG software
Incorrect Length of con t ro l l e r DB yy = n u h e r o f data block

Not enough memory capacity i n DB-RAM

0 :
I n v a l i d i d e n t i f i e r yyyy = incorrect i d e n t i f i e r

Unknown parameter yyyy = incorrect parameter

I l Legal nunber o f yyyy = incorrect n u h e r o f

t imer locations (perm.:256) timer locat ions
I l l e g a l cycle time yyyy = incorrect t ime value

(perm.: 1 ms t o 4 S)

A c a ~ 1 and aecu 2

Accul AccuZ

I
Control ler proc

0801H DByyH

0802H DByyH
0803H FByyH

0804H FByyH

0805H FByyH

0806H DByyH

0880H yyyyH

!ss i ng

Sampling time er ror yy = no. o f resp. DB

Control ler DB not loaded yy = no. o f DB not Loaded
Control ler FB not loaded yy = no. o f FB not loaded

Control ler FB not recog. yy = no. o f FB

Control ler FB Loaded with

incorrect PG software

Incorrect Length of con t ro l l e r DB yy = no. o f DB

Acknowledgement delay (QVZ)

dur ing con t ro l l e r processing

c a l l OB 34

c a l l OB 34

c a l l OB 34

c a l l OB 34

c a l l OB 34

STEP5 comnand

1801H -
1802H -
1803H -
1804H -
1805H -

1811H -
1812H -
1813H -
1814H -
1815H -
1821H -
182BH -
182CH -
182DH -
182EH -
182FH -
1830H -
1831H -
1832H -
1833H -
1834H -
1835H -

1836H -
STEP5 execution

IAOIH -
IAOZH -
1A03H -
1A04H -
1A05H -
1A11H -
1A12H -
1A13H -
1A14H -
1A15H -
1A21H -
1A22H -
IAZH -
1A25H -
IABH -
1A2AH -
lA2BH -

c a l l OB 34

c& er rors

Subst i tu t ion er ror a t DO RS comnand

Subst i tu t ion er ror a t DO DW/DO FW c m n d

Subst i tu t ion er ror a t DO=/DI= c m n d

Subst i tut ion er ror a t L=/T= c m n d

Subst i tu t ion er ror a t A=-/AN=-/O=-/ON-/==-/S=-and RB=-

c m n d

C m n d wi th i l l e g a l operation code

C m . w i th i l l e g a l opcode (h-byte o f 1 comn.word=68H)

C m . w i th i l l e g a l opcode (h-byte o f 1 comn.word=78H)

C m . w i th i l l e g a l opcode (h-byte o f 1 comn.word=70H)

C m . w i th i l l e g a l opcode (h-byte o f 1 comn.word=60H)

I l l e g a l parameter a t C DBO, C DBI, C DB2

I l l e g a l parameter a t JU(D0) OB 0

I l l e g a l param. a t JU(D0) OB > 39: spec. fc t . not pres.

I l l e g a l parameter a t CX DXO

I 1 Legal par .at LFU/TFW/LPW/TPW/LOU/TOW/LDD/TDD/DOFU255

I l l e g a l par. a t LIW/TIW/LQW/TQU 127

I Llegal par. a t LFD/TFD 253, 254,255

I l l e g a l par. a t LID/TID/LQD/TQD 125, 126, 127

I Llegal par. a t RLD/RRD/SSD/SLD/ 33-255

I l l e g a l par. a t SLW/SRW/LIR/TIR 16-255

I Llegal par. a t SED/SEE 32-255

I l l e g a l par. a t A=/AN= O=/ON=/S=/RB=/==/RD=/FR=/SP=/

SR=/SEC=/SSU=/SFD=/L=/LD= LW=/T=O, 127-255

I L Legal par. a t DO=/LWD=O, 126-255

time er rors

Data block not loaded a t CDB

Data block not loaded a t CXDX

Block not loaded a t JC(B) FB, 05, PB, and SB

Block not loaded a t DOC(B) FX

Data block not loaded a t OB 254 or 255

Access t o a data word not defined

Transfer er ror t o a data word not defined (T DR)

Transfer er ror t o a data word not defined (T DL)
Transfer er ror t o a data word not defined (T DW)

Transfer er ror t o a data word not defined (T DD)

Error a t GDB, GXDX: DB ex is ts already

Error a t GDB, GXDX: I l l e g a l DB length

Error a t GDB, GXDX: Main memory Loc. i n RAM insu f f i c .

Error a t DI=: I l l e g a l parameter i n accu 1

Bracketstack under- o r overflow a f t e r A(, O(,)
Error a t CDB or CXDX: DB header length insuff.(<5 word)

Function block Loaded with wrong PG software

c a l l OB 27

ca l l OB 27

c a l l OB 27

c a l l OB 27

c a l l OB 27

c a l l OB 29

c a l l OB 29

c a l l OB 29

c a l l OB 29

c a l l OB 29

c a l l OB 30

c a l l OB 30

c a l l OB 30

c a l l OB 30

c a l l OB 30

c a l l OB 30

c a l l OB 30

c a l l OB 30

c a l l OB 30

c a l l OB 30

c a l l OB 30

c a l l OB 30

c a l l OB 30

c a l l OB 19

c a l l OB 19

c a l l OB 19

c a l l OB 19

c a l l OB 19

c a l l OB 32

c a l l OB 32

c a l l OB 32

c a l l OB 32

c a l l OB 32

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

1A41 H

1A42H

1A43H

1A44H

1A45H

1A46H

1A47H

1A48H

1A49H

1A4AH

1A4BH

1A50H

1A51H

1A52H

1A53H

1A54H

1A55H

1A56H

lA57H

1A58H

1A59H

Acknow l
1E23H

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

.edgement

yyyyH

y y y y H

y y y y H

y y y y H

y y y y H

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

c a l l OB 31

Error i n ACR: page no. i n accu l -L > 255

SF er ror a t OB 254 or OB 255: DB ex is ts already i n RAM

SF e r ro r a t OB 254 o r OB 255: New DB ex is ts already

SF er ror a t OB 254 or OB 255: Main mem.loc.in RAM insuf f .
SF er ror a t OB 221: I l l e g a l value f o r new cycle t ime

SF e r ro r a t OB 223: D i f fe rent start-up d e s i n multipro-

cessor operation

SF er ror a t OB 240, 241 or 242: I l l e g a l s h i f t reg. o r DB no.

SF er ror a t OB 241: Sh i f t reg is ter not i n i t i a l i z e d

SF er ror a t OB 240: Main mem. Loc. i n DB-RAM insuf f .

SF er ror a t OB 240: DUO of data block contents grOr

SF er ror a t OB 240: I l l e g a l s h i f t reg.length i n DUI

SF er ror a t OB 240: I l l e g a l pointer pos i t i on or no.

SF er ror a t OB 120: I l l e g a l values i n accu 1 or accu 2-L

SF er ror a t OB 122: I l l e g a l values i n accu 1

SF er ror a t OB 110: I l l e g a l values i n accu 1

SF er ror a t OB 121: I l l e g a l values i n accu 1 or accu 2-L

SF er ror a t OB 123: I l l e g a l values i n accu 1

Error a t LRW, TRW: I Llegal address

Er ror a t LRD, TRD: I l l e g a l address

Error a t TSG, LBGB, LWGW, TBGB, TWGW: I l l e g a l address

Error a t LBGW, LWGD, TBGW, TWGD: I l l e g a l address

Error a t LBGD, TBGD: I [Legal address

Error a t TSC, LBCB, LWCD, TBCW, TWCD: I l l e g a l address
Error a t LBCW, LWCD, TBCW, TWCD: I l l e g a l address

Error a t LBCD, TBCD: I l l e g a l address

Error a t TNW/TNB: Source f i e l d i s not f u l l y contained i n a re i

Error a t TNW/TNB: Target f i e l d i s not f u l l y contained i n are;

delay:

Acknowledgement delay (QVZ) i n the user program
yyyy = QVZ address

Acknowledgement delay a t process image of dig. outputs

yyyy = address o f output byte not acknowledged

Acknowledgement delay a t process image o f dig. inputs

yyyy = address of input byte not acknowledged

Acknowl. delay a t proc. im. o f IPC f l a g outputs

yyyy = address of f l a g byte not acknowledged

Acknowl. delay a t proc. irn. o f IPC f l a g inputs

yyyy = address of f l a g byte not acknowledged

c a l l OB 23

c a l l OB 24

c a l l 0B 24

1 c a l l OB 24

1 c a l l OB 24

ANNEX C: Overviev of the STEP5 Operations Set

Basic operations

Opera t ion I Parameter Opera t ion 1 Parameter

: o p e r a t i o n s :

0 . 0 t o 127.7
0 . 0 t o 127.7
0 . 0 t o 255.7
0 .0 t o 255.5
0 .0 t o 127.7
0 . 0 t o 127.7
0 . 0 t o 255.7
0 . 0 t o 255.15
0 . 0 t o 127.7
0 . 0 t o 127.7
0 . 0 t o 255.7
0 . 0 t o 255.15

Boolean l o g i c o p e r a t i o n s

A I
A Q
A F
A D
A T
A C
AN I
AN Q
AN F
AN D
AN T
AN C
0 I
0 Q
0 F
0 D
0 T
0 C
ON I
ON Q
ON F
ON D
ON T
ON C

1
A (
O(
0

0 . 0 t o 127.7
0 .0 t o 127.7
0 . 0 t o 255.7
0 . 0 t o 255.15
0 t o 255
0 t o 255
0 .0 t o 127.7
0 . 0 t o 127.7
0 . 0 t o 255.7
0 .0 t o 255.15
0 t o 255
0 t o 255
0 . 0 t o 127.7
0 . 0 t o 127.7
0 . 0 t o 255.7
0 . 0 t o 255.15
0 t o 255
0 t o 255
0 . 0 t o 127.7
0 . 0 t o 127.7
0 . 0 t o 255.7
0 . 0 t o 255.15
0 t o 255
0 t o 255

Load

L IB
L IW
L ID
L QB
L QW
L QD
L FY
L FW
L FD
L DL
L DR
L DW
L DD
L T
L C
L PY

L PW

L OY
L OW
LC T
LC C
L KB
L KS
L KM
L KH
L KF

L KY

L KT
L KC
L KG

l) k0.1469368

Comparison o p e r a t i o n s :

! =F
X F
>F
*F
<F
<=F
! =D
X D
>D
>=D
<D
<=D
! =G
X G
>G
*G
<G
<=G

o p e r a t i o n s :

0 t o 127
0 t o 126
0 t o 124
0 t o 127
0 t o 126
0 t o 124
0 t o 255
0 t o 254
0 t o 252
0 t o 255
0 t o 255
0 t o 255
0 t o 254
0 t o 255
0 t o 255

0 t o 127
128 t o 255

0 t o 126
128 t o 254
0 t o 255
0 t o 254
0 t o 255
0 t o 255
0 t o 255
2 alphanum. c h a r .
1 6 - b i t p a t t e r n
0 t o FFFF
-32 768 t o
+32 767
0 t o 255 f o r
each b y t e
0 . 0 t o 999.3
0 t o 999
l>

X 10-38 t o
+0.1701412 X 1 0 ~ ~ -

Operation I Parameter
m Timer and counter operations

m Transfer operations:

m Block call operations:

JU PB
JU FB
DOU FX
JU SB
JU OB
JU OB l)
JC PB
JC FB
DOC FX
JC SB
JC OB
JC OB l)
C DB
CX DX
BE
BEC
BEU

l) Call of a special function
2, System operation

Operation I Parameter
m Arithmetic operations:

Supplementary operations

Other operations:

Operation I Parameter

NOP 0
NOP 1
STP
BLD

m Digital operations,
(word operations:

AW
0 W
xow

0 to 255

e Timer and counter
operations

FR T
FR C
FR =
SP =
SD =
SEC =
SSU =
SFD =
RD =

Load operations:

0 to 255
0 to 255
Formal operand
Formal operand
Formal operand
Formal operand
Formal operand
Formal operand
Formal operand

L
LD =
LW =
LWD =
L RS
L RT
L RI
L RJ
LIR 2,

Formal operand
Formal operand
Formal operand
Formal operand
0 to 255
0 to 255
0 to 255
0 to 255
0 to 15

Operation I Parameter Operation I Parameter
m Load operations
(continued) :

LRW
LRD
LB GB
LB GW
LB GD
LW GW
LW GD
LB CB
LB CW
LB CD
LW CW
LW CD

m Transfer operations:

T RT
TIR 2,
TNB 2,
TNW 2,
TRW
TRD
TSG
TB GB
TB GW
TB GD
TW GW
TW GD
TSC
TB CB
TB CW
TB CD
TW CW
TW CD

= Formal operand
0 to 255
0 to 255
0 to 255
0 to 255
0 to 15
0 to 255
0 to 255
-32768 . . . +32767
-32768 . . . +32767
-32768 . . . +32767
-32768 . . . +32767
-32768 . . . +32767
-32768 . . . +32767
-32768 . . . +32767
-32768 . . . +32767
-32768 . . . +32767
-32768 . . . +32767
-32768 . . . +32767
-32768 . . . +32767
-32768 . . . +32767
-32768 . . . +32767

m Conversion operations:
(continued) :

DED
DUD
FDG
GFD

m Shift operations:

m Jump operations:

SLW
SRW
SLD
SSD
RLD
RRD
SSW

- -

JU - -
JC - -
JY =
JN - -
JP -
JM - -
JO - -
JOS =
JUR

0 to 15
0 to 15
0 to 32
0 to 32
0 to 32
0 to 32
0 to 15

Symbolic address
Symbolic address
Symbolic address
Symbolic address
Symbolic address
Symbolic address
Symbolic address
Symbolic address
-32768 . . . +32767

m BR register operations:

MBR
ABR
MAS
MAB
MSA
MSB
MBA
MBS

0 . . . FFFFF
-32768 . . . +32767

m Boolean logic operations: m Set/reset operations:

Formal operand
Formal operand
Formal operand
Formal operand

m Conversion operations:

CFW
CSW
CSD
DEF
DUF

m Other OF

S =
RB =
= =

ACR
RA
I A
ENT
D
I
DO - -

Formal operand
Formal operand
Formal operand

0 to 255
0 to 255
Formal operand

L

Operation I Parameter

m Other op
(cont inu

DO DW
DO FW
D1 2)
DO RS
TAK
BLD
G DB
GX DX
SED
SEE

m Arithmetic operations:

ADD BN
ADD KF

ADD DF 2,

2, System operations

ANNEX D: STEP5 Command Summary (arranged in alphabetical order)

The commands marked with * belong to the category of supplementary
operations and are valid only in function blocks (FB/FX)!

STEP 5
command

! =D
! =F
! =G
1
+D *
+F
+G
-D *
-F
-G
:F
:G
xF
XG
<=D
<=F
<=G
<D
<F
<G
- - *
=D
=F
=I
=Q
X D
X F
X G
>=D
>=F
>=G
>D
>F
>G
A(
A = *
A C
A D
A F
A I
A Q
A T
AW *
ABR *
ACR *
ADD BN *
ADD DF *
ADD KF *
AN = *

Command group

comparison oper .
11

I1

logic oper . binary
system operation!
arithmetic oper.

I1

system operation!
arithmetic oper.

I t

l1

II

11

l1

comparison oper.
11

11

l1

I1

l1

setting operation
memory operation

11

11

I t

comparison oper.
11

l1

l1

II

l1

I1

11

11

logic oper .binary
II

II

II

I1

11

11

logic oper.binary
logic oper.digit.
system operation!

I1

arithmetic oper.
I1

l1

11

STEP 5
command

AN C
AN D
AN F
AN I
AN Q
AN T
BE
BEC
BEU
BLD
C DB
CD C
CFW *
CSD *
CSW *
CU C
CX DX
D *
DED *
DEF *
D I *
DO FW *
DOC FX
DO = *
DO RS *
DO DW *
DOU FX
DUD *
DUF d(

ENT *
FDG *
FR = *
FR C *
FR T *
G DB
GFD *
GX DX
I *
I A *
JC = *
JC FB
JC OB
JC PB
JC SB
JM = *
JN = *
JO = *
JP = *
JUR *

Command group

arithmetic oper.
II

l1

11

I f

I1

block end
11

l 1

other operation
block call
counter operation
convert operation

I1

II

counter operation
block call
decrement
convert operation

11

system operation!
other operation
block call
other operation
system operation!
other operation
block call
convert operation

II

other operation
convert operation
time/counter oper.
counter operation
time operation
generate DB
convert operation
generate DX
increment
other operation
jump operation
block call
block call + jump
block call

11

jump operation
l1

I T

11

system operation!

STEP 5
command

JOS = *
JZ = *
JU = *
JU FB
JU OB
JU PB
JU SB
L = *
L C
L DD
L DL
L DR
L DW
L FD
L FW
L FY
L IB
L ID
L IW
L KB
L KC
L KF
L KG
L KH
L KM
L KT
L KY
L OB
L OW
L PW
L PY
L QB
L QW
L RI *
L RJ *
L RS *
L RT *
L T
LB CB *
LB CD *
LB CW *
LB GB *
LB GD *
LB GW *
LC C
LC T
LD = *
LIR *
LRD *
LRW *
LW = *
LW CD *
LW CW *
LW GD *

Command group

jump operation
11

I 1

block call
block call + jump
block call

11

load operation
l1

11

l1

11

11

l1

l1

11

l 1

l1

l1

11

11

l1

11

11

I 1

l 1

I1

I1

l1

11

l1

11

11

11

11

l1

11

11

system operation!
l1

11

11

11

I1

load operation
11

11

system operation!
I I

11

load operation
system operation!

l1

11

STEP 5
command

LW CW *
LWD = *
MAB *
MAS *
MB A ~r

MBR d(

MBS *
MS A *
MS B *
NOP 0
NOP 1
0
0 (
0 = *
0 C
0 D
0 F
0 I
0 Q
0 T
ON = *
ON C
ON D
ON F
ON I
ON Q
ON T
0 W *
R D
R F
R I
R Q
RA *
RB = *
RC
RD = *
RLD *
RRD *
RT
S = *
S C
S D
S F
S I
S Q
SD T
SE T
SEC= *
SEE *
SED *
SF T
SFD= *
S LD *
S LW *

Command group

system operation!
load operation
system operation!

i1

I t

11

11

11

11

zero operation
11

logic oper .binary
11

11

11

11

11

11

11

11

11

11

11

11

I I

11

11

logic oper.digit.
memory operation

11

11

11

other operation
setting operation
counter operation
timer/counter op.
shift function

11

timer operation
setting operation
counter operation
memory operation

11

11

11

timer operation
11

timer/counter op.
other operation

11

timer operation
timer/counter op.
shift function

11

STEP 5
command

S P = *
SP T
SR = *
SRW *
SS T
SSD *
SSU= *
SSW *
STP
T = *
T DD
T DL
T DR
T DW
T ID
T IW
T FD
T FW
T FY
T OW
T OY
T PY
T PW
T QB
T QD
T QW
T RI
T RJ
T RS *
T RT
TAK *
TB CB *
TB CD *
TB CW *
TB GB *
TBGD *
TB GW *
TIR *
TNB *
TNW *
TRD *
TRW *
TSC d(

TSG d(

TW CD *
TW CW *
TW GD *
TW GW *
X0 W *

Command group

shiftfunction
11

timer operation
shift function
timer operation
shift function
timer/counter op.
shift function
stop instruction
transfer operation

11

11

I t

11

11

II

II

11

11

11

11

11

II

11

II

11

I t

11

11

11

other operation
system operation!

11

11

I t

I t

I t

11

11

11

11

11

II

II

11

II

11

II

logic oper.digit.

ANNEX E: STEP5 Commands of the CPU 928
(arranged according to command code)

Explanations :

- Column 'command code':

The command code consists of three words max. that are either
represented as a hexadecimal number or - in a few cases - as a bit
pattern.

The bit positions containing the parameter are marked with the
letters 'p' (1st parameter, e.g. byte address) and 'q' (2nd para-
meter, e.g. bit address).

Bit positions that are not decoded are marked with the letter 'X'.

- Column 'parameter range':

Contains the permitted range of values of the bit positions marked
with the letters 'p' or 'q' in the command code.
All values stated are decimal.

- Column 'STEPS':

contains the abbreviations for programming in STL (STEP5 mnemonic).

- Column 'remarks':

Changes with respect to the R processor:

P = parameter range increased by 128 counters/timers
N = new command

Command code Parameter range

Word
- - - l - - - 2 - - - 3
ooxx
0100
O~PP
03PP
04PP
0500
O~PP
07PP
0800
0880
0900
OAPP
OBPP
0 CPP
ODPP
OEPP
OFPP
l0xx
l PP
1 2 ~ ~
1 3PP
14PP
15PP
1 PP
17PP
1 8 ~ ~
1 9PP
~APP
~BPP
~CPP
~DPP
~EPP
~FPP
~OPP
2120
2140
2160
2180
2 1AO
21CO
2 2 ~ ~
23PP
24PP
25PP
2 6 ~ ~
27PP
2 8 ~ ~
29PP
2 APP
~BPP
~CPP
~DPP
~EPP
~FPP

STEP5 Remark

NOP 0
CFW
LT P
TNB
FRT P
BEC
FR=
A=
I A
RA
CSW
LFY
TFY
LCT
JO =
LD=
o=
BLD
I
LFW
TFW
SFT
JP =
SFD=
S=
DO RS
D
LFD
TFD
SET
JCFB
SEC=
-- --
CDB
>F
<F
X F
! =F
>=F
<=F
LDL
TDL
SDT
m=
SR=
AN-
LKB
SLD
LDR
TDR
SST
JU=
S SU=
ON-

Command code

Word
---2 ---3

PPPP
PPPP
PPPP
PPPP
PPPP
PPPP
PPPP

PPPP PPPP

Parameter range STEP5 Remark

Bit pattern (wordl)
5432 1098 7654 3210
0100 1010 Oppp pppp 0-127
0100 1010 lppp pppp 0-127
0100 1011 Oppp pppp 0-127
0100 1011 lppp pppp 0-127

Word
---l - - - 2 - - - 3

~CPP
4DPP
~EPP
4FPP

LKC
LKT
LKF
LKS
LKY
LKH
LKM
>G
<G
X G
! =G
>=G
<=G
LDW
TDW
SPT
JN=
SP=
RB=
LKG
>D
<D
XD
! =D
>=D
<=D
LDD
TDD
RT
JUFB
RD=
LW=
LIR
AW
LC
TNW
FRC
JZ=
T F
LR J
TIR
OW

L1 B
LQB
TIB
TQB

LCC P
JCOB
DO ??W
LRT N

Command code

Word
- - - 1 - - -2 - - -3

5 OPP
5100

B i t pat tern (wordl)
5432 1098 7654 3210
0101 0010 Oppp pppp
0101 0010 lppp pppp
0101 0011 oppp pppp
0101 0011 lppp pppp

Word
-1 - - -2 - - - 3

5 PP
5 5 ~ ~
5 6 ~ ~
5 7 ~ ~
5800 PPPP
5900

B i t pat tern (wordl)
5432 1098 7654 3210
0101 1010 oppp pppp
0101 1010 lppp pppp
0101 1011 oppp pppp
0101 1011 lppp pppp

Word
- - - l - - - 2 - - - 3

5 CPP
~DPP
~FPP
6000
6003
6004
6005 PPPP PPPP

6007
6008
6009
600B
600C xxpp
600D
600F
6 1 ~ ~
6 2 ~ ~
6 3 ~ ~
6 4 ~ ~
6500
6501
6 6 ~ ~
6 7 ~ ~
6800 PPPP
68pl
6802
6803 PPPP

Parameter range STEP5 Remark

ADDBN
X0 W

LIW
LQ W
TIW
TQW

CDC
JCPB
LWD=
LOW
ADDKF
-F

LID
LQD
TID
TQD

SC
JCSB
LOB
:F
:G
xF
ADDDF N

xG
ENT
-D N
-G
JOS=
+D N
+G
SLW
LRS
TRS
RLD
BE
BEU
T=
TRJ
LRW
SSW
GFD
TRW

Command code Parameter range STEP5 Remark

Word
--- l - - -2 - - - 3

6804 PPPP
6805 PPPP
6806
6807
6808
680A
680C
680E
6819
6829
6849
6869
6889
6899
6 9 ~ ~
6 APP
~BPP
~CPP
~DPP
~EPP
~FPP
7002
7003
700B PPPP
7 1 ~ ~
7 2 ~ ~
7 PP
7 PP
7 5 ~ ~
7 6 ~ ~
7 7PP
7801 xxpp
7802 xxpp
7803 xxpp
7804 xxpp
7805 xxpp
7806 xxpp
7807 xxpp
7 8 ~ 9 PPPP
780A PPPP
780D PPPP
780E PPPP
781D PPPP
781E PPPP
782D PPPP
7823 PPPP
783D
783F Oqpp
783F lqpp
783F 2qpp
783F 3qpp
783F 4qpp
783F 5qpp
783B 6qpp

-32768,+32767 LRD N
-32768,+32767 TRD N

FDG
CSD
DUF
DUD
DEF
DED
MAS
MAB
MS A
MSB
MBA
MBS
SRW
LRI
TRI
cuc P
JUOB
DO DW
TRT P
TAK
STP
JUR
SSD
LPY
TPY
RRD
JUPB
DO=
TOW
DO FX
DOCFX
CXDX
GXDX
GDB
SED
SEE
MBR
ABR
LBCB
LBGB
LBCW
LBGW
LBCD
LBGD
ACR
AD
OD
AND
OND
SD
RD
=D

Command code

Word
- - -1
785D
7853
786D
7863
788D
7883
789D
7893
7 8AD
7 8AE
78CD
78CE
78DD
78DE
78ED
78EE
7900
7 APP
7 BPP
7 CPP
~DPP
~EPP
~FPP

---2 ---3

PPPP
PPPP
PPPP
PPPP
PPPP
PPPP
PPPP
PPPP
PPPP
PPPP
PPPP
PPPP
PPPP
PPPP
PPPP
PPPP

Bit pattern (wordl)
5432 1098 7654 3210
1000 oqqq PPPP PPPP
1000 lqqq PPPP PPPP
1001 oqqq PPPP PPPP
1001 lqqq PPPP PPPP
1010 oqqq PPPP PPPP
1010 lqqq PPPP PPPP
1011 oqqq PPPP PPPP

Word
- - - l ---2 - - - 3

B~PP
B~PP
BAxx
BBxx
BCPP
BDPP
BFxx

Bit pattern (wordl)
5432 1098 7654 3210
1100 oqqq OPPP PPPP
1100 oqqq ~PPP PPPP
1100 wlq OPPP PPPP
1100 lqqq ~ P P P PPPP
1101 oqqq OPPP PPPP
1101 oqqq ~PPP PPPP
1101 lqqq OPPP PPPP
1101 lqqq ~PPP PPPP

Parameter range

LWCW
LWGW
LWCD
LWGD
TBCB
TBGB
TBCW
TBGW
TBCD
TBGD
TSC
TSG
TWC W
TWGW
TWCD
TWGD
+F
LPW
TPW
RC
JUSB
D I
TOB

AF
OF
SF
=M
ANF
ONF
RF

AC
OC
A(
0 (
ANC
ONC
1

Remark

Command code

Word

Word
- - -1

F ~ P P
F9PP
FAPP
FBxx
FCPP
FDPP
FFxx

Parameter range STEP5 Remark

AT P
OT P
JC=
0
ANT P
ONT P
NOP 1

ANNEX F: STEPS Commands Not Contained in the CPU 928

Please note that the following STEP5 commands of the S5-150U may not
be processed in the CPU 928:

RAI

I A I

Command output inhibit

Command output enable

Check bit for '1'

Check bit for '0'

Set bit unconditional

Reset bit unconditional

Load command mask

Set interrupt mask

Interrupt block end

Stop command for time interrupt
processing

Disable addressing error interrupt

Enable addressing error interrupt

Enable user interrupt processing

Disable user interrupt processing

ANNEX G: Summary of the Program Level Identifiers

The identifiers correspond to those (hexadecimal) entered in the
ISTACK under 'LEVEL' (EBENE).

0002H - Cold restart

0004H - Cycle

0006H
0008H
0 0 OAH -
OOOCH -
OOOEH -
OOlOH -
0012H -
0014H -
0016H -

Time interrupt 5sec
Time interrupt 2sec
Time interrupt lsec
Time interrupt 500ms
Time interrupt 200ms
Time interrupt looms
Time interrupt 50ms
Time interrupt 20ms
Time interrupt lOms

0018H - not used
OOlAH - not used

OOlCH - Closed-loop control

OOlEH - not used
0020H - not used
0022H - not used

0024H - Process interrupt

0026H - not used
0028H - not used
002AH - not used

002CH - Abort

002EH - not used

0030H - Collision of two time interrupts
0032H - Controller fault
0034H - Cycle error

0036H - not used

0038H - Command code error
003AH - Execution time error
003CH - Addressing error
003EH - Acknowledgement delay (timeout)

0040H - not used
0042H - not used

0044H - Manual warm restart

0046H - Automatic warm restart

ANNEX H: Ekample: How to Evaluate the ISTACK

This (very simplified) example shows a possible method of how to
evaluate the ISTACK. Also refer to Chapter 5.3 "Control bits and
interrupt stack".

Starting point: The processor has aborted cyclic program execution and
gone into the stop state.
To find out the reason, we have to select the online
function "Output ISTACK" at our programmer.

First the control bits are output by the PG:

>>STP<< STP-6 FE-STP BARBEND PG-STP
X

>>ANL<< ANL-6 NEUST M W A A W A

>>RUN<< RUN-6 EINPROZ BARB OBlGEL
X X

32KWRAM 16KWRAM 8KWRAM EPROM KM-AUS
X

URGELOE URL-IA STP-VER ANL-ABB UA-PG

STP-SCH STP-BEF MP-STP
X

ANL- P NEU-ZUL MWA-ZUL
X X

FBOGEL OBPROZA OBWECKA

KM-EIN DIG-EIN DIG-AUS
X X

UA-SYS UA-PRFE UA-SCH

DXO-FE FE-22 MOD-FE RAM-FE DBO-FE DB1-FE DB2 -FE KOR-FE

N A U P E U B A U STUE-FE Z Y K Q V Z A D F WECK-FE

B C F FE-6 FE-5 FE-4 FE-3 L Z F REG-FE DOPP-FE
X

The control bits give information about the current operating state of
the processor (>>STP<<) as well as about other features such as OB 1
loaded, single-processor operation, 16KW user memory and so forth.
In the upper line 'STP-BEFr is marked as the cause of the stop state.
Since there is no STP command in our STEP5 user programs, the stop
command may have been activated only by the system program, due to a
missing error OB. In the lower line, the 'LZF' identification is
marked. The system program might have recognized that there is no
corresponding error organization block programmed when an execution
time error occurs. Since there are various possible execution time
errors and we do not know which of them it is, the information given
by the control bits is not sufficient.

We request the display of the ISTACK:

I N T E R R U P T S T A C K

DEPTH : 0 1

INS-REG: 0000 SAC : 0000 DB-ADD: 0000 BA-ADD: 0000
BLK-STP: 0001 -NO. : DB-NO. : -NR. :

REL- SAC : DBL-REG: 0000
LEVEL : 003A UAMK: 0120 UALW : 0000

RESULT BITS: DSPl DSPO OVFL OVFLS OR STATUS RLO G l)

CAUSE OF INTERR.: NAU PEU BAU MPSTP ZYK QV2 ADF STP
X

BCF S-6 LZF REG STUEB STUEU WECK DOPP

Depth 01 of the ISTACK represents the program level which has been
activated last before the processor went into the stop state.
The identification '3A'H (next to LEVEL) indicates that this is the
ISTACK of the program level EXECUTION TIME ERROR. Accu 1 contains the
error identification '1AOl'H. We may thus assume that an execution
time error has occurred due to the fact that no data block was loaded
after the command 'C DB'. Since the corresponding error OB 19 is not
available in our user program, the system program has aborted any
further program execution (STP). The cause of interruption is stored
in the 'interrupt condition-code mask wordr UAMK: the identification
'0120'H corresponds to the bit pattern '0000 0001 0010 0000'. Bit 25
(LZF) and bit 28 (STP) are set.

Now we have to find out in which block and by which command the
execution time error has been caused.

l) DSPl and DSPO are referred to as CC1 and CC0 in the S5-135U list of
operations

We switch the output of the ISTACK down to depth 02:

DEPTH : 0 2

INS-REG: 2006 SAC : 0037 DB-ADD: 0000 BA-ADD: 0000
BLK-STP: 0001 OB-NO. : 1 DB-NO. : -NO. :

REL-SAZ: 0004 DBL-REG: 0000
LEVEL : 0004 UAMK: 0020 UALW : 0000

RESULT BITS: DSPl DSPO OVFL OVFLS OR STATUS RLO ERAB

CAUSE OF INTERR.: NAU PEU BAU MPSTP ZYK QVZ ADF STP

BCF S-6 LZF REG STUEB STUEU WECK DOPP
X

The identification '04'H (next to LEVEL) indicates that this is the
ISTACK of the interrupted program level CYCLE. The STEP address
counter (SAC) points to the address '37'H. This is the absolute
address (in the user memory) of the command that caused the error.
The interruption occurred in organization block OB 1. In OB 1, the
command that caused the error can be found under the relative address
'04'H (REL-SAC). As we have already found out this was the command
that led to an execution time error (see UAMK, bit 25, and CAUSE OF
INTERR .) .

The incorrect command can now be displayed at the programmer using the
online function "SEARCH". Therefore we need to enter the block in
question (OB 1) and the relative address of the command.

F 1 ! F 2 ! F 3 ! F 4 ! F 5 ! F 6 ! F 7 ! F 8
SYMB.DISP! LIB.NO. ! SEARCH ! ! ! ! !

OUTPUT DEVICE: PC BLOCK: OB1 SEARCH: 4H

When the search has been performed, the PG displays the command
"C DB 6". This is the command that has caused the interruption since
there is no data block with number 6 in the user memory.

OB 1
SEGMENT 1 0000
0004 :C DB 6
0005
0006
0007
0008 : BE

Index

1
16-bit fixed point numbers; 2-5

3
32-bit fixed point numbers; 2-5; 2-6

A
Accumulators; 2-4; 3-10

erase; 6-7
scroll; 6-8

Accu 1 and accu 2
evaluate; 5-4

Acknowledgement delay (QVZ); 5-35
Actual operands; 2-23; 2-24; 2-26; 3-40
Address assignment

CPU 928; 8-2
system RAM; 8-3

Addressing error; 5-34
Arithmetic operations; 3-22; 3-41
Automatic warm restart; 4-13

B
BASP (command output inhibit); 5-36; 10-13
BCD coded number; 2-8
Basic operations; 2-1
Binary numbers; 2-5
Bit condition codes; 3-11

access to; 6-5
Block; 2-3; 2-9

start address; 3-4 '

call error; 5-30
Block address lists (DBO); 3-4
Block start addresses (DBO); 8-8
Block body; 2-11
Block call; 3-23

conditional; 2-14; 2-26
error; 5-30
unconditional; 2-14; 2-26

Block header; 2-10; 8-7
Block type; 2-9
Block boundaries; 4-3
Block number; 2-11
Block parameter; 2-23; 2-24
Block pre-header; 2-11
Block stack (BSTACK); 3-5

read; 6-12
evaluate; 5-4

Block transfer; 6-22; 6-24
Blocks

correct; 2-12
delete; 2-12

BR register; 9-19
load; 9-19

Byte (representation); 6-34

Index 1

C
COMPRESS memory; 11-10
CONTROL VARIABLES; 11-9
CONTROL; 11-9
Code blocks; 1-4; 2-9
Cold restart; 4-12

trigger; 4-9
Collision of two time interrupts; 4-20; 4-21; 5-37
Command code; E-l
Command code error; 5-27
Command boundaries; 4-3
Communications processor (CP); 10-6
Comparison operations; 3-14
Complement

forming of; 3-46
Configuration; 1-1
Control bits

abbreviations; 5-8
evaluate; 5-7

Controller
errors; 5-37
inputs and outputs; 6-73
interrupts; 4-23
parameters; 6-76
structure R64; 4-23

Control system Flow chart; 2-2
Conversion operations; 3-46
Coordinator; 410-2; 10-5

start; 10-12
Count value; 3-19
Counter loops; 6-10
Counter operations; 3-18; 3-38
CPU identification; 8-26
Cycle; 4-17

interrupts; 4-18
Cycle time; 1-3; 3-7; 5-36

error; 5-36
restart; 6-49
set; 6-49

D
DBO error; 5-22
DB1 error; 5-22
DB2 error; 5-24
DBA register; 9-7
DBL register; 9-10
DXO structure; 7-2
DXO error; 5-25
Data

format; 2-32
technical; 11-1

Data block RAM (DB-RAM); 6-57
Data block DB 0; 2-35
Data block DB 1; 2-35; 10-2; 10-9
Data block DB 2; 2-36
Data block DX 0; 2-36; 7-1
Data blocks; 1-4; 2-9; 2-10; 2-31

access to; 2-33; 6-16
alter; 2-31
structure; 2-31

Index 2

create; 3-52
duplicate; 6-30
open; 2-33
program; 2-32
shift; 6-29
test; 6-20
transfer; 6-29
validity range; 2-34

Data transfer; 10-4; 10-5; 10-6
protected; 10-8

Decimal numbers; 2-5
Decrement; 3-48
Digital outputs; 10-10
Digital inputs; 10-10
DSPl and DSPO; 3-12
Double addressing; 10-6
Double word (representation); 6-34
Double word conversion; 3-46

E
EPROM submodule; 2-3; 3-6
ERAB (first scan); 3-11; 3-13
Error causes;

search; 5-6
Error diagnosis; 5-2
Error handling

using organization blocks; 5-18
Error identifiers

summary; B-l
Error LEDs; 5-2
Error nesting; 5-12
Error organization blocks

interruptions; 5-20
Execution time; 3-7
Execution time error

others; 5-32
Exponent; 2-6
Exponential numbers; 2-6
Expansion units; 3-17

F
Fixed point conversion; 3-46
Fixed point-floating point conversion; 3-47
Flag bytes

rewrite; 6-24
transfer; 6-22

Floating point numbers; 2-6
input; 2-7

Formal operands; 2-22
Function block FB 0, 2-30
Function blocks; 2-10; 2-19

alter; 2-25
call; 2-26
structure; 2-20
parameter assignment; 2-26
program; 2-22

Functions, new; 1-7

Index 3

G
Graph 5; 2-2

H
Handling blocks; 6-56

I
I/O; 3-17; 8-5

access; 8-6
addresses; 6-33; 8-4
bus; 10-7
modules; 10-9; 10-11

Increment; 3-48
Initialization; 5-21

errors; 5-21
Intermediate flags; 4-27
Interprocessor communication flags; 3-7; 10-4

transfer; 6-50; 10-7
Interrupt condition code erase word (UALW); 8-18
Interrupt condition code word (collected) (UAMW); 8-19; 8-20
Interrupt lines; 4-24
Interrupt stack (ISTACK);

abbreviations; 5-12
evaluate; 5-12
evaluate (example); 5-16; H-l

Interruption causes; 5-21; 5-26; 5-27
Interruption location; 5-7
Interruptions of error OBs; 5-20
IPC

input flags; 3-8; 10-5; 10-10
output flags; 3-8; 10-5; 10-10

J
Jump operations; 3-43

L
Ladder diagram (LAD); 2-2
Load operations; 3-14; 3-39
Logic operations

binary; 3-13; 3-37
digital; 3-42

Loop counter; 6-10

H
MEMORY EXTENSION; 11-11
Mantissa; 2-6
Manual restart; 4-12
Memory access

absolute; 9-1
Memory areas; 1-5
Memory blocks

transfer; 9-13
Memory operations; 3-14; 3-37
Memory organization; 9-1
Multiprocessor operation; 10-1; 10-9

start-up; 10-12
Multiprocessor communication; 10-8

Index 4

B
Nesting depth; 1-7; 3-4
No operations; 3-23
Normalized fixed-point number; 6-74; 6-78
Numerical representation; 2-5

0
0 I/O'S; 3-17
OR; 3-11
OS (overflow, latching); 3-12
OUTPUT ADDRESS; 11-11
OV (overflow); 3-12
Online functions; 11-1
Operand; 2-4
Operating modes

Overview; 4-2
RUN; 4-16
START-UP; 4-9
STOP; 4-6
WAIT MODE; 11-1

Operation; 2-4
Operation code error; 5-28
Organization blocks ; 2 - 9

call; 2-14
program; 2-13
special functions; 2-18
special; 2-16
sructure; 2-13

Output BSTACK; 5-4
Output ISTACK; 5-2
Output bytes

control; 11-9
Overall reset

execute; 4-8
request; 4-7

P
P controller; 6-76
P I/O'S; 3-17
PC OVERALL RESET, 11-11
PD controller; 6-76
PI controller; 6-76
PID algorithm; 6-67; 6-72
PID controller; 6-65

abbreviations; 6-77
transfer data blocks; 6-69

PROCESSING CONTROL; 11-5
Pages; 6-32
Page frame

access; 9-24
Parameter error; 5-29
Power failure (NAU); 4-10; 4-13; 4-14; 10-12

during start-up; 4-14
Power return; 4-10; 4-13; 10-12
Process image; 3-17; 5-34; 5-35; 8-6

of inputs; 3-7
of outputs; 3-7

Index 5

Process interrupt
delay; 6-44
inhibit; 3-52; 4-26; 6-44
edge triggered; 4-25
release; 3-52; 4-26
interruptions; 4-24
level triggered; 4-25

Processing operations; 3-50
Program (processing)

controller; 4-23
cyclic; 3-6; 4-17
manipulate; 3- 9
interrupt driven; 4-24
time driven; 4-18

Program blocks; 2-9
call; 2-14
program; 2-13
structure; 2-13

Program examples; 3-24
Program levels

characteristics; 4-3
identifiers; G-l
priority; 4-3
summary; 4-2

Program organization; 3-1
Pseudo command boundaries; 6-1; 9-14

R
RAM submodule; 3-5
RI area (interface data area); 8-12
RJ area; 8-12
RS 3 and RS 4

evaluate; 5-3
RS area; 8-12
RT area; 8-12
RUN

errors; 5-26
Register; 1-6

access; 9-5
shift; 9-20

Register assignment; 9-2
Remaining cycle; 4-12; 4-14; 4-16
Response time; 4-27
Result bits; 3-11

access; 6-5
Result of logic operation (RLO); 2-14; 2-15; 3-11; 3-13
Return address; 3-4

Index 6

S
SAC (step address counter); 9-11
START-UP

errors; 5-21; 5-26
interruptions; 4-14
synchronization; 10-12
trigger; 4-9

STATUS VARIABLES; 11-3
STEP5 operations; 2-4

binary; 3-10
digital; 3-10
organizational; 3-10

STEP5 total operation set; C-l
STOP LED

permanently lit; 4-6
flashing quickly; 4-7
flashing slowly; 4-7

Sampling time; 4-23
Sampling time error; 5-39
Scratchpad flags; 4-27
Semaphores

application example; 3-56
enable; 3-53
set; 3-53

Sequence blocks; 2-10
call; 2-14
program; 2-13
structure; 2-13

Shift operations; 3-44
Shift register; 6-57

erase; 6-64
initialize; 6-60
process; 6-63

Sign; 2-6; 2-8
extension; 6-43

Slots; 10-2
Slot identification; 8-25
Special functions; 6-1

error; 6-1
overview ; 6 - 3

Standard function blocks; 2-29
Start-up modes

compare; 6-50
Statement list (STL); 2-2
Status (STA); 3-11
Stop point; 11-4; 11-5
Stop state; 4-6

leave; 4-8
Stop instruction; 3-23
Substitution error; 5-28
Supplementary operations; 2-1; 3-37
System checkpoint; 11-1
System data assignment; 8-13
System data words RS3 and RS4

evaluate; 5-3
System operations; 2-1; 3-37
System program; 1-4; 2-3

read checksum; 6-52

Index 7

T
Technical data S5-135U; A-l
Test operation; 10-13

special features; 10-13
trigger; 10-13

Time base; 3-19
Time interrupt

prioritize; 4-19
inhibit ; 6-44
interruptions; 4-20
delay; 6-43

Time value; 3-19
Timer block length; 10-10; 10-11
Timer operations; 3-18; 3-38;
Total cycle time; 3-7
Transfer error; 5-31
Transfer operations; 3-14; 3-39

U
User checkpoints; 11-1
User interface; 3-9
User memory; 8-7
User program; 1-4; 2-3

W
Wait state

features; 11-2
Word (representation); 6-34
Word condition codes; 3-11; 3-12

access; 6-5

Index 8

List of F i g u r e s . lkantples and Summaries

Chapter 1
. . Fig Typical S5 135U system structure . 1-2

Chapter 2
Fig . . Programming language STEP5 . methods of representation 2-2
Fig . . Block storage the in program memory . 2-11
Fig . . Structure of an organization. program and sequence block . . . 2-13
Fig . . Block calls that enable processing of a program block 2-14
Summary: Special-function organization blocks in the CPU 928 2-18
Fig . . Structure of a function block (FB/FX) . 2-20
Example: Programming a function block . 2-25
Fig . . Calling a function block and assignment of parameters 2-27
Fig . . Structure of a data block . 2-32
Fig . . Opening data blocks and accessing data words 2-34
Fig . . Validity range of a data block after it has been called 2-35
Chapter 3
Example: Organization of the user program according to the

program structure . 3-2
Example: Organization of the user program according to the

system structure . 3-3
Example: Block nesting depth and block stack . 3-5

. . Fig Blocks in the program memory . 3-6
Fig . . Cyclic program execution . 3-8
Chapter 4
Summary: Operating states and program levels . 4-2

. . Fig Interrupt-driven program execution at block boundaries 4-27
Chapter 5
Fig . . The structure of the ISTACK in an example 5-16
Chapter 6
Fig . . Schematic diagram of the shift register with 3 pointers

and 12 storage locations 6-57
Fig . : Schematic diagram of the shift register with 3 pointers

. and 12 storage locations before the first clock pulse 6-58
Fig . . Schematic diagram of the shift register with 3 pointers

and 12 storage locations after the first clock pulse 6-59
Fig . . Structure of the data block for the initialization of a

shift register . 6-60
Fig . . Block diagram of the PID controller . 6-65
Chapter 7
Fig . . Structure of DX 0 . 7-2

Chapter 8
Fig . . Address distribution in the CPU 928 . 8-2
Fig . . Address distribution . system RAM (16 bits) 8-3
Fig . . Address distribution . 1/0 (8 bits) . -8-4
Fig . . Address distribution for I/O/programming 8-5
Chapter 9
Fig . . Global memory and local memory . 9-2
Fig . . Contents of the accumulators during program execution 9-12
Example: Clearing all flag bytes (FYO to FY255) 9-12

Figures 1

SIEMENS

SIMATIC S5
Multiprocessor Communication
S5-135U, CPU 922 (R Processor),
CPU 928 and CPU 928B
S5-155U, CPU 946/947

User's Guide

Contents

Page

Introduction ... 3

Configuration ... 4

Principle ... 4

SenderlReceiver Identification 5

Buffering the Data ... 6

System Restart .. 9

Calling and Nestin the Special Function Organization Blocks
OB 200 and OB 20! to OB 205 ... 10

Parallel Processing in a Multiprocessor Programmable Controller 11

Required Memory Areas ... 11

Runtime .. 12

Parameter Assignment ... 14

Evaluating the Output Parameters 14

.. Condition Codes 15
Condition Code Byte: Initialization Conflict/Error/Warning 16

INITIALIZE Function (OB 200) 21

Input Parameters 23

... Mode (Automatic / Manual) 23
... Number of CPUs 24

Block ID and Number 1 Start Address of the Assignment List 24

.. Output Parameters 26

Condition Code Byte ... 26
Total Capacity ... 28

SEND Function (OB 202) .. 29

Input Parameters ... 29

Receiving CPU ... 29
Block ID and Number / Field Number ... 29

Output Parameters .. 31

... Condition Code Byte 31
Transmitting Capacity ... 33

SEND TEST Function (OB 203) .. 34

Input Parameters 34
Receiving CPU .. 34

.. Output Parameters 34

Condition Code Byte ... 34
Transmitting Capacity ... 35

RECEIVE Function (OB 204) 36

Input Parameters ... 36

Transmitting CPU ... 36

Output Parameters 37

Condition Code Byte ... 37
Receiving Capacity ... 38
Block ID and Number ... 38
Address of the FirstILast Received Data Word ... 39

RECEIVE TEST Function (OB 205) 40
Input Parameters .. 40

Transmitting CPU .. 40

Output Parameters .. 40

... Condition Code Byte 40
... Receiving Capacity 41

Applications 42

Calling the Special Function OB Using Function Blocks 42

... Setting Up a Buffer (FB 200) 43
Sending a Block of Data (FB 202) ... 45
Testing the Transmitting Capacity (FB 203) ... 47
Receiving a Block of Data (FB 204) .. 48
Testing the Receiving Capacity (FB 205) ... 50

... Transferring Data Blocks 51

Functional Description ... 51
.. Transferring a Data Block (FB 11 0) 51

Application Example (for the S5-135U) ... 54

.. Extending the IPC Flag Area 56

The Problem .. 56
... The Solution 57

... Data Structure 57
Program Stnrcture ... 60

... Sending Data Word Areas (FB 100) 62
Receive Data Word Areas (FB 101) ... 65

... Application Example (for S5-135U) 68

Introduction

1 lntroduction

You can operate the multiprocessor programmable controllers S5-135U and S5-155U with up to
four CPUs. You can use the following ''tools" individually or in combination to exchange data
between the CPUs:

F flags are transferred, if you define them as interprocessor communication (IPC) output
flags in one CPU and as IPC input flags in one or more CPUs.

To transfer data blocks, or to be more precise, blocks of data with a maximum length of
64 bytes (= 32 data words), you can use the following special functions that are integrated
in the CPU:

INITIALIZE (OB 200) : preassign

SEND (OB 202): send a block of data

SEND TEST (OB 203): test sending capacity

RECEIVE (OB 204): receive a block of data

RECEIVE TEST (OB 205): test receiving capacity

To use these functions, you only require basic knowledge of the STEP 5 programming
language and the way in which SlMATlC S5 programmable controllers operate. You can
obtain this basic information from the publications listed in the table of documentation.

Whereas the IPC flags are updated "automatically" by the system program, you must call the
INITIALIZE, SEND, SEND TEST, RECEIVE and RECEIVE TEST functions as special function
organization blocks using the JU OB or JC OB operations.

1.1 Configuration

These PLCs contain the S5 bus and in the multiprocessor mode they also have the following
components:

1 coordinator 923C

This module contains four pages. These are memory areas of 1024 bytes. They all occupy
the address area F400H to RFFH. You select (address) the "current" page using the
select register (also known as the identification or page address register, similar to chip
select). The select numbers 252, 253, 254 and 255 are fixed as the four pages of the
923C coordinator and are used for multiprocessor communication.

For the S5-135U: CPU 922 (R processor), CPU 928 , CPU 928B or
CPU 920 (M processor)

For the S5-155U: CPU 9461947, CPU 922 (R processor), CPU 928,
CPU 928B or CPU 920 (M processor).

These CPUs can exchange data with each other in any combination, you can also use
"handling blocks" which also work with page addressing without any restrictions.
If you have one or more additional CPU 921s (S processors) in the same rack, they
cannot take part in the multiprocessor communication. You must not call the S processor
handling blocks as long as R and M processors, CPU 928s, CPU 928Bs and
CPU 9461947s are processing their handling blocks or are involved in multiprocessor
communication. CPUs can, however, always communicate via IPC flags.

1.2 Principle

To transfer data, you must activate the SEND function on the transmitting CPU and the
RECEIVE function on the receiving CPU.
The data words of a DB or DX data block located in the transmitting CPU are transported via the
coordinator 923C to the receiving CPU one after the other and written to the DB or DX data
block with the same number and under the same data word address; i.e. this represents a "1 : l "
copying.

Introduction

Example

The amount of data that can be transferred with the SEND and RECEIVE functions is normally
32 words.
If the block length (without header) is not a multiple of 32 words, the last block of data to be
transferred is an exception and is less than 32 words.

The data block in the receiving CPU can be longer or shorter than the data block to be sent. It is,
however, important that the data words transferred by the SEND function exist in the receiving
block; otherwise the RECEIVE function signals an error.

1.3 SenderIReceiver Identification

The CPUs are numbered so that the leftmost CPU has the number 1 and each subsequent CPU
to the right has a number increased by 1.

Number = 1

Number = 2

Number = 3

Example

S5-135U/155U:

Fig. 1 Sendertreceiver identification

I

i 4
/

I l l
C C C C
P P P P

U U

9
2
3

C

C
P
U

1.4 Buffering the Data

The cycle time of a CPU depends on the number of tasks the CPU executes and the
performance of the CPU itself. Among other things, the cycle time is determined by the following:

the size of the individual program sections,

how often the program sections are required (multiple calls, loops),

the number of closed loop controllers (with CPU 922, CPU 928 and CPU 9288).

The cycle time of a CPU varies depending on the number of conditional block calls (e.g. JC PB
xy), the occurrence of interrupts (e.g. interrupt-driven processing via OB 2) and similar. This
means that the cyclic program execution in each individual CPU is asynchronous to the cyclic
program execution of the other CPUs.

In contrast to cyclic program execution, time-controlled program execution is processed
periodically depending on a clock signal, for example every 100 ms (OB 13). In this example, the
clock signal of a CPU can be delayed by up to 100 ms compared with another CPU.
Because of this asynchronous processing, the data to be transferred are buffered on the
coordinator 9236.

The CPU's "own" number and the number of a receiver (for the SEND function) or the number of
a transmitter (for the RECEIVE function) specify the source and destination.

Example: data transfer from CPU 3 to CPU 2

1 st step

I/ SEND, parameter of receiving CPU = 2

l
9 C C C
2 P P P C C
3 U U U P P I I I

C 1 2 3 f f

Introduction

2nd step

1 7 RECEIVE, parameter of transmitting CPU = 3

1st step the buffer is based on the FlFO principle (first in, first out queue principle). The
data is received in the order in which it is sent. This applies to each individual
transmission (identified by the transmitting and receiving CPU) and is
independent of other connections.

2nd step the buffer is battery-backed; this means that the "automatic warm restart
following power down" is possible without any restrictions. A loss of power
during a data transfer does not cause any loss of data in the programmable
controller.

The coordinator 923C has a memory capacity of 48 data fields each capable of containing 32
words. The INITIALIZE function assigns these fields to individual connections.
Each memory field (always with a length of 32 words) can hold exactly one block of data (with
a length between 1 data word and 32 data words). The SEND block enters one block of data in
a memory field from where it is read out by the RECEIVE block.
The number of memory fields assigned to a connection is directly related to the parameters for
the transmitting capacity (SEND, SEND TEST function) and receiving capacity (RECEIVE,
RECEIVE TEST function).

The transmitting capacity indicates how many of the memory fields reserved for a connection are
free at any particular time.

The receiving capacity indicates how many of the memory fields reserved for a connection are
occupied at any particular time.

The sum of the transmitting and receiving capacity parameters is always equal to the number of
memory fields reserved for a connection.

Introduction

Example

The following table indicates a possible data transfer sequence assuming that the connection
"from CPU 3 to CPU 2 has seven memory fields assigned by the INITIALIZE function.

Sequence I Sequence

Sends a blocks of data
(A)

Sends four blocks of data
(B,C,D,E)

Sends four blocks of data
(F,G,H,I)

Sends two blocks of data

Initialize

Receives two blocks of
data (A, B)

Transmitting
capacity (free
memory fields)

Receives five blocks of
data (C,D,E,F,G)

Receiving capacity
(occupied memory
fields)

l
Receives two blocks of
data (H,I)

l

REMEMBER

Sendinglreceiving n data blocks means that the corresponding function is called
n times.

To simplity the representation, at any one time, data can either be sent or
received in this example.
It is, however, possible and useful to transmit (CPU 3) and receive (CPU 2)
simultaneously (see "Parallel processing in a multiprocessor programmable
controller"). In the example, blocks H and I are received while blocks K and L are
sent.

0

1

5

3

7

2

7

6

2

4

0

5

Time

Introduction

The example illustrates the queue organization of the buffer; the blocks of data sent first
(A,B,C. ..) are received first (A,B,C.. .).

Summary

Buffering data on the coordinator 923C allows the asynchronous operation of transmitting and
receiving CPUs and compensates for their different processing speeds.

Since the capacity of the buffer is limited, the receiver should check "often" and "regularly"
whether there are data in the buffer (RECEIVE TEST function, receiving capacity > 0) and
should attempt to fetch stored data (RECEIVE function). Ideally, the RECEIVE function should
be repeated until the receiving capacity is zero. This means that the transmitted data are not
buffered for a longer period of time and that the receiver always has the current data. This also
means that memory fields remain free (the transmitting capacity is increased) and prevents the
sender from being blocked (i.e. when the transmitting capacity is zero).

A receiving capacity of zero represents the ideal state (i.e. all transmitted data have been
fetched by the receiver), on the other hand a transmitting capacity of zero indicates incorrect
planning, as follows:

the SEND function is called too often.

the RECEIVE function is not called often enough,

there are not enough memory fields assigned to the connection. The capacity of the buffer
is insufficient to compensate temporary imbalances in the frequency with which the CPUs
transmit and receive data.

1.5 System Restart

If you require multiprocessor communication, then all the CPUs involved must go through the
same STOP-RUN transition (= RESTART), i.e. all the CPUs go through a COLD RESTART or
all CPUs go through a WARM RESTART.

You must make sure that the restart of at least all the CPUs involved in the communication is
uniform (see Chapter 10), in the following ways:

direct operation (front switch, programmer),

parameter assignment (DX 0) and/or

programming (using the special function organization block OB 223 "stop if non-uniform
restarts occur in the multiprocessor mode").

Introduction

COLD RESTART

In organization block OB 20 (COLD RESTART) one CPU must set up the buffer (in the 923C)
using the INITIALIZE function. Any existing data is lost.
Following this, i.e. during the RESTART, you can call the SEND, SEND TEST, RECEIVE,
RECEIVE TEST functions in the individual CPUs. With appropriate programming, you must
make sure that this only occurs after the buffer in the coordinator has been correctly initialized.
On completion of the RESTART, i.e. in the RUN mode, the user program is processed from the
beginning, i.e. from the first operation in OB 1 or FB 0.

WARM RESTART

You must not use the INITIALIZE function in the organization blocks OB 21 (MANUAL WARM
RESTART) and OB 22 (AUTOMATIC WARM RESTART). Calling the SEND, SEND TEST,
RECEIVE, RECEIVE TEST functions can cause problems (refer to the following section).
On completion of the WARM RESTART, i.e. in the RUN mode, the user program is not
processed from the start, but from the point at which it was interrupted. The point of interruption
can, for example, be within the SEND function.

1.6 Calling and Nesting the Special Function Organization Blocks
OB 200 and OB 202 to OB 205

The simplest procedure is as follows:

program the call for the INITIALIZE function only in the cold restart organization block
OB 20;

program the call for the SEND, SEND TEST, RECEIVE, RECEIVE TEST functions either
only within the cyclic program or only within the time-driven program.

REMEMBER

Depending on the assignment of parameters in DX 0 ("interrupts at command
boundaries" for the CPU 9288, CPU 928 and CPU 920, or "155U mode" for the
CPU 946/947), and the type of program execution (WARM RESTART, interrupt
handling, e.g. OB 26 for cycle time error) it is possible that one of the functions
INITIALIZE, SEND, SEND TEST, RECEIVE and RECEIVE TEST can be
interrupted. If a user interface inserted at the point of interruption (e.g. OB 13
when interrupts are possible at operation boundaries or OB 22 following power
down) also contains one of the functions SEND, SEND TEST, RECEIVE and
RECEIVE TEST an illegal call (double call) is recognized and an error is
signalled (error number 67, Section 2.1.2).

Introduction

1.7 Parallel Processing in a Multiprocessor Programmable Controller

Once you have completed the assignment of the buffer (INITIALIZE function), you can execute
the functions SEND, SEND TEST, RECEIVE and RECEIVE TEST in any combination and with
any parameter assignment in all the CPUs simultaneously and parallel to each other.

Taking a single connection (from CPU 'SE' to CPU 'RE') it is possible to execute the SEND
function (CPU 'SE') and the RECEIVE function (CPU 'RE') simultaneously. While CPU 'SE' is
sending blocks of data to the coordinator, CPU 'RE' can receive (fetch) buffered blocks of data
from the coordinator.

1.8 Required Memory Areas

The special function organization blocks OB 200 and OB 202 to OB 205 do not require a working
area (e.g. for buffering variables) and do not call data blocks. They do, of course, access areas
containing parameters, although only the parameters marked as output parameters are modified.
These OBs also affect the condition codes (CC1, RLO etc., see Section 2.1).

CPU 922, CPU 928, The contents of ACCU 1 to ACCU 4 and the contents of the
CPU 928B: registers are not affected by the special function 06s for

multiprocessor communication.

CPU 9461947: The contents of all registers and ACCU 1, 2 and 3 remain the
same, only the contents of ACCU 4 are affected.

Introduction

1.9 Runtime

The "runtime" is the processing time of the special function organization blocks; the time from
calling a block to its termination can be much greater if it is interrupted by higher priority activities
(e.g. updating timers, processing closed loop controllers etc.).

OB 2021
send

OB 203 1
send test

OB 2041
receive

OB 205 /
receive test

The runtimes listed above assume that of four CPUs inserted in a rack, only the CPU whose
runtimes are being measured accesses the SlMATlC S5 bus. If other CPUs use the bus
intensively, the runtime increases particularly for the sendlreceive functions.

Send a
block of
data (32
data words)

Test
transmitting
capacity

Receive a
block of
data (32
data words)

Test
receiving
capacity

806 ps (294
ps basic time
+ 16psI
word); 1 18 ps
if a warning
occurs

72 ps

825 ps (281 ps
basic time
+17ps/
word); 1 15 ps
if a warning
occurs

70 ps

666 ps (250
ps basic time
+13ps/
word); 1 15 ps
if a warning
occurs

50 ps

660 ps (244
ps basic time
+13ps/
word); 98 ys if
a warning
occurs

48 W

762 ps (426
p basic time
+a p /
dOuble wwd);
243 ps if a
warning
occurs

207 ps

772 ps (421
ps basic time
+22p/dwble
wwd); 243 ys
if a warning
occurs

223 ps

696 ps
(280 ps)
basic time
+31 pstword);
145psif a
warning
occurs

80 ys

690 ps
(274 ps
basic time
+ 13 @
word); 128 ps
if a warning
occurs

78 ps

Introduction

An important factor of a connection (from CPU 'SE' to CPU 'RE') is the total data transfer time.
This is made up of the following components:

time required to send (see runtime)

length of time the data are buffered (on the 9236 coordinator)

the time required to receive data (see runtime)

The length of time that the data are "in transit" is largely dependent on the
length of time that the data is buffered and therefore on the structure of the user
program (see "Buffering Data").

Parameter Assignment

2 Parameter Assignment

The "actual" parameters are located in a maximum 10 byte long data field in the F flag area. The
number of the first flag byte in the data field (= pointer to the data field) must be loaded in
ACCU-1-L. Permitted values are 0 to 246.
The data field is divided into an area for input parameters and an area for output parameters.

Input parameters

All or part of the input parameters are read and evaluated by the functions, the functions
do not write to this area.

Output parameters

Some or all of the output parameters are written to by the functions, the functions do not
read this area.

You can assign a flag area with 10 flag bytes for all communications functions.
REMEMBER The functions themselves require different numbers of bytes. Refer to the
description of the single functions (Chapters 3 to 7).

Example: data field with parameters for the RECEIVE function (08 204)

FY X + 0: transmitting CPU
F Y x + l : -

FY X + 2: condition code byte
FY X + 3: receiving capacity

FY X + 4: block ID
FY X + 5: block number

FY X + 6: address of the first
P/ X + 7: received data word

FY X + 8: address of the last
FY X + 9: received data word

input parameter
not used

output parameter
output parameter

output parameter
output parameter

output parameter
output parameter

output parameter
output parameter

This example illustrates that the number of the first F flag byte in the data field must not be
higher than FY 246, since otherwise the parameter field of up to 10 bytes would exceed the
limits of the flag area (PI 255).

2.1 Evaluating the Output Parameters

Output parameters are data made available to the user program for evaluation. Among other
things, they indicate whether or not a function could be executed and if not they indicate the
reason for the termination of the function.

Parameter A.S.Si~m7'7ent

2.1 .l Condition Codes

The INITIALIZE, SEND, SEND TEST, RECEIVE and RECEIVE TEST functions affect the
condition codes (see programming instructions for your CPUs, general notes on the STEP 5
operations):

the OV and OS bits (word condition codes) are always cleared,

the OR, STA, ERAB bits (bit condition codes) are always cleared,

RLO, CC 0 and CC 1 indicate whether a function has been executed correctly and
completely.

RLO = 0: Function executed correctly and completely

RLO = 1: Function aborted: the pointer to the data field in the flag area may have an
illegal value, i.e. the low word of the ACCU contains a value greater
than 246.
In the following sections, it is assumed that the pointer to the data field
contains a correct value. The first byte of the output parameter provides
detailed information about the cause of termination.

CC 1 = 1 : Additional warning information (warning number 1 or 2)

CC 0 = 1 : Additional error indication (error number 1-9)

Function aborted, pointer to

Function aborted owing to an
initialization conflict

Function aborted owing to an
error

Function aborted owing to a
warning

1 0 1

1 1 0

JC = and JM =

JC= and JP=

Parameter Assignment

2.1.2 Condition Code Byte: Initialization ConflicUErrorlWarning

The first byte in the field of the output parameters (condition code byte) also indicates whether or
not a function has been correctly and completely executed. This byte contains detailed
information about the cause of termination of a function.
Assuming that at least the pointer to the data field contains a correct value, this byte is always
relevant.

If the function has been executed correctly and completely, all the bits are cleared (= O) , and all
other output parameters are relevant.

If the function is aborted with a warning (bit 2' = l) , only the condition code for the transmitting1
receiving capacity is relevant, other output parameters (if they exist) are unchanged.

If the function is aborted owing to an error (bit 26 = l) or an initialization conflict (bit 2' = l) , all
other output parameters remain unchanged.

Bit 27 26 25 24 23 22 2' 2O

~ u A b e r of an initialization
conflict

I I I of a warning

of an error

IDs

Initialization conflict

Error

Warning

Fig. 2 Coding of the first byte

Parameter Assignment

Evaluation

The identifiers in bit positions 25 to 2' indicate the significance of the numbers in bit positions 2'
to 23.
Apart from this bit-by-bit evaluation, it is also possible to interpret the whole condition code byte
as a fixed point number without sign. If you interpret the condition code byte as a byte, the
groups of numbers have the following significance:

The values of the following numbers also indicate the order in which errors or initialization
conflicts were recognized and indicated by the functions.

::.:.:.:.: ..

Example
The SEND function indicates an error and is not executed. If you then make program andtor
parameter modifications and the SEND function once again indicates an error with a higher
number than previously, you can assume that you have corrected one of several errors.

0

33 to 42

65 to 73

129 to 130

Initialization conflict

Function executed correctly and completely

Function aborted owing to an initialization conflict

Function aborted owing to an error

Function aborted owing to a warning

An initialization conflict can only occur with the INITIALIZATION function. If a conflict occurs, you
must modify the program or parameters.

Initialization conflict numbers (evaluation of the condition code byte as a byte)

(33) The pages required for multiprocessor communication (numbers 252 to 255) are
not or not all available.

(34) The pages required for multiprocessor communication (numbers 252 to 255) are
defective.

(35) The parameter "automatictmanual" is illegal. The following errors are possible:

The "automatic/manual" ID is less than 1.

The "automatic/manual" ID is greater than 2.

Parameter Assignment

(36) The parameter "number of CPUs" is illegal. The following errors are possible:

The number of CPUs is less than 2.

The number of CPUs is greater than 4.

(37) The parameter "block ID" is illegal. The following errors are possible:

The block ID is less than 1.

The block ID is greater than 2.

(38) The parameter block number" is illegal, since it is a data block with a special
significance. The following errors are possible:

IfblockID= 1 :DBO, DB 1,DB2

If blockID=2: DXO, DXI , DX2

(39) The parameter "block number" is incorrect, since the data block does not exist.

(40) The parameter "start address of the assignment list" is too high or the data block is
too short.

(41) The assignment list in the data block is not correctly structured.

(42) The sum of the assigned memory fields is greater than 48.

Parameter Assignment

Errors

If an error occurs, you must change the program/parameters.

Error numbers (evaluation of the condition code byte as a byte)

(65) The parameter "receiving CPU" (SEND, SEND TEST) is illegal, since it is a data
block with a special significance. The following errors are possible:

The number of the receiving CPU is greater than 4.

The number of the receiving CPU is less than 1.

The number of the receiving CPU is the same as the CPU's own number.

(66) The parameter "transmitting CPU" (RECEIVE, RECEIVE TEST) is illegal, since it is
a data block with a special significance. The following errors are possible:

The number of the transmitting CPU is greater than 4.

The number of the transmitting CPU is less than 1

The number of the transmitting CPU is the same as the CPU's own number.

(67) The special function organization block call is wrong (SEND, RECEIVE, SEND
TEST,RECElVE TEST). The following errors are possible:

a) Secondary error, since the INITIALIZE function could not be called or was
terminated by an initialization conflict.

b) Double call: the call for this function, SEND, SEND TEST, RECEIVE or
RECEIVE TEST is illegal, since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has already been called in this
CPU in a lower processing level (e.g. cyclic program execution).
(See "Calling and nesting the special function organization blocks".)

c) The CPU's own number is incorrect (system data corrupted); following power
dowwpower up the CPU number is generated again by the system program.

(68) The management data (queue management) of the selected connections are
incorrect; set up the buffer in the coordinator 923C again using the INITIALIZE
function (SEND, RECEIVE, SEND TEST, RECEIVE TEST).

Parameter Assignment

(69) The parameter "block ID" (SEND) or the block ID provided by the sender
(RECEIVE) is illegal. The following errors are possible:

The block ID is less than 1.

The block ID is greater than 2.

(70) The parameter "block number" (SEND) or the block number supplied by the sender
(RECEIVE) is illegal, since it is a data block with a special significance. The
following errors are possible:

(71) The parameter "block number" (SEND) or the block number provided by the sender
(RECEIVE) is incorrect. The specified data block does not exist.

(72) The parameter "field number" (SEND) is incorrect. The data block is too short or the
field number too high.

(73) The data block is not large enough to receive the block of data transmitted by the
sender (RECEIVE).

Warning

The function could not be executed; the function call must be repeated, e.g. in the next cycle.

Warning numbers (evaluation of the condition code byte as a byte)

(129) The SEND function cannot transfer data, since the transmitting capacity was
already zero when the function was called.

(130) The RECEIVE function cannot accept data, since the receiving capacity was
already zero when the function was called.

INITIALIZE Function (08 200)

3 INITIALIZE Function (OB 200)

Call parameters

1st data field / Before calling OB 200, you must supply the input parameters in the data
field.OB 200 requires eight F flag bytes in the data field for input and output
parameters:

FY X + 0: Mode (automatic1
manual) input parameter

FY X + 1 : Number of CPUs input parameter

FY X + 2: Block ID input parameter
PI X + 3: Block number input parameter

FY X + 4: Start address of the input parameter
FY X + 5: assignment list input parameter

FY X + 6: Condition code byte output parameter
FY X + 7: Total capacity output parameter

21 No. of the 1st flag byte 1" in the data field,
permitted values: ACCU-1 -LH: 0

ACCU-1 -LL: 0 to 246

To transfer data from one CPU to another CPU, the data must be temporarily buffered. The
INITIALIZE function sets up a buffer on the KOR 923C coordinator.
The memory capacity is stipulated in fields (with a length of 32 words).

Each memory field (always with a length of 32 words) accepts one block of data (with a length
between one data word and 32 data words). A block of data is entered in a memory field by a
SEND block and read out by a RECEIVE block.

lNlTlALlZE Function (06 200)

If you are using two CPUs, there are two connections (transfer directions, "channels"):

If you are using three CPUs, there are six connections:

CPU 1 CPU 2

If you are using four CPUs, there are twelve connections:

CPU 1

2-

CPU 2 CPU 3

CPU 2 CPU 2

CPU 3 CPU 4

INITIALIZE Function fOB 200)

The INITIALIZE function specifies how the total of 48 available memory fields are assigned to
the maximum twelve connections.
This means that each possible connection, specified by the parameters "transmitting CPU" and
"receiving CPU" has a certain memory capacity available.

Before you can call the SEND / RECEIVE / SEND TEST / RECEIVE TEST
lEMEMBER functions, one CPU must have already called the INITIALIZE function and
executed it completely and without errors.

If the INITIALIZE function is called several times, one after the other, the last assignment made
is valid. While a CPU is processing the lNlTlALlZATlON function, no other functions including
the INITIALIZE function can be called on other CPUs.

3.1 Input Parameters

3.1 .l Mode (Automatic I Manual)

Mode = 1 : automatic
Mode=2: manual
Mode = 0 or 3 to 255 : illegal, causes an initialization conflict

"Automatic" mode

If you select the "automatic" mode, the memory fields available are divided equally according to
the number of CPUs:

/NI TlALlZE Function (06 200)

"Manual" mode

If you select the "manual" mode, you must create an assignment list in a data block in which the
48 (or less) available memory fields are assigned to the maximum 12 connections according to a
fixed scheme. This function is particularly useful when some connections have far more data
traffic than others. For example, CPUs 921 (S processors) cannot take part in the multiprocessor
communication described here; the potential connections between this CPU and other CPUs do
not therefore need memory fields and should not have memory fields assigned to them. The
parameters

block ID,

m block number and the

start address of the assignment list

specify where the assignment list is stored. These three parameters are therefore only relevant
for the "manual" mode.

3.1.2 Number of CPUs

This parameter is only relevant if you select the "automatic" mode; (see 3.1 . l)

3.1.3 Block ID and 'Number / Start Address of the Assignment List

These parameters are only relevant if you select the "manual" mode.

Block ID and number

ID= l : DB data block
ID= 2: DX data block
ID = 0 or3 to 255: illegal, causes an initialization conflict

For the block number, you specify the number of the DB or DX data block in which the
assignment list is stored.

Start address of the assignment list

Along with the block ID and number, this specifies the area (or more precisely, the start address
of the area) in which the assignment list is stored.
The assignment list contains further input parameters for the INITIALIZE function, i.e. this area is
only read (the contents are not changed). The assignment list has the structure shown on the
following page:

INITIALIZE Function (OB 200)

Assignment list

Data word Format Value Significance

Transmitter = CPU 1
Receiver = CPU 2
Receiver = CPU 3
Receiver = CPU 4

Transmitter = CPU 2
Receiver = CPU 1
Receiver = CPU 3
Receiver = CPU 4

Transmitter = CPU 3
Receiver = CPU 1
Receiver = CPU 2
Receiver = CPU 4

Transmitter = CPU 4
Receiver =CPU1
Receiver = CPU 2
Receiver = CPU 3

REMEMBER

You must keep to this structure even if you have less than four CPUs.

The lower case letters a to m in bold face represent numbers between 0 and 48; the sum of
these numbers must not exceed 48.
The next page shows an example of a completed assignment list.

lNlTlALlZE Function 10B 200)

Example

You have three CPUs in your rack, CPU 2 sends a lot of data to the other two CPUs. The other
two CPUs, however, only send a small amount of data back to CPU 2 as acknowledgements in a
logical handshake. There is no data exchange between CPU 1 and CPU 3.

Assignment list

Data word : Format Value Significance

Transmitter = CPU 1
Receiver = CPU 2
Receiver = CPU 3
Receiver = CPU 4

Transmitter = CPU 2
Receiver = CPU 1
Receiver = CPU 3
Receiver = CPU 4

Transmitter = CPU 3
Receiver = CPU 1
Receiver = CPU 2
Receiver = CPU 4

Transmitter = CPU 4
Receiver = CPU 1
Receiver = CPU 2
Receiver = CPU 3

3.2 Output Parameters

3.2.1 Condition Code Byte

This byte informs you whether the INITIALIZE function was executed correctly and completely.

Initialization conflict

The initialization conflicts listed are recognized and indicated by the function in the ascending
order of their numbers.

If an initialization conflict occurs, you must change the program / parameters.

INITIALIZE Funcfion (OB 200)

Initialization conflict numbers (evaluation of the condition code byte as a byte)

(33) The pages required for multiprocessor communication (numbers 252 to 255) are not
or not all available.

(34) The pages required for multiprocessor communication (numbers 252 to 255) are
defective.

(35) The parameter "automatic/manual" is illegal. The following errors are possible:

The "automatic/manualW ID is less than 1.

The "automatic/manual" ID is greater than 2.

(36) The parameter "number of CPUs" is illegal. The following errors are possible:

The number of CPUs is less than 2.

The number of CPUs is greater than 4.

(37) The parameter "block ID" is illegal. The following errors are possible:

The block ID is less than 1.

The block ID is greater than 2.

(38) The parameter "block number" is illegal, since it is a data block with a special
significance. The following errors are possible:

IfblockID=l :DBO, DB 1, DB2

If block ID = 2 : DX 0, DX 1, DX 2

(39) The parameter "block number" is incorrect, since the data block does not exist.

(40) The parameter "start address of the assignment list" is too high or the data block is
too short.

(41) The assignment list in the data block is not correctly structured.

(42) The sum of the assigned memory fields is greater than 48.

INITIALIZE Function (OB 200)

Errors

The "error" number group cannot occur with the INITIALIZE function.

Warning

The "warning" number group cannot occur with the INITIALIZE function.

3.2.2 Total Capacity

This parameter specifies how many of the 48 available memory fields are assigned to
connections.
In the "automatic" mode, this parameter always has the value 48. In the "manual" mode, it can
have a value less than 48. This means that existing memory capacity is not used.

SEND Function (OB 202)

4 SEND Function (OB 202)

Call parameters

Before calling OB 202 you must specify the input parameters in the data
field.0B 202 requires six F flag bytes in the data field for input and output
parameters:

FY X + 0: receiving CPU input parameter
FY X + l : block ID input parameter

FY X + 2: block number input parameter
FY X + 3: field number input parameter

FY X + 4: condition code byte output parameter
FY X + 5: transmitting capacity output parameter

2.1 No. of the first flag byte "X" in the data field:
permitted values: ACCU-1 -LH: 0

ACCU-1-LL: 0 to 246

The SEND function transfers a data block to the buffer of the 923C coordinator. It also indicates
how many blocks of data can still be sent and buffered.

4.1 Input Parameters

4.1 .l Receiving CPU

The data to be sent are intended for the receiving CPU; the permitted value is between 1 and 4
but must be different from the CPU's own number.

4.1.2 Block ID and Number I Field Number

Block ID

ID= l: DB data block
ID = 2: DX data block
ID = 0 or 3 to 255: illegal, causes an error message

SEND Function (OB 202)

Block number

The block number, along with the block ID (see above) and the field number (see below)
specifies the area from which the data to be sent is taken (and where it is to be stored in the
receiving CPU).

Remember that certain data blocks have a special significance, for example, DB 0, DB 1 or DX 0
(see programming instructions for your CPUs). These data blocks must therefore not be used for
the data transfer described here.
If you attempt to use these block numbers, the function is aborted with an error message.

Field number

The field number indicates the area in which the data to be sent is located.

The following situations are possible:

If the data block is sufficiently long, you obtain a 32-word long area as shown in the table
above.

If the end of the data block is within the selected field, an area with a length between 1
and 32 words will be transferred.

If the first data word address is not within the length of the data block, the SEND function
detects and indicates an error.

SEND Function (OB 202)

Example

Data block with a length of 80 words: DW 0 to DW 74, 5 words are required for the block header.

4.2 Output Parameters

4.2.1 Condition Code Byte

This byte informs you whether the SEND function was executed correctly and completely.

Errors

If an error occurs, you must change the programlparameters.

Error numbers (evaluation of the condition code byte as a byte)

(65) The parameter "receiving CPU" is illegal. The following errors are possible:

The number of the receiving CPU is greater than 4.

The number of the receiving CPU is less than 4

The number of the receiving CPU is the same as the CPU's own number.

SEND Function (OB 202)

m (67) The special function organization block call is wrong. The following errors are
possible

a) Secondary error, since the INITIALIZE function could not be called or was
terminated by an initialization conflict.

b) Double call: the call for this function, SEND, SEND TEST, RECEIVE or
RECEIVE TEST is illegal, since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has already been called in this
CPU in a lower processing level (e.g. cyclic program execution). (See
"Calling and nesting the special function organization blocks".)

c) The CPU's own number is incorrect (system data corrupted); following power
dowwpower up the CPU number is generated again by the system program.

(68) The management data (queue management) of the selected connections are
incorrect; set up the buffer in the coordinator 923C again using the INITIALIZE
function.

(69) The parameter "block I D is illegal. The following errors are possible:

The block ID is less than 1.

The block ID is greater than 2.

(70) The parameter "block number" is illegal, since it is a data block with a special
significance. The following errors are possible:

If the block ID = 1 : DB 0, DB 1, DB 2

If the block IF = 2 : DX 0, DX 1, DX 2

(71) The parameter "block number" provided by the sender (RECEIVE) is incorrect. The
specified data block does not exist.

m (72) The parameter "field number" is incorrect. The data block is too short or the field
number too high.

SEND Function (06 202)

Warning

The function could be executed; the function call must be repeated, e.g. in the next cycle.

Warning numbers (evaluation of the condition code byte as a byte)

(129) The SEND function cannot transfer data, since the transmitting capacity was
already zero when the function was called.

Initialization conflict

The "initialization conflict" number group cannot occur with the SEND function.

4.2.2 Transmitting Capacity

The "transmitting capacity" indicates how many blocks of data can still be sent and buffered.

SEND TEST Function (OB 203)

5 SEND TEST Function (OB 203)

Call parameters

/1.1 Before calling OB 203, you must specify the input parameters in the data
field. OB 203 requires 4 F flag bytes in the data field for input and output
parameters:

FY X + 0: receiving CPU input parameter
F Y x + l : - not used

FY X + 2: condition code byte output parameter
FY X + 3: transmitting capacity output parameter

1 2. ACCU-1 -L: / No. of the first flag byte 1 " in the data field,
permitted values: ACCU-1 -LH:O

ACCU-l-LL: 0 to 246

The SEND TEST function determines the number of free memory fields in the buffer of the
923C coordinator.
Depending on this number m, the SEND function can be called m times to transfer m blocks of
data.

5.1 Input Parameters

5.1 . l Receiving CPU

The CPU's own number and the number of the receiving CPU identify the connection for which
the transmitting capacity (see above) is determined.

5.2 Output Parameters

5.2.1 Condition Code Byte

This byte indicates whether the SEND TEST function was executed correctly and completely.

Errors

If an error occurs, you must change the program parameters.

SEND TEST Function (OB 203)

Error numbers (evaluation of the condition code byte as a byte)

(65) The parameter "receiving CPU" is illegal. The following errors are possible:

The number of the receiving CPU is greater than 4.

The number of the receiving CPU is less than 1.

The number of the receiving CPU is the same as the CPU's own number.

(67) The special function organization block call is wrong. The following errors are
possible:

a) Secondary error, since the INITIALIZE function could not be called or was
terminated by an initialization conflict.

b) Double call: the call for this function, SEND, SEND TEST, RECEIVE or
RECEIVE TEST is illegal, since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has already been called in this
CPU in a lower processing level (e.g. cyclic program execution). (See
"Calling and nesting the special function organization blocks".)

c) The CPU's own number is incorrect (system data corrupted); following power
dowrlpower up the CPU number is generated again by the system program

(68) The management data (queue management) of the selected connections are
incorrect; set up the buffer in the coordinator 923C again using the INITIALIZE
function.

Warning

The "warning" number group cannot occur with the SEND TEST function.

Initialization conflict

The "initialization conflict" number group cannot occur with the SEND TEST function.

5.2.2 Transmitting Capacity

The "transmitting capacity" parameter indicates how many blocks of data can be sent and
buff ered.

RECEIVE Function (06 204)

6 RECEIVE Function (OB 204)

Call parameters

1 . 1 Before calling OB 204, you must specify the input parameters in the data
field. OB 204 requires 10 F flag bytes in the data field for input and output
parameters:

FY X + 0: transmitting CPU input parameter
F Y x + l : - not used

FY X + 2: condition code byte output parameter
FY X + 3: receiving capacity output parameter

FY X + 4: block ID output parameter
FY X + 5: block number output parameter

FY X + 6: address of the first output parameter
FY X + 7: received data word output parameter

FY X + 8: address of the last output parameter
FY X + 9: received data word output parameter

12.1 No. of the first flag byte "X" in the data field,
permitted values: ACCU-l-LH:O

ACCU-1 -LL: 0 to 246

The RECEIVE function takes a block of data from the buffer of the 923C coordinator. It also
indicates how many data blocks are still buffered and can still be received.
The RECEIVE function should be called in a loop until all the buffered blocks of data have been
received.

6.1 Input Parameters

6.1 .l Transmitting CPU

The receive block receives data supplied by the transmitting CPU; the permitted value is
between 1 and 4, but must be different from the CPU's own number.

RECEIVE Function (OB 204)

6.2 Output Parameters

6.2.1 Condition Code Byte

This byte informs you whether the RECEIVE function was executed correctly and completely.

Errors

If an error occurs, you must change the programlparameters.

Error numbers (evaluation of the condition code byte as a byte)

(66) The parameter "transmitting CPU" is illegal. The following errors are possible:

The number of the transmitting CPU is greater than 4.

The number of the transmitting CPU is less than 1.

The number of the transmitting CPU is the same as the CPU's own number.

(67) The special function organization block call is wrong. The following errors are
possible

a) Secondary error, since the INITIALIZE function could not be called or was
terminated by an initialization conflict.

b) Double call: the call for this function, SEND, SEND TEST, RECEIVE or
RECEIVE TEST is illegal, since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has already been called in this
CPU in a lower processing level (e.g. cyclic program execution). (See
"Calling and nesting the special function organization blocks".)

c) The CPU's own number is incorrect (system data corrupted); following power
downlpower up the CPU number is generated again by the system program.

(68) The management data (queue management) of the selected connections are
incorrect; set up the buffer in the coordinator 923C again using the INITIALIZE
function.

(69) The block identifiers supplied by the transmitter is illegal. The following errors are
possible

The block ID is less than 1

The block ID is greater than 2.

RECEIVE Function (06 204)

(70) The block number supplied by the transmitter is illegal, since it is a data block with a
special significance. The following errors are possible:

If theblockID=l :DBO,DBl,DB2

IftheblockID=2: DXO, DX 1, DX2

(71) The block number provided by the transmitter is incorrect. The specified data block
does not exist.

(73) The data block is too small to receive the block of data supplied by the transmitter.

Warning

The function could be executed; the function call must be repeated, e.g. in the next cycle.

Warning numbers (evaluation of the condition code byte as a byte)

(130) The RECEIVE function cannot receive data, since the receiving capacity was
already zero when the function was called.

Initialization conflict

The "initialization conflict" number group cannot occur with the RECEIVE function.

6.2.2 Receiving Capacity

The "receiving capacity" parameter indicates how many blocks of data are still buffered and can
still be received.

6.2.3 Block ID and Number

Block ID

ID= 1: DB data block
ID = 2: DX data block

RECEIVE Function (OB 204)

Block number

The block number along with the block ID (see above) and the addresses of the first and last
data word (see below) specifies the area in which the received data were stored by the
RECEIVE function (and the area from which they were taken in the transmitting CPU by the
SEND function).

Remember that the receive data blocks should be in a random access memory (RAM); using
read-only memories (EPROM) might possibly serve a practical purpose for transmit data blocks.

6.2.4 Address of the FirsULast Received Data Word

The difference between the addresses of the first and last data word transferred is a maximum of
31, since a maximum of 32 data words can be transferred per function call.

RECEIVE TEST Function (OB 205)

7 RECEIVE TEST Function (OB 205)

Call parameters

11. Data field: Before calling OB 205, you must specify the input parameters in the data
field. OB 205 requires 4 F flag bytes in the data field for input and output
parameters:

FY X + 0: transmitting CPU input parameter
F Y x + l : - not used

PI X + 2: condition code byte output parameter
FY X + 3: transmitting capacity output parameter

'2.1 No. of the first flag byte "X' in the data field,
permitted values: ACCU-1 -LH: 0

ACCU-1-LL: 0 to 246

The RECEIVE TEST function determines the number of occupied memory fields in the buffer of
the 923C coordinator. Depending on this number m, the RECEIVE function can be called m
times to receive m blocks of data.

7.1 Input Parameters

7.1 .l Transmitting CPU

The CPU's own number and the number of the transmitting CPU identify the connection for
which the receiving capacity (see above) is determined.

7.2 Output Parameters

7.2.1 Condition Code Byte

This byte indicates whether the RECEIVE TEST function was executed correctly and completely.

Errors

If an error occurs, you must change the program parameters.

RECEIVE TEST Function (OB 205)

Error numbers (evaluation of the condition code byte as a byte)

(66) The parameter "transmitting CPU" is illegal. The following errors are possible:

The number of the transmitting CPU is greater than 4.

The number of the transmitting CPU is less than 1

The number of the transmitting CPU is the same as the CPU's own number.

(67) The special function organization block call is wrong. The following errors are
possible:

a) Secondary error, since the INITIALIZE function could not be called or was
terminated by an initialization conflict.

b) Double call: the call for this function, SEND, SEND TEST, RECEIVE or
RECEIVE TEST is illegal, since one of the functions INITIALIZE, SEND,
SEND TEST, RECEIVE or RECEIVE TEST has already been called in this
CPU in a lower processing level (e.g. cyclic program execution). (See
"Calling and nesting the special function organization blocks".)

c) The CPU's own number is incorrect (system data corrupted); following power
down'power up the CPU number is generated again by the system program..

(68) The management data (queue management) of the selected connections are
incorrect; set up the buffer in the coordinator 923C again using the INITIALIZE
function.

Warning

The "warning" number group cannot occur with the RECEIVE TEST function.

Initialization conflict

The "initialization conflict" number group cannot occur with the RECEIVE TEST function.

7.2.2 Receiving Capacity

The "receiving capacity" parameter indicates how many blocks of data can be received and
buff ered.

Applications

8 Applications

When using one of the function blocks listed below and using interrupts (e.g. OB 2), make sure
that the scratchpad flags are saved at the beginning of the interrupt handling and are written
back again at the end.

This also applies to the setting "interrupts at block boundaries", since the call of
REMEMBER the special function organization blocks represents a block boundary.

8.1 Calling the Special Function OB Using Function Blocks

The following five function blocks (FB 200 and FB 202 to FB 205) contain the call for the
corresponding special function organization block for multiprocessor communication (OB 200
and OB 202 to OB 205).
The numbers of the function blocks are not fixed and can be changed. The parameters of the
special function OBs are transferred as actual parameters when the function blocks are called.
The direct call of the special function organization blocks is faster, however, is more difficult to
read owing to the absence of formal parameters.

The flag area from FY 246 to maximum FY 255 is used by the function blocks as a parameter
field for the special function organization blocks.

FB 200

FB 202

FB 203

FB 204

FB 205

The exact significance of the input and output parameters is explained in the description of the
special function organization blocks.

REMEMBER

The following examples of applications involve finished applications that you can
program by copying them.

INITIAL

SEND

SEND-TST

RECEIVE

RECV-TST

Set up buffer

Send a block of data

Test the sending capacity

Receive a block of data

Test receiving capacity

Applications

8.1 .l Setting Up a Buffer (FB 200)

INITIAL FB 200
lNlC

TCAP

TNAS -

STAS

Number of CPUs

Type (H byte) and number (L byte)
of the data block containing the

Start address of the assignment

lNlC

TCAP

list

Initialization conflict

Total capacity

Q

Q

BY

BY

W 252

W 253

FB 200 LEN=45 ABS
SEGMENT l
NAME:INITIAL
DECL :AUMA I/Q/D/B/TlC: I BIIBYIWID: BY
DECL :NUMC I/Q/D/B/T/C: I BIIBYIWID: BY
DECL :TNAS I/Q/D/B/T/C : I BIJBYIWID: W
DECL :STAS I/Q/D/B/T/C : I BI/BYlW/D: W
DECL :INIC I/Q/D/B/T/C: Q BIIBYIWID: BY
DECL :TCAP I/Q/D/B/T/C : Q BIIBYIWID: BY

AUTOMATICIMANUAL

NUMBER OF CPUs

DB TYPE, DB NO.

START ADDRESS OF THE
ASSIGNMENT LIST

SF 0 6 :
INITIALIZE

INITIALIZATION CONFLICT

TOTAL CAPACITY

Applications

8.1.2 Sending a Block of Data (FB 202)

FB 202
RCPU 4-1- ERWA

Type (H byte) and number (L byte)
of the source data block

TCAP

BLNO 4 I
TNDB

Transmitting capacity

TCAP

Q BY P/ 251

FB 202 LEN=40 ABS
SEGMENT 1
NAME:SEND
DECL :RCPU IlQ/D/B/TlC: I BI/BY/W/D: BY
DECL :TNDB I/Q/D/B/T/C : I BIIBYIWID: W
DECL :BLNO I/Q/D/B/T/C: I BVBYIWID: BY
DECL :ERWA I/Q/D/B/T/C: Q BI/BY/W/D: BY
DECL :TCAP I/Q/D/B/T/C: Q BI/BYlWlD: BY

RECEIVING CPU

DB TYPE, DB NO.

BLOCK NUMBER

SF OB:
SEND A BLOCK OF DATA

ERRORIWARNING

TRANSMllTlNG CAPACITY

Applications

8.1.3 Testing the Transmitting Capacity (FB 203)

Transmitting capacity

- TCAP

RCPU -

FB 203 LEN=30 ABS
SEGMENT 1
NAMESEND-TST
DECL :RCPU I/Q/DlBlTlC: I BIIBYIWID: BY
DECL :ERR0 IlQlDlBlT/C: I BIIBYIWID: BY
DECL :TCAP IlQ/D/BlT/C: Q BIlBY/W/D: BY

OOOE
OOOF
0010
001 1
001 2
0013
001 4
0015
0016
0017
0018

SEND-TST FB 203

RECEIVING CPU

- ERR0

SF 06 :
TEST TRANSMITTING CAPACITY

ERROR

TRANSMITTING CAPACITY

Applications

8.1.4 Receiving a Block of Data (FB 204)

TCPU

Receiving capacity

Type (H byte) and number (L byte)
of the destination data block

RECEIVE FB 204 1 ERWA

ST AA

EN DA

RCAP

l- STAA

Address of the first received data
word (start address)

Address of the last received data
word (end address)

ENDA

Q

Q

W

W

RN 252

RN 254

Applications

FB 204 LEN=45 ABS
SEGMENT 1
NAME:RECEIVE
DECL :TCPU IIQIDIBITIC: I BIIBYIWID: BY
DECL :ERWA I/Q/D/B/TlC: Q BIIBYIWID: BY
DECL :RCAP I/Q/D/B/T/C: Q BIIBYIWID: BY
DECL :TNDB IIQIDIBITIC: Q BIIBYIWID: W
DECL :STAA I/Q/D/BlT/C : Q BIIBYIWID: W
DECL :ENDA I/Q/D/B/TlC: Q BIIBYIWID: W

TRANSMllTlNG CPU

SF OB:
RECEIVE A BLOCK
OF DATA

RECEIVING CAPACIW

DB TYPE, DB NO.

START ADDRESS

END ADDRESS

Applications

8.1 .S Testing the Receiving Capacity (FB 205)

Receiving capacity

1
RECV-TST FB 205

TCPU 4 L ERR0

1 1- RCAP

FB 205 LEN=30 ABS
SEGMENT l
NAME: RECV-TST
DECL :TCPU I/Q/D/B/T/C: I BI/BY/W/D: BY
DECL :ERR0 I/Q/D/B/T/C: Q BI/BY/W/D: BY
DECL :RCAP I/Q/D/B/T/C: Q BI/BY/W/D: BY

OOOE
OOOF
001 0
001 1
001 2
0013
0014
0015
0016
0017
0018

TRANSMllTlNG CPU

SF OB:
TEST RECEIVING CAPACITY

ERROR

RECEIVING CAPACITY

Applications

8.2 Transferring Data Blocks

8.2.1 Functional Description

The function block TRAN DAT (FB 110) transfers a selectable number of blocks of data from a
data block in one CPU to the data block of the same type and same number in a different CPU.
(For a description of the parameter list, function block and STEP 5 program, see the following
page.)
The FB number has been selected at random and you can use other numbers.

8.2.2 Transferring a Data Block (FB 110)

The data area to be transferred is stipulated by the input parameter FlRB (= number of the first
block of data to be transferred) and NUMB (= number of blocks of data to be transferred). A
block of data normally consists of 32 data words. Depending on the data block length, the last
block of data may be less than 32 data words.

The transfer is triggered by a positive-going edge at the start input STAR. If the output parameter
REST is zero after the transfer, this means that the function block TRANDAT was able to send
all the blocks of data (according to the NUMB parameter).

If, however, the REST output parameter has a value greater than zero, this means that the
function block must be called again, for example in the next cycle. This means that you or the
user program can only change the set of parameters (i.e. the values of all parameters) when the
REST parameter indicates zero showing that the data transfer is complete.

You can call the function block TRANDAT several times with different parameters. In this case,
various data areas are transferred simultaneously (interleaved in each other). The special
function organization blocks for multiprocessor communication OB 202 to OB 205 can also be
used "directly". This possibility is illustrated in the application example.

If the SEND function (OB 202) is not correctly executed within the TRANDAT function block, the
error number is entered in the output parameter ERRO, the RLO = "1" and the output parameter
REST is set to "0".

The TRANDAT function block uses flag bytes FY 246 to FY 251 as scratchpad flags. All other
variables whose value is significant as long as the output parameter REST = "0" continue to
have memory assigned to them using the mechanism of formaVactual parameters. This is
necessary to allow various data blocks to be transferred simultaneously.

Note: data block and block of data are not synonymous. Data block is a DB or DX and a block of
data is part of a DB from 1 to maximum 32 data words.

Applications

1) Internal scratchpad flag, not intended for evaluation.

Type (H byte) and number (L byte) of the data block
to be transferred

Number of blocks of data to be transferred

Number of the first block of data to be transferred
ERRO

TRAN-DAT FB 1 10
STAR ERR0

REST

NUMB (CUBN)

FlRB (EDGF)

REST

CUBN ')

EDGF ')

Error

Number of blocks of data still to be transferred

Current block number

Edge flag

Q

Q

Q

BY

BY

BI

FB 110
SEGMENT 1
NAM E:TRAN-DAT
DECL :STAR I/Q/D/B/T/C:
DECL :RCPU I/Q/D/B/T/C:
DECL :TNDB I/Q/D/B/T/C:
DECL:NUMB I/Q/D/B/T/C:
DECL :FIRB I/Q/D/B/T/C :
DECL :ERR0 I/Q/D/B/T/C:
DECL :REST I/Q/D/B/T/C :
DECL :CUBN I/Q/D/B/T/C:
DECL :EDGF I/Q/D/B/T/C:

0020 :L
0021 :T
0022 :L
0023 :T
0024
0025 :L
0026 :L
0027 :><F
0028 :JC
0029
002A :AN
0028 :RB
002C :ON
002D :O
002E :JC
002F :S
0030
0031 :L
0032 :T
0033 :L
0034 :T
0035
0036 :L
0038 LOOP :L
0039 :!=F
003A :JC
003B TRAN :L
003C :T
003 D :L
003E :JU
003 F :L
0040 :JM
0041 :JP
0042 :L
0043 :I
0044 :T
0045 :L
0046 :D

LEN=89 ABS

ASSIGN PARAMETER FIELD FOR
SF OB 202

FIRST SEND ANY REMAINING
BLOCKS OF DATA

POSITIVE EDGE AT START
INPUT ?

INITIALIZE THE GLOBAL FLAGS
AFTER POSITIVE EDGE AT
START INPUT

AS LONG AS REST >CO,
CONTINUE TO ATTEMPT
TO SEND BLOCKS OF DATA

SF OB:
SEND A BLOCK OF DATA

ABORT IF ERROR
ABORT IF TRANS-CAP = 0
INCREMENT BLOCK NUMBER

DECREMENT NUMBER OF
REMAINING BLOCKS OF DATA

Applications

0047 :T =REST
0048 :JU =LOOP
0049
004A GO0D:A F 0.0
0048 :AN FO.O
004C :L KBO
004D :T =ERR0
004E :BEU
004F
0050 ERRO :T =ERR0
0051 :L KB 0
0052 :T =REST

REGULAR END OF PROGRAM

RLO = 0, ERRO = 0

PROGRAM END IF ERROR

RLO = 1, ERROR CONTAINS
ERROR NUMBER

8.2.3 Application Example (for the SS-135U)

You want CPU 1 to transfer data blocks DB 3 (blocks of data 2 to 5) and DB 4 (blocks of data 1
to 3) to CPU 2 during the cyclic user program. The RECEIVE function (0B 204) is also called in
the cyclic user program.

The following blocks must be loaded in the individual CPUs:

Only OB 1 is permitted as the cycle block in the CPU 9461947.

Cold restart block

cycle block l)

Send DB

Receive DB

OB 20 calls the INITIALIZE function (OB 200) and reserves several memory fields for the
connection from CPU 1 to CPU 2.

The cyclic user program in function block FB 0 of CPU 1 contains two calls for the function block
TRANDAT in each case with different sets of parameters. The transfer of the first data block
DB 3 begins after a positive edge after input 1 2.0. A positive edge at input 1 2.1 starts the
transfer of the second data block DB 4.

OB 20

FB o

DB 3; DB 4

-

-

FB o

-

DB 3; DB 4

FB 0
SEGMENT l
NAME:DEMO

LEN=66 ABS

0005 :L KB2
0006 :T FYO
0007 :L KY1,3
0009 :T RN 1
OOOA :L KB4
OOOB :T FY3
OOOC :L KB 2
OOOD :T FY4
OOOE
OOOF :JU FBI10
001 0 NAME :TRAN-DAT
0011STAR: 12.0
0012 RCPU : FY 0
0013TNDB: FW1
0014NUMB: W 3
0015 FIRB : FY 4
0016 ERR0 : FY 5
0017 REST : FY 6
0018CUBN: W 7
0019 EDGF : F 8.0
OO1A
001 B
001 C :JC =HALT
001 D
001 E :L KB 2
001 F :T W 1 0
0020 :L KY 1,4
0022 :T W 1 1
0023 :L KB3
0024 :T W 1 3
0025 :L KB 1
0026 :T W 1 4
0027
0028 :JU FBI10
0029 NAME :TRAN-DAT
002A STAR : 1 2.1
002B RCPU : FY 10
002C TNDB : FW 11
002D NUMB: FY 13
002E FIRB : FY 14
002FERRO: FY5
0030 REST : W1 6
0031 CUBN : W17
0032 EDGF : F 8.1
0033
0034
0035 :JC =HALT
0036 :BEU

TO CPU 2 ..

.. FROM DATA BLOCK DB 3

.. FOUR BLOCKS OF DATA

.. SEND FROM 2ND BLOCK OF DATA

ABORT AFTER ERROR

TO CPU 2 ..

.. FROM DATA BLOCK DB 4

.. THREE BLOCKS OF DATA

.. SEND FROM 1 ST BLOCK OF DATA

ABORT AFTER ERROR

Applications

0037
0038 HALT :

The error handling takes place here (e.g stop, message output on the printer, ...)

In CPU 2, the RECEIVE function (OB 204) called by FB 0 enters each transmitted block of data
into the appropriate data block. It may take several cycles before a data block has been
completely received.

FB 0
SEGMENT 1
NAME:RECV-DAT

0005 :L KB 1
0006 :T P/ 246
0007
0008 LOOP :L KB 246
0009 :JU OB204
000 A :JM =ERR0
OOOB :L FY 249
OOOC :L KBO
OOOD :><F
OOOE :JC =LOOP
OOOF
0010 :BEU
0011 ERR0 :

LEN=26 ABS

RECEIVE DATA FROM CPU 1

SF OB:
RECEIVE
ABORT IF ERROR
THE RECEIVE FUNCTION IS
CALLED UNTIL THERE ARE NO
FURTHER BLOCKS OF DATA IN
THE BUFFER, I.E. THE RECEIVING
CAPACITY = 0.

The error handling takes place here (e.g. stop, message output on printer, ...)

8.3 Extending the IPC Flag Area

8.3.1 The Problem

In the multiprocessor programmable controllers S5-135U and S5-155U, each of the 256 flag
bytes of a CPU can become an input or output IPC flag by making an entry in data block DB 1.
This, however, reduces the number of "normal" flag bytes. To transfer a data record (several
bytes) other mechanisms are also required (semaphore variable or DX 0 parameter assignment
"transfer IPC flags as a block") are necessary to prevent the receiver from receiving a
fragmented data record.

Applications

8.3.2 The Solution

Consecutive data words of a DB or DX data block are defined from DW 0 onwards as "IPC data
words". Each connection is assigned its own data block and is totally independent of the other
connections.

At the beginning of the cycle block (CPU 9461947: OB 1, CPU 92x: OB 1 or FB O), the IPC data
words are received with the aid of the special function organization blocks for multiprocessor
communication. This is followed by the "regular" cyclic program, that evaluates the received data
and generates the data to be sent. At the end of the cycle, this data is then sent with the aid of
the special organization blocks for multiprocessor communication. It can therefore be received
by the other CPUs at the beginning of their cycles.

The following applies for each of the maximum 12 possible connections regardless of the other
connections:

The transmitting CPU is only active when the receiving CPU has read out all the "old data
from the 923C buffer.

The receiving CPU is only active when the transmitting CPU has written all the "new" data
in the 923C buffer.

This means that the receiving CPU can either receive a complete new data record or the old
data record remains unchanged: no mixing of "old" and "new" data.

8.3.3 Data Structure

Which data words (for the data word area below) are to be transferred from which CPU to which
CPU is described in the connection list (see table on the following page). This is located in an
additional data block that must exist in all the CPUs involved.

The data word areas always begin from data word DW 0, and their lengths are specified in
blocks of data. Remember the following points:

A complete block of data consists of 32 data words.

If the last block of a data block is "truncated", i.e. it contains between 1 and 31 data words,
less data words are transferred.

If a send data block is longer than the number of blocks of data specified in the connection
list, the excess data words can be used in the corresponding CPU.

If a receive data block is longer than the received data word area, the excess data words
can be used in the corresponding CPU.

Applications

Structure of the connection list

Connection No.of
blocks of
data

DB type DB number

... CPU 2

CPU 3 ...

... CPU 4

CPU 1 ...

CPU 3 ...

CPU 4 ...

DW1

DW 2

DW3

CPU 1 ...

... CPU 2

CPU 4 ...

DW 5

DW6

DW7

CPU 1 ...

CPU 2 ...

CPU 3 ...

...

...

...

DW 9

DW 10

DW 11

...

b

...

DW 13

DW 14

DW 15

...

...

...

...

...

...

...

C

...

...

...

...

DW 17

DW 18

DW 19

...

...

...

DW 21

DW 22

DW23

...

...

...

2

3

4

DW 25

DW 26

DW 27

...

...

...

1

3

4

DW 29

DW 30

DW 31

...

a

...

1

2

4

...

...

...

1

2

3

...

...

...

Applications

The connection consists of two similarly structured sub-lists, each with 16 data words. For each
of the four sender CPUs (Sl, S2, S3, S4) three entries are required to describe a connection.

Number of blocks of data

The number of blocks of data specifies the size (= the number of data words) of the data
word area to be transferred. (If connections do not exist or you do not require them, enter
0 for the number of blocks of data, and for the DB type and DB number.)

DB type

Type of data block containing the data word area to be transferred.

DB number

Number of the data block containing the data word area to be transferred.

As shown in the table, these entries can be read in and completed in lines. If, for example, you
want to transfer the first two blocks of data in data block DB 10 from CPU 2 (S2) to CPU 3, make
the following entries:

CPU 2 (S 2) sends ..

.. to CPU 3 2 blocks of data from data block

Sub-list 2 is identical to the assignment ("manual" mode) required for the INITIALIZE function
(OB 200). Within the data block, sub-list 1 must occupy data words 0 to 15 and sub-list 2 data
words 16 to 31. You must not alter the entries shown in bold face.

Applications

8.3.4 Program Structure

During restart, one of the CPUs calls the INITIALIZE function (OB 200) to reserve exactly the
same number of coordinator memory fields per connection as blocks of data to be transmitted on
this connection.

To send and receive data word areas, each CPU uses two function blocks:

FB 100 SEND-DAT Send data word areas to the other CPUs

FB 101 R ECV-DAT Receive data word areas from the other CPUs

These FB numbers have been selected at random and you can use others.

The function blocks SEND-DAT and RECV-DAT read the connection list to determine which data
word areas are to be sent from or received by which data blocks. The whole data word area is
always sent or received. If this is not possible owing to insufficient transmitting or receiving
capacity, the send or receive function is not executed.

Applications

Restart OB to reserve the
buffer on the 923C coordinator

Cyclic user program extended
by the calls for the RECV-DAT
and SEND-DAT function blocks

Function block: SEND-DAT
Send data word areas

Function block: RECV-DAT
Receive data word areas

Data block containing
the connection

Maximum three input
and three output blocks

OB 1 (FB 0)

DB XXX

evalu-
ated I

1) 0~200rnust
only be called

d -7 in one processor

Fig. 3 Overview of the blocks required in each CPU

The function blocks SEND-DAT and RECV-DAT contain the special function
IiEMEMBER organization blocks for multiprocessor communication OB 202 to OB 205. You
cannot call these organization blocks outside SEND-DAT / RECV-DAT.

Applications

8.3.5 Sending Data Word Areas (FB 100)

Before you call FB 100, the data block containing the connection list must be open. The function
block SEND-DAT requires the number of the CPU on which it is called in order to evaluate the
information contained in the connection list.
If the SEND function (OB 202) is not executed correctly in the function block, the error or
warning number is transferred to the output parameter ERWA and RLO is set to 1.
If the input parameter CPUN (CPU number) is illegal, ERWA has the value 16 (bid Z4 = 1).
The function block SEND-DAT uses flag bytes FY 239 to N 251 as scratchpad flags.

SEN D-DAT FB 1 00 1 ERWA

Applications

FB 100 LEN=90
SEGMENT l 0000
NAM E:SEND-DAT
DECL :CPUN I/Q/D/B/T/C: D KM/KH/KY/KS/KF/KT/KC/KG: KF
DECL :ERWA I/Q/D/B/T/C: Q BI/BY/W/D: BY

OOOB :LW =CPUN
OOOC :L KB 1
OOOD :-F
OOOE :JM =ERWA
OOOF :L KB3
0010 :>F
001 1 :JC =ERWA
0012 :TAK
0013
001 4 :SLW 2
001 5 :T FY 245
0016
0017 :L KB 1
0018 :T W 2 4 4
0019
001 A LOOP :L W 245
001 B :L W 2 4 4
001 C :+F
001 D :T FW 240
001 E :ADD BN+16
001 F :T FW 242
0020
0021 :DO W 2 4 2
0022 :L DRO
0023 :T FY 239
0024 :L KB 0
0025 :!=F
0026 :JC =EMPT
0027
0028 :DO W 2 4 2
0029 :L DLO
002A :T FY 246
002B :L KB 246
002C :JU OB203
002D :L W 2 4 8
002E :JC =OBER
002F
0030 :L W249
0031 :L FY 239
0032 :><F
0033 :JC =EMPT
0034
0035 :L KB 0
0036 :T FY 249
0037
0038 :DO W 2 4 0
0039 :L DWO
003A :T FW 247

CPUN = CPUN -1
ERROR IF:

CPU NO. c1

CPU NO. >4

CPUN = CPUN * 4
BASE ADDRESS

CONNECTION COUNTER

BASE ADDRESS
+ COUNTER

+ OFFSET

NUMBER OF RESERVED
FIELDS = 0 ?

NO. OF THE RECEIVING CPU

SF OB:
TEST TRANSMITTING CAPACITY
ABORT IF ERROR

TRANSMllTlNG CAPACITY >c NO.
OF RESERVED FIELDS ?

FIELD COUNTER

TYPE AND NUMBER OF THE
SOURCE DB

003B
003C TRAN :L KB 246
003D :JU OB 202
003E :L W250
003F :JC =OBER
0040
0041 :L FY 249
0042 :I 1
0043 :T FY 249
0044 :L W 239
0045 :<F
0046 :JC =TRAN
0047
0048EMPT:L W 2 4 4
0049 :I 1
004A :T W244
0048 :L KB4
004C :<F
004D :JM =LOOP
004E :L KB 0
004F :T =ERWA
0050 :BEU
0051
0052 ERWA :L KB 16
0053 OBER :T =ERWA
0054 :BE

SF OB:
SEND A BLOCK OF DATA
ABORT IF ERRORWARNING

BLOCK NO. = BLOCK NO. + 1

ALL BLOCKS OF DATA TRANSFERRED ?

INCREMENT
CONNECTION COUNTER

ALL THREE CONNECTIONS
PROCESSED ?

REGULAR PROGRAM END:
RLO = 0, ERWA = 0

PROGRAM END IF ERROR:
RLO = 1, ERWA CONTAINS
ERRORIWARNING NUMBER

Applications

8.3.6 Receive Data Word Areas (FB 101)

Before you call FB 101, the data block containing the connection list must already be open. The
function block RECV-DAT requires the number of the CPU in which it is called in order to
evaluate the information contained in the connection list.

If the RECEIVE function (OB 204) is not correctly processed within the function block, the
corresponding error or warning number is transferred to the output parameter ERWA and the
RLO is set to 1. If the input parameter CPUN is illegal, ERWA has the value 16 (bit 24 = 1).

The RECV-DAT function block uses flag bytes FY 242 to W 255 as scratchpad flags.

Number of the CPU on which FB 101 is called. The
numbers 1 to 4 are permitted.

Errorlwarning (see RECEIVE function (OB 204)).

RECV-DAT FB 100
ERWA

Applications

FB 101 LEN=88
SEGMENT 1 0000
NAM E:RECV-DAT
DECL :CPUN IIQIDIBITIC: D KM/KH/KY/KS/KF/KTlKClKG: KF
DECL :ERWA I/Q/D/BlTlC: Q BIIBYIWID: BY

OOOB :LW =CPUN
OOOC :L KB 1
OOOD :<F
OOOE :JC =ERWA
OOOF :LW =CPUN
001 0 :L KB4
001 1 :>F
001 2 :JC =ERWA
0013
001 4 :L KB 1
0015 :T FY 242
0016
001 7 :L KB 16
0018 :T W 2 4 4
0019
0OlASRCH:L W 2 4 4
001 B :I 1
OOlC :T FW 244
001 D :DO W 2 4 4
001 E :L DLO
001 F :LW =CPUN
0020 :><F
0021 :JC =SRCH
0022
0023 :DO W 2 4 4
0024 :L DRO
0025 :T W 243
0026 :L KB 0
0027 :!=F
0028 :JC =EMPT
0029
0024 :L W 2 4 4
002B :L KM 00000000 00001 100
002D : AW
002E :SRW 2
002F :I 1
0030 :T FY 246
0031
0032 :L KB 246
0033 :JU OB 205
0034 :L W 2 4 8
0035 :JC = OBER
0036
0037 :L R 2 4 9
0038 :L W243
0039 :>c
003A :JC =EMPT
0038

ERROR IF:

CPU N0.cl

CPU N0.>4

CONNECTION COUNTER

POINTER TO SUB-LIST 2

SEARCH SUB-LIST 2 UNTIL THE
NEXT ENTRY FOR THE RECEIVING
CPU WITH THE NUMBER "CPUN"
IS FOUND

NUMBER OF RESERVED
MEMORY FIELDS = 0 ?

DETERMINE THE NUMBER OFTHE
TRANSMITTING CPU FROM THE
POINTER TO SUB-LIST 2

SF OB:
TEST RECEIVING CAPACITY

ABORT IF ERROR

RECEIVING CAPACITY = NUMBER
OF RESERVED MEMORY FIELDS?

Applications

003C RECV :L KB 246
003D :JU OB204
003E :L W 2 4 8
003F :JM =OBFE
0040
0041 :L W 249
0042 :L KB 0
0043 :><F
0044 :JC =RECV
0045
0046EMPT:L W 2 4 2
0047 :I 1
0048 :T FY 242
0049 :L KB4
004A :<F
004B :JM =SRCH
004C :L KBO
004D :T =ERWA
004E :BEU
004F
0050 ERWA :L KB 16
0051 OBER :T =ERWA
0052 :BE

SF OB:
RECEIVE A BLOCK OF
DATA
ABORT IF ERROR/
WARNING
IF RECEIVING CAPACITY = 0,
PROCESS NEXT
CONNECTION

INCREMENT
CONNECTION COUNTER

ALL CONNECTIONS
PROCESSED ?

REGULAR PROGRAM END:
RLO = 0, ERWA = 0

PROGRAM END IF ERROR:
RLO = 1, ERWA CONTAINS
ERRORIWARNING NUMBER

Applications

8.3.7 Application Example (for SS-135U)

You want to exchange data between three CPUs:

From CPU 1 to CPU 2: data block DB 3, DW 0 to DW 127 (= 4 blocks of data)

From CPU 1 to CPU 3: data block DX 4, DW 0 to DW 63 (= 2 blocks of data)

From CPU 2 to CPU 1 and CPU 3: data block DB 5, DW 0 to DW 95
(= 3 blocks of data)

CPU l
DX 4, 2 blocks of data -

DB 5,
3 blocks
of data

Fig. 4 Data exchange between 3 CPUs

1 I
DB 3,
4 blocks
of data

I i 4

Function block FB 0 is the interface for the cyclic user program on all three CPUs. CPU 1 calls
the INITIALIZE function (OB 200) during the cold restart. The connection list is in data block
DB 100.

The following blocks must be loaded in the individual CPUs:

CPU3 CPU 2
DB 5, 3 blocks of data

...,., .,, , ,, ...
;iiig@gjs@@@#m$..
:,:,:,::: :;::: :;:::::;:::::::;:;:::::::::;:::::::::::::::::::;:::::::::;fzjj~~jjz;<$;$z~<~;

.. z::

~ i ; ~ ~ j j ~ ~ ~ $ $ ~ ~ ~ :) i I I : ;
:.:,:,:,:,:.:.: >:::::::>,.~,.,~,~,.,.,.,...,. ,.,.,., . ,.,,,,,, ...

; ~ ; ~ ~ ~ j j j j ~ ~ ~ ~ ~ j j j i ~ j j ; ~ j j j / j j j j j j ; ; ; ; ; ; ;
' i ' i ' f O ~ f ~ ~ i # @ ~ ~ ~ ~
jjj(: . : , : . : . : , , . , , , , , , , , , , , , ~ , , ~ x ~ , : : ~ ~ ~ ...,.,........., :.:.:.:.:,:.::,:.:~~~:~:j:;:;:;:;$:;:;:;:;:;:;:j:;:;:;::;:::: ..

$:i:);:;:;:;:);:;$:j:;i/jjfjjjjjjjjjJ;;jj~jj;:zzz~;$$$zzz;~~~Jjj;:f$;;jj;;;; :::::.. , , .

;$i~~,~$~~$~~ijijijijiiiiiijj'i/iiijiji/ijiiiii:i/ijijj,.:. :,:,
;:;:;~~jjjj~~:;:;:j:;:j:j:;:~:;:j:j:;:j::;:;:;:;:;:::::::::::::::::::::::::;::;:;:; ..

Restart OB

User program
FB: SEND-DAT
FB: RECV-DAT
Connection list

Input DB
Output DB

OB 20

FB 0
FB 100
FB 101
DB 100

DB 5
DB 3; DX 4

FB 0
FB 100
FB 101
DB 100

DB 3
DB 5

-

FB 0
FB 100
FB 101
DB 100

DB 5; DX 4
-

Applications

First of all the connection list (structure described in the section "Data structure") must be written
and entered in DB 100:

DBl 00 LEN=37 ABS
PAGE 1

Send from CPU 1 to ..
.. CPU 2 (DB 3)
.. CPU 3 (DX 4)

Send from CPU 2 to ..
.. CPU 1 (DB 5)
.. CPU 3 (DB 5)

Send from CPU 1 to ..
.. CPU 2 (four blocks of data)
.. CPU 3 (two blocks of data)

Send from CPU 2 to ..
.. CPU 1 (three blocks of data)
.. CPU 3 (three blocks of data)

Data words DW 16 to DW 31 contain the assignment list required for the manual
INITIALIZATION function (OB 200). OB 200 is called by the OB 20 shown below in CPU 1 during
the restart.

OB 20
SEGMENT 1

0000
0001
0002
0003
0005
0006
0008
0009
OOOA
OOOB
OOOC
OOOD
OOOE
OOOF

LEN=23 ABS

MANUAL INITIALIZATION OF
THE PAGES

THE ASSIGNMENT LIST IS ENTERED
IN DB 100 FROM DATA WORD 16
ONWARDS

SF OB:
INITIALIZE

BLOCK END IF THERE IS NO
INITIALIZATION CONFLICT

The error handling routine is inserted here if an initialization conflict occurs (e.g. stop, output
message on printer etc.)

Applications

The user program on each CPU is extended by the RECV-DAT and SEND-DAT call. Function
block FB 0 shown below is for CPU 1. For the other CPUs, the input parameter CPUN (CPU
number) must be modified.

FBO LEN=31 ABS
SEGMENT 1
NAME:PROG-1

0007 NAME :RECV-DAT
0008 CPUN : KF+1
0009 ERWA : FYO
OOOA :JC =ERWA
OOOB
OOOC

CONNECTION LIST DB 100
RECEIVE THE INPUT
DATA BLOCKS

ABORT IF ERRORNARNING

The cyclic user program is inserted here and reads data from the input data blocks and wines
data to the output data blocks.

OOOD
OOOE
OOOF
001 0 :C D8100
001 1 :JU FBI00

001 2 NAME :SEND-DAT
0013 CPUN : KF+1
0014 ERWA: P(O
001 5 :JC =ERWA
001 6 :BEU
001 7
0018 ERWA :
0019 :BE

CONNECTION LIST DB 100
SEND THE OUTPUT
DATA BLOCKS

ABORT IF ERRORNARNING

AFTER ERRORNARNING
EXECUTE ERROR HANDLING

The error handling is inserted here, (e.g. stop, output error message on printer or monitor, etc.)

REMEMBER

This example (IPC flag extension using function blocks SEND-DAT and
RECV-DAT) can only be performed correctly if the special function organization
blocks for multiprocessor communication OB 202 to OB 205 are not called
outside these function blocks in any of the CPUs.

