SIEMENS

SIMATIC S5

S$5-135U
CPU 928

Programming Guide

Order No.: 6ES5 998-1PR21
Release 01

C79000-H8576-C896-01

Contents

CPU 928
Programming Guide 1

C79000-B8576-C633-01

Multiprocessor Communication
User's Guide 9

C79000-B8576-C468-05

Pocket Guide CPU 922/CPU 928/CPU 928B/CPU 948
Order No.: 6ES5 997-3UA22

is included in the manual

Copyright

Copyright © Siemens AG 1993 All Rights Reserved

The reproduction, transmission or use of this document or its contents is not permitted without express
written authority.

Offenders will be liable for damages. All rights, including rights created by patent grant or registration of
a utility model or design, are reserved.

Disclaimer of Liability

We have checked the contents of this manual for agreement with the hardware and software described.
Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data
in this manual are reviewed regularly and any necessary corrections included in subsequent editions.
Suggestions for improvement are welcomed.

Technical data subject to change.

Safety-related guidelines

This manual contains notices which you should observe to ensure your own personal
safety, as well as to protect the product and connected equipment. These notices are
highlighted in the manual by a warning triangle and are marked as follows according to
the level of danger:

Warning
indicates that death, severe personal injury or substantial property damage can
result if proper precautions are not taken.

Caution
indicates that minor personal injury or property damage can resul if proper
precautions are not taken.

Only qualified personnel should be allowed to install and work on this equipment. Qualified
persons are defined as persons who are authorized to commission, to ground and to tag
equipment, systems and circuits in accordance with established safety practices and
standards.

Siemens Aktiengesellschaft 6ES5 998-1PR21
EWK Elektronikwerk Karlsruhe

Printed in the Federa! Republic of Germany

SIEMENS

SIMATIC S5

CPU 928

Programmer’s Guide C79000-B8576-C633-01
Contents

1 Introduction: S5 135U Mode of Operation and Application 1-1
1.1 New Features and Functions of the CPU 928............... 1-7
2 User Program..........ccccuuoccnnececaccncacanacnnacanas 2-1
2.1 Programming Language STEPS5.............coiiiiiiinennn, 2-1
2.1.1 Methods of Representation: LAD, CSF, and STL............ 2-2
2.1.2 Structured Programming...........c.coiviiiiiiiiiriiinnnnnn 2-3
2.1.3 STEP 5 Operations.......cciiiiiiiiiniininreneeneannannns 2-4
2.1.4 Numeric Representation.......... ..o, 2-5
2.1.5 STEP 5 BlOoCKS. ..t iit ittt ittt ennennenonnnennnns 2-9
2.2 Organization, Program and Sequence Blocks............... 2-13
2.2.1 Programmimgc.ooituiieeonneetneeeoneeoneeennnnnnnss 2-13
2.2.2 T T 2-14
2.2.3 Special Organization Blocks............. . iiiiiiien.nn 2-16
2.2.4 Special-function Organization Blocks 2-18
2.3 Function BloCKS. oiiiitiiiiniierienneneanennonenns 2-19
2.3.1 Structure of Function BlockS.........coiviiiininuneannns 2-20
2.3.2 Programming Function Blocks.............ciiiiiiiiennnnn. 2-22
2.3.3 Calling and Assigning Parameter to Function Blocks...... 2-26
2.3.4 Special Function Blocks.........coiiiiiiiin e neeannnn 2-29
2.4 Data BlOCKS. ... ittt iiiiiiiinniiinnerinnennereanenannnen 2-31
2.4.1 Structure of a Data Block.........cciiiiiiniiiniinnennnn, 2-31
2.4.2 Programming Data Blocks........ciitiiiiiininvinennnanens 2-32
2.4.3 Opening Data BLOCKS.vitiiiitiiineiineinnennennnnns 2-33
2.4.4 Special Data BlOCKS.citiieuninnennnoeononennennsas 2-35
3 Program Processing.........ccercenreencencncncnnccaannns 3-1
3.1 S 10111 o 3-1
3.1.1 Program Organization............oiiiiiiiiiiiiiiinnennnns 3-1
3.1.2 Program StOTaZe. ...ttt erneernneeaneeaneeeneenns 3-5
3.1.3 Running the STEP5 User Program..........eeveeeeusueennns 3-6
3.1.4 Running the Program..........coiiiiiiiineinenrtneannnns 3-9
3.2 STEP5 Operation Set with Examples of Programming........ 3-10
3.2.1 Basic Operation Set........c.ciiiiiii i ineenanns 3-13
3.2.2 Supplementary Operation Set............ i, 3-37

B8576633-01

»
\C)

(-}

o
NN

R

Lo S A i S
R R S S

HLNOPR

(G BNC B C RV T)
(G RN G B C RC T,

H W

LuUuuuLuuuvuutu,
NGO OO
co~NOULL P WD

OV OV O

wWwww
w N

e e
wN R

Operating StatesS.........ceeeiiiienncnnnnccrccannnnaannns 4-1
Operating States and Program Levels.............coivvuunnn 4-1
Operating State STOP........ciiiiiiirrinniennnennneennsns 4-6
Operating State START-UP........covttrneennnrennsennneas 4-9
Cold Restart and Manual Warm Restart.................... 4-11
Automatic Warm Restart..........cviiiiiniinnrnrnnennnnns 4-13
Interruption during START-UP..........ciiiiiiiinrnneenn. 4-14
Operating State RUN........ ..ottt rnnnnnnnns 4-16
CYCLE: Cyclic Program Execution...............ovvivinnnn 4-17
TIME INTERRUPT: Time-driven Program Execution........... 4-18
CONTROLLER INTERRUPT: Processing of Controllers......... 4-23

PROCESS INTERRUPT: Interrupt-driven Program Execution...4-24

Handling Interrupts and €rrorS........cccccceeecccacccans 5-1
Frequent Errors in the User Program..............ceuiuvvunn 5-1
Evaluation of Error information.................o0iuivun.n 5-2
Control Bits and Interrupt Stack (ISTACK)................ 5-7
Error Handling Using Organization Blocks................ 5-18
Errors during START-UP........itiiiiiiiiiininneennsennens 5-21
DBO-FE (Exrror in DB 0)ttt inrierntnennnennnnns 5-22
DB1-FE (Error In DB 1)citiiiiiininnetnnnennnsennnns 5-22
DB2-FE (Error in DB 2)cciei it iierneenenneonsnnnnns 5-24
DXO-FE (Exrror in DX 0)ttt rnnnenennnennnennns 5-25
Errors in RUN and START-UP........c.iiiiviennreronnnnenns 5-26
BCF (Command Code ErXror).......oiiiiernenenenennnennnns 5-27
LZF (Execution Time Error).........c..vuiiiiiennnennnennns 5-30
ADF (Addressing Error)........c.ceiiiiiiniiineensenennnn 5-34
QVZ (Acknowledgement Delay).........c.vviiiinennnnnnnennn 5-35
ZYK-FE (Cycle Time Error).........ciiuiiiinenrnneneeneenns 5-36
WECK-FE (Collision of Two Time Interrupts).............. 5-37
REG-FE (Controller Error)........uieieieeerntnncaonosonss 5-37
ABBR (ADOTt) . i ittt ittt ittt tttenenenensnenansnsnnnns 5-40
Integrated Special Functions...........ccciececcnccannnn 6-1
Handling of the Registers.........ciiiiiiiiiiiiiinnneenns 6-5
Access to the Condition Code Byte (OB 110)............... 6-5
Clear Accus 1, 2, 3 and 4 (OB 111).......cciivivinrnnnnnn 6-7
Roll Up Accu (OB 112) and Roll Down Accu (OB 113)........ 6-8
Structure COMMANAS.cvvv vt runroeeneeesossnsensans 6-10
Counter Loops (OB 160 through 163)............. ... 6-10

Read Block Stack (BSTACK) (OB 170)........civivievnnnns 6-12

B8576633-01

(<))
wm

(-2}
oo
~

O OV OV [«

[« W <))

o 00

o OCNONOYONON
Bl I S T S
v W

O OV OV

O OV O
o 00 0

o 00 00 00
NN DN
W

o] AN O

oo

Lo]
o2}

.10

.10.
.10.
.10.

11
J11.
11,

=

-
o

oV W

N

[

[N

=

Block Handling.coiiiiiin it iiieenanaeennnnnnns 6-16
Variable Data Block Access (OB 180)..........ccvvivvnn. 6-16
Test Data Blocks (DB/DX) (OB 18Ll).....viiiiininnnnnnn 6-20
Transfer Flags to Data Block (OB 190, 192).............. 6-22
Transfer Data Fields to Flag Area (OB 191 and OB 193)...6-24
Transfer Data Blocks to DB-RAM (OB 254, OB 255)......... 6-29
Multiprocessor Communication (OB 200 through OB 205)....6-31
Page ACCESS . .v ittt onaneennensoaronaessonnsonsas 6-32
Writing Data to a Page (OB 216)...........0iiivevnnnnnn. 6-35
Reading Data from a Page (OB 217)......... ... 6-37
Assigning a Page (OB 218)........0ittvrininnenennnnnnnns 6-39
Sign Extension (OB 220)t iiriinereenronnneneeeennas 6-43
System Functions......... ...ttt 6-44
Switch On/Off "Disable All Interrupts" (OB 120) and

Switch On/Off "Delay All Interrupts"™ (OB 122)........... 6-44

Switch On/Off "Disable Individual Time Interrupts"
(OB 121) and Switch On/Off "Delay Individual Time

Interrupts" (OB 122)t iiiiiiinneeininnnnnenennnns 6-46
Set Cycle Time (OB 221).... ..t iiiiinitnn e rnnnennnns 6-49
Restart Cycle Time (OB 222).....cciviiiiirinernnnnnnnens 6-49
Compare Start-up Modes (OB 223).........c0iiiiiernnnnnnn 6-50
Transfer Interprocessor Communication IPC Flags as a

Block (OB 224) ciiiiiiniineaneonrononneanonnoeseenns 6-50
Read Word from the System Program (OB 226).............. 6-51
Read Check Sum of System Program (OB 227)............... 6-52
Read Status Information of Program Level (OB 228)....... 6-54
Functions for Standard Function Blocks

(OB 230 through OB 237).....c.iiiiiiiiinriiniinnennnans 6-56
Shift Register...... ittt eineeeoneennnennanas 6-57
Initialize Shift Register (OB 240)............ ... 6-60
Process Shift Register (OB 241).............iiiiunnn.. 6-63
Erase Shift Register (OB 242)........iiiieirennnnnannns 6-64
Control: PID Algorithm..........ciiiiiiiirieineneennnnenns 6-65
Initialize PID Algorithm (OB 250)............. it 6-72
Process PID Algorithm (OB 251).........cciiviivennnnnnn. 6-73
Extended Data Block DX O....... iiiieeereenecncannn 7-1

Memory Assignment and Memory Organizatiom............... 8-1

Address Distribution in the CPU 928..................... 8-2

Address Distribution - System-RAM....................... 8-3

Address Distribution - I/0cciiiiierininianns 8-4

Memory Organization in the CPU 928...................... 8-7

Block Headers in the User Memory and the DB-RAM......... 8-7

Block Address Lists in Data Block DB O.................. 8-8

I Y 8-12

RS/RT Area (System Data Assignment)..................... 8-12

B8576633-01

O

O O O O WV VY

10

10.
10.
10.
10.
10.

10.
10.

10.

10.

11

11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.

Wwwwww
v W N e

NN
w N =

w W

HRPwVwoONONUL WD

= o

Memory Access Using Absolute Addresses.................. 9-1

Access to Registers and the Memory via an Address in

X 9-5

Transfer of Memory BlockS..........iiiiiiiiininnnennnnnn 9-13
BR Register Operations..........cciivieniieinneennnnennns 9-19
Loading of the BR Register........c.viuiereunnnnnnnnnnenn 9-19
Shifting of the BR Register Contents.................... 9-20
Access to the Local MemOXY.....c.ovviiiieennnnenenennnnens 9-21
Access to the Global Memory..........ovviiiiininnnnneennn 9-21
Access to the Page Frame.......... . civtiunernnennnnennns 9-24
Multiprocessor Operation........ccciiiiieneenneccnnccnnns 10-1
e o= 10-1
Data Exchange between the Processors.................... 10-3
Interprocessor Communication (IPC) Flags................ 10-4
Multiprocessor Communication............cciiiiriivnen.. 10-8
"Protected" Transfer of Connected Data Fields........... 10-8
I/0 ASSignment........c.ivitttnnnnnnneeeeerennneeneennns 10-9
Data Block DB 1...... ... ittt ittt ennnns 10-9
Start-up during Multiprocessor Operation............... 10-12
Test OPeration......c.vvuiintiitin i ineenneenonensennns 10-13
Testing Aids: Online Functions............c.civencceenss 11-1

Online Function ’STATUS VARIABLES’.........c.cieveennnn 11-3

Online Function "STATUS’ttt nneeennss 11-4

Online Function '"PROCESSING CONTROL’..........ovveennen 11-5

Online Function "CONTROL'.........ccitiiiirenrnnrnnennns 11-9

Online Function ’'CONTROL VARIABLES'...........ooceuu.en 11-9

Online Function ’COMPRESS’ MemMOTY.......tvvuverunnennnns 11-10
Online Function 'START’/’'STOP’........c0itiiitnnnennnnn 11-10
Online Function 'PC OVERALL RESET'..........cevvvennnnn 11-11
Online Function 'OUTPUT ADDRESS’.........covitiiniiennenn 11-11
Online Function ’'MEMORY CONFIGURATION'................. 11-11

Table: Activities at the Checkpoints................... 11-12

B8576633-01

ANNEX

A Technical Data S5-135U....... .00ttt innnreennnnnnnnonnnnns A-1
B Summary of Error Identifications...............ciiiiiiiinnn, B-1
C STEP5 Command SUMMALY.uuuuunnreereennnnnsseosonnnnosnssas c-1

D STEP5 Commands
(arranged in alphabetical order)............vviiiivinneennnnnn D-1

E STEP5 Commands

(arranged according to command code)..........ciitiiiiiennn, E-1
F STEP5 Commands Not Contained in the CPU 928................... F-1
G Summary of the Program Level Identifiers...................... G-1
H Example: How to Evaluate the ISTACK.........iiiiiirnnernnennns H-1
Index

List of Figures, Examples and Summaries

B8576633-01

Important:

This manual refers to the CPU 928 with
MLFB no. -3UA12 (12 MHz).

B8576633-01

Where to find what in the manual

Chapter 1 gives an introduction into a processor’s mode of operation
and internal structure. It describes the typical S5-135U system
structure as well as the new features and functions of CPU 928.

Chapter 2 illustrates the user program structure and explains special
features of the STEP 5 programming language. This is followed by a
description of the various STEP 5 program blocks and how they are
programmed.

Chapter 3 contains information on the cyclic program processing in
CPU 928, the organization and storage of programs. A list of the
entire STEP 5 operation set as well as many sample programs have also
been included. (Additional information on STEP 5 operations can be
found in the ’'STEP 5 list of operations’. Please, also pay attention
to the specifications made under ’'Literature references’.)

Chapter 4 describes the operating states of CPU 928 (START-UP, RUN,
STOP) and defines the term ’'program level’. It explains possible
program levels in the individual operating states of the processor.
In addition, you will find important information on time-driven and
interrupt-driven program processing.

Chapter 5 contains detailed information on error diagnostic and error
handling. You will find a description of typical errors in START-UP
and RUN and learn how to detect errors and handle them.

The structure of the interrupt stack (ISTACK) and how to evaluate it
is described by means of examples.

Chapter 6 deals with ’'integrated special functions’ and gives many
application examples.

Chapter 7 illustrates the structure and the programming of data block
DX 0 which can be used to easily adapt specific features and functions
of CPU 928 to your requirements (incl. sample programs).

Chapter 8 gives detailed information on the memory areas of CPU 928.
Experienced users will learn how system data is assigned.

Chapter 9 is dedicated to very experienced users who have a profound
knowledge of the system. It contains all the STEP 5 commands used to
access the entire memory via absolute addresses and describes the
individual registers of CPU 928.

Chapter 10 gives additional information on multiprocessor operation
and describes the structure and the programming of data block DB 1
which is necessary for multiprocessor operation. The particular fea-
tures of test operation are explained at the end of this chapter.

Chapter 11 describes some online functions which you can call at the
programmer to test your program. We will also turn your attention to
pecularities which may arise in connection with CPU 928.

e

B8576633-01

Abbreviations

ABBR Abort

Accu 1(2,3,4)-L Low word in accumulator 1 (1,2,3), 16 bits
Accu 1(2,3,4)-H High word in accumulator 1 (2,3,4), 16 bits
Accu 1(2,3,4)-LL Low byte of low word in accu 1 (2,3,4), 8 bits
Accu 1(2,3,4)-LH High byte of low word in accu 1 (2,3,4), 8 bits

ADL Addressing error

BASP Command output inhibit

BCD Binary coded decimal number
BCF Commande code error

BSTACK Block stack

c Counter (counter locations)
CP Communications processor
CPU Central processing unit

COR Coordinator

CSF Control system flowchart

D, DL/DR, DW, DD Data (1 bit), left-hand/right-hand data (8 bits),
data word (16 bits), data double word (32 bits)

DB Data block

DBA Data block start address (in register 6)

DBL Data block length (in register 8)

DSP O, DSP 1 Condition codeword (often referred to as CC 0, CC 1
or ANZ 0, ANZ 1)

DX Data block extended

EPROM Erasable Programmable Read Only Memory

ERAB First scan (bit indication)

F, FY, FW, FD Flag bit, flag byte, flag word, flag double word

FB Function block

FX Extension function block

IP Intelligent I/0 module

ISTACK Interrupt stack

LAD Ladder diagram

LZF Execution time error

OB Organization block

OB, OW Byte, word from "extension I/O" range

OR Or (bit indication)

0s Latching type overflow (word indication)

ov Overflow (word indication)

PB Program block

PB, PW I/0 byte (PG 675), I/0 word

PC Programmable controller

PG Programmer

PI Process image

PII Process image of inputs

PIO Process image of outputs

Proc. Processor

PY I/0 byte (PG 685)

Qvz Acknowledgement delay

RAM Random Access Memory

RLO Result of logic operation (bit indication)

SAC STEP address counter (in register 15)

SB Sequence block

SF Special function

STA Status (bit indication)

STL Statement list

T Timer (timer locations)

ZYK Cycle error

e
e

B8576633-01

Literature references

How to program in STEP 5 (introduction) and how to program the
programmable controller SIMATIC S5-135U is explained in the following
manuals:

S5-135U programmieren mit STEP 5 l)
Siemens AG, ISBN 3-8009-1461-1
(S/R processors)

Automatisieren mit SIMATIC S5-135U 2)
Siemens AG, ISBN 3-8009-1522-7
(S/R processors and CPU 928)

Also note the remaining chapters of your manual (Instructions, STEP 5
Operations List) dealing with CPU 928.

l) German version only
) English version under preparation

e
=
[

B8576633-01

1 Introduction: S5 135U Mode of Operation and Application

This chapter is for those users who have not yet worked with a pro-
grammable controller but who have had experience with other microcom-
puter systems.

Structure of the system

A programmable controller (PC) is a computer system that has been
specifically developed for industrial use, e.g. for controlling manu-
facturing machines. PC’s have a modular design and consist of a sub-
rack with at least one processor module - from now on simply referred
to as "processor" - and numerous peripheral units. The number and type
of processors used depends on the particular automation task in ques-
tion.

The S5 135U programmable controller belongs to the SIMATIC S5 family
of stored program controllers. It is a high-performance multiprocessor
device designed for process automation (open and closed-loop control,
signalling, monitoring, logging) that can be used for constructing
simple controls with binary signals as well as for solving extensive
automation tasks.

The central unit of the S5-135U can be configured with

- a processor for single processor operation or

- a coordinator (COR) and up to 4 processors for multiprocessor
operation,

- additional communications processors (CP’s):
up to 7 CP's for single processor operation or 4 to 6 (7) CP's for
multiprocessor operation.

The remaining slots in the central controller of the S5 135U are
available for input and output modules. In order to expand the inter-
face system you can attach extension racks (EU’s) to the central unit.

Also refer to the catalog "Programmable Controller S5 135U", ST 54.1
Order no. E86010-K4654-A111-A3.

B8576633-01

The following figure shows the typical construction of an S5-135U
system. The modules highlighted by thicker lines are sufficient for
single processor operation.

Interrupt

! | | r

Proc.2 || Proc.3 | | Proc. 4 || CP's Input
modules

IOutput

modules

--------------------------------- e s

Peripheral equipment, e.g.: Process to be controlled
monitor, printer, etc. (open/closed loop)

Fig. 1-1: Typical S5 135U system structure

Application

Depending on the particular situation one of the following processors
can be used for simple automation tasks in single processor operation:

- S processor, particularly suitable for open-loop control tasks
(fast bit processing)

- R processor, particularly suitable for closed-loop control tasks
(fast byte processing)

- M processor, designed for measured-value processing; programmable
in Assembler and in high-level programming languages (BASIC, C)

- CPU 928, universally applicable, fast bit and byte processing.

In contrast to many other PC’s, the S5 135U central controller is able
to operate with several processors simultaneously for more complex
automation tasks, making it a multiprocessor device.

Multiprocessor operation is useful whenever the process to be con-
trolled is too complex for one processor and when it can be divided
into several more or less independent sub-tasks. Each sub-task can be
assigned to the most suitable processor (see above). Each processor
performs its individual task independent of the other processors.

B8576633-01

The processors access the I/0O modules one after the other using a
common bus (= S5 bus). An additional module, the coordinator, allo-
cates the S5 bus to the processors successively in fixed time periods.
Only the processor the bus has been allocated to is capable of access-
ing the I/0’s.

Processors can exchange data with each other via the S5 bus. This data
exchange makes use of a mailbox on the coordinator.

Mode of operation
Within a processor, the following cycle is constantly repeated:

1. All the input modules assigned to a processor are scanned and the
data read are temporarily stored in the process image of the inputs
(PII).

2. Data contained in the PII is processed by the user program and the

data to be output is entered in the process image of the outputs
(PIO0).

3. Data contained in the PIO is transferred to the output modules
assigned to a particular processor.

The time which the processor needs in order to perform these tasks 1is
called the cycle time.

The cycle must be fast enough, to ensure that process states do not
change faster than the processor can react; otherwise the process may
get out of control. Twice the cycle time has to be considered as the
maximum reaction time. The cycle time is dependent on the type and
complexity of the user program (see below) and is often not constant.

An additional time-driven program can be provided for processes need-
ing control signals at regular time intervals. On completion of one of
these intervals the cyclic program is interrupted to allow the time-
driven program to be executed. Up to 9 time-driven programs are pos-
sible in the CPU 928! The cycle time increases by the amount which is
needed for processing the time-driven program.

In the processor, an interrupt-driven program can be assigned to a
process signal that has to be responded to very quickly. After such an
interrupt, the processor breaks off the time-driven or cyclic program
in order to process the interrupt-driven program. The cycle time
increases by the amount which is needed for processing the interrupt-
driven program.

At worst the cycle time is the sum of the time needed for the cyclic
program and the possibly repeatedly called up time- and interrupt-
driven programs.

Each processor monitors the cycle time. It will interrupt the program
if a programmable limit values is exceeded and set itself and the
others in stop status, then it cancels the output signals.

B8576633-01

Program

The program found in each processor is divided into two parts, an user
program and a system program.

STEP 5 user programs for the S5 135U are written in the programming
language STEP 5, which is especially designed for PC’'s (exception: M
processor). The user program is modular and consists of at least one
program module (block). A distinction must be made between two funda-
mental block types:

a) Code blocks: blocks that contain STEP 5 commands.

b) Data blocks: blocks containing the constants and variables for the
STEP 5 program.

The user has no access to the system program. This program supports
all the typical functions of a programmable controller. It includes:

- updating the process images (input, output, interprocessor communi-
cation flag)

- updating the timer locations
- calling the cyclic time-driven and interrupt-driven programs.

I Coordinatorlq

1
Direct access to interface |
system

Update process

Code — blocks image

o [Qwith user

E programs Update inter—

E — cyclic processor com

. [— time—driven munjication tlag Output
g — interrupt— modules
> driven

|

|

|

|

|

J oata viocks :
Ifreenem I |
|

|

|

|

|

|

|

|

mCcm aov

I Data blocks IC—
I free tield I

e ————_—— e ————————— ey

DB—-RAM

Additional
processors :

Block diagram of an S5 185 U processor {(multiprocessor operation)

B8576633-01

Internal design of a processor

A processor’s memory is divided into several areas, the most important
being:

user memory (max. 32K words)

The user memory is located on a plug-in RAM or EPROM sub-module and
contains code and data blocks.

data block - RAM (= DB-RAM, max. 23.375 Kwords)

The DB-RAM is a memory area for data blocks. Data blocks whose
contents the application program has to change, have to be copied
from the EPROM to the DB-RAM.

flag address area F (256 bytes)

This memory area can be accessed quickly by the user program. It
should ideally be used for data, which are required frequently.

The following types of data can be accessed: single bits, bytes,
words, and double words. Single flag bytes can be used as interpro-
cessor communication flags for data exchange between processors.
Interprocessor communication flags are updated by the system pro-
gram at the end of a cycle by way of a latch in the coordinator.

process image of the inputs and outputs PII/PIO (each 128 bytes)

The user program can access the process image in the same way as
the interprocessor communication flags. The process image is also
updated by the system program at the end of the cycle.

I/0 area (512 bytes)

The user program can bypass the process image and access the peri-
pheral units directly via the S5 bus. Possible types of data are:
bytes and words.

timers T (128 timer locations for the S and R processor, 256 timer
locations for the CPU 928)

Timer locations are set at a value between 10 ms and 9990 s by the
user program and are counted down in intervals of 10 ms by the
system program.

counter C (128 counters for the S and R processor, 256 counters for
the CPU 928)

Counter locations are set at a starting value (max. 999) by the
user program and decremented.

B8576633-01

STEP 5 commands have access to the following operand areas:

- flag area

- process image of the inputs and outputs
- I/0 area

- timers

- counters

- current data block

In order to access the above operand areas, STEP 5 commands employ 2
different mechanisms:

- Most of the STEP 5 commands address a storage location relative to
the beginning of an operand area. As long as only these commands
are being used, the program is separated from the operand areas and
cannot overwrite itself if an error occurs.

- A few STEP 5 commands work with absolute addressing. These commands
allow access to the entire memory area.

In comparison with other operand areas, the current data block does
not have any fixed length or start address. It is the data block whose
length and start address are entered in special registers (see below).
The user program can only access the current data block unless
commands for absolute addressing are used. Possible types of data are:
single bits, bytes, words, and double words. Access to the current
data block is slower than access to the flag area.

Besides those memory areas mentioned above, the processor has the
following registers:

- 4 accumulators (32 bits) that serve as multipurpose registers,
e.g. as auxiliary registers for memory-to-memory transfer, or as

registers for operand and arithmetic results.

- 1 instruction counter (STEP address counter, SAC) containing the
address of the next command.

- 1 block stack pointer (BSP) that organizes block stack input.

- 1 DBA register (DBA = data block start address) containing the
start address of the current data block.

- 1 DBL register (DBL = data block length) containing the number of
data words in the current data block.

- 1 condition code register.

- 1 BR register (BR = base address register) used for absolute
addressing.

B8576633-01

1.1 New Features and Functions of the CPU 928
(for Users of S and R Processors)

S processor: B _processor:
fast bit processing fast word processing
——> open—ioop control —~> closed—loop control, computing and

\ / communications

CPU 928:

Improved cycle time with

mixed programming

(bit and word processing)

——> open—loop and closed—loop
control, computing,
communications

The CPU 928 is a 40 mm wide module that takes up 2 slots in the central
controller 135U. It combines the advantages of the S processor (fast
bit processing, designed for open-loop control tasks) and the R pro-
cessor (fast byte processing, designed for closed-loop control tasks).
More-over, the CPU 928 is particularly suitable not only for operation
and for observation, but also for monitoring, signalling and for
communication in multiprocessor operations. The CPU 928 is therefore a
universal processor for handling a wide range of automation tasks.

If you are already familiar with the S or R processor in S5 135U, then
the new features and functions of CPU 928 described in the following
chapters should be of particular interest: information given in
italics applies to version 3UAI12 only!):

Chapter 3.1.1: Program organization

Maximum block nesting depth of the CPU 928 has been increased to ‘62’
(CPU 928-3UAll: r30’, R processor: '20').

Maximum cycle time permitted is now 6000 ms (CPU 928-3UAll and R
processor: 4000 ms).

Chapter 3.3: Supplementary operations

The STEP 5 operation set has been extended to include the following
new commands:

- commands for adding and subtracting 32-bit fixed-point numbers:
+D, -D, ADD DF (system operations) l)

Programming of these commands depends on the type of your PG as
well as on the release of your PG system software

- commands for loading and transferring a word into the RJ or RT
area: L RJ, T RJ, L RT, T RT (supplementary operations)

B8576633-01

Chapter 4.4.2: Time interrupts

At present up to 9 time-driven programs may be executed. The indivi-
dual programs are contained in the organization blocks OB 10 to OB 18.
Each OB is called in another time base: OB 10, for instance, is
processed every 10 ms, OB 15 every 500 ms. Time interrupt OBs with a
shorter time base have a higher priority than time interrupts with a
longer time base and, if required, are nested into the latter.

Chapter 5.6: Errors in START and RUN

Error identifiers in accumulators (accu) 1 and 2 have been added to.

Chapter 6: Special integrated functions

CPU 928 has new special functions available. These are:

OB 110 : Access to the condition-code byte

OB 111 : Clear accus 1, 2, 3 and 4

OB 112 : Roll up accu

OB 113 : Roll down accu

OB 120 : Switch on/off "Inhibit all interrupts”

OB 121 : Switch on/off "Inhibit individual time
interrupts”

OB 122 : Switch on/off "Delay all interrupts"

OB 123 : Switch on/off "Delay individual time
interrupts"”

OB 160 to OB 163 : Counter loop

OB 170 : Read block stack (BSTACK)

OB 180 : Random data block access

OB 181 : Test data blocks

OB 190 and OB 192: Transfer flag to data blocks
OB 191 and OB 193: Transfer data blocks to flag area
OB 228 : Read status information from a program level

Chapter 7: Data block DX O

With the CPU 928 you can activate 256 counter and 256 timer locations
(R processor: 128 counter, 128 timer locations).

The parameters for interrupt-driven program processing have been added
to.

For floating-point arithmetics, DX 0 allows you to set whether the
processor is to calculate with a 16-bit or a 24-bit mantissa.

B8576633-01

Chapter 8.1: Memory address space distribution in the CPU 928

The data block RAM of the CPU 928 has been extended to 23.375 K words
(R processor: 11.125 words). This allows you to work with more data
blocks than before.

Furthermore, there are two new operand areas available, each 256 words
long: the RJ and RT area. For access to these areas there are new
STEP 5 commands.

Chapter 9: Memory access via absolute addresses

Those areas in the memory address space whose addressing by the STEP 5
commands LIR, TIR, TNB, and TNW is useful, have been enlarged and
contain less gaps in the CPU 928.

Chapter 9.3: Operations using the BR register

To make absolute addressing easier the BR register (BR = base
address register) has been introduced.

There are

- new comminds used to load or modify the BR register (refer to
9.3.1), b

- new commands to shift the contents of individual registers (refer
to 9.3.2), 1)

- new commands used to access local or global memory areas (refer to
9.3.3 and 9.3.4), 1)

- new commands to access the page frame memory. l)

APPENDIX A and List of operationms:

With version 3UAl2 (12 MHz), the command execution and system run
times of CPU 928 have been improved approximately by one third, com-
pared with version 3UAIIL.

APPENDIX G:

The identifications for the individual program processing levels have
been changed or added to.

l) Programming of these commands depends on the type of your PG as
well as on the release of your PG system software

1 -9

B8576633-01

2 User Program

2.1 Programming Language STEP 5

Using the STEP 5 programming language you convert automation tasks
into programs which run on SIMATIC S5 programmable controllers. Simple

binary functions as well as complex digital functions and basic arith-
metic operations can be programmed with STEP 5.

The full range of in the programming language STEP 5 is divided into
three main groups:

Basic Operations:

- can be used in all blocks

- methods of representation:
ladder diagram (LAD)
control system flowchart (CSF)
statement list (STL)

Supplementary Operations:

- only for use in function blocks

- statement list (STL) only method of
representation

System Operations:

These belong to the supplementary operations group

Can only be used in function blocks

The statement list (STL) is the only method of representation

Only for users with excellent knowledge of the system!

B8576633-01

2.1.1 Methods of Representation: LAD, CSF, and STL

When programming with STEP 5, you can choose between the three methods
of representation ladder diagram (LAD), control system flowchart
(CSF), and statement list (STL) so that the programming method can be
adapted to particular application in hand.

The machine code generated by the programmer (PG’s) is identical in
all three representation methods.

By keeping to certain rules while programming with STEP 5, the PG can
translate your user program from one method of representation into any
other method!

It is possible to represent your STEP 5 program graphically with the
ladder diagram and control system flowchart while the statement list
lists each STEP 5 command.

Ladder diagram Statement list Control system
flowchart
Programming with Programming with Programming with
graphic symbols as in mnemonics of the function graphic symbols
circuit diagram designation
to DIN 19239 . to DIN 19239 : to IEC 117-15
DIN 40700
DIN 40719
DIN 19239
LAD STL
A
BER< AN 1
A
ON |
o i
— - Q

Fig 2.1: Programming language STEP 5 - methods of representation

The programming language GRAPH 5 is used for the graphic representa-
tion of sequence control systems. In the hierarchic order, it is
above the methods of representation LAD, CSF and STL. The program
written in GRAPH 5 with graphic representation is automatically
converted by the programmer into a STEP 5 program.

B8576633-01

2.1.2 Structured Programming
The total program of a processor consists of:

System Program: This contains the entire set of instructions and
declarations necessary for implementing internal
restart functions (e.g. saving data in case of power
supply failure, prompting user reactions to inter-
rupts etc.).

It is stored in EPROM’s (erasable programmable read-
only memory) and is a fixed component of the pro-
cessor. You as user, do not have access to the system
program.

User Program: This contains the entire set of instructions and
declarations programmed by the user for signal pro-
cessing, by means of which the plant (process) is
controlled. The user program can be subdivided into
blocks.

The entire user program can be divided into separate, self-contained
program sections (blocks). The configuration of these blocks in the
user program therefore makes the most important program structures
clear or reflects the relationship between plant (process) and pro-
gram.

This ’structured programming’ gives you the following
advantages:

- clear and simple programming even with long programs
- standardizing program sections possible

- simple program organization

- program easy to modify

- simple program testing section by section

- simple commissioning

What is a block?

A block is a separate part of the user program distinguished by its
function, structure, or application. A distinction must be made be-
tween blocks that contain instructions for signal processing (orga-
nization blocks, program blocks, function blocks, sequence blocks),
and blocks that contain data (data blocks).

B8576633-01

2.1.3 STEP 5 Operations

A STEP 5 operation is the smallest independent unit of a user program.
It is a work instruction for the processor and is made up of an
operation and an operand.

Example: :0 F 54.1
/ \
Operation Operand

(What to do?) (With what?)

You can enter (via the assignment list) the operand either as
absolute or symbolic.

Example of an absolute representation: A I 1.4
Example of a symbolic representation: tA -Motorl

More information on absolute and symbolic programming can be found in
the instruction manual "Programmable Controller PG 685", order number
C79000-B8576-C373-xx.

STEP 5 operations allow you to:

- perform logic operations on binary data

- load, save, and transfer data

- compare values with each other and process them mathematically

- set time and count values

- convert numeric representations

- structure the user program

- 1influence program processing, etc.

Most STEP 5 operations use two registers either as the source or the
destination for operands and only the destination for an operation
result: accumulator 1 (accu 1) and accumulator 2 (accu 2). Each accu-
mulator is 32 bits (1 double word) wide.

A detailed description of STEP 5's entire operation set can be
found in Chapter 3.2. Here you will find programming examples of each
STEP 5 command.

In Appendix C there is a list of all available STEP 5 operations and
valid parameters.

B8576633-01

2.1.4 Numeric Representation
Before the processor can change, compare or perform logic operations

on numerical values, you must load these values in binary-coded form
in the accumulators.

Depending on the type of operation to be done, STEP 5 allows the
following numeric representations:
binary numbers: a) 16-bit fixed-point numbers

b) 32-bit fixed-point numbers

c) floating-point numbers
decimal numbers: d) BCD-coded numbers
The data format (e.g. KF for fixed point) in which values are to be
entered or displayed is set on the PG. The PG then converts the
internal method of representation into the one required by the user.
Using 16-bit fixed-point numbers and floating-point numbers you can
carry out all arithmetic operations such as compare, add, subtract,

multiply, and divide.

BCD-coded numbers are only used for input and output. You cannot
perform any direct arithmetic operations with these codes.

Comparisons are possible with 32-bit fixed-point numbers. These are
also necessary for converting BCD-coded numbers into floating-point
numbers as an intermediate step. The new commands +D and -D can now
also be used for adding and subtracting.

The STEP 5 language contains conversion operations, which let you
convert numbers to the most important numeric representations
directly.

16-bit and 32-bit fixed-point numbers

Fixed-point numbers are whole binary numbers with sign.

They are 16 bits (= 1 word), or 32 bits (= 2 words) long, where bit
number 15 or bit number 31 is the sign: "O" = positive number, "1" =

negative number.

Negative numbers are represented in their two'’s complement.

B8576633-01

32-bit fixed-point number:

31 30 0

v | 230, .. .20

Entry of the data format as 16-bit fixed-point on the PG: KF

Entry of the data format as 32-bit fixed-point: only KH

Allowed range of numbers: -32768 to +32767 (16 bits)
-2147483648 to +2147483647 (32 bits)

(To convert a 16-bit fixed-point number into a 32-bit fixed-point num-
ber see Chapter 3.2.2.)

Fixed-point numbers are used to solve simple arithmetic problems and
to compare numerical values. Please note that, since fixed-point
numbers are always integers, there can be no remainder following
division.

Floating-point numbers

Floating-point numbers are positive and negative fractions. They al-
ways occupy a double word (32 bits), and are represented as exponen-
tials. The mantissa is 24 bits in length, the exponent is 8 bits long.

The exponent determines the magnitude of a floating-point number. The
sign of the exponent will tell you whether or not the floating-point
number is greater or less than 0.1.

The mantissa determines the accuracy of a floating-point number:

- 24-bit mantissa accuracy is: 2724 _ 0.000000059604
(equivalent to 7 decimal places)

- 16-bit mantissa accuracy is:
(equivalent to 4 decimal places)

0.000015258

If the mantissa sign is "O0", then the number is positive; if it is
"1l", then the number is negative in two’s complement representation.

Floating-point number:

31 30 24 23 22 0

vt20|v] 21 2723

Exponent Mantissa

B8576633-01

The CPU 928 only computes with a 16 bit wide mantissa (bit 8 to 23)
when adding, subtracting, multiplying, and dividing. Low order bits
0 to 7 (to the right) always have the value ’'0’!

If a higher accuracy is required for floating-point computing
(accepting a small increase in runtime), you may select the

following setting in DX 0: "Floating-point arithmectic with 24-bit
mantissa" (see Chapter 7).

Entry of data format as floating-point on the PG: KG

Allowed range of numbers: +0.1469368 x 10738 o
+0.1701412 x 103°

Entering floating-point numbers Z with the PG:

Z = 12.34567

L KG + 1234567 + 02

Mantissa Exponent (base 10) with sign

+0.1234567 x 10t2 = 12.34567

N
I

N
1

-0.005

L KG - 50000000 - 02

Mantissa Exponent (base 10) with sign

Z =-0.5%10"2 = -0.005

Use floating-point numbers for solving more complex mathematical
problems, particularly for multiplication and division and when you
are working with very large or very small numbers!

B8576633-01

BCD-coded numbers

Decimal numbers are represented as BCD-numbers. A three digit number
with sign occupies 16 bits (1 word) in the accumulator:

bit 15 to 12 11 to 8 7 to 4 3to0
sign hundreds tens units

15 0

vvvy

102 10l 100

The single digits are positive 4 bit binary numbers between 0000 and
1001 (0 and 9).

Allowed range of values: -999 to +999

The four left hand bits are reserved for the sign.
sign for a positive number: "0000"
sign for a negative number: "1111"

B8576633-01

2.1.5 STEP 5 Blocks

A block is a separate part of the user program distinguished by its
function, structure, or application.

It can be identified by its

- block type (OB, PB, SB, FB, FX, DB, DX) and
- block number (number between O and 255).

The STEP 5 programming language differentiates between the following
types of blocks:

STEP 5 blocks

T 4+ 3
T T T

Code llocks Data llocks

(contain STEP 5 commands) (contain variables and constants)
Function 'Normal’

blocks blocks

(complete (basic

instruction operations)

set, para-—

meterizable)
| | I
FB FX OB SB PB DB DX

- organization blocks (OB)

These are the interface between the system program and the user
program, and can be divided into two groups:

OB 1 to 39 are called up by the system program and control program
processing, the startup routine of the processor, and reaction to
faults. The user must program these OB’s.

OB 40 to 255 contain special system program functions. The user
calls these up as required.

- program blocks (PB)
These are used to structure the user program and contain struc-

tured subroutines that are process or function-oriented. Program
blocks usually contain the greater part of the user program.

B8576633-01

- function blocks (FB/FX)

These are used to program frequently recurring or complex func-
tions (e.g. digital functions, sequential control, closed loop
control, signalling functions). A function block can be called by
primary blocks many times, each time with new operands assigned.

- sequence blocks (SB)

These are special program blocks that are used for step-by-step
processing of sequence cascades.

- data blocks (DB/DX)

These blocks contain (fixed or variable) data with which the user
program works. This type of block does not contain any STEP 5
instructions and its function is totally different from that of
other blocks.

What does a block consist of?

All blocks comprise - a block header and
- a block body

The block header always has a length of 5 data words. The programmer
automatically enters the following in the header:

- the block start-identifier

- the block type (OB, FB ...)

- the block number

- the PG identifier

- the library number

- the block length (including block header)

Block header in

program memory : Start I Identifier
Block type I Block number
PG identifier I Library

n um b e r

Block length incl. header (words)

15 0

You can find a precise identification of block type and block number
in Subsection 8.2.1.

2 - 10

B8576633-01

Depending on the block type, the block body contains

- STEP5 commands (for OBs, PBs, SBs, FBs, FXs),
- wvariable or constant data (for DBs, DXs),
- 1list of formal operands (for FBs, FXs).

For the block types DB, DX, FB, and FX, the programmable controller
produces a block pre-header (DH, DXH, FH, FXH) which contains informa-
tion about data format (with DB and DX) or jump labels (with FB and
FX). Only the programmable controller can evaluate this information,
which is why block pre-headers are not transferred to the PC memory.
As user, you have no direct influence on the contents of a block pre-
header.

A STEP5 block can occupy max. 4096 words in the program memory of the
processor. Do not forget the memory capacity of your PG when entering
or transferring blocks with the programmer.

Of the possible block types, the following are available for
programming:

OB 1 to 39

FB 0O to 255
FX 0 to 255
PB O to 255
SB O to 255
DB 3 to 255
DX 1 to 255

The data blocks DB 1, DB 2, and DX O contain parameters. They are
reserved for specific functions and can therefore not be used for
other purposes.

All programmed blocks are stored in an arbitrary order by the PG in
the program memory (figure). This is a plug-in RAM or EPROM on the
processor. The start addresses of the blocks stored are deposited in
data block DB 0.

P81 RAM or EPROM
PE2 can be plugged
into CPU
L J
L]
FB1
*
L]
081
L]
S8
*
ost

Fig.2-2: Block storage in the program memory

2 - 11

B8576633-01

When correcting a block, the ’'old’ block is declared invalid and the
corrected or new block is entered in the memory. The same procedure
applies to block deletion; instead of actually being deleted, the
blocks are made invalid.

IMPORTANT!
Deleted and corrected blocks still occupy memory space!
By using the online function ’'COMPRESS memory’, you gain space in the

memory for new blocks. This function erases all invalid blocks in the
memory and moves the valid ones together (see Chapter 11.6).

2 - 12

B8576633-01

2.2 Organization, Program and Sequence Blocks

These three types of block do not differ with respect to programming
and calling. All three types can be programmed in LAD, CSF and STL.

2.2.1 Programming

When programming organization, program and sequence blocks, proceed as
follows:

e TFirst, specify the type of block and then the number of the block
to be programmed.

The following numbers are available:

Program blocks 0 through 255
Sequence blocks 0 through 255
Organization blocks 1 through 39

e Enter your user program in STEPS.

IMPORTANT!

When programming PB’s, SB’s and OB’s only STEP 5-basic operations
are allowed!

e Terminate program input by entering "BE" (block end).

IMPORTANT!
A STEP5 block should always contain a complete program. Logic opera-
tions within a block must be complete.

Up to approx. 4000 words are possible within one block (depending on
the type of programmable controller used).

The block header which is automatically generated by the PG requires
5 words in the program memory.

PB25

[Block header

- STEP S program

n| BE J

Fig. 2-3: Structure of an organization, program and sequence block

2 - 13

B8576633-01

2.2.2 Galls

Blocks have to be enabled for processing. This is achieved by block
calls (see fig.).

Programming of these block calls is possible within an organization,
program, function or sequence block. They are comparable to the jumps
to a subroutine. Each jump causes a block change.

It is possible to execute jumps either as conditional or unconditional
jumps:
* Unconditional call: JU xx

The block called is processed independent of the previous
result of logic operation (=RLO).

The RLO is the signal state within the processor which is used for
further binary signal processing. It is possible to e.g. perform
logic operations on the RLO and the signal state of the operands or
to carry out operations dependent on the previous RLO: The "uncon-
ditional operations" are always executed, the "conditional opera-
tions" only if the RLO is = 1.

The jump instruction JU belongs to the category of unconditional

operations. It has no influence on the RLO which is transferred to
the new block if a jump is carried out. There, an evaluation of the
RLO is possible, however, a further logic operation with it is not.

* Conditional call: JC xx
The jump instruction JC belongs to the category of conditional
operations, i.e. the block called is only processed if the previous
result of logic operation (RLO) is = 1. In the case of the RLO
being = 0, the jump instruction is not executed. However, the RLO
is set to "1"!
P81 P8 S P8 10
A 11.0 A 120
’#J ﬁi Jc P810
BE 8E
P8 6
o 13.0
A 115
JC P88
A 132
BE \ BE

Fig. 2-4: Block calls that enable processing of a program block.

2 - 14

B8576633-01

After the statement BE has been entered, a jump is made back to the
block in which the block call had been programmed. Processing of the

program is continued at the first STEP5 statement after the block
call.

The block end statement BE is processed independent of the result of
logic operation. After BE the result of logic operation can no longer
be logically operated on. However, the result of logic operation/com-
puted result present immediately before the execution of the BE state-
ment is transferred to the block calling and an evaluation is possible
there. When returning from the block called, the contents of accumula-
tors 1, 2, 3 and 4, the condition codes CC 0 and CC 1 as well as the
result of logic operation RLO are not altered.

2 - 15

B8576633-01

2.2.3 Special Organization Blocks

The organization blocks are the interface between the system program
and the user program. The organization blocks OB 1 through 39 are part
of the user program which you program just like program, function, or
sequence blocks. You thus have the possibility of influencing the
reaction of the processor, during the start-up, program processing and
in case of errors, by means of programming these OB’s. The organiza-
tion blocks become effective the moment they are loaded into the

memory of the programmable controller. This is also possible while the
system is running.

The important point to remember is that these OB’s are called by the
system program as a reaction to certain events.

Organization Function and criteria for block call
block
OB 1 organization of cyclic program processing

called at the end of a start—up mode

OB 2 organization of interrupt—driven program processing
called by signal via the S5 bus (process interrupt)

OB 10 — 18 organization of time—driven program processing
(time interrupts)

OB 10 called every 10 msec

OB 11 called every 20 msec

OB 12 called every 50 msec

OB 13 called every 100 msec

OB 14 called every 200 msec

OB 15 called every 500 msec

OB 16 called every 1 sec

OB 17 called every 2 sec

OB 18 called every 5 sec
OB 20 — 22 organization of the start—up routine

OB 20 called with request "cold restart"

OB 21 called with request "manual warm restart

OB 22 called after return of power ("auto. warm restart")
OB 19, 23-24 reaction to the following equipment faults or

program errors:
OB 19 execution time error: call of an unprogrammed block
OB 23 timeout in the user program

(for direct access to I/0 modules or other
S5 bus addresses)

OB 24 timeout when updating process image and
transferring interprocessor communication flags

OB 25 addressing error

OB 26 cycle time exceeded

OB 27 command code error: substitution error

l) If the OB is not programmed, in the case of an error the processor
will go over to the stop state. EXCEPTION: if OB 23 and 24
(acknowledgement delay) do not exist, there will be no reaction!

2 - 16

B8576633-01

Organization Function and criteria for block call
block
OB 28 stop caused bylgrogrammer function/stop
switch/S5 bus
OB 29 command code error: operation code illegal
OB 30 command code error: parameter illegal
OB 31 other execution time errors
OB 32 execution time error: transfer error in the data
block
OB 33 time interrupts
OB 34 error during controller processing

1) OB 28 is called before a transition to the stop state. The proces-
sor will stop irrespective of whether and how OB 28 is programmed.

After the system program has called the respective organization block,
the user program contained in it will be processed. Usually, the
processor will then return to the program which has been interrupted
by the error organization block (exception: OB 28). For the

behaviour without error OB, refer to Chapter 5.4.

It is possible to have the user program call these organization

blocks for test purposes (JU/JC OBxxx). However, it is not possible to
cause a processor stop by calling OB 28 or to initiate an automatic
warm restart by calling OB 22!

IMPORTANT!

The special organization blocks are programmed by the user and called
automatically by the system program!

2 - 17

B8576633-01

2.2.4 Organization Blocks with Special Functions

The following organization blocks contain special functions of the
system program. They cannot be programmed by the user, only called
(this applies to all OB's with numbers between 40 and 255!). They do
not include a STEPS5-program. Special function OBs may be called from
any code block.

Overview 2-5:

OB

OB
OB
OB
OB
OB
OB
OB
OB
OB

OB
OB

OB
OB

OB

OB

OB

OB

OB

OB

OB

OB

OB
OB

OB

OB
OB
OB

OB
OB
OB

Organization blocks with special functions in the

CPU 928

110
111
112
113
120
121
122
123
160 - 163
170

180
181

190, 192
191, 193

200, 202 - 205
216 - 218

220

221

222

223

224

226

227
228

230 - 237

240
241
242

250
251
254, 255

access to the condition-code byte
clear accus 1, 2, 3 and 4

roll up accu

roll down accu

switch on/off "Inhibit all interrupts”

switch on/off "Inhibit individual time interrupts"”
switch on/off "Delay all interrupts"”

switch on/off "Delay individual time interrupts”

counter loop
read block stack (BSTACK)

variable data block access
test data blocks

transfer flags to data blocks
transfer data fields to flag area

multiprocessor communication
access to pages

convert accumulator 1 from 16- to 32-bit fixed-
point number by means of sign extension

set and trigger new cycle time

retrigger cycle time

stop if start-up mode for multiprocessor operation
is not uniform

block transfer of interprocessor communication
flags in multiprocessor operation

read contents of a storage location of the system
program in bytes

read check sum of system program memory

read status information of a program level

functions for standard function blocks

initialize shift register
call shift register
clear shift register

initialize PID-controller
process PID-controller
transfer data blocks to DB-RAM

For a detailed description of special functions refer to Chapter 6.

2 - 18

B8576633-01

2.3 Function Blocks

Function blocks (FB/FX) are parts of the user program just as e.g.
program blocks. The structure of FX-function blocks is similar to that of
FB-function blocks and they are programmed in the same manner.

Frequently repeated or very complex functions are implemented by means
these function blocks.

In comparison with the organization, program and sequence blocks there
are four important differences:

Parameter assignment is possible for function blocks, i.e.: The
formal operands of a function block can be substituted by other
actual operands whenever they are called. This means that function
blocks created for general use are very versatile.

Programming of function blocks is possible using the complete
operation range of the STEP5 programming language. In addition to
the basic operations used in all types of blocks there are also
supplementary operations as well as system operations available.

IMPORTANT!

Programming of supplementary operations and system operatiomns is
only possible in function blocks.

It is only possible to program and document function blocks as a
statement list (STL).

However, calling of function blocks is also possible in control
system flowchart or ladder diagram representation methods and is
represented graphically as a box.

Designation of function blocks may be carried out using names of up
to 8 characters.

Within the user program, each of the function blocks represents a
complex and self-contained function. The user can

purchase function blocks directly from SIEMENS as a software

of

product (standard function blocks on a mini-diskette); these standard

function blocks allow fast and reliable generation of user programs
for signalling, controlling and logging;

or

program them himself.

2 - 19

B8576633-01

2.3.1 Structure of Function Blocks

The block header (5 words) of a function block does not differ
from that of the other STEP5 blocks.

The structure of its body, however, is fundamentally different
from that of the other types of blocks. It contains the actual
program of the function block. The function to be executed is
written in the programming language STEP5 in the form of a state-
ment list. The function block requires additional memory space
for the data specifying its name and the list of formal operands
between the header and the actual STEP5 user program. Since this
list contains no instructions for the processor it will be skip-
ped by means of an unconditional jump automatically generated by
the PG. This jump instruction is not displayed on the PG!

Operands may be entered into a function block either in an absolute
(e.g. F 2.5) or a symbolic form (e.g. -MOTOR1l). Before doing this,
you will have to enter the assignment of the symbolic operands into
an assignment list.

If the function block is called, it is only the block body that is
processed.

A function block in the PC memory has the following structure:

5 words
Block
header
|
Skip list Ju — 1 word
of formal operands
Name of FB/FX 4 words

Formal operand 1 3 words

#
Formal operand 2 " Block
O

body
Formal operand 3

STEP5
user program

A\

Fig. 2-6: Structure of a function block (FB/FX)

2 - 20

B8576633-01

All data which the programmer requires to generate a graphic represen-
tation of the function block when called and all data required for
testing the operands during parameter assignment and programming are
therefore in the memory. An incorrect input will not be accepted by
the programmer.

TMPORTANT!
When dealing with function blocks, make sure to differentiate between

a) programming an FB/FX and

b) calling an FB/FX and then assigning parameters.

When programming, you determine the function of a block. The operands
entered are formal operands which function as a fill-in.

When calling a block via a primary block (OB, PB, SB, FB, FX) the
formal operands are replaced by actual operands: parameters are
assigned to the function block.

The following pages will help to illustrate these points.

2 - 21

B8576633-01

2.3.2 Programming Function Blocks

To enter a function block at the PG proceed as follows:

Input the number of the function block.

IMPORTANT!

It is advisable to assign numbers to the user function blocks

in descending order starting with 255 to avoid interfering

with the standard function blocks with numbers from FB 1 through
FB 199.

Entering a number from 0 through 99 999 as a library number is
possible. This number will be assigned to the function block,

independent of its block number or name.

It is advisable to assign a library number only once in order to
ensure that function blocks are identified uniquely.

Input the name of the function block. A maximum of 8 characters
is permitted.

Input the formal operands used in the block (40 formal operands
max.)

Specify the following for each of the formal operands:

1. the name of the block parameter,
2. the class of block parameter,
3. the type of block parameter.

Up to 4 characters may be used for the mname.

The programmer gives you the following choice for the input of the
class of block parameter:

= input parameter
= output parameter
data

= command

= timer

= counter

OHwWwWOoOOoH
Il

The parameters marked I, D, B, T and C are shown on the left of the
function symbol, whereas the parameters marked Q are on the right.

For the I, D and Q classes of parameter you must also specify the
type of parameter:

BI/BY/W/D for parameter class I, Q
KM/KH/KY/KS /KF /KT /KC/KG for parameter class D

2 - 22

B8576633-01

The parameter type indicates whether the I and Q parameters are
bits, bytes, words or double words and which data format (e.g. bit
pattern or hexadecimal pattern) is valid for D parameters.

Class of Type of parameter Permissible actual operands
parameter
I, Q BI for an operand I n.m inputs

with bit address Q n.m outputs

F n.m flags

BY for an operand IB n input bytes
with byte address QB n output bytes
FY n flag bytes
DL n left—hand data byte
DR n right—hand data byte
PY n peripheral bytes
EB n peripheral bytes
from the extended
interface system
W for an operand IW n input words
with word address Q¥ n output words
FW n flag words
DW n data words
PW n peripheral words
EW n peripheral words

from the extended
interface system

D for an operand with| ID n input double words
double word address| QD n output double words
FD n flag double words
DD n date double words
D KM for a bit pattern | constants

(16 positions)

KY for two absolute
values in bytes
each from O
through 255

KH for a hexadecimal
pattern,
max. 4 positions

KS for 2 alphanumeric
characters

KT for a time value
(BCD—coded) with
time base
.0 to .3
and time value
0 to 999

2 - 23

B8576633-01

Class of Type of parameter Permissible actual operands
parameter
D KC for a count value
(BCD—coded)
0 to 999
KF for a fixed-point
number
—32768 to +32767
KG for a floating—
point number
B No type specification DB data blocks;
permissible command C DB n is
executed.
FB function blocks
(permissible only
without parameters)
are called
unconditionally
(JU ..n).
PB program blocks are
called unconditionally
(JU ..n).
SB sequence blocks are
called unconditionally
(JU ..n).
T No type specification T O to 255 time 1)
permissible
c No type specification C 0 to 255 counteér L
permissible
1

The time value or count value must be assigned as a formal operand

or is to be programmed as a constant in the function block.

e Then input your STEP5 program as a statement list.

The formal operands are marked by an equality sign placed in front
of the operand (e.g. A =X1). These operands can be called several
times at different locations in the function block.

IMPORTANT!

If the sequence or the number of the formal operands in the list of
formal operands is altered then the substitution commands in the
STEP5 program of the function block as well as the list of block
parameters in the block initiating the call will have to be
corrected accordingly!

2 - 24

B8576633-01

IMPORTANT!

Make sure that you always program and alter the function blocks on
either a floppy disk or a Winchester and then transfer them to the
programmable controller.

e Terminate the program input with ’'BE’ (block end).

Example 2-7: Programming a function block

FB 202

NAME: EXAMPLE

DECL.:MIKE . I/Q/D/B/T/C: I BI/BY/W/D: BI
DECL. : BERT I1/Q/D/B/T/C: I BI/BY/W/D: BI List of
DECL. :MAUD 1/Q/b/B/T/C: Q BI/BY/W/D: BI formal operands
:A =MIKE
:A =BERT STEP5 program
1= =MAUD
|
Formal Parameter Parameter
operands class type

2 - 25

B8576633-01

2.3.3 Calling and Assigning Parameters to Function Blocks

In the STEP5 user program each function blocks can be called wherever
and as often as desired. The STEP 5 program is always written as a
statement list, however, the function block calls can also be in a
graphic representation CSF or LAD).

For calling and assigning parameters proceed as follows:

e Input the call statement for the function block in the block
which is to initiate the call.

It is possible to program a function block call within an
organization, program or sequence block or within another
function block.

The call can be either conditional or unconditional:

%* Unconditional call (JU FBn for function blocks or DO FXn for
extended function blocks):

The function block called is processed independent of the
previous result of logic operation.

* Conditional call (JC FBn for function blocks or DOC FXn for
extended function blocks):

The function block called is processed only if the previous
result of logic operation is RLO = 1. If RLO = O, the jump
statement is not executed, however, the RLO is set to 1.

No further logic operation using the RLO is possible after the
unconditional and conditional call. However, it is transferred to
the function block called when the jump is executed and evaluation
is possible there.

After having input the call statement (e.g. JU FB200) the name as
well as the list of formal operands of the respective function block
will appear automatically:

e Now you assign the actual operand valid for this particular call
to the individual formal operand, i.e. you assign parameters for
the function block.

These actual operands may differ for the individual calls: e.g.
for the first call of the FB200 inputs and outputs, for the
second call flags.

Depending on the list of formal operands it is possible to
assign a maximum of 40 actual operands for every function block
call.

2 - 26

B8576633-01

TMPORTANT!

Before calling a function block and assigning parameters it is impor-
tant to first program this particular function block and copy it onto
the program disk and transfer it directly into the program memory of
the programmable controller!

After the jump to the function block the actual operands of the block
initiating the call are used for the processing of the function block
program instead of the formal operands.

This particular feature of the function block (i.e. parameter assign-
ment) allows for a variety of applications in your user program.

Example: Calling a function block and assigmnment of parameters with
the representaion methods STL and LAD/CSF in a program
block.

- Representation method STL

PB25

:JU FB201
NAME :E-ANTR
ZU-E : DW1
RME I 3.5
ESB : F 2.5
UEZ : T 2
TIME : KT10.1
ZU-A DW1
BEA : Q 2.3
LSL : Q6.0
Formal Actual
operands operands

- Representation method LAD/CSF

FB 201
bW 1 —1 ZU-E Z2U-A |— DW 1
I3.5 — RME BEA — Q 2.3
F 2.5 — ESB LSL — Q 6.0
T 2 — UE
KT10.1 — TIME

Fig. 2-8: (Calling a function block and assignment of parameters

2 - 27

B8576633-01

The following (complete) example should help to explain the program-
ming, calling and assignment of parameters of a function block. You

can easily execute these operations yourse

The function block FB 202 is programmed:

FB 202

NAME: EXAMPLE

1f.

DECL. :MIKE 1/Q/D/B/T/C: I BI/BY/W/D: BI
DECL.:BERT I/Q/D/B/T/C: I BI/BY/W/D: BI
DECL. :MAUD 1/Q/D/B/T/C: Q BI/BY/W/D: BI
:A =MIKE
:A =BERT
:= =MAUD
I
Formal Parameter Parameter
operands class type

List of
formal operands

STEP5 program

The function block FB 202 is called in the program block PB 25 and

parameters are assigned:

- Representation method STL -

Representation method

MAUD |~ Q 23.0

LAD/CSF
PB25 FB 202
: JU FB 202
NAME: EXAMPLE I 13.5 — MIKE
MIKE: I 13.5 F 17.7 — BERT
BERT: F 17.7
MAUD: Q 23.0
Formal Actual

operands operands

The following program will be executed after the jump to FB 202:

n» p
=
'—l
~
~

2 - 28

B8576633-01

2.3.4 Special Function Blocks
- Standard function blocks

In addition to the function blocks which the user himself programs,
standard function blocks are also available as an off-the-peg software
product. These blocks contain standard functions for general applica-
tions (e.g. signalling functions, sequential controls etc.)

The numbers FB 1 through FB 199 are reserved for the standard function
blocks.

When purchasing the standard function blocks make sure you follow the
special instructions in the system description (areas occupied, con-
ventions etc.).

The standard function blocks for the S5 135U, the execution time, the
memory requirements as well as the variables assigned by the user are
listed in the ST 57 catalogue "Software for U-Range Programmable
Controllers and their Programmers".

Example of a standard function block

Floating point root extractor RAD:GP FB 6 for S5 115U
FB 6 for S5 135U
FB 19 for S5 150U

The function block RAD:GP extracts the root of a floating-point number
(8-bit exponent and 24-bit mantissa), i.e. it finds the square root.
The result is also a floating-point number (8-bit exponent and 24-bit
mantissa). The least significant bit of the mantissa is not rounded.

If necessary, the function block sets the identifier "radicand
negative" for further processing.

Numerical range:

Radicand -0.1469368 exp. -38 to +0.1701412 exp. +39
root +0.3833434 exp. -19 to +0.1304384 exp. +20
Function: Y =7A

Y = SQRT; A = RADI

2 - 29

B8576633-01

Calling the function block FB 6:

- Representation method STL - Representation method LAD
: C DB 17
: JU FB 6 FB 6
NAME : RAD : GP
RADI : DD 5 DD 5 — RADI J —D 15.0
J : D15.0 SQRT |—DD 10
SQRT : DD 10

DD = data double word

The above example shows how the root of a floating-point number, which
is written in DD 5 with an 8-bit exponent and a 24-bit mantissa is
extracted, the result, which is again a 32-bit floating-point number,
is deposited in DD 10. Before this operation takes place, the respec-
tive data block has to be opened. The parameter J (parameter class: Q,
parameter type: BI) indicates the sign of the radicand: J = 1 for a
negative radicand. Flag words assigned: FW 238 through 254.

- Function block FB 0

If the organization block OB 1 is not programmed, then the system
program cyclically calls FB O instead of OB 1.

IMPORTANT!

For this reason, FB 0 should only be used for programming the cyclic
program! (Parameters are not permitted.)

Since the complete operation set of the STEP5 programming language is
available in one function block, the programming of FB 0 instead of OB
1l is especially suitable if you want to process a short and time-
critical program.

If OB 1 as well as FB O are programmed then only the organization
block OB 1 is processed cyclically.

2 - 30

B8576633-01

2.4 Data Blocks

The fixed and variable data employed by the user program are deposited
in the data blocks (DB/DX). No STEP5 operations are processed in data
blocks.

Data in a data block could be:

- any bit pattern, e.g. for system status,

- numbers (hexadecimal, binary, decimal) for time values, results of
arithmetic operations

- alphanumeric characters, e.g. for messages.

N

.4.1 Structure of a Data Block

A data block consists of the following components

block preheader (DH, DXH)

block header

block body.

The block preheader is generated automatically. It contains the data
formats of the data words entered in the block body. The user has no
means of influencing the generation of the block preheader.

IMPORTANT!

If you transfer a data block from the programmable controller or the
EPROM submodule to a floppy disk, the respective block preheader will
be erased. Due to this you should never alter a data block with
different data formats in the programmable controller and then
transfer it back to the floppy disk, since all data words of this
particular DB are automatically assigned the data format selected in
the presettings mask.

The header is assigned 5 words in the memory and contains

- the block identifier

- the identifier of the programmer

- the block number

- the library number

- the block length (incl. the length of the header)

The block body contains, in ascending order and starting with data

word DW 0, the data words used by the user program. Each of the data
words is assigned 1 word in the memory (16 bits).

2 - 31

B8576633-01

A data block can occupy max. 2000 words in the processor memory. When
entering or transferring data blocks with the PG always take into
consideration the storage capacity of your programmer!

0825

e s |

I Block header

ow {4 A 3 2
owr [3 f a4] 7]

w2 010 0100 0000 1111
ows Z Y
Dw4
Dows

| Oata words

Dwn

Fig. 2-9: Structure of a data block

2.4.2 Programming Data Blocks
This is how a data block is created:
e Input a data block number between 3 and 255 (for DB data blocks)

or between 1 and 255 (for DX data blocks).

IMPORTANT!

The data blocks DB 0, DB 1, DB 2 and DX 0 are reserved for specific
functions and thus not freely assignable!

e Input the individual data words in the desired data format.
Permissible data formats:

Examples:

KM = bit pattern 00100110 00111111

KH = hexadecimal number 263F

KY = byte 38,63

KF fixed-point number +9791

KG floating-point number +1356123+12

KS character (ASCII) ?1ABCD123-+.,%

KT = time w. time base specif.(decimal) 055.2

KC = counter value 234

AL = assignment in assignment list MOTOR1 = Q 12.5
(not with PG software S5DOS)

IMPORTANT!

Input of data words is not terminated with block end statement
'BE’!

2 - 32

B8576633-01

2.4.3 Opening Data Blocks

A data block (DB/DX) can only be opened unconditionally. This is
possible within an organization, program, sequence or function block.
One data block can be opened several times within the program.

This is how a data block is opened:

e DB data block with statement C DB..

e DX data block with statement CX DX..

Access to the data stored in the data block opened is possible during
the program processing by means of the load and transfer commands:

The contents of the addressed data word are transferred to accumulator
1 and processed by the processor by means of a load command.

Load commands: DW.. (word)

DR.. (right-hand byte)
DL.. (left-hand byte)
DD.. (double word)

ol ol ol

The data contained in accumulator 1 are transferred to the addressed
data word by means of a transfer command.

Transfer commands T DW..
T DR..
T DL..
T

DD..

The contents of a data word are not altered during the loading proce-
dure.

The original contents of a data word are overwritten during the
transfer procedure.

IMPORTANT!

* Before accessing a data word you will have to open the respective
data block in the user program since this is the only means for the
processor to find the correct data word! The addressed data word
must be contained in the block opened, otherwise the system program
will identify a transfer error for command T Dx or will load random
values if command L Dx is entered.

% Using load and transfer commands, access is possible up to data
word number 255 only.

2 - 33

B8576633-01

Example: Transferring data words

The intention is to transfer the contents of data word DW 1 of data
block DB 10 to data word DW 1 of data block DB 20 (cf. fig.).

Input the following statements:

C DB1O (open DB 10)

L DWl (load DW 1 in the accumulator)
C DB20 (open DB 20)
T DW1 (transfer DW 1 from the accumulator to DW 1)
08 10
owo
ow1
DW255
08 20
owo
owt

Fig. 2-10: Opening data blocks and accessing data words

After a data block has been opened all subsequent instructions with
the operand range D refer to the block opened.

The data block opened still remains valid, even if the program pro-
cessing is continued in another block by means of a block call (e.g.
Ju/JC PB 20).

If another data block is opened in this block, it is only valid in the

block opened (PB 20). After the jump has been made back to the block
containing the call, the original data block is again valid.

IMPORTANT!
A data block opened thus remains valid until

a) another data block is opened

or b) a jump back to the primary block is carried out
or c) the block containing the call is terminated by means
of "BE’.

2 - 34

B8576633-01

Example: Validity range of data blocks

The data block DB 10 is opened in the program block PB 7 (C DB10). The
data contained in this data block are then processed in the subsequent
program processing.

The program block PB 20 is processed after the call (JU PB20).
However, the data block DB 10 is still wvalid. It is not until the data
block DB 11 (C DB1ll) is opened that the data area changes. The data
block DB 11 is now valid until the end of program block PB 20 (BE).

After a jump has been made back to program block PB 7, data block DB
10 is again valid.

P87 P8 20

7 //,

/// Validity range of DB 10
\\\ Validity range of DB 11

N\

BE

Fig. 2-11: Validity range of a data block after it has been called

2.4.4 Special Data Blocks

Data blocks DB O, DB 1, DB 2 and DX O are reserved for specific

functions. They are organized by the system program and are not
freely assignable by the user.

- Data block DB 0 (refer to Subsection 8.2.2)

Data block DB 0 contains the address list with the start addresses
of all blocks in the user memory or the data block RAM of the
processor. This address list is created by the system program
during the initialization (every time the power is turned on and
after an overall reset has taken place) and is updated automatical-
ly when blocks are input or altered by the PG.

- Data block DB 1 (refer to Chapter 10.3)

Data block DB 1 contains the list of digital inputs and outputs (P-
I/0’'s with relative byte addresses from O through 127) as well as
that of interprocessor communication flag inputs and outputs asign-
ed to the processor and, if required, a timer block length.

2 - 35

B8576633-01

In the case of multiprocessor operation, the user will have to
create the DB 1 for each of the processors used. The DB 1 is used
for single-processor operation in order to reduce the cycle times,
since only those inputs, outputs, interprocessor communication flag
inputs and outputs or times that are contained in the DB 1, are
updated.

- Data block DB 2 (refer to Subsection 4.4.3)

Data block DB 2 serves for parameter assignment of the compact
closed-loop control R64 by the user. The R64 is available as an
off-the-peg software product. This function operates aided by the
system program.

For more information, refer to description "Compact closed-loop
control in the R processor of the S5 135U", order-no. C79000-B8576-
C365-03.

- Data block DX 0 (refer to Chapter 7)

By programming the DX 0 data block, you may alter the presettings
of certain system program functions (e.g. when processing the
start-up) and thus adapt the functions of the system program to
your own requirements.

2 - 36

B8576633-01

3 Program Processing
3.1 Summary
The STEP5 user program can be processed in various ways.

The cyclic program processing is normally prevalent:

With this type of processing the organization block OB 1 is run
through cyclically and the user program organized in this block is
processed continuously interspersed with various block calls.

3.1.1 Program Organization

The program organization serves to determine if and in what sequence
the blocks that have been created by you are to be processed. You
therefore program conditional or unconditional calls for the blocks
you require in the organization blocks.

Calling further program, function or sequence blocks in any combina-
tion (successively or nested in one another) is possible in the pro-
gram of the individual organization, program, function or sequence
blocks.

It is advisable to have the user program organized so that important
program structures or system components that are handled by a program
are clearly identifiable.

B8576633-01

Example 3-1: Organization of the user program according to the
program structure

081 P8 “A” 2]
Operating mode /_Sv-um
program X off
Ju P8 A
5]
Aetum
/ initial state
P8 "8 3 S8
Sequencs control Control of the Sequence step
sequencs cascade
L]
Ju P8 8 L]
S8 []
< Sequencs step
P8 “C B 08
Individusi control Group supply Interface flags
lovel of the individual
\ control slements
3]
Individual supply
U P8 C”
[)
L]
8 L]
////’ Individusl supply
[T]
Message output Measage output
wis process
! .
Ju P 0
B 08
Message output Message texts
via standards
peripherals
BE

B8576633-01

Example 3-2: Organization of the user program according to the
system structure

08 1 Pg8 X° B
Plant section “X" Individual contol

Closad-iocop
control

U g X"

Message ocutput

AN

P8 "Y” . FB
Plant saction Y Sequence controt

Ju B Y

Message output

/N, /

3

P8 "Z°
Plant secton “Z"

Closed-loop
contol

3

Ju P8 T

ANWANFA

8E

B8576633-01

IMPORTANT!

Nesting of a maximum of 62 blocks is possible. If more than 62
blocks are called the processor will output an error message.

How to determine the nesting depth of your program:

e Add up all organization blocks that you have programmed (in the
example on the following page: 4 OB’s).

e Add up the nesting depth of the individual organization blocks
(in the example: 2 + 2 + 1 + 0 = 5).

e Both values added together give you the program nesting depth (in
the following example: 4 + 5 = nesting depth 9).
The value obtained should not exceed 62!

The position of a block in the user memory (or DB-RAM) is determined
by its block start address: This is the address of the location in
the memory where the first STEP5 command is found.

So that the processor can find the block called in the memory (JU/JC ~
xx, C DB), the start addresses of all programmed blocks are entered in
the block address list in data block DB 0. DB 0 is organized by the
system program and the user cannot call this block!

After processing a block which has been called the processor must be
able to return to the block containing the original call. The proces-
sor therefore stores the return address whenever a new block is call-
ed. The return address is the address of that location in the memory
where the STEP5 statement which follows the block call is found. The
start address and the length of the data block valid at this particu-
lar point are also stored.

OB1 PB S PB 20
Cc DB30
C DB20
JU PB20
13E0 *
JUu PBS
1150 * JU FB30
2291 *
BE BE 4 BE

%* Return addresses

B8576633-01

This data is entered in the block stack (BSTACK). The BSTACK is

filled from the lower end: The first entry is equivalent to BSTACK-
element 62, the second entry to BSTACK-element 61, etc.. If the block
called has been processed completely and the processor has returned to
the original block, the respective entries will be erased.

The block stack is full after 62 entries (BSTACK-element 1). If the
permissible nesting depth is exceeded the processor will stop.

Example: Block nesting depth and block stack (BSTACK)

Program
level
4 4 /0525
s 4+ 0B2 —» FB21
2 4+ 0B13—»PB131—»FB131
1 + OB1—» PB1—>» FB1
l I I ! |
—
Nesting depth 1 2 8 4 5 6 7 9
BSTACK element 62 61 60 58 58 57 56 55 54

3.1.2 Program Storage

The processor can only process the user program if it has been loaded
into the program memory. Here, there are two possibilities:

a)

If a plug-in RAM-submodule is used, you can transfer your
user program directly from the programmer to the processor.

Fast and frequent alteration of the memory contents is possible
if a RAM module is used. A back-up battery ensures that the user
program is not lost in case of a power failure (refer to the
operating instructions of the central controller S5 135U for
information about the back-up battery).

All programmed blocks are stored in the RAM submodule in an
arbitrary sequence. As soon as you alter a block the sequence of
the blocks in the memory is also changed.

Data blocks DB and DX are deposited in the RAM submodule until it
is full. Then they are deposited in the data block RAM of the
processor.

B8576633-01

b) The complete user program is deposited permanently in a plug-in
EPROM module. The user program is completely safe in the EPROM,
even if there is a power failure and back-up battery.

The contents of an EPROM cannot be altered easily. Due to this,
those data blocks that contain variable data and that will be
altered during the processing of the user program, will have to be
copied from the EPROM module to the data block RAM of the proces-
sor during a cold restart (refer to special function OB’s 254 and
255, Subsection 6.4.5).

If the processor detects an error while searching the user memory it
will request an overall reset and will go over to the stop status.
After the overall reset, you will again have to load the user program
into the memory.

P81 RAM or EPROM
can be plugged

into CPU

F81

;1]

S8

Fig. 3-4: Blocks in the program memory

3.1.3 Running the STEP5 User Program

The user program can be run in different ways. With PC’s, the usual
method is cyclic program processing.

At the end of the start-up the system program automatically calls the
organization block OB 1 (or FB 0). There the processor starts with the
first STEP5 instruction of the user program and then processes, one
after the other, all instructions in the user program. Once the program

end is reached, the processor starts the next cycle again at the
program start.

The system program executes certain activities during every cycle:
- It starts the cycle time.
- It updates the process image of the inputs.

- It updates the interprocessor communication input flags.

B8576633-01

- It calls the user interface.
- It updates the process image of the outputs.

- It updates the interprocessor communication output flags.

Cycle time

The system program monitors the time which the processor requires to
run the user program. At the start of the program execution the cycle
time to be monitored is started by the system program.

The standard setting of the maximum permissible value is 150 ms.

You can set the cycle time yourself or restart it while cyclic program
is running (see DX 0, special function OBs 221 and 222).

The total cycle time is the execution time of the user program plus
the execution time required for the cyclic part of the system program
(see fig. on following page).

The execution time of the user program is the sum of the execution
times of all blocks called in one program run (from the OB 1 or FB O
call to the end). If, for example, you call a certain block n-times,
then you will have to add its execution time n-times.

Process image of the inputs and outputs (PII and PIQ)

Before the STEP5 program execution starts the signal states of the
input-I/0 modules are read and transferred to the process image of the
inputs (in the system data register of the processor). Based on the
process image of the inputs the user program now computes the process
image of the outputs. After the STEP5 program has been run, the signal
states of the process image of the outputs are transferred to the
output-I/0 modules.

Thus, the process image is a memory area whose contents are only
output to the I/O’'s or read in from the I/O’s once per cycle.

IMPORTANT!
A process image only exists for input and output bytes of the P-
I/0’s with byte addresses from 0 through 127!

Interprocessor communication flags (IPC flags)
The IPC flags are used for the data exchange between the individual

processors (for multiprocessor operation) as well as between the
processor and the communications processors.

B8576633-01

Before the STEP5 program is started the IPC-input flags of the proces-
sor are read-in. After the STEP5 program has been run, the IPC-output

flags are transferred to the

communications processors.

OB1orFBO

Trigger cycle time

Update IPC flag inputs,
provide process image
of inputs (PlI)

PB 20

Call PB 20 l

Call OB1/FBO

T~

Output process image
of outputs,
update IPC flag outputs

\

BE

/ \

Cyclic part of the sysltem program

l
Cyclic part of the user program

Fig. 3-5: Cyclic program execution

Breakpoints

Interruption of the cyclic program execution may be caused by

- interrupt-driven program execution

- time-driven program execution

The program can be interrupted or aborted

- 1if equipment defects

Oor program errors occur

- by the operator (PG function, stop switch).

B8576633-01

3.1.4 Runmning the Program

There are two ways of determining the reactions of the processor

during the start-up, during the cyclic program and in case of a fault
occuring:

a) by programming the organization blocks OB 1 through OB 34 (inter-
faces between system and user program, see Subsection 2.2.3) and

b) by programming the extended data block DX 0 (see chapter 7).

The organization blocks OB 1 through OB 34 are the interfaces between
the system and the user program since, on the one hand, they are
called by the system program and, on the other hand, can be filled
with STEP5 instructions just like 'normal’ blocks. Calling further
blocks is possible in these organization blocks. The STEP5 program
contained in these blocks helps the user to determine the reaction of
the processor to certain events.

The organization blocks OB 1 through OB 34 become effective as soon as
they are loaded into the program memory (even during operation).

If they are not programmed by the user, there will either be no
reaction from the processor at all or - with most faults - it will go
over to the stop state (refer to Chapter 5.4).

Another way of influencing the reaction of the processor is to program
DX 0.

The functions executed by the system program are preset standard
functions. By specifying certain parameters in DX 0 it is possible to
alter these standard preset values for certain system program func-
tions.

Just as with the organization blocks, DX O can be loaded in the
program memory during operation. However, it will mot become effective

until the next cold restart is carried out.

If DX 0 is not programmed by the user, the preset values are valid.

B8576633-01

3.2 STEP5 Operation Set with Examples of Programming
STEP5 operations can be divided into different groups:

- The binary functions include binary logic operations, memory
operations and timer as well as counter operations.

- The digital functions include loading and transfer operatioms,
comparison operations as well as arithmetic operations.

- The organizational functions include the jump operations, stop and
block end operations, instructions for the generation or calling of
a data block etc..

The accumulators as auxiliary registers

The majority of STEP5 operations make use of two registers (32 bits)
as the source for operands and the destination for results:
accumulator 1 (accu 1) and accumulator 2 (accu 2).

<---- High word e > - Low word -——>
Accu 1: High byte Low byte | High byte Low byte
31 24 23 16 15 8 7 0

The accumulators are changed, depending on the STEP5 instruction to be
executed.

Examples:

- Accumulator 1 is always used as the destination for loading
operations. The initial contents of accumulator 1 are shifted to
accumulator 2 (stack 1lift). Accumulators 3 and 4 are not altered
during any loading operation.

- Arithmetic instructions operate on the contents of accumulator 1
and accumulator 2, write the result in accumulator 1 and transfer
the contents of accumulator 3 to accumulator 2 and the contents of
accumulator 4 to accumulator 3 (stack drop).

- If a constant (ADD BN/KF) is added to the contents of accumulator 1
the accumulators 2, 3, and 4 are not altered.

3 -10

B8576633-01

Result bits

There are commands for processing information in bits and commands for
processing information in words (8, 16, 32 bits).

For both groups, there are commands which set condition codes and
commands which evaluate condition codes (see annex: operation list,
influencing the condition codes). Corresponding to the two groups of
instructions, bit condition codes (bit 0 through 3) and word condition
codes (bit 4 through 7) exist. The condition code byte can be read out
at the programmer and appears as follows:

Word condition codes Bit condition codes
DSP1 | DSPO | ov | 0s OR | STA | RLO | ERAB
Bit 7 6 5 4 3 2 1 0

Bit condition codes:

ERAB First scan
This is where a logic operation starts. At the end of a
sequence of logic operations (memory operations) the ERAB is
set = 0. Commands which set ERAB = 0 (e.g. result allocation =
Q2.4) have the effect of limiting the RLO (see annex), i.e. the
result of logic operation will remain constant. Evaluation is
possible (e.g. by means of RLO dependent instructions), how-
ever, no further logic operations with it are possible. It is
not until the next logic statement (= first scan) occurs that

the result of logic operation is again created and ERAB set =
1.

RLO Result of logic operation
Result of bit wide logic operations. Truth statement for
comparison instructions (see annex: operation list, binary
logic operations and comparison operations).

STA Status
States the logical status of the bit just scanned or set. The
status is updated in the case of binary logic operations
(except A(, 0(,), 0) and memory operations.

OR Or

Informs the processor that the following AND logic operations
are to be handled before an OR logic operation (AND before OR).

3 -1

B8576633-01

Word condition codes

ov Overflow

States whether the permissible numeric range was exceeded by the
arithmetic operation just completed.

0s Overflow, latching
The over bit has been stored. This makes it possible to recog-
nize if an error due to overflow (over) has occurred in the
course of several arithmetic operations.

DSP1 and DSPO

Coded result bits. Their interpretation is illustrated in the
following table:

Word result | Fixed point Logic Comparison Shift:

bits calculation, operations, contents last bit
i result digital of accu 1 shifted

DSP1 DSPO and accu 2

0 0 result = 0 =0 accu2 = accu 1| O

0 1 result < 0 - accu2 < accu 1| -

1 0 result > 0 #0 accu2 > accu 1} 1

Jump operations are available for an immediate evaluation of the
condition codes (see Subsection 3.2.2).

3 - 12

B8576633-01

3.2.1 Basic Operation Set

o Binary logic operations

Operation

Parameter

Function

o op~
NN

Close brackets

ANDing expressions in brackets
ORing expressions in brackets
ORing AND functions

o>

0.0 to 127.7

0.0 to 127.7

0.0 to 255.7

0.0 to 255.15

0.0 to 127.7

0.0 to 127.7

AND operation
OR operation
with scanning
signal status
with scanning
signal status
with scanning
signal status
with scanning
signal status
with scanning
signal status
with scanning

of an input for
"1"

of an output for
” l"

of a flag for
"1"

of a data word for
"1"

of an input for
"0"

of an output for

signal status "O"

with scanning of a flag for
signal status "O"

with scanning of a data word for
signal status "O"

with scanning of a timer for
signal status "1"

with scanning of a timer for
signal status "O"

with scanning of a counter for
signal status "1"

with scanning of a counter for
signal status "O"

NF 0.0 to 255.7

ND 0.0 to 255.15

T 0 to 255

NT 0 to 255

C 0 to 255

N C 0 to 255

Binary logic operations generate the result of logic operation (RLO)
as their result.

At the start of a logic operation sequence the results from the first
logic operation (first scan) are only dependent on the status of the
scanned signal and whether or not it is negated (N = negation); they
are not, however, dependent on the type of logic operation (0 = OR,

A = AND).

During a logic operation sequence, the RLO is formed from the type of
logic operation, the previous RLO and the status of the scanned sig-
nal. A logic operation sequence is completed by an RLO limiting

(ERAB = 0) command (e.g. memory operations).

The RLO remains unchanged until the next "first scan". It can be
interpreted, but cannot be further operated on.

3 -13

B8576633-01
Example:
Program Status RLO |ERAB
=Q 0.0 0 0 0«—RLO limited
A T1.0 1 1 l——first bit scanned
ATIl.1 1;553;;?:1 1
A T11.2 0 =0 1
=Q 0.1 0 0 0<«—RLO limited,
end of logic operations sequence
® Memory operations
Operation’ Parameter Function
S set
R reset
= assign
I 0.0 to 127.7 | an input in the PII
Q 0.0 to 127.7 | an output in the PIO
F 0.0 to 255.7 a flag
D 0.0 to 255.15] a data word bit

® Loading, transfer and comparison operations

Operation Parameter Function

L load

T transfer
IB| O to 127 an input byte from/to the PII
IW | 0O to 126 an input word from/to the PII
ID 0 to 124 an input double word from/to the PII
Q B | 0 to 127 an output byte from/to the PIO
QW | O to 126 an output word from/to the PIO
QD 0 to 124 an output double word from/to the PIO
FB 0 to 255 a flag byte
FW | O to 254 a flag word
FD| O to 252 a flag double word
DR 0 to 255 a data (right—-hand byte) from DB, DX
DL 0 to 255 a data (left-hand byte) from DB, DX
DW | O to 255 a data word
DD | O to 254 a data double word
P B/| O to 127 a peripheral byte of the digital
PY inputs or outputs (P area)
P B/| 128 to 255 a peripheral byte of the analog or
PY digital inputs or outputs (P area)
OB 0 to 255 a byte of the extended I/O’s (O area)

3 - 14

B8576633-01

e Loading, transfer and comparison operations (continued)

Operation Parameter Function
L load
T transfer
PW 0 to 126 a peripheral word of the digital
inputs or outputs (P area)
PW 128 to 254 a peripheral word of the analog or
digital inputs or outputs (P area)
ow 0 to 254 a word of the extended I/0’s (O area)
L load
KM 16 bit pattern | a constant as bit pattern
KH 0 to FFFF a constant in hexadecimal code
KF —32 768 to a constant as fixed point number
+32 767
KY 0 — 255 for a constant, 2 bytes
each byte
K B 0 to 255 a constant, 1 byte
KS 2 alphanum. a constant, 2 ASCII characters
character
KT 0.0 to 999.3 a time value (constant)
K C 0 to 999 a counter value (constant)
K G l) a constant as floating point number
(32 bit)
T 0 to 255 a timer value
C 0 to 255 a counter value
ICc T 0 to 255 BCD coded loading of a timer value
IC C 0 to 255 BCD coded loading of a counter value
! = compare for equal
> < compare for not equal
> compare for greater than
> = compare for greater than or equal
< compare for less than
< = compare for less than or equal
F two fixed point numbers (16 bits)
D two fixed point numbers (32 bits)
G two floating point numbers (32 bits)

Loading operations write the value addressed in accumulator 1. The

previous contents of accumulator 1 are saved in accumulator 2 (stack
lift).

Transfer instructions write the contents of accumulator 1 in the

memory location addressed.

1y 40.1469368 x 10738 through +0.1701412 x 103°

3 -15

B8576633-01

Example: Loading/transferring a byte, word or double word from/to a
memory area organized in bytes (PII, PIO, flags, I/0’'s).

:L IW 5 Byte 5 and 6 of the PII are loaded in accumulator 1.
:L FY 10 Flag bytes 10 through 13 are loaded.

[I .)

ascending

addresses !

j+1

3 23 15 7 0
[k lk+1 [k+2 [k+34JMw1

k+1
k+2

k+3

Example: Loading/transferring a byte, word or double word from/to a
memory area organized in words.

ight—hand 31 23 15 7 0
byte I 0 I 0 ! 0 I i]Accu1

ascending keft—hand 31 28 15 4 0
addresses byte l 0 | 0 ‘ 0

31 15 0

Words or double words are stored in the memory, beginning with the
most significant byte or word in ascending order of addresses. The
excess bits in accumulator 1 are erased when a byte or word is loaded.

3 -16

B8576633-01

The loading operations do not affect the condition codes. Transfer
operations will in general clear the 0S bit. The result of the compare
commands are the RLO and the word condition codes DSPl and DSPO. The
contents of accumulator 1 and 2 are always compared (see program
examples and operation list).

The I/0's can be called by loading and transfer operations:

1. directly:
with L/T PY, PW, OB, OW or

2. via the process image:
with L/T IB, IW, ID, QB, QW, QD and with logic operatioms.

The process image of the outputs is corrected at the same time when
transfer operations T PY O through 127 and T PW O through 126 are
executed.

The process image is a memory area the contents of which are output to
the I/0 (process output image, PIO) or read in from the I/0’s (process
input image, PII) only once per cycle. This prevents output "chatter-
ing" due to frequent alterations of the logic condition of a bit with-
in a program cycle.

Please note the follwing points regarding the I/O's.
- A process image of the inputs and outputs exists for 128 input and

128 output bytes of the P I/0's with byte addresses from 0 through
127.

- No process image exists for the whole O I/O area and the P I/O area
with relative byte addresses from 128 through 255! (see 8.2.1 for
the I/0 address distribution.)

- Input/output modules with addresses of the O I/O area are only
permissible in expansion units (not in the central controller).

- Use of either P I/0’'s or O I/0's is possible in one expansion unit.
- If relative addresses of the P I/O's or O I/O's are used in an

expansion unit, these addresses are no longer permissible for I/O
modules in the central controller (double addressing!).

3 -17

B8576633-01

e Timer and counter operations

In order to load a time by means of a starting command or a counter by
means of a setting command the value must first be loaded in accu-
mulator 1.

The following loading operations are recommended:
For times: LKT, LIW, LQw, L FW, L DW.

For counters: L KC, L IW, L QW, L FW, L DW.

Operation Parameter Function

S P T 0 to 255 starting a timer as a pulse

S E T 0 to 255 starting a timer as an extended pulse
SD T 0 to 255 starting a timer as ON delay

s s T 0 to 255 starting a timer as a latching ON delay
SF T 0 to 255 starting a timer as OFF delay

R T 0 to 255 resetting a timer

S c 0 to 255 setting a counter

R C 0 to 255 resetting a counter

cCU c 0 to 255 incrementing a counter

CD c 0 to 255 decrementing a counter

When the timer or counter operations SP, SD, SE, SS, SF, and S are
executed the value contained in accumulator 1 is transferred to the
timer or counter location (corresponds to the transfer command) and
the respective operation is triggered.

3 -18

B8576633-01

If the time or count value is loaded using IW, QW, FW or DW the
corresponding word must have the following structure:

For the time value

Bit no.
[as[aa]s]a2]ai] 0] ol 7]6|s]al3]2]1]0]
\ 7\ /\ r /\ T I\ T /
102 101 100
N v

Timer value preselected in
BCD code 0...999

Time base preselected in BCD
code
0: 0.01
1: 0.1
2: 1
3:10
These bits are irrelevant,

i.e., they are not considered
when the timer is started

w v unon

Example: Setting a time of 127 s.

Bit assignment:

[xlxl1|010[0|0|1LP]0[1fo[o[1[1[1]

\ /

T
2 1 2 7

| N T /
Time base Timer value 127
1s
irrelevant
TMPORTANT!

Whenever a timer is started there is an inaccuracy of one time base
unit!

This means that if you start a timer location using the time base "1’
(= 100 ms) n-times the inaccuracy will be n-times 100 ms.

If timer locations are to be used, select as small a time base as
possible (time base << time value)!

Example: time 4 s not: 1 s x 4
but: 10 ms x 400

3 - 19

B8576633-01

For the count value

I15l14]13]12|11|1o|9ls|7r5[5latlz [1]0]

N— /e N\

T T
102 101 100
N— r /

Count value preselected in
BCD code 0...999

These bits are irrelevant, i.e.,
they are not considered when
the counter is set

Example: Setting a count value of 127

Bit assignment:

@xhrxlololohuohIolol1[1|1,|

T
1 2 7

\ /
L

Counter value 127

irrelevant

The time or count value is stored in the timer or counter location and
is binary coded. In order to scan the timer or the counter the value
of the timer or counter location can be loaded in accumulator 1 either
directly or BCD coded.

Examples:

Direct loading of time values:

Timer value
v : >
[-------------- rg OJ Timer location T 10
""""""""" v
[mm—————- - -: ------ I 0J Accu
N A 2

L T 10 Direct loading of the binary time value of timer T 10 in the
accumulator

The time base is not loaded.

3-20

B8576633-01

Direct loading of count values:

Counter value

7 TN "
[emmm———m————————
L ot | 9 0 | Counter location C 10
T < .
S B 0 | Accu
L C 10 Direct loading of the count value of counter C 10 in the
accumulator.

Coded loading of time values:

Time base Timer value
— s L ~
P ——_———
L |13 12| L I 9 0 | Timer location T 10
IDud » BCD]
p———-
npn Accu
L__°__l13 12[11 8[7 4[3 o| cc
\ N\ T N\ T 7\ T /
l 102 101 100
AN T /
Time base Timer value

LC T 10 Coded loading of time value and time increment of time T 10
in the accumulator

The time increment is also loaded.

Coded loading of count values:

Counter value

]
Ve N

! l 9 0] Counter location C 10

[
[E;hal > BCD |
V

{""Z;.T"'TH 8 | 7 4 l 3 0 | Accu
\ . A\ : /\ , —
102 101 100
N T —

BCD counter value

LC C 10 Coded loading of count value of counter C 10 in the
accumulator

B8576633-01

With coded loading the status bits 14 and 15 of the timer locations or
12 through 14 of the counter locations will not be loaded. Instead,
accumulator 1 will contain the value 0. The value now in the accumu-
lator can be processed.

e Arithmetic operations

Operation Parameters Function
+ F addition of 2 fixed point numbers
(16 bits)
- F subtraction of 2 fixed point numbers
(16 bits)
X F multiplication of 2 fixed point numbers
(16 bits)
F division of 2 fixed point numbers
+ G addition of 2 floating point numbers
— G subtraction of 2 floating point numbers
b 4 G multiplication of 2 floating point
numbers
G division of 2 floating point numbers

The arithmetic operations use the contents of accumulators 1 and 2
(see operations list). The result is then available in accumulator 1.
The arithmetic registers are changed by an arithmetic operation as
follows:

before: <accu 1> <accu 2> <accu 3> <accu 4>

after: <resdig;/:;;cu 3> <acclt 4> <accu 4>
The previous contents of accumulator 2 are lost.

Note that commands for subtracting and adding of double-word
fixed-point numbers are available in the supplementary operationms.

3 - 22

B8576633-01

e Block calls

Operation Parameters Function
JU jump unconditional
JcC jump conditional (only when RLO = 1)
OB 1 to 39 to an organization block
OB 40 to 255 to a system program special function
PB 0 to 255 to a program block
F B 0 to 255 to a function block
S B 0 to 255 to a sequence block
DO FX 0 to 255 unconditional jump to an extended
function block
DOC FX 0 to 255 conditional jump to an extended function
block
c DB 3 to 255 DB data block call
cCX DX 1 to 255 DX extended data block call
B E block end
BEGC conditional block end (only when RLO = 1)
BEU unconditional block end

e No operation

Operation Parameters Function

NOP 0] no operation

NOP 1 no operation

BLD 0 to 255 display construction statement for the PG

(is treated as a no operation by the CPU)

® Stop statement

Operation

Parameters

Function

STP

CPU stops

3 -23

B8576633-01

Sample programs for logic, memory, timer, counter and compare opera-

tions

e Logic operations

AND operation

Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list
1T A 111 n o3 ng a3s "
111317 i A 113 H E (na
LLl A 117 ll:7 Q3s
\na = Q3.5

13

nz
Q3.5 Q35

A "1" signal appears at output Q 3.5 when all the inputs have "1"
signals simultaneously

A "0" signal appears at output Q 3.5 if at least one of the

inputs has a

"O0" signal.

There are no restrictions on the number of scans or on the programming

sequence.

OR operation

Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list
o 112 "2 Q3.2 w2-4><i
121715 12 \i7 \ns g : :; nz
. 1.7
= Q3.2 1ns Q32

=1

Q32

Q3.2

1.5,

A "1" signal
inputs has a
A "0O" signal
"O0" signal.
There are no
sequence.

appears at output Q 3.2

"1l" signal.

appears at output Q 3.2

if at least one of the

if all of the inputs have a

restrictions on the number of scans or on the programming

B8576633-01

e Logic operations (continued)

AND before OR operation

Original STEP 5 representation
Statement Ladder diagram Control system flowchart

list
1.5 1.6 Q3.1 1.5
114 N3
}: E% mo'l
3 1.3 Q3.1

115116 114113

\ns Yu
13 13

1.6 13

s RS

Q3.1

-
own

W»r»or»

o--

“wa

A "1" signal appears at output Q 3.1 when the output of at least
one of the ANDing operations is "1".

A "O" signal appears at output Q 3.1 when neither of the ANDing
operations results in "1".

OR before AND operation

Original STEP S representation

ftatement Ladder diagram Control system flowchart
ist

16.016.116.2 16.3 16.016.2 16.3 .0 16.0 Q2.1
|| l 16.0
=
Q2.1 Q2.1

6
16.1 162 16.1 16.1
16.2
16.2
16.3 mg% 163 il
2

I1-oo»»00

A "1" signal appears at output Q 2.1 when input I 6.0 or input I
6.1 and one of the inputs I 6.2 or I 6.3 have a "1" signal.

A "0" signal appears at output Q 2.1 when input I 6.0 has a "O"
signal and the AND condition is not met.

B8576633-01

e Logic operations (continued)

OR before AND operation

Qriginal STEP 5 representation

Statement Ladder diagram Control system flowcharnt
list

14115 120121

Al 114120 Qa.g 14
1 0 114 ns
11.4 ns 0115 FHES
Q3.0

=1 E3 L' 12.0 i
0 120 121
g g 0 121
)

A "1" signal appears at output Q 3.0 when both OR conditions are met.
A "0" signal appears at output Q 3.0 when at least one of the OR
conditions is not met.

Scanning for "0" signal status

Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list
1sn.e A 115 ns 1.6 Q3.0 “'513_
AN 1 1.6 H E.._—(
"ns - Q3.0 / 1.6 Q3.0
& .6
I Q.o
Q3.0

A "1" signal appears at output Q 3.0 only when input I 1.5 has a
"l" signal (normally open contact actuated) and input I 1.6 has a
"0" signal (normally closed contact not actuated).

B8576633-01

® Memory operations

RS flip-flops for latching signal output

Qriginal STEP 5 representation
Statement Ladder diagram Control system flowchart
list
A 127 127 Q3.5 Q3.5
1.412.
a2y 1.4 2.7 S Q35 2.2
A 114 11.4 1.4
R Q3.5 Y
------ <

A "1" signal at input I 2.7 sets the flip-flop, (signal "1" at
output Q 3.5).

If the signal at input I 2.7 changes to "O", the flip-flop status
remains unchanged, i.e. the signal is latched. '

A "1" signal at input I 1.4 resets the flip-flop, (signal "O0" at
output Q 3.5).

If the signal at input I 1.4 changes to "O", the flip-flop status
remains unchanged.

If the set signal (input I 2.7) and the reset signal (input I
1.4) appear simultaneously, the scan operation programmed last
(in this case A I 1.4) is effective during the processing of the
remaining program (reset has priority).

3 - 27

B8576633-01

e Memory operations (continued)

RS flip-flop with flags

Original STEP 5 operation

Statement Ladder diagram Control system flowchart

113126

_T_T___
£

F1.7

w

Y]

@
D> WD
m=Tn-=
_——n

NWwNO

list
126 F1.7 F1.7
12.6 m
13 na3

A "1" signal at input I 2.6 sets the flip-flop.

If the signal at input I 2.6 changes to "O", the flip-flop status
remains unchanged, i.e. the signal is latched.

A "1" signal at input I 1.3 resets the flip-flop.

If the signal at input I 1.3 changes to "0", the flip-flop status
remains unchanged.

If the set signal (input I 2.6) and the reset signal (input I
1.3) appear simultaneously, the scan operation programmed last
(in this case A I 1.3) is effective during the processing of the
remaining program (reset has priority).

3 - 28

B8576633-01

e Memory operations (continued)

Simultation of a momentary contact relay

Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list

! A 117

nz 1.7 AN F 4.0

| = F20

A\ A F20
F4.

0 += S F40

JL -\’ F20 AN 1 1.7

R F 4.0

The AND logic condition (A I 1.7 and AN F 4.0) is fulfilled at
each positive-going edge of the signal at input I 1.7 and flags F
4.0 ("pulse edge flag") and F 2.0 (pulse flag) are set if the RLO

= "l" .

The AND logic condition A I 1.7 and AN F 4.0 is no longer fulfilled
during the next processing cycle since flag F 4.0 has been set.
Flag F 2.0 is reset, i.e. it is "1" during a single program run.

Binary scaler

Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list
.o A 1 1.0 1.0 F1.0 F1.1 o
& AN F 1.0 H B/ F1.0 F11
F1.0 T = : F11 F1.0 F1.0
1.0 A F 1.1
S Ly s F10 FLth!_
AN | 1.0 11.0 11.0-9
R F 1.0
H [Jaso A F1.1 t4 F1.1
N PO A Q3.0 F1.1 Q3.0 F2.0 Q30 F2.0
= F20 (N
Q3.0 A F11
0 AN Q 3.0 F1.1 Q3.0 F20 Q3.0 .
no AN F 2.0 B/ 09 .
S Q3.0 2.0 09
O Wl A R3S | :
Q3.0 R Q3.0

Output Q 3.0 of the binary scaler changes its state at each positive-
going edge of the signal at input I 1.0, i.e. when input I 1.0 changes
from "O" to "1". Consequently, half the input frequency appears at the

binary scaler output.

3 -29

B8576633-01

e Timer operations

Pulse
Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list
o A 1 3.0 13.0 1] 1
L KTi02 N
St T 1 — (Hn 13.0 —{ 1L
A T1
Rms = Q40 02— TV Bi— 102 Tv i~
WL Jn
\ DEf— Dt }—
Q4.0
4.0 - 0 H —{R o}—a4.0
TV = time value

The timer is started during the first processing cycle if the result
of the logic operation is "1". The timer remains unaffected during
subsequent processing if this results in a "1" signal.

The timer is set to "0" (cleared) if the result of the logic operation
is "0"‘

The A T and O T scans result in a "1" signal as long as the timer is
running.

KT 10.2: o1 L
The timer is loaded with the aof L

specified value (10). sahlias
The number to the right of the
decimal point indicates the time

base:
0=0.0ls 2=1s
1=0.1s 3 =10 s

BI and DE are digital outputs of the timer location. The time value is
binary at output BI and BCD with time base at output DE.

B8576633-01

o Timer operations (continued)

Extended pulse

Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list
131 A 134 31 n ¢

L w5 31— 1
SE T 2 v
A T2

R = Q41 wis—{ v Bl — W15 — TV Bl

WL |

Q4

DE

Q4.

The timer is started during the first processing cycle if the result
of the logic operation is "1".
The timer remains unaffected if the result of the logic operation is

"o" .

The AT or O T scans result in a "1" signal as long as the timer is

running.
IV 15:

Setting the time value with the BCD value

of the operands I, Q, F or D

(input word value 15 in the example).

13.

1

1
MJrj
Tk -~

T

Time Time

base
"On" delay
Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list
B35 A 1 35 135 13)]
L KT9.2 — 1—0
£_+ SR T 3 —-] E T—i0 135
A T3
RS = Q42 k92— v 8|~ xs2— v Bif—
OE |— DE —
Q4.2
042 —R o — Q—a4.2

1B 15) (1B 16)
f—_x—\

Y mt—"
S o 45 9

Ao
[0 e

The timer is started during the first processing cycle if the result
of the logic operation is "1". The timer remains unaffected during
subsequent processing if the result of the logic operation remains

"1" .

The timer is set to "0" (cleared) if the result of the logic operation

is "0" .

The A T or O T scans result in a "1" signal when the time has elapsed

and the result of the logic operation is still present at the input.

KT 9.2:

The timer is loaded with the specified value (9). The number to the
right of the point indicates the time base:

0=0.01ls 2=1s
1 =0.1s 3 =10 s

31

135
Q4.2 -
1

B8576633-01

e Timer operations (continued)

Latching "On" delay

Orginal STEP S representation
Statement Ladder diagram Control system
list flowchart
Al 33 T4 T4
13.2133 — L kri02| 133
I l ST 4 Hrr—s 133 TS
Al 32
R T 4 —HTv Bl }— —Hwv Bl
R S AT 4 OE |— DE }—
205 0 = Q 43
T4 13.2 Qa3
l Hr qH 132 g Q[-Qa3
Qa3
The timer is started during the first process-
ing cycle if the result of the logic operation 133 |
s nin -
is 1. Qa3 —%
The timer remains unaffected if the result of
the logic operation is "O", G R T |-
The AT or OT scans result in a "1" signal when
of the time has elapsed. The signal status only
changes to "O" when the timer is reset by the
RT function.
"Off" delay
Orginal STEP S representation
Statement -Ladder diagram Control system
list flowchart
Al 34 5 T5
13.4 L kT102| (138
SAT 5 o T 134 —0or~ T
| RT3 B
= Q 44 —Tv Bl |- —TV Bl |-
R S DE |— DE {—
0 1
—i |15 Qa4
] —{r q R QQaa4
Qa4

.The timer is started when the result of

the logic operation at the start
changes from "1" to "O". It rums

time programmed.

The timer is set to zero (reset)

input

134 [WV) O | S
for the ” ——::fq

if the

result of the logic operation is "1".

The AT or OT scans result in a "1" signal
if the timer is running or the result of
the logic operation is till present at

the input.

>»| T |~]:Ji-rl<—

B8576633-01

e Counter operations

Set counter

Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list :
14.1IW20 A I 41 C1 Ci
L w20 cu cu
s C1

14.1

K

14.1—S

w

ull Binary W20 — cv B w20 — CV BIf—
€a {16b

DE[— DE—

—{R Q —R Q—

The counter is set during the first processing cycle if the result of
the logic operation is "1". The counter remains unchanged during
subsequent processing (irrespective of whether the result of the logic
operation is "1" or "O0"). The counter is set again (pulse edge evalua-
tion) at the next processing cycle if the result of the logic opera-
tion is "1".

The flag necessary for pulse edge evaluation of the set input is
included in the counter word.

BI and DE are digital outputs of the counter location. The count
values are binary coded at output BI and BCD at output DE.

Reset counter

Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list
14.2 A | 4.2 c1 Cl
R .C1
ili l (I:l A Cl < N
n = Q24 —co —eo
—_— —1s —Is
1 Binary
w0 €8 |y -V Bl — —fev BI—
DE p— —
02| .] 18.2 Q2.4 D
g — R o M 14.2—R a—az4

The counter is set to zero (reset) when the result of the logic
operation is "1".

The counter remains unchanged even if the result of the logic opera-
tion becomes "O".

B8576633-01

e Counter operations (continued)

Counting up

Original STEP 5 representation
Statement Ladder diagram Control system flowchart
list
l i l A 1 4 141 c1 cl
CUCt
RS cl 3 v 11— cu
L —{co -1 co
11—+
—S —S
é‘g Binary
] 166 —lev 8t f— —ev BIf—
DE— DE —
—R 0 —R of—

The value of the addressed counter is incremented by 1 up to a maximum
of 999. The CU function is effective only on a positive-going pulse
edge (from "0" to "1") of the logic operation programmed before CU.
The flags necessary for pulse edge evaluation of the counter inputs
are included in the counter word.

A counter with two different inputs can be used as an up/down counter
by means of the two separate pulse-edge flags for CU and CD.

Counting down

Original STEP 5 representation
Statement Ladder diagram " Control system flowchart
list
‘ i l A 1 40 14.0 a c1
cb Cc1
co co
RS G —1 B 1.0
I —cu —{cu
14.0 — -
—{s —s
(l% Binary
16b ~—cv 81 |— —cv Bif—
DE p— OE—
—R Q —R Q-

The value of the addressed counter is decremented by 1 to a minimum O.
The CD function is only effective with a positive-going edge (from "O"
to "1") of the logic operation programmed before CD.

The flags necessary for pulse edge evaluation of the counter inputs
are included in the counter word.

A counter with two different inputs can be used as an up/down counter
by means of the two separate pulse-edge flags for CU and CD.

B8576633-01

e Compare operations

Comparing for equal to

Original STEP 5 representation
liS(auarnem Ladder diagram Control system flowchart
st
1813 1820 L 1819
L 1820 -
[=F 1819 — V1 f 1818 — W1 f
vi V2 = Q3.0
to Im
= Q3.0
1820 — V2 o 1820— V2 a—a3o

The first operand specified is compared S
with the following operand according to o 1819 | Accuzi
the compare function.)
The comparison produces a binary logic S
operation result: o 1820 | Accul-l
RLO = "1": the condition is fulfilled,

if accu 1-L = accu 2-L
RLO = "0": the condition is not

fulfilled, if

accu 1-L # accu 2-L

The condition codes DSP1 and DSPO are set as explained in 4.1

Accu 2-H and accu 1-H remain unaffected during the 16-bit fixed

point comparision.

During fixed point comparison (! = F) and floating point comparison (!
= @) the total contents of accu 1 and accu 2 (32-bit) are compared
with each other.

During the comparison the numerical representation of the operands is
taken into account, i.e. the contents of accu 1-L and accu 2-L are
interpreted as a fixed point number.

B8576633-01

e Compare operations (continued)

Comparing for mot equal to

Original) STEP 5 representation
Statement Ladder diagram Control system flowchart
list
1821 DwW3 L 1B21
I L>< F 18 1B21— V1 F 1821 — V1 F
Vi V2 = Q3.1
N >< ><
= Q3.1
DW3— V2 Q DW3— V2 QF— Q3.1
.

The first operand specified is compared
with the following operand according to “ Accu 2L

to the comparison function.
The comparison produces a binary logic
operation result. w3 Accu 1-L
RLO = "1" the condition is fulfilled,
if accu 1-L # accu 2-L
RLO = "0" the condition is not ful-
filled, if
accu 1-L = accu 2-L

The condition codes DSPl and DSPO are set according to the table on
page 26.

Accu 2-H and accu 1-H remain unaffected during the 16-bit fixed point
comparison.

During the 32-bit fixed point comparison and the floating point com-
parison accu 2-H and accu 1-H are involved.

This also applies to comparing for greater than, greater than or equal
to, less than and less than or equal to (see operations list).

With compare operations the numerical representation of the operands
is taken into account, i.e. the contents of accu 1-L and accu 2-L are
interpreted as a fixed point number.

B8576633-01

3.2.2 Supplementary Operation Set

The supplementary operation set can only be used in the function
blocks (FB and FX). The total operation set for function block there-
fore consists of the basic operations and the supplementary
operations.

The supplementary operations include the system operations: The system
operations allow for you to e.g. overwrite the memory at any position
or alter the contents of the working register of the processor. This
means that you should be extremely careful when making use of the
system operations (if at all).

Refer to chapter 9 "memory access" for more information about the
'system functions’.

The operations are only represented in STL for the function blocks.
This means that programming the function block programs is not
possible graphically (LAD or CSF).

The supplementary operations described in the following may only be
used in the function blocks.

The possible combinations of substitution commands with the actual
operands are also listed.

e Binary logic operations

Operations Description

A =[] | ANDoperation, scanning a formal operand for
signal status “1”.

AN =[] | ANDoperation, scanning a formal operand for
signal status “0”

0 =01 |ORoperation, scanning a formal operand for
signal staus “1”

ON =[] | ORoperation, scanning a formal operand for
A signal status “0”

Assign formal operand

Inputs, outputs, data and flags addressed in
binary code (parameter class |, Q; parameter
type Bl) and also timers and counters
(parameter class T, C) are permitted as actual
operands.

® Memory operations

Operation Description

[| set(binary) formal operand.
RB =1 |Reset (binary) formal operand.
1

Assign result of logic operation to formal
A operand.

Assign formal operand.

Inputs, outputs, data and flags addressed in
binary code (parameter class I, Q, parameter
type B!) are permitted as actual operands.

3 - 37

B8576633-01

o Timer and counter functions

Description

Operation

FR TOto255
FR COto255
R =]
ro =1
sp =1
sR =
sec =1
ssu =7
SFD =EF::]

A

Enabling a timer for restart

The operation is only carried out on the lead-
ing edge of the result o the logic operation.
The timer is restarted if the RLO is " 1" at the
time of the start operation.

RLO | |
forsPT | i

]]
RLO ! (1 11
forFT 1 A !

Scan I lL]
with AT

Enabling a counter

The operation is only carried out on the lead-
ing edge of the result of the logic operation.
The counter is set (counting up or down) if the
result of the logic operation is “1” at the cor-
responding operation.

Enabling a formal operand for a restart (for
description see FRT or FRC depending on for-
mal operand; parameterclass: T, C).

Resetting (digital) a formal operand
(parameterclass:T, C).

Starting a timer, specified as a formal operand,
as a pulse with the value stored in the accumu-
lator (parameter class: T).

Starting a timer, specified as a formal operand,
as an on-delay with the value stored in the ac-
cumulator (parameter class: T).

Starting a timer, specified as a formal operand,
as an extended pulse with the value stored in
the accumulator or setting a counter specified
as a formal operand for the count value stored
inaccu 1 (parameter class: T, C)

Starting a timer, specified as a formal operand,
as a latching on-delay with the value stored in
the accu or incrementing a counter specified
as a formal operand (parameter class: T, C).

Starting a timer, specified as a formal operand,
as an off-delay with the value stored in the
accu or decrementing a counter specified as a
formal operand (parameter class: T, C).

Enter formal operand

Timers and counters are permitted as actual
operand. Exceptions: SP and SR (only timers).
The timer or counter value can be assigned as
with basic operations: or as a formal operand
it can be assigned as follows:

Set the timer or counter value with the BCD
value, of the IW, QW, FW, DW operands speci-
fied as formal operands (parameter class: |,
parameter type: W) or as a constant
(parameter class: D, parameter type: KT, KC).

B8576633-01

Examples
Function block call | Program in Executed program
function block
: JU FB203
NAME : EXAMPLE
ANNE : I 10.3 A =ANNE ;A I 10.3
BERT : T 17 :L KT 010.2 :L XT 010.2
FRED : Q 18.4 :SSU =BERT iSS T 17
: :A_ =BERT A T 17
:m=" =FRED = Q 18.4
: JU FB204
NAME : EXAMPLE .
RUTH : I 10.5 :A =RUTH (A I 10.5
PETE : I 10.6 :SSU =DORA :€C0C 15
MAUD : I 10.7 tA =PETE tA I 10.6
DORA : 'C 15 :SFD =DORA :CD € 15
EMMA : F 58.3 tA =MAUD A I 10.7
:L KCl00 :L XC 100
:SEC =DORA S € 15
AN =DORA AN C 15
= =EMMA = F 58.3
: JU FB20S
NAME : EXAMPLE
BILL : I 10.4 tA =BILL A I 10.4
CARL : T 18 L =EGON L IV 20
EGON : w20 :SEC =CARL SFT 18
DAVE : F 100.7 :A =CARL A T 18
. tm =DAVE - F 100.7

® Loading and transfer operations

Operation

Description

_ ;

=[]
w- [
wo - [

Enter
formal operand

Loading of a formal operand

The value of the operand specified as a formal
operand is loaded into the accumulator (parameter
class: I, T, G, Q; parameter type: BY, W, D)

Coded loading of a formal operand.

The value of the timer or counter location speci-—
fied as a formal operand is loaded in BCD into
the accumulator (parameters: T, C).

Loading the bit pattern of a formal operand.
The bit pattern of the formal operand is loaded
into the accumulator (parameter class: D;

parameter type: KF, KH, KM, KY, KS, KT, KC).

Loading the bit pattern of a formal operand.
The bit pattern of the formal operand is loaded
into the accumulator (parameter class: D;
parameter type: KG).

Transferring to a formal operand.

The accumulator contents are transferred to the
operand specified as a formal operand (parameter
class: I, Q; parameter type: BY, W, D).

B8576633-01

Operands corresponding to the basic operations are permitted as actual
operands. For LW, data is permitted in the form of a binary (KM) or
hexadecimal (KH) pattern, 2 numbers in bytes (KY), characters (KS),
fixed point number (KF), time values (KT) and count values (KC). For
LD, a floating point number is permitted as data.

Operation| Parameter| Description

L RI 0 to 255 | Loading a word in accumulator 1 from the area
"interface data" (RI area)

L RJ 0 to 255 Loading a word in accumulator 1 from the area
"interface data" (RJ area)

L RS 0 to 255 Loading a word in accumulator 1 from the area
"system data" (RS area)
(free: RS 60 through 63)

L RT 0 to 255 Loading a word in accumulator 1 from the area
"system data" (RT area)
(free: RT 0 through 255)

T RI 0 to 255 Transferring accumulator 1 to a word from the
area "interface" (RI area)

T RJ 0 to 255 Transferring accumulator 1 to a word from the
area "interface" (RJ area)

T RS 1) 0 to 255 Transferring accumulator 1 to a word from the
area "system" (RS area)

T RT L 0 to 255 Transferring accumulator 1 to a word from the
area "system" (RT area)

1) System operation

Contrary to areas RI, RJ, and RT, in the RS area only the words RS 60
through RS 63 are free for the user.
Refer to 8.2.4 "RS/RT area" for further information.

3 - 40

B8576633-01

® Arithmetic operations

Operation Description

ENT Entry of data also used during arithmetic operations in
accumulators 3 and 4:

The contents of accumulators 2 and 3 are loaded in
accumulators 3 and 4.

A stack 1lift is executed into accumulators 3 and 4:

<accu 4> := <accu 3>
<accu 3> := <accu 2>
<accu 2> := <accu 2>
<accu 1> := <accu 1>

Accumulators 1 and 2 are not altered. The previous contents of
accumulator 4 are lost.

Example

The following fraction is to be calculated: (30 + 3x4)/6 = 7

Accu 1 Accu 2 Accu 3 Accu 4
Contents a b c d
of accumulators
before the
arithmetic oper.
L KF 30 30 a c d
L KF 3 3 30— Co | d
ENT 3 30 30 —c
L KF 4 4 3 k- - 30 _-C
xF 12 30477 __ce-"7|___c
+ F 42 ce""" ce~ " c
L KF 6 6 42 _.-C I
/ F 7 ce— "7 ce— " c
Operation|Parameters Description

ADD BN l) -128 to +127 Add byte constant (fixed point) to accu l D

ADD KF l) -32768 Add fixed point constant (word) to accu l L
to +32767
l) System operation

3 - 41

B8576633-01

Operation|Parameters Description

ADD_DF -214743648 Add fixed point constant (double word) to

Ly 2y to +2147483647| accu 1

+D 1)2) Add two double word fixed-point constants
(accu 1 + accu 2)

-D 1)2) Subtract two double word fixed-point
constants (accu 1 + accu 2)

TAK 1) Swap contents of accu 1 and accu 2

1) System operation

2) Programming depends on the type of PG and its system software

e Digital logic operations

Operation Description

AW ANDing of accus 1-L and 2-L

ow ORing of accus 1-L and 2-L

Xow Exclusive ORing of accus -Ll1 and 2-L

Accumulators 3 and 4 are not affected, but the condition codes DSPl
and DSPO are (see word result bits).

By means of two loading operations, accumulators 1 and 2 can be loaded
corresponding to the operands of the loading operation. Then, the
contents of both accumulators can be operated on digitally.

Example
Accu 1-L Accu 2-L
LIVl Iv 1 [Accu 1-L]
L Former contents of accu 1-L
L IW 2 Iw 2 w1l

ANDing IW 2 and IW 1:

AW Result Iw 1

3 - 42

B8576633-01

Organizational functions
e Jump operations

The destination of unconditional and conditional jumps is specified
symbolically (a maximum of 4 characters beginning with a letter). The
symbolic parameter of the jump instruction is identical to the symbo-
lic address of the statement to be jumped to. When programming, it
should be taken into account that the absolute jump distance does not
cover more than +127 words and that a STEP 5 statement can consist of
more than one word. Jumps can only be carried out within a block;
jumps across segments are not permissible.

Note: jump statement and jump destination must be in one segment. Per
segment only one symbolic address is permitted for jump destinations.
These conditions do not apply to the JR jump, for which an absolute
jump distance is specified as a parameter.

Operation | Description

JU = addr | Jump unconditional.
An unconditional jump is carried out under all conditions.

JC = addr | Jump conditional.

A conditional jump will be carried out if RLO = 1. If

RLO = 0, the statement will not be carried out and the
result of the logic operation will be set to RLO = 1.

JZ = addr | Jump condition: DSP1l, DSPO.
A jump will only be carried out if DSP1 = 0 and DSPO = O.
The logic operation result is not changed.

JN = addr Jump condition: DSP1l, DSPO.
A jump will only be carried out if DSP1l # DSPO. The logic
operation result is not changed.

JP = addr | Jump condition: DSP1l, DSPO.

A jump will only be carried out if DSP1 = 1 and DSPO = O.
The logic operation result is not changed.
JM = addr | A jump will only be carried out if DSP1 = 0 and DSPO = 1.

The logic operation result is not changed.

JO = addr | Jump on overflow.

A jump will be carried out if the condition code OV = 1.
If there is no overflow, (OV = 0) the jump will not be
carried out. The logic operation result is not changed.

An overflow occurs if the permissible area for the numeri-
cal representation involved is exceeded by an arithmetic
operation.

addr = symbolic address (a maximum of 4 characters)

3 - 43

B8576633-01

Operation Description

JS = addr Jump if the condition code 0S (latching overflow) is set
(0s =1).

JR

—32768 to Jump via the system software; carried out under all con-—

+32767 ditions.

addr = symbolic address (a maximum of 4 characters)

e Shift operations

Operation Description

SLW 0 to 15 Shifting to the left (zeros are filled in from the
right).

SRW 0 to 15 Shifting to the right (zeros are filled in from the
left).

SLD 0 to 32 Shifting a doubleword to the left (zeros are filled in
from the right).

SSW 0 to 15 Shifting to the right with sign.

SSD 0 to 32 Shifting a doubleword to the right with sign (sign is
filled in from the left).

RLD 0 to 32 Rotating to the left.

RRD O to 32 | Rotating to the right.

With the shift functions only accu 1 is used. The parameter part of
the commands specifies up to how many positions the accu contents are
shifted or rotated. With SLW, SRW and SSW, only the lower order word
is involved with the shift functions, with SLD, SSD, RLD and RRD the
entire contents of accu 1 (32 bits) are used.

Shift functions are carried out unconditionally.

3 - 44

B8576633-01
The last bit shifted out can be scanned by means of jump functionms.
The DSPO and DSP1l condition codes are affected.

With JZ, a jump can be carried out if the bit is 0. With JN, a jump
can be carried out if the bit is 1.

DSP1 DSPO Shift: last bit shifted

0 0 0

0 1 -

1 0 1

Examples

STEP5 program: contents of data words:

:L DW52 KH = 14AF

:SLW 4

:T DW53 KH = 4AFO

STEP5 program: contents of accumulator 1 (hexadecimal)

:L EDO 2348 ABCD

:SLW 4 2348 BCDO

:SRW 4 2348 OBCD

:SLD 4 3480 BCDO

:SSW 4 3480 FBCD

:SSD 4 0348 OFBC

:RLD 4 3480 FBCO

:RRD 4 0348 OFBC

:BE

Applications: multiplication with the power 2,
e.g. new value = old value x 8
:L FW10
:SLW 3
:T FW10 Caution: Do not exceed the

positive area limit!

division by the power 2,
e.g. new value = old value : 4

:C DB5
:L DWO
:SRW 2
:T DWO

3 - 45

B8576633-01

e Conversion operations

Operation Meaning
CFW Forming of one’s complement of accu 1 (16 bit)
CSW Forming of two'’s complement of accu 1 (16 bit)
CSD Forming of two'’s complement of accu 1 (32 bit)
DEF Fixed point conversion (16 bit) from BCD to binary
DUF Fixed point conversion (16 bit) from binary to BCD
DED Doubleword conversion (32 bit) from BCD to binary
DUD Doubleword conversion (32 bit) from binary to BCD
FDG Conversion of a fixed point number (32 bit) to a
floating point number (32 bit):
see OB 220; sign extension
GFD Conversion of a floating point number to a fixed point
number (32 bit)

DEF:

The value contained in accu 1-L (bit O through bit 15) is interpreted
as a BCD-coded number. After the conversion a 16-bit fixed point
number will be contained in accu 1-L.

DUF:

The value contained in accu 1-L (bit O through bit 15) is interpreted
as a 16-bit fixed point number. After the conversion a BCD-coded
number will be contained in accu 1-L.

15 14 0
v|2l4. .. .20
A
DUF DEF
15 0
AR

<
~
2]
0};.
[=]
~
o
I

= positive
= negative

=
|

3 - 46

B8576633-01

DED:

The value contained in accu 1 (bit 0 through bit 31) is interpreted as
a BCD-coded number. After the conversion a 32-bit fixed point number
will be contained in accu 1.

DUD:

The value contained in accu 1 (bit 0 through bit 31) is interpreted as
a 32-bit fixed point number. After the conversion a BCD-coded number
will be contained in accu 1.

31 30 0
v 230... ...20
A
DUD DED
31 0
\A'AAY
108 10° 10% 103 102 10t 10°
V (sign): 0 = positive
1 = negative
FDG:

The value contained in accu 1 (bit O through bit 31) is interpreted as
a 32-bit fixed point number. After the conversion a floating point
number (exponent and mantissa) will be contained in accu 1.

GFD:
The value contained in accu 1 (bit 0 through bit 31) is interpreted as

a floating point number. After the conversion a 32-fixed point number
will be contained in accu 1.

In this case, floating point numbers > O or < -1 are rounded down, if
necessary, to the next smaller integer.
Floating point numbers < 0 and > -1 are rounded up to O.

Examples: +5.7 --> 5

-2.3 --> -3
-0.6 ->0
+0.9 --> 0

3 - 47

B8576633-01

31 30 0

v | 230,20

FDG GFD

31 30... ...24 23 22 0

v |26... .20 |v |212723

Exponent Mantissa

CFW, CSW:

Examples

The contents of data word 64 are to be inverted bit by bit
('reversed’) and deposited in data word 78.

STEP5 program: assignment of data words:
:L DW64 KM = 0011111001011011
:CFW

:T DW78 KM = 1100000110100100

The contents of data word 207 are to be interpreted as a fixed point
number and deposited in data word 51 with the sign inverted.

STEP5 program assignment of data words:
:L DW207 KF = + 51

:CSW

:T DW51 KF = - 51

® Decrementing/incrementing

Operation Description
D 1 to 255 decrement
I1 to 255 increment
parameter

3 - 48

B8576633-01

The contents of accumulator 1 are decremented or incremented by the
number stated as a parameter. The execution of this operation is
independent of conditions. It is limited to the right-hand byte (with-
out carry).

Example

STEP5 program: assignment of data words:
:L DW7 KH = 1010

: I 16

:T DW8 KH = 1020

:D 33

:T DW9 KH = 10FF

3 - 49

B8576633-01

® Processing operations

Operation

Description

DO DW O to 255
(operation)

DO FW O to 254
(operation)

DO

insert
formal
operands

pr by 2y

po RS 1y 2y
60 through 63

process data word
The following operation is
using the parameter stated

combined and executed
in the data word.

process flag word
The following operation is
using the parameter stated

combined and executed
in the flag.

process formal operands (parameter class: B):
Only C DB, JU PB, JU FB, JU SB may be substituted.

process via a formal operand (indirect)
The number of the formal operand to be executed is
contained in accumulator 1.

instruction contained in the area of the system
data (RS) is to be executed (free system data: RS 60
through 63).

1) System function

2) The value contained in the system data or in the formal operand is
interpreted as the operation code of a STEP5 operation which will
then be executed. Permissible operations as for DO FW and DO DW.

Combination of all operations is permissible with DO DW and DO FW,
except the following:

- all two-word and three-word commands,

see annex D,

(permissible are G DB, GX DX, SED, SEE, CX DX, DO FX, and DOC FX)

- operations with formal operands in function blocks,

- Ju/Ju OB, JU/JC PB, FB,

The PG will not verify that the combination is permissible.

DO FW 14

L IB

120 FW 14

0

——> L 1IB 120 (= command executed)

3 - 50

B8576633-01

Example (process data word)

The contents of data words DW 20 through DW 100 are to be set to

signal status "O0". The index register for the parameter of the data
words is DW 1.

:L KF 20 supply the index register
:T DWWl
MO0l :L KB O reset
:DO DW1
:T DWO
:L DW1 increment index register
:L KF1l
‘+F
:T DW1
:L KF 100
<=
:JC =MOO1 jump, if index is in the area

Further STEP5 program

Application: Jump distributor for subroutine method

:DO FW5 .
——:JU =M00O0 flag word FW 5:
+ :JU =MOO1
jump :JU =M002 jump displacement
dis— L—>:JU =M003 .
placement :JU =M004 +127 max.
MO0O0O0:
:BEU
MOO1l: . Advantage:
L All subroutines are
:BEU contained in one block.
M002:
:BEU

Application: Jump distributor for block calls

:DO FW10 flag word FW 10:
:JU PBO > PBO
_IEE%-PBI block no. x

> PB2

> PB3

>N

> .

> PBx

3 -51

B8576633-01

e Disable/enable process interrupts

IA disable interrupt driven processing

RA enable interrupt driven processing

Use of "disable/enable interrupts" is possible, e.g. if interrupt
driven processing is to be suppressed during time driven processing.
This means that interrupt driven processing will no longer be possible
in the program section between the TA and RA commands.

Also refer to Subsection 6.8.1, special function OB 120 "disable
interrupts".

e Other operations

Operation | Parameter Description
G DB 3 to 255 generation of a DB data block in the DB—RAM
GX DX 1 to 255 generation of a DX data block in the DB—RAM

G DB: Create data block

Command G DBxxx generates a DB data block with number xxx (between 3
and 255) in the internal data block RAM of the processor.

Before programming the instruction you must enter the number of data
words which the new DB is to have in accumulator 1-L. The block header
is generated by the G DB/GX DX instruction. One data block (including
its header) must not occupy more than 4091 words in memory.

The system program will call OB 31 if the data block exists already,

if the length of the data block is illegal or if the space in the DB

RAM is insufficient. The processor will stop due to an execution time
error if OB 31 has not been programmed. The error identifiers are in

accumulator 1.

Command GX DXxxx generates a DX data block in the DB RAM and is
otherwise the same as G DBxxx (permissible parameters: 1 to 255).

3 - 52

B8576633-01

Operation Parameter Description
SED 0 to 31 setting a semaphore
SEE 0 to 31 clearing a semaphore

SED/SEE: Setting/clearing a semaphore

If two or more processors of a programmable controller use certain
global memory areas (I/O’'s, CPs, IPs) together there is a danger of
one processor overwriting the data of the other or invalid inter-
mediate statuses of data being read out. Due to this coordination of
the access of the individual processors to the common memory areas is
required.

Coordination of the individual processors is possible by means of
semaphores and the SED and SEE commands: Before the semaphores de-
clared (SED) have been set the processors involved in multiprocessor
operation will not access the common memory area. A semaphore xx can
only be set by one single processor. If a processor fails to set the
semaphore, access will be denied.

Further access will also be denied if the processor has again cleared
the semaphore (SEE).

All of the processors involved must contain a function block with the

following program structure:

(Start)

Set semaphore: SED

Operation successful?

yes —— no

1

{ Access to global
- memory protected
by semaphores H

1

Clear semapﬁore: SEE

v

(End)<

3 - 53

B8576633-01

The use of SED and SEE instructions ensures that a processor can
transfer information that belongs together to/from a certain memory
area and is protected from another processor interrupting this
operation.

TMPORTANT!
The instructions SED xx and SEE xx must be used by all processors

requiring synchronized access to a common global memory area (address-
es > FOOOH).

The SED xx (set semaphore) command occupies a certain byte in the
coordinator for the processor executing the command (that is, if this
byte has not been occupied by another processor). As long as the
processor is entered there the remaining processors are denied reading
or writing access to the memory area protected by the corresponding
semaphore (numbers O to 31). This means that the area is blocked for
all other processors.

The SEE xx (clear semaphore) instruction resets the byte in the coor-
dinator. This means that the memory area protected is again available
for the other processors, reading or writing is again possible. Only
the processor responsible for setting of the semaphore can clear it.

KOR:
Access coordination for
area 10 by semaphore 10
*
!
!
[}
|
Proc 1 Proc 2 Proc 3 Proc 4
:SED 10 :SED 10 :SED 10 :SED 10
7)
|
I
|
+
Area 10
(e.g. OWE)
- » SED10 Request of right to access area 10
——- Access rights from KOR for processor 3
_________ - Data access to area 10

................. + SEE10 Access rights are returned

3 - 54

B8576633-01

The SED and SEE commands scan the status of a semaphore before it is
set or cleared. The DSPO and DSPl indications are affected in the
following manner:

DSP1 DSPO Significance Evaluation

0

0 Semaphore was set by another processor JZ
and setting/clearing is not possible

0 Semaphore is set/cleared JN, JP

IMPORTANT!
The process of scanning a semaphore (=reading) and the setting or

clearing the semaphore (=writing) is one unit. During these processes
access to the semaphore will be denied to all other processors!

Please note the points below when using the semaphores:

A semaphore is a global variable, i.e the semaphore with number 16
only exists once, even if e.g. three processors are used.

Use of the SED and SEE commands is required for all processors
whose access to a common memory area is to be coordinated.

All processors involved will have to run the same start-up mode.
All semaphores will be erased if a cold restart is carried out,

however, they will be retained if a manual or automatic restart is
carried out.

Start-up in multiprocessor operation must be synchronized. Due to
this, the test mode is not permissible.

3 - 55

B8576633-01

Example for semaphore application

In one S5 135U there are 4 processors which output status messages to
a signalling unit via a common memory area of the O I/0’'s (OW 6). Each
of the status messages has to be output for 10 seconds, the same or
another processor cannot overwrite the initial message with a new
message until the 10 seconds have elapsed.

Use of the I/0 word OW 6 (extended I/O, no process image) is controlled
by means of a semaphore. This means that only the processor which
reserved this area with a semaphore can write its message in OW6é. The
semaphore will remain set for 10 seconds (TIMER T10). When the timer
reaches "Q0" the processor will clear the semaphore and thus release

the area for use by other processors. OW 6 may now receive a new
message.

If a processor attempts to set a semaphore and this semaphore has
already been set by another processor then, during the next cycle, the
processor will again attempt to set the semaphore and output its
message.

Execution of the following program is possible with a different mes-
sage for each of the four processors. The following blocks are loaded:

FB 100:

SET SEMAPHORE

FB O: FB 10: FB 110:
MAIN PROGRAM SIGNAL OUTPUT MESSAGE
FB 101:

RESET SEMAPHORE

5 flags are used:

F 10.0 = 1: A message has been requested or is being processed.
F 10.1 = 1: The semaphore has been set.

F 10.2 = 1: The timer has been started.

F 10.3 = 1: The message has been transferred.

F 10.4 = 1: The semaphore has been reset.

3 - 56

B8576633-01

FBO

NAME :

MOO1
NAME

FB 10

NAME

NAME

NAME

NAME

tA F 10.
:AN TF 10.
:S F 10.
:L KT10.
:SE T 10

MATN

A F 10.0
:JC =MOO1

AN E 0.0
:BEC

:L KH2222
:T FWl1l2

:AN F 10.0
:S F 10.0

:JU FB1O
:SIGNAL

:BE

:SIGNAL

AN F 10.1
:JC FB10O
: SEMASET

NN N

A F 10.2
:AN F 10.3
:JC FBllO
:MESS.OUT

A F 10.2
AN F 10.4
AN T 10
:JC FB1lO1l
: SEMARESE

:AN F 10.4
:BEC

:L KHO000
:T FY10
:BE

if no message is active

create message and

set flag 'MESSAGE’

call FB 'SIGNAL’

if no semaphore is set,
call FB ’'set semaphore’

if semaphore is set

and timer has not been started
start timer

if timer has been started

and no message is transferred,
call FB 'output message’

if timer has been started

and semaphore is not reset
and timer has elapsed

call FB 'reset semaphore’

if semaphore has been reset,

reset all flags

3 - 57

B8576633-01

FB100

NAME :SEMASET

:SED
:JZ
:AN
:S
MO0l :BE

FB110

10

=M001
F 10.1
F 10.1

NAME :MESS.OUT

:L
:T
:AN
:S
:BE

FB101

FW12
owWé
F 10.3
F 10.3

NAME :SEMARESE

:SEE
:JZ
:AN
:S
MO0l :BE

10

=M001
F 10.4
F 10.4

set semaphore mo. 10

if semaphore has been set,
set flag ’'SEMA SET’

transfer message to
I/0’'s

set flag ’'TRANSFER MESSAGE’

clear semaphore no. 10

set flag 'SEMAPHORE RESET’

3 - 58

B8576633-01

4 Operating States
4.1 Operating States and Program Levels
The processor has three operating states:
operating state STOP
operating state START-UP

operating state RUN

As described in chapter 2, the system program calls the appropriate
organization blocks (OB 1 through OB 34) if certain events occur. In
these blocks the user may determine the further reaction of the pro-
cessor. If, for example, an acknowledgement delay occurs while the

process image is being updated in the RUN state, the system program
calls OB 24.

Some events are only possible in the operating state START-UP, some
only in the operating state RUN and some in START-UP as well as RUN
(see following page).

After an organization block has been called, the processor will exe-
cute the STEP5 user program contained in it. In doing so, a new
register record is created (register: accumulator 1 through 4, block
stack pointer, data block start address, STEP-address counter). If
'normal’ program execution has been interrupted due to the occurrence
of the event, then the processor will, after having processed the OB -
including all of the blocks nested in it - continue the program at the
breakpoint. There, the "old" register contents are again valid.

One or several of these organization blocks are each assigned a
program level: if, e.g. OB 2 is called, this means that the program
level ’'PROCESS INTERRUPT’ is activated. The program level ’COMMAND
CODE ERROR’ is activated if OB 27, OB 29 or OB 30 are called.

The following page provides a summary of the operating states and the
program levels in the S5 135U, CPU 928.

B8576633-01

Summary 4-1: Operating states and program levels:

LED BASP: On
LED STOP: On
LEDRUN: Off

Operating state
STOP

Operating state

i
I manual warm {LZF

| restart | ADF

LED BASP: On Waiting point
LED STOP: Off for joint
LEDRUN: Off start—up

LEDBASP: Off
LED STOP: Off
LEDRUN: On

Operating state

ABBR.

RUN

7 WECK
| REG - FE
1 ZYK
| BCF
lLzF
| ADF

(OB 28)

(Mode selector,

Program levels in START-UP:

COLD/MANUAL WARM RESTART

AUTOMATIC WARM RESTART
(command code error)

(execution time error)
(addressing error)
(acknowledgement delay)

BCF
LZF
ADF
Qvz

Program levels in RUN:

CYCLE
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME

CONTROLLER INTERRUPT (REG-AL)
PROCESS INTERRUPT (PROZ-AL)

INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT

(WECK-AL)
(WECK-AL)
(WECK-AL)
(WECK-AL)
(WECK-AL)
(WECK-AL)
(WECK-AL)
(WECK-AL)
(WECK-AL)

PG - STP or MP—-STP)

(cyclic program processing)

5sec (time-driven
2sec (time-driven
lsec (time-driven
500ms (time-driven
200ms (time-driven
100ms (time-driven
50ms (time-driven
20ms (time-driven
10ms (time-driven

(time-driven

program
program
program
program
program
program
program
program
program

execution)
execution)
execution)
execution)
execution)
execution)
execution)
execution)
execution)

controller processing)

(interrupt-driven program execution)

(collision of two time interrupts)
(controller error)

(cycle time error)

(command code error)
(execution time error)
(addressing error)
(acknowledgement delay)

(abort)

B8576633-01

A program level is further characterized by the following features:

- Every program level has its own specific system program.

Example:

The system program updates the process image of the inputs and
outputs, triggers the cycle time and calls the management of the
PG-interface (system checkpoint) in the processing level CYCLE.

- If an interrupt occurs, the system program will create an interrupt
stack (ISTACK) of its own and will enter, among other things, the
level interrupted (see LEVEL) for every program level.

Example:
STP \ Warm restart
ISTACK
ADF
ISTACK
BCF
2YK
ISTACK =

image of the level interrupted

- The program levels have a fixed priority. Depending on this
priority, they can interrupt each other and be nested in each
other.

The "start-up levels and the error levels" differ from the "basic
levels" insofar as they are nested immediately and at command
boundaries as soon as the relevant event occurs. They may nested
into the basic levels as well as into each other. When errors
occur, the last error that has occurred will have the highest
priority.

In contrast to this, nesting of a "basic level" in one of a lower
priority is only possible at the block boundaries unless this

presetting has been changed by specific programming of DX 0 (see
Chapter 7).

Priority of the "basic levels":

CYCLE

TIME INTERRUPTS 1)

CONTROLLER INTERRUPT

PROCESS INTERRUPT ascending priority

1) The individual time interrupts are also assigned different
priorities. Shorter time interrupts have a higher priority than
longer onmes.

B8576633-01

Example:

A process interrupt occurs while a time interrupt is being process-
ed. Since the process interrupt has a higher priority, the process-
ing of the time interrupt level is interrupted at the next block
boundary and the PROCESS INTERRUPT program level is nested in. If,
e.g., an incorrect address occurs while the process interrupt is
being processed, the process interrupt is interrupted immediately
at the next command limit in order to nest in the ADF-level.

- Once an error level (ADF, BCF, LZF, OVZ, REG, ZYK) is activated
which is still not completely processed, it cannot be reactivated
even if another program level has been nested in between. In this
case the PC will immediately pass into the STOP state because a
program level has been called twice (in the ISTACK: ’'DOPP’) (for an
exception of this rule see time interrupts). In depth '0l’ of the
ISTACK, the identification 'DOPP’ as well as the error level that
has been called twice are marked.

Example 1:

Another addressing error occurs while the ADF-level (user-interface
OB 25) is being processed. Since the ADF-level is still activated,
it cannot be called a second time: the processor stops.

STOP

e Addressing error

-

-~

PB 26

Addressmg error

L

B8576633-01

Example 2:

When an opcode error occurs at the LZF-program level, the system
program attempts to call the BCF-level (user-interface OB 29).
However, this level has already been activated due to a parameter
error (user-interface OB 30) and processing has not been completed
yet. The BCF level cannot be called a second time in this
situation. The processor stops.

STOP
A N
N N Qpcode error

LZF

Special function error

Incaseofa OBz7 B C F
substitution error PBS B7

In case of an R oB29

opcode error

Incase ofa —— OB 30

parameter error
\ Parameter error
~ ZYK
B2 B3

The individual program levels with the corresponding user
interfaces are described in detail in the following chapters:

Chapter 4.3 describes the "basic levels" in START-UP.
Chapter 4.4 describes the "basic levels" in RUN.

Chapters 5.5 and 5.6 describe the "error levels" in START-UP and
RUN.

B8576633-01

4.2 Operating State STOP

The operating state STOP is characterized by the following features:

- No user program is executed.

- If a program has been run, the values of counters, times, flags and
process images are retained when the transition is made to the stop

state.

- The BASP signal (command output inhibit) is output. This means that
all digital outputs are inhibited.

Exception: The BASP signal is not output in the test mode!
(Refer to Chapter 10.5 for the test mode.)

- If a program has been run, an interrupt stack (ISTACK) is present
in the stop state.

LED’s on the front panel of the central processing unit:

RUN-LED: off
STOP-LED: on (permanent or flashing)
BASP-LED: on (except in the test mode)

The STOP-LED may indicate the reasons for the present stop page.
A permanently lit or flashing STOP-LED has a special significance which
will be described briefly on the following pages.

The STOP-1LED is lit permanently:

The operating state STOP was triggered

in single processor operation:

a) by setting the mode selector from 'RUN’ to 'STOP’
b) with online function ’'STOP’

c) because of hardware faults (BAU, PEU, NAU)

d) after an overall reset

in multiprocessor operation:
a) when setting the mode selector on the coordinator to 'STOP’

b) another processor has stopped because of an error (the processor
not responsible for the error displays a permanently 1lit LED)

B8576633-01

c) with online function ’'STOP’ on one processor

d) with online function ’'PROCESSING CONTROL END’ on another processor

The STOP-LED flashes slowly: (approx. once every 2 seconds)

A slowly flashing STOP-LED usually signals an error.

In multiprocessor operation a slowly flashing LED identifies the
processor responsible for the stoppage (due to an error).

The STOP-LED flashes slowly:
a) when programming a stop command in the user program

b) in the case of operator error (DBl errors, selection of an
inadmissible start-up mode etc.)

¢) in the case of programming errors or hardware faults (calling a
block that has not been loaded, addressing errors, acknowledgement
delay, command code error etc.);
in order to provide additional information about the cause of the
error the following LED's will light up:

ADF-LED
QVZ-LED
ZYK-LED

d) with online function ’'PROCESSING CONTROL END’ for this processor

The STOP-LED flashes quickly: (approx. twice per second)

A quickly flashing STOP-LED signals the warning message:
"Overall reset has been requested"!

Request overall reset

a) The system requests overall reset:
The processor carries out an initialization routine every time the
power is switched on and after an overall reset has been executed.
If errors are detected during the initialization the processor goes
over to the stop state and the LED flashes quickly.
Possible errors: 1. RAM’'s are empty
Remedy: Overall reset of processor

2. User EPROM empty or not plugged in

Remedy: plug in programmed EPROM and
execute overall reset of processor

B8576633-01
The cause of the problem will have to be eliminated and then an
overall reset of the processor carried out (again).

b) The user requests overall reset:

The operator must take the following action to request an overall
reset:

e Switch the mode selector from 'RUN’ to 'STOP’.

Result: The processor is in the stop state.
The STOP-LED is permanently lit.

e Hold the selector switch in the 'OVERALL RESET’ position;
at the same time, turn the mode selector from ’'STOP’ to 'RUN’
and back to 'STOP’.

Result: Overall reset is requested.
The STOP-LED flashes quickly.

IMPORTANT!
If the requested overall reset is not to be executed select a
start-up mode.

Execute overall reset

Irrespective of the origin of the overall reset request, whether
system or user, the overall reset is carried out as follows:

e Hold the selector switch in the ’'OVERALL RESET’ position;
at the same time, switch the mode selector from ’STOP’ to 'RUN’
and back to 'STOP'.

Result: Overall reset is executed.
The STOP-LED is permanently lit.

e Or: By means of the online function 'ERASE’.
(When executing an overall reset with the PG, a manual reset
request using the switch is not required! The position of the
selector switch and the mode selector is not relevant.)

Result: Overall reset is executed.
The STOP-LED is permanently 1lit.

IMPORTANT!
If an overall reset has been carried out the only permissible
start-up mode is a cold restart!

Leaving from the stop state: - selection of a start-up mode
(see Chapter 4.3)
- overall reset, then cold restart
- test mode (for multiprocessor
operation, see Chapter 10.5)

B8576633-01

4.3 Operating State START-UP

The operating“state START-UP is characterized by the following
features:

- The START-UP is the transition from the operating state STOP
to the operating state RUN.

- The operator can select one of three different start-up modes:
cold restart, manual warm restart and automatic warm restart.
The cyclic user program is processed from the very beginning if a
cold restart is carried out. If a manual or automatic warm restart

is carried out, then the cyclic user program will be continued at
the breakpoint.

- For all three types of start-up mode the system calls a different
organization block in which the user can write a suitable start-up
program. The length of the STEP5 start-up program in the OBs is not
limited. There is no monitoring with respect to time. Calling of
further blocks is possible in the start-up OB’s.

- The values for counters, timers, flags and process images are
handled differently in each start-up mode.

- The BASP signal (command output inhibit) is output. This means
that all digital outputs are inhibited.

Exception: BASP is not output in the test mode!
(see Chapter 10.5 for the test mode)

LEDs on the front panel of the CPU:
RUN-LED: off
STOP-LED: off
BASP-LED: on (not in the test mode)

Remarks:

Refer to Chapter 10.4 for information about the "Start-up routine
for multiprocessor operation".

This is how a cold restart is triggered:

e Hold the selector switch in the 'RESET’ position; at the same time
switch the mode selector from ’STOP’ to 'RUN’.

e Or: By means of online function 'START'’ (--> cold restart).

4 - 9

B8576633-01

A cold restart is required after

- stack overflow (ISTACK, 'STUEU, STUEB’)

- double call of a program level (ISTACK: 'DOPP’)

- overall reset (control bits: ’'URGELOE’)

- start-up abort (control bits: 'ANL-ABB')

- stop after online function "PROCESSING CONTROL END’

A cold restart is always permissible unless the system has requested
"overall reset"!

This is how a manual warm restart is triggered:

e The selector switch is in the central position.
® Switch the mode selector from ’'STOP’ to 'RUN'.

e Or: With online function ’'START’ (--> manual warm restart)

A manual warm restart is always permissible, except in situations
where only a cold restart is permitted (see above) or where the system
has requested "overall reset".

Triggering the automatic warm restart:

The processor executes an initialization routine after power failure/
power-off during START-UP or RUN followed by power recovery/power-on.
It then automatically attempts to carry out a warm restart.

Conditions: - The switches on all processors and on the
coordinator remain unchanged on 'RUN’.

- No errors have occurred during the
initialization.

If your processor is to carry out an automatic cold restart after a
power failure and a following power recovery, you should change the
presetting by programming the data block DX 0.

IMPORTANT!
A manual or automatic warm restart is only permissible if the user
program has not been altered in the stop state.

4 - 10

B8576633-01

4.3.1 Cold Restart and Manual Warm Restart

The following table contains a comparison between the start-up modes
cold restart and manual warm restart.

Sequence
of events

Cold restart

Manual warm restart

Triggering:

v

stop switch from STOP position
to RUN position and selector
switch in RESET position

online function START
(cold restart)

if "automatic cold restart"
programmed in DX O, switch
on power.

stop switch from STOP
position to RUN position
and selector switch in
central position

online function START
(manual warm restart)

System
program
functions:

— block address list in
DB 0 retained

— erase process image
of inputs

— erase process image
of outputs

— erase flags, timers,
counters

— erase digital/analog I/O’'s
(2x128 bytes each)

— erase global interprocessor
communication flags
(256 bytes)

— erase semaphores (all 32)

— DBl present:
enter digital input/
output and interprocessor
communication flags input/
output in PII/PIO lists

— DBl not present:
enter actually existing
modules (only digital input/
output) in PII/PIO lists
(interprocessor communic.
flags are ignored)

— evaluate controller

parameter assign. blocks DB 2

— block address list in
DB 0 retained

— flags, timers, counters
retained

— global interprocessor
communication flags
retained

— semaphores retained

— call user interface
OB 20 (if present)

— call user interface
OB 21 (if present)

— synchronize start—up for
multiprocessor operation

— synchronize start—up
for multiprocessor
operation

4 - 11

B8576633-01

Cold restart: Programming the organization block OB 20

If the processor executes a cold restart OB 20 will be called automa-
tically. You can write a STEP5 program in this OB which executes
certain activities once before the cyclic program starts:

Such activities may include e.g.

- set flags

- start timers

- set outputs with direct peripheral access

- prepare the data exchange between the processor and
the I/O modules

- carry out the synchronization with CP’s
(see Chapter 6.9 for handling block SYNCHRON).

Complete OB 20 with ’BE’ (block end)!

The cyclic program starts after OB 20 has been processed by calling OB
1 or FB 0.

If OB 20 is not programmed the processor immediately starts the cyclic
program at the end of a cold restart (after the system functioms).

If you have programmed an "automatic cold restart following power
failure" in DX 0, OB 20 will also be called when the power returns.

Manual warm restart: Programming organization block OB 21

If the processor carries out a manual warm restart OB 21 will be
called. You can write a STEP5 program in this OB which executes
certain activities once before the cyclic program starts again.

Complete OB 21 with ’'BE’ (block end)!

After OB 21 has been processed the cyclic program is continued at the
breakpoint with the next instruction:

- The BASP signal (command output inhibit) will remain in effect
during the processing of the remaining cycle and will not be
cancelled until the next (complete) cycle is started.

- The process image of the outputs remains reset at the end of the
remaining cycle and will be updated only at the end of the next
(complete) cycle.

If OB 21 is not programmed the processor will immediately start at the
breakpoint following a manual warm restart.

4 - 12

B8576633-01

4.3.2 Automatic Warm Restart

The function of the automatic warm restart is identical with that of
the manual warm restart. The only difference is the way it is
triggered.

Sequence Automatic warm restart
of events

Triggering Power return after power failure
v
i
System
program
functions: — block address lists retained in DB 0
— flags, timers, counters retained
v
— interprocessor communication flags retained
— semaphores retained
\') — call user interface OB 22
(if present)
\')
— synchronize start—up for multiprocessor operation

Automatic warm restart: Programming organization block OB 22

The processor attempts to continue the interrupted program as soon as
the power returns.

The first step is to call 0B 22.

You can write a STEP5 program in this OB which executes certain
activities once, before the cyclic program is started again.

If you wish to prevent the processor from ever carrying out an auto-
matic warm restart then you will have to program a stop instruction in
OB 22 and complete the block with ’'BE’ (block end)!

OB 22 : STP (stop)
: BE (block end)

Result: The processor will go over to the stop state as soon as
the power returns.

4 - 13

B8576633-01

After OB 22 has been processed the cyclic program will be continued at
the breakpoint with the next instruction. When the power returns
following a power failure:

- The BASP signal (command output inhibit) will be retained
during the processing of the remaining cycle. It will not be
cancelled until the beginning of the next (complete) cycle.

- The process image of the outputs remains reset at the end of the
remaining cycle and will be updated only at the end of the next
(complete) cycle.

4.3.3 Interruption during START-UP

A start-up program can be interrupted by
- power failure
- mode selector to stop

- program error and hardware faults (see Chapter 5.6)

If the start-up that has been interrupted is to be continued using
one of the three possible start-up modes, the following points should
be noted:

If there is a power failure during the start-up followed by the return
of power, three different situations may arise:

1. The processor is executing a cold restart (OB 20). When the power
returns the organization block OB 22 (automatic warm restart) is
nested in OB 20 at the breakpoint.

2. The processor is executing a manual warm restart (OB 21). When the
power returns the organization block OB 22 (automatic warm restart)
is nested in OB 21 at the breakpoint.

3. The processor is already executing an automatic warm restart (OB
22). When the power returns a second OB 22 will not be nested. The
OB 22 that has been interrupted will not be continued when the
power returns. This block will be aborted and the OB 22 that
has just been called will be processed immediately.

Stop by means of the switch during the start-up and subsequent
manual warm restart

If you abort any start-up with the stop-switch (or the online function
'STOP’) and trigger a manual warm restart afterwards, the start-up that
has been interrupted will be continued at the breakpoint and the OB

22 that has just been called will be processed immediately. No OB

21 is nested!

4 - 14

B8576633-01

Stop by means of the switch during the start-up and subsequent cold
restart

If you abort any start-up with the stop-switch (or the online function
'STOP’) and trigger a cold restart afterwards, the start-up that

has been interrupted will be aborted and a cold restart will be
carried out (if present, by means of OB 20).

4 - 15

B8576633-01

4.4 Operating State RUN
The operating state RUN is characterized by the following features:
- The user program is processed cyclically.

- All counters and timers started in the program "run". The process
images are updated cyclically.

- The BASP signal (command output inhibit) is cancelled. This means
that the digital outputs are released.

- The interprocessor communication flags are updated cyclically.

LEDs on the front panel of the CPU:
RUN-LED: on
STOP-LED: off

BASP-LED: off

IMPORTANT!
If a manual or automatic warm restart has been carried out before the
transition to the operating state RUN, the BASP-LED will remain lit

until the remaining cycle has been processed and the process image
updated.

TMPORTANT!

Reaching the operating state 'RUN’ is only possible following the
operating state 'START-UP'.

12 basic program levels exist in the operating condition RUN:

1. the cycle: The user program is processed cyclically.
(Zyklus)

2. 9 time interrupts: The user program is processed time-
(Weckalarm) driven.

3. the controller interrupt: A preset number of controllers is
(Regleralarm) processed time-driven in addition to the
user program.

4. the process interrupt: The user program is processed interrupt-
(Prozefalarm) driven.

4 - 16

B8576633-01

They differ in the following respects:
a) They are triggered by different events.

b) The system program executes different functions for
every program level.

c) A different organization block or function block exists
as the user interface for every program level.

4.4.1 CYCLE: Cyclic Program Execution

The cyclic program execution is the usual mode with programmable
controllers.

Triggering:

If the processor has completed its start-up program without error it
will start the cyclic program.

Functions of the system program:

- Sets the cycle time to be monitored at the start of the
cycle.

- Updates the process image of the inputs (PII).
- Updates the interprocessor communication input flags.
- Calls the user interface: OB 1 is processed.

- Updates the process image of the outputs at the end of the
cycle (PIO).

- Updates the interprocessor communication output flags.

User interface: OB 1 or FB 0

The organization block OB 1 or the function block FB 0 is called as
the user interface for cyclic program execution. The STEP5 user pro-
gram in OB 1 or FB 0 is processed continuously from the very beginning
including different block calls. After the execution of the system
functions the processor will again start at the very beginning with
the first STEP5 instruction in OB 1 (or FB 0).

The program, function and sequence block calls that are to be pro-
cessed in the cyclic program must be programmed in OB 1.

4 - 17

B8576633-01

If you have a short and time-critical program which does not require
structured programming then you should program FB 0: Since the
complete STEP5 operation set is available you can save the block calls
and thus reduce the execution time of the program.

IMPORTANT!

Program either OB 1 or FB 0.

If both OB 1 and FB O are programmed, only OB 1 will be called by the
system program. If you intend to use FB 0 as the user interface no
parameters are permissible in it!

Breakpoints

The cyclic program processing can be interrupted at the block boun-
daries. This is done by means of

- process interrupt driven processing
- controller processing
- time-driven processing

(Interruptions are also possible at the command boundaries by
programming DX 0!)

The program can be interrupted or aborted at command boundaries
- 1if a programming error or a hardware fault occurs

- by the operator (online function, stop-switch).

Note:

Use of the arithmetic registers accumulator 1, 2, 3 and 4 as a data
register is possible across the cycle boundaries - from the end of one
program cycle to the start of the next.

4.4.2 TIME INTERRUPT: Time-Driven Program Processing

Time-driven execution means that a time signal (time interrupt)
triggered by an "internal clock" causes the processor to interrupt the
cyclic program and to process a specific program. After this program
has been executed the processor will return to the breakpoint in the
cyclic program and will continue the program from there.

This allows certain program sections to be automatically inserted in
the cyclic program at preset time intervals.

The CPU 928 allows time-driven processing of up to 9 different
programs. Each program is called up in a different time interval.

4 - 18

B8576633-01

Triggering:

A time interrupt is triggered automatically at the intervals assigned
to it provided that the appropriate OB has been programmed.

User interface: OB 10 to OB 18

When a specific time interrupt occurs, the appropriate organization

block is called as the user interface at the next block boundary (or
command boundary).

Assignment: Organization block Time interval
OB 10 called every 10 ms
OB 11 called every 20 ms
OB 12 called every 50 ms
OB 13 called every 100 ms
OB 14 called every 200 ms
OB 15 called every 500 ms
OB 16 called every 1 sec
OB 17 called every 2 sec
OB 18 called every 5 sec

You should program e.g. in OB 13 the program section which is to be
inserted into cyclic program processing at intervals of 100 ms.

You may program either all or any number or none of these 9 OBs. If
none of them has been programmed, no time-driven program processing is
executed.

Whenever a time interrupt OB (OB 10 to OB 18) is called, accu 1 gives
information about how many time intervals have occurred since the last
call of this OB. Note the following rule:

Accu 1 := Number of time intervals - 1

If, for instance, the number "5" is in accu 1 when OB 11 is called,
that means that 120 ms (= 6 intervals) have passed since OB 11 has
been called last. As long as there is no collision of two time
interrupts, "0" is transferred to accu 1.

Priority of the time interrupts

Within the basic levels, the program levels TIME INTERRUPTS are
arranged as follows:

CYCLE

TIME INTERRUPTS

CONTROLLER INTERRUPT

PROCESS INTERRUPT ascending priority

4 - 19

B8576633-01

The priority among the individual time interrupts is also fixed:

OB 18 (longest interval)
OB 17
OB 16

OB 11
OB 10 (shortest interval) ascending priority

IMPORTANT!
Basically, OBs with shorter intervals have a higher priority and may
interrupt OBs with longer intervals!

Breakpoints

Time-driven program execution can be interrupted either at the block

boundaries (preset) or the command boundaries (programming DX 0) by
means of

- renewed time-driven processing

- controller processing

- process interrupt-driven processing
and only at command boundaries by

- a program error or hardware fault.

Example:

OB 12 (intervals of 50 ms) is called while OB 14 (intervals of 200 ms)
is processed. OB 14 is interrupted at the next block or command
boundary and OB 12 is processed. Only when the latter has completely
been processed (possibly interrupted by a controller interrupt, a
process interrupt, error processing, or an OB 10 or 11), program
execution in OB 14 is resumed and completed.

Collision of two time interrupts

IMPORTANT!

Interrupting of time-driven processing by the same time-driven process
is not possible!

If a time interrupt OB that has not been completed is called a second
time because the time interval has run out, this means that there is a
collision of two time interrupts. This error also occurs when an OB is
called a second time without the first call being processed. This may
happen when "Interrupt time interrupts at block boundaries" has been
selected as presetting and your STEP5 program contains large blocks.

4 - 20

B8576633-01

When a collision of two time interrupts occurs, the error program
level WECKFE is activated and the system program calls OB 33 as the user
interface. You can program the reaction to this condition in OB 33.

When OB 33 is called, a more detailed description of the first error
occurred is written by the system program into accus 1 and 2:

Error identifier | Description

Accu 1 Accu 2

1001H 0016H Collision of two time interrupts at OB 10 (1Oms)

1001H 0014H Collision of two time interrupts at OB 11 (20ms)

1001H 0012H Collision of two time interrupts at OB 12 (50ms)

1001H 0010H Collision of two time interrupts at OB 13 (100ms)
1001H 000EH Collision of two time interrupts at OB 14 (200ms)
1001H 000CH Collision of two time interrupts at OB 15 (500ms)
1001H 000AH Collision of two time interrupts at OB 16 (lsec)

1001H 0008H Collision of two time interrupts at OB 17 (2sec)

1001H 0006H Collision of two time interrupts at OB 18 (5sec)

Remark: The identifier contained in accu 2 identifies the level
(EBENE) of the time interrupt that has caused the error.

If OB 33 is not programmed the processor will go over to the stop
state. This means that 'WECKFE' is marked in the control bits at the
programmer with 'output ISTACK’, and the level (EBENE) of the
corresponding time interrupt indicated in the ISTACK.

If the program is to be continued following a collision of two time
interrupts you either have to program the block end statement ’'BE’ in
OB 33 or alter the presetting in DX O so that the program should be
continued if a collision of two time interrupts occurs and OB 33 is
not programmed. After OB 33 has been executed the program will be
continued from the breakpoint in OB 13.

Remarks:

- With regard to the time-driven program processing, please note the
new special functions OB 120, OB 121, OB 122 and OB 123 that enable
you to inhibit or delay the processing of time interrupts for a
specified program section.

(This is possible either for all time interrupts programmed or for
individual ones among them.)

4 - 21

B8576633-01

The ’'faster’ a time-driven program level is, the bigger is the risk
of a collision of two time interrupts: time interrupts with short
intervals such as the 10ms and 20ms-time interrupt normally require
to be set to interruption at command boundaries. Then the
controller interrupt and the process interrupt are to be set to
interruption at the command boundaries, too (see Chapter 7,
programming of DX 0).

4 - 22

B8576633-01

4.4.3 CONTROLLER-INTERRUPT: Processing of Controllers

In addition to cyclic, time and interrupt driven program execution
closed-loop controllers can also be processed in the CPU 928. The
cyclic or time-driven program is interrupted and the respective
controller processed at time intervals determined (= sampling time) by
the user. The processor will then return to the breakpoint in the
cyclic or time-driven program and will continue processing there.

Triggering:

A controller interrupt is triggered after the sampling time which the
user has selected has elapsed.

Functions of the system program:

- manages the user interface for closed-loop controller processing.

- updates the closed-loop controller process image.

User interface: Standard Function Block
"Controller Structure R 64"

The R64-standard function block is called for closed-loop controller
processing as the user interface. With this block, up to 64 loops can
be processed in connection with the controller parameter assignment
block DB 2.

Parameters must be assigned to a specific data block for each of the
controllers. In data block DB 2, the so-called ’controller list’, you
determine which controllers are to be processed and when by the system
program. DB 2 is reserved for this particular task!

(You are assisted by a special program package: "COMREG" - order number

for PG 685: 6ES5895-3SA1ll - when assigning parameters, commissioning
or testing the R64 standard FBs.)

Breakpoints

Interruption of controller processing is possible either at block
boundaries (presetting) or command boundaries (programming DX 0). This
is done by means of:

- process interrupt driven processing.

This can be interrupted at the command boundaries by

- a program error or a hardware fault.

4 - 23

B8576633-01

4.4.4 PROCESS INTERRUPT: Interrupt-driven Program Execution

Interrupt-driven program execution involves an S5 bus signal from a
digital input module capable of interrupts (e.g. 6ES5 432-4UAll) or an
IP-module with a corresponding function causing the processor to
interrupt program processing and to run a special program section.
After the execution of this program the processor will return to the
breakpoint and will continue processing there.

Triggering:

Process interrupts are triggered by an active state of an interrupt
line on the S5 bus. Depending on the module slot, each of the pro-
cessors is assigned one of the 7 interrupt lines (see Instructions
CPU 928).

User interface: OB 2

OB 2 is called as the user interface if a process interrupt occurs.
You have the option of programming a specific program in OB 2
which is to be processed in the case of a process interrupt.

If OB 2 is not programmed the program will not be interrupted. There
will be no interrupt-driven program execution.

Breakpoints
A process interrupt-driven program can only be interrupted by

- a program error or hardware fault.

IMPORTANT!
An interrupt-driven program cannot be interrupted by time-interrupts
or a further process interrupt.

If other process interrupts occur during the interrupt-driven program
they are ignored until OB 2 has been fully executed (incl. all blocks
called in the OB 2).

Then the processor will return to the breakpoint and will process the
program to the next block boundary.

Only now will another process interrupt be accepted and OB 2 called
again. This means that the cyclic program will be processed even if
there is a permanent interrupt request. (This is not wvalid if in DX O
the presetting "process interrupt effective at command boundaries" has
been selected).

4 - 24

B8576633-01

Process interrupt signal: level triggered

As a standard function, the process interrupt signal for the CPU 928

is level triggered, i.e.: the active state of the interrupt line

triggers a request which causes OB 2 to be processed at the next block

or command boundary. This request is stored and only reset by the

block-end command (BE) of OB 2.

This leads to the following consequences:

- Multiple interrupts are not recognized.

- Those interrupts which occur during the processing of OB 2 and
which are shorter than OB 2 are not recognized.

- OB 2 will be called even if the signal state of the interrupt line
is passive again when reaching the block boundary (see figure).

The called OB 2 is fully executed. If the signal level is still/again

present at the end of OB 2, a block is processed in the cyclic program

and then OB 2 is called again. If the signal level is no longer

present OB 2 is not called again until the next signal change (from
inactive to active).

Signal I | I |] I_i

(requestis

stored)

Process interrupt 0B 2 oB 2 0B 2 0B 2
(at biock boundaries) 4 . : 4 : Aﬁ'—
Cycle

Process interrupt signal: edge triggered

This setting is obtained by assigning parameters to DX 0. After the
execution of OB 2 a new process interrupt can only be triggered by a
change of the signal state (from inactive to active). With the edge-
triggered process interrupt, the request to process an OB 2 is also
stored until this OB is fully processed.

Any change of the signal state that may occur while OB 2 is processed
will be ignored.

signat | 1 i L

(requestis
stored)
0B 2
Process interrupt oB 2 . OB 2)
(at block boundaries) : 4 :‘
Cycle

4 - 25

B8576633-01

Inhibiting the process interrupt driven processing

An interrupt-driven program is inserted in the cyclic program at a
block boundary or a STEP5 command boundary.

This interruption may have a negative effect if a cyclic program
section has to be processed in a given time (in order to e.g. reach a
certain response time) or interruption of a command sequence is not
permissible (e.g. when reading or writing values that belong togeth-
er).

If the interruption of a program section by interrupt-driven process-
ing is not permissible, the following programming possibilities may be
used:

® Program this program section so that it does not contain a block
change and retain the presetting in DX 0 ("process interrupt at
block boundaries"). Blocks that do not contain a block change
cannot be interrupted.

® Write the program yourself in an interrupt-driven program.
Interruption by another interrupt is then not possible.

e Program STEP5 command ’'IA’ (inhibit process interrupt). The command
'RA’ (release process interrupt) serves to release the interrupt
processing. No interrupt is serviced between these two commands.
Thus, the program section between these two commands will not be
interrupted by process interrupts occurring.

'TIA’ and 'RA’ are only possible in function blocks (supplementary
operation set)!

® Use the new special functions OB 120 and OB 122 that enable you to
inhibit or delay the processing of process interrupts for a speci-
fic program section.

Priority between interrupt-driven and time-driven program execution

If a process interrupt is requested during time-driven program execu-
tion the program is interrupted at the next breakpoint (block or
command boundary) and the process interrupt is serviced. Then the time
driven program execution is continued.

If a time interrupt is requested during interrupt-driven program
execution, the interrupt-driven program is completed first. Only
then, is the time-driven program started.

If a process interrupt and a time interrupt occur simultaneously, then
the process interrupt is serviced first at the next breakpoint. Only
when this process interrupt has been executed as well as all the
process interrupts that have occurred in the meantime, will the time
interrupt be processed.

In this particular case, the time-driven processing has the lower
priority!

4 - 26

B8576633-01

Response time

The time required to respond to a time interrupt request is equivalent
to the processing time of a block or a STEP5 command (depending on the
selected presetting). If process interrupts exist at the time when the
cyclic program is interrupted, only when all existing process inter-
rupts have been fully executed, will the time-driven program be run.

In this case, the maximum response time between the occurrence and the
servicing of a time interrupt is increased by the execution time of
the process interrupts. If you wish to greatly reduce the possibility
of a collision of two time interrupts for a specific time interrupt
xy, note the following rule:

A+B<C A = total of execution times of all program levels with
a higher priority (process interrupt OBs, controller
interrupt OBs, time interrupt OBs)

B = Execution time of time interrupt OB xy
C = Interval of time interrupt OB xy

The execution time for a time interrupt in-
cluding any process interrupts may not exceed 100 ms!

o081 P8

-
Bl o Breakpoint where an
——— interrupt or time
it - Cyclic driven program execu-
it tion may be inserted
; as a standard feature
i d in a cyclic, inter-
rupt or time driven
program.

-

‘_.t—:.

—

-

———4::::.————"2223———— | Alarm. . .
| | driven A time-driven program
—

P S

—'I=

—_—

s —

can only be interrupt-
ed by a process inter-
- rupt and not vice
versa.

— ::;— L Time-
—— : driven

Fig. 4.2: Interrupt-driven program execution at block boundaries.

IMPORTANT!

If you run your user program not only cyclically but also time and/or
interrupt driven, then there is a danger of e.g. the flags that are
used as intermediate flags in the cyclic program being overwritten by
time or interrupt driven processing being inserted in the cyclic
program. For this reason it is important that you "save" the signal
states of the flags in a data block before running a time or interrupt
driven program and load them back into the flags at the end of the
inserted program. For this purpose, there are four special function
OBs available: OB 190 and OB 192 "transfer flags to data block" and OB
191 and 193 "transfer data blocks to flag area" (see corresponding
chapters).

4 - 27

B8576633-01

5 Handling Interrupts and Errors
The system program is in a position to detect faulty operation of the

processor, errors in the system program processing or effects of
incorrect programming by the user.

5.1 Frequent Errors in the User Program

The following list contains the errors which occur most frequently
when the user program is first run. However, these errors may easily
be avoided when creating the program.

For this reason, pay special attention to the following instructions

when programming your STEP5 program:

- When specifying byte addresses for inputs and outputs the corre-
sponding modules for these addresses must be plugged into the
central controller or the expansion unit.

- Ensure that all operands are supplied the correct parameters.

- Outputs, flags, timers and counters should not be processed in
different parts of the program with conflicting operations.

- Ensure that all data blocks called in the program exist and are
long enough.

- Verify that all blocks to be called are actually in the memory.

- Be careful when making subsequent alterations in function blocks.
Check that the FBs have been assigned the correct operands and that
all actual operands have been specified.

- Timers should only be scanned once per cycle (e.g. A Tl).

B8576633-01

5.2 Evaluation of Error Information
If an error occurs during the start-up or the cyclic execution of the

user program you have several "information sources" to trace the
particular error.

a) LED’s on the front panel of the processor

Make use of the LED’s if the processor stops unexpectedly. These
LED’s may give you an indication of the causes of the error:

- STOP-LED is lit permanently
- STOP-LED flashes slowly
- STOP-LED flashes quickly

The different signals of the STOP-LED indicate certain causes of
interruptions and errors. :

Refer to Chapter 4.2 'Operating state STOP’'.

The error LED’s on the front panel are permanently lit.
- ADF (addressing error)
- QVZ (acknowledgement delay)

- ZYK (cycle time error)

b) Online function ‘output ISTACK’ (see Subsection 5.3)

The online function ’'PC INFO’ followed by ’'output ISTACK'’ gives
information on the statuses of the control bits and the contents
of the interrupt stack (= ISTACK).

All information required for a warm restart is entered by the
system program into the ISTACK during the transition to the stop
state. These entries are a valuable help for error diagnosis.

A complete output of the ISTACK is only possible in the stop condi-
tion.

Before the actual ISTACK is output, the statuses of the control
bits are displayed first. These mark the current operating
status and certain characteristics of the processor and the user
program and give additional information about possible error
causes.

B8576633-01

c)

d

Triggering of the online function ’output ISTACK’ is not only
possible in STOP but also in the operating states START-UP and RUN.
In this case, however, the control bits are simply output.

System data RS 3 and 4 (see Chapter 5.5)

If your processor returns to the stop state during start-up, due to
an error, the system data words RS 3 and RS 4 help to provide a
more detailed definition of the cause of the error. These are
errors which the system program detects when creating the address
lists in DB 0 or DB 1 or when evaluating DB 2 or DX O.

System data word RS 3: KH

EAO3 (absolute memory address)
System data word RS 4: KH = EAO4 (absolute memory address)
The error identifier in the system data word RS 3 helps you to
identify the type of error.

The error identifier in the system data word RS 4 helps you to
establish the location of the error.

The error identifiers are in data format KH.

Evaluation of system data word RS 3 and RS 4 with the programmer:

o Using the online function ’'OUTP. ADDRESS’ (KH = EAO3 or EA04)
you can read the contents of the two system data words directly
and determine the cause of the error.

Accumulator 1 and accumulator 2 (see Chapter 5.6)

If errors occur in the STEP5 program execution during the start-up
or the cycle for which a specific organization block exists as the
user interface, then the system program will automatically deposit
additional error information in the accumulators 1 and 2 when the
organization block is called to give a more precise explanation of
the errors.

The error identifier in accumulator 1 helps you to determine the
type of error.

The error identifier in accumulator 2 (if present) helps you to
determine the location of the error.

The error identifiers are in data format KH.

B8576633-01

e)

Evaluation of accumulators 1 and 2 with the programmer:

e The online function ’'output ISTACK’ allows you to read the
contents of both accumulators directly from the ISTACK and
determine the exact cause of the error.

Evaluation of accumulators 1 and 2 with STEP5:

e Since the error identifiers are automatically deposited in the
accumulators 1 and 2 when an error organization block is called
you can take these identifiers into consideration when program-
ming your error OBs.

Thus it is possible to program different reactions to different
errors in an organization block, depending on the error identi-
fier transferred to it.

Online function ’'Output BSTACK’

The online functions ’'PC INFO’ and the subsequent ’'BSTACK’ allows
you to have the contents of the block stack (= BSTACK) output in
the stop state after an error has occurred (see Subsection 3.1.1).

Starting with OB 1 or FB 0 the BSTACK contains a list of all the
blocks called before the processor stopped. Since the BSTACK is
filled starting at the lower end, the block processed last and thus
the block in which the error has occurred will be in the top line.

The following information is supplied for the evaluation of
the top line:

BAUST. -NR. block type and number of the block processed
(block mno.) before the stop state was reached

BAUST. -ADR. absolute start address of this block in the
(block addr.) program memory

RUCKSPR. -ADR. absolute address of the command to be processed

(return addr.) next in this block. Using this command, the
processor will continue the program after the
'manual restart’

REL. -ADR. relative address (= RUCKSPR.-ADR. -BAUST.-ADR.) of
the command to be processed next in this block

(Display of relative addresses by the PG is
possible in the operating mode ’'input inhibit’
(key operated switch))

B8576633-01
DB-NR. number of the data block called last

DB-ADR. absolute start address of this data block
(address of data word DW 0) in the program memory

Example: evaluate ’OUTPUT BSTACK’

BAUST.-NR. BAUST.-ADR. RUCKSPR.-ADR. REL.-ADR. DB-NR. DB-ADR.
(block no.) (block addr.) (return addr.)
OB 23 0063 0064 0001 13 0078
FB 5 006A 0072 0008 13 0078
FB 6 008A 0091 0007 100 0098
OB 1 009D 009E 0001

The above example shows that the stop occurred in OB 23 during the
processing of the STEP5 instruction listed under the absolute
address 'KH0064 - 1 = KHO063’ in the memory.

OB 23 (QVZ error OB) has been called in FB 5 at the relative
address 'KH0008 - 1 = KHO0007'.

The data block DB 100 has been called in FB 6. Data block 13 was
valid when the processor stopped. DB 13 was called in FB 5.

B8576633-01

Summary

When searching for the cause of an error make use of all information
available.

This could be:

1.

LEDs on the front panel of the processor

Certain signals point to certain causes of errors or interruptions.

Online function 'output ISTACK'

The control bits are always output; in the stop state ISTACK is
also output.

System data words RS 3 and RS 4:

You will find more exact information about the cause of the error

in the system data words RS 3 and 4 for those errors that occur
during the start-up.

Accumulator 1 and 2:

The system program deposits additional error information in
accumulator 1 and accumulator 2 when error organization blocks
are called.

Online function ’'output BSTACK':

In the stop state you can identify the block and in it the address
of the command being processed when the error occurred, by reading
the top line of the BSTACK.

B8576633-01

5.3 Control Bits and Interrupt Stack

By means of online functions 'PC INFO' (F7) followed by 'output
ISTACK' (F5) you can analyze the operating status, the characteristics
of the processor and the user program as well as possible causes of
errors and interruptions.

IMPORTANT!
Output of control bits is possible in any operating state, output of
the ISTACK only in stop.

- The control bits indicate the current or previous operating status
as well as the cause of the error.
If several errors have occurred all errors that have occurred will
be displayed in the control bits.

- The breakpoint (addresses) with the condition code words at that
point and the contents of the accumulators as well as the cause of
the error are entered in the ISTACK. If several errors have
occurred a multi-layer interrupt stack is created:
depth 01 last cause of error,
depth 02 = next to last cause of error etc..

In the case of an ISTACK overflow an immediate stop will be execut-
ed. A cold restart is required afterwards.

The significance of the abbreviations in the control bits and the
interrupt stack is exlained in the following pages. The abbrevia-
tions are output on the PG 685 programmer.

IMPORTANT

The mask displayed on your PG may differ from the one shown below.
Irrespective of the terms used in your software version, the positions
shown here are valid.

CONTROL BITS

>>STP<< STP-6 FE-STP BARBEND PG-STP STP-SCH STP-BEF MP-STP

>>ANL<< ANL-6 NEUST MWA AVWA ANL-2 NEU-ZUL MWA-ZUL
>>RUN<< RUN-6 EIN?ROZ BARB OB1GEL FBOGEL OBP§OZA OBWECKA
X X X

32KWRAM 16KWRAM 8KWRAM EPROM KM-AUS KM-EIN DIG-EIN DIG-AUS
URGLOE URL-TA STP%VER ANL-ABB UA-PC UA-SYS Ui-PRFE Ui-SCH

DX0-FE FE-22 MOD-FE RAM-FE DBO-FE DB1-FE DB2-FE KOR-FE

NATU PETU BAU STUE-FE ZYK QVvzZz ADF WECK-FE
BCF FE-6 FE-5 FE-4 FE-3 LZF REG-FE DOPP-FE
.pa

B8576633-01

The statuses of the control bits are displayed on the first page of
the screen when the ISTACK is output on the PG.

The following control bits mark the current or previous operating
status of the processor and supply information about certain charac-
teristics of the processor and the STEP5 user program.

Output of the control bits is possible in all operating conditions.
This allows you to e.g. verify that the organization block OB 2 has
been loaded and whether interrupt-driven program execution is possible
or not.

STP Processor is in the operating state STOP; the following control
bits explain why the processor is in this state

STP-6 not used

FE-STP Error-stop: stop state following NAU (power failure), PEU
(I/0s not ready), BAU (battery not ready), STUEB (BSTACK
overflow), STUEU (ISTACK overflow), DOPP (double error)
or processor fault

BARBEND Finish process check: stop condition after online function
"process control end"
(cold restart required)

PG-STP PG stop: stop status due to command from PG

STP-SCH Stop switch: stop status due to stop switch in the STOP
position

STP-BEF Stop command:
a) Stop status after the processing of STEP5 operation
'STP’
b) Stop status after stop command by the system program
if error organization block has not been programmed.

MP-STP Multiprocessor stop:
a) Selector switch on COR in the STOP position or
b) another processor has stopped during multiprocessor
operation

ANL Processor is in operating state START-UP:

ANL-6 not used

NEUST Cold restart is requested or active or was executed as
the last start-up.

MWA Manual warm restart is requested or active or was exe-
cuted as the last start-up.

AWA Automatic warm restart after power failure is requested
or active or was executed as the last start-up.

B8576633-01

ANL-2

NEU-ZUL

MWA-ZUL

not used
Cold restart permissible as the next start-up mode

Manual warm restart permissible as the next start-up
mode.

RUN Processor is in the operating status RUN (cyclic program execu-
tion is active):

RUN-6

EINPROZ

BARB

OB1GEL

FBOGEL

OBPROZA

OBWECKA

32KWRAM

16KWRAM

8 KWRAM

EPROM

KM-AUS

KM-EIN

DIG-EIN

DIG-AUS

URGELOE

URL-IA
STP-VER

not used

Single processor operation

Online function "process control" is active
Organization block OB 1 has been loaded into the user
memory.

Cyclic program execution is determined by OB 1.

Function block FB 0 has been loaded into the user memory.
Cyclic program execution is determined by FB 0 if no

OB 1 has been loaded. If FB 0 and OB 1 have been loaded,
then OB 1 is valid for cyclic program execution.

Process interrupt organization block OB 2 has been
loaded, i.e. process interrupt driven program execution

is possible

Time interrupt organization block has been loaded,
i.e. time-driven program execution is possible.

User memory submodule is a RAM with 32 x 210 words.
User memory submodule is a RAM with 16 x 210 yords.
User memory submodule is a RAM with 8 x 210 yords.
User memory submodule is an EPROM.

Address list for interprocessor communication flag outputs
from DB 1 present

Address list for interprocessor communication flag inputs
from DB 1 present

Address list for digital inputs present
Address list for digital outputs present

Overall reset of processor was carried out (cold restart
required)

Overall reset of the processor being carried out.
Processor has caused stop status in the central

B8576633-01

processing unit.
ANL-ABB Abort during the start-up (cold restart required)
UA-PG PG has requested overall reset.

UA-SYS System program has requested overall reset (no start-up
possible); overall reset must be carried out.

UA-PRFE Overall reset request due to processor error

UA-SCH Overall