

General Information 1

System
Characteristics 2

Interface Functional
Description 3

VPLC Processing 4

NCU Link Processing 5

VNCK License 6

More General
Information

7

SINUMERIK 840D sl

SINUMERIK Integrate
Run MyVNCK
Reference

Function Manual

Valid for

Control Version
SINUMERIK 840D sl 4.5 SP2

Software
SINUMERIK Integrate Run MyVNCK 4.5 SP1

05/2013

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION
without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE
indicates that an unintended result or situation can occur if the relevant information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

 Siemens AG
Industry Sector
Postfach 48 48
90026 NÜRNBERG
GERMANY

Ⓟ 05/2013 Technical data subject to change

Copyright © Siemens AG 2004 - 2013
Technical data subject to change

Run MyVNCK, Reference
Function Manual, 05/2013 3

Preface

SINUMERIK documentation
The SINUMERIK documentation is organized in the following categories:

• General documentation

• User documentation

• Manufacturer/service documentation

Additional information
You can find information on the following topics under the link
www.siemens.com/motioncontrol/docu:
• Ordering documentation/overview of documentation

• Additional links to download documents

• Using documentation online (find and search in manuals/information)
If you have any questions regarding the technical documentation (e.g. suggestions,
corrections) then please send an e-mail to the following address:
mailto:docu.motioncontrol@siemens.com

My Documentation Manager (MDM)
Under the following link you will find information to individually compile OEM-
specific machine documentation based on the Siemens content:
MDM www.siemens.com/mdm

Training
For information about the range of training courses, refer under:
• SITRAIN www.siemens.com/sitrain - training courses from Siemens for

products, systems and solutions in automation technology

• SinuTrain www.siemens.com/sinutrain - training software for SINUMERIK

FAQs
You can find Frequently Asked Questions in the Service&Support pages
Product Support www.siemens.com/automation/service&support

SINUMERIK
You can find information on SINUMERIK under the following link:
www.siemens.com/sinumerik

http://www.siemens.com/motioncontrol/docu:
mailto:docu.motioncontrol@siemens.com
http://www.siemens.com/mdm
http://www.siemens.com/sitrain
http://www.siemens.com/sinutrain
http://www.siemens.com/automation/service&support
http://www.siemens.com/sinumerik

 Preface

4 Run MyVNCK, Reference
 Function Manual, 05/2013

Target group
This publication is intended for project engineers, programmers, technologists (of
machine manufacturers), and system startup engineers (of systems/machines).

Benefits
The Function Manual describes the functions so that the target group is familiar
with and can select them. It provides the target group with the information required
to implement the functions.

Utilization phase: Planning and configuration phase, implementation phase, setup
and commissioning phase

Standard version
Extensions or changes made by the machine manufacturer are documented by the
machine manufacturer.

Other functions not described in this documentation might be executable in the
control. This does not, however, represent an obligation to supply such functions
with a new control or when servicing.

Further, for the sake of simplicity, this documentation does not contain all detailed
information about all types of the product and cannot cover every conceivable case
of installation, operation or maintenance.

Technical Support
You can find telephone numbers for other countries for technical support in the
Internet under "Contact" www.siemens.com/automation/service&support.

SINUMERIK Internet address
http://www.siemens.com/sinumerik

http://www.siemens.com/automation/service&support.SINUMERIKInternetaddress
http://www.siemens.com/automation/service&support.SINUMERIKInternetaddress
http://www.siemens.com/automation/service&support.SINUMERIKInternetaddress
http://www.siemens.com/automation/service&support.SINUMERIKInternetaddress

Run MyVNCK, Reference
Function Manual, 05/2013 5

Contents

1 General Information...9

1.1 VNCK Version History ...9

1.2 VNCK Architecture...10

1.3 Installation and Deinstallation ..12

1.4 Installation Folders...13

1.5 Silent Installation..15

1.6 Documentation...16

1.7 Additonal Documentation for Developers ..17

2 System Characteristics ...19

2.1 Chronological Sequence of Program Processing....................................19

2.2 Asynchronous Communication Simulation <-> VNC Server20

2.3 Interfaces ...21
2.3.1 Single NCU Processing ..21
2.3.2 VPLC Processing..22
2.3.3 NCU Link Processing..23
2.3.4 License Handling ..24

2.4 Interface Function Return Values ..25

2.5 Freeze Handling in Simulation...25

2.6 Creating high performance traces ...25

3 Interface Functional Description..27

3.1 VNCK Boot and Shutdown ..27
3.1.1 General Information..27
3.1.2 Establishing the connection between controller and simulation...........27
3.1.3 Controller start-up...28
3.1.4 Controller Status Saving...31
3.1.5 Controller Status Refreshing ..33
3.1.6 Resetting the VNCK Kernel ..34
3.1.7 Controller Shutdown ...35
3.1.8 Initializing the Channel Axes Values ..36
3.1.9 Setting VNCK System Sleeptime ...37
3.1.10 Setting the VNCK Kernel Process State...38

3.2 VNCK Configuration services ..39
3.2.1 General Information..39

Contents

6 Run MyVNCK, Reference
 Function Manual, 05/2013

3.2.2 Retrieving the NC configuration..39
3.2.3 Retrieving the axes configuration ...40
3.2.4 Retrieving the VNCK Server Version ...41

3.3 Domain Data Management..42
3.3.1 General Information..42
3.3.2 Retrieving existing project directories...43
3.3.3 Retrieving a program list within a project directory...............................44
3.3.4 Transferring a project to the VNCK ..45
3.3.5 Transferring a program to a project directory46
3.3.6 Transferring a setting data file to VNCK...47
3.3.7 Copying a program from VNCK to a local folder48
3.3.8 Deleting a file in VNCK data management system...............................49
3.3.9 Obtaining information about multi-file transfer......................................50
3.3.10 Obtaining information about transfer status ...50

3.4 Variable Services...51
3.4.1 General Information..51
3.4.2 Reading Variables ..52
3.4.3 Writing Variables ..53
3.4.4 Watching Variables...54
3.4.5 Reading BTSS Variables..56

3.5 VDI Services ..57
3.5.1 General Information..57
3.5.2 Writing to the VDI Interface ..57
3.5.3 Reading from the VDI Interface..58
3.5.4 Handling FastIO via VDI Variables...59
3.5.5 Handling TSM mask in SINUMERIK Operate59

3.6 VDI Fast Input and Output Services ..62

3.7 VNCK Program Control by Slices ..64
3.7.1 General Information..64
3.7.2 Setting slice mode ..67
3.7.3 Setting freeze mode ...68
3.7.4 Processing the next slice..68
3.7.5 Controller freeze ...69
3.7.6 Timer Functions..69

3.8 NC Program Control Services ...71
3.8.1 Program selection...71
3.8.2 Program selection for external processing ...72
3.8.3 Enabling program execution...73
3.8.4 Stopping program execution...74
3.8.5 Resetting program execution..75

3.9 Extended Program Control Services ...77
3.9.1 General Info..77
3.9.2 Registering Patterns for Interpretation ...77
3.9.3 Executing registered NC commands..79
3.9.4 Enabling Path Interpolation ..81

3.10 Path Data Services ..82
3.10.1 Setting path data output option..82

 Contents

Run MyVNCK, Reference
Function Manual, 05/2013 7

3.10.2 Getting path data output events...84
3.10.3 Sending path output data...84
3.10.4 Handling Collision Limits..85
3.10.5 Setting Actual MCS Axes Positions ...86

3.11 Program Data Services..87
3.11.1 Setting program data output option..87
3.11.2 Program display ...88
3.11.3 User program message ...88
3.11.4 Beginning of a new motion...89
3.11.5 Single Axis Motion Management ...91
3.11.6 IPO Block Change ...92
3.11.7 Tool selection...93
3.11.8 Tool change ...94
3.11.9 Selecting a new tool offset ...95
3.11.10 ToolCarrier Selection ..96
3.11.11 Subroutine call ..96
3.11.12 Return from subroutine ...97
3.11.13 Workpiece...97
3.11.14 Fixture ...98
3.11.15 Fixed Stop and Measurement...99

3.12 Alarm Management ...103
3.12.1 Alarm occurred...103
3.12.2 Alarm deleted...104
3.12.3 Cancelling alarms...105

3.13 OEM Compile Cycles...106

3.14 Extended Services...106

3.15 EXTCALL...106

3.16 Reading / Writing values of Initial Parameters.......................................107
3.16.1 General Information ..107
3.16.2 Writing the value of an initial parameter ...108
3.16.3 Reading the value of an initial parameter ...109

4 VPLC Processing...111

4.1 VPLC Initializing and Shutdown...112
4.1.1 Establishing the Controller – Simulator Connection.............................112
4.1.2 Initializing VPLC Handling ..112
4.1.3 Providing VPLC IO Hardare Configuration...113
4.1.4 Terminating VPLC Handling ...113
4.1.5 Controlling CPU usage of the VPLC process.......................................113

4.2 VPLC Leds and Switches ..114
4.2.1 Reading VPLC Operation State..114
4.2.2 Watching VPLC Operation State ..114
4.2.3 Setting VPLC Switch ..115
4.2.4 Reading VPLC Switch ..115
4.2.5 Watching VPLC Operation States ..116

4.3 VPLC Progress Control ...117

Contents

8 Run MyVNCK, Reference
 Function Manual, 05/2013

4.3.1 Activating VPLC Synchronisation...117
4.3.2 Deactivating VPLC Synchronisation...117
4.3.3 VPLC Freeze ..118

5 NCU Link Processing ..119

5.1 Link System Initializing and Shutdown ..120
5.1.1 Establishing the Controller – Simulator Connection.............................120
5.1.2 Initializing the Link System ...121
5.1.3 Defining the NCU Units ..122
5.1.4 Controlling the NCU Startups ...123
5.1.5 Setting the Link State ...124
5.1.6 Terminating a Link Session ..125
5.1.7 Link System Startup via a VMF ..126

5.2 Link System Progress Controlling..127
5.2.1 Setting Link Slices ..127
5.2.2 Processing the next Slice ...128
5.2.3 Link Freeze...129

5.3 Link System Status Saving and Resetting...130
5.3.1 Saving the States of the Link Components ..130
5.3.2 Refreshing the States of the Link Components....................................131

5.4 Link NCU Managemant ...132
5.4.1 Requiring Simulation Callback Objects ..132
5.4.2 Establishing the Link NCU Controller – Simulator Connection.............133
5.4.3 Link NCU Controller start-up...134
5.4.4 Setting Link NCU Slice Mode ...135
5.4.5 Link NCU Controller Shutdown...135
5.4.6 Link NCU Controller Freeze ...136

6 VNCK License ..137

6.1 ISV License Checking..137

7 More General Information ...139

7.1 Preparation of the HMI Base System ..139
7.1.1 Enabling the OPC Data Access..139
7.1.2 Single NCU Setting...140
7.1.3 Link NCU Setting ..141

7.2 Languages ...141


Run MyVNCK, Reference
Function Manual, 05/2013 9

1 General Information

1.1 VNCK Version History
The VNCK system matches to a specific release version of the SINUMERIK
software. The following table gives an overview about VNCK version, SINUMERIK
release version, the internal NCK version, version of HMI-Advanced and
SINUMERIK Operate:

Tabelle 1-1: VNCK Version History

VNCK SINUMERIK NCK HMI-Advanced SINUMERIK Operate

 powerline
(pl)

solutionline
(sl)

1.6 7.4

2.4
1.4

67.05 07.30.23.01 -

1.6 SP1 7.4 1.4 SP1 HF1

2.4 SP1 HF2

67.07.03 07.30.23.04 -

1.6 SP2 7.4 1.4 SP1 HF3

2.4 SP1 HF5

67.07.06 07.30.23.04 -

2.1 7.4 1.5 HF5

2.5 HF2

72.06 07.30.46.00 -

2.6 - 2.6 SP1 HF1 78.05.04 07.50.22.01 02.06.01.01.008

2.6 SP1 - 2.6 SP1 HF3 78.06.03 07.50.22.01 02.06.01.07.002

4.4 - 2.7 SP1 HF3

4.4 SP1 HF3

83.03.07 07.60.59.05 04.04.01.03.001

4.4 SP1 - 2.7 SP2

4.4 SP2

83.04.06 07.60.59.06 04.04.02.00.013

4.5 - 4.5 SP1 87.04.04 07.60.59.06 04.05.01.00.020

4.5 SP1 - 4.5 SP2 87.09 07.60.59.06 04.05.02.00.029

1

1 General Information
1.2 VNCK Architecture

 Run MyVNCK, Reference
10 Function Manual, 05/2013

1.2 VNCK Architecture
The VNCK system consists of several components. To facilitate understanding the
simulator should be aware of the following:

There is a 'VNCK Server' that offers interfaces for all commands to the VNCK. This
expression refers to the cross compiled version of a real target SINUMERIK
840D sl system. The server handles operation with this kernel. Thus the simulator
need not know anything about the communication system between an HMI system
and this kernel. The server makes use of many original SINUMERIK 840D sl HMI
servers. This is a simple way of reducing new software development work and
ensuring correct handling of tested functionality.

Using Windows COM interfaces the simulator can call the VNC server and transmit
commands to the VNCK system. On the other side the VNC server calls interfaces
implemented on the simulation side to report the results of given commands as well
as data from program processing inside the VNCK.

SIMULATION

VNCK Server

VNCK

V
N
C
K

S
Y
S
T
E
M

Windows COM

 1 General Information
 1.2 VNCK Architecture

Run MyVNCK, Reference
Function Manual, 05/2013 11

The following picture gives a rough definition of the VNCK architecture. It shows
how the VNCK components communicate with each other and it defines which
components are delivered with the VNCK CD.

Fig. 1-1:VNCK CD content

Communication base between simNCK and VNCKServer:
The communication between simNCK and VNCKServer was reimplemented in
VNCK4.5 based on a combination of shared memory communication (data
exchange) and semaphores (event handling). This enhancement removes
limitations of older VNCK versions concerning e. g. a running Windows ICS service
or runtime problems with antivirus software. The modification is transparent to the
user.
If for any reason the old mechanism based on UDP communication needs to be re-
established, the following setting must be activated in theVNC.ini:

• [VNCK]
• CCSIM_COMMUNICATION=0

Removing this statement or using value 1 will enable the new mechanism.

Communication ports:
theVNC:

• Port 49999 is used to communicate between VNCKServer and simNCK
instances

simNCK:
• The ports 50000 – 50009 are used to communicate to VNCKServer
• Port 50000 is used with the first instance of simNCK
• The ports 50001 – 50009 are only used if VNCK is used with NCULink
• VNCK4.5 is released for a maximum of three NCUs running in link, thus

only the additional ports 50001 and 50002 are used

cp_840di
mcpdrv

Machine
Simulation

theVNC VMP

simNCK

49999 UDP

50000 UDP
…50009

7777
1xn

7778
1xn

7000 UDP
…7009

6000 UDP
…6009

shared memory COM

HMI base

VPLC

HMI adv

Diagnosis
Port 3843

TCP/UDP
n = dynamically created port numbers

Diagnose
Port 3845

Diagnosis
Port 3846

102
(RFC1006)

NCU0
…NCU9

SINUMERIK
Operate

Operate
Services

Virtual
Machine

VN
C

K
 C

D
 C

on
te

nt

1 General Information
1.3 Installation and Deinstallation

 Run MyVNCK, Reference
12 Function Manual, 05/2013

cp_840di:
• Port 102 is used to communicate with other CP instances via TCP

connection
• Port 3843 is used for diagnostics only (e.g. the ViewLog application)

mcpdrv:
• Port 5000 (not shown in Fig. 1-1) is used to register virtual machine control

panels via vmcp.dll
• The ports 6000 – 6009 are reserved for runtime communication between

mcpdrv and virtual machine control panel applications. Depending on the
availability of these ports the first free port will be used for communication.

• Port 3845 is used for diagnostics only (e.g. the ViewLog application.
VMP:

• The ports 7000 – 7009 are reserved for runtime communication between
mcpdrv and virtual machine control panel applications. Depending on the
availability of these ports the first free port will be used for communication.

• Port 3846 is used for diagnostics only (e.g. the ViewLog application).

1.3 Installation and Deinstallation
Start setup.exe from the VNCK CD. You can choose to install VNCK with runtime
components, OEM/ISV components or your custom component definition.

Runtime components are:

• VNCK
• Operate Services
• No VPLC
• No HMIBase services
• No Desktop Shortcuts
• No dongle driver
• No additional files for developers

OEM/ISV components are:

• VNCK
• Operate Services
• Desktop Shortcuts
• Dongle driver
• Additional files for developers
• No VPLC
• No HMIBase services

To uninstall VNCK use `Start → Settings → Control Panel → Add or Remove
Programs´ and choose uninstallation of VNCK V04.05.01.00.

 1 General Information
 1.4 Installation Folders

Run MyVNCK, Reference
Function Manual, 05/2013 13

1.4 Installation Folders
With VNCK version 4.5 the installation folders were modified according the
following list:

<InstallPath> Installation path of VNCK software

All binaries are stored in this folder. It must not be modified by
standard users.

<AllUsersPath> ISV/OEM specific folder

This folder shall contain license files and ISV/OEM specific
versions of theVNC.ini.

<UserPath> User specific folder

All temporary data of VNCK is stored here (in older versions of
VNCK identical to tmp folder in VNCK standard installation.

<HMIAdvPath> Installation path of HMI-Advanced software

<OperatePath> Installation path of SINUMERIK Operate software

The standard paths have different values depending on the operating system type.

Windows XP, 32bit:

<InstallPath>

C:\program files\Siemens\Sinumerik\VNCK\v4.5
This folder might be modified during installation.

<AllUsersPath> C:\Documents and Settings\All Users\Application
Data\Siemens\Sinumerik\VNCK\v4.5
Fixed Path

<UserPath> C:\Documents and Settings\<UserName>\Local
Settings\Application Data\Siemens\Sinumerik\VNCK\v4.5
Fixed Path

<HMIAdvPath> C:\HMIAdv
This folder might be modified during installation.

<OperatePath> C:\Siemens\Sinumerik\HMIsl\v4.5.2
This folder might be modified during installation.

The standard path for applications
(…\program files\...) must not be used!

1 General Information
1.4 Installation Folders

 Run MyVNCK, Reference
14 Function Manual, 05/2013

Windows XP, 64bit:

<InstallPath>

C:\Siemens\Sinumerik\VNCK\v4.5
This folder might be modified during installation.

The standard path for 32bit applications
(…\program files (x86)\...) must not be used!.

<AllUsersPath> C:\Documents and Settings\All Users\Application
Data\Siemens\Sinumerik\VNCK\v4.5
Fixed Path

<UserPath> C:\Documents and Settings\<UserName>\Local
Settings\Application Data\Siemens\Sinumerik\VNCK\v4.5
Fixed Path

<HMIAdvPath> C:\HMIAdv
This folder might be modified during installation.

<OperatePath> C:\Siemens\Sinumerik\HMIsl\v4.5.2
This folder might be modified during installation.

The standard path for 32 bit applications
(…\program files (x86)\...) must not be used!

Windows 7, 32bit

<InstallPath>

C:\program files\Siemens\Sinumerik\VNCK\v4.5
This folder might be modified during installation.

<AllUsersPath> C:\Program Data\Siemens\Sinumerik\VNCK\v4.5
Fixed Path

<UserPath> C:\Users\<UserName>\AppData\Local\Siemens\Sinumerik\
VNCK\v4.5
Fixed Path

<HMIAdvPath> C:\HMIAdv
This folder might be modified during installation.

<OperatePath> C:\Siemens\Sinumerik\HMIsl\v4.5.2
This folder might be modified during installation.

The standard path for 32 bit applications
(…\program files (x86)\...) must not be used!

 1 General Information
 1.5 Silent Installation

Run MyVNCK, Reference
Function Manual, 05/2013 15

Windows 7, 64 bit

<InstallPath>

C:\Siemens\Sinumerik\VNCK\v4.5
This folder might be modified during installation.

The standard path for 32bit applications
(…\program files (x86)\...) must not be used!

<AllUsersPath> C:\Program Data\Siemens\Sinumerik\VNCK\v4.5
Fixed Path

<UserPath> C:\Users\<UserName>\AppData\Local\Siemens\Sinumerik\
VNCK\v4.5
Fixed Path

<HMIAdvPath> C:\HMIAdv
This folder might be modified during installation.

<OperatePath> C:\Siemens\Sinumerik\HMIsl\v4.5.2
This folder might be modified during installation.

The standard path for 32 bit applications
(…\program files (x86)\...) must not be used!

1.5 Silent Installation
The VNCK setup supports silent installation.
To install VNCK in silent mode please call

setup.exe –OF:”<Path>\opfile.txt”

The opfile contains the information needed for silent installation. Please refer to the
doc folder in the installation path to find an example for the opfile structure.
The silent installation does not include an automatic reboot. This needs to be done
by the calling frame setup.

 Note

When running a silent setup on Windows 7 operating system an additional
confirmation might be necessary to begin with the installation process.

1 General Information
1.6 Documentation

 Run MyVNCK, Reference
16 Function Manual, 05/2013

1.6 Documentation
In folder <InstallPath>\doc you will find the following documentation files:

• VNCK_Reference.pdf (this document)
That's the user manual describing how to use the interface to VNCK and
there are information about the functions and their parameters.

• VNCK_Restrictions.pdf
This document describes the actual restrictions of the VNCK system.

• VNCK_ReleaseNotes.pdf
This document describes changes from the last VNCK version to the actual
version as well as additional information about new VNCK features. The
changes usually refer to new or changed interfaces or type definitions. The
modifications are caused by SINUMERIK 840D kernel functionality or
VNCK server behavior.

• VPLC_IO.pdf
This document describes the interface to the VPLC subsystem as well as a
basic understanding how this virtual VPLC component is working.

• ReadMe_OSS.pdf
This document describes license issues due to open source software used
in the VNCK software.

• ReadMeHMIAdvanced_OSS.pdf
This document describes license issues due to open source software used
in the software package HMI Advanced.

• ReadMeHMIOperate_OSS.pdf
This document describes license issues due to open source software used
in the software package SINUMERIK Operate.

• VNCK_server_versions.txt
File describing the versions of the components of the VNCK system.

• channelStateStopcond.txt
List of stop conditions of the NCK channel state.

• opfile.txt
Example file for silent installation.

• theVNC.ini
Example file for user specific theVNC.ini file.

• theVNC_ini.txt
Documentation of sections and entries of theVNC.ini.

• vmcp_dll.chm
• Interface documentation for Virtual Machine Control Panel interface

vmcp.dll.

• VNCKView_Description.pdf
Documentation of VNCKView utility.

 1 General Information
 1.7 Additonal Documentation for Developers

Run MyVNCK, Reference
Function Manual, 05/2013 17

1.7 Additonal Documentation for Developers
During installation of VNCK additional information for software developers can
be installed to folder <InstallPath>\sw.

Implementation of VNCK COM interface
Following files describe the VNCK COM interface and can be processed by a MIDL
compiler:

• idl files
• theVNC.idl
• vncDefines.idl
• vncTypes.idl

As an alternative the executable 'theVNC.exe' can be imported.

Following files describe error and warning code definitions, enums and structs used
in the VNCK COM interface:

• vncDefinesBase.h
• vncEnumsBase.h
• vncTypesBase.h

 Note

The file “vncDefines.idl” describes all error codes generated by VNCKServer and
HMI Services used in VNCK and the NCK kernel.

Implementation of VPLC interface:
Following files describe the standard C interface to a shared memory provided by
VPLC containing the I/O data VPLC uses to communicate with simulated
peripheral devices:

• vplc.h
• vplc_def.h
• vplc_io.h

The required lib/dll files are:

• iVPLC.lib
• iVPLC.dll

Implementation of a virtual machine control panel (vMCP):

• vmcp_int.h The file describes the interface to create a virtual machine
control panel.

• vmcp.dll Is the required dll file.

1 General Information
1.7 Additonal Documentation for Developers

 Run MyVNCK, Reference
18 Function Manual, 05/2013




Run MyVNCK, Reference
Function Manual, 05/2013 19

2 System Characteristics

2.1 Chronological Sequence of Program Processing
All events arising from the processing of a part program inside the VNCK have a
common parameter 'Virtual Time Stamp'. This 'stamp' describes the virtual real
time when the corresponding data or information are generated or become active.
Since the VNCK is built up from the same software modules as a real target
machine executable program, the VNCK internal clock is implemented in the same
way. There are several counters inside the VNCK. In combination with the machine
data of the IPO cycle time it is possible to compute the above-mentioned time
stamp as a value representing an original real clock value. Depending especially
on the parameterizing of the program process control, in most cases the VNCK will
work much faster than a real machine. But in some cases, for example when each
fine IPO cycle reports actual values to the simulator, it may take more time to run a
program. But in all cases the simulator can assign the VNCK-produced data and
information via the time stamp to a time in real life of program processing.

2

2 System Characteristics
2.2 Asynchronous Communication Simulation <-> VNC Server

 Run MyVNCK, Reference
20 Function Manual, 05/2013

2.2 Asynchronous Communication Simulation <-> VNC Server
Generally communication between the simulator and the VNCK system is handled
asynchronously in both directions. This means no application has to wait for the
result of a command inside the function call. Commands to the server
(VNCFunction (...)) are taken over by the server and, after a quick parameter
check, are returned immediately. After a further check the VNC server works on the
command eventually using further HMI servers and / or the VNCK kernel. This
work is finished in calling the simulation interface (SIMFctResponse (...)). In the
same way the simulator has to work on the data the VNCK system is reporting.

Simulation

Worker

Worker

ISIMCallback

ISIMCallback

VNC Server VNCK

IVNCServer

Worker

Worker

SimManager

SimManager

SIMEvent (...)

SIMFctResponse (...Id)

VNCFunction (..., &Id)

Event (...)

time

Figure 2-1: Asynchronous Communication Simulation <-> VNC Server

Nearly all VNCFunction(…) calls return an identifier by setting &Id. This identifier
can be used to assign simulation callbacks to previously sent VNCK commands. In
very few cases the VNCK server works synchronously. Then a special warning
code is return by VNCFunction(…) to notify the simulation that no response
callback will be sent.

 2 System Characteristics
 2.3 Interfaces

Run MyVNCK, Reference
Function Manual, 05/2013 21

2.3 Interfaces
The next chapters describe groups of interfaces that are used to handle different
use cases or VNCK facilities that can be used to simulate the real world as well as
possible.

Nowadays it is possible to combine ISV license handling as well with a single NCU
processing environment as with NCU link systems.

VPLC processing can actually only be used with a single NCU processing
environment.

2.3.1 Single NCU Processing
IVNCServer / ISIMCallback, ISIMCallback_ext, ISIMCallback_sa

These interfaces are used by simulation when there is a single NCU to be
controlled by the VNCK system.

 Figure 2-2: Single NCU Processing

 IVNCServer

ISIMCallback

ISIMCallback ext

ISIMCallback sa

Simulation

VNCK VNCK Kernel

2 System Characteristics
2.3 Interfaces

 Run MyVNCK, Reference
22 Function Manual, 05/2013

2.3.2 VPLC Processing
IVPLC / ISIMVPLCCallback / iVPLC.dll, vmcp.dll

The interfaces IVPLC and ISIMVPLCCallback allow simulation to access and
control a VPLC instance inside the VNCK system. In addition to the COM
interfaces there are additional dll files. ‘iVPLC.dll’ enables simulation to
synchronize simulation and VPLC directly in view of a common data IO interface
memory. ‘vmcp.dll’ offers methods for implementing a virtual control panel.

 Figure 2-3: VPLC Processing

 ISIMCallbackSimulation

VNCK

 VNCK Kernel

ISIMVPLCCallback

ISIMCallback sa

ISIMCallback ext

 IVPLC

 IVNCServer

 VPLC

iVPLC.dll

Vmcp.dll

 2 System Characteristics
 2.3 Interfaces

Run MyVNCK, Reference
Function Manual, 05/2013 23

2.3.3 NCU Link Processing
IVNCLinkServer / ISIMLinkCallback

IVNCNcuServer / ISIMNcuCallback, ISimLinkNcuFactory

The interfaces IVNCLinkServer and the according ISIMLinkCallback are used to
handle link units as control instances of the NCU units that are synchronized via
ncuLink. The interfaces IVNCNcuServer and ISIMNcuCallback are used for the
extended and changed functions of NCU units of a link system instead of single
NCUs running without ncuLink synchronization. For simulation comfort startup of a
link system another callback interface ISimLinkNcuFactory is necessary. The
following picture shows the possible configuration of a link unit with two NCU units.

 Figure 2-4: NCU Link Processing

Simulation

VNCK

 IVNCLinkServer

 IVNCNcuServer 1

 VNCK Kernel 2

ISIMCallback 2 ISIMCallback 1

 IVNCServer 1

 IVNCNcuServer 2

 IVNCServer 2

ISIMLinkNcuFactory ISIMCallback sa 1

ISIMCallback ext 1

ISIMNcuCallback 1

ISIMCallback sa 2

ISIMCallback ext 2

ISIMNcuCallback 2 ISIMLinkCallback

 VNCK Kernel 1

2 System Characteristics
2.3 Interfaces

 Run MyVNCK, Reference
24 Function Manual, 05/2013

2.3.4 License Handling
ISIMCallbackLicense

This interface will be used to fulfill license requirements with ISV customers of the
VNCK system.

Figure 2-5: License Handling

 ISIMCallbackSimulation

VNCK VNCK Kernel

ISIMCallbackLicense

ISIMCallback sa

ISIMCallback ext

 IVNCServer

 2 System Characteristics
 2.4 Interface Function Return Values

Run MyVNCK, Reference
Function Manual, 05/2013 25

2.4 Interface Function Return Values
If no error has occurred performing a command or request function of an interface
to the VNCK system the function returns a value 0 (zero). Otherwise a return code
described in the file 'vncDefinesBase.h' is returned. This file resides in the directory
'…/vnck/sw'.

 Note

Several of the interface functions return a positive value not zero to advise
simulation to either a function specific behaviour or to the fact that a usually
corresponding callback function will not be issued since this function works
synchronously.

2.5 Freeze Handling in Simulation
The communication between VNCKServer and an external simulation application
during simulation runtime is based on a combination of VNCRun and SIMFreeze
calls. One base rule when imeplementing the VNCK COM Interface is that each
SIMFreeze call sent to simulation must be answered immediately with a VNCRun.

The same applies for working with the link interface. Each call of SIMLinkFreeze
must be answered with VNCLinkRun.

2.6 Creating high performance traces
The trace mechanism of VNCK was re-engineered in version VNCK4.5. Different to
older versions, trace information is now stored in a temporary shared memory file.
A separate process started by ATraceGui.exe (found in VNCK installation folder)
reads the shared memory content and writes it to a log file.
The performance of the new mechanism enables users to create traces parallel to
simulation. Problems and failures in VNCK, which were hard to track in the past,
now can be traced more easily.
The new features needs to be enabled as follows:

• Entries in theVNC.ini
[GLOBAL]
trace_target=1

• Start ATraceGui.exe
• Click “start Writer” in ATraceGui.exe
• Minimize ATraceGui.exe

The existing setting trace_server in theVNC.ini is still valid and defines, which data
is sent to the trace mechanism.

2 System Characteristics
2.6 Creating high performance traces

 Run MyVNCK, Reference
26 Function Manual, 05/2013

The GUI of ATraceGui.exe provides some additional settings to define:
• How many trace files are to be created as ring-buffer.
• How much data is stored to one trace file.
• In which time frames the shared memory content is transferred to the trace

files.


Run MyVNCK, Reference
Function Manual, 05/2013 27

3 Interface Functional Description

The following chapters describe the API functions related to the VNCK server as
well as the event functions of the callback interfaces.

VNCK server functions are marked by a prefix 'VNC' (e.g. VNCBoot(...)). Callback
functions are marked by a prefix 'SIM' (e.g. SIMBootResponse(...)).

Asynchronous function calls to the VNCK system return “[out] long * plActionId“ as
their last parameter, which represents an identifier to any callback function returned
by VNCK server.

3.1 VNCK Boot and Shutdown

3.1.1 General Information
As the VNCK is built from the identical software as a SINUMERIK 840D sl control-
ler it can be configured in the same way as a real machine. Thus original machine
data sets as well as setting data sets, definition files and cycles from a user ma-
chine can be used. There are different modes of booting the VNCK with those data
files.

3.1.2 Establishing the connection between controller and simulation

Synchronous service
VNCSetSIMInterface
(
ISIMCallback* pSim,
ISIMCallback_ext* pSim_ext,
ISIMCallback_sa* pSim_sa
ISIMCallbackLicense* pSimLicense
);

Parameters
pSim basic callback interface
pSim_ext extended callback interface
pSim_sa callback interface based on safeArray definition
pSimLicense callback interface for license management

3

3 Interface Functional Description
3.1 VNCK Boot and Shutdown

 Run MyVNCK, Reference
28 Function Manual, 05/2013

Description
VNCSetSIMInterface() must be called to initialize the instantiate VNCK server and
to establish the COM connection between VNCK server and simulation.
Simulation must send valid pointers to simulation internal callback functions for

• Basic callback functions like e.g. SIMBootResponse
• Extended callback functions like e.g. SIMRegisterCommandResponse
• SafeArray based callback functions, which are used mainly in VisualBasic

and C# to return list based callbacks based on safeArray definition
• License callback functions when using the ISV license mechanism

 Note

VNCSetSIMInterface is a synchronous function call to VNCK server. It returns a
positive value to sign a successful connection to VNCK server.

3.1.3 Controller start-up

Asynchronous service
VNCBoot
(
BSTR sNcuName,
VNCBootType_t tBootType,
BSTR sBootDataPath,
long * plActionId
);

Event
SIMBootResponse
(
VNCResult_t* ptResult,
long lActionId
);

Parameters
sNcuName name of the VNCK kernel NCU to handle
tBootType type of initialization data
sBootDataPath path to initialization data
ptResult result of the boot call
[p]lActionId identifier to callback functions

Description
VNCBoot starts the VNCK boot sequence. Depending on the type (VNCBoot-
Type_t) of initialization data the VNCK will initiate its boot sequence based on

• an archivefile coming from a real machine tool (VNC_BOOTTYPE_IBN)
• an previously generated SRAM file (VNC_BOOTTYPE_SRAM)
• a minimal machine configuration (VNC_BOOTTYPE_SIM_DATA)

 3 Interface Functional Description
 3.1 VNCK Boot and Shutdown

Run MyVNCK, Reference
Function Manual, 05/2013 29

VNC_BOOTTYPE_IBN:
VNCK will boot based on an archive file retrieved from a real machine tool. Like
with the real machine, this will take some time due to intermediate reboot actions
depending on the complexity of the archive file.
The location of the archive file is given by parameter sBootDataPath.

VNC_BOOTTYPE_IBN_CC:
Same behaviour like with boot type VNC_BOOTTYPE_IBN. Additionally OEM
compile cycles are added to the boot sequence. These compile cycles must be
stored to a folder named “cc.dir” parallel to the archive file and need to be named
with extension “.elf”.

VNC_BOOTTYPE_SIM_DATA:
VNCK will boot based on a minimal configuration. Additional boot files can be
stored in a boot folder given by sBootDataPath. These files can be initialization files
(“*.ini”), definition files (“*.def”) and cycles (“*.spf”).
An “initial.ini” file the basic configuration of the machine data set.
A “to_ini.ini” file is used to configure all dynamic datalike tool data, R parameters,
zero offsets and user data defined by GUD variables and system parameters.
“*.spf” files hold subprogram or cycle G code and are downloaded during the boot
sequence to the VNCK internal Siemens cycle directory “cst.dir”.
“*.gud” and “*.mac” files hold variable and macro definitions and are downloaded
during the boot sequence to the VNCK internal Siemens definition directory
“def.dir”.

VNC_BOOTTYPE_SIM_DATA_CC:
Same behaviour like with boot type VNC_BOOTTYPE_SIM_DATA. Additionally
OEM compile cycles are added to the boot sequence. These compile cycles must
be stored to a folder named “cc.dir”, which is a subfolder in the boot folder and
need to be named with extension “.elf”.

Once the boot sequence based on archive files or minimal configuration is suc-
cessfully finalized, it is possible to store a so-called SRAM file, which contains a bi-
nary representation of the actual controller state of VNCK. Further on these SRAM
files can be used to boot the VNCK system, which is much faster compared to
booting based on archive files.
The typical usecase for simulation applications is to boot only from SRAM files.
Booting from archive or based on minimal configuration basically represents the
authoring step to get a valid SRAM file.

VNC_BOOTTYPE_SRAM:
VNCK will boot based on a binary representation of the VNCK controller state, the
so-called SRAM file. The path to the SRAM file is given with parameter sBoot-
DataPath.

VNC_BOOTTYPE_SRAM_CC:
Same behaviour like with boot type VNC_BOOTTYPE_SRAM. Additionally OEM
compile cycles are added to the boot sequence. These compile cycles must be
stored to a folder named “cc.dir” parallel to the SRAM file and need to be named
with extension “.elf”.

VNC_BOOTTYPE_SRAM_SAVE:
Same behaviour like with boot type VNC_BOOTTYPE_SRAM. Once the API func-
tion VNCShutdown is called, the actual controller state will be stored to the SRAM
file, which originally was used to boot VNCK.

3 Interface Functional Description
3.1 VNCK Boot and Shutdown

 Run MyVNCK, Reference
30 Function Manual, 05/2013

The parameter sNcuName is internally used to communicate with HMI services.
When working with VNCK stand-alone the name VNCK is used. When working with
VNCK plus VPLC the name VNCKVPLC is used.

Once the boot sequence is finalized the event SIMBootResponse is issued by
VNCK server. Before SIMBootResponse is sent additional events will be generated
by VNCK server. This are basically:

• SIMVNCConfig giving basic information on the NCK system
• SIMChannelConfigChanged sending axis information for each channel of

the running VNCK system (depending on the complexity of archive/SRAM).

In VNCK4.5 additional timeout values were introduced to the Global section of
theVNC.ini:

• timeout_all_booting_sram defines the maximum time between VNCBoot
and SIMBootResponse, when booting with boottype
VNC_BOOTTYPE_SIM_DATA and VNC_BOOTTYPE_SRAM

• timeout_all_booting_arc defines the maximum time between VNCBoot and
SIMBootResponse, when booting with boottype VNC_BOOTTYPE_IBN

 Note

Since an SRAM file is a binary representation of the VNCK controller state, the
SRAM file must only be used with the same version of VNCK it was generated
with.
VNCK will check the version information of an SRAM file and sends error
VRV_BOOT_WRONG_VNCK_VERSION, if versions are not matching.
Also the NCK software will check whether the SRAM file was created with the
same version. It will create an NCK alarm message, if it doesn’t match.

To be able to use boot type VNC_BOOTTYPE_IBN a SINUMERIK 840D sl ar-
chive file is needed. It must only contain NC archive information. Additional ar-
chive data for PLC, drives or user data will cause errors.

 Note

SIMBootResponse will send a value
VRV_PROGRAM_STARTED_AND_RUNNING_INSIDE_BOOTING,
if NC programs or cycles were started during boot phase, but haven’t finished
until the end of the boot phase.

 Note

If ShopMill or ShopTurn is used on the particular Machine a special compile cycle
machgen.elf must be loaded to ensure back and forth compilation of JobShop
programs. The compile cycle is delivered in folder:
<InstallPath>\ncRoot\siemens\sinumerik\cycles\oa
To boot VNCK including this compile cycle the according xx_CC boot options
must be used.

 3 Interface Functional Description
 3.1 VNCK Boot and Shutdown

Run MyVNCK, Reference
Function Manual, 05/2013 31

 Note

When preparing an NC archive to run with VNCK it must be assured that the fol-
lowing MDs show the same value. This applies for all axes AXn in the archive file.
N30110 $MA_CTRLOUT_MODULE_NR[0,AXn]
N30220 $MA_ENC_MODULE_NR[0,AXn]
N30220 $MA_ENC_MODULE_NR[1,AXn]

3.1.4 Controller Status Saving

Asynchronous service
VNCSaveData
(
VNCSaveData_t tSaveMask,
BSTR sFileName,
long * plActionId
);

Event
SIMSaveDataResponse
(
VNCResult_t* ptResult,
long lActionId
);

Parameter
ptResult Resulting value of function
tSaveMask identification of data to save
sFileName name of destination file
[p]lActionId Identifier to callback functions

Description
Depending on the type of booting by a SRAM file or a startup archive or independ-
ent of this way the actual state of the complete VNCK or single parts of data of the
simulation machine will be saved for future startups of the VNCK. The parameter
tSaveMask described which data of the actual running VNCK kernel has to be
stored.

The function returns some particular error codes, if the given sFileName is invalid
or empty.

VNC_SAVEDATA_SRAM:
Using this value either the complete state of the last shutted down VNCK kernel or
the state of the actual running VNCK kernel is stored to a file ‘vmfSim.dat’. This is a
‘zip’ file that contains several file representing the NCU state. You can use this file
to a further VNCBoot() call with a boot mode VNC_BOOTBASICTYPE_SRAM.

3 Interface Functional Description
3.1 VNCK Boot and Shutdown

 Run MyVNCK, Reference
32 Function Manual, 05/2013

VNC_SAVEDATA_IBN:
Using this value the VNCK server asks the HMI archive server to build a startup
archive file from the running VNCK kernel machine. This file is stored in the VNCK
directory as ‘archiveSim.arc’. You can use this file to a further VNCBoot() call with
a boot mode VNC_BOOTBASICTYPE_IBN.

In VNCK4.5 additional timeout values were introduced to the Global section of
theVNC.ini:
· timeout_all_saving_sram defines the maximum time between VNCSaveData
and SIMSaveDataResponse, when storing with type VNC_SAVEDATA_SRAM
· timeout_all_saving_arc defines the maximum time between VNCSaveData and
SIMSaveDataResponse, when storing with type VNC_SAVEDATA_IBN.

 Note

In the case of using VNC_SAVEDATA_SRAM after shutting down the NCU
kernel this function is implemented as a synchronous function. Therefore no
actionId is returned and the response event is not fired. There is a warning value
notifying the synchronous processing.

An event SIMKernelResetEvent() with a parameter
VNC_KERNEL_RESET_EVENT_SAVEDATA_SRAM is fired to notify simulation
about a kernel reset occurring processing the request.

 Note

VNCSaveData will be ignored, if slice mode VNC_SLICEMODE_NOT_INCYCLE
is active. The error SYSTEM_ACTIVE_WITH_NOT_INCYCLE will be sent in this
case. Before using VNCSaveData VNC_SLICEMODE_NOT_INCYCLE must be
deactivated manually.

 Note

Creation of archive files may take longer than ten minutes depending on the
system resources of your computer.

 Note

Make sure that there is enough disk space to save the data. It is recommended to
have at least 3 times the size of an SRAM file available on the disk.
This applies for the C drive as well as for the target drive. The C drive is used to
temporarily store the data before moving it to the target drive.

 3 Interface Functional Description
 3.1 VNCK Boot and Shutdown

Run MyVNCK, Reference
Function Manual, 05/2013 33

3.1.5 Controller Status Refreshing

Asynchronous service
VNCMatchData
(
BSTR sMachineName, = NULL; not yet used
VNCMatchData_t tRefreshMask,
long * plActionId
);

Event
SIMMatchDataResponse
(
VNCResult_t* ptResult,
long lActionId
);

Parameter
ptResult Resulting value of function
sMachineName name of the VNCK machine to handle
tRefreshMask identification of data to refresh
[p]lActionId Identifier to callback functions

Description
Using VNCMatchData the VNCK will be updated by the dates and values of the
described machine. Depending on the mask different dates, i.e. machine data, tool
data, guides, cycles, ..., types will be attached

VNC_MATCHDATA_SRAM:
Using this value the complete state of the running VNCK is updated from a stored
SRAM file ‘vmfSim.dat’. This method prevents simulation from shutting down and
rebooting a VNCK system to restore a VNCK state.

 Note

Until now only the value VNC_MATCHDATA_SRAM can be used. Furthermore
the NCU had to be booted with a bootType VNC_BOOTBASICTYPE_SRAM.

An event SIMKernelResetEvent() with a parameter
VNC_KERNEL_RESET_EVENT_MATCHDATA_SRAM is fired to notify
simulation about a kernel reset occurring processing the request.

 Note

VNCMatchData will be ignored, if slice mode VNC_SLICEMODE_NOT_INCYCLE
is active. The error SYSTEM_ACTIVE_WITH_NOT_INCYCLE will be sent in this
case. Before using VNCMatchData VNC_SLICEMODE_NOT_INCYCLE must be
deactivated manually.

3 Interface Functional Description
3.1 VNCK Boot and Shutdown

 Run MyVNCK, Reference
34 Function Manual, 05/2013

3.1.6 Resetting the VNCK Kernel

Asynchronous service
VNCResetKernel
(
long * plActionId
);

Event
SIMResetKernelResponse
(
VNCResult_t* ptResult,
long lActionId
);

SIMKernelResetEvent
(
VNCKernelResetEventReason_t tReason
);

Parameter
ptResult Result of resetting the VNCK kernel
tReason Reason for resetting
[p]lActionId Identifier to callback function

Description
Calling VNCResetKernel() causes a ‘warmboot’ of the VNCK kernel. Thus alarms
requiring this action can be deleted or downloaded data requiring this action can
become active. The event SIMKernelResetEvent is always fired whenever the
VNCK server detects the kernel has (re-) booted on simulations request. There are
several other reasons than VNCResetKernel() that can cause the event. The value
of tReason reports the reason for SIMKernelResetEvent().

 Note

VNCResetKernel behaviour is different to VNCK2.1 and older. Between VNCRe-
setKernel and SIMResetKernelResponse SIMFreeze events may appear, which
must be answered with VNCRun.

 3 Interface Functional Description
 3.1 VNCK Boot and Shutdown

Run MyVNCK, Reference
Function Manual, 05/2013 35

3.1.7 Controller Shutdown

Asynchronous service
VNCShutdown
(
long * plActionId
);

Event
SIMShutdownResponse
(
VNCResult_t* ptResult,
long lActionId
);

Parameter
ptResult Resulting value of shut down
[p]lActionId Identifier to callback functions

Description
Shuts down the virtual controller. The VNCK Server will continue to exist after the
shutdown. By calling VNCBoot a new VNCK can be booted.

In VNCK4.5 an additional timeout value was introduced to the Global section of
theVNC.ini:

• timeout_all_shutting defines the maximum time between VNCShutdown
and SIMShutdownResponse, when storing with type
VNC_SAVEDATA_SRAM.

 Note

After calling VNCShutdown the VNC COM interface must be re-initialized by call-
ing VNCSetSIMInterface before calling the next VNCBoot.

3 Interface Functional Description
3.1 VNCK Boot and Shutdown

 Run MyVNCK, Reference
36 Function Manual, 05/2013

3.1.8 Initializing the Channel Axes Values

Asynchronous service
VNCSetInitialChanAxesValues
(
long lChannel,
VNCCoordSys_t tCoordSys,
long lNumber,
long * plChanAxIndex,
double * pdInitialChanAxValue,
long * plActionId
);

Event
SIMSetInitialChanAxesValuesResponse
(
VNCResult_t* ptResult,
long lActionId
);

Parameter
ptResult Resulting value of function
tCoordSys Type of axes values coordinate system
lNumber Number of following axes values
plChanAxIndex Array of channel axes indexes
pdInitialChanAxValue Array of initial axes values
[p]lActionId Identifier to callback functions

Description
Using this function the simulation is able to initiate the channel axes to matching
values inside all limits of restrictions. This feature can be seen as a substitute of a
reading of actual axes positions.

 Note

There is another version of this function:
VNCSetInitialChanAxesValuesSa (...);

 Note

VNCSetInitialChanAxesValues will send a value
VRV_AXIS_NOT_REFERENCED, if it is called and at least one channel axis has
not reached its reference position. This signs that setting the axis value for this
axis will probably fail.

 3 Interface Functional Description
 3.1 VNCK Boot and Shutdown

Run MyVNCK, Reference
Function Manual, 05/2013 37

3.1.9 Setting VNCK System Sleeptime

Synchronous service
VNCSetLtcSleepTime
(
long lSleepTime
);

Parameter
lSleepTime SleepTime parameter

Description
Using this function it is possible to activate a VNCK process sleep. Thus other ap-
plications are able to use processor idle time. Nevertheless the VNCK processes
are not parameterized with a higher process priority or class. They only uses the
idle time that windows OS distributes. The sleep call inside the VNCK system is ac-
tivated whenever the kernel process notifies itself to the server when no other
events are sent, f. e. those events describing a part program being processed. This
watchdog function is parameterized by the LIFETIMECHECK entry of [VNCK] sec-
tion in the VNC.ini file.

 Note

In fact, this function is implemented as a synchronous function. Therefore a warn-
ing value is returned to the request to advise to this behavior.

3 Interface Functional Description
3.1 VNCK Boot and Shutdown

 Run MyVNCK, Reference
38 Function Manual, 05/2013

3.1.10 Setting the VNCK Kernel Process State

Synchronous service
VNCSetKernelProcessState
(
VNCKernelProcessStateType_t tKernelProcessState
);

Parameter
tKernelProcessState Process state active / idle

Description
Using this function the VNCK kernel process can be idled. If no part program is
processed and no other commands have to be executed on the kernel process it
may be helpful to idle the VNCK kernel process to spend all the time this process -
it always runs - to other applications.

 Note

In fact, this function is implemented as a synchronous function. Therefore a warn-
ing value is returned to the request to advise to this behavior.

 3 Interface Functional Description
 3.2 VNCK Configuration services

Run MyVNCK, Reference
Function Manual, 05/2013 39

3.2 VNCK Configuration services

3.2.1 General Information
Within the boot sequence the VNCK will send events to the simulator transmitting
the VNCK configuration with regard to the general kernel configuration as well as to
all channel settings.

3.2.2 Retrieving the NC configuration

Asynchronous service
VNCGetVNCConfig
(
long * plActionId
);

Event
SIMVNCConfig
(
VNCResult_t* ptResult,
VNCVersion_t* ptVersionBooted,
long lNumChannels,
double dIpoCycleTime,
long lActionId
);

Parameters
ptResult Resulting value
ptVersionBooted booted VNCK version
lNumChannels the current number of channels
dIpoCycleTime VNCK IPO cycle time in milliseconds
[p]lActionId Identifier to callback functions

Description
Before responding to the VNCBoot order the VNCK will inform the simulator about
several VNCK basic data via the event SIMVNCConfig. The action identifier should
refer to the boot function action identifier. The ptVersionBooted parameter
describes the version of the original SINUMERIK 840D sl Controller.

Calling VNCGetVNCConfig() will respond with the event SIMVNCConfig, too.

3 Interface Functional Description
3.2 VNCK Configuration services

 Run MyVNCK, Reference
40 Function Manual, 05/2013

3.2.3 Retrieving the axes configuration

Asynchronous service
VNCGetChannelConfig
(
long lChannel,
long * plActionId
);

Event
SIMChannelConfigChanged
(
VNCResult_t* ptResult,
double dVirtTime,
long lChannel,
BSTR sChannelName,
long lNumber,
VNCAxisConfDataArray_t* ptAxisConfData,
long lActionId
);

Parameters
ptResult Resulting value of shut down
tVirtTime Time stamp
lChannel the required or current channel
sChannelName the logical name of the channel
lNumber the number of channel axes data sets
ptAxisConfData array of channel axes data sets
lActionId Identifier of the event function

Description
With this call, the simulator determines the kinematic configuration of the VNCK
during the booting process at first and during the program execution every time the
configuration changes (for example if any axes leave or change the channel). This
tells the simulator how many axes have been configured, as well as the corre-
sponding axis types, the values of the software limit switches, and the names of the
individual axes. The simulator can then use this information to assign the VNCK
axes to the axes of its internal kinematic model. This event is sent during the boot
sequence for each channel.

Calling VNCGetChannelConfig () will result in the same response events as sent
while booting the NCU.

 Note

There is another version of the event:
SIMChannelConfigChangedSa (...);

 3 Interface Functional Description
 3.2 VNCK Configuration services

Run MyVNCK, Reference
Function Manual, 05/2013 41

3.2.4 Retrieving the VNCK Server Version

Synchronous service
VNCGetServerVersion
(
VNCVersion_t * ptVersionServer,
long * plDevNr
);

Parameters
ptVersionServer Server version
plDevNr VNCK development number

Description
The function can be called at any time to retrieve the version of the VNCK server.

 Note

In fact, this function is implemented as a synchronous function. Therefore a
warning value is returned to the request to advise to this behavior.

3 Interface Functional Description
3.3 Domain Data Management

 Run MyVNCK, Reference
42 Function Manual, 05/2013

3.3 Domain Data Management

3.3.1 General Information
Depending on the history the term 'project' will be used to describe the place where
part programs and data belonging to the machining of a work piece are stored. In
an 840D sl HMI context the term 'work piece directory' is used. Internally the 'pro-
jects' are represented by 'work piece directories'. The term 'file' is often used to de-
scribe all the data objects representing part programs or nc data.

Description of variable transfer info mode
If files are transferred between the VNCK Server on the simulation side and VNCK
as the machine, it is possible to set the mode of information. The simulator can or-
der one event describing the result of the complete transfer of all files or of each
single file at its end. Otherwise the simulator will receive several events describing
the actual state of each single transfer described by an perceptual value.

typedef enum { VNC_FILETRANSFER_ALL_CLOSED,
 VNC_FILETRANSFER_SINGLE_CLOSED,
 VNC_FILETRANSFER_OPEN }
VNCTransInfoMode_t;

 3 Interface Functional Description
 3.3 Domain Data Management

Run MyVNCK, Reference
Function Manual, 05/2013 43

3.3.2 Retrieving existing project directories

Asynchronous service
VNCGetProjectList
(
long * plActionId,
);

Event
SIMGetProjectListResponse
(
VNCResult_t* ptResult,
long lNumber,
BSTR * psProjects,
long lActionId
);

Parameters
ptResult Resulting value
lNumber Number of project names
psProjects Array of path names of exist. project directories
[p]lActionId Identifier to callback functions

Description
Retrieves the list of project directories that exist in a project management directory.
These are all the work piece directories.

 Note

There is another version of this event:
SIMGetProjectListResponseSa(...);

3 Interface Functional Description
3.3 Domain Data Management

 Run MyVNCK, Reference
44 Function Manual, 05/2013

3.3.3 Retrieving a program list within a project directory

Asynchronous service
VNCGetProgramList
(
BSTR sNcProjectName,
long * plActionId
);

Event
SIMGetProgramListResponse
(
VNCResult_t* ptResult,
long lNumber,
BSTR * psProgramNames,
long * psProgramSizes,
BSTR * psProgramDates,
long lActionId
);

Parameters
ptResult Resulting value
sNcProjectName Name of project directory
lNumber Number of program names
psProgramNames Array of names of existing programs
psProgramSizes Array of sizes of existing programs
psProgramDates Array of date information of existing programs
[p]lActionId Identifier to callback functions

Description
Retrieves the list of files / programs that exist in a project directory.

 Note

There is another version of this event:
SIMGetProgramListResponseSa (...);

 3 Interface Functional Description
 3.3 Domain Data Management

Run MyVNCK, Reference
Function Manual, 05/2013 45

3.3.4 Transferring a project to the VNCK

Asynchronous service
VNCPutProject
(
BSTR sProjectPathSource,
BSTR sNcProjectNameDest,
VNCTransInfoMode_t tTransInfoMode,
long * plActionId
);

Event
SIMPutProjectResponse
(
VNCResult_t* ptResult,
BSTR sNcProjectPath
long lActionId
);

Parameters
ptResult Resulting value
sProjectPathSource File path of source project
sNcProjectNameDest File path of destination project
tTransInfoMode Mode of information
sNcProjectPath VNCK internal project path
[p]lActionId Identifier to callback functions

Description
Transfers a project directory to the VNCK project management directory. If the
name of the destination project is not specified (String of length 0), either a default
name will be used or the work piece name from the source path is used. Otherwise
the destination name must have the extension ‘.wpd’. Any existing project of the
same name will be overwritten.
After checking the parameters and the actual status of VNCK the response event
will either report success or failure of a closed transfer or the event will deliver an
ID identifying the data transfer. SIMTransferFileStatus() will send events for the
status and finishing of transfer.

3 Interface Functional Description
3.3 Domain Data Management

 Run MyVNCK, Reference
46 Function Manual, 05/2013

3.3.5 Transferring a program to a project directory

Asynchronous service
VNCPutProgram
(
BSTR sProgramPathSource,
BSTR sNcProgramPathDest,
VNCTransInfoMode_t tTransInfoMode,
long * plActionId
);

Event
SIMPutProgramResponse
(
VNCResult_t* ptResult,
BSTR sNcProgramPath
long lActionId
);

Parameters
ptResult Resulting value
sProgramPathSource File path and name of source file
sNcProgramPathDest Destination directory
tTransInfoMode Mode of information
sNcProgramPath VNCK internal program path
[p]lActionId Identifier to callback functions

Description
Transfers a program / file to a project directory. If the name of the destination does
not refer to a work piece directory a default work piece name will be used. If the
destination doesn’t describe a program name the name of the source program will
be used to store the program by its source name. Any existing program / file of the
same name will be overwritten. After checking the parameters and the actual status
of VNCK the response event will either report success or failure of a closed transfer
or the event will deliver an ID identifying the data transfer. SIMTransferFileStatus()
will send events for the status and finishing of transfer if the tTransInfoMode is ap-
propriately set.

 3 Interface Functional Description
 3.3 Domain Data Management

Run MyVNCK, Reference
Function Manual, 05/2013 47

3.3.6 Transferring a setting data file to VNCK

Asynchronous service
VNCPutIniData
(
BSTR sIniDataSource,
VNCTransInfoMode_t tTransInfoMode,
long * plActionId
);

Event
SIMPutIniDataResponse
(
VNCResult_t* ptResult,
long lActionId
);

Parameters
ptResult Resulting value
sIniDataSource Path of ini data file
tTransInfoMode Mode of information
[p]lActionId Identifier to callback functions

Description
Transfers an ini data file to the VNCK machine. If the name of the destination must
refer to a correct setting data file, no destination is required because this file is in-
terpreted immediately during loading and the described values are set. After check-
ing the parameters and the actual status of VNCK the response event will either
report success or failure of a closed transfer or the event will deliver an ID identify-
ing the data transfer. SIMTransferFileStatus() will send events for the status and
finishing of transfer if the tTransInfoMode is appropriately set.

3 Interface Functional Description
3.3 Domain Data Management

 Run MyVNCK, Reference
48 Function Manual, 05/2013

3.3.7 Copying a program from VNCK to a local folder

Asynchronous service
VNCGetProgram
(
BSTR sNcProgramPathSource,
BSTR sProgramPathDest,
VNCTransInfoMode_t tTransInfoMode,
long * plActionId
);

Event
SIMGetProgramResponse (
VNCResult_t* ptResult,
long lActionId
);

Parameters
ptResult Resulting value
sNcProgramPathSource Program path to copy to local folder
 sProgramPathDest Program path to local folder
 tTransInfoMode Mode of information
 [p]lActionId Identifier to callback functions

Description
Copies a program from VNCK to a local folder. If sNcProgramPathSource contains
only a program name without further path description, the file is searched for in
VNCKs standard project folder VNC_SIM.WPD. If the file shall be copied from a
specific project folder, the complete path must be set.

 3 Interface Functional Description
 3.3 Domain Data Management

Run MyVNCK, Reference
Function Manual, 05/2013 49

3.3.8 Deleting a file in VNCK data management system

Asynchronous service
VNCDeleteProgram
(
BSTR sNcProgramPath,
long * plActionId
);

Event
SIMDeleteProgramResponse (
VNCResult_t* ptResult,
long lActionId
);

Parameters
ptResult Resulting value
sNcProgramPath Program path to delete
[p]lActionId Identifier to callback functions

Description
Deletes a program in a VNCK project. After checking the parameters and the ac-
tual status of VNCK the response event will either report success or failure of a
closed transfer.

3 Interface Functional Description

 Run MyVNCK, Reference
50 Function Manual, 05/2013

3.3.9 Obtaining information about multi-file transfer

Event
SIMTransferFileInfo
(
VNCResult_t* ptResult,
BSTR sPathSource,
BSTR sPathDest,
long * lActionId
);

Parameters
ptResult Resulting value
sPathSource Next source file to be transferred
sPathDest Next destination for file

Description
Information about the next file to be transferred when a command was started
transferring a project or directory.

3.3.10 Obtaining information about transfer status

Event
SIMTransferFileStatus
(
VNCResult_t* ptResult,
long lTransferRate,
long lActionId,
);

Parameters
ptResult Resulting value
lActionId Identifier to callback functions
lTransferRate percentual value of transfer rate
lActionId Identifier to callback functions

Description
Information about the actual value of the data transfer from or to the VNCK. If the
transfer is finished correctly there is a value of 100 percent for the transfer rate. If
there are any failures the result parameter will provide information on the error.

 Note

COM methods SIMTransferFileInfo and SIMTransferFileStatus are not imple-
mented due to different behaviour of HMIAdvanced and SINUMERIK Operate.
Both functions only give additional information and are not critical for customers.

 3 Interface Functional Description
 3.4 Variable Services

Run MyVNCK, Reference
Function Manual, 05/2013 51

3.4 Variable Services

3.4.1 General Information
The SINUMERIK 840D sl system handles several types of variables:

• System variables typically starting with ‘$’, e.g. $P_TOOL
• OEM and user defined variables

The access to SINUMERIK variables via VNCK COM interface is granted by three
different access functions:

• Based on the original variable name shown e.g. in an NC part program
• Based on BTSS naming conventions
• Based on an extended BTSS interface using SINUMERIK internal identifier

All three access types are bound to certain restrictions, which are as follows.

Using the NC part program representation of a variable/system variable
This is the most common way to access variables. It works for system variables as
well as for OEM or user defined variables.
The request is handled via private communication between VNCK server and the
NCK system (compile cycle interface). There are no restrictions concerning the
state of the NCK system, which means it works in freeze mode as well as during a
VNCRun action.
The VNCK COM functions VNCGetVariable, VNCSetVariable, VNCWatchVariable
and VNCUnWatchVariable are used for this type of access.

Using the standard BTSS naming convention
This will only work for variables which are defined in the HMI system.
Please refer to the HMI documentation for further explanations, of how to address
BTSS-Variables from HMI.

The usage of this type of access is only possible when the NCK system is not in
freeze mode, since it is based on the standard communication between NCK and
HMI. Between SIMFreeze and VNCRun the NCK system is in a frozen state and
will not be able to communicate with HMI.
The VNCK COM functions VNCGetVariable, VNCSetVariable, VNCWatchVariable
and VNCUnWatchVariable are used for this type of access.

Using the extended SINUMERIK internal BTSS naming convention
This type of access is only for expert users, who are aware of the internal naming
convention. It is based on the private communication between VNCK server and
NCK, thus can be used also during freeze mode of NCK.
Variables of complex data types like FRAME and AXIS can only be accessed via
this type of communication.
The VNCK COM function VNCReadBtssVariable is used for this type of access.

3 Interface Functional Description
3.4 Variable Services

 Run MyVNCK, Reference
52 Function Manual, 05/2013

3.4.2 Reading Variables

Asynchronous service
VNCGetVariable
(
long lChannel,
BSTR sVarName,
long * plActionId
);

Event
SIMGetVariableResponse
(
VNCResult_t* ptResult,
double dVirtTime,
VARIANT * pvValue,
long lActionId
);

Parameters
ptResult Resulting value
dVirtTime Virtual time stamp
lChannel Channel number
sVarName Name of the variable to read
pvValue Pointer to variable value
[p]lActionId Identifier to callback functions

Description
This function enables the simulation to read the value of a SINUMERIK 840D sl
defined variable in the VNCK system. Since the data type varies a variant data type
is used for the resulting value parameter. If an array is described by the variable
name pvValue points to a SAFEARRAY data type.

 3 Interface Functional Description
 3.4 Variable Services

Run MyVNCK, Reference
Function Manual, 05/2013 53

3.4.3 Writing Variables

Asynchronous service
VNCSetVariable
(
long lChannel,
BSTR sVarName,
VARIANT * pvValue,
long * plActionId
);

Event
SIMSetVariableResponse
(
VNCResult_t* ptResult,
double dVirtTime,
long lActionId
);

Parameters
ptResult Resulting value
dVirtTime Virtual time stamp
lChannel Channel number
sVarName Name of the variable to write
pvValue Pointer to variable value
[p]lActionId Identifier to callback functions

Description
This function enables the simulation to write the value of a SINUMERIK 840D sl
defined variable in the VNCK system. Since the data type varies a variant data type
is used for the value parameter to be set. If an array is described by the variable
name pvValue must point to a SAFEARRAY data type.

3 Interface Functional Description
3.4 Variable Services

 Run MyVNCK, Reference
54 Function Manual, 05/2013

3.4.4 Watching Variables

Asynchronous service
VNCWatchVariable
(
long lChannel,
BSTR sVarName,
long * plActionId
);

VNCUnWatchVariable
(
long * plActionId
);

Event
SIMWatchVariableResponse
(
VNCResult_t* ptResult,
double dVirtTime,
long lActionId
);

SIMUnWatchVariableResponse
(
VNCResult_t* ptResult,
double dVirtTime,
long lActionId
);

SIMWatchVariableEvent
(
double dVirtTime,
VARIANT * pvValue,
long lVNCRunActionId,
long lActionId
);

Parameters
ptResult Resulting value
dVirtTime Virtual time stamp
lChannel Channel number
sVarName Name of the variable to watch
pvValue Pointer to variable value
lVNCRunActionId action ID of corresponding VNCRun call
[p]lActionId Identifier to callback functions

 3 Interface Functional Description
 3.4 Variable Services

Run MyVNCK, Reference
Function Manual, 05/2013 55

Description
This function enables the simulation to watch each change of the value of a SINU-
MERIK 840D sl defined variable in the VNCK system. Since the data type varies a
variant data type is used for the value parameter. If an array is described by the
variable name pvValue points to a SAFEARRAY data type.

 Note

After executing VNCKResetKernel watches to variables must be re-established.

 Note

In fact, if the function VNCUnWatchVariable() regards to a BTSS variable this
function is implemented as a synchronous function. Therefore a warning value is
returned to the request to advise to this behavior.

 Note

Behaviour when BTSS connection failes:
If the BTSS conncetion between HMI software and NCK is aborted for any
season and afterwards re-established SIMWatchVariable events will be sent for
all active watches. This behaviour is standard for real SINUMERIK controllers,
but might be unwanted for simulation.
Adding the following lines to theVNC.ini will keep the BTSS connection alive also
during freeze periods:

• [VNCK]
• activateBTSSwhileFreezing=1

This new setting is only available in VNCK4.5 or higher.

 Note

When watching BTSS variables the virtual time value is always 0.
If the exact virtual time information is needed, the according NCK system variable
notation should be used (e.g. “$P_TOOL” instead of
“/Channel/State/actTNumber“).

3 Interface Functional Description

 Run MyVNCK, Reference
56 Function Manual, 05/2013

3.4.5 Reading BTSS Variables

Asynchronous service
VNCReadBtssVariable
(
long lArea,
long lUnit,
long lInchMetric,
long lCoIndex,
long lRowIndex,
long lModuleType,
long lNumRows,
long * plActionId
);

Event
SIMReadBtssVariableResponse
(
VNCResult_t * ptResult,
double dVirtTime,
long lNumber,
unsigned char * pcParam,
long lActionId
);

Parameters
ptResult Resulting value
lArea first BTSS variable parameter
lUnit second BTSS variable parameter
lInchMetric third BTSS variable parameter
lCoIndex forth BTSS variable parameter
lRowIndex fifth BTSS variable parameter
lModuleType sixth BTSS variable parameter
lNumRows seventh BTSS variable parameter
dVirtTime Virtual time stamp
lNumber number of characters returned
pcParam resulting character array
[p]lActionId Identifier to callback functions

Description
This function enables the simulation in an expert mode to read the value of a
SINUMERIK 840D sl defined variable in the VNCK system. In difference to
VNCGet-Variable() this function is parameterized by the internal BTSS parameter
setting. There is a SINUMERIK 840D sl reference book describing BTSS. The re-
sponse event delivers a character array that must be interpreted at simulation side.

 Note

There is another version of this event:
SIMReadBtssVariableResponseSa (...);

 3 Interface Functional Description
 3.5 VDI Services

Run MyVNCK, Reference
Function Manual, 05/2013 57

3.5 VDI Services

3.5.1 General Information
These functions represent in a special view the absence of a real or virtual PLC.
Thus it is possible to enable some behavior of the VNCK kernel in a way similar to
PLC activity. Nevertheless there is no PLC logic running using this service. Neither
a ‘grundprogramm’ or a ‘anwenderprogramm’ or emulations of these are running.
Simulation is responsible itself for setting and clearing bits and bytes on the
memory representing the VDI interface.

 Note

If there is a VPLC process running the access to the VDI memory is restricted by
the functions of IVNCServer.

3.5.2 Writing to the VDI Interface

Asynchronous service
VNCSetVDIVariable
(
long lUnit,
VDIVarType_t tVDIVarType,
VDIVarValue_t tVDIVarValue,
VARIANT * pvValue,
long * plActionId
);

Event
SIMSetVDIVariableResponse
(
VNCResult_t* ptResult,
long lActionId
);

Parameters
ptResult Resulting value
lUnit BAG, channel or axes number
tVDIVarType Identifier of variable to set
tVDIVarValue Defined enum value of variable to set
pvValue Pointer to general value of variable to set
[p]lActionId Identifier to callback functions

3 Interface Functional Description
3.5 VDI Services

 Run MyVNCK, Reference
58 Function Manual, 05/2013

Description
Using this function simulation is able to enable / disable different VNCK program
processing modes that are determined by the value of the logical VDI interface.
Since corresponding enum values are defined in VDIVarValue_t one of these val-
ues has to be used setting a variable identified by a value of VDIVarType_t.

 Note

In fact, this function is implemented as a synchronous function for most variable
types. Therefore a warning value is returned to the request to advise to this
behavior.

3.5.3 Reading from the VDI Interface

Synchronous (partly asynchronous) service
VNCGetVDIVariable
(
long lUnit,
VDIVarType_t tVDIVarType,
VARIANT * pvValue,
long * plActionId
);

Event
SIMGetVDIVariableResponse
(
VNCResult_t* ptResult,
VARIANT * pvValue,
long lActionId
);

Parameters
ptResult Resulting value
lUnit BAG, channel or axes number
tVDIVarType Identifier of variable to read
pvValue Pointer to general value of variable to be read
[p]lActionId Identifier to callback functions

Description
Using this function simulation is able to read values from the logical VDI interface.
Since corresponding enum values are defined in VDIVarValue_t one of these val-
ues has to be used setting a variable identified by a value of VDIVarType_t.

ef3hos03
Cross-Out

 3 Interface Functional Description
 3.5 VDI Services

Run MyVNCK, Reference
Function Manual, 05/2013 59

 Note

In fact, this function is implemented as a synchronous function for most variable
types. Therefore a warning value is returned to the request to advise to this be-
havior.
If VDIVarType_t VDI_VARTYPE_SINGLESTEP is used, the function will be
called asynchronously.

3.5.4 Handling FastIO via VDI Variables
There is a group of defines of the datatype VDIVarType_t that refers to all the bits
and words of DB 10 that can be used to manage the digital and analogous input
and output signals and values of a VNCK kernel from VDI side.

To simplify the identification of the enum values of the defines of VDIVarType_t
they are based on the number of the first DBB to the according variable.

Please have a look to chapter '1.2 NCK I/O via PLC' of 'Function Manual Extended
Functions 840S sl/828D'. Here the roles of all affected signals and values of the
VDI interface are shown by diagrams. They demonstrate the ways between digital
or analogous hardware input or output slots to the according system variables
$A_IN, $A_OUT, $A_INA and $A_OUTA. When viewing analogous values please
regard the influence of the slot specific weight factors.

 Note

Writing to the digital or analogous output slots will not affect to the ncu since the
ncu kernel overwrites these values in each IPO cycle.

3.5.5 Handling TSM mask in SINUMERIK Operate
SINUMERIK Operate offers the option to manually change tools, set spindle
speeds and initiate specific M functions when the S840D controller is in JOG mode.

This option is implemented by predefined interactions between NC, PLC and HMI
shown in the following figure.

3 Interface Functional Description
3.5 VDI Services

 Run MyVNCK, Reference
60 Function Manual, 05/2013

Figure 3-1: TSM interaction on real controller

The execution of an TSM program is initiated by HMI setting VDI variable DB19
DBB42.0 (and additional VDI variables) in the PLC via BTSS communication.

 3 Interface Functional Description
 3.5 VDI Services

Run MyVNCK, Reference
Function Manual, 05/2013 61

On a virtual S840D controller however the PLC controller part is not available, thus
the initiation must be handled from the VNCK client by using the VNCK VDI inter-
face as follows:

Figure 3-2: TSM interaction on virtual controller

With VNCK 4.5 SP1 an additional VDI variable type was introduced named
VDI_VARTYPE_FC9_START. With setting this variable via the VDI interface the
needed DB19 DBB4x variables are set to initiate the execution of TSM programs.

 Note

The existing function VNCProgStart was not modified, thus will send an error
code VRV_WRONG_PROGRAM_MODE when used in JOG mode.

3 Interface Functional Description
3.6 VDI Fast Input and Output Services

 Run MyVNCK, Reference
62 Function Manual, 05/2013

3.6 VDI Fast Input and Output Services

Synchronous services
VNCSetFastIOVariable
(
VNCFastIOType_t tIOType,
long lIndex,
VNCBooleanType_t tDigitalValue,
double dAnalogValue
);

VNCGetFastIOVariable
(
VNCFastIOType_t tIOType,
long lIndex,
VNCBooleanType_t * ptDigitalValue,
double * pdAnalogValue
);

VNCGetFastIONumberOfSlots
(
VNCFastIOType_t tIOType,
long * plNumber
);

Parameters
tIOType Type describing the slot
lIndex Number of selected slotType
[p]tDigitalValue Boolean value of a digital slot
[p]dAnalogValue Double value of an analogous slot
plNumber Number of slots of the selected type

Description
This functions VNCSetFastIOVariable (…) and VNCGetFastIOVariable (…) allows
simulation to get access to an emulation of the slots of the fast input and output in-
terface of the VNCK kernel. Depending of the tIOType describing the digital or
analogous input or output interface either the paramter [p]tDigitalValue or
[p]dAnalogValue is used to transfer the according slot value.

If the analogous slots are applied the values handled by the functions are com-
puted with the according weight factors to each slot. That means simulation will
read and can write just those analogous values that are visible with the according
system variables $A_INA[slot] and $A_OUTA[slot]. Therefore the range of values is
restricted to the negative and positive value to each slot weight. To avoid this auto-
matically handling of the weight factors there is an entry in the file theVNC.ini:

[VNCK]
FastIOIgnoreWeightFactors=1

 3 Interface Functional Description
 3.6 VDI Fast Input and Output Services

Run MyVNCK, Reference
Function Manual, 05/2013 63

By default this line is not included to the file and there is a default value 0 (zero) to
this entry.

The function VNCGetFastIONumberOfSlots (…) delivers the actual number of slots
to the referred slot type. Of course this number is used as the border to the pa-
rameter lIndex of the functions VNCSetFastIOVariable (…) and VNCGetFastIO-
Variable (…).

 Note

Since the access to the memory of emulation of the FastIO interface can be done
directly when the interface function of the VNCK system is called the functions
described in this chapter are implemented as synchronous functions. There are
no according functions defined in any callback interface of the VNCK system.
Therefore a warning value is returned to the request to advise to this behaviour.

3 Interface Functional Description
3.7 VNCK Program Control by Slices

 Run MyVNCK, Reference
64 Function Manual, 05/2013

3.7 VNCK Program Control by Slices

3.7.1 General Information
Program progress in VNCK is determined by a mode we call 'slicing'. This slice
management is done to reduce the amount of data that is sent from VNCK while
running a program. Otherwise the simulator can determine concrete times when
VNCK hands over the control of program progress to the simulator. Before sending
a 'SIMFreeze' event to do just this all path data set required setting the 'pathOutput
options' are transferred.

The following slice modes can be activated:
VNC_SLICEMODE_IPO_TIME:
A 'SIMFreeze' event is sent whenever the virtual time of interpolation has passed a
given interval. The given time interval divided by the IPO cycle time determines the
number of IPO cycles between the outputs of path data.

VNC_SLICEMODE_LENGTH:
A 'SIMFreeze' event is sent whenever the length of the path has reached a given
distance to the last point of interruption. Thus the path can be scanned by checking
it in geometric increments.

VNC_SLICEMODE_ANGLE:
A 'SIMFreeze' event is sent whenever the interpolation of a rotary axis has passed
a given interval of degrees. Thus the processing of rotary axes can be scanned by
checking it in geometric angle increments.

VNC_SLICEMODE_ANGLE_SPEED:
A 'SIMFreeze' event is sent whenever the actual value of a rotary axis has passed
a given interval of degrees. This mode addresses rotary axes that are not
interpolated and running in speed mode. Thus the processing of rotary axes can be
scanned by checking it in geometric angle increments.

VNC_SLICEMODE_BLOCK_CHANGED:
A 'SIMFreeze' event is sent whenever a new block is changed into the internal task
of interpolation. This mode allows the simulator to run a part program on a block-
wise basis.

VNC_SLICEMODE_SINGLE_AXIS:
A 'SIMFreeze‘ event is sent whenever a new block moving a single axis motion is
changed into the internal task of interpolation. Thus commands as POS, POSA,
SPOS, SPOSA etc. can be watched.

VNC_SLICEMODE_SPINDLE_SPEED:
A 'SIMFreeze‘ event is sent whenever a new block changing the mode of a spindle
under speed contol is changed into the internal task of interpolation. Thus
commands as M3, M4, M5 etc. can be watched.

VNC_SLICEMODE_NOT_INCYCLE:
Activating this mode allows the VNCK kernel to run under slice controlling even if
no part program has been started. This may be helpful e.g. if the operating mode
JOG has been set and the change of axes values must be recognized.

 3 Interface Functional Description
 3.7 VNCK Program Control by Slices

Run MyVNCK, Reference
Function Manual, 05/2013 65

All the criteria of 'slicing‘ can be added. For example you can order the block-
Changed mode to get program line progress together with the length mode to keep
contact to the path.

VNC_SLICEMODE_KEEP_CHECK_VALUES:
By default the actual values for time, length and angle slice are started with each
SIMFreeze no matter what caused the SIMFreeze event. E.g. with time slice
100ms set and a SIMFreeze BlockChanged occurring after 50ms, the time slice
calculation will start at value 0 with the next VNCRun.
Setting this slice mode keeps the slice value counting to the original step size.

VNC_SLICEMODE_FIPO_CYCLE:
A 'SIMFreeze' event is sent after each fine IPO cycle. Thus information on axes will
be given in the most precise way that a SINUMERIK 840D sl can manage.
This slice mode is for internal use only and requires a specific module license.

Furthermore, the simulator can control program progress by setting a 'freeze'
mode. So, in addition to the slice mode, the VNCK will stop the current program at
the end of the IPO cycle when a freeze condition is activated. In contrast to the
slice mode the meeting of freeze mode criteria doesn’t issue path output events.

The following freeze modes can be activated:

VNC_FREEZEMODE_PROGRAM_START:
Whenever one channel starts program execution a 'SIMFreeze' event is sent at the
end of the IPO cycle.

VNC_FREEZEMODE_PROGRAM_STOP:
Whenever one channel stops program execution a 'SIMFreeze' event is sent at the
end of the IPO cycle.

VNC_ FREEZEMODE _BLOCK_CHANGED:
Whenever a new block is changed into the internal task of interpolation a
'SIM-Freeze' event is sent at the end of the IPO cycle.

VNC_FREEZEMODE_LEAVE_SUBROUTINE:
When a subroutine returns to the caller part program a 'SIMFreeze' event is sent at
the end of the IPO cycle.

VNC_FREEZEMODE_TOOL_ACTION:
Whenever a tool select or change or a tool carrier activation takes place, or when
the tool correction changes mode or values a 'SIMFreeze' event is sent at the end
of the IPO cycle.

VNC_FREEZEMODE_REGISTERED_COMMAND:
When a registered command parameterized with freeze mode reaches the IPO
task a 'SIMFreeze' event is sent at the end of the IPO cycle.

VNC_ FREEZEMODE _SINGLE_AXIS:
Whenever a new block moving a single axis motion is changed into the internal
task of interpolation a 'SIMFreeze' event is sent at the end of the IPO cycle.

3 Interface Functional Description
3.7 VNCK Program Control by Slices

 Run MyVNCK, Reference
66 Function Manual, 05/2013

VNC_ FREEZEMODE _SPINDLE_SPEED:
Whenever a new block changing the mode of a spindle under speed control is
changed into the internal task of interpolation a 'SIMFreeze' event is sent at the
end of the IPO cycle.

VNC_ FREEZEMODE _MOTION_CONTACT:
Whenever a new block initiating a measuring movement or a drive to fixed stop is
changed into the internal task of interpolation a 'SIMFreeze' event is sent at the
end of the IPO cycle.

VNC_FREEZEMODE_COLLISION_GEO:
Whenever a command WORKPIECE or FIXTURE is recogniced at IPO time a
'SIMFreeze' event is sent at the end of the IPO cycle.
This freeze mode is for internal use only and requires a specific module license.

Either when the slice or the freeze mode criteria becomes active, the same
'SIMFreeze()' event is fired.

 Note

Whenever a 'SIMFreeze()' event has been received the simulator has to send a
'VNCRun()' command to continue the VNCK internal program progress controlled
by the slice and freeze management described above.

Inside the ‘frozen NCU’ state the VNCK kernel doesn’t consume any CPU usage
time.

Furthermore the virtual real time of the VNCK system is not increased. Thus it is
possible to let run a virtual clock describing correctly the same time that a real
machine will spend on working. The parameter dVirtTime of many of the callback
events delivering information of part program processing notifies just this time
stamp representing a real machine time consumption.

 3 Interface Functional Description
 3.7 VNCK Program Control by Slices

Run MyVNCK, Reference
Function Manual, 05/2013 67

3.7.2 Setting slice mode

Asynchronous service
VNCSetSliceMode
(
VNCSliceType_t tSliceMode,
SliceValues_t* ptSliceValues,
long * plActionId
);

Event
SIMSetSliceModeResponse
(
VNCResult_t* ptResult,
long lActionId
);

Parameter
ptResult Resulting value
tSliceMode Pattern describing the active slice modes
ptSliceValues Array for options dependent on values
[p]lActionId Identifier to callback functions

Description
Depending on the set pattern for the different slice modes these modes for event
behavior are activated. For those modes depending on values to watch these val-
ues are initially set by the SliceValues_t parameter. When the VNCK detects that at
least one of the conditions is fulfilled, the ordered path output will take place. A time
slice value is given in milliseconds. A length slice value is given in millimeters. An-
gle values are given in degrees.

3 Interface Functional Description
3.7 VNCK Program Control by Slices

 Run MyVNCK, Reference
68 Function Manual, 05/2013

3.7.3 Setting freeze mode

Asynchronous service
VNCSetFreezeMode
(
VNCFreezeMode_t tFreezeMode,
long * plActionId
);

Event
SIMSetFreezeModeResponse
(
VNCResult_t* ptResult,
long lActionId
);

Parameter
ptResult Resulting value
tFreezeMode Pattern describing the active freeze modes
[p]lActionId Identifier to callback functions

Description
Depending on the set pattern these freeze modes for event behavior are activated.
If VNCK found that one of the conditions is met at the end of an IPO cycle, this
causes a SIMFreeze event additionally to the event caused by the freeze criterion.

3.7.4 Processing the next slice

Synchronous service
VNCRun
(
long * plActionId
);

Parameters
plActionId Identifier to callback functions

Description
After a preceding SIMFreeze() event this function resumes the program execution
in the VNCK up to the next SIMFreeze() event.

 Note

In fact, this function is implemented as a synchronous function. Therefore a warn-
ing value is returned to the request to advise to this behavior.
The ActionID given as return value is used to refer to any callback functions sent
between VNCRun and SIMFreeze.

 3 Interface Functional Description
 3.7 VNCK Program Control by Slices

Run MyVNCK, Reference
Function Manual, 05/2013 69

3.7.5 Controller freeze

Event
SIMFreeze
(
double dVirtTime,
VNCFreezeReason_t tFreezeReason,
long lActionId
);

Parameters
dVirtTime Virtual time stamp
tFreezeReason Reasons for Freeze
lActionId lActionId of the preceding VNCRun()

Description
The VNCK informs the simulator of the transition to the frozen state by calling SIM-
Freeze. In this state, the VNCK no longer consumes virtual time. The VNCK usu-
ally changes to this state if any of the set slice conditions are met.
Before SIMFreeze is called, the VNCK must transfer the current path data for all
relevant channel or machine axes according to the ordered path output option.
Only when the path data as well as further program information (i.e. the description
of the notified help function causing the actual freeze event) have been completely
transferred, the controller will signal the simulator by calling SIMFreeze that no ad-
ditional process data for the previous time increment will be transmitted.

3.7.6 Timer Functions

Asynchronous service
VNCSetTimer
(
double dAlarmTime,
VNCTimerMode_t tTimerMode,
long * plActionId
);

Events
SIMSetTimerResponse
(
VNCResult_t * ptResult,
long lActionId
);

SIMTimerNotify
(
double dVirtTime,
VNCTimerMode_t tTimerMode,
long lActionId
);

3 Interface Functional Description
3.7 VNCK Program Control by Slices

 Run MyVNCK, Reference
70 Function Manual, 05/2013

Parameters
dAlarmTime Time to be set the alarm
tTimerMode Mode of timer handling
ptResult Resulting value
dVirtTime Virtual time stamp
[p]lActionId Identifier to service or callback functions

Description
The VNCSetTimer() function is used to activate an alarm clock. The callback func-
tion events are sent to response the order and to inform simulation once or several
times whenever the timer conditions became true. The tTimerMode allows further-
more to activate an according SIMFreeze () event. Ordering a dAlarmTime with a
value of zero stops the timer.

 Note

It is possible to manage several timers. Therefore the value of plActionId must be
set to address an already installed timer. Not setting the value of plActionId
creates a new timer parallel to eventually already running timers.

 Note

If dAlarmTime is set to values bigger than 80s the SIMTimerNotify event might be
sent one IPO too late.

 Note

SIMFreeze events issued by VNCSetTimer may contain also additional freeze
reasons like ProgramStop events.

 3 Interface Functional Description
 3.8 NC Program Control Services

Run MyVNCK, Reference
Function Manual, 05/2013 71

3.8 NC Program Control Services

3.8.1 Program selection

Asynchronous service
VNCProgSelect
(
long lChannel,
VNCFileDescriptionMode_t tFileDescType, (= VNC_FILEDESC_PC)
BSTR sFilePath,
long * plActionId
);

Event
SIMProgSelectResponse
(
VNCResult_t* ptResult,
double dVirtTime,
long lChannel,
long lActionId
);

Parameters
ptResult Resulting value
lChannel Channel number
tFileDescType Type of the path description
sFilePath Path of NC program file
dVirtTime Virtual time stamp
[p]lActionId Identifier to callback functions

Description
Selects an NC program for processing in the VNCK. If no work piece directory is
given in the program name, the default work piece is assumed to be the storage
place for the program to be selected.

 Note

The parameter tFileDescType must be set to ‘VNC_FILEDESC_PC’.

3 Interface Functional Description
3.8 NC Program Control Services

 Run MyVNCK, Reference
72 Function Manual, 05/2013

3.8.2 Program selection for external processing

Asynchronous service
VNCProgSelectExtern
(
long lChannel,
VNCFileDescriptionMode_t tFileDescType, (= VNC_FILEDESC_PC)
BSTR sFilePath,
long * plActionId
);

Event
SIMProgSelectExternResponse
(
VNCResult_t* ptResult,
double dVirtTime,
long lChannel,
long lActionId
);

Parameters
ptResult Resulting value
lChannel Channel number
tFileDescType Type of the path description
sFilePath Path of NC program file
dVirtTime Virtual time stamp
 [p]lActionId Identifier to callback functions

Description
Using this function it is possible to process part programs that are not stored inside
the VNCK kernel internal data management. Thus it is easy to process CAD pro-
grams or other programs that are too big to be downloaded to the size restricted
store of the VNCK. Calling this function will make the VNCK server to register the
external part program for processing, to select it as the actual active channel pro-
gram and to download the program code in parts that are immediately processed.

 Note

The parameter tFileDescType must be set to ‘VNC_FILEDESC_PC’.

 3 Interface Functional Description
 3.8 NC Program Control Services

Run MyVNCK, Reference
Function Manual, 05/2013 73

3.8.3 Enabling program execution

Asynchronous service
VNCProgStart
(
long lChannel,
long * plActionId
);

Event
SIMProgStartResponse
(
VNCResult_t* ptResult,
double dVirtTime,
long lChannel,
long lActionId
);

SIMProgStartEvent
(
VNCResult_t * ptResult,
double dVirtTime,
long lChannel
);

Parameter
ptResult Resulting value
dVirtTime Virtual time stamp
lChannel Channel number
[p]lActionId Identifier to callback functions

Description
The service function allows the start of execution of the selected NC programs in
the given channel. This command represents the pressing of the PLC Start button.

Whenever the VNCK detects that the channel is starting processing part programs
it informs the simulator of the program start in the given channel. This must not be
caused by simulations request. Also starting a part program via INIT command
from another channel, the progEvent feature of the VNCK or ASUP facilities can
cause program starts in the VNCK kernel.

 Note

The callback event SIMProgStartEvent () is the explicit event that tells simulation
about that the channel has reached a state ‘Processing Part Program’.

3 Interface Functional Description
3.8 NC Program Control Services

 Run MyVNCK, Reference
74 Function Manual, 05/2013

 Note

SIMProgStartResponse will send the warning value
VRV_CHANNEL_COMMAND_WARNING_BY_STOP_CONDITION, if BTSS
variable /channel/state/stopcond[u] does not have value 0.
Values different from 0 signal that the channel rests in a specific wait condition.
The wait conditions and their meaning is documented in DocOnWeb. An excerpt
is shipped as file channelStateStopcond.txt in VNCK’s doc folder

3.8.4 Stopping program execution

Asynchronous service
VNCProgStop
(
long lChannel,
long * plActionId
);

Events
SIMProgStopResponse
(
VNCResult_t* ptResult,
double dVirtTime,
long lChannel,
long lActionId
);

SIMProgStopEvent
(
double dVirtTime,
long lChannel,
VNCProgStopType_t tProgStopType
long lVNCRunActionId,
);

Parameter
ptResult Resulting value
dVirtTime Virtual time stamp
lChannel Channel number
tProgStopType Reason for Stopping
lVNCRunActionId lActionId of the preceding VNCRun()
[p]lActionId Identifier to callback functions

 3 Interface Functional Description
 3.8 NC Program Control Services

Run MyVNCK, Reference
Function Manual, 05/2013 75

Description
The service function interrupts program execution in the given channel. Program
execution can be resumed from this point with VNCProgStart. The conditions of the
slice control are reset.

Whenever the VNCK detects that the channel is stopping processing part programs
it informs the simulator of the program stop in the given channel. As well the
dVirtTime and the tProgStopType parameter are describing the time and the rea-
son for this change of channel state.

 Note

The callback event SIMProgStopEvent() is the explicit event that tells simulation
about that the channel has reached a state ‘NOT Processing Part Program’.

 Note

SIMProgStopResponse will send a warning value
VRV_CHANNEL_COMMAND_WARNING_BY_STOP_CONDITION, if BTSS
variable /channel/state/stopcond[u] does not have value 0.
Values different from 0 signal that the channel rests in a specific wait condition.
The wait conditions and their meaning is documented in DocOnWeb. An excerpt
is shipped as file channelStateStopcond.txt in VNCK’s doc folder.

3.8.5 Resetting program execution

Asynchronous service
VNCProgReset
(
long lChannel,
long * plActionId
);

Event
SIMProgResetResponse
(
VNCResult_t* ptResult,
double dVirtTime,
long lChannel,
long lActionId
);

SIMProgResetEvent
(
VNCResult_t * ptResult,
double dVirtTime,
long lChannel
);

3 Interface Functional Description
3.8 NC Program Control Services

 Run MyVNCK, Reference
76 Function Manual, 05/2013

Parameter
ptResult Resulting value
dVirtTime Virtual time stamp
lChannel Channel number
[p]lActionId Identifier to callback functions

Description
The service function aborts program execution in the given channel. Program
execution cannot be resumed from this point of the part program. The conditions of
the slice control are reset.

Whenever the VNCK detects that the channel is resetting processing part
programs it informs the simulator of the program stop in the given channel.

 Note

The callback event SIMProgStopEvent() is the explicit event that tells simulation
about that the channel has reached a state ‘NOT Processing Part Program’.

 Note

SIMProgResetResponse will send a warning value
VRV_CHANNEL_COMMAND_WARNING_BY_STOP_CONDITION, if BTSS
variable /channel/state/stopcond[u] does not have value 0.
Values different from 0 signal that the channel rests in a specific wait condition.
The wait conditions and their meaning is documented in DocOnWeb. An excerpt
is shipped as file channelStateStopcond.txt in VNCK’s doc folder.

 3 Interface Functional Description
 3.9 Extended Program Control Services

Run MyVNCK, Reference
Function Manual, 05/2013 77

3.9 Extended Program Control Services

3.9.1 General Info
There are several services VNCK system offers to simulation to take influence in
processing part programs. As well at interpretation time lines of part program code
can be changed as at interpolation time events are sent reporting the processing of
registered commands. Thus this function provides an opportunity for the simulator
to carry out its own actions at interpolation time. Furthermore functions are imple-
mented to modify channel interpolation activity. Thus eventually waiting for PLC
confirmations can be emulated within the VNCK system.

3.9.2 Registering Patterns for Interpretation

Asynchronous services
VNCRegisterPattern
(
long lChannel,
BSTR sPattern,
long * plActionId
);

VNCUnRegisterPattern
(
long lChannel,
long lActionId
);

VNCTranslationContinue
(
long lActionId
);

VNCReplaceLine
(
BSTR sNewProgramLine,
long lActionId
);

3 Interface Functional Description
3.9 Extended Program Control Services

 Run MyVNCK, Reference
78 Function Manual, 05/2013

Event
SIMRegisterPatternResponse
(
VNCResult_t * ptResult,
long lActionId
);

SIMUnRegisterPatternResponse
(
VNCResult_t * ptResult,
long lActionId
);

SIMPatternNotify
(
VNCResult_t * ptResult,
long lChannel,
long lLineNumber,
BSTR sLine,
BSTR sProgramName,
long lActionId
);

Parameters
ptResult Resulting value
lChannel Channel number
sPattern Pattern to find and check
sNewProgramLine New part program line
lLineNumber Number of line containing found pattern
sLine Line containing found pattern
sProgramName Name of program containing found pattern
lVNCRunActionId lActionId of the preceding VNCRun()
[p]lActionId identifier of registered command

Description
Using VNCRegisterPattern the simulator can request notifications of part program
lines before these lines are translated and interpreted in the VNCK internal prepa-
ration task. In response to the notification the simulation must either send a
changed new program line to be interpreted or simulation must order to use the
original line. Using this function simulation can watch processing part program in
aspect to patterns that may be changed for special simulation requests. This
mechanism enables the simulator perhaps to correct programs that are based on
settings that doesn’t work since no PLC functionality or other external periphery is
implemented in the VNCK.

 Note

Be very careful using this function. VNCK system can’t take any responsibility to
changed part processing based on simulation manipulated program code.

 3 Interface Functional Description
 3.9 Extended Program Control Services

Run MyVNCK, Reference
Function Manual, 05/2013 79

3.9.3 Executing registered NC commands

Asynchronous service
VNCRegisterCommand
(
long lChannel,
VNCRegCmdType_t tRegCmdType,
VNCRegCmdDescType_t * ptRegCmdDesc,
long * plActionId
);

VNCUnRegisterCommand
(
long lChannel,
long lActionId
);

Event
SIMRegisterCommandResponse
(
VNCResult_t* ptResult,
long lActionId
);

SIMUnRegisterCommandResponse
(
VNCResult_t* ptResult,
long lActionId
);

SIMCommandNotify
(
double dVirtTime,
long lChannel,
VNCRegCmdType_t tRegCmdType,
VNCRegCmdDescription_t * ptRegCmdDesc,
long lVNCRunActionId,
long lActionId,
);

Parameters
ptResult Resulting value
lChannel Channel number
tRegCmdType Type of the command to register
ptRegCmdDesc Parameters of the command to be registered or
 that was found in program progress
dVirtTime Virtual time stamp
lVNCRunActionId lActionId of the preceding VNCRun()
[p]lActionId Identifier of registered command

3 Interface Functional Description
3.9 Extended Program Control Services

 Run MyVNCK, Reference
80 Function Manual, 05/2013

Description
Using VNCRegisterCommand, the simulator can request notifications for the exe-
cution of individual NC commands from interpolation in the VNCK. Setting the
freezeMode parameter of the command description VNCK will interrupt execution
of the actual slice. There are several types of commands to be registered:

VNC_REGISTER_CMD_FCT:
Auxiliary functions as M or H as well as further address commands such as S or F
can be registered. The ignore Type parameter determines whether the extension
and / or the value of the function must match the given integer or double values.
Setting the ignore flags all functions independent from these values will be re-
ported.

VNC_REGISTER_CMD_PATTERN:
The occurrence of a programmed pattern can be registered to force an event at ipo
time when the related program line is executed. Pattern means any sequence of
letters and digits written in part program code. The value parameters are not rele-
vant.

VNC_REGISTER_CMD_LABEL:
The occurrence of a programmed label can be registered to force an event at ipo
time when the related program line is executed. A label is sequence of letters and
digits followed by a colon to identify a line of code in part program similar to a line
number. The ignore Type and value parameters are not relevant.

The register request can be cancelled with VNCUnRegisterCommand and the
matching ActionID received with VNCRegisterCommand.

When the VNCK starts executing a registered command, it will inform the simulator
of this fact by calling the SIMCommandNotify function. This mechanism enables
the simulator to simulate activities within the working space of the machine that do
not result from motions of the actual NC axes (e.g. head change, pallet change).
This is especially required in cases where no PLC functionality is implemented in
the VNCK.

 Note

No wildcards are allowed on using registering labels and patterns.

 Note

Functions of type VNC_REGISTER_CMD_FCT may be programmed as 'quick'
functions to affect the handling of them inside the VNCK kernel. E.g. there is a
program line 'N100 M=QU(4711)'. To inform simulation about this 'quick' type an
additional bit VNC_REGISTER_CMD_FCT_QUICK is set to the parameter
tRegCmdType of the event SIMCommandNotify(…).
In standard case (M=4711; no quick function) SIMCommandNotify is sent with
value VNC_REGISTER_CMD_NONE.

 Note

If VNCRegisterCommand/VNCUnRegisterCommand is called with channel 0, the
command description is (un-)registered with all existing channels.

 3 Interface Functional Description
 3.9 Extended Program Control Services

Run MyVNCK, Reference
Function Manual, 05/2013 81

3.9.4 Enabling Path Interpolation

Asynchronous services
VNCBreakChannel
(
long lChannel,
long * plActionId
);

VNCContinueChannel
(
long lChannel,
long lActionId
);

Event
SIMBreakChannelResponse
(
VNCResult_t* ptResult,
long lActionId
);

SIMContinueChannelResponse
(
VNCResult_t* ptResult,
long lActionId
);

Parameter
PtResult Resulting value
lChannel Channel number
[p]lActionId Identifier to callback functions

Description
Using these functions simulation is able to break and continue IPO processing of
one channel just like a confirmation of a not exiting PLC function acknowledgement
is missing. The break of interpolation is based on setting VNCK kernel internal
flags controlling curve interpolation, positioning activity, spindle status and ipo
block changes. Using the break function will show how the VNCK kernel will break
and slow down all active channel axes to zero movement just as if a PLC confirma-
tion is missing.

3 Interface Functional Description
3.10 Path Data Services

 Run MyVNCK, Reference
82 Function Manual, 05/2013

3.10 Path Data Services

3.10.1 Setting path data output option

Synchronous service
VNCSetPathOutputOption
(
long lChannel,
VNCPathOutputOption_t tPathOutputOption,
long * plActionId
);

Event
SIMSetPathOutputOptionResponse
(
VNCResult_t* ptResult,
long ActionId
);

Parameter
ptResult Resulting value
lChannel Channel number
tPathOutputOption Pattern describing the data records to send to

simulation
[p]lActionId Identifier to callback functions

Description
All the options will activate separate events of information transfer from VNCK to
the simulator at interpolation time. These events will be sent in order just before a
SIMFreeze() event is sent either because a slice is closed or because an other
reason breaks VNCK part program processing.

To understand the parameters of VNCPathOutputOption_t see the following
figure:

kin.
Trafo

FIPO

misc.
filters

fct. gen.
etc. posctrldesx

actx

ctrln

ffw
ffwndesv

desn
IPO

BCS
actx

BCS
desx

MCS
desx

IPO cycle FIPO cycle

MCS
desv
MCS
desa

Figure 3-3: Parameters of VNCPathOutputOption_t

 3 Interface Functional Description
 3.10 Path Data Services

Run MyVNCK, Reference
Function Manual, 05/2013 83

VNCPathOutputOption_t symbol
VNC_PATH_OUTPUT_BCS BCS

desx

VNC_PATH_OUTPUT_FEED MCS
desv

VNC_PATH_OUTPUT_ACC MCS
desa

VNC_PATH_OUTPUT_MCS MCS
desx

VNC_PATH_OUTPUT_BCS_ACTUAL_POS BCS
actx

VNC_PATH_OUTPUT_MCS_ACTUAL_POS
actx

VNC_PATH_OUTPUT_MCS_CMD_POS
desx

VNC_PATH_OUTPUT_MCS_CMD_VEL
desv

VNC_PATH_OUTPUT_MCS_CMD_VEL_TO_DRIVE
desn

VNC_PATH_OUTPUT_TOOL_CP not shown

VNC_PATH_OUTPUT_TOOL_ORI not shown

VNC_PATH_OUTPUT_TOOL_VEL not shown

VNC_PATH_OUTPUT_BCS2 not shown

VNC_PATH_OUTPUT_WCS not shown

VNC_PATH_OUTPUT_SZS not shown

VNC_PATH_OUTPUT_BZS not shown

Setting the path output option VNC_PATH_OUTPUT_LAST_VALUES_ON_MC in
combination with the listed options above forces the VNCK system to issue addi-
tional path output callbacks each time the executed block changes. The callback
sends information on the last path position before the actual block change takes
place. Thus simulation is enabled to identify the exact position before and after the
block change.

 Note

If VNCSetPathOutputOption is called with channel 0, the path output is registered
with all existing channels.

 Note

The following path output options are not available with the standard VNCK li-
cense. These options are restricted to Siemens internal usecases:
VNC_PATH_OUTPUT_BCS_ACTUAL_POS
VNC_PATH_OUTPUT_MCS_ACTUAL_POS
VNC_PATH_OUTPUT_MCS_CMD_POS
VNC_PATH_OUTPUT_MCS_CMD_VEL
VNC_PATH_OUTPUT_MCS_CMD_VEL_TO_DRIVE

3 Interface Functional Description
3.10 Path Data Services

 Run MyVNCK, Reference
84 Function Manual, 05/2013

3.10.2 Getting path data output events

Asynchronous service
VNCGetPathOutput
(
long lChannel,
long * plActionId
);

Event
SIMGetPathOutputResponse
(
VNCResult_t* ptResult,
long ActionId
);

Parameter
ptResult Resulting value
lChannel Channel number
[p]lActionId Identifier to callback functions

Description
Calling VNCGetPathOutput () will issue all described path output events after the
next ipo cycle has been passed inside the VNCK kernel.

3.10.3 Sending path output data
There are several different event functions to transfer the requested path output
values to the simulator.

Events for path output information
SIMPathOutput
(
Double dVirtTime,
long lChannel,
VNCPathOutputOption_t tPathOutputOption,
long lNumber,
VNCAxesMode_t * ptAxesMode,
double * pdValue,
long lVNCRunActionId
);

 3 Interface Functional Description
 3.10 Path Data Services

Run MyVNCK, Reference
Function Manual, 05/2013 85

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
tPathOutputOption Identifies the type of path output
lNumber Number of data sets in array
ptAxesMode Array of axes modes
pdValue Array of axes position values
lVNCRunActionId Identifier from VNCRun()

Description
Using these events the VNCK tells the simulator the actual values of ordered path
data records describing the actual state of VNCK program progress.

 Note

There are other versions of these events:
SIMPathOutputSa (...);

3.10.4 Handling Collision Limits

Asynchronous service
VNCSetCollisionLimit
(
VNCCheckCollisionLimitMode_t tCCLMode,
long lMachineAxisIndex,
double dLimitMinus,
double dLimitPlus,
long * plActionId
);

Event
SIMSetCollisionLimitResponse
(
VNCResult_t * ptResult,
long lActionId
);

Parameter
ptResult Resulting value
tCCLMode Definition of the limit type
lMachineAxisIndex Index of the applied machine axis
dLimitMinus Negative axes value limit
dLimitPlus Positive axes value limit
[p]lActionId Identifier to callback functions

3 Interface Functional Description
3.10 Path Data Services

 Run MyVNCK, Reference
86 Function Manual, 05/2013

Description
Using this function simulation can define axes position values where the VNCK
kernel retains these values. This means the actual position of the axes doesn't
change anymore. In this way VNCK system offers the facility to simulation to define
the axes positions where a programmed FXS(...) command inside the NC part pro-
gram reaches the fixed stop state.

 Note

Using the functionality is restricted by a Siemens internal license option.
The function is obsolete since function VNCMotionContact is available.

3.10.5 Setting Actual MCS Axes Positions

Asynchronous service
VNCSetMcsActPos
(
long lNumber,
long * plMachineAxisIndex,
double * pdMCSAxValue,
long * plActionId
);

Event
SIMSetMCSActPosResponse
(
VNCResult_t * ptResult,
long lActionId
);

Parameter
ptResult Resulting value
lNumber Number of axes to set
plMachineAxisIndex Array of axis indices to be set
pdMCSAxValue MCS axes values to be set
[p]lActionId Identifier to callback functions

Description
Using this function simulation can set actual MCS axes positions. lNumber
describes the number of the list of machine axes to be set.

 Note

Using the functionality is restricted by a Siemens internal license option.

 3 Interface Functional Description
 3.11 Program Data Services

Run MyVNCK, Reference
Function Manual, 05/2013 87

 Note

There is another version of this function:
VNCSetMcsActPosSa (...);

3.11 Program Data Services

3.11.1 Setting program data output option

Synchronous service
VNCSetProgOutputOption
(
long lChannel,
VNCProgOutputOption_t tProgOutputOption,
long * plActionId
);

Event
SIMSetProgOutputOptionResponse
(
VNCResult_t* ptResult,
long ActionId
);

Parameter
ptResult Resulting value
lChannel Channel number
tProgOutputOption Pattern describing the data records to send to

simulation
[p]lActionId Identifier to callback functions

Description
All the options will activate separate events of information transfer from VNCK to
the simulator at interpolation time. These events will be sent when a new block
containing data of the ordered type is handled by the interpolation task for the first
time. This means the time shows the first ipo cycle the block is in process of inter-
polation.

 Note

If VNCSetProgOutputOption is called with channel 0, the prog output is registered
with all existing channels.

3 Interface Functional Description
3.11 Program Data Services

 Run MyVNCK, Reference
88 Function Manual, 05/2013

3.11.2 Program display

Event
SIMCurrentProgramLine
(
double dVirtTime,
long lChannel,
long lLineNumber,
BSTR sLine,
BSTR sProgramName,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
sLineNumber Line offset in the ascii text file
sLine Current line in part program
sProgramName Current program name
lVNCRunActionId lActionId of the preceding VNCRun()

Description
SIMCurrentProgramLine transmits the currently executed program line of the part
program as well as its position in the part program.

3.11.3 User program message

Event
SIMCurrentMessage
(
double dVirtTime,
long lChannel,
BSTR sMessage,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
sMessage Message in part program
lVNCRunActionId lActionId of the preceding VNCRun()

Description
SIMCurrentMessage transmits the value of the VNCK variable containing the last
programmed user message. This programming is done by writing MSG(“text”) in
the part program. The event is used in the same way to report the clearing of the
message by MSG(“”).

 3 Interface Functional Description
 3.11 Program Data Services

Run MyVNCK, Reference
Function Manual, 05/2013 89

3.11.4 Beginning of a new motion

Event
SIMNewMotionLin
(
double dVirtTime,
long lChannel,
VNCMotionDataLin_t * ptMotionDataLin,
long lVNCRunActionId
);

SIMNewMotionCircle
(
double dVirtTime,
long lChannel,
VNCMotionDataCircle_t * ptMotionDataCircle,
long lVNCRunActionId
);

SIMNewMotionSpline
(
double dVirtTime,
long lChannel,
VNCMotionDataSpline_t * ptMotionDataSpline,
long lVNCRunActionId
);

SIMNewMotionLinAllAxes
(
double dVirtTime,
long lChannel,
VNCProgOutputOption_t tProgOutputOption,
VNCMotionDataBasicInfo_t* ptVNCMoDaBasicInfo,
long lNumber,
VNCAxesMode_t * ptAxesMode,
double * pdAxValueStart,
double * pdAxValueTarget,
long lVNCRunActionId
);

SIMNewMotionCircleAllAxes
(
double dVirtTime,
long lChannel,
VNCProgOutputOption_t tProgOutputOption,
VNCMotionDataBasicInfo_t* ptVNCMoDaBasicInfo,
VNCMotionDataCircleInfo_t* ptVNCMoDaCircleInfo,
long lNumber,
VNCAxesMode_t * ptAxesMode,
double * pdAxValueStart,
double * pdAxValueTarget,
long lVNCRunActionId
);

3 Interface Functional Description
3.11 Program Data Services

 Run MyVNCK, Reference
90 Function Manual, 05/2013

SIMNewMotionSplineAllAxes
(
double dVirtTime,
long lChannel,
VNCProgOutputOption_t tProgOutputOption,
VNCMotionDataBasicInfo_t* ptVNCMoDaBasicInfo,
long lNumber,
VNCAxesMode_t * ptAxesMode,
double * pdAxValueStart,
double * pdAxValueTarget,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
tProgOutputOption Type of axes data
ptMoDaLin Description of the new linear motion
ptMoDaCircle Description of the new circular motion
ptMoDaSpline Description of the new spline motion
ptVNCMoDaBasicInfo Description of basic motion data
ptVNCMoDaCircleInfo Description of circle motion data

lNumber Count of following axes values
pdAxValueStart Array of axes values at block start
pdAxValueTarget Array of axes values at block target
lVNCRunActionId lActionId of the preceding VNCRun()

Description
The VNCK sends these events if the interpolator has started a new motion toward
a programmed position. Depending on the type of motion one of the events con-
taining the appropriate data of the motion is sent. In this way the simulation is able
to plan visualization of the motion and to recalculate the removal of material up to
the end of the motion.

With the SIMNewMotionXxxAllAxes() events additionally the start and target axes
values of all axes are sent including axes, which are not part of the programmed
motion. The coordinate system, in which the target positions are expressed can be
set via VNCSetProgramOutput() and the parameter:

VNC_PROG_OUTPUT_NEW_TARGET_TCP:
 TCP positions of GEO axes, BCS positions of all other channel axes

VNC_PROG_OUTPUT_NEW_TARGET_BCS:
 BCS positions of all channel axes

VNC_PROG_OUTPUT_NEW_TARGET_MCS:
 MCS positions of all channel axes

 3 Interface Functional Description
 3.11 Program Data Services

Run MyVNCK, Reference
Function Manual, 05/2013 91

 Note

There are other versions of these events:
SIMNewMotionLinAllAxesSa (...);
SIMNewMotionCircleAllAxesSa (...);
SIMNewMotionSplineAllAxesSa (...);.

3.11.5 Single Axis Motion Management

Events
SIMNewSingleAxisMotion
(
double dVirtTime,
long lChannel,
long lChanAxIndex,
VNCSingleAxisMotionType_t tSAMType,
VNCSingleAxisMotionData_t * ptSAMData,
long lSAMId,
long lVNCRunActionId
);

SIMEndSingleAxisMotion
(
double dVirtTime,
long lChannel,
long IChanAxIndex,
long ISAMId,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
lChanAxIndex Index of the channel axis
tSAMType Type of starting motion
ptSAMData Parameters describing the motion
lSAMId Identifier to actual starting motion
lVNCRunActionId lActionId of the preceding VNCRun()

Description
These messages are reporting the start and end of a single axis motions.
Single axis motions are:

• Spindle motions initiated by M commands like M3, M4, M5
• Motions of NC axes initiated by POS or POSA
• Motions of NC axes initiated by PLC functions (only if VPLC exists).

3 Interface Functional Description
3.11 Program Data Services

 Run MyVNCK, Reference
92 Function Manual, 05/2013

The parameter lSAMId can be used to assign the endOfMotion event to the star-
tOfMotion event.

 Note

If a single axis motion of a spindle is tracked and the spindle is stopped by com-
mand M5, the matching event is issued as soon as the spindle reached speed
zero. In combination with program stop (M0) or program end (M30) the event
might be issued after the program stop event. The event is not issued, if slice
mode VNC_SLICEMODE_NOT_INCYCLE is inactive.

3.11.6 IPO Block Change

Event
SIMBlockChanged
(
double dVirtTime,
long lChannel,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
lVNCRunActionId lActionId of the preceding VNCRun()

Description
This message is sent as soon as the interpolator changes the actually processed
NC block.

 3 Interface Functional Description
 3.11 Program Data Services

Run MyVNCK, Reference
Function Manual, 05/2013 93

3.11.7 Tool selection

Event
SIMToolSelect
(
double dVirtTime,
long lChannel,
BSTR sToolId,
long lToolHoIder,
double dToolGeoId,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
sToolId Tool Identifier
lToolHolder ID of affected toolHolder
dToolGeoId ID of geometric data of the tool
lVNCRunActionId lActionId of the preceding VNCRun()

Description
Sent from VNCK at selection of the tool. The identifier describes either the tool
number or the tool name depending on the mode of tool management in VNCK. If
the identifier for the geometrical description exists it is sent as well.
Depending on the mode of tool management the parameter lToolHolder either re-
sults from a programmed toolHolder or spindle or from the actual masterToolHolder
or masterSpindle.

 Note

In case a T command is programmed with extension IToolHolder reflects the
programmed extension value. Otherwise the following rule is used to determine
the active holder or spindle:
Regardless if tool management is active or not the system variable
$AC_TC_MTHNUM is used to determine the active holder or spindle.
If tool management is active and tool holders are activated then
$AC_TC_MTHNUM reflects the last programmed SETMTH, otherwise it reflects
the last programmed SETMS.

3 Interface Functional Description
3.11 Program Data Services

 Run MyVNCK, Reference
94 Function Manual, 05/2013

3.11.8 Tool change

Event
SIMToolChange
(
double dVirtTime,
long lChannel,
BSTR sToolId,
long lToolHolder,
long lNumber,
VNCToolOffset_t* ptToolOffsets,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
sToolId Tool ID
lToolHolder ID of affected toolHolder
lNumber Number of tool offset data sets
ptToolOffsets Tool offset records
lVNCRunActionId lActionId of the preceding VNCRun()

Description
This call is sent by the VNCK at the beginning of the tool change action. It delivers
the name of the new tool with a set of all its offsets.
Depending on the mode of tool management the parameter lToolHolder either re-
sults from a programmed toolHolder or spindle or from the actual masterToolHolder
or masterSpindle.

 Note

In case a T command is programmed with extension IToolHolder reflects the
programmed extension value. Otherwise the following rule is used to determine
the active holder or spindle:
Regardless if tool management is active or not the system variable
$AC_TC_MTHNUM is used to determine the active holder or spindle.
If tool management is active and tool holders are activated then
$AC_TC_MTHNUM reflects the last programmed SETMTH, otherwise it reflects
the last programmed SETMS.

 Note

There is an other version of this event:
SIMToolChangeSa (...);

 3 Interface Functional Description
 3.11 Program Data Services

Run MyVNCK, Reference
Function Manual, 05/2013 95

3.11.9 Selecting a new tool offset

Event
SIMToolOffset
(
double dVirtTime,
long lChannel,
BSTR sToolId,
long lToolHolder,
VNCToolOffset_t* ptToolOffset,
VNCToolPlane_t tWorkingPlane,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
sToolId Tool ID
lToolHolder ID of affected toolHolder
ptToolOffsets Current tool offset record
tWorkingPlane Current working Plane G17 / G18 / G19
lVNCRunActionId lActionId of the preceding VNCRun()

Description
With this call the simulator receives information about the new active tool offset and
the active tool plane.

Depending on the mode of tool management the parameter lToolHolder either re-
sults from a programmed toolHolder or spindle or from the actual masterToolHolder
or masterSpindle.

 Note

Regardless if tool management is active or not the system variable
$AC_TC_MTHNUM is used to determine the active holder or spindle.
If tool management is active and tool holders are activated then
$AC_TC_MTHNUM reflects the last programmed SETMTH, otherwise it reflects
the last programmed SETMS.

3 Interface Functional Description
3.11 Program Data Services

 Run MyVNCK, Reference
96 Function Manual, 05/2013

3.11.10 Tool Carrier Selection

Event
SIMToolCarrier
(
double dVirtTime,
long lChannel,
long lToolCarrierNumber,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
lToolCarrierNumber Number of the active tool carrier
lVNCRunActionId lActionId of the preceding VNCRun()

Description
Sent from VNCK at selection / activation of a tool carrier.

3.11.11 Subroutine call

Event
SIMCallSubroutine
(
double dVirtTime,
long lChannel,
long lCallStackIndex,
BSTR sProgramName,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
lCallStackIndex Index on call stack of called subroutine
sProgramName Name of called subroutine
lVNCRunActionId lActionId of the preceding VNCRun()

Description
The VNCK always sends this event when the program execution enters a subrou-
tine. The call stack index describes the actual subprogram level entered with this
subprogram. SIMCallSubroutine will be sent for all subroutine calls even if several
levels of subprograms do not contain any interpolation block information. Thus
several SIMCallSubroutine calls can be sent successively.

 3 Interface Functional Description
 3.11 Program Data Services

Run MyVNCK, Reference
Function Manual, 05/2013 97

3.11.12 Return from subroutine

Event
SIMLeaveSubroutine
(
double dVirtTime,
long lChannel,
long lCallStackIndex,
BSTR sProgramName,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
lCallStackIndex Index on call stack of closed subroutine
sProgramName Name of closed subroutine
lVNCRunActionId lActionId of the preceding VNCRun()

Description
The VNCK always sends this event when the program execution leaves a subpro-
gram. SIMLeaveSubroutine will be sent for all leavings of subroutines even if sev-
eral levels of subprograms do not contain any interpolation block information. Thus
several SIMLeaveSubroutine calls can be sent successively.

3.11.13 Workpiece

Event
SIMNewWorkpiece
(
double dVirtTime,
long lChannel,
long lNumber,
VARIANT * pvValue,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
lNumber Number of elements of the following array
pvValue array of parameters of the new workpiece
lVNCRunActionId lActionId of the preceding VNCRun()

3 Interface Functional Description
3.11 Program Data Services

 Run MyVNCK, Reference
98 Function Manual, 05/2013

Description
The VNCK always sends this event when the program execution detects the
activity of a new or changed workpiece statement in the IPO task. Actually simula-
tion has to know the meaning and order of the parameters delivered.

 Note

There is an other version of this event:
SIMNewWorkpieceSa (...);

3.11.14 Fixture

Event
SIMNewFixture
(
double dVirtTime,
long lChannel,
long lNumber,
VARIANT * pvValue,
long lVNCRunActionId
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
lNumber Number of elements of the following array
pvValue array of parameters of the new workpiece
lVNCRunActionId lActionId of the preceding VNCRun()

Description
The VNCK always sends this event when the program execution detects the activ-
ity of a new or changed fixture statement in the IPO task. Actually simulation has to
know the meaning and order of the parameters delivered.

 Note

There is an other version of this event:
SIMNewFixtureSa (...);

 3 Interface Functional Description
 3.11 Program Data Services

Run MyVNCK, Reference
Function Manual, 05/2013 99

3.11.15 Fixed Stop and Measurement

Asynchronous service
VNCMotionContact
(
long lChannel,
VNCContactType_t tContactType,
VNCProbeEdge_t tMeasProbeEdge,
long lNumber,
long * plChanAxIndex,
double * pdContactMcsAxVal,
long lVNCMotionId,
long plActionId
);

VNCMotionContactSetProbe
(
VNCProbeEdge_t tMeasProbeEdge,
long * plActionId
);

Event
SIMMotionContactEvent
(
double dVirtTime,
long lChannel,
VNCContactAction_t tContactActionType,
long lNumber,
long * plChanAxIndex,
double * pdMcsAxValTarget,
long lVNCMotionId,
long lVNCRunActionId
);

SIMMotionContactResponse
(
VNCResult_t* ptResult,
long lActionId
);

SIMMotionContactSetProbeResponse
(
VNCResult_t* ptResult,
long lActionId
);

3 Interface Functional Description
3.11 Program Data Services

 Run MyVNCK, Reference
100 Function Manual, 05/2013

Parameters
ptResult Resulting value
dVirtTime VNCK internal time stamp
lChannel Channel number
tContactType Type of executing the contact action
tMeasProbeEdge Description of probe activity
lNumber Number of elements of the following arrays
plChanAxIndex Array of channel axes indexes
pdContactMcsAxVal Array of axes contact values
tContactActionType Type of contact motion
pdMcsAxValTarget Array of axes target values
lMotionId MotionId of the contact motion action
lVNCRunActionId Identifier from VNCRun()

Description
The VNCK system will issue a SIMMotionContactEvent to report a programmed ac-
tivity FXS or MEAS to be executed in the IPO task. This event describes as well
the basic type of contact motion FXS or MEAS as the specific characteristics of this
function. Measurement activities will furthermore describe the associated probe in-
formation. All the affected channel axes will be described with their motion target
values.

 Note

Inside the SINUMERIK NCK FXS motions (drive to fixed stop) and MEAS mo-
tions (measuring) are handled differently. Before motion contact values for FXS
motions become effective up to four IPO cycles will be necessary, whereas mo-
tion contact values for MEAS motions get effective immediately.

 Note

It is necessary to call VNCSetProgOutputOption() with the according flag
VNC_PROG_OUTPUT_CONTACT_ACTION to let the VNCK system handle and
issue any commands and events to contact motion activities.

Simulation can respond the SIMMotionContactEvent with a call of VNCMo-
tionContact() to command how the contact action has to be performed by the
VNCK system. There are several alternatives to execute the contact via parameter
tContactType:

− VNC_CONTACT_TYPE_INTERACTIVE: The VNCK system will perform
the contact action immediately. If no axes are parameterized the axes posi-
tions will reach the values resulting from usual computing in VNCK kernel
process from the actual time. If axes values are given by VNCMotionCon-
tact() the VNCK kernel will set the actual axes values to exactly these val-
ues independent from the values that have already been passed in pro-
gram processing or not. Calling VNCMotionContact() can be done at any
time during the execution of the block.

 3 Interface Functional Description
 3.11 Program Data Services

Run MyVNCK, Reference
Function Manual, 05/2013 101

− VNC_CONTACT_TYPE_PREDEFINED: The VNCK System will perform
the contact action when one of the given channel axes reaches an actual
position value given by simulation. Here the VNCK system stops further
path interpola-tion of the actual block. VNCMotionContact() can be done at
any time during the execution of the block.

− VNC_CONTACT_TYPE_EXTERNAL: Using this mode simulation tells the
VNCK system that all necessary activity to perform the motion contact will
be done via an external way. This option is only used in combination with
virtual PLC. VNCMotionContact() must be called before any further interpo-
lation takes place.

 Note

Actually the mode VNC_CONTACT_TYPE_EXTERNAL can only be used for
fixed stop motions.

 Note

Actually only measuring functions MEAS or MEAW are supported.

SIMMotionContactResponse() will report whether the request can be handled.

After the contact action has been performed the VNCK system issues a further
SIMMotionContactEvent() to finally report the result of handling the contact activity.

 Note

Before VNCK system will report the performed contact at given contact positions
there may be SIMPathOutputMCS() events reporting axes values beyond the
contact positions. This is caused by the fact that SIMPathOutput() reports interpo-
lation task command values whereas the contact check is computed on servo
actual values. Nevertheless the command axes values will be updated by the
actual values when finishing the block.

 Note

There is a freezeMode VNC_FREEZEMODE_CONTACT_MOTION to allow
freeze interrupts after SIMMotionContactEvent().

Handling of initial states for measuring probes:
To change the initial state of probes there are further functions VNCMotionCon-
tactSetProbe() and the according SIMMotionContactSetProbeResponse(). The
command function with its parameter tMeasProbeEdge can be used to set a probe
to the state that the simulation system requires. E.g. this request is used after the
probe is removed by following program lines from the contact point after the meas-
urement has taken place.

3 Interface Functional Description
3.11 Program Data Services

 Run MyVNCK, Reference
102 Function Manual, 05/2013

VNCSetProgOutputOption(…,
 VNC_PROG_OUTPUT_CONTACT_ACTION,…)

Simulation
VNCK Server

SIMSetProgOutputOptionResponse(…)

VNCProgStart(…)

partProgram processing is running

SIMMotionContactEvent(…)

SIMMotionContactResponse(…)

VNCMotionContact(…)

possibly partProgram processing is running

partProgram processing is running
until the requested contact takes place

further startup activity

SIMMotionContactEvent(…,VNC_CONTACT_ACTION_FINISHED,…)

If there is a measurement action possibly reset the probe status:

SIMMotionContactSetProbeResponse(…)

VNCMotionContactSetProbe(…)

 Note

There are other versions of these functions:
SIMMotionContactEventSa (...);
VNCMotionContactSa (...);

Example for VNCK system controlled contact motion:

Figure 3-4: VNCK system controlled contact motion

 3 Interface Functional Description
 3.12 Alarm Management

Run MyVNCK, Reference
Function Manual, 05/2013 103

3.12 Alarm Management

3.12.1 Alarm occurred

Events
SIMNewAlarmEvent
(
double dVirtTime,
long lChannel,
long lAlarmId,
BSTR sAlarmText,
VNCAlarmQuitt_t tAlarmQuitt,
long lAlarmCookie
long lVNCRunActionId
);

SIMNewAlarmDescription
(
long lAlarmId,
BSTR sAlarmText,
VNCAlarmQuitt_t tAlarmQuitt,
long lAlarmCookie
);

Parameters
dVirtTime VNCK internal time stamp
lChannel Channel number
lAlarmId Alarm ID
sAlarmText Description of alarm with parameters
tAlarmQuitt Clear condition
lAlarmCookie Identifier to the temporary alarm
lVNCRunActionId lActionId of the preceding VNCRun()

Description
A SIMNewAlarmEvent is sent immediately from VNCK when the alarm occurs dur-
ing the program process in VNCK. This event is described by the virtual time. The
alarmId gives the alarm number. The alarm text describes the alarm itself with its
VNCK alarm number, the channel in which the alarm occurred, the number of the
program line corresponding to the alarm and further information on the alarm.

A SIMNewAlarm Description is sent when the HMI alarm server reports an alarm
that is not yet reported by a SIMNewAlarmEvent.

Depending on the value of tAlarmQuitt specific actions will be necessary to quit
alarms. Only for type VNC_ALARM_QUITT_CANCEL an alarm can be canceled
with VNCCancelAlarm(). The types VNC_ALARM_QUITT_RESET and
VNC_ALARM_QUITT_REBOOT require a kernel reset or even a complete reboot
of the VNCK system.

3 Interface Functional Description
3.12 Alarm Management

 Run MyVNCK, Reference
104 Function Manual, 05/2013

3.12.2 Alarm deleted

Event
SIMAlarmDeleted
(
long lAlarmId,
long lAlarmEventId
);

Parameters
lAlarmId Alarm ID
lAlarmEventId Identifier to the temporary alarm

Description
With this event the simulator is informed of the clearing of an alarm described by
the actionId from the list of all active alarms in VNCK. The simulator can remove
the alarm from a display eventually shown in its user interface.

 Note

SIMAlarmDeleted(0, 0) informs the simulation that all actual alarms have been
deleted (e.g. after a kernel reset). They might, however, be reissued via new
SIMNewAlarmEvents.

Behaviour when BTSS connection failes:
If the BTSS conncetion between HMI software and NCK is aborted for any sea-
son, for all alarm messages a SIMAlarmDeleted event will be issued. As soon as
the BTSS conncetion is re-established SIMNewAlarmEvents will be sent for all
active alarms. This behaviour is standard for real SINUMERIK controllers, but
might be unwanted for simulation.
Adding the following lines to theVNC.ini will keep the BTSS connection alive also
during freeze periods:

• [VNCK]
• activateBTSSwhileFreezing=1

This new setting is only available in VNCK4.5 or higher

 3 Interface Functional Description
 3.12 Alarm Management

Run MyVNCK, Reference
Function Manual, 05/2013 105

3.12.3 Cancelling alarms

Synchronous service
VNCCancelAlarm
(
long lActionId
);

Event
SIMCancelAlarmResponse
(
VNCResult_t* ptResult,
long lActionId
);

Parameters
ptResult Resulting value
lChannel Channel number
lActionId Identifier to alarm

Description
With this call the simulator can initiate canceling of all alarms in a VNCK channel
with the appropriate cancel clearing condition. The response only provides informa-
tion on the successful order of the command to the VNCK. The result of the cancel-
ing itself is reported by SIMAlarmDeleted events.

 Note

VNCCancelAlarm must not be called more than one time when the NCK is in
freeze mode. Before it is called a second time a VNCRun must be issued.

3 Interface Functional Description
3.13 OEM Compile Cycles

 Run MyVNCK, Reference
106 Function Manual, 05/2013

3.13 OEM Compile Cycles
Refer to the according paragraphs of the description of the VNCBoot() function.
The bootOptionTypes VNC_BOOTTYPE_SIM_DATA_CC,
VNC_BOOTTYPE_SRAM_CC and VNC_BOOTTYPE_IBN_CC are used for VNCK
kernel loading and activating OEM cycles.

3.14 Extended Services

General Information
Extended services like block search and correction editor are not supported.

3.15 EXTCALL
You can set an entry in the initialization file ‘theVNC.ini’ to let the VNCK system
automatically extend the search path for a part program stored on PC.

[DOMAIN]
pcExtProgPathFile=< InstallPath>/sw/extProgPath.ini

For more information read the described extProgPath.ini file.

 3 Interface Functional Description
 3.16 Reading / Writing values of Initial Parameters

Run MyVNCK, Reference
Function Manual, 05/2013 107

3.16 Reading / Writing values of Initial Parameters

3.16.1 General Information

VNCKServer can be parameterized to meet special needs.

The parameters (e.g. timeouts, directories, etc.) are initialized with values which
are both hard coded, within the VNCK server source code, and stored in the
following 2 files:
<InstallPath>\theVNC.ini
<AllUsersPath>1\theVNC.ini
This last file is for user-defined values.

Moreover the user can define at runtime the actual value of parameters using the
function: VNCSetIniParameter (…).

A parameter is identified by its ‘Section’ name and the ‘Entry’ name, which speci-
fies its value in the ‘theVNC.ini’ file.

When VNCKServer reads an ini parameter, its value is retrieved according to the
following rule:

− If a “user choice” has been imposed, through the function VNCSetIniParame-
ter, that value is used (even if it is an empty string!).

− Otherwise a “standard choice” is done, i.e. the first not empty string found in
the following sequence (in order of priority):
1. the ‘customer’ value, defined through the function VNCSetIniParameter
2. the user-defined value, present in the file <AllUsersPath>\theVNC.ini
3. the predefined value, present in the file <InstallPath>\theVNC.ini
4. the ‘default’ value, hard coded in the source code file.

Also the user can watch the value of a parameter, through the function:
VNCGetIniParameter (…).

In the functions for reading/writing values of initial parameters, the argument
‘VNCIniParamType_t’ specifies which one will be treated.
It can assume the following type, which have the described meaning:

VNC_INIPARAM_NONE = no choice
VNC_INIPARAM_DEFAULT = the source code
VNC_INIPARAM_THEVNCINI = the <InstallPath>\theVNC.ini
VNC_INIPARAM_USERTHEVNCINI = the <AllUsersPath>\theVNC.ini
VNC_INIPARAM_CUSTOMER = the run-time user-defined

1 <AllUsersPath>
in Windows XP:

C:\Documents and Settings\All Users\Application Data\Siemens\Sinumerik\VNCK\v4.5
In Windows 7:
 C:\Program Data\Siemens\Sinumerik\VNCK\v4.5

3 Interface Functional Description
3.16 Reading / Writing values of Initial Parameters

 Run MyVNCK, Reference
108 Function Manual, 05/2013

3.16.2 Writing the value of an initial parameter

Synchronous service
VNCSetIniParameter
(
VNCIniParameterType_t tIniParameterType,
BSTR sSectionName,
BSTR sEntryName,
BSTR sValue
);

Parameters
tIniParameterType specification on what value to consider
sSectionName name of the section
sEntryName name of the entry
sValue value given to the parameter (string)

Description
Impose the use of a value for an initial parameter of the VNCK server.
Synchronous service: the function returns the result and no response is sent.

Only if the first argument ‘tIniParameterType’ is ‘VNC_INIPARAM_CUSTOMER’,
the given string becomes the run-time user-defined value. Otherwise the last
argument ‘sValue‘ has no meaning (and you can simply write “”).

When the first argument ‘tIniParameterType’ is ‘VNC_INIPARAM_ NONE’, then the
run-time user-defined value is deleted, the “user-choice” is reset and the “standard
choice” is restored.

 3 Interface Functional Description
 3.16 Reading / Writing values of Initial Parameters

Run MyVNCK, Reference
Function Manual, 05/2013 109

3.16.3 Reading the value of an initial parameter

Synchronous service
VNCGetIniParameter
(
VNCIniParameterType_t tIniParameterType,
BSTR sSectionName,
BSTR sEntryName,
BSTR * psvalue
);

Parameters
tIniParameterType specification on what value to consider
sSectionName name of the section
sEntryName name of the entry
psvalue pointer to the value returned (string)

Description
Retrieves the values of an initial parameter of the VNCK server.
Synchronous service: the function returns the result and no response is sent

When the first argument ‘tIniParameterType’ is ‘VNC_INIPARAM_ NONE’, then the
actual value (retrieved and used by the VNCKServer program in that moment) is
returned.

 Note

While VNCSetIniParameter only works for VNC_INIPARAM_CUSTOMER,
VNCGetIniParameter is working for all enum types.
It might be confusing the VNCGetIniParameter delivers another value than the
value which was set by VNCSetIniParameter if a different enum value is used.

3 Interface Functional Description
3.16 Reading / Writing values of Initial Parameters

 Run MyVNCK, Reference
110 Function Manual, 05/2013

Run MyVNCK, Reference
Function Manual, 05/2013 111

4 VPLC Processing

The following chapters describe the API functions relating to the VNCK server as
well as the event functions of the callback interface.

VPLC related server functions are marked by a prefix 'VPLC'
(e.g. VPLCInitialize(...)). Callback functions are marked by a prefix 'SIM'
(e.g. SIMVPLCHwConfigChanged(...)).

To use the IVPLC interface there is the precondition that a VPLC process was
started in parallel with the VNCK kernel process.

 Note

VPLC is protected by a specific license option, which is not part of the standard
VNCK license.

 Note

In fact, the most functions are implemented as a synchronous function. Therefore
a warning value is returned to the requests to advise to this behavior.

VPLC on multi-core operating systems:

By default the VPLC processes are running locked to core 0 (same as VNCK).
Since VNCK4.5SP1 it is possible to define which core should be used for the VPLC
processes by adding the following lines to theVNC.ini:

[VPLC]
VPLCCoreID=<IntegerValue>

The value <IntegerValue> starts with index 0, means core 0 is addressed.

 Note

This setting in theVNC.ini is only read from the theVNC.ini file in the VNCK
installation folder.

4

4 VPLC Processing
4.1 VPLC Initializing and Shutdown

 Run MyVNCK, Reference
112 Function Manual, 05/2013

4.1 VPLC Initializing and Shutdown
The following functions are needed to start and close handling of a virtual PLC as
well as to initialize communication and scale the CPU usage of the VPLC process.

4.1.1 Establishing the Controller – Simulator Connection

Synchronous service
VPLCSetVPLCInterface
(
ISIMVPLCCallback * pSimVPLC
);

Parameters
pSimVPLC callback interface for VPLC events

Description
This function passes a pointer to an object in the simulator that receives the VNCK
callbacks concerning VPLC handling. It is necessary to call this function as the very
first call to the IVPLC interface to allow the VNCK server to fire asynchronous
response events to simulation. Otherwise calls to the IVPLC interface will be
rejected.

4.1.2 Initializing VPLC Handling

Synchronous service
VPLCInitialize ();

Description
This function must be called next after VPLCSetVPLCInterface to let the server
check license option, initialize communication with the VPLC process, retrieve the
description of the VPLC IO hardware configuration and initialize further states.

 4 VPLC Processing
4.1 VPLC Initializing and Shutdown

Run MyVNCK, Reference
Function Manual, 05/2013 113

4.1.3 Providing VPLC IO Hardare Configuration

Event
SIMVPLCHwConfigChanged
(
long IResult,
VPLCHwConfig_t * ptHwConfig
);

Parameters
lResult Resulting value of determining hwConfig
ptHwConfig Pointer to memory describing the hwConfig

Description
This callback function informs simulation about the actual state of VPLC’s
hardware configuration description. The event is fired inside VPLCInitialize(). The
parameter ptHwConfig is a void pointer. Using a compatible .h file simulation must
be able to cast an according data type pointer to access the description.

4.1.4 Terminating VPLC Handling

Synchronous service
VPLCTerminate ();

Description
This function stops the VNCK servers management of handling a VPLC.

4.1.5 Controlling CPU usage of the VPLC process

Synchronous service
VPLCSetCpuScale
(
long * plScale
);

Description
This function orders the VNCK system to limit the CPU usage of the VPLC
process.
The parameter unit is used as CPU percentage. It works as input for the requested
value as well as output for the by the VPLC process determined value.

4 VPLC Processing
4.2 VPLC Leds and Switches

 Run MyVNCK, Reference
114 Function Manual, 05/2013

4.2 VPLC Leds and Switches
The following functions can be used to watch and control the VPLC state.

4.2.1 Reading VPLC Operation State

Synchronous Service
VPLCGetLeds
(
VPLCLeds_t * ptLeds
);

Parameters
ptLeds Array of states

Description
This function returns the on/off or flushing states of the VPLC operation and error
conditions.

4.2.2 Watching VPLC Operation State

Synchronous Services
VPLCWatchLeds
(
long * plActionId
);

VPLCUnWatchLeds
(
long lActionId
);

Event
SIMVPLCWatchLedsEvent
(
long lResult,
VPLCLeds_t * ptLeds,
long lActionId
);

Parameters
lResult Resulting value of watch event
ptLeds Array of VPLC conditions
[p]lActionId Identifier to callback functions

 4 VPLC Processing
4.2 VPLC Leds and Switches

Run MyVNCK, Reference
Function Manual, 05/2013 115

Description
Using the service functions simulation can order the VNCK system to start or stop
sending as well an initial event as continuous events reporting the actual status
and changing states of the operation and error conditions of the VPLC. Whenever
a status is changing the event is fired.

4.2.3 Setting VPLC Switch

Synchronous Service
VPLCSetSwitch
(
VPLCSwitchType_t tSwitch
);

Parameters
tSwitch VPLC switch to be activated
Description
This function activates the described switch of the VPLC.

4.2.4 Reading VPLC Switch

Synchronous Service
VPLCGetSwitch
(
VPLCSwitchType_t * ptSwitch
);

Parameters
ptSwitch Actual activated VPLC switch
Description
This function reports the actual activated switch of the VPLC.

4 VPLC Processing
4.2 VPLC Leds and Switches

 Run MyVNCK, Reference
116 Function Manual, 05/2013

4.2.5 Watching VPLC Operation States

Synchronous Services
VPLCWatchSwitches
(
long * plActionId
);

VPLCUnWatchLeds
(
long lActionId
);

Event
SIMVPLCWatchSwitchesEvent
(
long lResult,
VPLCSwitchType_t tSwitch,
long lActionId
);

Parameters:
lResult Resulting value of watch event
tSwitch Actual activated VPLC switch
[p]lActionId Identifier to callback functions

Description
Using the service functions simulation can order the VNCK system to start or stop
sending as well an initial event as continuous events reporting the actual activated
switch of the VPLC. Whenever the VPLC status is changing the event is fired.

 4 VPLC Processing
4.3 VPLC Progress Control

Run MyVNCK, Reference
Function Manual, 05/2013 117

4.3 VPLC Progress Control
The following functions allow synchronizing the simulation process with the VPLC
by setting and handling time slices.

4.3.1 Activating VPLC Synchronisation

Synchronous service
VPLCRun
(
long * plActionId
);

Parameter
plActionId Identifier to callback function

Description
This service causes the VNCK system to watch the synchronization between the
VNCK kernel and the VPLC process. For every cycle of the synchronization the
call-back function SIMVPLCFreeze will be called. This tells simulation that the
VNCK system resides in a consistent data status. Now simulation can access the
given data IO interface to read and write VPLC IO data.
After the VPLCFreeze this function must be called to continue processing.

4.3.2 Deactivating VPLC Synchronisation

Synchronous service
VPLCIdle
(
long * plActionId
);

Parameter
plActionId Identifier to callback function

Description
This service causes the VNCK system to stop notifying simulation in every
synchronization cycle. Nevertheless, the VNCK kernel and the VPLC process will
continue working synchronized. VNCK server quits sending SIMFreeze and will not
expect any more VPLCRun commands.

4 VPLC Processing
4.3 VPLC Progress Control

 Run MyVNCK, Reference
118 Function Manual, 05/2013

4.3.3 VPLC Freeze

Event
SIMVPLCFreeze
(
double dVirtTime,
long lVPLCRunActionId
);

Parameter
lResult Resulting value
dCycleTime Value describing the active time
[p]lActionId Identifier to callback function

Description
For every cycle of the synchronization this call-back function will be called. It tells
simulation that the VNCK system resides in a consistent data status. Now
simulation can access the given data IO interface to read and write VPLC IO data.

Simulation must call VPLCRun to release the VNCK system for the next loop.



Run MyVNCK, Reference
Function Manual, 05/2013 119

5 NCU Link Processing

The following chapters describe the API functions relating to the VNCK server as
well as the event functions of the callback interface for simulating SINUMERIK
systems with NCU link.

VNCK server functions are marked by a prefix 'VNCLink (e.g.
VNCLinkInitialize(...)). Callback functions are marked by a prefix 'SIMLink' (e.g.
SIMLinkInitializeResponse(...)).

 Note

NCU Link is protected by a specific license option, which is not part of the
standard VNCK license.

 Note

The NCU Link interface of VNCK is designed to work with two NCU units, which
run in a synchronized fashion also in real world. This requires special link
settings. These settings are part of the machine data settings when creating
series commissioning files from the real controller.

5

5 NCU Link Processing
5.1 Link System Initializing and Shutdown

 Run MyVNCK, Reference
120 Function Manual, 05/2013

5.1 Link System Initializing and Shutdown
The following functions are needed to start and close handling of a NCU link
system describing several NCU units working NCU link synchronized. Nevertheless
the link interfaces can be used to control one NCU unit using the link interface
functions.

5.1.1 Establishing the Controller – Simulator Connection

Synchronous service
VNCLinkSetSIMInterface
(
ISIMLinkCallback * pSimLink,
ISIMCallbackLicense * pSimLicense,
BSTR sLinkName
);

Parameters
pSimLink callback interface for link events
pSimLicense callback interface for license management
sLinkName name of the link unit

Description
This function passes a pointer to an object in the simulator that receives the VNCK
callbacks concerning link handling. It is necessary to call this function as the very
first call to the VNCK system interface to allow the VNCK server to send
asynchronous response events to simulation. Otherwise calls to the VPLC system
will be rejected. Furthermore there is a pointer to a simulation callback object that
handles license requirements if the VNCK system is designed as an ISV
(independent software vendor) system. To identify the actual link unit there is a
parameter sLinkName.

 Note

In fact, this function is implemented as a synchronous function. Therefore a
warning value is returned to the request to advise to this behavior.

 Note

The SAVE option for single NCUs is not supported when working with NCU-Link.

 5 NCU Link Processing
 5.1 Link System Initializing and Shutdown

Run MyVNCK, Reference
Function Manual, 05/2013 121

5.1.2 Initializing the Link System

Asynchronous service
VNCLinkInitialize
(
long lNumNcu,
long * plLinkInitActionId
);

Event
SIMLinkInitializeResponse
(
VNCResult_t * ptResult,
long lLinkInitActionId
);

Parameters
ptResult result value
lNumNcu number of NCU units
[p]lLinkInitActionId Identifier to callback function

Description
This function must follow VNCLinkSetSIMInterface to define the number of NCU
units to be synchronized inside the given link unit. The callback event will be sent
when all the NCU units were created by following VNCLinkCreateNcu calls.

5 NCU Link Processing
5.1 Link System Initializing and Shutdown

 Run MyVNCK, Reference
122 Function Manual, 05/2013

5.1.3 Defining the NCU Units

Synchronous service
VNCLinkCreateNcu
(
BSTR sNcuName,
IVNCNcuServer * * ppVncNcu
);

Parameters
sNcuName name of the NCU unit
ppVncNcu pointer to IVNCNcuServer object

Description
After VNCLinkInitialize all NCU units must be identified with a NCU name. The
VNCK system now instantiates IVNCNcuServer objects that will be used to control
the NCU units regarding the NCU local functions.

 Note

In fact, this function is implemented as a synchronous function. Therefore a
warning value is returned to the request to advise to this behavior.

 5 NCU Link Processing
 5.1 Link System Initializing and Shutdown

Run MyVNCK, Reference
Function Manual, 05/2013 123

5.1.4 Controlling the NCU Startups

Asynchronous service
VNCLinkBoot
(
long * plLinkBootActId
);

Event
SIMLinkBootResponse
(
VNCResult_t * ptResult,
long lLinkBootActId
);

Parameters
ptResult result value
[p]lLinkBootActId Identifier to callback function

Description
Using this function the sequence of booting all the NCU units is started. When all
the NCU units are running simulation will be notified by the callback function.

 Note

When working with Linked SRAM files it must be ensured, that Link-SRAMs,
which were created based on HMIBase are only booted with HMIBase activated.
The same applies for Link-SRAMs, which were created based on Operate
services. These must be booted only with activated Operate services.

5 NCU Link Processing
5.1 Link System Initializing and Shutdown

 Run MyVNCK, Reference
124 Function Manual, 05/2013

5.1.5 Setting the Link State

Asynchronous service
VNCLinkSetState
(
VNCBooleanType_t tLinkStateActive,
long * plLinkSetStateActId
);

Event
SIMLinkSetStateResponse
(
VNCResult_t * ptResult,
long lLinkSetStateActionId
);

Parameters
ptResult result value
tLinkStateActive required link state
[p] lLinkSetStateActionId Identifier to callback function

Description
Using this function simulation can change the link state of the booted NCU units.
That means the NCU units can be set into a time synchronized mode where all the
NCUs are working on the same virtual time axis. Also the NCU link can be released
by this function. For both modes the VNCK server will reboot the NCU units with an
according environment. SimKernelResetEvents will be fired by each NCU unit. The
callback function SIMLinkSetStateResponse will notify the end of server activities
to change the state of the link unit.

 5 NCU Link Processing
 5.1 Link System Initializing and Shutdown

Run MyVNCK, Reference
Function Manual, 05/2013 125

5.1.6 Terminating a Link Session

Asynchronous service
VNCLinkShutdown
(
long * pLinkShutdownActionId
);

Event
SIMLinkShutdownResponse
(
VNCResult_t * ptResult,
long lLinkShutdownActionId
);

Parameters
ptResult result value
[p] lLinkShutdownActionId Identifier to callback function

Description
Using this function the VNCK server is shutting down all NCU units defined within
the link unit. At last the infrastructure of the link unit itself is cleaned up and
released.

 Note

The NCU units cannot be released with the IVNCServer function VNCShutdown
anymore.

 Note

After calling VNCLinkShutdown the VNCK COM interface must be re-initialized by
calling VNCLinkSetSIMInterface before calling the next VNCLinkBoot.

5 NCU Link Processing
5.1 Link System Initializing and Shutdown

 Run MyVNCK, Reference
126 Function Manual, 05/2013

5.1.7 Link System Startup via a VMF

Asynchronous service
VNCLinkSetup
(
BSTR sLinkVmfDataPath,
ISimLinkNcuFactory* pSimLinkNcuFactory,
long * plLinkSetupActionId
);

Event
SIMLinkSetupResponse
(
VNCResult_t * ptResult,
long lLinkSetupActionId
);

Parameters
ptResult result value
sLinkVmfDataPath VmfFile of link unit
pSimLinkNcuFactory Simulation’s callback factory
[p] lLinkSetupActionId Identifier to callback function

Description
This is a more convenient startup function that includes all the previously described
functions for activating a link unit system until part programs can be run. Simulation
must provide a vmfFile that contains all the descriptions as well of the link unit as of
the NCU units to run under synchronized link mode. This vmfFile can be created
with the interface function VNCLinkSaveData.
Furthermore simulation must provide a pointer to a callback factory object that
allows the VNCK server to ask for all the required callback objects of the included
NCU units.

 5 NCU Link Processing
 5.2 Link System Progress Controlling

Run MyVNCK, Reference
Function Manual, 05/2013 127

5.2 Link System Progress Controlling
The following functions are used to let the NCU units process part programs inside
their channels under a common slice control. All NCU units will be synchronized on
the same virtual time bar.

5.2.1 Setting Link Slices

Asynchronous services
VNCLinkSetTimeSlice
(
double dSliceIpoTime,
long * pLinkSetTimeSliceActionId
);

VNCLinkSetSliceMode
(
VNCSliceMode_t tSliceMode,
VNCSliceValues_t * ptSliceValues,
long * pLinkSetSliceModeActionId
);

Events
SIMLinkSetTimeSliceResponse
(
VNCResult_t * ptResult,
long lLinkSetTimeSliceActionId
);

SIMLinkSetSliceModeResponse
(
VNCResult_t * ptResult,
long lLinkSetSliceModeActionId
);

Parameters
ptResult result value
dSliceIpoTime value for linked time slice
tSliceMode mode for general link slices
ptSliceValues values for general link slices
[p]lLinkSetTimeSliceActionId Identifier to callback function
[p]lLinkSetSliceModeActionId Identifier to callback function

Description
Using VNCLinkSetTimeSlice simulation can parameterize a link global time slice
for all the NCU units. The function VNCLinkSetSliceMode allows setting all the
other slice modes including their criterion values for all the NCU units by one call.

5 NCU Link Processing
5.2 Link System Progress Controlling

 Run MyVNCK, Reference
128 Function Manual, 05/2013

 Note

Since this value must be unique to all NCU units inside a link unit the IVNCServer
function VNCSetSliceMode is no longer allowed to be called inside a link unit.
Nevertheless the values except the time slice can be set individually via the
IVNCNcuServer interface.

5.2.2 Processing the next Slice

Synchronous service
VNCLinkRun
(
long * plLinkRunActionId
);

Parameters
plLinkRunActionId Identifier to SIMLinkFreeze callback function

Description
This function is used to let the VNCK system process the next slice. The function is
necessary after a SIMLinkFreeze event that idled all link synchronized the NCU
units at the same virtual time. Calling this function let all NCU units proceed their
part program processing up to the next slice or freeze criterium becomes true.

 Note

In fact, this function is implemented as a synchronous function. Therefore a
warning value is returned to the request to advise to this behavior.

 5 NCU Link Processing
 5.2 Link System Progress Controlling

Run MyVNCK, Reference
Function Manual, 05/2013 129

5.2.3 Link Freeze

Event
SIMLinkFreeze
(
double dVirtTime,
VNCFreezeReason_t tLinkFreezeReason,
long lLinkRunActionId
);

Parameters
dVirtTime Virtual time stamp
lLinkFreezeReason Reasons for freezing
lLinkRunActionId Identifier to VNCLinkRun function

Description
This event is fired from the VNCK system when all NCU units are residing idled at
the same given virtual time. The parameter lLinkFreezeReason describes why
there is a break in processing part programs. If there are several and / or different
reasons from one or several NCU units the individual freezeReasons are combined
into one parameter of SIMLinkFreeze. All the NCU units have sent a
SIMNcuFreezeInfo event previously to notify their local freezeReasons.

After sending SIMLinkFreeze the VNCK will no longer consumes virtual time. The
VNCK usually changes to this state if any of the slice or freeze conditions of one of
the NCU units are met.

 Note

Since there must be one unique event notifying the freeze state of the link unit the
callback events SIMFreeze from ISIMCallback will not be fired.

5 NCU Link Processing
5.3 Link System Status Saving and Resetting

 Run MyVNCK, Reference
130 Function Manual, 05/2013

5.3 Link System Status Saving and Resetting
The following functions are used to store and reset the status of complete NCU link
systems.

5.3.1 Saving the States of the Link Components

Asynchronous service
VNCLinkSaveData
(
VNCSaveData_t tSaveMask,
BSTR sVmfFileName,
long * plLinkSaveDataActionId
);

Event
SIMLinkSaveDataResponse
(
VNCResult_t * ptResult,
long lLinkSaveDataActionId
);

Parameters
ptResult result value
tSaveMask mode for save operation
sVmfFileName name of file containing saved data
[p]plLinkSaveDataActionId Identifier to callback function

Description
The actual state of the complete VNCK or single parts of data of the simulation
machine will be saved for future startups or updates of link units and their included
NCU units. The parameter tSaveMask describes which data of the actual running
VNCK system has to be stored.

VNC_SAVEDATA_SRAM:
Using this value either the complete state of the last shut down VNCK kernel or the
state of the actual running VNCK kernel is stored to a file ‘vmfSim.dat’. You can
use this file for a VNCLinkSetup() call.

 Note

Up to now only the save mode VNC_SAVEDATA_SRAM is possible.

When there is a link unit the usage of the save mode VNC_SAVEDATA_SRAM is
no longer possible by the IVNCServer function VNCSaveData.
Only VNCLink-SaveData can create Vmf files of link systems.

 5 NCU Link Processing
 5.3 Link System Status Saving and Resetting

Run MyVNCK, Reference
Function Manual, 05/2013 131

5.3.2 Refreshing the States of the Link Components

Asynchronous service
VNCLinkMatchData
(
VNCMatchData_t tRefreshMask,
long * plLinkMatchDataActionId
);

Event
SIMLinkMatchDataResponse
(
VNCResult_t * ptResult,
long lLinkMatchDataActionId
);

Parameters
ptResult result value
tRefreshMask mode for refresh operation
[p]lLinkMatchDataActionId Identifier to callback function

Description
Using VNCLinkMatchData a link unit will be updated by the dates and values of the
described machine. Depending on the mask different dates, i.e. machine data, tool
data, guides, cycles types will be attached

VNC_MATCHDATA_SRAM:
Using this value the complete state of the running VNCK is updated from a stored
SRAM file ‘vmfSim.dat’. This method prevents simulation from shutting down and
rebooting a VNCK system to restore a VNCK state.

 Note

Until now only the value VNC_MATCHDATA_SRAM can be used.

5 NCU Link Processing
5.4 Link NCU Managemant

 Run MyVNCK, Reference
132 Function Manual, 05/2013

5.4 Link NCU Managemant
When there is a link system some of the standard IVNCServer interface functions
are not available. This is because these functions must be executed under the
control of the link management. The functions on the IVNCServer interface will
return a matching error value. Furthermore some functions are necessary to handle
link NCU units. Therefore there is an interface IVNCNcuServer that is derived from
the standard IVNCServer interface.

5.4.1 Requiring Simulation Callback Objects

Event
CreateNcu
(
BSTR sLinkName,
BSTR sNcuName,
IVNCNcuServer* pNcuServer,
ISIMCallback** ppSim,
ISIMNcuCallback** ppSimNcu,
ISIMCallback_ext** ppSimNcuExt,
ISIMCallback_sa** ppSimNcuSA
);

Parameters
sLinkName name of the link unit
sNcuName name of the NCU unit
pNcuServer pointer to NCU server object
ppSim pointer for basic callback interface
ppSimNcu pointer for NCU server callback interface
ppSimNcuExt pointer for extended callback interface
ppSimNcuSA pointer for safeArray function callback interface

Description
When the VNCK system is starting up a link unit based on a VNCLinkSetup call the
VNCK server will require pointers to callback objects from simulation. These
callback objects are necessary to handle the range of events that a call
VNCSetSimInterface allows for single NCU units. Furthermore the event delivers a
pointer to a IVNCNcuServer object to simulation that must be used to address
function calls to the named NCU unit. This interface must be used instead of the
single NCUs interface IVNCServer.

 5 NCU Link Processing
 5.4 Link NCU Managemant

Run MyVNCK, Reference
Function Manual, 05/2013 133

5.4.2 Establishing the Link NCU Controller – Simulator Connection

Synchronous service
VNCNcuSetSIMInterface
(
ISIMCallback * pSim,
ISIMNcuCallback * pSimNcu,
ISIMCallback_ext * pSim_ext,
ISIMCallback_sa * pSim_sa
);

Parameters
pSim basic callback interface
pSimNcu NCU server callback interface
pSimNcuExt extended callback interface
pSimNcuSA safeArray function callback interface

Description
After calling VNCLinkBoot in the sequence of starting up a link unit simulation must
boot the NCU units. Analogous to a single NCU unit this function delivers pointers
to objects in the simulator that receive the VNCK callbacks. At the very least it is
necessary to send the interface pointer to the object handling the basic and the
NCU server functions. The other pointers refer to objects accepting callbacks for
the extended scope of functions and / or functions using safeArrays for transferring
lists of data. VNCNcuSetSimInterface () must be called before any other
IVNCNcuServer function call in order to be able to receive callbacks from the
VNCK.

5 NCU Link Processing
5.4 Link NCU Managemant

 Run MyVNCK, Reference
134 Function Manual, 05/2013

5.4.3 Link NCU Controller start-up

Asynchronous service
VNCNcuBoot
(
BSTR sLinkName,
BSTR sNcuName,
VNCBootType_t tBootType,
BSTR sBootDataPath,
long * plBootActionId
);

Event
SIMNcuBootResponse
(
VNCResult_t * ptResult,
BSTR sNcuName,
long lBootActionId
);

Parameters
ptResult result of the NCU boot call
sLinkName name of the link unit
sNcuName name of the NCU unit
tBootType boot type of initialization data
sBootDataPath path to initialization data
[p]lBootActionId Identifier to callback function

Description
Using this function simulation starts up a NCU unit inside a link unit. For the
description of the parameters tBootType and sBootDataPath please look for the
reference of VNCBoot inside the IVNCServer interface.

 Note

The callback event SIMNcuBootResponse is also used when starting up a link
system via VNCLinkSetup. In these cases simulation is notified about the state of
starting the NCU units.

 5 NCU Link Processing
 5.4 Link NCU Managemant

Run MyVNCK, Reference
Function Manual, 05/2013 135

5.4.4 Setting Link NCU Slice Mode

Asynchronous service
VNCNcuSetSliceMode
(
VNCSliceMode_t tSliceMode,
VNCSliceValuesNcu_t * ptSliceValues,
long * plActionId
);

Parameters
tSliceMode Pattern describing the active slice modes
ptSliceValues Array for options dependent on values

Description
This function is analogous to VNCSetSliceMode from IVNCServer. The difference
consists of that a time slice cannot be set since all the NCU units of the link unit
must observe the same time slice value. All the other slice options can be chosen
individually to each NCU unit.

 Note

There is no ISIMNcuSetSliceModeResponse event. For the asynchronous
response event the function ISIMSetSliceModeResponse from the ISIMCallback
interface is used.

5.4.5 Link NCU Controller Shutdown

Event
SIMNcuShutdownResponse
(
VNCResult_t * ptResult,
BSTR sNcuName,
long lShutdownActionId
);

Parameters
ptResult Resulting value of NCU shut down
sNcuName Name of the NCU unit shutted down
lShutdownActionId Identifier to service IVNCLinkShutdown

Description
This event is issued in sequence of a IVNCLinkShutdown request to notify
simulation about the state of shutting down the single NCU units of a link unit.

5 NCU Link Processing
5.4 Link NCU Managemant

 Run MyVNCK, Reference
136 Function Manual, 05/2013

5.4.6 Link NCU Controller Freeze

Event
SIMNcuFreezeInfo
(
double dVirtTime,
VNCFreezeReason_t tNcuFreezeReason,
long lLinkRunActionId
);

Parameters
dVirtTime Virtual time stamp
tNcuFreezeReason Reasons for freeze
lLinkRunActionId lActionId of the preceding VNCLinkRun

Description
The VNCK system uses this function to inform the simulator of each NCU local
reasons before sending a SIMLinkFreeze event. Thus simulation gets knowledge
about the freeze reason of each NCU unit before the linkSlice closing event
SIMLinkFreeze is sent.

 Note

This is only an additional info event. Simulation has to wait for SIMLinkFreeze
before the link unit can be regarded as frozen.




Run MyVNCK, Reference
Function Manual, 05/2013 137

6 VNCK License

To be able to use VNCK it is necessary to be a registered VNCK user.
Two license options are available:

• Licensing via ISV license model
The VNCK license is coupled to the license model of the ISV software.
The ISV has to comply with Siemens licensing standards.

• Licensing via USB dongle
The VNCK license is granted through a USB dongle which contains one
individual license each.

For registration as a new VNCK customer please contact your local Siemens sales
agent.

6.1 ISV License Checking

Event
SIMEncrypt
(
BSTR sBufferCryptFile,
long * plLenCrypt,
BSTR sBufferFile,
long lLen,
long * plResult
);

Parameters
sBufferCryptFile File containing the encrypted data stream
plLenCrypt Length of encrypted data stream
sBufferFile File containing data stream to be encrypted
lLen Length of data stream to be encrypted
plResult Result of simulations encryption

6

6 VNCK License
6.1 ISV License Checking

 Run MyVNCK, Reference
138 Function Manual, 05/2013

Description
If the simulation system is using the Siemens ISV License System to identify itself
as a registered user this function asks the simulation system by this callback inter-
face function to encrypt a given file content. The VNCK system examines the result
to allow the VNCK system to run or not.

To do this there are different ways supported by software the VNCK provides at in-
stallation time. The files are stored under the directory vnck/sw/license. There are
code template files EPC_VC.cpp and EPC_VB.frm that show how to implement the
SIMEncrypt callback.




Run MyVNCK, Reference
Function Manual, 05/2013 139

7 More General Information

7.1 Preparation of the HMI Base System
By default simulation does not need to assign a name to the NCU that will be used
when booting a virtual NCU. But either if there is a not empty name parameter to
the VNCBoot() command of a single NCU system or if there is a link system
simulation must adapt some entries in HMI Base server ini-files and register some
prepared data access services.

For changing the environment the following string ‘MY_NCU’ should be substituted
by the name simulation wants to use for the interface functions of the actual NCU.
By default the VNCK system is installed with a name ‘VNCK’. Simulation has not to
do any changes if no name is used at the interface.

After executing all the following steps reboot the PC to activate the changes!

7.1.1 Enabling the OPC Data Access
Copy the directory <InstallPath>\HMIBase\dataaccessTemplate to a new directory
<AllUsersPath>\HMIBase\dataaccess_MY_NCU. Then edit the file SOPSRVR.ini:

edit ProgId = OPC.SINUMERIK.MY_NCU
create a new GUID (e.g. using GUIDGEN.EXE provided by Microsoft)
edit ClassId ={new GUID}
edit SymbolicName = OPC.SINUMERIK.MY_NCU
edit RegKey = SINUMERIK.MY_NCU
edit IVarServer = @MCVar.Var2:MY_NCU

A valid GUID can be obtained by an appropriate system call to the Windows
operating system.

Then execute on a command shell:
“<AllUsersPath>1\HMIBase\dataaccess_MY_NCU\SOPC_MachineSwitch.exe
/regserver”.

1 AllUsersPath>
in Windows XP:

C:\Documents and Settings\All Users\Application Data\Siemens\Sinumerik\VNCK\v4.5
In Windows 7:
 C:\Program Data\Siemens\Sinumerik\VNCK\v4.5

7

mailto:@MCVar.Var2:MY_NCU

7 More General Information
7.1 Preparation of the HMI Base System

 Run MyVNCK, Reference
140 Function Manual, 05/2013

7.1.2 Single NCU Setting
Look for <HMIInstallPath>2/user/mmc.ini:

[GLOBAL]
NcddeMachineName= MY_NCU
NcddeDefaultMachineName= MY_NCU
NcddeMachineNames= MY_NCU

[VNCK]
ADDRESS0=3,LINE=10,NAME=/NC,PROFILE= MY_NCU_COS_HMI_L4_INT
ADDRESS1=
vnckMachine=1

If there are several single NCUs to be run there must be the following entries,
where MY_NCU1 is used as an arbitrary default:

[GLOBAL]
NcddeMachineName= MY_NCU1
NcddeDefaultMachineName= MY_NCU1
NcddeMachineNames= MY_NCU1, MY_NCU2, MY_NCU3

[MY_NCU1]
ADDRESS0=3,LINE=11,NAME=/NC,PROFILE= MY_NCU1_COS_HMI_L4_INT
ADDRESS1=
vnckMachine=1

[MY_NCU2]
ADDRESS0=3,LINE=12,NAME=/NC,PROFILE= MY_NCU2_COS_HMI_L4_INT
ADDRESS1=
vnckMachine=1

[MY_NCU3]
ADDRESS0=3,LINE=13,NAME=/NC,PROFILE= MY_NCU3_COS_HMI_L4_INT
ADDRESS1=
vnckMachine=1

The steps for enabling the OPC Data Server must be performed to all requested
NCUs.

2 <HMIInstallPath>

C:\HMIAdv

 7 More General Information
 7.2 Languages

Run MyVNCK, Reference
Function Manual, 05/2013 141

7.1.3 Link NCU Setting
Look for <HMIInstallPath>/user/mmc.ini:

[GLOBAL]
NcddeDefaultMachineName= net:MY_NCU1
NcddeMachineNames=net

All NCUs working in the link unit must be parameterized by the file ‘netnames.ini’
that must be provided by simulation (see the reference books of Siemens
SINUMERIK 840D sl HMI for more information). Copy the file ‘netnames.ini’ to the
directory …/<HMIInstallPath>/user .

The steps for enabling the OPC Data Server must be performed to all requested
NCUs.

 Note

Use the name ‘net:MY_NCUx’ at all the relevant places in the ini file.

7.2 Languages
All alarm texts are reported in English. Nevertheless the simulator can change the
language either to German, Spanish, French or Italian.

If this is required, open the file 'mmc.ini' in the directory 'user' stored parallel to the
'vnck' directory. Set the entry 'Language' to the initials of your selected language.
The possible initials are listed in the commented entry 'LanguageList'.

[LANGUAGE]
Language=UK
;LanguageFont=Europe
;LanguageList=GR, UK, SP, FR, IT

Remember not to change any other lines in the 'mmc.ini' file.

7 More General Information
7.2 Languages

 Run MyVNCK, Reference
142 Function Manual, 05/2013



	Function Manual SINUMERIK Integrate Run MyVNCK Reference
	Legal information
	Preface
	Contents
	1 General Information
	1.1 VNCK Version History
	1.2 VNCK Architecture
	1.3 Installation and Deinstallation
	1.4 Installation Folders
	1.5 Silent Installation
	1.6 Documentation
	1.7 Additonal Documentation for Developers

	2 System Characteristics
	2.1 Chronological Sequence of Program Processing
	2.2 Asynchronous Communication Simulation <-> VNC Server
	2.3 Interfaces
	2.3.1 Single NCU Processing
	2.3.2 VPLC Processing
	2.3.3 NCU Link Processing
	2.3.4 License Handling

	2.4 Interface Function Return Values
	2.5 Freeze Handling in Simulation
	2.6 Creating high performance traces

	3 Interface Functional Description
	3.1 VNCK Boot and Shutdown
	3.1.1 General Information
	3.1.2 Establishing the connection between controller and simulation
	3.1.3 Controller start-up
	3.1.4 Controller Status Saving
	3.1.5 Controller Status Refreshing
	3.1.6 Resetting the VNCK Kernel
	3.1.7 Controller Shutdown
	3.1.8 Initializing the Channel Axes Values
	3.1.9 Setting VNCK System Sleeptime
	3.1.10 Setting the VNCK Kernel Process State
	3.1.9 Setting VNCK System Sleeptime

	3.2 VNCK Configuration services
	3.2.1 General Information
	3.2.2 Retrieving the NC configuration
	3.2.3 Retrieving the axes configuration
	3.2.4 Retrieving the VNCK Server Version

	3.3 Domain Data Management
	3.3.1 General Information
	3.3.2 Retrieving existing project directories
	3.3.3 Retrieving a program list within a project directory
	3.3.4 Transferring a project to the VNCK
	3.3.5 Transferring a program to a project directory
	3.3.6 Transferring a setting data file to VNCK
	3.3.7 Copying a program from VNCK to a local folder
	3.3.8 Deleting a file in VNCK data management system
	3.3.9 Obtaining information about multi-file transfer
	3.3.10 Obtaining information about transfer status

	3.4 Variable Services
	3.4.1 General Information
	3.4.2 Reading Variables
	3.4.3 Writing Variables
	3.4.4 Watching Variables
	3.4.5 Reading BTSS Variables

	3.5 VDI Services
	3.5.1 General Information
	3.5.2 Writing to the VDI Interface
	3.5.3 Reading from the VDI Interface
	3.5.4 Handling FastIO via VDI Variables
	3.5.5 Handling TSM mask in SINUMERIK Operate

	3.6 VDI Fast Input and Output Services
	3.7 VNCK Program Control by Slices
	3.7.1 General Information
	3.7.2 Setting slice mode
	3.7.3 Setting freeze mode
	3.7.4 Processing the next slice
	3.7.5 Controller freeze
	3.7.6 Timer Functions

	3.8 NC Program Control Services
	3.8.1 Program selection
	3.8.2 Program selection for external processing
	3.8.3 Enabling program execution
	3.8.4 Stopping program execution
	3.8.5 Resetting program execution

	3.9 Extended Program Control Services
	3.9.1 General Info
	3.9.2 Registering Patterns for Interpretation
	3.9.3 Executing registered NC commands
	3.9.4 Enabling Path Interpolation

	3.10 Path Data Services
	3.10.1 Setting path data output option
	3.10.2 Getting path data output events
	3.10.3 Sending path output data
	3.10.4 Handling Collision Limits
	3.10.5 Setting Actual MCS Axes Positions

	3.11 Program Data Services
	3.11.1 Setting program data output option
	3.11.2 Program display
	3.11.3 User program message
	3.11.4 Beginning of a new motion
	3.11.5 Single Axis Motion Management
	3.11.6 IPO Block Change
	3.11.7 Tool selection
	3.11.8 Tool change
	3.11.9 Selecting a new tool offset
	3.11.10 Tool Carrier Selection
	3.11.11 Subroutine call
	3.11.12 Return from subroutine
	3.11.13 Workpiece
	3.11.14 Fixture
	3.11.15 Fixed Stop and Measurement

	3.12 Alarm Management
	3.12.1 Alarm occurred
	3.12.2 Alarm deleted
	3.12.3 Cancelling alarms

	3.13 OEM Compile Cycles
	3.14 Extended Services
	3.15 EXTCALL
	3.16 Reading / Writing values of Initial Parameters
	3.16.1 General Information
	3.16.2 Writing the value of an initial parameter
	3.16.3 Reading the value of an initial parameter

	4 VPLC Processing
	4.1 VPLC Initializing and Shutdown
	4.1.1 Establishing the Controller – Simulator Connection
	4.1.2 Initializing VPLC Handling
	4.1.3 Providing VPLC IO Hardare Configuration
	4.1.4 Terminating VPLC Handling
	4.1.5 Controlling CPU usage of the VPLC process

	4.2 VPLC Leds and Switches
	4.2.1 Reading VPLC Operation State
	4.2.2 Watching VPLC Operation State
	4.2.3 Setting VPLC Switch
	4.2.4 Reading VPLC Switch
	4.2.5 Watching VPLC Operation States

	4.3 VPLC Progress Control
	4.3.1 Activating VPLC Synchronisation
	4.3.2 Deactivating VPLC Synchronisation
	4.3.3 VPLC Freeze

	5 NCU Link Processing
	5.1 Link System Initializing and Shutdown
	5.1.1 Establishing the Controller – Simulator Connection
	5.1.2 Initializing the Link System
	5.1.3 Defining the NCU Units
	5.1.4 Controlling the NCU Startups
	5.1.5 Setting the Link State
	5.1.6 Terminating a Link Session
	5.1.7 Link System Startup via a VMF

	5.2 Link System Progress Controlling
	5.2.1 Setting Link Slices
	5.2.2 Processing the next Slice
	5.2.3 Link Freeze

	5.3 Link System Status Saving and Resetting
	5.3.1 Saving the States of the Link Components
	5.3.2 Refreshing the States of the Link Components

	5.4 Link NCU Managemant
	5.4.1 Requiring Simulation Callback Objects
	5.4.2 Establishing the Link NCU Controller – Simulator Connection
	5.4.3 Link NCU Controller start-up
	5.4.4 Setting Link NCU Slice Mode
	5.4.5 Link NCU Controller Shutdown
	5.4.6 Link NCU Controller Freeze

	6 VNCK License
	6.1 ISV License Checking

	7 More General Information
	7.1 Preparation of the HMI Base System
	7.1.1 Enabling the OPC Data Access
	7.1.2 Single NCU Setting
	7.1.3 Link NCU Setting

	7.2 Languages

