S7-200 SMART Web API
development manual

SIEMENS

EEEEEEER
3435 6. 7Dk|

013

EEEEEEER
3456.7DE[.0.12

012

L
0

CPU 5T60

123456 A1 3
.ﬂ.l_13.4_5.6_']'_ 123458617

g
e
-
Ll
=
QI_
-.-J
e
=1

S7-200 SMART Web API development manual

Contents
1. WRAE IS WED API? ettt 5
2. What can Web AP AO? ...ttt 6
2.1 Re@l-time CONTIOL........ccooiiiece et 6
2.2 Network management ... 7
3. CONFIGUIE WED AP ..ottt sttt neesessennees 8
4. Web APIDASIC FUNCHIONS ..viiiiieiice ettt 12
B0 APLTIST. .ottt ettt 12
4.2 APl USING SUGGESTIONS.......coiveiiiiieieiieieieee ettt s et 13
4.3 APl general fOrmatccoooiiiiiiiiee e 13
4.3.1 JSON-RPC request template ..o 14
4.3.2 JSON-RPC success response templatecccocoveeeieininineneeeeeeeeen 14
4.3.3 JSON-RPC fail response templateccccooeveiieinecceeeeeee e 15
4.4 AP]IIMITAtIONS ..ot 15
o R (o o 1 o OO SRS 16
ST NOTES ... e e e e s 16
5.2 Http request body format..........ccoooveiriieicc s 16
5.3 Http response fOrmMat.........cccovieiiiiriiieeceeeeee e 17
5.3.T 1OGIN SUCCESS ...ttt ettt b e sae e nenesaeneas 17
5.3.210GIN FAil .ot 18
Bid EXAMIPIE ..ottt se b e 18
S [0 To o 1 | SOOI 19
6.7 INOTES ... 19
6.2 HEtp request fFOrmMatc.ooveiiiicec e 20
6.3 Http response fOrmat...........cooooiiiiiciccee e 20
6.3.7 [OGOUL SUCCESS.......oiiiiiiiieeeeee ettt 20
6.3.2 10gOUL Fail. ..o 21

S7-200 SMART Web API development manual

Lo o =1 1 o [TSR 21
7. GET PEIMUISSION wetiuietirietiteiestete ettt st ettt ettt e et et e b e s ese s e st saesesbe st sbeneebeneeseneeseneens 22
T T NOTES .o e e 22
7.2 Http request body fOrmat..........ccooeiriineie s 23
7.3 Http response body fOrmatcooveiniinineeee s 23
7.3.1 get PEIrMISSION SUCCESSoueieiirieiiieiirieieteeete ettt sttt sae e b saeneas 23

T A EXAMPIE ...ttt re et e reententeseeenes 23

8. TBAU e 24
BT INOTES ... 24
8.2 Http request body fOrmat ..o 25
8.3 Http response body fOrmatccoveieinince s 26
8.3.1 1AM SUCCESS ...t 26
8.3.2 REAM il 28

BLA EXAMPIE ...ttt ae bt 28
DT et b bbbttt ettt neene s 30
.1 INOTES ...ttt rea 30
9.2 Http request body fOrmat...........ccooeieincicce s 30
9.3 Http response body fOrmatccooeiieincincc s 31
0.3.T WO SUCCESScuiiiiiiitet ettt 31
9.3.2 W il ..o 33

0.4 EXAMIPIE ..ottt ettt sre b e 33
TO. BIOWSE oottt 35
TOLT NOTES ...t sttt 35
10.2 Http request body format...........ccccooeiiiiieiice e 35
10.3 Http response body format...........ccocoreiieiiiiine e 35
T0.3.T DIrOWSE SUCCESSc.ouiiiiieiiieiiteiete ettt ettt ettt 35
10.3.2 Browse fail.......ccoooueuiiiiciicc e 36

S7-200 SMART Web API development manual

IO Y 1] o =TSSP

S$7-200 SMART Web API development manual

SIMATIC S7-200 SMART SR/ST 0AA1 CPUs support Web API since version
2.7!

Let's take a look at this new feature!

1.What is Web API?

Before we understand what Web APl is, let's see what is an API: In
computer programming, an application programming interface (API) is
some kind of interface which has a set of functions that allow
programmers to access specific features or data of an application,
operating system or other services.

Web API, as the name suggests, is an APl over the Web server which can
be accessed using HTTP protocol, a relatively broad concept.

In SIMATIC S7-200 SMART CPUs series, Web APl we implement is a
standard JSON-RPC process, specifically follow JSON-RPC 2.0

specification.

/ .o-l-_ Window;”_h':-:.___ Pa?.._.»"—'f e

(S 781011 L—(WM)

— Mac J—— & J ——
7~ iphonefios_/ B A deplation 2y

S7-200 SMART Web API development manual

JSON (java-script object notation): a lightweight data-interchange
format, easily read, write, parse, generate.

JSON-RPC 2.0: a kind of open-api framework, a stateless and light weight

remote procedure call protocol.

2.What can Web APl do?

Web APIs provides the basic ability to remotely access CPU data,
according to the authority control system, you can read and write CPU
data.

So you can integrate Web API into self-defined Web pages, terminals,

applications, or shell scripts to manage your CPU.

2.1 Real-time Control

e Read/Write CPU data.
e Adjust CPU time.

your benefits:

e You can read/write CPU's memory runtime, so you can timely
adjust data for user program.
e You can trigger/remove signals manually, interact with your
program, such as, alarm lights.
e You can synchronize your own clock, such as, dead battery
causes time lost.
more...

https://www.json.org/
https://www.jsonrpc.org/

S7-200 SMART Web API development manual

Temperature info

Temperature Current
threshold temperature

Alarm

55 |=c

¥ VD1010 (Floating (Decimal Places: 1) VD1020 (Floating (Decimal Places: 1

00 T T T T T T T T T T 1
1003056 1030050 10040002 1004005 1040008 1040011 10040004 10040017 104020 10040223 10:40:26 10:40:20 10040032 1004035

2.2 Network management

e Remote monitoring.
e Centralized monitoring.
e Multi-terminal monitoring.

your benefits:

e You can fix some issue or logical request remotely, so don't
need to go to factory area on-site.
e You can share device control with other managers remotely,
with different accounts and authorities.
e You can control Multi-devices at the same time remotely.
more...

S7-200 SMART Web API development manual

Digital industry factory

‘n
‘n

Network management center

Bk

3.Configure Web API

To use Web API ability in a new CPU, you should do some necessary
configuration through STEP 7-Micro/WIN.

Notes: you should surely upgrade both your CPU and STEP 7-
Micro/WIN to at least V2.7!

1. Connect to CPU through STEP 7-Micro/WIN.

Ensure that your Communication Interface and PLC connector cable for

Ethernet is working.

2. Enable Web server and Web api.

1) Open the Web server wizard.

2) In the Web Server window, select "Activate Web Server".

3) Enter the IP address and station name (optional) of the CPU
module to which you intend to connect.

S7-200 SMART Web API development manual

4) Select "Third party api and user defined Web page (PLC data read)"
to set read permission of the connected CPU data on user defined
Web pages.

5) Click "Next" to continue the Web server configuration.

1| User Management ¥ Activate Web server

Ethernet Port
~
IP Address: iv2 . 16 .21 . 9

Subnet Mask: 255,355 . 0 . A

Default Gateway: %0 .

Station Name:

¥ Third party api and user defined web page(PLC data read)

Next > Generate] Cancel

3. Configuring Web server users.

1) Click "User Management" in the navigation panel to enter the User
management page.

2) Click "Add" to add a line for each Web server user. You can add up
to four Web server users.

3) Enter usernames and passwords for the user logins that you want
to provide.

4) Click "Generate" to save the configuration.

S$7-200 SMART Web API development manual

[F Weab Server User Management
[E] viatch Table Create users for your Web server. The User name must start with a letter, can only contain letters, numbers and underscores and its
[User Management benath must be between 5 and 30 characters.
¥ Complation
The user password must contain letters, numbers, and spedial characters, and its length must be between 10 and 30 characters.
Configure the permission for u
Delete I
¥ Read event log
¥ Data log upload
[™ Status chart read only IV Flash LED
¥ Status chart raad and write ¥ Run/Stop CPU [y
[¥ Third party api read and write
|
¥ Configure as administrator I
ok | cwca |
<Previos | Mext> Generate | Cancel

4. Download Web configuration to CPU.

Download X

Download blocks to CPU
Select blocks to download. I}

o Click Download to begin

Options

: [V Prompt on RUN to STOP
[v DataBlock v Prompt on STOP to RUN
v System Block [Close dialog on success

@ Click for Help and Support

Download Close

10

S7-200 SMART Web API development manual

5. Generate a new TLS certificate.

For using Web server of S7-200 SMART CPU, you need to configure the
certificates in certificate management wizard in STEP 7-Micro/WIN
SMART first.

STEP 7-Micro/WIN SMART provides two modes for downloading the
certificate:

e In "External certificate" mode, device certificate is singed by
certificate authority provided by user

e In"internal certificate" mode, device certificate is signed by
certificate authority (CA) generated by the CPU

Certificate Management

[Certificate authority(CA)

[Certificate Genesator Selec the device certifiate generation mode:
[0 Device Certificate Request
& Upload Web server Certificates In niternal certificate” mode, device certificate is sgned by certificate autharity generated by the CPU.

In "External certificate™ mode, device certificate is singed by certificate authority provided by user,

Generation mode:
(% Internal Certificate

" External Certificate

11

S7-200 SMART Web API development manual

Certificate Management

[Certificate authority(CA)
[Certificate Generator

[Device Certificate Request
[Upload Web server Certificates

Enter parameters for the device certificate

¥ Auto extention

Vald from: * [2022/03/11 16:50]

vabdunti: * [2023/03/11 16:50 |

Subject Alternative Name (SAN):
MNoite

Current CPU IP will be added to SAN kst when CPU generates device
certificate.

IR . 7

[l

< Previous Mt > Ole I Close

4.Web API basic functions

There are things you always need to know before using Web APIs.

4.1 API list

All APIs supported by Web API V1.0.0.

List
login

logout

get permission

read

write

browse

Description
Login a user, then you can visit CPU with access control.
Logout a user, the user cookie does not work anymore from now on.

After the successful login, returns a list of actions for whose execution
the user is authorized.

Read from CPU with valid user token.
Write to CPU with valid user token.

Browse API list supported by CPU.

12

S7-200 SMART Web API development manual

4.2 APl using suggestions

Items Suggests

It is recommended to call less than once a second.

Web API call process takes up a lot of CPU resource. Network
Call frequency. o) i

communication, TLS encryption, JSON-RPC parse, business

check, request too fast may cause subsequent to be blocked.

It is recommended to use compressed JSON text.

Compress JSON)) o
toxt. Compressed JSON has a very small size and high transmission
efficiency.
It is recommended to request more data in one request.
Efficient use Each Web request has very large buffer and can read/write with
Web request. max to 32 nodes of data. Reduce interaction frequency and
improve single request efficiency.
It is recommended to use keep-alive connections.
Use long Building a new TLS chain will take up a lot of resources, it is very
connections. slow. But there is a high efficiency interaction in existing

connections.

4.3 API general format

1. All APl data need be encoded in the UTF-8 character encoding.
2. The overall payload shall not exceed 15KB.

The following is the JSON-RPC 2.0 API general template.

13

https://www.jsonrpc.org/

S7-200 SMART Web API development manual

4.3.1 JSON-RPC request template

MUST be exactly "2.0".

{
Carry the APl name you want call.
"jsonrpc" : ¥2.0",
"method" : “S(method)",
"id" : 12345678, - MUST be a 4-byte integer.
"params" : $(data-in-format)
}

Defined in a fixed format, please refer to each API page.

4.3.2 JSON-RPC success response template

{
"jsonrpc": "2.0",
"id": "$(id_in_requests)", Must be same as id in request.
"result": S(data-in-format)

}

Defined in a fixed format, please refer to each API page.

14

S7-200 SMART Web API development manual

4.3.3 JSON-RPC fail response template

”]SOH]’pC”: “2.0”,
"id": S(id_in_requests), Must be same as id in request.
“error": {

"code": S(error),

n, n

"message": "S(error_message)"

} Defined in a fixed format, please refer to error page.

4.4 API limitations

1. URL of http request MUST be "https://ip_address/Web_api".

2. ALL http data MUST be encoded in the UTF-8 character encoding.
3. Content-Type of http header MUST be "application/json"”.

4. Http method MUST be POST.

5. Current version do not support JSON-RPC batch.

15

S7-200 SMART Web API development manual

5.login

The login method checks the login data of the user and on successful
verification return a user token for afterwards Web api actions.

5.1 Notes

a. The Web user shall be configured in Web server wizard.
b. The previous user token will be invalid after this successful login.

c. When there is no operation within half an hour, this user will be logout automatically.

5.2 Http request body format

Attributes remarks
username The username should already be configured in Web server wizard.
The password should be ASCII string which is encoded user password
password with sha512.
{
"jsonrpc": "2.0",
"method": "login",
"id": 12345678, The user name ASCII string.
"params": {
"username": "S(user_name)",
"password": "S(user_password)"
}
} The ASCII string which is encoded user password with sha512.

16

S7-200 SMART Web API development manual

5.3 Http response format
5.3.1 login success
Attributes remarks

The user's token of login, use this token in subsequent API request to
cookie represent this user.
The user's token will expire after half an hour without operation.

{
"jsonrpc": "2.0",
"id": "S(id_in_requests)",
"result": {
"code": 0,
"message": "Success.",
“cookie": "S(cookie)"
}
} You will get user token when login success.

17

S7-200 SMART Web API development manual

5.3.2 login fail

{
"jsonrpc": "2.0",
"id": "S(id_in_requests)",
"error": {
"code": S(error),

"message": "S(error_message)"

}
5.4 Example

Before testing:

e This is a windows powershell terminal example, you MUST
send the example through powershell.

e Thisis a curl command; you MUST check your curl tools in
your machine.

e This is a testing user and IP; you MUST modify to a correct
account and IP.

18

S7-200 SMART Web API development manual

Shttp_url = "https://192.168.2.1/Web_api"
Shttp_content_type = "Content-Type: application/json; charset=utf-8"
Shttp_body ='
i

"jsonrpc": "2.0",

"method": "login",

"id": 12345678,

"params™: {

"username": "admin”,

"password":
"1ce38482c82f8d11f751499b741743ach51e5balce8a0bacac2 2cabf76abb832d** ¥+ *+*] 24567 e64bofdes"

!
}

function do_Webapi_request
i
Stmp_file = [System.10.path]::GetTempFileName({)
shttp_body | Qut-File -Encoding ascii stmp_file
curl.exe -v -k~
-H Shttp_content_type °
-¥ POST Shttp_url”
-d @5tmp_file
del 3tmp_file
}

do Webapi request

6.logout

To logout an online user.

6.1 Notes

a. Logout a user who is not online or existing will still get a success.

19

S7-200 SMART Web API development manual

b. You MUST set user's token into the "cookie" of HTTP header to logout the user.

6.2 Http request format

{

"jsonrpc": "2.0",

"method": "logout",

"id": 12345678,

"params": null Must be null, APl searches users based on tokens in http header.
}

6.3 Http response format

6.3.1 logout success

{
"jsonrpc": "2.0",
"id": "S(id_in_requests)",
"result": {
"code": 0,
"message": "Success."
}
}

20

S7-200 SMART Web API development manual

6.3.2 logout fail

{

"jsonrpc": "2.0",
"id": S(id_in_requests), Must be same as id in request.
"error": {

"code": S(error),

"message": "S(error_message)"

} Defined in a fixed format, please refer to error page.

6.4 Example

Before testing:

e This is a windows powershell terminal example, you MUST
send the example through powershell.

e Thisis a curl command; you MUST check your curl tools in
your machine.

e 3. This is a testing token and IP; you MUST modify to a correct

token and IP.

21

S7-200 SMART Web API development manual

$http_url ="https:i192.168.2.1/Web_api"
$http_content_type = "Content-Type: application/json; charset=utf-8"
$user_token = "Session-ld=YWRtaW4ukdPEsyUwbVFgXY+HWZgrhQ=="
$http_body =
{

"jsonrpc": "2.07,

"method": “logout”,

"id": 12345678,

“params”: null

function do_Webapi_request
{
$tmp_file = [System.lO.path]::GetTempFileName()
$http_body | Qut-File -Encoding ascii $tmp_file
curl.exe -v-k
-H $http_content_type
-X POST Shttp_url *
-b $user_token °
-d @%tmp_file
del $tmp_file

}
do_Webapi_request

7.get_permission

To get a login user's permission list.

7.1 Notes

a. The user should login firstly and you had got the token.

b. You MUST set user's token into the "cookie" of HTTP header to logout the user.

22

S7-200 SMART Web API development manual

7.2 Http request body format

{
"jsonrpc": "2.0",
"method": "get permission",
"id": 12345678,
"params": null
} Must be null, APl searches users based on tokens in http header.

7.3 Http response body format

7.3.1 get permission success

Attributes remarks
permission The permission list of login user.
{
“jsonrpc": "2.0",
"id": "$(id_in_requests)",
"result": {
"code": O,
"message": "Success." ,
"permission": { Permission list.
"write":true
}
}
}
7.4 Example

Before testing:

e Thisis a windows powershell terminal example, you MUST
send the example through powershell.

e This is a curl command; you MUST check your curl tools in
your machine.

23

S7-200 SMART Web API development manual

e 3.Thisis a testing token and IP; you MUST modify to a correct

token and IP.

$http_url = "https:1192.168.2.1/Web_api"
$http_content_type = "Content-Type: application/json; charset=utf-8"
$http_body =
{
“jsonrpc”; "2.07,
"method”: "get_permission”,
"id": 12345678,

"params”: null

function do_Webapi_request
{
$tmp_file = [System.l0.path]::GetTempFileName()
Shttp_body | Out-File -Encoding ascii $tmp_file
curl.exe -v -k
-H $http_content_type °
-X POST $http_url
-b Suser_token
-d @%tmp file
del $tmp_file

$user_token = "Session-ld=YWRtaW4uKdPEsyUwbVFgXY+HWZgrhQ=="

8.read

To read data from a specified address.

8.1 Notes

a. You MUST login before reading.

24

S7-200 SMART Web API development manual

b. You MUST set user's token into the "cookie" of HTTP header to logout the user.
c. You can read with max to 32 addresses of data in one request.

d. You can send an empty request in order to get system status.

8.2 Http request body format

Attributes remarks
params A JSON array object inside with reading nodes, max to 32 nodes.

"type" means the read operation type, currently only support address,

type
yP and can be omitted.

“var" means the "address" to read. It is case insensitive. MUST be a S7-
200 SMART CPU address, all as follow:
V*.*,VB*,VW* K6 VD*
[*.*,IB* , IW*, ID*
var Q*.*,QB*,QW*, QD*
M*.* , MB* , MW* , MD*
SM*.* , SMB* , SMW* , SMD*
AIW* , AQW*
T*,C*,HC*, DATE

"mode" means the returned data mode, and can be omitted. all as

follow:

“signed": a signed integer. This is default type if omit to specify data
mode mod?. , ,

"unsigned": an unsigned integer.

"string": an ascii string.

“float": a floating number.

“raw": a byte array with unsigned integer.

25

S7-200 SMART Web API development manual

"type" means the read operation type, currently

"jsonrpc": "2.0",
"method": "read",
"id": 12345678,
"params";:

{

"type":"address",
"var": "WB7000",

"mode": "string"

“var": "V7000.0"

8.3 Http response body format
8.3.1 read success

Attributes

only support address, and can be omitted.

"var" means the "address" to read. It is case insensitive.
MUST be a s7-200 smart PLC address, all as follow:
VEE | VB¥ | VW* | VvD*

** | I1B* | w* | ID*

Q** | as* | aw* | ap*

M*.* | MB* | MW* | MD*

SM*.* | SMB* | SMW* | SMD*

AlW* | AQW*

T* | C* | HC* |DATE

"mode" means the returned data mode, can be omitted.

all as follow:
"signed" :asigned integer.

"unsigned" : an unsigned integer.

"string" : an ascii string.

"float" : a floating number.

"raw" : a byte array with unsigned integer.
remarks

"status” contains current system mainly status:

Date: time string in format of "YYYY-MM-DD HH:MM:SS".
status Operating Mode: RUN, STOP.

System Status: OK, Error.

Force Status: Forced, Not Forced.

A JSON array object inside with read result.
data The data array, which quantity and order are strictly the same as

request.

- code &
message

"code" & "message” shows the result of reading this address.

26

S$7-200 SMART Web API development manual

- var "var" is exactly the same as request.
"value" shows the result of reading this address in format of request
- value
asked.
{
"jsonrpc”: "2.0",
"id": "s(id_in_requests)", "status" contains current system mainly status:
"result": { Date, Operating Mode, System Status, Force Status.

"status": {
"Date" : "S(current_time)",
"Operating Mode" : "$(run_stop_mode)",
"System Status” : "$(ok_or_error)"”,

"Force Status” : "S(force_or_not)"

"data" contains every exactly read addresses in request.
L
Some node’s error shall exist in the very node.
"data" : [
{
"code™: 0,
"message": "Success.",
"var": "WB7000",
"value" : "s7-200 smart web api."
1 "value" shows the result of this address

in format of request asked.
The gquantity and order are

strictly the same as request.

{
"code": 3004,
"message" : "Invalid address.",
"var": “VB70000"
If errors exist, nodes shall
} return the exact reason.

27

S7-200 SMART Web API development manual

8.3.2 Read fail

{
"jsonrpc": "2.0",
"id": S(id_in_requests), Must be same as id in request.
"error": {
"code": S(error),

n, n

"message": "S(error_message)"
} Defined in a fixed format, please refer to error page.

8.4 Example
Before testing:

e This is a windows powershell terminal example, MUST be send
the example through powershell.

e This is a curl command; you MUST check your curl tools in
your machine.

e 3.This s a testing token and IP; you MUST modify to a correct
token and IP.

28

S7-200 SMART Web API development manual

Shitp_url ="https1/192.168.2.1/Web_api"
Shttp_content_type = "Content-Type: application/json; charset=utf-8"
Suser_token = "Session-ld=YWRtaW4uKdPEsyUwbWFgXY+HWZgrhQ=="
Shitp_body =
{
"[sonrpc": "2.0"
"method": "read”,
"id": 123,
"params”: |
{
"war': "WB1000",
"mode”; "string”
L
{
"war': "WB1000"

“war': "DATE"

function do_Webapi_request
{
§tmp_file = [System.l0.path]::GetTempFileName()
Shttp_body | Out-File -Encoding ascii $trp_file
curl.exe -v -k
-H $http_content_type
-} POST $http url
-b $user_token
-d @%tmp_file
del $tmp_file

)
do_Webapi_request

S7-200 SMART Web API development manual

9.write

To write data to a specified address.

9.1 Notes

a. You MUST login before writing.

b. You MUST set user's token into the "cookie" of HTTP header to logout the user.

c. You can write with max to 32 addresses of data in one request.

d. You can ONLY write data while CPU in run.

e. You can write an empty request to get system status.

9.2 Http request body format

Attributes

params

type

var

mode

remarks
A JSON array object inside with writing nodes, max to 32 nodes.

“type" means the write operation type, currently only support address, and
can be omitted.

"var" means the "address" to write. It is case insensitive. MUST be a S7-200
SMART CPU address, all as follow:

V*.*,VB*,VW* 6 VD*

[*.*,IB*, IW*, ID*

Q*.* , QB*, QW* , QD*

M*.* , MB* , MW* , MD*

SM*.* , SMB* , SMW* , SMD*

AIW* , AQW*

T*,C*,HC*, DATE

"mode" means the writing data mode, and can be omitted. all as follow:
"signed": a signed integer. This is default type if omit to specify data mode.
"unsigned": an unsigned integer.

“string": an ascii string.

“float": a floating number.

“raw": a byte array with unsigned integer.

30

S7-200 SMART Web API development manual

value "value" shall take the data in format of "mode".
"type" means the write operation type, currently
{ only support address, and can be omitted.
"jsonrpec”: "2.0",

"var" means the "address" to write. It is case insensitive.

"method": "write",
MUST be a s7-200 smart PLC address, all as follow:

"id": 12345678,
VE* | vB* | VW* | VD*

e X B* | w* | 1Dt
{ Q** | a8* | aw* | ap*
"type":"address", M** | MB* | MW* | MD*
"var": "VB7000", SM*.* | SMB* | SMW* | SMD*

"mode": "string", AlW* | AQw*
T* | C€* | HC* | DATE

"value": " 57-200 smart.",

"mode"” means the writing data mode, can be omitted.
¥ all as follow:

"signed" :asigned integer.

[Max to32nodes "unsigned" : an unsigned integer.

"string" : an ascii string.
("float" : a floating number.
"raw" : a byte array with unsigned integer.
"var": "W7000.0",
"value": 1
}
]
1
9.3 Http response body format
9.3.1 write success
Attributes remarks

"status" contains current system mainly status:

Date: time string in format of "YYYY-MM-DD HH:MM:SS".
status Operating Mode: RUN, STOP.

System Status: OK, Error.

Force Status: Forced, Not Forced.

A JSON array object inside with write result.
data The data array, which quantity and order are exactly the same as
request.

31

S$7-200 SMART Web API development manual

- code & . .
"code" & "message" shows the result of writing this address.
message
- var "var" is exactly the same as request.
{
"jsonrpc": "2.0",
"id": "$(id_in_requests)", "status" contains current system mainly status:
"result": { Date, Operating Mode, System Status, Force Status.
"status": {

"Date" : "S(current_time)",
"Operating Mode" : "$(run_stop_made)",
"System Status” : "S(ok_or_error)",

"Force Status" : "S(force_or_not)"

L "data" contains every exactly write addresses in request.
"data" : [Some node’s error shall exist in the very node.

"code": 0,
"message": "Success.",

"var": "WB7000",

b
The quantity and order are
strictly the same as request.
|
{
"code": 3004,
"message" : "Invalid address.",
"var": “VB70000"
} :
If errors exist, nodes shall
] return the exact reason.

32

S7-200 SMART Web API development manual

9.3.2 write fail

“jsonrpe 20,
"id": S(id_in_requests), Must be same as id in request.
"error": {

"code": S(error),

", n

"message": "S(error message)"

} Defined in a fixed format, please refer to error page.

9.4 Example
Before testing:

e This is a windows powershell terminal example, you MUST
send the example through powershell.

e This is a curl command; you MUST check your curl tools in
your machine.

e This is a testing token and IP; you MUST modify to a correct
token and IP.

33

S7-200 SMART Web API development manual

$http_url = "https://192.168.2.1/Web_api"
$http_content_type = "Content-Type: application/json; charset=utf-8"
$user_token = "Session-ld=YWRtaW4uKdPEsyUwbVFgXY+HWZqrhQ=="
$http_body ='
{

"jsonrpc": "2.0",

"id": 12345678,

"method": "write",

"params”: [
{
“type": "address”,
"var": "VB1000",

"mode": "String",

"value": "S7-200 SMART."

|2

{
"var": "vD5000",
"value": 1000

}

function do_Webapi_request
{
$tmp_file = [System.lO.path]::GetTempFileName()
$http_body | Out-File -Encoding ascii $tmp_file
curl.exe-v-k°
-H $http_content_type °
-X POST $http_url
-b $user_token °
-d @$tmp_file
del $tmp_file
}
do_Webapi_request

S7-200 SMART Web API development manual

10. browse

Get supported API list.

10.1 Notes

a. no need to login.

10.2 Http request body format

{
"jsonrpc": "2.0",
"method": “browse"”,
"id": 12345678,
"params": null

}

10.3 Http response body format
10.3.1 browse success

Attributes remarks
version "version" shows the WEB API version string.

api A JSON array object inside with APIs list.

S7-200 SMART Web API development manual

{
"jsonrpc": "2.0",
"id": "S(id_in_requests)",
"result": {
"code": 0,
"message": "Success.",
"version": "S(version_string).",
"api": [
"login",
"logout", - Api list.
"get permission",
"read"”,
"write",
"browse"
]
}
}
10.3.2 browse fail
{
"jsonrpc™: "2.0",
"id": $(id_in_requests), Must be same as id in request.
"error": {
"code": S(error),
"message": "S(error_message)"
}
} Defined in a fixed format, please refer to error page.

10.4 Example

Before testing:

36

S7-200 SMART Web API development manual

e Thisis a windows powershell terminal example, you MUST
send the example through powershell.

e This is a curl command, you MUST check your curl tools in
your machine.

e Thisis a testing user and IP, you MUST modify to a correct
account and IP.

$http_url = "https://192.168.2.1/Web_api"
$http_content_type = "Content-Type: application/json; charset=utf-8"
$http_body ='
{
"jsonrpc": "2.0",
"method": "browse",
"id": 12345678,
"params": null

}

function do_Webapi_request
{
$tmp_file = [System.lO.path]::GetTempFileName()
$http_body | Out-File -Encoding ascii $tmp_file
curl.exe -v-k °
-H $http_content_type °
-X POST $http_url
-d @$tmp _file
del $tmp_file

}
do_Webapi_request

37

	S7-200 SMART Web API development manual
	Contents
	1. What is Web API?
	2. What can Web API do?
	2.1 Real-time Control
	2.2 Network management

	3. Configure Web API
	4. Web API basic functions
	4.1 API list
	4.2 API using suggestions
	4.3 API general format
	4.3.1 JSON-RPC request template
	4.3.2 JSON-RPC success response template
	4.3.3 JSON-RPC fail response template

	4.4 API limitations

	5. login
	5.1 Notes
	5.2 Http request body format
	5.3 Http response format
	5.3.1 login success
	5.3.2 login fail

	5.4 Example

	6. logout
	6.1 Notes
	6.2 Http request format
	6.3 Http response format
	6.3.1 logout success
	6.3.2 logout fail

	6.4 Example

	7. get_permission
	7.1 Notes
	7.2 Http request body format
	7.3 Http response body format
	7.3.1 get permission success

	7.4 Example

	8. read
	8.1 Notes
	8.2 Http request body format
	8.3 Http response body format
	8.3.1 read success
	8.3.2 Read fail

	8.4 Example

	9. write
	9.1 Notes
	9.2 Http request body format
	9.3 Http response body format
	9.3.1 write success
	9.3.2 write fail

	9.4 Example

	10. browse
	10.1 Notes
	10.2 Http request body format
	10.3 Http response body format
	10.3.1 browse success
	10.3.2 browse fail

	10.4 Example

