SIEMENS

Einleitung	
Vorteile, wenn Sie mit ShopTurn arbeiten	2
Damit alles reibungslos funktioniert	3
Grundlagen für Einsteiger	4
Gut gerüstet	5
Beispiel 1: Stufenwelle	6
Beispiel 2: Antriebswelle	7
Beispiel 3: Umlenkwelle	8
Beispiel 4: Hohlwelle	9
Beispiel 5: Stechdrehen	10
Und jetzt wird gefertigt	11
Wie fit sind Sie mit ShopTurn	12

4

SINUMERIK Operate

SinuTrain Einfacher Drehen mit ShopTurn

Trainingsunterlage

Rechtliche Hinweise

Warnhinweiskonzept

Dieses Handbuch enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Die Hinweise zu Ihrer persönlichen Sicherheit sind durch ein Warndreieck hervorgehoben, Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt.

GEFAHR

bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

NORSICHT

mit Warndreieck bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

VORSICHT

ohne Warndreieck bedeutet, dass Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

bedeutet, dass ein unerwünschtes Ergebnis oder Zustand eintreten kann, wenn der entsprechende Hinweis nicht beachtet wird.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

Qualifiziertes Personal

Das zu dieser Dokumentation zugehörige Produkt/System darf nur von für die jeweilige Aufgabenstellung **qualifiziertem Personal** gehandhabt werden unter Beachtung der für die jeweilige Aufgabenstellung zugehörigen Dokumentation, insbesondere der darin enthaltenen Sicherheits- und Warnhinweise. Qualifiziertes Personal ist auf Grund seiner Ausbildung und Erfahrung befähigt, im Umgang mit diesen Produkten/Systemen Risiken zu erkennen und mögliche Gefährdungen zu vermeiden.

Bestimmungsgemäßer Gebrauch von Siemens-Produkten

Beachten Sie Folgendes:

WARNUNG

Siemens-Produkte dürfen nur für die im Katalog und in der zugehörigen technischen Dokumentation vorgesehenen Einsatzfälle verwendet werden. Falls Fremdprodukte und -komponenten zum Einsatz kommen, müssen diese von Siemens empfohlen bzw. zugelassen sein. Der einwandfreie und sichere Betrieb der Produkte setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung, Montage, Installation, Inbetriebnahme, Bedienung und Instandhaltung voraus. Die zulässigen Umgebungsbedingungen müssen eingehalten werden. Hinweise in den zugehörigen Dokumentationen müssen beachtet werden.

Marken

Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft, notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten.

Siemens AG Industry Sector Postfach 48 48 90026 NÜRNBERG DEUTSCHLAND Dokumentbestellnummer: 6FC5095-0AB80-1AP0 @ 05/2010

Inhaltsverzeichnis

1	Einleitu	ung	7
2	Vorteil	le, wenn Sie mit ShopTurn arbeiten	9
	2.1	Sie sparen Einarbeitungszeit	9
	2.2	Sie sparen Programmierzeit	11
	2.3	Sie sparen Fertigungszeit	14
3	Damit	alles reibungslos funktioniert	
	3.1	Die Bedienung von ShopTurn	17
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Die Inhalte des Grundmenüs Maschine Parameter Programm Programm-Manager Diagnose	
4	Grund	llagen für Einsteiger	
	4.1 4.1.2 4.1.3 4.1.4 4.1.5	Geometrische Grundlagen Werkzeugachsen und Arbeitsebenen Punkte im Arbeitsraum Absolute und inkrementale Maßangaben Kartesische und polare Maßangaben Kreisförmige Bewegungen	
	4.2 4.2.1 4.2.2	Technologische Grundlagen Schnittgeschwindigkeit und Drehzahlen Vorschub	
5	Gut ge	erüstet	
	5.1 5.1.1 5.1.2 5.1.3	Werkzeugverwaltung Die Werkzeugliste Die Werkzeugverschleißliste Magazinliste	41 41 43 44
	5.2	Verwendete Werkzeuge	45
	5.3	Werkzeuge im Magazin	46
	5.4	Werkzeuge vermessen	47
	5.5	Setzen des Werkstück-Nullpunktes	49
6	Beispie	el 1: Stufenwelle	51
	6.1	Überblick	51
	6.2	Programmverwaltung und Programm anlegen	53
	6.3	Werkzeug aufrufen	57
	6.4	Verfahrweg eingeben	

	6.5	Erstellen der Konturen mit dem Konturrechner und Bearbeitung	63
	6.6	Gewindefreistich	79
	6.7	Gewinde	82
	6.8	Einstiche	84
7	Beispiel	2: Antriebswelle	89
	7.1	Überblick	89
	7.2	Plandrehen	90
	7.3	Erstellen der Kontur, Abspanen und Restabspanen	91
	7.4	Gewinde	. 110
8	Beispiel	3: Umlenkwelle	. 113
	8.1	Überblick	. 113
	8.2	Plandrehen	. 114
	8.3	Erstellen einer beliebigen Rohteil-Kontur	. 116
	8.4	Erstellen der Fertigteil-Kontur und Abspanen	. 118
	8.5	Restabspanen	. 128
	8.6	Einstich	. 133
	8.7	Gewinde	. 136
	8.8	Bohren	. 138
	8.9	Rechtecktasche fräsen	. 143
9	Beispiel	4: Hohlwelle	. 147
	9.1	Überblick	. 147
	9.2	Erstellen der ersten Werkstückseite	. 148
	9.2.1	Plandrehen	. 149
	9.2.2	Bonren Rohteil-Kontur	. 150
	9.2.4	Fertigteil-Kontur der ersten Seite außen	. 154
	9.2.5	Freistich	. 166
	9.2.6	Fertigteil-Kontur der ersten Seite innen	. 170
	9.2.7 9.2.8	Kontur kopieren	. 176
	9.3	Erstellen der zweiten Werkstückseite	. 178
	9.3.1	Plandrehen	. 179
	9.3.2	Bohren	. 181
	9.3.3	Kontell-Kontur eintugen	. 183
	9.3.4	Asymmetrischer Einstich erstellen	. 189
	9.3.6	Fertigteil-Kontur der zweiten Seite innen	. 192

10	Beispie	I 5: Stechdrehen	199
	10.1	Überblick	199
	10.2	Stechdrehen	200
	10.3	Erstellen der Kontur	201
	10.4	Abspanen mit dem Stechdreh-Zyklus	202
11	Und jet	Und jetzt wird gefertigt	
	11.1	Und jetzt wird gefertigt	207
12	Wie fit :	sind Sie mit ShopTurn	211
	12.1	Übung 1	211
	12.2	Übung 2	213
	12.3	Übung 3	215
	12.4	Übung 4	217
	Index		221

Inhaltsverzeichnis

Einleitung

Schneller von der Zeichnung zum Werkstück - aber wie?

Bisher war die NC-Fertigung meist mit komplizierten, abstrakt codierten NC-Programmen verbunden. Eine Arbeit, die nur von Spezialisten ausgeführt werden konnte. Aber jeder Facharbeiter hat sein Handwerk gelernt und ist durch seine Erfahrung im Bereich der konventionellen Zerspanung in der Lage, jederzeit auch schwierigste Aufgaben zu bewältigen - wenngleich die Wirtschaftlichkeit dabei häufig auf der Strecke blieb. Für diese Fachleute musste eine Möglichkeit geschaffen werden, dieses Wissen mit Hilfe von CNC-Werkzeugmaschinen effizient anzuwenden.

Darum geht SIEMENS mit ShopTurn einen Weg, der dem Facharbeiter jegliche Codierungen erspart.

Arbeitsplan erstellen statt Programmieren heißt die Lösung

Durch diese Arbeitsplan-Erstellung mit eingängigen, facharbeitergerechten Handlungsabfolgen kann sich der ShopTurn-Anwender bei der Zerspanung wieder seinem eigentlichen Können, seinem Know-How zuwenden.

Selbst komplizierteste Konturen und Werkstücke lassen sich mit ShopTurn dank der integrierten, leistungsfähigen Verfahrweg-Erzeugung mühelos fertigen. Deshalb gilt:

Einfacher und schneller von der Zeichnung zum Werkstück - mit ShopTurn!

Obwohl ShopTurn in der Tat sehr einfach zu erlernen ist, wird mit dieser ShopTurn Trainingsunterlage ein noch schnellerer Einstieg in diese neue Welt möglich. Bevor es aber an den eigentlichen Umgang mit ShopTurn geht, werden in den ersten Kapiteln wichtige Grundlagen aufgezeigt:

- Zunächst werden die Vorteile bei der Arbeit mit ShopTurn genannt.
- Danach werden die Grundlagen der Bedienung gezeigt.
- Für den Einsteiger werden danach die geometrischen und technologischen Grundlagen der Fertigung erklärt.
- Ein weiteres Kapitel enthält eine kurze Einführung in die Werkzeugverwaltung.

Nach dieser Theorie folgt die ShopTurn-Praxis:

- Es werden anhand von fünf Beispielen die Bearbeitungsmöglichkeiten mit ShopTurn erklärt, wobei der Schwierigkeitsgrad der Beispiele kontinuierlich erhöht wird. Zu Beginn sind dabei alle Tastendrücke vorgegeben, später wird dann zum eigenständigen Handeln angeregt.
- Dann erfahren Sie, wie man mit ShopTurn im Automatik-Betrieb zerspant.
- Wenn Sie möchten, können Sie abschließend testen, wie fit Sie mit ShopTurn sind.

Beachten Sie bitte, dass die hier verwendeten Technologiedaten aufgrund der vielen verschiedenen Gegebenheiten in der Werkstatt nur Beispielcharakter haben.

So wie ShopTurn mit Hilfe von Facharbeitern entstanden ist, wurde diese Trainingsunterlage ebenfalls von Praktikern erstellt. In diesem Sinne wünschen wir Ihnen viel Freude und Erfolg bei der Arbeit mit ShopTurn.

Vorteile, wenn Sie mit ShopTurn arbeiten

In diesem Kapitel werden Ihnen die besonderen Vorteile bei der Arbeit mit ShopTurn genannt.

2.1 Sie sparen Einarbeitungszeit...

• weil es in ShopTurn keine fremdsprachlichen Begriffe gibt, die Sie lernen müssten. Alle notwendigen Eingaben werden im Klartext abgefragt.

• weil Sie bei ShopTurn durch farbige Hilfebilder optimal unterstützt werden.

2.1 Sie sparen Einarbeitungszeit...

- weil Sie in den **Grafischen Arbeitsplan** von ShopTurn auch DIN/ISO-Befehle integrieren können. Sie können in DIN/ISO 66025 und mit DIN Zyklen programmieren.
 - G G96 S320 LIMS=3000 M4 M8¶
 - G G18 G54 G90¶
 - G G0 X32 Z0¶
 - G G1 X-1.6 F0.1¶
 - G 60 Z2¶
 - G 60 642 X22 Z2¶
 - G X30 Z-2¶
- weil Sie beim Anlegen des Arbeitsplanes jederzeit zwischen dem einzelnen Arbeitsschritt und der Werkstück-Grafik (Strichgrafik) umschalten können.

Bild 2-1 Arbeitsschritt im Arbeitsplan

2.2 Sie sparen Programmierzeit...

2.2 Sie sparen Programmierzeit...

• weil Sie ShopTurn schon bei der Eingabe der technologischen Werte optimal unterstützt: Sie brauchen nur die Tabellenbuchwerte Vorschubgeschwindigkeit (bzw. Vorschub) und Schnittgeschwindigkeit einzugeben – die Drehzahl berechnet ShopTurn automatisch.

Bohren Mittig			Bohren Mittig		
Т	DRILL_5	D 1	Т	DRILL_5	D 1
F	100.000	mm/min	F	0.040 mm/U	
V	40	m/min	S	2546.000 U/min	
	Entspan	en		Entspanen	

weil Sie bei ShopTurn mit einem Arbeitsschritt eine komplette Bearbeitung beschreiben können und die erforderlichen Positionierbewegungen (hier vom Werkzeug-Wechselpunkt zum Werkstück und zurück) automatisch erzeugt werden.

NC/	'WKS/SHOPTURN/TEST	
Р	Programmkopf	Nullpunktversch. G54
ge	Bohren Mittig	T=DRILL_5 F0.04/U S2546U X1=-5 🖃
END	Programmende	

weil im Grafischen Arbeitsplan von ShopTurn alle Bearbeitungsschritte in kompakter und übersichtlicher Weise dargestellt werden. Dadurch haben Sie einen kompletten Überblick und somit bessere Editiermöglichkeiten auch bei umfangreichen Fertigungsfolgen.

				03.05.10 14:55
NC/WKS/EXAMPLE4/HOLLO)w_shaft_side1	1	9	Werkzeug
P Programmkopf			^	auswählen
Abspanen	▽	T=ROUGHING_T80 A F0.2/U V240m plan		
S ^{ee}] Bohren	□•	T=DRILL_32 F0.1/U V240m Z1=-67		Grafische
√ 001: Positionen	□•	20=0 X0=0 Y0=0		HINSICHT
U 1 Kontur		HOLLOW_SHAFT_BLANK		
し-Kontur		HOLLOW_SHAFT_SIDE1_E		Suchen
Abspanen	∇	T=ROUGHING_T80 A F0.3/U V260m		
🧎 - Restabspanen	▽	T=FINISHING_T35 A F0.2/U V240m		
🖌 🕹 Abspanen	$\nabla \nabla \nabla$	T=FINISHING_T35 A F0.15/U V280m 🖃		Markieren
Freistich E		T=FINISHING_T35 A F0.15/U V200m	"	
្ស Kontur		HOLLOW_SHAFT_SIDE1_I	1	
🖌 - Abspanen	▽	T=ROUGHING_T80 I F0.25/U V250m		Kopieren
🖌 🛛 Abspanen	$\nabla \Delta \Delta$	T=FINISHING_T35 I F0.12/U V280m		
Freistich E		T=FINISHING_T35 I F0.15/U V200m	ſ	F1-63-
Freistich E		T=FINISHING_T35 I F0.15/U V200m		Einfugen
Bohren	□•	T=DRILL_32 F0.1/U V240m Z1=-67		
√ 002: Positionen	⊡+	20=0 X0=0 Y0=0		Aus-
END Programmende			L	schneiden
			~	
		>	Ц	
Edit Edit	🚅 Drehen 🚅	Kontur Fräsen Diver- the Simu-	-	🖳 Anwahl

weil sich zum Beispiel beim Abspanen mehrere Bearbeitungsoperationen und Konturen miteinander verketten lassen.

Մլ Kontur		HOLLOW_SHAFT_BLANK
U Kontur		HOLLOW_SHAFT_SIDE1_E
Abspanen	∇	T=ROUGHING_T80 A F0.3/U V260m
Restabspanen	∇	T=FINISHING_T35 A F0.2/U V240m
🖌 🖌 Abspanen	$\nabla \nabla \nabla$	T=FINISHING_T35 A F0.15/U V280m 🔁

2.2 Sie sparen Programmierzeit...

• weil der integrierte Konturrechner alle gängigen Bemaßungen (kartesisch, polar) verarbeiten kann und trotzdem sehr einfach und übersichtlich in der Handhabung ist - dank umgangssprachlicher Eingabe und Grafikunterstützung.

Bild 2-3 Technische Zeichnung

2.2 Sie sparen Programmierzeit...

• weil Sie jederzeit zwischen grafischer Ansicht und Parametermaske mit Hilfebild wechseln können.

• weil Arbeitsplan erstellen und Fertigen sich nicht gegenseitig ausschließen. Sie können mit ShopTurn parallel zur Fertigung einen neuen Arbeitsplan erstellen.

2.3 Sie sparen Fertigungszeit...

2.3 Sie sparen Fertigungszeit...

• weil Sie die Werkzeugauswahl beim Abspanen von Konturen optimieren können:

Große Volumina werden mit Schruppmeißeln abgetragen, verbleibendes Restmaterial ① wird erkannt und automatisch von einem spitzeren Werkzeug ausgeräumt.

 weil es durch genaues Festlegen der gewählten Rückzugsebene möglich ist, unnötige Verfahrwege zu vermeiden und somit kostspielige Fertigungszeit einzusparen. Dieses wird durch die Einstellungen einfach, erweitert bzw. alle möglich.

Rückzugsebene: erweitert

Rückzugsebene: alle

2.3 Sie sparen Fertigungszeit...

 weil Sie Ihre Bearbeitungsfolge aufgrund der kompakten Struktur des Arbeitsplanes mit minimalem Aufwand optimieren können (hier z. B. durch das Einsparen eines Werkzeugwechsels).

			27.04.10 14:09
NC/WKS/EXAMPLE1/TAPER	Shaft	15	Werkzeug
P Programmkopf		<u>^</u>	auswählen
T T=ROUGHING_T80 A	V1=240m		
→ EILG. X=82 Z=0.3			Grafische
→ F0.3/U X=-1.6			Ansicht
→ EILG. Z=1			
→ EILG. X=82			Suchen
→ EILG. Z=0			
→ F0.25/U X=-1.6			
→ EILG. Z=1			Markieren
→ EILG. X=120 Z=200			
Kontur		TAPER_SHAFT_CONTOUR	× ·
Abspanen	∇	T=ROUGHING_T80 A F0.3/U V240m	Kopieren
Abspanen	$\nabla \Delta \Delta$	T=FINISHING_T35 A F0.15/U V280m	
Gewinde Längs	\ +	T=THREADING_T1.5 P1.5mm/U S800U	Finfügen
Freistich Geu.	4400		Linnagen
M EINSTICH	V+VVV	I=PLUNGE_CUITEK_3 H F0.1/U V150m H2	
END Programmende		(Aus-
			schneiden
		×	
		>	
Fdit Edit Bohren	Drehen -	Kontur - Fräsen - Diver Simu-	
		drehen 📕 Trascil 💻 ses 📕 lation	
Dild 2.7 Line	nrüngliche	Poorhoitungofolgo	
DIIU Z-7 UIS	SDI ULI ULI ULI ULI ULI ULI ULI ULI ULI UL	Dearbeilungsloige	
Dilu 2-7 UIS	spiungliche	Bearbeitungsloige	
	sprungliene	Dearbeitungsloige	
	prungiiene	Bearbeitungsloige	27.04.10
		Dearbeitungsloige	27.04.10 14:09
	R_SHAFT	14	27.04.10 14:09 Werkzeug auswählen
NC/UKS/EXAMPLE1/TAPER P Programkopf	R_SHAFT	Bearbeitungsioige	27.84.10 14.99 Uerkzeug auswählen
NC/UKS/EXAMPLE1/TAPER P Programmkopf T T=R0UGHING_T88 A	SHAFT	14	27.84.10 14:09 Uerkzeug auswählen Grafische
Dild 2-7 Uts $\frac{1}{\sqrt{00}}$ NC/UKS/EXAMPLE1/TAPER P Programmkopf T T=R0UGHING_T88 A \rightarrow EIL6, X=82 Z=0.3 EIL6, X=82 Z=0.3	Shaft V1=240m	14	27.04.10 14:99 Uerkzeug auswählen Grafische Ansicht
Dild 2-7 Uts MC/UKS/EXAMPLE1/TAPER P Programmkopf T T=ROUGHING_T80 A \rightarrow EILG. X=82 Z=0.3 \rightarrow F0.3/U X=-1.6 EILG Z=1	Shaft V1=240m	14	27.84.10 14:89 Uerkzeug auswählen Grafische Ansicht
Dild 2-7 Uts MC/UKS/EXAMPLE1/TAPER P Programmkopf T T=ROUGHING_T80 A \rightarrow EILG. X=82 Z=0.3 \rightarrow F0.3/U X=-1.6 \rightarrow EILG. Z=1 \rightarrow EILG X=82	SHAFT	14	27.84.10 14:09 Uerkzeug auswählen Grafische Ansicht
Dild 2-7 Uts $\frac{1}{JOG}$ NC/UKS/EXAMPLE1/TAPER P Programmkopf T T=R0U6HING_T80 A \rightarrow EILG. X=82 Z=0.3 \rightarrow FILG. X=82 \rightarrow EILG. X=82 \rightarrow EILG. Z=1	3_SHAFT V1=248m		27.84.18 14:89 Uerkzeug auswählen Grafische Ansicht Suchen
Dild 2-7 Uts 30G NC/UKS/EXAMPLE1/TAPEF P Programmkopf T T=R0UGHING_T80 A \rightarrow EILG. X=82 Z=0.3 \rightarrow EILG. Z=1 \rightarrow EILG. Z=1 \rightarrow EILG. Z=0 \rightarrow E0.2 (II X=1.6) \rightarrow E1.6 (II X=1.6) \rightarrow E0.6	spranghone		27.04.10 14:09 Uerkzeug auswählen Grafische Ansicht Suchen
Dild 2-7 Uts $\frac{1}{JOG}$ NC/UKS/EXAMPLE1/TAPEF P Programmkopf T T-ROUGHING_T80 A \rightarrow EILG. X=82 Z=0.3 \rightarrow F0.3/U X=-1.6 \rightarrow EILG. Z=0 \rightarrow F0.25/U X=-1.6 \rightarrow F1.6 Z=1	SHAFT V1=240m	14	27.84.10 14:89 Uerkzeug auswählen Grafische Ansicht Suchen
Dild 2-7 Uts NC/UKS/EXAMPLE1/TAPEF P Programmkopf T T=ROUGHIN6_T80 A \rightarrow EIL6. X=82 Z=0.3 \rightarrow F0.3/U X=-1.6 \rightarrow EIL6. Z=1 \rightarrow EIL6. Z=20 \rightarrow F0.25/U X=-1.6 \rightarrow EIL6. Z=10 \rightarrow EIL6. Z=10 \rightarrow EIL6. Z=10	SHAFT V1=240m	14	27.84.10 14:89 Uerkzeug auswählen Grafische Ansicht Suchen Markieren
Dild 2-7 Ofs NC/UKS/EXAMPLE1/TAPER P Programmkopf T T=ROUGHING_T80 A \rightarrow EILG. X=82 Z=0.3 \rightarrow F0.3/U X=-1.6 \rightarrow EILG. Z=1 \rightarrow EILG. Z=0 \rightarrow F0.25/U X=-1.6 \rightarrow EILG. Z=1 \rightarrow EILG. Z=1 \rightarrow EILG. Z=1 \rightarrow EILG. Z=1 \rightarrow EILG. Z=1 \rightarrow EILG. Z=120 Z=2000 \downarrow Catontur	Shaft V1=248m	TAPER SHOFT CONTOUR	27.84.18 14:99 Uerkzeug austrählen Grafische Ansicht Suchen Markieren
Dild 2-1 Dis J06 NC/UKS/EXAMPLE1/TAPER P Programmkopf T T=R0U6HING_T88 A → EIL6. X=82 Z=0.3 → FIG. X=82 Z=0.3 → EIL6. Z=1 → EIL6. Z=2 → EIL6. Z=2 → EIL6. Z=2 → EIL6. Z=1 → Kontur ✓ Mospanen	sprungnene s_shaft V1=240m	TAPER_SHAFT_CONTOUR T=ROUGHING TB0 A F0.3/U V240=	27.84.18 14:89 Uerkzeug auswählen Grafische Ansicht Suchen Markieren Kopieren
Dild 2-7 Uts 306 NC/UKS/EXAMPLE1/TAPEF P Programmkopf T T=R0UGHIN6_T80 A \rightarrow EIL6. X=82 Z=0.3 \rightarrow EIL6. Z=1 \rightarrow EIL6. Z=1 \rightarrow EIL6. Z=0 \rightarrow F0.25/U X=-1.6 \rightarrow EIL6. Z=1 \rightarrow EIL6. Z=1 \rightarrow EIL6. Z=1 \rightarrow EIL6. Z=1 \rightarrow EIL6. X=120 Z=200 \bigcup Kontur Abspanen \bigcirc Abspanen	۲ vvv	TAPER_SHAFT_CONTOUR T=ROUGHING_T80 A F0.3/U V240m T=FUNISHING T35 A F0.15/U V240m	27.84.10 14:99 Uerkzeug auswählen Grafische Ansicht Suchen Markieren Kopieren
Dild 2-1 Dis J0G NC/UKS/EXRMPLE1/TAPEF P Programmkopf T T-ROUGHING_T88 A → EIL6. X=82 Z=0.3 → F0.3/U X=-1.6 → EIL6. Z=1 → EIL6. Z=2 → EIL6. Z=0 → F0.25/U X=-1.6 → EIL6. Z=1 → EIL6. Z=1 → EIL6. Z=1 → EIL6. X=120 Z=200 ↓ Abspanen Abspanen Abspanen ↓ ■ ■ ■ ■	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	14 14 TAPER_SHAFT_CONTOUR T=FNUSHING_T35 A F0.3/U V240m T=FINISHING T35 A F0.15/U V280m	27.84.18 14:89 Uerkzeug auswählen Grafische Ansicht Suchen Markieren Kopieren
Dild 2-1 Dis NG NG NC/UKS/EXAMPLE1/TAPEF P P Trogrammkopf T T=ROUGHING_T80 A - → EIL6. X=82 Z=0.3 - → F0.3/U X=-1.6 - → EIL6. Z=1 - → EIL6. Z=0 - → F0.25/U X=-1.6 - → EIL6. Z=10 - → EIL6. X=120 Z=2000 - Kontur - Abspanen - Mospanen - Gewinde Längs -	⊽ ⊽ ⊽ ⊽ ∨ ⊽ ∨ ⊽ ∨ ∨ ∨ ∨	14 TAPER_SHAFT_CONTOUR T=ROUGHING_T35 A F0.3/U V240m T=FINISHING_T35 A F0.15/U V200m T=FINISHING_T35 A F0.15/U V200m T=THREDING T1.5 P1.5mm/U V200m	27.84.10 14:89 Uerkzeug auswählen Grafische Ansicht Suchen Markieren Kopieren Einfügen
Dild 2-1 Dis J0G NC/UKS/EXAMPLE1/TAPER P Programmkopf T T=R0U6HING_T80 A FIL6. X=82 Z=0.3 → EIL6. X=82 Z=0.3 → EIL6. X=82 → EIL6. Z=1 → EIL6. Z=20 → EIL6. Z=20 → EIL6. Z=1 → EIL6. Z=1 → EIL6. Z=20 → FR0.25/U X=-1.6 → EIL6. Z=1 → EIL6. Z=10 → EIL6. Z=200 → Kontur Abspanen → Abspanen → Gewinde Längs ↓ Einstich	>SHAFT U1=248m v v	14 TAPER_SHAFT_CONTOUR T=ROUGHING_T80 A F0.3/U V240m T=FINISHING_T35 A F0.15/U V280m T=FINISHING_T35 A F0.15/U V280m T=THREADING_T1.5 P1.5mm/U S800U T=PLINEC CUTTER 3 A F0.15/U V1580m	27.84.18 14:89 Uerkzeug austrählen Grafische Ansicht Suchen Markieren Kopieren Einfügen
Dild 2-1 Dis J0G NC/UKS/EXAMPLE1/TAPEF P Programmkopf T T=R0U6HING_T88 A → EIL6. X=82 Z=0.3 → EIL6. X=82 Z=0.3 → EIL6. Z=1 → EIL6. Z=20 → FIL6. Z=0 → FIL6. Z=1 → EIL6. Z=10 → Abspanen → Abspanen → Einstich Geu. Gewinde Längs Einstich EIN Programmende	Shaft U1=240m V	14 TAPER_SHAFT_CONTOUR T=ROUGHING_T80 A F0.3/U V240m T=FINISHING_T35 A F0.15/U V200m T=FINISHING_T1.5 P1.5mm/U S800U T=PLUNGE_CUTTER_3 A F0.1/U V150m H2	27.84.18 14:89 Uerkzeug auswählen Grafische Ansicht Suchen Markieren Kopieren Einfügen
Dild 2-1 Dis J0G NC/UKS/EXAMPLE1/TAPEF P Programmkopf T T=ROUGHING_T80 A → EILG. X=82 Z=0.3 → EILG. Z=1 → EILG. Z=0 → F0.25/U X=-1.6 → EILG. Z=1 → EILG. Z=1 → EILG. Z=1 → EILG. X=120 Z=200 ↓ Kontur ↓ Abspanen ↓ Freistich Geu. ↓ Gewinde Längs ↓ Einstich ►NO Programmende	The second sec	14 TAPER_SHAFT_CONTOUR T=ROUGHING_T38 A F0.3/U V240m T=FINISHING_T35 A F0.15/U V280m T=FINISHING_T35 A F0.15/U V280m T=THREADING_T1.5 P1.5mm/U S800U T=PLUNGE_CUTTER_3 A F0.1/U V150m N2	27.84.10 14:89 Uerkzeug auswählen Grafische Ansicht Suchen Markieren Kopieren Einfügen Aus- schneiden
Dild 2-1 Dis NC/UKS/EXAMPLE1/TAPEF P Programmkopf T T-ROUGHING_T88 A → EILG. X=82 Z=0.3 → F0.3/U X=-1.6 → EILG. Z=1 → EILG. Z=20 → F0.25/U X=-1.6 → EILG. Z=1 → EILG. Z=10 → ENCS/U X=-1.6 → EILG. Z=10 <	⊽ ▼	14 TAPER_SHAFT_CONTOUR T=FULHAET_TSD A F0.3/U V240m T=FINISHING_T35 A F0.15/U V280m T=FINISHING_T35 A F0.15/U V280m T=THREADING_T15 P1.5mm/U S800U T=PLUHGE_CUTTER_3 A F0.1/U V150m H2	27.84.18 14:89 Uerkzeug auswählen Grafische Ansicht Suchen Markieren Kopieren Einfügen Aus- schneiden
Dild 2-1 Dis NC/UKS/EXAMPLE1/TAPER P P Programmkopf T T-ROUGHING_T80 A F F0.3/U X=-1.6 EILG. X=82 Z=0.3 FEILG. X=82 FILG. Z=1 FILG. Z=1 FILG. Z=2 FEILG. Z=2 FEILG. Z=2 FEILG. Z=1 FILG. Z=1 FEILG. Z=1 FILG. Z=2 FEILG. Z=2 File. Z=2 Gewinde Längs Gewinde Längs EINSTICH Programmende	▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼	14 TAPER_SHAFT_CONTOUR T=ROUGHING_T80 A F0.3/U V240m T=FINISHING_T35 A F0.15/U V280m T=FINISHING_T35 A F0.15/U V280m T=THREADING_T1.5 P1.5mm/U S800U T=PLUNGE_CUTTER_3 A F0.1/U V150m H2	27.84.18 14:89 Uerkzeug austrählen Grafische Ansicht Suchen Markieren Kopieren Einfügen Aus- schneiden
Dild 2-1 Ofs NC/UKS/EXAMPLE1/TAPER P Programmkopf T T-ROUGHING_T88 A → EILG. X=82 Z=0.3 → EILG. X=82 Z=0.3 → EILG. Z=1 → EILG. Z=20 → EILG. Z=1 → EILG. Z=1 → EILG. Z=1 → EILG. Z=120 Z=200 → Kontur → Abspanen → Abspanen → Abspanen → Elinstich EN Programmende	> > > > > > > > > > > > > > > > > > > > > > > > > >	14 TAPER_SHAFT_CONTOUR T=ROUGHING_T80 A F0.3/U V240m T=FINISHING_T35 A F0.15/U V280m T=FINISHING_T35 A F0.15/U V280m T=THREADING_T1.5 P1.5mm/U S800U T=PLUNGE_CUTTER_3 A F0.1/U V150m H2	27.84.18 14:89 Uerkzeug auswählen Grafische Ansicht Suchen Markieren Kopieren Einfügen Aus- schneiden
Dild 2-1 Dis JOG NC/UKS/EXAMPLE1/TAPEF P Programmkopf T T-ROUGHING_T88 A → EILG. X=82 Z=0.3 → EILG. X=82 Z=0.3 → EILG. Z=1 → EILG. Z=2 → EILG. Z=2 → EILG. Z=2 → EILG. Z=1 → EILG. X=120 Z=200 ✓ Abspanen ✓ Abspanen ✓ Buspanen ✓ ✓ Øreuinde Längs ✓ ✓ Ørogrammende	> > SHAFT > U1=240m > > > > > >	14 TAPER_SHAFT_CONTOUR T=ROUGHING_T380 A F0.3/U V240m T=FINISHING_T35 A F0.15/U V200m T=FINISHING_T35 A F0.15/U V200m T=THREADING_T1.5 P1.5mm/U S800U T=PLUNGE_CUTTER_3 A F0.1/U V150m H2	27.84.18 14:89 Uerkzeug auswählen Grafische Ansicht Suchen Markieren Kopieren Einfügen Aus- schneiden

Bild 2-8 Optimierte Bearbeitungsfolge durch Ausschneiden und Einfügen

 weil Sie bei ShopTurn auf der Basis durchgängiger Digitaltechnik (SINAMICS-Antriebe,, SINUMERIK-Steuerungen) höchste Vorschubgeschwindigkeiten bei optimaler Wiederholgenauigkeit erreichen können. Vorteile, wenn Sie mit ShopTurn arbeiten

2.3 Sie sparen Fertigungszeit...

Damit alles reibungslos funktioniert

In diesem Kapitel lernen Sie beispielhaft die Grundlagen der Bedienung von ShopTurn kennen.

3.1 Die Bedienung von ShopTurn

Eine leistungsfähige Software ist das eine, aber man muss sie auch mit Leichtigkeit bedienen können. Ganz gleich, ob sie mit der SINUMERIK 840D sI oder der hier gezeigten SINUMERIK 828D arbeiten, das übersichtliche Maschinenbedienfeld unterstützt Sie dabei. Das Bedienfeld besteht aus 3 Teilen, der Flachbedientafel ①, der CNC-Volltastatur ② und der Maschinensteuertafel ③.

3.1 Die Bedienung von ShopTurn

Hier sind die wichtigsten Tasten der CNC-Volltastatur zur Navigation in ShopTurn aufgelistet:

Taste	Funktion
(i) HELP	<hr/> HELP> Ruft die kontextsensitive Online-Hilfe zum angewählten Fenster auf.
SELECT	<select> Wählt einen angebotenen Wert aus.</select>
	Cursortasten Mit den 4 Cursortasten wird der Cursor bewegt. Mit dem hier gezeigten <cursor rechts=""> wird im Edit-Modus ein Verzeichnis oder Programm (z. B. Zyklus) im Editor geöffnet.</cursor>
PAGE UP	<page up=""> In einem Menü-Bild nach oben blättern.</page>
PAGE DOWN	<page down=""> In einem Menü-Bild nach unten blättern.</page>
END	<end> Bewegt den Cursor auf das letzte Eingabefeld in einem Menü-Bild oder einer Tabelle.</end>
DEL	>DEL> Edit-Modus: Löscht das erste Zeichen nach rechts. Navigations-Modus: Löscht alle Zeichen.
HACKSPACE	BACKSPACE> Edit-Modus: Löscht links vom Cursor ein markiertes Zeichen. Navigations-Modus: Löscht links vom Cursor alle markierten Zeichen.
INSERT.	 <insert></insert> Mit Betätigung kommen Sie in den Edit-Modus und mit nochmaligen Betätigen wird der Edit-Modus wieder verlassen und Sie kommen in den Navigations-Modus.
INPUT	<input/> Eingabe eines Werts im Eingabefeld abschließen. Ein Verzeichnis oder Programm öffnen.

Die eigentliche Funktionsauswahl in ShopTurn geschieht mit den Tasten rund um den Bildschirm. Diese sind größtenteils direkt den einzelnen Menüpunkten zugeordnet. Da sich die Inhalte der Menüs situationsbedingt ändern, spricht man von Softkeys.

Alle Hauptfunktionen lassen sich über die horizontalen Softkeys aufrufen.

Alle Unterfunktionen von ShopTurn werden über die senkrechten Softkeys erreicht.

Das Grundmenü kann jederzeit mit dieser Taste aufgerufen werden - unabhängig davon, in welchem Bedienbereich man sich gerade befindet.

Grundmenü

3.2 Die Inhalte des Grundmenüs

3.2.1 Maschine

Maschine - Manuell

Drücken Sie den Softkey "Maschine".

Drücken Sie die Taste "JOG".

3.2 Die Inhalte des Grundmenüs

Hier wird die Maschine eingerichtet, das Werkzeug im Handbetrieb verfahren. Es können auch Werkzeuge vermessen und Werkstück-Nullpunkte gesetzt werden.

Bild 3-1 Aufruf eines Werkzeuges und Eingabe von technologischen Werten

M		25.05.10 12:42
		SIEMENS
RESET		
MKS	Position [mm]	T,F,S
X1	0.000	T
21	0.000	F 0.000
		0.000 mm/min 85%
		S1 🛀 🛛 🛛 🖄
		0 100%
Zielposition		Eilgang
		F Eilgang * mm/min
		7 1 000 abs
		C abs
		TOOL abs
		SP2 abs
		× .
		> Zurück
1, ,,,M	I P20 setzen P20 Werkst P1 r	Werkz. Posi- nessen tion Ab-

Bild 3-2 Eingabe einer Zielposition

Maschine - Auto

Drücken Sie den Softkey "Maschine".

Drücken Sie die Taste "AUTO".

Während der Fertigung wird der aktuelle Arbeitsschritt angezeigt. Dabei kann per Tastendruck (Mitzeichnen) auf eine mitlaufende Simulation umgeschaltet werden. Während der Abarbeitung eines Arbeitsplanes können Arbeitsschritte hinzugefügt bzw. ein neuer Arbeitsplan begonnen werden.

				25.05.10 12:54
NC/WKS/EXAMP	PLE3/GUIDE_SHAFT		SIEMENS	G-
🐼 aktiv				Funktionen
MKS	Position [mm]	Restweg	T,F,S	Hilfs-
– X1	84 092	-29 052	T BOUGHING T80 A D1	funktionen
	40.004	20.002	В 0.800	
21	40.224	0.000	F 0 212	Basis-
			0.212 0.250 mm/ll 85%	Salze
			C1 J 1265	Zeiten
				Zähler
⊟ ⊉G54				1
NC/WKS/EXAMI	PLE3/GUIDE_SHAFT			Programm Fhenen
P Programm	kopf		<u>^</u>	Eponon
Abspanen		▼ T=ROUGH	ING_T80 A F0.25/U V240m plan	
ပြုKontur		GUIDE_S	HAFT_BLANK	
U Kontur		GUIDE_S	HAFT_CONTOUR	
Abspanen		▼ I=ROUGH	1NG_180 A F0.3/U V260m	Istwerte
A Restabsp	anen		N_1UUL_8 F0.25/U V240m	MIKS
Hbspanen			HING_135 H F0.12/U V280m	
Hospanen			HING_135 H FU.12/U V280m	
			>	
		NC Prog. Beeinf	r Satz- Mit- zeichn.	Prog. korr.

Bild 3-3 Abarbeiten des Arbeitsplans

Bild 3-4 Mitzeichnen der Abarbeitung

Einfacher Drehen mit ShopTurn Trainingsunterlage, 05/2010, 6FC5095-0AB80-1AP0 3.2 Die Inhalte des Grundmenüs

3.2.2 Parameter

Parameterlisten

Hier können Daten für die Werkzeugverwaltung und für Programme editiert werden.

Werkzeuglisten

Keine Zerspanung ohne Werkzeuge.

Diese können in einer Werkzeugliste verwaltet werden.

<u>ι</u> Ο	0 3												05.05.10 15:05
Werkz	euglis	ste								Μ	agazir	n 1	Werkzeug
Platz	Тур	Werkzeugname	ST	D	Länge X	Länge Z	Radius				Pl läng	^	messen
1/1	•	ROUGHING_T80 A	1	1	55.840	39.124	0.800	←	95.0	80	12.0	=	
1/2	8	DRILL_32	2	1	0.000	185.124	32.000		180.0				
1/3	<u></u>	FINISHING_T35 A	1	1	123.976	57.370	0.400	←	93.0	35	12.0		
1/4	•	ROUGHING_T80 I	1	1	-8.950	122.457	0.800	←	95.0	80	10.0		Schneiden
1/5		PLUNGE_CUTTER_3 A	1	1	85.124	44.124	0.200		3.000		8.0		Connoraci
1/6		PLUNGE_CUTTER_3 I	1	1	-11.736	135.124	0.100		3.000		4.0		
1/7	0	FINISHING_T35 I	1	1	-12.658	121.807	0.400	←	95.0	35	8.0		
1/8	\geq	THREAD_1.5	1	1	100.000	0.000	0.050						
1/9	8	CUTTER_8	1	1	87.833	74.621	8.000	3					
1/10	2	DRILL_5	1	1	0.000	185.124	5.000		118.0				Entladen
1/11	O	BUTTON_TOOL_8	1	1	88.112	38.123	2.000						Liluauen
1/12	60000	THREADCUTTER_M6	1	1	0.000	145.132	6.000		1.000				
1/13	8=	MILLINGTOOL	1	1	58.000	42.000	8.000	2					Werkzeug
1/14													löschen
1/15													
1/16													Magazin-
2/1													anwahl
2/2													
2/3												~	
					<	_					>		
	Jerkz liste	. Uerkz. versch		4	Maga- zin	Nu ver	illp. sch. R	An var	wen. iable				SD Setting- daten

Bild 3-5 Werkzeugliste

Magazin

Werkzeuge können in einem Magazin zusammengestellt werden.

ţ_C								05.05.1 15:0
Magaz	in							Magazin 1
Platz	Тур	Werkzeugname	ST	D	G	Ü	P	
1/1		Roughing_t80 A	1	1				=
1/2	S	DRILL_32	2	1				
1/3	0	FINISHING_T35 A	1	1				
1/4	•	ROUGHING_T80 I	1	1				
1/5	Ţ	PLUNGE_CUTTER_3 A	1	1				
1/6	1	PLUNGE_CUTTER_3 I	1	1				
1/7		FINISHING_T35 I	1	1				
1/8	\geq	Thread_1.5	1	1				
1/9	8=	CUTTER_8	1	1				
1/10	6	DRILL_5	1	1				Ilmestren
1/11	.0	BUTTON_TOOL_8	1	1				Unseizen
1/12		THREADCUTTER_M6	1	1				
1/13	8=	MILLINGTOOL	1	1				Magazin
1/14								positioniere
1/15								
1/16								
2/1								
2/2								
2/3								
2/4								
	Jerkz liste	. Uerkz. versch				M	laga zin	r → Nullp. versch. R Anwen. SD Setting daten
Bild	3-6	Magazin						

Nullpunkttabelle

Die Nullpunkte werden in einer übersichtlichen Nullpunkttabelle gespeichert.

							05.05.10
							15:11
Nullpunktverschiebung – (Jbersicht [mi	n]					
	<u>⊘</u> , FT \77	Х	Y	Z	Z2	C	
DRF		0.000	0.000	0.000	0.000	0.000	
Basisbezug		0.000	0.000	0.000	0.000	0.000	Aktiv
Gesamt Basis NPV		0.000	0.000	0.000	0.000	0.000	
G54		51.755	0.000	20.000	0.000	0.000	
Trafobezug		0.000	0.000	0.000	0.000	0.000	Übersicht
Programmierte NPV		0.000	0.000	0.000	0.000	0.000	
Zyklenbezug		0.000	0.000	0.000	0.000	0.000	
Gesamt NPV		51.755	0.000	20.000	0.000	0.000	Basis
							G54
							G57
							Dataila
							Details
<	11					>	
		4			_		
Werkz. Werkz.		🔤 M	aga- 🗛	Nullp.	Anwen.		SD Setting-
liste versch			zin 🔍 🖤	versch.	variable		daten

Bild 3-7 Nullpunkttabelle

3.2 Die Inhalte des Grundmenüs

3.2.3 Programm

Programme editieren

Hier können Sie Programme editieren.

Haben Sie im Programm-Manager ein **ShopTurn Programm** angelegt, können Sie nun den Arbeitsplan mit seiner kompletten Bearbeitungsfolge für das jeweilige Werkstück erstellen. Voraussetzung für die optimale Reihenfolge ist Ihr Erfahrungswissen.

									05.05.10 13:57
NC/	UKS/EXAN	1PLE2/DRIVE_	Shaft					3	Werkzeug
Ρ	Program	nkopf					8	^	auswählen
	Abspane	1	$\nabla \nabla \nabla$	T=ROUG	HING_T80 A	F0.25/U V2	240m plan	١.	
. ک	Kontur			DRIVE_	SHAFT_CONT	OUR	\ominus		Grafische
M.	Abspane	1	∇	T=ROUG	GHING_T80 A	F0.3/U S24	ION	H	HINSICHT
)_£;-	Restabs	banen	∇	T=FIN:	[SHING_T35	A F0.12/U V	/240m		
¥-	Abspane	1	$\nabla \nabla \nabla$	T=FIN:	CSHING_T35	A F0.12/U 9	S280U		Suchen
W	Gewinde	Längs	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T=THRI	ADING_T1.5	P1.5mm/U S	S800U	Ľ	
END	Program	lende						I	
									Markieren
									Kopieren
									Einfügen
									Aus- schneiden
_								-	
			_	. Kantar	_	Diana Diana			
3	Edit	- Bohren	🚅 Drehen	drehen	Fräsen	Ses	Simu-		Anwahl

Die zu bearbeitende Kontur wird grafisch eingegeben.

Geometrie und Technologie bilden in der Programmierung eine Einheit.

Beispiel für die Verzahnung von Geometrie und Technologie:

Dieser geometrisch-technologische Zusammenhang wird sehr übersichtlich in der grafischen Anzeige der Arbeitsschritte durch eine "Klammerung" der entsprechenden Symbole gezeigt. Dabei bedeutet die "Klammerung" eine Verkettung von Geometrie und Technologie zu einem Arbeitsschritt.

3.2 Die Inhalte des Grundmenüs

Programme simulieren

Vor der Fertigung des Werkstücks an der Maschine haben Sie die Möglichkeit, die Abarbeitung des Programms grafisch am Bildschirm darzustellen.

- Drücken Sie die Softkeys "Simulation" und "Start".
- Drücken Sie den Softkey "Stop", wenn Sie die Simulation anhalten möchten.
- Mit dem Softkey "Reset" können Sie die Simulation abbrechen.

Für die Simulation stehen u. a. folgende Ansichten zur Verfügung:

Bild 3-8 Seitenansicht (Werkzeugbahn anzeigen, aktiviert)

Bild 3-10 2 Fenster-Ansicht

3.2 Die Inhalte des Grundmenüs

3.2.4 Programm-Manager

Programme verwalten

Über den Programm-Manager können Sie jederzeit neue Programme erstellen. Sie können auf vorhandene Programme zugreifen, um sie abarbeiten zu lassen, um sie zu verändern, kopieren oder umbenennen. Programme, die sie nicht mehr benötigen, können gelöscht werden.

						04.02.10 12:19
	Name	Тур	Länge	Datum	Zeit	
Teileprogramm	ne	DIR		29.01.10	16:30:23	
Unterprogram	me	DIR		29.01.10 04.02.10	12:18:21	
EXAMPLE1	Neues Scl	hrittkettenpro	gramm		11:01:23	Werkstück
EXHMPLE2				1	12:18:21	
	Тур	ShopTurn		~		ShopTurn
	Name DRIVE_SHAFT					programGUIDE
						G-Code
						Beliebig
						×
						Abbruch
NC			_		Frei: 2.4 MB	OK

Aktive Programme werden mit einem grünen Symbol gekennzeichnet.

			05.05.10 16:58
Name	Typ Länge	Datum Zeit	Anwahl
Teileprogramme	DIR	04.05.10 13:45:21	
Giterprogramme Gerkstücke	DIR	05.05.10 15:09:47	
🛉 🗁 EXAMPLE1	WPD	05.05.10 13:56:18	Neu
TAPER_SHAFT	MPF 2238	05.05.10 16:47:55	
	UPD	05.05.10 13:56:35 05.05.10 13:56:35	Öffnen
EXAMPLE4	WPD	05.05.10 13:56:36	onnen
e 🗅 Examples	WPD	05.05.10 13:56:36	
⊕	WPD	05.05.10 15:13:44	Markieren
			Kopieren
			Einfügen
			Aus- schneiden
NC/Werkstücke/EXAMPLE1.WPD		Frei: 2.4 MI	3
NC Lokal. USB			

USB-FlashDrives bieten Ihnen die Möglichkeit, Daten auszutauschen. So können Sie beispielsweise Programme, die extern angelegt wurden, in die NC kopieren und abarbeiten lassen.

Neues Werkstück anlegen

In einem Werkstück können Sie ihre Programme und andere Dateien, wie z. B. Werkzeugdaten, Nullpunkte, Magazinbelegung verwalten.

Neues Programm anlegen

Legen Sie ein neues Programm an, so können Sie über die folgenden Softkeys das Eingabeformat bestimmen:

ShopTurn	ShopTurn Programm
programGUIDE G-Code	G-Code Programm

3.2.5 Diagnose

Alarme und Meldungen

Diagnose

Damit alles reibungslos funktioniert

3.2 Die Inhalte des Grundmenüs

Grundlagen für Einsteiger

In diesem Kapitel werden die allgemeinen Grundlagen der Geometrie und der Technologie für das Drehen erläutert. Hierbei sind noch keine Eingaben in ShopTurn vorgesehen.

4.1 Geometrische Grundlagen

4.1.1 Werkzeugachsen und Arbeitsebenen

Beim Drehen rotiert nicht das Werkzeug, sondern das Werkstück. Diese Achse ist die Z-Achse.

- Ebene G18 = Bearbeitung mit Drehwerkzeugen
- Ebene G17 = Bohr- und Fräsoperationen auf der Stirnfläche
- Ebene G19 = Bohr- und Fräsoperationen auf der Mantelfläche

Da sich die Durchmesser von Drehwerkstücken relativ einfach kontrollieren lassen, ist die Maßangabe der Planachse durchmesserbezogen. Sie können somit das Ist-Maß direkt mit den Zeichnungsmaßen vergleichen.

4.1.2 Punkte im Arbeitsraum

Damit sich eine CNC-Steuerung - wie die SINUMERIK 828D mit ShopTurn - über das Mess-System im vorhandenen Arbeitsraum orientieren kann, gibt es dort einige wichtige Bezugspunkte.

Einfacher Drehen mit ShopTurn Trainingsunterlage, 05/2010, 6FC5095-0AB80-1AP0

Grundlagen für Einsteiger

4.1 Geometrische Grundlagen

Maschinen-Nullpunkt M

Der Maschinen-Nullpunkt M wird vom Hersteller festgelegt und kann nicht verändert werden. Er liegt im Ursprung des Maschinen-Koordinatensystems.

Werkstück-Nullpunkt W

Der Werkstück-Nullpunkt W, auch Programm-Nullpunkt genannt, ist der Ursprung des Werkstück-Koordinatensystems. Er kann frei gewählt werden und sollte dort angeordnet sein, von wo in der Zeichnung die meisten Maße ausgehen.

Referenzpunkt R

Der Referenzpunkt R wird zum Nullsetzen des Mess-Systems angefahren, da der Maschinen-Nullpunkt meist nicht angefahren werden kann. Die Steuerung findet so ihren Zählanfang im Wegmess-System.

Werkzeugträger-Bezugspunkt T

Der Werkzeugträger-Bezugspunkt T ist für das Einrichten bei Maschinen mit Werkzeugrevolvern mit voreingestellten Werkzeugen von Bedeutung. Seine Lage und Aufnahmebohrung ermöglichen das Einrichten mit Meißelhaltern für Schaftwerkzeuge nach DIN 69880 und VDI 3425.

4.1.3 Absolute und inkrementale Maßangaben

Absolute Eingabe

Die eingegebenen Werte beziehen sich auf den Werkstück-Nullpunkt.

Gerad	8						
Х	50.000	abs					
Y		abs					
Z	-20.000	abs					
* G90 A	* G90 Absolute Maßangaben						

Bei absoluten Eingaben sind immer die **absoluten** Koordinaten-Werte des **Endpunktes** einzugeben (die aktuelle Position wird nicht betrachtet).

Inkrementale Eingabe

SELECT

Die eingegebenen Werte beziehen sich auf die aktuelle Position.

Bei inkrementalen Eingaben sind immer die **Differenz-**Werte zwischen **aktueller Position** und **Endpunkt** unter Beachtung der **Richtung** einzugeben.

Mit der SELECT-Taste kann jederzeit zwischen absoluter und inkrementaler Eingabe umgeschaltet werden.

Hier einige Beispiele in der Kombination absolut/inkremental:

Gerad	8	
Х	10.000	abs
Y		abs
Z	-35.000	ink

Gerad	е	
Х	25.000	ink
Y		abs
Z	-40.000	abs

4.1 Geometrische Grundlagen

4.1.4 Kartesische und polare Maßangaben

Kartesische Eingabe

Eingabe der Koordinaten X und Z. Die grau hinterlegten Werte im Beispiel wurden automatisch berechnet.

Gerade	e ZX	
Х	100.000	abs
Х	40.000	ink
Z	-40.000	abs
Z	-30.000	ink
L	50.000	
α1	126.870	0
α2	320.906	0

Bei absoluten Eingaben sind immer die **absoluten** Koordinaten-Werte des **Endpunktes** einzugeben (die aktuelle Position wird nicht betrachtet).

Polare Eingabe

Eingabe der Länge und des Winkels. Die grau hinterlegten Werte im Beispiel wurden automatisch berechnet.

Gerad	e ZX	
Х	100.000	abs
Х	40.000	ink
Z	-40.000	abs
Z	-30.000	ink
L	50.000	
α1	126.870	0
α2	320.906	0

 $\alpha 1$ = Winkel zur positiven Z-Achse

α2 = Winkel zum Vorgängerelement

Die Winkel können ... Positiv und / oder ...

... negativ eingegeben werden.

4.1 Geometrische Grundlagen

Auch die kartesischen und polaren Eingaben können Sie kombinieren. Hier zwei Beispiele:

Eingabe des Endpunktes in X und der Länge

Gerade ZX			
Х	100.000	abs	
Х	40.000	ink	
Z	-40.000	abs	
Z	-30.000	ink	
L	50.000		
α1	126.870	0	
α2	320.906	0	

Eingabe des Endpunktes in Z und eines Winkels

Gerade ZX			
Х	100.000	abs	
Х	40.000	ink	
Z	-40.000	abs	
Z	-30.000	ink	
L	50.000		
α1	126.870	0	
α2	320.906	0	

4.1.5 Kreisförmige Bewegungen

Bei Kreisbögen wird nach DIN der Endpunkt des Bogens (Koordinaten X und Z in der G18-Ebene) und der Mittelpunkt (I und K in der G18-Ebene) angegeben.

Der ShopTurn-Konturrechner gibt Ihnen auch bei Kreisbögen die Freiheit, jedes beliebige Maß aus der Zeichnung ohne Umrechen-Aufwand zu übernehmen.

Nachfolgend sehen Sie ein Beispiel mit zwei - zunächst nur teilbestimmten - Kreisbögen.

Eingabe des Bogens R10:

Kreis								
Drehri	ichtung	Q						
R	10.000	ohe		t T	4			
ź	-35	abs						
L	eis 'ehrichtung 2 10.000 abs -35 abs abs abs 1 \circ ach Input: \circ 10.000 \circ							
K al		abs ∘						
41							R	Rue A
Nach	Input:			1 -	· · · · · · · · · · · · · · · · · · ·		M	M A
Kreis						-35	-35	-35 0
Drehri	ichtung	Q						
R	10.000							
x	50.000	abs						
z	-35.000	abs						
l	50.000	abs						
ĸ	-25.000	abs						
α1	180.000	0						
-								

Eingabe des Bogens R20:

Kreis		
Drehri	chtung	Ω
R		
Х	30.000	abs
Z		abs
I I	0.000	abs
K	-20	abs
α 1	-90.000	0

Nach Input:

Kreis		
Drehri	chtung	ب
R	20.000	
Х	30.000	abs
Х	15.000	ink
Z	-6.771	abs
Z	-6.771	ink
I I	0.000	abs
I	0.000	ink
K	-20.000	abs
K	-20.000	ink
α1	90.000	0
β1	138.590	0
β2	48.590	0

4.2 Technologische Grundlagen

Alle Parameter Die folgenden Anzeigen aller Werte ergeben sich, wenn Sie alle bekannten Maße eingetragen und im Eingabefenster des jeweiligen Bogens den Softkey **Alle Parameter** gedrückt haben

Kreis							Kreis			
Drehri	chtung	\mathcal{Q}	ł	М			Drehri	chtung	Ç)
R	10.000			E			R	20.000		
х	50.000	abs			=+Ø20 _F		Х	30.000	abs	
Х	10.000	ink	Ø60		Ñ	Ø30	Х	15.000	ink	
Z	-35.000	abs					Z	-6.771	abs	
Z	-10.000	ink			<u>B20</u> h+	-X	Z	-6.771	ink	
I	50.000	abs		 ·		⇒_ ∮ Ø0	I .	0.000	abs	
l I	10.000	ink			M K20A	+Z	I .	0.000	ink	
K	-25.000	abs		-35	Ő		K	-20.000	abs	
K	0.000	ink					K	-20.000	ink	
α1	180.000	0					α1	90.000	0	
α2	tangential									
β1	90.000	•					β1	138.590	0	
β2	90.000	0					β2	48.590	0	
lm Dl	N-Format:						lm Dl	N-Format:		
G2 X	50 Z-35 CR=	:10					G3 X	30 Z-6.771 k	(-20	

4.2 Technologische Grundlagen

4.2.1 Schnittgeschwindigkeit und Drehzahlen

Beim Drehen wird meist direkt die Schnittgeschwindigkeit programmiert, und zwar beim Schruppen, Schlichten und Stechen. Nur beim Bohren und (meist) beim Gewindedrehen wird die Drehzahl programmiert.

Bestimmung der Schnittgeschwindigkeit

Mit Hilfe der Hersteller-Kataloge oder eines Tabellenbuches wird zunächst die optimale Schnittgeschwindigkeit ermittelt.

vc = 180 m/min

Werkstoff des Werkzeugs:	Hartmetall
Werkstoff des Werkstücks:	Automatenstahl

Wert:

Konstante Schnittgeschwindigkeit vc (G96) beim Schruppen, Schlichten und Stechen:

Damit die gewählte Schnittgeschwindigkeit auf jedem Werkstück-Durchmesser gleich ist, wird die jeweilige Drehzahl von der Steuerung mit dem Befehl G96 = Konstante Schnittgeschwindigkeit angepasst. Dieses geschieht mittels Gleichstrom- oder frequenzgeregelten Drehstrommotoren. Bei kleiner werdendem Durchmesser steigt die Drehzahl theoretisch ins Unendliche. Um Gefahren durch zu hohe Fliehkräfte zu vermeiden, muss deshalb eine Drehzahlbegrenzung von z.B. n = 3000 1/min programmiert werden. Im DIN-Format würde der Satz dann folgendermaßen lauten:

G96 S180 LIMS=3000 (von Limes = Grenze).

Konstante Drehzahl n (G97) beim Bohren und Gewindedrehen:

Da beim Bohren mit einer gleichbleibenden Drehzahl gearbeitet wird, muss hier der Befehl G97 = Konstante Drehzahl verwendet werden.

Die Drehzahl ist abhängig von der gewünschten Schnittgeschwindigkeit (gewählt wird hier 120 m/min) und dem Werkzeug-Durchmesser.

Die Eingaben lauten dann G97 S1900.

$$n = \frac{v_{c} \cdot 1000}{d \cdot \pi}$$

d = 20 mm (Werkzeug-Durchmesser)

$$n = \frac{120 \text{mm} \cdot 1000}{20 \text{mm} \cdot \pi \cdot \text{min}}$$
$$n \approx 1900 \frac{1}{\text{min}}$$

4.2 Technologische Grundlagen

4.2.2 Vorschub

Im vorherigen Kapitel haben Sie gelernt, wie man die Schnittgeschwindigkeit ermittelt und die Drehzahl berechnet. Damit das Werkzeug zerspant, muss dieser Schnittgeschwindigkeit bzw. Drehzahl eine Vorschubgeschwindigkeit des Werkzeuges zugeordnet werden.

Bestimmung des Vorschubes

Wie die Schnittgeschwindigkeit wird der Wert für den Vorschub aus dem Tabellenbuch oder den Unterlagen der Werkzeughersteller oder aus dem Erfahrungswissen entnommen.

Schneidstoff des Werkzeugs:	Hartmetall
Werkstoff des Werkstücks:	Automatenstahl
Gefundener Wert (Tabellenbuch):	f = 0,2 - 0,4 mm
Gewählt wird der Mittelwert:	f = 0,3 mm

Zusammenhang zwischen Vorschub und Vorschubgeschwindigkeit:

Mit dem konstanten Vorschub f und der jeweiligen Drehzahl n ergibt sich die Vorschubgeschwindigkeit:

Weil die Drehzahl unterschiedlich ist, ist auch die Vorschubgeschwindigkeit (trotz gleichen Vorschubs) bei den verschiedenen Durchmessern unterschiedlich.

Einfacher Drehen mit ShopTurn Trainingsunterlage, 05/2010, 6FC5095-0AB80-1AP0

Gut gerüstet

In diesem Kapitel erfahren Sie, wie die Werkzeuge für die Beispiele der folgenden Kapitel angelegt werden. Des Weiteren wird hier beispielhaft die Verrechnung der Werkzeuglängen und das Setzen des Werkstück-Nullpunktes erläutert.

5.1 Werkzeugverwaltung

ShopTurn bietet drei Listen zur Werkzeugverwaltung an:

- die Werkzeugliste
- die Werkzeugverschleißliste
- die Magazinliste

5.1.1 Die Werkzeugliste

In ShopTurn stehen zahlreiche Werkzeugtypen zur Verfügung (Favoriten, Fräser, Bohrer, Drehstahl und Sonderwerkzeuge). Je Werkzeugtyp gibt es verschiedene Einbaulagen und geometrische Parameter (z. B. Halterwinkel).

Neues	Werkzeug – Favoriten	
Тур	Bezeichner	Werkzeuglage
500	- Schrupper	
510	- Schlichter	(7 5 2 7)
520	- Einstecher	(1 1 1 1 1
540	- Gewindestahl	< 🔁 🗹 🔁 📢
550	– Pilz	$\odot \odot \odot \odot$
560	- Drehbohrer	
580	 3D-Meßtaster Drehen 	🕶 🌡 🛶 📍
730	- Anschlag	
120	 Schaftfräser 	
140	 Planfräser 	Ĵ⋿ — H ⊐€ 📍
150	 Scheibenfräser 	╞╴╢╡╢
200	- Spiralbohrer	<u>a</u> () zo ()
240	- Gewindebohrer	

Bild 5-1 Beispiel für die Liste der Favoriten

5.1 Werkzeugverwaltung

In der Werkzeugliste werden alle Parameter und Funktionen angezeigt, die zum Anlegen und Einrichten der Werkzeuge nötig sind.

Jerkz	euglis	ste								M	agazin	2	
Platz	Тур	Werkzeugname	ST	D	Länge X	Länge Z	Radius					1	
1/1		ROUGHING_T88 A	1	1	55.848	39.124	0.800	+	95.0	80	12.0		Neues
1/2	55	DRILL_32	2	1	8.000	185.124	32.000		180.0				Werkzeug
1/3	ø	FINISHING_T35 A	1	1	123.976	57.378	8.488	+	93.0	35	12.8		, , , , , , , , , , , , , , , , , , ,
1/4		ROUGHING_T80 I	1	1	-8.950	122.457	0.800	+	95.8	80	10.0		
1/5	Π	PLUNGE_CUTTER_3 A	1	1	85.124	44.124	0.200	1000	3.000		8.0		
1/6	1	PLUNGE_CUTTER_31	1	1	-11.736	135.124	0.100		3.000		4.0		
1/7	0	FINISHING_T351	1	1	-12.658	121.807	0.400	+	95.0	35	8.0		
1/8		THREAD_1.5	1	1	66.326	33.333	0.050						
1/9	-	CUTTER_8	1	1	87.833	74.621	8.000	3					
1/18	-	DRILL_5	1	1	8.000	185.124	5.000		118.0			ſ	
1/11	\odot	BUTTON_TOOL_8	1	1	88.112	38.123	2.000						
1/12		THREADCUTTER_M6	1	1	8.888	145.132	6.000		1.000				
1/13													
1/14													
1/15													
1/16													Manazin-
2/1													anuahl
2/2													
2/3												v	
	_				<		1		_		3		
								0				-	

Bild 5-2 Beispiel für die Werkzeugliste

Bedeutung der wichtigsten Parameter:

Platz	Platznummer
Тур	Werkzeugtyp
Werkzeugname	Die Identifikation des Werkzeugs erfolgt über den Namen und Schwesterwerkzeugnummer. Den Namen können Sie als Text bzw. Nummer eingeben.
ST	Schwesterwerkzeugnummer (für Ersatzwerkzeugstrategie)
D	Schneidennummer
Länge X	Geometriedaten Länge X
Länge Z	Geometriedaten Länge Z
Durchmesser	Werkzeugdurchmesser
Halterwinkel, Spitzenwinkel, Plattenbreite	Halterwinkel (Schrupper und Schlichter), Spitzenwinkel (Bohrer) und Plattenbreite (Stecher)
#	Spindeldrehrichtung
5	Kühlmittel 1 und 2 (z. B. Innen- und Außenkühlung)

5.1.2 Die Werkzeugverschleißliste

Hier werden die Verschleißdaten für die jeweiligen Werkzeuge festgelegt.

Jerkz	eugv	erschleiß							Magazin 2	Sortieren
Platz	Тур	Werkzeugname	ST	D	ΔLängeX	∆LängeZ	ΔRadius	T C	^	
1/1		ROUGHING_T80 A	1	1	0.000	0.000	0.000		1 2	Filtern
1/2	22	DRILL_32	2	1	0.000	0.000	0.000			
1/3	0	FINISHING_T35 A	1	1	0.000	0.000	0.000			
1/4		ROUGHING_T80 I	1	1	0.000	0.000	0.000			
1/5	Π	PLUNGE_CUTTER_3 A	1	1	8.888	0.000	0.000			
1/6	1	PLUNGE_CUTTER_31	1	1	8.889	0.000	0.000			
1/7	0	FINISHING_T351	1	1	0.000	0.000	0.000			
1/8		THREAD_1.5	1	1	8.888	0.000	0.000			
1/9	-	CUTTER_8	1	1	0.000	0.000	0.000			
1/18	32	DRILL_5	1	1	0.000	8.888	0.000			
/11	\odot	BUTTON_TOOL_8	1	1	0.000	0.000	0.000			
/12		THREADCUTTER_M6	1	1	8.889	0.000	0.000			
1/13										
1/14										
1/15										
1/16										
2/1										
2/2										
2/3									G	_
-					C		1			
									1	_

Bild 5-3 Werkzeugverschleißliste

Die wichtigsten Werkzeugverschleißparameter:

Δ Länge X	Verschleiß zur Länge X
Δ Länge Z	Verschleiß zur Länge Z
Δ Radius	Verschleiß des Radius
TC	Anwahl der Werkzeugüberwachung
	• durch Standzeit (T)
	durch Stückzahl (C)
	durch Verschleiß (W)
Standzeit bzw.	Standzeit des Werkzeugs
Stückzahl bzw.	Stückzahl der Werkstücke
Verschleiß *	Verschleiß des Werkzeugs
*Parameter abhängig von der Anwahl in TC	
Sollwert	Sollwert für Standzeit, Stückzahl bzw. Verschleiß
Vorwarngrenze	Angabe der Standzeit, der Stückzahl bzw. des Verschleißes, bei der eine Warnung ausgegeben wird.
G	Das Werkzeug ist gesperrt, wenn das Kontrollkästchen aktiviert ist.

5.1 Werkzeugverwaltung

5.1.3 Magazinliste

In der Magazinliste sind alle Werkzeuge enthalten, die einem bzw. mehreren Werkzeugmagazin(en) zugeordnet sind. Über diese Liste wird der Zustand eines jeden Werkzeuges angezeigt. Zudem können einzelne Magazinplätze für vorgesehene Werkzeuge reserviert bzw. gesperrt werden.

18.05.1	1
_	^
	5
	1
	1
	ſ
nsetzen	
	1
1agazin	1
itioniere	
ACCA DUDGE	
	1
-	
8.6	
	4

Bild 5-4 Magazinliste

Bedeutung der wichtigsten Parameter:

G	Sperren des Magazinplatzes
Ü	Kennzeichnung eines Werkzeugs als übergroß. Das Werkzeug nimmt die Größe von zwei Halbplätzen links, zwei Halbplätzen rechts, einem Halbplatz oben und einem Halbplatz unten in einem Magazin ein.
Ρ	Festplatzcodierung
	Das Werkzeug ist diesem Magazinplatz fest zugeordnet.

5.2 Verwendete Werkzeuge

In diesem Kapitel werden die Werkzeuge, die für die spätere Bearbeitung der Beispiele notwendig sind, in die Werkzeugliste eingetragen.

Wählen Sie im Grundmenü den Bereich "Parameter" an.

Drücken Sie den Softkey "Werkzeugliste".

Um ein neues Werkzeug zu erstellen, gehen Sie in die Werkzeugliste und suchen Sie einen freien Platz.

			_	_				-	_			
latz 1	Typ	Werkzeugname	ST	D	Länge X	Länge Z	Radius					
1/1		ROUGHING_T88 A	1	1	55.840	39.124	0.800	+	95.0	88	12.0	Neues
1/2	22	DRILL_32	2	1	0.000	185.124	32.000		180.0			Werkzeug
1/3	ø	FINISHING_T35 A	1	1	123.976	57.378	0.400	+	93.0	35	12.0	
1/4	•	ROUGHING_T80 I	1	1	-8.950	122.457	0.800	+	95.0	80	10.0	
1/5	Π	PLUNGE_CUTTER_3 A	1	1	85.124	44.124	0.200	1000	3.000		8.0	
1/6	1	PLUNGE_CUTTER_31	1	1	-11.736	135.124	0.100	Sent	3.000		4.0	
1/7	9	FINISHING_T351	1	1	-12.658	121.807	0.400	+	95.0	35	8.0	
1/8	►	THREAD_1.5	1	1	66.326	33.333	0.050					
1/9	5	CUTTER_8	1	1	87.833	74.621	8.000	3				
/18	22	DRILL 5	1	1	8.888	185.124	5.000		118.0			
/11	0	BUTTON_TOOL_8	1	1	88.112	38.123	2.000					
/12		THREADCUTTER_M6	1	1	8.888	145.132	6.000		1.000			
/13												-
/14												
/15												
/16												Magazin
2/1												anuahl
2/2												anwan
2/3											4	2016
					<		1				0	

Bild 5-5 Werkzeugliste - freier Platz

Neues Werkzeug

Drücken Sie den Softkey "Neues Werkzeug".

Wählen Sie den gewünschten Werkzeugtyp und geben Sie die Daten ein.

Hinweis

Der Fräser mit dem Durchmesser 8 (CUTTER_8) muss eintauchen können, da dieser für das Fräsen einer Tasche verwendet wird.

5.3 Werkzeuge im Magazin

Im Folgenden lernen Sie, wie die Werkzeuge in das Magazin eingesetzt werden. Wählen Sie in der Werkzeugliste ein Werkzeug ohne Platznummer aus.

erkz	euglis	ste						N	C-S	peicher	Werkzeug
latz	Тур	Werkzeugname	ST	D	Länge X	Länge Z	ø	Spitz winkel	1.1202	^	messen
	52	DRILL 5 FR	1	1	8.888	100.000	5.000	118.0			Neues
	22	DRILL 5 FA	2	1	8.888	100.000	5.000	118.0			Uerkzeug
	22	DBILL 6	1	1	188,999	89,888	6.000	118.9			
	22	CENTER FA	1	1	8.888	100.000	16.000	90.0			Schneide
	55	CENTER FA	2	1	8.888	109.000	16.000	90.0			Jennerae
	20	DRILL 10	1	1	8.999	128.388	28.888	118.0			
	-	CENTER	1	1	69.999	87.000	10.000	90.0			
		ROUGHING	1	1	100.000	85.000	8.888 +	- 95.0	55	11.0	
	0	ROUGHING_35	1	1	100.000	28.888	8.898 +	- 93.0	55	11.0	
		ROUGHING 55	1	1	100.000	20.000	8.888 +	- 93.0	55	11.0	Deleden
	0	ROUGHING_55	2	1	18.000	28.888	8.888 +	- 93.0	55	11.0	beladen
		ROUGHING 80	1	1	100.000	20.000	1.200 +	- 93.0	88	11.0	
	0	ROUGHING_88	2	1	188.888	28.000	1.208 +	- 93.0	88	11.0	Uerkzeu
		ROUGHING 80 IN	1	1	100.000	20.000	1.288 +	- 93.0	88	11.0	löschen
		ROUGHING_80_IN	2	1	100.000	20.000	1.208 +	- 93.0	88	11.0	CONSTRAINTS.
	ø	FINISHING	1	1	188.888	56.000	8.288 +	- 93.8	35	11.0	Magazin
	0	FINISHING_35	1	1	100.000	20.000	8.488 +	- 93.0	35	11.0	anwahl
	0	FINISHING_35	2	1	100.000	28.888	8.498 +	- 93.0	35	11.0	
	0	FINISHING_35_IN	1	1	100.000	20.000	8.808 +	- 93.0	35	11.0 🤟	
-			-		٤			1.1.		3	

Bild 5-6

Beladen

Werkzeug im Magazin auswählen

Drücken Sie die Taste "Beladen". Der folgende Dialog bietet Ihnen den ersten freien Magazinplatz an, den Sie ändern oder direkt übernehmen können.

	her	peich	C-S	N							ite	euglis	Jerkz
	^			Spitz winkel		ø	Länge Z	Länge X	D	ST	Werkzeugname	Тур	Platz
				118.0		5.000	100.000	8.000	1	2	DRILL_5_FA	52	
				118.0		6.000	89.000	100.000	1	1	DRILL_6	20	
				90.0		16.000	100.000	8.888	1	1	CENTER_FA	22	
			1	00.0		16 000	100.000	0 000	4	2	CENTED CO	57	
							10: 10:	aden auf .	Be			2	
		11.0 11.0 11.0 11.0	55 55 55			13	Platz	1			Magazin		
		11.8	88	93.0	+	1.200	20.000	188.888	1	1	ROUGHING 80	ă.	
		11.0	88	93.8	+	1,200	28,888	100.000	1	2	ROUGHING 80		
		11.0	88	93.0	+	1.200	28.888	188,888	1	1	ROUGHING 80 IN		
		11.0	88	93.0	+	1,200	28.888	100.000	1	2	ROUGHING 80 IN	•	
	6 F	11.0	35	93.0	+	8.288	56.000	100.000	1	1	FINISHING		
~		11.0	35	93.8	+	8,488	28.888	100.000	1	1	FINISHING 35	1	
Obbau		11.0	35	93.0	+	0.400	28.888	188.888	1	2	FINISHING 35	0	
HUDruc		11.0	35	93.0	+	0.800	28.888	100.000	1	1	FINISHING 35 IN	0	
-	4	11.0	35	93.0	+	0.800	28.888	188.000	1	2	FINISHING 35 IN	0	
~		3				1		1				-	
UK		1000						1.e					

Bild 5-7

Magazinplatz eingeben und/oder übernehmen

Uerkzeugliste Magazin 1												Uerkzeug
latz	Тур	Werkzeugname	ST	D	Länge X	Länge Z	ø		Spitz winkel		< .	messen
1/1		ROUGHING_T88 A	1	1	55.840	39.124	0.899	+	95.0	88	12.0	
1/2	52	DRILL_32	2	1	8.000	185.124	32.000		180.0			
1/3	ø	FINISHING_T35 A	1	1	123.976	57.378	8.488	+	93.0	35	12.8	
1/4		ROUGHING_T80 I	1	1	-8.950	122.457	0.800	+	95.0	80	18.8	Schneiden
1/5	Π	PLUNGE_CUTTER_3 A	1	1	85.124	44.124	0.200		3.000		8.0	Sciniciden
1/6	1	PLUNGE_CUTTER_31	1	1	-11.736	135.124	0.100		3.000		4.0	
1/7	0	FINISHING_T351	1	1	-12.658	121.807	0.400	+	95.0	35	8.0	
1/8		THREAD_1.5	1	1	66.326	33.333	0.050					
1/9	-	CUTTER_8	1	1	87.833	74.621	8.000	3				
/18	22	DRILL_5	1	1	8.999	185.124	5.000		118.0		1	
/11	0	BUTTON_TOOL_8	1	1	88.112	38.123	2.000					Entladen
/12		THREADCUTTER M6	1	1	8.889	145.132	6.000		1.000		1	
/13	55	DRILL 10	1	1	8.808	120.300	20.000		118.0			Llerkzeug
/14												löschen
/15												Toucher
/16												Magazin
2/1												anuabl
2/2												anwan
2/3											4	0.0
- Carlos I					<		1				3	
-					rinte				-	-40	-	

Nach der Übernahme kann die Werkzeugliste wie folgt aussehen.

Bild 5-8 Werkzeugliste nach Übernahme

5.4 Werkzeuge vermessen

Im Folgenden lernen Sie, wie die Werkzeuge verrechnet werden.

Vorgehensweise

Setzen Sie über den Softkey "T,S,M" ein Werkzeug in die Spindel ein.

M. 300			25.05.10 13:03
hc/uks/exan	1Ple3/guide_shaft	SIEMENS M	lanuell
// RESET			
MKS	Position [mm]	T,F,S	
X1	79.962	T FINISHING_T35 A D1	
21	00.711	F 0.000 0.000 mm/U 85%	
Htt:654			
		>	« urück
T,S,M	NPV Po Hullp.	Jerkz. // Posi- nessen // tion // Spanen	

Gut gerüstet

5.4 Werkzeuge vermessen

Wechseln Sie dann in das Menü "Werkzeug messen".

Manuell

Geben Sie den angetasteten oder angedrehten Durchmesser ein.

M	X og					25.05.10 13:00
NC/UKS/EX	ample3/guide_shaft	1		SIEME	NS	Uerkzeug auswählen
MKS	Position (mm)		T,F,S		-	0
X1	79.962		T FIN	ISHING_T35 A	D1	
21	60.711		F	0.888 8.888 mm/U	85%	x
			S1 -	8	108%	Z
⊞G54			a		100	_
Länge Manu	nell	Uerkzeupdaten X 39.962 2 57.378 9 9 499	T ST	FINISHING_T35 A	D 1	
		n 0.109	76	08.	000	Länge setzen
	0.000		_		>	K Zurück
T,S,M	Pro setzen	Hullp. Uerkz. Verkst	Posi- tion		Ab- spanen	

Bild 5-9 Werkzeug messen - Eingabe des X-Wertes

Das Werkzeug wird unter Berücksichtigung des Werkstück-Durchmessers verrechnet.

Bild 5-10 Werkzeug messen - Setzen Länge X

J00		CIELIENC	14.4
HC/UKS/EXA	MPLE3/GUIDE_SHAFT	SIEMENS	uerkzeug auswählen
RESET			- Construction
MKS	Position [mm]	T,F,S	
X1	80.005	T FINISHING_T35 A D1 R 8.400	
21	00.711	F 0.000 0.000 mm/U 1.0%	х
		S1 🖉 🕺	Z
⊞G54		0 . 50 . 100	
Länge Manue			
11 I	Uerkzeug	daten T FINISHING_T35 A D 1	
-	20 X	48.885 ST 1 57.378 Bezugspunkt Verkstückkante 8.488 28 8.808	
			Länge setzen
_	_		((Zurück
🛤 T,S,M	HPU Po Hullp.	Uerkz. V Posi- messen V tion Posi-	

Diesen Vorgang müssen Sie nun für Z wiederholen.

Bild 5-11 Werkzeug messen - Setzen Länge Z

5.5 Setzen des Werkstück-Nullpunktes

Im Folgenden lernen Sie, wie Sie den Werkstück Nullpunkt setzen.

Vorgehensweise

Um den Werkstück-Nullpunkt zu setzen, muss im Grundmenü auf die Bedienart **Maschine Manuell** umgeschaltet werden.

Verschieben Sie den Werkstück-Nullpunkt, falls dieser nicht auf der Planfläche des Werkstückes liegt.

M	\$\$G							25.05.10
HC/UKS	/EXAMPL	E3/GUIDE_SHAF	r .		S	IEME	VS	NPV
// RESE	T						_	auswanich
MKS	_	Position [mm]		1	,F,S			
X1		80.005		1	FINISHING R 0.400	_T35 A	D1	
21 60.711		F	F 8.888 8.888 mm/U 1.8%					
				9	S1 <u>•</u> e		×	
COP 4					0		188%	
LEEG54	tzen							
			Uerte NPV		Nullpunk	tversch.	G54	
-		20	2	57.378	20	8	.000	
-	_							-
		_	Messuerte 28					NPV setzen
	22	-						((Zurück
1 ,9	s,m 🌗	NPU 16	Hullp. Uerkst	lerkz. essen 💔	Posi- tion		Ab- spanen	

Bild 5-12 Nullpunktverschiebung eingeben

Gut gerüstet

5.5 Setzen des Werkstück-Nullpunktes

Übernehmen Sie die Eingabe.

M			25.05.1 13:2
NC/UKS/EXAM	1PLE3/GUIDE_SHAFT	SIEMENS	NPV
// RESET			auswanien
MKS	Position [mm]	T,F,S	
X1	80.005	T FINISHING_T35 A D1 R 0.400	
21	00.711	F 8.888 8.888 mm/U 1.8%	
		S1 🖉 8 🔯 198%	
⊡€G54		a	
Kante setzen	1		
	28	Uerte NPV Nullpunktversch. 654 2 3.341 20 0.000	
		Messuerte 28 8.000	NPV setzen
_	9		<br Zurück
T,S,M	NPU Lo	ulip. Uerkz. Posi- erkst Uerkz.	

Bild 5-13 Nullpunktverschiebung gesetzt

Beispiel 1: Stufenwelle

6.1 Überblick

Lernziele

In diesem Kapitel werden Ihnen die ersten Schritte zur Erstellung eines Werkstückes ausführlich erläutert. Sie lernen wie Sie ...

- Programme verwalten und anlegen können,
- Werkzeuge aufrufen,
- Verfahrwege eingeben,
- beliebige Konturen mit dem Konturrechner erstellen,
- Konturen schruppen und schlichten,
- Gewindefreistich,
- Gewinde und
- Einstiche erstellen.

Aufgabenstellung

Bild 6-1 Werkstattzeichnung - Beispiel 1

Einfacher Drehen mit ShopTurn Trainingsunterlage, 05/2010, 6FC5095-0AB80-1AP0

Bild 6-2 Werkstück - Beispiel 1

Hinweis

ShopTurn speichert immer die letzte Einstellung, die Sie über die Toggle-Taste gewählt haben. Sie müssen deshalb sowohl bei einigen Eingabefeldern als auch bei allen Umschaltfeldern darauf achten, dass alle Einheiten, Texte und Symbole wie in den abgebildeten Dialog-Fenstern der Beispiele gesetzt sind.

Die Umschaltmöglichkeit wird immer im Hilfetext angezeigt (siehe folgende Abbildung).

Bild 6-3 Beispiel für Toggle-Feld

6.2 Programmverwaltung und Programm anlegen

Bedienfolgen

Nach dem Hochfahren der Steuerung befinden Sie sich im Grundbild.

M			27.05.1 13:3
NC/UKS/EXAMP	PLE1/TAPER_SHAFT	SIEMENS	G- Funktionen
MKS	Position [mm]	T,F,S	Hilfs-
X1	0.000	Т	funktionen
21	0.000	F 0.000 0.000 mm/min 1.0%	
		S1 0 Master 0 100%	
			lstwerte MKS
_		>	•
▶ 1,5, M	HPV Mullp. 20 setzen	Werkz. // Posi- messen tion 🛃 spanen	
Bild 6-4	Grundbild		

Öffnen Sie über **MENU SELECT** das Grundmenü. Im Grundmenü können Sie die verschiedenen Bereiche von ShopTurn aufrufen.

M	×200							27.0	5.10 3:39
NC/UKS/EXP	MPLE1/TAPER	_shaft			SIEN	/IEN	S		
// RESET	Position	fmml		TES				HOTO	
X1	0.0	000		T				MDA	-
21	0.0	000		F 8.888 mm/min 1.8					
				S1 ~ Master	0	,	X 100%	REPOS	
					. au		100		
Maschine	↓ Parameter) Programm	Programm- Manager	Diagnose	Inbetrieb-			>	
Bild 6-5	5 (Grundm	enü						

Drücken Sie den Softkey **Programm-Manager**. Der Programm-Manager wird angezeigt.

Im Programm-Manager können Sie Arbeitspläne und Konturen verwalten (z. B. Neu, Öffnen, Kopieren ...).

Im Programm-Manager wird eine Liste der vorhandenen Verzeichnisse angezeigt. Wählen Sie mittels der Cursor-Taste das Verzeichnis 'Werkstücke' an.

Neu

Öffnen Sie das Verzeichnis Werkstücke.

Geben Sie den Namen 'EXAMPLE1' für das Werkstück ein.

	Neues Werkstück	
Тур	Werkstück UPD	~
Name EXAMP	'LE1	
Bild 6-7	Werkstück anleg	en

Bestätigen Sie die Eingabe. Anschließend öffnet sich folgender Dialog.

	Neues Schrittkettenprogramm	
Тур	ShopTurn 🗸	
Name TAPEF	_Shaft	
Bild 6-8	Schrittkettenprogramm	anlege

ShopTurn

Mit den Softkeys **ShopTurn** und **programGUIDE G-Code** können Sie das Eingabeformat wählen.

Über den Softkey ShopTurn legen Sie den Programmtyp fest.

Geben Sie den Name des Arbeitsplans ein, in diesem Fall 'TAPER_SHAFT'.

Übernehmen Sie die Eingabe.

Nach der Übernahme wird folgende Eingabemaske zur Erfassung der Werkstückdaten geöffnet.

Bild 6-9 Programmkopf - Hilfebild

Im Programmkopf werden die Werkstückdaten sowie allgemeine Angaben zum Programm eingegeben.

Geben Sie folgende Werte ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Maßeinheit	mm	Х	
Nullpunktverschiebung		Х	
Rohteil	Zylinder X		Über die Toggle-Taste wählen Sie die Rohteilform aus, hier Zylinder.
ХА	80		
ZA	1		
ZI	-100 abs	Х	
ZB	-92 abs	X	Mit dem Wert ZB wird der Abstand zum Futter eingegeben.
Rückzug	einfach	Х	Siehe unten Rückzug
XRA	5 ink	Х	Hier werden die Maße der
ZRA	5 ink	Х	Rückzugsebenen (absolut
Wkzwechselpunkt	WKS	Х	Werkzeugwechselpunkt
ХТ	120		eingegeben.
ZT	200		
Sicherheitsabstand SC	1		
Drehzahlgrenzen S1	3500		
Bearbeitungsdrehsinn	Gleichlauf	Х	

Übernehmen

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme wird der Programmkopf angezeigt.

Bild 6-10 Programmkopf Beispiel 1 - Arbeitsschritteditor

Das Programm wurde nun als Basis für weitere Bearbeitungsschritte angelegt. Es hat einen Namen (im blauen Balken), einen Programmkopf (Piktogramm "P") und ein Programmende (Piktogramm "END"). Im Programm werden die einzelnen Bearbeitungsschritte und Konturen untereinander abgelegt. Die spätere Abarbeitung erfolgt dabei von oben nach unten.

Für Änderungen oder zur Überprüfung der Werte können Sie den Programmkopf wieder aufrufen.

Rückzug

Die Rückzugsebene kann zwischen einfach, erweitert und alle umgeschaltet werden. Je nach Einstellung des Rückzugs werden die zugehörigen Felder zur Eingabe der Abstände freigeschaltet.

einfach

(für einfache Zylinder)

Rückzug		einfach		
XRA	5.000	ink		
ZRA	5.000	ink		

erweitert

(für komplexe Werkstücke mit Innenbearbeitung

Rückzug	e	erweitert			
XRA	5.000	ink			
XRI	5.000	ink			
ZRA	5.000	ink			

alle

(für komplexe Werkstücke mit Innenbearbeitung und/oder Hinterschnitten)

Rückzug		alle
XRA	5.000 i	ink
XRI	5.000	ink
ZRA	5.000 i	ink
ZBI	0.000	

Softkeys

Grafische Ansicht

Mit diesem Softkey wechseln Sie zur Online-Grafik des Werkstücks (siehe folgende Abbildung).

X ⁶ Maßeinheit Nullpunkt, Rohteil mm Uers 100 -0.000 -0.000 Grafis Ansie 100 -10.000 -0.000 Ansie -100 -2RA 5.000 ink -100 -58 0 -2	JKS/EXAMPLE1/TAPER_SHAFT	Programmk	copf	Nullpun
Mulipunku Zylinder Graffis 180 2A 1.800 Snice 2A 1.800 abs ZI -190.000 abs 2B -92.000 abs Rickzug einfach XR 5.000 ink VKS XT 0 ZRA 5.000 ink VKS -100 ZRA 5.000 ink VKS ZT 200.000 Sicherheitsabstand SC 1.000 Sticherheitsabstand SC 1.000 X Abbru -200 -100 -58 0 -2 Vmin Barbeitungsdreisnin Win	Xø	Maßeinheit	mm	verscr
Nome Description 100 ZA 1.000 ZA 1.000 21 ZB -92.000 abs RickZug einfach XRA RickZug einfach XRA ZRA 5.000 ink Ukzwechselpunkt UKS XT 120.000 ZRA 5.000 Sicherheitsabstand Sicherheitsabstand S1 3500.000 S1 3500.000 Winn Bearbeitungsdreistim Gegenlauf Ubernet		Nullpunktu Robtoil	Zulinder	Grofing
100 2A 1.000 21 -100.000 abs 28 22 -92.000 abs 8 Rickzug einfach XRA State 5.000 ink Ukzuechselpunkt UKS VRA 5.000 ink Ukzuechselpunkt UKS -100 Sicherheitsabstand Sicherheitsabstand Sicherheitsabstand -100 Drehzahlgrenzen Si 3500.000 U/min Bearbeitungsdrehsinn Gegenlauf Ukbernet		XA	80.000	Ansich
100 21 -100.000 abs 28 -92.000 abs Rickzug einfach XRA 5.000 ink Ukzwechselpunkt UKS XT 120.000 ZT 200.000 ZT 200.000 ZT 200.000 Drehzahlgrenzen Si 1 3500.000 U/min Bearbeitungsdrehsinn Gegenlauf Ukzwechselpunkt UKS C 1.000 Drehzahlgrenzen Si 28 -100 C 1.000 C 1		70	1 000	
21 →100.000 aus 28 →92.009 abs Rickzug einfach XRA 5.000 ink 2RA 5.000 ink Ukzwechselpunkt UKS XT 120.000 2T 200.000 Sicherheitsabstand Sicherheitsabstand SC 1.000 Drehzahlgrenzen Si S1 3500.000 Gegenlauf Winn Gegenlauf Winn	100	2H 71	1.000	
Bickzug einfach Rickzug einfach XRR 5.000 ink ZRA 5.000 ink Ukzwechselpunkt UKS T 200.000 Sicherheitsabstand Sicherheitsabstand Sconstructure Sicherheitsabstand Stabeleren Sicherheitsabstand Sicherheitsabstand Sconstructure		21 78	-92.000 abs	
0 ZRA 5.000 ink. 0 ZRA 5.000 ink. -100 ZRA 5.000 ink. -100 Sicherheitsabstand UKX wechselpunkt UKS -100 Sicherheitsabstand Sicherheitsabstand Sicherheitsabstand -100 Sicherheitsabstand Sicherheitsabstand Sicherheitsabstand -200 -100 -50 0 Z		Bückzun	einfach	
€		XRA	5.000 ink	
-100 Ukzwechselpunkt UKS XT 128.000 ZT 200.000 Sicherheitsabstand Sc 1.000 Drehzahlgrenzen S1 3500.000 U/min Bearbeitungsdrehsinn Gegenlauf Übernet	8	ZRA	5.000 ink	1
-100 XT 120.000 ZT 200.000 Sicherheitsabstand SC 1.000 Drehzahlgrenzen S1 3500.000 U/min Bearbeitungsdrehsinn Gegenlauf		Likzwechse	lnunkt UKS	
-100 ZT 200.000 Sicherheitsabstand SC 1.000 Drehzahlgrenzen S1 3500.000 U/min Bearbeitungsdrehsinn Gegenlauf Ubernet		XT	120.000	
-100 Sicherheitsabstand SC 1.000 Drehzahigrenzen S1 3500.000 U/min Bearbeitungsdrehsinn Gegenlauf Übernet		ZT	200.000	
-200 -100 -50 0 -2 Ubernet	-100	Sicherheits	abstand	
-200 -100 -50 0 ↓ Z Drehzahlgrenzen Bearbeitungsdrehsinn Gegenlauf	1000	SC	1.000	
-200 -100 -50 0 →2 Ubernet		Drehzahlgre	enzen	×
-200 -100 -50 0 -2 Bearbeitungsdrehsinn Gegenlauf		S1 :	3500.000 U/min	Abbru
-280 -100 -50 0 -2 Gegenlaur		Bearbeitung	gsdrehsinn	
Überneh	-200 -100 -50 0	7	geniaut	. V
		(Dec.uh		> Überneh

Bild 6-11 Programmkopf - Grafische Ansicht

Mit diesem Softkey wechseln Sie zurück zum Hilfebild.

6.3 Werkzeug aufrufen

Bedienfolgen

Über die folgenden Schritte rufen Sie das benötigte Werkzeug auf: Mit dieser Taste erweitern Sie das horizontale Softkey-Menü.

Wählen Sie den Softkey Gerade Kreis an.

Werkzeug

Wählen Sie den Softkey Werkzeug an.

6.3 Werkzeug aufrufen

Werkzeug auswählen

igliste im							_					
iun		1 C C							Μ	agaziı	1 1	In
71	Werkzeugname	ST	D	Länge X	Länge Z	Radius				Pl läng		Progr
T R	DUGHING_T80 A	1	1	55.840	39.124	0.800	+	95.0	80	12.0	-	
SS DI	RILL_32	2	1	0.000	185.124	16.000		180.0				
🧊 Fl	NISHING_T35 A	1	1	127.476	57.370	0.400	←	93.0	35	12.0		
🕘 R	DUGHING_T80 I	1	1	-8.950	122.457	0.800	←	95.0	80	10.0		Schne
🗾 Pl	_UNGE_CUTTER_3 A	1	1	85.124	44.124	0.200		3.000		8.0		Jenne
🎴 Fl	NISHING_T35 I	1	1	-12.658	121.807	0.400	←	95.0	35	8.0		
🔰 Tł	IREADING_T1.5	1	1	66.326	33.333	0.050						
El	JTTER_8	1	1	87.833	74.621	4.000	3					
📙 Pl	_UNGE_CUTTER_3 I	1	1	-11.736	135.124	0.100		3.000		4.0		
SS DI	RILL_5	1	1	0.000	185.124	2.500		118.0				F. H.
🕑 Bl	JTTON_TOOL_8	1	1	88.112	38.123	2.000						Entia
**** Tł	IREADCUTTER_M6	1	1	0.000	145.132	3.000		1.000				
												Werk
												lösc
												Maga
												anw
											~	
_				<		I				>		
	IN CONTRACTOR OF	DRUL_32 PINISHING_T35 A PINISHING_T35 A ROUGHING_T881 PLUNGE_CUTTER_3 A FINISHING_T35 I THREADING_T.15 CUTTER_8 PLUNGE_CUTTER_31 S DRUL_5 DRUL_5 DRUL_5 THREADCUTTER_M6	DRUL_32 2 2 PINISHING_T35 A 1 POUSHING_T36 1 PLUNGE_CUTTER_3 A 1 FINISHING_T35 1 THREADING_T.15 1 CUTTER_8 1 PLUNGE_CUTTER_31 1 DRUL_5 1 1 DRULTS_1 1 DR	DRIL_32 1 DRIL_32 2 INUSHING_T35 1 INUSHING_T35 1 ROUGHING_T80 1 PLUNGE_CUTTER_3 1 INUSHING_T35 1 INUSHING_T35 1 INUSHING_T35 1 INUSHING_T35 1 INUSHING_T35 1 INUSE 1 INUSE_CUTTER_8 1 INUSE_CUTTER_3 1 INUSE_CUTTER_3 1 INUSE_CUTTER_3 1 INUSE 1	DRIL_32 2 1 6.000 PINISHING_T35 1 1 127.476 ROUGHING_T80 1 1 -8.956 PLUNGE_CUTTER_3 1 1 85.124 FINISHING_T35 1 1 -12.658 PLUNGE_CUTTER_3 1 1 66.326 CUTTER_8 1 1 87.833 PLUNGE_CUTTER_31 1 -11.766 DRUL_5 1 1 88.112 THREADNING_T.15 1 8.000 BUTTON_TOOL_8 1 1 8.000	DRIL 32 1 0.000 105.124 PINISHING_T35 A 1 1 127.476 57.370 PINISHING_T35 A 1 1 127.476 57.370 ROUGHING_T81 1 1 85.124 44.124 PINISHING_T35 I 1 1 125.581 121.497 THREADING_T15 1 1 65.226 33.333 CUTTER_8 1 1 87.833 74.621 PLUNGE_CUTTER_31 1 1 135.124 DRUL_5 1 1 88.122 33.3124 PLUNGE_CUTTER_31 1 1 135.124 PUNGE_TSS 1 1 88.112 38.123 DRUL_5 1 1 8.000 145.132 THREADCUTTER_M6 1 8.000 145.132	DRIL 32 1 0.33/10 33.12 6.38/12 PINISHING_T35 A 1 1 127.476 57.370 0.490 PINISHING_T35 A 1 1 127.476 57.370 0.490 PINISHING_T35 A 1 1 1.4550 122.457 6.890 PLUNGE_CUTTER_3 A 1 1 85.124 44.124 0.200 FINISHING_T35 I 1 1 12.656 121.807 0.490 THREADING_T15 I 1 1 12.652 133.33 0.859 CUTTER_8 1 1 87.833 74.621 4.800 PLUNGE_CUTTER_3 I 1 1 1.736 135.124 4.800 PUNGE_CUTTER_3 I 1 1 1.800 185.124 2.500 BUTTON_TOOL_8 1 1 8.8123 2.900 THREADAUTTER_M6 1 8.000 145.132 3.800	DRIL 32 1 33.990 155.12 0.000 PINISHING_T35 1 1 127.476 57.370 8.400 + PINISHING_T35 1 1 127.476 57.370 8.400 + PINISHING_T35 1 1 1.850 122.477 57.370 8.400 + PLUNGE_CUTTER_3 1 1 8.520 122.477 8.700 + 4.4124 6.200 FINISHING_T35 1 1 -12.558 121.807 8.400 + THREADING_T1.5 1 1 66.226 33.333 9.856 + 1000 + 12.807 8.400 + 1000 + 12.400 + 1000 105.124 4.000 35.124 0.100 + 12.500 1000 + 12.500 1000 + 12.500 1000 + 12.400 + 12.600 + 12.600 + 12.400 + 12.500 + 12.600<	DRIL 32 1 0.304 0.8124 0.004 0.00	DRIL_32 1 0.303 0 0.12 0.000 (16.12) PINISHING_T35 A 1 1 1.27.476 57.370 0.400 ← 93.8 35 PINISHING_T35 A 1 1 1.27.476 57.370 0.400 ← 93.8 35 ROUGHING_T08 I 1 1 -0.595 122.457 0.800 ← 95.8 08 PLUNGE_CUTTER_3 A 1 1 -0.556 122.457 0.800 ← 95.8 08 PLUNGE_CUTTER_3 A 1 1 -0.556 122.457 0.800 ← 95.8 08 PLUNGE_CUTTER_3 A 1 1 -1.756 12.1007 0.400 ← 95.8 05 CUTTER_8 1 1 -0.556 12.1007 0.400 ← 95.8 05 CUTTER_8 1 1 0.7833 74.621 4.000 3 PLUNGE_CUTTER_3 I 1 -11.736 135.124 0.100 3.000 DRIL_5 1 1 0.000 185.124 2.500 118.8 DRUTON_TOOL_8 1 1 0.800 145.132 3.000 1.000 THREADAUTTER_16 1 0.000 145.132 3.000 1.000	Image: State Sta	DRIL_32 2 1 0.000 105.14 16.000 105.12 0.000 105.12 0.000 105.12 105.00 12.0 PINISHING_T35 A 1 1 127.476 57.370 0.400 93.0 35.12 0.50.00 123.07 PINISHING_T35 A 1 1 1.27.476 57.370 0.400 93.0 35.12 0.55.0 102.457 ROUGHING_T801 1 1 9.550 122.457 6.890 ← 95.0 80.08 8.0 PLUNGE_CUTTER_3 A 1 1 1.5250 121.807 0.400 95.0 35.03 8.80 FINISHING_T35 1 1 12.6526 133.33 0.650 3.000 4.0 CUTTER_8 1 1 87.033 74.621 4.000 3 0.000 4.0 DRUL5_5 1 1 88.123 2.000 118.0 1.000 100.00 118.0 DRUTON_TOOL_8 1 8.000 145.132 3.000 1.000 1.000 1.000 DRUTEA_TM16 1<

Wählen Sie mit der Cursor-Taste das Werkzeug ROUGHING_T80 A an.

Übernehmen Sie das Werkzeug in das Programm. Geben Sie nach der Werkzeugübernahme in der Eingabemaske folgende Werte ein (ggf. Einheit über Toggle-Taste ändern):

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Spindel	V1	Х	Wählen Sie die Hauptspindel V1 aus.
Schnittgeschwindigkeit	240 m/min	Х	
Ebenenanwahl	Drehen	Х	

Bild 6-13 Werkzeug - Eingabe

6.4 Verfahrweg eingeben

Bedienfolgen

Geben Sie nun die Verfahrwege ein: Wählen Sie den Softkey Gerade an.

Wählen Sie den Softkey Eilgang an. Geben Sie in der Eingabemaske folgenden Startpunkt für das Schruppen ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
X	82 abs	Х	
Z	0.3 abs	Х	

Verfahrweg Startpunkt eingeben

Übernehmen Sie die eingegebenen Werte.

Gerade

Wählen Sie den Softkey Gerade an.

Geben Sie in der Eingabemaske folgende Werte ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
x	-1.6 abs	Х	Das Werkzeug hat einen 0.8er Radius, somit muss bis auf den Durchmesser X -1.6 verfahren werden.
F	0.3 mm/U	Х	

6.4 Verfahrweg eingeben

Bild 6-14 Verfahrweg eingeben

Wählen Sie den Softkey Gerade an.

Übernehmen Sie die eingegebenen Werte.

Eilgang

Wählen Sie den Softkey Eilgang an. Fahren Sie das Werkzeug im Eilgang von der Planfläche weg.

Geben Sie in der Eingabemaske folgende Werte ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z	1 abs	Х	

Gerade

Wählen Sie den Softkey Gerade an.

Eilgang

Wählen Sie den Softkey Eilgang an.

Geben Sie in der Eingabemaske folgende Werte ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
X	82 abs	Х	Mit dieser Eingabe wird das Werkzeug wieder auf den Startpunkt gefahren.

Bild 6-16 Verfahrweg eingeben - auf Startpunkt zurück fahren

6.4 Verfahrweg eingeben

Gerade

Wählen Sie den Softkey Gerade an.

Erstellen Sie die vier weiteren Verfahrweg gemäß der folgenden Arbeitsschrittliste.

Bild 6-17 Verfahrweg eingeben - vier weitere Verfahrwege

Starten Sie die Simulation.

Die Simulation können Sie durch erneutes Drücken des Softkeys **Simulation** bzw. durch einen beliebigen horizontalen Softkey beenden.

6.5 Erstellen der Konturen mit dem Konturrechner und Bearbeitung

Konturrechner

Zur Eingabe komplexer Konturen gibt es in ShopTurn einen Konturrechner, mit dem Sie mit Leichtigkeit auch schwierigste Konturen eingeben können.

Mit diesem grafischen Konturrechner können Sie die Konturen leichter und schneller eingeben, als es bei der herkömmlichen Programmierung der Fall ist - und zwar ohne jegliche Mathematik.

Bedienfolgen

Über die folgenden Schritte geben Sie die Kontur ein:

Wählen Sie den Softkey Kontur drehen an.

Wählen Sie den Softkey **Neue Kontur** an. Geben Sie für die Kontur den Namen 'TAPER_SHAFT_CONTOUR' ein.

Jede Kontur bekommt einen eigenen Namen. Das erleichtert die Lesbarkeit der Programme.

Neue Kontur
Bitte geben Sie den neuen Namen ein
TAPER_SHAFT_CONTOUR

Bild 6-19 Kontur 'TAPER_SHAFT_CONTOUR' anlegen

Übernehmen Sie die Eingabe.

Den Startpunkt des Konturzuges können Sie ohne Änderungen übernehmen (siehe folgende Abbildung).

Hinweis

Der Konturzug ist einerseits die Begrenzung für das Schruppen und andererseits der Schlichtweg.

Hinweis

Wenn Sie den Softkey Grafische Ansicht abwählen, erhalten Sie detaillierte Hilfebilder.

Übernehmen Sie die Eingabe.

‡

Geben Sie in der Eingabemaske folgende Werte für die senkrechte Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Х	30 abs	Х	
Übergang zum Folgeelement	Fase	Х	Hängen Sie die Fase (FS) als Übergangselement
FS	1.5		direkt an die Gerade an.

Beispiel 1: Stufenwelle

6.5 Erstellen der Konturen mit dem Konturrechner und Bearbeitung

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Gerade ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z	-17 abs	Х	Es folgt eine Gerade bis
Übergang zum Folgeelement	Fase	Х	auf Z-17.
FS	0		+X +Z
			Der Gewindefreistich wird später als einzelnes Element eingefügt.

Bild 6-22 Kontur Strecke waagrecht eingeben

ŧ

Geben Sie in der Eingabemaske folgenden Wert für die senkrechte Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Х	40 abs	Х	Konstruieren Sie die
Übergang zum Folgeelement	Radius	X	senkrechte Strecke bis auf den bemaßten
R	2.5		Verrundung zum Folgeelement.

Bild 6-23 Kontur Strecke senkrecht eingeben

Beispiel 1: Stufenwelle

6.5 Erstellen der Konturen mit dem Konturrechner und Bearbeitung

Geben Sie in der Eingabemaske folgende Werte für den Endpunkt der Schräge ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
х	50 abs	Х	
Z	-30 abs	Х	
Übergang zum Folgeelement	Fase	Х	+ X + Z
FS	0		

Übernehmen

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Gerade ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z	-44 abs	Х	
Übergang zum Folgeelement	Radius	Х	
R	2.5		+Z

Bild 6-25 Kontur Strecke waagrecht eingeben

Beispiel 1: Stufenwelle

‡

6.5 Erstellen der Konturen mit dem Konturrechner und Bearbeitung

Feld	Wert	Auswahl über Toggle-Taste	Hinweise
х	60 abs	X	Die Strecken (=Hauptelemente) verlaufen nicht tangentia l.
			Verrundung 3 Hauptelemente

Geben Sie in der Eingabemaske folgenden Wert für die senkrechte Gerade ein:

Bild 6-26 Kontur Strecke senkrecht eingeben

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Gerade ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z	-70 abs	X	Die Einstiche werden
Übergang zum Folgeelement	Radius	X	später, genau wie der Gewindefreistich, als einzelne Elemente eingegeben.
R	1		

Bild 6-27 Kontur Strecke waagrecht eingeben

Beispiel 1: Stufenwelle

6.5 Erstellen der Konturen mit dem Konturrechner und Bearbeitung

Geben Sie in der Eingabemaske folgenden Wert für die senkrechte Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Х	66 abs	Х	
Übergang zum Folgeelement	Radius	Х	
R	1		+Z

6.5 Erstellen der Konturen mit dem Konturrechner und Bearbeitung

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Gerade ein:

Feld Wert		Auswahl über Toggle- Taste	Hinweise		
Z	-75 abs	Х			
Übergang zum Folgeelement	Radius	Х			
R	1		+Z		

Beispiel 1: Stufenwelle

6.5 Erstellen der Konturen mit dem Konturrechner und Bearbeitung

Geben Sie in der Eingabemaske folgenden Wert für die senkrechte Strecke ein:

Feld Wert		Auswahl über Toggle- Taste	Hinweise		
X	80 abs	X	Endpunkt X80 mit einer		
Übergang zum Folgeelement	Fase	X	Fase 2x45°		
FS	2		+x +z		

Bild 6-30 Kontur Strecke senkrecht eingeben

6.5 Erstellen der Konturen mit dem Konturrechner und Bearbeitung

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Gerade ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise		
Z	-90 abs	Х	<u> </u>		
Übergang zum Folgeelement	Fase	X	+x		
FS	0		4 +Z		
			Der Konturendpunkt liegt bei X80 und Z-90 (2 mm vor dem Spannfutter).		

Bild 6-31 Konturendpunkt eingeben

Beispiel 1: Stufenwelle

6.5 Erstellen der Konturen mit dem Konturrechner und Bearbeitung

Um die erstellte Kontur zu bearbeiten, müssen Sie nun die folgenden Arbeitsschritte anlegen. Gehen Sie dabei wie folgt vor:

Abspanen

_

Werkzeug auswählen

Ins Programm

Übernehmen Sie das Werkzeug in das Programm.

Wählen Sie den Softkey Abspanen an.

Geben Sie in der Eingabemaske folgende Werte für das Schruppen ein:

Öffnen Sie die Werkzeugliste und wählen Sie den ROUGHING_T80 A an.

Feld	Wert	Auswahl über Toggle- Taste	Hinweise	
F	0.3			
V	240 m/min	Х		
Bearbeitung	schruppen längs außen	X X X		
D	2.5			
UX	0.5			
UZ	0.2			
DI	0.0			
BL	Zylinder	Х		
XD	0.0 ink	Х		
ZD	0.0 ink	Х		
Hinterschnitte	nein	X		
Eingrenzen	nein	Х		

Beispiel 1: Stufenwelle

6.5 Erstellen der Konturen mit dem Konturrechner und Bearbeitung

Übernehmen Sie die eingegebenen Werte.

Wählen Sie den Softkey Abspanen an.

Abspanen

Werkzeug auswählen

Ins Programm

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Schlichten ein:

Öffnen Sie die Werkzeugliste und wählen Sie den FINISHING_T35 A an.

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.15		
V	200 m/min	Х	
Bearbeitung	schlichten	Х	

6.5 Erstellen der Konturen mit dem Konturrechner und Bearbeitung

Übernehmen Sie die eingegebenen Werte.

Im Arbeitsschritteditor werden die beiden Bearbeitungsschritte verkettet.

						04.02.1 11:3
NC/	uks/example1/	Taper_shaft			13	Abspanen
P	Programmkopf				<u>^</u>	
Т	T=ROUGHING_T8	0 A V1=240m				
	EILG. X=82 Z=	0.3				Einstich
	F0.3/U X=-1.6	j				
	EILG. Z=1					
	EILG. X=82					Freistich
	EILG. Z=0	-				
→	F0.25/U X=-1.	6				
	EILG. Z=1					Gewinde
-	EILG. X=120 2	=200				
5	Kontur		TAPER_SHAFT_CO	NTOUR		01-1-1
M	Abspanen	A	T=ROUGHING_T80	A F0.3/U V24	10m	Hostich
Mi.	Abspanen	244 2	T=FINISHING_T3	5 A F0.15/U (<mark>/280∎ [→</mark>	
END	Programmende					
					~	
					>	
	Edit 📑 B	ohren 🚅 Drehen	Kontur Fräse	en Diver- ses	ter Simu- lation	NC Anwahl
Bi	ld 6-36	Verkettu	ng der Arbeits	schritte i	m Arbeit	splan

Wählen Sie den Softkey Simulation an.

Wählen Sie den Softkey Seitenansicht an.

Die nachfolgende Simulation zeigt Ihnen den Ablauf der Fertigung zur Kontrolle, bevor Sie das Werkstück fertigen.

Bild 6-37 Simulation Seitenansicht

6.6 Gewindefreistich

Bedienfolgen

Über die folgenden Schritte erstellen Sie den Gewindefreistich:

Bild 6-38 Gewindefreistich

Wählen Sie den Softkey Drehen an.

Wählen Sie den Softkey Freistich an.

Beispiel 1: Stufenwelle

6.6 Gewindefreistich

Freistich Gewinde Wählen Sie den Softkey Freistich Gewinde an.

Werkzeug auswählen

Öffnen Sie die Werkzeugliste und wählen Sie das Schlichtwerkzeug FINISHING_T35 A an.

Ins Programm

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.15		
V	200 m/min	Х	
Bearbeitung	Schruppen/ Schlichten	X	
	längs	Х	
Lage		Х	(siehe Abbildung oben)
X0	30		
Z0	-17		
X1	1.15 ink	Х	
Z1	4.5 ink	Х	
R1	0.8		
R2	0.8		
α	30		
VX	1 ink	Х	
D	0.8		
U	0.1	X (Feld)	

Schalten Sie nach Bedarf zwischen der Grafischen Ansicht und dem Hilfebild um.

Bild 6-40 Gewindefreistich - Grafische Ansicht

Übernehmen Sie die eingegebenen Werte.

Wählen Sie den Softkey **Simulation** an. Überprüfen Sie den Gewindefreisicht z. B. über die Detailansicht in 3D-Ansicht.

Wählen Sie den Softkey 3D-Ansicht an.

Wählen Sie den Softkey **Details** an. Über die Softkeys Zoom +, Zoom -, Lupe usw. können Sie die Darstellung entsprechend beeinflussen.

Bild 6-41 Simulation Detailansicht in 3D-Ansicht

Einfacher Drehen mit ShopTurn Trainingsunterlage, 05/2010, 6FC5095-0AB80-1AP0 6.7 Gewinde

6.7 Gewinde

Bedienfolgen

Über die folgenden Schritte erstellen Sie das Gewinde:

Wählen Sie den Softkey Gewinde an.

Gewinde

Werkzeug auswählen

Ins Programm Öffnen Sie die Werkzeugliste und wählen Sie den Vollbohrer THREADING_T1.5 an.

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Gewinde ein:

Feld	Feld Wert		Hinweise
Р	1.5 mm/U	Х	
G	0		
S	800 U/min	Х	
Bearbeitung	Schruppen/Schl ichten	х	
	Linear	Х	
	Außengewinde	Х	
X0	30	Х	Mit den folgenden
ZO	0		Eingaben definieren Sie
Z1	-16 abs	Х	das Gewinde geometrisch
LW	2		
LR	1		
H1	0.92		
αP	29	Х]
ND	8		

6.7 Gewinde

Feld Wert		Auswahl über Toggle- Taste	Hinweise		
U	0.1				
NN	0				
VR	2				
Mehrgängig	nein	Х			
α0	0				

Wechseln Sie bei Bedarf zum Hilfebild.

Bild 6-44 Gewinde - Hilfebild

6.8 Einstiche

6.8 Einstiche

Bedienfolgen

Über die folgenden Schritte erstellen Sie die beiden Einstiche:

Bild 6-46 Einstiche

Wählen Sie den Softkey Einstich 2 an.

Wählen Sie den Softkey Einstich an.

Werkzeug auswählen

Öffnen Sie die Werkzeugliste und wählen Sie den Einstecher PLUNGE_CUTTER_3 A an.

Übernehmen Sie das Werkzeug in das Programm.

Feld	Wert Auswahl über Toggle- Taste		Hinweise
F	0.1		
V	150 m/min	Х	
Bearbeitung	Schruppen/Schl ichten		
Lage			(siehe Abbildung oben)
X0	60		Mit den folgenden
ZO	-65		Eingaben definieren Sie
B1	6	X (Feld)	die Einstiche geometrisch
T1	3 ink	Х	geementeen
α1	0		
α2	0		
FS1	0.5	X (Feld)	
R2	1	X (Feld)	
R3	1	X (Feld)	
FS4	0.5	X (Feld)	
D	3		
U	0.1	X (Feld)	
Ν	2		
DP	10		

Geben Sie in der Eingabemaske folgende Werte für die Einstiche ein:

Bild 6-47 Einstiche - Grafische Ansicht

6.8 Einstiche

_		×20											01.07.10 01:14
NC/U	JKS/EX	AMPLE1/1	TAPER_S	HAFT					Einstic	h 2			Werkzeug
P									T	PLUNGE_CUTT	ER_3 A	D1	auswanien
T									r U	0.100	mm/U m/min		Grafische
									Bearbe	eituna	7440	V	Ansicht
									Lage	-	1 2		
		D	P						XØ	60.000			
		-	-						20	-65.000			
	-		L	-		-		-	B1 T1	0.000	ink		
			2				N		π1	9 999	°		1.1
									α2	0.000	0		
Vi									FS1	0.500			
1									R2	1.000			
M.									R3	1.000			
1								_	r54 D	3,000			
M									ii ii	9.199			
END									°	0.100			ť ľ
									H	2			×
									DP	10.000			Abbruch
				_									
												>	Ubernehmen
	Edit	E-Bo	hren .	de Drei	hen 🛃	Kor Kor	ntur hen	-	Fräse	n Diver ses		Simu- lation	NC Anwahl
Bil	d 6-4	48	Ei	nstic	he -	Hil	feb	ild					

Wechseln Sie bei Bedarf zum Hilfebild.

				04.02.10 12:03
NC/	/WKS/EXAMPLE1/TAP	Per_shaft	10	Abspanen
→	EILG. Z=1			
→	EILG. X=82			
	EILG. 2=0			Einstich
	F0.25/U X=-1.6			
	EILG. Z=1	00		
	EILG. X=120 Z=2	00		Freistich
5-	Kontur		T-DOUGUTUG TOD O FO O (U UO 10-	
nin.	Hbspanen	V	T-ETHICHTHC TOF 0 F0 45/U U000-	Courindo
1111	Exciption Cou	24000	T-EINISHING T25 0 E0 15/11 1200-	dewinde
m	Gewinde Länge	04000	T=THREADING T1 5 P1 5mm/II \$2000	
1 6	Finstich	0+000		Abstich
END	Programmende			
	rigrammeride			
				4
	🛛 Edit 📑 Bohr	en 🚅 Drehen	Kontur Fräsen Diver-	Anwahl
Bi	ld 6-49	Arbeitspla	an mit Einstichen	

Starten Sie die Simulation z. B. in der Seitenansicht oder in der 2 Fenster-Ansicht.

Wählen Sie den Softkey Seitenansicht an.

Bild 6-50 Simulation Seitenansicht

Wählen Sie den Softkey Weitere Ansichten an.

2 Fenster

Wählen Sie den Softkey 2 Fenster an.

Bild 6-51 Simulation 2 Fenster-Ansicht

Beispiel 1: Stufenwelle

6.8 Einstiche

7.1 Überblick

Lernziele

In diesem Kapitel lernen Sie folgende neue Funktionen kennen. Sie lernen wie Sie ...

- Plandrehen,
- mit dem Konturrechner arbeiten (erweiterte Anwendung),
- Restmaterial bearbeiten.

Aufgabenstellung

Bild 7-1 Werkstattzeichnung - Beispiel 2

Bild 7-2 Werkstück - Beispiel 2

7.2 Plandrehen

Vorbereitung

Führen Sie folgende Schritte selbständig durch:

- 1. Legen Sie ein neues Werkstück mit dem Namen 'EXAMPLE2' an.
- 2. Legen Sie ein neues Schrittkettenprogramm mit dem Namen 'DRIVE_SHAFT' an.
- 3. Geben Sie die Rohteil-Maße ein (zur Vorgehensweise vgl. Beispiel 1).

Nach dem Anlegen des Programmkopfes sieht der Arbeitsplan wie folgt aus.

	84.82.1 12:2
NC/UKS/EXAMPLE2/DRIVE_SHAFT P Programmkopf	Abspanen
END Programmende	
	Einstich

Bild 7-4 Arbeitsschrittprogramm

7.2 Plandrehen

Bedienfolgen

Über die folgenden Schritte drehen Sie das Werkstück plan: Wählen Sie den Softkey **Drehen** an.

Da das Plandrehen in einem Schnitt erfolgen soll, schalten Sie bei der Bearbeitung auf Schlichten um. Wählen Sie das Werkzeug ROUGHING_T80 A aus und geben Sie folgende Werte ein.

Bild 7-5 Werkstück plandrehen

7.3 Erstellen der Kontur, Abspanen und Restabspanen

Bedienfolgen

Über die folgenden Schritte geben Sie die Kontur ein:

Wählen Sie den Softkey Kontur drehen an.

Wählen Sie den Softkey **Neue Kontur** an. Geben Sie für die Kontur den Namen 'DRIVE_SHAFT_CONTOUR' ein.

Übernehmen Sie die Eingabe.

Den Startpunkt X0/Z0 können Sie direkt übernehmen (siehe folgende Abbildung).

		₩ 6													04.02.10 12:25
NC/U	JKS	/EXAM	PLE2	/DRIVE	_Shaft					Startp	ounkt				
	END	Xø								X Z		0.000 0.000	abs abs		Grafische Ansicht
										Uberg	ang am Fa	Kontur: se	antang		
		0.1								FS		0.000	Å		
		0													
		0.1													
		-0.1													
		6.1													
		-0.2	-0.	.05	6)	0.	95	۰Z		_				Übernehmen
								ontur				Diver		> Simu-	
J	E	dit		Bohren	 [Irehen	-	rehen		Fräse	en <mark></mark>	ses		lation	Hnwahl

Bild 7-7 Startpunkt übernehmen

Übernehmen Sie die Eingabe.

‡

Geben Sie in der Eingabemaske folgende Werte für die senkrechte Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
x	16 abs	Х	
Übergang zum Folgeelement	Radius	X	
R	2		+Z

7.3 Erstellen der Kontur, Abspanen und Restabspanen

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z	-16 abs	Х	
Übergang zum Folgeelement	Fase	X	,×
FS	0		+Z

‡

Geben Sie in der Eingabemaske folgenden Wert für die senkrechte Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Х	24 abs	X	
Übergang zum Folgeelement	Fase	Х	
FS	2		+Z

Bild 7-10 Kontur senkrechte Strecke eingeben

7.3 Erstellen der Kontur, Abspanen und Restabspanen

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z	-38 abs	Х	
Übergang zum Folgeelement	Fase	X	,×
FS	0		+Z

Bild 7-11 Kontur waagerechte Strecke eingeben

Geben Sie in der Eingabemaske folgende Werte für die abfallende Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Х	20 abs	Х	
α2	45	Х	
Übergang zum Folgeelement	Fase	X	
FS	0		bezieht sich auf das Vorgängerelement.

Bild 7-12 Kontur abfallende Strecke eingeben

7.3 Erstellen der Kontur, Abspanen und Restabspanen

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Gerade ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z	-53 abs	Х	
Übergang zum Folgeelement	Radius	X	,×
R	1		+Z

Bild 7-13 Kontur Strecke waagrecht eingeben

ŧ

Geben Sie in der Eingabemaske folgenden Wert für die senkrechte Gerade ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Х	36 abs	Х	
Übergang zum Folgeelement	Radius	Х	*×
R	0.4		Verrunden Sie den Übergang zum Folgeelement mit R0.4.

Bild 7-14 Kontur Strecke senkrecht eingeben

Geben Sie in der Eingabemaske folgende Werte für den nächsten Abschnitt ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Х		Х	
Z		Х	
α1	165.167°		+X +z
Übergang zum Folgeelement	Radius	X	Von der Strecke ist nichts weiter bekannt als der
R	0.4		Winkel zur Z-Achse mit 165.167°. Setzen Sie in solchen Fällen die Konstruktion einfach mit dem nächsten Element fort.

Bild 7-15 Kontur Schräge eingeben

7.3 Erstellen der Kontur, Abspanen und Restabspanen

Geben Sie in der Eingabemaske folgende Werte für den nächsten Abschnitt ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Drehrichtung	rechts	Х	
R	13		
Х			+X tro-+z
Z			Durch die bekannten
Ι	60 abs	Х	Maße des Bogens
К	-78 abs	Х	werden die fehlenden Bunkte des verberigen
Übergang zum	Fase	X	Kontur-Elementes
			berechnet.
R	0		Da mehrere Möglichkeiten vorhanden sind, müssen Sie die richtige Auswahl treffen.

Bild 7-16 Kontur Bogen eingeben

Dialog Auswahl

7.3 Erstellen der Kontur, Abspanen und Restabspanen

Dialog Übernahme Nachdem Sie die gewünschte Konstruktion ausgewählt haben, übernehmen Sie diese.

Da der Endpunkt des Bogens nicht bekannt ist, setzen Sie die Konstruktion einfach fort. Über den Softkey **Alle Parameter** könnten Sie an dieser Stelle auch den Auslaufwinkel eingeben.

Bild 7-18 Kontur Bogen übernehmen

Übernehmen Sie den Konturabschnitt.

7.3 Erstellen der Kontur, Abspanen und Restabspanen

Es folgt eine tangentiale Strecke.

Wählen Sie den Softkey Tangente an Vorg. an.

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Х	80 abs	Х	
Übergang zum Folgeelement	Radius	Х	+×
R	0.4		+Z

Bild 7-19 Kontur senkrechte Strecke eingeben

7.3 Erstellen der Kontur, Abspanen und Restabspanen

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Gerade ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z	-100 abs	Х	
Übergang zum Folgeelement	Fase	X	
FS	0		Der Endpunkt der Kontur liegt bei Z-100.

Bild 7-20 Kontur waagerechte Strecke eingeben

Übernehmen Sie die eingegebenen Werte.

Übernehmen Sie die Kontur in den Arbeitsplan.

Bild 7-21 Kontur übernehmen

Abspanen, Restabspanen und Schlichten

Um die erstellte Kontur zu bearbeiten, müssen Sie nun die folgenden Arbeitsschritte anlegen. Gehen Sie dabei wie folgt vor:

Wählen Sie den Softkey Abspanen an.

Werkzeug auswählen

Abspanen

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug ROUGHING_T80 A an.

Ins Programm

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Schruppen ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.3		
S	240 U/min	Х	
Bearbeitung	schruppen konturparallel außen	X X X	Die Bearbeitung der Kontur wird hier beispielsweise konturparallel ausgeführt.
D	2.0		
UX	0.2		
UZ	0.2		
DI	0.0		
BL	Zylinder	Х	
XD	0.0 ink	Х	
ZD	0.0 ink	Х	
Hinterschnitte	nein	X	
Eingrenzen	nein	X	

7.3 Erstellen der Kontur, Abspanen und Restabspanen

Übernehmen Sie die eingegebenen Werte.

Wählen Sie den Softkey **Simulation** an.

Wählen Sie den Softkey Seitenansicht an.

Bild 7-23 Kontur schruppen - Simulation Seitenansicht

Wählen Sie den Softkey Kontur drehen an.

Wählen Sie den Softkey Abspanen Rest an.

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug FINISHING_T35 A an.

Ins Programm

Werkzeug

Übernehmen Sie das Werkzeug in das Programm. Geben Sie in der Eingabemaske folgende Werte für das Restabspanen ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.12		
V	240 m/min	Х	
Bearbeitung	schruppen längs außen	X X X	
D	2.0		
UX	0.2		
UZ	0.2		

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
DI	0.0		
Hinterschnitte	ja	x	Um alle Restmengen zerspanen zu können, müssen Sie das Eingabefeld auf <i>ja</i> umschalten.
FR	0.2		
Eingrenzen	nein	X	

Bild 7-24 Kontur Restmaterial zerspanen

7.3 Erstellen der Kontur, Abspanen und Restabspanen

Wählen Sie den Softkey Simulation an.

Erweitern Sie das Menü.

Aktivieren Sie die Anzeige der Verfahrwege.

Bild 7-25 Restmaterial zerspanen - Simulation Seitenansicht

Wählen Sie den Softkey Kontur drehen an.

Wählen Sie den Softkey Abspanen an.

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug FINISHING_T35 A an.

Ins Programm

Übernehmen Sie das Werkzeug in das Programm. Geben Sie in der Eingabemaske folgende Werte für das Schlichten ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.12		
S	280 U/min	Х	
Bearbeitung	schlichten längs außen	X X X	
Aufmaß	nein	Х	
Hinterschnitte	ја	Х	
Eingrenzen	nein	Х	
7.3 Erstellen der Kontur, Abspanen und Restabspanen

Bild 7-26 Kontur schlichten

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht der Arbeitsplan wie folgt aus.

Bild 7-27 Arbeitsplan

7.4 Gewinde

Starten Sie die Simulation.

Wählen Sie den Softkey **Details** an. Hier können Sie die Ansicht u. a. vergrößern bzw. verkleinern.

Zoom +

Mit dem Softkey Zoom + vergrößern Sie die Ansicht.

Bild 7-28 Simulation 3D-Ansicht - Details

7.4 Gewinde

Bedienfolgen

Über die folgenden Schritte erstellen Sie das Gewinde.

Wählen Sie den Softkey Gewinde an.

Öffnen Sie die Werkzeugliste und wählen Sie den Vollbohrer THREADING_T1.5 an.

Ins Programm

Übernehmen Sie das Werkzeug in das Programm.

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Р	1.5 mm/U	Х	
G	0		
S	800 U/min	Х	
Bearbeitung	Schruppen + Schlichten	Х	
	Linear	Х	
	Außengewinde	Х	
X0	24		
Z0	-16		
Z1	-40 abs	Х	
LW	2		
LR	1		
H1	0.92		
αP	29	Х	
	Zustellung mit wechselnder Flanke	Х	
ND	8		
U	0.1		
NN	0		
VR	2		
Mehrgängig	nein	Х	
α0	0		

Geben Sie in der Eingabemaske folgende Werte für das Gewinde ein:

Übernehmen Sie die eingegebenen Werte.

Einfacher Drehen mit ShopTurn Trainingsunterlage, 05/2010, 6FC5095-0AB80-1AP0 7.4 Gewinde

Beispiel 3: Umlenkwelle

8.1 Überblick

Lernziele

In diesem Kapitel lernen Sie folgende neue Funktionen kennen. Sie lernen wie Sie ...

- ein beliebiges Rohteil erstellen,
- das Differenzmaterial zwischen Roh- und Fertigteil abspanen,
- auf der Stirnseite bohren,
- auf der Stirnseite fräsen.

Aufgabenstellung

Bild 8-1 Werkstattzeichnung - Beispiel 3

8.2 Plandrehen

Vorbereitung

Führen Sie folgende Schritte selbständig durch:

- 1. Legen Sie ein neues Werkstück mit dem Namen 'EXAMPLE3' an.
- 2. Legen Sie ein neues Schrittkettenprogramm mit dem Namen 'GUIDE_SHAFT' an.
- 3. Füllen Sie den Programmkopf aus (vgl. folgende Abbildung).

Hinweis

Trotz des beliebigen Rohteils wählen Sie hier die Rohteilform *Zylinder* aus. ShopTurn ignoriert diese Eingabe und orientiert sich an dem beliebigen Rohteil.

Bild 8-2 Programmkopf anlegen

8.2 Plandrehen

Bedienfolgen

	Über die folgenden Schritte legen Sie ein neues Programm an und drehen das Rohteil bis auf Z0 plan:
🚅 Drehen	Wählen Sie den Softkey Drehen an.
Abspanen	Wählen Sie den Softkey Abspanen an. Wählen Sie das Werkzeug ROUGHING_T80 A aus.

8.2 Plandrehen

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.25		
V	240 m/min	Х	
Bearbeitung	Schlichten	Х	
Lage	(Siehe Abbildung unten)	X	
Bearbeitungsrichtung	Plan	Х	
X0	60		Da das beliebige Rohteil einen Durchmesser von 60 mm hat, müssen Sie in diesem Arbeitsschritt das Maß X0 ebenfalls auf 60 setzen.
Z0	2		
X1	-1.6 abs	Х	
Z1	0.0 abs	Х	
D	1.5		
UX	0.0		
UZ	0.2		

Geben Sie in der Eingabemaske folgende Werte ein:

Übernehmen

Übernehmen Sie die eingegebenen Werte.

Beispiel 3: Umlenkwelle

8.3 Erstellen einer beliebigen Rohteil-Kontur

Starten Sie zur Überprüfung des Arbeitsschritts die Simulation.

Über das erweiterte Menü können Sie die Anzeige der Verfahrwege aktivieren.

8.3 Erstellen einer beliebigen Rohteil-Kontur

Bedienfolgen

Geben Sie selbständig folgende Rohteil-Kontur ein:

8.3 Erstellen einer beliebigen Rohteil-Kontur

Neue Kontur Wählen Sie den Softkey **Neue Kontur** an. Geben Sie für die Kontur den Namen 'GUIDE_SHAFT_BLANK' ein.

Erstellen Sie im Konturrechner die Rohteil-Kontur (vgl. folgende Abbildung) mit dem Startpunkt auf X0/Z0.

Hinweis

Die Kontur muss geschlossen sein!

8.4 Erstellen der Fertigteil-Kontur und Abspanen

Bedienfolgen

Über die folgenden Schritte geben Sie die Fertigteil-Kontur ein:

Wählen Sie den Softkey Kontur drehen an.

Wählen Sie den Softkey **Neue Kontur** an. Geben Sie für die Kontur den Namen 'GUIDE_SHAFT_CONTOUR' ein.

Neue Kontur					
Bitte geben Sie	den neuen Namen ein				
GUIDE_SHAFT_	CONTOUR				
Bild 8-7	Kontur anlegen				

Übernehmen Sie die Eingabe.

Da das Rohteil im ersten Arbeitsschritt auf Z0 geplant wurde, können Sie den Startpunkt X0/Z0 direkt übernehmen (siehe folgende Abbildung).

Kontur Startpunkt eingeben

Übernehmen Sie die Eingabe.

÷

Geben Sie in der Eingabemaske folgende Werte für die senkrechte Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Х	48 abs	Х	\neg
Übergang zum Folgeelement	Fase	X	
R	3		+X ⊕⇒ +Z

Bild 8-9 Kontur senkrechte Strecke eingeben

Übernehmen Sie die eingegebenen Werte.

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z			
Übergang zum Folgeelement	Radius	Х	
R	4		+X +X +Z
			Der Endpunkt der waagerechten Strecke ist unbekannt. Geben Sie nur den Übergang zum nächsten Element mit R4 ein. Der Endpunkt der Strecke errechnet sich automatisch aus den Folgekonstruktionen der Kontur.

Bild 8-10 Kontur waagrechte Strecke eingeben

Übernehmen Sie die eingegebenen Werte.

Beispiel 3: Umlenkwelle

8.4 Erstellen der Fertigteil-Kontur und Abspanen

Geben Sie in der Eingabemaske folgende Werte für den nächsten Abschnitt ein:

Fold	Mont	Augusti über Tegale	Linuciae
reia	wen	Taste	HINWEISE
Drehrichtung	rechts	Х	$\overline{}$
R	23		
Х	60 abs	Х	
Z			+Z
I	80 abs	X	Sollten bei der Eingabe der Kontur-Daten (z.B. hier beim Kreisbogen) mehrere Lösungen möglich sein, können Sie diese über den Softkey <i>Dialog Auswahl</i> auswählen.

Bild 8-11 Kontur Bogen eingeben

Beispiel 3: Umlenkwelle

Dialog Auswahl

8.4 Erstellen der Fertigteil-Kontur und Abspanen

Nachdem Sie die gewünschte Konstruktion ausgewählt haben, übernehmen Sie diese.

Dialog Auswahl

Wählen Sie die vorgeschlagene Lösung entsprechend der folgenden Abbildung.

Bild 8-13 Kontur Bogen Auswahl treffen

Nachdem Sie die gewünschte Konstruktion ausgewählt haben, übernehmen Sie diese.

Bild 8-14 Kontur Bogen Auswahl übernehmen

Zur Fertigstellung des Bogens gehen Sie wie folgt vor:

1. Geben Sie den Mittelpunkt K-35 ein (absolutes Maß).

- 15.02.10 Krei
 Kreis

 Drehrichtur

 R

 X

 Z

 I

 K

 α1

 α2

 β1

 β2

 Übergang z
 23.000 60.000 abs -37.235 ink 100 80.000 -35.000 225.921 0 END abs END Tangente an Vorg. 45.921 115.771 110.149 Auswahl 60 ändern m Folge Radius 40 R Alle 1.00 Paramete 20 0 Abbru -20 -50 -40 -30 -20 -107 Übernehm > Simu-lation Anwal 🚅 Dreher Edit Bohren Kontur Fräsen Diver-Bild 8-16 Kontur Bogen Radius eingeben
- 2. Geben Sie den Übergang zum nächsten Element mit R4 ein.

Mit den vorhandenen Kontur-Daten und den rechnerischen Auswahlmöglichkeiten konnten Sie den Bogen und die Strecke (mit unbekanntem Endpunkt) konstruieren.

Übernehmen Sie den Konturabschnitt.

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Gerade ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z	-75 abs	Х	\neg
Übergang zum Folgeelement	Radius	Х	
R	6		+X +Z

Übernehmen Sie die eingegebenen Werte.

Geben Sie in der Eingabemaske folgende Werte für die schräge Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Х	90 abs	Х	
Z	-80 abs	Х	
Übergang zum Folgeelement	Radius	Х	+X +Z
R	4		

Bild 8-18 Kontur schräge Strecke eingeben

Übernehmen Sie die eingegebenen Werte.

Beispiel 3: Umlenkwelle

8.4 Erstellen der Fertigteil-Kontur und Abspanen

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Gerade ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z	-90 abs	Х	$\overline{}$
Übergang zum Folgeelement	Fase	Х	
FS	0		+X ⇒⇒ +Z
			Um das Spannfutter nicht zu zerstören, beenden Sie die Konstruktion schon bei Z-90.

Bild 8-19 Kontur waagerechte Strecke eingeben

Übernehmen Sie die eingegebenen Werte.

Übernehmen Sie die Kontur in den Arbeitsplan.

Bild 8-20 Kontur übernehmen

Beispiel 3: Umlenkwelle

8.4 Erstellen der Fertigteil-Kontur und Abspanen

Abspanen

Im folgenden Arbeitsschritt spanen Sie die Kontur ab.

Gehen Sie dabei wie folgt vor:

Wählen Sie den Softkey Abspanen an.

Abspanen

Ins Programm Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug ROUGHING_T80 A an.

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Schruppen ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.3		
V	260 m/min	Х	
Bearbeitung	schruppen längs außen	X X X	
D	2.5		
UX	0.2		
UZ	0.2		
DI	0.0		
BL	Kontur	X	Die Rohteilbeschreibung müssen Sie hier auf Kontur umschalten.
Hinterschnitte	nein	X	Damit die Vertiefung des Radius 23 unbearbeitet bleibt, müssen Sie auf <i>nein</i> umschalten.
Eingrenzen	nein	Х	

Einfacher Drehen mit ShopTurn Trainingsunterlage, 05/2010, 6FC5095-0AB80-1AP0

8.5 Restabspanen

Übernehmen Sie die eingegebenen Werte. Die beiden Konturen und der Arbeitsschritt sind nach der Übernahme miteinander verknüpft.

Wählen Sie den Softkey Simulation an.

Bild 8-22 Kontur abspanen Simulation (mit Anzeige der Verfahrwege)

Die Verfahrwege in der Simulation zeigen deutlich, wie das vorher konstruierte Rohteil berücksichtigt wird.

8.5 Restabspanen

Bedienfolgen

Über die folgenden Schritte wird das Restmaterial zerspant:

Folgende Abbildung zeigt den Arbeitsplan bis zur Schrupp-Bearbeitung:

Bild 8-23 Arbeitsplan einschließlich der Schrupp-Bearbeitung

Wählen Sie den Softkey Kontur drehen an.

Wählen Sie den Softkey Abspanen Rest an.

Werkzeug

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug BUTTON_TOOL_8 an.

Ins Programm

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Restabspanen ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.25		
V	240 m/min	Х	
Bearbeitung	schruppen längs außen	X X X	
D	2.0		
UX	0.2		
UZ	0.2		
DI	0.0		
Hinterschnitte	ja	Х	Die Bearbeitung mit Hinterschnitten müssen Sie hier auf <i>ja</i> umschalten.
FR	0.2		
Eingrenzen	nein	Х	

8.5 Restabspanen

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht die Arbeitsschrittliste wie folgt aus:

_						18.02.1 11:2
NC/	WKS/EXAMPLE3/GUIDE_SHAFT				6	Neue Kontur
P	Abspanen	V	T=ROUGHTNG TRA A	FØ 25/11 U24	Am nlan	
1	Kontur		GUIDE_SHAFT_BLAN	IK	on pron	Absnanen
V.	Kontur		GUIDE_SHAFT_CONT	TOUR		- more and p
M.	Abspanen	∇	T=ROUGHING_T80 A	FØ.3/U V260	In	Observer
martin.	Restabspanen	⊽	T=BUTTON_TOOL_8	F0.25/U V240	in 🖃	Hospanen
END	Programmende					Hout
						Stechen
						Stechen Rest
					_	Stechdreher
						Stechdreher Rest
	7 Edit [The Bohren 🛃 Dr	ehen 🦊	Kontur drehen	Diver- ses	t Simu- lation	Anwah

Bild 8-25 Arbeitsplan mit Restabspanen

Starten Sie die Simulation.

Nach dem Schruppen der Kontur müssen Sie diese noch schlichten. Wählen Sie den Softkey **Kontur drehen** an.

Wählen Sie den Softkey Abspanen an.

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug FINISHING_T35 A an.

Werkzeug

Übernehmen Sie das Werkzeug in das Programm. Geben Sie in der Eingabemaske folgende Werte für das Schlichten ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.12		
S	280 m/min	Х	
Bearbeitung	schlichten	Х	
	längs	Х	
	außen	Х	
Aufmaß	nein	Х	
Hinterschnitte	ја	Х	
Eingrenzen	nein	Х	

8.5 Restabspanen

Übernehmen Sie die eingegebenen Werte.

Starten Sie die Simulation.

Bild 8-28 Schlichten Simulation – 3D-Ansicht

Einstich 8.6

Bedienfolgen

Über die folgenden Schritte erstellen Sie den Einstich.

Nach dem Restabspanen sieht die Arbeitsschrittliste wie folgt aus:

Ins

Programm

Wählen Sie den Softkey Drehen an.

Wählen Sie den Softkey Einstich an.

Wählen Sie den zweiten der angebotenen Einstichformen (Einstich 2).

Übernehmen Sie das Werkzeug in das Programm.

Einfacher Drehen mit ShopTurn Trainingsunterlage, 05/2010, 6FC5095-0AB80-1AP0 Bearbeitung

Lage

X0

Z0

Β1

Τ1

α1

α2

FS1

R2

R3

FS4

D

U

Ν

8.6 Einstich

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.1 mm/U		
V	150 m/min	Х	

Х

Х

X (Feld)

Х

X (Feld)

X (Feld)

X (Feld)

X (Feld)

X (Feld)

Hier geben Sie die Position und die Abmaße

des Einstiches ein.

Hier geben Sie den Flankenwinkel und die

Ecken ein.

Verrundungen an den

Geben Sie in der Eingabemaske folgende Werte für den Einstich ein:

Schruppen +

vgl. Abbildung

Schlichten

unten

60

-67

4.2

15

15

1

1

1

1

4

1

0.2

4 ink

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht die Arbeitsschrittliste wie folgt aus:

_				18.02.10 11:31
NC/	uks/example3/guid	e_shaft	8	Abspanen
Р	Programmkopf			
1000	Abspanen	∇	T=ROUGHING_T80 A F0.25/U V240m plan	
VI	Kontur		GUIDE_SHAFT_BLANK	Einstich
5	Kontur		GUIDE_SHAFT_CONTOUR	-
Mr.	Abspanen	▽	T=ROUGHING_T80 A F0.3/U V260m	
A.S.	Restabspanen	∇	T=BUTTON_TOOL_8 F0.25/U V240m	Freistich
M.	Abspanen	222	T=FINISHING_T35 A F0.12/U V280m	-
3.E	Einstich	V+VV	T=PLUNGE_CUTTER_3 A F0.1/U V150m 🖃	
END	Programmende			Gewinde
				Abstich
			×	
	100		>	
J	Edit T Bohrer	n 📥 Drehen 📥	kontur Fräsen Diver- Simu-	Anwahl

Bild 8-31 Arbeitsplan einschließlich Einstich

Starten Sie die Simulation. Teilbereiche des Werkstücks können Sie unter Verwendung des Softkeys **Lupe** überprüfen.

Bild 8-32 Simulation - 3D-Ansicht (Lupe)

8.7 Gewinde

8.7 Gewinde

Bedienfolgen

Über die folgenden Schritte erstellen Sie das Gewinde.

Wählen Sie den Softkey Drehen an.

Wählen Sie den Softkey Gewinde an.

Werkzeug auswählen

Öffnen Sie die Werkzeugliste und wählen Sie den Vollbohrer THREADING_T1.5 an.

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Gewinde ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Р	1.5 mm/U	Х	
G	0		
S	800 U/min	Х	
Bearbeitung	Schruppen Degressiv Außengewinde	X X X	Das Gewinde wird mit der Einstellung <i>degressiv</i> erstellt. Diese Einstellung bewirkt, dass die Spanaufteilung bei jedem Schnitt verringert wird, damit der
X0	48		Spanquerschnitt konstant bleibt.
Z0	-3		
Z1	-23 abs	Х	

8.7 Gewinde

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
LW	4	X (Feld)	
LR	2		
H1	0.92		
αP	29	X (Feld)	
	Zustellung mit wechselnder Flanke	x	
ND	8	X (Feld)	
U	0.1		
VR	2		
Mehrgängig	nein	Х	
α0	0		

Bild 8-33 Gewinde herstellen

Wechseln Sie bei Bedarf zum Hilfebild.

Bild 8-34 Hilfebild - Gewindeauslauf

Beispiel 3: Umlenkwelle

8.8 Bohren

Übernehmen Sie die eingegebenen Werte.

Starten Sie die Simulation. Teilbereiche des Werkstücks können Sie unter Verwendung des Softkeys **Details** überprüfen.

8.8 Bohren

Bedienfolgen

Über die folgenden Schritte erstellen Sie die Bohrungen auf der Stirnseite (C-Achse bzw. Komplett-Bearbeitung).

Programmkonf	_shaft	9	Bohren Mittig
Abspanen	⊽	T=ROUGHING_T80 A F0.25/U V240m plan	
Kontur		GUIDE_SHAFT_BLANK	Zentriere
Kontur		GUIDE_SHAFT_CONTOUR	
Abspanen	∇	T=ROUGHING_T80 A F0.3/U V260m	
Restabspanen	▽	T=BUTTON_TOOL_8 F0.25/U V240m	Bohren
Abspanen	$\nabla \nabla \nabla$	T=FINISHING_T35 A F0.12/U V280m	Helben
Einstich	V+VV	T=PLUNGE_CUTTER_3 A F0.1/U V150m	Tal
Geuinde Längs	▼	T=THREADING_T1.5 P1.5mm/U S800U 🖃	hobren
Programmende			Domen
			bohren
			Positione
			Position

Nach dem Fertigen des Gewindes sieht die Arbeitsschrittliste wie folgt aus:

Bild 8-36 Arbeitsplan nach Fertigung des Gewindes

Wählen Sie den Softkey Bohren an.

Bohren Reiben

Wählen Sie den Softkey **Bohren Reiben** an. Das Werkstück wird direkt, d. h. ohne Zentrierung gebohrt.

Bohren

Wählen Sie den Softkey **Bohren** an.

Öffnen Sie die Werkzeugliste und wählen Sie den Vollbohrer DRILL_5 an.

Ins Programm

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für die Bohrung ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.06 mm/U	Х	
V	140 m/min	Х	
	Stirn	Х	
	Schaft	Х	Der Tiefenbezug wird auf <i>Schaft</i> umgeschaltet.
Z1	10 ink	X	Die Bohrtiefe können Sie mit 10 mm inkremental oder mit -10 mm absolut eingeben.
DT	0 s	Х	

8.8 Bohren

Bild 8-37 Bohren

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht die Arbeitsschrittliste wie folgt aus:

P Programmkopf		6	Mittig
Abspanen	∇	T=ROUGHING_T80 A F0.25/U V240m plan	
Kontur ر		GUIDE_SHAFT_BLANK	Zentrieren
ැ- Kontur		GUIDE_SHAFT_CONTOUR	
🖌 - Abspanen	∇	T=ROUGHING_T80 A F0.3/U V260m	D.I.
🖟 Restabspanen	∇	T=BUTTON_TOOL_8 F0.25/U V240m	Bohren
🖌 🛛 Abspanen	$\nabla \Delta \Delta$	T=FINISHING_T35 A F0.12/U V280m	heibell
📕 Einstich	▽+▽▽▽	T=PLUNGE_CUTTER_3 A F0.1/U V150m	Tieflech
🕅 Gevinde Längs	▽	T=THREADING_T1.5 P1.5mm/U S800U	hobren
Bohren		□ T=DRILL_5 F0.06/min V140m Z1=10in →	boinci
NU Programmende			Gewinde
NU Programmende			Gewinde bohren
NU Programmende			Gewinde bohren Positionen
NU Programmende			Gewinde bohren Positionen
NU Programmende		-	Gewinde bohren Positionen Position

Bild 8-38 Arbeitsplan nach Bohren

Beim Bohrarbeitsschritt können Sie eine offene Bindestelle in der Arbeitsschrittliste erkennen. Diese wird im nächsten Schritt automatisch mit den Bohrpositionen verknüpft.

Positionen

Wählen Sie den Softkey Positionen an.

 \sim

Zur Übung werden die vier Bohrungen als Einzelpositionen eingegeben. Die einfachere Lösung wäre hier über den Positionskreis.

Bild 8-39 Positionen eingeben

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht die Arbeitsschrittliste wie folgt aus:

_				18.02.10 12:20
NC/	UKS/EXAMPLE3/GUIDE	_shaft	11	Bohren Mittig
3	Obspanen	⊽	T=ROUGHING TRO 0 F0 25/U U240m plan	
U1	Kontur		GUIDE SHAFT BLANK	Zentrieren
5	Kontur		GUIDE_SHAFT_CONTOUR	Longieron
1	Abspanen	⊽	T=ROUGHING_T80 A F0.3/U V260m	
A.	Restabspanen	∇	T=BUTTON_TOOL_8 F0.25/U V240m	Bohren
M	Abspanen	$\nabla \Delta \Delta$	T=FINISHING_T35 A F0.12/U V280m	heibell
1.6	Einstich	⊽+⊽⊽⊽	T=PLUNGE_CUTTER_3 A F0.1/U V150m	Tiefloch
W	Gevinde Längs	V	T=THREADING_T1.5 P1.5mm/U S800U	bohren
Sez 1	Bohren	0+	T=DRILL_5 F0.06/min V140m Z1=10ink	4
/ -	001: Positionen	0+	20=0 CP=0 X0=16 Y0=0 X1=0 Y1=-16 →	Gewinde
END	Programmende			bohren
				Positionen
				Beeltier
			×	wiederh.
			Kontur - Simu-	[NC]
J	Edit Bohren	Drehen 💕	drehen	Anwahl

Bild 8-40 Arbeitsplan nach Eingabe des Positionsmusters

Die Bohrungen sind nun mit den Bohrpositionen verknüpft.

8.8 Bohren

Starten Sie die Simulation.

Bild 8-41 Simulation - 3D-Ansicht

Beispiel 3: Umlenkwelle 8.9 Rechtecktasche fräsen

Rechtecktasche fräsen 8.9

Bedienfolgen

Über die folgenden Schritte erstellen Sie die Rechtecktasche auf der Stirnseite (C-Achse bzw. Komplett-Bearbeitung).

Wählen Sie den Softkey Fräsen an.

Wählen Sie den Softkey Tasche an.

Wählen Sie den Softkey Rechtecktasche an.

Öffnen Sie die Werkzeugliste und wählen Sie den Vollbohrer CUTTER_8 an.

Übernehmen Sie das Werkzeug in das Programm. Geben Sie in der Eingabemaske folgende Werte für die Rechtecktasche ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.03 mm/Zahn	Х	
V	220 m/min	Х	
	Stirn	Х	
Bearbeitung	Schruppen	X	
	Einzelpositionen	Х	
X0	0	X (Feld)	
Y0	0	X (Feld)	
Z0	0		
W	23		
L	23		
R	4		

8.9 Rechtecktasche fräsen

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
α0	0		
Z1	3 ink	Х	
DXY	75%	Х	
DZ	1.5		
UXY	0		
UZ	0		
Eintauchen	helikal	Х	siehe unten Eintauchen
EP	1		
ER	7		

Bild 8-43 Rechtecktasche herstellen

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht die Arbeitsschrittliste wie folgt aus:

Abspanen Kontur Kontur Abspanen			T=ROUGHING_T80 A F0.25/U V240m plan	
Kontur Kontur Abspanen				
∫ - Kontur ∉ - Abspanen ≰ - Bestabspanen			GUIDE_SHAFT_BLANK	Tasche
Abspanen Restabspanen			GUIDE_SHAFT_CONTOUR	
6- Restahenanen	⊽		T=ROUGHING_T80 A F0.3/U V260m	
// nestabsparien	⊽		T=BUTTON_TOOL_8 F0.25/U V240m	Zapten
Abspanen	$\nabla \nabla \nabla$		T=FINISHING_T35 A F0.12/U V280m	Tienrkant
Einstich	** ***		T=PLUNGE_CUTTER_3 A F0.1/U V150m	
🖇 Gevinde Längs	⊽		T=THREADING_T1.5 P1.5mm/U S800U	Nut
Z] Bohren		0+	T=DRILL_5 F0.06/min V140m Z1=10ink	
/ 001: Positionen		□+	20=0 CP=0 X0=16 Y0=0 X1=0 Y1=-16	Geruinden
Rechtecktasche	∀	0+	T=CUTTER_8 F0.03/2 V220m X0=0 Y0=-	fräsen
Programmende				industrial
				Gravur
				Kontur fräsen

Bild 8-44 Arbeitsplan nach Rechtecktasche

Starten Sie die Simulation.

Eintauchen

Eintauchen senkrecht	Eintauchen helikal	Eintauchen pendelnd

Beispiel 3: Umlenkwelle

8.9 Rechtecktasche fräsen

9.1 Überblick

Lernziele

In diesem Kapitel lernen Sie folgende neue Funktionen kennen. Sie lernen wie Sie ...

- bei Werkstücke die Innenbearbeitung ausführen,
- mit dem Arbeitsschritteditor arbeiten,
- einen Freistich und
- einen asymmetrischen Einstich erstellen.

Aufgabenstellung

Bild 9-1 Werkstattzeichnung - Beispiel 4

Bild 9-2 Rohteil-Kontur

Alle nicht bemaßten Radien R10!

Hinweis

Wegen der besseren Spannmöglichkeit wird zuerst die Seite 1 gefertigt.

9.2 Erstellen der ersten Werkstückseite

Arbeitsplan erstellen

Da das Werkstück von zwei Seiten bearbeitet werden soll (es wird ohne Gegenspindel gefertigt), müssen Sie hierfür zwei Arbeitspläne erstellen.

Erstellen Sie zunächst den Arbeitsplan für die linke Seite ('HOLLOW_SHAFT_SIDE1')

Bedienfolgen

Legen Sie eigenständig das Programm 'HOLLOW_SHAFT_SIDE1' an.

Bild 9-3 ShopTurn-Programm anlegen

Geben Sie im Programmkopf folgende Daten ein (vgl. Abbildung).

9.2.1 Plandrehen

Bedienfolgen

Über die folgenden Schritte drehen Sie das Rohteil bis auf Z0 plan: Wählen Sie den Softkey **Drehen** an.

Abspanen

Wählen Sie den Softkey **Abspanen** an. Wählen Sie das Werkzeug ROUGHING_T80 A aus.

Geben Sie in der Eingabemaske folgende Werte ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.2		
V	240 m/min	Х	
Bearbeitung	Schruppen	Х	Da noch sehr viel Material (5 mm) auf der Stirnseite vorhanden ist, stellen Sie die Bearbeitung auf Schruppen ein.
Lage	(Siehe Abbildung unten)	Х	
Bearbeitungsrichtung	Plan	Х	
X0	105		
ZO	5		
X1	-1.6 abs	Х	
Z1	0 abs	Х	
D	2.5		
UX	0.0		
UZ	0.2		

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht Ihr Arbeitsschrittprogramm wie folgt aus.

9.2.2 Bohren

Bedienfolgen

Bohren	Über die folgenden Schritte wird das Werkstück mittig gebohrt. Wählen Sie den Softkey Bohren an.
Bohren Reiben	Wählen Sie den Softkey Bohren Reiben an.
Bohren	Wählen Sie den Softkey Bohren an.
Werkzeug auswählen	Öffnen Sie die Werkzeugliste und wählen Sie den Vollbohrer DRILL_32 an.
Ins Programm	Übernehmen Sie das Werkzeug in das Programm.

9.2 Erstellen der ersten Werkstückseite

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.1 mm/U	Х	
V	240 m/min	Х	
	Stirn	Х	
	Spitze	Х	
Z1	-67 abs	Х	
DT	0 s	Х	

Geben Sie in der Eingabemaske folgende Werte für die Bohrung ein:

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht die Arbeitsschrittliste wie folgt aus:

Bild 9-8 Arbeitsplan nach Bohren

9.2 Erstellen der ersten Werkstückseite

Positionen

Wählen Sie den Softkey **Positionen** an.

Geben Sie die Bohrposition ein (vgl. folgende Abbildung).

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht die Arbeitsschrittliste wie folgt aus:

_						25.02.10 15:01
NC/	WKS/EXAMPLE4/HOLLOW_	SHAFT_SID	E1		4	Werkzeug
Ρ	Programmkopf				^	auswählen
	Abspanen	⊽		T=ROUGHING_T80 A F0.2/U V240m plan		ļ
Sez -	Bohren		0+	T=DRILL_32 F0.1/U V240m Z1=-67		Grafische
11-	001: Positionen		0	20=0 X0=0 Y0=0		Ansicht
END	Programmende				18	
						Suchen

Bild 9-10 Arbeitsplan nach Eingabe der Bohrposition

9.2.3 Rohteil-Kontur

Bedienfolgen

Geben Sie selbständig folgende Rohteil-Kontur ein. Da das Werkstück je Arbeitsplan nur von einer Seite bearbeitet wird, genügt es, die Rohteil-Kontur nur bis Z-65 zu konstruieren.


```
Neue
Kontur
```

Wählen Sie den Softkey **Neue Kontur** an. Geben Sie für die Kontur den Namen 'HOLLOW_SHAFT_BLANK' ein.

Bild 9-11 Kontur anlegen

Erstellen Sie im Konturrechner die Rohteil-Kontur (vgl. folgende Abbildung).

9.2.4 Fertigteil-Kontur der ersten Seite außen

Bedienfolgen

Über die folgenden Schritte geben Sie die Fertigteil-Kontur ein:

Hinweis

Die (rote) Kontur des Fertigteils entspricht absichtlich nicht der Zeichnung. Die Fertigteilkontur dient einerseits als Begrenzung für die Schruppbearbeitung, aber was noch viel wichtiger ist, sie legt den genauen Verfahrweg für das Schlichten fest. So beginnt hier die Konstruktion auf dem Durchmesser der Bohrung. Damit wird sichergestellt, dass die Planfläche sauber geschlichtet wird. Das Konturende ist eine Verlängerung der Fase über das Rohteil hinaus. Der große Durchmesser wird erst in der zweiten Aufspannung gefertigt.

Wählen Sie den Softkey Kontur drehen an.

Wählen Sie den Softkey **Neue Kontur** an. Geben Sie für die Kontur den Namen 'HOLLOW_SHAFT_SIDE1_E' ein.

Bild 9-13 Kontur anlegen

Übernehmen Sie die Eingabe.

Setzen Sie den Startpunkt auf X32/Z0.

Bild 9-14 Kontur Startpunkt eingeben

Übernehmen Sie die Eingabe.

9.2 Erstellen der ersten Werkstückseite

Geben Sie in der Eingabemaske folgende Werte für die senkrechte Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
х	68 abs	Х	\mathbf{Y}
Übergang zum Folgeelement	Fase	X	
F	1		

Übernehmen Sie die eingegebenen Werte.

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z	-5 abs	Х	}
Übergang zum Folgeelement	Fase	Х	
FS	0		

Übernehmen Sie die eingegebenen Werte.

9.2 Erstellen der ersten Werkstückseite

Geben Sie in der Eingabemaske folgende Werte für den nächsten Abschnitt ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Drehrichtung	rechts	Х	>
R	20		
Х	68 abs	X	
Z	-25 abs	Х	
Übergang zum Folgeelement	Fase	Х	
FS	0		

Bild 9-17 Kontur Bogen eingeben

Wählen Sie die gewünschte Konstruktion aus.

Übernehmen Sie die Auswahl.

Übernehmen Sie den Konturabschnitt.

Geben Sie in der Eingabemaske folgende Werte für die waagerechte Gerade ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Z	-55 abs	Х	\mathbf{Y}
Übergang zum Folgeelement	Fase	Х	
FS	0		
			Der Freistich wird später als Einzelelement eingefügt.

Bild 9-18 Kontur waagerechte Strecke eingeben

Übernehmen Sie die eingegebenen Werte.

9.2 Erstellen der ersten Werkstückseite

Geben Sie in der Eingabemaske folgende Werte für die senkrechte Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Х	98 abs	Х	
Übergang zum Folgeelement	Fase	Х	
FS	0		
			Die Schräge bleibt später, nach der Bearbeitung der zweiten Seite, als Fase übrig.

Bild 9-19 Kontur senkrechte Strecke eingeben

Übernehmen Sie die eingegebenen Werte.

Geben Sie in der Eingabemaske folgende Werte für die schräge Strecke ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
Х	106 abs	Х)
α1	135	Х	
Übergang zum Folgeelement	Fase	Х	
FS	0		

Bild 9-20 Kontur schräge Strecke eingeben

Übernehmen Sie die eingegebenen Werte.

Übernehmen Sie die Kontur in den Arbeitsplan.

Bild 9-21 Kontur im Konturrechner

Nach der Übernahme sieht der Arbeitsplan wie folgt aus. Die beiden Konturen werden automatisch miteinander verknüpft.

					84.83.10 14:27
NC/WKS/EXAMPLE4/HOLLO	W_SHAFT_SIDE1			6	Neue Kontur
Ahsnanen		T=ROUGHTNG TRO A	FR 2/11 U24	an nlan	
Se a Bohren		T=DBTLL 32 F0.1/	II U240m 71=-	-67	Obenenen
N ¹ 001: Positionen	0	70=0 X0=0 Y0=0	o renom er		Huspanen
(Kontur		HOLLOW SHAFT BLA	HK		
C-Kontur		HOLLOU SHAFT SID	E1 E		Abspanen
ENO Programmende					Rest
					Stechen
					Stechen Rest
					Stechdrehen
					Stechdrehen Rest
				~	
1			20	>	
Edit Edit	🚅 Drehen 🛃	Kontur drehen Fräsen	Diver- ses	ter Simu- lation	Anwahl

Bild 9-22 Arbeitsplan nach Eingabe der Konturen

Abspanen, Restabspanen und Schlichten

Im folgenden Arbeitsschritt spanen Sie die Kontur ab.

Gehen Sie dabei wie folgt vor:

Abspanen Wählen Sie den Softkey Abspanen an.

Werkzeug auswählen

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug ROUGHING_T80 A an.

Ins Programm

Übernehmen Sie das Werkzeug in das Programm. Geben Sie in der Eingabemaske folgende Werte für das Schruppen ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.3		
V	260 m/min	Х	
Bearbeitung	schruppen längs außen	X X X	
D	2.0		
UX	0.2		
UZ	0.2		
DI	0.0		

Beispiel 4: Hohlwelle

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
BL	Kontur	X	Bei den Rohteilbeschreibungen können Sie zwischen folgenden Einstellungen wählen: <i>Zylinder:</i> Rohteil = Zylinder <i>Kontur:</i> Rohteil = konstruierte Kontur <i>Aufmaß:</i> Rohteil = konstruierte
			Kontur mit definiertem Aufmaß
Hinterschnitte	nein	X	Mit dem Schruppwerkzeug kann nicht sinnvoll eingetaucht werden. Schalten Sie deshalb das Feld Hinterschnitte auf <i>nein</i> um.
Eingrenzen	nein	Х	

Übernehmen Sie die eingegebenen Werte.

9.2 Erstellen der ersten Werkstückseite

Wählen Sie den Softkey Abspanen Rest an.

Werkzeug auswählen

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug FINISHING_T35 A an.

Ins Programm

Übernehmen Sie das Werkzeug in das Programm. Vor dem Schlichten wird in diesem Arbeitsschritt das Restmaterial in der Hohlkehle zerspant.

Geben Sie in der Eingabemaske folgende Werte für das Abspanen Restmaterial ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.2		
V	240 m/min	Х	
Bearbeitung	schruppen längs außen	X X X	
D	2.0		
UX	0.2		
UZ	0.2		
DI	0.0		
Hinterschnitte	ja	X	Damit die Hohlkehle berücksichtigt wird, muss das Feld Hinterschnitte auf <i>ja</i> umgeschaltet werden.
FR	0.2		
Eingrenzen	nein	X	

Bild 9-24 Kontur abspanen Restmaterial

Übernehmen Sie die eingegebenen Werte.

9.2 Erstellen der ersten Werkstückseite

Wählen Sie den Softkey Abspanen an.

Werkzeug auswählen

Ins Programm Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Schlichten ein:

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug FINISHING_T35 A an.

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.15		
V	280 m/min	Х	
Bearbeitung	schlichten längs außen	X X X	
Aufmaß	nein	Х	
Hinterschnitte	ја	Х	Schalten Sie auch hier Hinterschnitte auf <i>ja</i> um.
Eingrenzen	nein	Х	

Bild 9-25 Kontur schlichten

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht Ihr Arbeitsschrittprogramm wie folgt aus. Die Konturen werden automatisch mit den Abspan-Arbeitsschritten verknüpft.

_					04.03.10 14:34
	WKS/EXAMPLE4/HOLLO)w_shaft_side1		9	Neue Kontur
3	Obenenen		T-DOUCHTHE TOP 0 FR 2/11 11240- plon		
inters .	Rehven	×	T-DDT11 22 F0 1/11 1240- 71- 67	· ·	
2	DUILEII 001: Desitionen		70-0 V0-0 V0-0	- 1	Abspanen
1	Kontur	•		- 1	
0.	Kontur			- 1	Abspanen
0.	Kontur	_	HULLUW_SHHFI_SIDE1_E	- 1	Rest
Mi	Hospanen	▼	1=FINISHING_135 H F0.3/U V200m	-8	
met.	Kestabspanen	V	1=FINISHING_135 H F0.2/U V240m	_	C1 . 1
and a	Hbspanen	000	T=FINISHING_135 H F0.15/0 V280m	-	Stechen
END	Programmende				<i></i>
					Stechen Rest
					Stechdrehen
					Stechdrehen Rest
				>	
1				>	-
	Edit F Bohren	🚅 Drehen 🛃	Kontur drehen Fräsen E Diver- ses Lat	nu- tion	Anwahl

Bild 9-26 Arbeitsplan nach Abspanen der Kontur

9.2.5 Freistich

Es stehen vier verschiedene Freistich-Typen zur Auswahl:

Freistrich Form E	Freistrich Form F	Freistrich Gew. DIN	Freistrich Gewinde
with the second			21

Bedienfolgen

Über die folgenden Schritte erstellen Sie den Freistich.

Nach dem Restabspanen sieht die Arbeitsschrittliste wie folgt aus:

		au arr		
IC/	UKS/EXAMPLE3/GUIDE_	SHAFT	1	Abspane
	Obspanen		T=R0UGHTNG T80 0 F0 25/U U240m plan	
(7	Kontur		GUIDE SHAFT BLANK	Einstich
1	Kontur		GUIDE SHAFT CONTOUR	LIIIsuuli
1	Abspanen	⊽	T=ROUGHING T80 A F0.3/U V260m	
3-	Restabspanen	▽	T=BUTTON_TOOL_8 F0.25/U V240m	Freistich
6	Abspanen	A A A	T=FINISHING_T35 A F0.12/U V280m	
D	Programmende			
				Cardinal
				Gewind
				Gewind
				Obatial
				Abstich
			i I I	Abstich
				Abstich
	7		Kontur	Abstich

9.2 Erstellen der ersten Werkstückseite

Ins Programm Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für den Einstich ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.15		
V	200 m/min	Х	
Lage	vgl. Abbildung unten	Х	
	E 1.0 x 0.4	Х	
X0	68		
ZO	-55		
X1	0 ink	Х	
VX	70 abs	Х	

Bild 9-28 Freistich eingeben

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht die Arbeitsschrittliste wie folgt aus:

io, wko, Eran in EE I, HOEEOw	_SHHFT_SIDET	10	Abspanen
P Programmkopf			
Abspanen	Q	T=ROUGHING_T80 A F0.2/U V240m plan	
Bohren		* T=DRILL_32 F0.1/U V240m Z1=-67	Einstich
√ '001: Positionen		* 20=0 X0=0 Y0=0	
Kontur		HOLLOU_SHAFT_BLANK	
J Kontur		HOLLOW_SHAFT_SIDE1_E	Freistich
Abspanen	A	T=FINISHING_T35 A F0.3/U V260m	
Restabspanen	A	T=FINISHING_T35 A F0.2/U V240m	
🖌 - Abspanen	$\Delta \Delta \Delta$	T=FINISHING_T35 A F0.15/U V280m	Gewinde
Freistich E		T=FINISHING_T35 A F0.15/U V200m	
ND Programmende			
			Hostich
			6
		L L L L L L L L L L L L L L L L L L L	
			_
			_
		V V	
	a natara ana	Kontur	NC On rel

Bild 9-29 Arbeitsplan mit Freistich

Starten Sie die Simulation.

Bild 9-30 Simulation - Schnitt aktiv

9.2.6 Fertigteil-Kontur der ersten Seite innen

Bedienfolgen

Über die folgenden Schritte geben Sie die Fertigteil-Kontur ein:

Wählen Sie den Softkey Kontur drehen an.

Wählen Sie den Softkey **Neue Kontur** an. Geben Sie für die Kontur den Namen 'HOLLOW_SHAFT_SIDE1_I' ein.

P Programmkopf Abspanen Bohren V 001: Position J Kontur		A F0.2/U V240m plan //U V240m Z1=-67
Contur Contur Contur Contur Restabspanen Contur Abspanen Freistich E No Programmende	Neue Kontur Bitte geben Sie den neuen Namen ein HOLLOU_SHAFT_SIDE1_I).3/U V260m).2/U V240m).15/U V280m].15/U V280m

9.2 Erstellen der ersten Werkstückseite

Übernehmen Sie die Eingabe. Setzen Sie den Startpunkt auf X50/Z0.

Bild 9-33 Kontur Startpunkt eingeben

Übernehmen Sie die Eingabe.

Erstellen Sie eigenständig die Kontur (vgl. folgende Abbildung).

Bild 9-34 Fertigteil-Kontur der ersten Seite innen

9.2 Erstellen der ersten Werkstückseite

Abspanen, Restabspanen und Schlichten

Im folgenden Arbeitsschritt spanen Sie die Kontur ab. Die Geometrien wie folgt in Ihrem Arbeitsplan vorliegen.

Wählen Sie den Softkey Abspanen an.

Werkzeug auswählen

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug ROUGHING_T80 I an.

Ins Programm

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Schruppen ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.25		
V	250 m/min	Х	
Bearbeitung	schruppen längs innen	X X X	Die Bearbeitung müssen Sie auf <i>innen</i> umschalten.
D	2.0		
UX	0.2		
UZ	0.2		
DI	0.0		
BL	Zylinder	X	Da bereits gebohrt wurde, müssen Sie für die Innenbearbeitung keine Rohteil-Kontur berücksichtigen. Schalten Sie auf <i>Zylinder</i> um.

9.2 Erstellen der ersten Werkstückseite

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
XD	32 abs	Х	
ZD	0 ink	Х	
Hinterschnitte	nein	Х	
Eingrenzen	nein	Х	

Bild 9-36 Kontur schruppen

Abspanen

Werkzeug auswählen

Ins Programm Übernehmen Sie die eingegebenen Werte.

Wählen Sie den Softkey Abspanen an.

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug FINISHING_T35 I an.

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Schlichten ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.12		
V	280 m/min	Х	
Bearbeitung	schlichten längs innen	X X X	
Aufmaß	nein	Х	
Hinterschnitte	nein	Х	
Eingrenzen	nein	Х	

Übernehmen Sie die eingegebenen Werte.

Starten Sie zur Überprüfung die Simulation.

Bild 9-38 Simulation - Schnitt aktiv

Freistich

Über die folgenden Schritte erstellen Sie den Freistich: Wählen Sie den Softkey **Freistich** an.

Wählen Sie den Softkey **Freistich Form E** an. Erstellen Sie den Freistich (vgl. folgende Abbildung).

Hinweis

Achten Sie auf die richtige Lage des Freistichs!

Starten Sie die Simulation.

Bild 9-40 Simulation Freistich (mit Anzeige der Verfahrwege)

Der	Arhaita	nlan für	dia	orsto	Saita	dos	Workstücks	sipht	wie fr	hat	alie
Dei	Aibeits	plantur	uie	erste	Selle	ues	VIEINSLUCKS	SIGHT	wie ic	лyı	aus.

_					
_					12.03.1
NC/	UKS/EXAMPLE4/HO	llow_shaft_side1	1	4 Werk	zeug
Р	Programmkopf			 auswä 	ählen
1	Abspanen	∇	T=ROUGHING_T80 A F0.2/U V240m plan	_	
Sez -	Bohren	⊡•	T=DRILL_32 F0.1/U V240m Z1=-67	Grafi	sche
1	001: Positionen	+	20=0 X0=0 Y0=0	Hnsi	cht
۲Ú	Kontur		HOLLOW_SHAFT_BLANK		
<u>ل</u>	Kontur		HOLLOW_SHAFT_SIDE1_E	Such	nen
×.	Abspanen	∇	T=ROUGHING_T80 A F0.3/U V260m		
A.	Restabspanen	∇	T=FINISHING_T35 A F0.2/U V240m		
M.	Abspanen	$\nabla \nabla \nabla$	T=FINISHING_T35 A F0.15/U V280m	Marki	ieren
	Freistich E		T=FINISHING_T35 A F0.15/U V200m		
V	Kontur		HOLLOW_SHAFT_SIDE1_I		
)	Abspanen	∇	T=ROUGHING_T80 I F0.25/U V250m	Kopie	eren
M.	Abspanen	$\nabla \nabla \nabla$	T=FINISHING_T35 I F0.12/U V280m		
1	Freistich E		T=FINISHING_T35 I F0.15/U V200m 🖃		
END	Programmende			Einfü	gen
				Au	s-
				schne	iden
J	Edit E Bohr	ren 🚅 Drehen 볼	Kontur Fräsen Diver-	A 🖳	nwahl
Bi	ld 9-41	Arbeitsplan	mit Freistich		

9.2.7 Der Arbeitsschritteditor

Funktionen des Arbeitsschritteditors

Im Folgenden erhalten Sie einen Überblick über die Funktionen des Arbeitsschritteditors:

Grafische Ansicht	Über diesen Softkey wechseln Sie zur Strichgrafik.
Suchen	Über diesen Softkey können Sie Texte im Programm suchen.
Markieren	Über diesen Softkey können Sie mehrere Arbeitsschritte zur weiteren Bearbeitung auswählen (z.B. Kopieren oder Ausschneiden).
Kopieren	Über diesen Softkey können Sie Arbeitsschritte in die Zwischenablage kopieren.
Einfügen	Über diesen Softkey können Sie Arbeitsschritte aus der Zwischenablage in den Arbeitsplan einfügen. Das Einfügen erfolgt dabei immer hinter dem gerade markierten Arbeitsschritt.
Aus- schneiden	Über diesen Softkey können Sie Arbeitsschritte in die Zwischenablage kopieren und gleichzeitig an der Ursprungsstelle löschen. Dieser Softkey dient auch zum "reinen" Löschen.
	Über diesen Softkey wechseln Sie in das erweiterte Menü.

Einzelne dieser Funktionen benötigen Sie, um die Rohteil-Kontur der ersten Seite auch im Arbeitsplan für die zweite Seite des Werkstücks zu verwenden. Die Rohteil-Kontur werden Sie in den Zwischenspeicher kopieren und im Arbeitsplan für die zweite Seite entsprechend einfügen.

Bild 9-42 Rohteil-Kontur

9.2.8 Kontur kopieren

Bedienfolge

Über folgenden Arbeitsschritt kopieren Sie die Rohteil-Kontur in den Zwischenspeicher: Navigieren Sie auf die Kontur 'HOLLOW_SHAFT_BLANK'.

Programmkopf			auswahlen
Abspanen	⊽	T=ROUGHING_T80 A F0.2/U V240m plan	
Bohren		T=DRILL_32 F0.1/U V240m Z1=-67	Grafische
001: Positionen	0•	Z0=0 X0=0 Y0=0	HISICH
Kontur		HOLLOW_SHAFT_BLANK 🖃	
Kontur		HOLLOW_SHAFT_SIDE1_E	Suchen
Abspanen	∇	T=FINISHING_T35 A F0.3/U V260m	
Restabspanen	V	T=FINISHING_T35 A F0.2/U V240m	
Abspanen	$\nabla \Delta \Delta$	T=FINISHING_T35 A F0.15/U V280m	Markieren
Freistich E		T=FINISHING_T35 A F0.15/U V200m	1
Kontur		HOLLOW_SHAFT_SIDE1_I	
Abspanen	▽	T=ROUGHING_T80 I F0.25/U V250m	Kopieren
Abspanen	$\nabla \nabla \nabla$	T=FINISHING_T35 I F0.12/U V280m	
Freistich E		T=FINISHING_T35 I F0.15/U V200m	
Programmende			Einfügen
			Aus- schneiden

Bild 9-43 Kontur in Zwischenspeicher kopieren

Kopieren Sie die Rohteil-Kontur in den Zwischenspeicher. Die Kontur bleibt solange im Zwischenspeicher, bis Sie einen weiteren Arbeitsschritt in den Zwischenspeicher kopieren bzw. die Steuerung abschalten.

9.3 Erstellen der zweiten Werkstückseite

Arbeitsplan erstellen

Über die folgenden Schritte erstellen Sie den Arbeitsplan für die zweite Seite des Werkstückes.

Bedienfolgen

Legen Sie eigenständig das Programm 'HOLLOW_SHAFT_SIDE2' an.

	Neues Schrittkettenprogramm	
Тур	ShopTurn	 ~
Name <mark>HOLL(</mark>	DW_SHAFT_SIDE2	

Bild 9-44 ShopTurn-Programm anlegen

Kopieren

Geben Sie im Programmkopf folgende Daten ein (vgl. Abbildung).

9.3.1 Plandrehen

Bedienfolgen

Über die folgenden Schritte drehen Sie das Rohteil bis auf X-1.6 und Z0 plan: Wählen Sie den Softkey **Drehen** an.

Wählen Sie den Softkey Abspanen an.

Wählen Sie das Werkzeug ROUGHING_T80 A aus.

Geben Sie in der Eingabemaske folgende Werte ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.2		
V	240 m/min	Х	
Bearbeitung	Schruppen	Х	Da noch sehr viel Material (5 mm) auf der Stirnseite vorhanden ist, stellen Sie die Bearbeitung auf Schruppen ein.
Lage	(Siehe Abbildung unten)	Х	
Bearbeitungsrichtung	Plan	Х	

9.3 Erstellen der zweiten Werkstückseite

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
X0	105		
Z0	5		
X1	-1.6 abs	Х	
Z1	0 abs	Х	
D	2.5		
UX	0.0		
UZ	0.2		

Bild 9-46 Werkstück plandrehen

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht Ihr Arbeitsschrittprogramm wie folgt aus.

9.3 Erstellen der zweiten Werkstückseite

9.3.2 Bohren

Bedienfolgen

E Bohren
Bohren Reiben
Bohren
Werkzeug auswählen
Ins Programm

Über die folgenden Schritte wird das Werkstück mittig gebohrt. Wählen Sie den Softkey **Bohren** an.

Wählen Sie den Softkey Bohren Reiben an.

Wählen Sie den Softkey Bohren an.

Öffnen Sie die Werkzeugliste und wählen Sie den Vollbohrer DRILL_32 an.

Geben Sie in der Eingabemaske folgende Werte für die Bohrung ein:

Übernehmen Sie das Werkzeug in das Programm.

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.1 mm/U	Х	
V	240 m/min	Х	
	Stirn	Х	
	Spitze	Х	
Z1	-57 abs	Х	
DT	0 s	Х	

Übernehmen Sie die eingegebenen Werte.

Einfacher Drehen mit ShopTurn Trainingsunterlage, 05/2010, 6FC5095-0AB80-1AP0

9.3 Erstellen der zweiten Werkstückseite

Positionen

Wählen Sie den Softkey Positionen an.

Geben Sie die Bohrposition ein (vgl. folgende Abbildung).

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht die Arbeitsschrittliste wie folgt aus:

Bild 9-50 Arbeitsplan nach Eingabe der Bohrposition

9.3.3 Rohteil-Kontur einfügen

Bedienfolgen

Übe die folgenden Schritte fügen Sie die Rohteil-Kontur aus dem Zwischenspeicher in Ihren Arbeitsplan ein:

Navigieren Sie zunächst im Arbeitsplan auf den zuletzt eingegebenen Arbeitsschritt (siehe Abbildung).

Bild 9-51 Position für Einfügen der Rohteil-Kontur

Einfügen

Fügen Sie die Rohteil-Kontur aus dem Zwischenspeicher ein. Nach dem Einfügen sollte Ihr Arbeitsplan wie folgt aussehen.

Bild 9-52 Kontur einfügen

9.3.4 Fertigteil-Kontur der zweiten Seite außen

Bedienfolgen

Über die folgenden Schritte geben Sie die Fertigteil-Kontur ein:

Hinweis

Der asymmetrische Einstich wird später gefertigt.

Wählen Sie den Softkey Kontur drehen an.

Wählen Sie den Softkey **Neue Kontur** an. Geben Sie für die Kontur den Namen 'HOLLOW_SHAFT_SIDE2_E' ein.

Bild 9-53 Kontur anlegen

Übernehmen Sie die Eingabe.

04.03.10 16:36 IC/UK 57.000 abs 0.000 abs END Z Grafische Ansicht ÜЬ am Konturanfang Fase 0.000 ∔ 57.1 57 56.9 56.8 -0.05 0.05 Jbernehr > Kontur drehen Fräsen Diver-ses 📝 Edit 📑 Bohren 🚅 Drehen Simu-lation Anwahl

Setzen Sie den Startpunkt auf X57/Z0.

Übernehmen Sie die Eingabe.

Erstellen Sie eigenständig die Kontur bis zum Endpunkt auf Z-65 und X100 (vgl. folgende Abbildung).

Bild 9-55 Kontur im Konturrechner

Übernehmen Sie die Kontur in den Arbeitsplan.

9.3 Erstellen der zweiten Werkstückseite

Abspanen und Schlichten

Im folgenden Arbeitsschritt spanen Sie die Kontur ab.

Gehen Sie dabei wie folgt vor:

Abspanen Wählen Sie den Softkey Abspanen an.

Werkzeug auswählen

Ins Programm Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug ROUGHING_T80 A an.

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Schruppen ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.3		
V	260 m/min	Х	
Bearbeitung	schruppen längs außen	X X X	
D	2.0		
UX	0.2		
UZ	0.2		
DI	0.0		
BL	Kontur	Х	
Hinterschnitte	nein	Х	
Eingrenzen	nein	X	

Bild 9-56 Kontur schruppen

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht Ihr Arbeitsschrittprogramm wie folgt aus.

Bild 9-57 Arbeitsplan nach Schruppen

Abspanen

Wählen Sie den Softkey Abspanen an.

Werkzeug auswählen

Ins Programm

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Schlichten ein:

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug FINISHING_T35 A an.

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.15		
V	200 m/min	Х	
Bearbeitung	schlichten längs außen	X X X	
Aufmaß	nein	Х	
Hinterschnitte	nein	Х	
Eingrenzen	nein	Х	

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht Ihr Arbeitsschrittprogramm wie folgt aus.

_						84.03.1 16:5
	WKS/EXAMPLE4/H	ollow_shaft_side	2		8	Neue Kontur
3	Ahsnanen	⊽		T=ROUGHTNG TRO & FO 2/U U240m nlan		
Cez .	Rohren		CD+	T=DRTII 32 F0 1/II U240m 71=-57		Ohenenen
1.	AN1: Positione	n	CD+		L	Huspanen
10	Kontur			HOLLOU SHAFT BLANK		
10	Kontur			HOLLOW_SHAFT_STDF2_F		Abspanen
Ne.	Ohenanen			T=R0UGHTNG T80 0 F0 3/11 U260	L	Rest
à c	Abspanen	000		T=EINISHING T35 0 E0 15/11 U200		
END	Programmende		-			Stechen
						Stechen Rest
						stecharener
					S	itechdreher Rest
				>	•	
	Edit 📑 Boh	iren 🚅 Drehen	,U	Kontur drehen Fräsen E Diver- ses Lation	•	Anwahl
Bi	ld 9-59	Arbeitspla	an	nach Abspanen der Kontu	r	

Starten Sie die Simulation.

9.3.5 Asymmetrischer Einstich erstellen

Bedienfolgen

Über die folgenden Schritte erstellen Sie den asymmetrischen Einstich.

Wählen Sie den Softkey Drehen an.

Wählen Sie den Softkey **Einstich** an.

Wählen Sie den Softkey Einstich 2 an.

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug PLUNGE_CUTTER_3 A an.

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgend	le Werte für den Einstich ein:
---------------------------------------	--------------------------------

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.08		
V	180 m/min	Х	
Bearbeitung	schruppen + schlichten	×	
Lage	vgl. Abbildung unten	x	
X0	70		
Z0	-55		
B1	10	X (Feld)	
T1	5.5 ink	Х	
α1	0		
α1	15		
R1	0	X (Feld)	
R2	2	X (Feld)	
R3	0	X (Feld)	
R4	0	X (Feld)	
D	3		
U	0.2	X (Feld)	
Ν	1		

Bild 9-61 Einstich eingeben

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht die Arbeitsschrittliste wie folgt aus:

_						04.03.10 16:58
NC/	UKS/EXAMPLE4/HOLLO	W_SHAFT_SIDE2			9	Abspanen
3	Programmkopi			FR 0/11 1104	0	
in a	Rebren	v (7)	T-DDIII 22 E0 1/	I FØ.2/U V24	om pian	
3	Bonren	U.*	T=DHILL_32 F0.1/	U V240m 21=	-5/	Einstich
N -	Volt: Positionen	*	20-0 10-0 10-0			
5	Kontur		HULLOW_SHHFT_DLF		[
5	Kontur	_	HULLUW_SHHFT_SIL	E2_E		Freistich
2011	Hospanen	♥	T=RUUGHING_180 H	FØ.3/0 V26		
M	Abspanen	$\Delta \Delta \Delta$	T=FINISHING_135	A FØ.15/U V	200m	
3.K	Einstich	0+000	T=PLUNGE_CUTTER_	<u>3 A F0.08/U</u>	V180m-	Gewinde
END	Programmende					
						Abstich
						mouton
						é 9
					>	
			Kontur -	Diver-	Simu	NE
	Edit Bohren	Drehen	drehen Fräsen	Ses	lation	Anwahl
No.					auton	

Bild 9-62 Arbeitsplan nach Einstich

Starten Sie die Simulation.

Bild 9-63 Simulation - 3D-Ansicht (Schnitt aktiv)

9.3.6 Fertigteil-Kontur der zweiten Seite innen

Bedienfolgen

Über die folgenden Schritte geben Sie die Fertigteil-Kontur ein:

Wählen Sie den Softkey Kontur drehen an.

Wählen Sie den Softkey **Neue Kontur** an. Geben Sie für die Kontur den Namen 'HOLLOW_SHAFT_SIDE2_I' ein.

Übernehmen Sie die Eingabe.

84.03.10 17:08 NC/UKS -57.000 abs 0.000 abs X Z Grafische Ansicht Üh am Konturanfang ase 0.000 ¥ -56.9 FS -57 -57.1 -57.2 -0.05 0.05 Übernehmen > Kontur Fräsen Diver-📝 Edit 📑 Bohren 🚅 Drehen Simu-lation NC Anwahl Bild 9-65 Kontur Startpunkt eingeben

Setzen Sie den Startpunkt auf X57/Z0.

Übernehmen Sie die Eingabe.

Erstellen Sie eigenständig die Kontur (vgl. folgende Abbildung).

Bild 9-66 Fertigteil-Kontur der zweiten Seite innen

Hinweis

Achten Sie beim Erstellen der Kontur darauf, dass die Bogenelemente tangential ineinander übergehen.

Der tangentiale Übergang gilt nur bei Hauptelementen, d. h. die Verrundung wird an das Hauptelement angehängt.

(Siehe folgende Abbildung)

Übernehmen Sie die Kontur. Nach der Übernahme der Kontur sieht Ihr Arbeitsschrittprogramm wie folgt aus.

_				84.03.10 17:41
NC/	UKS/EXAMPLE4/HOLLO	W_SHAFT_SIDE2	10	Neue Kontur
1	Ahsnanen	⊽	T=ROUGHTNG T80 A F0 2/U U240m plan	
Rez -	Rohren		T=DRT[1 32 F0 1/II U240m 21=-57	Ohananan
1	001: Positionen	0		Huspanen
10-	Kontur		HOLLOUI SHOFT BLONK	
10	Kontur		HOLLOW_SHIRT_DENIK	Abspanen
Ne.	Absnanen	▽	T=ROUGHTNG T80 0 F0 3/11 U260m	Rest
Ne.	Abspanen	000	T=ETNTSHTNG T35 0 F0 15/U U200m	
3 8	Finstich	0+000	T=PLUNGE CUTTER 3 0 F0 08/11 U180=	Stechen
1.07	Kontur			Steenen
END	Programmende			
21.7-1	Trogrammoniae			Stechen
				Rest
				Stechdrehen
				Charles
				Stecharenen
				nest
			×	
		a		
	Edit Bohren	Drehen 🦊	Kontur	
Ľ		Di cilcii	drehen drehen die	

Bild 9-67 Arbeitsplan nach Eingabe der Kontur

9.3 Erstellen der zweiten Werkstückseite

Abspanen, Restabspanen und Schlichten

Im folgenden Arbeitsschritt spanen Sie die Kontur ab.

Wählen Sie den Softkey Abspanen an.

Abspanen

Werkzeug auswählen

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug ROUGHING_T80 I an.

Ins Programm

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Schruppen ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.25		
V	280 m/min	Х	
Bearbeitung	schruppen längs innen	X X X	Die Bearbeitung müssen Sie auf <i>innen</i> umschalten.
D	2.0		
UX	0.2		
UZ	0.2		
DI	0.0		
BL	Zylinder	X	Da bereits gebohrt wurde, müssen Sie für die Innenbearbeitung keine Rohteil-Kontur berücksichtigen. Schalten Sie auf <i>Zylinder</i> um.
XD	32 abs	Х	
ZD	0 abs	Х	
Hinterschnitte	nein	X	
Eingrenzen	nein	X	

Einfacher Drehen mit ShopTurn Trainingsunterlage, 05/2010, 6FC5095-0AB80-1AP0

9.3 Erstellen der zweiten Werkstückseite

Übernehmen Sie die eingegebenen Werte.

Wählen Sie den Softkey Abspanen Rest an.

Werkzeug auswählen

Ins Programm Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Schlichten ein:

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug FINISHING_T35 I an.

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.2		
V	240 m/min	Х	
Bearbeitung	schlichten längs innen	X X X	
Aufmaß	nein	Х	
Hinterschnitte	ја	Х	
FR	0.2		
Eingrenzen	nein	Х	

Bild 9-69 Kontur abspanen Rest

Übernehmen Sie die eingegebenen Werte.

9.3 Erstellen der zweiten Werkstückseite

Abspanen

Wählen Sie den Softkey Abspanen an.

Werkzeug auswählen

Ins Programm

Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Schlichten ein:

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug FINISHING_T35 I an.

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
F	0.12		
V	280 m/min	Х	
Bearbeitung	schlichten längs innen	X X X	
Aufmaß	nein	Х	
Hinterschnitte	ја	X	
Eingrenzen	nein	X	

Übernehmen Sie die eingegebenen Werte.

9.3 Erstellen der zweiten Werkstückseite

Starten Sie zur Überprüfung die Simulation.

Beispiel 5: Stechdrehen

10

10.1 Überblick

Lernziele

In diesem Kapitel lernen Sie die Funktion Stechdrehen kennen.

Aufgabenstellung

Bild 10-1 Werkstattzeichnung - Beispiel 5

10.2 Stechdrehen

Vorbereitung

Führen Sie folgende Schritte selbständig durch:

- 1. Legen Sie ein neues Werkstück mit dem Namen 'EXAMPLE5' an.
- 2. Legen Sie ein neues Schrittkettenprogramm mit dem Namen 'PLUNGE TURNING' an.
- 3. Füllen Sie den Programmkopf aus (vgl. folgende Abbildung).

Bild 10-2 Programmkopf anlegen

10.2 Stechdrehen

Die erreichbare Produktivität beim Drehen wird u. a. durch die mögliche Anzahl der Werkzeuge im Revolver und die für effektive Drehbearbeitung notwendigen häufigen Werkzeugwechsel begrenzt. Mit Standard-Drehwerkzeugen alleine, können nicht alle möglichen Konturen produziert werden und deshalb erfolgt die Restmaterialbearbeitung häufig durch Stechen. Für die komplette Bearbeitung einer Kontur muss daher immer zwischen Standard-Drehwerkzeugen und Stechwerkzeugen gewechselt werden.

Ziel des Stechdreh-Zyklus ist es deshalb, die Werkzeugwechselvorgänge zu reduzieren und Leerschnitte wie z. B. bei den Rückwärtsbewegungen des Drehwerkzeugs zu vermeiden.

Beim Stechdreh-Zyklus existieren grundsätzlich kaum mehr Leerschnitte, da sowohl in der Vorwärts- wie auch in der Rückwärtsbewegung ein Spanabtrag erfolgt. Dies muss bei der Programmerstellung berücksichtigt werden. In ShopTurn werden Sie dabei bestens unterstützt. Wie bisher gewohnt müssen Sie nur die Kontur des Drehteils beschreiben und beim Abspanzyklus können Sie wählen, ob Sie mit konventionellen Verfahren oder dem Stechen bzw. Stechdrehen abspanen wollen. Entsprechend des Zyklus berechnet ShopTurn automatisch die Schnitte und Verfahrbewegungen des Werkzeugs. Leerschnitte werden so weitgehend vermieden.

Während der Simulation können Sie die berechneten Verfahrbewegungen des Werkzeuges gut analysieren. Auch eine Kombination von konventioneller Drehbearbeitung und Stechdrehen ist möglich, z. B. kann für das Schruppen ein Standardwerkzeug und für die Restmaterialbearbeitung das Stechdrehen verwendet werden, damit die Kontur vollständig und ohne Verletzung bearbeiten werden kann.

10.3 Erstellen der Kontur

Bedienfolgen

Erstellen Sie selbständig die Kontur.

Wählen Sie den Softkey Kontur drehen an.

Wählen Sie den Softkey **Neue Kontur** an. Geben Sie für die Kontur den Namen 'CONTOUR_E' ein.

Übernehmen Sie die Eingabe.

Setzen Sie den Startpunkt auf X48/Z0.

Bild 10-3 Kontur Startpunkt eingeben

Legen Sie Kontur an (vgl. folgende Abbildung).

Bild 10-4 Kontur im Konturrechner

10.4 Abspanen mit dem Stechdreh-Zyklus

10.4 Abspanen mit dem Stechdreh-Zyklus

Bedienfolgen

Im folgenden Arbeitsschritt spanen Sie die Kontur ab. Gehen Sie dabei wie folgt vor:

Wählen Sie den Softkey Kontur drehen an.

Wählen Sie den Softkey Stechdrehen an.

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug PLUNGE_CUTTER_3 A an.

Ins Programm

Übernehmen Sie das Werkzeug in das Programm. Geben Sie in der Eingabemaske folgende Werte für das Schruppen ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
FX	0.2		
FZ	0.25		
V	150 m/min	Х	
Bearbeitung	schruppen längs außen	X X X	
D	2.5		
UX	0.2		
UZ	0.2		
DI	0.0		
BL	Zylinder	Х	
XD	50 abs	Х	
ZD	0 abs	Х	
Eingrenzen	nein	Х	
Ν	1		

Beispiel 5: Stechdrehen

10.4 Abspanen mit dem Stechdreh-Zyklus

Kontur schruppen

Übernehmen Sie die eingegebenen Werte.

Wählen Sie den Softkey Stechdrehen an.

Stechdrehen

Werkzeug auswählen

Ins Programm Übernehmen Sie das Werkzeug in das Programm.

Geben Sie in der Eingabemaske folgende Werte für das Schlichten ein:

Feld	Wert	Auswahl über Toggle- Taste	Hinweise
FX	0.15		
FZ	0.15		
V	200 m/min	Х	
Bearbeitung	schlichten längs außen	X X X	
Aufmaß	nein	Х	
Eingrenzen	nein	Х	
Ν	1		

Öffnen Sie die Werkzeugliste und wählen Sie das Werkzeug PLUNGE_CUTTER_3 A an.

10.4 Abspanen mit dem Stechdreh-Zyklus

Kontur schlichten

Übernehmen Sie die eingegebenen Werte. Nach der Übernahme sieht Ihr Arbeitsschrittprogramm wie folgt aus.

					15.03.10 16:47
NC/WKS/EXAMPLE5/PLU	INGE_TURNING			4	Neue 📐
P Programmkopf		Nullpunktversch.	654	^	Kontur
្រ ្ Kontur		CONTOUR_E			
M Stechdrehen	∇	T=PLUNGE_CUTTER_3	A FX0.2/U		Abspanen
Stechdrehen	<u> </u>	T=PLUNGE_CUTTER_3	A FX0.15/	U 🖂	
END Programmende					Abspanen Rest
					Stechen
					Stechen Rest
					Stechdrehen
					Stechdrehen Rest
				Y	
				>	
📝 Edit 📑 Bohre	en 🚅 Drehen 🚅	Kontur drehen Fräsen	Diver- ses	tation	Anwahl
Bild 10-5	Arbeitsschr	ittprogramm			

Wählen Sie den Softkey Simulation an.

Bild 10-6 Simulation - Seitenansicht (mit Anzeige der Verfahrwege)

Bild 10-7 Simulation - 3D-Ansicht (mit Anzeige der Verfahrwege)

Beispiel 5: Stechdrehen

10.4 Abspanen mit dem Stechdreh-Zyklus

11.1 Und jetzt wird gefertigt

Nachdem Sie sich durch das Arbeiten mit den Beispielen ein fundiertes Wissen über die Arbeitsplanerstellung in ShopTurn angeeignet haben, folgt nun die Fertigung der Werkstücke.

Für die Fertigung sind die im Folgenden beschriebenen Schritte notwendig:

Referenzpunkt anfahren

Nach dem Einschalten der Steuerung müssen Sie vor dem Abfahren der Arbeitspläne oder vor dem Verfahren von Hand den Referenzpunkt der Maschine anfahren. Dadurch findet ShopTurn den Zählanfang im Wegmess-System der Maschine.

Da das Anfahren des Referenzpunktes je nach Maschinentyp und Hersteller unterschiedlich ist, können hier nur einige grobe Hinweise gegeben werden:

- Fahren Sie das Werkzeug ggf. auf eine freie Stelle im Arbeitsraum, von wo aus in alle Richtungen kollisionsfrei verfahren werden kann. Achten Sie dabei darauf, dass das Werkzeug danach nicht bereits hinter dem Referenzpunkt der jeweiligen Achse liegt (da das Anfahren des Referenzpunktes je Achse nur in einer Richtung erfolgt, kann dieser Punkt sonst nicht erreicht werden).
- 2. Führen Sie das Anfahren des Referenzpunktes exakt nach den Angaben des Maschinenherstellers durch.

Werkstück spannen

Für eine maßhaltige Fertigung und natürlich auch für Ihre Sicherheit ist eine feste, dem Werkstück entsprechende Aufspannung notwendig. Dazu werden normalerweise Dreibackenfutter verwendet.

Werkstücknullpunkt setzen

Da ShopTurn nicht erraten kann, wo sich das Werkstück im Arbeitsraum befindet, müssen Sie den Werkstück-Nullpunkt in Z ermitteln.

In der Z-Achse wird der Werkstück-Nullpunkt meist durch Ankratzen mit einem verrechneten Werkzeug ermittelt.

Arbeitsplan abarbeiten

Die Maschine ist jetzt vorbereitet, das Werkstück ist eingerichtet und die Werkzeuge sind vermessen. Nun kann es endlich losgehen:

11.1 Und jetzt wird gefertigt

Wählen Sie zunächst im Programm-Manager das Programm aus, welches Sie fertigen möchten, z. B. HOLLOW_SHAFT_SIDE2.

					04.03.1 17:5
Name	Тур	Länge	Datum	Zeit	Anwahl
Cilleprogramme Cilleprogramme	DIR		29.01.10 29.01.10	15:28:56	
Werkstücke	DIR		04.03.10	17:54:22	Neu
	LIPD		04.02.10 04.02.10	11:01:23	nou
e EXAMPLE3	WPD		15.02.10	15:57:17	
	WPD	2670	04.03.10	16:24:43	Öffnen
HOLLOW SHAFT SIDE2	MPF	3070	04.03.10	17:45:06	
					Markieren
					Kopieren
					Einfügen
					Hus- schneiden
NC/Werkstücke/EXAMPLE4.WPD				Frei: 2.4 MB	
Laufu. USB					

Bild 11-1 Programm auswählen

Öffnen Sie das Programm.

JOG	17:5
NC/UKS/EXAMPLE4/HOLLOW_SHAFT_SIDE2	1 Werkzeug auswählen
HDSpanen V I=RUUGHING_160 H F0.2/U V240	Grafische
Donren U+ T=DR1LL_32 F0.1/U V240m 21=-;	Ansicht
	Suchen
Hbspanen	
Abspanen VVV I=FINISHING_135 H F0.15/U V20	UUm
Einstich V+VVV I=PLUNGE_CUTTER_3 A F0.08/U V	V180m Markieren
Kontur HOLLOW_SHAFT_SIDE2_I	
Abspanen	8m
Restabspanen ⊽ T=FINISHING_T35 I FØ.2/U V240	0m Kopieren
Abspanen VVV T=FINISHING_T35 I F0.12/U V28	80m
ENO Programmende	F1 (1)
	Einfugen
	Aus-
	schneiden
	- NN
Edit - Bohren - Drehen Kontur - Fräsen - Uver-	Simu- NC Anwah
Rild 11-2 Arbeitsplan öffnen	

Wählen Sie den Softkey NC Anwahl an.

	0				27.05.10 14:50
hc/uks/exan	19le4/Hollow_Sha	FT_SIDE2	SIEM	ENS	G- Funktionen
📀 aktiv					Tunkuonen
MKS	Position [mm]	Restweg	T,F,S		Hilfs-
+ X1	10 455	49 545	т		funktionen
· <u>.</u> .	10.400	+3.5+5	1		
+21	39.627	163.714		`	Basis-
			r Eiluhnu	7	sätze
			mm	/min 1.0%	
			S1 🖌 🛛	×	Zeiten Zähler
			0	100%	Lanici
₩G54			0 . 50	. 100	Programm
NC/UKS/EXA	mple4/hollow_sha	IFT_SIDE2			Ebenen
P Program	mkopf	Hullpunk	tversch. G54	^	
🔚 Abspane	n		NG_T80 A F0.2/U V24	0m plan 🔤	
Bohren		□+ T=DRILL_	32 F0.1/U V240m Z1=	-57	
√ 001: Po	sitionen	⊡+ Z0=0 X0=	0 Y0=0		
Kontur		HOLLOW_S	Shaft_blank		Istwerte
U Kontur		HOLLOW_S	SHAFT_SIDE2_E		MKS
Abspane	n		NG_T80 A F0.3/U V26	Om	
Abspane	n .	▼▼▼ T=FINISH	IING_T35 A F0.15/U V	200m	
				>	
		NC Prog.	C Satz-	Mit-	Prog.

Bild 11-3 Abarbeiten

Da der Arbeitsplan noch nicht kontrolliert abgefahren wurde, stellen Sie das Vorschub-Potentiometer auf Nullstellung, damit Sie von Anfang an "alles im Griff" haben.

Wenn Sie während der Fertigung auch eine Simulation sehen wollen, müssen Sie den Softkey **Mitzeichnen** vor dem Start anwählen. Nur dann werden auch alle Verfahrwege und deren Auswirkungen angezeigt.

Starten Sie die Fertigung und kontrollieren Sie die Geschwindigkeit der Werkzeugbewegungen mit dem Vorschub-Potentiometer.

Und jetzt wird gefertigt

11.1 Und jetzt wird gefertigt

Wie fit sind Sie mit ShopTurn

12.1 Übung 1

Schaffen Sie das mit ShopTurn in 10 Minuten?

Hinweise

Im Arbeitsplan, siehe Musterlösung unten, wird das Werkstück in zwei Arbeitsschritten auf Maß geplant. Den Startpunkt der Kontur CONTOUR_1 können Sie aus diesem Grund auf den Anfang der ersten Fase legen.

Musterlösung

_					27.04.10 13:30
NC/	UKS/SHOPTURH/DIY	'S1			Werkzeug
P	Programmkopf		Nullpunktversch. G54	4 🖃 ^	auswählen
1	Abspanen	$\nabla \Delta \Delta$	T=ROUGHING_80_A F0.:	15/U V250m plan	
VI	Kontur		CONTOUR_1		Grafische
1	Abspanen	V	T=ROUGHING_80_A F0.3	3/U V260m	Ansicht
X	Abspanen	$\nabla \nabla \nabla$	T=FINISHING_35_A F0.	.15/U V280m	
1E	Einstich	V+VV	T=PLUNGE CUTTER_3 FG	0.15/U V280m N3	Suchen
W	Gevinde Längs	⊽+⊽⊽⊽	T=THREADING_TOOL_1.	5 P1.5mm/U	-
END	Programmende				
					Markieren
					0
					Kopieren
					14 V
					Einfügen
					Linnuyen
					0
					Aus-
					schneiden
				~	
			1000 - 1000	>	
V	Edit E Bohr	en 🚅 Drehen 🚅	Kontur drehen	Diver- ses lation	Anwahl
Bil	d 12-2	Arbeitsplan			

12.1 Übung 1

Bild 12-3 Kontur im Konturrechner

12.2 Übung 2

Schaffen Sie das mit ShopTurn in 10 Minuten?

Bild 12-5 Werkstattzeichnung DIYS2

Hinweise

Hier können sie das automatische Zerspanen von Restmaterial optimal anwenden.

Musterlösung

NC/ WKS/ SHUP TUNN/ DITS2			ouru jählen
P Programmkopf		Nullpunktversch. G54	duswamen
Abspanen	$\Delta \Delta \Delta$	T=ROUGHING_80_A F0.15/U V250m plan	Grafische
Kontur		CUNTUUK_2	Ansicht
Abspanen	A	T=ROUGHING_80_A F0.3/U V260m	
Restabspanen	V	T=FINISHING_35_A F0.15/U V240m	
Abspanen	$\Delta \Delta \Delta$	T=FINISHING_35_A F0.15/U V280m	Suchen
No Programmende			
			Markieren
			Markieren
		-	Markieren
		-	Markieren Kopieren
			Markieren Kopieren
			Markieren Kopieren
		-	Markieren Kopieren Einfügen
			Markieren Kopieren Einfügen
			Markieren Kopieren Einfügen Aus-
			Markieren Kopieren Einfügen Aus- schneiden
		Verter and Party of Characteristics	Markieren Kopieren Einfügen Aus- schneiden

Bild 12-6 Arbeitsplan

12.2 Übung 2

Bild 12-7 Kontur im Konturrechner

Bild 12-8 Simulation Werkstück

12.3 Übung 3

Schaffen Sie das mit ShopTurn in 10 Minuten?

Hinweise

Konstruieren Sie den Radius 5 in zwei Schritten!

Musterlösung

					27.04.10
NC/UKS/SHOPTURH/DI	YS3			1	Werkzeug
P Programmkopf		Hullpunktversch.	654		auswählen
Abspanen	AAA	T=ROUGHING_80_A	F0.15/U V25	0m plan	
U 1 Kontur		CONTOUR_3			Grafische
🖌 - Abspanen	V	T=ROUGHING_80_A	F0.3/U V260	m	HISICH
🧼 Restabspanen	V	T=BUTTON_TOOL_8_	A F0.2/U V2	40m	
Abspanen	$\nabla \nabla \nabla$	T=FINISHING_35_A	F0.15/U V2	80m	Suchen
END Programmende					
					Markieren
				1	Kopieren
					Einfügen
					Aus- schneiden
				×	••
Edit Edit	iren 🚅 Drehen 🚅	Kontur drehen	Diver- ses	ter Simu- lation	Anwahl
Bild 12-10	Arbeitsplan				

Einfacher Drehen mit ShopTurn Trainingsunterlage, 05/2010, 6FC5095-0AB80-1AP0 12.3 Übung 3

Bild 12-11 Kontur im Konturrechner

Bild 12-12 Simulation Werkstück
12.4 Übung 4

Schaffen Sie das mit ShopTurn in 15 Minuten?

Bild 12-13 Werkstattzeichnung DIYS4

Hinweise

Im Arbeitsplan, siehe Musterlösung unten, wird die Planfläche zunächst geschruppt und geschlichtet. Anschließend wird der gesamte äußere Bereich inklusive des Freistiches gefertigt. Danach wird der innere Teil der Kontur bearbeitet. Der Startpunkt der Innenkontur wird auf X70/Z0 gelegt. Mit dem Arbeitsschritteditor können Sie die Außen- und Innenbearbeitung durch Ausschneiden und Einfügen kopieren.

12.4 Übung 4

Musterlösung

IC/UKS/SHOPTURN/DIYS4			Werkzeug
^D Programmkopf		Nullpunktversch. G54 🖃 ^	auswähler
Abspanen	$\nabla \Delta \Delta$	T=ROUGHING_80_A F0.15/U V250m plan	
∫		CONTOUR_4A	Grafische Ansicht
🖌 Abspanen	∇	T=ROUGHING_80_A F0.3/U V260m	
🐔 Abspanen	$\nabla \nabla \nabla$	T=FINISHING_35_A F0.15/U V280m	
Freistich E		T=FINISHING_35_A F0.15/U V200m	Suchen
🖙 Bohren Mittig		T=DRILL_32 F0.1/U S2000U X1=-50	
J ⊺ Kontur		CONTOUR_4I	
Abspanen	∇	T=ROUGHING_80_I F0.3/U V260m	Markiere
Abspanen	$\nabla \nabla \nabla$	T=FINISHING_35_I F0.15/U V280m	
Freistich E		T=FINISHING_35_I F0.15/U V200m	1000
NO Programmende			Kopieren
			Einfügen
			Aus-
			schneider
			••

Bild 12-14 Arbeitsplan

Bild 12-15 Äußere Kontur im Konturrechner

Bild 12-16 Innere Kontur im Konturrechner

Bild 12-17 Simulation Werkstück

Bild 12-18 Simulation Werkstück - Schnitt aktiv

Wie fit sind Sie mit ShopTurn

12.4 Übung 4

Index

Α

Absolute Eingabe, 32 Achsen, 31 Alarme, 29 Arbeitsplan anlegen, 90 Arbeitsschritteditor Ausschneiden, 176 Einfügen, 176 Einstellungen, 177 Grafische Ansicht, 176 Kopieren, 176 Markieren, 176 Menü vor, 176 Menü zurück, 177 Neu nummerieren, 177 Suchen, 176 Aufruf von Dialogen, 56 Ausschneiden, 176

В

Bohrpositionen, 141

С

C-Achse, 138

D

Drehzahl, 38 Drehzahlbegrenzung, 39

Ε

Einfügen, 176 Einstiche, 84

F

Fertigung, 207 Flankenwinkel, 134 Freistich Form E, 166

Einfacher Drehen mit ShopTurn Trainingsunterlage, 05/2010, 6FC5095-0AB80-1AP0 Form F, 166 Gew. DIN, 166 Gewinde, 166

G

Gewinde, 166 Degressiv, 136 Gewindefreistich, 79 Grafischer Arbeitsplan, 11 Grundbild, 53 Grundlagen der Bedienung, 17 Grundmenü, 19

Η

Hinterschnitte, 107

I

Inkrementale Eingabe, 33 Innenbearbeitung, 172

Κ

Kartesische Eingabe, 34 Komplett-Bearbeitung, 138 Konstante Drehzahl, 39 Konturrechner, 12 Dialog Auswahl, 121 Dialog Übernahme, 122 Kreisförmige Bewegungen, 37

Μ

Magazin, 23 Magazin beladen, 46 Magazinliste, 44 Maschine einrichten, 21 Maschinen-Nullpunkt, 32 Meldungen, 29 Messen Werkstück, 49 Mitzeichnen, 209

Ν

Nullpunkttabelle, 23

Ρ

Plandrehen, 90 Polare Eingabe, 35 Programmkopf, 55 Programm-Manager, 28, 54 Programmverwaltung, 54 Punkte im Arbeitsraum, 31

R

Referenzpunkt, 32 Restabspanen, 106 Restmaterial, 14, 106 Rohteilbeschreibung, 127 Rohteilform Rohr, 55 Zylinder, 55 Rohteilformen, 163 Rückzug alle, 56 einach, 56 erweitert, 56 Rückzugsebene, 55

S

Schnittgeschwindigkeit, 11, 38 Sicherheitsabstand, 55 Simulation, 26 2 Fenster-Ansicht, 87 3D-Ansicht, 62 Details, 81 Lupe, 135 Schnitt aktiv, 169 Seitenansicht, 79 Werkzeugbahnen anzeigen, 108 Softkeys, 19 Start-Taste, 209 Stechdrehen, 200 Strichgrafik, 176

Т

Tabellenbuch, 38, 40 Toggle-Feld, 52

V

Verkettung, 25 Verzeichnis, 54 Vorschub, 40 Vorschub, 40 Vorschubgeschwindigkeiten, 40

W

Werkstück-Nullpunkt, 32 Werkzeuge für die Beispiele, 45 Werkzeugliste, 22, 41 Werkzeugträger-Bezugspunkt, 32 Werkzeugverschleißliste, 43

Ζ

Zwischenspeicher, 178