

SITRANS und SIPART Gerätebibliothek für SIMIT SP

SIMIT SP V9.1

D

https://support.industry.siemens.com/cs/ww/de/view/109757452

Rechtliche Hinweise

Nutzung der Anwendungsbeispiele

In den Anwendungsbeispielen wird die Lösung von Automatisierungsaufgaben im Zusammenspiel mehrerer Komponenten in Form von Text, Grafiken und/oder Software-Bausteinen beispielhaft dargestellt. Die Anwendungsbeispiele sind ein kostenloser Service der Siemens AG und/oder einer Tochtergesellschaft der Siemens AG ("Siemens"). Sie sind unverbindlich und erheben keinen Anspruch auf Vollständigkeit und Funktionsfähigkeit hinsichtlich Konfiguration und Ausstattung. Die Anwendungsbeispiele stellen keine kundenspezifischen Lösungen dar, sondern bieten lediglich Hilfestellung bei typischen Aufgabenstellungen. Sie sind selbst für den sachgemäßen und sicheren Betrieb der Produkte innerhalb der geltenden Vorschriften verantwortlich und müssen dazu die Funktion des jeweiligen Anwendungsbeispiels überprüfen und auf Ihre Anlage individuell anpassen.

Sie erhalten von Siemens das nicht ausschließliche, nicht unterlizenzierbare und nicht übertragbare Recht, die Anwendungsbeispiele durch fachlich geschultes Personal zu nutzen. Jede Änderung an den Anwendungsbeispielen erfolgt auf Ihre Verantwortung. Die Weitergabe an Dritte oder Vervielfältigung der Anwendungsbeispiele oder von Auszügen daraus ist nur in Kombination mit Ihren eigenen Produkten gestattet. Die Anwendungsbeispiele unterliegen nicht zwingend den üblichen Tests und Qualitätsprüfungen eines kostenpflichtigen Produkts, können Funktions- und Leistungsmängel enthalten und mit Fehlern behaftet sein. Sie sind verpflichtet, die Nutzung so zu gestalten, dass eventuelle Fehlfunktionen nicht zu Sachschäden oder der Verletzung von Personen führen.

Haftungsausschluss

Siemens schließt seine Haftung, gleich aus welchem Rechtsgrund, insbesondere für die Verwendbarkeit, Verfügbarkeit, Vollständigkeit und Mangelfreiheit der Anwendungsbeispiele, sowie dazugehöriger Hinweise, Projektierungs- und Leistungsdaten und dadurch verursachte Schäden aus. Dies gilt nicht, soweit Siemens zwingend haftet, z.B. nach dem Produkthaftungsgesetz, in Fällen des Vorsatzes, der groben Fahrlässigkeit, wegen der schuldhaften Verletzung des Lebens, des Körpers oder der Gesundheit, bei Nichteinhaltung einer übernommenen Garantie, wegen des arglistigen Verschweigens eines Mangels oder wegen der schuldhaften Verletzung wesentlicher Vertragspflichten. Der Schadensersatzanspruch für die Verletzung wesentlicher Vertragspflichten ist jedoch auf den vertragstypischen, vorhersehbaren Schaden begrenzt, soweit nicht Vorsatz oder grobe Fahrlässigkeit vorliegen oder wegen der Verletzung des Lebens, des Körpers oder der Gesundheit gehaftet wird. Eine Änderung der Beweislast zu Ihrem Nachteil ist mit den vorstehenden Regelungen nicht verbunden. Von in diesem Zusammenhang bestehenden oder entstehenden Ansprüchen Dritter stellen Sie Siemens frei, soweit Siemens nicht gesetzlich zwingend haftet.

Durch Nutzung der Anwendungsbeispiele erkennen Sie an, dass Siemens über die beschriebene Haftungsregelung hinaus nicht für etwaige Schäden haftbar gemacht werden kann.

Weitere Hinweise

Siemens behält sich das Recht vor, Änderungen an den Anwendungsbeispielen jederzeit ohne Ankündigung durchzuführen. Bei Abweichungen zwischen den Vorschlägen in den Anwendungsbeispielen und anderen Siemens Publikationen, wie z. B. Katalogen, hat der Inhalt der anderen Dokumentation Vorrang.

Ergänzend gelten die Siemens Nutzungsbedingungen (<u>https://support.industry.siemens.com</u>).

Securityhinweise

Siemens bietet Produkte und Lösungen mit Industrial Security-Funktionen an, die den sicheren Betrieb von Anlagen, Systemen, Maschinen und Netzwerken unterstützen.

Um Anlagen, Systeme, Maschinen und Netzwerke gegen Cyber-Bedrohungen zu sichern, ist es erforderlich, ein ganzheitliches Industrial Security-Konzept zu implementieren (und kontinuierlich aufrechtzuerhalten), das dem aktuellen Stand der Technik entspricht. Die Produkte und Lösungen von Siemens formen nur einen Bestandteil eines solchen Konzepts.

Der Kunde ist dafür verantwortlich, unbefugten Zugriff auf seine Anlagen, Systeme, Maschinen und Netzwerke zu verhindern. Systeme, Maschinen und Komponenten sollten nur mit dem Unternehmensnetzwerk oder dem Internet verbunden werden, wenn und soweit dies notwendig ist und entsprechende Schutzmaßnahmen (z.B. Nutzung von Firewalls und Netzwerk-segmentierung) ergriffen wurden.

Zusätzlich sollten die Empfehlungen von Siemens zu entsprechenden Schutzmaßnahmen beachtet werden. Weiterführende Informationen über Industrial Security finden Sie unter: <u>https://www.siemens.com/industrialsecurity</u>.

Die Produkte und Lösungen von Siemens werden ständig weiterentwickelt, um sie noch sicherer zu machen. Siemens empfiehlt ausdrücklich, Aktualisierungen durchzuführen, sobald die entsprechenden Updates zur Verfügung stehen und immer nur die aktuellen Produktversionen zu verwenden. Die Verwendung veralteter oder nicht mehr unterstützter Versionen kann das Risiko von Cyber-Bedrohungen erhöhen.

Um stets über Produkt-Updates informiert zu sein, abonnieren Sie den Siemens Industrial Security RSS Feed unter: <u>http://www.siemens.com/industrialsecurity</u>.

Inhaltsverzeichnis

Rech	Rechtliche Hinweise				
1	Einführu	ung	4		
	1.1 1.2 1.3	Überblick Funktionsweise Verwendete Komponenten	4 5 5		
2	Geräteb	ibliothek	6		
	2.1 2.2 2.3	Installation Generische Gerätemodelle Detaillierte Gerätemodelle	6 7 8		
3	Anwend	lung	. 11		
	3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.3 3.3.1 3.3.2 3.3.3 3.3.4	SITRANS P Projektierung Parametrierung Parameterübersicht Bedienung SIPART PS2 Projektierung Parametrierung Parameterübersicht Bedienung SITRANS LR/LU - PA Projektierung Parametrierung Parametrierung Parametrierung Parametrierung Parametrierung Parametrierung Parametrierung Parametrierung Parametrierung Parametrierung Parametrierung Parametrierung Parametrierung Parametrierung Parametrierung	11 12 13 19 22 23 24 25 26 28 29 30 31 33 36		
4	Demopr	ojekt	37		
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Übersicht der Gerätemodelle SITRANS Durchflussmessgeräte Füllstandsmessgerät SITRANS LR250 Füllstandsmessgerät SITRANS LUT400 Druckmessumformer SITRANS P Temperaturmessumformer SITRANS TH Stellungsregler SIPART PS2	38 39 41 43 46 48 51		
5	Anhang		53		
	5.1 5.2 5.3	Service und Support Links und Literatur Änderungsdokumentation	53 54 54		

1 Einführung

1.1 Überblick

SIMIT Simulation Platform enthält einige Standardkomponenten, wie Antriebe und Ventile, zur Simulation von Geräten und Messstellen. Nicht für jedes in der Anlage installierte Gerät ist diese Standardfunktionalität für die Simulation ausreichend, da das Verhalten von Feldgeräten einen maßgeblichen Einfluss auf das Verhalten der Gesamtanlage haben kann. Moderne Feldgeräte bieten eine Vielzahl an Funktionen und Parametern, die nur sehr umständlich oder gar nicht mit den Standardmitteln von SIMIT zu simulieren sind.

Spezifische Gerätemodelle haben die Anforderung Mess- oder Stellwerte und Statussignale mit den PCS 7-Treiberbausteinen auszutauschen. Das dynamische Geräteverhalten wird in SIMIT nachgebildet.

Mit diesem Anwendungsbeispiel erhalten Sie eine Bibliothek mit gerätespezifischen Simulationsbausteinen der SITRANS und der SIPART Gerätefamilie. Die Simulationsbausteine bilden das Verhalten der entsprechenden Aktoren und Sensoren in den wichtigsten Eigenschaften nach und eignen sich dadurch ideal für die virtuelle Inbetriebnahme von Prozessanlagen.

Folgende Vorteile ergeben sich durch die Verwendung der Bausteine:

- Simulation produktspezifischer Funktionen aufgrund detaillierter Gerätemodelle
- Steigerung der Genauigkeit und somit dem Nutzen des Anlagenmodells
- Ermöglicht die Ermittlung der optimalen Parameter der Feldgeräte
- Virtuelle Inbetriebnahme der Geräte im Kontext der Anlagensimulation
- Schulung von Personal an Operator Training Systemen (OTS) die das Prozessverhalten der Anlage realitätsnah abbilden

1.2 Funktionsweise

Die detaillierten Gerätemodelle der SIMIT-Gerätebibliothek bilden das Verhalten und die Eigenschaften der wichtigsten Funktionen der realen Feldgeräte nach. Durch die Erstellung der Anlagensimulation mit diesen Komponenten ist es Ihnen möglich bereits bei der virtuellen Inbetriebnahme die speziellen Eigenschaften und deren Auswirkungen auf den Anlagenprozess zu testen.

In folgender Abbildung sehen Sie schematisch die Auswirkung des Teilhubtests (Partial Stroke Test) eines Stellventils auf den Druck und den Durchfluss in einer Rohrleitung.

1.3 Verwendete Komponenten

Dieses Anwendungsbeispiel wurde mit folgender Softwarekomponente erstellt:

Komponente	Anzahl	Artikelnummer	Hinweis
SIMIT SP V9.1	1	6DL526068	Demoprojekt / Bibliothek

Dieses Anwendungsbeispiel besteht aus folgenden Komponenten:

Komponente	Dateiname	Hinweis	
Dokumentation 109757452_Device_Library_Doc_de.pdf		Dieses Dokument	
Bibliothek 109757452_Device_Library_V10_zip		SIMIT Bibliothek	
Demoprojekt	109757452_Demo_Device_Models_V10.zip	SIMIT Projektarchiv	

2 Gerätebibliothek

Die SIMIT-Gerätebibliothek enthält generische Gerätemodelle und detaillierte Gerätemodelle. Die generischen Modelle enthalten Grundfunktionen der Aktoren und Sensoren. Diese sind nicht typspezifisch und können für die meisten Feldgeräte verwendet werden. Die detaillierten Gerätemodelle sind spezifisch für die Simulation von bestimmten Geräten entwickelt worden. Diese können nur mit den generischen Modellen zusammen verwendet werden.

Hinweis Für die in diesem Anwendungsbeispiel angebotenen Simulationsmodelle kann keine Garantie auf die Funktionalität und deren Vollständigkeit gegeben werden.

2.1 Installation

Laden Sie zunächst die Bibliothek von der Downloadseite dieses Anwendungsbeispiels herunter: <u>https://support.industry.siemens.com/cs/ww/de/view/109757452</u>

Zur Installation gehen Sie folgendermaßen vor:

- 1. Extrahieren Sie die ZIP-Datei in ein beliebiges Verzeichnis auf dem SIMIT-Projektierungsrechner.
- 2. Öffnen Sie ein neues oder ein bestehendes SIMIT-Projekt.
- 3. Öffnen Sie die Task-Card "Komponenten" ("Components") und erweitern Sie den Bereich "Eigene Komponenten" ("User components").
- 4. Klicken Sie auf die Schaltfläche "Bibliothek öffnen" ("Open Library") und navigieren Sie zum Ablageort der SIMIT-Gerätebibliothek.

Nachdem die Bibliothek geladen wurde, können Sie diese wie die Standardbibliotheken von SIMIT verwenden.

2.2 Generische Gerätemodelle

Sie finden in der Bibliothek folgende generische Gerätemodelle:

Name	Beschreibung	Symbol		
Limit _Switch	Grenzwertüberwachung von Prozessgrößen.	Limit_Switch		
Sensor_Binary	Simulation von binären Grenzwertschaltern.	Sensor_Binary Falsal In Y Out St Active		
Sensor_Analog	Simulation von analogen Feldgeräten. (unipolares oder bipolares Eingangssignal)	Sensor_Analog 0.01-InPv PV_analog PV PV_ST #.## %		
Sensor_HART	Simulation von analogen Feldgeräten mit HART-Kommunikation Der Baustein kann mit einem detaillierten Gerätemodell erweitert werden. (unipolares Eingangssignal)	Sensor_Hart 0.01 InPv_st PV_analog 1281 InPv_St PV 1281 InSv_St SV 1281 InSv_St SV 1282 InTv_St TV 1281 InQv_St TV 1282 InQv_St TV 1281 InQv_St QV 1282 InQv_St QV 1283 InQv_St QV 1284 M %		
Sensor_PA	Simulation von analogen Feldgeräten mit PROFIBUS PA-Kommunikation. Der Baustein kann mit einem detaillierten Gerätemodell erweitert werden. (unipolares Eingangssignal)	Sensor_PA 0.0 InPv PV 128 InPv_ST PV ST 0.0 InPv1 PV1 128 InPv1 PV1 0 InPvte 0 0 InPyte 0 0 InPyte %		
Positioner_Analog	Simulation von analogen Stellventilen (0100 %)	Positioner_Analog 0 SP_analog 1.0 SP_ST 128 SP_ST Open Close Local Fault YP down		
Positioner_HART	Simulation von analogen Stellventilen mit HART-Kommunikation. Der Baustein kann mit einem detaillierten Gerätemodell erweitert werden.	Positioner_HART 0 SP_analog SP_Rbk_analog 128 SP_ST Rbk_ST 128 SP_ST Rbk_ST Open Close Local Maint Fault YP down up		

Name	Beschreibung	Symbol
Positioner_PA	Simulation von analogen Stellventilen mit PROFIBUS PA-Kommunikation. Der Baustein kann mit einem detaillierten Gerätemodell erweitert werden.	Positioner_PA 0.0 SP Rbk ST 128 SF_ST Rbk ST 0.0 RCasin RCasOut ST PosD PosD ST CkkBy0 CkkBy0 CkkBy1 CkkBy1 Local Maint Fault Yt down Up
PID-Ctrl	Mit dem PID-Regler kann bereits bei der Entwicklung das Simulationsmodell getestet werden, auch wenn noch kein PCS 7-Projekt vorhanden ist (Model in the Loop).	PID-Ctrl 0.0 SP_Ext MVI 0.0 PV SP 0.0 MV TrkOn error 0.0 MV Trk AutAct 0.0 SP Him 0.0 0.0 SP Film 0.0 0.0 SP-LoLim MV-HiLimOut True IntEnabled MV_LoLimOut False IntHolPos MV_Loc

2.3 Detaillierte Gerätemodelle

Die detaillierten Gerätemodelle erweitern die generischen Modelle um spezielle Funktionen und können nicht alleinstehend verwendet werden. Die generischen und die detaillierten Modelle werden über eine spezielle Schnittstelle miteinander verbunden.

Sie finden in der Bibliothek folgende detaillierte Gerätemodelle:

Name	Beschreibung	Symbol
SitransFC430	Simulation des SITRANS FC430 Durchflussmessgeräts mit HART-Kommunikation oder PA-Kommunikation Zugehörige generische Modelle: "Sensor_HART" oder "Sensor_PA"	SITRANS FLOW Folse Palse Di1 An1 P An2 An3 Palse Di2 An3 Image: Colspan="2">Relay: Di2 Massflow #.## kg/s Sv #.## % Tv #.## % Qv #.## %
SitransF	Simulation eines SITRANS FLOW Messumformers mit PROFIBUS PA-Kommunikation. Folgende Geräte können simuliert werden: • SITRANS F M MAG 5000/6000 • SITRANS FX330 • SITRANS FUS060 Zugehöriges generisches Modell: "Sensor_PA"	Volumeflow Ø.### m³/s Totalizer 1 ### m³ Totalizer 2 ### m³

Name	Beschreibung	Symbol
SitransP_PA	Simulation eines SITRANS P Messumformers mit PROFBUS PA-Kommunikation. Folgende Geräte können simuliert werden: SITRANS P DS III (PA) SITRANS P300 (PA) Zugehöriges generisches Modell: "Sensor_PA" Simulation eines SITRANS P Messumformers mit HART-Kommunikation.	STITRANS P - PA DS III / 300 Pressure ### Dar Totalizer ### M3
SitransRLU	Folgende Geräte können simuliert werden: SITRANS P DS III (HART) SITRANS P300/P310 (HART) SITRANS P410 SITRANS P500 Zugehöriges generisches Modell: "Sensor_HART" Simulation eines SITRANS LR/LU	Pressure #.## bar Sv #.## % Tv #.## % Qv #.## %
_Hart	 Simulation eines STRANS LR/LU Messumformers mit HART-Kommunikation. Folgende Geräte können simuliert werden: SITRANS LR250 (HART) SITRANS LR560 (HART) SITRANS Probe LU (HART) Zugehöriges generisches Modell: "Sensor_HART" 	Level
SitransRLU _PA	Simulation des SITRANS LR/LU Messumformers mit PROFIBUS PA-Kommunikation. Folgende Geräte können simuliert werden: SITRANS LR250 (PA) SITRANS LR560 (PA) SITRANS Probe LU (PA) Zugehöriges generisches Modell: "Sensor_PA"	SITRANS LR/LU - PA LR250 / Probe LU / LR560

Name	Beschreibung	Symbol
SitransLUT40 0 _Hart	Simulation des SITRANS LUT Messumformers mit HART-Kommunikation. Zugehöriges generisches Modell: "Sensor_HART"	SITRANS LUT - HART LUT400 False > D1 False > D2 Level Level Volume False >
SitransTH300 _Hart	Simulation des SITRANS TH300 Messumformers mit HART-Kommunikation. Zugehöriges generisches Modell: "Sensor_HART"	SITRANS TH - HART TH300 Image: Image of the state of th
SitransTH400 _PA	Simulation des SITRANS TH400 Messumformers mit PROFIBUS PA-Kommunikation. Zugehöriges generisches Modell: "Sensor_PA"	SITRANS TH - PA TH400 Sensor 1
SipartPS2	Simulation des SIPART PS 2 Stellungsreglers mit HART-/ oder PA-Kommunikation. Zugehörige generische Modelle: "Sensor_HART" oder "Sensor_PA"	SIPART PS 2 False Slin1 False AlmMod_Bin2 False False Slin1 False

3 Anwendung

In diesem Kapitel wird Ihnen anhand von drei Beispielen gezeigt, wie Sie die Bibliotheksobjekte projektieren und die Simulation verwenden können.

Im Folgenden werden diese drei Komponenten detailliert beschrieben:

- SitransP_PA mit Sensor_PA
- SipartPS2 mit Positioner_HART
- SitransLRLU_PA mit Sensor_PA

3.1 SITRANS P

Mit diesem Simulationsbaustein können Messumformer der SITRANS P-Reihe simuliert werden.

Der Simulationsbaustein enthält folgende Funktionen:

- Auswahl der Messart (Druck, Durchfluss, Füllstand und Volumen)
- Glättung des Messwerts
- Mengenerfassung (Totalisator)
- Grenzwertalarme für den Prozesswert und den Totalisator
- Ersatzwert im manuellen Betrieb
- Simulation des Gerätestatus im manuellen Betrieb
- Failsafe-Verhalten bei einem Gerätefehler

SitransP_Pa#21				>
Operation process value	e (AI1)			
Set manual:			Set device status:	
Upper range value:		#.##	Status: bad	
Value in manual operation:	#.##		Status: Maint	enance demanded
Lower range value:		#.##	Status: Maint Status: Simu	enance required
Damping:	#.##		Status: good	aton
Operation Totalizer (AI	2)			
Set preset value:				
Preset value:	#.##		Fail-Safe	
Reset:			AI1 Fail-Safe Value:	#.##
Value in manual operation:	#.##		Tot Fail-Safe Value:	#.##
•				
Monitoring process val	ue (AI1)	Monitoring tot	alizer (AI2)	
Upper Limit Alarm:	#.##	Upper Limit Alar	m: #.#	#
Upper Limit Warning:	#.##	Upper Limit War	ning: #.#	#
Lower Limit Warning:	#.##	Lower Limit War	ming: #.#	#
Lower Limit Alarm:	#.##	Lower Limit Alar	m: #.#	#

3.1.1 Projektierung

- 1. Ziehen Sie per Drag&Drop die folgenden Bausteine aus der Gerätebibliothek in das SIMIT-Diagramm:
 - Sensor_PA
 - SitransP_PA
- **Hinweis** Am Baustein "Sensor_PA" ist ein Ausgang und am Baustein "SITRANS P PA" ist ein Eingang des komplexen Verbindungstyps "L2DetailledModel2" vorhanden. Über diese Schnittstelle tauschen beide Bausteine Signale und Prozesswerte miteinander aus. Der Verbindungstyp enthält alle relevanten Ein- und Ausgangsvariablen. Der Datenaustausch funktioniert in beide Richtungen.
 - 2. Verbinden Sie die Anschlüsse "L2DetailledModel" und "L2SensorProfibus" (1).
 - 3. Verbinden Sie den simulierten Prozesswert mit dem Eingang "InPv" (2).
 - 4. Verbinden Sie die Ausgänge "PV" und "PV_ST" mit den entsprechenden Eingangssignalen der projektierten Kopplung (3). Der Ausgang "PV" wird mit dem parametrierten Wert "AI1_Channel" versorgt.
 - Der Prozesswerteingang "InPv1" kann nur ohne das detaillierte Simulationsmodell verwendet werden. Sobald das detaillierte Modell verwendet wird, wird am Ausgang "PV1" der parametrierte Begleitwert "Al2_Channel" ausgegeben.

Siemens AG 2018 All rights reserved

3.1.2 Parametrierung

Der reale SITRANS P-Messumformer kann für verschiedene Messarten verwendet werden. Das Simulationsmodell besitzt eine Vielzahl an Parametern, die dem realen Gerät entsprechend parametriert werden. Gehen Sie folgendermaßen vor:

- 1. Selektieren Sie den Baustein "SITRANS P PA".
- 2. Wählen Sie im Eigenschaftenfenster den Ordner "Zusatzparameter" ("Additional parameter").

SITRANS P - PA	SitransP_Pa#8		Properties	Diagnostics 🗸
DS III / 300	General	Name		Value
	Input	Application_Switch		Pressure
	Output	UpperSensorLimit	[bar]	100.0
	Parameter	LowerSensorLimit	[bar]	0.0
	Additional parameter	MeasuringRange_PressureUpper	Value [bar]	100.0
	State	MeasuringRange_PressureLower	Value [bar]	0.0
Pressure #.## Dar		WorkingRange_UpperRangeValu	e	100.0
Totalizer #.## m3		WorkingRange_LowerRangeValu	ie	0.0
		CharacterizationType		linear 🔹
		LowFlowCutOff	[%]	0.0
		StartPointSquareRootFunction	[%]	0.0
		Density	[kg/m3]	1000.0
		Volumeflow_UpperRangeValue	[m3/s]	100.0
		Volumeflow_Outval_Unit		m3/s 🔹
		Massflow_Outval_Unit		kg/s 🔹
		Level_Outval_Unit		m 💌
		FailSafeMode		SubstituteValue 🔹
		AI1_Channel		InValGenericModel 🔹 💌
		AI1_Tag		Pressure
		AI1_Units		bar
		AI1_OpScaling_UpperValue		100.0
	~ ~ ~ ~	AI1_OpScaling_LowerValue	m	

Die folgenden Fallbeispiele zeigen, wie Sie den Baustein für die folgenden Anwendungszwecke parametrieren:

- Druckmessung
- Füllstandsmessung
- Volumenmessung
- Durchflussmessung

Parametrierung zur Messung eines Drucks

Der Wert am Eingang "InPv" ist ein Druck in der Einheit [bar]. Der Totalisator kann nicht verwendet werden. Parametrieren Sie die Werte am Baustein "STRANS P PA" laut folgender Tabelle:

Parameter	Wert
Application_Switch	"Pressure"
MeasuringRange_PressureUpperValue [bar]	Maximal Druck
MeasuringRange_PressureLowerValue [bar]	Minimal Druck
CharacterizationType	"linear"
Hinweis:	
Bei inverser Kennlinie müssen die Werte am Messbereich vertauscht werden. (UpperValue <lowervalue)< td=""><td></td></lowervalue)<>	
Al1_Channel	"Measured_Value"
Hinweis:	
Bei der Einstellung "InValGenericModel" wird der Prozesswert unverändert ausgegeben.	
AI1_Filter_Time_Const [s]	"0" = keine Glättung
Hinweis:	Max "100" = Größte
Zeitkonstante für den Filter zur Glättung des Messwerts.	Glättung
AI1_Tag [STRING]	"Pressure"
Hinweis:	
Die Zeichenkette dient nur zur Anzeige am Symbol in SIMIT.	
AI1_Units [STRING]	"bar"
Hinweis:	
Die Zeichenkette dient nur zur Anzeige am Symbol in SIMIT.	

In folgender Abbildung sehen Sie die Gegenüberstellung des erfassten Prozesssignals "InPv" und dem ausgegebenen Messwert "PV":

Parametrierung zur Messung eines Füllstands

Der Wert am Eingang "InPv" ist ein Druck in der Einheit [bar]. Der Totalisator kann nicht verwendet werden. Parametrieren Sie die Werte laut folgender Tabelle:

Parameter	Wert
Application_Switch	"Level"
MeasuringRange_PressureUpperValue [bar]	Maximal Druck
MeasuringRange_PressureLowerValue [bar]	Minimal Druck
WorkingRange_UpperRangeLevel	Maximal Füllstand
WorkingRange_UpperRangeLevel	Minimal Füllstand
Hinweis:	
Der Messbereich wird auf den Arbeitsbereich Skaliert.	
MeasuringRange_[Upper]	
MeasuringRange_[Lower]	
CharacterizationType	"linear"
Hinweis:	
Bei inverser Kennlinie müssen die Werte am Messbereich	
vertauscht werden. (UpperValue <lowervalue)< td=""><td></td></lowervalue)<>	
AI1_Channel	"Measured_Value"
Hinweis:	
Bei der Einstellung "InValGenericModel" wird der Prozesswert	
unverändert als Druck ausgegeben.	
AI1_Filter_Time_Const [s]	"0" = keine Glättung
Hinweis:	Max "100" = Größte
Zeitkonstante für den Filter zur Glättung des Messwerts.	Glättung
Level_Outval_Unit [m] / [%]	Einheit des Füllstands
Hinweis:	
Auswahl der Einheit des Messwerts in [m] oder [%].	
AI1_Tag [STRING]	"Level"
Hinweis:	
Die Zeichenkette dient nur zur Anzeige am Symbol in SIMIT.	
AI1_Units [STRING]	"m"
Hinweis:	
Die Zeichenkette dient nur zur Anzeige am Symbol in SIMIT.	

In folgender Abbildung sehen Sie die Gegenüberstellung des erfassten Prozesssignals "InPv" und dem ausgegebenen Messwert "PV". Der Prozesswert [3..7 bar] wird auf den Messwert [0..6 m] linear skaliert:

Parametrierung zur Messung eines Volumens

Der Wert am Eingang "InPv" ist ein Druck in der Einheit [bar]. Der Totalisator kann nicht verwendet werden. Parametrieren Sie die Werte laut folgender Tabelle:

Parameter	Wert
Application_Switch	"Volume"
MeasuringRange_PressureUpperValue [bar] MeasuringRange_PressureLowerValue [bar]	Maximal Druck Minimal Druck
WorkingRange_UpperRangeLevel WorkingRange_UpperRangeLevel Hinweis: Der Messbereich wird auf den Arbeitsbereich Skaliert. MeasuringRange_[Upper] ≙ WorkingRange_[Upper] MeasuringRange_[I ower] ≙ WorkingRange_[I ower]	Maximal Volumen Minimal Volumen
CharacterizationType Hinweis: Bei inverser Kennlinie müssen die Werte am Messbereich vertauscht werden. (UpperValue <lowervalue)< td=""><td>"linear"</td></lowervalue)<>	"linear"
Density [kg/m ³]	Dichte des Mediums
Al1_Channel Hinweise: Bei der Einstellung "Secondary_Value_3" wird der Prozesswert als Masse in abhängigkeit der parametrierten Dichte ausgegeben. Bei der Einstellung "InValGenericModel" wird der Prozesswert unverändert als Druck ausgegeben.	"Measured_Value" ≙ Volumen "Secondary_Value_3" ≙ Masse
Al1_Filter_Time_Const Hinweis: Zeitkonstante für den Filter zur Glättung des Messwerts.	"0" = keine Glättung Max "100" = Größte Glättung

Parameter	Wert
AI1_Tag [STRING]	"Volume"
Hinweis:	
Die Zeichenkette dient nur zur Anzeige am Symbol in SIMIT.	
AI1_Units [STRING]	"m³"
Hinweis:	
Die Zeichenkette dient nur zur Anzeige am Symbol in SIMIT.	

In folgender Abbildung sehen Sie die Gegenüberstellung des erfassten Prozesssignals "InPv" und dem ausgegebenen Messwert "PV". Der Prozesswert [0..1 bar] wird auf den Messwert [0..8 m³] linear skaliert:

Parametrierung zur Messung eines Durchflusses

Der Wert am Eingang "InPv" ist der **Differenzdruck** in der Einheit [bar]. Der Totalisator misst die Menge des durchflossenen Mediums. Parametrieren Sie die Werte laut folgender Tabelle:

Parameter	Wert
Application_Switch	"Flow"
MeasuringRange_PressureUpperValue [bar]	Maximal Druck
MeasuringRange_PressureLowerValue [bar]	Minimal Druck
CharacterizationType	"srllin"
LowFlowCutOff [%]	Grenzwert
Hinweis:	
Abschaltpunkt der Schleichmengenunterdrückung. "0" = Keine Unterdrückung.	
StartPointSquareRootFunction [%]	Grenzwert
Hinweis:	
Einsatzpunkt der Kennlinie. Wenn der Parameter "CharacterizationType" = "sroff" ist, wirkt sich dieser Wert wie "LowFlowCutOff" aus.	
Density [kg/m ³]	Dichte des Mediums

Parameter	Wert
Volumeflow_UpperRangeValue [m³/s]	Maximaler Durchfluss
Volumeflow_Outval_Unit	Einheit des Volumendurchflusses
Massflow_Outval_Unit	Einheit des Massendurchflusses
Al1_Channel Hinweise: Bei der Einstellung "Secondary_Value_3" wird der Prozesswert	"Measured_Value"
als Massendurchfluss in Abhängigkeit der parametrierten Dichte ausgegeben. Bei der Einstellung "InValGenericModel" wird der Prozesswert unverändert als Druck ausgegeben.	
Al1_Filter_Time_Const	"0" = keine Glättung
Hinweis:	Max "100" = Größte
Zeitkonstante für den Filter zur Glättung des Messwerts.	Glättung
AI1_Tag [STRING]	"Flow"
Hinweis: Die Zeichenkette dient nur zur Anzeige am Symbol in SIMIT.	
AI1_Units [STRING]	"m³/s"
Hinweis:	
Die Zeichenkette dient nur zur Anzeige am Symbol in SIMIT.	
Tot_Channel	"Measured_Value"
Tot_Tag	"Totalizer"
Hinweis:	
Die Zeichenkette dient nur zur Anzeige am Symbol in SIMIT.	
Tot_Units	"m³"
Hinweis:	
Die Zeichenkette dient nur zur Anzeige am Symbol in SIMIT.	
Tot_Mode	"Positive"

In folgender Abbildung sehen Sie die Gegenüberstellung des erfassten Prozesssignals "InPv" und dem ausgegebenen Messwert "PV". Der Prozesswert [0..5 bar] wird auf den Messwert [0..5 m³/s] linear skaliert. "PV1" gibt den Wert des Totalisators aus:

3.1.3 Parameterübersicht

Alle Parameter sind in folgender Tabelle beschrieben:

Parameter / Wert	Beschreibung
Application_Switch	Art der Anwendung des Messumformers.
 [Pressure] [Flow] [Volume] 	Hinweis: Der Totalizer kann nur bei Durchfluss und Differenzdruck aktiviert werden.
UpperSensorLimit LowerSensorLimit [ANALOG]	Messbereich des Sensors
MeasuringRange_PressureUpperValue MeasuringRange_PressureLowerValue [ANALOG]	Arbeitsbereich des Sensors (Genutzter Messbereich)
WorkingRange_UpperRangeValue WorkingRange_LowerRangeValue [ANALOG]	 Skalierung des Messwerts abhängig vom Parameter "Application_Switch" Pressure: keine Level: [bar] → [m] oder [%] Volume: [bar] → [m³] Flow: [bar] → [kg/s] (srlin/linear)
CharacterizationType • [linear] • [srlin] • [sroff]	 Kennlinie srlin: Linear bis zum Einzugspunkt danach radizierend. sroff: 0 bis zum Einsatzpunkt danach radizierend (Schleichmengenunterdrückung) Hinweise: Bei "AppSwitch = Flow" darf nur "srlin" oder "sroff" parametriert werden. Bei "AppSwitch = Pressure, Level, Volume" darf nur "linear" parametriert werden. Bei linear fallenden Kennlinien müssen die Bereichsgrenzen "MeasuringRange_PressureUpperValue" und "MeasuringRange_PressureLowerValue" vertauscht werden.
LowFlowCutOff [ANALOG]	Schleichmengenunterdrückung für den Durchfluss in [%] des Messbereichs
StartPointSquareRootFunction [ANALOG]	Einsatzpunkt der Kennlinie in [%] des Messbereichs Hinweis: Bei "sroff" wirkt es wie die Schleichmengenunterdrückung.
Density [ANALOG]	Dichte des Mediums in [kg/m ³] Hinweis: Mithilfe der Dichte wird der Massen- und Volumenfluss berechnet.
Volumeflow_UpperRangeValue [ANALOG]	Obere Grenze des Volumenflusses in [m³/s] Hinweise: Bei maximalen Eingangsdruck "MeasuringRange_UpperRangeValue" entspricht der Volumenfluss dem Wert "Volumeflow_UpperRangeValue" Der Differenzdruck darf nicht null sein.

Parameter / Wert	Beschreibung
Volumeflow_Outval_Unit • [m³/s] • [l/s] • [m³/min] • [l/min] • [m³/h] • [l/h] • [m³/d] • [l/d]	Der Ausgangswert von "Measured_Value" und die Bereichsgrenzen werden auf Basis dieser Einheit skaliert.
Massflow_Outval_Unit • [kg/s] • [kg/h] • [kg/min] • [kg/d]	Der Ausgangswert von "SecondaryValue_3" und die Bereichsgrenzen werden auf Basis dieser Einheit skaliert
Level_Outval_Unit [m] / [%] • [m] • [%]	Ausgabeeinheit des Füllstands
FailSafeMode [SubstituteValue] [LastValidValue] [UseBadValue] 	Verhalten bei einem Ausfall. Der Gerätestatus wird auf "schlecht" gesetzt. Hinweis: Der Totalizer hat keinen eigenen "FailSafeMode". Im Fehlerfall wird der Zähler angehalten oder auf den Ersatzwert gesetzt.
Al1_Channel • [InValGenericModel] • [MeasuredValue] • [Secondary_Value_1] • [Secondary_Value_3]	Auswahl des Messwerts für den ersten Kanal.
Al1_Tag [STRING]	Art des Messwerts – Voreinstellung: "Pressure" Hinweis: Text, der am Symbol angezeigt wird.
Al1_Units [STRING]	Einheit des Messwerts – Voreinstellung: "bar" Hinweis: Text, der am Symbol angezeigt wird.
AI1_OpScaling_UpperValue AI1_OpScaling_LowerValue [ANALOG]	Bediengrenzen des Messwerts Hinweis: Die Grenzen müssen auch am PCS7-Treiberbaustein parametriert werden.
AI1_UpperAlarm_Enable AI1_UpperWarning_Enable AI1_LowerWarning_Enable AI1_LowerAlarm_Enable [BOOL]	Aktivierung der Grenzwertüberwachung
AI1_UpperLimitAlarm AI1_UpperLimitWarning AI1_LowerLimitWarning AI1_LowerLimitAlarm [ANALOG]	Grenzwerte für Warnungen und Alarme
AI1_LimitHysteresis [ANALOG]	Hysterese für Grenzwertüberwachung
AI1_FailSafeValue [ANALOG]	Parametrierbarer Ersatzwert im Fehlerfall

Parameter / Wert	Beschreibung
AI1_Filter_Time_Const [ANALOG]	Zeitkonstante für den Filter zur Glättung des Messwerts in [s]. Hinweis: Maximalwert sind 100 s. Bei "Null" ist die Glättung inaktiv und der Wert wird unverändert ausgegeben.
Tot_Channel • [notUsed] • [Measured_Value] • [Secondary_Value_3]	Auswahl der Eingangsgrösse für den Totalisator Hinweis: Der Totalisator kann nur bei "Application_Switch = Flow" aktiviert werden.
Tot_Tag [STRING]	Bezeichnung des Messwerts, default = "Totalizer"
Tot_Units [STRING]	Einheit des Messwerts, default = "m ³ "
Tot_Preset_Value [ANALOG]	Startwert für den Totalisator
Tot_UpperAlarm_Enable Tot_UpperWarning_Enable Tot_LowerWarning_Enable Tot_LowerAlarm_Enable [BOOL]	Aktivierung der Grenzwertüberwachung
Tot_UpperLimitAlarm Tot_UpperLimitWarning Tot_LowerLimitWarning Tot_LowerLimitAlarm [ANALOG]	Alarmgrenzwerte
Tot_LimitHysteresis [ANALOG]	Hysterese für Grenzwertüberwachung
Tot_FailSafeValue [ANALOG]	Parametrierbarer Ersatzwert im Fehlerfall

3.1.4 Bedienung

Sobald am Baustein "Sensor_PA" ein detailliertes Gerätemodell verbunden ist, ist die Bedienfunktion des generischen Bausteins deaktiviert. Die Bedienung erfolgt dann ausschließlich am Baustein "SITRANS P – PA". Dies ist jedoch für den Anwender nicht sichtbar. Änderungen am Bedienfenster des generischen Modells werden von den Einstellungen am detaillierten Modell überschrieben.

Mit einem Doppelklick auf den Baustein "SITRANS P – PA" öffnen Sie das Bedienfenster. Im Bedienfenster werden Ihnen die aktuellen Messwerte und Grenzwerte angezeigt.

Wenn Sie den Schalter "Set manual" (1) betätigen, können Sie einen Ersatzwert "Value in manual operation" für den Messwert eingeben und den Gerätestatus "Set device status" vorgeben (2). Die Ersatzwerte im "Fail-Safe"-Fall (3) werden verwendet, wenn der Gerätestatus "bad" ist.

Wenn der Totalisator verwendet wird, können Sie einen Wert vorgeben und mit dem Schalter "Set preset value" (4) diesen Wert aktivieren. Der Schalter "Reset" setzt den Wert zurück auf "0".

Das Bedienfenster ist durch einen Mausklick auf das Dreiecksymbol (5) erweiterbar. Dort können Sie die parametrierten Grenzwerte einsehen und ändern. Grenzwertüberschreitungen werden am Bausteinsymbol (6) angezeigt und der Status des Prozesswerts (7) entsprechend gesetzt.

3.2 SIPART PS2

Mit diesem Simulationsbaustein kann der Stellungsregler SIPART PS2 simuliert werden. Das detaillierte Simulationsmodell, kann mit den generischen Modellen "Positioner_HART" und "Positioner_PA" verwendet werden.

Der Simulationsbaustein enthält folgende Funktionen:

- Hand/Vorort-Bedienung des Ventils
- Simulation des Gerätestatus
- Simulation eines Teilhubtests (Partial-Stroke-Test)
- Simulation des Regelkreises
- Simulation einer dichtschließen Funktion
- "Fail-Safe"-Verhalten im Fall eines Gerätefehlers oder eines schlechten Signalzustands
- Simulation einer Blockade
- "Control in the Field"-Funktion mithilfe von binären Eingängen

Positioner_HART	SipartPS2#2					×
OLSEP analog 128 SP_ST Rbk_ST Close b Main Fault V down up SIPART DC 2	Sp Rbk	Operation mode Upper range value: Setpoint: Lower range value: Readback value:	BE active Forcen Auto, internal s Auto, external s	etpoint setpoint #.## % #.##	Set device status: Status: bad Status: Maintenan Status: Maintenan Status: Simulation Status: good Set Offset: Offset value (-1010):	ce demanded ce required
F3 2 AlmMod_A1Act False Bin1 AlmMod_Bin2 AlmMod_A2Act AlmMod_Pauls LimMod_Pauls LimMod_Pauls LimMod_Pauls LimMod_Pauls LimMod_Pauls LimMod_Pauls LimMod_Pauls		Set local operation: Force open position: Force close position:			Duration: Set PST: PST active	#.## S
Setpoint: #.## %	•					
Readback: #.## %	Gain: Tn: DeadBand:	#.## Tra #.## s Tra #.## Lin Tin	ivel Time Up: ivel Time Down: n (<10): n:	#.## #.## #.## #.##	s s	

Im Beispiel wird die HART-Variante verwendet.

3.2.1 Projektierung

- 1. Ziehen Sie per Drag&Drop die folgenden Bausteine aus der Gerätebibliothek in das SIMIT-Diagramm:
 - Positioner_HART
 - SipartPS2
- Hinweis Am Baustein "Positioner_HART" ist ein Ausgang und am Baustein "SipartPS2" ist ein Eingang des komplexen Verbindungstyps "L2DetailledModel2" vorhanden. Über diese Schnittstelle tauschen beide Bausteine Signale und Prozesswerte miteinander aus. Der Verbindungstyp enthält alle relevanten Ein- und Ausgangsvariablen. Der Datenaustausch funktioniert in beide Richtungen.
 - 2. Verbinden Sie die beiden Anschlüsse "L2DetailledModel" (1).
 - 3. Verbinden Sie die Stellposition "Y" (2) mit der Prozesssimulation.
 - 4. Verbinden Sie den Eingang "SP_analog" (3) mit dem Ausgangssignal der Kopplung.
 - 5. Verbinden Sie die Ausgänge "Rbk_analog", "Open" und "Close" (4) mit den entsprechenden Eingangssignalen der Kopplung.

Hinweis Die Anschlüsse "SP_analog" und "Rbk_analog" verarbeiten den 4...20 mA-Rohwert. Hier müssen die Signale nicht normiert werden. Alternativ können Sie den Sollwert auch als Gleitkommazahl am Eingang "SP" vorgeben.

3.2.2 Parametrierung

Die Parameter des Simulationsmodells entsprechen weitestgehend dem des Gerätes in SIMATIC PDM.

Markieren Sie den Baustein des detaillierten Gerätemodells "SIPART PS 2" und wechseln Sie in den Eigenschaften in die Rubrik "Zusatzparameter" ("Additional parameter").

		SIPART	
		PS 2	
False False	Bin1 AlmMod_Bin2		AlmMod_A1Act AlmMod_A2Act AlmMod_Fault LimMod_A1Act LimMod_A2Act LimMod_Fault
-1.03	PROK_EXL	4.049	Y_Ext
	Setpoint:		#.## %
	Readback:		#.## %

Name		Value	
Function_of_Binary_Input_1		Off 🔹	
Function_of_Binary_Input_2		Off 🔹	
Response_Threshold_of_Ala [%]	90.0	
Response_Threshold_of_Ala [%]	10.0	
LimMod_act		False 🔹	
LimMod_A1 [%]	100.0	
LimMod_A2 [%]	0.0	
Gain		0.5	
Tn [s]	0.0	
Travel_Time_Up [s]	10.0	
Travel_Time_Down [s]	10.0	
Setpoint_Direction_Rise		True 🔹	
Setpoint_End_Value [%]	100.0	
Setpoint_Initial_Value [%]	0.0	
Setpoint_TSUP [s]	5.0	
Setpoint_TSDO [s]	5.0	
Safety_Position_Mechanical		Fail_Safe_Close	
Response_Threshold_for_Fault		10.0	
Monitoring_Time_for_Fault_M [s]	100.0	
PST_Enable		True 🔹	
PST_Step_Height [%]	10.0	
PST_Step_Direction		up 💌	
PST_Tim		10.0	
Tight_Closing_YCLS		NoActive 🔹	
Tight_Closing_YCUP [%]	100.0	
Tight_Closing_YCDO [%]	0.0	

Teilhubtest (Partial-Stroke-Test)

Im folgenden Bild sehen Sie die Auswirkung des Teilhubtests auf den Prozess. Dabei wird der PST mit der Änderungsgröße von 10 % jeweils mit den Einstellungen am Parameter "PST_Step_Direction" mit "up", "down" und "up_down" durchgeführt.

3.2.3 Parameterübersicht

Parameter / Wert	Beschreibung
Function_of_Binary_Input_1 [%] Function_of_Binary_Input_2 [%] • [Off] • [Open] • [On] • [Close]	Parametrierbare Funktion der Eingänge "Bin_1" und "AlmModBin_2".
• [Stop] • [PS1] Response_Threshold_of_Alarm_1 [%] Response_Threshold_of_Alarm_2 [%]	Obere Grenze für das Alarmsignal "AlmMod_A1Act" Untere Grenze für das Alarmsignal "AlmMod_A2Act"
LimMod_act	Grenzwertmodul aktivieren
LimMod_A1 [%] LimMod_A2 [%]	Obere Grenze des Grenzwertmoduls Untere Grenze des Grenzwertmoduls
Gain	Regler Verstärkung
Tn [s]	Nachstellzeit des Reglers
Travel_Time_Up [s] Travel_Time_Down [s]	Stellgeschwindigkeit der Armatur 0-100 % Stellgeschwindigkeit der Armatur 100-0 % Hinweis: Diese Werte sind in PDM "Actuating_Time" nicht projektierbar, sondern eine gemessene Eigenschaft der Armatur.
LowFlowCutOff [ANALOG]	Schleichmengenunterdrückung für den Durchfluss in [%] des Messbereichs

Parameter / Wert	Beschreibung
Setpoint_Direction_Rise [BOOL]	Stellwert Invertierung
	[TRUE]=Normal; [FALSE]=Invertiert
Setpoint_End_Value [%]	Obere Grenze des Sollwerts
Setpoint_Initial_Value [%]	Untere Grenze des Sollwerts
Setpoint_TSUP [s]	Zeitkonstante für Sollwertrampe auf
Setpoint_TSDO [s]	Zeitkonstante für Sollwertrampe zu
Safety_Position_Mechanical	Sicherheitsstellung bei Ausfall
 [Fail_Safe_Open] 	
 [Fail_Safe_Close] 	
• [Fail_Freeze]	
Response_Threshold_for_Fault_Message	Zulässige Regelabweichung
[%]	Ansprechschwelle der Störmeldung "Regelabweichung (TIM)", das Alarmsignal "AlmMod_Fault" wird gesetzt
Monitoring_Time_for_Fault_Message [s]	Überwachungsszeit in der sich der Sollzustand des Stellungsreglers innerhalb der Regelabweichung befinden muss
PST_Enable [BOOL]	Teilhubtest aktivieren
PST_Step_Height [%]	PST-Stellbereich
PST_Step_Direction	PST-Stellrichtung
• [Up]	
• [Down]	
• [Up_Down]	
PST_Tim [s]	Überwachungsdauer Einschwingverhalten für PST
	Hinweis:
	Der PST wird ausgeführt, wenn sich die Regeldifferenz für die Dauer eines Überwachungszeitraumes (PST_TIM) innerhalb der Totzone befunden hat. Der Sprung wird dann ausgeführt und nach Ablauf des Überwachungszeitraumes wieder zurückgenommen. Der PST wird für den aktuellen Arbeitspunkt durchgeführt; die Parameter STPOS und STTOL werden daher nicht genutzt.
Tight_Closing_YCLS	Stellrichtung für das Dichtschließen
• [Up] • [NoActive]	
• [Down] • [Up_Down]	
Tight_Closing_YCUP [%]	Bei Überschreiten des Wertes wird die Armatur in die Position "Open" gefahren.
Tight_Closing_YCDO [%]	Bei Unterschreiten des Wertes wird die Armatur in die Position "Close" gefahren.

3.2.4 Bedienung

Sobald an einem der Bausteine "Positioner_PA" oder "Positioner_HART" das detaillierte Gerätemodell "SIPART PS 2" verbunden ist, ist die Bedienfunktion des generischen Bausteins deaktiviert. Die Bedienung erfolgt dann ausschließlich am detaillierten Modell.

Mit einem Doppelklick auf den Baustein "SIPART PS 2" öffnen Sie das Bedienfenster. Sie können folgende Funktionen ausführen:

- (1) Offset mit Abweichungsgröße und Zeitdauer ("Set Offset")
- (2) Teilhubtest ("Set PST")
- (3) Manuelle Bedienung ("Set local operation")
- (4) Änderung des Prozesswerts ("Setpoint") und des Gerätestatus ("Set device status") im manuellen Betrieb.

3.3 SITRANS LR/LU - PA

Mit diesem Simulationsbaustein können die Messumformer SITRANS LR250, SITRANS LR560 und STRANS Probe LU simuliert werden.

Der Simulationsbaustein enthält folgende Funktionen:

- Konfigurierbare Messung von Füllstand, Distanz, Raum und Volumen
- Reaktionsgeschwindigkeit und Dämpfung
- Simulation des Gerätestatus
- Überwachung von Alarmgrenzen
- Verhalten im Fall eines Gerätefehlers oder einem Radarausfall
- Manuelle Bedienung und Simulation von Prozesswerten

Die Messumformer zur Erfassung eines Füllstands arbeiten nach folgendem Schema:

Weitere Informationen finden Sie im Handbuch zum jeweiligen Gerät.

3.3.1 Projektierung

- 1. Ziehen Sie per Drag&Drop die folgenden Bausteine aus der Gerätebibliothek in das SIMIT-Diagramm:
 - Sensor_PA
 - SitransLRLU_PA

Hinweis Am Baustein "Sensor_PA" ist ein Ausgang und am Baustein "SITRANS LR/LU -PA" ist ein Eingang des komplexen Verbindungstyps "L2DetailledModel2" vorhanden. Über diese Schnittstelle tauschen beide Bausteine Signale und Prozesswerte miteinander aus. Der Verbindungstyp enthält alle relevanten Einund Ausgangsvariablen. Der Datenaustausch funktioniert in beide Richtungen.

- 2. Verbinden Sie die Anschlüsse "L2DetailledModel" und "L2SensorProfibus" (1).
- 3. Verbinden Sie den simulierten Prozesswert mit dem Eingang "InPv" (2).
- 4. Verbinden Sie die Ausgänge "PV" und "PV_ST" mit den entsprechenden Eingangssignalen der projektierten Kopplung (3). Der Ausgang "PV" wird mit dem parametrierten Wert "AI1_Channel" versorgt.
- Der Prozesswerteingang "InPv1" kann nur ohne das detaillierte Simulationsmodell verwendet werden. Sobald das detaillierte Modell verwendet wird, wird am Ausgang "PV1" der parametrierte Begleitwert "Al2_Channel" ausgegeben.

3.3.2 Parametrierung

Die folgenden Fallbeispiele zeigen die Auswirkungen des Parameters "Response rate" auf den Prozesswert.

In diesem Beispiel wird der Füllstand eines Behälters gemessen. Der simulierte Behälter hat folgende Parameter:

- Maximale Höhe: 5 m
- Maximales Volumen: 20 m³

Der Zulauf und der Ablauf werden jeweils über ein Ventil reguliert.

Änderungsbegrenzung "Slow"

Die maximale Änderung des Füllstands wurde über den Parameter "Response rate = slow" auf 0.1 m/min begrenzt.

Ergebnis:

Die Antwortrate des Messgeräts ist zu gering. Der Prozesswert weicht vom Messwert ab.

Änderungsbegrenzung "Medium"

Die maximale Änderung des Füllstands wurde über den Parameter "Response rate = medium" auf 1.0 m/min begrenzt.

Ergebnis:

Die Antwortrate des Messgeräts ist etwas zu gering. Der Prozesswert weicht vom Messwert geringfügig ab.

5 -										
Ŭ,	Source	Name	Color	Range		SitransLRLU_PA#30				×
45-	Sensor_PA#30	InPv		(05)		Operation process value (AI1))			
1.5	Sensor_PA#30	PV		(05)		Set manual:			Set device status:	
						Upper range value:		5.00	Status: bad	
4 1						Value in manual operation:	0.96		Status: Maintenance Status: Maintenance	e demanded e required
[Lower range value:		0.00	Status: Simulation	
3.5 -						Response rate and damping			Status: good	
1						Response rate:	•	User defined/Reset	Set Loss_Of_Echo:	
3 -							•	Medium	Remaining LOE time:	100.00
						Fill rate per minute [m/min]:	_	1.00	Fail-Safe	
2.5 -						Empty rate per minute [m/min]:		1.00	AI1 Fail-Safe Value:	0.00
						Filter Time Const [s]:		10.00	ALZ Fall-Salle Value:	0.00
2 -										
						>				
1.5 -										
1 -						and the second	(hernou	Www.Wruechikaka		-
				In the second second	MANA	Addrew of the second of the				
0.5 -	MALE CHANNEL CHANGE	Martin Martin	worth white we	April of Barry						
0										
			12					13		

Änderungsbegrenzung "Fast"

Die maximale Änderung des Füllstands wurde über den Parameter "Response rate = fast" auf 10.0 m/min begrenzt.

Ergebnis:

Die Antwortrate des Messgeräts ist zu hoch. Der Prozesswert bildet das Messrauschen des Sensors ab.

5 -									
-	Source	Name	Color	Range	SitransLRLU_PA#30				×
45.	Sensor_PA#30	InPv		(05)	Operation process value (AI1))			
4.5	Sensor_PA#30	PV		(05)	Set manual:			Set device status:	
					Upper range value:		5.00	Status: bad	
4 -					Value in manual operation:	0.97		Status: Maintenance Status: Maintenance	e demanded e required
1					Lower range value:		0.00	Status: Simulation	erequireu
3.5 -					Response rate and damping			Status: good	
					Response rate:	Use	er defined/Reset	Set Loss_Of_Echo:	
3 -						Me	dium	Remaining LOE time:	100.00
					Fill rate per minute [m/min]:	1	w	Fail-Safe	
2.5 -					Empty rate per minute [m/min]:		0.00	AI1 Fail-Safe Value:	0.00
					Filter Time Const [s]:		0.00	AI2 Fail-Safe Value:	0.00
2 -									
					•				
1.5 -									
1.0									
1.							addistry Longitudes - 1	and as Others Resident a lander and the Residence	5 a.c. 17
1			and a strategy of the little	PROLINGATIVE	 a and a state of the second	Platford and	aura n'a Gillenfin	Double and a subsection of the second second	butter
	hand a start and a start and by	ht weething the second	Wallow Alabel and						
0.5 -									
0	52				 				

Änderungsbegrenzung "User defined"

Die maximale Änderung des Füllstands wurde über den Parameter "Response rate = User defined" auf 2.0 m/min begrenzt.

Ergebnis:

Die Antwortrate des Messgeräts ist korrekt. Der Prozesswert weicht nicht vom Messwert ab, das Messrauschen wird nicht an den Prozesswert übertragen.

5 -										
Ŭ,	Source	Name	Color	Range		SitransLRLU_PA#30				×
45-	Sensor_PA#30	InPv		(05)		Operation process value (AI1)			
	Sensor_PA#30	PV		(05)		Set manual:			Set device status:	
						Upper range value:		5.00	Status: bad	
4						Value in manual operation:	0.99		Status: Maintenance Status: Maintenance	e oemanded e required
						Lower range value:		0.00	Status: Simulation	
3.5 -						Response rate and damping			Status: good	
						Response rate:	•	User defined/Reset Fast	Set Loss_Of_Echo:	
3 -							•	Medium	Remaining LOE time:	100.00
						Fill rate per minute [m/min]:	_	2.00	Fail-Safe	
2.5 -						Empty rate per minute [m/min]:		2.00	ATT Fail-Safe Value:	0.00
						Filter Time Const [s]:		0.00	ALL Fail-Sale Value.	0.00
2 -										
						•				
1.5 -	1.5									
1 -	1									
0.5 -	Land - Marine - Contractor - Contractor	ulation and the second	المترا المراجدة		AT PROVIDE					
0										
					24					25

3.3.3 Parameterübersicht

Parameter / Wert	Beschreibung
High_Calibration_Point [m]	Oberer und unterer Kalibrierungspunkt
Low_Calibration_Point [m]	
Response_Rate	Änderungsbegrenzung des Prozesswerts von Kanal 1 (Al1)
 [fast] [medium] 	Hinweis:
[slow] [user defined]	Slow \triangleq 0,1 m/min Füll- und Leerungsrate
	Medium
	Fast ≙ 10.0 m/min Füll- und Leerungsrate
	User Defined \triangleq Wert von "Fill_Rate" und "Empty_Rate"
Empty_Rate [m/min]	Maximale Entleer-, bzw. Befüll-Geschwindigkeit
Fill_Rate [m/min]	Hinweis:
	Nur bei "Response_Rate" = "user defined"
Filter_Time_Const [s]	Zeitkonstante für den Filter zur Glättung des Messwerts .
	Hinweis:
	0 s = keine Glättung; 100 s = Maximale Glättung
	Die Filterzeitkonstante wirkt nur auf die Primärvariable
Max_Volume [m ³]	Volumen bei maximaler Füllhöhe
LevelUnit	Auswahl der Einheit zur Ausgabe des Füllstands
• [m] • [%]	

Parameter / Wert	Beschreibung
FailSaveMode [SubstitueValue] [LastValidValue] 	Verhalten bei einem Ausfall. Der Gerätestatus wird auf "schlecht" gesetzt. Hinweis:
• [UseBadValue]	Der "FailSateMode" wirkt auf beide Kanale "Al1" und "Al2".
LOE_Timer [s]	Verzögerung der Signalisierung eines Geräteausfalls (Loss of Echo) Hinweis: Falls der Fehler "Loss of Echo" eintritt; wird für den Zeitraum von "LOE_Timer" der Status auf "Maintenance demanded" gesetzt und der letzte gültige Wert wird ausgegeben. Nach Ablauf des Zählers wird der Zustand "bad" ausgegeben und die Einstellung von "FailSafeMode" wird wirksam.
Al1_Channel • [InValGenericModel] • [Level] • [Distance] • [Volume]	Auswahl des Messwerts von Kanal 1
AI1_Tag [STRING]	Bezeichnung des Messwerts, die am Modellsymbol angezeigt wird
AI1_Units [STRING]	Einheit des Messwerts, die am Modellsymbol angezeigt wird
AI1_OpScaling_UpperValue AI1_OpScaling_LowerValue [ANALOG]	Bediengrenzen des Messwerts
Al1_UpperAlarm_Enable Al1_UpperWarning_Enable Al1_LowerWarning_Enable Al1_LowerAlarm_Enable [BOOL]	Aktivierung der Grenzwertüberwachung
AI1_UpperLimitAlarm	Alarmgrenzwerte
Al1_UpperLimitWarning	Hinweis:
AI1_LowerLimitAlarm [ANALOG]	Lower = Überwachung auf Unterschreitung
AI1_LimitHsyteresis	Hysterese für die Grenzwertüberwachung
AI1_FailSafeValue	Ersatzwert im Fehlerfall
Al2_Channel	Auswahl des Messwerts von Kanal 2
• [InValGenericModel]	
• [Level]	
IVolume1	
Al2_Tag [STRING]	Bezeichnung des Messwerts, die am Modellsymbol angezeigt wird
AI2_Units [STRING]	Einheit des Messwerts, die am Modellsymbol angezeigt wird
Al2_OpScaling_UpperValue Al2_OpScaling_LowerValue [ANALOG]	Bediengrenzen des Messwerts

Parameter / Wert	Beschreibung
AI2_UpperAlarm_Enable AI2_UpperWarning_Enable AI2_LowerWarning_Enable AI2_LowerAlarm_Enable [BOOL]	Aktivierung der Grenzwertüberwachung
AI2_UpperLimitAlarm AI2_UpperLimitWarning AI2_LowerLimitWarning AI2_LowerLimitAlarm [ANALOG]	Alarmgrenzwerte Hinweis: Upper = Überwachung auf Überschreitung Lower = Überwachung auf Unterschreitung
Al2_LimitHsyteresis	Hysterese für die Grenzwertüberwachung
Al2_FailSafeValue	Ersatzwert im Fehlerfall

3.3.4 Bedienung

Sobald am Baustein "Sensor_PA" das detaillierte Gerätemodell "SITRANS LR/LU -PA" verbunden ist, ist die Bedienfunktion des generischen Bausteins deaktiviert. Die Bedienung erfolgt dann ausschließlich am detaillierten Modell.

Mit einem Doppelklick auf den Baustein " SITRANS LR/LU - PA" öffnen Sie das Bedienfenster. Sie können folgende Funktionen ausführen:

- (1) Manuelle Bedienung "Set manual"
- (2) Änderung des Prozesswerts "Value in manual opertion" und des Gerätestatus "Set device status" im manuellen Betrieb.
- (3) Änderung der Antwortrate "Response rate" des Sensors
- (4) Fehlersimulation "Set Loss of Echo"
- (5) Vorgabe von Ersatzwerten im Fehlerfall "Status: bad"

4 Demoprojekt

Von der Beitragsseite dieses Anwendungsbeispiels können Sie ein Demoprojekt herunterladen, mit dem Sie die Bibliothek testen können:

https://support.industry.siemens.com/cs/ww/de/view/109757452

Es enthält folgende Komponenten:

- Diagramme zur Übersicht aller Gerätemodelle
- Diagramme mit der Beschreibung der detaillierten Gerätemodelle
- Simulation mehrerer Messstellen an einem Prozess
- Trendanzeigen zur Analyse des Geräteverhaltens auf den Prozess

Das Demoprojekt und die einzelnen Diagramme sind folgendermaßen strukturiert:

- (1) Diagramme mit den Gerätemodellen
- (2) Trendanzeigen zur Visualisierung der Prozesswerte
- (3) Einfache Prozesssimulation, die die Messstellen mit Werten versorgen
- (4) Gerätemodelle inklusive Beschreibung
- (5) Zusätzliches Simulationsverhalten
- (6) Eingebundene Projektbibliothek

4.1 Übersicht der Gerätemodelle

Generische Gerätemodelle

Im Diagramm "All generic Models" finden Sie die eine Übersicht der generischen Gerätemodelle:

All generic models	_ 🗵 🗆 ×.
日国のGIIII 100% ■ Q Q Tahoma ■ 12 ■ B / U M I Z I A I = I = I = I 目 G G G I = I = I I I I I I I I I I I I I	
Sensor_Binary Sensor_Analog Limit_Switch PID-Ctrl False in YD 0.01 inPv PV_analog 0.01 inPv YD PV_strip PV_strip 0.01 inPv YD 0.01 inPv YD Active 0.01 inPv PV_strip Active SP_Ext MVT 0.01 inPv PV_strip PV_strip SP_Ext MVT 0.01 inPv PV_strip SP_Ext MVT SP_Ext 0.01 inPv PV_strip SP_Ext MVT SP_Ext 0.02 inPv PV_strip SP_Ext MVT SP_Ext 0.01 inPv PV_strip SP_Ext MVT SP_Ext 0.01 inPv PV_strip NVT SP_Ext MVT 0.01 inPv PV_strip NVT SP_Ext MVT 0.01 inPv PV_strip NVT SP_Ext NVT 0.01 inPv PV_strip NVT SP_Ext NVT	
Sensor_Hart Sensor_PA 0.0 InPv PV_snalog PV_ST PV_ST	Positioner_PA 128 SP_ST Rbk_ST 128 RCasin_ST RCasOut Pos0_ST Pos0_ST CbkBy1 CbkBy1 down up

Detaillierte Gerätemodelle

Im Diagramm "All detailled Models" finden Sie die eine Übersicht der detaillierten Gerätemodelle.

4.2 SITRANS Durchflussmessgeräte

Im Diagramm "Flow – SITRANS FC430 & MAG6000" sind die Simulationsmodelle für den SITRANS FC430 und den SITRANS MAG6000 projektiert.

Simulation

Die Prozesssimulation wird mithilfe der Schaltfläche "Start" (1) aktiviert. Der Behälter wird bei unterschreiten des Füllstands von 6 % bis zum Füllstand von 85 % befüllt. Die Entleerung erfolgt periodisch und unabhängig vom Füllstand.

Die Messstelle für das Simulationsmodell des "MAG6000" (2) ist am Zulauf projektiert. Es wird der Volumendurchfluss in "I/s" erfasst. Der Totalisator berechnet die dem Tank zugeführte Menge in "I".

Die Messstelle für das Simulationsmodell des "FC430" (3) ist am Ablauf projektiert. Es wird der Massendurchfluss in "kg/s" erfasst. Der Totalisator berechnet die dem Tank entnommene Masse in "kg".

Bedienung

Mit einem Doppelklick öffnen Sie das Bedienfenster des Simulationsmodells. Wenn Sie den manuellen Modus "Set manual" (1) aktivieren, können Sie den Prozesswert "Value in manual operation" und den Gerätestatus "Set device status" selbst bestimmen (2). Nach der Erweiterung des Bedienfensters (3) können Sie Grenzwerte einstellen, oder einen der Totalisatoren zurücksetzen (4).

SITRANS FC430 HAR	T (SitransF	C430_Hart)			×
Operation primary varia	ble (Pv)				
Set manual:		1	Set device status:		
Upper range value: Value in manual operation: Lower range value: Filter Time Constant:	1.37	10.00 -2 0.00	Status: bar Status: Ma Status: Ma Status: Sin Status: go Set fault empty tu	d inenance Demanded intenance Required nulation od be:	
3			Fail-Safe User defined value User defined value	e [mA]:	3.8
*					
Monitoring Massflow		Monitoring Density	1	Totalizers	_ 4
Upper Limit Alarm:	0.00	Upper Limit Alarm:	0.00	Tot1 Reset:	
Upper Limit Warning:	0.00	Upper Limit Warning:	0.00	Tot1 Value in man. op. :	66.48
Lower Limit Warning:	0.00	Lower Limit Warning:	0.00	Tot2 Reset:	
Lower Limit Alarm:	0.00	Lower Limit Alarm:	0.00	Tot2 Value in man. op. :	66.48
Monitoring Volumeflow		Monitoring FluidTe	mperature		
Upper Limit Alarm:	0.00	Upper Limit Alarm:	0.00		
Upper Limit Warning:	0.00	Upper Limit Warning:	0.00	Sv in man. operation:	0.00
Lower Limit Warning:	0.00	Lower Limit Warning:	0.00	Tv in man. operation:	66.48
Lower Limit Alarm:	0.00	Lower Limit Alarm:	0.00	Qv in man. operation:	0.00

Überwachung

In der Trend-Anzeige "SITRANS FC430 MAG6000" können Sie die Prozesswerte des Zulaufs, des Ablaufs und des Füllstands beobachten.

4.3 Füllstandsmessgerät SITRANS LR250

Im Diagramm "Level – SITRANS LR LU" sind die Simulationsmodelle für den SITRANS LR250 PA und den SITRANS LR250 HART projektiert.

Simulation

Die Prozesssimulation wird mithilfe der Schaltfläche "Start" aktiviert. Zusätzlich kann für den SITRANS LR250 PA mit der Schaltfläche "Enable Noise" (1) ein Messrauschen dazu geschalten werden. Der Behälter wird bei unterschreiten des Füllstands von 6 % bis zum Füllstand von 85 % befüllt und danach wieder bis zum Füllstand von 6 % entleert.

Der Sensor LR250 PA (2) misst die Füllstandshöhe, der Sensor LR250 HART (3) misst die Distanz zur Oberfläche im Behälter.

Bedienung

Mit einem Doppelklick öffnen Sie das Bedienfenster des Simulationsmodells. Wenn Sie den manuellen Modus "Set manual" (1) aktivieren, können Sie den Prozesswert "Value in manual operation" und den Gerätestatus "Set device status" selbst bestimmen (2).

Im Bereich "Response rate and damping" können Sie die Reaktionsgeschwindigkeit des Sensors, beziehungsweise die Dämpfung des Messwerts (3) einstellen.

Mit "Set Loss of Echo" (4) können Sie einen Fehler des Geräts simulieren.

Nach der Erweiterung des Bedienfensters (5) können Sie Grenzwerte einstellen.

Überwachung

In der Trend-Anzeige "SITRANS LR LU" können Sie die Prozesswerte des Zulaufs, des Ablaufs und des Füllstands beobachten.

SITRANS LR LU				_ 🗹 🖷 🗙
🕞 🛃 🖄 I				
Sensor LR250 PA InPv Sensor LR250 PA Pv Sensor LR250 HART Pv 0.8 0.7 0.6 0.5 0.4 0.3	ووليك المحافظ والمراجع والمحافظ المحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ	And a start and	eregeneringen	Doll II - Wight and Andrew State
0.2 30 35	40 45	50 55	60	65 70 0d + 0h + 1m + x s
<u>A</u>	<u> </u>	Layout: One belo • Superimp	w the other osed	 Online tracking Reset Y scaling

4.4 Füllstandsmessgerät SITRANS LUT400

Im Diagramm "Level – SITRANS LUT" sind die Simulationsmodelle für den SITRANS LUT400 projektiert.

Simulation

Die Prozesssimulation wird mithilfe der Schaltfläche "Start" (1) aktiviert. In diesem Beispiel wird der Füllstand des Behälters vom Messgerät selbst geregelt.

Die Ausgangssignale "Relay_1", "Relay_2" und "Relay_3" (2) können mit unterschiedlichen Funktionen belegt werden.

Folgende Funktionen wurden im Beispiel parametriert:

- "AssignRelay_LoLevel" = "Relay_1" Das Signal "LoLevel" wird bei Unterschreiten der Füllstandshöhe von 0,1 m gesetzt und bei Überschreiten von 0,85 m zurückgesetzt.
- "AssignRelay_HiLevel" = "Relay_2" Das Signal "HiLevel" wird bei Überschreiten der Füllstandshöhe von 0,85 m gesetzt und bei Unterschreiten von 0,1 m zurückgesetzt.
- "AssignRelay_D1" = "Relay_3" Das Einganssignal "DI1" wird direkt an den Ausgang "Relay_3" weitergereicht.

Bedienung

InPy

Di1

I evel

Distance

Mit einem Doppelklick auf das Symbol öffnen Sie das Bedienfenster des Simulationsmodells. Wenn Sie den manuellen Modus "Set manual" (1) aktivieren, können Sie den Prozesswert und den Gerätestatus (2) selbst bestimmen.

Im Bereich "Response rate and damping" können Sie die Reaktionsgeschwindigkeit des Sensors, beziehungsweise die Dämpfung des Messwerts (3) einstellen.

Mit "Loss of Echo" (4) können Sie einen Fehler des Geräts simulieren. Nach Ablauf der LOE-Zeit meldet der Baustein den Zustand "schlecht".

Nach der Erweiterung des Bedienfensters können Sie Signale überwachen und Grenzwerte einstellen. Das Symbol (5) zeigt die aktiven Überwachungsparameter an. Am Symbol werden die Signalzustände der "Relay"-Ausgänge (6) angezeigt.

Überwachung

In der Trend-Anzeige "SITRANS LUT" können Sie den Messwert und die Signalzustände von "Relay_1" und "Relay_2" beobachten.

4.5 Druckmessumformer SITRANS P

Der SITRANS P lässt sich zur Messung von Absolutdruck, Relativdruck, Differenzdruck, Durchfluss und Füllstand verwenden. Im Diagramm "Pressure – SITRANS P PA" ist das Simulationsmodell des SITRANS P in drei verschiedenen Varianten projektiert.

Simulation

Die Prozesssimulation wird mithilfe der Schaltfläche "Start" (1) aktiviert. Der Behälter wird dann bei unterschreiten des Füllstands von 6 % bis zum Füllstand von 85 % befüllt und danach wieder bis zum Füllstand von 6 % entleert. Die Modelle sind folgendermaßen parametriert:

- (2) Druckmessung
- (3) Durchflussmessung
- (4) Füllstandsmessung

Bedienung

Mit einem Doppelklick öffnen Sie das Bedienfenster des Simulationsmodells. Wenn Sie den Modus für die manuelle Bedienung "Set manual" (1) aktivieren, können Sie den Sollwert "Value in manual operation" unabhängig vorgeben und den Gerätestatus "Set device status" selbst bestimmen (2).

Im Falle der Durchflussmessung kann der Integrator "Operation Totalizer (AI2)" parametriert und am Bedienfenster ein Wert vorgegeben ("Set preset vaue"), bzw. auf null zurückgesetzt ("Reset") werden (3).

Im erweiterten Bereich des Bedienfensters können Sie eventuell parametrierte Alarmgrenzen (4) einsehen oder ändern.

Überwachung

4.6 Temperaturmessumformer SITRANS TH

Im Diagramm "Temperature – SITRANS TH" sind die Simulationsmodelle des SITRANS TH in der HART-Variante und in der PA-Variante projektiert.

Simulation

In der Simulation wird der Füllstand des Behälters zwischen 45 % und 55 % gehalten. Über die Schaltfläche "Heating" (1) wird das Medium des Heizmantels erhitzt. Das Heizmedium wird permanent durch den Wärmetauscher gefördert. Das Simulationsmodell "SITRANS TH300 HART" (2) erfasst die Temperaturen vor und nach dem elektrischen Wärmetauscher. Das Simulationsmodell "SITRANS TH400 PA" (3) erfasst die Temperaturen des Heizmantels und des Mediums im Tank.

Bedienung

Das Bedienfenster öffnen Sie durch einen Doppelklick auf das Symbol (1) eines der Simulationsmodelle. Durch aktivieren der Schaltfläche "Set manual" (2) können Sie die Temperaturwerte "Value in manual operation" am Bedienfenster einstellen oder den simulierten Status der Geräte "Set device status" ändern (3).

Im erweiterten Bereich des Bedienfensters des TH300 können Sie im manuellen Modus die zusätzlichen Werte (4) einstellen. Im erweiterten Bereich des Bedienfensters des TH400 können Sie eventuell projektierte Alarmgrenzen (5) anzeigen und anpassen.

Überwachung

In der Trendanzeige "SITRANS TH" wird der Temperaturverlauf des Mediums gegenüber der Heiztemperatur und des Füllstands angezeigt.

4.7 Stellungsregler SIPART PS2

Das Simulationsmodell des Stellungsreglers ist in zwei verschiedenen Varianten projektiert.

Im Diagramm "Positioner – SIPART PS 2 HART (Basic)" wird das Verhalten direkt durch das Modell simuliert. Im Diagramm "Positioner – SIPART PS 2 HART (Extended)" wird das Verhalten durch eine erweiterte Simulation definiert.

Simulation

Der Sollwert des Ventils kann mithilfe des Schiebereglers (1) eingestellt werden. In der im Bild dargestellten "Extended"-Variante, wird das Ventilverhalten mithilfe einer zusätzlichen Simulation (2) berechnet. Dazu sind die Anschlüsse "Rbk_Ext" und "Y_Ext" mit der Simulation verbunden. Bei der "Basic"-Variante ist der Positionierer direkt mit dem Ventil (3) der Prozesssimulation verbunden.

Bedienung

Mit einem Doppelklick öffnen Sie das Bedienfenster des Simulationsmodells. Wenn Sie den Modus für die lokale Bedienung "Set local operation" (1) aktivieren, können Sie den Sollwert "Setpoint" unabhängig des Werts am Eingang "SP" vorgeben und den Gerätestatus "Set device status" selbst bestimmen (2).

Für den Positionierer können Sie eine negative oder eine positive Abweichung "Set Offset" (3) zum Sollwert einstellen. Über die Schaltfläche "Set PST" (4) lässt sich ein Teilhubtest ("Partial-Stroke-Test") durchführen.

Im erweiterten Bereich des Bedienfensters können Sie die allgemeinen Parameter des Ventils ändern.

Überwachung

In den Trend-Anzeigen "SIPART PS2 (Basic)" und "SIPART PS2 (Extended) können Sie jeweils den Einfluss von Sollwertänderungen oder einen Teilhubtest auf den Prozess nachvollziehen.

5 Anhang

5.1 Service und Support

Industry Online Support

Sie haben Fragen oder brauchen Unterstützung?

Über den Industry Online Support greifen Sie rund um die Uhr auf das gesamte Service und Support Know-how sowie auf unsere Dienstleistungen zu.

Der Industry Online Support ist die zentrale Adresse für Informationen zu unseren Produkten, Lösungen und Services.

Produktinformationen, Handbücher, Downloads, FAQs und Anwendungsbeispiele - alle Informationen sind mit wenigen Mausklicks erreichbar: https://support.industry.siemens.com

Technical Support

Der Technical Support von Siemens Industry unterstützt Sie schnell und kompetent bei allen technischen Anfragen mit einer Vielzahl maßgeschneiderter Angebote - von der Basisunterstützung bis hin zu individuellen Supportverträgen.

Anfragen an den Technical Support stellen Sie per Web-Formular: www.siemens.de/industry/supportrequest

SITRAIN – Training for Industry

Mit unseren weltweit verfügbaren Trainings für unsere Produkte und Lösungen unterstützen wir Sie mit innovativen Lernmethoden.

Mehr zu den angebotenen Trainings und Kursen sowie deren Standorte und Termine erfahren Sie unter: www.siemens.de/sitrain

Serviceangebot

Unser Serviceangebot umfasst folgendes:

- **Plant Data Services**
- Ersatzteilservices
- Reparaturservices
- Vor-Ort und Instandhaltungsservices .
- **Retrofit- und Modernisierungsservices**
- Serviceprogramme und Verträge

Ausführliche Informationen zu unserem Serviceangebot finden Sie im Servicekatalog:

https://support.industry.siemens.com/cs/sc

Industry Online Support App

Mit der App "Siemens Industry Online Support" erhalten Sie auch unterwegs die optimale Unterstützung. Die App ist für Apple iOS, Android und Windows Phone verfügbar:

https://support.industry.siemens.com/cs/ww/de/sc/2067

53

5.2 Links und Literatur

Tabelle 5-1

Nr.	Thema
\1\	Siemens Industry Online Support
\2\	Link auf die Beitragsseite des Anwendungsbeispiels https://support.industry.siemens.com/cs/ww/de/view/109757452
\3\	SIMATIC SIMIT Simulation Platform – Übersicht https://support.industry.siemens.com/cs/ww/de/view/109746429
\4\	SIEMENS Prozessinstrumentierung https://www.siemens.com/global/de/home/produkte/automatisierung/prozessinstrum entierung.html

5.3 Änderungsdokumentation

Tabelle 5-2

Version	Datum	Änderung
V1.0	05/2018	Erste Version